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Abstract

T91 ferritic-martensitic (F/M) steel is one of the leading candidates for high temperature structural

materials in advanced nuclear power applications. In situ Wide-angle X-ray Scattering (WAXS) was used to

investigate T91 during tensile test under 3 different temperatures: room temperature (RT), 450◦C, 550◦C,

respectively. By fitting scattering patterns, information of diffraction peaks and their variation trends with

respect to macroscopic strain were recorded for further analysis of Fe matrix, M23C6 and MX precipitates.

Lattice strain of Fe matrix and precipitates were obtained from peaks shift in WAXS pattern during tensile

test. Load partitioning effect, which is known as precipitates can bear higher load than Fe matrix, was found

to be less obvious within plastic regime with the increase of temperature from RT to 550◦C. Peak broadening,

represented by full width at half maximum (FWHM), was carefully analyzed using modified Williamson-

Hall (W-H) plots to separate strain and crystalline size effects due to their different θ dependence. It was

found that dislocation density ρ in Fe matrix behaved differently within different tensile regimes: before

Ultimate Tensile Strength (UTS), they all increased; after UTS, it plateaued first then increased at end

for RT, remained stable for 450◦C while decreased continuously for 550◦C. Coherent scattering length L310

calculated by Scherrer Equation using Fe(310) plane behaved as below: before UTS, they all decreased;

after UTS, it decreased continuously for RT, remained stable for 450◦C and rose dramatically for 550◦C.

The variation trends of both dislocation density and coherent scattering length L310 were impacted by

combination effect from high temperature and tensile flow stress evolution.

Scanning Electron Microscopy (SEM), Optical Micropy (OM) and Transmission Electron Microscopy

(TEM) were also used to study the post-tensile samples. SEM found that at RT tensile fracture happened

violently with huge cracks on necking center cross-section, while fracture happened slowly with voids and

dimples on cross-section under higher temperatures. SEM Energy Dispersive Spectroscopy (EDS) mapping

also found that rupture protrusions on necking center edges had higher C and N concentration than that of

metallic elements. OM revealed the martensitic plates and ferrites in T91 after polishing and etching. Lastly,

TEM experiment was also carried out using Focused Ion Beam (FIB) prepared specimen to characterize

precipitates, dislocations and other microscale features, and to compare with the previous X-rays Diffraction
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(XRD) results.
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Chapter 1

INTRODUCTION

Structural materials selection always stands as a core issue to the research and development of new gener-

ation Nuclear Power Plants (NPPs). Different from traditional reactors, advanced reactors are featured with

higher temperatures and intenser neutron irradiation, bringing along huge challenges to nuclear structural

materials. In this chapter, the backgroud of the development of high temperature Fe alloy is introduced

first, followed by a brief review of a class of promising alloys, 9-12%Cr F/M Fe alloys. At the end, the goals

and methods of experiments in this thesis will be given.

1.1 The Need of High Temperature Alloys in NPPs

The development and prosperity of global countries are highly dependent on the availability of energy,

especially clean energy given the fact of environment pollution over the past decades [1]. Nuclear energy,

first appeared in 1950s, is now playing an increasingly important role to this world due to its high energy

density, good economic competitiveness and low carbon emissionm, etc [2, 3]. In order to make the best

use of limited Uranium, theoretically unlimited Hydrogen isotopes in sea water, and try to close nuclear

fuel cycle, a large amout of research efforts have been put to design and study the advanced Generation IV

(Gen.IV) and fusion reactors around the world [4]. So far, GIF (Generation IV International Forum) has

posed 6 main potential reactor concepts for further R&D activities. They are molten salt reactor (MSR),

sodium fast reactor (SFR), super-critical water-cooled reactor (SCWR), lead-cooled fast reactor (LFR), gas-

cooled fast reactor (GFR) and very high temperature reactor (VHTR) [4].

Currently, the typical outlet temperatures for Pressurized Water Reactor (PWR) and Boiling Water

Reactor (BWR) are 320 ◦C and 288 ◦C, respectively [5]. The temperatures above are way lower than that

of VHTR and SMR, which could be as high as 1000 ◦C. In addition, from the perspective of radiation dose,

the total maximum radiation dose for LFR, MSR, GFR and SFR by decommissioning could even go up to

200 dpa (displacement per atom), which is again far higher than that of current commercial reactors [6]. As
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Figure 1.1: Temperature and dose requirements for in core application parts in Generation IV NPPs. Trav-
eling wave reactor (TWR) and Fusion reactor are also included within. The figure is retrieved from Ref.[5].

mentioned above, the two major challenges for advanced NPPs are the elevated temperatures and increasing

radiation dose. Previous studies have widely shown that elevated temperatures can greatly reduce UTS,

mechanical strength and cause oxidation [7, 8, 9] while more radiation bombardment will degrade materials

by introducing hardening, swelling and embrittlement [5, 10, 11, 12]. The figure 1.1 [5] gives a very good

explanation for the high temperature and dose challenges for advanced NPPs.

1.2 9-12% Cr F/M Steels

Even before the birth of nuclear energy in 1950s, scientists had already worked on steels that can be used

under extremely harsh environments for other fields such as aerospace aircrafts and traditional electricity

power plants. When the concept of Nuclear Power came into existence, materials from those other fields

immediately got checked to see if they can continue to work for the more challenging nuclear field.

The service environment of nuclear structural materials is usually a complex combination of several harsh

factors: high temperature, aggressive coolant and high neutron flux, making the corrosion and oxidation

a hard problem to be dealt with. For current Light Water Reactor (LWR), SA-533 grade B (nominally

Fe-0.25C-0.24Si-0.6Ni-1.2Mn-0.5Mo) and SA-508 class 2 (nominally Fe-0.25C-0.3Cr-0.3Si-0.75Ni-0.75Mn-

0.6Mo) have been widely used to construct reactor pressure vessels [13]. For advanced NPPs, Cr addition

is good for corrosion resistance because the formation of dense oxide layer can prevent the further reaction

of materials with the harsh environment. Other studies have also found that high Cr percentage is a good
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practise to ensure the satisfactory strength of steels under high temperature such as 550 ◦C or even 650 ◦C

[14]. Recent research found that 9-12% Cr F/M steels and their variations are promising to be used as one

of the primary candidate materials for both out-of-core (vessels and pipes) and in-core (cladding, ducts and

wrappers) applications due to their excellent corrosion and oxidation resistance performance [15, 16, 17].

When added into iron alloys, Cr can also provide little solid solution strengthening. Besides, Cr will

react with Carbon to form carbide M23C6 and M7C3, where M represents Cr and C is just Carbon. These

Carbides can impede the dislocation movement thus strengthen these alloys. The development of nuclear

F/M steels started from the additon of Mo, Nb and V to Cr-Mo steels in 1960s, then gradually optimized

by tuning the percentage of other elements such as W, N, B and Co for different purposes [14].

In this thesis study, 9% Cr F/M steel T91 (nominally Fe-9Cr-0.1C-1Mo-0.4Si-0.4Mn-VNb) was studied

by in-situ XRD tensile test to investigate its macro and micro response to tensile loadings.

1.3 Thesis Structure

The structure of this thesis is arranged as below. As tradition, Chapter 1 is a short introduction to the

background, and Chapter 2 talks about the details of methodology including experiment setup and sample

preparation. After that, Chapter 3 will cover XRD data processing theory and process in detail followed by

Chapter 4 containing the results extracted from data processing. Chapter 3 and 4 will make up the main part

of this thesis. In Chapter 5, microscopy techniques were used to study the post-tensile samples, including

SEM for fracture surface observation, OM for grain morphology inspection and TEM for dislocation density

and grain size verification. After Chapter 5, there will be a discussion section, Chapter 6, focusing on the

comparison of the results of T91 with that of G91 and G92. Finally, this thesis will conclude with Chapter

7, which will sum this thisis as well as proposing the future work.
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Chapter 2

METHODOLOGY

X-ray diffraction (XRD) technique has been widely used in materials research and development (R&D)

field since its birth. Diffraction patterns, combined with pre-knowledge of materials, can be used to infer the

microscopic structure and macroscopic characteristics of the material, such as mechanical properties, specific

heat and conductivity. This Chapter 2 will focus on the basics of XRD technique, samples preparation and

the experiment procedures of tensile test with in-situ XRD.

2.1 X-ray Diffraction

X-rays (or X radiation) are composed of short-wave-length electromagnetic radiation which can penetrate

into materials and interact with atoms inside. Since its birth, X-ray has been widely used in different fields,

such as medical imaging, X-ray crystallography and airport security inspection. X-ray can be generated

through at least two ways, one is to use X-rays tube and another is to use synchrotron radiation. For

the two methods above, the intrinsic mechanisms of generating X-rays are different from each other. In a

vacuum X-ray tube a heated cathode is releasing electrons which are then accelerated by high voltage to hit

a metal target (usually tungsten, molybdenum or copper) to cause the release of characteristic X-rays. In

this method, the released X-rays are usually of low magnitude and only have several fixed energies. Another

more powerful method is to use synchrotron radiation. When charged particles are accelerated or decel-

erated, they will give out electromagnetic radiation, which if strong enough, will end up in the spectrum

of X-rays. Modern synchrotron X-rays are generating X-rays by accelerating electrons and keeping them

cycling in a high vacuum storage ring. X-rays will come out in the tangential direction of the ring, which

is way better than that of X-ray tube in quality due to its high magnitude, excellent collimation, and good

linear polarization.

In X-rays crystallography technique, X-rays are hitting target materials and by interaction with tar-

get atoms, the incident X-rays will be greatly diffracted into several specific directions. By recording the
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diffraction patterns, the diffraction angles and diffracted intensity profiles, a crystallographer can predict the

molecular or atomic configuration of the studied materials. In this study, Bragg’s Law equation 2.1 was used

to derive the lattice spacings of crystals in T91 steels. By recording diffraction pattern at every tensile stage,

the evolution of lattice spaings can be extracted and further be used to derive other mechanical properties.

2d · sin(θ) = λ (2.1)

where d is d spacing between diffraction planes, θ is diffraction angle and λ is the wavelength of the

incident X-ray.

In experiments of this thesis, X-rays were generated by synchrotron radiation at the Beamline 1-ID of

the Advanced Photon Source (APS) in Argonne National Laboratory (ANL), IL, USA. The energy of X-ray

used was 80.665 KeV, corresponding to λ = 0.1536 Å beam wavelength. The cross-section of X-ray was set

to 200 µm × 200 µm.

2.2 Samples Preparation

The tensile test samples used in those experiments were cut out of T91 bulk steels, nominally composed of

Fe- 9Cr-0.1C-1Mo-0.4Si-0.4Mn-0.2V-0.08Nb-0.05N, by wt.%. The shape of the samples is dog-bone, and the

final geometry of these samples are around 5 × 1.2 × 0.5 in mm as shown in figure 2.1. The table 2.1 shows

the major composition elements of T91 and also some other popular structural materials for comparison.

Table 2.1: Major chemical compositions for SA-533-B, SA-508-2, G91, G92, HT9 and T91 in wt.%.

Steels C Si Mn Cr Mo W V Nb B N Ni
533-B 0.25 0.24 1.2 0.5 0.6
508-2 0.3 0.3 0.75 0.6 0.75
G91 0.1 9 1 0.2 0.07 0.06
G92 0.1 9 0.5 1.8 0.2 0.08 0.06
HT9 0.2 0.4 0.6 12 1 0.5 0.25 0.5
T91 0.1 0.4 0.4 9 1 0.2 0.08 0.05

SA-533-B, SA-508-2 steels nearly have no Cr element, HT9 steel has 12% Cr while G91 and G92 steels

have 9% Cr like T91 steel, which is the target material of this thesis. Since in-situ synchrotron XRD tensile

test of G91 and G92 steels have been performed by Wang et al. in Ref. [18, 19], thus their results can be

referred for comparison with that of T91 F/M steel later in this study.
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Figure 2.1: Sample looking before and after tensile test.

2.3 In-situ Tensile Test

Tensile test is a widely used, fundamental material science test method to study the mechanical proper-

ties of materials. In a typical tensile test, a sample is subject to uniaxial or biaxial controlled tension until

fracture. The results from tensile tests such as ultimate tensile strength (UTS), yield strength (YS), fracture

strain, Young’s modulus and Poisson’s ratio, can be used to judge whether certain materials are qualified for

certain applications or not. Structural materials in nuclear field are crucial for the stability and reliability

of NPPs given the risk of failure leading to radioactive waste leakage. As one of the promising candidates

for advanced NPPs, T91 F/M steel has to go through tensile test under various conditions such as different

temperatures to prove its mechanical competitiveness for further validation. In this study, 3 temperatues:

RT, 450◦C and 550◦C were chosen to conduct tensile test to compare their performances under different

tempeartures.

Synchrotron X-rays have been widely applied in various nuclear materials research field [20, 21, 22, 23]

due to their high energy and brilliance compared with traditional laboratory based X-rays tubes. High
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Figure 2.2: Experiment setup of In-situ XRD tensile test.

energy X-rays can penetrate alloy samples as thick as 1 mm, making it possible to conduct in-situ XRD

experiments using mini size dog-bone shape samples for onsite tensile test. Wide angle X-ray scattering

(WAXS) is the technique that can record the diffracted X-rays that satisfy Bragg’s Law, and further to

analyze the inner structure of the materials. In WAXS, diffracted peaks position information from Fe matrix

and precipitates (or other particles) can be used to calculate the lattice spacings of certain (hkl) planes of

certain phases by Bragg’s Law. Broadening information of diffracted peaks can be analyzed to predict the

dislocation density and crystalline size. Another advantage of in-situ XRD is that during tensile test X-rays

keep hitting the elongated area and generating diffracted patterns at every strain stage. After fracture, the

evolution of diffracted peak positions and broadenings with respect to engineering strain can be obtained

and utilized to study the macro and micro response mechanisms in T91 F/M steel.

The experiment setup is shown as figure 2.2, where high, single energy X-ray was aligned and reshaped,

then impinged on dog-bone shape sample center under tensile tension. At the same time, samples were

heated and kept at certain temperatures. The incident X-rays went through samples, got diffracted and

recorded by following detectors. Other details in terms of how data were collected and analyzed will be

included in next chapter.
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Chapter 3

DATA PROCESSING BY PEAK
FITTING

In this chapter, how the diffracted X-rays profiles were recorded and how the collected data was processed

are explained in detail. The two major characteristics of these diffracted peaks are the center positions and

broadening, which correspond to information about lattice spacing, dislocation density and crystalline size.

The main post-processing Matlab program used was developed by Jonathan Almer of ANL years ago.

3.1 Data Processing Flow

Just as shown in figure 2.2, after interaction with the tensile sample, the diffracted X-rays were recorded

by detectors. In fact, the signal collection system is composed of 4 identical GE panels, labeled as 1, 2, 3

and 4, and each of them collected one quarter of the whole diffracted rings. Detector No.1 and No.3 were

collecting the transverse direction data while No.2 and No.4 were prepared for the tensile direction. If using

visualization method, one detector data can be transformed and displayed as in figure 3.1.
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Figure 3.1: Visualization of the diffracted rings in one detector. Yellow rings had higher intensity than the
blue area. One pixel size is 0.2 by 0.2 in mm.

Another way to visualize the signals collected by this detector is to transform all the data into another

coordinate system. The intensity distribution can be viewed by different azimuthal angle and radius as in

figure 3.2. Later it can be seen that one yellow ring is corresponding to one lattice plane of certain phase in

the materials.
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Figure 3.2: Visualization of the diffracted rings in one detector after transformation. Yellow rings had higher
intensity than the blue area. One pixel size is 0.2 by 0.2 in mm. Only a few rings were fully recorded.
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Figure 3.3: Reduced Intensity vs 2*diffraction angle at 270 degrees azimuthal angle. One peak corresponds
to one plane. All peaks were normalized by the maximum intensity by Fe(110) plane.

There is one center line for each panel, 0, 90, 180, and 270 degrees, respectively. If draw a line at where

azimuthal angle equals 270 degrees in figure 3.2, and calculate the diffraction angle at each radius given the

constant distance from sample to panel, the diffraction profiles will be transformed into figure 3.3.

Nevertheless, figure 3.1, 3.2 and 3.3 are just preliminary results from the collected raw data. In the next

section, we will move on to derive the microscopic information of the T91 samples based on the pre-processing

results above.
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3.2 Peak Identification

Previous results from literature have shown that there are several phases present in 9% Cr F/M steels

such as α-Fe matrix, M23C6 and Nb(C,N) precipitates in G91 and G92 steels [18, 19]. α-Fe matrix is BCC

structure while M23C6 and Nb(C,N) precipitates are FCC structure. Bulk material diffraction selection rules

and examples for FCC and BCC atomic structures are listed in table 3.2. Figure 3.5 explained how each

peak was fitted by Matlab program to find its center position and broadening values. The fitted peak center

then can be transformed into lattice spacing d of certain (hkl) plane of certain phase with Bragg’s equation

2.1. Other useful parameters and calculation formulas can be found in diffraction path as shown in figure 3.4.

R

L

2𝜃

𝜃

Sample

X-rays
Wavelength 𝜆 Transmitted beam

d: Lattice spacing

d

L >> sample thickness

Lattice planes
Detector

tan 2𝜃 = 	
𝑅
𝐿	 	with		2dsin θ = 	𝜆	𝑡𝑜	𝑠𝑜𝑙𝑣𝑒	𝑑

Figure 3.4: The diagram of how the lattice spacing is calculated. The length ratio between sample size,
detector size and distance L, R is not for real, just for better illustration of the concept.

a = d
√

h2 + k2 + l2 (3.1)
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Figure 3.5: Individual peak fitting example using pseudo-Voigt model to find peak center (or position), total
broadening in pixels, Gaussian fraction of total broadening for further analysis.

Figure 3.6: Phase identification plot for α-Fe matrix, M23C6 and Nb(C,N) precipitates. Transformed from
figure 3.3 and labeled with phase(hkl) index.

Table 3.1: Lattice parameters a (in Å) of α-Fe matrix, M23C6 and Nb(C,N) precipitates in G91 and G92
under RT from Ref.[19].

steels\ phase α-Fe M23C6 Nb(C,N)

G91 2.874 10.63 4.403

G92 2.874 10.65 4.412
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Table 3.2: Bulk diffraction selection rules for BCC and FCC. For BCC, allowed miller indices (hkl) satisfy
h+k+l = 2n (even number) while for FCC h, k, l are all odd or even. The first 9 allowed (hkl) examples for
FCC and BCC are listed as below.

BCC (110) (200) (211) (220) (310) (222) (321) (400) (310)

FCC (111) (200) (220) (311) (222) (400) (331) (420) (422)

Then lattice spacing values d′s above can be tranformed into lattice parameters a′s by equation 3.1 to

compare with that of referrence values in Ref. [19]. Now the peak identification step is finished with figure

3.6 plotted.

3.3 Lattice Spacing and Peak Broadening Analysis

3.3.1 Lattice spacing and strain

When doing data processing work with peaks analysis, broadening, usually represented by FWHM, is

another critical aspect to consider in order to fully extract all the quantitative information. In XRD tensile

tests of this thesis, X-rays diffracted peaks position values have already been used to calculate the lattice

spacings in the first place, which can further be used to calculate lattice strain evolution given all the spacing

values available at each tensile stage by equation 3.2.

εihkl(σ) =
di
hkl(σ)− di

hkl(0)

di
hkl(0)

(3.2)

Where di
hkl(0) and di

hkl(σ) are lattice plane spacings for certain (hkl) plane in phase i before loading and

after loading with applied stress σ under certain temperature, RT, 450◦C or 550◦C.

3.3.2 Broadening fitting and correction

In terms of total peak broadening for one peak, there are generally three factors contributing to it, in-

strumental broadening, strain broadening and crystalline size broadening [24] as illustrated in figure 3.7.

Instrumental broadening Fin is sophisticated originating from experimental setup and X-ray source. How-

ever, it can be removed by standard sample correction, in which nearly self-broadening-free CeO2 or LaB6

is used to get the instrumental broadening profiles for later deduction from real samples profiles. For both

standard sample peaks and true sample peaks, pseudo-Voigt, a simplified Voigt function, was used to fit
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them as represented in equation 3.3.

Vp(2θ) = I0 · (η · L(2θ) + (1− η) ·G(2θ)) (3.3)

Where I0 is peak center intensity, η is Lorentzian profile fraction, L(2θ) and G(2θ) are Lorentzian and

Gaussian components, repectively.

Diffraction angle θ
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No broadening δ form

Instr.

Instr. + Size

Instr. + Size + Strain

Figure 3.7: Schematic explanation of the three sources of diffraction peaks broadening. If there is no
broadening, the peak would be a δ function like the central dark line. More sources of broadening would
make the peak broader as shown by red, blue, green curves. In the figure, ’Instr.’ stands for instrumental
broadening while ’Size’ and ’Strain’ represent size, strain broadening, respectively. The broadening to
intensity ratio in the figure is not for real, but to give a general concept.

After separation of broadening using mothods in Appendix A, Gaussian and Lorentzian part of intru-

mental (or standard sample) broadening, FG
in and FL

in should be removed from Gaussian and Lorentzian

part of true samples FG
sa and FL

sa, respectively using equation 3.5 and 3.4 unless η is approaching either 0

or 1 like in Ref. [25, 26], which would be much easier. If η is very close to 0, meaning the dominant part is

Gaussian, then equation 3.5 would already be a good approximation if treating all broadening as Gaussian

part. On the countrary, if η is too close to 1, meaning Lorentzian part is dominant, then equation 3.4 would

be enough by treating all broadening as Lorentzian part.

FL
tr = FL

sa − FL
in (3.4)

FG
tr

2
= FG

sa

2 − FG
in

2
(3.5)

Where superscript L and G means Lorentzian and Gaussian components; subscript sa, in and tr, means

sample value, instrumental value and true value, respectively. After getting true broadening for both types,

pseudo-Voigt method should be used to combine them back together by the way inverse to their previous
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separation, which will be explained in detail in Appendix A.

3.3.3 Broadening analysis with modified W-H plot

After instrumental broadening correction, generally there exists at least two ways of finding the dislocation

density and crystalline size information based on true broadening values. The first method is to use modified

Williamson-Hall plot to split strain and size effects apart by taking the advantage of their different angle

dependence as shown in equation 3.6.

∆K =
0.9

Dv
+ (

πM2b2

2
)

1
2

ρ
1
2 (KC

1
2 ) +O(K2C) (3.6)

Where ∆K is related to peak broadening by ∆K = 2cos(θ)∆θ/λ (here θ is diffraction angle and λ is the

wavelength of incident X-ray) and 2∆θ is exactly the FWHM of diffraction peaks in radian unit. The first

right hand side term of equation 3.6 is contributed by limited crystalline size effect, where Dv is the weight

averaged crystalline size, sometimes referred to as coherent scattering volume size. The second term arises

from dislocation density, where K = 2sin(θ)/λ = 1/d = ghkl (insert Bragg’s law 2dsin(θ) = λ, d is d spacing

of diffraction planes, ghkl is the corresponding diffraction vector length), b is the length of Burger’s vector

(b = 0.248 nm for BCC Fe), M is an adjustable factor which was set to 1 for simplicity. ρ is dislcation

density and C is contrast factor will be explained later. Other negligible broadening sources can be included

in the third term, which will not be considered later on. Modified W-H plot method will do linear fitting

of ∆K vs. KC
1
2 (or gC

1
2 ) using data from different (hkl) planes for Fe matrix. Naturally, the fitting slop is

proportional to square root of dislocation density ρ while the y-intercept is 0.9 times the inverse of weight

averaged crystalline size. One fitting example is shown as in figure 3.8.

3.3.4 Scherrer equation for crystalline size

Another method of using the true broadening information to find the dislocation density and crystallinse

size is to use approximation. Previous studies [27] have shown that Gaussian part of broadening is highly

related to straining broadening (or dislocation) while Lorentzian part is mostly from size broadening. With

this approximation, there is no need to recombine the splited Gaussian part and Lorentzian part coming

from equation 3.5 and 3.4 previously. Scherrer formula, shown as equation 3.7 is a good supplement of W-H

plot since W-H’s results are not satisfying to determine crystalline size due to the negative intercept in figure
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Figure 3.8: Example of modified W-H plot to find dislocation density and crystalline size. This fit plot uses
8 Fe planes from RT sample at 0 strain. This plot has a good linear fitting with 0.97 R-square but with
negative intercept, which suggests possibly over-correction of instrumental broadening.

3.8. Scherrer equation will give us some insight into the crystalline size or coherent scattering length (this

term is used more later in this thesis) variation trend to better understand the mechanism of materials’

response in tensile tests.

Lhkl =
Kλ

βLcos(θ)
(3.7)

Where K is crystalline shape factor set as 1 here (sometimes set as 0.9), λ is the X-ray wavelength, θ

is diffraction angle and βL is the Lorentzian component of FWHM of peaks, calculated from equations 3.4.

Scherrer equation calculation here used single profile assumption, attributing Gaussian component solely to

strain broadening and Lorentzian component solely to size broadening [27].

Each of the two methods introduced above has its own advantages and disadvantages, thus in this thesis

they will be combined to cover the shortcomings of each other to give the best results out of the XRD data.

Later in Chapter 5, electron microscopy work, especially SEM and TEM techniques will be used to study

the grain size and dislocation density information, and compare with the results from XRD peak broadening

analysis above.

To sum up this chapter, especially the data processing procedures above, a flow chart as figure 3.9 is
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drawn to give a straightforward explanation. For each tensile stage, do peaks fitting to obtain center positions

and broadening values, and futher leverage modified W-H plot and Scherrer equation to get dislocation and

crystalline size information. At the end, these values of each tensile stage were combined together to inspect

their variation trends versus engineering strain.

Recorded data

First tensile stage profile

Last tensile stage profile

Peak fitting
Peak Center

Peak FWHM

Lattice spacing
Crystalline size
Dislocation density
……

W-H plot

......

Peak fitting
Peak Center

Peak FWHM

W-H plot

(Repeat)

Strain evolution
Stress evolution
Crystalline size evolution
Dislocation density evolution
……

Combine together

Lattice spacing
Crystalline size
Dislocation density
……

Figure 3.9: Flow chart showing how the recorded data were processed to extract the material related
information.
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Chapter 4

RESULTS FROM XRD

In this chapter, results derived out of XRD data using methods introduced in Chapter 3 will be discussed

in detail. To begin with, macroscopic stress-strain curve will be plotted to calculate mechanical properties

such as Young’s Modulus. Next, lattice strain evolution and load partitioning phenomenon along with lattice

anisotropy effect will be studied. At the end, dislocation density and coherent scattering length evolution

trends will also be covered and discussed.

4.1 Macroscopic Stress-Strain Curve

In tensile tests, stress-strain cuve is probably the most used graph to display the responses of materials

to outside applied load. In this thesis, in-situ XRD tensile test is no exception. Since there were 3 different

temperatures, RT, 450◦C, and 550◦C, it is a good idea to put them together in one graph for comparison.

Due to the limited space around the mini dog-bone shape tensile samples, the actual elongation of the gauge

area was hard to measure during on-site synchrotron XRD experiment. We knew the sample gripper move-

ment was the whole sample elongation, which could be transformed to gauge area elongation suppose the

gripped area was wide and always within the elastic region. After macro-strain correction, see figure 4.1 for

the macroscopic stress-strain curve for T91 steels under 3 temperatures.

From figure 4.1, the UTS and YS of three temperatures can be listed as in table 4.1. It is reasonable to

see that both UTS and YS were decreasing with the elevation of experiment temperature. One surprising

finding was that instead of being monotonic, the 450◦C test had the lowest failure strain compared with the

other two, which has also been reported in Ref. [28]. Later in dislocation and coherent scattering length

evolution section, it was found that engineering strains at UTS and YS were important turning points. For

the convenience of later use, all stress and strain information at UTS and YS are listed in table 4.1 for all

three temperatures.
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Figure 4.1: Macroscopic stress strain curve for T91 under RT, 450◦C, and 550◦C.

Table 4.1: Yield strength (YS) and ultimate tensile strength (UTS) (in MPa); macro ultimate tensile strain
(εUTS) and macro fracture strain (εF ) for RT, 450◦C and 550◦C.

Tem. RT 450◦C 550◦C
YS 605 497 435
UTS 798 600 453
εUTS 6.1% 3.5% 0.8%
εF 15.1% 14.1% 18.0%

4.2 Lattice Strain Evolution

As shown in figure 3.2, due to detectors area and experiment setup limitation, only a small number of

allowed diffracted rings can be fully recorded. The lattice spacings of these fully recorded diffracted rings are

all derived from Bragg’s Law. After obtanining all these lattice spacings, paired linear fitting for certain (hkl)

plane by d spacing versus macrostress in tensile and transverse directions within elastic regime were made

as shown by figure 4.2. The two fitting lines intersections were treated as theoretical zero-stress-state lattice

spacings for corresponding (hkl) planes, also used as di
hkl(0)

′
s in equation 3.2. The stress of intersection point

was not zero due to residual stress left behind by steels cast and sample preparation. For each sample at 0

strain, two planes, Fe(110) and M23C6(422) were selected to use equation 3.1 to calculate lattice parameters

of Fe phase and M23C6 phase in T91 as listed in table 4.2.

Applying equation 3.2 on all lattice spacings to form lattice strain variation profile, one can know the

response difference of lattice and precipitates to applied load. The selected diffraction planes of Fe matrix
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Figure 4.2: Explanation of using linear fitting intersection to find di
hkl(0).

Table 4.2: Lattice parameters a (in Å) of α-Fe matrix and M23C6 precipitates under RT, 450◦C and 550◦C.

Tem. RT 450◦C 550◦C
α-Fe 2.873 2.889 2.893
M23C6 10.640 10.690 10.703

were (200), (211), (220), (310), (222), (321), (400) and (330). Besides, two diffraction planes of M23C6

precipitates studied were (422) and (531). As for Nb(C,N) precipitates, their peaks were just too weak to

give reliable results, but its behavior was found to be similar to that of M23C6 [19]. Figure 4.3 shows the

lattice strain behavior difference choosing 3 Fe matrix planes and 2 M23C6 planes as representatives.

Judging from figure 4.3, before YS strain, the lattice strains of all three Fe matrix lattice planes were

increasing linearly, after which they either plateaued for RT or dropped slowly for 450◦C and 550◦C. As

for M23C6 planes (422) and (531), however, their trends were different. After Fe lattice had yielded after

YS strain, the lattice strain of M23C6 still went up, ending up with higher lattice strain till sample fracture,

especially for lower temperature. This precipitates taking higher strain phenomenon will be revisited again

later along with load partitioning (or transfer effect), in which precipitates are taking higher load than the

matrix. As temperature increased, it can be seen that this load transfer effect became less obvious noticed

that the two curves of M23C6 approached that of three Fe matrix curves at higher temperature. This could

be used to explain one of the lower engineering stress reasons at higher temperatures like 450◦C and 550◦C,

precipitates hardening effect generally being weakened by higher temperature.
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Figure 4.3: Comparison of lattice strain vs macrostrain for Fe-matrix (200), (211), (220) and M23C6 (422),
(531) under RT, 450◦C and 550◦C. With temperature elevation, the lattice strain gap between precipitates
and Fe matrix narrowed down obviously.
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Another observation is that there were strong fluctuations for M23C6 especially for lower temperture

within plastic deformation regime. In addition to tolerable data processing errors, other sources may include

lattice fracture or movement and necking center void generation as has been reported in G91 and G92 steels

using SAXS technique [18, 19].

4.3 Anisotropy Effect

Young’s modulus E and Poisson ratio ν are crucial to reflect bulk material mechanical properties. These

values can also be obtained for lattice planes by tensile test using linear fitting of data points before yielding,

if assuming that internal stress were isotropic and equaled to engineering macrostress. Table 4.3 lists these

values for both tensile and transverse directions for Fe matrix and M23C6. Further stress vs. lattice strain

plots can better illustrate this lattice anisotropic properties. From figure 4.4 and table 4.3, easily it can

be seen that with the elevation of temperature, Young’s moduli for all Fe planes were decreasing. In Ref.

[29, 30], T91’s temperature dependent Young’s modulus can be expressed as equation 4.1.

E[MPa] = 207300− 64.58T [◦C], 20◦C ≤ T ≤ 500◦C

E[MPa] = 295000− 240T [◦C], 500◦C ≤ T ≤ 600◦C

(4.1)

Among fitted Fe lattice planes, E of Fe(330) was found to be 204 MPa at RT (about 25◦C), very close

to 206 MPa given by the equation above. Also, Fe(330) plane was found to show a good linearity at the

start of plastic regime, thus could serve as a good representative for Fe macroscopic stress strain properties.

Similarly, (311) plane has been found qualitative to represent engineering properties for FCC materials [31].

Moreover, Fe(200) plane had higher lattice strain but lower Young’s modulus than Fe(211) and Fe(220), in-

dicating it was softer than the other two directions. In addition, with the increase of temperature, anisotropy

effect was much more obvious evidenced by that profiles split more away from each other for tensile and

transverse directions. The T91 Fe(211) properties(E=240, ν=0.27) were nearly identical to that of G92

Fe(211) (E=245, ν=0.27) in Ref. [18] while for Fe(200) and Fe(220) values of T91 were somehow much

lower than that of G92 under RT. The latter phenomenon may be explained by composition and lattice

preferred orientation differences. Nearly all calculated Poisson ratio ν of Fe diffraction planes were smaller

than 0.3, similar to the typical range of 0.25-0.3 for alloy steels.

Similarly, M23C6 was also found to display anisotropic phenomenon by (422) and (531) planes shown in
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Table 4.3: Young’s moduli E (in GPa) and Poisson ratio ν for Fe and M23C6 planes in tensile (Ten.) and
transverse (Tra.) directions assuming isotropic stress inside samples under RT, 450◦C and 550◦C.

(RT) 450◦C 550◦C
E ν E ν E ν

Fe(200)Ten. 159 0.25 134 0.31 110 0.27
Fe(200)Tra. -632 -432 -414
Fe(211)Ten. 240 0.27 193 0.26 177 0.24
Fe(211)Tra. -896 -740 -735
Fe(220)Ten. 230 0.22 195 0.26 181 0.30
Fe(220)Tra. -1067 -749 -609
M23C6(422)Ten. 264 0.27 193 0.30 167 0.35
M23C6(422)Tra. -982 -645 -476
M23C6(531)Ten. 281 0.30 214 0.36 162 0.33
M23C6(531)Tra. -936 -599 -492

figure 4.5. First of all, anisotropy effect for M23C6 was also more obvious for higher temperature like Fe

matrix. M23C6 (422) and M23C6 (531) nearly had identical Young’s modulus judging from table 4.3 and

figure 4.5. However, M23C6(531) was found to have higher lattice strain than M23C6(422) during plastic

deformation under RT and 450◦C. Comparing RT, 450◦C and 550◦C, it is clear that this post-yielding strain

anisotropy became smaller with temperature elevation. Nb(C,N) in Ref.[18] and Fe3C in Ref.[32, 33] were

also found to have this post yielding strain anisotropy effect, which was related to dislocation interaction

with precipitates surface under different temperatures.

4.4 Load Partitioning Effect

Load partitioning effect refers to the phenomenon that precipitates are taking more load than matrix and

von Mises stress (σVM) is typically used to quantify and compare [18, 19, 33, 34]:

σVM =

√
(σ11 − σ22)

2
+ (σ22 − σ33)

2
+ (σ33 − σ11)

2

2
(4.2)

σ11 =
E

1 + ν
ε11 +

νE

(1 + ν)(1− 2ν)
(ε11 + ε22 + ε33) (4.3)

σ22 = σ33 =
E

1 + ν
ε22 +

νE

(1 + ν)(1− 2ν)
(ε11 + ε22 + ε33) (4.4)

Where ε11,22=33 were calculated with equation 3.2, σ11 was the principle stress in axial direction while

σ22=33 in transverse direction. These stress values can be obtained by equation 4.3, 4.4 and the schematic
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Figure 4.4: Comparison of engineering stress vs lattice strain for Fe-matrix (200), (211), (220) under RT,
450◦C and 550◦C.
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Figure 4.5: Comparison of engineering stress vs lattice strain for M23C6 (422), (531) under RT, 450◦C and
550◦C.
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Figure 4.6: Schematic diagram of stress and strain in both tensile and transverse directions.

diagram of these parameters are shown in figure 4.6.

In metals R&D activities, strengthening mechanism is one of the most important factors that help to cast

better alloys. Von Mises stress is widely used to evaluate phase stress when study precipitates strengthening

mechanism [18, 22]. In this study, Fe(211), (220) and M23C6 (422), (531) were selected for analysis using

equations 4.2-4.4 with data from peaks fitting. In figure 4.7, from top to bottom, von Mises stress of Fe(211)

basically overlapped with Fe(220) and decreased very little across different temperatures while M23C6(422),

(531) decreased intensively with temperature elevation. At RT, the value of M23C6 (422) was several times

that of Fe(211) or Fe(220), which indicated that as precipitates, M23C6 was taking more load than the Fe

matrix. When temperature went up, the gap between the two phases was narrowing down obviously. At

550◦C, the 4 curves nearly overlapped each other only with a little gap in plastic regime, indicating load

partitioning effect was removed away by high temperature. Similar temperature dependent load partitioning

effects have been reported in other metals [18, 21, 22]. In terms of T91, this temperature dependent load

transfer phenomenon will be discussed along with the variation trends of dislocation density and coherent

scattering length in the coming sections.

4.5 Dislocation Density Evolution

Strain broadening and size broadening are two major sources of peak broadening, which can be separated

using modified W-H plot as explained in Chapter 3 with equation 3.6. Generally, strain broadening is related
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Figure 4.7: Comparison of von Mises stress vs. macrostrain for Fe(211), Fe(220) and M23C6(422),
M23C6(531) under RT, 450◦C and 550◦C.
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to dislocation density while size broadening can exploit crystalline size information. Traditional W-H plot

uses FWHM (usually in radian) vs. diffraction vector length ghkl (usually in nm−1) from different (hkl)

planes of selected phase [19, 24]. The linear regression fitting y-intercept equals to inverse of weight averaged

crystalline size while the slope is proportional to the square root of average dislocation density. However,

calculation showed that FWHM is not monolithic with diffraction vector length ghkl, resulting in low R2 for

linear regression fitting. Other research [35, 36] have found that if introducing dislocation contrast factor

(C) decided by microscopic particle geometric properties, modified W-H plot using equation 3.6 can give

out better fitting then. In this study, contrast factor C used 50% edge dislocations {110} < 111 > and 50%

screw dislocations < 111 > data from Ref. [19] as in table 4.4.

Table 4.4: Dislocation contrast factor C for diffraction (hkl) planes in Fe-matrix assuming (a) all dislocations
are edge type 110<111> as CE ; (b) all dislocations are screw type < 111 > as CS ; (c) all dislocations are
half edge type 110< 111 > and half screw type < 111 > as CES . Table taken from table 3 in Ref. [19].

(200) (211) (220) (310) (222) (321) (400) (330)

CE 0.262 0.178 0.178 0.232 0.150 0.178 0.262 0.178

CS 0.304 0.104 0.104 0.232 0.037 0.104 0.304 0.104

CES 0.283 0.141 0.141 0.232 0.094 0.141 0.283 0.141

Figure 4.8 showed the dislocation density ρ evolution profile in Fe-matrix at different tensile strain under

three different temperatures. The magnitude of dislocation densities were initially in 3 - 4 × 1014 m−2, a

little bit higher than normal range of other F/M steels in Ref. [19, 37, 38]. This results can arise from

several sources. On one hand, the sample preparation processe may differ from others, which matters a

lot. On the other hand, the error bars are relative huge to true values on this figure, suggesting the noise

added in during data aquisition, processing and fitting steps. In this situation, we should pay more attention

to dislocation density variation trend versus strain. Before UTS (ε=6.1% for RT, ε=3.5% for 450◦C and

ε=0.8% for 550◦C), ρ increased for all three temperatures. After UTS, ρ stabled then climbed again at

about ε=12% for RT; plateaued continuously until fracture for 450◦C; decreased all the way to fracture

for 550◦C. Generally, temperature and tensile tension are two competing factors affecting the internal

dislocation density of Fe-matrix. High temperatures tend to enhance dynamic dislocations migration and

annihilation [19] while tensile induced flow stress will support its generation predicted by Taylor equation

4.5.
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Figure 4.8: Dislocation density evolution profiles calculated from modified W-H plots under (RT), 450◦C
and 550◦C. Nearly all the R2 for least square fitting were higher than 0.90 to ensure good fitting.

σ = σ0 + MαGb
√
ρ. (4.5)

Where M is Taylor factor, which could be taken as 3; G is shear modulus; b is Burger’s vector and α

is a factor about 0.3. In this experiment, the early elastic regime before YS witnessed stable and similar

dislocation densities under different temperatures evidenced by densely overlapped data points at the very

beginning. In this regime, the flow stress was low and the high temperature effect enabled 450◦C and 550◦C

with a little bit smaller value at the very beginning than that of RT. Between YS and UTS, flow stress

increased linearly with square root of dislocation density predicted by Taylor equation. In this period, ρ

increased at different rate for the three curves. The overall trend is that the higher the temperature, the

faster the ρ climbed. After UTS, thermal migration and dynamic elimination prevailed, and dislocation

density stabled for 450◦C but dropped for higher 550◦C. The abnormal increase of ρ under RT near failure

point may be explained by dislocation multiplication activities induced by inner cracks and sudden fracture,

which can be seen by SEM fracture surface observation, or just becasue of calculation errors.
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4.6 Coherent Scattering Length Evolution

Generally, crystalline size is different from particle size due to polycrystalline aggregates formation [39].

XRD based W-H plots or size-strain method can obtain the weight averaged values for crystalline size [24].

Due to the fact that standard sample Ceria (CeO2) used as standard sample to account for instrumental

broadening may still have some self broadening, resulting in instrument broadening overcorrection, modified

W-H plots gave out some negative, not physically reasonable y-intercepts as in figure 3.8. Since precise aver-

aged crystalline size could not be obtained by modified W-H plots if there exists broadening overcorrection,

Scherrer equation 3.7 can be a compromise or substitution if only some length scale variation trend related

to particle or grain size is needed. This equation was discussed and corrected in Ref [40], and can be used

to calculate the structural coherent scattering length along the < hkl > direction for given (hkl) diffraction

plane. For this thesis, Fe(310) plane was chosen as a representative to plot and discuss.

Scherrer equation calculation used single profile assumption, attributing Gaussian component solely to

strain broadening and Lorentzian component solely to size broadening [27]. The results of coherent scatter-

ing length L310 are shown in figure 4.9.

The initial magnitude of L310 was of a few hundred nanometers, smaller than the size of grain, which

was found to be around 20 µm by metallographic observation later. By definition above, coherent scatter-

ing length Lhkl should be smaller than grain size given the existence of subgrains. As explained before in

dislocation evolution section, due to systematic errors and calculation errors, attention should be paid more

to variation trend of L310. For RT, 450◦C and 550◦C, profiles had a plateau until their own YS featured

by those densely overlapping dots at beginning, after which L310 shrank at different rate between YS and

UTS. After UTS, L310 continued to shrink at lower rate for RT, came to a platform for 450◦C and increased

steadily for 550◦C. Even though higher temperature generally would facilitate grain growth, early L310 stage

of 450◦C and 550◦C were a little bit lower than that of RT. It could be due to sample preparation process

or be explained as higher temperature would make grains softer, easier submitted to induced fracture by

internal stress. Also, grain orientation and configuration within different samples could be different. As tem-

perature went higher, the subsequent work softening regime saw increasing tendency for coherent scattering

length. For 550◦C sample, final L310 was even higher than that of pre-test status. During work hardening

and softening process, higher temperature test (450◦C and 550◦C) could only bear lower stress than lower

temperature test (RT) as in figure 4.1, thus internal flow stress effect was in inferior and subgrain boundaries

thermal disappearance to create larger grain dominated L310 variation trend.
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Figure 4.9: Coherent scattering length L310 calculated using Fe(310) diffraction plane and Scherrer equation
under RT, 450◦C and 550◦C. L310 is different from weight averaged crystalline size Dv, but it can still be
used to capture some overall trends of crystalline-related size variation.

Another finding is that different (hkl) planes such as Fe(200), Fe(321) gave out different Lhkl. The equa-

tion 3.7 in fact returned the structural coherent scattering length along the < hkl > direction. It suggested

that T91’s coherent scattering volumes (or grain) were far from spherical shape and grains have preferred

growth orientation, asking for further experiment verification using techniques such as EBSD. Lhkl is differ-

ent from Dv, but it still represented a type of length scale variation trend, which could be comparable to

that of crystalline size evolution process. Lastly, it would be a good idea to plot the normalized dislocation

density evolution profiles and normalized coherent scattering length evolution profiles. Even though came

from a same batch and went through same processings, the three temperature samples for tensile test still

had differences to each other. Normalized profiles help us to concentrate on the variation trends better.
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Chapter 5

MICROSCOPY STUDY

In this chapter, microscopy observations of post tensile samples were conducted to study the effect of

tensile tension on microstructure evolution. In the first section, Scanning Electron Microscopy (SEM) was

used to study the fracture surface morphology, followed by SEM/Energy Dispersive Spectroscopy (EDS)

to see chemical element distribution. Next, chemical etching and Optical Microscopy (OM) was performed

to reveal the grains and boundaries in section two. At the end, this thesis included Transmission Electron

Microscopy (TEM) work to study dislocation density, grain morphology and precipitates.

5.1 SEM Study of Fracture Surface

Tensile test under different temperatures, namely, RT, 450◦C, and 550◦C in this study, behaved differ-

ently juding from the stress-strain curves and other diverse results shown in Chapter 4. Lower temperature

test was found to show lower strain but more obvious load partitioning effect while higher temperature test

generally was just the opposite. In order to fully understand the difference there, it is necessary to study

the characteristics of those post-tensile samples from several perspectives. First of all, before adding any

post-processing to damage these samples, the pure observation of fracture surface was easy and ready to go.

SEM is a traditional but state-of-the-art technique which uses scanning electrons to hit the samples

surface. The induced secondary electrons emitted by sample atoms will be collected by detectors. The

number of collected electrons depends, among other factors, on specimen topography [41]. In this study,

two SEM working modes were used, one was Magnetic Sample Mode (T91 is ferromagnetic) to collect the

surface morphology image while another one was EDS Mode to obtain the chemical element distribution

information. Figure 5.1 shows how SEM was used to observe the fracture surface in the SEM chamber.

Electron beam hit the sample in the direction from outside the paper into the paper.
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Figure 5.1: SEM experiment overview of the T91 post-tensile sample. Carbon tape and SEM stage clip
were used to hold the sample tightly on the stage because T91 is ferromagnetic and will be attracted by the
electron beam. This graph was taken with 30 magnification for the 450◦C sample just as an example.

SEM is capable of observing tiny features as small as subnanometer these days in material sicence field.

In this study, samples were observed under several selected magnification to fully compare their differences.

Figure 5.3 enlarged the samples 1000 times while the magnification of figure 5.4 was 5000.

In Figure 5.3, easily it can be seen that the three samples of the same 1000 times magnification displayed

distinctive features. For the first lower temperature sample at RT, several huge cracks and cleavages were

found in the captured scope as well as for all other areas within the necking center. Second figure for the

450◦C had far less cracks but exhibited some shadow dimples and holes. The last 550◦C surface was similar

to that of 450◦C but with deeper holes and small particles. As the magnification went higher to 5000 as

in figure 5.4, much more details were disclosed. As shown in figure 5.4, the RT sample fracture surface rise

and fall, still with cleavages and nano cracks induced by tensile tension. For 450◦C sample, its surface was

relatively flat, still with some cracks left and shadow dimples showed up. When the temperatue went up

to 550◦C, the surface dimples went deeper with holes, also decorated with small particles pointed with red

arrows.

In strain-stress curve of figure 4.1, RT sample was subject to higher stress but withstood smaller fracture

strain, while 450◦C and 550◦C beared lower fracture stress, producing longer fracture strain. SEM images

also proved that RT sample had larger final fracture cross-section than that of higher temperatues. During
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Figure 5.2: SEM fracture corner showing deformation differences for RT and 550◦C samples. In the left
figure, the short red dashed straight line hinted the violent necking process to fracture while the long red
dashed arch shape line depicted the slow necking process under higher temperature in the right figure. The
corner of 450◦C sample was not listed here becasue it was in between the trend of that of RT and 550◦C.

tensilie test, the strain rate was fixed to 2 × 10 −4 s−1, thus smaller fracture strain of brittle RT sample

corresponded to shorter test time, and more violently fracture. On the contrary, for 450◦C and 550◦C sam-

ples, higher temperature made samples more ductile, enabling longer strain, smaller final cross-section, and

gradual fracture. Figure 5.2 included the necking center corner of RT and 550◦C, showing their deformation

differences. In a word, SEM fracture surface observations agrees with XRD results very well.

In figure 5.4, small particles were found for the 550◦C sample. In order to validate whether they are

secondary phase precipiates or just tiny Fe matrix particles, SEM/EDS was applied to study the composition

or element distribution of the fracture surface. Previous literature have shown that M23C6 (Where M is

mostly Cr) and MX (Where M can be Nb or V, X can be C and N) precipitates can be found in G92 steels

[18, 42]. Similarly, EDS can see if certain elements formed clusters in the studied areas. Due to time and

effort limitation, EDS was performed only on the 450◦C sample as results shown in figure 5.5.

5.2 OM Study of Grains

Without introducing any modification to the samples, the fracture suface of post-tensile samples were

inspected by SEM in the previous section. The next step is to use metallographic observation to study the

physical structure and chemical component of metallic alloys using Optical Microscopy (OM) in this section

and Transmission Electron Microscopy (TEM) in next section after certain steps of sample preparation.
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Figure 5.3: SEM 1000 times magnification of post-tensile samples under RT, 450◦C and 550◦C. RT sample
was featured by cracks and cleavages, while 450◦C and 550◦C samples displayed more holes, voids and
dimples.

35



Figure 5.4: SEM 5000 times magnification of post-tensile samples under RT, 450◦C and 550◦C. RT sample
was still featured by small cracks and cleavages, 450◦C sample showed shadow hole and dimple while 550◦C
samples had deeper holes with the appearance of secondary phase particles pointed by red arrows.
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Figure 5.5: SEM EDS composition mapping from one edge area of necking center by 450◦C sample. Left
and upper protrusions from surface cracks are enriched in C and N. Si formed some clusters at the right
and top parts where the C and N were less concentrated. Cr, Mn and Mo were nearly uniformly distributed
with very small shiny clusters on their maps. Fe is the base element, behaved similarly to that of the other
metal elements.
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In this study, post-tensile samples were grinded sequentially using BUEHLER 180, 400, 800, 1200 SiC grit

paper and polished by 3 µm and 0.05 µm Silica diamond suspension. After grinding and polishing, chemical

etching using 7% nital solution [43] or marbles reagent [44] was performed to etch the grain boundaries to

reveal the metallic phases as in figure 5.6 taken 550◦C sample as an example.

Figure 5.6: Zeiss Optical Microscope 200 magnification observation of 550◦C sample after grinding and
etching. The sample was a little bit over etched. White areas represent ferrite phase while dark plates
belong to martensitic phase [44].

T91 F/M steels in the figure showed typical martensitic plates as well as ferrite phase under the optical

microscope. However, XRD calculation results in previous chapters and other literature also showed the

existence of precipitates such as M23C6 and MX in T91 variations. These microstructure features are

generally beyond the reach of common OMs, thus TEM will be used to handle that.
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5.3 TEM Study of Dislocation, Grains and Precipitates

TEM is a modern, powerful tool for investigating the microstructure of materials such as metals, alloys,

ceramics, polymers, ceramics, etc [45]. Due to the shorter wavelength of high energy electrons than visible

light, TEM has higher resolution and thus can be used to study even finer details, sometimes to the atom

level. In principle, transmitted electron beam and diffracted signals can be collected by detectors to ana-

lyze and predict the structure of the sample. Weak Beam Dark Field (WBDF) technique is widely used to

quantify the dislocation density in materials. In this study, post-tensile samples were used to make TEM

specimens. Since T91 post-tensile samples were too small to cut with electric saw, Focus Ion Beam (FIB)

technique was used to lift a tiny TEM specimen out of the 450◦C sample only, due to instrument time

limitation.

In addition to martensitic laths and ferrite found in TEM overview, precipitates, seen as dark spots on

figure 5.7, also showed up. After enlarged, these precipitates are shown in figure 5.8. Blue circle line enclosed

the intragranular precipitates while the red dashed circle encircled the intergranular precipitates.

Moreover, by tilting the specimen into certain zone and direction, TEM can give the information about

the dislocation density inside the T91 post-tensile samples as shown in figure 5.9. One disadvantage of

preparing TEM specimens using FIB technique is that high energy ions bombardment and too small final

thickness may cause the specimens easy to bend. If bending ever happend, diffraction conditions of adjacent

areas would be different. This single TEM specimen was prepared by FIB using 4 hours, with 3 mm by

1.5 mm area but only 60-100 nm final thickness, thus subject to bending and deformation between the time

interval of FIB and TEM experiment. As shown in figure 5.9, due to possible bending and uneven beam

intensity effect, the diffraction conditions of the sides and center were slightly different, causing different

contrast of dislocations to the Fe matrix. The dislocation lines in the center were wider and brighter (or

darker) than that of the side areas in WBDF image. Those side effects may introduce minor errors to

analyze the dislocation density based on TEM WBDF figures, but it is still doable in order to compare with

the XRD fitting results in Chapter 4. Future better TEM sample preparation is required to quantify more

reliable dislocation density value based on TEM imaging technique.

With the TEM BF and DF dislocation images above, it is feasible to count the dislocation density in the

sample. From subfigure (B) in figure 5.9, five different areas with total area about 4.80 × 10−13 m2 were

selected to count the number of dislocation lines. In each area, the upper and lower bound of the number of
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dislocation lines were counted, averaged and then divided by the area to calculate the dislocation density of

this area. At the end, the results of five selected areas were averaged again and used one standard deviation

as the error bar. After all these steps, the calculated dislocation density in this 450◦C specimen was 6.26 ±

0.21 × 1014 m−2.

In fact, images in figure 5.9 were taken in the [011] Zone with g = 110. Only Burger’s Vectors ~B that

satisfied ~g · ~B 6= 0 can be seen in figure 5.9. After checking each ~B in < 111 > family one by one, it was

found that only 4 out of 8 dislocations types were visible in figure 5.9, which meant that the true value of

dislocation density should be double of that value above, 1.25 ± 0.42 × 1015 m−2 as the corrected value. In

figure 4.8, the XRD final calculated dislocation density for 450◦C at fracture by W-H method was around

1.0 ± 0.1 × 1015 m−2, very similar to the TEM corrected results above. Again, this proved that the XRD

results agreed well with microscopy work.
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Figure 5.7: TEM overview of the 450◦C specimen showing martensitic lath, ferrite and precipitates. This
whole figure was made up with 7 sub figures, and their magnification was 8000. The martensitic lath size
were large than that of G91 steel in figure 1 of Ref. [19], and with subgrains inside them.
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Figure 5.8: TEM capture of two precipitates under 30,000 magnification from figure 5.7. The size of the two
precipitates was about 50 to 150 nm from the scale bar.

Figure 5.9: (A) TEM Bright Field (BF), and (B) Dark Field (DF) images of dislocations under 30,000
magnification. The images were taken in the [011] ZONE. In the FIB made specimen, the center area
diffraction condition was slightly different from the two sides, leaving wider, darker (in A) or brighter (in B)
dislocations lines behind.
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Chapter 6

DISCUSSION AND COMPARISON

In this study, T91 was studied under in-situ XRD tensile test. Since it’s variants G91 and G92 have

been investigated by similar techniques in literature already, it is meaningful to compare the results of T91

from this study with that of G91 and G92. This chapter will discuss their similarities and differences due

to minimal element concentration change, from several aspects.

6.1 Macroscopic Stress Strain Performance

The elements of T91, G91 and G92 have been listed in table 2.1 previously. Basically, their difference is

that only T91 has 0.4 wt.% Si and 0.6 wt.% Mn included, and the concentration of Nb and N varies a little

bit. Other major elements’ weight percentage like C, Cr Mo are basically the same. G91 XRD tensile test

was reported in Ref. [19] under RT and 650◦C, while G92 was studied in Ref. [18] under RT, 400◦C and

650◦C. The Stress-Strain curve of all these three Fe are similar, also like ex-site tensile test results.
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Figure 6.1: UTS of G91, G92 and T91 VS. temperature. G91 and G92 data points were retrieved from Ref.
[19, 18].

From figure 6.1 it can be seen that with the elevation of temperature, the overall UTS trend for the 3 Fe
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Figure 6.2: Final fracture strain of G91, G92 and T91 VS. temperature. G91 and G92 data points were
retrieved from Ref. [19, 18]. G92 at RT and G91 at 650◦C data points were extropolated from figures in
references cited.

variants are decreasing just as expected. High temperature generally tend to soften materials and limit their

applications into environments with high temperture requirement. G91 had the lowest UTS at RT, 100 MPa

lower than the other two, which can be attributed to the elemental difference and sample treatment difference.

On the other hand, the overall tendency of fracture strain VS. temperature in figure 6.2 was not mono-

tonic, which had the lowest point at about 400 ◦C. In Ref. [18] studying G92, SAXS technique was applied

and found at 400 ◦C necking happened earlier than either lower or higher temperatures, which can be ex-

plained by the competence of strain hardening and cross section reduction. With the increase of temperature,

the rate of strain hardening generally decreased, then surpassed by the rate of cross section reduction. The

reason why higher temperature like 550◦C and 650◦C had higher fracture strain was that at high temper-

ature strain sofening came into consideration. Lastly, the Young’s modulus of these 3 Fe were found to be

very simliar as expected.

6.2 Microscopic Phase Performance

Applying XRD technique when conducting tensile test, micro-structure information such as lattice strain

evolution, lattice anisotropy and load partitioning phenomena have been retrieved for G91, G92 and T91.

This section will discuss their similarities and differences.

Lattice strain information were calculated from diffraction peak position fitting and Bragg’s Law as ex-
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plained in Chapter 4. Lattice strain VS. engineering strain plots from all these 3 Fe variations showed very

similar profiles. To conclude, precipitates like M23C6 and MX generally bear higher lattice strain than Fe

matrix, but the gap would decrease with the elevation of temperature. Moreover, lattice strain yielded much

later than that of Fe matrix planes, contributing to material strength after engineering yielding point.

Anisotropy effect, evidenced by the fact that different diffraction planes of Fe matrix and precipitates

had different engineering stress vs lattice strian curve, causing different Young’s modulus for different planes.

As shown in table 4.3 and figure 4.4, 4.5 in Chapter 4; figure 4, table 2 in Ref. [19]; and figure 6, 7, table

1 in Ref. [18], the anisotropy effect of these three Fe variations are very similar to each other with minor

numeric value difference.

Load partitioning effect, similar to that of lattice strain VS. engineering strain profiles, was plotted

by calculated applied stress VS. lattice strain as shown in figure 4.7 in Chapter 4, figure 4 of the above

G91 reference and figure 8 of G92 reference. Precipitates taking higher load than Fe matrix effect, also

called load transfering effect, was more obvious at lower temperature given the large gap between Fe and

precipitates in these figures. When temperature went higher, like lattice strain vs engineering strain, this

load partitioning or strengthening effect was also weakened. In a word, G91, G92 and T91 shared highly

similar load partitioning effect due to their similarity of composition.

6.3 Dislocation and Grain Comparison

Dislocation density and grain size are important characteristics of metal materials to interpret mechanical

properties, so G91, G92 and T91 are no exceptions. Both XRD and Microscopy techniques can perform its

own estimation based certain theories.

XRD technique uses W-H plot to seperate peak broadening into strain effect (dislocation) and size effect

(crystalline size) due to their different diffraction angle dependence. The precision of this model is affected

by many parameters, such as peak fitting error, W-H model correctness and parameters selection. On the

other hand, TEM is the most widely used microscopy technique to count the dislocation density and grain

size. TEM’s advantage is that it directly studies samples lifted out of real bulk materials, then researchers

can see what is really inside the materials. Its disadvantage, however, is that tiny specimen may not be a

good representative of the bulk and sample preparation may introduce defects. Facing this fact, the common
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practise is to combine results from the two techniques and compare them.

In this study of T91, both XRD and TEM were applied on the 450◦C sample and they gave out pretty

close dislocation density results, 1.25 ± 0.42 × 1015 m−2 and 1.0 ± 0.1 × 1015 m−2 at fracture as shown at

the end of Chapter 5. In G91 reference [19], the as-received sample’s dislocation density was calculated to

be 1.0 ± 0.5 × 1015 m−2 (XRD) and 9.7 × 1013 m−2 (TEM). For T91 dislocation figure 4.8, the starting

dislocation density was about 3 × 1014 m−2, a little bit higher due to sample preparation, but of the same

magnitude with the G91 as-received results. As for the variation trend of dislocation density, in figure 8

of Ref.[19] for G91, at RT the disloatioin density ( proportional to slope square) increased to yield point

then plateaued; at 650◦C remained stablely. Compared with 4.8, at RT dislocation density of G91 and

T91 performed similarly but at 550◦C T91 increased first the dropped slowly while at 650◦C G91 always

remained steady. The difference above need more research and evidence to validate.

As for crystalline size related information, there are also several similar but different concepts such

as coherent scattering volume, coherent scattering length or dislocation cell size, thus it is reasonable to

compare their general variation trend instend of their exact values. From figure 8 of Ref.[19], at RT coherent

scattering volume (proportional to inverse of y-intercept) increased a little bit then decreased; at 650◦C

remained unchanged. For T91, figure 4.9 was interpreted as the coherent scattering length instead. At RT

and 450◦C, it stayed stable for a while then dropped, while at 550◦C it stablized, dropped but increased

after UTS. The performance differences between T91 and G91 (G92 data unavailable) at higher temperature

may be traced to elemental difference, which requires more future work to explain.
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Chapter 7

CONCLUSIONS AND FUTURE
WORK

To sum up, this thesis concentrated on XRD data processing work to study T91 F/M steels behaviors in

in-situ WAXS tensile test under RT, 450◦C, and 550◦C in the first four chapters, while another part of efforts

were spent to microscopically analyze the post-tensile samples to validate the result of XRD in Chapter 5.

Discussion and Comparison of T91 with G91 and G92 were carried out in Chapter 6. The conclusions and

possible future work can be summarized in this last chapter as below.

7.1 In-situ XRD Tensile Test Conclusions

XRD experiment and data processing gave out lots of useful knowledge about the behaviours of T91 steels

under tensile test, both microscopically and macroscopically. Engineering Stress-Strain curves contained

UTS, YS and Young’s Modulus information under 3 temperatures to compare with T91 variants. XRD

diffraction peaks were then fitted and used to derive lattice spacing and strain for each existent phases

with certain (hkl) planes. M23C6 and MX precipitates were found to bear higher lattice strain than Fe

matrix, similar to that of load partitioning effect. This thesis found that with the elevation of experiment

tempetature, second phase’s high lattice and load partitioning effects were less obvious within the plastic

regime. In addition, peak broadening phenomenon was carefully studied to quantify dislocation density

and coherent scattering length information. It was found that dislocation density in Fe matrix ρ behaved

differently within different strain regimes. Before UTS, all ρ’s of three temperatures increased. After UTS,

ρ stabled first then climbed for RT, plateaued for 450◦C and decreased continuously for 550◦C. Since W-H

plot failed to give the reliable values of crystalline size, Scherrer Equation instead was used to quantify and

compare the coherent scattering length L310 using Fe (310) plane. Before UTS, all L310’s increased. After

UTS, it dropped dramatically for RT, remained stable for 450◦C and climbed greatly for 550◦C.

The variation trend of dislocation density ρ’s were in fact inverse to that of coherent scattering length

L310. This outcome is no surprising since every sample went through the combination effect of elevated

temperature and applied tension. At low temperature such as RT, tensile tension dominated, dislocation
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density was higher and coherent scattering length was smaller due to internal deformation and rupture coming

from tension. Under high temperature such as 550◦C, high temperature recrystallization and subgrain

boundaries thermal disappearance prevailed, reducing dislocation density and raising up coherent scattering

length. More complicated explanation requires void volume fraction and other parameters which can be

obtained from Small Angle X-Ray Scattering (SAXS).

7.2 Electron Microscopy Conclusions

Post tensile test samples were then investigated using microscopy techniques, including SEM, EDS,

OM and TEM, and reached the following conclusions. Ragged fracture cross-section of RT sample was

featured by cracks and cleavages while for higher tempearture more voids and dimples dominated on relative

smooth surface. These surfaces suggested more violently and faster fracture process for lower temperature

tensile test. EDS mapping found non-metallic elements were enriched in fracture protrusions while metallic

elements were more uniformly distributed. Mechanical polishing and chemical etching enabled the viewing

of dark marthensitic plates and white ferrite under OM. Finally, FIB prepared specimen was observed with

more sophisticated TEM, validating the morphology of grains, existance of precipates and dislocations. To

conclude, the microscopy work agreed well with the results of XRD previously, once again, suggesting the

effectiveness and reliability of XRD technique being used to infer the structure of materials.

7.3 Limitations And Future Work

Although in-situ XRD experiment and post-tensile microscopy work gave out valuable and consistent

results, there are still limitations of this thesis and room to imporve.

During XRD experiment, the SAXS data were not collected, disabling the calculation of void volume

and flow stress using Tayler Equation 4.5. XRD data processing proved that different (hkl) would gave out

different coherent scattering lenght scale or even variation trend from that of L310, EBSD can be applied

to study the dynamic grain evolution under tensile test. Dislocation density and coherent scattering length

results were not satisfying in terms of precision, thus more careful sample preparation and data processing

are needed for extending work.

As for microscopy part, due to time and effort limitations, FIB-made TEM sample was limited to 450◦C

only, making it unable to compare the results and study temperature effects. Future work should also inclue

RT and 450◦C samples, and pay attention to TEM sample quality control. Another imperfection is that

SEM EDS surface mapping only gave limited information about precipitates and clusters at surface. Further
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work can try to apply Scanning Transmission Electron Microscopy (STEM) technique on TEM samples to

study the precipitates elemental mapping inside the studied materials.
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Appendix A

Peak Broadening Separation With
Pseudo-Voigt Profile

During X-Ray Diffraction (XRD) experiments of studying materials, diffracted beams generally form

peaks shapes distribution of detected signals. There exists several functions that can fit these peaks to

find their centers and broadenings. When it comes to study the particle size and strain broadening effects,

the Voigt function is the one widely used [46]. Original Voigt function is a convolution of Gaussian and

Lorentzian functions [47] shown as in equation A.1 to A.3.

V (x;σ, γ) =

∫ ∞
−∞

G(x
′
;σ)L(x− x

′
; γ)dx

′
(A.1)

G(x;σ) =
e−x

2

/(2σ2)

σ
√

2π
(A.2)

L(x; γ) =
γ

π(x2 + γ2)
(A.3)

Where x is the shift from the peak center, G represents Gaussian profile while L represents Lorentzian

profile. σ and γ are the parameters for Gaussian (Normal) distribution and Lorentz (Cauchy) distribution,

respectively.

On average, convolution calculation costs intensive computation price thus a good approximation was

invented and called pseudo-Voigt function as equation A.4. Pseudo-Voigt is by definition a linear combina-

tion of Gaussian and Lorentzian functions, making it easy and fast to computate with safisfying precision [48].

Vp(2θ) = I0 · (η · L(2θ) + (1− η) ·G(2θ)) (A.4)

Where I0 is peak center intensity; 2θ is two times of the diffraction angle; η is Lorentzian profile fraction,
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L(2θ) and G(2θ) are Lorentzian and Gaussian components, repectively.

During Matlab peaks fitting of this thesis, in order to save computation time but still maintain good pre-

cision, psdudo-Voigt profile model was used. For the purpose of post-processing, Lorentzian profile fraction

η and total broadening ( by FWHM ) Γ were computed and recorded automatically. If η was too small (for

example , less than 0.2, from experience), then the Gaussian part dominated the broadening. When η too

large (take 0.8 as an example ) appeared, Lorentzian part prevailed. Both of the two extreme η scenarios

are easy to deal with as instrumental broadening can be easily removed by square root deduction or direct

deduction with equation 3.5 or equation 3.4. The worst scenario is when η is neither close to 0 nor close to

1, which requires further data manipulation by equation A.5 and A.6 to reduce errors .

Γ = (Γ5
G + 2.69296Γ4

GΓL + 2.42843Γ3
GΓ2

L + 4.47163Γ2
GΓ3

L + 0.07842ΓGΓ4
L + Γ5

L)
1
5 (A.5)

η = 1.36603(ΓL/Γ)− 0.47719(ΓL/Γ)2 + 0.11116(ΓL/Γ)3 (A.6)

When Γ and η are given, it is easy to compute ΓG and ΓL by solving the two equations with two unknown

variables. After getting the true broadening by removing the instrumental broadening with equation 3.5 or

equation 3.4, equation A.5 can be used to combine them back together to obtain the true broadening coming

only from the test materials.
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