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ABSTRACT

The fields of imaging and genomics in cancer research have been mostly

studied independently, but recently available datasets have made investiga-

tion into the synergy of these two fields possible. This work demonstrates the

efficacy of computational histopathological image analysis to extract mean-

ingful quantitative nuclear and cellular features from hematoxylin and eosin

stained images that have meaningful connections to genomic data. Addition-

ally, with the advent of whole slide images, significantly more data represent-

ing the variation in nuclear characteristics and tumor heterogeneity is avail-

able, which can aid in developing new analytical tools, such as the proposed

convolutional neural network for nuclear segmentation, which produces state-

of-the-art segmentation results on challenging cases seen in normal pathol-

ogy. This robust segmentation tool is essential for capturing reliable features

for computational pathology. Additionally, whole slide images capture rich

spatial information about tumors, which presents a challenge, but also an

opportunity for the development of new image processing tools to capture

this spatial information, which could be considered for future work. Other

histopathological image modalities and relevant machine learning tools are

also considered for elucidating cellular processes of cancer.
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The fear of the LORD is the beginning of wisdom.

- Psalm 111:10
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CHAPTER 1

INTRODUCTION

Cancer remains one of the top causes of death among diseases in the U.S.

and the world. Joe Biden, former Vice President of the U.S., recently made

an ambitious call for an earnest investment from federal government funding

agencies to promote significant advances in cancer research, what he coined

as the “cancer moonshot initiative,” with the goal of curing cancer in the

next few years.

Making such strides will require an interdisciplinary effort and an inte-

grated understanding from the many fields of cancer research, primarily ge-

nomics and imaging. Imaging and genomics are two separate streams of

inquiry into the cellular processes within a tumor and have been predomi-

nantly explored independently. In order for healthy cells to evolve into can-

cerous cells, form tumors, and ultimately to become malignant, they must

acquire several characteristic abilities, including proliferative signaling, eva-

sion of growth suppressors, activation of invasion and metastasis, replicative

immortality, induction of angiogenesis, and resistance to cell death [1]. These

problematic traits are caused by biological dysfunction at the genetic, molec-

ular, and cellular levels and involve complex relationships between abnormal

DNA, gene expression, protein synthesis, and even inter-cellular signaling.

Different modalities of cancer data - from genomics, radiology, histopatho-

logical imaging - provide different quantitative and qualitative information

about the state and development of these processes.

Recently, large-scale cancer genomic datasets have been collected along

with histology hematoxylin and eosin (H&E) images of patients, such as The

Cancer Genome Atlas (TCGA) [2], which also includes radiology images,

and METABRIC [3], which has spurred new investigations and questions

into the synergy of imaging-genomics research [4]. These histology slides are

not biopsies, which capture only a small local area, but whole slide images

(WSIs) of a slice of the entire tumor. These WSIs convey details about the
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Figure 1.1: Diagram for acquisition of top and bottom H&E slides and gene
expression data from a tumor.

tumor that cannot be observed from genomic data, such as its heterogeneity,

the spatial relationships of particular cells, its composition of different cell

types, and morphological features of cells and nuclei. These features can aid

inference from genomic data, such as using lymphocyte counts to fix copy

number variation measurements [5], or they can be used along with genomic

data as additional indicators in computational prognostic models. Moreover,

several of the slides that are imaged are extracted from the boundary of the

tumor section that is used for genomic data extraction, meaning that the cells

and their spatial layout in both the image slices and the section for genomics

should closely match (see Fig. 1.1), though the validity of this assumption is

highly dependent upon the type of cancer.

Several prominent imaging-genomic investigations have already produced

significant findings. Recent understanding of the association of lymphocytic
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infiltration with survival in breast cancer tumors [6] has spurred research into

computational metrics to quantify lymphocyte, cancer cell, and stromal cell

heterogeneity within a tumor and its association with survival [7, 8]. Incorpo-

rating the presence of a TP53 mutation into the analysis led to even stronger

stratification of patients by survival [9]. Another investigation, considering

only triple negative breast cancer (TNBC) patients, computed morphological

features of H&E images, correlated them with discovered metagenes of gene

expression, and showed the prognostic significance of these joint biomark-

ers [10].

Glioblastoma multiforme (GBM), also referred to as glioblastoma, has also

received attention in imaging-genomic research. GBM is a high-grade astro-

cytoma, which is a brain tumor that originates in glial cells called astrocytes.

Though rare among all cancers, it is the most common malignant brain tumor

in adults and has poor prognosis due to the current lack of understanding

among researchers. Genomic research has identified four molecular subtypes

of GBM [11] (proneural, neural, classical, and mesenchymal), and recent

work has attempted to classify these molecular types using computational

image features of nuclei [12]. Subsequent work correlated discovered nuclear

clusters with genomic data, and found significant associations between the

clusters with alterations of several genes: EGFR amplification, CDKN2A

deletion samples, and PTEN deletion samples [13]. Other work performed

a similar procedure of clustering nuclear features in GBM and associating

the clusters with gene expression and discovered six significantly associated

regulatory hubs: IFNG, TGFB1, MAPK14, cytokines, PKC, and IL1B. A

more recent work has investigated connections between quantitative metrics

of necrosis and gene expression in GBM [14].

Though research has already begun toward this aim of joint imaging-

genomic analysis, there are still many possible connections to be explored

with the data available to the public research community and much more

to be understood about the mapping from genotype to phenotype. Most

analysis of TCGA has considered only modestly sized subsets of patients.

Additionally, handling the sheer size of WSIs and quantifying the rich spatial

information and cellular diversity that they capture remains a challenge [15].

A recent workshop organized by the National Cancer Institute on imaging-

genomics echoed this challenge, identifying several important directions for

future research, including the “development of more sophisticated imaging
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methods to characterize this multi-cellular structure and how the microenvi-

ronment influences tumor behavior” and “image analysis methods to predict

and detect the emergence of resistance, correlate with genomic heterogene-

ity, and identify homogeneous subtypes within a heterogeneous tumor” [16].

New insights will require domain-specific inference tools for both histopatho-

logical imaging and genomics and understanding of appropriate modeling of

their connections.

1.1 Contributions

Motivated by the promise of imaging-genomics for furthering cancer research,

the availability of large datasets of joint histopathological image and genomic

data, and the need for computational inferential tools to meet the posed

challenges, this thesis proposes several tools to aid in this research.

1.1.1 H&E Analysis Pipeline and Nuclei Segmentation

The primary contribution of this thesis is a robust pipeline for transforming

H&E WSIs into a single feature vector composed of statistics of nuclear and

cellular features. When cells become cancerous, they proliferate, forming ir-

regular spatial patterns, and their nuclei become deformed. The proposed

pipeline is able to capture these irregularities quantitatively by first segment-

ing the nuclei and cells in the image, providing their location and boundary,

and then computing measures of their shape, size, color, and texture. Tools

exist that attempt to extract such measurements, a popular example being

CellProfiler [17], a software tool for analyzing microscopy image data, but

these tools can produce unreliable measurements, especially when applied to

a diversity of H&E images of varying quality.

The proposed pipeline uses CellProfiler for calculating measurements of

segmented nuclei and cells, but replaces the standard methods of segmenta-

tion with a convolutional neural network (CNN) approach. Though the size

of WSIs and the variation in quality of H&E images in large datasets, such

as TCGA, presents a formidable computational challenge, this challenge also

carries an advantage, in that much more of the variation of cells, nuclei, and

their layout can be observed. A single WSI likely contains tens of thousands
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of cells and nuclei, which can be used to capture their inherent variation in

the training of novel data-driven approaches. Specifically, the task of nu-

clear segmentation, which is fundamental to H&E analysis, can be greatly

advanced by new learning-based methods that leverage the diversity of nuclei

in WSIs. With the added accuracy of nuclear and cellular masks produced

by the CNN, this pipeline is able to extract reliable features, even with the

challenging degree of diversity of staining and slicing present in TCGA H&E

image data, in comparison to other pipelines often used in H&E analysis.

1.1.2 Genomic Integration

Using the proposed pipeline, this thesis demonstrates the utility of the com-

puted features in stratifying cancer patients by outlook. An investigation

into TCGA breast cancer data is presented, revealing image-based features

that significantly separate patients into poor and improved prognosis groups

using unsupervised clustering. The gene expression data of the patients is

then tested for significant differential expression across the two image-based

clusters, revealing 255 significant genes. Pathway analysis revealed that these

genes were significantly associated with several pathways implicated in can-

cer.

Continued investigation using the proposed pipeline and corresponding

image features will hopefully lead to the discovery of homogeneous subtypes

within tumors, thereby aiding doctors in treatment assessment, similar to

the clinically relevant discovery of four main subtypes in breast cancer from

genomic data [18]. Potential outcomes could be the development of imaging

surrogates for genetic mutations or expression, the discovery of new subtypes

of cancer, and more accurate computational prognosis through the leverag-

ing of joint genomic and imaging data. Furthermore, while work in computa-

tional pathology has revealed new insights into prognostic indicators, such as

the importance of stromal cell features [19], the integration of genomic data

with image features could lead to greater increases in prognostic accuracy

and yet new insights.
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1.1.3 Multimodal Histopathological Image Analysis

Although inspection of H&E histopathological images is still the gold stan-

dard for cancer diagnosis, other histopathological imaging modalities exist

and are being developed that could be added to this investigation to provide

further elucidation of phenomena in cancer.

When a tumor biopsy is taken, contiguous slices can be purposed for H&E

and hyperspectral imaging modalities as well. Fourier transform infrared

spectroscopy [20, 21] provides quantitative molecular vibration information

of tissue without contaminating the tissue with stains. The response of the

tissue at each frequency is a function of specific known molecular charac-

teristics, providing more information than can be obtained by visible light

imaging of H&E-stained tissue. Additionally, the spectrum of each pixel

can be classified according to cell type, providing a pathologist with a vi-

sual map of the layout of the cells in the image, similar to that of H&E.

Hyperspectral fluorescence lifetime imaging (FLIM) [22, 23] is another de-

veloping hyperspectral image modality, which measures not only the fluores-

cence intensity response of certain molecules, such as nicotinamide adenine

dinucleotide (NADH), in tissue, but also the rate of decay of the response,

which is informative of metabolic processes. A primary advantage of these

modalities is that they are label free; that is, they require no staining or other

contamination of the imaged tissue. Future work could investigate further

connections between imaging and genomics by incorporating analysis of these

hyperspectral modalities with H&E observations and genomic data.

Imaging devices are also being developed to image with several distinct

modalities that are temporally and spatially registered. For example, opti-

cal coherence microscopy (OCM) provides structural information about the

environment within a tumor, especially the boundaries of cell nuclei. FLIM

can complement OCM by providing information about the metabolic activ-

ity within cells, which can be discriminative of different cellular processes in

tumors, such as apoptosis and necrosis, the different methods of cell death.

Additionally, images from these modalities can be captured over a time series

to provide insight into the dynamic processes inside the microenvironment

of tumors and within individual cells, and they can be employed in vivo for

use in live studies and clinical applications. This thesis will demonstrate

quantitatively the value of multimodal data over either modality by itself
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and propose a formulation for the optimal detection rule for differentiating

these processes. These imaging devices could be crucial in the future for

investigating not only the impact of genomics on the morphology of cells and

nuclei, but also on their movement and development over time as a tumor

progresses.
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CHAPTER 2

H&E ANALYSIS PIPELINE

In order to infer meaningful imaging-genomic connections, proper analysis of

H&E histopathological images must be considered. H&E histopathological

images are the gold standard for pathologists for diagnosis and prognosis

of cancer, as they provide a clear, observable description of cells and nuclei

and their spatial layout. Most cancer types have an established, methodical

system for grading a tumor that pathologists follow that correlates with

patient prognosis. These grading systems usually involve measurements of

nuclear pleomorphism, such as shape, size, and granularity; counts of mitosis;

and the spatial layout of epithelial cells, specifically, the presence or absence

of clearly formed tubules.

Histopathological image analysis techniques have been actively researched

over the past several decades [24, 25, 26]. Most work has focused on detecting

and segmenting nuclei and describing their characteristics with quantitative

metrics [27], driven by the intuition of conventional cancer grading. Some re-

search in computational histopathological image analysis has even considered

additional, unconventional metrics and has suggested their utility in cancer

grading. A well-known recent finding from such research is the purported

impact of features of stromal nuclei in breast cancer [19]. Computational

pathology analysis also carries the benefit of avoiding inter-observer sub-

jectivity and the promise of developing objective methods for diagnosis and

prognosis. The availability of large datasets of histopathological images, such

as TCGA, and the advent of WSIs have engendered a resurgent interest in

computational pathology [28].

Challenges in developing robust computational metrics arise primarily from

the acquisition process of H&E images. The tumor tissue specimen to be im-

aged is first fixed, usually with formaldehyde, to stabilize proteins and stop

biological activity. The specimen is then processed so that it can be sec-

tioned, which involves dehydrating the tissue, clearing the dehydrant, and
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embedding the tissue, usually achieved with paraffin. Once embedded, the

specimen can be sectioned into thin slices for imaging. A significant cause

of variation in H&E images is slice thickness, which can vary roughly from 3

to 10 µm, causing significant variation in the intensity of subsequent stain-

ing. Additionally, if not properly processed, the sections can be difficult to

slice, resulting in tearing artifacts. After the tissue is sliced, the process of

embedding must be reversed for each slice so that it will receive the stain.

Hematoxylin and eosin dyes are then applied either “regressively” or “pro-

gressively” to achieve a final stained sample for imaging. Hematoxylin stains

nuclear regions blue or purple, while its counter-stain, eosin, stains cytoplas-

mic proteins pink. Over-staining with hematoxylin can cause a loss of detail

of nuclei, while under-staining will lead to nuclei that are faint and not easily

differentiable. If the paraffin was not properly removed prior to staining, the

tissue will not take the stain, resulting in faint and blotchy images. Finally,

the tissue section is mounted, during which other additional artifacts can be

introduced, such as tissue folds or the presence of mounting mediums on the

cover slip, resulting in image blurring. Several example artifacts from TCGA

breast cancer images that were analyzed for this thesis are shown in Fig. 2.1.

Image processing techniques must be employed that are able to mitigate the

effects of such artifacts and remove uninformative variation.

The proposed pipeline for computing inference on H&E images consists of

the following stages of processing: pre-processing, to unmix and normalize

the stain; nuclei segmentation; cell segmentation, using discovered nuclei as

seeds; cell and nuclei feature extraction; and feature summarization. Other

possible stages that could be included are cell and nuclei classification, gen-

erally into stromal and epithelial cells and lymphocytes, and spatial feature

extraction. Although these stages are not implemented currently in the pro-

posed pipeline, they could be easily integrated, and future work will consider

the merits of doing so.

2.1 Pre-Processing

Several pre-processing steps should be taken before analysis of H&E-stained

slides, especially WSIs, to mitigate the effects of the aforementioned artifacts

and uninformative variation. These steps usually include stain normalization
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(a) Blur (b) Fold and Tear

(c) Annotations (d) Cracks

Figure 2.1: Examples of common artifacts in H&E images can be
problematic for automated image analysis and lead to erroneous nuclear
and cellular segmentation and features.

or unmixing, background removal, and artifact removal.

Stain unmixing, which quantifies the intensity of hematoxylin and eosin

stains separately, is often used before processing, since the hematoxylin stain

is especially useful for detecting and segmenting nuclei, as seen in Fig. 2.2.

Stain normalization [29], which not only unmixes the stains, but also at-

tempts to remove uninformative stain variation by normalizing to a reference

stain, may also be used, and can be particularly helpful when working with

large datasets from many tissue source sites (TSS), such as TCGA. With

such datasets, “batch effect” issues often arise due to the variation across

TSSs in instrumentation and data acquisition, which can significantly bias

analysis [30]. Two example normalized patches from TCGA breast cancer

patients using a popular recent method [29] are shown in Fig. 2.3. Still some

research has cautioned against stain normalization [10], since not all stain

variation is uninformative and since it can introduce yet other problematic

10



(a) H&E (b) Hematoxylin (c) Nuclei

Figure 2.2: Segmentation of nuclei in two small patches of WSIs. (a) The
two patches. (b) The unmixed hematoxylin stain. (c) The segmented
nuclei, bounded in red, by Otsu’s thresholding algorithm. Results were
obtained by CellProfiler software [17].

artifacts.

Methods for removing artifacts, or other uninformative regions of slides,

such as background pixels, have also been proposed. Tissue folds are partic-

ularly troublesome for WSIs and methods for removing them have received

attention in the literature [31].

In the proposed pipeline, both stain normalization and stain unmixing [29]

are considered. No automated method for removing artifacts was used,

rather; regions of WSIs were selected manually to ensure reliable analysis.

2.2 Cell and Nuclei Segmentation

Once the images have been refined by pre-processing, a common next step

is segmentation of nuclei and their corresponding cells. The proposed al-

gorithms for segmenting nuclei in H&E in the literature are numerous [27].

Watershed [32], active contour, and clustering-based methods have been pro-

posed, but often are not used in the literature of H&E studies. This may be
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Figure 2.3: Stain normalized applied to H&E images of two TCGA breast
cancer patients using the algorithm of [29]. Each row corresponds to a
patient. Original H&E images (first column); normalized images (second
column); hematoxylin channel (third column); eosin channel (fourth
column). Dark pixels in the separated channels indicate a higher
concentration of stain and light pixels a lower concentration.

due to the difficulty of tuning these algorithms for datasets with a high degree

of variation across samples. A common method is Otsu’s method [33], which

assumes that the pixel intensities follow a bimodal or trimodal distribution

and selects a threshold value that optimally separates these distributions.

Often, simple thresholding methods, such as Otsu’s method, are employed,

which are straightforward, but also struggle to account for variation of inten-

sity due to staining and sample thickness. Nuclear segmentation methods,

and the CNN used in the proposed pipeline, will be described in more detail

in the next chapter.

Segmenting cells is an ill-defined problem, since cell boundaries are often

not visible from H&E staining. In most proposed methods, nuclei are de-

tected first and segmented, and their positions are then provided to an algo-

rithm to segment cells and classify them, or cellular segmentation is ignored

altogether [5]. Cellular boundaries can be defined by Voronoi partitions [34],

superpixels, or simply by neighboring pixels of the nuclei within a certain dis-

tance [12, 35, 14]. In other works, cells are segmented first and then nuclei

are located within the cells. Superpixel segmentation [36] can also be used to

define cellular boundaries first [19]. Our pipeline uses Otsu’s thresholding to

define the cytoplasmic region of the cell surrounding each nucleus, but limits
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(a) Nucleus 1:
Gabor = 16.97
Area = 339
Eccentricity =
0.98
AveInt = 0.88
StdInt = 0.079

(b) Nucleus 2:
Gabor = 3.42
Area = 1263
Eccentricity =
0.80
AveInt = 0.77
StdInt = 0.086

(c) Nucleus 3:
Gabor = 2.81
Area = 756
Eccentricity =
0.54
AveInt = 0.83
StdInt = 0.077

(d) Nucleus 4:
Gabor = 11.21
Area = 294
Eccentricity =
0.60
AveInt = 0.83
StdInt = 0.099

Figure 2.4: Examples of segmented nuclei from TCGA breast cancer
patients using Otsu’s method in CellProfiler, along with several of their
extracted features. Stromal nuclei (Nucleus 1) are long, thin, and
surrounded by pink stromal tissue, and are discriminated by eccentricity
measures. Epithelial cells are generally rounder and surrounded by purple
cytoplasmic regions. Lymphocytes (not shown) are smaller, circular, and
dark.

valid regions to be within 15 pixels of the nucleus.

2.3 Cellular and Nuclear Features

The primary statistics, or features, used in H&E analysis are those of cells

and their nuclei, since pathologists’ experience has deemed these features

to be highly indicative of outlook. Generally, such features fall under the

categories of shape, texture, and color. A comprehensive list of definitions of

feature transforms commonly applied to H&E images can be found in [37].

Nuclear features in particular have been considered in computational pathol-

ogy. The imaging-genomic works of Cooper and Kang et al. [38, 12, 13, 35, 14]

performed their analyses using only such nuclear features and features of the

surrounding cytoplasm. Often, these features are simple descriptors, such as

the statistics of the intensity of hematoxylin stain in the nucleus and rotation

invariant shape descriptors, such as the area of the nucleus and the length of

its major and minor axes. Image texture can be captured by Gabor filters,

which are oriented Gaussian filters that have been modulated by an oriented
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sinusoidal. Images that have strongly oriented color patterns will have a

strong response to the Gabor filters oriented orthogonally to the direction of

these variations. Examples of several differing nuclei and their corresponding

features are shown in Fig. 2.4.

2.4 Cell and Nuclei Classification

Once the boundaries of cells or nuclei have been extracted, some researchers

have classified cells, and even their nuclei, by type based on computed nuclear

and cellular features. Beck et al. [19] were able to discover the importance

of stromal cell features in prognosis because they had first classified cells as

stromal, epithelial, or other. Nuclei within each cell type were then subclas-

sified as typical or atypical depending upon pixel size and roundness. Cells

were classified using L1-logistic regression with a sparsity regularization pa-

rameter. Training the classifier required hand-labeled subsets of superpixels

from 158 images, which required about an hour of work from a pathologist.

Their algorithm produced an 89% accuracy on held-out data.

Yuan et al. [5] segmented images into cancer, lymphocyte, and stromal

cells using known correlations between cell type and nuclear morphology.

A support vector machine classifier trained by a pathologist was used for

classification using features based upon the size and shape of the nuclei of

the cell, knowing that malignant cells generally have large, round nuclei,

whereas lymphocytes have generally small (<8 µm), dark nuclei and not

much cytoplasm, and stromal cells can have spindle-shaped nuclei. After

an initial classification, they used a spatial kernel smoothing technique [39]

and a hierarchical multiresolution model using global features of the tumor

to refine the cell labeling, yielding a classification accuracy of 90.1% using

cross-validation.

The current proposed pipeline does not include a cell classification stage,

in part because creating a reliable classifier is challenging without accurate

segmentation. However, as more labeled data is gathered for the CNN pro-

posed in the next chapter, incorporating such a classifier will become feasible.

Nuclei and cell classes can also be learned in an unsupervised fashion using

clustering, which is considered later in this thesis.
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2.5 Global Features

The work of Beck et al. [19] demonstrated the importance of considering

not only the features of individual cells and their nuclei, but also the spatial

relationship between cells and nuclei. They found that the presence of stro-

mal regions with many nuclei and stromal spindle nuclei bordering stromal

round nuclei were both indicators of poor prognosis, which would not have

been discovered without features capturing global structure of the tumor.

Many metrics can be used to capture such global features, such as density

and number of bordering pixels. Graphical model representations can also be

used, as described in the review of Gurcan et al. [24]. The current pipeline

does not incorporate spacial relationships, but adding them is ongoing work.

2.6 Slide Summarization

Once the features are extracted, a challenge is summarizing the features of

all the nuclei and cells present in each image, which can be on the order

of thousands for WSIs. The features from each cell and nuclei must be ag-

gregated in a way that is invariant to translation and rotation, preserves as

much information as possible, and is also succinct for purposes of computa-

tion. In several prominent works, this summarization is merely an average of

nuclei an cell features across the entire image [35, 14, 28], or large partitions

of the image, though some amend this summarization with the addition of

second-order statistics of features. Our pipeline computes the mean, stan-

dard deviation, and percentiles of the features of each nucleus and cell across

a subset of representative patches from the WSI to capture their distribution

throughout the WSI.

2.7 Proposed H&E Analysis Pipeline

In summary, the proposed H&E image analysis pipeline transforms patches

of a WSI into a single nuclear and cellular image feature descriptor, consist-

ing of the statistics of texture, shape, color, and intensity features derived

from its cellular and nuclear boundaries. The pipeline first unmixes the H&E

stains, normalizes them [29], and then estimates binary nuclear segmentation
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WSI Patches
Nuclear Segmentation

Masks

Image Features

Figure 2.5: Combined nuclear segmentation and feature extraction pipeline
for WSI patches.

masks for each patch via a CNN implemented in TensorFlow [40], which will

be described in the following chapter. This CNN performs significantly bet-

ter segmentation and detection of nuclei compared to thresholding methods,

like those of [5] or CellProfiler. The segmentation masks and original H&E

images are then fed to CellProfiler to refine them using spatial smoothing and

to separate clumped nuclei, as shown in Fig. 2.5. CellProfiler then determines

the boundaries of the cell corresponding to each nucleus using color thresh-

olding, restricting the region to be within 15 pixels of the nucleus. Such

a boundary still allows for meaningful cellular features. From the nuclear

and cellular segmentation boundaries computed with our CNN and CellPro-

filer’s refinement steps, CellProfiler extracts a total of 219 image features

for each cell-nucleus pair, describing shape, color, intensity, and texture. To

summarize the features of all nuclei and cells for a patient, the distribution,

including the mean, standard deviation, and percentiles, of each feature is

calculated, comprising a single image feature descriptor of 2409 features for

the WSI. If multiple patches are selected from a WSI, then these statistics

are calculated across all patches. In our experiments, up to 15 patches were

manually selected for each WSI from representative regions to avoid contam-

ination by artifacts and to make computation feasible, though any subset of

patches could be use.

In the next chapter, the effectiveness of our proposed network over stan-

dard threshold-based methods, such as those used in CellProfiler, is demon-

strated. Subsequent chapters include demonstrations of the efficacy of this

pipeline on TCGA-BRCA images, revealing connections between image-based

clusters and gene expression, with associations with patient outlook.
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CHAPTER 3

CNN NUCLEAR DETECTION AND
SEGMENTATION

3.1 Overview and Related Work

Fundamental to H&E analysis is reliable delineation of nuclear and cellular

boundaries. Since nuclei receive more of the blue color of the hematoxylin

stain and cytoplasm receives more of the pink color of the counter stain,

eosin, color thresholding is commonly used for segmentation. There are many

approaches to nuclear segmentation available in the literature [24, 27], but

often in computational pathology studies, only simple methods are used.

This is likely due to the difficulty in tuning parameters of more complex

methods, the lack of available code and documentation for non-specialists,

or lack of confidence in the robustness of these methods to variation in the

H&E images, such as stain saturation and tissue thickness, that are inherent

to the sample acquisition and preparation process. Certainly, there is a need

for bridging the gap between advances in histopathological image processing

and computational pathology research.

The most popular method for segmentation is a simple thresholding strat-

egy, namely Otsu’s thresholding [33], which is intuitive, straightforward to

implement, and is available in software packages such as CellProfiler [17].

This method has been used in several prominent computational pathology

studies [28, 5]. The image analysis tool CRImage [5], used for segment-

ing nuclei and classifying them as cancer, stroma, or lymphocytes, uses this

strategy with an additional spatial smoothing step. Though this algorithm is

attractively simple, it also struggles to handle varieties of staining and slide

thickness and variation of texture among nuclei, even when applied adap-

tively. Especially in non-uniformly acquired data, such as that in TCGA,

variation is high and segmentation is difficult.

Another approach seen in computational pathology is superpixel segmen-
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tation [10], sometimes with a multi-resolution component [19]. This method

first segments the image into superpixels, which can be considered to corre-

spond to cells, and then nuclei are segmented from within these regions using

color thresholding.

3.2 Convolutional Neural Networks

Recently, with the advent of the era of big data, neural networks have had

a renewed interest in the image processing community, among others, under

the banner of “deep learning,” and have exhibited state-of-the-art perfor-

mance on most machine learning tasks. Although neural networks were first

proposed several decades ago, deep networks were not at first found to per-

form better than simple, shallow architectures, and these methods fell out

of fashion. The primary obstacle in obtaining good performance is the chal-

lenge of optimizing the many parameters of a deep network. The initial

strategy of random weight initialization with back-propagation often led to

poor local minima that did not lead to good performance. It was not un-

til recently [41], in 2006, that the idea of greedy, layer-wise pre-training of

deep networks succeeded in reaching state-of-the-art performance on machine

learning benchmarks.

Generally, a neural network is a directed network of layers of filtering,

pooling, and an activation function, with a classification layer at the final

output:

xl+1 = f
(
gl
(
W i
l xl
)

+ bil
)
, (3.1)

where l indexes the layer, i indexes the filter W and offset b, g is the pooling

or stride operator, and f is the activation function. A variety of choices

exist for activation functions, such as the rectified linear unit, sigmoid, or

hyperbolic tangent function; pooling methods, such as min, max, or average;

stride levels; and classification layer, often the softmax function, along with

the choice of number of layers and filters per layer.

A particularly powerful insight for image classification tasks is that images

often consist of small, local patterns that are repeated across the image. En-

forcing this insight in a neural network can be achieved by restricting the

connections between layers to be of the form of local filters and applying the
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Figure 3.1: Proposed CNN architecture.

same filters across the entire image, a process known as convolution. These

convolutional filters learn local features for a particular layer, and through

the hierarchical structure of the network, effective means for combining the

information from across disparate regions of the image are learned. Convolu-

tional networks also have earlier beginnings [42], but have been applied more

recently to image classification tasks, such as ImageNet [43], with remarkable

success.

Recently, deep learning has been proposed for the task of nuclear detec-

tion [44, 45] and segmentation [46, 47] on H&E images, and has shown

promising results. It has also been used for nuclear classification, such as

mitosis counting [48], an important metric for prognosis. Especially as the

collective set of publicly available H&E image data grows, neural networks

will continue to become more relevant for analysis. Of these methods, the

work of [47] is the closest comparable algorithm, since it was trained on

breast images, and a working model is provided online, though it was trained

specifically for estrogen receptor positive epithelial nuclei. Others perform

only detection and not segmentation [44, 45] or did not provide a model or

data for training a model that might be readily available to the research com-

munity [46]. Our network requires only TensorFlow and our trained model

to run, with no parameters to tune, and was trained on patient data from

TCGA-BRCA from a variety of BRCA types and tissue source sites, along

with the data available from [47]

Our proposed network, diagrammed in Fig. 3.1, consists of six convolu-

tional layers of {64, 64, 128, 128, 256, 256} 3 × 3 × N filters, where N is

the number of filters of the previous layer. Before being fed through the

network, each patch is unmixed into its hematoxylin and eosin stains and

normalized [29] to mitigate stain variation and to reduce the last dimension

19



Figure 3.2: Example epithelial nucleus (top-left), stromal nucleus
(top-middle) and non-nucleus (top-right) patches of 51 × 51 pixels, which
are used as training for our CNN. Each patch, such as the example shown
(bottom-left), is unmixed into its hematoxylin (bottom-middle) and eosin
(bottom-right) stains and then copied at rotations of 90 degrees and
horizontal and vertical flips to promote invariance to these operations.

N of the input layer filters from three to two. At every other layer, starting

at the second layer, the convolution operator is applied at a stride of two,

which is equivalent to downsampling the input layer by two in both spatial

dimensions. The final two layers are a fully-connected layer of 50 nodes and

a softmax output layer of two nodes. The CNN operates on inputs of 51 ×
51 pixel patches, producing a binary label for the center pixel of each patch

indicating whether it belongs to a nucleus or not. To produce a mask for the

entire image, each patch in the image is processed by the CNN.

For training of our CNN, we manually labeled and extracted a dataset

of several hundred sample patches of nuclei and non-nuclei from a set of 68

TCGA-BRCA patients, comprising 32,174 patches and representing a vari-

ety of TSSs. The pre-processing of each patch consists of normalizing the

stain [29], separating the hematoxylin and eosin images, and then generating

rotations at 90 degree increments, as well as horizontal and vertical flips of

the images, to promote invariance to such manipulations, which naturally

arise in H&E images. Several example patches are shown in Fig. 3.2, along

with an example patch unmixed into hematoxylin and eosin stains.

Once the initial binary segmentation mask for each WSI patch is generated

by the CNN, the mask along with the corresponding H&E image are passed

to CellProfiler to be further enhanced by smoothing and to separate clumped

nuclei. Several example WSI patches, and the resulting binary masks and

overlayed, refined boundaries of nuclei and cells, from TCGA-BRCA patients

are shown in Fig. 3.3.
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Figure 3.3: Example TCGA-BRCA WSI patches (left) are first segmented
by the proposed CNN, yielding binary nuclear masks (middle), and then
the mask, along with the original patch, are fed to CellProfiler to refine the
masks and overlay nuclear and cellular boundaries (right). Each row
corresponds to a different sample patch.

3.3 Evaluation

We evaluated our CNN on nuclei detection and segmentation tasks to com-

pare with other similar available tools. To our knowledge, the only publicly

available dataset of breast cancer H&E histology images with ground truth

labeled nuclei, other than training data provided by [47], is the University

of California, Santa Barbara (UCSB) biosegmentation benchmark [49]. The

labeled images for this dataset are pixel-wise binary masks of nuclei pixels.

Boundaries between touching nuclei were not delineated on the masks; so in
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Table 3.1: Comparative detection accuracy of our CNN, our CellProfiler
pipeline, and the network of Janowczyk et al., 2016 [47] on UCSB breast
cancer H&E images.

Distance Algorithm Precision Recall F1-Score

CNN 0.841 0.910 0.874
t = 15 Janowczyk et al., 2016 0.855 0.876 0.866

CellProfiler 0.915 0.760 0.831

CNN 0.830 0.875 0.852
t = 12 Janowczyk et al., 2016 0.850 0.850 0.850

CellProfiler 0.905 0.712 0.800

CNN 0.820 0.857 0.838
t = 10 Janowczyk et al., 2016 0.844 0.832 0.838

CellProfiler 0.890 0.676 0.768

order to ensure objectivity and reproducibility, we inferred these boundaries

automatically using CellProfiler’s nuclei separation tool. These images were

captured at a lower magnification than 40×, the magnification on which both

our network and the network of [47] were trained, so the images were resized

by a factor of 2 to approximate 40× magnification. We refer to the resulting

separated nuclei masks as the gold standard.

3.3.1 Detection

Precision, recall, and the F1-score for evaluating detection performance are

computed as follows:

Precision =
TP

TP + FP
(3.2)

Recall =
TP

TP + FN
(3.3)

F1 = 2× Precision× Recall

Precision + Recall
(3.4)

where TP is a true positive, FP is a false positive, and FN is a false negative.

In our evaluation, a nucleus is considered a true positive if its center is within

a specified distance, in terms of pixels, of the center of a nucleus in the gold

standard mask. When a gold standard nucleus matches multiple predicted

nuclei, its closest match is chosen.
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Table 3.2: Detection accuracy of CNN on colon H&E images [44].

Algorithm TP FP FN Precision Recall F1-Score

CNN 21933 11503 7383 0.66 0.75 0.70

The scores for our network, our CellProfiler pipeline, and [47] with vary-

ing values of the acceptable distance threshold are shown in Table 3.1. The

network of [47] produces a probability, which allows for user tuning by vary-

ing the threshold to be applied to make a binary decision. We evaluated

thresholds ranging from 0 to 0.92 by increments of 0.04 and reported the

the threshold with the best F1-score. Our algorithm performs comparably

with that of [47], but requires no parameter tuning, which could not be per-

formed so precisely on datasets for which there is no gold standard reference

and high variation of staining. More pertinent is that our algorithm shows a

marked improvement over the thresholding technique of CellProfiler.

To evaluate the versatility of the proposed network to generalize to other

cancer types, it was also evaluated on the dataset of H&E images of colon

cancer from [44]. Precision, recall, and F1-scores are shown in Table 3.2.

The scores of our algorithm fell short of the reported results of an F1-score

of 0.802. Inspecting the resulting images, shown in Fig. 3.4, revealed that

the proposed network struggles particularly on faint, thin stromal nuclei.

Comparing qualitatively the results of both networks, shown in Fig. 3.5,

revealed that in some cases, the networks perform nearly the same, with

similar false positives and negatives.

3.3.2 Segmentation

A wealth of metrics exists for evaluating image segmentation, with each met-

ric capturing different aspects of performance. The recent work of [46] chose

the the Dice similarity coefficient (DSC), the Hausdorff distance (HD), and

the mean absolute distance (MAD), which we adopted for consistency and

comparison. For a given nucleus, let Ωgs denote its gold standard segmented

region in the image and Ω̂ the estimated region. The Dice similarity coeffi-
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Figure 3.4: Detection results of the CNN on colon H&E images from [44].
True positive nuclei locations are shown in blue, false positives in green,
and false negatives in red. Each image is a different colon H&E sample
from the dataset. The network performs well on these images, despite it not
being trained on colon tissue. In the bottom left image, it suffers from
over-segmentation of nuclei, indicated by the numerous green dots. In the
bottom right image, the presence of many red dots in the stromal tissue
indicate that the network struggles systematically to detect the thin, long
stromal nuclei.
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Figure 3.5: Comparison of detection results of [44] (left) and the proposed
CNN (right) on an example colon H&E image. For the CNN, true positive
nuclei locations are shown as blue dots, false positives as green dots, and
false negatives as red dots. For [44], detected nuclei locations are shown as
red dots and locations acceptably close to the ground truth are
encapsulated by larger green circles. In several places, both algorithms
produced false positives or negatives at the same locations, suggesting that
our CNN is learning to detect similar patterns, despite being trained on
different tissue.

cient measures the relative overlap of the regions:

DSC = 2

∣∣∣Ω̂ ∩ Ωgs

∣∣∣∣∣∣Ω̂∣∣∣+ |Ωgs|
. (3.5)

The Hausdorff distance is commonly used to compare surfaces or boundaries.

It measures the maximum deviation between the two boundaries:

HD = max {sup d(vgs(s), v̂), sup d(v̂(s), vgs)} , (3.6)

where d() measures the Euclidean distance between the boundaries and vgs(s)

and v̂(s) are the boundaries of the gold standard and estimated segmented

regions, respectively. The mean absolute distance between the boundaries is

computed by

MAD =

∫
d(vgs(s), v̂)|v̂′(s)|ds

2|v̂(s)|
+

∫
d(v̂(s), vgs)|v′gs(s)|ds

2|vgs(s)|
. (3.7)
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Figure 3.6: Segmentation results of our CNN (right column), and the gold
standard (left column) from UCSB H&E breast cancer images. Each row
corresponds to a different sample in the dataset. Blue dots in the right
images indicate true positive nuclei locations generated by our CNN, green
dots false positives, and red dots false negatives. Nuclei boundaries from
our CNN are delineated in red. Our CNN performs well on the bottom and
top two images, but misses several nuclei in the image of the third row,
likely due to its fainter color, the lack of texture of the nuclei, and possibly
a resolution mismatch.
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Since these metrics can only be applied to true positive nuclei, they do not

capture the effects of false negatives and false positives, so a desired balance

must be considered when comparing algorithms. A comparison of the results

for each of these metrics is shown in Table 3.3. Again, our CNN and the

network of [47] perform similarly, though ours slightly worse. CellProfiler

performs slightly better in terms of DSC, but worse in both HD and MAD,

despite its having a significantly higher precision score, which indicates that

it is more conservative in what it detects as nuclei. Several example gold

standard images and their segmentation by of our CNN are shown in Fig. 3.6.

The algorithm is able to detect and segment both stromal and epithelial

nuclei, but struggles with nuclei with fainter hematoxylin stain. This could

be a consequence of the difference in resolution between the 20× UCSB

images and the 40× TCGA images on which it was trained.

Datasets such as TCGA pose a much greater difficulty for segmentation

since the acquisition procedures across the various TSSs are less controlled

and prone to introduce significant variation. A prominent advantage of our

network is that it has been trained on WSIs from TCGA-BRCA patients,

increasing its robustness to these variations. We chose a small subset of WSI

patches with varying slide quality and hue from TCGA-BRCA patients on

which to qualitatively evaluate our CNN, with CellProfiler’s refinement steps,

and compare with CellProfiler’s built-in threshold-based segmentation. The

overall segmentation pipeline in CellProfiler consisted of adaptive threshold-

ing to remove white background pixels, adaptive three-class thresholding to

segment nuclei, declumping of nuclei, and a filtering stage to remove seg-

mented objects outside of a specified range. Finding limits of the respective

thresholds that yielded good performance across all images was difficult. We

set the white pixel background threshold to be from 0 to 0.3 and the adap-

tive three-class threshold for nuclei segmentation to be from 0.4 to 1. The

yielded nuclear and cellular boundaries of both methods for three images

from the test set are shown in Fig. 3.7. Overall, our CNN was able to per-

form much better on the set of images and required no parameter tuning,

unlike CellProfiler.

The proposed network was also compared to the thresholding method of

CRImage [5]. Several example images of lung adenocarcinoma from TCGA

are shown in Fig. 3.8. On an example with stark contrast between the color

content of stromal tissue and nuclei, CRImage performs similarly to the
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Figure 3.7: Cell and nucleus segmentation results of our CNN (right
column) and CellProfiler (right column) on three diagnostic WSI patches of
the TCGA-BRCA dataset. Nuclear boundaries are drawn in red and
cellular boundaries in blue. Our CNN is able to robustly detect and
segment nuclei despite variation due to staining and slice thickness, whereas
the thresholding approach of CellProfiler is not robust to such variation.
Increasing the threshold improved performance on darker images, such as
the bottom two rows, but at the cost of missing most nuclei in lighter
images, such as the top row. Our CNN was able to detect and segment
nuclei well despite the stark differences in intensity and hue. In particular,
it was better able to avoid clumping large nuclei together, as seen in the
comparison of the bottom two rows.
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Figure 3.8: Segmentation results of CRImage [5] (left column) and the
proposed CNN (right column) on TCGA-LUAD diagnostic H&E image
patches. Each row shows the results of the two algorithms on a different
patch. The two algorithms perform similarly on the patch of the bottom
row, but the CNN performs noticeably better on the patch of the top and
middle rows, which are exemplary of the more challenging cases existing in
such datasets.

30



CNN. However, for more challenging cases, CRImage produces many poor

boundaries and false positives, whereas the CNN performs much better, and

though it misses some large epithelial nuclei, the nuclei it does detect and

segment are reliable.

3.4 Codebook Quantization of TCGA-BRCA Nuclei

Ultimately, the goal of nuclear segmentation is to provide an accurate and

reliable boundary for subsequent feature extraction. If the segmentation is

reliable, and the extracted features capture salient characteristics of nuclei,

then these features should be discriminative of the various types of nuclei

observed in breast cancer. Additionally, nuclei that have similar feature vec-

tors, in terms of the Euclidean distance between them, should be perceptually

similar.

Inspecting various nuclei and comparing their visual similarity to the Eu-

clidean distance between their corresponding feature vectors would reveal the

validity of these suppositions. A yet more informative approach is to first

cluster the nuclei into groups with similar features and then inspect the visual

similarity of representative nuclei of these groups. This procedure is known

as codebook quantization, and is popular in image processing for summarizing

data according to their distribution [50].

To perform this investigation, a subset of 500 BRCA patients from TCGA

were processed by the pipeline, using the CNN to first generate the segmenta-

tion masks, and 100 nuclei with corresponding cellular features were chosen

at random from each patient, constituting a dataset of 50,000 nuclei. For

each nucleus and corresponding cell, 219 features describing shape, texture,

and color were extracted. Using a Gaussian mixture model, the space of the

features of all of these nuclei was summarized by a set of 200 clusters. In

the context of codebook quantization, the vectors representing the center of

each of these clusters are called codewords, and the set of these codewords

composes the codebook.

To display these codewords in a way that conveys their relative distance

in the feature space, they were first ordered according to relative distance.

This ordering was derived by applying a greedy traveling salesman algo-

rithm to the fully connected graph constructed from the cluster centers in
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the 219-dimensional feature space, where each node is a cluster center and

the weight of each edge is the Euclidean distance between the centers. The

traveling salesman algorithm searches for a path through the graph that tra-

verses every node with minimal total edge weights. Once this ordering was

determined, each codeword was represented by the nucleus with the closest

feature vector. These representative nuclei and their ordering are shown in

Fig. 3.9. Traversing the nuclei by column and then by row, starting at the

upper left and ending in the lower right, traces the path through the graph

that was retrieved by the traveling salesman algorithm.

From this visualization, it is apparent that neighboring codewords indeed

correspond to perceptually similar nuclei, and that the extracted nuclear

and cellular features are capturing informative characteristics of shape, size,

and texture. Notably, the nuclei are not ordered according to uninformative

similarities, such as stain intensity, slice thickness, or other artifacts of the

image acquisition process. There is also a diverse set of nuclei represented:

some nuclei are quite small and dark, like lymphocytes; some are long, thin,

and surrounded by pink stromal tissue, like stromal cells; and a variety of

epithelial cells, some highly textured, some homogeneous, and ranging in

size, are present. Additionally, nuclei of similar types are near one another

in the ordering, indicating that these features are indeed discriminative of

these various types.

As mentioned in the previous chapter, a stage that could be added to

the proposed H&E analysis pipeline is cell and nucleus classification. Using

labels to represent nuclei instead of a feature vector has many benefits. In

particular, labels are more easily interpreted than a high-dimensional vector

of features and they are amenable to spatial reasoning using graphical models,

where each nucleus could be represented by a node with its label. However,

acquiring labeled nuclei, especially with the diversity need to capture the

variety within each type, is laborious and requires the costly time of a trained

pathologist. Instead of using labeled examples to learn a classifier, such

codewords could be considered unsupervised nuclei classes, and each nucleus

could be labeled, or quanitized, according to its most similar codeword.

In order for classifiers, even unsupervised ones, to work effectively, they

must be trained with a large set of examples that convey the natural vari-

ation present in each class. The TCGA dataset is a tremendous resource

for learning such classifiers because of the quantity and diversity of nuclei
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present in its hundreds of WSIs. Leveraging the richness of this dataset for

codebook generation, such as the one presented, and developing new met-

rics that make use of these labels are promising directions for future cancer

imaging research.
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Figure 3.9: Representative nuclei from 200 codewords generated by GMM
clustering nuclei features from 500 TCGA-BRCA patients.
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CHAPTER 4

GENOMIC INTEGRATION

Genomic data consists of a variety of categories of measurements, including

the presence of mutations, copy number variation, methylation, and mRNA

expression. Though correlated, these different measurements provide unique

insights into cellular function and the processes of gene transcription, regula-

tion, and protein expression. For most commonly used methods of extracting

these measurements from a section of tumor, DNA and RNA are aggregated

from the entire section [51], and spatial information is lost. Another chal-

lenge of working with genomic data is that it falls in the “small n, large p”

domain of statistical analysis; that is, in most studies, only a modest number

n of samples (patients) is available, usually on the order of tens or hundreds,

but the dimensionality p of each sample (number of genes) is vastly larger,

with nearly 20,000 genes in the human genome.

A statistical challenge in this domain is inferring meaningful associations

that are not due solely to noise or other sources of variation, such as those

that may arise in the acquisition process or natural variation in the genome

from patient to patient [52, 30]. Genome-wide association studies are the

simplest approaches to significance testing, but are highly susceptible to dis-

covering false associations. Statistical tools, such as significance analysis of

microarrays (SAM) [53] in the case of gene expression, attempt to account

for this possible trapping. Adding to the challenge, like H&E image data,

gene expression is also subject to batch effects from different instruments or

studies [30]. Additionally, it is known that genes can regulate and drive one

another in highly complex pathways, which must be accounted for in the

inference formulation. Associations must be considered not just for single

genes, but for appropriate groupings of genes that act together.

This thesis primarily considers gene expression data, since it is most di-

rectly connected to the features observable by histopathologic imaging, along

with a variety of techniques, leveraging understanding of biological pathways,
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for reducing the dimensionality of expression data to a tractable level for

inference. A number of aims can then be considered, including cancer sub-

typing via clustering, computational prognosis, correction of genomic data,

and identification of imaging phenotypes to act as surrogates for genomic

features. This thesis shows the efficacy of the previously described H&E

analysis pipeline for discovering meaningful groupings of cancer patients re-

lated to outlook and investigates the genomic markers that are associated

with these image-based groupings.

4.1 Genomic Data Dimension Reduction

To increase the statistical power of association tests, it can be helpful to

reduce the dimensionality of genomic data, either through modeling that

makes simplifying assumptions about the interactions of genes or their con-

nections, or by leveraging the knowledge of cellular processes discovered by

other studies. Several such approaches are reviewed here before considering

the integration of genomic data with imaging.

4.1.1 Knowledge-Driven Gene Selection

One approach is to restrict the set of genes considered using biologic under-

standing from other studies. The Kyoto Encyclopedia of Genes and Genomes

(KEGG) [54] is a knowledge base of gene functions and interactions in cellular

processes, represented graphically by pathways. For pathways that are known

or suspected to be implicated in cancer, the specific set of associated genes

can be investigated. The Catalogue of Somatic Mutations in Cancer (COS-

MIC) [55] is a comprehensive knowledge base for somatic mutations that

have been implicated in cancer. These mutations are referred to as driver

mutations, as opposed to passenger mutations, since they are believed to be

the true cause of specific cancers amongst many observed mutations. The

COSMIC gene census gives a list of roughly 500 somatic mutations that are

linked to particular types of cancer and describes the particular dysfunction

caused by each mutation.
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4.1.2 Molecular Subtype

An important discovery in genomics research was the categorization of five

intrinsic molecular subtypes of breast cancer: luminal A and B, basal-like,

HER2-enriched, and normal [2]. These subtypes were found to have sig-

nificantly distinct survival outlooks, with the basal-like subtype performing

particularly poorly. A subset of 50 genes, known as the PAM50 subset, were

identified to be discriminative of these types through gene expression cluster-

ing [2], which could be investigated specifically for associations with image

data. Additionally, image data may be able to reveal new insights into each

of these subtypes, possibly even the existence of prognositically informative

image-based subtypes within each molecular subtype.

4.1.3 Linear Unmixing

Linear unmixing is a technique for unmixing high-dimensional data when it

is assumed that each sample is generated as a linear mixture of a small set of

common, base samples. The linear mixture model was formulated originally

for hyperspectral imaging used in remote sensing, but it was recently applied

successfully to gene expression data. Since gene expression is acquired from

an aggregate of cells, and the aggregate will consist mostly of similar types

of cells, if cells of the same type have similar gene expression, then the linear

mixture model would be appropriate. A particular model developed for gene

expression unmixing is the unsupervised Bayesian linear unmixing (uBLU)

model, which performed well on a recent viral challenge to study gene expres-

sion patterns of influenza [56]. An advantage of the linear mixture model is

that the resulting endmembers yield an interpretable meaning, as compared

to other statistical dimension reduction techniques, such as PCA.

The linear mixture model assumes each data vector si, in this case the

gene expression of a patient, for patient i is generated as a linear mixture,

usually a convex combination, of a small set of base factors or endmembers

{ek ∈ Rp}Kk=0:

si =
K∑
k=0

α
(i)
k ek, (4.1)

where
{
α
(i)
k

}K
k=0

are the mixing coefficients for patient i and obey the prop-
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erty:
∑K

k=0 α
(i)
k ≤ 1 (

∑K
k=0 α

(i)
k = 1 in the convex case). The endmembers

may be known a priori, or they may need to be discovered. A variety of

algorithms exists for generating endmembers and for determining the mixing

coefficients [57]. A popular algorithm is N-FINDR [58], which approaches the

unmixing problem from a geometric perspective, searching for K pure pixels

that compose the largest simplex encompassing all spectra. An enhance-

ment of this, the normal compositional model [59], allows for the modeling

of variation of endmembers by a Gaussian, where x
(i)
k ∼ N (ek, σk), and each

observed spectrum is a linear mixture of vectors x
(i)
k sampled from the dis-

tribution of each endmember:

si =
K∑
k=0

α
(i)
k x

(i)
k . (4.2)

The uBLU algorithm is a further development of this model specifically for

gene expression data.

Applying uBLU on the KEGG Jak-STAT signaling pathway, a pathway

of 147 genes that is known to affect cell growth and is referenced in subse-

quent results, yielded six optimal endmembers for the model. The discovered

endmembers, along with an example reconstruction of the expression of a

TCGA-BRCA patient, are shown in Fig. 4.1. The distribution of the squared

reconstruction error of gene expression of all 1100 patients is shown as well.

For the example reconstructed gene expression shown, the mixing coefficients

for the six factors were {0.0075, 0.0078, 0.0237, 0.5146, 0.0424, 0.4040}, indi-

cating that only two factors contributed significantly to the reconstruction.

The original expression levels for the Jak-STAT pathway genes from 1100

TCGA-BRCA patients are shown in Fig. 4.2, along with the results of hi-

erarchical clustering, showing clear trends in the expression across patients.

Through linear mixing, these trends can be captured succinctly by an appro-

priate and easily interpretable model, and each patient can be represented

by their corresponding endmember coefficients, which can then be used for

subsequent analysis.
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Figure 4.1: Discovered Jak-STAT factors using uBLU [56] for the 147 genes
involved in the Jak-STAT signaling pathway in KEGG. The algorithm
estimated that six factors (top) were adequate to reconstruct the expression
data. The reconstructed expression for a sample TCGA-BRCA patient
shown against the true expression (middle). The histogram of the squared
reconstruction error of Jak-STAT genes for the six discovered factors for
1100 TCGA-BRCA patients (bottom) shows the effectiveness of the factors
to represent the expression levels. The average squared error was 0.8011 and
the average squared magnitude of the expressions of patients was 3.9486.

4.2 Data Pre-Processing

Before considering methods of genomic and image integration, the data used

in this study and some necessary pre-processing are first detailed. Diagnos-
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Figure 4.2: Heatmap of genes involved in the Jak-STAT signaling pathway
in KEGG.

tic WSI images, clinical data, and gene expression from 710 patients from

TCGA-BRCA were used in this study. RNA-seq (v2) median-centered z-

scores of gene expression for over 16,000 genes for each patient were retrieved

from TCGA using cBioPortal’s R package “cgdsr”. The z-scores were thresh-

olded to be within -4 to 4 to limit the bias of large outliers. For each patient,

up to 15 1000 × 1000 pixel patches from each WSI were manually selected

for analysis, avoiding possible contamination by artifacts of blurred regions

or tissue folds. For patients with multiple diagnostic WSIs, only the first

slide was used. The WSIs for all patients included in the study were imaged

at 40× magnification.

4.3 Unsupervised Image-Based Clustering Analysis

The first experiment for associating image data with genomics uses unsu-

pervised clustering to group patients from the TCGA-BRCA dataset into

data-driven clusters and then to search for genes associated with these clus-
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(c) Area and Shape (Log-rank test:
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(d) Intensity (Log-rank test:
p = 0.0397)

Figure 4.3: Survival curves for the two separated image-based clusters for
different feature subsets.

ters based on gene expression and mutation data. The proposed H&E anal-

ysis pipeline was applied to the TCGA-BRCA dataset of 710 patients to

transform the WSI of each patient into a single feature vector capturing the

distribution of nuclear and cellular features in the WSI.

The summarized feature vectors of all patients were separated into clusters

using a Gaussian mixture model. To determine if the clusters were mean-

ingful, they were tested for significant association with outlook among the

patients of each group. To remove the bias of outliers, which may represent

images of significantly poor quality, they were removed prior to clustering

using an isolation forest classifier and added again for subsequent analysis.

To gain insights into the significance of different features, patients were sep-
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Table 4.1: KEGG pathways associated with genes that were differentially
expressed across image-based clusters.

Pathway abbrv. Pathway name p-value FDR

PImm Primary Immunodeficiency 4.4 ∗ 10−8 5.4 ∗ 10−5

Tcell T cell receptor signaling pathway 6.5 ∗ 10−7 0.0008
NKcell Natural killer cell mediated cytotoxicity 1.4 ∗ 10−4 0.17
Cyto Cytokine-cytokine receptor interaction 3.0 ∗ 10−4 0.37
Bcell B cell receptor signaling pathway 7.9 ∗ 10−4 0.98
CAM Cell adhesion molecules 0.0076 9.1
NFK NF-kappa B signaling pathway 0.013 14.7
Phag Fc gamma R-mediated phagocytosis 0.045 44
Jak Jak-STAT signaling pathway 0.083 66.05

arated into two clusters based on different subgroups of image features. The

resulting survival curves for clusters based upon texture features, area and

shape features, intensity features, and all features are shown in Fig. 4.3. Tex-

ture features, which describe the homogeneity of the nucleus and surrounding

cytoplasm, showed a strong association with survival. The intuition of this

finding is confirmed by the routine Nottingham Histologic Score, which in-

corporates nuclear pleomorphism, such as the prominence of the nucleoli and

presence of vesicles, as an important prognostic indicator. Intensity features,

which capture the distribution of hematoxylin and eosin intensities within the

nuclei and cells and are also quantitative measures of nuclear pleomorphism,

also showed a significant association with survival.

Clustering with all features revealed two clusters with the most distinct

survival curves. Most of the features distinguishing these two clusters were

indeed texture and intensity features, primarily of the eosin channel. The

clusters derived from area and shape features, while also being metrics for

nuclear pleomorphism, showed little association with survival, which may be

due to a still greater need for accurate and robust segmentation, to which

these features are more sensitive. Fig. 4.4 shows patches from the WSIs of

patients whose image feature vector was closest to each cluster center.

We used the R package SAM [53] to test for significant associations between

our image-based clusters and the expression levels of 16,000 genes. The

analysis reported 254 genes that were significantly differentially expressed

(with a false discovery rate [FDR] less than 0.05) between the two clusters for

which all features were used. To visualize the pattern of expression of these
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Figure 4.4: Representative patches from nine different patients for the two
clusters derived using all features. Patches for the poor prognosis group are
shown in the bottom two rows, along with the green color patch to match
with other figures, and patches for the better prognosis group are shown on
the top two rows, along with a blue color patch. The nuclear grades, if
provided in the pathologist’s report, for the patient corresponding to each
are given below the patch.

genes across the two clusters, the median-centered z-scores were grouped

using hierarchical clustering within each image-based cluster and are shown in

Fig. 4.5. In the heatmap, each row corresponds to one of the 254 differentially

expressed genes, and each column corresponds to a patient. The patients are

grouped by image cluster, indicated by the green and blue bars across the

top of the heatmap, and then clustered hierarchically within each image

cluster to help visualize similar expression patterns. The genes are clustered

hierarchically to help with visualization as well. A strong pattern of over-
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Figure 4.5: Gene expression of significantly differentially expressed genes
(FDR ≤ 0.05) between the two image-based clusters using all image
features. The cluster with better survival (blue) shows two groups of
patients with significantly higher gene expression. It is also evident that a
large group of the selected genes are highly correlated for a given patient.

expression for nearly half of these genes can be seen for the group of better

prognoses.

The table below the heatmap in Fig. 4.5 shows the association of these clus-

ters with clinical markers, the administration of several drugs, and several

gene mutations. Each column in the table is aligned to the same column in
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Table 4.2: List of several significantly differentially expressed genes (FDR
≤ 0.05) between the discovered image-based clusters and significantly
associated KEGG pathway membership.

Gene ID PImm Tcell NKcell Cyto Bcell CAM NFK Phag Jak Contrast-1 Contrast-2

CIITA 2.059 -2.453
PTPRC 1.801 -2.146
CD3D 1.982 -2.361
LCK 2.278 -2.714
IL2RG 2.138 -2.547
CD4 1.803 -2.148
CD79A 2.021 -2.408
CD40 2.277 -2.713
BTK 2.019 -2.405
LAT 2.071 -2.467
CARD11 2.099 -2.501
PIK3CD 1.963 -2.339
CD247 2.062 -2.456
IL10 1.885 -2.246
PDCD1 2.052 -2.445
LCP2 1.873 -2.232
PTPN6 1.939 -2.31
SH2D1A 1.894 -2.256
KLRK1 1.802 -2.147
FASLG 1.959 -2.334
SH2D1B 1.794 -2.137
TNFRSF25 2.11 -2.513
IL21R 1.951 -2.324
CCL27 1.88 -2.239
CXCL10 1.881 -2.241
CCR7 1.8 -2.144
TNFRSF1B 1.81 -2.157
CXCR5 1.879 -2.238
CCR10 2.065 -2.46
LTA 2.323 -2.768
CARD11 2.099 -2.501
PTPN6 1.939 -2.31
PIK3AP1 1.835 -2.186
CD79B 2.059 -2.453
ITGB7 2.448 -2.492
ICAM3 2.218 -2.643
CD6 2.091 -2.492
CDH3 1.885 -2.245
DOCK2 1.823 -2.172
FCGR2A 2 -2.383
CCND3 1.997 -2.379

the heatmap and corresponds to the same patient. The status of the primary

clinical immunohistochemistry markers used in breast pathology (estrogen re-

ceptor (ER), progesterone receptor (PR), and human epidermal growth factor

receptor-2 (HER2)) are displayed, with black indicating positive status and

white indicating negative status. These markers show a strong association

with the two clusters, which implies that the difference in survival of the two

clusters is in some way related to known cancer biomarkers. Mutations are

also displayed, with black indicating the presence of a mutation. Of the five

mutations associated with breast cancer that were considered in the anal-

ysis, only GATA3 showed a significant association (p = 0.0418). The five

drugs most commonly administered to breast cancer patients were tested for

association, and no significant associations were found, implying that drug
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administration is likely not the cause of the survival differences of the two

groups. In the table, black indicates a drug was administered and white

indicates it was not. Neither lymph node status, PAM50 subtype, nor the

presence of metastasis showed a strong association with the clusters.

To gain insight into the function of these differentially expressed genes, we

used DAVID [60] to search for KEGG pathways in which significant subsets

of these genes are present. The top five most strongly associated pathways

were: primary immunodeficiency, T-cell receptor signaling pathway, natural

killer cell mediated cytotoxicity, cytokine-cytokine receptor interaction, and

B-cell receptor signaling pathway. Significance values of association and used

abbreviations for each pathway are given in Table 4.1. Each of these pathways

was associated with a p-value less than 0.05, while primary immunodeficiency

and T-cell receptor signaling pathway were also associated with a FDR less

than 0.05. We incrementally raised the admissible FDR for our gene set,

up to 3.475, and continued to observe these pathways associated at similar

levels of significance. Several other pathways implicated in cancer were also

discovered, but these pathways had a significantly higher FDR.

The genes involved in each of these pathways that were significantly dif-

ferentially expressed across the two clusters are shown in Table 4.2. Each

column in the table corresponds to a pathway listed in Table 4.1. The pres-

ence of a colored square at a particular row and column indicates that the

gene of its row is involved in the pathway of its column. The contrast values,

given in the last two columns, are the standardized mean difference between

the expression levels of the two clusters. Contrast-1 corresponds to difference

for the improved prognosis group and contrast-2 corresponds to the differ-

ence for the poor prognosis group. The positive contrast values (contrast-1)

for the improved prognosis group compared to the negative contrast values

(contrast-2) for the poor prognosis group correspond with the higher levels

of expression of the selected genes in Fig. 4.5.

This analysis provided possible insights for further exploration of the in-

fluence of these pathways on nuclear pleomorphism, as measured by various

texture and intensity features. The most significantly associated pathways

discovered are related to the immune system, which is crucial for recognizing

and killing cancer cells. Other pathways also have a role in cancer: the CAM

pathway can affect metastasis and both the NF-kappa B signaling and the

Jak-STAT signaling pathways affect cell growth.
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4.4 Supervised Image-Based Clustering with Glmnet

A concern of the previous experiment is how well the clusters will generalize

to new data. Since unsupervised learning is not being driven by a class label,

such as patient outlook, each feature in the data is given equal weight in the

clustering assignment and the algorithm is unable to differentiate between

features that are informative of outlook.

Supervised learning algorithms use a desired class assignment, or response

variable, to learn which features in the data are discriminative and what

parameters in the assumed model are optimal for discriminating the response

variable. In the case of right-censored data like survival data, instead of a

class label for each patient, each patient has a time-of-last-follow-up y and

an event indicator of status (dead or alive) δ, denoted (xi, yi, δi) for patient i.

There are a variety of models for fitting right-censored survival data, but a

commonly used model is the Cox proportional hazard. This model assumes

that the hazard for each patient follows a baseline curve h0(t) scaled by an

exponential of the linear regressor:

hi(t) = h0(t)e
xTi β, (4.3)

where β is the vector of linear parameters of the model to be learned. These

parameters are chosen by maximizing the likelihood:

L(β) =
m∏
i=1

ex
T
j(i)

β∑
j∈Ri

ex
T
j β
. (4.4)

A tool for performing this optimization is Glmnet [61] (notation is adapted

from this reference), which minimizes the negative log-likelihood over the

data under a regularization penalty on the l1 and l2 norms, a mixture of the

LASSO and ridge penalties, called the elastic-net penalty.

minβ0,β
1

N

N∑
i=1

wil(yi, β0 + βTxi) + λ
[
(1− α)||β||22/2 + α||β||1

]
. (4.5)

This penalty trades off between the number of features allowed in the model,

enforced by the LASSO penalty, and the squared magnitude of the selected

features, the ridge penalty via α.
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Glmnet was applied to the dataset of TCGA-BRCA patients to learn a pre-

dictive model for separating patients into poor and better prognoses groups.

The patients were first split randomly into two groups: 80% were used for

training the model, and 20% were used for testing the model. The training

data were shuffled 15 times, and for each shuffle, 75% were used to train the

model and 25% were used to validate it. The penalty term λ was chosen for

each shuffle using 10-fold cross validation on the subset of 75% of the training

data. The value α = 0.8 was chosen manually, as it tended to produce the

best performance on validation sets. The model with the best separation of

survival curves, according to the p-value, was chosen.

For each set of training data, Glmnet trained a hazards model for the

data, and a risk index for each patient in the training data was computed.

Following another similar approach for non-small cell lung cancer prognostic

prediction [28], the median risk index of the data was chosen as the separating

threshold for the two clusters.

Models were generated for both data that had been stain-normalized and

data that had not. The survival curves of the discriminated groups without

stain-normalization are shown in Fig. 4.6. The survival curves of the dis-

criminated groups with stain-normalization are shown in Fig. 4.7. Without

stain normalization, Glmnet was able to learn a model that separated the

training data, but it could not generalize well to the validation or test sets.

It is possible that this model is fitting too closely to the characteristics of the

data acquisition process of particular TSSs, such as stain concentration and

sample thickness. Although stain normalization can introduce its own arti-

facts, in this scenario it is able to help the model learn more robust features.

The validation and test sets show much better discrimination, though the

discrimination still does not generalize completely to validation and testing

sets.

An advantage of Glmnet, with its elastic-net penalty, is that it produces

a sparse subset of nonzero coefficients in β via the l1 penalty, which is in-

formative of the importance of each feature. The selected features, along

with their corresponding coefficients in β in the regression model, for stain-

normalized images are given in Table 4.3. Since the features that are passed

to Glmnet are normalized to zero mean and unit variance, the magnitude of

the coefficients can be thought of as a measure of importance in the model.

Notably, most features with a large coefficient are Zernike moments of the
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Figure 4.6: Survival curves for learned hazards model using Glmnet on
TCGA-BRCA images that were not stain-normalized.

cells and nuclei, which are invariant descriptors of shape. In contrast to the

unsupervised GMM clusters, shape features are discovered to be the most

informative of survival by Glmnet. Other features of texture and intensity

are also present in the selected subset, but are significantly less informative.

4.4.1 Luminal A Subtype

The same experiment was performed the subset of TCGA-BRCA patients

that belonged to the luminal A molecular subtype. This subtype tends to be

ER-positive, HER2-negative, and of a low tumor grade, and tends to have
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Figure 4.7: Survival curves of poor and better prognoses groups according
to the learned hazards model using Glmnet on stain-normalized
TCGA-BRCA images.

the best prognosis of molecular subtypes. This subtype was chosen among

the five primarily because it constituted the largest subset of patients, with

367 members.

Since restricting the patient set to this subtype drastically reduced the

number of patients for which to learn a model, to evaluate the model, the

dataset was split randomly 15 times between 70% training and 30% testing.

Results of three of the 15 iterations are shown in Fig. 4.8. Similar to the

experiments using all patients, the model is generally able to separate the

training data well, but fails to generalize to held-out testing data. These

results indicate that more informative features are still needed to capture
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any differences in prognoses within the luminal A subtype. The same is

likely true for the other subtypes as well.
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(a) Training Results
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(b) Testing Results

Figure 4.8: Survival curves of good and poor prognoses groups according to
the learned hazards model using Glmnet on stain-normalized TCGA-BRCA
images of the luminal A subtype. Each row shows the resulting curves of a
different random split of the data into (a) training and (b) testing sets. The
inability of the model to generalize well to testing data for each different
partitioning of the dataset indicates the need for the development of more
informative image features.
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CHAPTER 5

MULTIMODAL IMAGE ANALYSIS

Though hematoxylin and eosin staining of tissue slides remains the gold stan-

dard for diagnosis for most cancers, it is limited in what information it can

provide about the cellular processes inside a tumor. Other modalities, such

as fluorescence lifetime imaging (FLIM), exist that can reveal unique quan-

titative information about these processes. FLIM can provided quantitative

measurements that are related to the metabolic activity within a sample,

and it has been shown to be discriminative of processes of cell death, namely

apoptosis and necrosis. Apoptosis, a natural response of cells to nonviable

conditions, requires an increase in metabolic activity, whereas necrosis, the

uncontrolled and inflammatory death of cells, generally does not. The type

of death that cells within a tumor experience is informative of the stage of

cancer, since suppression of apoptosis is a key hallmark [1]. Furthermore,

FLIM could be useful for clinical applications, such as testing the efficacy

of drugs and treatment in inducing apoptosis. Optical coherence microscopy

can complement FLIM by providing structural information about the en-

vironment. Additionally, these modalities can be used to image live cells,

allowing for the observation of progression of cancer over time, and they can

even be imaged in vivo. Recently, multimodal imaging systems have been

proposed and developed, making possible quantitative analysis of a tumor

via multiple imaging modalities that are spatially and temporally registered.

In particular, a system has been developed that can image FLIM, OCM, and

multiphoton microscopy (MPM) simultaneously in vivo [62], and this system

is the focus of this thesis.

Processing the acquired images by human observation alone is not feasible

and would likely not fully utilize the quantitative aspect of these several

modalities. Therefore, it is desirable to develop image processing algorithms

to extract meaningful information from these images and machine learning

algorithms to learn how best to leverage the unique information provided
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(a) FLIM (b) OCM

Figure 5.1: Multimodal images from necrosis-induced cells after 3 hours at
a depth of 0 µm. Histogram equalization has been applied to the OCM
image for visualization.

by each modality for specific tasks. In particular, this thesis considers the

problem of detecting and differentiating apoptosis and necrosis and proposes

an algorithm for detecting and segmenting cells, as well as a statistical model

for the detection problem.

5.1 Detection of Apoptosis and Necrosis in Cancerous

Cells Using MPM-OCM-FLIM Multimodal Data

Images of living engineered skin cells were collected by the imaging system in

vivo over 24 hours for three studies: apoptosis, necrosis, and a control study

of homeostasis. The modalities of the imager were OCM, FLIM photon

count, and FLIM curve-fit parameter. An example multimodal image from a

cancer cell study is shown in Fig. 5.1. The first stage of the detection pipeline

is the tracking of cells and the segmentation of cell cytoplasm. Once the

regions of cell cytoplasm are identified, the pixel values within these regions

can be used to detect apoptosis, necrosis, or homeostasis, since the cytoplasm

is where most of the metabolic activity in the cell occurs, as opposed to the

nucleus.
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5.1.1 Cell Tracking and Segmentation

Delineating clear cell boundaries from the multimodal data poses a challenge

due to noise. However, the consistency of images over time can be used ad-

vantageously to combat this challenge. We registered FLIM photon count

images at the same depth across different time stamps using a mutual infor-

mation cost function [63] and a (1+1) evolutionary optimizing strategy [64],

assuming a rigid transform with the first image of the time-lapse. With ac-

curate registration, an average of the time-lapse images can be computed to

aid in segmentation by increasing the signal-to-noise ratio and the contrast.

This segmentation algorithm also requires initial seeds of cytoplasmic regions,

which are currently labeled manually, though an algorithm to robustly and

automatically detect nuclei to be used could be added. The segmentation al-

gorithm morphs the region initialized by the seed using active contours [65].

A segmentation mask is generated as the final output, which can be refined

using morphological operations and size constraints. The mask is then trans-

formed to the image at each different time stamp using the previously derived

registration mapping. Example outputs for apoptosis (top), necrosis (bot-

tom), and control (middle), or homeostasis, studies are shown in Fig. 5.2. As

can be seen, the current tracking and segmentation method does reasonably

well, but struggles, especially at the 24 hour mark, since much has changed

in the environment since the last time stamp and the image content becomes

diffuse.

5.1.2 GMM-Based Classification

Once the cytoplasmic pixels are segmented, trends in the three modalities

that separate the two processes of cell death and the control state of home-

ostasis can be investigated. Clearly distinguishable trajectories through the

three dimensional data space over time can be seen, as shown in Fig. 5.3,

when all pixels started at roughly the same location in the space. In images

from the apoptosis study, a significant increase in the FLIM curve param-

eter is seen over time, which is consistent with other studies that showed

increased metabolic activity during apoptosis. By the end of the observation

of 24 hours, the data of the three studies had separated into well-delineated

clusters. The FLIM photon count and OCM values can also be seen to play
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Figure 5.2: Evolution of cell tracking and cytoplasm segmentation over
time for apoptosis (top row), homeostasis (middle row), and necrosis
(bottom row) studies. The colors indicate the predicted labels of each
segmented pixel by the GMM at each time stamp (red = apoptosis, blue =
control, green = necrosis).

a role in separation of the three studies.

A naive approach that demonstrates the separability of these three studies

was applied using a GMM. Each data point was assumed to be generated

from a Gaussian distribution of its corresponding study, or class. The model

was trained using data from the last observation at 24 hours. The parame-

ters of the trained model were then used to classify the data points at each

time stamp. Fig. 5.3 shows that some pixels from the apoptosis study were

assigned correctly even at the 7 hour time stamp.

Further studies need to be conducted to ensure that the variation between

processes is not a result of variation in the image acquisition process. Vari-

ation such as image source intensity can significantly affect the location of

the clusters in the data space and their trajectory, which would compromise

the effectiveness of this clustering method.

5.1.3 Mathematical Formulation of Detection Problem

Although the GMM model is effective at classifying the three studies in this

example, it is likely that this model would not be robust against variation
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Figure 5.3: Scatter plot of the evolution of cytoplasmic pixels from necrosis
(green), apoptosis (red), and control (blue) studies over time. As time
progresses, a clear distinction can be seen between the three clusters. The
upper row shows the true labels of the three studies. The lower row shows
the estimated labels using the GMM model.

across experiments, in particular variation in the image acquisition process.

Additionally, as can be seen in the results of Fig. 5.3, separation of the studies

can be identified earlier than the 24 hour time stamp, which the GMM model

does not fully leverage. Furthermore, in actual in vivo experiments, the time

stamps will not be known, and so the stage that a cell is in within a process

must be estimated in addition to the process itself. The subject of future

work will be to formulate a more precise mathematical model that accounts

for these possible sources of variation, handles the estimation of the stage in

the particular process, and quantifies precisely the uncertainty of detection.

Consider a simple model of two possible trajectories of cells through the

three-dimensional data space, where one trajectory is a form of cell death,

either necrosis or apoptosis, and one is homeostasis. Let the random variable

Xt ∈ R3 be the position in the space at time stamp t of the average of all

pixels in the cell under consideration. Assume that, if cell death was induced,

it began at t = 0. Let the random vector ~X = {X0, X1, . . . , XN−1} be the

vector of data points of each time stamp, representing the trajectory of the

cell over time, andN be the number of time stamps collected. Let the random

variable C be the label for the cell process (C = 0 represents homeostasis

and C = 1 represents cell death). This problem is essentially a hypothesis

detection problem, for which the maximum a posteriori (MAP) estimate Ĉ
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of C, which is optimal for the 0-1 loss, is given by

ĈMAP = arg max
c
P (C = c| ~X). (5.1)

If the prior probability for each label is assumed to be equal, then the MAP

estimate is the maximum likelihood estimate (MLE) via Bayes’ rule:

ĈMLE = arg max
c
P ( ~X|C = c). (5.2)

If the expected trajectory for homeostasis remains close to some mean point,

and the trajectory for cell death follows some known trajectory, the two

observed trajectories can be modeled as following one of these two known

trajectories in the presence of independent Gaussian noise (assuming the

mean of homeostasis has been removed):

• Homeostasis: Xt ∼ N (0, σ0)

• Cell death: Xt ∼ N (µt, σ1)

Given this model, since the noise at each time stamp is independent, the

likelihood probability for each process is simply the product of the likelihoods

of each time stamp:

P ( ~X|C) =
N−1∏
t=0

P (Xt|C). (5.3)

Given the stated models for the two possible trajectories, the MLE is a simple

log ratio test,

ĈMLE =
P ( ~X|C = 1)

P ( ~X|C = 0)

1

≷
0

1, (5.4)

=
N−1∑
t=0

(
X2
t

σ2
0

− (Xt − µt)2

σ2
1

)
1

≷
0

N−1∑
t=0

(
log
√

2πσ1 − log
√

2πσ0

)
. (5.5)

In a real in vivo scenario, the time point t of an image would not be

known, since there would be no start time to reference. To account for this,

the model must be enhanced by the introduction of a random variable, T ,

to represent the stage, or time stamp, of the process of cell death at the first

observation. Imposing a uniform prior on T0 ∈ {0, 1, . . . , N − τ − 1}, thereby

assuming that the cell is equally likely to be in any stage of cell death at the
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first observation, assuming it is experiencing cell death, and assuming that

τ time stamps are observed and N is the last modeled stage in the process,

the new posterior probability of the label can be written as

P (C| ~X) =
N−τ−1∑
t0=0

P (C, T0 = t0| ~X) ∝
N−τ−1∑
t0=0

P ( ~X|C, T0 = t0), (5.6)

=
N−τ−1∑
t0=0

t0+τ∏
t=t0

P (Xt|C, T0 = t0). (5.7)

From here, the model can be further enhanced to account for a third

trajectory for cell death, distinguishing between apoptosis and necrosis, and

other prior knowledge. Other models for the trajectories may be better

suited, such as a Markov chain, which could replace the simple model of a

known trajectory with Gaussian noise. Future work will revise and enhance

this model, from which the optimal decision rule and associated confidences

can be derived, and test the model on controlled in vivo data and real ex

vivo data.
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CHAPTER 6

CONCLUSION

There is still much to be understood about the connection between geno-

type and phenotype in cancer, and more sophisticated tools for image and

genomic analysis will be required. This thesis has proposed a computational

pipeline for analyzing H&E images by extracting features and locations of

cells and their nuclei that could serve as a building block for the develop-

ment of such tools, such as graphical models that capture the spatial layout

of the tumor. Additionally, this thesis has proposed a CNN to perform robust

nuclear segmentation, a key component of histopathological image analysis,

and has demonstrated its effectiveness across a variety of WSIs compared

to other commonly used tools. To demonstrate the efficacy of this pipeline,

it was applied to 710 TCGA-BRCA patients to extract nuclear and cellular

features. Clustering patients into subgroups evidenced that the computed

features have a meaningful relationship with patient outlook. The lack of

any necessary parameter tuning in the segmentation step and the ease of

use of this pipeline should help researchers working with H&E images to

perform more reliable analysis, whether WSIs or biopsies, without needing

to understand image processing techniques. This pipeline can also be easily

parallelized on a cluster to run on separate partitions of large datasets. Ad-

ditionally, continuing to increase the training set of nuclei patches will help

to improve the segmentation accuracy of the proposed CNN.

This thesis has also demonstrated a means of analyzing connections be-

tween computed image features and genomic data, specifically gene expres-

sion, by searching for significantly differentially expressed genes across image-

based clusters using SAM and then using DAVID to find associated KEGG

pathways. This analysis provided possible insights for further exploration of

the influence of these pathways on nuclear pleomorphism, as measured by

various texture and intensity features. Though we have demonstrated the

analysis of our H&E pipeline with a particular method for associating im-

61



age features with genomics, the use of the pipeline is not restricted to this

procedure, and other means of investigating connections could be explored.

We envision this pipeline being applied to H&E datasets for a variety of

subsequent imaging-genomic analysis.

Since cells are living, dynamic entities that experience various cycles and

processes over time, and biomarkers such as gene expression change through

these processes, other modalities that can image live cells will be necessary

for future research. This thesis has demonstrated how image processing can

aid multimodal imaging systems in obtaining quantitative measurements of

cellular processes, such as cell death, and infer various cellular states. The

provided results show the inherent separability of distinct cell death pro-

cesses. In future work, the proposed model could be further refined to solve

for the optimal point of detection of differentiation and similar models could

be extended to other cellular processes or genomic states.
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CHAPTER 7

FUTURE WORK

7.1 Hyperspectral Histopathological Image Modalities

This thesis has investigated several imaging modalities for cancer, but many

others exist. A particular category of modality that would be important to

explore in future research is hyperspectral imaging. In applications ranging

from environmental monitoring to biomedical imaging, it is useful to acquire

absorbance and reflectance measurements of light beyond the visible spec-

trum. In biomedical applications, absorption of different spectra of light is

indicative of the chemical composition of the imaged sample and can pro-

vide quantitative measurements of cells and tissue in a label-free manner,

obviating the need for stains that contaminate the specimen. These quanti-

tative measurements can supplement H&E stained samples in distinguishing

different cell types, which is ultimately of use to pathologists in detecting

cancer. Fourier transform infrared (FTIR) spectroscopy and hyperspectral

fluorescence lifetime imaging (FLIM) are two useful spectral imaging tech-

niques for cancer. An example intensity band of FTIR from a breast cancer

dataset is shown in Fig. 7.1, and the distribution of frequencies of FTIR

absorbance spectra for a dataset of breast cancer patients for different cell

types is shown in Fig. 7.2. Example FLIM spectra for several different tissue

types are shown in Fig. 7.3.

Extracting spectra from hyperspectral data and analyzing the recorded

spectra poses unique challenges. Due to insufficient imaging resolution and

the heterogeneity of samples, pixels in a hyperspectral data volume are likely

to contain spectral information of several cells. Classical clustering algo-

rithms, such as Gaussian mixture models (GMM) or K-means, attempt to

classify the spectrum at each pixel as belonging predominantly to a particular

class of cell and do not account for the mixing of cell types in the acquisition
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Figure 7.1: Intensity of a sample frequency band from a dataset of breast
cancer biopsies imaged with FTIR.

(a) Epithelial cells (b) Interlobular stromal cells

(c) Myoepithelial cells (d) Stromal cells

Figure 7.2: Mean and spread of FTIR absorbance spectra of cells in breast
cancer tumors. Absorbance was sampled at frequencies from 850 µm to
1850 µm at an interval of 2 µm.

process.

Clustering analysis run on the FLIM spectra, with its corresponding H&E

slice, is shown in Fig. 7.4. Several iterations of both GMM and K-means

were run, to account for variation in the random initialization, and the qual-

itatively best resulting clustering assignment is shown. For both algorithms,

seven components, or clusters, were assumed. Experiments were conducted

with a varying number of clusters, but seven seemed to produce the best

compromise of generalization and specificity. Both the GMM and K-means
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Figure 7.3: Example hyperspectral FLIM spectra of cancerous ovary tissue.

(a) H&E (b) GMM (c) K-means

Figure 7.4: Class labels of ovary data generated by GMM and K-means
clustering methods using 7 components.

results show a change in cluster assignment moving from left to right across

the image, which is a result of artifacts in the mosaicing process. However,

K-means seems to perform poorly, as it incorrectly classifies many pixels in

the image as belonging to the background.

The same linear unmixing tools mentioned previously for gene expression

would be appropriate for hyperspectral imaging, and in fact were developed

for such imaging. Linear unmixing was performed on the same FLIM data

using the popular N-FINDR algorithm [58], and the resulting abundance

maps of each of the seven discovered endmembers are shown in Fig. 7.5. The

presence of several endmembers correlates significantly with the locations of

specific cell types in the image. One cell type of note is red blood cells, which
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(a) Abundance of endmember 1. (b) Abundance of endmember 2.

(c) Abundance of endmember 3. (d) Abundance of endmember 4.

(e) Abundance of endmember 5. (f) Abundance of endmember 6.

(g) Abundance of endmember 7.

Figure 7.5: Abundance maps of discovered endmembers from an ovary
tissue slide using linear unmixing. The intensity at a pixel in each map
corresponds to the contribution of that endmember to the spectrum at that
pixel in the hyperspectral FLIM image. Endmembers 1, 3, and 4 are
present nearly uniformly throughout the sample. Endmember 5
corresponds to red blood cells. Endmembers 6 and 7 seem to be present
mostly in connective tissue.
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(a) (b) (c) (d) (e)

Figure 7.6: Result on two test images (stereo pairs not shown) from each
step of depth image acquisition. (a) Original images. (b) Segmentation
images from the SLIC algorithm. (c) Edge density images. (d) Depth
images after aggregation. (e) Depth images after refinement.

appear strongly in the abundance map of the fifth endmember. Interestingly,

blood cells were also the easiest cells to detect using K-means clustering in

the FTIR data.

Future work could leverage the same H&E pipeline discussed in this thesis

for extracting image features of H&E data, which could then be connected to

different representations of hyperspectral data of adjacent slices. Addition-

ally, future work could integrate hyperspectral data into an imaging-genomics

framework for providing insights into the connections between genomic data

and phenotype that cannot be captured through H&E staining.

7.2 Graphical Image Representation for Inference

In addition to the grading of pleomorphism of nuclei, based on characteris-

tics of shape, texture, and intensity, a pathologist will also inspect the spa-

tial structure of a cancerous tumor when giving a diagnosis and prognosis.

An example metric that may be considered is the quantification of tumor-

infiltrating lymphocytes, which has been shown to be indicative of survival

in breast cancer patients [6]. Graphical models are the most comprehensive

tools available for describing spatial relationships, but often, simple met-

rics quantifying the heterogeneity of local patches have been used to date in

computational pathology research.

Sophisticated graphical models have been developed in other image pro-

cessing problems that could be applied in future research to cancer imaging.

An example of such an image processing problem is that of stereo matching,
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R R

Figure 7.7: Region graph builder. Superpixels resulting from the SLIC
over-segmentation method are treated as nodes on an eight-connected
undirected regular graph. The red colored superpixel does not share any
neighbor pixel with superpixel R. Therefore the edge between them is
penalized.

(a) (b)

Figure 7.8: Examination of results from proposed hierarchical minimum
spanning trees approach. Row 1: (a) Original lamp shade image. (b) A
close-up patch from the original image with the red test point. Row 2: (a)
Pixel-level MST. (b) Region-level MST. Row 3: (a) The weighted
contribution of all pixels inside the close-up patch to the test point
according to the pixel-level MST. (b) The contribution according to the
region-level MST. Row 4: (a) Depth image result using the pixel-level MST
only. (b) Result using the proposed adaptive fusion of pixel-level and
region-level MSTs.
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in which the depth of pixels in an image are inferred from the image and

its stereo pair. This problem is most comprehensively solved using graphical

models, which can enforce a smoothness constraint upon the inferred depth

image, capturing the intuition that neighboring pixels should be at a similar

depth from the camera.

An algorithm for solving this problem in a computationally efficient, yet

highly accurate, manner using hierarchical minimum spanning trees (MST)

was developed in a previous work [66]. Similar to H&E analysis, the image

is first segmented, in this case using SLIC superpixels, as shown in Fig. 7.6.

Next, two graphs
{
GP = (V (P ), E(P )), GS = (V (S), E(S))

}
are defined on the

image: one at the pixel-level P , where each pixel is a node V with edges E

between nodes; and one the region-level, or superpixel-level, S, respectively.

Weights ω are defined between nodes in each graph based on their color

similarity:

ωP (p, q) = |I(p)− I(q)|, (7.1)

ωR(S, T ) = |IS − IT |. (7.2)

From these weights, a minimum spanning tree T is defined for each graph.

Defining neighboring nodes on the superpixel MST is accomplished as shown

in Fig. 7.7. Then MST’s are built on both the pixel and superpixel levels, as

shown in Fig. 7.8.

The goal of the algorithm is to find the disparity, which is related to the

pixel’s depth, at each pixel between the two stereo images. The disparity

is the distance between a pixel in one image and its corresponding point

in the stereo pair. To determine the correspondence between pixels across

images, the algorithm searches for the pixels or nodes that appear similar in

the images. A cost function is defined to measure this similarity. For this

algorithm, the cost Cd(Vi) for a given distance d at a node Vi is defined by

the color similarity of the node in one image and its corresponding node in

the paired image. To enforce spatial consistency, this cost is aggregated over

nodes of the graph, weighted by the edge weights ω along the path P (Vi, Vj)

to each other node Vj,

CA
d (Vi) =

∑
Vj∈T

exp

(
−
∑

ωE∈P (Vi,Vj)
ωE

σ

)
Cd(Vj).
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The exponential function with parameter σ tapers the influence of nodes that

are farther from the considered node Vi. Finally, the cost at both the pixel

and region levels are aggregated and mixed together, forming a final cost,

C ′Ad (p) = αRC
A
d (p) + (1− αR)CA

d (R),

where αR is a mixing parameter.

The benefit of using this hierarchical structure of MSTs can be seen from

the inferred depth images in Fig. 7.6, especially when compared to the result

using a pixel-level tree only, as shown in Fig. 7.8. Similar graph based tech-

niques for inference could be used in WSIs to detect regions of tumors, such

as epithelial and stromal, or structures such as tubules, in an efficient man-

ner, which will be crucial in the future for more accurate and computationally

efficient prognosis.
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