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ABSTRACT

In recent times, the use of Unmanned aerial vehicles (UAVs) for tasks which

involve high endurance or perilous environments, has become increasingly

vital. A typical problem is that of information collection, in particular when

multiple UAVs are involved, which prompts an important problem of routing

these UAVs through the search environment with the goal of maximizing the

collected information. Most of the previous line of work assumes a central-

ized control and full communication among the UAVs, thus posing this as an

optimization problem solved via centralized solutions. However, in applica-

tions where communication is infeasible, each UAV must individually solve

the problem. Assuming a natural scenario of UAVs being compensated for

the collected information makes them self-interested agents trying to maxi-

mize their payoffs. Consequently, our game-theoretic approach is a natural

fit. While our game model is primarily based on the game model used in a

previous work [1], it is also significantly generalized, incorporating interest-

ing facets of information fusion and multi-modality-composed information.

This game is closely related to the well-studied classes of congestion-type and

resource selection games, but cannot be cast into these classes unless certain

critical constraints are relaxed. Our contribution to this literature, is a result

on existence of pure Nash equilibria via existence of the Finite Improvement

Property, which applies to any singleton congestion-type games having a cer-

tain class of payoff functions. Finally, to our best knowledge, our results

providing theoretically guaranteed tight bounds on the Price of anarchy and

Price of stability, are the first such results in the literature involving a game-

theoretic approach to UAV routing.
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CHAPTER 1

INTRODUCTION

In recent times, the use of Unmanned Aerial Vehicles (UAVs) in modern

battlefields has become increasingly vital and beneficial, particularly owing

to their utility in environments that are — as characterized by [2] — dull,

dirty, and dangerous. That is, they are particularly useful for tasks which

involve high endurance and/or perilous environments. One such task is that

of collecting information via surveillance of such sensitive region. Moreover,

when there are multiple UAVs at disposal, an important problem is that of

routing these UAVs in the region in order to avoid collisions and redundant

duplication of efforts while maximizing the collected information. This can

be posed as an optimization problem which may be effectively solved using

centralized algorithms. However, these do not apply to applications where

communication is infeasible so that each UAV must individually solve the

problem, or scenarios in which the UAVs are self-interested agents trying

to maximize their payoffs. Hence, in this paper, we study a problem where

UAVs are self-interested competitive agents trying to route themselves in the

surveillance region so as to maximize their own collected information — thus,

a mere single-objective centralized solution does not apply.

The problem of information collection has been widely studied in the search

theory literature. A classical search problem here is to maximize the prob-

ability of detecting a hidden target, for instance, as in [3, 4, 5, 6, 7, 8]. On

the other hand, [9], associates a potential information gain with each sub-

region based on an entropy based function and aim to maximize the total

gain. In this paper, we resort to a similar model, where the region of surveil-

lance is divided into discrete cells each having an associated information

value, which we treat as an abstract entity allowing flexibility for what these

values capture; possibly the target-detection probabilities as in the former

problem. Our basic model of the search environment and the information
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collection formulation, is mathematically equivalent to that of [1], in terms

of discretization of the search space and time-steps, and payoff definitions,

albeit with some other interpretational differences with various parameters.

Additionally, our model also incorporates some interesting and useful exten-

sions. The first is that of information fusion, which “can be defined as the

combination of multiple sources to obtain improved information (cheaper,

greater quality, or greater relevance)” [10] and has been used in robotics and

military applications [11]. Secondly, our model allows the information to be

multi-modal i.e. present in the form of multiple modalities such as vision,

audition, tactition, thermoception etc. These additional aspects make our

information collection problem very versatile in terms of applicability. More-

over, to our best knowledge, our results providing theoretically guaranteed

tight bounds on the Price of anarchy and Price of stability, are the first such

results in the related literature.

A large body of the previous work on the routing problem such as [12, 13],

assume a centralized control and full communication among the UAVs and

the central controller. However, the infeasibility of communication can be

a very critical constraint in cases such as when surveilling in sensitive areas

during covert military operations. Consequently, constructing a centralized

solution does not apply. In these situations, each UAV has to construct its

own route, since it cannot dynamically obtain information about where the

other UAVs are. Furthermore, we consider a natural arrangement that the

UAVs are compensated for the information they collect, which makes them

self-interested agents trying to maximize the information they collect. As

a result, a game-theoretic approach is a perfect fit to tackle this problem.

Game-theoretic models have been deployed in numerous other routing prob-

lems in transportation and networking applications such as [14] and [15]. The

class of games we formulate in this paper, is closely related to the class of

congestion games or resource-selection games, and numerous other variants,

defined and studied in — most notably [16, 17, 18, 19, 20, 21]. Our class of

games has some critical differences with these well-studied classes of games,

in terms of cost-sharing protocols, player weights etc., and hence the results

established on these classes of games do not directly apply in the general case,

making our theoretical results on the existence of pure equilibria and bounds

on Price of Stability and Price of Anarchy, interesting and non-trivial.
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CHAPTER 2

TWO-PLAYER SINGLE-STEP GAME

2.1 Problem Description and Game Formulation

We define the information collection problem as a game between two play-

ers. The surveillance environment is discretized into sub-regions referred

to as cells. The problem can be formulated in two settings, which we call

correlated and non-correlated. In the former setting, the information to be

collected is in the form of a single modality. Thus, as the UAVs try to max-

imize the information collected, a cell which is attractive to one UAV is also

to other UAVs — more specifically, the intrinsic worth from visiting the cells

occurs in an identical order to all the UAVs. This mutuality of the preference

among cells leads to the name ‘correlated’. This is not necessarily true, when

extended to the case of multiple modalities constituting the information in a

cell. The UAVs have different sensors for capturing the information of each

kind (i.e. modality), and the information of each kind available in a cell could

be present in largely varying amounts. Thus, the UAVs may value a cell dif-

ferently depending on which modalities their sensors are most effective for.

Hence, we call this setting non-correlated. Naturally, the correlated setting

can be realized as a special case of the non-correlated setting. Hence, we es-

tablish results for the non-correlated case and provide stronger implications

for the correlated case.

The game is defined as follows. There are two players each corresponding

to a UAV and each has a known initial cell. Each player has n pure strategies,

corresponding to n different cells the player can move to in the next time-

step; n is typically equal to 8 or 9 in the standard problem specifications,

but our model is general enough to allow an arbitrary value of n. Also,

while we assume the same number of cells accessible to both the players, this
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constraint can be easily relaxed. Next, We have M different modalities for

each of which, each cell has a certain amount of information available. The

payoffs of the players — as precisely defined later on — linearly scale with

these information values and hence, the values can be taken to be from the

range r0, 1s wlog. As the information comprises of M different modalities,

we represent it as a vector of dimension M . Each UAV has M different

sensors to collect these M kinds of information. The payoff of player i, i.e.,

the information it can collect, from moving to cell j depends on

1. information available in the cell j,

2. effectiveness of its M sensors denoted by ~ρi “ pρi1, . . . , ρimq, s.t. 0 ě

ρim ě 1, @m, and,

3. whether the cell gets shared, i.e., whether the other player also moves

to the same cell simultaneously.

This formulation implies that each player has at most two different payoffs

possible from each strategy and consequently, we can represent the payoffs

with the payoff matrix as follows. Let αj and α1j denote the payoffs of player

1 from strategy j when the corresponding cell is unshared and when shared,

respectively. Similarly, let βj and β1j denote the payoffs of player 2 from

strategy j when the corresponding cell is unshared and shared, respectively.

The current locations of the players may be different, and thus, there may

be some cells which are commonly accessible to both and some which are

private. For convenience, we order the strategies of players so that if there

is a common cell where both players can move, then the index of the corre-

sponding strategy is same for both the players, and smaller than the index

of any strategy corresponding to the respective private cells. Depending on

their current locations, suppose there are k common cells (0 ď k ď n). Then

the payoff matrix of the game will be as shown in Table 1.

Observe that the α1j and β1j appear only on the diagonal entries (1 ď j ď k).

This matrix formulation is general enough to allow any definitions of payoff

computation, and different formulae for shared payoffs. We formalize these

definitions for our game in the following section.
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pα11, β
1
1q ¨ ¨ ¨ pα1, βkq pα1, βk`1q ¨ ¨ ¨ pα1, βnq

pα2, β1q ¨ ¨ ¨ pα2, βkq pα2, βk`1q ¨ ¨ ¨ pα2, βnq
... ¨ ¨ ¨

... ¨ ¨ ¨
...

...
pαk, β1q ¨ ¨ ¨ pα1k, β

1
kq pαk, βk`1q ¨ ¨ ¨ pαk, βnq

pαk`1, β1q ¨ ¨ ¨ pαk`1, βkq pαk`1, βk`1q ¨ ¨ ¨ pαk`1, βnq
... ¨ ¨ ¨

... ¨ ¨ ¨
...

...
pαn, β1q ¨ ¨ ¨ pαn, βkq pαn, βk`1q ¨ ¨ ¨ pαn, βnq

Table 1: Payoff matrix of the 2-player single-step game

2.2 Parameter Specification and Payoff Definition

We denote the information corresponding to a cell as a vector ~v, so that each

vk corresponds to the information corresponding to modality k. Next, we

have the following parameters:

Sensor effectiveness ~ρi of UAV i: If the information available in a cell

is ~v, then the information obtained by UAV i with sensor effectiveness ~ρi

is ~ρi ¨ ~v. This formula defines the payoffs without sharing. When a cell is

shared, the total information obtained for type j is computed as follows: the

information collected by player 1 is ρ1jvj, and that by player 2 is a fraction

ρ2j of what is left, i.e., p1 ´ ρ1jqvj. Thus, the total information collected is

ρ1jvj ` p1 ´ ρ1jqvjρ2j. Note that this expression is symmetric for both the

players. Then, this total payoff is shared in the ratio of ρ1j : ρ2j by the two

players. As a result, UAV i gains ρijvjp1 ´
ρ1jρ2j
ρ1j`ρ2j

q. We can write the net

information gain for UAV i as p~rd ~ρiq¨~v or ~ρi ¨p~rd~vq, where rj “ p1´
ρ1jρ2j
ρ1j`ρ2j

q.

Information fusion parameter ~γl: We incorporate the concept of infor-

mation fusion by saying that the maximum information gain from a cell may

be higher if more than one UAV visit this cell together due to the information

fusion. We model this by introducing fusion parameters ~γl “ pγl1, . . . , γlMq,

where l denotes the number of UAVs visiting a cell simultaneously, thereby

involved in the fusion process, and γli denotes the fusion parameter for modal-

ity i. We say that in the case of fusion, the information available in a cell can

be treated to be ~γl d ~v, if l players visit the cell simultaneously. That is, the

information of each modality j gets scaled by a constant factor γlj. Clearly,

~γ1 “ p1, . . . , 1q, and γlj ě 1, @l ě 2, @j, so that information fusion only in-

creases the information gain. When dealing with a 2-player game, we denote

5



the fusion parameter ~γ2 as simply ~γ for convenience. Thus, for a cell corre-

sponding to strategy j, having information ~vj, the shared payoffs of the the

two players can be written as α1j “ p~rd ~ρ1d ~γ2q ¨ ~vj and β1j “ p~rd ~ρ1d ~γ2q ¨ ~vj.

Now, we further assume that the following conditions hold for the fusion

process, which are all practical and help impose a reasonable structure to

the problem:

– @i, α1i ą αi ô β1i ą βi

– @i, j, pα1i ą αi ô α1j ą αjq and pβ1i ą βi ô β1j ą βjq

– @i, j, pαi ą αj ô α1i ą α1jq and pβi ą βj ô β1i ą β1jq

Together, these conditions imply that, if the fusion gives better shared pay-

offs than the unshared ones, it does so for both the players, in all the cells,

and the shared payoff values follow the same order as the respective unshared

payoff values for the individual players. The same implications hold even for

the case when the shared payoffs with fusion, are less than the respective

unshared payoffs.

For this game, we establish results for the existence and computation of

Nash Equilibria, and bounds on the Price of Stability (PoS) and Price of

Anarchy(PoA). These results differ, depending on whether there is moderate

fusion (αi ą α1i @i), or significant fusion (αi ă α1i @i). First, we establish the

results for the former case.
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CHAPTER 3

MODERATE INFORMATION FUSION

In this setting, we prove that a pure NE always exists and is computable in

linear time. We also prove tight bounds on PoA and PoS. Finally, we show

that the number of mixed equilibria has a low upper-bound — linear in the

number of strategies, and that the mixed equilibria are Pareto-dominated by

the pure equilibria.

Recall that, as described in the previous chapter, we have, αi ă α1i @i, and

βi ă β1i @i. That is, sharing a cell is never preferred over visiting it solely, by

either player.

3.1 Existence and Computation of Pure Nash

Equilibrium

Computing a Nash equilibrium in a two-player game is, in general, PPAD-

complete [22], and checking if a pure NE exists, is NP-complete [23]. How-

ever, the payoff matrix of the UAV game is special and we show that there

always exists a pure Nash equilibrium and it can be computed in Opnq time.

Notation: The cell corresponding to strategy s of player i, is denoted by

cellipsq. The set of cells corresponding to a set of strategies S of player i, is

denoted by cellsipSq.

Theorem 1. There always exists a pure Nash equilibrium in a two player

UAV game and it can be computed in Opnq time where n is the number of

strategies for each player.

Proof. We sort the strategies for each player in the non-increasing order

of available information in the corresponding cells. Let the order for the
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first player be i1, i2, . . . , in, and for the second player be j1, j2, . . . , jn. Fur-

ther, we assume that in case of equal payoffs, the strategies are ordered

in the increasing order of index-values. Since the fusion is moderate, αi1 ,

and βj1 are the largest possible payoffs for the two players respectively. Let

A1 “ ti | αi “ αi1u be the set of strategies of player 1 corresponding to cells

with the largest possible information gain, and A2 “ argmaxiRA1 αi be the

set of strategies of player 1 corresponding to cells with the second largest

possible information gain. Similarly, let B1 and B2 be the sets of strategies

of player 2 corresponding to cells with the largest and the second largest

information gain, respectively. We now consider the following cases:

Case 1: |A1| ą 1 and |B1| ą 1

In this case, it is easy to see that pi, jq is a pure Nash Equilibrium for every

i P A1, j P B1 such that cell1piq ‰ cell2pjq. Since A1 and B1 have at least 2

strategies in them, there exist many such equilibria, in particular, at least 2

when each has only 2 strategies. Further, |A1| ą 1 ñ Di P A1 such that player

2 is not moving into cell1piq, hence, i is in the best response set of player 1.

Similarly, the best response of player 2 must lie in B2. Consequently, there

are no other pure equilibria. Also, each of these pure NE, maximizes the

total gain (i.e., social welfare).

Case 2: |A1| “ 1 and |B1| ą 1

a) cell1pi1q R cells
2pB1q: Same as in Case 1, since B1 has at least 2 strate-

gies, player 2’s best response to any pure strategy of player 1, must lie

in B1. As per the condition here, this best response cannot be i1, and

so, i1 is always the best response of player 1. Thus, pi1, jq for every

j P B1, is a pure equilibrium and these are the only equilibria.

b) cell1pi1q P cells
2pB1q: If player 2 does not play i1, we have the same

situation as Case 2a, and thus, pi1, jq for every j P B1zti1u, is a pure

equilibrium. Additionally, there could be other equilibria depending on

the following:

i. αi2 ă α1i1 : Thus, i1 is a dominant strategy for player 1, and so it

will always play that. The best response of player 2 to this is any

j P B1zti1u, and thus all such pi1, jq, are the only equilibria.
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ii. αi2 ě α1i1 : Thus, if player 2 plays i1, player 1 can play any strategy

i P A2, and it is easy to see that pi, i1q is indeed an equilibrium.

Case 3: |A1| ą 1 and |B1| “ 1

This case is symmetric to Case 2 and a similar analysis follows.

Case 4: |A1| “ 1 and |B1| “ 1

a) cell1pi1q “ cell2pj1q : Thus, the players’ most preferred cells coincide.

We make further cases as follows, each characterized by two conditions.

One is for comparing αi2 with α1i1 , and the other is for comparing βi2

with β1i1 . If both the conditions strict inequalities, only one of the

following four cases exists and the only pure Nash equilibria are the

ones discussed therein, however, in case of an equality for any of the

two respective conditions, two or all of the following four cases and the

equilibria described therein, may coexist.

i. αi2 ď α1i1 and βj2 ď β1j1 : In this case i1 is a dominant strategy for

player 1, and j1 is a dominant strategy for player 2. Hence, pi1, j1q

is a pure Nash equilibrium.

ii. αi2 ď α1i1 and βj2 ě β1j1 : In this case i1 is a dominant strategy

for player 1, and any strategy j P B2 is a best response to it, for

player 2, and hence, any such pi1, jq is a pure Nash equilibrium.

iii. αi2 ě α1i1 and βj2 ď β1j1 : Similar to case ii, j1 is a dominant

strategy for player 2, and any strategy i P A2 is a best response to

it, for player 1. Hence, any such pi, j1q is a pure Nash equilibrium.

iv. αi2 ě α1i1 and βi2 ě β1i1 : This case is an anti-coordination game.

pi1, jq @j P B2, as well as pi, j1q, @i P A2 are all equilibria for this

case.

b) cell1pi1q ‰ cell2pj1q : In this case, pi1, j1q is trivially a pure equilib-

rium. There may be another pure equilibrium, if the two players each

occupy their opponent’s most preferred cell and this turns out to be

the best response to each other. It is easy to see that this translates
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to the conditions cell2pj1q P cells1pA2q, cell
1pi1q P cells2pB2q, and,

βj2 ě β1j1 , αi2 ě α1i1 ; if these hold, pj1, i1q is also a Nash equilibrium.

From the above analysis, it is clear that there always exists a pure Nash

equilibrium. To see the computation complexity, first, note that A1 can

be computed in Opnq time by computing the maximum i1 in Opnq time.

Similarly, B1 can be computed in Opnq time. Further A2 and B2 can be

similarly computed in Opnq time by computing the second maximum payoffs.

Lastly, each of the conditions in the cases above can be computed in Opnq

time. Thus, a pure equilibrium can be computed in Opnq time.

In the next section, we analyze the PoS and PoA for this game.

3.2 Social Welfare

As concluded in the previous section, there always exists a pure Nash equi-

librium and it can be computed efficiently. We now investigate how good

or bad it can be with respect to the optimal solution which maximizes the

social welfare — which is defined as the sum of the individual payoffs of the

players. For this, we obtain bounds on pure Price of Stability (PoS) and

the Price of Anarchy (PoA), which are the two well-known metrics used in

economics and game theory, to quantify the efficiency of the equilibria. In

the following definitions, the best and the worst NE refer to those which give

the least and most social welfare among all equilibria.

Definition 1. The pure price of stability (PoS) is defined as:

PoS “
The optimal social welfare

social welfare for the best pure Nash equilibrium
.

First, we begin with the following well-known property.

Lemma 1. Let xi, yi, vi ě 0 for i = 1,2,. . . ,d. Then,

d
ř

i“1

xivi

d
ř

i“1

yivi

ď max
1ďiďd

xi
yi
.
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We now establish upper bounds on the pure PoS, first for the general param-

eters, and next, for a practical special case of identical sensors, i.e., ~ρ1 “ ~ρ2,

and no fusion.

Theorem 2. The pure PoS of the 2-player single-step game with moderate

fusion, is at most

1` max
1ďjďM

maxtρ1j, ρ2juppρ1j ` ρ2jq ´ pρ1j ` ρ2j ´ ρ1jρ2jqγjq

pρ1j ` ρ2jqpρ1j ` ρ2j ´ ρ1jρ2jqγj
.

Proof. We prove the result by analyzing the same various cases as discussed

in the proof of Theorem 1.

In Case 1, all pure equilibria achieve maximum social welfare. Hence the

pure PoS here is 1.

In Case 2 — both 2a and 2b, there exist equilibria pi1, jq for j P B1, which

maximize the social welfare, making the PoS equal to 1 for this case.

In Case 3, it being similar to Case 2, the PoS is again simply 1.

For Case 4a, let i1 “ j1 “ 1, and let the information in the cell corresponding

to strategy 1 be ~v. It implies that α1 “ ~ρ1 ¨~v and β1 “ ~ρ2 ¨~v, α11 “ p~ρ1d~rd~γq¨~v

and β11 “ p~ρ2d~rd~γq¨~v. Among the four cases possible here, more than one of

them coexisting gives rise to more pure equilibria and a possibly smaller PoS.

Hence, to bound the worst value, it suffices to analyze with the assumption

of each case existing exclusively, i.e., assuming a relation of strict inequality

between αi2 and α1i1 , as well as βi2 with β1i1 .

We analyze Case 4a-i first. We have αi2 ă α11 and βj2 ă β11, and thus, p1, 1q

is the unique equilibrium, with a social welfare of α11` β
1
1. One can see, that

the maximum social welfare is achieved for either α1`βj2 or αi2`β1. Hence,

the PoS is at most
maxtαi2`β1,α1`βj2u

α11`β
1
1

ď
maxtα11`β1,α1`β11u

α11`β
1
1

. We can write,

α11 ` β1
α11 ` β

1
1

“
p~ρ1 d ~r d ~γ ` ~ρ2q ¨ ~v

pp~ρ1 ` ~ρ2q d ~r d ~γq ¨ ~v

ď 1` max
1ďjďM

ρ2j
pρ1j ` ρ2jq ´ pρ1j ` ρ2j ´ ρ1jρ2jqγj
pρ1j ` ρ2jqpρ1j ` ρ2j ´ ρ1jρ2jqγj

.

The above inequality, follows from Lemma 1. Similarly, we can write

α1 ` β
1
1

α11 ` β
1
1

ď 1` max
1ďjďM

ρ1j
pρ1j ` ρ2jq ´ pρ1j ` ρ2j ´ ρ1jρ2jqγj
pρ1j ` ρ2jqpρ1j ` ρ2j ´ ρ1jρ2jqγj

.
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Consequently, the PoS for this case is at most

1` max
1ďjďM

maxtρ1j, ρ2juppρ1j ` ρ2jq ´ pρ1j ` ρ2j ´ ρ1jρ2jqγjq

pρ1j ` ρ2jqpρ1j ` ρ2j ´ ρ1jρ2jqγj
.

For Case 4a-ii, We have αi2 ă α11 and βj2 ą β11. Any pure equilibrium is

of the form p1, jq for some j P B2, which gives a social welfare of α1 ` βj2 .

Since α1 ą α11 ą tαi, α
1
iu, @i ě 2, and β1 ą βj2 ą tβ

1
k, βju, @j ą 2, k ě 1, the

maximum social welfare is either α1 ` βj2 or αi2 ` β1. Therefore PoS is at

most maxt1,
αi2`β1
α1`βj2

u ď maxt1,
α11`β1
α1`β11

u. It is easy to see that this is no worse

than
α11`β1
α11`β

1
1
, and thus, no worse than the bound for Case 4a-i.

Similarly, it can be shown that Case 4a-iii gives a bound no worse than

Case 4a-i.

For Case 4a-iv, the two pure Nash equilibria of the game are pi1, j2q and

pi2, j1q. It is easy to check that one of them gives the maximum social wel-

fare, hence PoS for this case is 1.

Finally, in Case 4b, among the two possible pure NE, pi1, j1q corresponds to

the best social welfare, giving a PoS of 1.

Thus, Case 4a-i above gives the worst possible PoS, thereby establishing the

desired bound.

Next, we obtain a stronger result, for a special case.

Corollary 1. When the two players have identical sensors and the fusion is

absent, the pure PoS of the 2-player single-step game is at most 3{2.

Proof. Follows from Theorem 2 by setting ~ρ1 “ ~ρ2 and ~γ “ p1, 1qT .

Next, we obtain similar results for PoA.

Definition 2. The price of anarchy (PoA) is defined as:

PoA “
The optimal social welfare

social welfare for the worst Nash equilibrium
.

Unlike the result for PoS, we establish upper bound results for the general

PoA, not just pure PoA. First, we do so for the general parameters, and

next, for the practical special case of the players having identical sensors, i.e.

~ρ1 “ ~ρ2, and fusion being absent.

12



Theorem 3. The PoA of the 2-player single-step UAV game with moderate

fusion, is at most

max
1ďjďM

ρ1j ` ρ2j
pρ1j ` ρ2j ´ ρ1jρ2jqγj

.

Proof. Again, we prove the result by analyzing the same various cases as laid

out in the proof of Theorem 1.

In Case 1, all the pure equilibria achieve maximum social welfare. Hence the

pure PoA is 1 here.

In Case 2a and Case 2b-i as well, all the pure equilibria achieve maximum

social welfare, and so the pure PoA here, is 1. For Case 2b-ii, however, i.e.

when αi2 ě α1i1 and i1 P B1, we know that pi, i1q is an equilibrium for every

i P A2. This gives a total welfare of αi2 ` βj1 , which is lesser than the maxi-

mum welfare of αi1`βj1 achieved by playing pi1, jq for any j P B1zti1u. Thus,

the PoA is
αi1`βj1
αi2`βj1

, which is at most
αi1`βj1
α1i1
`βj1

, under the constraint αi2 ě α1i1 .

Similarly, the PoA in Case 3 is at most
αi1`βj1
αi1`βj2

, which is at most
αi1`βj1
αi1`β

1
j1

.

For Case 4a, let i1 “ j1 “ 1, and let the information in the cell corresponding

to strategy 1 be ~v. It implies that α1 “ ~ρ1 ¨~v and β1 “ ~ρ2 ¨~v, α11 “ p~ρ1d~rd~γq¨~v

and β11 “ p~ρ2d~rd~γq ¨~v. Among the four cases possible here, more than one

of them coexisting gives rise to more pure equilibria and a possibly larger

PoA. However, to bound the worst value, it suffices to analyze with the as-

sumption of each case existing exclusively, and considering the worst bound

among the four. Thus, we assume a relation of strict inequality between αi2

and α1i1 , as well as βi2 with β1i1 .

For each of the cases 4a-i, 4a-ii, and 4a-iii, it can be easily seen that all

the possible pure equilibria in the respective cases have equal total welfare.

Consequently, the PoA is only as bad as the PoS. Thus, the largest possible

value is achieved for case 4a-i, which is at most
maxtα11`β1,α1`β11u

α11`β
1
1

.

For Case 4a-iv, the pure Nash equilibria of the game are p1, jq, @j P B2

and pi, 1q, @i P B2. It is easy to check that one of them gives the maximum

social welfare, hence PoA for this case is nothing but the ratio of the larger

of the two to the smaller, i.e., maxt
α1`βj2
αi2`β1

,
αi2`β1
α1`βj2

u. The first of the two terms

is at most α1`β1
α11`β1

. The other term is bounded similarly, and so, the PoA is at

most maxtα1`β1
α11`β1

, α1`β1
α1`β11

u.

For Case 4b, if pi1, j1q is the only equilibrium, the PoA is simply 1, since this

equilibrium gives the maximum social welfare of αi1 ` βj1 . Although, pj1, i1q

13



may also be an equilibrium under the constraints αi1 ą αj1 ě tα
1
ix , αjyu, @x ě

1, y ě 2, and β1 ą βi1 ě tβ
1
ix , βjyu, @x ě 1, y ě 2. This other equilibrium has

a social welfare of αj1 ` βi1 “ αi2 ` βj2 . Hence, the PoA is
αi1`βj1
αi2`βj2

ď
αi1`βj1
α1i1
`β1j1

.

Now, this can be compared to all the previous cases, and seen to be worse

than all of them. Finally, we can expand it as,

αi1 ` βj1
α1i1 ` β

1
j1

“
~ρ1 ¨ ~v1 ` ~ρ2 ¨ ~v2

p~ρ1 d r d ~γq ¨ ~v1 ` p~ρ2 d r d ~γq ¨ ~v2

ď
1

min
1ďjďM

rjγj
“ max

1ďjďM

ρ1j ` ρ2j
pρ1j ` ρ2j ´ ρ1jρ2jqγj

.

Again, the inequality follows from Lemma 1. This is the bound we get for

pure PoA.

Further, we show that the PoA at any mixed equilibrium, is no worse than

the bound above for Case 4b. Consider a mixed Nash Equilibrium where

player 1 is randomizing from a set of pure strategies S1, with an expected

payoff P . If i1 P S1, then P equals the expected payoff from playing i1. If

i1 R S1, P is at least the expected payoff from playing i1. Now, the expected

payoff from playing i1 is at least the worst payoff from playing i1, i.e. α1i1 .

Thus at any mixed equilibrium, player 1 has a payoff of at least α1i1 . Similarly

player 2 has a payoff of at least β1j1 . Since the maximum social welfare is at

most αi1 ` βj1 , PoA is at most
αi1`βi1
α1i1
`β1j1

, giving us the same bound as above,

thus proving the required result.

Next, we obtain a stronger result, for a special case.

Corollary 2. When the two players have identical sensors and the fusion is

absent, the PoA of the 2-player single-step game is at most at most 2.

Proof. Follows from Theorem 3 by setting ~ρ1 “ ~ρ2 and ~γ “ p1, 1qT .

3.3 Distinct Payoffs and Mixed Equilibria

If multiple strategies can have the same payoffs for a player, the players would

be indifferent among those strategies and this can give rise to a large num-

ber of mixed Nash equilibria. In this section, we show that if we impose an

additional constraint of the information values in all the cells being distinct,

we get interesting results regarding the set of mixed equilibria.
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First, we can truncate the payoff matrix, by observing that all but one strat-

egy corresponding to cells in the unshared space, are strictly dominated by

one of those strategies. Hence, all such strategies can be removed from the

matrix. Wlog, for both the players, let strategy k ` 1 to be this one dom-

inating strategy among those corresponding to the unshared space. When

any player has a dominant strategy, that strategy would be the best response

to any pure or mixed strategy of the opponent. Thus, in such a case, there

cannot be any mixed Nash equilibria. In other cases, there may be many; we

will first show that this number has a small bound.

Theorem 4. The number of mixed equilibria is Opkq.

Proof. Let the α-values of the shared cells in the decreasing order be αi1 ,

αi2 , . . ., αik and similarly, the β-values of the shared cells in the decreasing

order be βj1 , βj2 , . . . , βjk . Consider a mixed Nash equilibrium where, let S1,

S2 denote the sets of pure strategies mixed by the 2 players respectively.

Different pairs of S1, S2 correspond to different equilibria. We first establish

the following lemma:

Lemma 2. @x, y, where, 1 ď x ă y ď k, iy P S1 ñ ix P S2, and jy P S2 ñ

jx P S1

Proof. We have, αix ą αiy . Thus, if player 2 plays ix with 0 probability,

then ix is a strictly better response than iy to any mix of strategies in S2.

Consequently, player 1 will not play iy in its mixed strategy. Thus, iy P S1 ñ

ix P S2. The other implication in the lemma follows similarly.

Now, let il and jm be the strategies in the shared space having the largest

indices in S1, S2 respectively. Hence, S1 Ď ti1, . . . , ilu Y tk ` 1u and S2 Ď

tj1, . . . , jmu Y tk ` 1u. From the lemma above, it follows that il P S1 ñ

ix P S2 @x ă l. Thus, such an equilibrium exists, only if ti1, . . . , il´1u Ď

tj1, . . . , jmu. Similarly, we must have tj1, . . . , jm´1u Ď ti1, . . . , ilu. Thus,

l ´ 1 ď |S2| ď m and m´ 1 ď |S1| ď l. Hence, |l ´m| ď 1. Accordingly, we

have the following cases:

Case 1: l “ m

S1 can have at most l (“ m) strategies, m ´ 1 of which get fixed to be

j1, . . . , jm´1 as shown above. S1 can be formed by including or excluding the
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remaining mth strategy, as well as, by including or excluding k ` 1 i.e. in at

most 4 ways. Similarly S2 can have at most 4 different values. Thus, we can

have at most 16 different pairs (S1, S2).

Case 2: l “ m` 1

We must have ti1, . . . , il´1u “ tj1, . . . , jmu, and by a similar analysis as the

previous case, it is easy to see that S2 can have only two different values

based on whether k` 1 is included or not. S1, on the other hand, has m´ 1

strategies fixed among ti1, . . . , ilu, and thereby, it can have 8 different values

depending on whether each of the remaining two shared-cell strategies as well

as k ` 1 are included or not, and hence, we can have at most 16 different

pairs (S1, S2).

Case 3: m “ l ` 1

Similar to the previous case, there can be at most 16 different pairs (S1, S2).

As l,m can take values from 2 through k, there are roughly 3k pairs (l,m)

such that |l ´m| ď 1. Since the number of different pairs (S1, S2) for each

possible pl,mq is bounded by a constant as shown, the number of different

mixed equilibria is Opkq, thus proving the theorem.

Next, we show that all the mixed equilibria are worse outcomes in terms

of Pareto-dominance as compared to the pure equilibria.

Theorem 5. All the mixed equilibria are Pareto-dominated by the pure equi-

libria.

Proof. As above, consider a mixed Nash equilibrium where, S1, S2 denote

the sets of pure strategies mixed by the two players respectively. In order

for (S1, S2) to correspond to a mixed NE, S1 and S2 must have at least two

strategies each. Hence Dix P S1 s.t. x ě 2. We know that a mix of strategies

in S1 is a best-response iff each pure strategy in S1 is. Hence, the expected

payoff from playing this mixed strategy is same as the expected payoff from

playing ix which is obviously bounded by the best payoff possible by playing

ix which is αix ď αi2 . It is easy to see that player 1’s payoff in all the pure

equilibria is at least αi2 . Similarly, player 2’s payoff from playing the mixed

strategy must be worse than βi2 which is the least payoff of player 2 across all
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the pure equilibria. Thus, playing a mixed strategy gives mutually strictly

worse payoffs. Hence, the mixed equilibria are all Pareto-dominated by the

pure equilibria.

This result implies that, with the assumption that both the agents are self-

interested and aware of the opponent being self-interested, we can conclude

that they would not want to play strategies corresponding to any mixed Nash

equilibrium.
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CHAPTER 4

SIGNIFICANT INFORMATION FUSION

The setting of significant fusion is one where sharing a cell gives better pay-

offs than visiting it individually. As mentioned in Section 2, we have assumed

that the fusion process has the properties that, if the fusion gives better pay-

offs, it does so for both the players, in all the cells, and the payoff values

follow the same order as the unshared individual payoff values.

4.1 Existence and Computation of Pure Nash

Equlibrium

We first obtain that the same results hold for the existence and computation

of pure equilibria, as in the moderate fusion case.

Theorem 6. There always exists a pure Nash equilibrium in a 2-player

single-step game with significant fusion and it can be computed in Opnq time

where n is the number of strategies for each player.

Proof. Let i1 and j1 be the respective strategies which correspond to cells

containing the largest amount of information. Let P “ ti : α1i ě αi1u and

Q “ tj : β1j ě βj1u. Note that i ě k ñ i R P and i R Q since α1i and β1i

are not defined for i ě k. One can see that, if P X Q is non-empty, then

@x P P X Q, we have α1x ě αi1 and β1x ě βj1 , and hence, px, xq is a pure

equilibrium.

Case 1: cell1pi1q “ cell2pj1q : In this case , P XQ is necessarily non-empty

since i1p“ j1q must be in P X Q. As pointed above, @x P P X Q, px, xq is

a pure equilibrium. It can be easily shown that there exist no other pure

equilibria.
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Case 2: cell1pi1q ‰ cell2pj1q : In this case, P XQ may or may not be empty.

If i1 P Q or j1 P P , P XQ is necessarily non-empty, and again, @x P P XQ,

px, xq is a pure equilibrium, and these are the only pure equilibria. On the

other hand, if i1 R Q and j1 R P , pi1, j1q is a Nash equilibrium. Additionally,

P X Q may still be non-empty, and if it is, @x P P X Q, px, xq is a pure

equilibrium.

Thus, even in the case of significant fusion, there always exists a pure NE.

Further, it is straight-forward to see that computing i1, j1, and subsequently,

computing P and Q can be done in Opnq time and hence this is no worse

than the case with no fusion.

Next, we establish bounds on the PoS and the PoA in this setting.

4.2 Social Welfare

As done for the moderate fusion case, we first establish an upper bound on

the pure PoS.

Theorem 7. The pure PoS of the 2-player single-step game with significant

fusion, is at most

1` max
1ďjďM

maxtρ1j, ρ2juppρ1j ` ρ2j ´ ρ1jρ2jqγj ´ pρ1j ` ρ2jqq

pρ1j ` ρ2jq2
.

Proof. We prove this by analyzing the various cases formulated in the proof

of Theorem 6.

For Case 1, one can see that the strategy px, xq for any x P P X Q gives

mutually better payoffs than any px, yq for x ‰ y. Thus, the maximum social

welfare is achieved for one of these, all of which are equilibria. Hence, the

PoS is simply 1.

In Case 2, if P X Q is non-empty, again, the maximum social welfare for

is achieved at px, xq for some x P P X Q, which is an equilibrium. Hence,

the PoS is simply 1. However, P XQ may be empty, and pi1, j1q maybe the

only equilibrium. In that case, better social welfare maybe achieved at some
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px, xq in P YQ. Thus, the PoS is at most α1x`β
1
x

αi1`βj1
. We can then write,

α1x ` β
1
x

αi1 ` βj1
ď

maxtα1i1 ` βj1 , αi1 ` β
1
j1
u

αi1 ` βj1
“ 1` max

iPt1,2u

p~ρi d ~r d ~γ ´ ~ρiq ¨ ~v

p~ρ1 ` ~ρ2q ¨ ~v

“ 1` max
1ďjďM

maxtρ1j, ρ2juppρ1j ` ρ2j ´ ρ1jρ2jqγj ´ pρ1j ` ρ2jqq

pρ1j ` ρ2jq2
.

This gives us the desired bound.

Next, we similarly obtain an upper bound on PoA.

Theorem 8. The PoA of the 2-player single-step game with significant fu-

sion, is at most

p1´
ρ1jρ2j
ρ1j ` ρ2j

qγj.

Proof. We first prove the bound on pure PoA by analyzing the various cases

formulated in the proof of Theorem 6.

For Case 1, px, xq for every x P PXQ is an equilibrium. As shown earlier, the

maximum social welfare is achieved for one of these. Hence, the minimum of

these leads to the worst PoA, that is,

max
xPPXQ

α1x ` β
1
x

min
xPPXQ

α1x ` β
1
x

ď
α1i1 ` β

1
j1

αi1 ` βj1
ď max

1ďjďM
p1´

ρ1jρ2j
ρ1j ` ρ2j

qγj.

In Case 2, if P X Q is non-empty, again, the maximum social welfare is

achieved at px, xq for some x P P XQ. Further, it is easy to see that any such

equilibrium gives a social welfare of α1x ` β1x, which is better than αi1 ` βj1

due to the fact that x P P X Q. This makes pi1, j1q the worst equilib-

rium. Hence, the PoA is α1x`β
1
x

αi1`βj1
ď

α1i1
`β1j1

αi1`βj1
, thus giving the same bound as

above. On the other hand, if P X Q is empty, then pi1, j1q is the only equi-

librium. Consequently, the PoA is only as bad as the PoS, which is at most
maxtα1i1

`βj1 ,αi1`β
1
j1
u

αi1`βj1
as analyzed in proving Theorem 7. Again it can be easily

seen that this is no worse than
α1i1
`β1j1

αi1`βj1
, which is the bound for the previous

cases.

Finally, we show that the same bound applies to the mixed equilibria. The

payoff of player 1 must be at least the payoff it would get by switching to

pure strategy i1. The minimum value of the latter is simply αi1 . Similarly,

the payoff of player 2 from any mixed strategy, must be at least βj1 . Thus,
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the worst social welfare at any mixed equilibrium is αi1 ` βj1 , whereas the

maximum possible is nothing but α1i1 ` β1j1 , thus giving us the same bound

of
α1i1
`β1j1

αi1`βj1
as the pure PoA.

21



CHAPTER 5

MULTI-PLAYER GAME: CORRELATED
SETTING

In this section, we consider a more general scenario consisting of p players

(UAVs), albeit with the constraint of their payoffs being correlated. Formally,

we have a set of players P “ t1, . . . , pu. Player i has a sensor effectiveness

ρi. The region of surveillance consists of a set of cells C “ tc1, . . . , cku.

If a set of players S choose a certain cell c P C having information vpcq,

the aggregate payoff is given by γ|S|

ˆ

1´
ś

iPS

p1´ ρiq

˙

vpcq. Further, each

player i P S, gets an individual share of the payoff proportional to its ρi,

i.e. ρi
ř

iPS
ρi
γ|S|

ˆ

1´
ś

iPS

p1´ ρiq

˙

v. This can be written in a general form of

ρiMcpSq, where Mc for each cell c, is a function Mc : 2P Ñ R. It is easy to

see, that for our game, McpSq “ γ|S|

ˆ

1´
ś

iPS
p1´ρiq

˙

ř

iPS
ρi

vpcq. For our next result,

however, we do not need this explicit definition of Mc and we will show that

our result holds true for a certain class of functions in general.

5.1 Existence of Pure Nash Equilibrium

First, we state the Finite Improvement Property (FIP) [24]: Any sequence

of strategy-tuples in which each strategy-tuple differs from the preceding

one in only one coordinate (such a sequence is called a path), and the unique

deviator in each step strictly increases the payoff it receives (an improvement

path), is finite. Obviously, any maximal improvement path, is terminated by

an equilibrium.

Next, we state a natural monotonicity definition for functions defined on sets:

Definition 3. Let A be a set. A function f : 2A Ñ R is monotonically

non-decreasing, if @A1, A2 Ď A,A1 Ď A2 ñ fpA1q ď fpA2q. Similarly, f is

monotonically non-increasing, if A1 Ď A2 ñ fpA1q ě fpA2q.
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Next, we prove the existence of a pure equilibrium by showing that the

game admits the finite improvement property.

Theorem 9. If the function tMc|c P Cu are all monotonically non-increasing,

or all monotonically non-decreasing functions, then the game admits the Fi-

nite Improvement Property.

Proof. To prove this, we extend the argument used in [17] — which is used

there for proving the FIP for symmetric congestion games. Suppose, for the

sake of proving contradiction, that there is an infinite improvement path.

Since there are only finitely many joint strategies, this essentially means

that there is an improvement cycle, say, of size l, given by σ1, σ2, . . . , σl, σ1,

where, σj is the joint-strategy in the jth step. Further, let Sjpcq denote the

set of players going to cell c in the jth step. Let C# Ď C denote the set

tc | Di, j, Sipcq ‰ Sjpcqu, i.e., those cells which are not occupied by the same

set of players throughout the whole improvement cycle. First, we prove for

the case where tMc|c P Cu are all monotonically non-increasing.

Wlog, suppose the improvement cycle and the cells, are enumerated such

that min
1ďjďl,cPC#

McpSjpcqq “ Mc1pSlpc1qq. Now, since c1 P C
#, Dj such that

Sjpc1q ‰ Slpc1q. Consider largest such j, i.e. Sj`1pc1q “ Slpc1q. Since, each

Mc is monotonically non-increasing, and since the minimum value of Mc1 is

attained for Slpc1q, thus, also for Sj`1pc1q, it follows that Sjpc1q Ă Sj`1pc1q,

Thus, the unique deviator between σj and σj`1, wlog say player 1, must be

changing his strategy to c1 from some other cell ci, say. Thus, ci P C
#, and

further, for this deviation to be an improvement for Player 1, it must be that

ρ1McipSjpciqq ă ρ1Mc1pSj`1pc1qq, and hence, McipSjpciqq ă Mc1pSj`1pc1qq “

Mc1pSlpc1qq. This contradicts the assumption that, min
1ďjďl,cPC#

McpSjpcqq “

Mc1pSlpc1qq, and consequently, there cannot exist an improvement cycle, thus

proving the finite improvement property.

The case where tMc|c P Cu are all monotonically non-decreasing, can be

shown similarly. Wlog, suppose the improvement cycle and the cells, are enu-

merated such that max
1ďjďl,cPC#

McpSjpcqq “ Mc1pS1pc1qq. Now, since c1 P C
#,

Dj such that Sjpc1q ‰ S1pc1q. Consider the smallest such j, i.e. Sj´1pc1q “

S1pc1q. Since, every Mc is monotonically non-decreasing, and since the min-

imum value of Mc1 is attained for S1pc1q, thus, also for Sj´1pc1q, it follows

that Sjpc1q Ă Sj´1pc1q, Thus, the unique deviator between σj´1 and σj,
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wlog, player 1, must be changing his strategy to c1 from some other cell,

say ci. Thus, ci P C#, and further, for this deviation to be an improve-

ment for player 1, it must be that ρ1McipSjpciqq ą ρ1Mc1pSj´1pc1qq, and

hence, McipSjpciqq ą Mc1pSj´1pc1qq “ Mc1pS1pc1qq. This contradicts the as-

sumption that, max
1ďjďl,cPC#

McpSjpcqq “ Mc1pS1pc1qq, and consequently, there

cannot exist an improvement cycle, thus proving the Finite improvement

property.

In our UAV game, it is intuitive to see that if there is no fusion, each Mc is

a non-increasing function since sharing a cell with an additional player should

decrease payoff — a rigorous proof is given by Lemma 11 in the appendix. In

general, whenever the fusion parameters γl are small enough so that Mc are

all non-increasing functions, which is the case of Moderate Fusion. On the

other hand, when γl are large enough so that every Mc is a non-decreasing

function, it is the case of Significant Fusion. The theorem above, implies

that, in the cases of moderate fusion and significant fusion, there always

exists a pure Nash equilibrium.

Next, we give an algorithm to efficiently compute a pure equilibrium, in

the case of Significant Fusion.

5.2 Computing a Pure Nash Equilibrium for

Significant Fusion

The case of significant fusion is when, more the number of UAVs in the same

cell, larger is the individual payoff for each UAV there. That is, @S Ă P, p P

P zS, i P S, c P C, we have ρiMcpSq ď ρiMcpS Y tpuq. We use a function

A : C Ñ P to denote the set of players which can access a given cell in one

step.

The algorithm consists of a number of iterations. Starting with the set

of all players, and the set of all cells, in each iteration, some players are

assigned a particular cell as their strategy to play and the set of remaining

players and the set of remaining cells is carried forward to the next iteration.

In each iteration i, for each cell c in Ci, we compute McpApcq X P iq, where

P i is the set of remaining players in that iteration, and Ci is the set of

remaining cells. Then, we choose the cell cmaxi for which the value thus

24



computed is maximum, and assign this cell as the strategy for all the players

in Apcmaxi qXP i. Subsequently, we update the set of remaining players P i`1 “

P izpApcmaxi q X P iq and Ci`1 “ Ciztcmaxi u and move on to the next iteration.

Algorithm 1 Algorithm to compute a pure NE

1: P 1 Ð P , C1 Ð C, iÐ 1
2: while P i ‰ φ do Ź Terminate if no players remaining
3: cmaxi Ð Null, maxScoreÐ ´8

4: for c P Ci do
5: Qipcq “ Apcq X P i

6: scoreÐMcpQ
ipcqq

7: if score ą maxScore then
8: maxScoreÐ score, cmaxi Ð c
9: end if

10: end for Ź cmaxi is computed.
11: for p P Qipcmaxi q do
12: Assign cell cmaxi to p
13: end for
14: P i`1 “ P izQipcmaxi q

15: Ci`1 “ Ciztcmaxi u

16: iÐ i` 1
17: end while

Proof of Correctness :

Wlog, let the cells be enumerated such that @i, cmaxi “ ci. We first note that

i ă j ô P j Ă P i ñ Qjpcjq Ď Qipcjq. Now, Suppose player 1 is assigned the

cell ci by the algorithm. Hence, 1 R Apcjq, @j ă i, since otherwise, it would

have been assigned a cell before the ith iteration. Thus, the only cells player

1 could possibly move to, are tcjująi. The payoff of player 1 before devia-

tion, by playing ci, is ρ1McipQ
ipciqq, which is at least ρ1McjpQ

ipcjqq, since

cmaxi “ ci. Further, @j ą i, 1 P Apcjq ñ 1 P Qipcjq. This further implies that

since Qjpcjq Ď Qipcjq, it must also be that, pQjpcjq Y t1uq Ď Qipcjq, when-

ever 1 can access cj. Hence, by the monotonically non-decreasing behavior

of each Mc, Player 1’s payoff after deviation to cj, i.e., ρ1McjpQ
jpcjq Y 1q, is

at most ρ1McjpQ
ipcjqq, which is at most its payoff before deviation. Hence,

it has no incentive to switch, and the same applies to all the players. Hence,

the algorithm does produce a Nash equilibrium. It is easy to check that the
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algorithm takes time Op|C| ¨ |P |q.

Next, we establish bounds on the Price of Stability and Price of Anarchy,

when all players are identical.

5.3 PoS and PoA for Homogeneous Fleet

Having a homogeneous fleet refers to all the UAVs having identical sensor

effectiveness ρ. In such a case, the payoff of a player simply depends on the

number of players it shares a cell with, and not the actual subset of players.

We denote the individual payoff of a player when n players share a cell c, by

vnpcq “ vpcq1´p1´ρq
n

n
. Our result is as follows:

Theorem 10. The Price of Stability and the Price of Anarchy, in singleton

congestion games with payoffs defined as above, is at most 2´ 1{p.

Proof. Let σeq be an equilibrium and let σwf be a joint strategy which gives

the maximum social welfare. Suppose, starting with σeq, σwf is achieved

by a series of deviations, where each deviation refers to a player switching

from a cell ci to a cell cj. Since the players are identical, only the cells

involved in a deviation matter, and not the player who deviates. Thus, these

deviations can be represented by a directed graph over the cells, where each

cell is a vertex and a deviation from one cell to another is represented as a

directed edge. Note that since only the number of players in a cell matters in

computing any payoffs, any path in the graph of length more than 1, between

nodes u and v say, can simply be replaced by a single edge pu, vq, since both

of them equivalently result in the number of players at cell u decreasing by

1, the number of players at cell v increasing by 1, and any other cells on the

path being unaffected. Thus, any graph G can be reduced to G˚, one which

doesn’t have any paths of length more than 1, and similarly no cycles. Thus,

the reduced graph will only have sources, sinks and isolated vertices. Figure

1 illustrates this with an example. Vertices such as c3 with a larger in-degree

than out-degree in G become sinks in G˚. Similarly, vertices like c1 having a

larger out-degree in G become sources in G˚, and the remaining ones like c7

where the two degrees are equal in G, become isolated in G˚. Now, consider

the group of players who are in a cell c at equilibrium. We consider three

26



Figure 1: Reduction of a deviation graph

cases for c:

1. c is an isolated vertex in G˚: It is easy to see that the payoff of every

player here remains the same.

2. c is a sink in G˚: Thus, there are at least as many players in c at σwf ,

as there were at the equilibrium σeq. Hence, the payoff of these players is

bounded above by their payoff at the equilibrium.

3. c is a source in G˚: Consider a player i who is in cell c at σeq, and is in

c1 at σwf . By the nature of G˚, c1 must be a sink in G˚. Hence, there are at

least as many players in c1 at σwf , as there were at σeq. Thus, if player i were

to be the unique deviator at equilibrium from c to c1, it would have gotten at

least as much a payoff as it gets by playing c1 at σwf . Further, since σeq is an

equilibrium, the payoff of player i at σeq is at least as much as it would get

by deviating to any other cell, in particular c1, and in turn, greater than its

payoff at σwf . Now, suppose there were x players in cell c at σeq, of which y

are not in c at σwf , while x´ y players continue to be in c at σwf . Then, the

payoffs of the y deviating players, at σwf is at most as much as their payoff

at σeq, i.e. vpcq1´p1´ρq
x

x
. The payoff of any of the remaining x ´ y players,

improves from vpcq1´p1´ρq
x

x
to vpcq1´p1´ρq

x´y

x´y
. Hence, if all the players leave,

i.e., y “ x, the total welfare of this group of x players cannot increase. On

the other hand, if y ă x, the total social welfare for this group of players,

can increase by a factor of at most
p1´p1´ρqx´yq`yp1´p1´ρqxq{x

1´p1´ρqx
. It can be easily

shown that this expression is a monotonically increasing function of ρ for

ρ P p0, 1s and has the maximum value of 1 ` y{x when ρ “ 1. Further, it is
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easy to see that the maximum value of 1 ` y{x, for y ă x ď p is 2 ´ 1{p,

which is achieved for x “ p, y “ p´ 1. Thus, the maximum possible gain in

the total welfare of this group is when all but one players leave the cell.

Thus, for a group of players which are in a particular cell at equilibrium,

the sum of their payoffs either remains the same, decreases, or increases by

a factor of at most 2 ´ 1{p as analyzed for the three cases above. Hence,

the total social welfare of all the players, which is the sum of welfares of

all such groups, can increase by a factor of at most as much as any of the

individual groups, which is nothing but 2´1{p, giving us the required bound.

(Note that the analysis above holds for any equilibrium, and thus, the worst

equilibrium in particular, giving the bound on PoA.)

Further, this bound can be shown to be tight for the Price of Stability as

well, with a simple example. Let there be p players with ρ “ 1 for each

player. Let there be p cells with every cell being a valid strategy for every

player. Let the information available in various cells be as follows : vpc1q “

p, vpcq “ 1´ ε @c ‰ c1; ε ą 0. It is easy to see that c1 is a dominant strategy

for every player, giving a unique equilibrium pc1, . . . , c1q. The total social

welfare here is p. It is easy to see that the social welfare is maximum for the

joint strategy pc1, c2, . . . , cpq which equals p`pp´ 1qp1´ εq. Hence the Price

of stability is 1` p1´ 1{pqp1´ εq which approaches 2´ 1{p as εÑ 0.
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CHAPTER 6

MULTI-STEP GAME

We model the problem of UAV surveillance as a game between the UAVs.

We formulate two different games having a vital distinction, in the following

setting. P is a finite set of p players, each corresponding to a UAV. The

geographical region of surveillance is represented as a directed graph, where

C, the set of vertices - more commonly referred to as cells - represent various

small sub-regions, and the directed edges of the graph capture the connectiv-

ity between these cells. Moving along any edge and surveilling the subsequent

cell altogether corresponds to one time-step. The number of time-steps for

which the game lasts is denoted by l. The game is for each player to move

in this network for l time-steps, while capturing the information from the

cells visited along the route, with the goal of maximizing this information

captured. Thus, the set of strategies for player i, denoted by Si, is nothing

but a set of walks of length l starting from player i’s initial cell. The set of

‘joint strategy profiles’, or simply ‘outcomes’, is denoted by S “
Ś

iPP
Si. Each

cell has an associated information value denoted by a function v : C Ñ R`.

Each player i P P has a sensor effectiveness denoted by ρi P r0, 1s, which de-

termines how much information the player can collect from what is available

in the cell it visits. Finally, the payoff of a player depends on the outcome,

and is denoted by πi : S Ñ R` for every player i. The net payoff of a player

is the sum of the payoffs it gets by visiting the cells on its walk. With a

slight abuse of notation, we denote player i’s payoff from cell c P C, when

the outcome is s P S, by πips, cq, so that πipsq “
ř

cPC
πips, cq. We naturally

define πips, cq to be zero if i does not visit c at all when playing si. However,

when it does visit the cell (possibly more than once), the value πips, cq can

be defined in two different ways depending on the logistics of the real-world

scenario, giving rise to two different games as follows:
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With temporal aspect: In this case, any player gets an instant payoff

after visiting a cell (in a manner described below), and these payoffs get

accumulated constituting its net payoff. Consider a cell c initially having a

value vpcq. The first player to visit c, say player 1, gets a payoff ρ1vpcq, and we

say that the value left in c is p1´ρ1qvpcq. Similarly, each player i, on visiting

a cell c, gets a payoff that is ρi fraction of the value left in c at the time of

its visit, leaving behind p1 ´ ρiq fraction of that value. Thus, if a sequence

of k players say px1, x2, . . . , xkq visit c one after the other, then the ith visitor

xi gets a payoff of ρxi

˜

ś

jăi

p1´ ρxjq

¸

vpcq corresponding to that visit; if the

same player is also the jth visitor for some j ‰ i, it will get a payoff for each

such visit defined similarly. The combined payoff of all these players, from

visiting c is
˜

1´
ź

jďk

p1´ ρxjq

¸

vpcq. (1)

Note that this combined payoff is independent of the order of the players.

Thereby, if tx1, x2, . . . , xku is a set of players visiting c simultaneously, that

is, in the same time-step, then we say that they altogether capture the same

amount of information as they would if they visit it one after the other in

some order, and further, we define the payoff of player xi as the share of this

combined payoff proportional to ρxi . Thus, this is equal to

ρxi
ř

jďk

ρxj

˜

1´
ź

jďk

p1´ ρxjq

¸

vpcq. (2)

Thus, the payoff of a player from a visit to a cell depends on which players

visit the cell before it and which players visit simultaneously.

Without temporal aspect: In this case, the payoff from visiting a cell is

determined at the end of the game, regardless of the order in which the players

visit the cell. Since the order is immaterial, we can represent the visitors of a

cell c as a multiset, say P 1, having support in P and an associated multiplicity

function denoted by mP 1p¨q. In case of no ambiguity, we drop the subscript

and denote the multiplicity function as simply mp¨q. The payoff of a visitor

from a single visit is precisely as in (2), and thus with possibly multiple visits,
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the payoff of player i P P 1 is given by

ρi mpiq
ř

jPP 1
ρj mpjq

˜

1´
ź

jPP 1
p1´ ρjq

mpjq

¸

vpcq. (3)

Next, we establish results for both these games on existence of pure equilibria,

bound on PoA etc. For the latter, we establish the smoothness of these games,

which is defined as follows [25]:

Definition 4. (λ, µ)–smoothness: A payoff-maximization game — one

where each player has a payoff function πipsq that it strives to maximize —

is called (λ, µ)–smooth if

@s, s˚ P S,
ÿ

iPP
πips˚i , s´iq ě λ

ÿ

iPP
πips˚q ´ µ

ÿ

iPP
πipsq. (4)

We first analyze the game with temporal aspect.

6.1 Multi-step Game with Temporal Aspect

In this section, we analyze the game with temporal aspect. As discussed

before, the payoff of a player from visiting a cell is not merely dependent

on which players visit the cell, but also on the order in which they visit

the cell. The combined payoff, however, when a sequence of players visit

a cell c (some of them possibly simultaneously), does not depend on their

order, and can be easily computed as in (2). Let A, B be multisets with

support in P , with mA, mB the respective multiplicity functions, and for a

cell c, let πABpcq denote the combined payoff which the visitors in B would

obtain by visiting cell c (as many times as the respective multiplicities in

B), when preceded by all (and only) the visitors as represented by A. Note

that the multiset-representation is sufficient for this to be well-defined, since

the order of visitors in A among themselves, and similarly that of visitors

in B among themselves, does not matter when computing the said combined
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payoff. Indeed, the exact expression can be easily obtained to be

πABpcq “

˜

1´
ź

jPB

p1´ ρjq
mBpjq

¸

ź

jPA

p1´ ρjq
mApjqvpcq. (5)

Here, the entity
ś

jPA

p1 ´ ρjq
mApjq denotes the fraction of vpcq left in c after

visitors in A have visited, and the fraction of it collected by B is computed

similarly.

With this notation, the following observations are immediate:

Lemma 3. Let A,B,D be multisets with support in P. Then, πABpcq `

πAZBD pcq “ πABZDpcq.

Proof. Note that BZD is the multiset sum of B and D and thus represents

the combined visitors in B as well as D. Thus, the result follows from the

definition of πABpcq, as both the sides equal the combined payoff of visitors in

B and D when they are preceded by visitors in A.

Lemma 4. Let A,B,B1 be multisets with support in P s.t. B1 Ď B. Then,

πAB1pcq ď πABpcq.

Proof. Applying Lemma 3 onA,B1, BzB1 respectively, we get, πABpcq´π
A
B1pcq “

πAZB
1

BzB1 pcq ě 0. Rearranging gives the required result.

Lemma 5. Let A,A1, B be multisets with support in P s.t. A1 Ď A. Then,

πABpcq ď πA
1

B pcq.

Proof. Using (5), it is easy to see that πABpcq{π
A1

B pcq “
ś

jPAzA1
p1´ρjq

mApjq´mA1 pjq ď

1. Rearranging gives the required result.

Next, suppose c is a cell, and A is a multiset with support in P . For each

player j, let S 1j Ď Sj denote the subset of strategies of player j in which j

visits c exactly mApjq times. Then, S 1 “
Ś

j

S 1j is the set of outcomes for

which the multiset A precisely captures which players visit cell c and how

often. In case of such an outcome, we refer to A as the visitor set for c. Also,

for any multiset A and a player i P A, let A|i denote the multiset mApiqbtiu,

i.e. A|i only contains i — with the same multiplicity as A — and let A|´i

denote the multiset AzAi. We now show another important result.
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Lemma 6. Let A be any multiset with support in P, and let i P A. Let c be

any cell and let S 1 Ď S be the set of outcomes for which A is the visitor set

for c. Then,

@s P S 1, πips, cq ě π
A|´i
A|i

pcq.

In other words, keeping the visitor set of a cell fixed, the payoff of a player

from all its visits to the cell is no worse than the payoff it would get when all

its visits are preceded by all the other visitors in the visitor set. While the

result appears very intuitive, a rigorous proof can be found in the appendix.

Using these, we now show that this game is (1,1)–smooth. Let s and s˚

be any two outcomes. For every player i, let qi denote the outcome ps˚i , s´iq.

For any cell c, let multisets Ac, and A˚c denote the visitor sets for cell c when

the outcomes are s, s˚ respectively. Note that when the outcome is qi, the

visitor set of cell c can be written as A˚c |i Z Ac|´i. With this notation, we

can write,

ÿ

iPP
πipsq “

ÿ

iPP

ÿ

cPC
πips, cq

“
ÿ

cPC

ÿ

iPP
πips, cq

“
ÿ

cPC
πHAcpcq. (6)

similarly, we have,

ÿ

iPP
πips˚q “

ÿ

cPC
πHA˚c pcq. (7)

Finally, for the outcomes qi, we can write,

ÿ

iPP
πipqiq “

ÿ

iPP

ÿ

cPC
πipqi, cq

“
ÿ

cPC

ÿ

iPP
πipqi, cq. (8)

Now, if player i does not visit cell c when playing strategy s˚i , equivalently,

if it is not contained in the visitor set A˚c , its payoff from visiting c is simply
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zero. Thus, (8) becomes,

ÿ

iPP
πipqiq “

ÿ

cPC

ÿ

iPA˚c

πipqi, cq

ě
ÿ

cPC

ÿ

iPA˚c

πAc|´iA˚c |i
pcq. (9)

Here, (9) follows from Lemma 6. Finally, adding (6) and (9) and subtracting

(7) gives,

ÿ

iPP
πipqiq `

ÿ

iPP
πipsq ´

ÿ

iPP
πips˚q ě

ÿ

cPC

¨

˝πHAcpcq `
ÿ

iPA˚c

πAc|´iA˚c |i
pcq ´ πHA˚c pcq

˛

‚.

(10)

Now, we show that each term of the summation on the R.H.S of (10) is

always non-negative, via the following lemma:

Lemma 7. For a cell c P C, let A and A˚ be the visitor sets of c for outcomes

s, s˚ P S respectively. Then,

πHA pcq `
ÿ

iPA˚

πA|´iA˚|i
pcq ě πHA˚pcq. (11)

Proof. Included in the Appendix.

Thus, it follows from (11) and (10) that,

ÿ

iPP
πipqiq `

ÿ

iPP
πipsq ´

ÿ

iPP
πips˚q ě 0

ÿ

iPP
πipqiq `

ÿ

iPP
πipsq ě

ÿ

iPP
πips˚q.

Thus, by Definition 4, we have the desired result:

Theorem 11. The multi-step game with temporal aspect is p1, 1q–smooth.

As shown in [25], a pλ, µq–smooth payoff-maximization game has a price

of anarchy at most 1`µ
λ

, and this bound applies to the PoA with respect to

all equilibrium concepts(mixed, correlated and not just pure. Thus,

Corollary 3. The multi-step game with temporal aspect has a price of anar-

chy at most 2.
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Thus, the game has a constant PoA bound independent of the number

of players, number of time-steps. We now show with an example, that this

bound is tight.

Figure 2: A 2-player game with temporal aspect. The only equilibrium has
a social welfare of 1, the maximum possible being 2-ε.

Consider the game as shown in Figure 2. Let the number of time-steps

be lpě 2q. The graph is a simple path as shown with cells ci and ci`1 being

neighbors of each other for each i. Initially, the information in all the cells

is 0, except for cl and c2l - these 2 cells have an information of 1 and 1 ´ ε

respectively, where ε is a small positive constant. There are two players with

sensor effectiveness ρ1 “ ρ2 “ 1, initially in cells c0 and c2l´1 respectively.

Now, player 2 cannot grab information from both cl and c2l within l time-

steps. Further, it follows that the path c2l´1 Ñ c2l´2 Ñ . . . Ñ cl Ñ cl´1 is

a dominant strategy for player 2, in which case it gets a payoff of 1 and in

response, player 1 gets 0 from any strategy. Clearly, this is a pure equilibrium,

leading to a social welfare of 1. On the other hand, if player 2 captures

information from (only) c2l allowing player 1 to capture from cl which it can

reach in the lth time-step, then the social welfare can reach its maximum

value of 2´ ε. Since there is only 1 equilibrium, the PoS, as well as the PoA

for this game is 2´ ε, i.e., it approaches 2 as ε approaches 0. Thus, we have,

Theorem 12. The multi-step game with temporal aspect has a PoS and PoA

of 2.
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Figure 3: Counter-example where pure NE does not exist (Game with
temporal aspect)

6.1.1 Non-existence of Pure NE

Unlike the single-step game, the general multi-step game may not always

have a pure Nash Equilibrium, as demonstrated by the following example.

Consider the game as shown in Figure 3. The connectivity between cells is

given by the directed edges and the information initially available in each

cell is shown. The number of time-steps is 4. Players 1 and 2, with sensor

effectiveness ρ1 “ ρ2 “ 1 are initially in cells P and Q respectively. Thus,

Player 1 has two strategies - paths P Ñ A Ñ C Ñ E Ñ D and P Ñ A Ñ

B Ñ D Ñ E. Let these be called ‘Left’ and ’Right’ respectively. Player

2 similarly has 2 strategies, say ‘Up’ and ’Down’ corresponding to paths

Q Ñ U Ñ V Ñ B Ñ D and Q Ñ K Ñ L Ñ M Ñ N . Then, the payoff

matrix is given by,

«

Up Down

Left p50, 25q p60, 8q

Right p55, 0q p55, 8q

ff

It is easy to check, that there is no pure equilibrium in this case.

6.2 Multi-step Game without Temporal Aspect

In this section, we analyze the game without temporal aspect. When there

is no temporal aspect, the payoff of a player from a visit to a cell is merely

dependent on which players visit the cell over the complete course of the
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game and how many times, regardless of the order in which they visit the

cell. Thereby, the combined payoff of players from their visits to a cell c

(some of them possibly simultaneously), also does not depend on the order

of visits, and can be easily computed using (3). Owing to the different

setting in this game than the one with temporal aspect, we opt for a slightly

different notation. Let A, B be multisets with support in P , with mA, mB

the respective multiplicity functions, such that B Ď A. Then, for a cell c, let

θABpcq denote the combined payoff which the visitors in B would obtain by

visiting cell c (as many times as the respective multiplicities in B), when the

complete set of visitors for c is given by A. Naturally, this is only meaningful

when B Ď A. With this notation, the following observations are immediate,

and principally analogous to Lemma 3, 4, 5 respectively.

Lemma 8. Let A,B,D be multisets with support in P s.t. B Z D Ď A.

Then, θABpcq ` θ
A
Dpcq “ θABZDpcq.

Proof. Follows from definition, as both sides equal the combined payoff of

visitors in B and D when the complete set of visitors is given by A.

Lemma 9. Let A,B,B1 be multisets with support in P s.t. B1 Ď B Ď A.

Then, θAB1pcq ď θABpcq.

Proof. Applying Lemma 8 onA,B1, BzB1 respectively, we get, θABpcq´θ
A
B1pcq “

θABzB1pcq ě 0. Rearranging gives the required result.

Lemma 10. Let A be a multiset with support in P, and i be any player.

Then, θAA|ipcq ě π
A|´i
A|i

pcq.

Proof. Note that in a game with temporal aspect, in the case when the visitor

set of a cell c is A, one possible outcome s corresponds to all the visitors in A

visiting in the same time-step, and thus, θAA|ipcq is a possible payoff of player i

from cell c when its visitor set is fixed to A. Consequently, the result follows

from Lemma 6.

To show smoothness for this game, we proceed similarly as in the game

with temporal aspect. Let s and s˚ be any two outcomes. For every player i,

let qi denote the outcome ps˚i, s´iq. For any cell c, let multisets Ac, and A˚c

denote the visitor sets for cell c when the outcomes are s, and s˚ respectively.

Analogous to (6), (7), and (9), we can write,
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ÿ

iPP
πipsq “

ÿ

cPC
θAcAc pcq, (12)

ÿ

iPP
πips˚q “

ÿ

cPC
θA

˚
c

A˚c
pcq, (13)

ÿ

iPP
πipqiq “

ÿ

cPC

ÿ

iPA˚c

θAc|´iZA
˚
c |i

A˚c |i
pcq. (14)

Next, adding (12) and (14) and subtracting (13) gives,

ÿ

iPP
πipqiq `

ÿ

iPP
πipsq ´

ÿ

iPP
πips˚q ě

ÿ

cPC

¨

˝θAcAc pcq `
ÿ

iPA˚c

θAc|´iZA
˚
c |i

A˚c |i
pcq ´ θA

˚
c

A˚c
pcq

˛

‚.

(15)

Finally, note that θAcAcpcq “ πHAcpcq and θ
A˚c
A˚c
pcq “ πHA˚c pcq by definition. Further,

applying Lemma 10 on Ac|´i ZA
˚
c |i, we get, θ

Ac|´iZA
˚
c |i

A˚c |i
pcq ě π

Ac|´i
A˚c |i

pcq. With

this, (15) becomes,

ÿ

iPP
πipqiq `

ÿ

iPP
πipsq ´

ÿ

iPP
πips˚q ě

ÿ

cPC

¨

˝πHAcpcq `
ÿ

iPA˚c

πAc|´iA˚c |i
pcq ´ πHA˚c pcq

˛

‚.

(16)

As seen in the previous section, the RHS of (16) is non-negative by Lemma

7, and in turn, so is the LHS, thus proving the desired result:

Theorem 13. The multi-step game without temporal aspect is (1, 1)-smooth.

Again, using the result in [25] as mentioned in the previous section, we

have,

Corollary 4. The multi-step game without temporal aspect has a price of

anarchy at most 2.

Next, we demonstrate the tightness of this bound via an example.

Consider the game as shown in Figure 4. The set of players is t1, . . . , pu,

with ρ1 “ ρ2 “ . . . “ ρp “ 1. The number of time-steps is l. The cells in

the network and the connectivity among them is as shown. The information

initially available in cell c is 1, while in cells c2l , . . . c
p
l , it is v “ l

pp´1ql`1
´ ε
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Figure 4: A game without temporal aspect where PoA can get arbitrarily
close to 2 with a high number of players and number of time-steps

where ε is a small positive constant. The information available is 0 in all other

cells. Player 1 is initially in cell c1l´1, while every other player i ą 1 is initially

in cell ci0. Now, the only strategy for player 1 is the path c1l´1 Ñ c1l´2 Ñ . . .Ñ

c10 Ñ c. Now, the outcome where every other player i ą 1, plays the strategy

ci0 Ñ cÑ cÑ . . .Ñ cÑ c gives every player i ą 1, a payoff which evaluates

to l
pp´1ql`1

. Thus, no player i wants to deviate to the other possible strategy

ci0 Ñ ci1 Ñ . . . Ñ cil as it gives a smaller payoff of l
pp´1ql`1

´ ε. Thus, the

aforesaid outcome is a pure Nash Equilibrium, which has a social welfare of

1. However, it can be seen that the social welfare increases as more and more

players switch to the respective alternative strategy, and in the extreme case

of every player i ą 1 switching to the respective strategy ci0 Ñ ci1 Ñ . . .Ñ cil,

the social welfare reaches the maximum value of 2´ 1
pp´1ql`1

´pp´1qε, giving

the same value of PoA. Thus, as ε Ñ 0, it approaches 2 ´ 1
pp´1ql`1

, which

in turn, can become arbitrarily close to 2 if the parameters p or l become

arbitrarily large, showing that the bound of 2 is tight.

6.2.1 Non-existence of Pure NE

Unlike the single-step game, the general multi-step game without temporal

aspect may not always have a pure Nash Equilibrium, as demonstrated by

the following example.

Consider the game as shown in Figure 5. The connectivity between cells

is given by the directed edges and the information initially available in each

cell is shown. The number of time-steps is 3. Players 1 and 2, with sensor
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Figure 5: Counter-example where pure NE does not exist (Game without
temporal aspect)

effectiveness ρ1 “ ρ2 “ 0.8 are initially in cells P and Q respectively. Thus,

Player 1 has two strategies: paths P Ñ A1 Ñ A2 Ñ A and P Ñ B1 Ñ

B2 Ñ B. Let these be called ‘sA’ and ‘sB’ respectively. Player 2 has 8

strategies, however, since the sequence of the visits does not matter, there

are 4 distinct ones. Let these be called ‘A3B0’ ,‘A2B1’ ,‘A1B2’ ,‘A0B3’, where

‘AiBj’ denotes a strategy which visits A i times and B j times. Then, the

payoff matrix for this game is given by,

«

A3B0 A2B1 A1B2 A0B3

SA p0.2496, 0.7488q p0.3307, 1.4613q p0.4800, 1.4400q p0.8000, 0.9920q

SB p0.8000, 0.9920q p0.4800, 1.4400q p0.3307, 1.4613q p0.2496, 0.7488q

ff

It is easy to check, that there is no pure equilibrium in this case.
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CHAPTER 7

EXPERIMENTATION

In a competitive game environment like in this problem, a typical solution

is to play the strategy corresponding to a Nash equilibrium. As seen from

the previous sections, however, a pure equilibrium may not exist in the gen-

eral multi-step game in either of the game settings. Since computing mixed

equilibria is an intractable problem, we need to devise easily implementable

strategies with reasonable performance guarantees. In this section, we pro-

pose such heuristics/algorithms which the UAVs can deploy as solutions to

the routing problem. We simulate plausible problem scenarios with randomly

generated game parameters and statistically compare these solutions on the

grounds of social welfare optimality.

7.1 Setup

The randomly generated game instances are in the following setting. The set

of cells is a 10ˆ10 grid. To allow arbitrary connectivity constraints, we have

a cell connectivity parameter δ which works as follows: For each cell, each

of the cells within a Chebychev distance of 1 (i.e. row-wise, column-wise, or

diagonal-wise adjacent cells and the cell itself) is independently chosen to be

its out-neighbor with probability δ; if no cells get chosen after having gone

through all the adjacent cells, we repeat the process until there is at least

one out-neighbor for the cell, so that the graph does not have sinks where

the UAVs can get stuck. We set the number of UAVs p “ 5, the number of

time-steps l “ 10, and cell-connectivity parameter δ “ 0.8.

In every game instance, the sensor effectiveness parameters of the UAVs

are initialized to values chosen uniformly at random (u.a.r.) from r0, 1s. The

edges of the graph are chosen randomly as per the cell connectivity parameter

δ as described above. The initial positions of the UAVs are chosen uniformly

41



at random from the grid. The cell information values are chosen differently

for different problem scenarios as follows:

1 peak : In this scenario, the distribution of the information values

across cells as a function of their location is a generalized normal dis-

tribution. That is, we first pick a peak cell c from the grid u.a.r. and

then pick information values in all cells as a function of distance d from

the peak. This is represented as v “ fpdq “ α2´βd
γ
. Thereby, the

peak cell gets a value of α and the value decreases exponentially with

distance from the peak, as specified. The parameters α, β, and γ are

chosen u.a.r. from ranges r0.8, 1s, r0, 0.1s, r0.75, 1.25s, the last of which

(γ) acts as the shape parameter, and the ranges for the parameters

were fixed in order to keep the information values in a good range.

2 or more peaks : In this kind of a scenario, we fix a small k such as 2,3

etc. Subsequently, we pick k peak cells from the grid u.a.r. and the

information value function across all cells is composed of generalized

normal distributions centered around the k peaks respectively. For any

cell, the closest peak ci (i ď k) is determined, and the value in this cell

is given by v “ fipdq “ αi2
´βid

γ
i . Thus, peak ci has a value αi and the

values diminish in the other cells as we move away from the respective

peaks. The parameters αi’s, βi’s, and γi’s are again chosen u.a.r. from

the same ranges as scenario 1.

No peaks : In this scenario, all the information values in the cells are

simply chosen u.a.r. from r0, 1s.

As per the problem scenario, we generate n “ 1000 game instances with all

the parameters randomly chosen as described above. We let the UAVs apply

certain heuristics to route in the search space and collect information accord-

ingly. Finally, we compute the social welfare achieved for each game instance

as the output of the heuristics, and the two sequences of 1000 outputs for

the two strategies are compared is described in a following section.

Next, we describe the various heuristics we implement and compare.

7.2 Heuristics

We implement and compare the following heuristics:
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1. Greedy myopic: At each time-step this heuristic is to simply go to the

neighbor which currently has the maximum available information —

disregarding any other UAVs in the environment.

2. Multi-horizon greedy (parameters h, ε): This heuristic considers walks

of length h as strategies, while still disregarding any other UAVs in the

environment. Since there are other UAVs however, the payoff that a

UAV would expect from a strategy if it were the sole player, would be

an over-estimate. To rectify this, the payoff from a cell x steps away is

discounted by a ratio of εx when getting estimates for a strategy — due

to the fact that the actual payoff received from a cell in expectation

would be a smaller and smaller fraction of the optimistic estimate as the

cell gets more and more time-steps away, allowing more UAVs to get

the payoff first. Finally, the strategy with the highest such (discounted)

estimate is chosen. For our experimentation, we set h “ 5, and ε “ 0.8.

3. One-step NE: As a pure NE is guaranteed to exist in single-step games,

this heuristic is to compute the pure NE that is obtained via Best-

response dynamics starting from the initial outcome of everyone choos-

ing the greedy myopic strategy. Each player computes this pure NE

and plays the strategy corresponding to this NE.

4. Multi-step NE (parameter h): In this heuristic, a UAV tries to compute

a pure NE via Best-response dynamics, for individual strategies being

walks of length h. Since this is not guaranteed to exist, if a pure NE

is not found within 2pl rounds of Best-response dynamics, the player

reduces the horizon to h´ 1 and repeats until a pure NE is found, for

horizon say h1, and plays the strategy corresponding to this NE. Note

that h1 ě 1 since a pure NE always exists in the single-step game.

We compare the latter two against the former two respectively, so as to

conclude that the heuristics involving the Nash equilibria, leveraging our

result of its guaranteed existence in the single-step game, perform as good

or better than the greedy behavior based strategies serving as benchmarks.

We now discuss how we compare the heuristics and the results obtained.
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7.3 Evaluation and Results

As aforementioned, we first compute a sequence of 1000 outputs (social wel-

fares) for any two heuristics h1 and h2 to be compared. Next, to compare h1

versus h2, we compute a metric which we call as the rf-curve. To do so, we

compute 2-D points pr, fq based on the two sequences of outputs by varying

r between 0.5 and 1.5, as follows: For each r, we compute the fraction of

games f in which the ratio of h1’s output to that of h2 is at least r. It is

easy to check that f as a function of r, is monotone. Also, we note that

the rf-curve definition is asymmetric — the rf-curve for h2 versus h1, can be

very different. The two curves are also related though as can be easily seen

— if pr, fq is a point on one, p1{r, 1 ´ fq is a point on the other, and vice

versa. For each pair of heuristics being compared, we simultaneously plot

both the rf-curves for the ease of visual clarity. The two heuristics can be

said to be roughly equally effective if the two rf-curves are close to being

coincidental. On the other hand, if one of the rf-curves quite consistently

dominates the other, the respective heuristic can be concluded to be more

effective. Moreover, the extent of the improvement is proportional to the

separation between the two rf-curves throughout the range of r.

(a) No peaks (b) One peak

Figure 6: Comparing the heuristics ‘Greedy myopic’ and ‘1-step NE’ for
scenarios ‘No peaks’ and ‘1 peak’

Figure 6 shows the results of comparison between the heuristics ‘Greedy

myopic’ and ‘1-step NE’ for scenarios ‘No peaks’ and ‘1 peak’. The plots for

scenarios ‘2 peaks’ and ‘3 peaks’ closely resembled the one for ‘1 peak’, and

thus, are not included. It is easy to see that ‘1-step NE’ is more effective than
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‘Greedy myopic’ in both the scenarios; more so in the ‘1 peak’ scenario as

reflected in the visibly higher degree of separation between the two rf-curves.

In the ‘No peaks’ scenario, in 97.7% of the games, its output is no worse than

97% that of ‘Greedy myopic’, and in 89.9% it is as good or better, while it

improves by 10% or more in 22.3% of the games. On the other hand, in the

‘1 peak’ scenario, in 95.2% of the games, its output is at least as good as

that of ‘Greedy myopic’, while it improves by 10% or more in 43.6% of the

games, and by 20% or more in 19.0% of the games.

(a) No peaks (b) One peak

Figure 7: Comparing the heuristics ‘Multi-horizon greedy (h “ 5, ε “ 0.8)’
and ‘Multi-step NE (h “ 5)’ for scenarios ‘No peaks’ and ‘1 peak’

Figure 7 shows the results of comparison between the heuristics ‘Multi-

horizon greedy (h “ 5, ε “ 0.8)’ and ‘multi-step NE(h “ 5)’ for scenarios

‘No peaks’ and ‘1 peak’. Again, the plots for scenarios ‘2 peaks’ and ‘3 peaks’

closely resembled the one for ‘1 peak, and thus, are not included. It is easy

to see that ‘multi-step NE’ is more effective than ‘Multi-horizon greedy’ in

both the scenarios; more so in the ‘1 peak’ scenario as reflected in the visibly

higher degree of separation between the two rf-curves. In the ‘No peaks’

scenario, in 98.0% of the games, its output is no worse than 97% that of the

greedy benchmark, while it improves by 10% or more in 52.2% of the games,

and by 20% or more in 21.9% of the games. On the other hand, in the ‘1

peak’ scenario, in 99.6% of the games, its output is at least as good as that

of the greedy benchmark, while it improves by 10% or more in 83.5% of the

games, by 20% or more in 53.6% of the games, and by 40% or more in 16.9%

of the games.
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CHAPTER 8

SUMMARY

Our main results are as follows. We first study the basic setting of two

players and single time-step, albeit with the general formulation involving

multiple modalities and information fusion. We prove that a pure NE always

exists and is computable in linear time, in the case of moderate fusion as

well as significant fusion. We also prove tight bounds on PoA and PoS in

both these fusion cases. In case of moderate fusion, we also show that the

number of mixed equilibria has an upper-bound that is linear in the number

of strategies, and that the mixed equilibria are Pareto-dominated by the pure

equilibria.

By restricting the game to single modality, we study the multi-player single-

step case, and prove that a pure NE always exists in this game for both the

fusion cases, and more generally, in all the singleton congestion games having

a particular class of payoff functions. For the significant fusion case, we pro-

vide an efficient algorithm to compute a pure NE which runs in time linear

in the number of players times the number of strategies. Finally, assuming

no fusion and symmetric players, we prove a tight bound of 2 ´ 1{p on the

PoA where p is the number of players.

Finally, by further considering no fusion, we study the multi-player multi-

step game, in two differently defined classes of games. For each of them,

we provide concrete counter-examples to show that pure NE may not exist.

Further, for both the classes, we prove the pλ, µq–smoothness for λ “ µ “ 1

which leads to an upper bound of 2 on PoA and PoS, which we show to be

tight with concrete examples.

Finally we provide simple heuristics for the UAV routing problem, which

leverage on the result of existence of pure NE in the single-step game. By

simulating a large number of games via randomly generating game parame-

ters, in various plausible problem scenarios, we provide empirical bounds for

how good a social welfare can be achieved with these heuristics as compared

to the benchmark heuristics based on greedy behavior.
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APPENDIX A

Proof of Lemma 6

We first establish an intermediate result required for the proof.

Lemma 11. Let 0 ă y ď 1, and let X be a set of npě 0q numbers such that

@x P X, 0 ă x ď 1. Then,

ź

xPX

p1´ xq ď

1´ p1´ yq
ś

xPX

p1´ xq

y `
ř

xPX

x
ď

1´
ś

xPX

p1´ xq

ř

xPX

x
.

Proof. Let S “
ř

xPX

x, and P “
ś

xPX

p1´ xq. We want to prove,

P ď
1´ p1´ yqP

y ` S
ď

1´ P

S
.

Now, consider the first inequality.

P ď
1´ p1´ yqP

y ` S

ô py ` SqP ď 1´ p1´ yqP

ô p1` SqP ď 1.

Next, the second inequality is,

1´ p1´ yqP

y ` S
ď

1´ P

S

ô p1´ P ` PρqS ď py ` Sqp1´ P q

ô yPS ď yp1´ P q

ô p1` SqP ď 1. (17)
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Thus, proving (17) proves both the inequalities. Now, by the AM-GM in-

equality, we have,

1

n

˜

ÿ

xPX

p1´ xq

¸

ě

˜

ź

xPX

p1´ xq

¸1{n

pn´ Sq{n ě P 1{n

p1´ S{nqn ě P. (18)

Also, using the binomial theorem,

p1` S{nqn “
n
ÿ

i“0

ˆˆ

n

i

˙

pS{nqi
˙

ě 1` S. (19)

Hence, combining (18) and (19), we get,

p1` SqP ď p1` S{nqnp1´ S{nqn “ p1´ S2
{n2
q
n
ď 1.

Thus, this proves (17) as required, and thereby, this Lemma.

With this, we now prove Lemma 6.

Lemma 6. Let A be any multiset with support in P, and let i P A. Let c be

any cell and let S 1 Ď S be the set of outcomes for which A is the visitor set

for c. Then,

@s P S 1, πips, cq ě π
A|´i
A|i

pcq.

Proof. Let s be an outcome with the visitor set for c being A. Suppose player

i visits c m times when the visitor set is A. The outcome s can be naturally

associated with two well-defined sequences X1, . . . , Xm and Y1, . . . , Ym as

follows. For each j, Xj denotes the set of players visiting c in the same

time-step as the jth visit of player i, and Yj denotes the multiset of all the

visitors visiting strictly before. Naturally, each Xj must contain player i,

and each Yj must contain i with a multiplicity of j ´ 1. Also, we must have

H Ď Y1 Ă Y2 . . . Ă Ym Ď Aztiu by definition. Let v be the information

initially available in c. The combined payoff of the visitors in Xj, as per our

notation, is π
Yj
Xj
pcq. Player i gets a share of it proportional to ρi, and this

summed over all the visits gives its total payoff from visiting c:
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πips, cq “
m
ÿ

j“1

ρi
ř

kPXj

ρk
π
Yj
Xj
pcq. (20)

For each j, let vj denote the information available in c just before the visitors

in Xj visit, which evaluates to vj “ v
ś

kPYj

p1´ ρkq
mYj pkq. Then, in terms of vj,

we can write

π
Yj
Xj
pcq “ vj

¨

˝1´
ź

kPXj

p1´ ρkq

˛

‚.

Hence, (20) can be written as

πips, cq “
m
ÿ

j“1

ρivj

˜

1´
ś

kPXj

p1´ ρkq

¸

ř

kPXj

ρk
. (21)

Now, let s1 be another outcome with similarly defined sequencesX 1
1, . . . , X

1
m

and Y 11 , . . . , Y
1
m such that the only difference from s is that for each j, the

players visiting c in the same time-step as the jth visit of player i in the

outcome s, now visit strictly before it, in s1. Formally, for each j, we have

Y 1j “ YjZpXjztiuq and X 1
j “ tiu. Thus, the visitor set remains A for s1. Now,

by definition, vj is the information available in c after the visitors in Yj have

visited it. Hence the information left after players in Xjztiu) subsequently

visit it, is vj
ś

kPXjztiu

p1´ ρkq. Hence, as player i’s jth visit to c follows, it gets

a payoff that is ρi fraction of the value available, and this summed over all

the visits gives the total payoff of player i from visiting c, for the outcome s1:

πips1, cq “
m
ÿ

j“1

¨

˝ρivj
ź

kPXjztiu

p1´ ρkq

˛

‚. (22)

Now, applying the first inequality from Lemma 11 on y “ ρi, X “ tρk|k P

Xjztiuu, we get,

πips1, cq ď
m
ÿ

j“1

ρivj

˜

1´ p1´ ρiq
ś

kPXjztiu

p1´ ρkq

¸

ρi `
ř

kPXjztiu

ρk
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“

m
ÿ

j“1

ρivj

˜

1´
ś

kPXj

p1´ ρkq

¸

ř

kPXj

ρk

“ πips, cq. (23)

Further, let s2 be another outcome with similarly defined sequences X2
1 , . . .,

X2
m and Y 21 , . . . , Y

2
m and the visitor set for c being still A, such that all the

visits of player i are strictly after all the visits of all the players. Formally,

for each j, we have Y 2j “ A|´i Z ppj ´ 1q b tiuq and X2
j “ tiu. Further,

πips
2, cq “ π

A|´i
A|i

pcq. Now, since s1 and s2 are such that all the visits of player

i are unaccompanied, we can write its payoff from the jth visit as simply

π
Y 1j
tiupcq and π

Y 2j
tiu pcq respectively. Now, the multiplicity of i is the same (=

j-1) in Y 1j and Y 2j , whereas all other players reside in Y 2j with the maximum

multiplicity possible for the visitor set A. Thus, Y 1j Ď Y 2j . Hence, using

Lemma 5, we get,

@j : π
Y 1j
tiupcq ě π

Y 2j
tiu pcq

m
ÿ

j“1

π
Y 1j
tiupcq ě

m
ÿ

j“1

π
Y 2j
tiu pcq

πips1, cq ě
m
ÿ

j“1

πA|´iZppj´1qbtiuqtiu pcq (By definition of Y 2j )

ě

m
ÿ

j“1

´

πHA|´iZpjbtiuqpcq ´ π
H

A|´iZppj´1qbtiuq
pcq

¯

(Using Lemma 3)

ě πHA|´iZpmbtiuqpcq ´ π
H

A|´i
pcq

ě πA|´ipmbtiuqpcq (Using Lemma 3)

ě πA|´iA|i
pcq. (24)

Thus, it follows from (23) and (24), that, πips, cq ě π
A|´i
A|i

pcq. Since this holds

for any outcome s for which the visitor set for cell c is A, the lemma is

proved.
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Proof of Lemma 7

Lemma 7. For a cell c P C, let A and A˚ be the visitor sets of c for outcomes

s, s˚ P S respectively. Then,

πHA pcq `
ÿ

iPA˚

πA|´iA˚|i
pcq ě πHA˚pcq. (11)

Proof. Proof We will show that,

πHA pcq `
ÿ

iPA˚zA

πA|´iA˚|i
pcq ě πHAYA˚pcq. (25)

(Note that for multisets, A˚zA is defined to contain those elements which

have a greater multiplicity in A˚ than in A; and their multiplicity in A˚zA

is precisely the difference of multiplicities in A˚ and A.)

It is easy to see that the LHS of (11) is no less than that of (25) since the

latter possibly excludes some terms in the summation, and each term is non-

negative by definition. It is also easy to see that the RHS of (11) is no greater

than that of (25) by Lemma 4. Thus, it suffices to prove (25) to prove this

lemma.

Now we prove (25) by induction on the number of players in A˚zA, denoted

by, say, a.

The base case a “ 0 is when A˚ Ď A, i.e., A˚zA “ H. This holds trivially,

as both the sides of the inequality to be proven, become equal to πHA pcq.

Assume, as inductive hypothesis, that (25) holds whenever a ă a0, for some

a0 P Z`.

Now, consider the case when a “ a0. Arbitrarily fix some x P A˚zA. Then,

pA˚zAq|´x, or equivalently, A˚|´xzA has a0 ´ 1 distinct elements. We can

now write,

πHA pcq `
ÿ

iPA˚zA

πA|´iA˚|i
pcq

“

¨

˚

˝

πHA pcq `
ÿ

iPA˚zA
i‰x

πA|´iA˚|i
pcq

˛

‹

‚

` πA|´xA˚|x
pcq
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“

¨

˝πHA pcq `
ÿ

iPA˚|´xzA

πA|´i
pA˚|´xq|i

pcq

˛

‚` πA|´xA˚|x
pcq

ě πHAYpA˚|´xqpcq ` π
A|´x
A˚|x

pcq (using the Ind. Hyp.)

ě πH
pAYA˚q|´x

pcq ` πA|´xA˚|x
pcq (since pAY A˚q|´x Ď AY pA˚|´xq)

(and using Lemma 4)

ě πH
pAYA˚q|´x

pcq ` πpAYA
˚q|´x

A˚|x
pcq (since pAY A˚q|´x Ě A|´x)

(and using Lemma 5)

“ πH
pAYA˚q|´x

pcq ` πpAYA
˚q|´x

pAYA˚q|x
pcq (since x P A˚zAñ pAY A˚q|x “ A˚|x)

“ πHAYA˚pcq.

Hence, this completes the inductive step and the proof by induction for (25),

as required.
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