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ABSTRACT

Much effort within the field of robotics has been made to study and mimic the

agility of biological flight. Emulation of bat flight is particularly difficult, as

bats utilize numerous independent means of control of both their inertial and

aerodynamic characteristics to complete a variety of complex maneuvers. In

this thesis, we investigate the viability of enabling a reduced-DoF bat robot

to synthesize one such maneuver, inverted perching, by simultaneously and

directly optimizing both the configuration and the trajectory of the robot.

We begin with a minimal model of a flapping flight system. Noting that

longitudinal inertial dynamics represent the dominant behavior for the perch-

ing of biological bats, we introduce a single additional degree of actuation: a

mass that may be shifted along the longitudinal axis of our system. We use

the Lagrangian method to derive the equations of motion for our model, and

then construct an augmented system where design parameters, namely link-

age masses, are decision variables that are constrained to a constant value.

We then reduce our optimization problem to an instance of the Direct Collo-

cation trajectory optimization method, and find the minimum-time perching

robot and trajectory. Our final configuration is able to complete the perching

maneuver on a similar timescale to biological bats, suggesting viability of the

reduced-DoF configuration.

Keywords: robotics, robot motion, trajectory optimization, design automa-

tion, biomimetics
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CHAPTER 1

INTRODUCTION

1.1 Motivation

As the product of millions of years of evolution, biological systems fly with

maneuverability and efficiency that far eclipse the performance of man-made

machines [1]. In pursuit of replicating biological performance, many robotics

researchers have built systems that mimic biological structures and morpholo-

gies (so-called biomimetics). In particular, there has been recent investment

in emulating the flight of bats for their particular athleticism [2, 3, 4].

Biological bats are remarkably complex creatures. Rousettus aegyptiacus,

or the Egyptian fruit bat, is able to execute aggressive maneuvers through the

manipulation of the 40 degrees of freedom of the many actuated and passive

joints of its musculoskeletal system [5]. Furthermore, the flight mechanics of

R. aegyptiacus are made more complex by the somewhat unusual distribution

of weight throughout its body. Unlike many other flapping-wing systems in

biology, bats exhibit particularly heavy wings, which allow them to utilize

inertial dynamics for attitude control during some modes of flight [6].

Perfect mimicry of such a complicated morphology is intractable due to the

mass and volume of current actuation hardware. The challenge in effectively

emulating such a system therefore lies in designing a low-DoF approximation

that captures as much of the performance of the full systems as possible. As

the resulting design space is highly constrained both in terms of morphol-

ogy and performance, many roboticists seek some notion of optimality as a

criterion for some parameterization of their systems.

Some roboticists optimize parameterization to be as similar as possible to

the kinematics of biological systems [7]. There has been success in using

these methods to capture the majority of the movement in bat wings using

only a handful of DoFs [3]. However, there has also been great success in
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using novel, low-DoF actuation that mimics humans’ abstract understanding

of how biological systems work [8]. Particularly, noting that bats manipulate

their inertial parameters to control their attitude, Syed et al. [4] have demon-

strated that with only a single DoF of inertial manipulation (manifested as a

shifting mass), a bat-scale fixed-wing UAV is capable of executing aggressive

attitude maneuvers.

As such novel systems do away with direct mimicry of biological structure

to some degree, it becomes necessary to use an optimization function that

is fundamentally different than those used in [3] and [7]. In this thesis,

we present a general method for constructing an optimization problem that

directly optimizes the parameterization of robots for trajectory performance,

and apply it to the case of bat perching.

1.2 Approach

The functional basis of our method relies on methods used for trajectory op-

timization, typically used to synthesize a set of inputs that allow a robot to

complete a maneuver in an optimal manner. In Chapter 3, we describe and

then extend direct collocation, a method of generating a locally optimal tra-

jectory computationally that relies on nonlinear programming. We do so by

extending the dynamical model of the robot to contain the parameterization

as explicit, constant decision variables. We then use this augmented system

to generate an instance of direct collocation for which solutions contain both

the optimal parameterization and the associated optimal trajectory.

In Chapter 4, we then apply this algorithm to a simplistic model of bat

perching. Recent work has concluded that bats can execute large pitch ro-

tations utilizing only longitudinal inertial dynamics, and that such behavior

is dominant for inverted perching [4, 6]. Using this information, we create

an approximate model of these dynamics by modeling a bat as a kinematic

chain of rigid bodies. We then introduce a single-DoF mass-shifting actuator

similar to the one used in [4]. An extended derivation of the equations of

motion is presented in Appendix A. We then use the method described in

Chapter 3 to create a program that will find an optimal mass distribution

between the the legs, wings, and shifter. Our final configuration is able to

complete the perching maneuver on a similar timescale to biological bats,
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suggesting viability of the reduced-DoF configuration.
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CHAPTER 2

LITERATURE REVIEW

2.1 Novel Biomimetic Robots

Biomimetic robotics most commonly employ novel hardware that relies on

human intuition into the underlying behavior of biological systems. One of

the most widely studied forms of robotic motion is legged locomotion. A

very common form of robot structure and control system design is based on

the spring-loaded inverted pendulum (SLIP) model [9]. SLIP is a hybrid

approach that in its most basic form models a legged robot as a point mass

with a single massless leg connecting the robot to the ground, all confined

to the sagittal plane. The leg is modeled as containing active actuation as

well as passive springs, which may be realized in hardware as control inputs

to hip/knee motors that match the behavior of real springs. Poulakakis and

Grizzle [10] extend SLIP to model a monopedal hopping robot, and synthesize

a controller. Sreenath et al. also extend SLIP to reflect the dynamics of

MABEL, a bipedal robot, on which the authors achieve stable walking motion

[11].

Flapping fight has also been studied extensively. Paranjape, Chung, and

Kim [8] describe the creation of a bird-like UAV, that uses dihedral actua-

tion in the wings (up and down movement) to synthesize control inputs that

effect reliable perching maneuvers using a “pitch up” motion to decelerate

the vehicle. Ramezani et al. [2] detail a significantly more complex bat-

like morphology. The iteration of the robot described in this paper, BatBot

(B2), implements both dihedral and mediolateral (wing folding and unfold-

ing) actuation in the forelimbs/wings was well as dorsoventral actuation in

the hindlimbs. The increased complexity allows B2 to simulate the complex

cyclic behavior of bats in nominal flight. Stable flight of B2 has been achieved

in spite of passively unstable aerodynamics.

4



2.2 Optimal Biomimicry

Some biomimetic robots are designed to replicate biological systems in an op-

timal manner. Some of such robots achieve effective mimicry with only a few

DoFs through leveraging of synergistic behavior. Originally formulated by

Bernstein [12], the concept of biological synergies is that the dominant DoFs

in many cases of animal motion are actually created through the coordina-

tion of multiple joints rather than individual ones. By finding the dominant

synergies in a biological system, one may find that by directly implement-

ing only a few of these synergies as single joints results in the capability to

synthesize the dominant characteristics of the original motion. This is the

case for human hands; 80% of hand motion can be represented using only

the first two principal synergies [13]. Brown and Asada [14] use this conclu-

sion to drive a 17-DoF hand using only two DC motors. Riskin et al. [5]

perform a similar analysis on bat wings, showing that the first two principal

synergies represent 57% of the mobility of R. aegyptiacus. Hoff et al. [3] also

leverage bat wing synergies in order to create 2-DoF wings for an updated

configuration of B2. After constraining the design space to be compatible

with the B2 trunk, the authors generate parameters, implement hardware,

and synthesize a wingbeat cycle that behaves similarly to that of biological

bats.
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CHAPTER 3

OPTIMAL ROBOT PARAMETERIZATION

3.1 Trajectory Optimization

Within the disciplines of control theory and motion planning, an often posed

problem is to design an optimal input for some dynamical system ẋ =

f(x(t),u(t)) over a time interval [t0, tf ]. Optimality for such an input tra-

jectory is often defined in terms of a running cost l(x(t),u(t)) and final

cost Jf (x(tf )) that are combined to form the total cost J and associated

optimization problem as follows:

J(x(t0),u(·)) =

∫ tf

t0

l(x(t),u(t))dt+ Jf (x(tf )) (3.1)

minimize
u(·)

J(x(t0),u(·))

subject to ẋ = f(x(t),u(t)) ∀t ∈ [t0, tf ]
(3.2)

If the only constraints on such a problem are that the dynamics hold, it

is possible that the problem may be using optimal control theory using tools

such as the Hamilton-Jacobi-Bellman equation and Pontryagin’s minimum

principle [15], though such methods become infeasible for systems with high-

dimensional or complicated equations of motion. Furthermore, for practical

systems, intractability can arise through the complexity of additional con-

straints, including configuration space obstacles, actuator limits, and locally-

applicable dynamics approximations, which are often necessary to produce

feasible trajectories. When analytical solutions are not accessible, trajectory

optimization methods are often used instead. Trajectory optimization meth-

ods describe a set of computational methods that can synthesize optimal

state and input trajectories that conform to nonlinear constraints on states

and inputs. For this thesis, we consider such problems that have nonlinear,
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time-invariant state and input constraints d(x(t),u(t)):

minimize
u(·)

J(x(t0),u(·)))

subject to ẋ = f(x(t),u(t)) ∀t ∈ [t0, tf ]

d(x(t),u(t)) ≥ 0 ∀t ∈ [t0, tf ]

(3.3)

Trajectory optimization methods are often classified as direct or indirect.

Indirect methods exactly define conditions for optimality, and then formulate

a numerically solvable relaxation. Direct methods, by contrast, operate by

forming a direct approximation of the optimization problem posed in Equa-

tion 3.3 [16]. The first step in forming a trajectory optimization problem

by one of these methods is to transcribe, or discretize, candidate trajectories

into a sequence of states and inputs, (x0,u0), . . . , (xN ,uN). This transforms

the trajectory space into a subset of Rn for some n ∈ Z, which allows one to

synthesize a parameter optimization problem that can produce approximate

trajectories. Additionally, formulating the problem in terms of a parameter

optimization allows for strong and versatile nonlinear optimization methods

and software to be used. The Drake MATLAB library [17], used in this thesis,

formulates many trajectory optimization problems as instances of parameter

optimization that use the SNOPT [18] nonlinear optimization software.

3.2 Direct Collocation

Direct collocation is a direct transcription trajectory optimization method

that leverages collocation methods to synthesize dynamics constraints. Each

sequential pair of states and inputs ((xi−1,ui−1), (xi,ui)) defines the value

and time derivative of the state trajectory at times ti−1 and ti to be

(xi−1,f(xi−1,ui−1)) and (xi,f(xi,ui)), respectively. We assume that the

input trajectory on the interval [ti−1, ti] is an affine function of time as fol-

lows:

ũi(t) = ut−1 +
(t− ti−1)

∆ti
(ut − ut−1) (3.4)

where ∆ti = ti − ti−1, such that ũi(ti) = ũi+1(ti) = ui and ũi−1(ti−1) =

ũi(ti−1) = ui−1. The key assumption of direct collocation as originally posed

by Hargraves and Paris is that for a sufficiently small ∆ti = ti − ti−1, the
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state trajectory between xi−1 and xi is approximately cubic [19]. If this cubic

segment is to approximately conform to the dynamics, it follows that the

derivative of the segment at xi−1 and xi must necessarily be f(xi−1,ui−1)

and f(xi,ui), respectively. A single cubic segment, the so-called Hermite

cubic spline, can satisfy this condition. We can calculate this spline by first

noting that it’s value and time derivative are of the form

x̃i(t) = a1 + a2t+ a3t
2 + a4t

3 (3.5)

˙̃xi(t) = a2 + 2a3t+ 3a4t
2 (3.6)

where ak are constant vectors of coefficients. We can determine the value

of these coefficients by imposing the endpoint constraints x̃i(ti−1) = xi−1,

x̃i(ti) = xi, ˙̃xi(ti−1) = f(xi−1,ui−1), and ˙̃xi(ti) = f(xi,ui).

It is important to note that this spline would exist for any choice of xi−1

and xi; we have not yet introduced any constrictions on this trajectory to

ensure that ẋ = f(x,u) approximately holds for the duration of the interval.

Otherwise stated, we want to impose a constraint on ((xi−1,ui−1), (xi,ui))

such that the Hermite spline between these points is close to the trajectory

that the state of the system would follow given input ũi and initial condition

xi−1.

The strategy of Hargraves and Paris to synthesize this constraint is to

ensure that at the midpoint of the interval [ti−1, ti], the value and derivative of

the spline (ci, ċi) = (x̃i(
ti−1+ti

2
), ˙̃xi(

ti−1+ti
2

)), so-called “knot points,” conform

to the dynamics. To constructing this constraint, first we note that given

(3.4), the input at this point is ũi(
ti−1+ti

2
) = 1

2
(ui−1 +ui). Next, after solving

for the spline coefficients, (3.5) and (3.6) yield

ci =
1

2
(xi−1 + xi) +

∆ti
8

(f(xi−1,ui−1)− f(xi,ui)) (3.7)

ċi = − 3

2∆ti
(xi−1 − xi)−

1

4
(f(xi−1,ui−1) + f(xi,ui)) (3.8)

With equations for the state, state derivative, and input, we now can create

an equality constraint gi that we can add to our optimization program to
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enforce the dynamics at the midpoint:

gi = f(ci,
1

2
(ui−1 + ui))− ċi = 0 (3.9)

A graphical representation of this mechanism can be seen in Figure 3.1.

The accuracy over a single time-step of this method is fourth-order in ∆ti [20],

resulting in highly accurate conformation to dynamics for tractable numbers

of collocation points for many systems.

With the dynamics constraint approximately satisfied, we must now de-

fine reasonable approximations to the cost function and J and additional

constraints d from (3.3). For the running cost l from (3.1), Drake approx-

imates the integral with the trapezoidal rule to create the following cost

function:

J(x(t0),u(·)) ≈
N∑
i=1

li−1 + li
2

∆ti + Jf (xN) (3.10)

where li = l(xi,ui). Additionally, we impose the constraints of d by simply

imposing them on the state and input of each time step. This leaves us with

our final nonlinear program:

minimize
(x0,u0),...,(xN ,uN )

N∑
i=1

li−1 + li
2

∆ti + Jf (xN)

subject to ∆ti > 0,∀i ∈ 1, . . . , N

gi = 0,∀i ∈ 1, . . . , N

d(xi,ui) ≥ 0,∀i ∈ 0, . . . , N

(3.11)

3.3 Design Optimization for Trajectory Performance

A manual design process for developing a robot that can perform trajectories

described by direct collocation might be to (1) come up with an initial design

for the robot; (2) use direct collocation to determine the robot’s capability to

complete some trajectory; and finally, (3) if the performance is unsatisfactory,

vary design parameters (e.g. component masses and dimensions) of the robot

and apply optimization again. A natural automation of this design process

would be to extend the trajectory optimization program by adding the design

9



Figure 3.1: Visualization of gi = 0 constraint. Here we see the Hermite spline
between the points xi−1 and xi, shown in gray. At the midpoint of the spline, we
display the derivative of the spline, ċi, and display it in blue. We also display the
what the derivative would be if the dynamics held in red. As the difference
between these quantities gi has nonzero magnitude, this particular spline is likely
a poor representation of how the system would behave over this interval.

parameters to the set of optimization variables in the program. Specifically,

instead of augmenting the optimization program formulation process, we

chose to augment the dynamical system, such that our design optimization

can reduced to a single instance of the original direct collocation algorithm.

We begin by noting for a dynamical model of a robot ẋ = f(x(t),u(t)),

f may be viewed as an implicit function defined as

f(x,u) = fα(x,u) = p(x,u,α) (3.12)

where α is a constant vector of robot parameters as described above. We con-

struct our augmented system by adding α to our state vector, and enforcing

constant value as follows:

ẏ =

[
ẋ

α̇

]
= f̄(y,u) =

[
fα(x,u)

0

]
(3.13)

We then construct the following generalization of the direct collocation
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program in (3.11):

minimize
(y0,u0),...,(yN ,uN )

N∑
i=1

li−1 + li
2

∆ti + Jf (xN)

subject to ∆ti > 0,∀i ∈ 1, . . . , N

ḡi = 0,∀i ∈ 1, . . . , N

d(xi,ui) ≥ 0,∀i ∈ 0, . . . , N

(3.14)

where ḡi are dynamical constraints constructed as follows according to (3.7)

and (3.8):

c̄i =
1

2
(yi−1 + yi) +

∆ti
8

(f̄(yi−1,ui−1)− f̄(yi,ui)) (3.15)

˙̄ci = − 3

2∆ti
(yi−1 − yi)−

1

4
(f̄(yi−1,ui−1) + f̄(yi,ui)) (3.16)

ḡi = f̄(c̄i, ũi(
ti−1 + ti

2
))− ˙̄ci = 0 (3.17)

The intent of this program is to obtain locally optimal parameters α∗ =

α∗
0 = . . . = α∗

N such that the plant ẋ = fα∗(x,u) can produce the most

optimal trajectory as defined in (3.11), and that (x0,u0), . . . , (xN ,uN) is

the optimal trajectory for that system. First, we note that c̄i and ˙̄ci can be

decomposed using (3.13) as follows:

c̄i =

[
1
2
(xi−1 + xi) + ∆ti

8
(fαi−1

(xi−1,ui−1)− fαi
(xi,ui))

1
2
(αi−1 +αi)

]
(3.18)

˙̄ci =

[
− 3

2∆ti
(xi−1 − xi)− 1

4
(fαi−1

(xi−1,ui−1) + fαi
(xi,ui))

− 3
2∆ti

(αi−1 −αi)

]
(3.19)

Given α̇(t) = 0, (3.17) and (3.19) imply that αi = αj∀i, j ∈ 0, . . . , N

given that ∆ti are constrained to be positive by the program in (3.14). This

implies that the exact effect of the dynamical constraints ḡi is to constrain

the trajectory of x(t) precisely in the same manner as in (3.11) for a given

constant α = α0. Therefore, given that they have identical cost functions,

11



the program in (3.14) is equivalent to (3.11), except that it additionally allows

for manipulation of α to further decrease the cost function.

12



CHAPTER 4

APPLICATION TO AERIAL ROBOTICS

4.1 Dynamical Model

Figure 4.1: Kinematic diagram for bat system

For our minimalistic model of a perching bat, pictured in Figure 4.1, we

constrict the trunk center of mass to the world xz-plane, and constrict roll

and yaw angles to 0. We allow for three types of actuation: equal and

opposite rotation of the wings about the longitudinal axis; equal rotation of

the legs about the mediolateral axis; and mass-shifting along the longitudinal

axis. Additionally, we assume that the robot consists only of five rigid bodies:

the trunk, two wings, one leg structure, and the shifting mass. The remaining

maneuvers can be adequately expressed with a dynamical system of the form
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q =



qy

bx

bz

qfl

qt

qm


,x =

[
q

q̇

]
,u =

uflut
um

 , ẋ = f(x,u) (4.1)

where qy represents trunk rotation about the y-axis (pitch), bx and bz repre-

sent trunk position in the xz-plane, and [qfl qt qm] and [ufl ut um] represent

generalized coordinates and forces for wing, leg, and shifting mass joints

respectively.

We derive f(x,u) by using the Lagrangian method. We find the kinetic

energy T (q, q̇) and potential energy V (q) to be

T (q, q̇) =
∑
i

1

2
miṗ

T
i ṗi +

1

2
ωTi RiJ iR

T
i ωi (4.2)

V (q) =
∑
i

mig
[
0 0 1

]
pi (4.3)

where pi, ṗi, Ri, and ωi, represent the position, linear velocity, orientation,

and angular velocity of the ith body in the world frame; mi and J i represent

the mass and principle-axes inertia tensor of the ith body; and g is the

gravitational constant 9.81[m
s2

] [21]. These quantities can be read directly

from qy, bx, bz, and their derivatives for the trunk, and through the kinematic

constraints arising from the joints, we can derive expressions for the rest of

the bodies. As our model only captures inertial dynamics of a kinematic

chain, we find the following expression for q̈:

H(q)q̈ +N (q, q̇) = Bu (4.4)

where H is the generalized mass-inertia matrix; N encompasses Coriolis,

centrifugal, and gravity terms; and B is simply a constant 0− 1 matrix that

maps each input to it’s respective generalized force [22]. These matrices can

be derived from T and V as follows:

H(q) =
∂2T

∂q̇2 (4.5)
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N (q, q̇) =
∂Hq̇

∂q
q̇ − 1

2

(
∂Hq̇

∂q

)T
q̇ +

∂V

∂q
(4.6)

As H is well known to symmetric and positive definite [22], we can express

f as

f(x,u) =

[
q̇

H(q)−1(Bu−N (q, q̇))

]
(4.7)

Expressions for H , N , and B as well as an extended derivation of the

equations of motion are available in Appendix A.

4.2 Minimum-Time Perching

We now extend our model to formulate a direct design optimization problem

to find masses for the non-trunk links (the wings, legs, and shifting mass) that

will allow the robot to perform an inverted perching maneuver in minimum

time. We assume that mass is uniformly distributed throughout the links,

leaving 3 degrees of freedom in our design space: the total link masses α =

[αfl αt αm]T . This renders our extended dynamical system as

ẏ =

[
ẋ

α̇

]
= f̄(y,u) =

 q̇

H(q,α)−1(Bu−N (q, q̇,α))

0

 (4.8)

via (3.13). Note that since T and V are dependent on the link masses, H

and N are dependent on (and therefore functions of) α. We constrain the

trajectory to a perching trajectory with the following boundary conditions:

[
qy(0)

q̇y(0)

]
=

[
−π

3

0

]
,


qy(tf )

bx(tf )

bz(tf )

ḃx(tf )

ḃy(tf )

 =


−π
0

0

0

0

 (4.9)

which, simply put, constrains the beginning of the maneuver to a stable 60◦

pitch and the end of the maneuver to full inversion and zero trunk velocity at

the perching location (0, 0). We enforce bounding box constraints rl < yi <

ru over the entire trajectory to a) constrict the state to reasonable limits
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to prevent unrealistic motion (e.g. wings clipping through the trunk) and

b) constrain the link masses to feasible values. We also enforce symmetric

actuator limitations −s < ui < s that a) prevent motion that is much faster

than reasonable for the number of time samples in the optimization program

and b) prevent inputs that would be infeasible for typical linear actuators,

servo motors, and brushless DS motors on the scales used for B2 and Allice [2]

[4]. These limits are displayed in Tables 4.1 and 4.2. As we are constructing a

minimum-time problem and explicitly constrain our final position, we are left

with constant running and total costs l(y,u) = 1 and Jf (yN) = 0. Packing

our constant constraints in (4.9) as A0y0 = b0 andANyN = bN , we arrive to

our final program formulation:

minimize
(y0,u0),...,(yN ,uN )

N∑
i=1

∆ti

subject to ∆ti > 0,∀i ∈ 1, . . . , N

ḡi = 0,∀i ∈ 1, . . . , N

rl < yi < ru,∀i ∈ 0, . . . , N

− s < ui < s,∀i ∈ 0, . . . , N

A0y0 = b0

ANyN = bN

(4.10)

where N , the number of steps we chose, is 81. Numerical evaluation of

this program will require constraint and cost gradients, which can easily be

constructed given the Jacobians of f̄ with respect to y and u, which are

computed as

∂f̄

∂y
=

 06×6 I6 06×3

∂H−1

∂q
V +H−1 ∂N

∂q
H−1 ∂N

∂q̇
∂H−1

∂α
V +H−1 ∂N

∂α

03×6 03×6 03×3

 (4.11)

∂f̄

∂u
=

 06×3

H−1B

03×3

 (4.12)

where V = Bu −N and ∂H−1

∂q
= −H−1 ∂H

∂q
H−1 is a third-order tenor rep-
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Table 4.1: Continuous bounds on state trajectory

State Units Minimum Maximum
qy rad −∞ π

10

bx m −0.2 0.2
bz m −50 0
qfl rad −π

2
π
2

qt rad −π
2

π
2

qm m −0.04 0.04
q̇y rad/s −∞ ∞
ḃx m/s −∞ ∞
ḃz m/s −∞ ∞
q̇fl rad/s −∞ ∞
q̇t rad/s −∞ ∞
q̇m m/s −∞ ∞
αfl g 10 40
αt g 2.5 10
αm g 10 30

Table 4.2: Continuous bounds on input trajectory

Input Units Minimum Maximum
ufl N·m −0.036 0.036
ut N·m −0.0002 0.0002
um N −0.021 0.021

resentation of the partial derivative of H−1 with respect to q (and similarly

with ∂H−1

∂α
).

4.3 Results

Our program output a minimum-time perching trajectory of length t = 266

[ms]. A visualization of this motion can be found in Figure 4.2, and a plot

of the trunk trajectory is displayed in Figure 4.3. As shown in Table 4.3, all

of the generated optimal mass parameters were found to be constant within

an extremely small tolerance, and centered at an extreme of the allowable

range.

It is worth noting that two of these parameters, both αt and αm, are

at the maximum of their allowable range. This is not entirely unexpected;

having a high mass allows for more angular momentum to be exerted on
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Table 4.3: Optimal mass parameters for minimum-time perching

Parameter Range [g]
αfl 10± 4.09× 10−14

αt 10± 1.82× 10−15

αm 30± 1.7× 10−16

Figure 4.2: Visualization of perching trajectory

the trunk before hitting an actuator stroke limit. However, high mass is

detrimental to steady-state flight performance, as it decreases the thrust

to weight ratio. We would not expect aerodynamics to have affected our

results, as they were not modeled, but it would likely be advisable to have

some constraints on minimum aerodynamic performance before generating

a final parameterization to guarantee that steady-state flight is, at the very

least, feasible. We also note that if, similar to Allice [4], the primary weight

of the mass-shifter is simply the battery, that having a heavy mass-shifter

would be feasible without significantly affecting the total mass.

We also acknowledge that we have not guaranteed that the results of our

program are insensitive to the minute fluctuations of α over the trajectory

caused by rounding error. In order to verify that this trajectory is feasible

for exactly constant mass parameters, we take the timewise average of these

parameters, create an instance of the system described in (4.7), and simulate
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Figure 4.3: Trajectory of trunk center of mass in world xz-plane

the maneuver open-loop for a single bat using MATLAB’s ode45 (which

uses an explicit Runge-Kutta formulation [23]). We plot both the Runge-

Kutta and collocation pitch trajectories in Figure 4.4. Additionally, we treat

the Runge-Kutta results as ground truth for the trajectory capability of

the robot, and plot the absolute value of relative error accumulation on the

collocation pitch trajectory (−qy) in Figure 4.5. It is clear from the graph

that the Runge-Kutta and collocation results begin to diverge, but given

that they stay within 1.2 × 10−5 [rad] of each other, we conclude that for

such a short interval, the collocation trajectory is reasonably representative

of the capabilities of the modeled dynamics. We also note that there appears

to be high-frequency noise in the error graph. As the input is modeled

as piecewise linear, its second derivative is unbounded in several locations.

We hypothesize that truncation error associated with these points would be

enough to cause the fluctuations in the figure.

We also observe in Figure 4.6 that the leg and shifting mass inputs were at

extremal values for nearly the entire trajectory, suggesting that bang-bang

control may be optimal for these inputs. However, the wing input signal

has significant high frequency content, which could possibly be damped by

adding an input component to l. We also note that due to the relatively high
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mass of the wings, that this oscillatory behavior is significantly attenuated

in the wing joint trajectory shown in Figure 4.7.
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Figure 4.4: Pitch trajectory

20



0 0.05 0.1 0.15 0.2 0.25

time [s]

0

0.2

0.4

0.6

0.8

1

1.2

R
el
a
ti
v
e

E
rr

o
r

#10!5 Pitch Relative Error vs. Time

Figure 4.5: Open loop pitch relative error (absolute)

0 0.05 0.1 0.15 0.2 0.25

time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

In
p
u
ts

Normalized Inputs vs. Time

uf l

ut

um

Figure 4.6: Input trajectories, with constraint range normalized to [−1, 1]

21



0 0.05 0.1 0.15 0.2 0.25

time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

J
oi

n
t
P
o
si
ti
on

s

Normalized Joint Positions vs. Time

qf l

qt

qm

Figure 4.7: Joint trajectories, with constraint range normalized to [−1, 1]

22



CHAPTER 5

CONCLUSION

In this work, we have presented a general method for optimizing the param-

eterization of robot hardware for trajectory performance. Using an instance

of Direct Collocation, we are able to simultaneously generate a set of opti-

mal mass parameters and an optimal trajectory for minimum-time inverted

perching of a simplistic model of a biomimetic, bat-like robot. In simulation,

we achieved a trajectory duration of 266 [ms], which is comparable to that

of a biological bat.

While the minimum-time perching problem was solved in this thesis, in

practice, it may be wise to choose a different optimization function and model

for a general-purpose robot, such as maximum efficiency steady-state flight.

Subsequent work may examine the creation of such an optimization problem,

which would require modeling of the aerodynamics of the robot.
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APPENDIX A

EXTENDED DYNAMICS DERIVATIONS

From [21], we know that for a system of connected rigid bodies, we can

express the total kinetic and potential energy as

T (q, q̇) =
∑
i

1

2
miṗ

T
i ṗi +

1

2
ωTi RiJ iR

T
i ωi (A.1)

V (q) =
∑
i

mig
[
0 0 1

]
pi (A.2)

where pi, ṗi, Ri, and ωi, represent the position, linear velocity, orientation,

and angular velocity of the ith body in the world frame; mi and J i represent

the mass and principle-axes inertia tensor of the ith body; and g is the

gravitational constant 9.81[m
s2

] [21]. The configuration q of the system by

definition contains enough information to determine the world-frame location

of each point on the robot, so each pi can be written as a function of q [21].

We can use this formulation to derive the linear velocities as

ṗi =
∂pi
∂q
q̇ (A.3)

Similarly, we can derive the body orientations Ri(q) from the configura-

tion, and the angular velocities as

S(ωi) = ṘiR
T
i =

(∑
j

∂Ri

∂qj
q̇j

)
RT
i (A.4)

where S transforms a vector into a skew symmetric matrix as follows:

S(

v1

v2

v3

) =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 (A.5)

Spong et al. use this structure to rewrite the kinetic energy as
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T (q, q̇) =
1

2
q̇TH(q)q̇ (A.6)

Using the Lagrangian method, we can write the equations of motion as

d

dt

∂L

∂q̇
− ∂L

∂q
= Q (A.7)

where L = T−V andQ represents nonconservative generalized forces applied

to the system. Substituting for T ,

d

dt

∂L

∂q̇
− ∂L

∂q
=

d

dt
(
∂T

∂q̇
− ∂V

∂q̇
)− ∂T

∂q
+
∂V

∂q

=
d

dt
(
∂T

∂q̇
)− ∂T

∂q
+
∂V

∂q

=
d

dt
(Hq̇)− ∂

∂q

1

2
q̇THq̇ +

∂V

∂q

= Ḣq̇ +Hq̈ − ∂

∂q

1

2
(Hq̇)T q̇ +

∂V

∂q

= Hq̈ + Ḣq̇ − 1

2

(
∂Hq̇

∂q

)T
q̇ +

∂V

∂q

(A.8)

Using Hk to denote the kth column of H , we note that
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Ḣq̇ =
∑
i

Ḣ iq̇i

=
∑
i

(∑
j

∂H i

∂qj
q̇j

)
q̇i

=
∑
i

∑
j

∂H i

∂qj
q̇j q̇i

=
∑
j

∑
i

∂H i

∂qj
q̇iq̇j

=
∑
j

∑
i

∂H i

∂qj
q̇iq̇j

=
∑
j

∂H

∂qj
q̇q̇j

=
∑
j

∂Hq̇

∂qj
q̇j

=
∂Hq̇

∂q
q̇

(A.9)

Taking the inputs of the system to be generalized forces on the wing, tail,

and shifting mass joints, we can formulate Q from (A.7) as a function of u:

Q =



0

0

0

ufl

ut

um


=

[
03×3

I3

]
u = Bu (A.10)

Combining (A.7)-(A.10), we are left with our final formulation of the equa-

tions of motion,

Hq̈ +
∂Hq̇

∂q
q̇ − 1

2

(
∂Hq̇

∂q

)T
q̇ +

∂V

∂q
= Bu (A.11)

which, given the definitions of H and N from (4.5) and (4.6) are equivalent

to the form given in (4.4).

We now derive forms for pi,Ri, and J i for our bat robot given the following

assumptions:
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• Each link is a uniform-density rectangle or rectangular prism. The

trunk is a prism with body-axis dimensions
[
blx bly blz

]T
and mass

mb. The wings are square with side length blx. The tail structure is

square with side length bly. The mass shifter is a cube with side length

cl.

• Each wing is attached to the trunk such that one side is coincident

with a side of the trunk prism and aligned with the trunk’s body x-

axis. The joints connecting the left and right wing to the trunk are

at ±
[
0 1

2
bly 0

]T
in the trunk frame, respectively. Otherwise stated,

the seams between the wings and trunk split the trunk’s side faces

lengthwise.

• The tail is attached to the end of the trunk such that one side is co-

incident with the trunk prism’s rear face and aligned to the trunk’s

body y-axis. The joint connecting the tail to the trunk is located at[
−1

2
blx 0 0

]T
in the trunk frame. Otherwise stated, the seam be-

tween the tail and trunk splits the rear face horizontally.

as well as the following comments on notation:

• Rx(θ), Ry(θ), and Rz(θ) denote rotations by θ radians about the x, y,

and z axes, respectively.

• For any k, ck and sk are shorthand for cos(qk) and sin(qk), respectively.

• The trunk, left wing, right wing, tail, and mass shifter will be numbered

as bodies 1 through 5.

R1 =Ry(qy) (A.12)

R2 =R1Rx(qfl) (A.13)

R3 =R1Rx(−qfl) (A.14)

R4 =R1Ry(qt) (A.15)

R5 =R1 (A.16)
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p1 =

bx0
bz

 (A.17)

p2 =p1 +R1

 0
1
2
bly

0

+R2

 0
1
2
blx

0

 (A.18)

p3 =p1 +R1

 0

−1
2
bly

0

+R2

 0

−1
2
blx

0

 (A.19)

p4 =p1 +R1

−
1
2
blx

0

0

+R2

−
1
2
bly

0

0

 (A.20)

p5 =p1 +R1

qm0
0

 (A.21)

J1 =
mb

12

b
2
ly + b2

lz 0 0

0 b2
lx + b2

lz 0

0 0 b2
lx + b2

ly

 (A.22)

J2 =
αfl
12

b
2
lx 0 0

0 b2
lx 0

0 0 2b2
lx

 (A.23)

J2 =
αfl
12

b
2
lx 0 0

0 b2
lx 0

0 0 2b2
lx

 (A.24)

J4 =
αt
12

b
2
ly 0 0

0 b2
ly 0

0 0 2b2
ly

 (A.25)

J5 =
αm
6
c2
l I3 (A.26)

Using (A.3) and (A.4), we can directly compute both potential and kinetic

energy, which we can use to generate H and N via (4.5) and (4.6). The final
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formulas as well are provided below. Table A.1 lists the numerical values of

various static masses and dimensions.

H1,1 =
blx

2mb

12
+
blz

2mb

12
+
blx

2αt
4

+
bly

2αt
3

+
blx

2αfl
6

+
cl

2αm
6

+ αmqc
2 +

2blx
2αflsfl

2

3
+
blxblyαtct

2

H1,2 =
blxαtsy

2
− αmqcsy +

blyαt sin(qt + qy)

2
+ blxαflcysfl

H1,3 =
blxαtcy

2
− αmqccy +

blyαt cos(qt + qy)

2
− blxαflsflsy

H1,4 = 0

H1,5 =
blyαt(4bly + 3blxct)

12

H1,6 = 0

H2,1 =
blxαtsy

2
− αmqcsy +

blyαt sin(qt + qy)

2
+ blxαflcysfl

H2,2 =mb + αm + αt + 2αfl

H2,3 = 0

H2,4 = blxαflcflsy

H2,5 =
blyαt sin(qt + qy)

2

H2,6 =αmcy

H3,1 =
blxαtcy

2
− αmqccy +

blyαt cos(qt + qy)

2
− blxαflsflsy

H3,2 = 0

H3,3 =mb + αm + αt + 2αfl

H3,4 = blxαflcflcy

H3,5 =
blyαt cos(qt + qy)

2

H3,6 = − αmsy
H4,1 = 0

H4,2 = blxαflcflsy

H4,3 = blxαflcflcy

H4,4 =
2blx

2αfl
3
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H4,5 = 0

H4,6 = 0

H5,1 =
blyαt(4bly + 3blxct)

12

H5,2 =
blyαt sin(qt + qy)

2

H5,3 =
blyαt cos(qt + qy)

2

H5,4 = 0

H5,5 =
bly

2αt
3

H5,6 = 0

H6,1 = 0

H6,2 =αmcy

H6,3 = − αmsy
H6,4 = 0

H6,5 = 0

H6,6 =αm

N 1 = 2αmqc ˙qmq̇y +
blxgαtcy

2
− gαmqccy +

blygαtctcy
2

− blxblyαtq̇t
2st

4

− blxgαflsflsy −
blygαtstsy

2
+

2blx
2αfl ˙qflq̇y sin(2qfl)

3
− blxblyαtq̇tq̇yst

2

N 2 =
blyαtq̇t

2 cos(qt + qy)

2
− 2αm ˙qmq̇ysy +

blyαtq̇y
2 cos(qt + qy)

2
+
blxαtq̇y

2cy
2

− αmqcq̇y2cy + blyαtq̇tq̇y cos(qt + qy)− blxαfl ˙qfl
2sflsy − blxαflq̇y2sflsy

+ 2blxαfl ˙qflq̇ycflcy

N 3 = gmb + gαm + gαt + 2gαfl − 2αm ˙qmq̇ycy −
blyαtq̇t

2 sin(qt + qy)

2

− blyαtq̇y
2 sin(qt + qy)

2
− blxαtq̇y

2sy
2

+ αmqcq̇y
2sy − blxαfl ˙qfl

2cysfl

− blxαflq̇y2cysfl − blyαtq̇tq̇y sin(qt + qy)− 2blxαfl ˙qflq̇ycflsy

N 4 =
blxαflcfl(3gcy − 2blxq̇y

2sfl)

3
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N 5 =
blyαt(blxstq̇y

2 + 2g cos(qt + qy))

4

N 6 = − αm(qcq̇y
2 + gsy)

Table A.1: Parameters for bat robot

State Units Value
blx m 0.1
bly m 0.04
blz m 0.04
c1 m 0.01
mb g 50
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