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ABSTRACT

This thesis proposes methods for biped walking locomotion with feet rota-

tion. The chief objective of this work is to first generate a guide trajectory

based on designing a zero moment point (ZMP) trajectory within the sup-

port polygon and obtain linear controlling methods to stabilize the walking

procedure with feet rotation. With feet rotation, the walking procedure will

be more humanlike, more flexible and possible saving energy. However, when

the feet are rotating around their edge, either toe or heel, the entire robot is

under-actuated which are more difficult to control. By using preview control,

a dynamic model of the system can be derived to control the robot.

This thesis is based upon a simplified model of the Reemc Robot by PAL

Robotics. The simplified model has fixed arms, since only leg motions are

considered, and two legs. Each leg has three degrees of freedom. The robot is

presented as a three mass model. A guided gait trajectory is first generated

as the boundary condition for the ZMP. Interpolation methods are used to

generate a ZMP trajectory from a set of discrete points that stay inside the

boundary condition. By designing the transition model from single support

phase and double support phase, a general schema can be achieved. Follow-

ing the assumptions of a linear inverted pendulum, trajectories of all three

masses can be solved. Inverse kinematics can now give the reference joint

trajectories, which, together with the reference ZMP trajectory, is used in

control methods to minimize the error between the reference trajectory and

actual trajectory in simulation.

Control methods are used to stabilize the motion of the walking procedure.

Preview control is used for the single support phase where the behavior of all

three masses is linear. A proper input can be obtained through optimization.

During the double support phase, the feet rotations are nonlinear and under-

actuated since the feet are rotating around their edge where no torque can

be produced from the ground. By using preview control, an input can be
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applied to the robot so that the robot can maintain dynamic stability.

Keywords— biped locomotion, feet rotation, preview control, zmp
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CHAPTER 1

INTRODUCTION

Humanoid robots are a popular topic nowadays since they are similar to

humans in many aspects. Due to high level of similarity, humanoid robots

can replace humans to do some dirty work that requires less intelligence and

more on labor. These tasks are repetitive so that a designed algorithm can

be formulated. Also, thanks to the development of computation technology,

the computation speed has improved so much that real-time planning is now

possible, which was impossible for many researchers decades ago.

The research on biped robots began decades ago, yet the walking of biped

robots is still a tough problem. Such bipedal robots are dynamically unstable

when they walk since they can easily tip over during stepping. The support

polygon, which is defined by the convex hull of the footprints, is so small.

Humans can leverage the stability easily while the robots cannot. On example

could be the Assimo robot produced by Honda in Japan. With a complicated

controlling mechanical system which has been developed for many years, it

can easily walk; however, it cannot jump or do more complicated behaviors

that humans do.

At the very beginning, bipedal walking can be achieved without using any

control methods, yet this has a lot to do with the precise walking condition [1].

Even if one condition is not satisfied, the walking procedure cannot proceed.

However, by adding control methods, researchers can maneuver the robot in

more complicated environments, and even with disturbance [2,3]. Numerous

methods have emerged to control the robot. Some are linear controlling

methods such as preview control [4] and capture point control [5]. Preview

control is also used in many other areas [6–9]. Others are some non-linear

controlling methods such as hybrid Zero dynamics [10]. Others using different

control methods such as divergent component of motion [11]. The most

important breakthrough can be traced back to the birth of zero moment

point (ZMP) [12, 13]. The concept of ZMP is so popular that many biped
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robot locomotions are designed upon using the concept of ZMP, including

Assimo [14, 15] and HRP-2 [16]. Works have been proposed to control ZMP

[17]. However, ZMP has many restrictions [18]. Generally speaking, ZMP

can only be applied to environments that have the following conditions: non-

slipping, flat ground and hands are not touching the environment. In other

words, ZMP should only be applied to situations where the motion of centers

of mass are 2D, i.e., stay inside parallel planes. Other works have also tried

to extend ZMP into more applications such as jumping or running [19].

There are other planning methods that can achieve far more than ZMP.

Some methods focus on multi-contact planning where the robot can touch

the environment with both hands and feet [20, 21]. There are also some

other methods that involve feet rotation [22]. These methods aim to achieve

control methods that are more suitable in the human environment. Since

our environment is complicated, unknown to the robot, we have to design

different strategies for such an environment. Several papers propose to solve

planning methods in cluttered environments with multicontact planning [23–

25]. Simultaneously, researchers are also trying to use the same method that

human use when facing a new environment–learning. Like humans, robots

may use past experience to solve the control problems in a new environment

[26,27].

Discussed so far, most locomotion methods, though successful, focus on

touching the ground with the entire foot. The walking procedure involves

lifting and lowering the foot entirely and vertically. However, when a human

walks, feet rotation is always involved because it makes the walking more

flexible. Most locomotion methods ignore this aspect. Feet rotation is a

normal characteristic of human walking, which should also be added to robot

walking locomotion. Yet, this idea is very hard to achieve since in most

scenarios for feet rotation, the robot is under-actuated since there is no torque

exerted from the ground when the feet is rotating around heel or toe. This

locomotion is very hard to keep balanced. Proposed solutions to this problem

focused on dynamical balance and control systems [28]. A very closely related

solution introduces the hybrid zero dynamic model for feet multicontact [1,

22].

This thesis proposes a new simplified model for feet rotation locomotion.

This simplified model leverages a hybrid planning and control systems. De-

composing the walking procedure into two phases, single support phase and
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double support phase, we did analysis for both states and the transitions

between different states. A three-mass model, as proposed in [29], will be

used to represent the simplified model for the robot, where two masses are

concentrated at the center of the feet and the third mass concentrates at the

trunk of the robot. Such modeling will generate modelling error that is less

than using the center of mass (COM) only; however, the modelling error can

still be significant. Thus, controlling methods are applied to compensate for

such error.

The overall idea is developed upon ZMP control. ZMP refers to zero

moment point where the total of horizontal inertia and gravity forces equal

to zero [13]. The only goal for ZMP in this thesis is to keep the robot in stable

states, which can be tracked upon whether the ZMP stays inside the support

polygon [30], which is the convex hull of the robot’s footprints. For example,

when the biped robot is in double support phase, the support polygon is the

horizontal region bounded by the outside edges of both feet, where the ZMP

must stay to keep balance. An F-ZMP describes the ZMP when the robot is

unstable [31] and will always stay at the edge of the support polygon. F-ZMP

only exists when the robot is unstable and ZMP only exists when the robot

is stable. The discussion of F-ZMP is out of the scope of this thesis and will

not be discussed in the following passages.

As the planning part uses ZMP as the criterion for dynamical balance,

control methods can be proposed to minimize the error between the desired

ZMP trajectory and actual ZMP trajectory. A hybrid control model will be

used in the control system. During linear phases, the preview control will

be used. Preview control has been broadly used. Preview control is to use

future information, such as desired ZMP trajectory, and current state, such

as actual ZMP trajectory, to generate current input to the dynamical system

to minimize the error between the actual ZMP trajectory and desired ZMP

trajectory. The input will be generated through optimization.

The thesis is organized as follows. Chapter 2 gives a basic formulation

of the ZMP concept, nomenclatures and the modelling of the robot. It will

also introduce different states or phases the robot will experience through

walking. Chapter 3 focuses on ZMP planning and interpolation. An anal-

ysis is given of the mathematical models for ZMP interpolation. Chapter

4 focuses on the transition model between single support phase and double

support phase. This transition provides the boundary condition for generat-
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ing center of mass trajectories. Chapter 4 also solves for the center of mass

trajectories for all three masses. Chapter 5 introduces and analyzes our

hybrid control systems. Chapter 6 covers simulation techniques and some

other technical methods we used during the simulation. Chapter 7 presents

the simulation result for a biped walking robot achieved using the previous

methods. Chapter 8 details the conclusion and future work.
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CHAPTER 2

ROBOT MODELLING

2.1 ZMP Equations

A ZMP equation based on multimass (N masses) robot can be presented as

follows [31]:

xzmp =

∑N
i=1 mi((z̈i + g)xi − ziẍi)∑N

i=1 mi(z̈i + g)
(2.1)

yzmp =

∑N
i=1 mi((z̈i + g)yi − ziÿi)∑N

i=1 mi(z̈i + g)
(2.2)

Here we do not consider z component since the robot is not moving upwards

or downs wards. Therefore we can assume that pzmp = [xzmp yzmp]T ∈ R2

stays inside a plane. From the equations, we can calculate the ZMP position

by knowing the linear acceleration and position of all the bodies of the robot.

However, it is extremely difficult to do so for a real robot since each body

must have an acceleration sensor, which is impossible in most cases. There

is another way to measure the ZMP points which is more practical. This

method only requires torque and force sensors at the ankles [32]. The details

will be discussed in Chapter 6.

2.2 Three-Mass Model

To control the heel and toe of a robot, the biped robot must have a degree of

freedom at the ankle of each leg. Along with the knee and hip, the simplified

model will have six degrees of freedom in configuration space with three joints

at each leg. That is, the end effector of each leg, which refers to the center

of the foot, has three degrees of freedom. It is allowed to translate in two

directions and rotated in one direction. Together with the body of the robot,
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which also shares six degrees of freedom in SE(3), the simplified model has

twelve degrees of freedom in the workspace.

Figure 2.1: Three Mass Model

A three-mass model is applied to model the simplified robot. The three-

mass model, first proposed in [29] assumes that a robot can be mathemat-

ically modeled as three masses instead of one mass, which had been con-

ventionally assumed in previous research. It follows the assumption of the

three-dimensional linearly inverted pendulum mode (3D-LIPM), which has

been applied to many biped robot models [33]. In this thesis, the three-mass

model is assumed where two masses concentrate at the center of the feet and

one mass concentrates at the center of the trunk. The model is shown in

figure 2.1. The mass of both feet can be regarded as the sum of the masses of

all thighs, shanks and feet. The mass of the trunk is the sum of the masses

of the rest of the bodies of the robot. A three-mass model can thus be cre-

ated. From equations (2.1) and (2.2), the ZMP formula for this model can

be derived as the robot has three bodies.

xzmp =

∑3
i=1 mi((z̈i + g)xi − ziẍi)∑N

i=i mi(z̈i + g)
(2.3)

yzmp =

∑3
i=1 mi((z̈i + g)yi − ziÿi)∑N

i=i mi(z̈i + g)
(2.4)

Now the forward kinematics can be derived according to the model de-

scribed above. We based our model on the Reemc Robot by Pal Robotics.
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We followed the design of the original robot by making the ratio between the

length from the toe to ankle and the entire foot length (heel-to-ankle ratio),

η, to be 0.5. So we can achieve the following forward kinematics for hip,

toe and center of foot. All positions are expressed in the robot trunk frame,

denoted as P frame.

x
P
toe

yPtoe

zPtoe

 =


lt sin(θh) + ls sin(θh + θk)

+0.5lf cos(θh + θk + θa)

±w
2

−lt cos(θh)− ls cos(θh + θk)

+0.5lf sin(θh + θk + θa)

 (2.5)

x
P
heel

yPheel

zPheel

 =


lt sin(θh) + ls sin(θh + θk)

−0.5lf cos(θh + θk + θa)

±w
2

−lt cos(θh)− ls cos(θh + θk)

−0.5lf sin(θh + θk + θa)

 (2.6)

x
P
cof

yPcof

zPcof

 =

 lt sin(θh) + ls sin(θh + θk)

±w
2

−lt cos(θh)− ls cos(θh + θk))

 (2.7)

Figure 2.2: The Stand Pose for the robot, i.e., the default pose.

The equations above are based on the assumptions:

(1) The default configuration for the robot is the standing configura-

tion, which is shown in figure 2.2. All joint angles are zero at this
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configuration. The thigh and the shank are vertical while the foot is

horizontal.

(2) The angles are positive when the links are rotating around the posit-

ive Y direction, which is to the right of the robot.

2.3 State of Walking

By first making the following assumptions, we can decouple the walking pro-

cess into different phases and solve them separately [34].

(1) Biped robot walking can be broken down into different states: Sin-

gle Support Phase, Double Support Phase, Start Phase, End Phase and

Stand Phase.

(2) Single Support Phase and Double Support Phase will repeat in a

periodic pattern.

(3) There is no impact or recoil during state transitions.

A robot starts from Standing, Start Phase, Double Support Phase, Single

Support Phase, Double Support Phase, Single Support Phase, etc. This

process will not stop until the robot is in last Double Support Phase and

followed by End Phase to Stand at the end of the walking process.

2.3.1 Stand Phase

Standing is the basic pose for the robot. It requires all joint angles to be

default value, i.e., zero. Since the robot is in static balance, the center of

pressure should be at the vertical projection from the ankle to the ground.

The state is shown in figure 2.3 a.
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Figure 2.3: Different States for robot walking.

2.3.2 Single Support Phase

Single Support Phase describes when the robot is walking with only one foot

touching the ground while the swing foot is dangling in the air. This state

should be in dynamical balance. ZMP is bounded within the support foot.

The state is shown in figure 2.3 d.

2.3.3 Double Support Phase

Double Support Phase describes when the robot is walking and both feet

are touching the ground. This state should also be in dynamical balance so

that the robot will not fall. ZMP is bounded in the support polygon. In the

phase, the ZMP will shift from the foot in the back to the foot in the front.

2.3.4 Start Phase and End Phase

Start Phase and End Phase describe the robot from standing to walking and

walking to standing. In other words, the robot shifts from static balance to

dynamic balance. The general schema is similar to the Single Support Phase

in that all involve moving with one foot supporting the body. The overall

speed of the robot will increase and decrease during these two states.
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2.3.5 Transition Model

A transition Model is sometimes called an impact model [1], which specifies

the shifting from Single Support to Double Support. However the impact

model focuses more on leg shifts and the shift matrices [1]. In this thesis, the

transition model can be separated into Initial Double Support where the

robot is shifting from Single Support to Double Support and End Double

Support where the robot is shifting from Double Support to Single Support.

In Initial Double Support, the swing foot of the walking robot touches

the ground. In detail, the heel of the swing foot will first touch the ground.

The same foot will begin to rotate clockwise around the heel and the foot in

the back; i.e., the standing foot in Single Support Phase will rotate clockwise

around the toe. The ZMP is bounded within the back foot. This pose is

shown in figure 2.3 c.

In End Double Support, the toe of the foot in the front will touch the

ground. This is marked as the end of the feet rotation in Double Support.

ZMP is bounded within the foot in the front. This pose is shown in figure

2.3 b.

Other work has focused on the transition from Double Support Phase and

Single Support Phase. [10] illustrates that the robot is experiencing under-

actuated, fully-actuated and over-actuated state periodically. This impact

model is very important in the controlling part.
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CHAPTER 3

TRAJECTORY GENERATION

In order to control the robots for walking, we have to determine some pa-

rameters of the robot’s motion, including walking direction, total distance of

walking, step length and speed of walking. The parameters can always be

adjusted as a human can adjust his or her walking speed and direction easily.

The details for the numerical values of walking parameters will be discussed

in Chapter 6 and Chapter 7. Here we will derive a mathematical model

for Trajectory Generation.

The trajectory generation can be decoupled into several sections: gait gen-

eration, ZMP boundary generation, ZMP interpolation and COM generation.

All parts will be discussed in the following text. At the end of trajectory gen-

eration, we will be able to generate reference trajectories for three masses in

the three-mass model. Simultaneously, we will also be able to generate the

reference joint trajectories. In other words, a kinematic solution to the heel-

toe planner can be achieved.

3.1 Gait Generation

The first step for trajectory planning is gait generation. Since we are only

interested in walking in a straight line, we may plan the step accordingly.

Before heels of both feet will be planned, the gaits should be planned. The

gait trajectory will thus be a collection of discrete patches. We may first

assume the following in gait generation:

(1) The robot starts at the origin, i.e., xleft(t = 0) = xright(t = 0) =

0, yleft(t = 0) = −w
2
, yright(t = 0) = w

2
, where w is defined in section 2.2.

(2) The robot starts walking with the right foot. After walking N steps,
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the robot will stop with the left foot.

(3) The robot is moving in X direction.

The walking can be decoupled into sagittal and frontal plane [34]. As the

two legs are switching alternately, heel positions will update in a period of

2ts. The equations of the x component for each gait can thus be derived as

follows1:

xleft =

N
2
−1∑

i=1

2lstepu(t− 2its) + lstepu(t−Nts) (3.1)

xright =

N
2
−1∑

i=1

2lstepu(t− (2i+ 1)ts) + lstepu(t− ts) (3.2)

where u(t) is the Heaviside step function and lstep is the step length. The y

component is kept constant since the robot is walking in X direction only.

yleft = −w
2
, yright =

w

2
(3.3)

3.2 ZMP Boundary Condition

From the gait trajectories generated above, ZMP boundary conditions can

be determined. In order to achieve dynamical balance, the ZMP has to stay

inside the support polygon. As defined in section 2.3, we can define the upper

bound and lower bound of the ZMPs. Here we use the terminology Periods

of Gaits (POG) to describe periodic phases when the robot walks. The

POG is described as the following sequence: Single Support of Left Foot,

First Double Support, Single Support of Right Foot and Second

Double Support. Since walking is a periodic sequence of foot step, we can

decompose the walking into N
2

periods of gaits. Each POG is composed of

single support of left foot, first double support, single support of right foot

and second double support.

By applying the variables in Section 3.1, ts = tds+tss where tds is the double

1This section only plans the steps of the robot instead of actual feet trajectory. It is
not continuous, but it will give the boundary condition of ZMP trajectory.
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support duration and tss is the single support duration. For the ith POG, the

robot has already walked 2(i−1) steps. Since the walking is periodic, we can

calculate stepping for each period. Suppose the time starts at the beginning

of the ith POG, the time offset will be toffset = 2(i−2)tstep +tis where tis is the

time spent in reaching POG from standing pose. The boundary conditions

can be generated as the following sequence.

3.2.1 Singe Support of Left Foot

For the ith POG, the left foot will be the only support foot when t ∈
[toffset, toffset + tss). The following conditions can be derived. The w rep-

resents the width of the robot, i.e. the distance between the two foot centers

in sagittal direction and u represents the width of the foot.

xupper(t) = xleft((2i− 2)ts) + lf

xlower(t) = xleft((2i− 2)ts)
(3.4)

yupper(t) = −w
2

+
u

2

ylower(t) = −w
2
− u

2

(3.5)

3.2.2 First Double Support

For the ith POG, the First Double Support happens when t ∈ [toffset +

tss, toffset + ts).

xupper(t) = xright((2i− 1)ts)

xlower(t) = xleft((2i− 2)ts) + lf
(3.6)

yupper(t) =
w

2
+
u

2

ylower(t) = −w
2
− u

2

(3.7)

This is the boundary condition in time domain. However, it cannot de-

scribe the legal points since the robot is not moving at a constant speed.

Therefore, xzmp(t) and yzmp(t) cannot be determined. The boundary condi-

tion above is a huge rectangular in x-y plane, which contains lots of points

that are illegal. This idea is illustrated in figure 3.1. A smaller range is nec-
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Figure 3.1: The Stand Pose for the robot, i.e., the default pose.

essary. The boundary in the x-y plane is a parallelogram. The x component

will be the same as in time domain since they will not change through-

out the Double Support Phase. The y component now can be expressed

as a function of x. The upper boundary is a straight line passing through

(xupper(t), yupper(t)) and (xlower(t), yupper(t)) where all variables are defined in

(3.6) and (3.7). The lower boundary is another straight line passing through

(xupper(t), ylower(t)) and (xlower(t), ylower(t)) where all variables are also defined

in (3.6) and (3.7). The y component with respect to time can be expressed

as follows:

y(2)
upper(x) =

[wx− w
2
(xupper(t) + xlower(t)) + u

2
(xupper(t)− xlower(t))]

xupper(t)− xlower(t)

y
(2)
lower(x) =

[wx− w
2
(xupper(t) + xlower(t))− u

2
(xupper(t)− xlower(t))]

xupper(t)− xlower(t)

(3.8)

3.2.3 Single Support of Right Foot

For the ith POG, the left foot will be the only support foot when t ∈ [toffset +

ts, toffset+ts+tss). As in Single Support of Left Foot, boundary conditions

can be derived as follows:

xupper(t) = xright((2i− 1)ts) + lf

xlower(t) = xright((2i− 2)ts)
(3.9)
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yupper(t) =
w

2
+
u

2

ylower(t) =
w

2
− u

2

(3.10)

3.2.4 Second Double Support

For the ith POG, the Second Double Support happens when toffset + t ∈
(ts+tss, toffset+2ts). Again, the boundary conditions expressed in time domain

can be shown:
xupper(t) = xright(2its)

xlower(t) = xleft((2i− 1)ts) + lf
(3.11)

yupper(t) =
w

2
+
u

2

ylower(t) = −w
2
− u

2

(3.12)

In the x-y plane, we can also achieve the parallelogram by computing the

straight lines. The upper boundary is the line passing through (xupper(t), yupper(t))

and (xlower(t), yupper(t)) where all variables are defined in (3.6) and (3.7). The

lower boundary is another straight line passing through (xupper(t), ylower(t))

and (xlower(t), ylower(t)) where all variables are also defined in (3.6) and (3.7).

The analytic expressions for two lines are the following.

y(4)
upper(x) =

[wx− w
2
(xupper(t) + xlower(t))− u

2
(xupper(t)− xlower(t))]

xupper(t)− xlower(t)

y
(4)
lower(x) =

[wx− w
2
(xupper(t) + xlower(t)) + u

2
(xupper(t)− xlower(t))]

xupper(t)− xlower(t)

(3.13)

3.3 ZMP Trajectory Generation

As we have already generated the boundary conditions for ZMP trajectory,

we can now generate discrete ZMP trajectory points. In general, we can

separate the entire trajectory to periodic pieces, each starting with a Double

Support Phase and ending with a Single Support Phase. As the motion can

be decoupled into sagittal plane and frontal plane, desired ZMP trajectory
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in both x direction and y direction can be generated separately.

3.3.1 ZMP Trajectory Generation

[a]

[b]

Figure 3.2: (a) represents the ZMP boundary notation for x component; (b)
represents the ZMP boundary notation for y component

First, we have to give several points to both x trajectory and y trajectory

to conduct interpolation. At ith POG, the following points are assumed for

each stage. The points are different with odd steps and even steps. The

labelling of number can be referred in the figure 3.2.
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x0
zmp = xright((2i− 1)ts) x0

zmp = xleft(2its)

x1
zmp = x0

zmp + lf x1
zmp = xleft(2its) + lf

x3
zmp = xleft(2its) x3

zmp = xleft(2its) +
1

2
lstep

x2
zmp =

1

2
(x1

zmp + x3
zmp) x2

zmp =
1

2
(x1

zmp + x3
zmp)

y0
zmp =

w

2
− u

2
y0

zmp = −w
2

+
u

2

y1
zmp =

w

2
− u

2
y1

zmp = −w
2

+
u

2

y3
zmp = −w

2
+
u

2
y3

zmp =
w

2
− u

2

(3.14)

In the above points, the left corresponds to the period where the right foot

is standing during the Single Support Phase while the right corresponds to

the period where the left foot is standing during the Single Support Phase.

With the correct time, the trajectory can be interpolated correctly. In order

to fit the ZMP trajectory into the ZMP boundary condition, an interpola-

tion method is proposed. This method use Cosine-Cosine Interpolation for x

trajectory and Quadratic-Cosine Interpolation for y trajectory. Some other

methods are used to ensure that both trajectories fit inside the ZMP bound-

ary conditions. We used Cosine based interpolation method is due to the

fact that we can control ZMP trajectory inside the support polygon while

third polynomial depends on boundary conditions. They will be discussed in

the following sections.

The reason why we chose cosine based interpolation is because during the

experiment, we found that the some parts of ZMP may exceeds the boundary

using third order polynomial. If we use cosine based interpolation, we can

assure that the entire ZMP will be in the support polygon by controlling the

angular frequency ω as introduced in later sections.

3.3.2 Cosine-Cosine Interpolation

The cosine-cosine interpolation is designed for the x component, which means

that two cosine functions are used to describe the x component in one period.

x1(t) = A1 cos(ω1t+ ϕ1) +O1

x2(t) = A2 cos(ω2t+ ϕ2) +O2

(3.15)
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The index refers to the phase where Double Support Phase when the index

is 1 and Single Support Phase when index is 2. O is the offset. Ai, ω1, ϕi,

and Oi are constants throughout each phase. To simplify the solving process,

we set the offset O2 to be x2
zmp as in (3.14). This means that the first order

derivative should be zero at the transition, i.e., the transition from double

support to single support. The advantage for such setting is that the system

tries to minimize the error within one step instead of minimizing the error

when it is already been too large. Hence, the following equation can be

achieved by scrutinizing the continuity and first order continuity:

x0
zmp − x1

zmp

2
cos(ω1tds) +

ẋ0
zmp

ω1

sin(ω1tds) =
x1

zmp − x0
zmp

2
(3.16)

Here the ẋ0
zmp should be the first order derivative of the x component of the

ZMP trajectory when the robot enters Double Support. Normally, according

to the setting, this term should be zero. This equation should yield ω1 <
2π
tss

.

The ϕ1 and ϕ2 are cancelled out from property of continuity. The detail of

the solution will be discussed later in Chapter 6. The solution will give

ϕ2 = atan2( −ẋ0
ω1x0zmp

). Using similar methods, we can derive the equation for

x2:
x1

zmp − x3
zmp

2
cos(ω2tss) +

ẋ1
zmp

ω2

sin(ω2tss) =
x3

zmp − x1
zmp

2
(3.17)

After solving for ϕi and ωi, we can plug in the boundary conditions as in

(3.14), we can solve for the rest of the constants.

3.3.3 Quadratic-Cosine Interpolation

This interpolation method is designed for the y component. In other words,

we use a cosine function to express the y component for Double Support

Phase and a quadratic function to express the y component for Single Support

Phase.
y1(t) = B cos(ω3t+ ϕ3) +O3

y2(t) = b0 + b1(t− t0) + b2(t− t0)2
(3.18)

The index refers to the phase, i.e., Double Support when the index equals

and Single Support when the index is two. B, bi, ωi, ϕi and Oi are constants.

By plugging the boundary points defined in (3.14), b0, b1, b2 can be easily

solved. Since the transition from y1 to y2 should be continuous and first
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order continuous, we can derive the following equation:

y1
zmp cos(ω3tds) +

ẏ1
zmp

ω3

sin(ω3tds) = y3
zmp (3.19)

In this equation, ẏ1
zmp is the first order derivative at the end of y1, or the

beginning of y2. Since there are two cases where the left foot is standing or

the right foot is standing, ϕ3 can be calculated separately.

ϕ3 =

atan2 (
−ẏ1zmp

ω3y1zmp
) ẏ1

zmp < 0

atan2 (
ẏ1zmp

−ω3y1zmp
) ẏ1

zmp > 0
(3.20)

After solving for ϕi and ωi, we can plug in the boundary conditions as in

(3.14), we can solve for the rest of the constants.

Although the quadratic equation is easy to solve, it may exceed the bound-

ary at the maximum or minimum of the parabola. We implement a correction

method, which is a quartic function, which is added to the original quadratic

function if the quadratic function will exceed the boundary condition. This

equation can be defined as follow.

δ(t) = At4 +Bt3 + Ct2 +Dt+ E (3.21)

By adding this correction function to the original quadratic function, i.e.,

y2corrected(t) = y2(t) + δ(t), the boundary conditions are fully met. The detail

of when the original quadratic function will exceed the boundary condition

and analysis of the quintic function will be given in Appendix A.

3.3.4 End Phase

End Phase is quite unique. One can hardly find a function described above

to fit this phase since the first order derivative of the y component of ZMP

trajectory should reach zero since the ZMP stops moving as the robot stops.

At this moment we do not need to care about x component since the x

component will reach its final position with first order derivative equals to

zero. For y order derivative equals to zero. We used a simple function

yzmp(t) = A+Be−αt (3.22)
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By selecting proper A, B and α, we can assure that the first order of y com-

ponent at the end of the walk will reach zero, i.e., limt→∞ ẏzmp = 0. And

also, A, B and α can be solved by following the continuity and first order

continuity. The continuity can be achieved by plugging the boundary condi-

tion for at the End Phase. An analysis of the stability of the y component

at the End Phase will be given in Appendix A.

We have derived all analytic functions of ZMP trajectories with respect

to time in the world frame. The next step will be to generate the COM

trajectories for the three-mass model. Since the three-mass model will have

three masses, we will generate trajectories for all three masses. From there

we can visualize the result and see whether the ZMP stays inside the support

polygon.
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CHAPTER 4

COM TRAJECTORIES GENERATION

In order to generate all the reference joint angles, trajectories of all three

point masses should be first determined. After that, we can do inverse kine-

matic to solve for the joint angles.

To begin with, suppose this system has nine free variables for transla-

tion: the position of two feet and the position of the trunk. However, this

system is far less constrained than it should be since the only constraints

are the ZMP trajectory and some assumptions made in Chapter 2 for the

thee-mass model. Therefore, before proceeding several assumptions should

be made based on which phase the robot is experiencing. As introduced

earlier, the ZMP equations can be shown in (2.3) and (2.4). Now we make

assumptions similar to the 3D linear inverted pendulum [35,36].

(1) The robot is walking on a flat ground, i.e., zzmp = 0.

(2) When in Single Support Phase, all three point masses’ heights have

negligible change.

(3) The support leg keeps straight throughout the entire Single Support

Phase.

Due to symmetry, only half of a walking period needs to be studied be-

fore going into the generation of the COM trajectories. Here we use new

notations to simplify the model. In the ZMP equations for three masses, i.e.

(2.3) and (2.4), we make the following rules:

(1) m1 represents the mass of the standing foot and (x1, y1, z1) represents

center of the standing foot.

(2) m2 represents the mass of the trunk and (x2, y2, z2) represents center

of the trunk.

(3) m3 represents the mass of the swinging foot and (x3, y3, z3) represents
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center of the swinging foot.

4.1 Transition Model

4.1.1 ZMP Trajectory Generation

[a] [b]

Figure 4.1: (a) shows the notation of angles for Initial Double Support; (b)
shows the notation of angles for End Double Support

So far, transition has been mentioned many times. Here we will define

the behavior of the robot during the transition from Single Support Phase

to Double Support Phase and from Double Support Phase to Single Support

Phase. A general idea inspired by human walking is shown in figure 4.1.

Once this guideline is set, we can move on to solve the differential equations

for Center Of Masses.
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4.1.2 From Double Support to Single Support

We set the robot at this transition model to have the following properties

following figure 4.1 b.

1) The leg in the front remains straight, i.e., θ1 = 0.

2) The ankle of the foot in the back should maintain right angle, i.e.,

θ3 = π
2
.

Using the indexing in the figure 4.1, we need to solve three angles θi, which

is a vector of angles with dimension of three. According to these properties,

we can derive the following nonlinear equations. All the parameters are

determined by the model of the robot. The details of solving these equations

will be discussed in Chapter 6.

lt sin(−θ1)− ls sin(θ1 + θ2)− (1− η)lf cos(θ1 + θ2)+

(l1 + l2) sin(θ3) = (lstep − lf + lfη)

lt cos(θ1) + ls cos(θ1 + θ2)− (1− η)lf sin(θ1 + θ2) = h

(l1 + l2) cos(theta3) = h

(4.1)

According to figure 4.1, θ1, θ2 < 0 and θ3 > 0. Therefore, when the robot is

in this configuration, the foot in the front should touch the ground with the

entire sole while the foot in the back should have an angle with the ground

which is specified by θi = θ2 + θ3. The height of the swinging foot during

Single Support Phase can be calculated using θi as zi = (1− η) ∗ sin(θi). The

positions of all three masses with respect to the world can be determined.

Since we are trying to solve nonlinear equations, there must be some error.

The error analysis will be presented in Chapter 6.

4.1.3 From Single Support to Double Support

Also, this transition model is given with the following properties in figure 4.1

a.

1) The leg in the back remains straight, i.e., θ3 = 0.

The configuration is also illustrated in figure 4.1. Again, using the indexing

in the figure and elementary geometry, we are going to solve for θe, which is a
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vector with dimension of four. We can achieve the following set of nonlinear

equations, where zi has been calculated in the previous part.

lt sin(θ1) + ls sin(θ1 + θ2)− ηlf cos(θ1 + θ2 − θ3)+

(ls + lt) sin(−θ4) = (lstep − lf + lfη)

lt cos(θ1) + ls cos(θ1 + θ2) + ηlf sin(θ1 + θ2 − θ3)

= (lt + ls) cos(θ4)

(lt + ls) cos(θ4) = h

(1− η)lf sin(θ1 + θ2 − θ3) = zi

(4.2)

According to the figure 4.1, θ1 > 0 and θ2, θ4 < 0. zi is calculated in

previous section. With this configuration, the feet in the back should touch

the ground with the entire sole while the foot in the front should have an

angle between itself and the ground as θe = θ1 + θ2 − θ3. The height of the

center of the front foot should be ze = (1− η)lf sin(θe) . As before, the detail

for solving the equations numerically will be discussed in Chapter 6.

4.2 Trajectory Generation

As we have derived so far, all ZMP trajectories and COM boundary condi-

tions have been generated. Next we can move to trajectory generation and

solve positions and velocity for all three masses. By transforming equations

(2.3), (2.4) and the assumption z̈i = 0, we have the following equations:

3∑
i=1

mi[gxi − ziẍi] = Mtotalgxzmp(t)

3∑
i=1

mi[gyi − ziÿi] = Mtotalgyzmp(t)

(4.3)

The motions can also be decoupled into two directions: sagittal plane and

frontal plane [34]. We will decouple the equations for each phase, i.e., Single

Support Phase and Double Support Phase.
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4.2.1 Single Support Phase

According to previous assumptions, if the heights of all three masses remain

constant, the equation (4.3) can be written as following equations:

m1gx1 +m2gx2(t) +m3gx3(t)−m2hẍ2(t)−m3zeẍ3(t) = Mtotalgxzmp(t)

m1gy1 +m2gy2(t) +m3gy3 −m2hÿ2(t) = Mtotalgyzmp(t)

(4.4)

Decoupling equation (4.4), we analyze the x component first. In the x

component, there are two free variables, x2(t) and x3(t). If we can specify

one of the variables, the equation becomes a second order non-homogeneous

ordinary differential equation, which is easy to solve. Since xzmp is a cosine

function achieved in the previous section, another cosine function is applied

here to describe x3, i.e.,

x3(t) = A cos(ωt+ ϕ) (4.5)

To solve for A, ω and ϕ, only boundary conditions need to be plugged in,

which have already been calculated in the previous part. We can now derive

the differential equation for x2(t) and solve for x2(t). The techniques and

analytic solutions of solving differential equations will not be discussed here.

Starting to analyze the y component, we found it relatively easy to solve

this issue. Since y1 and y3 are set to constant, the only variable is y2. There-

fore, the following differential equation can be derived. At this moment, the

trajectories of all three masses during Single Support Phase are determined.

ÿ2(t)− g

h
y2(t) =

m1g

m2g
y1 +

m3g

m2g
y3 −

Mtotalg

m2g
yzmp(t) (4.6)

4.2.2 Double Support Phase

Double Support Phase is far more complicated than Single Support Phase.

In this phase, the motions of two feet are purely rotational. The front foot

rotates around the toe and the back foot rotates around the heel. This
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involves the motion of both feet in x and z directions. Assuming that the

change of height of the trunk is very small, i.e., ẏ2 = 0, we now have the

ZMP differential equations as follows:

m1x1(z̈1 + g) +m2gx2 +m3x3(z̈3 + g)−m1z1ẍ1 −m2z2ẍ2 −m3z3ẍ3

= xzmp[m1(z̈1 + g) +m2g +m3(z̈3 + g)]

m1y1(z̈1 + g) +m2gy2 +m3y3(z̈3 + g)−m2z2ÿ2

= yzmp[m1(z̈1 + g) +m2g +m3(z̈3 + g)]

(4.7)

In these equations, x1, x3, z1 and z3, which are shown in figure 4.2 can be

formulated as follows due to pure rotation:

Figure 4.2: Notation for feet rotation during Double Support

x1 = x0
1 +

1

2
lf cos(θ1), z1 =

1

2
lf sin(θ1)

x3 = x0
3 −

1

2
lf cos(θ3), z3 = −1

2
lf sin(θ3)

(4.8)

We must first determine x1, x3, z1 and z3 to solve x2 and y2. From the

equations above, we need to define two variables θ1 and θ3. Here we use

linear function to define these variables because in our experimental imple-

mentation, linear functions are sufficient to describe those two variables, i.e.,

θ1 = f1t+ f0

θ3 = g1t+ g0

(4.9)
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The boundary conditions can be used here that θ1(0) = θi, θ1(tds) = 0

and θ3(0) = 0, θ3(tds) = θe. By plugging these items back into the differential

equations (4.4), we can derive the analytic function for x2 and y2 with respect

to time.

4.2.3 End Phase

Since the only thing different at the End Phase is the y component, we do

not need to use any additional functions to describe unconstrained variables.

We may just use the differential equation (4.6) and solve for the y component

at the End Phase. Together with all the trajectories generated in previous

parts, we achieve the trajectories for all three masses.

4.3 Joint Trajectory and Joint Velocities

By using inverse kinematics, all the joint angles can be calculated. The

details for inverse kinematics will be discussed in Chapter 6. Also, we can

derive all the joint velocities for our model since the Jacobian is full rank

when a leg is not in singular configuration, which is specified for the model

of Reemc Robot. The derivation will be in Chapter 6. Now we achieve

a kinematic solution to the feet rotation planner. The visualization will be

presented and discussed in Chapter 7. In the next chapter, we present a

dynamic solution. Control methods will be applied to robot walking. The

corresponding Matlab code for Chapter 3 and Chapter 4 will be attached

in Appendix D.
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CHAPTER 5

ROBOTIC CONTROL

The previous chapter focused on a kinematic approach for walking planning.

This chapter will focus on a dynamic approach. With reference trajectory

generated, we can easily start the simulation. However, the reference trajec-

tory cannot guarantee success of simulation due to modelling error and other

disturbance. With little disturbance, the robot may fall. A control system

is needed here to cancel out the modelling error and disturbance. We used

similar methods in [37]. Since we added the feature of feet rotation, we used

the three-mass model discussed in Chapter 2 instead. In this section, we

will first propose a control system in continuous time. Then we will move

to a discrete time system. We will find an optimal control input to the dis-

crete time system by treating the problem as infinite horizon LQR problem

in discrete time.

The control method we use is preview control, which was first proposed

in [38] and uses future information to control current input. The input is

designed to change the position of the trunk. Here, we use the following

notations:

p1 =

xsup

ysup

zsup

 , p3 =

xsw

ysw

zsw

 , pbase =

xbase

ybase

zbase

 (5.1)

As in [37], we define pbase as the position of the boody of the robot, pbase
sup

as the position of the support leg with respect to the body of the robot and

pbase
sw as the position of the swing leg with respect to the body of the robot.

Therefore, the position of swing mass and support mass can now be expressed

as
p2 = pbase + pbase

sup

p3 = pbase + pbase
sw

(5.2)
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According to the equation of ZMP (2.1) and (2.2),

px =
mbase(xbase + xbase

body) +mleg(xbase + xbase
sup ) +mleg(xbase + xbase

sw )

M

−mbasehẍbase +mlegze(ẍbase + ẍsw)

Mg

py =
mbase(ybase + ybase

body) +mleg(ybase + ybase
sup ) +mleg(ybase + ybase

sw )

M

−mbodyhÿbase

Mg

(5.3)

These two equations can written as follows:

px =
mbase + 2mleg

M
xbase −

Ez
g
ẍbase + Ex −

mlegze
Mg

ẍsup +
mleg

M
(xbase

sup + xbase
sw )

py =
mbase + 2mleg

M
ybase −

Ez
g
ẍsw +

mleg

M
(ybase

sup + ybase
sw )

Ez =
mbaseh+mlegze

M
,Ex =

mbasexbase
body

M
,Ey =

mbasey
base
body

M
(5.4)

Ex, Ey and Ez are variables that only involve the base location. Now we

may define the input as the third derivative of the position of the body [17],

i.e.,
...
x base = ubody

x
...
y base = ubody

y

(5.5)

Using the third order derivative as input, we can directly control the robot

in jerk dimension. Using the jerk dimension input, we can control the posi-

tion, speed and acceleration of the robot. Now, we will move from continuous

time to discrete time by changing variables: k =
⌊
t

∆t

⌋
. We can define the

state variable and input as

Xbase[k] =

[
~xbase[k]

~ybase[k]

]
, ubase[k] =

[
ubase
x (k∆t)

ubase
y (k∆t)

]
, pout

zmp[k] =

[
pout
x (k∆t)

pout
y (k∆t)

]
(5.6)

~xbase =

xbase

ẋbase

ẍbase

 , ~ybase =

ybase

ẏbase

ÿbase

 (5.7)

The optimal controller for discrete time system is designed to meet the

demand of previewable control. The transition equations can now be defined
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as in [37]:

Xb[k + 1] = AXbase[k] +Bubase[k]

pout
zmp[k] = DXbase[k] + E + F [k]

(5.8)

where matrix

A =



1 ∆t ∆2t
2

0 0 0

0 1 ∆t 0 0 0

0 0 1 0 0 0

0 0 0 1 ∆t ∆2t
2

0 0 0 0 1 ∆t

0 0 0 0 0 1



B =



∆3t
6

0
∆2t

2
0

∆t 0

0 ∆3t
6

0 ∆2t
2

0 ∆t



(5.9)

A, B, C are introduced in [37], which can also be used in our three-mass

model. From (5.4),

D =

[
mbase+2mleg

M
0 −Ez

g
0 0 0

0 0 0
mbase+2mleg

M
0 −Ez

g

]

E =

[
Ex

Ey

]

F [k] =

[
−mlegze

Mg
ẍsw[k] +

mleg

M
(xbase

sup [k] + xbase
sw [k])

−mlegze
Mg

ÿsw[k] +
mleg

M
(ybase

sup [k] + ybase
sw [k])

] (5.10)

According to the equations above, D and E are constants and can be

determined before walking. The only thing to complete a closed loop control

is F [k]. Therefore, we can rewrite the output pout
base as

pout
base[k] = pout

zmp[k]− E − F [k]

pout
base[k] = DXbase[k]

(5.11)

This system can be better controlled when we use error as variables since
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the primary goal is to minimize the actual ZMP positions and reference ZMP

positions. The state variables can be defined as the following:

∆Xbase[k] = Xbase[k]−Xbase[k − 1]

∆ubase[k] = ubase[k]− ubase[k − 1]

X
′

base[k] =

[
pout

base[k]

∆Xbase[k]

] (5.12)

The new transition equations can be defined as

X
′

base[k + 1] = ΦX
′

base[k] + Γ∆ubase[k]

pout
base[k] = D̃X

′

base[k]
(5.13)

Φ =

[
I DA

0 A

]
,Γ =

[
DB

B

]
, D̃ =

[
I 0

]
(5.14)

In order to achieve an optimal solution, we must define a cost function,

J(x[k], u) =
∞∑

i=k

[X
′T
base[i]QbX

′

base +W (u[i])] (5.15)

Qb is a 3×3 symmetric non-negative definite matrix. ∆ubase is incremental

input.

W [u[i]] = ∆uT
base[i]R∆ubase

ubase[k] = Ksb

∞∑
i=0

ebase[i]−KxbXbase[k] +

NL∑
i=1

Gb[i]P
ref
base[k + i]

ebase[k] =

[
ebx[k]

eby[k]

] (5.16)

In this equation, R is a non-negative definite matrix. Ksb, Kxb and Gb[i]

are gains calculated from Qb and W and parameters from A, B, D, E and

F [k] from equation (5.9) and (5.10). In other words, eb represents the ZMP

error between ZMP reference and ZMP output from the system. NL is the

number of future information steps that are used to determine current input.

P ref
base is the reference ZMP trajectory with respect to the base frame. The

goal is to obtain Ksb, Kxband Gbase[k]. The procedure is derived from [17,39].
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Kb = (Hb + ΓTSΓ)−1ΓTSΦ

=
[
Ksb Kxb

]
Gb[i] = −(Hb + ΓTSΓ)−1ΓT((Φ + ΓKb)

T)i−1STΓ

(5.17)

S is the solution of the Riccati equation. Qb is the weighting matrix, which

is conventionally defined as Qb = diag{1, 1, 0...0}. Hb is also conventionally

defined as Hb = diag{10−6, 10−6...10−6}. To solve for the Riccati equation,

Sk = ΦT(Sk+1 − Sk+1Γ(ΓTSk+1Γ +Hb)
−1ΓTSk+1)Φk +Qb

S∞ = ΦT(S∞ − S∞Γ(ΓTS∞Γ +Hb)
−1ΓTS∞)Φk +Qb

(5.18)

An analytic solution can be achieved.

O =

[
Φ−1 Φ−1ΓH−1

b ΓT

QbΦ
−1 ΦT +QbΦ

−1ΓH−1
b ΓT

]
(5.19)

H can be decomposed into O = V DV −1, where D is a diagonal matrix

and W is composed of eigenvectors of O.

V =

[
V11 V12

V21 V22

]
S∞ = V21V

−1
11

(5.20)

The details on generating current ZMP positions will be discussed in the

following chapter. Together, a control system that tries to minimize the error

between actual ZMP trajectory and reference ZMP trajectory is designed.
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CHAPTER 6

SIMULATION TECHNICAL

6.1 Reemc Model

Figure 6.1: The Reem-C Robot

The experiment is based on the Reemc Robot produced by PAL. This

robot is shown in figure 6.1. As a bipedal humanoid robot, it has two arms

and two legs. It has six degrees of freedom for both feet, seven degrees of

freedom for both legs, two degrees of freedom for the heads and two degrees

of freedom for the torso. Also, the root or base frame of the robot has six

degrees of freedom since it is in SE(3). In total, the robot has thirty-six

degrees of freedom. For simplicity, since we are only interested in the leg

locomotion, we set the torso joints and head joints to be fixed. The robot

now has thirty two degrees of freedom. The first step is to grab all the specific

data for modelling, which is specified in Table 6.1.
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Table 6.1: Parameters of robot model

Variable Value

ls 0.35m
lt 0.35m
lf 0.224m
u 0.147m
η 0.5
mleg 16kg
Mtot 80kg

This model is described in URDF format and can be uploaded in ROS. In

detail, we replace the hand with a rectangular box for simplicity, since we are

not going to use hands. This will reduce the DOF by replacing the fingers.

In Chapter 2, we introduced that our simplified model has six DOF in

configuration space. Here, we can formulate the six DOF for Reemc. Since

the y components of both feet are fixed and the rotation is fixed to the y

axis for both feet, this will reduce the DOF for both feet to three. The

inverse kinematic package and Jacobian calculation in later sections will still

be based on six DOF for each leg since the legs have six DOF in configuration

space. The walking parameters will be determined during simulation, i.e.,

Chapter 7.

6.2 Real Time ZMP Position

In Chapter 2, we have already discussed the mathematical expression for

ZMP positions. In order to calculate the ZMP positions for a walking robot,

for example, the one we will use in the next chapter, we need to know the

mass, position, linear velocity and linear acceleration for all bodies of the

robot. In real time, it is very computationally consuming since the robot

has almost a hundred parts including small sensors. Also, we need to get

the acceleration, which requires each part of the robot being installed an

acceleration sensor. Most robots do not have an acceleration sensor for each

body, which makes the job more complicated. An alternative needs to be

found.

Since the feet are the only thing in contact with the environment and

support the robot, as discussed in [40–42], if we can know the forces and
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torques at the ankles of the robot, we can calculate the ZMP positions ac-

cordingly [43].

There are two sensors mounted in Reemc, an IMU sensor, which detects

the linear velocity and linear acceleration in 3D environment [44]. Another

is the force torque sensor (FTS). Sensors which are mounted at the sole of

the foot to detect the center of feet are not possible in this case. The more

practical use of sensors are FTS in Gazebo. From FTS, we can determine

torques and forces at each ankle, namely ~Fleft, ~Fright, ~τleft and ~τright, with each

vector has a dimension of three. The ZMP position can now be formulated

as follows for one ankle:

Xzmp =
τpitch
y

Fz
+
zankleFx
Fz

Yzmp = −τ
pitch
x

Fz
+
zankleFy
Fz

(6.1)

When measuring the ZMP for a biped robot, we need to do a weighted

average of the two ZMPs from the two ankles [45,46].

Xzmp =
τ right
y + τ left

y + zright
ankleF

right
x + zleft

ankleF
left
x

F right
z + F left

z

Yzmp = −
τ right
x + τ left

x − zright
ankleF

right
y − zleft

ankleF
left
y

F right
z + F left

z

(6.2)

In real time, the variables on the right-hand sides of equation (6.2) are easy

to get; thus, calculating the actual ZMP positions is quick and accurate. This

design fully meets the requirement for high-speed calculation and real-time

control. Both FTS and IMU sensors can be designed and attached to the

robot as Gazebo Plugin in simulation.

6.3 Numerical Solver

In previous chapters, we introduced several nonlinear equations, i.e., equa-

tions (3.16), (4.1) and (4.2). Analytic solution is very hard to achieve. There-

fore we use IPOPT as nonlinear solvers to solve this this issues. The IPOPT

is a nonlinear optimizer, which is fast to run and easy to implement [47]. In
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our case, this is to solve the following problem [48]:

min
x∈Rn

‖f(x)‖

s.t. g(x) = 0

xL ≤ x ≤ xU

(6.3)

In the above problem, g(x) is the set of constraints, for example, (4.1)

and (4.2). The mathematical background can be found in [47] and will not

be addressed here. We will discuss some implementation detail here. The

nonlinear optimizer works best when it is given a good boundary and initial

value. To get the best solution, we first simulate and use nonlinear solver

in Matlab to generate a guide for boundary conditions and initial values.

After generating these values, we calculated the Jacobian and Hessian of the

original nonlinear equations. In order to solve for unknowns, we set f(x) to

be a vector of unknown variables.

Another important aspect of the solution is to give a good tolerance. The

tolerance can be set as small as possible, yet sometimes it gives solutions

that are not possible. We settled the tolerance to be in millimeter scale, i.e.,

one millimeter. Comparing to the scale of the robot, which is in meters, we

can see that the tolerance is relatively small and can be neglected. The error

will be detailed in Chapter 7 when a simulation is run.

6.4 Inverse Kinematic

The inverse kinematic is to solve from end effector positions to joint angles.

The mathematical formulation is outlined in Chapter 4 of [49]. Here there

are several options for inverse kinematic of Reemc Robot, which are numer-

ical solution, analytic solution and sampling based solution. The first two

methods are quite popular; however, the third will still provide some insights

into inverse kinematic formulation.

6.4.1 Numerical Solution

There are many ways to solve the inverse kinematic numerically. Lots of

open source libraries are provided online. We can even use IPOPT from the
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previous section to solve this problem. Here we will discuss an open source

library called TRAC-IK [50]. This package is implemented based on the open

source Orocos Kinematics and Dynamics Library (KDL). This package has

fast convergence speed and smaller error tolerance. In detail, we implemented

this to our Reemc Module to solve the joint angles numerically. However,

this inverse kinematic solver may fail under some circumstance. A method

to work around this issue is to repeat the solving process several times. If

the solver fails to give a solution, the configuration cannot be achieved. In

our case, we found all the feasible configurations can be solved in under three

iterations.

6.4.2 Analytic Solution

Since the end effector of a leg is in SE(3), it has six DOF. The leg has six

joints, which also have six DOF. Therefore, for legs only, we can achieve an

analytical solution to this inverse kinematic problem.

Lots of texts have discussed forward kinematics, among which the Denavit-

Hartenberg (DH) convention is used most [49]. This convention gives us an

easy way to formulate kinematic chains. To move from the base to the

end effector, we can derive a homogeneous transform. For each joint, we can

derive a transformation matrix. Based on DH convention, the transformation

can be derived as follows, where c is an abbreviation for cos and s is an

abbreviation for sin.

iAi+1 =


cθi −sθicαi

sθisαi
aicθi

sθi cθicαi
−cθisαi

aisθi
0 sαi

cαi
di

0 0 0 1

 (6.4)

The overall transformation matrix from base frame to end effector frame

can be derived by multiplying all the transformation matrices defined above.

0T3 =0 A1 ·1 A2 ·2 A3 (6.5)

The overall transform can be represented as follows. It is expressed in
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terms of Euler angles ZYX convention.

0T3 =


c1c2 c1s2s3 − c3s2 s1s3 + c1s2s3 px

c2s1 c1c3 + s1s2s3 c3s1s2 − c1s3 py

−s2 c2s3 c2c3 pz

0 0 0 1

 (6.6)

By equating (6.5) and (6.6), we can derive the mathematical expression

for all six joint angles. A detailed derivation can follow similar methods

described in [51, 52] where the former derived the analytical solution for a

robot arm with five DOF and the later derived the analytical solution for six

DOF. The details of the derivation are too long and beyond our focus. Thus,

the derivation and solution will not be addressed here.

The advantage for analytic solution is that the result can be calculated

extremely fast. However, the difficulty lies in that the DOF of the end

effector must be the same as the DOF of the robot arm, i.e., the leg in our

case.

6.4.3 Sampling Based Solution

There are many sampling based strategies for path planning [53]. We can

also use similar methods for inverse kinematic. This method is flexible and

can solve for position only or position and orientation both. This method is

fast and easy to implement when the system does not require high level of

accuracy and can tolerate some error.

To sample the configuration space (C-Space), we give each joint a random

value and record the corresponding end effector position and orientation. We

may first generate a reachability database using octomap and then build a

kD-tree inside each cell from the octomap [54]. This can also be viewed as

extending the database for a limb from R(3) to SE(3). Here we will first

give the algorithm for building octomap, i.e., the database in R(3). Suppose

NSAMPLE is needed.
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Algorithm 1 Generate Position Orientated Database

1: procedure Generate Database()

2: Database D

3: while SamplesGenerated ≤ NSAMPLE do

4: for each qi in q from C-Space do

5: Random Generate(qi)

6: end for

7: p(x, y, z) = Forward Kinematics(q);

8: cell = D.find(p)

9: cell.insert(pair(p, q))

10: end while

11: return D

12: end procedure

The database generated above provides the necessary condition for reachi-

bility. The p in each cell will be sorted using kD-tree data structure. To

inquire about the position, we may simply locate the cell where the inquiry

point stays and find the nearest neighbor in the kD-tree of the cell. The joint

angles can be found according to the pair.

To inquire about position only, we only need 3D-Tree. However, with the

strong capability of kD-tree, we can also add orientation to the kD-tree. The

resulting 6D-tree will organize all the data within a cell. To parametrize the

orientation with position, we need a good metric in SE(3).

There are many ways to parametrize the orientation in SE(3). However,

none of them are perfect. There always exists a singular point for each

metric. We can only find a suitable metric that prevents a singular case

during the implementation. One way to do this is to use quaternion Q =

(w, x, y, z). A detailed definition and properties of quaternion can be found in

the Appendix of [55]. For a configuration q = (X,R) ∈ SE(3), the distance

can be formulated as follows [56]:

ρ(q0, q1) = wt‖X0 −X1‖+ wr‖f(R0, R1‖) (6.7)

The rotation distance and translation distance are weighted by parameter

wr and wt. The translation distance can be easily calculated by using Eu-

clidean distance. However, rotation distance where R0, R1 ∈ SO(3) needs to
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be measured approximately. Some metrics have been proposed [57]. Choud-

hury and Lynch used the following metric to measure rotation distance [58]:

ρr = ‖ log(Q−1
1 Q2)‖ (6.8)

In this equation, Q1 = (w1, x1, y1, z1) and Q2 = (w2, x2, y2, z2) are unit

quaternions. Kuffner provided an alternative of calculating approximate dis-

tance in [56] as follows:

ρr = wr(1− ‖λ‖)

λ = Q1 ·Q2 = w1w2 + x1x2 + y1y2 + z1z2

(6.9)

This is quite an effective metric since it obeys the triangle inequality and

is easy to compute. Another parametrization is Modified Rodrigues param-

eters, which is parametrized as three variables. The Modified Rodrigues

parameters can be transformed from quaternions and to quaternions as fol-

lows. Suppose R = (R1, R2, R3) is the Modified Rodrigues arameter and

Q = (w, x, y, z) is a unit quaternion.

R1 =
x

w + 1
R2 =

y

w + 1
R3 =

z

w + 1
(6.10)

The inverse transform can be formulated as follows:

w = −R
2
1 +R2

2 +R2
3 − 1

R2
1 +R2

2 +R2
3 + 1

x =
2R1

R2
1 +R2

2 +R2
3 + 1

y =
2R2

R2
1 +R2

2 +R2
3 + 1

z =
2R3

R2
1 +R2

2 +R2
3 + 1

(6.11)

The advantage of using Modified Rodrigues parameters is that it has only

one singular point. This parameter is frequently used in altitude estimation

[59]. With the metrics above, we can define the distance in 6D-tree. Every

time we inquire about a configuration, we may first locate the cell according

to the position in R3. The 6D-tree for that cell can be fetched. Using the

metric defined, we can find the nearest neighbor in 6D-tree. The search

function returns with joint angles from 6D-tree.

The best part is that this method will immediately tell whether a config-

uration is valid or not by using the octomap, which will avoid some illegal

configurations generated by numerical methods. However, this method be-

comes slow when the resolution of the octomap is set to a value that is too
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small. This method also requires space to store the database.

6.5 Joint Velocity

In Chapter 4, we have already derived the reference joint angles. In this

section, we discuss joint velocity. When applying control methods, as in

Chapter 5, knowing reference angles is sometimes not enough. We may

also need joint velocities to command and control the robot. For example, to

run simulation in Gazebo, we can also aid controlling the robot by sending

joint velocities.

From Chapter 4, we have already derived the joint angle trajectories with

respect to time, i.e., xleft(t), xright(t), xtrunk(t), zleft(t) and zright(t). Now, we

can solve for the joint velocities.

We can calculate linear velocity, of end effector from joint velocities [49].

Here we suppose x is the position of the end effector, i.e., foot.

Jv =
∂x

∂t

=
∂x

∂t

∂t

∂q

ẋ =
n∑
i=1

∂x

∂qi
q̇i

= Jvq̇

(6.12)

The Jacobian Jv has already been determined by the robot model, which

can be derived through forward kinematics. Since the leg has three DOF,

which is exactly the same as the DOF of the end effector, the dimension of

the Jacobian is 3× 3. That is to say that Jacobian Jv will be full rank when

the leg is not in singular configuration. The inverse of Jacobian and we can

solve for the linear velocity and angular velocity as in equation (6.13). Both

joint velocity and joint angles will be sent to simulation in next chapter.

q̇ = Jv
−1ẋ (6.13)
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CHAPTER 7

SIMULATION RESULT

7.1 Walking Parameters

First we need to determine the walking parameters, such as the step length,

etc. The variables are listed in table 7.1.

Table 7.1: Parameters of robot walking

Variable Value

Nstep 12
tstart 0.7s
ts 1s
tend 0.8s
DSR 0.1
lstep 0.6m
h 0.55m
w 0.23m

These parameters can be changed if the resulting system can be solved in

Chapter 4.

7.2 Kinematic Solution

This section focuses on the kinematic solution for my planner. As in Chap-

ter 3 and Chapter 4, the goal is to generate reference ZMP trajectories,

reference trajectories for three masses and reference joint angles.
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Figure 7.1: Gait generation

7.2.1 Gait Generation

As shown in figure 7.1, the left leg and right leg move alternately, yet they

only move in x direction. The positions in y direction are kept constant.

This position will only change when the robot wants to make a turn.
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7.2.2 ZMP Trajectory Generation

[a]

[b]

Figure 7.2: (a) represents the ZMP boundary with respect to time; (b)
represents the ZMP boundary in XY plane

As shown in figure 7.2, ZMP boundary conditions can be generated according

to the gaits planned in the previous section. The figure to the left is the ZMP

condition with respect to time while the right one represents ZMP condition

in XY plane where the red and blue lines specify the region of the support

polygon.
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[a]

[b]

Figure 7.3: (a) represents the ZMP boundary with respect to time; (b)
represents the ZMP boundary in XY plane

By using interpolation methods discussed in Chapter 3, we can calcu-

late ZMP trajectory according to the ZMP conditions. However, sometimes

ZMP may exceed the boundary conditions as illustrated in figure 7.3 a. The

interpolation points may stay outside the support polygon.

Using the correction method, we achieved 7.3 b. As shown, all of the ZMP

points now stay inside the support polygon. Therefore, if we correct the

reference ZMP trajectories, the robot can maintain balance.
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[a]

[b]

Figure 7.4: (a) represents the ZMP trajectory with respect to time; (b)
represents the ZMP trajectory after correction

Figure 7.4 shows the ZMP trajectories with respect to time. Figure 7.4

(a) shows the ZMP trajectories without correction, while (7.4 (b) shows the

ZMP trajectories after correction.
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7.2.3 COM Generation

[a]

[b]

Figure 7.5: (a) shows X and y components of COM trajectories; (b) shows
the z component of feet masses

In Chapter 4, methods have been introduced to calculate COM trajectories.

This is to generate trajectory for all three masses with respect to time. We

can now use this result to calculate reference joint angles in the next section.

7.3 Dynamic Solution

From previous sections, we can calculate reference joint angles using inverse

kinematic. The first step was realized in Gazebo, which is a physical simula-

tor in ROS. Using planning methods, we change the coordinates of the trunk

to near positions to keep balance. The temporary result can be viewed in

https://www.youtube.com/watch?v=vXrrb168jiA&list=PLXQvyFrEz

Aia8z5QDql-vuowaboL7xrYy&index=2.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

The goal of this thesis is to add feet rotation to biped robot walking. In

our heel-toe motion planner, we first design the gait for each step. Then

we can achieve the ZMP boundary conditions where all ZMP points should

stay inside the support polygon. From ZMP trajectories, we can generate

the COM trajectories. At this point, we have calculated all reference ZMP

trajectory and reference joint angles. The next step is to control the robots

to walk in a physical simulator. By using controlling methods, we can cancel

out errors brought by modelling. The current result shows that the robot

has made its first step. With this first step, the robot can continue walking

with feet rotation.

This method is fast and easy to implement and it can be fit into any biped

robots. However, there are some drawbacks in the current method. First, all

walking parameters should be chosen carefully. In order to solve nonlinear

equations in Chapter 4, parameters including step length and trunk height

have to be given appropriate values so that the nonlinear equations can be

solved. Second, in trying to solve COM trajectory, the masses for three-mass

model have to be appropriate chosen. The values we chose are described in

Appendix A.

Future work will focus on multiple aspects. Moving from a kinematic

solution to a dynamic solution is another tough problem. In our planner,

we simply planned the robot to walk in a straight line. Future work may

include designing a planner that can enable the robot to make a turn. Simple

actions that humans can easily do need to be planned carefully for biped

robots. In addition, our planner currently had not been tested when there

is some disturbance. To design a more robust control system, the robot has

to function under disturbance, such as wind. Finally, due to instability of

Gazebo, we may also try to simulate in a real robot to improve our planner.
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APPENDIX A

ZMP CORRECTION AND STABILITY

A.1 ZMP Correction

ZMP correction is used to correct ZMP trajectory when the ZMP goes outside

the support polygon. The system cannot tolerate such an error since it

exceeds the ZMP boundary. The original quadratic function can be expressed

as a quadratic function.

y(t) = at2 + bt+ c (A.1)

where a, b and c are constants. The quadratic function can have its vertex

at position (− b
2a
, c− b2

4a
). Therefore, we suppose the correction function δ(t)

must have the following properties:

1) If the boundary condition is satisfied, δ(t) = 0. If the boundary condi-

tion is not satisfied, δ(t) will be added to the original fitting function.

2) The boundary condition can be expressed as: δ̇(t = 0) = 0, δ̇(t =

∆01) = 0, δ(t = 0) = 0 and δ(t = ∆01) = 0

3) δ(t) is smooth upon region [0,∆01].

4) |δ(t = − b
2a

)|< |max(error)|= |y∗ − ymax /min|
A simple function to use is quintic function. Using the properties above,

such a function can be found easily. This correction function can be assured

to have the ZMP bounded for the following reasons:

1) When solving δ̇ = 0, the solution should be symmetric about the real

axis. By using a quintic function, δ̇ = 0 has three solutions. According to

property 2), two solutions have already been designed. The last one must be

real.

2) According to property 2), δ(t = 0) and δ(t = ∆01) must be either

maximum or minimum. However, if no maximum or minimum exists between

(0,∆01), δ(t = 0) and δ(t = ∆01) must be maximum, minimum or minimum,
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maximum. This conflicts with property 2) that δ(t = 0) = δ(t = ∆01) = 0

except that δ(t) = 0. However, δ(t) = 0 conflicts with property 4). So there

must be a maximum/Minimum point between (0,∆01).

Now we can conclude that the quintic function meets such a requirement.

This function can also be applied when any deviation occurs. For example,

when the y-zmp or the velocity is not at the designated value, an offset can

be applied to the function to converge to the designed value, thus completing

a closed loop control.

A.2 Stability for End Phase

End-Phase is unique. The function can be expressed as

y(t) = A+Be−αt (A.2)

The first order derivative of this function will converge to zero when time

goes to infinity and when α > 0. With small B, the ZMP could still reside

in the support polygon at maximum overshoot. This happens when the first

derivative of the y component of ZMP is not too large.
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