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Abstract

Product adoption is an important topic from the marketing perspective. People want to

understand how a new product penetrates a market. Researchers propose many models to

capture product adoption growth as well as the decision-making process for individuals. In

this work, we identify the lack of consideration in current research of how much time people

spend on their friends and families. We develop a new game-theoretical framework to model

how people spend their time. Also, we analyze the extreme cases in this model. In addition,

we do extensive simulations to understand the average case performance of the steady state.

We find that our resource allocation model is a potential game and the efficiency of the

steady state of the game is very good on average.
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Chapter 1

INTRODUCTION

In this work, we study product adoption. Product adoption is an important topic. It helps

new companies to develop strategies to penetrate markets. It also helps existing companies

to understand how to hold their market shares. The topic is very challenging by its nature. It

is intrinsically hard to capture how people make their decisions and how individual decisions

affect aggregate outcomes.

Marketing researchers, economists, and computer science people have done an extensive

amount of research in this regard. Marketing researchers develop different population models

to analyze the curve adoption growth and product life-cycle [2, 17, 21]. Economists and

computer scientists take a bottom-up approach. They designed network models and use

a game theoretical framework to capture strategic behavior at the individual level. They

analyze aggregate outcomes and the network effects on these outcomes [1, 4, 19, 12].

The main focus of this work is the resource allocation in the context of product adoption.

We focus on those products with strong network effects. Examples are online social networks

like Facebook and Google+. The traditional approach in analyzing network effects do not

consider the fact that people have limited time to spend on these products, and the time

constraints do affect the benefit of using different products. We identify the lack of research

on this topic and propose a game theoretical framework to understand resource allocation.

By understand how people allocate their resources, we know how efficient are people in

terms of using their time to work with others. From the theoretical perspective, it is hard

in general to coordinate the whole network and the result can be bad, players in games
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may use time very inefficiently. But surprisingly, in our simulation, people use their time

very efficiently. One can also use our model to analyze product adoption as well as general

coordination game on networks.

Our contributions are:

• Propose a new framework for technology adoption with limited resources.

• Develop a new model for resource allocation.

• Prove that our resource allocation game is a potential game and always admits at least

one Nash equilibrium.

• Study the best and the worst Nash equilibrium in resource allocation game.

• Do extensive simulations to analyze the average quality of Nash equilibrium in resource

allocation game.

The rest of the work is organized as follows: we introduce related work in the second

chapter. And we discuss models in the Chapter 3. We discuss theoretical results and

simulation results in Chapter 4. And we conclude our work in Chapter 5.
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Chapter 2

RELATED WORK

In this chapter, we discuss related work regarding product adoption. We mainly discuss

two approaches: population model and network model. In population models, people study

product adoption from a global perspective. They try to characterize the adoption process

by looking at the effect of the total number of adoptions on the adoption rate. In network

models, researchers take a different approach. They first model the decision process of

individuals and then look at the effect of individual adoption on aggregate outcomes.

In addition to the product adoptions, we also look at behavioral models. Behavioral

models generalize product adoptions. One can think of product adoptions as a special case in

behavioral models with binary action space. We introduce some works regarding behavioral

models with binary action space. These works focus on the steady state. For example, if

people can choose between two products, what will they choose in the long run. These works

will offer us more insights into how to capture the steady state of product adoption.

And we also discuss behavioral models with continuous action space. Throughout our re-

search, we found that product adoption is very relevant to how people allocate their resources.

Therefore, we discuss some works in this vein. These works show us how to characterize the

steady state when the action space is continuous.

We introduce some works in influence maximization in the end. These works illustrate

how to use network effects to maximize the number of product adoptions. A classic problem

in this regard is: given a network and limited budgets, how do we maximize product adop-

tions by sending free samples to some users in the network. Computer science people have
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done extensive research in this vein and we will introduce both the theoretical model as well

as popular algorithms.

The rest of the chapter is organized as follows. We introduce population models in the

first section. And then we discuss network models in the second section. In the third and

fourth section, we focus on behavioral models with binary and continuous action space. And

we end the chapter by introducing works in influence maximization.

2.1 PRODUCT ADOPTION: POPULATION MOD-

ELS

Population models study behavior from a global point of view. They try to capture collective

behaviors and do not model strategic behaviors at the individual level.

Peres, Muller, and Mahajan grouped the research in population models into six cate-

gories: (1) the drivers for the growth of product adoption (2) the shape of adoption curves

(3) the effect of individual adoptions to aggregate behaviors (4) marketing multiple products

(5) cross-country influence, (6) the effect of competition on growth [21]. Due to the large

volume of works in this area, we focus only on Bass model. See [17, 21] for detail surveys in

population models.

Bass model [2] is the best-known model in this vein and many following works are based

on this model. Bass developed a theoretical model to capture the growth of adoption of a

new product. He also did an extensive analysis to compare the model with the real world

data and showed that the model is able to capture the trend of real world data.

Bass assumed that the adoption rate at a time is bilinear to the number of previous

adopters as well as the number of non-adopters. More specifically, they consider a monopoly

market and a new product A. They want to analyze the fraction of adopters in the market

at time T . Let f(T ) be the fraction of adopters of A at time T . Bass claimed that

df(t)

ddt
= p (1− f(t))︸ ︷︷ ︸

non-adopters

+q f(t)︸︷︷︸
adopters

(1− f(t))︸ ︷︷ ︸
non-adopters

(2.1)
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Here, p represents external influences and q represents internal influences. An example

for external influence is the advertisement of the product. And an example for internal

influence is the influence or pressure of adopters on non-adopters. The close form solution

for the differential equation is

f(t) =
1− exp(−(p+ q)t)

1 + ( q
p
) exp(−(p+ q)t)

(2.2)

The contribution of this work is that it is the first theoretical model the accurately cap-

tures growth curves of products adoption and explains the underlying behavioral rationale.

Many works use Bass model to analyze the diffusion patterns of different products. For ex-

ample, Kobrin studied the pattern of oil production [kobrin:95] and Gatignon, Eliashberg,

and Robertson extended Bass models to estimate cross-country diffusion process and analyze

six different products like dishwashers and car radios [9].

2.2 PRODUCT ADOPTION: NETWORK MODELS

Network models study product adoption from the individual perspective. Unlike population

models, network models capture strategic behaviors at the individual level.

In this section, we first introduce how researchers use game theory to capture individ-

ual decision-making process, and then discuss two papers. Morris designed a game-theoretic

framework to analyze product adoption. And Immorlica et al. discussed the role of compat-

ibility in technology adoption.

2.2.1 GAME THEORY BACKGROUNDS

Economists use game theory to understand how people make decisions and how these deci-

sions affect others. And coordination game is the main tool researchers use to capture the

relationship between network effects and individual decision.

In a coordination game, people have two choices: A and B. One can think of A as

adopting a product, and choice B as not adopting a product. A person receives payoff

through an interaction if the person is able to coordinate with the other side of the interaction.

5



Given an edge represents the interaction between two people, we can use a matrix Table 2.1

to represent how much a person will receive in different configurations. We call two people

‘row player’ and ‘column player’ respectively. In Table 2.1, the first row represents the

options for column player, and the first column represents the options for row player. The

cells containing tuples represents how much each player receives. For example, if both players

take action A, they will both receive qA.

One important topic here is how people choose strategies. We use the term solution profile

to describe the decisions of all the players. An important tool to characterize how people

make their choices is Nash equilibrium. Nash et al. defined the notion of Nash equilibrium.

A Nash equilibrium is a solution profile that, if any player deviates from their strategy in

that solution profile, her payoff will decrease. Because if people act rationally, they will not

make such deviation, Nash equilibrium is a stable state.

To apply coordination game in the analysis of product adoption, we have to first discuss

coordination games on networks. Coordination games on networks are a set of coordination

games on each edge of a network. People try to coordinate with all their neighbors to

maximize their payoff. The best outcome from the global perspective is that all people

coordinate on the same action, either A or B. But such goal is hard in general and it may

happen that two actions coexist in a game.

A B

A (qA, qA) (0, 0)

B (0, 0) (qB, qB)

Table 2.1: Example of a payoff matrix

Through social links, people affect each other through their own actions. Researchers

call such phenomenon ‘contagion’, ‘diffusion of behaviors’, or ‘word-of-mouth effect’.

2.2.2 CONTAGION

Morris characterized the conditions for contagion to occur [19]. Contagion is an outcome of

network effects. Through social links, product adopters will influence surrounding families

and friends. If the influence signals are strong enough, more people will adopt the prod-
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uct and cause the diffusion of adoption. Contagion refers to the state in which the whole

population adopts a new product.

Morris developed a model to capture how people affect each other on their choice of

product adoption in networks. In his game, there are two options: to adopt a new product

(A) or use an existing product (B). He assumes that A is superior to B so qA > qB. The

whole game starts with all people in the network adopting the inferior option B. And the

question Morris tries to ask is: if I pick a set of players and force them to use the other option

A, is it possible for all the population to adopt A because these players switch their actions?

He calls such phenomenon ‘contagion’. And if contagion is possible, can we characterize

contagion by the network structure? Contagion effect is so interesting because Morris points

out that even A is superior to B, it can still happen that people are not switching to A.

Instead of looking at simple graph properties like degree and number of players, Morris

proposed another feature ‘cohesion’. Given a set of players X, cohesion measure how con-

nected are the people in the set X. More specifically, if all the players in X have at least

proportion p of their connections within X, we say the group is p-cohesive.

Intuitively, a group that is p-cohesive with high p is tightly connected. The concept is

important because a p-cohesive group can stop the contagion. More specifically, in a game

with a group X that is p-cohesive, if we pick a set of players Y with no overlap with X and

make players in Y switch to A. Then to influence people in X, qA needs to be high to offer

strong incentives for people in X because people in X have more connections within the

group so they receive high payoff by staying at B.

Morris characterized the game with this cohesion property. He pointed out that contagion

occurs if qA is high enough so there is no group that is (1 − qA)-cohesive or higher. The

strength of his work is that he was able to determine the conditions for contagion to occur

in a robust yet elegant way. The major weakness of his work is that it is hard in general to

check if a graph has a (1− qA)-cohesive subgraph. And also, the model is rather simple and

fail to provide explanations for the case when we have more complicated action space. We

also do not know what happens when the payoff matrix is not diagonal or not symmetric.
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2.2.3 THE ROLE OF COMPATIBILITY

Morris motivated Immorlica et al. to understand the role of compatibility in the diffusion of

adoptions.

Immorlica et al. extended Morris’ work by adding compatibility option and compatibility

cost. More specifically, the strategy space in this game consists of three options: a new

product A, an existing product B, and both product A and B. People can choose to either

adopt one product or adopt both. But to adopt both products, they have to pay an extra

cost compatibility cost c. Without loss of generality, we say A is the superior product, which

gives qA > qB. The benefit for people using both products is that they are able to interact

with anyone. They can use product B to interact with people adopting product B and use A

to interact with who adopts A. The more interesting case is when they interact with people

using both products. Because players are rational in game theory, they will both choose

to use A and receive qA. We can use a similar payoff matrix to Table 2.1 to represent this

scenario. We present the payoff matrix here in Table 2.2.

A B AB

A (qA, qA) (0, 0) (qA, qA − c)
B (0, 0) (qB, qB) (qB, qB − c)
AB (qA − c, qA) (qB − c, qB) (qA − c, qA − c)

Table 2.2: Payoff matrix for coordination game with compatibility cost.

In their game, all players adopt product B in the beginning, which is the same as the

setting in Morris’ game. Immorlica et al. discovered that the compatibility cost affects conta-

gion in a non-convex way [12]. They draw the contagion region, the two dimensions are the

quality of product A and the compatibility cost. The contagion region is not convex. More

specifically, when the compatibility cost is higher than a threshold, if qA > qB, contagion

will occur. But they find that there is a range of cost such that qA has to be even bigger

to make contagion happen. This implies that inferior product may be able to hold market

share if they manage to provide compatibility to their customers with low cost.

In addition to characterize the contagion region, Immorlica et al. characterized a blocking

structure. That is, if such structure exists in the network, the contagion cannot happen and
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both products will exist in the game. The p-cohesive group in [19] is an example of such

block structure.

The strength of their work is their discovery of the role of the compatibility cost, as well

as their extension of the concept of cohesion and characterize blocking structures. The main

weakness is that their analysis heavily relies on d-regular graph. It is not clear if one can

extend the same argument to a game with more general network structure.

Morris and Immorlica et al. both analyzed coordination game with binary action space

on networks. Their work offer insights into why an inferior product may survive, and how

the network structure affects this. But their analyses are still restrictive and it is not easy

to extend their arguments to arbitrary graph or other strategy space.

2.3 OTHER BEHAVIORAL MODELS

In this section, we introduce some other behavioral models. Behavioral models capture how

people choose their behavior. And one can think of product adoption as a special case in the

behavioral model with binary action space. It is important to understand behavioral models

because it offers insights into how to model different decision process and capture different

elements.

The rest of the section is organized as follows. We first discuss the behavioral models

using binary action space. And we introduce models with continuous action space.

2.3.1 BINARY ACTION SPACE

Behavioral models with binary action space capture many aspects of network effects on the

decision-making process. For example, how people choose between two products.

We have discussed two works in this vein [19, 12]. Morris and Immorlica et al. analyzed

games in a deterministic approach. Players in their games do best-response deterministically.

But people in the real world does not always act rationally. Economists use the phrase

‘bounded rationality’ to describe this fact.

So here, we introduce two works that try to capture ‘bounded rationality’. They add

randomness when people are making decisions. They found that randomness makes it easier
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to analyze game dynamics and also illustrates how the whole population select between

equilibria.

Kandori, Mailath, and Rob studied coordination games with mutation setting [13]. The

basic game setting is the same as Morris’ games. The extra feature is the mutation setting.

With mutation setting, any player can change her strategy with a probability pε. A direct

result is that, in this game, all possible outcomes can happen. The problem becomes which

outcome is more likely to happen than the others, or which outcome happens more often

than the others in the long run.

Let q be the threshold fraction such that if there are more than proportion q of a player

i’s neighbors choosing strategy A, i will choose A. Kandori, Mailath, and Rob proved that

if pε is small and q is not too close to 1
2
, people choose the risk-dominant equilibrium with

high probability.

To be clear, in coordination game, if there are more than one equilibria N1, N2, · · ·NN ,

the risk-dominant equilibrium is the Nash equilibrium that if any player deviates from her

choice in the equilibrium, many players will suffer a huge decrease in payoff. Harsanyi, Selten,

et al. proposed this solution concept to solve the problem that Nash equilibrium is not unique

and we do not know how people choose between Nash equilibrium.

Kandori, Mailath, and Rob analyzed the outcome of considering bounded rationality.

And also, he justified that people will choose risk-dominant equilibrium in games on networks.

But one weakness of their work is that the interaction model in their game is global. One can

think of it as a game played on a complete network. Such interaction model is not realistic

because in real-world, no person interacts with all people in a social network. Another

problem with their argument of people choosing risk-dominant equilibrium more often than

the others is the mutation probability. Ellison showed that the time span of the ‘long-run’

depends on pε. If pε is small, it actually takes a long time before the population shift from

one equilibrium to the other. And such long time is not practical in practice.

Ellison refined the model and propose a local interaction model [8]. One can think of

it as a game played on an incomplete network. Ellison discovered that in local interaction

model, the shift from one equilibrium to the other takes much less time, which in turns

justify the observation that people choose one equilibrium more often than the others. The
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major contribution of their work is that they refine the interaction model and also justify

that risk-dominant equilibrium is indeed preferable. Moreover, Ellison showed that network

structure does not affect the timespan for shifting from one equilibrium to another.

The major weakness of the work is, still, the underlying graph structure. Although they

introduce local interaction notion and study an incomplete network. They still assume that

every player interacts with k other players. So we can think of it as a game played on

k-regular graph.

2.3.2 CONTINUOUS ACTION SPACE

We discussed different models in games with binary action space. Another line of works is the

models with continuous action space. Continuous action space capture aspects lack in binary

action space. For example, if we want to analyze how people allocate their time among their

friends, the action space will be continuous. The challenge here is how to capture the game

dynamics when the action space is continuous. And also, how to identify the role of network

structure in such game settings.

Ballester, Calvó-Armengol, and Zenou studied a game with continuous action space and

quadratic utility function [1]. They focus on actions that are strategic substitutes. In their

game, players spend the effort to earn utility. And their payoff depends both on their utility

as well as the effort spends on others. They propose the following utility function.

Ui(x1, · · · , xn) = αxi +
1

2
σiix

2
i +

∑
j 6=i

σijxixj (2.3)

That is, the utility of player i is quadratic to its own effort xi, and linear to his friends’

efforts xj, j 6= i. Notice that the σij terms represent the neighborhood relationship in the

sense that if σij = 0, we can say that there is no connection between i and j. We can use one

σ matrix that contains all σij to characterize such game and network structure. Ballester,

Calvó-Armengol, and Zenou proved that [1], with some conditions, there exists only one

Nash equilibrium. And they use Bonacich centrality [3] to characterize the unique Nash

equilibrium. They also study the key-player problem: given a game, how can one find the

most valuable player in the network such that by removing this key player, one can reduce
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the aggregated effort of the whole population.

The strength of their work is the novel construction of the game, they use one matrix

to capture both of the utility function and the graph structure. And also, they identify

the role of network structure in this game. They use results from spectral graph theory to

characterize the unique Nash equilibrium. They also provide extensive examples on how

to apply their theorems in the real world. Examples are crime networks and collaboration

networks.

The main weakness of their work is that they study specific quadratic utility functions.

The function nicely captures linear externalities in players actions but its restricted. Bramoullé,

Kranton, and D’amours generalized Ballester, Calvó-Armengol, and Zenou’s games as well

as others and provide a unified analysis [4].

Bramoullé, Kranton, and D’amours generalized this model and studied all possible strate-

gic interaction. Close to the setting of the previous work, their game consists of a set of

players as well as an underlying graph G representing the relationship between players. They

examine all utility functions of the form:

Ui(xi,x−i; δ,G)

with best response:

fi(x−i), δ,G) = max

(
0, ci − δ

n∑
i=1

gijxj

)
Where δ is the parameter that represents the degree of substitutability: how does an action

of one player substitutes for the other players actions. Bramoullé, Kranton, and D’amours

discovered that the lowest eigenvalue characterize the existence of stable Nash equilibrium.

More precisely, by examining the potential function, they realize that the smallest eigenvalue

λmin(G) of the graph G plays an important role in determining uniqueness Nash equilibrium.

And also, they discover that λmin measures how the network G amplifies the substitutability.

Their conclusion is that if

λmin(G) <
1

δ
(2.4)

, then there is only one Nash equilibrium. In other cases, there may be more than one
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Nash equilibrium. The use perturbation analysis of quadratic programming to analyze the

stability of Nash equilibrium. They find that the unique Nash equilibrium maximizing

potential function value is stable when Eq. (2.4) is satisfied. More generally, given a Nash

equilibrium S, let A be the set of active agents and let GA be the subgraph consisting of

active agents, they realize that λmin(GA) < 1
δ

implies the stability of S. And they also point

out that many stable Nash equilibria have inactive agents(free riders).

The strength of their work is that they are able to characterize Nash equilibrium for

a wide range of games. They develop methods to connect the network structure to Nash

equilibrium through the help of spectral graph theory. Moreover, they identify that the

direction of previous works, which mainly focused on symmetric equilibria, is wrong. They

also provide extensive analysis on many real-world cases like crime networks and social

networks.

The weaknesses of their works are as follows. First of all, in these models, action space

is R. This means that they can only model the case where people have only one action to

interact with all other players. But in reality, we also need to model the case that people have

different strategies for different friends. Secondly, many existing works assume that given a

player i, all its neighbors affect i in the same way. However, people do have preferences on

their neighbors. Thirdly, they assume linear externality, and the connection to graph theory

heavily rely on the linearity. It will be interesting to examine more complicated externality

functions.

2.3.3 MORE ON NETWORK EFFECTS

One interesting topic in product adoption is how to use network effects to maximize product

adoption rate? For example, if a company wants to promote their products, one approach

is to persuade some people in the social network to use their products by giving them

free samples. Through the social influence, they may influence their neighbors and cause

contagion. The major challenge here is that dynamics on networks are hard to capture. And

it is hard to choose the set of players to give free samples with limiting budget.

Domingos and Richardson first studied this topic [7, 22]. They study the network value

of a user. In target marketing, firms analyze the behaviors of users to decide who may
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be a potential customer and then promote their products to these users. However, many

traditional works focus more on analyzing and mining historical data of a user but ignore

the network effect of that user. In reality, friends behavior may strongly affect a person’s

decision. Viral marketing, which makes use of this word-of-mouth effect, can be very effec-

tive. Domingos and Richardson identified the lack of pricing such network effect in existing

approaches and use a graphical model to capture the social influence of players. They prove

the effectiveness by running experiments on a movie database and prove that their method

can find profitable (binary)marketing strategy. Richardson and Domingos extends their work

to continuous marketing strategy and apply such strategies to data from some knowledge-

sharing sites, such as the platform for customers to exchange information, writing product

reviews, etc.

Domingos and Richardson motivated Kempe, Kleinberg, and Tardos to develop the the-

oretical framework for influence maximization [14]. Kempe, Kleinberg, and Tardos attacked

the problem from theoretical approach and propose a game-theoretical model to capture the

diffusion process. Their main focus is: given a weighted network and a budget, how to max-

imize the influence of a product. Kempe, Kleinberg, and Tardos studied two popular diffu-

sion models: Linear Threshold (LT) model and Independent Cascading (IC) model. Kempe,

Kleinberg, and Tardos proved the influence maximization problem is NP-hard. But they

examine the influence spread function σ(S), which is the function that returns the coverage

of diffusion given a set of nodes S. And they find that the influence spread functions σ(S) is

monotone and submodular. This property helps them develop an approximation algorithm

with the approximation ratio of 1− 1
e
.

The weakness of the algorithm is the scalability. Chen, Wang, and Yang showed that

influence spread of a set of nodes is #p-hard [6], so Kempe, Kleinberg, and Tardos had to

find a way around the computation issue. They propose to do Monte Carlo simulations

10,000 times to approximate the value. Such simulation is inefficient and cannot scale to a

massive network. To solve this problem, many people propose different approaches, examples

are: CELF [16], CELF++ proposed by [10], and MIP [6, 5].

Leskovec et al. proposed CELF to optimize the greedy algorithm by exploiting the sub-

modularity of influence spread [16]. Let marginal gain of influence spread by adding a node
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u be ∆u(S) = σ(S ∪ {u}) − σ(S). Leskovec et al. sort all the nodes based on the marginal

gain. Because the marginal gain always goes down, they can update those nodes with higher

marginal gain and save significant time by reducing the total number of simulations in each

round. Goyal, Lu, and Lakshmanan proposed CELF+ to refine this idea [10]. They observe

that in one round if the node with highest marginal gain is the same as the last round, we do

not have to recompute the marginal gain. This observation leads to 17− 61% improvement.

Chen, Wang, and Yang proposed another approach to maximize influence [6, 5]. They

first discover that computing influence spared in independent cascade(IC) model is #p-

hard in general. They propose another model: Maximum Influence Arborescence(MIA) to

approximate IC model. The idea of MIA is to constraint influence propagates through the

path with the highest probability. For example, given two nodes u and v, they restrict the

only way u can influence v is through a path pu∼v such that the probability of that path is

the highest among all possible paths {p′u∼v}. With this more structured model, they develop

a much more efficient approximation algorithms to maximize influence in this MIA model.

There are an extensive amount of works in this vein. We know how to model influence

maximization problem, and are able to use approximation algorithm to select a set of nodes

to achieve our goals. See [23] for more details of influence maximization algorithms.
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Chapter 3

MODELS AND DEFINITIONS

We discussed many games on networks. These works emphasize the importance of local

interactions or social ties. But they do not look deeper into the local interaction model. There

are two major weaknesses that motivate our work. First, they do not capture preferences

of players. Second, they do not consider the number of times people interact with each

other. Third, the do not consider the resource constraint. People do not have infinite time

to interact with all their friends and families.

The preferences of people are important because this is how they value each social tie.

For example, people weight family higher than their friends. The number of times people

interact with each other is also important because social influence comes from the fact that

people interact. And the amount of time they interact with each other change the value of

that social tie. The time constraint is important because it limits how people spend the time

among their friends. So we suggest capturing these three features.

In this section, we introduce the coordination games with limited resources. And because

of the complexity of the model, we focus on the resource distribution game, which is the

basis for coordination games with limited resources. And the coordination games with limited

resources is our future work.
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3.1 COORDINATION GAME WITH LIMITED RE-

SOURCE

The works of Morris [19] and Immorlica [12] motivate our work. Our game setting is close

to their games. Our game consists of N players P and an underlying graph G = (V,E).

Each node of the graph represents a player, and each edge represents a social link between

players. In the game, players interact with each other through technologies. And there are

two technologies: A and B. Players can choose between A and B, or choose to use A and B

at the same time. For simplicity, we denote the strategy of using A and B at the same time

as AB.

By using technology to interact with their friends, a player receives certain payoff. The

number times a player interacts with her friend decide the payoff she will receive from the

friend. And we also assume that they have limited time, which implies there is an upper

bound on the total number of interactions per user.

We define some notations. For simplicity, we use players and users interchangeably. For

a given graph G = (V,E), we use N(i) = {j|(i, j)} to deonte the neighborhood of player i.

We use N+(i) = N(i) ∪ {i} to denote the neighborhood of a player i and the player itself.

We denote deg(i) as the degree of a node i.

The graph is weighted and undirected. We associate each edge (i, j) with two rational

numbers wij and wji. The weight wij captures the preference of a player i on a player j and

the weight wji is the preference of j on i. We use these weights to compute utility, which we

will define in the next section. For simplicity, weights are all normalized, that is

∑
j∈N(i)

wij = 1 (3.1)

We also define wii = 0. So we also have

∑
j∈N+(i)

wij = 1 (3.2)
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Every player has some (limited) resource to interact with their neighbors. They receive

payoff through the interaction with others. Players can also earn payoff from participating

the game. For example, a player can still earn payoff by browsing contents in Instagram

even she does not interact with any friend at all. For simplicity, we do not consider this type

of payoff. We denote the resource of player i as βi.

Recall that players use technologies to interact with their friends, we use T to denote

the technology space {A,B,AB}. Consider both the time and the technology, the strategy

space consists of two parts: resource(time) allocation and technology choices.

The strategy space for time allocation is a N -dimensional vector, ~fi = (f1, f2, · · · , fn) ∈

RN , which represents the resource(time) a player i wants to spend on each player. Each

element in the vector takes value in [0, β]. Due to the resource constraint setting, we have

the following equality ∑
j

fij = βi (Resource Constraint)

Given the space for time allocation and technology choices, the strategy space of every

player is T × [0, β]N . An example for a strategy is (~fi, ti) where ti ∈ T .

Given the strategy space of each player, we denote the action of every player i as xi =

(~fi, ti).A solution profile is a set of actions used by every players x = {x1, x2, · · · , xn}. For

simplicity, we let x−i = {x1, · · · , xi−1, xi+1, · · · , xn}. That is, x−i is a solution profile without

the action xi of player i.

We denote ui : (T × [0, β]N)N 7→ R as the utility function for player i. The input is

a solution profile and the output is a real number. In the next section, we will define the

utility function.

We discussed the settings for our games and now we discuss some notions in game theory

and how we represent them in our game setting. In game theory, given a solution profile,

the best response of a player i is the strategy that maximizes her payoff. We denote bi(x−i)

as the best response function and

bi(x−i) = arg max
xi∈T×[0,β]N

ui(xi,x−i) (3.3)
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A player may deviate from any given solution profile. We are interested in the stable

solution profile, which we call Nash equilibrium.

Definition 1 (Nash equilibrium) Given a game, a solution profile x is a Nash equilib-

rium if and only if for every player i,

ui(xi,x−i) ≥ ui(x
′
i,x−i)

The Nash equilibrium x is also a solution for the following set of equations

xi = bi(x−i) ∀i

In our game, there can be more than one Nash equilibria. We do not know which

equilibrium the population will choose in general, so we are interested in the worst case and

the best case. That is, how bad and how good this stable state can be. To evaluate the

quality of a Nash equilibrium, we define the social welfare of a game as the aggregation of

the players’ utilities:

Definition 2 (Social Welfare) Given a solution profile x, the social welfare of a game

(P ,G, β, T ) is the aggregation of all players utilities in that solution profile x. That is:

SW (x) =
∑
i∈P

ui(x) (3.4)

Let the solution profile maximizing the social welfare be OPT , we can then define two

popular efficiency metrics to evaluate a Nash equilibrium:

Definition 3 (Efficiency Metrics) Given a game (P ,G, β, T ), there is a solution profile

OPT maximizing social welfare value, a Nash equilibrium NEmax maximizing the social

welfare value, and a Nash equilibrium NEmin minimizing the social welfare value. The Price

of Anarchy(PoA) of the game is

PoA((P ,G, β, T )) =
SW (OPT )

SW (NEmin)
(3.5)
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And similarly, the Price of Stability(PoS) of the game is

PoS((P ,G, β, T )) =
SW (OPT )

SW (NEmin)
(3.6)

The PoA measures how bad the stable state can be in a game and the PoS measures how

good the stable state can be in a game.

The game setting for the coordination game with limited resources is complicated. The

strategy space of every player consists of a continuous action space and a discrete action

space. Also, we do not have tools to analyze the coordination game with continuous action

space in our setting. So we focus on a special case of our games: the game with one technology

only. Our goal is to understand how people distribute their time among their neighbors.

In the next section, we will first define resource distribution game. And then we will

introduce the utility function as well as the weighting system that is used in our work. We

then introduce a broad class of resource distribution game which we call uniform-weighting

resource distribution game that admits a potential function. We also explain the best re-

sponse dynamic as well as the convex programs based on best response dynamic. And at the

end of this section, we explain the importance of starting state in our game and introduce

proportional starting state.

3.2 RESOURCE DISTRIBUTION GAME

In this section, we define resource distribution game. And look deeper into the setting.

A resource distribution game is a specialized coordination game with limited resources.

It as a special case where there is only one technology available to players. The difference

between this game and general coordination game we discussed in the last section is the set

of technologies T . Because T has only one element in the current setting, we simplify the

notation and use (P ,G, β) to represent the game. And also, the utility function ui now maps

from [0, β]N to a real number.

For simplicity, we assume β-regularity for resources: every player has the same limited

resources β. We use min function to capture the coordination. That is, for every two
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(connected) players i and j, they will interact with each other with interaction frequency

min(fij, fji). We denote this frequency as f ∗ij so

f ∗ij = min(fij, fji)

For clarity, we give the formal definition of resource distribution game as follows.

Definition 4 (Resource Distribution Game) A resource distribution game is a tuple

(P ,G, β) consists of a set of player P, an underlying graph G = (V,E,W ), and a real

number β.

The graph G represents a social network. The graph is undirected and weighted. Unless

otherwise specified, the graph should admit no multi-edge and no self-loop. Every node in the

graph represents a player, and every edge (i, j) in the graph represent a social link between

two players i and j. We associate two weights with each edge: wij and wji, each capture i

and js preference over the other respectively.

The action space for each player i is a vector ~fi ∈ [0, β]N . Each component of ~fi is fij,

which represents the proposal of player i to player j. Because the resource is limited, we have

N∑
j=1

fij =
∑
j∈N(i)

fij ≤ β ∀i ∈ P (3.7)

For simplicity, we define fii = β −
∑

j∈N(i). And define N+(i) = N(i) ∪ {i} In this way, we

can write ∑
j∈N+(i)

fij = β ∀i ∈ P (3.8)

For every two connected players i and j, we define f ∗ij = min(fij, fji) as the agreed value

of two player. We also use the phrse ‘effective frequency’ to describe f ∗ij. As we will see in

the later section, effective frequency decide the utility i receives from interaction with j.
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3.3 UTILITY FUNCTION AND WEIGHTING SYS-

TEM

In our game, people receive utility from interacting with others. There are two steps to

compute utility. Every player first computes the utility per interaction with a neighbor, and

then scale that utility by the interaction frequency she spends on the neighbor. The total

utility of each player is the summation of all the utilitie she receives from all her neighbors.

To compute the utility per interaction with a neighbor, we use weighting system. Recall

that weightings capture the preferences of players. Our approach is to scale the row utility

per interaction by the weight. For example, if a player i interacts one time with player j, let

the raw utility per interaction be uraw, the utility i receives for this interaction is wijuraw.

We can normalize this uraw for the whole graph and the utility of i interacts with a neighbor

j once is wij.

Determining the weight on graphs is interesting. Existing works in the research of con-

tagion and influence maximization does not tell how they decide the weights. We define a

global ranking to capture the social status in the real world. And based on that status, we

define the corresponding weighting.

Example 1 (Global-Ranking Weighting System) A global ranking is a function GR :

P 7→ Z+. By imposing this function on a game (P ,G, β), we can associate each player i with

a number W (i). Then in the global ranking weighting system, the weight wij of an edge (i, j)

in the graph G is defined as

wij =
W (j)∑

j∈N(i)W (i)
(3.9)

We can define the weighting system in other ways. But this global ranking weighting

system captures the notion of social status and it also guarantees a potential game.

Another part of utility is the total utility a player received from its neighbor. In general,

the utility function for a player i is ui(·). The utility player i gets from player j is uij :

R × R 7→ R. The function takes the proposals of both palyer i and player j as inputs.

The first theoretical result we have is, if the form of utility function is the symmetric for all

players, that is uij = uji ∀i 6= j, then the game is a potential game.
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Proposition 1 (Potential Game) Given a game (P ,G, β), if the game adopts global rank-

ing weighting system, and the utility functions are symmetric for all the players, then (P ,G, β)

is a potential game.

We will present the proof for Proposition 1 and the potential function in Section 4.1. To

end this section, we introduce one specific utility function that we will study later in this

work:

Example 2 (Quadrdatic Utility Function) Given a player i, let f ∗ij be the effective in-

teraction frequency for i’s interaction with j, the utility i receives is:

ui(j) = wijf
∗
ij(β − f ∗ij) (3.10)

As you can see, this is a quadratic function that maximizes when f ∗ij = β
2
. This function

captures two important features of real-world interactions: First of all, the utility increases

sin the beginning when the interaction increases. Secondly, utility decreases after it reaches

some threshold. The threshold we have here is β
2
. From now on, unless otherwise specified,

we assume that the game is adopting Global ranking weighting system and this quadratic

utility function.

3.4 LOCAL AND GLOBAL INTERACTION

We can examine the game from two perspectives. From the local perspective, players are

trying to maximize their own utility, which leads to a convex program for local interaction.

From the global perspective, if we are a coordinator coordinating everything of the game,

one interesting question to ask is: can I make every player happy? One way to capture this

notion is to compute the social welfare of a game. To maximize this value, we have another

convex program for this global interaction.

As we will see in a later section, if a game takes global ranking weighting, then its PoS

is one, which means the quality of its Nash equilibrium can be good.

From the local perspective, the one-degree ego network centered on each player i in the

game forms a set of local interactions. In our game, we are using best-response dynamic,
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so the player i will want to maximize his payoff. There are two constraints: first of all, at

the time point player i is making his move, i knows all his neighbors’ proposals. Because i

will act rationally, it will not propose more than fji to its neighbor j. This leads to the first

constraint:

fij ≤ fji (3.11)

The second constraint is Eq. (3.8).

We call the quadratic program local convex program:

Definition 5 (Local Convex Program) For every player i, let N(i) be her neighborhood.

Use fij to denote her proposal to j, and fji is j’s proposal to i. i will want to solve a convex

program to maximize her own payoff, the convex program is the local convex program LC(i)

of player i, which is

min
~f
FL(~f) =

∑
j∈N+(i)

wijfij(fij − β)

s.t.fij ≤ fji ∀i ∈ P ∀j ∈ N(i)∑
j∈N+(i)

fij = β ∀i ∈ P

fij ≥ 0 ∀i ∈ P ∀j ∈ N+(i)

(3.12)

Note that we do minimization here, but the objective function has opposite sign to the utility

function, so we are maximizing the utility.

After computing the local convex program, notice that fii represents the excess of in-

teraction frequency. That is, no mater how i spends fii, she cannot increase her payoff. It

is not clear what i will do. For clarity, we define two types of dynamics: aggressive and

conservative.

Definition 6 (Aggressive and Conservative Best-response) In a player i takes ag-

gressive best-response, she will first compute her local convex program. And then i will

spend fii on each edge proportionally. That is, for every neighbor j, let the frequency in the

solution of local convex program be fLij , we have

fij = fLij + fii × wij
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If a player takes the conservative approach, then we say the player will store the frequency

fii and do not spend it on any edge.

We will show that no matter how players choose between these two dynamics, the game

is a potential game, and also, the price of stability can all be one.

From the global perspective, we want to maximize the social welfare (SW), which is the

total utility. To maximize the social welfare, we have the following convex program

Definition 7 (Global Convex Program) For a game (P ,∼, β). The global convex pro-

gram GC((P ,G, β)) of the game is a convex program trying to maximize the social welfare

function. There are two types of variables: ~f and ~f ∗. ~f is the proposal that players make.

For example fij is the proposal of player i to player j. And ~f ∗ is the agreed value between

two people. For example, f ∗ij = min(fij, fji). Same constraints in Definition 5 are imposed

here for every player i.

min
~f, ~f∗

FG(~f) =
∑
i∈P

∑
j∈N(i)

wijf
∗
ij(f

∗
ij − β)

s.t.f ∗ij ≤ fij ∀i ∈ P ∀j ∈ N(i)

f ∗ij = f ∗ji ∀i ∈ P ∀j ∈ N(i)∑
j∈N(i)

fij = β ∀i ∈ P

f ∗ij ≥ 0 ∀i ∈ P ∀j ∈ N(i)

(3.13)

Note that the objective function is the opposite of total utility. So the minimization is equiv-

alent to maximizing the total utility.

These are the two critical convex program in our game. One can observe from the

local convex program that the initial state is important. This is because we have the con-

straint Eq. (3.11), which implies that if in the beginning, if all the neighbors of i propose 0

to i, then i will not be able to propose anything and will not receive any utility. But in the

real world, this seldom helps. In the next section, we introduce proportional starting state

to solve this problem.
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3.5 PROPORTIONAL STARTING STATE

One observation of the real world is that people distribute their time according to their

preference in the beginning. For example, when you are working with your friends and some

acquaintances, very likely you will spend more time with your friends and then adjust the

distribution based on the result. To capture this, we propose proportional starting state:

the first proposals people make is proportional to their preferences.

Definition 8 (Proportional Starting State) In the beginning of the game (P ,G, β), ev-

ery player i will propose initial frequency to their friends with no history data. We call the

set of initial values of all players starting state. Proportional starting state strategy defines

that player i will propose wijβ to player j.
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Chapter 4

RESULTS

4.1 THEORETICAL RESULTS

We present three major theoretical results in this section. First, we present the potential

function for our game and prove that our game is a potential game. Based on this result,

we know that Nash equilibrium always exists in our game. The second and the third results

are the quality of Nash equilibria. We show that with bad initial frequency proposal, we can

have low-quality Nash equilibria. On the other hand, we also show that optimal solution for

the global convex problem is also a Nash equilibria. There is a significant difference between

PoS and PoA. In the next section, we present our simulations and show that, on average, a

game will converge to a Nash equilibria with good quality.

The following results are proved in the Appendix.

4.1.1 CHARACTERIZING POTENTIAL GAME

Given a game (P ,G, β) adopting global ranking weighting and symmetric utility function,

let NW (i) =
∑

j∈N(i)W (j). We define potential function U : x 7→ R as follows:

Φ(x) =
∑
i∈P

W (i)NW (i)
∑
j∈N(i)

wijuij (4.1)

The intuition of this potential function is two observations: First of all, because players

compute utility based on effective frequency. If a player change its proposed frequency and
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the effective frequency changed accordingly, the difference is the same for both the player

and the corresponding neighbor. Secondly, recall that wij = W (i)
NW (i)

. By scaling the utility by

W (i)NW (i), we will have W (i)W (j) for every j ∈ N(i), and this is symmetric. Whenever

player i is making a rational move, the total value increases. See the detailed proof for the

potential function in Appendix A.

4.1.2 HOW GOOD AND HOW BAD CAN A NASH EQUILIB-

RIUM BE?

Because the potential value is given by this function always increases when any player makes

a rational move, we can prove Proposition 1:

Proposition 1 (Potential Game) Given a game (P ,G, β), if the game adopts global rank-

ing weighting system, and the utility functions are symmetric for all the players, then (P ,G, β)

is a potential game.

Notice that this result does not rely on the form of the utility function, nor does it rely

on the best-response dynamic used by players. If utility function is symmetric for all the

player, the game is a potential game.

Because a game with global ranking weighting system and symmetric utility function is

a potential game, it always admits at least one Nash equilibrium. The next question we

address is how bad and how god can its Nash equilibria be. It turns out that the Nash

equilibrium can be arbitrarily bad.

Theorem 1 The price of anarchy of a game (P ,G, β) adopting global-ranking weighting

scheme can be arbitrarily high.

Proof: Consider the game with players on a two-dimensional grid presented in Fig. 4.1.

In the game, every players in row k has rank αk. So given a player i in row k, she has

one neighbor in row k + 1, two neighbors in row k, and one neighbor in row k − 1. We

present two confiugrations in Fig. 4.1 that correspond to a Nash equilibrium with good

social welfare( Fig. 4.1a), and a Nash equilibrium with bad social welfare( Fig. 4.1b).
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Let the solution profile in Fig. 4.1a be NEgood and the other one be NEbad. First,

these two profiles are both Nash equilibria. The reason is because every player has reach

agreements. No player has extra frequency so based on the local convex program, nobody

will deviate from the solution profiles.

In Fig. 4.1a, every player will receive payoff

β2

4
(
α2 + 1

(α + 1)2
)

And in Fig. 4.1b, every player will receive payoff

β2

4
(

α

(α + 1)2
)

So if the game have N players, we have

SW (NEgood) = N × β2

4
(
α2 + 1

(α + 1)2
)

and

SW (NEbad) = N × β2

4
(

α

(α + 1)2
)

Let OPT be the solution profile that maximizes the social welfare, and let NEworst be

the Nash equilibrium that minimizes the social welfare, we have

PoA =
SW (OPT )

SW (NEworst)
≥ SW (NEgood)

SW (NEbad)
=
α2 + 1

2α

We can make this PoA arbitrarily big by tuning the parameter α. Notice that this result

does not depend on the size of the grid, so the game can have bad Nash equilibrium even

with a small number of players.

We now want to know how good a Nash equilibrium can be. The next theorem shows

that, if a game adopts quadratic utility function( 2), we can guarantee that optimal solution

is also a Nash equilibrium.
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(a) N.E. with high social welfare. (b) N.E. with low social welfare.

Figure 4.1: Example of game with bad PoA.

Theorem 2 (Stability of Optimal Solution) Given a game (P ,G, β) adopting global-

ranking weighting scheme and uniform utility function. If the utility function used by players

are all quadratic utility function (Example 2), then the optimal solution is also a Nash equi-

librium.

The detailed proof is left to Appendix B. And this leads to the next corollary.

Corollary 1 Given a game (P ,G, β) adopting global-ranking weighting scheme and quadratic

utility function, the price of stability is 1.

4.2 EXPERIMENTAL RESULTS

As we have seen in the last section, the gap between the price of anarchy and price of stability

is very large. One interesting topic is the average case performance in the real world In this

section, we look at average case performance by conducting experiments.

Our simulation consists of a regular graph with a thousand nodes. And they all have

limited resource β = 200. Unless otherwise specified, we adopt proportional starting state

and use global ranking weighting. We use quadratic utility function for all players. In the

following sections, we run simulation 80 times and compute the average and the standard

deviation of total utility. In order to make the stats more meaningful, we scale the total
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utility by the optimal utility of each game. We define average performance as

SW (Nash)

SW (OPT )
(4.2)

for each Nash equilibrium. This is exactly the inverse of the price of anarchy and it measures

how efficient a game is.

The results are organized in the following manner. We first present the average perfor-

mance for regular graphs with different degrees. And then compare games with the different

initial states. There are many initialization strategies that we can choose from: proportional,

quadratic proportional, etc. The third comparison is between different role distributions. Re-

call that we use global ranking weighting scheme. The global ranking captures the social

status in the real world. We are interested in how the role distributions in the population

can affect the efficiency. In the end of the section, we look at global ranking from another

perspective. In global-ranking weighting system, we compute weighting based on ranking

and normalization. There are many other ways to compute weighting: proportional to the

square of rank, exponential to the square of rank, etc.

4.2.1 REGULAR GRAPH OF DIFFERENT DEGREE

We do simulations on regular graphs with different degrees. The results are presented

in Fig. 4.2. The first observation is that for conservative strategy, the average performance

decreases as the degree of regular graph increases. But for the aggressive strategy, the aver-

age performance decreases in the beginning, but for the graphs with the degree more than 6,

the average performance increase. The second observation is that aggressive strategy takes

much more time than conservative strategy.

4.2.2 DIFFERENT STARTING STATES

There are many different ways to configure initial proposal for players in games. In the

previous sections, we have seen proportional starting states. There are two other interesting

starting states that we would like to discuss. Instead of distribution frequency based on the

weighting, we can also distribute frequency based on the square of weighting, which we called
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(a) Average performance. (b) Average steps.

Figure 4.2: Simulations for regular graphs with different degrees.

quadratic-proportional starting state. And also, we can distribute frequency based on the

exponential to the weighting, which we called exponential weighting. The formal definition

is as follows.

Example 3 (Different starting states.) Given a game adopting the global-ranking weight-

ing system, we have quadratic-proportional weighting system, which defines the initial pro-

posal for i to j as:

f quad−propij = β ×
w2
ij∑

k∈N(i)w
2
ik

(4.3)

And we can also define exponential weighting in the similar way:

f expij = β × exp(wik)∑
j∈N(i) exp(wik)

(4.4)

The simulation results are presented in Fig. 4.3. We also include the results when some

players adopt proportional starting state and some adopt quadratic-proportional starting

state.

The first thing we observe is that the average performance degrades as the degree of

regular graph increases. As we can see in the figure, exponential starting state performs like

proportional starting state and perform really well. The average utility is around 90% of the

optimal total utility. On the other hand, the games adopting quadratic-proportional starting

state are not very efficient compared to other starting state. The mixture of proportional

starting state and quadratic-proportional starting locates in the between. The conclusion is

proportional starting state is a good strategy overall.
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(a) Aggressive best-response. (b) Conservative best-response.

Figure 4.3: Average performance of different initial proposals.

4.2.3 DIFFERENT ROLE DISTRIBUTIONS

There are many different ways to decide the global ranking and the roles. We analyze this

problem from a statistical perspective and interested in the following question. What kinds

of role distributions perform the best? We adopt uniform distribution as a baseline case, as

well as Gaussian distribution and power-law distribution. The later two distribution better

capture the fact that in the social network, there are lots of people who have similar social

status, but only a few people have very high or low social status. We show the results

in Fig. 4.4.

Our observation is that by using the normal distribution to distribute the roles, the

efficiency of a game can be as high as 96% in average for the aggressive case. And 93% for

the conservative case. On the other hand, games with power-law role distribution do not

perform well in average.

4.2.4 DIFFERENT WEIGHTING SCHEMES

We also compare different weighting schemes. Previously we discussed global-ranking weight-

ing, which is basically a proportional weighting scheme. There are two other interesting

weighting schemes: quadratic-proportional weighting and exponential weighting.

Example 4 (Different weighting systems) Given a game (P ,G, β) and a global ranking

GR, we can associate each player i with a rank W (i) = GR(i). Quadratic-proportional
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(a) Aggressive best-response. (b) Conservative best-response.

Figure 4.4: Average performance of different role distributions.

weighting defines wij as:

wij =
W 2(i)∑

j∈N(i)W
2(j)

(4.5)

And the exponential weighting defines wij as:

wij =
exp(W (i))∑

j∈N(i) exp(W (j))
(4.6)

The results are presented in Fig. 4.5. We can see that in general, average performance

is a lot better than other weighting schemes, both in the aggressive case and conservative

case.

(a) Aggressive best-response. (b) Conservative best-response.

Figure 4.5: Average performance of different weighting.

Throughout these simulations, we found that average efficiency for our game is high, both

in the case of using aggressive best-response and conservative best-response. And also, we
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found that games with aggressive best-response almost always have better efficiency than

the games with conservative best-response.
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Chapter 5

CONCLUSION

In this work, we study product adoption with limited resources. We started from defining

the general framework for coordination games with limited resources. And because of the

complexity of the framework. We restricted our attention to a special case: the resource

distribution game on networks. We developed game theory model to capture how people

spend their resources on their friends.

Our contributions are:

• Propose a new framework for technology adoption with limited resources.

• Develop a new model for resource allocation.

• Prove that our resource allocation game is a potential game and always admits at least

one Nash equilibrium.

• Study the best and the worst Nash equilibrium in resource allocation game.

• Do extensive simulations to analyze the average quality of Nash equilibrium in resource

allocation game.

Our future work is to study coordination games on networks considering resource con-

straints. We expect to extend our results to coordination games and examine the properties

of contagion studied in [19] and [12]. We also want to analyze influence maximization prob-

lem in our framework and study existing algorithms for influence maximization.

36



Another direction is community formation. If we consider a resource distribution game

on the complete network, then after the game reaches steady state, we can remove those

connections with low interaction frequency. An interesting topic is whether the resulting

network can reflect community formation in the real world.
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Appendix A

PROOF FOR POTENTIAL GAME

In this chapter, we discuss the proof for Proposition 1. Because the game adopts global-

ranking weighting scheme, every weight wij can be written as

wij =
W (j)∑

j∈N(i)W (i)
(3.9)

Recall the potential function we proposed in Eq. (4.1). If a player k makes a deviation

from x = (xk,x−k) to x′ = (x′k,x−k), we have:

Φ(xk,x−k)− Φ(x′k,x−k)

=
∑
i∈P

W (i)NW (i)
∑
j∈N(i)

wij(ui(xk,x−k)− ui(x′k,x−k))

=
∑
i∈P

W (i)
∑
j∈N(i)

W (j)(ui(x
′
k,x−k)− ui(x′k,x−k))

Notice that only k’s neighbors are affected, so

Φ(xk,x−k)− Φ(x′k,x−k)

=
∑
i∈P

W (i)
∑
j∈N(i)

W (j)(ui(x
′
k,x−k)− ui(x′k,x−k))

=W (k)
∑
j∈N(k)

W (j)(uk(xk,x−k)− uk(x′k,x−k)) +
∑
j∈N(k)

W (j)W (k)(uj(x
′
k,x−k)− uj(x′k,x−k))
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Let ujk be the payoff j receives from k in x, and u′jk is the payoff j receives from k in x′.

Recall that utility function is symmetric, we have:

Φ(xk,x−k)− Φ(x′k,x−k)

=W (k)
∑
j∈N(k)

W (j)(ujk − u′jk) +
∑
j∈N(k)

W (j)W (k)(ukj − u′kj)

=W (k)
∑
j∈N(k)

W (j)(ujk − u′jk) +
∑
j∈N(k)

W (j)W (k)(ujk − u′jk)

=2W (k)
∑
j∈N(k)

W (j)(ujk − u′jk)

=2W (k)NW (k)
∑
j∈N(k)

wkj(ujk − u′jk)

=2W (k)NW (k)(uk(xk,x−k)− uk(x′k,x−k))

The difference of potential value after the move of a player k is the difference of k’s

utility-scale by a constant. This proves that the game is a weighted potential game and

Nash equilibrium always exists [18].
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Appendix B

PROOF FOR PRICE OF

STABILITY

In this section, we assume that the game adopts global ranking weighting system and all

players are using quadratic utility function. Because the utility functions are symmetric for

all players, the game is a potential game.

We first analyze the solution for the global convex program and local convex program

using lagrangian multiplier and KKT conditions. We then analyze games with players using

aggressive best-response and with players using conservative best-response. Our goal is to

prove that given the solution for the global convex program, we can construct the solution

profile that maximizes the social welfare value and also satisfy the constraints for the local

convex program.

B.1 Solution for Global Convex Program

We first compute the lagrangian of the global convex program:

LG(~f, ~f ∗, ~λG, ~µG, ~ηG) =FG(~f) +
∑
i∈P

∑
j∈N+(i)

λGij(f
∗
ij − fij) +

∑
i∈P

∑
j∈N+(i)

µGij(f
∗
ij − f ∗ji)

+
∑
i∈P

ηGi (
∑

j∈N+(i)

fij − β)
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By setting ∇FG(~f) = 0, we have:

∇FG(~f) =
(
2wijf

∗
ij − wijβ

)
f̂ ∗ij

where f̂ ∗ij is the unit vector. The first-order condition for the global convex program is:

∂L
∂f ∗ij

= 2wijf
∗
ij − wijβ + λGij + µGij − µGji = 0 (B.1)

∂L
∂fij

= −λGij + ηGi = 0 (B.2)

λGij(f
∗
ij − fij) = 0 (B.3)

So the solution (~fOPT , ~f ∗,OPT ) for the global convex program must satisfies:

f ∗,OPTij =
β

2
−
ηGi + µGij − µGji

2wij
(B.4)

ηGi (f ∗,OPTij − fOPTij ) = 0 (B.5)

We can now examine one feasibility constraints that will help use simplify the expression

for ~f ∗,OPT . Because f ∗,OPTij = f ∗,OPTji , we have:

f ∗,OPTij = f ∗,OPTji (B.6)

⇒
ηGi + µGij − µGji

wij
=
ηGj + µGji − µGij

wji
(B.7)

⇒wji(ηGi + µGij − µGji) = wij(η
G
j + µGji − µGij) (B.8)

⇒(wij + wji)(µij − µji) = wijη
G
j − wjiηGi

⇒µij − µji =
wij

wij + wji
ηGj −

wji
wij + wji

ηGi (B.9)

Put this back to f ∗,OPTij , we have

f ∗,OPTij =
β

2
−

ηGi + ηGj
2(wij + wji)

(B.10)
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The effective frequency is characterized by the sum of two parameters ηGi and ηGj .

Because the only constraint for ~fOPT is

∑
j∈N(i)

fOPTij = β

the game can have many optimal solutions. This is due to the coordination we choose. Be-

cause we take minimization of proposals, if one player has slack frequency after coordination,

she cannot improve her utility no matter where she spends her slack frequency.

In order to construct the solution profile that is a Nash equilibrium, we have to specify

fOPTij for all edges (i, j). For the conservative one, we have

fOPTij = f ∗,OPTij (conservative case)

Then the solution profile is guaranteed to be a Nash equilibrium. This is because there

is no extra frequency on any edge, and no player can deviate from this solution. So we have

the following claim

Claim 1 (Optimal Solution in Conservative Best-Response) Given the optimal so-

lution, construct a solution profile based on Eq. (conservative case). The solution profile is

a Nash equilibrium

The case for aggressive best-response is more complicated, we redistribute fii to every

edge (i, j).

Let

δij = wij

β − ∑
j∈N(i)

f ∗,OPTij


We define ~fOPT as follows:

fOPTij = f ∗,OPTij + δij (B.11)

We have the following lemma:

Lemma 1 Given the optimal solution for global convex program, and given the solution

profile constructed by redistribute fii in the way we just discussed. If a player i has fOPTij >
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f ∗,OPTij in this solution profile for some j, then for all k ∈ N(i), fOPTik > f ∗,OPTik . If fOPTij >

f ∗,OPTij

Proof: By construction, if δij > 0 for some j, then δij > 0 for all j ∈ N(i).

We construct a solution profile ~fOPT that maximizes the social welfare value in this

section. We have the following claim:

Claim 2 (Optimal Solution in Aggressive Best-response) ~fOPT is a Nash equilibrium

for the game using aggressive best-response.

To prove the claim, we have to examine the local convex program. We analyze the

behavior of ~fOPT in the local convex program and show that it is a Nash equilibrium.

B.2 Solution for Local Convex Program

We now examine the local convex program for a player i, with the help of lagrangian, a

solution of local convex program fLij must satisfy KKT conditions:

2wijfij − wijβ + λLj + ηL = 0 (B.12)

λLj (fij − fji) = 0 (B.13)

We want to put in our solution for global convex program, which are:

f ∗,OPTij =
β

2
−

ηGi + ηGj
2(wij + wji)

(B.14)

fOPTij = f ∗,OPTij + δi (B.15)

Let fLij = fOPTij , with some work, we can get:

λLj + ηL =
wij

wij + wji
(ηGi + ηGj ) (B.16)
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I now claim the solution for the local convex program is:

fLij =
β

2
−
λLj + ηL

2wij
(B.17)

where  λLj =
wij

wij+wji
ηGj

ηL =
wij

wij+wji
ηGi

(B.18)

By construction, this solution already satisfies Eq. (B.12). We want to show that it

satisfies Eq. (B.13)

Recall that for a player i, and the solution ~f ∗,OPT , if i has an excess on one edge (i, j), it

will have excess on every edge (i, k) ∀k ∈ N(i). We have to examine two cases:

• i has an extra frequency on every edge.

• i has no extra frequency on any edge.

For the first case, because i is already at the maximum on every edge, if i moves some

frequency from a set of players K = {k1, k2, · · · , kl} and send to a set of other players

J = {j1, j − 2, · · · , jm}. Then i cannot increase its utility because of i already at the

maximum for the player in J . On the other hand, if i decrease interaction with those players

in K, it may even decrease its own utility because effective frequency will reduce. Therefore,

the solution profile also satisfies i’s local convex program. So i will not move.

For the second case, there are two types of neighbors: those neighbors who have excess,

and those neighbors who have no extra frequency. For those neighbors who have no extra

frequency, we have fij = fji, so Eq. (B.13) is satisfied.

For those neighbors who have excess, let j be one of these neighbors, its clear that

fOPTji > fOPTij . Based on Eq. (B.5), we know thatηGj = 0. Based on Eq. (B.18), we have

λLj =
wij

wij + wji
ηGj = 0

So we also satisfy Eq. (B.13) here. So we prove the claim Claim 2.

Based on Claim 1 and Claim 2, we prove Theorem 2.
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