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ABSTRACT 
 

 
 Remote construction sites, such as oil production facilities and military forward 

operating bases, are often located in hostile areas that are vulnerable to the threat of 

explosive attacks. These attacks produce devastating and far-reaching consequences. 

From 2011-2015, explosive attacks targeting facilities and infrastructure resulted in 

more than 45,000 casualties and $73 billion in direct economic losses worldwide. 

Furthermore, the post-traumatic stress disorder rate among victims of explosive attacks 

is reported to be as high as 40%. To minimize the consequences of explosive attacks, 

site layout planners of remote construction sites utilize three primary protection 

measures that are designed to: (i) increase the standoff distances between site facilities 

and the potential location of an explosive device; (ii) construct perimeter walls to 

mitigate blast loads on facilities; and (iii) harden facilities to withstand blast loads. The 

integration of these protection measures increases construction costs and they can be 

challenging to implement when site space is limited. Accordingly, designers need to 

identify an optimum combination of these protection measures that minimizes the 

aforementioned explosive attack consequences while minimizing site construction 

costs.  

The main goal of this research study is to develop novel models for optimizing 

the planning of remote construction sites that provide the capability of minimizing facility 

destruction levels and consequences resulting from explosive attacks. To accomplish 

this goal, the research objectives of this study are to: (1) develop an innovative blast 

effects assessment model capable of efficiently quantifying and visualizing blast effects 

on facilities behind blast walls; (2) develop an original multi-objective facility protection 
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model for optimizing the site layout and selection of perimeter blast walls and building 

materials in order to minimize facility destruction levels from explosive attacks while 

minimizing site construction costs; and (3) develop a novel multi-objective optimization 

model for the layout and security planning of remote construction sites that provides the 

capability of simultaneously minimizing the consequences of an explosive attack and 

the construction costs of remote sites. 

The performance of the developed optimization models was analyzed using case 

studies of hypothetical remote construction sites. The results of analyzing these case 

studies illustrated the novel and distinctive capabilities of the developed models in 

enabling designers to search for and select optimum design configurations based on the 

mission of the remote construction site. These capabilities will result in the construction 

of cost-effective, secure sites that will reduce the risks to site personnel and facilities 

from the devastating effects of an explosive attack. 
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INTRODUCTION 

1.1 Problem Statement 

Remote construction sites are encountered in many projects such as oil 

exploration and production operations and the construction of remote military bases. 

With proven oil reserves in 101 countries (CIA 2015), oil exploration and production 

operations have increased 20% worldwide since 2000 (USEIA 2015) to accommodate 

the increasing demand for energy for the growing global population and the increased 

industrialization of developing countries. Similarly, the construction of remote military 

bases has increased in recent years to address heightened national security threats and 

confront conflicts worldwide. These construction projects are located in remote and 

often hostile areas. Project managers and planners of this type of construction are often 

confronted with a number of unique and critical challenges, including how to: (1) 

analyze and select blast walls and building materials to protect site facilities; (2) 

minimize the destruction of site facilities in the event of an explosive attack; and (3) 

mitigate the consequences of an explosive attack on site personnel, facilities, and 

operations. The following sections highlight the significance of these three pressing 

challenges confronting remote construction sites and the research needs to address 

them, as shown in Figure 1.1. 

 Blast Effect Assessment Challenges 

Explosive attacks on constructed facilities are a significant threat worldwide, 

producing devastating consequences including loss of life, property damages, and 

economic losses (Wu and Hao 2007; Dillon et al. 2009). In 2014 alone, explosive 
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attacks targeting facilities and infrastructure resulted in 8,024 casualties and $13.1 

billion in direct economic losses (Hunter and Perkins 2015; Institute for Economics and 

Peace 2015). In an effort to mitigate blast effects on facilities, it is necessary for 

designers to harden facilities and/or construct blast walls (Ward 2004; Remennikov and 

Rose 2007). Therefore, designers must carefully analyze and select the most effective 

combination of utilizing blast walls and hardening facilities to reduce the security risks to 

site personnel and facilities from the threat of an explosive attack (Carper 2011). 

A number of research studies were conducted to: (1) predict the impact of blast 

on facilities; and (2) analyze and quantify the effectiveness of blast walls in protecting 

facilities from an explosion. First, several models were developed to predict the impact 

of blast on facilities, employing empirical and numerical methods. Empirical methods 

are presented in several technical reports and design manuals (DoD 2002, 2008a; 

ASCE 2011) and integrated into the software system, ConWep (Kingery and Bulmash 

1984). Numerical methods include both (a) blast models that predict blast loads on 

facilities (McGlaun et al. 1990; Crepeau 1998; Britt et al. 1999; Nichols and Doyle 

2014); and (b) coupled analysis models (Hibbitt, Karlsson & Sorensen, Inc. 2004; Ansys 

2013; LSTC 2016) that are capable of accounting for structural motion as the blast 

calculation proceeds by combining both blast load and structural response calculations 

(Ngo et al. 2007). 

Second, a number of studies conducted live tests and used numerical methods 

to quantify the effectiveness of blast walls. Live tests were conducted on rigid steel walls 

(Beyer 1986; Jones et al. 1987; Chapman et al. 1995a; Rose et al. 1995, 1997), as well 

as non-rigid or frangible materials, including sand-filled containers, wood and ice walls 
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(Rose et al. 1998), concrete masonry units (CMUs) and thin precast concrete panels 

(Bogosian and Piepenburg 2002), full-size, soil-filled HESCO Bastion concertainers 

(Scherbatiuk and Rattanawangcharoen 2008), and water walls (Chen et al. 2015). 

Numerical method studies utilized computational fluid dynamics software packages to 

test and examine blast wall effectiveness (Chapman et al. 1995b; Ngo et al. 2004; 

Rickman et al. 2006). Numerical simulation data was also used to train artificial neural 

networks (Remennikov and Rose 2007; Bewick et al. 2011) and develop “pseudo-

analytical” formulae (Zhou and Hao 2008) that can be used with existing design 

manuals.  

Despite the significant contributions of the aforementioned research studies and 

blast models, they are incapable of: (1) efficiently predicting the performance of all 

feasible blast wall and building material design alternatives (Bogosian et al. 2002; 

Sorensen and McGill 2012); (2) quantifying the effectiveness of feasible blast wall types 

in reducing blast loads on facilities; and (3) visualizing the anticipated facility damage 

areas based upon blast charge weight, blast wall type, and building material 

combinations. Accordingly, there is an urgent need for a novel model that is capable of 

efficiently quantifying and visualizing blast effects on facilities behind blast walls of 

various materials in order to support designers in their critical task of identifying the 

most effective design for blast walls and facility hardening. 

 Facility Protection Challenges 

Remote construction sites such as oil production facilities and military forward 

operating bases are often located in remote and hostile areas that are vulnerable to the 

threat of explosive attacks that seek to destroy facilities and infrastructure (DoD 2008a, 
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2012; Johnson and Gilbert 2013). To minimize the destructive effects of these explosive 

attacks, planners of these remote construction sites need to incorporate a number of 

security measures including: (i) increasing the standoff distances between site facilities 

and the potential location of an explosive device; (ii) constructing perimeter walls to 

mitigate blast loads on facilities; and (iii) hardening facilities to withstand blast loads 

(Longinow and Mniszewski 1996; Remennikov and Rose 2007; DoD 2012). The 

integration of these site layout security measures increases construction costs; 

therefore, construction planners need to identify an optimum combination of these 

security measures that minimizes facility destruction while minimizing site construction 

costs (Stewart 2008).  

To address the aforementioned challenging site layout planning task, a number 

of research studies were conducted to assess and maximize the security of facilities 

and construction sites. These related research studies can be grouped in two categories 

that focused on: (1) improving the selection of security measures; and (2) optimizing site 

layout planning to improve the security of construction sites. The first category of related 

research studies focused on improving the selection of security measures. Grassie et al. 

(1990) proposed a six-step security measure selection process to assist designers in 

implementing a cost-effective approach to site security. Longinow and Mniszewski 

(1996) analyzed the interaction between air blasts and facilities in an effort to identify 

potential design changes and security guidelines that can minimize the damages and 

casualties caused by vehicle bombs. In another study, Little et al. (2002) proposed a 

decision framework for security and natural hazard risk mitigation that identifies the 

maximum level of damage to be tolerated for a facility based on its risk groups and 
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design event magnitudes. Dillon et al. (2009) developed an anti-terrorism risk-based 

decision aid to prioritize upgrade measures of existing facilities.  

The second group of related research studies focused on optimizing site layout 

planning to improve the security of construction sites. Khalafallah and El-Rayes (2008) 

utilized genetic algorithm to develop a multi-objective optimization model capable of 

simultaneously minimizing construction-related security breaches and minimizing site 

layout costs for airport expansion projects. Said and El-Rayes (2010) developed an 

automated multi-objective framework that minimizes site security risks from the threat of 

theft or destruction of classified materials while minimizing overall site costs. In two 

separate studies, Li et al. (2015a; b) utilized multi-objective, bi-level optimization 

algorithms to address the dynamic construction site layout and security planning 

problem.  

Despite the significant contributions of the aforementioned research studies, 

there is no reported research that focused on: (1) quantifying and minimizing the impact 

of potential explosive attacks on facilities; (2) optimizing the selection of blast walls and 

building materials to minimize blast damage levels on facilities; (3) generating optimal 

tradeoffs between the two critical site layout planning objectives of minimizing facility 

destruction levels from explosive attacks and minimizing site construction costs. 

Accordingly, there is a pressing need for a novel model that addresses these three key 

research areas and enables the optimization of the site layout of remote construction 

sites and their selection of perimeter blast walls and building materials to minimize both 

destruction levels and construction costs. 
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 Blast Consequence Mitigation Challenges 

The consequences of explosive attacks targeting remote construction sites can 

be grouped into four main categories: personnel loss, psychological impact, economic 

loss, and operational impact (FEMA 2011). The magnitude of these consequences has 

significantly increased in recent years. During a five-year period from 2011-2015, 

explosive attacks targeting facilities and infrastructure resulted in more than 45,000 

casualties and $73 billion in direct economic losses worldwide (Hunter and Perkins 

2015; Institute for Economics and Peace 2015; Perkins 2015). Furthermore, the post-

traumatic stress disorder (PTSD) rate among victims of explosive attacks is reported to 

be as high as 40% (Neria et al. 2008).   

Designers and site layout planners of remote construction sites are confronted 

with two critical and challenging tasks in their efforts to construct resilient sites. First, 

they must be able to accurately and efficiently predict the potential consequences of 

explosive attacks. Second, they need to identify optimal combinations of site layouts 

and protection strategies that are capable of minimizing the consequences of an 

explosive attack while minimizing the construction costs of remote sites that have 

limited available site layout space. Research studies investigating these challenging 

tasks focused on three main areas: (1) evaluating the consequences of disasters and 

explosive attacks; (2) quantifying and aggregating explosive attack consequences; and 

(3) optimizing construction site layouts in order to maximize site security. These three 

research areas are briefly discussed below. 

The first area of research studies focused on evaluating the four main 

consequences of disasters and explosive attacks: personnel loss, psychological impact, 
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economic loss, and operational impact. Personnel loss studies examined the most 

frequent injury types suffered in explosive attacks, including severe head trauma, 

(Mellor 1992; Mallonee et al. 1996; Wightman and Gladish 2001), damage to the ears 

(Garth 1995; Cave et al. 2007), eyes (Abbotts et al. 2007; Morley et al. 2010), and lungs 

(Avidan et al. 2005; Sasser et al. 2006; Stuhmiller et al. 1996), as well as injuries from 

flying glass debris (Norville et al. 1999; Thompson et al. 2004; Ataei and Anderson 

2012). Psychological impact studies consist of applied epidemiological investigations on 

victims of a number of historical terrorist attacks, including the Oklahoma City bombing 

(North et al. 1999, 2002), September 11, 2001 attacks on New York City (Schuster et al. 

2001; Galea et al. 2002; Schlenger et al. 2002), 2004 Madrid train bombing (Gabriel et 

al. 2007; Vázquez et al. 2008), and French bombings of 1982-1987 (Abenhaim et al. 

1992) and 1995-1996 (Verger et al. 2004). Economic loss studies analyzed and 

differentiated between the macroeconomic (Blomberg et al. 2004; Enders and Olson 

2012) and microeconomic costs (Enders 2007), and between the direct (Dillon et al. 

2009) and indirect costs (Kazimi and Mackenzie 2016) of attacks. Operational impact 

studies investigated facility downtime caused by disasters (Comerio 2000; Pachakis and 

Kiremidjian 2004; Comerio 2006; Bailey and Levitan 2008; Porter and Ramer 2012) and 

methods of determining facility importance to a site mission (Karydas and Gifun 2006; 

Antelman et al. 2008; Grussing et al. 2010).   

The second group of research studies developed frameworks to quantify and 

aggregate the consequences of disasters and explosive attacks. For example, Ayyub et 

al. (2007) and McGill et al. (2007) created quantitative methods for performing critical 

asset risk analysis based upon five consequence types: casualty, economic, mission 
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disruption, environmental damage, and recuperation time. These studies provided a 

methodology to aggregate the five consequences into a single measure of monetary 

loss. Dillon et al. (2009) utilized multi-attribute utility theory to integrate owner value 

preferences between the mission, personnel, and economic consequences of terrorist 

attacks. The third area of research studies consists of the aforementioned site layout 

optimizing models designed to maximize construction site security. 

Despite the significant contributions of the aforementioned research studies, 

existing risk analysis and layout-based security optimization models are incapable of: 

(1) efficiently quantifying the consequences of explosive attacks because they rely on 

the use of time-consuming external blast analysis software packages; (2) evaluating the 

impact of serious and minor injuries on total personnel losses; (3) quantifying the extent 

of psychological impacts on survivors of explosive attacks; (4) measuring the impact of 

explosive attacks on the operational capacity of the site in terms of the total number of 

days the site is unable to perform its primary mission; and (5) generating a set of 

optimal combinations of site layout solutions and protection strategies that provide 

optimal tradeoffs between minimizing the consequences of explosive attacks and 

minimizing site construction costs. Accordingly, there is an urgent need for the 

development of a novel optimization model that is designed to overcome the above five 

limitations of existing models. 
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Figure 1.1 Challenges and Research Needs in Remote Construction Sites 

1.2 Research Objectives 

The primary goal of this research study is to develop novel models for optimizing 

the planning of remote construction sites that provide the capability of minimizing facility 

destruction levels and consequences resulting from explosive attacks. To accomplish 

this goal, the objectives of this research study along with its research questions and 

hypotheses are summarized below: 

Objective 1:   

Conduct a comprehensive literature review on the latest research in: (1) 

quantifying blast effects on facilities behind blast walls; (2) quantifying the 

consequences that explosive attacks and disasters inflict on site personnel and 

facilities; (3) analyzing models and best practices developed for remote construction site 

security planning; (4) modeling and optimizing the layout of construction sites; and (5) 
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investigating multi-objective optimization techniques that are capable of addressing the 

unique challenges of remote construction sites. 

Research Questions:  

(a) What methods are available to predict blast impacts on facilities? (b) What 

impact do feasible rigid and frangible blast walls have in reducing blast loads on remote 

facilities? (c) What are the primary consequences inflicted on site personnel and 

facilities in the event of an explosive attack? (d) What methods are available to quantify 

the various consequences of explosive attacks? (e) What design decisions and security 

measures can be selected to reduce the consequences of these threats? (f) What 

methods exist to optimize the selection of numerous facility locations on a remote 

construction site? and (g) What decision-making and optimization techniques are 

available to model the unique challenges presented in this research?  

Objective 2: 

Develop an innovative blast effects assessment model that is capable of 

efficiently quantifying and visualizing blast effects on facilities behind blast walls of 

various materials in order to support designers in their critical task of identifying the 

most effective design for blast walls and facility hardening. 

Research Questions: 

(a) What are the feasible blast wall types that can be constructed to reduce blast 

loading on facilities? (b) How do blast wall type, building material, and facility 

location affect the expected damages to a facility in the event of an explosive 

attack? and (c) How can visualizations of the anticipated facility damage 
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areas based upon blast charge weight, blast wall type, and building material 

be generated to enable the performance of visual risk management 

assessments of the design scenario?  

Hypothesis:  

A blast effects assessment model for remote construction sites can provide the 

capability of quantifying and visualizing blast effects on facilities behind blast walls of 

various materials.  

Objective 3: 

Develop an original multi-objective facility protection model for optimizing the site 

layout and selection of perimeter blast walls and building materials in order to minimize 

facility destruction levels from explosive attacks while minimizing site construction costs. 

Research Questions: 

(a) What metrics can be utilized to quantify the destruction of site facilities? (b) 

What modeling techniques are available to represent the site area and location of 

multiple site facilities? and (c) Which optimization techniques can be utilized to generate 

optimal tradeoffs between minimizing facility destruction levels from explosive attacks 

and minimizing site construction costs?  

Hypothesis:  

A multi-objective facility protection optimization model for remote construction 

sites can be used to analyze and optimize tradeoffs between minimizing site facility 

destruction levels and minimizing total site construction cost. 
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Objective 4: 

Develop a novel multi-objective optimization model for the layout and security 

planning of remote construction sites that provides the capability of minimizing the 

consequences of an explosive attack and minimizing the construction costs of remote 

sites. 

Research Questions: 

(a) What metrics can be used to quantify the consequences of explosive attacks 

inflicted on site personnel, facility assets, and the site’s ability to conduct operations? (b) 

How can the extent of serious injuries and minor injuries be computed? (c) How can the 

psychological impacts experienced by explosive attack survivors be defined and 

quantified? and (d) How can the various consequence metrics that have inherently 

different units of measure be aggregated to model the overall explosive attack 

consequences on remote construction sites?  

Hypothesis:  

A blast consequence mitigation model can be used to generate and analyze 

optimal tradeoffs between minimizing the consequences of an explosive attack and 

minimizing the construction costs of remote construction sites. 

1.3 Research Methodology 

This section outlines the proposed methodology for achieving the objectives of 

this research study. As shown in Figure 1.2, the proposed methodology can be divided 

into four major tasks: (1) conduct a comprehensive literature review; (2) develop a blast 

effects assessment model for remote construction site facilities; (3) create a facility 
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protection optimization model for remote construction sites; and (4) develop a blast 

consequence mitigation model for remote construction sites.    

 Task 1: Conduct a Comprehensive Literature Review 

This task will focus on conducting a comprehensive literature review to identify 

and investigate the latest research focusing on remote construction site challenges. The 

work in this research task can be subdivided into the following subtasks:  

Task 1.1: Evaluate methods for quantifying blast effects on remote facilities behind blast 

walls 

The objective of this task is to investigate available blast assessment methods for 

quantifying blast effects on remote facilities. Furthermore, this task examines feasible 

blast walls that can be constructed to reduce blast loading on facilities in hostile and 

remote locations. Blast walls may be rigid, such as steel or reinforced concrete, or 

frangible, such as sand-filled, water-filled, and wood walls.  

Task 1.2: Analyze the consequences of explosive attacks on remote construction sites 

The purpose of this task is to analyze the consequences of explosive attacks on 

remote construction sites. These consequences include fatalities, serious injuries, and 

minor injuries suffered by site personnel, psychological impacts inflicted on survivors of 

an explosive attack, direct and indirect economic losses, and degradation of operational 

or mission capability. Additionally, this task investigates methods to aggregate 

consequences that have inherently different units of measure into a single consequence 

score. 

Task 1.3: Examine construction site security planning models and best practices 
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This research task analyzes available security planning models and best 

practices for the design and construction of remote sites. The areas investigated include 

criteria for selecting security countermeasures, blast mitigation techniques, and 

methods to prioritize anti-terrorism upgrade decisions. 

Task 1.4: Study the latest research on construction site layout models 

The purpose of this task is to review available methodologies for modeling 

construction site layout planning including heuristics and genetic algorithms. 

Furthermore, this task will review how each of these methodologies handles the 

required constraints of construction site layouts including boundary, overlap, and zone 

conditions.  

Task 1.5: Analyze available multi-objective optimization techniques 

This task focuses on analyzing available multi-objective optimization techniques 

that can be used in addressing the unique challenges of remote construction sites. The 

reviewed multi-objective optimization techniques in this task can be grouped in three 

main categories: (1) weighted linear and integer programming; (2) genetic algorithms; 

(3) and nature-inspired metaheuristic algorithms.  

 Task 2: Develop a Blast Effects Assessment Model  

The purpose of this task is to develop a blast effects assessment model capable 

of efficiently quantifying and visualizing blast effects on constructed facilities behind 

blast walls. The model is intended to support designers in their critical task of analyzing 

and comparing all feasible design alternatives in order to select the most effective 

combination of blast wall type and building material to reduce the security risks to site 
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personnel and facilities from the threat of an explosive attack. The work in this research 

task can be subdivided into the following tasks:  

Task 2.1: Develop a frangible wall effectiveness metric 

In this task, a new metric will be developed to quantify the performance of 

feasible frangible wall types including sand-filled, water-filled, and wood walls in 

reducing peak reflected pressure and impulse loading on facilities. Development of this 

metric includes novel analytical formulae and a set of frangible blast wall effectiveness 

factors for pressure and impulse.  

Task 2.2: Formulate a blast effects assessment model 

Formulate a blast effects assessment model to compute an overall facility 

damage level for constructed facilities behind blast walls. This model will consider 

design combinations of blast wall type, building material, and facility location for a 

specified blast charge weight. The model will also generate visualizations that display 

anticipated facility damage areas based upon blast charge weight, blast wall type, and 

building material combinations.  

Task 2.3: Implement the blast effects assessment model 

Implement the developed blast effects assessment model utilizing the Python 

programming language (Rossum 1995) and the 2-D plotting library matplotlib (Hunter 

2007). 

Task 2.4: Confirm model performance and evaluate model performance using a case 

study  
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First, the accuracy and efficiency of the blast effects assessment model will be 

confirmed by comparing it to an existing blast damage assessment tool. Next, the model 

performance will be evaluated, refined, and improved using a case study of a remote 

construction site. 

 Task 3: Develop a Facility Protection Optimization Model  

This task will focus on developing a multi-objective facility protection optimization 

model capable of quantifying and minimizing facility destruction levels from explosive 

attacks while minimizing site construction costs. The model is intended to equip 

planners of remote construction sites with the capability to efficiently analyze and 

compare all feasible design alternatives in order to construct remote sites that minimize 

the destruction levels of site facilities from the threat of explosive attacks in the most 

cost-effective manner. The work in this research task can be subdivided into the 

following subtasks:  

Task 3.1: Formulate a facility protection optimization model 

The purpose of this task is to formulate a multi-objective facility protection 

optimization model for remote construction sites that is capable of generating optimal 

tradeoffs between minimizing site facility destruction levels from an explosive attack and 

minimizing the total site construction cost. 

Task 3.2: Identify site layout geometric constraints 

The objective of this task is to identify all practical geometric constraints that can 

be encountered in the planning of remote construction sites, including: (1) site 

boundary; (2) facility overlap; (3) minimum distance; and (4) maximum distance. 



 17 

Task 3.3: Implement the facility protection optimization model 

This task focuses on implementing the developed facility protection optimization 

model using multi-objective genetic algorithms.   

Task 3.4: Evaluate model performance using a case study  

This task evaluates, refines, and improves the performance of the developed 

facility protection optimization model by analyzing a case study of a hypothetical remote 

construction site.   

 Task 4: Develop a Blast Consequence Mitigation Model 

The objective of this task is to develop a multi-objective blast consequence 

mitigation model capable of quantifying and minimizing the consequences of an 

explosive attack and minimizing the construction costs of remote sites. The model is 

intended to support designers in their critical task of searching for and identifying 

optimal remote construction site layouts in order to construct remote sites that minimize 

the personnel loss, psychological impact, economic loss, and operational impact in the 

event of an explosive attack while minimizing site construction costs. The work in this 

research task is organized in the following subtasks:  

Task 4.1: Identify explosive attack consequence metrics 

In this task, new metrics will be developed to quantify the consequences of 

explosive attacks on remote construction sites. These metrics include personnel loss, 

psychological impact, economic loss, and operational impact.   

Task 4.2: Formulate a blast consequence mitigation model 
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Formulate a multi-objective blast consequence mitigation model that is capable 

of generating optimal tradeoffs between minimizing the consequences of an explosive 

attack and minimizing the construction costs of remote sites. 

Task 4.3: Implement the blast consequence mitigation model  

Implement the developed blast consequence mitigation model using the NSGA-2 

genetic algorithm (Deb et al. 2002).   

Task 4.4: Evaluate model performance using a case study 

Evaluate and refine the performance of the developed blast consequence 

mitigation model using a case study of a hypothetical remote construction site. 
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Figure 1.2: Research Methodology 
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1.4 Research Significance 

The developments of this research study are expected to have significant and 

broad impacts on: (1) quantifying and visualizing blast effects on facilities behind 

frangible blast walls; (2) minimizing facility destruction levels; and (3) mitigating the 

consequences of explosive attacks on remote construction sites.    

1. Quantifying and visualizing blast effects on facilities behind frangible blast walls  

This research study holds a strong potential to improve blast wall and facility 

design at remote construction sites by developing a model that allows designers to 

efficiently and accurately analyze and compare the performance of all feasible frangible 

blast wall types in reducing blast loading on facilities. Furthermore, the model generates 

visualizations of the anticipated facility damage levels based upon the selected design. 

These generated visualizations will enable designers to rapidly perform visual risk 

management assessments of their design scenarios and determine if any design 

changes are needed to provide the required level of protection for constructed facilities.  

2. Minimizing facility destruction levels  

The present study is expected to support site layout planners of multi-facility 

remote construction sites in minimizing facility destruction levels from explosive attacks. 

The proposed multi-objective optimization model is designed to generate a broad 

spectrum of Pareto-optimal solutions that represent unique and optimal tradeoffs 

between the two optimization objectives of minimizing site facility destruction levels and 

minimizing site construction costs. Accordingly, site layout planners can select the 

design from the spectrum of Pareto-optimal solutions that best fit the maximum 

acceptable level of destruction based on the mission of the remote construction site or 
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complies with the maximum available budget. This capability will result in the 

construction of cost-effective, high-performance sites that will lower the risks to facilities 

from the devastating effects of an explosive attack. 

3. Mitigating explosive attack consequences 

The developed blast consequence mitigation model provides site layout planners 

with the capability of minimizing explosive attack consequences in remote construction 

sites while keeping site construction costs to a minimum. The model provides much-

needed support for designers and enables them to identify an optimal and cost-effective 

site layout that minimizes security risks in remote construction sites. This can lead to 

numerous and significant improvements in the performance of this type of project, 

including minimized risks of personnel fatalities and injuries, fewer diagnoses of post-

traumatic stress disorder among explosive attack survivors, reduced economic losses 

from damage to facilities, and fewer disruptions to the overall mission of the site.  

1.5 Report Organization 

The organization of this report and its relation with research objectives, tasks and 

deliverables is described as follows: 

Chapter 2 presents a comprehensive literature review that establishes baseline 

knowledge of the latest research in: (1) quantifying blast effects on facilities behind blast 

walls; (2) evaluating and aggregating the consequences of explosive attacks on remote 

construction sites; (3) analyzing existing models and best practices for improving 

construction site security; (4) modeling and optimizing construction site layouts; and (5) 

investigating available decision-making and multi-objective optimization techniques that 

are capable of addressing the unique challenges of remote construction sites. 
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Chapter 3 discusses the development of a novel blast effects assessment model 

capable of efficiently quantifying and visualizing blast effects on constructed facilities 

behind blast walls. This chapter presents the model in five main stages: (1) blast wall 

analysis stage that develops a novel analytical formula and a set of effectiveness 

factors to quantify the performance of feasible frangible blast wall types including sand-

filled, water-filled, and wood walls in reducing peak reflected pressure loading on 

facilities; (2) facility damage assessment stage that computes the percent area of each 

facility within five specified damage levels in order to calculate an overall facility damage 

level; (3) blast damage visualization stage that displays anticipated facility damage 

areas based upon blast charge weight, blast wall type, and building material 

combinations; (4) model validation stage that confirms the accuracy and efficiency of 

the developed model; and (5) performance evaluation stage that analyzes the 

performance of the developed model using a case study. 

Chapter 4 displays the development of a multi-objective model for optimizing the 

site layout and selection of perimeter blast walls and building materials in order to 

minimize facility destruction levels from explosive attacks while minimizing site 

construction costs. This chapter presents the model in three main stages: (1) 

formulation stage that defines the relevant decision variables, formulates the objective 

functions, and identifies practical model constraints; (2) implementation stage that 

performs the optimization computations using multi-objective genetic algorithm; and (3) 

performance evaluation stage that analyzes an application example to evaluate and 

improve model performance.  
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Chapter 5 presents the development of a novel multi-objective optimization 

model for the layout and security planning of remote construction sites that provides the 

capability of minimizing the consequences of an explosive attack and minimizing the 

construction costs of remote sites. This chapter presents the developed model in three 

main stages: (1) consequence identification stage that quantifies the consequences of 

explosive attacks targeting facilities; (2) formulation stage that identifies the relevant 

decision variables, formulates the objective functions, and defines all practical 

constraints; and (3) implementation stage that performs the optimization computations 

using genetic algorithm and specifies the model input and output data. The performance 

of the developed model is then analyzed using a case study that is designed to illustrate 

the use of the model and demonstrate its unique capabilities.  

Chapter 6 presents the conclusions, research contributions, and recommended 

future research of the present study. 
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LITERATURE REVIEW 

2.1 Introduction 

A comprehensive literature review has been conducted to establish a firm 

foundation for the proposed study. The literature review focused on investigating and 

analyzing the current practices as well as relevant research studies in the security 

planning of remote construction sites. This chapter summarizes and organizes the 

reviewed literature in five main sections: (1) quantifying blast effects on facilities behind 

blast walls; (2) quantifying the consequences of explosive attacks and disasters on 

facilities; (3) security planning for remote construction sites; (4) construction site layout 

modeling; and (5) decision-making and optimization techniques.  

2.2 Quantifying Blast Effects on Facilities behind Blast Walls  

Explosive attacks on constructed facilities are a significant threat worldwide, 

producing devastating consequences including loss of life, property damages, and 

economic losses (Wu and Hao 2007; Dillon et al. 2009). In 2014 alone, explosive 

attacks targeting facilities and infrastructure resulted in 8,024 casualties and $13.1 

billion in direct economic losses (Hunter and Perkins 2015; Institute for Economics and 

Peace 2015). Designers attempt to minimize blast effects on facilities by maximizing the 

standoff distance between the facility and the likely location of an explosive device, 

hardening facilities, and/or constructing blast walls to mitigate potential blast effects 

(Longinow and Mniszewski 1996; Ward 2004; Remennikov and Rose 2007; DoD 2012). 

In order to analyze and select the most effective design combination of utilizing blast 

walls and hardening facilities to reduce security risks to site personnel from the threat of 
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an explosive attack, designers must have accurate methods to quantify blast impacts on 

facilities behind blast walls. This section discusses a number of studies that were 

conducted to: (1) predict the impact of blast on facilities; and (2) analyze and quantify 

the effectiveness of blast walls in protecting facilities from an explosion. 

 Blast Assessment Methods  

Several models were developed to predict the impact of blast on facilities, 

employing empirical and numerical methods. Empirical methods provide best-fit design 

curves of experimental data (Goel and Matsagar 2014). These methods consolidated 

and incorporated extensive experimental blast data into several technical reports and 

design manuals, including American Society of Civil Engineers Structural Engineering 

Institute (ASCE/SEI) 59-11 (ASCE 2011), Unified Facilities Criteria (UFC) 3-340-01 

(DoD 2002), which superseded Technical Manual (TM) 5-855-1 (USACE 1984), and 

UFC 3-340-02 (DoD 2008a), which superseded TM 5-1300 (U.S. Dept. of the Army 

1990). The equations and design curves presented by Kingery and Bulmash (1984) 

form the basis of the UFCs above and have also been incorporated into a software 

system named ConWep (Hyde 1988), which is capable of modeling and calculating 

blast loads on constructed facilities (Stewart and Netherton 2015). Numerical methods 

typically utilize computational fluid dynamics to solve mathematical equations of the 

laws of physics governing the problem such as the conservation of mass, momentum, 

and energy (Remennikov 2003). Numerical methods can be subdivided into: (a) blast 

models that predict blast loads on facilities; and (b) coupled analysis models, which are 

capable of accounting for structural motion as the blast calculation proceeds by 

combining both blast load and structural response calculations (Ngo et al. 2007). 
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Examples of blast models are BlastX (Britt et al. 1999), CTH (McGlaun et al. 1990), 

ProSAIR (ProSAir 2009), SHAMRC (Crepeau 1998) and VAPO (Nichols and Doyle 

2014). Coupled analysis models include ABAQUS (Hibbitt, Karlsson & Sorensen, Inc. 

2004), AUTODYN (Ansys 2013) and LS-DYNA (LSTC 2016).  

 Blast Walls  

A blast wall is a physical barrier that separates valuable facilities from explosive 

threats (Smith 2010), as shown in Figure 2.1. Blast walls function by reflecting a portion 

of the explosive blast energy, thereby reducing peak reflected pressure loading on the 

facility (Remennikov and Rose 2007). A number of studies conducted live tests and 

used numerical methods to quantify the effectiveness of blast walls. This section will 

discuss these experimental methods for both rigid and frangible blast walls.  

 
Figure 2.1 Blast Wall Configuration (Bewick et al. 2011) 

2.2.2.1 Live Tests 

Beyer et al. (1986) and Jones et al. (1987) conducted two of the earliest studies 

on rigid blast walls. Both studies recorded reflected pressure-time history 
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measurements behind rigid steel walls to quantify the blast parameters behind a vertical 

wall and the subsequent reduction in blast loads on a facility. Beyer et al. (Beyer 1986) 

performed tests on a 1/6th scale, vertical cantilever wall constructed of steel armor plate. 

The authors tested combinations of three blast charge weights (1, 8, and 15 pounds of 

spherical C4) and three blast wall designs. Jones et al. (1987) simulated vehicle-borne 

improvised explosive device (VBIED) attacks on a facility by conducting live tests on 

1/10th scale models of a rigid steel wall. Appropriately scaled charges, representing the 

most probable security threats faced by designers, were detonated at various standoff 

distances from the model facility.  

In response to frequent VBIED attacks on facilities in Northern Ireland, 

researchers from Cranfield University at the Defence Academy of the United Kingdom 

conducted a series of live test experiments on rigid steel walls. Rose et al. (1995) 

performed 1/10th scale tests on a plane, non-deforming steel wall. Pressure-time 

histories were measured in a grid of locations behind the wall and results were 

presented as contour plots of peak pressure and scaled impulse at increments of “wall 

heights” from the wall. This study demonstrated that a plane, non-deforming steel wall 

significantly reduces the pressure and impulse behind a wall out to approximately six 

wall heights.  

Seeking to expand the work conducted by Rose et al. (1995), Chapman et al. 

(1995a) performed experiments on steel walls to quantify the impact that considering 

additional design parameters, namely the distance from the blast to the blast wall, would 

have on altering blast loads on facilities behind blast walls. The authors were able to 
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develop a “protection factor” based upon the resulting pressure-time history contour 

plots as functions of the geometric parameters shown in Figure 2.2.  

 
Figure 2.2 Geometrical Parameters Included in a “Protection Factor” (Chapman et 

al. 1995a) 

Several design charts from the work of Chapman et al. (1995a) were published in 

Rose et al. (1997). The design charts plotted peak overpressure (kPa) and peak scaled 

impulse (kPa ms/kg1/3) versus scaled distance (standoff distance/blast charge weight1/3) 

at various heights on the protected facility for selected ratios of distance from the blast 

to the wall and distance from the wall to the protected facility. It is worth noting that the 

results of these scale model experiments correlated well with the full-scale experiments 

conducted by Hulton et al. (1995), thereby validating the scale model approach to blast 

wall experiments.  

Live tests were also conducted on blast walls constructed of non-rigid or frangible 

materials. Rose et al. (1998) concluded the Cranfield University blast wall research 

stream by performing a series of 1/10th scale tests on seven different materials (sand-

filled containers, balsa wood, polystyrene, polythene, revetting fabric, water-filled and 

ice walls) in 23 experimental configurations. The different configurations served to 

compare variations in wall geometry, height, thickness, and stabilization method. The 

tests were conducted by detonating a 57g spherical charge of Demex explosive 
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(equivalent to 75g TNT) at a distance of 138mm from the wall and a height of 109mm 

above the ground. Peak pressure and peak scaled impulse measurements were 

recorded at four distances between 1.35 and 1.8m behind the wall. The results of the 

study showed that frangible materials provide comparable and often greater reductions 

in blast loading than rigid walls.  

Bogosian and Piepenburg (2002) performed a series of 35 live tests, analyzing 

the effectiveness of rigid concrete walls as well as four frangible wall types: concrete 

masonry units (CMUs), thin precast concrete panels, thin water, and thick water. The 

authors developed a frangible wall effectiveness factor (EF), which is defined as the 

ratio of the pressure or impulse behind a frangible blast wall divided by the same metric 

behind a rigid blast wall, as shown in Eqs (2.1)-(2.2). Each test series measured EFp 

values at several scaled heights on the building. In order to create a more useable 

metric, a single EFp value was calculated for each frangible wall type by consolidating 

and averaging the effectiveness factors over all building elevations. Experimental 

results showed that all four frangible wall types performed better than the rigid concrete 

wall with regard to mitigation of pressure. For mitigation of impulse, the CMU, thin 

precast concrete panels, and thick water walls performed better than the rigid concrete 

wall, while the thin water wall performed worse than the rigid concrete wall.  

 
𝐸𝐹𝑃 =

𝑃𝑓𝑟𝑎𝑛𝑔𝑖𝑏𝑙𝑒  

𝑃𝑟𝑖𝑔𝑖𝑑 
 (2.1) 

 
𝐸𝐹𝐼 =

𝐼𝑓𝑟𝑎𝑛𝑔𝑖𝑏𝑙𝑒  

𝐼𝑟𝑖𝑔𝑖𝑑 
 (2.2) 

where,  

𝐸𝐹𝑃   = frangible wall effectiveness factor for pressure; 
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𝑃𝑓𝑟𝑎𝑛𝑔𝑖𝑏𝑙𝑒  = blast pressure behind a frangible wall (kPa);  

𝑃𝑟𝑖𝑔𝑖𝑑    = blast pressure behind a rigid wall (kPa); 

𝐸𝐹𝐼   = frangible wall effectiveness factor for impulse;  

𝐼𝑓𝑟𝑎𝑛𝑔𝑖𝑏𝑙𝑒  = blast impulse behind a frangible wall (kPa-ms); and 

𝐼𝑟𝑖𝑔𝑖𝑑    = blast impulse behind a rigid wall (kPa-ms). 

Two recent research efforts have performed live tests with numerical simulations. 

The purpose of the live tests was to calibrate the developed numerical models, which 

could then be used to run additional simulations without the inherent expense or safety 

concerns associated with live tests. Scherbatiuk and Rattanawangcharoen (2008) 

executed three full-size tests on soil-filled HESCO Bastion concertainers, a 

prefabricated unit, made of galvanized welded steel mesh lined with non-woven 

polypropylene geotextile. Chen et al. (2015) performed nine in-situ experiments on 

scale-size water walls in an explosion chamber. Both research studies utilized LS-

DYNA (LSTC 2016) to develop their numerical simulations. Scherbatiuk and 

Rattanawangcharoen (2008) developed a finite element model capable of predicting 

displacement-time histories of soil-filled concertainers subjected to blast loading. Chen 

et al. (2015) utilized their numerical simulation to derive empirical formulae capable of 

predicting the blast environment behind water walls.  

2.2.2.2 Numerical Methods 

Numerical methods were also used to quantify the effectiveness of blast walls. 

For example, Chapman et al. (1995b) utilized AUTODYN2D (Ansys 2013) to analyze 

the simulation of blast waves over protective barriers. The authors recorded high 

correlation between the simulation data and the experimental results from Rose et al. 
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(1995). This work demonstrated that numerical simulation methods can accurately 

simulate blast wave and blast wall interactions in both simple and complex geometries 

in two dimensions.  

Ngo et al. (2004) used LS-DYNA (LSTC 2016) and Air3D (2001) to produce 

three-dimensional visualizations of the complex flow of a blast wave propagating over a 

wall. Their study aimed to visualize the effectiveness of blast walls for a range of 

standoff distances, wall heights, and geometries.  

Rickman et al. (2006) conducted a series of small-scale experiments and 

employed SHAMRC simulations (Crepeau 1998) to examine the effect of wall height, 

charge-to-wall distances, and charge-to-facility standoff distances on the shielding 

capability of blast walls. Their analysis yielded four main conclusions. First, all barriers, 

even relatively short ones, can significantly reduce the peak reflected pressures on 

facilities behind the wall. Second, blast walls may provide significant protection for 

facilities that are taller than the walls themselves. Third, blast walls can still provide 

significant protection for facilities at relatively large wall-to-facility distances. Fourth, the 

primary source of protection provided by blast walls is likely from the slowing of the air 

shock wave as it diffracts over the blast wall toward a facility. 

As the quality of numerical simulations matured and the capability of blast walls 

to significantly reduce blast loads on facilities was confirmed, the emphasis of research 

studies shifted to quantifying blast wall effectiveness based upon individual design 

scenarios. The focus was on developing adjustment factors capable of quantifying the 

reduction in peak reflected pressure and peak impulse on facilities behind blast walls. 

The earliest paper to introduce this concept was Rose et al. (1995), with the 
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development of pressure and improvement benefit factors. The remaining papers in this 

section used various methods to quantify blast wall adjustment factors based upon a 

number of input factors.  

Remennikov and Rose (2007) and Bewick et al. (2011) utilized both test data 

from live scaled experiments and numerical simulation data to train artificial neural 

networks (ANNs) to predict the area of effectiveness behind a blast wall and 

subsequent blast loads on structures. The purpose of the research was to develop 

stand-alone, fast-running tools capable of quantifying pressure and impulse adjustment 

factors based upon blast charge weight, blast wall height, wall-to-facility distance, 

charge-to-facility distance, and height on the building. The pressure and impulse 

adjustment factors are defined as the ratio of reflected pressure or impulse behind a 

blast wall to the original pressure or impulse when no wall is present, as shown in Eqs. 

(2.3)-(2.4). For example, a pressure adjustment factor of 0.4 represents a 60% 

reduction in pressure behind a wall compared to a no-wall configuration. The advantage 

of using ANNs to predict blast wall adjustment factors is the ability to obtain accurate 

results in significantly less time than methods requiring complex numerical 

computational fluid dynamics (CFD) simulations. The disadvantages of using ANNs to 

predict blast wall adjustment factors is acquiring the amount of validated test data that is 

needed to train the ANN. Further, while extremely capable, these ANNs still do not 

realize the level of flexibility that exists with numerical CFD simulations.  

 
𝐴𝐹𝑃 =

𝑃𝑤𝑎𝑙𝑙  

𝑃𝑛𝑜 𝑤𝑎𝑙𝑙
 (2.3) 

 
𝐴𝐹𝐼 =

𝐼𝑤𝑎𝑙𝑙  

𝐼𝑛𝑜 𝑤𝑎𝑙𝑙
 (2.4) 
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where,  

𝐴𝐹𝑃   = pressure adjustment factor for a blast wall; 

𝑃𝑤𝑎𝑙𝑙   = blast pressure behind a wall (kPa);  

𝑃𝑛𝑜 𝑤𝑎𝑙𝑙   = blast pressure with no wall (kPa); 

𝐴𝐹𝐼   = impulse adjustment factor for a blast wall;  

𝐼𝑤𝑎𝑙𝑙   = blast impulse behind a wall (kPa-ms); and 

𝐼𝑛𝑜 𝑤𝑎𝑙𝑙   = blast impulse behind a rigid barrier (kPa-ms). 

Zhou and Hao (2008) developed “pseudo-analytical” formulae to estimate the 

reflected pressure-time histories on a facility behind a blast wall. These formulae were 

developed as best-fit curves of AUTODYN3D numerical simulations (Ansys 2013). They 

are expressed in terms of the following parameters: blast charge weight (W), distance 

from the explosion to the facility (D), facility height (HB), the height of the gauge point on 

the facility (He), blast wall height (H1), and the ratio of the distance between the blast 

wall and the explosion to that between the facility and the explosion (L1/D), as shown in 

Figure 2.3. The formulae can be combined with existing design manuals, such as UFC 

3-340-02 (DoD 2008a), to predict blast loading on facilities behind a rigid wall. 



  
 

34 

 
Figure 2.3 Problem Configuration (Zhou and Hao 2008) 

 Limitations of Available Blast Models and Blast Wall Research Studies 

Despite the significant contributions of the aforementioned research studies and 

blast models, they are incapable of: (1) efficiently predicting the performance of all 

feasible blast wall and building material design alternatives due to the significant 

computational time and effort required by numerical blast assessment models to 

analyze each possible combination of blast wall type, building material, and facility 

location (Bogosian et al. 2002; Sorensen and McGill 2012); (2) quantifying the 

effectiveness of feasible frangible blast wall types including sand-filled, water-filled, and 

wood walls in reducing peak reflected pressure loading on facilities; and (3) visualizing 

the anticipated facility damage areas based upon blast charge weight, blast wall type, 

and building material combinations. Accordingly, there is an urgent need for a novel 

model that is capable of efficiently quantifying and visualizing blast effects on facilities 

behind blast walls of various materials in order to support designers in their critical task 

of identifying the most effective design for blast walls and facility hardening. 
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2.3 Quantifying Consequences of Explosive Attacks and Disasters 

Explosive attacks targeting remote construction sites, such as oil production 

facilities and military forward operating bases, cause devastating consequences. The 

magnitude of these consequences has significantly increased in recent years. During a 

five-year period from 2011-2015, explosive attacks targeting facilities and infrastructure 

resulted in more than 45,000 casualties and $73 billion in direct economic losses 

worldwide (Hunter and Perkins 2015; Institute for Economics and Peace 2015; Perkins 

2015). Furthermore, the post-traumatic stress disorder (PTSD) rate among victims of 

explosive attacks is reported to be as high as 40% (Neria et al. 2008). The Federal 

Emergency Management Agency (FEMA) groups explosive attack consequences into 

four primary categories: personnel loss, psychological impact, economic loss, and 

operational impact (FEMA 2011). The following sections present the most relevant and 

recent research on these consequences as well as methodologies to aggregate various 

consequence types into a single combined consequence value. 

 Personnel Loss 

Personnel loss measures the extent of fatalities, serious injuries, and minor 

injuries suffered by victims of explosive attacks. Trauma from explosives is traditionally 

divided into three groups: primary, secondary, and tertiary injuries.  

Primary blast injuries occur when the force of the blast overpressure or shock 

wave causes direct tissue damage (Wolf et al. 2009). Explosive tests indicate that 

human blast tolerance varies by both the magnitude of the shock wave and the shock 

duration, i.e. the pressure tolerance for short-duration blast loads is significantly higher 

than that for long-duration blast loads. For example, for a short-duration blast of 3-5 ms, 
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50 percent of personnel are expected to suffer eardrum rupture, lung damage, and 

lethality at 15 psi, 80 psi, and 130-180 psi, respectively (DoD 2008a).  

Secondary blast injuries occur when a person is struck by debris that is displaced 

by the blast overpressure or winds, such as glass, ball bearings, nails and rocks. This 

flying debris causes a combination of penetrating and blunt trauma. Because debris 

fragments can travel much greater distances than the blast shock wave, secondary 

injuries are more frequent than primary injuries and can occur in individuals hundreds to 

thousands of meters from the explosion’s epicenter (Wolf et al. 2009).  

Tertiary blast injuries are caused when a person is physically displaced by the 

force of the blast shock wave and strikes an object. Examples of tertiary injuries include 

blunt head trauma, blunt abdominal trauma, tissue contusions, and fractures. 

Furthermore, the risk of tertiary injuries is exacerbated by the collapse of buildings or 

surrounding structures. Consequently, tertiary injuries result in the highest level of 

mortality among blast victims (Wolf et al. 2009). 

Researchers have performed epidemiological studies to examine the causes and 

extent of the most prevalent injury types, including severe head trauma, (Mellor 1992; 

Mallonee et al. 1996; Wightman and Gladish 2001), damage to the ears (Garth 1995; 

Cave et al. 2007), eyes (Abbotts et al. 2007; Morley et al. 2010), and lungs (Stuhmiller 

et al. 1996; Avidan et al. 2005; Sasser et al. 2006), as well as injuries from flying glass 

debris (Norville et al. 1999; Thompson et al. 2004; Ataei and Anderson 2012). 

 Psychological Impact 

Psychological impact measures the frequency and severity of emotional and 

psychological disorders among survivors of explosive attacks. The psychological 
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impacts of explosive attacks encompass a range of emotional, behavioral, and cognitive 

reactions including: (1) distress responses, such as insomnia and increased feelings of 

anxiety or anger; (2) behavioral changes, like avoiding air travel or increasing alcohol 

consumption; and (3) psychiatric illnesses, such as post-traumatic stress disorder 

(PTSD) or clinical depression (Butler et al. 2003). The majority of psychological impact 

studies focused on analyzing the causes, frequency, and severity of PTSD because it is 

the best-defined and one of the most frequent and debilitating psychological disorders 

experienced in the aftermath of explosive attacks (Gabriel et al. 2007; Neria et al. 2008). 

Researchers have conducted applied epidemiological studies on victims of a 

number of historical terrorist attacks, including the Oklahoma City bombing (North et al. 

1999, 2002), September 11, 2001 attacks on New York City (Schuster et al. 2001; 

Galea et al. 2002; Schlenger et al. 2002), 2004 Madrid train bombing (Gabriel et al. 

2007; Vázquez et al. 2008), and French bombings of 1982-1987 (Abenhaim et al. 1992) 

and 1995-1996 (Verger et al. 2004). These studies show that injured survivors, 

uninjured survivors, first responders, and residents of the local area around an attack 

frequently experience symptoms of PTSD. Furthermore, injured survivors of explosive 

attacks experience the highest reported rates of PTSD, normally ranging from 30-40%, 

while 10-20% of first responders suffer PTSD, and 5-10% of uninjured survivors and 

local residents are inflicted with PTSD. 

 Economic Loss 

Economic loss measures the total financial cost inflicted on a site by an attack 

and is the sum of direct losses and indirect losses. Direct losses include all damage to 

fixed assets, capital, inventories, raw materials, and spare parts. Indirect losses 
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represent the flow of goods that will not be produced and services that will not be 

provided by the damaged facility (Pelling et al. 2002). Indirect losses can far exceed the 

direct losses of an explosive attack (Kazimi and Mackenzie 2016). Examples of indirect 

loss include increased unemployment, decreased property values, reduction in travel 

and tourism, and reduction in foreign direct investment and trade (Enders and Olson 

2012; Rose 2009).  

Studies have analyzed and differentiated between the macroeconomic 

(Blomberg et al. 2004; Enders and Olson 2012) and microeconomic costs (Enders 

2007), and between the direct (Dillon et al. 2009) and indirect costs (Kazimi and 

Mackenzie 2016) of attacks. Furthermore, researchers have developed frameworks that 

integrate a site’s economic resilience and behavioral linkages in estimating total losses 

from an attack (Rose 2009; Rose and Blomberg 2010). 

 Operational Impact 

Operational impact measures the level of mission degradation on a site resulting 

from the downtime of critical facilities damaged by a disaster or explosive attack. 

Mission degradation is a function of the downtime of a damaged facility and the 

importance of a facility to the overall site mission. 

Several studies have investigated the downtime of damaged facilities following 

disasters, such as earthquakes (Comerio 2000; Pachakis and Kiremidjian 2004; Porter 

and Ramer 2012), damaging snow loads (Strobel and Liel 2013), and hurricanes (Bailey 

and Levitan 2008). Two of the most significant studies regarding facility downtime are 

Comerio (2006) and Comerio and Belcher (2010). Comerio 2006 estimates facility 

downtime following a disaster by considering both rational and irrational components. 
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Rational components include the construction cost to repair the damaged facility and 

the time needed for construction. Irrational components are situationally specific and 

include the time needed to secure financing and mobilize for repairs, and the availability 

of qualified workers to perform the repairs. The author then presented a simplified 

method for estimating facility downtime based upon total facility area and facility 

damage level. Building on this study, Comerio and Belcher (2010) analyzed the impact 

of several other factors on facility downtime, including facility area, number of units, and 

facility height. The authors found no statistical significance that any of these factors had 

a significant impact on facility downtime. The authors concluded that modeling facility 

downtime requires the incorporation of three critical elements: (1) an estimate of 

construction repair time for the damaged facility; (2) an estimate of project mobilization 

time; and (3) a representation of the economic conditions within the region at the time of 

the event.  

Two primary methods have been developed to calculate the importance of 

individual facilities to the overall site mission. The first method was developed to 

prioritize infrastructure projects at the Massachusetts Institute of Technology (Karydas 

and Gifun 2006). The model utilizes multi-attribute utility theory and the analytical 

hierarchy process to prioritize facilities based on 16 criteria, including minimization of 

risk, optimization of economic impact, and coordination with applicable policies, 

programs, and operations. The second method was developed to determine 

infrastructure criticality for the United States Navy (Antelman et al. 2008). This method 

has since been adopted and tailored to meet the specific programming needs of the 

other branches of the United States Department of Defense, including the United States 



  
 

40 

Army (Grussing et al. 2010). Antelman et al. (2008) developed the scoring methodology 

for a facility’s mission dependency index (MDI), which represents the percentage that 

the overall site operations will be degraded if the facility is unable to perform its primary 

function. MDI is calculated by assigning scores from a scoring matrix based upon 

designers’ answers to questions designed to assess the: (a) length of time a facility can 

be inoperable before having an adverse impact on the site mission; (b) ability of another 

facility to perform the mission of the damaged facility; and (c) difficulty to replace the 

services provided by the damaged facility. MDI is measured on a normalized scale of 

0% to 100%, with 100% representing facilities the highest risk to the site mission. 

 Consequence Aggregation Models 

Several research studies have developed frameworks to quantify and aggregate 

the consequences of disasters and explosive attacks. For example, Ayyub et al. (2007) 

and McGill et al. (2007) created quantitative methods for performing critical asset risk 

analysis based upon five consequence types: casualty, economic, mission disruption, 

environmental damage, and recuperation time. To calculate these five consequence 

types, McGill et al. (2007) recommended using system modeling techniques and subject 

matter experts to estimate consequences, while Ayyub et al. (2007) assumes the 

severity of consequences follows a normal distribution within three pre-defined damage 

levels. Both studies utilized conversion factors to aggregate the five consequences into 

a single measure of monetary loss; however, their methodology to calculate these 

consequences for a specific threat was reported to be limited by Dillon et al. (2009) due 

to its inability to consider the risk tolerance levels of owners and designers. To address 

this reported limitation, Dillon et al. (Dillon et al. 2009) utilized multi-attribute utility 
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theory to calculate a single consequence score as the weighted sum of mission, 

personnel, and economic impacts, where weights represent the importance of each 

consequence type to site owners and the shape of utility curves reflects owner risk 

tolerance.  

 Limitations of Available Disaster Consequence Quantification Models 

Despite the significant contributions of the aforementioned consequence 

quantification models, they are incapable of: (1) efficiently quantifying the consequences 

of explosive attacks because they rely on the use of time-consuming external blast 

analysis software packages; (2) evaluating the impact of serious and minor injuries on 

total personnel losses; (3) quantifying the extent of psychological impacts on survivors 

of explosive attacks; and (4) measuring the impact of explosive attacks on the 

operational capacity of the site in terms of the total number of days the site is unable to 

perform its primary mission. Accordingly, there is an urgent need for the development of 

a novel model that is designed to overcome these four limitations of existing models.  

2.4 Security Planning for Remote Construction Sites 

A number of security planning models have been developed to assist designers 

in selecting security measures and procedures to minimize the risks from threats faced 

on remote construction sites. This section highlights the most relevant and recently 

developed heuristics and optimization-based security models.   

 Heuristics Security Models 

Grassie et al. (1990) proposed a six-step structured countermeasures selection 

process to assist design engineers in implementing a cost-effective approach to site 

security. The six steps are: (1) identify all assets to be protected; (2) determine asset 
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criticality; (3) identify potential threats; (4) ascertain likely modes of attack; (5) determine 

asset vulnerability based upon attack severity; and (6) select protection required when 

considering financial and operational constraints. The design team then concentrates on 

developing asset, facility and site-specific countermeasures that are physical, electronic, 

operational, or procedural in nature. Countermeasures are then selected based upon 

their cost effectiveness, which considers the operational impact, vulnerability reduction, 

and the cost of operation including installation, lifecycle operations and maintenance, 

and savings in security manpower over the life of the system.  

Longinow and Mniszewski (1996) analyzed the interaction between air blasts and 

building structures in an effort to identify potential design changes and security 

guidelines that could be followed to minimize the damages and casualties caused by 

vehicle bombs. Using the bombings of the World Trade Center (1992) and the Alfred P. 

Murrah Federal Building (1995) as case studies, the authors investigated vehicle bomb 

damage and casualty mechanisms, building structural systems that are capable of 

resisting progressive collapse, and nonstructural building components and building 

systems that are able to reduce secondary damages such as those caused by flying 

debris. They concluded that it is impractical to either design conventional buildings to 

withstand the effects of a close-in blast or to retrofit existing buildings against blast.  

Rather, the authors stated that a strong perimeter fence at a sufficient distance from the 

building provides the greatest defense. Six design guidelines were provided to establish 

the recommended perimeter including providing the maximum possible standoff 

distance, creating redundancy in protection measures, and constructing a robust, well-lit 

fence, capable of completely denying or sufficiently delaying unauthorized site access.   
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Hicks et al. (1999) utilized Cost and Performance Analysis (CPA), which is the 

integration of Activity Based Cost (ABC) estimating and performance-based analysis, to 

evaluate physical protection systems effectiveness. Cost estimation was performed with 

Cost Analysis Tool for Security Systems (CATSS), a tool that is built around Automated 

Cost Estimating Integrated Tools (ACEIT), an existing Department of Defense tool that 

supports a full lifecycle cost analysis, from procurement to decommissioning. 

Performance analysis was completed via PERFORM, which is the integration of two 

existing tools, Analytic System and Software for Evaluating Safeguards and Security 

(ASSESS), a Department of Energy software designed to assess the performance of 

physical protection systems of nuclear assets, and Joint Tactical Simulation (JTS).  

System effectiveness is defined as the probability of interruption, P(I), multiplied by the 

probability of neutralization, P(N) for each attacker and response combination. P(I) is a 

function of detection probabilities and delay times of the attackers and the response 

time of security personnel. The overall model objective is to compare the costs of 

physical protection system components with probabilistic methods of performance in 

order to facilitate operational and strategic management decisions.    

Little et al. (2002) proposed a simplistic decision framework for security and 

natural hazard risk mitigation. The decision framework identifies the maximum level of 

damage to be tolerated for a facility based on its risk groups and design event 

magnitudes. The maximum level of damage to be tolerated can be mild, moderate, high 

or severe, as shown in Table 2.1. Based upon the identified tolerable level of damage, 

decision makers recommend the required upgrade measures for the facility. For 

example, a small, unoccupied storage facility that is not critical to a site’s operations 
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may be assigned into risk group I, which represents buildings that require lower levels of 

protection. If the threat assessment and risk analysis identifies a high probability of a 

very large event, such as a 5,000-pound vehicle bomb, the chart shows that a severe 

amount of damage could be tolerated on the storage facility. Conversely, a critical 

facility assigned to risk group IV would only be able to tolerate moderate levels of 

damage in a very large event. Depending on the risk group and anticipated design 

event magnitude in this example, upgrade measures would need to be identified and 

constructed in order for the risk group IV category building to only experience moderate 

levels of expected damage.  

Table 2.1 Maximum Level of Damage to be Tolerated Based on Risk Groups and 

 Design Event Magnitudes (adapted from Little et al. 2002) 

  RISK GROUPS 
INCREASING LEVEL OF RISK 

 
  Risk Group I 

(Prot. Level 
Low) 

Risk Group II 
(Prot. Level 

Medium/Low) 

Risk Group III 
(Prot. Level 
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VERY LARGE 
(Very Rare) 

(Higher Risk) 
SEVERE SEVERE HIGH MODERATE 

LARGE 
(Rare) 

(Medium Risk) 
SEVERE HIGH MODERATE MILD 

MEDIUM 
(Less Frequent) 
(Med/Low Risk) 

HIGH MODERATE MILD MILD 

SMALL 
(Frequent) 
(Low Risk) 

MODERATE MILD MILD MILD 

 

Dillon et al. (2009) developed an anti-terrorism risk-based decision aid (ARDA) to 

prioritize anti-terrorism upgrade measures of existing facilities. The framework 

considered 15 potential attack modes, from hostage situations to chemical warfare 

agent attacks, and 160 existing facility types. Total potential consequences of an attack 

were calculated as the weighted sum of mission impact, personnel loss, and economic 
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loss. Weights are defined through project managers’ utilization of the multi-attribute 

utility theory. Upgrade decisions are then made based upon a reduction in risk versus 

cost ratio. While this model does provide a standardized and organized method by 

which to prioritize upgrade measures of existing facilities, it does not consider the cost 

investment for mitigation alternatives. Additionally, this model cannot be directly applied 

to new construction.   

 Security Optimization Models 

Khalafallah and El-Rayes (2008) investigated the security risks associated with 

the planning of airport expansion projects. The authors developed a multi-objective 

optimization model capable of simultaneously minimizing construction-related security 

breaches and minimizing site layout costs, while complying with all Federal Aviation 

Administration (FAA) guidelines. Security decision variables included security response 

distances and physical security measures. The physical security measures include both 

FAA-required items such as physical barriers (e.g. fences) and access control systems 

(e.g. keypad entry and fingerprint scan) and three FAA-recommended items: (1) anti-

intrusion systems such as CCTV and motion detectors; (2) detection technologies such 

as x-ray scanning and explosives detection; and (3) security lighting systems. Using a 

weighted-average approach, the authors combined two criterions, Security Response 

Distance Criterion (SRDC) and Security Systems Criterion (SSC) into a combined 

Construction-Related Security Level (CRSL). Costs are a product of the security 

systems and the travel costs of resources, which are based on the following three 

factors: (1) planned travel frequency of crews; (2) crew hourly cost rate; and (3) average 

speed of travel (El-Rayes and Khalafallah 2005). The model only considers security 
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breaches from an aggressor reaching a targeted facility. It does not consider explosive 

threats at the site perimeter.  

Said and El-Rayes (2010) developed an automated multi-objective optimization 

framework that provides the capability to: (1) minimize site security risks; and (2) 

minimize overall site costs. The security threat analyzed in this model was the threat of 

theft or destruction of classified materials in the targeted facility, a Sensitive 

Compartmented Information Facility (SCIF). The model utilized the Crime Prevention 

through Environmental Design (CPTED) theory (Crowe 2000), relying on a combination 

of natural surveillance, target hardening and lighting to deter criminal acts. The 

considered countermeasures consisted of security lighting, fencing, intrusion detection 

systems, security guard response forces, and natural surveillance. The site consisted of 

three layers: (1) site fence; (2) site grounds; and (3) target fence, and the model 

considered both security and layout decision variables over multiple phases of 

construction. Facilities were characterized as fixed, moveable or stationary, which for 

practical purposes, are considered fixed due to the excessive cost of relocation (e.g. 

cranes). Costs included security system costs and layout costs (resource travel costs 

and facility relocation costs over the phases of construction). The probability and 

consequence of a potential attack was a product of the attacker intrusion speed and 

response time of security personnel. Attacker intrusion speed considered delays from all 

site security countermeasures including the delay inflicted by the site fence, site 

grounds, target fence, and target buffer (distance between target fence and targeted 

facility). The security system effectiveness was calculated based on the probability of 

interruption, a deterrence index, and the probability of detaining the attacker. Site 
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security risks were limited to an individual reaching one targeted facility. There was no 

consideration of the risk of explosive. As a result, the choice of building materials or 

facility hardening was not considered.   

Li et al. (2015a) utilized a multi-objective, bi-level Particle Swarm Optimization 

Algorithm (MOBLPSO), to address security planning in a dynamic construction site 

layout scenario. The proposed scenario is bi-level as the project manager and attacker 

are involved in a Stackelberg game (Simaan and Cruz Jr 1973). The upper-level 

programming is based on the decisions of the project manager in seeking two 

objectives: (1) minimize the efficiency consequence of a facility system, measured by 

the reduction in operational efficiency of a facility following an attack; and (2) minimize 

the site layout cost, security system cost, and economic consequences of a potential 

attack. To quantify economic and efficiency consequences, the model employed twofold 

random uncertainty, that is, the use of random variables with random parameters. The 

lower-level programming denotes the decision of the attacker, who will attempt to 

destroy a subset of facilities that will result in the greatest economic consequences.  As 

a result, the model can consider potential attackers’ strategies.  

 Limitations of Available Security Models 

Despite the significant contributions of the aforementioned security models, there 

is no reported research that focused on: (1) minimizing the consequences of explosive 

terrorist attacks on remote construction sites; and (2) generating a set of optimal 

combinations of site layout solutions and protection strategies that provide optimal 

tradeoffs between minimizing the consequences of explosive attacks and minimizing 

site construction costs. Accordingly, there is a pressing need for a novel multi-objective 
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blast consequence mitigation model for remote construction sites that is capable of 

overcoming these limitations of existing models.  

2.5 Construction Site Layout Planning Models 

The primary purpose of site layout planning is to allocate site space to resources 

so that they can be accessible and functional during construction (Zouein and 

Tommelein 1999). Optimizing site layouts can assist in achieving multiple objectives 

such as minimizing resource transportation and facility relocation costs (Zouein and 

Tommelein 1999; Mawdesley et al. 2002; Tam et al. 2002), improving site safety 

(Elbeltagi et al. 2004; El-Rayes and Khalafallah 2005), and minimizing site security risks 

(Khalafallah and El-Rayes 2008; Said and El-Rayes 2010; Li et al. 2015a). Site layout 

models can also be static (one phase) or dynamic (multiple phases of construction). The 

following sections discuss several methodologies used in the literature to accomplish 

site layout planning tasks. 

 Heuristics 

Zouein and Tommelein (1999) approached the problem of dynamic site layout 

planning with a combination of constraint satisfaction, heuristics, and linear 

programming. The model objective is to minimize total cost, which is the sum of 

transportation and relocation costs. Resources are represented as rectangles in a two-

dimensional space. The facility centroid, its dimensions, and its orientation identify the 

location of each facility. A series of hard constraints determine which positions are 

acceptable and soft constraints gauge the quality of the layout. Resources are analyzed 

one at a time and a position is selected for each resource based upon two heuristics: (1) 

resources with the largest relocation weights; and (2) resources with the greatest 
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interaction with other positioned resources. Tiebreaker heuristics are also identified, if 

required. A linear program is then used to minimize overall costs. The main limitation of 

the system is that layouts are selected chronologically, meaning earlier optimized 

layouts cannot be reanalyzed. As a result, the system cannot achieve global optimality.   

Tam et al. (2002) analyzed a site layout-planning problem using nonstructural 

fuzzy decision support system (NSFDSS). NSDFSS consists of three steps: (1) 

decomposition, which is breaking the problem down in a hierarchal fashion; (2) 

conducting pairwise comparisons on a three-point scale (better, the same, or worse); 

and (3) synthesis of priorities that combines decision criteria with weighting factors.  The 

authors claim that their method offers three advantages over the traditional analytical 

hierarchy process (AHP): (1) a simplified comparative rating scale (1, 0.5, and 0) in 

evaluating the relative importance of decision criteria; (2) built-in consistency checking 

by placing a greater level of reliability on higher rows and automatically resetting the 

values of lower rows if inconsistencies are found; and (3) elimination of consistency 

deviation by providing absolute consistency during evaluation. The data is then 

arranged in matrix form to display comparison and score assignment. Project managers 

can then use the priorities identified by the NSFDSS to aid in decision making. The 

authors reported two main limitations in this model: (1) decisions and comparisons are 

still not automated although the process is less labor intensive than AHP; and (2) quality 

of results is highly dependent on the knowledge and expertise of the project 

management team.    
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  Genetic Algorithms 

Mawdesley et al. (2002) utilized an augmented genetic algorithm to model the 

cost to move and position temporary facilities on a construction site over time. A user-

defined grid system was established to create potential locations within site boundaries.  

Facilities are assumed to be rectangular and are represented by coordinates of two 

opposite corners. The model allows for user-defined minimum and maximum interfacility 

distances. There are three sources of costs considered in this model: (1) the cost to 

setup a facility; (2) the cost to remove a facility; and (3) the cost of transporting 

materials between locations. Minimum travel distances can be calculated using either 

Manhattan (follows only axis-aligned directions) or Euclidean (straight line between two 

points) geometry. Additionally, the model allows for varying site conditions and can 

account for unequal transportation costs in north-south, south-north, east-west, and 

west-east directions. The authors identify two primary limitations of their model: (1) its 

sensitivity to the relative costs assigned to facility setup and material transport; and (2) 

modeling the dynamic nature of a project by considering the site layout to be correlated 

with the work phases.  

Elbeltagi et al. (2004) developed a GA that was able to consider the effects of 

safety in dynamic layout planning. The model aimed to minimize distances between 

facilities for the purpose reducing resource travel costs, but only to the extent that it did 

not move facilities into unsafe zones around high-risk buildings. The authors adapted 

existing closeness relationships from Malakooti (1987) and introduced large negative 

values when safety concerns arose between two facilities. The model was built into 

Excel using macros, which allowed for linking to widely used scheduling software.  
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Furthermore, model results can be exported to Geographical Information System (GIS) 

to automate site mapping.   

While many other studies have investigated the optimization of construction site 

layout planning, considering security of critical infrastructure projects as an objective 

has been limited to only a few studies, namely Khalafallah and El-Rayes (2008) and 

Said and El-Rayes (2010). The main limitation of these studies is that they only consider 

the security risk of human breaches, not the risk of explosive attacks. As both of these 

papers were discussed in section 2.4.2 above, the discussion of these papers in this 

section will focus on their facility layout component.  

Khalafallah and El-Rayes (2008) developed a multi-objective genetic algorithm 

capable of minimizing construction-related security breaches while keeping the site 

layout costs of airport expansion projects to a minimum. The location of temporary 

facilities such as security fences, site offices and hazardous material storage facilities 

affect numerous aspects of this model including: (1) the response distances required by 

security personnel; (2) the buffer zone sizes between secure areas and temporary 

facilities; and (3) the travel costs of resources. The travel costs of resources are 

estimated based on the planned travel frequency of crews, the crew hourly cost rate, 

and the average speed of travel (El-Rayes and Khalafallah 2005). In order to perform 

the optimization, project planners must provide the dimensions of each temporary 

facility, the available options for temporary fence placement, the location and dimension 

of each secure facility on the construction site and the recommended security response 

distances between secure areas. The output of the model includes identifying the 
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optimal location of temporary facilities and the security fence and the optimal utilization 

of security control systems in order to achieve the aforementioned objectives.  

Said and El-Rayes (2010) developed an automated multi-objective optimization 

framework, using genetic algorithm, to simultaneously minimize the site security risks 

and minimize the overall site costs associated with the construction of critical 

infrastructure projects. The main security threat in this model was the theft or 

destruction of classified materials located in a Sensitive Compartmented Facility (SCIF). 

The construction site was separated into three layers: (1) site fence; (2) site grounds; 

and (3) target fence. Additionally, multiple phases of construction were considered, 

potentially requiring the relocation of temporary facilities and construction materials. The 

model is designed to dynamically position all temporary facilities and relocate moveable 

facilities in each stage of the project. Facility location impacts the length of an attacker’s 

intrusion path (which impacts the likelihood of a successful attack), the degree or 

amount of natural surveillance, and site layout costs, which are the sum of resource 

travel costs and facilities relocation costs. Analogous to Zouein and Tommelein (1999), 

the facilities are represented by their centroid, dimensions and orientation. Four types of 

geometric constraints must be satisfied in order to successfully place a facility within the 

site boundary: 1) boundary; 2) overlap; 3) distance; and 4) zone constraints (El-Rayes 

and Said 2009). The model generates an optimal combination of security measures and 

facility positions over multiple phases of construction to minimize site security risks and 

to minimize overall site costs.  
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2.6 Multi-objective Optimization Techniques for Remote Construction 

Sites 

This section presents a number of available multi-objective optimization 

techniques for addressing the unique challenges of remote construction sites, including: 

(1) weighted linear and integer programming; (2) nature-inspired metaheuristic 

algorithms; and (3) genetic algorithms.  

 Weighted Linear and Integer Programming 

A multi-objective optimization problem can be transformed into a scalar problem 

by using the weighted-sum method in the form, minimize:  

 
∑ 𝑤𝑖𝑓𝑖(𝑥̅)

𝑘

𝑖=1

 
(2.5) 

where,  

k  = number of objective functions; 

𝑓𝑖(𝑥̅)  = scalar objective functions; and 

wi  = weighting coefficients representing the relative importance of the 

objectives. 

In this method, it is generally assumed that all weighting coefficients are positive 

and the sum of the coefficients equal one (Coello 1999). The two main advantages of 

this method over other optimization techniques are: (1) the ability to achieve a global 

optimum solution, as opposed to the sub-optimal solutions reached when using 

metaheuristic optimization methods, and (2) faster computational efficiency. The main 

disadvantage is the difficulty in determining the appropriate weighting coefficients when 

little is known about the problem or how the relative weights will affect the solution 
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(Coello 1999). To overcome this shortcoming, it is necessary to solve the same problem 

for many different values of 𝑤𝑖  in order to generate the Pareto front (Caramia and 

Dell’Olmo 2008). This approach is simple and effective when solving problems with a 

convex Pareto front (Figure 2.4); however, if the problem is non-convex, there is a set of 

points that cannot be achieved for any combination of the weighting coefficients (Figure 

2.5). 

 
Figure 2.4 Weighted-sum Approach with Convex Pareto Curve (Caramia and 

Dell’Olmo 2008)  

 

 
Figure 2.5 Weighted-sum Approach with Non-convex Pareto Curve (Caramia and 

Dell’Olmo 2008)  
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The weighted-sum method can be employed in linear, integer or mixed-integer 

programming problems. A main limitation to linear programming is the requirement for 

all objective functions and constraints to be linear. Integer programming refers to 

decision variables that are non-continuous and non-fractions such as the number of 

personnel required to complete a task. Mixed-integer programming is when some 

decision variables require integers and others are continuous (Abdallah 2014). These 

techniques have been used to solve many complex optimization problems in 

construction, including facility layout modeling (Foulds et al. 1998; Kim and Kim 2000). 

 Nature-inspired Metaheuristic Algorithms 

Hard optimization problems can be defined as problems that cannot be solved by 

any deterministic method within a reasonable amount of time (Boussaïd et al. 2013). 

Metaheuristics can be used to solve these hard optimization problems. Metaheuristics 

are “higher-level” heuristics, meaning that they are designed to approximately solve a 

wide range of optimization problems without having to deeply adapt to each specific 

scenario (Boussaïd et al. 2013). Most metaheuristic algorithms are nature-inspired, 

seeking optimality by mimicking some physical, biological or ethological process. In a 

recent survey, Fister Jr. et al. (2013), identified more than 40 nature-inspired 

metaheuristic algorithms based upon such natural processes as migratory bird patterns 

(Eberhart and Kennedy 1995), ant colony behaviors (Dorigo et al. 1996), bacterial 

foraging (Chu et al. 2008), firefly bioluminescence (Yang 2009), slime mold life cycle 

(Monismith and Mayfield 2008), cockroach infestation (Havens et al. 2008), mosquito 

host-seeking (Feng et al. 2009), and bat echolocation (Yang 2010). This section will 
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analyze the two most prevalent nature-inspired metaheuristic algorithms: particle swarm 

optimization and ant colony optimization.  

2.6.2.1 Particle Swarm Optimization  

Particle swarm optimization (PSO) is a population-based, stochastic optimization 

technique, inspired by the migratory patterns of birds attempting to reach an unknown 

destination (Zhou et al. 2011). PSO was originally developed by Eberhart and Kennedy 

(1995) and was later expanded to include multi-objective optimization by Moore and 

Chapman (1999). In PSO, each solution is a “bird” in the migrating flock. As the flock 

flies, the birds communicate with one another, identifying the bird in the best location. 

The rest of the flock then flies toward this bird and investigates their surrounding 

environment. This social behavior is repeated until the birds reach their destination. 

PSO successfully incorporates both intelligence and social interaction, combining local 

search, where the birds learn from their own experience, and global search, where the 

birds learn from the experience of others around them (Elbeltagi et al. 2005). PSO has 

been widely used in multi-objective optimization problems in construction, including 

modeling construction site layout (Zhang and Wang 2008; Rezazadeh et al. 2009; 

Ohmori et al. 2010). 

2.6.2.2 Ant Colony Optimization 

Dorigo et al. (1996) developed ant colony optimization (ACO), a naturally inspired 

optimization technique that mimics the process of ants determining the shortest route 

between their nest and a food source (Elbeltagi et al. 2005). As ants travel, they deposit 

pheromone trails on the ground that are detected by other ants (Zhou et al. 2011). As 

the search for food begins, ants will randomly travel around all sides of an encountered 
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obstacle, initially depositing equal concentrations of pheromones from the left and right 

direction. Ants with the shortest path to food will return to their nest following their 

original path, thus depositing more pheromones. Future ants will detect this greater 

concentration of pheromones and follow the established path from their nest to the food 

source (Elbeltagi et al. 2005). Over time, favored paths that are shorter and more 

efficient will emerge because of this positive feedback mechanism (Yang 2014). ACO 

has been effectively utilized to address many multi-objective optimization problems in 

construction, including construction site layout (Baykasoglu et al. 2006; Pour and 

Nosraty 2006; Komarudin and Wong 2010), sustainability and building energy 

performance (Marzouk et al. 2012; Yuan et al. 2012). One limitation of ACO is that it 

can only be used in discrete problems (Elbeltagi et al. 2005).  

 Genetic Algorithms  

Genetic algorithms, developed by John Holland in 1975 (Holland 1975), are 

search algorithms that mimic genetic operations based up Darwin’s theory of natural 

selection (Goldberg 1989). Genetic algorithms apply survival of the fittest to obtain near-

optimum solutions by following a six-step process: (1) create a population of individual 

solutions (chromosomes); (2) calculate the value of the objective function(s) for each 

individual within the population; (3) assign a fitness value to each individual based upon 

the objective function(s); (4) perform reproduction with higher-fitness individuals having 

a higher probability of survival than individuals with lower fitness values; (5) create 

offspring by combining or varying the genotypes in the parent solutions through the 

processes of crossover and mutation; (6) repeat steps 2-5 until termination conditions 

are satisfied (Weise 2008). The structured randomness of genetic algorithms coupled 
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with the inclusion of mutation to avoid local minima give genetic algorithms the ability to 

deal with complex problems and parallelism. Genetic algorithms have been successfully 

employed in various types of optimization, where the objective function is static or 

dynamic, linear or nonlinear, continuous or discontinuous, or contains random noise 

(Yang 2014). Genetic algorithm is the most reported optimization tool used to solve 

multi-objective problems in construction engineering and management, including  

construction site layout planning (Elbeltagi et al. 2004; Khalafallah and El-Rayes 2008; 

Said and El-Rayes 2010); and renewable-energy system optimization (Bernal-Agustín 

et al. 2006; Koutroulis et al. 2006; Yang et al. 2008; Piacenza et al. 2012).  
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ASSESSMENT OF BLAST EFFECTS 

3.1 Introduction  

This chapter presents the development of a novel blast effects assessment 

model (BEAM) capable of efficiently quantifying and visualizing blast effects on 

constructed facilities behind blast walls. The model is intended to support designers in 

their critical task of analyzing and comparing all feasible design alternatives in order to 

select the most effective combination of blast wall type and building material to reduce 

the security risks to site personnel and facilities from the threat of an explosive attack. 

The model is developed in five main stages: (1) blast wall analysis stage that develops 

novel analytical formulas and a set of effectiveness factors to quantify the performance 

of feasible frangible blast wall types including sand-filled, water-filled, and wood walls in 

reducing reflected pressure and impulse loading on facilities; (2) facility damage 

assessment stage that computes the percent area of each facility within five specified 

damage levels in order to calculate an overall facility damage level; (3) blast damage 

visualization stage that displays anticipated facility damage areas based upon blast 

charge weight, blast wall type, and building material combinations; (4) performance 

analysis stage that evaluates the accuracy and efficiency of the developed model; and 

(5) case study stage that analyzes the performance of the developed model using an 

application example. The following sections provide a concise description of these five 

model development stages. 
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3.2 Blast Wall Analysis 

A blast wall is a physical barrier that separates valuable facilities from explosive 

threats (Smith 2010). Blast walls function by reflecting a portion of the explosive blast 

energy, thereby reducing reflected pressure and impulse loading on the facility 

(Remennikov and Rose 2007). This reduction in blast environment for rigid walls can be 

quantified using Eqs. (3.1) and (3.2) for reflected pressure and impulse, respectively 

(Zhou and Hao 2008). These equations, however, are limited to rigid walls and need to 

be expanded to consider feasible frangible wall types such as sand-filled, water-filled 

and wood walls that were reported to provide greater reduction in blast loading on 

facilities (Rose et al. 1997; Bogosian and Piepenburg 2002).   

 
𝐴𝐹𝑃𝑚𝑎𝑥,𝑟𝑖𝑔𝑖𝑑

= −0.1359 + (0.3272 + 0.1995 𝑙𝑜𝑔 (
𝐻

𝑆
)) 𝑙𝑜𝑔 (

𝑆

𝑊1 3⁄
) 

−0.5626 𝑙𝑜𝑔 (
𝐻

𝑆
) + 0.4666 (

𝐿

𝑆
) 

(3.1) 

 

 
𝐴𝐹𝐼𝑚𝑎𝑥,𝑟𝑖𝑔𝑖𝑑

= 0.0274 + (0.4146 + 0.2393 𝑙𝑜𝑔 (
𝐻

𝑆
)) 𝑙𝑜𝑔 (

𝑆

𝑊1 3⁄
) 

−0.5044 𝑙𝑜𝑔 (
𝐻

𝑆
) + 0.2538 (

𝐿

𝑆
) 

(3.2) 

 

where,  

𝐴𝐹𝑃𝑚𝑎𝑥,𝑟𝑖𝑔𝑖𝑑
 = maximum reflected pressure adjustment factor for rigid walls;  

H  = blast wall height (m); 

S  = standoff distance from explosive to facility (m); 

W  = blast charge weight (kg TNT equivalent);   

L  = distance from explosive to blast wall (m); and 

𝐴𝐹𝐼𝑚𝑎𝑥,𝑟𝑖𝑔𝑖𝑑
 = maximum reflected impulse adjustment factor for rigid walls.  
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To address the aforementioned limitation of Eqs. (3.1)-(3.2), this stage develops 

analytical formulas to quantify the performance of feasible frangible blast wall types in 

reducing reflected pressure and impulse loading on facilities, as shown in Eqs. (3.3)-

(3.4). These equations utilize a newly developed set of effectiveness factors that 

consider a wide range of frangible blast wall types including various thicknesses of 

balsa wood, ice walls, polystyrene, polythene sheets, revetting material, various 

thicknesses of sand-filled containers, water bag walls, and water-filled containers, as 

shown in Table 3.2.   

 𝐴𝐹𝑃𝑚𝑎𝑥,𝑓𝑟𝑎𝑛𝑔𝑖𝑏𝑙𝑒
= 𝐴𝐹𝑃𝑚𝑎𝑥,𝑟𝑖𝑔𝑖𝑑

×𝐸𝐹𝑃 (3.3) 

 𝐴𝐹𝐼𝑚𝑎𝑥,𝑓𝑟𝑎𝑛𝑔𝑖𝑏𝑙𝑒
= 𝐴𝐹𝐼𝑚𝑎𝑥,𝑟𝑖𝑔𝑖𝑑

×𝐸𝐹𝐼 (3.4) 

where,  

AFPmax,frangible
 = maximum reflected pressure adjustment factor for frangible walls; 

𝐸𝐹𝑃   = frangible wall pressure effectiveness factor; 

𝐴𝐹𝐼𝑚𝑎𝑥,𝑓𝑟𝑎𝑛𝑔𝑖𝑏𝑙𝑒
= maximum reflected pressure adjustment factor for frangible walls; 

and 

𝐸𝐹𝑃   = frangible wall impulse effectiveness factor. 

The frangible wall pressure and impulse effectiveness factors measure the 

performance of frangible blast walls compared to a standard, rigid blast wall (Bogosian 

and Piepenburg 2002). A set of frangible wall effectiveness factors is calculated in this 

stage for 12 feasible frangible wall types by analyzing experimental data from previous 

blast wall research studies (Rose et al. 1997, 1998). Previous studies record pressure 

and impulse measurements at incremental distances or heights behind a blast wall. The 

frangible wall effectiveness factors [Eq. (3.5)-(3.6)] are computed in three steps that are 
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designed to: (1) utilize existing experimental data of recorded blast measurements at 

various locations (k) behind the blast wall; (2) calculate the ratio between the frangible 

wall pressure or impulse and rigid wall pressure or impulse for each location; and (3) 

compute the effectiveness factor by averaging all the ratios calculated in the previous 

step. For example, the pressure effectiveness factor for a thick sand wall is calculated 

using Eq. (3.5), as shown in Table 3.1. 

 

𝐸𝐹𝑃 =

∑ (
𝑃𝑓𝑟𝑎𝑛𝑔𝑖𝑏𝑙𝑒𝑘

 
𝑃𝑟𝑖𝑔𝑖𝑑𝑘

)𝐾
𝑘=1

𝐾
 

(3.5) 

 

𝐸𝐹𝐼 =

∑ (
𝐼𝑓𝑟𝑎𝑛𝑔𝑖𝑏𝑙𝑒𝑘

 
𝐼𝑟𝑖𝑔𝑖𝑑𝑘

)𝐾
𝑘=1

𝐾
 

(3.6) 

where,  

k = pressure/impulse measurement location behind the blast wall at 

varying distances and/or heights (m); 

K = total number of pressure/impulse measurement locations behind 

blast wall; 

𝑃𝑓𝑟𝑎𝑛𝑔𝑖𝑏𝑙𝑒  = blast pressure behind a frangible barrier at location k (kPa);  

𝑃𝑟𝑖𝑔𝑖𝑑    = blast pressure behind a rigid barrier at location k (kPa) 

𝐼𝑓𝑟𝑎𝑛𝑔𝑖𝑏𝑙𝑒  = blast impulse behind a frangible barrier at location k (kPa-                

ms/kg1/3); and 

𝐼𝑟𝑖𝑔𝑖𝑑    = blast impulse behind a rigid barrier at location k (kPa-ms/kg1/3). 
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Table 3.1 Example Calculation for Effectiveness Factor of a Thick Sand Wall 

Pressure 
measurement 

location, k 

Distance from 
blast wall, S 

(m) 

Measured pressure, 
Pfrangiblek

 (kPa) 

(Rose et al. 1998) 

Measured pressure, 
Prigidk

 (kPa) 

(Rose et al. 1997) 

Calculated ratio, 

(
Pfrangiblek

 

Prigidk

) 

Pressure 
Effectiveness 

factor, EFP 

1 1.35 41 56 0.72 

0.74 
2 1.50 38 49 0.78 

3 1.65 35 46 0.76 

4 1.80 28 39 0.71 

 

In this stage, Eqs. (3.5)-(3.6) were used to calculate a set of newly developed 

pressure and impulse effectiveness factors for 12 feasible frangible blast wall types, 

where a value greater than one means the material will perform worse than a standard 

steel wall while a value less than one signifies that a wall will perform better than a 

standard steel wall, as shown in Table 3.2. The significance of these calculated 

effectiveness factors can be illustrated using a simplified example, as shown in Figure 

3.1 and Table 3.3. In this example, it is assumed that a 250 kg TNT explosive is 

detonated at a distance of 40 meters from a facility. The example shows the impact of 

utilizing three blast design alternatives: no wall, standard steel wall, and thick sand wall. 

The lack of a blast wall exposes the facility to a reflected pressure load of 65 kPa. The 

use of a rigid steel wall at a distance of four meters from the explosion reduces this 

peak reflected pressure by 31%, resulting in a reflected pressure load of 45 kPa, while a 

thick sand wall reduces the pressure load by 51%, resulting in a pressure load of 33 

kPa. This example shows that the use of frangible blast walls can substantially reduce 

peak reflected pressure loading on a facility. This reduction in pressure load decreases 

damages to the facility resulting in reduced loss of life, property damages and economic 

losses.  
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Table 3.2 Blast Wall Effectiveness Factors 

Wall Material 

Material 
Thickness 

(m) 

Pressure 
Effectiveness Factor 

(EFP) 

Impulse 
Effectiveness Factor 

(EFI) 

Balsa wood, thick .08 0.70 1.06 

Balsa wood, thin .02 1.33 1.33 

Ice wall, thick 0.6 0.80 0.86 

Ice wall, thin 0.3 0.97 0.93 

Polystyrene .05 0.78 1.01 

Polythene sheet <.01 1.26 1.29 

Revetting material .02 0.79 1.15 

Sand wall, thick 1.5 0.74 0.64 

Sand wall, medium 1.0 0.82 0.71 

Sand wall, thin 0.5 0.86 0.78 

Steel, standard 0.2 1.00 1.00 

Water, bag wall 0.1 0.71 0.91 

Water, filled wall 0.6 0.81 0.84 

 

 
Figure 3.1 Impact of Blast Walls on Reflected Pressure at a Constructed Facility: 

(a) No Blast Wall; (b) Rigid Steel Blast Wall; (c) Thick Sand Blast Wall 

 

Table 3.3 Blast Wall Effectiveness Factor Example Calculations 

 
Wall Type 

Pressure Effectiveness 
Factor (EFP) 

Pressure Adjustment 
Factor (AFPmax) 

Pressure (kPa)  
[Eqs. (3.9)-(3.10), (3.12)] 

No wall N/A N/A 65 
Rigid Steel 1.0 0.70 45 
Thick Sand 0.74 0.52 33 

 

Equipped with the capability of quantifying the pressure-mitigating effects of all 

feasible blast wall types, the next section will focus on the development of a blast 

effects assessment model, which is designed to calculate the percent area of each 
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facility within specified damage levels in order to determine an overall facility damage 

level from an explosive attack.  

3.3 Facility Blast Damage Assessment  

This stage presents the development of a blast effects assessment model 

(BEAM) that is capable of efficiently quantifying and visualizing blast effects on 

constructed facilities behind blast walls. This stage is accomplished in four steps: (1) 

identifying model input parameters; (2) calculating standoff distances between the 

explosive location and facilities; (3) quantifying the percent facility area within specified 

damage levels; and (4) computing total facility damages. 

 Input Parameters  

The input parameters of the developed model are selected to represent all 

feasible design alternatives in order to determine the most effective combination of blast 

wall type and building material to reduce the security risks to site personnel and facilities 

from the threat of an explosive attack. The model requires three main types of input 

parameters: (1) facility parameters: building material, facility location and orientation, 

and facility geometry; (2) blast wall parameters: wall material type, wall height and 

location; and (3) explosive parameters: blast charge weight and the location of the 

explosive. Locations within the model are identified using a grid system that allows 

decision makers to specify the grid interval. Facility locations are defined by the 

placement of their centroids on the grid system, as shown in Figure 3.2. 
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Figure 3.2 Model Input Parameters 

 Calculate Standoff Distances Between Explosive and Facility 

Based on the aforementioned input parameters, the model is designed to 

perform blast effect assessments by computing the percent area of each facility that is 

exposed to five specified damage levels: minimal, minor, moderate, heavy and severe, 

as shown in Figure 3.3. These five damage levels (DLj) are identified in the present 

model to ensure consistency with the levels of protection and damage utilized in UFC 4-

020-01 (DoD 2008b). In order to compute these percent facility areas (PFAj), standoff 

distances (Sj) must be calculated for each combination of damage level (j), blast charge 

weight (W), blast wall type and building material. These standoff distances represent the 

minimum allowable separation distance between a facility and an explosive threat that 

will provide the desired level of protection (U.S. Dept. of the Air Force 1997). For 

example, if a reinforced concrete facility is located at a standoff distance (S2) of 55 

meters or more from a 250 kg TNT explosive, then this facility will be outside the range 

of minor damage. Existing design manuals are incapable of identifying these standoff 
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distances for facilities located behind blast walls. To address this limitation, a novel 

methodology is used to calculate blast wall-adjusted standoff distances (ASj) that 

provide an equivalent level of protection for facilities behind blast walls compared to 

existing standoff distances for facilities with no blast wall, as shown in Figure 3.4.  

 
Figure 3.3 Percent Facility Areas Subjected to Varying Damage Levels 

 

 
Figure 3.4 Blast Wall-Adjusted Standoff Distance 
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This step calculates blast wall-adjusted standoff distances (ASj) that provide 

equivalent levels of protection for facilities behind blast walls compared to existing 

standoff distance required for facilities with no blast wall, as shown in Eqs. (3.7)-(3.8) 

and Figure 3.4. ASj values are calculated in the present model for each combination of 

damage level (j), blast charge weight (W), feasible blast wall type, and building material. 

The calculation of ASj is performed in three main steps: (1) determine the standoff 

distances (Sj) for facilities with no blast wall for each combination of damage level (j), 

blast charge weight (W) and building material from existing design manuals; (2) 

calculate the reflected pressure or impulse on a facility at these determined standoff 

distances using Eqs. (3.9)-(3.10) for pressure and Eq. (3.18) for impulse; and (3) 

compute the blast wall-adjusted standoff distances (ASj) that maintain equal pressure or 

impulse to those determined in step two using a modification of the Powell hybrid 

method for nonlinear equations (Moré et al. 1980) to solve Eq. (3.7) or (3.8), as 

applicable. These three steps are discussed below. 

 𝑃𝑛𝑜 𝑤𝑎𝑙𝑙,𝑆𝑗
= 𝑃𝑤𝑎𝑙𝑙,𝐴𝑆𝑗

 (3.7) 

 𝐼𝑛𝑜 𝑤𝑎𝑙𝑙,𝑆𝑗
= 𝐼𝑤𝑎𝑙𝑙,𝐴𝑆𝑗

 (3.8) 

where,  

𝑃𝑛𝑜 𝑤𝑎𝑙𝑙  = reflected pressure load on a facility with no blast wall (kPa);  

𝑆𝑗  = standoff distance for a facility with no blast wall at damage level j 

(m);  

𝑃𝑤𝑎𝑙𝑙   = reflected pressure load on a facility behind a blast wall (kPa);  

𝐴𝑆𝑗  = blast wall-adjusted standoff distance for a facility at damage level 

j (m);  
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j   = damage level (minimal, minor, moderate, heavy, severe) 

𝐼𝑛𝑜 𝑤𝑎𝑙𝑙  = reflected impulse load on a facility with no blast wall (kPa- 

ms/kg1/3); and 

𝐼𝑤𝑎𝑙𝑙  = reflected impulse load on a facility behind a blast wall (kPa- 

ms/kg1/3). 

 
Figure 3.5 Calculation Steps of Blast Wall-Adjusted Standoff Distances 

First, the standoff distances required for facilities with no blast wall are 

determined for each combination of damage level, blast charge weight, and building 

material, as shown in Figure 3.5. The present model utilizes data provided in ETL 1110-

3-495 (USACE 1999) to determine these standoff distances for 150 feasible design 
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combinations (see Figure 3.5). These 150 feasible design combinations cover (1) the 

five aforementioned damage levels: minimal, minor, moderate, heavy and severe; (2) 

five blast charge weights based upon the most common method of delivery: luggage 

(22.7 kg), sedan (100 kg), sport utility vehicle (250 kg), full-size van (454.4 kg) and large 

truck (1,818.2 kg) (FEMA 2011); and (3) six prevalent building materials: unreinforced 

masonry, pre-engineered metal, timber, steel frame with lightly reinforced CMU infill 

walls, reinforced concrete, and reinforced concrete frame with lightly reinforced CMU 

infill walls, as shown in Figure 3.5. 

Second, reflected pressure or impulse loads are calculated at these determined 

standoff distances utilizing the simplified Kingery airblast equations, where reflected 

pressure and impulse are a function of the scaled distance factor (standoff 

distance/blast charge weight1/3) (Swisdak Jr 1994), as shown in Eqs. (3.9)-(3.11). These 

calculated reflected blast pressures are the Pno wall,Sj
 and 𝐼𝑛𝑜 𝑤𝑎𝑙𝑙,𝑆𝑗

 values utilized in 

Eqs. (3.7)-(3.8) above. 

For:  

0.06 ≤
𝑆

𝑊1 3⁄
≤ 2.00: 

 

𝑃𝑛𝑜 𝑤𝑎𝑙𝑙 = 𝑒
(9.006−2.6893 𝑙𝑛(

𝑆

𝑊1 3⁄ )−0.6295(𝑙𝑛(
𝑆

𝑊1 3⁄ ))

2

+0.1011(𝑙𝑛(
𝑆

𝑊1 3⁄ ))

3

+0.29255(𝑙𝑛(
𝑆

𝑊1 3⁄ ))

4

+0.13505(𝑙𝑛(
𝑆

𝑊1 3⁄ ))

5

+0.019736(𝑙𝑛(
𝑆

𝑊1 3⁄ ))

6

)

 
(3.9) 

2.00 <
𝑆

𝑊1 3⁄
≤ 40.00: 

𝑃𝑛𝑜 𝑤𝑎𝑙𝑙 = 𝑒
(8.8396−1.733 𝑙𝑛(

𝑆

𝑊1 3⁄ )−2.64(𝑙𝑛(
𝑆

𝑊1 3⁄ ))

2

+2.293(𝑙𝑛(
𝑆

𝑊1 3⁄ ))

3

−0.8232(𝑙𝑛(
𝑆

𝑊1 3⁄ ))

4

+0.14247(𝑙𝑛(
𝑆

𝑊1 3⁄ ))

5

−0.0099(𝑙𝑛(
𝑆

𝑊1 3⁄ ))

6

)

 
(3.10) 

For:  

0.06 ≤
𝑆

𝑊1 3⁄
≤ 40: 

𝐼𝑛𝑜 𝑤𝑎𝑙𝑙 = 𝑒
(6.7853−1.3466 𝑙𝑛(

𝑆

𝑊1 3⁄ )+0.101(𝑙𝑛(
𝑆

𝑊1 3⁄ ))

2

−0.01123(𝑙𝑛(
𝑆

𝑊1 3⁄ ))

3

)

 

(3.11) 
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Third, blast wall-adjusted standoff distances (ASj) are computed to quantify the 

impact of integrating various blast wall designs on the aforementioned standoff 

distances. As shown in Figure 3.5, this step calculates the blast wall-adjusted standoff 

distances (ASj) that maintain equal pressure or impulse to those determined in step two 

using the modified Powell hybrid method for nonlinear equations to solve Eqs. (3.7)-

(3.8). This step computes 4,500 unique ASj values by quantifying the performance of 30 

feasible blast walls in reducing reflected pressure or impulse loading on facilities for 

each of the 150 design combinations of damage level, blast charge weight and building 

material identified above. These 30 blast walls cover all possible combinations of: (1) 15 

blast wall types, including the 12 frangible walls with the newly developed effectiveness 

factors listed in Table 3.2, a standard rigid steel wall (Zhou and Hao 2008), and precast 

concrete panel and concrete masonry unit (CMU) walls (Bogosian and Piepenburg 

2002); and (2) two blast wall heights of two meters and five meters. In order to perform 

these computations, it is necessary to quantify the performance of feasible frangible and 

rigid blast walls in reducing reflected pressure and impulse loading on facilities. This 

reduction in peak reflected pressure loading on facilities is quantified by multiplying the 

blast pressure on a facility when no wall is present (Pno wall) from Eqs. (3.9)-(3.10), by 

the appropriate blast wall pressure adjustment factor (AFPmax
), as shown in Eq. (3.12). 

The reduction in reflected impulse loading on facilities is quantified by multiplying the 

reflected impulse on a facility when no wall is present (Ino wall) from Eq. (3.11) by the 

appropriate blast wall impulse adjustment factor ( AFImax
), as shown in Eq. (3.13). 

Utilizing this process, the modified Powell hybrid method for nonlinear equations is then 
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used to solve Eqs. (3.7)-(3.8), as applicable, by computing the ASj value where Pwall,ASj
 

equals the Pno wall,Sj
 or Iwall,ASj

 equals the Ino wall,Sj
 calculated in step two.  

 𝑃𝑤𝑎𝑙𝑙 = 𝐴𝐹𝑃𝑚𝑎𝑥
× 𝑃𝑛𝑜 𝑤𝑎𝑙𝑙 (3.12) 

 𝐼𝑤𝑎𝑙𝑙 = 𝐴𝐹𝐼𝑚𝑎𝑥
× 𝐼𝑛𝑜 𝑤𝑎𝑙𝑙 (3.13) 

The computations performed in the aforementioned three steps can be illustrated 

using a simple example, as shown in Figure 3.4. In this example, it is assumed that a 

reinforced concrete facility is required to be located outside the range of minor damage 

(j = 2) in the event of a 250 kg TNT explosive attack. The designers wish to compare the 

standoff distance required for the facility with no blast wall to the blast wall-adjusted 

standoff distance required when a two-meter tall, thick sand wall is constructed to 

protect the facility. In the first step, ETL 1110-3-495  (USACE 1999) is used to 

determine that a 55-meter standoff distance (Sj) is required to provide the desired level 

of protection for the facility with no blast wall. In the second step, the simplified Kingery 

airblast equations (Swisdak Jr 1994) are used to calculate the Pno wall,Sj
 value for the 

standoff distance determined in the first step. At a standoff distance of 55 meters, 

solving Eq. (3.10) shows that the facility will experience a reflected pressure load of 39 

kPa. In the third step, the blast wall-adjusted standoff distance for the facility protected 

by a two-meter tall, thick sand wall that results in an equal pressure load of 39 kPa is 

computed by solving Eq. (3.7) utilizing the modified Powell hybrid method for nonlinear 

equations. This computation yields a blast wall-adjusted standoff distance (AS2) of 36 

meters. This calculation can be verified and further explained by using Eq. (3.12). When 

AS2 is 36 meters, Pwall,36m is calculated by multiplying Pno wall [calculated with Eq. (3.10)] 

at 36 meters by the AFPmax
 [calculated with Eq. (3.3)] for a two-meter tall, thick sand wall 
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that is assumed to be located four meters from the blast. Performing these calculations 

results in a Pno wall  of 76 kPa and a AFPmax
 of 0.51, which multiplied together verify 

Pwall,36m  as 39 kPa. This example demonstrates that frangible blast walls can 

substantially reduce the standoff distance required to provide an equivalent level of 

protection for a facility compared to the standoff distance required for a facility with no 

blast wall. Further, this reduction in required standoff distance greatly increases site 

layout planning flexibility, enabling designers to construct additional facilities in the 

freed-up site space or reduce the site footprint in order to realize real-estate savings.  

 Quantify the Percent Facility Area within Specified Damage Levels 

This step quantifies the percent area of each facility within the five damage levels 

(PFAij) by calculating the area of intersection between blast damage areas, which are 

determined by utilizing the blast wall-adjusted standoff distances (ASj) computed in the 

previous step, and the facility area (FAi), as shown in Figure 3.3. Each damage level 

(DLj) is represented as a ring, centered at the anticipated blast location, with a radius 

equal to the calculated standoff distance. The areas are then converted to percentages 

by dividing the area of intersection by the total facility area and multiplying by 100%, as 

shown in Eq. (3.14). This model utilizes the intersection function within Shapely, an 

existing Python package used for manipulation and analysis of planar geometric objects 

based on the GEOS (Geometry Engine, Open Source) and JTS (Java Topology Suite) 

libraries to automate these calculations (Gillies 2013). These percent areas of each 

facility within the five damage levels (PFAij) are utilized in the next section to compute 

the total facility damage level. 

 
𝑃𝐹𝐴𝑖𝑗 =

𝐹𝐴𝑖 ∩ 𝐷𝐿𝑗

𝐹𝐴𝑖
× 100% 

(3.14) 
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where,  

𝑃𝐹𝐴𝑖𝑗  = percent area of a facility i within damage level j;  

i   = facility number;  

𝐹𝐴𝑖   = area of facility i (m2); and   

𝐷𝐿𝑗   = area of damage level j (m2). 

 Compute Total Facility Damages 

The final step in quantifying the blast effects on constructed facilities behind blast 

walls is computing the total percentage of damage to each facility (PFDi). PFDi is the 

sum of the percent facility area (PFAj) multiplied by the percent destruction (PDj) for all 

the five damage levels (j) considered in this model, as shown in Eq. (3.15). The PDj 

value for these five damage levels (minimal, minor, moderate, heavy, and severe) is 

considered in this model to be 10%, 20%, 40%, 60%, and 100% respectively. These 

PDj values are identified based on the upper limit of the reported ranges of destruction 

for each of these five damage levels in existing design manuals (USACE 1999; FEMA 

2011; DoD 2012). 

 

𝑃𝐹𝐷𝑖 = ∑ 𝑃𝐹𝐴𝑖𝑗×𝑃𝐷𝑗

5

𝑗=1

 

(3.15) 

where,  

𝑃𝐹𝐷𝑖  = total percentage of damage to facility i;  

𝑃𝐹𝐴𝑖𝑗   = percent area of facility i in damage category j; and  

𝑃𝐷𝑗  = percent destruction caused by damage category j. 

The model is capable of quantifying the expected damages on multiple 

constructed facilities behind blast walls from a single explosive attack. The next section 
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discusses the output of 2-D visualizations of the impact of an explosive attack on 

multiple facilities to support designers in their critical task of identifying the most 

effective design for blast walls and facility hardening. 

3.4 Blast Damage Visualization 

This stage presents the development of blast damage visualizations that display 

the results calculated from the aforementioned blast effects assessment model. These 

calculations are performed using Python programming language (Rossum 1995) and 

the blast damage visualizations are generated using the 2-D plotting library matplotlib 

(Hunter 2007). The blast damage visualizations represent an effective tool to analyze 

the impact of various design combinations on the level of blast damages in all analyzed 

facilities. These generated visualizations provide designers with practical and reliable 

graphical illustrations that show the impact of a single blast on the level of damages in 

all facilities on site for each feasible design combination of blast charge weight, blast 

wall type, and building material.  

The generated visualizations represent the five damage levels (DLj) as rings, 

where each of these rings is centered at the anticipated blast location and has a radius 

equal to its corresponding calculated standoff distance (ASj), as shown in Figure 3.6(a). 

The developed model enables designers to specify the color and line styles of these 

rings to support their blast damage analysis. For example, designers can specify 

varying colors for each of the rings representing the five damage levels when all 

facilities have the same building material, as shown in Figure 3.6(a), where dark red, 

red, orange, yellow, and green represent the severe, heavy, moderate, minor, and 

minimal damage levels, respectively. If the site consists of facilities constructed of 
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multiple building materials, designers can use various line styles to represent the 

damage level rings for different materials, as shown in Figure 3.6(b), where solid lines 

are used to represent the damage level rings for the timber facilities and dashed lines 

are used to represent the damage level rings for reinforced concrete facilities. In 

addition, the model enables designers to utilize hatch patterns to represent different 

building materials. For example, in Figure 3.6, the diagonal (/) pattern is used to 

represent timber facilities while the dotted pattern (.) is used to represent reinforced 

concrete facilities. Furthermore, facility colors can be used to represent the overall 

facility damage level, enabling designers to easily visualize the level of damage suffered 

by each facility.  

 
Figure 3.6 Colored Rings Representing Five Damage Levels: (a) One Building 

Material; (b) Two Building Materials 
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These generated visualizations provide designers with a practical and reliable 

analysis tool to assess the results of the design scenario and determine the level of 

protection provided for each constructed facility. They enable designers to: (1) perform 

a visual risk management assessment of the design scenario; and (2) determine if any 

design changes are needed to provide the required level of protection for constructed 

facilities. For example, the generated visualization in Figure 3.7(a) presents a design 

scenario where the calculated damage level exceeds the designers’ maximum 

acceptable facility damage level.  

In this example, a five-meter-tall, steel blast wall is constructed to protect a 

timber facility from a 250 kg explosive attack at a standoff distance of 20 meters. The 

designers have specified an acceptable facility damage level of minimal for their design 

scenario; however, the blast damage visualizations and model output data show that 

this design results in a facility damage level of 40%, which corresponds to a heavy 

damage level. As the anticipated damage level exceeds the minimum acceptable level 

of protection for the facility, design changes are needed to reduce the security risks to 

site personnel and facilities from this explosive threat.  

Figures Figure 3.7(b) and (c) provide examples of alternative design scenarios 

that utilize the two primary design strategies used to reduce blast effects on facilities in 

order to increase the anticipated level of protection. First, designers attempt to 

maximize the standoff distance between the facility and the anticipated location of the 

explosive, as shown in Figure 3.7(b). By increasing the standoff distance from 20 

meters to 80 meters, the anticipated facility damage level is reduced from 40% to 10%, 

which is within the designer’s maximum acceptable facility damage level. Second, if a 
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sufficient standoff distance to provide the desired level of protection cannot be 

achieved, designers must select blast walls and/or building materials that provide 

greater levels of blast protection. Figure 3.7(c) displays the results of one possible 

design alternative where a five-meter-tall, thick sand blast wall is constructed to protect 

a steel frame facility. This design alternative results in a facility damage level of 10%, 

corresponding to a minimal damage level, which meets the designer’s acceptable 

facility damage level.  

 
Figure 3.7 Alternative Design Scenarios to Minimize Damage Level in Constructed 

Facility (a) 20 m Standoff, Timber Facility, Steel Blast Wall; (b) 80 m Standoff, 
Timber Facility, Steel Blast Wall; (c) 20 m Standoff Distance, Steel Frame Facility, 

Thick Sand Blast Wall 

3.5 Performance Analysis 

The purpose of this stage is to analyze the performance of the present model by 

comparing its results to those generated by the Defense Threat Reduction Agency’s 

Vulnerability Assessment and Protection Option (VAPO) software, version 6.2 (USACE 

PDC 2016). VAPO was selected in this analysis because of its: (1) capability of 
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simultaneously predicting blast loads on facilities and accounting for the structural 

response of individual building components; and (2) computational efficiency in 

generating and analyzing multiple designs scenarios in a relatively short time (Nichols 

and Doyle 2014). This performance analysis was performed by evaluating 114 design 

configurations that consisted of 54 configurations with no blast walls and 60 

configurations with steel blast walls. The design configurations were analyzed using a 

2.0 GHz quad-core Intel Core i7 processor with 6 MB of cache memory and 16 GB of 

SDRAM.   

The performance of BEAM was analyzed using two metrics: accuracy and 

efficiency. The accuracy of the present model was evaluated by calculating the: (1) 

average difference between the generated reflected pressure and impulse by the 

present model and VAPO (∆P and ∆I, respectively), as shown in Eqs. (3.16)-(3.17); and 

(2) the percent difference between the reflected pressure and impulse results generated 

by the two models (%P and %I, respectively), as shown in Eqs. (3.18)-(3.19). These 

average and percent differences were calculated for a wide range of possible design 

scenarios that represent the most probable security threats faced by designers. In total, 

114 combinations of building materials, blast charge weights, standoff distances and 

utilization of blast walls were analyzed, including 54 design configurations with no blast 

wall and 60 with blast walls. In the first set of analyzed design configurations with no 

blast walls, reflected pressure and impulse loads on facilities were calculated for 54 

feasible combinations of: (1) six building materials (unreinforced masonry, pre-

engineered metal, timber, steel frame with lightly reinforced CMU infill walls, reinforced 

concrete, and reinforced concrete frame with lightly reinforced CMU infill walls); and (2) 
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nine combinations of blast charge weights and standoff distances. As shown in Figure 

3.8,  these nine combinations of blast charge weights and standoff distances include: 

(a) blast charge weights of 100 and 250 kg at a standoff distance of 25 meters; (b) blast 

charge weights of 100, 250, 454.5, and 1,818.2 kg at a standoff distance of 50 meters; 

and (c) blast charge weights of 250, 454.5, and 1,1818.2 kg at a standoff distance of 

100 meters. For each of these nine combinations of standoff distance and blast charge 

weight, the average reflected pressure that was calculated by the present model and 

VAPO for the analyzed six building materials is displayed in Figure 3.8. 

In the second set of design configurations with blast walls, reflected pressure and 

impulse loads on facilities behind a five-meter-tall, steel blast wall were calculated for 60 

feasible combinations of: (1) six building materials (unreinforced masonry, pre-

engineered metal, timber, steel frame with lightly reinforced CMU infill walls, reinforced 

concrete, and reinforced concrete frame with lightly reinforced CMU infill walls); and (2) 

ten combinations of blast charge weights and standoff distances. As shown in Figure 

3.9, these ten combinations of blast charge weights and standoff distances include: (a) 

blast charge weights of 100, 250 and 454.5 kg at a standoff distance of 25 meters; (b) 

blast charge weights of 100, 250, 454.5, and 1818.2 kg at a standoff distance of 50 

meters; and (c) blast charge weights of 250, 454.5, and 1,1818.2 kg at a standoff 

distance of 100 meters. For each of these ten combinations of standoff distance and 

blast charge weight, the average reflected pressure that was calculated by the present 

model and VAPO for the analyzed six building materials is displayed in Figure 3.9. 

The results of the conducted analysis verify that the methodology of calculating 

blast loads in this component of the model by utilizing the simplified Kingery airblast 
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equations (Swisdak Jr 1994) and the rigid wall adjustment factors (Zhou and Hao 2008) 

generates results that are very close to those generated by VAPO, as shown in Figure 

3.8 and Figure 3.9. The average and percent reflected pressure differences between 

the two models were 1.9 kPa and 4.0% for the no wall configurations and 1.2 kPa and 

3.9% for the steel wall configurations. The average and percent reflected impulse 

differences between the two models were 83 kPa-ms/kg1/3 and 12.0% for the no wall 

configurations and 39 kPa-ms/kg1/3 and 10% for the steel wall configurations. These 

differences in calculated blast loads between BEAM and VAPO are minor, and may only 

lead to slightly more conservative design outcomes.  

 
∆𝑃 =

∑ (𝑃𝐵𝐸𝐴𝑀𝑐
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where,  

∆𝑃 = average reflected pressure difference between BEAM and VAPO 

(kPa); 

𝑐   = design configuration number;  

C  = total number of design configurations; 

𝑃𝐵𝐸𝐴𝑀 = reflected pressure load on a facility as calculated by the present 

blast effects assessment model for configuration c (kPa); 
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𝑃𝑉𝐴𝑃𝑂 = reflected pressure load on a facility as calculated by VAPO for 

configuration c (kPa);  

∆𝐼 = average reflected impulse difference between BEAM and VAPO 

(kPa-ms/kg1/3); 

%P  = average percent reflected pressure difference between BEAM 

and VAPO at a given standoff distance; and 

%I  = average percent reflected impulse difference between BEAM and 

VAPO at a given standoff distance. 

 
Figure 3.8 Average Peak Reflected Pressure for Six Building Materials and No 

Blast Wall 
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Figure 3.9 Average Peak Reflected Pressure for Six Building Materials and with 

Blast Wall 
 

The efficiency of the present model was analyzed by recording the amount of 

time required by BEAM and VAPO to perform blast damage computations and generate 

blast damage visualizations for each design scenario. BEAM required an average 

completion time of 0.18 seconds per design scenario while VAPO required 11 seconds 

per design scenario. This illustrates that the present model requires only 1.7% of the 

computational time required by VAPO to perform facility blast damage assessments. 

The results of this performance analysis highlight the accuracy and efficiency of the 

developed model. 

3.6 Case Study 

The purpose of this stage is to analyze a case study to illustrate the use of the 

model and demonstrate its distinctive capabilities. To illustrate the use of the model, the 

case study seeks to identify the best design configuration for a 512 m2 one-story 

constructed facility. The anticipated security threat in this case study is a 454.5 kg TNT 

explosive attack, assumed to be detonated on a road adjacent to the blast wall at a 
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distance of four meters from the blast wall. Designers are considering a wide range of 

feasible design alternatives that include 15 blast wall materials, two wall heights, six 

building materials and three possible facility locations. As shown in Figure 3.10, these 

feasible design parameters produce 540 design alternatives for this case study that 

need to be analyzed by designers to determine the design configuration that provides 

the greatest level of facility protection. 

 
Figure 3.10 Case Study Feasible Design Alternatives 

To analyze this case study, designers need to input: (1) the blast charge weight 

and its Cartesian coordinates, (2) facility dimensions, Cartesian coordinates of its 

centroid and its orientation (degrees), (3) selection of blast wall type from 30 feasible 

alternatives, and (4) selection of building material from six feasible alternatives. The 

output of the model contains the blast wall-adjusted standoff distances (ASj) for each of 

the five damage levels (DLj), the percent area of the facility within each of the five 

damage levels (PFAj), the calculated total percentage of damage to the facility (PFDi), 

and the generated 2-D visualizations of the anticipated facility damage areas for the 
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specified combination of blast charge weight (W), blast wall type, building material, and 

facility location, as shown in Figure 3.11. 

 
Figure 3.11 Model Output Data and Generated 2-D Visualization 

The present model was used to analyze the aforementioned 540 design 

alternatives for this case study. The results of this analysis enabled designers to select 

the configuration that is most suitable for their specified needs. Absent project cost and 

material availability limitations, designers will select the configuration that provides the 

greatest level of facility protection. This configuration, shown in Figure 3.12(a), requires 

the construction of a reinforced concrete frame facility, behind a five-meter-tall, precast 

concrete panel blast wall at a standoff distance of 40 meters and a rotation of 90 

degrees. This design configuration results in a total percent facility destruction level of 

1%.  

In addition, designers may need to explore other solutions that provide the lowest 

level of damage when using specified blast wall types and/or building materials that are 

available or cost effective in their location. For example, if designers require the 

construction of a CMU blast wall to protect their facility, the design configuration that 
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provides the greatest level of protection is shown in Figure 3.12(b). This configuration 

requires the construction of a reinforced concrete frame facility at a standoff distance of 

40 meters and a rotation of 90 degrees, and the building of a five-meter-tall CMU blast 

wall. This design configuration results in a total percent facility destruction level of 10%.  

Furthermore, designers may specify their preference for blast wall type, building 

material and/or facility location and seek to determine the configuration that provides the 

greatest level of protection while incorporating their stated design preferences. For 

example, designers may specify their preference to construct a timber facility. Figure 

3.12(c) displays the configuration that provides the greatest level of protection for a 

timber facility. This configuration requires constructing a five-meter-tall, precast concrete 

panel blast wall and siting the facility at a standoff distance of 40 meters and a rotation 

of 90 degrees. This best-case scenario for a timber facility results in a total percent 

facility destruction level of 20%. The ability of the present model to analyze a wide 

range of feasible design alternatives enables designers to identify an optimal solution 

that best addresses the specified needs and limitations of their project. 
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Figure 3.12 Sample Case Study Results 

The analysis of the case study illustrates the unique capabilities of the present 

model in: (1) efficiently predicting the blast damage level on facilities for a wide range of 

feasible design alternatives of blast charge weight, blast wall type, building material and 

facility location; (2) quantifying the effectiveness of feasible frangible blast wall types in 

reducing blast loading on facilities; and (3) generating visualizations of the anticipated 

facility damage areas based upon the blast charge weight, blast wall type and building 

material combinations. 

The first distinctive capability of the present model is its ability to efficiently 

predict the blast damage level on the constructed facility for all feasible design 

alternatives identified. The model gains its computational efficiency by incorporating a 

database that contains the aforementioned 30 blast wall types and six building 

materials, enabling designers to analyze all possible combinations in a single run 

without the need to input the values for each possible combination. This capability 

enabled the present model to analyze the 540 possible design combinations for this 
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case study, as shown in Figure 3.13, in a total computational time of 97 seconds or an 

average of 0.18 seconds per design scenario. BEAM’s ability to efficiently analyze the 

performance of all feasible design scenarios for constructed facilities in resisting the 

effects of an explosive attack allows for improvement and optimization in facility design 

that was previously infeasible using existing blast models. 

 
Figure 3.13 Generated Case Study Results 

The second distinctive capability of the present model is its ability to quantify the 

effectiveness of feasible frangible blast wall types in reducing blast loading on facilities 

compared to a standard, rigid wall. This reduction in blast loading on facilities is capable 

of producing significant reduction in expected damages to the facility. Using facility 

location 1 from this case study as an example, the design configuration that returns the 

lowest percent facility destruction for a facility behind a rigid blast wall is to construct a 
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steel frame facility behind a five-meter-tall, steel blast wall. This design configuration 

results in a total percent facility destruction level of 18%. Constructing the same steel 

frame facility behind a frangible, five-meter-tall, precast concrete panel wall reduces the 

percent facility destruction level to 7%. Similar blast assessment models are incapable 

of considering frangible walls and their effectiveness in reducing blast loading on 

facilities. This inability to consider more effective frangible blast wall types limits the 

ability of designers to maximize the safety of their facilities and exposes their occupants 

to increased risk of loss of life, property damages, and economic losses in the event of 

an explosive attack.  

The third distinctive capability of the present model is its ability to generate 

visualizations of the anticipated facility damage areas based upon the blast charge 

weight, blast wall type, and building material combinations. Existing models are 

incapable of generating visualizations that account for the pressure-mitigating effects of 

feasible rigid and frangible blast wall types. BEAM’s ability to rapidly generate 

visualizations provides designers with a practical and reliable analysis tool to assess the 

impact of utilizing various frangible and rigid blast wall types to protect their constructed 

facilities. These generated visualizations enable designers to perform a visual risk 

management assessment of the design scenario and easily determine if any design 

changes are required to provide the desired level of protection for their constructed 

facilities.  

3.7 Summary and Conclusions 

This chapter presented a blast effects assessment model for quantifying and 

visualizing blast effects on constructed facilities behind rigid or frangible blast walls. The 
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model was developed in five main stages: (1) blast wall analysis stage that developed a 

methodology to quantify the performance of feasible frangible blast wall types including 

sand-filled, water-filled, and wood walls in reducing reflected pressure and impulse 

loading on facilities; (2) facility damage assessment stage that computed the percent 

area of each facility within five specified damage levels in order to calculate an overall 

facility damage level; (3) blast damage visualization stage that displayed anticipated 

facility damage areas based upon blast charge weight, blast wall type, and building 

material combinations; (4) performance analysis stage that evaluated the accuracy and 

efficiency of the developed model; and (5) case study stage that analyzed the 

performance of the developed model using an application example. The analysis of this 

case study illustrated the use of the model and demonstrated its unique capabilities. 

The model was able to efficiently predict the blast damage level for a constructed facility 

and generate blast damage visualizations for 540 feasible design alternatives 

comprised of 15 blast wall materials, two blast wall heights, six building materials, and 

three possible facility locations. The total computational time required for the model to 

analyze and generate results for these 540 feasible design alternatives was 97 seconds 

or an average of 0.18 seconds per design scenario.  

The primary contribution of this research is the development of a novel model 

that enables designers to efficiently and accurately analyze and compare all feasible 

design alternatives in order to select an optimal design solution that minimizes the 

security risks to site personnel and facilities from the threat of an explosive attack. This 

developed model should prove useful for designers and construction managers of high-

threat sites, allowing them to evaluate design options that may not have been previously 
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considered because of the significant computational time and effort required by 

numerical blast assessment models. The end result is a greater likelihood of designing 

a site that meets the functional and security requirements established by the site 

owners.   
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FACILITY PROTECTION OPTIMIZATION MODEL 

4.1 Introduction  

The chapter presents the development of a multi-objective model for optimizing 

the site layout and selection of perimeter blast walls and building materials in order to 

minimize facility destruction levels from explosive attacks while minimizing site 

construction costs. The model is intended to equip planners of remote construction sites 

with the capability to efficiently analyze and compare all feasible design alternatives in 

order to construct remote sites that minimize the security risks to site personnel and 

facilities from the threat of explosive attacks in the most cost-effective manner. The 

model is developed in three main stages: (1) formulation stage that defines the relevant 

decision variables, formulates the objective functions, and identifies practical model 

constraints; (2) implementation stage that performs the optimization computations using 

multi-objective genetic algorithm; and (3) performance evaluation stage that analyzes 

an application example to evaluate and improve model performance. The following 

sections describe the three developmental stages of the present model.  

4.2 Model Formulation 

This stage presents the formulation of a novel multi-objective optimization model 

for optimizing the site layout and selection of perimeter blast walls and building 

materials for remote construction sites. This stage is accomplished in three steps: (1) 

defining the model decision variables; (2) formulating the facility destruction and 

construction cost objective functions; and (3) identifying all practical model constraints. 
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 Decision Variables  

The decision variables of the developed optimization model are selected to 

represent all feasible design alternatives of site layout and selection of perimeter blast 

walls and building materials. As shown in Figure 4.1, the model incorporates these 

decision variables in two main groups: (1) perimeter decision variables; and (2) facility 

decision variables. The first group represents all the decision variables that affect the 

location and performance of perimeter blast walls including perimeter location (PL), 

perimeter type (T) and perimeter height (H). The model enables planners to specify a 

feasible set of design alternatives for each of these three perimeter decision variables. 

The second group incorporates all the decision variables that affect the location and 

performance of site facilities including facility location (FLi), facility orientation (𝜃𝑖), and 

building material (Mi). Facility locations are defined within the model by the placement of 

their centroids on a user-specified grid system that allows planners to establish their 

preferred grid interval. Facility orientation is the degree that the facility is rotated about 

its centroid and is specified in this model to be 0 or 90°, which represents the most 

widely used orientations for rectangular shaped facility layouts. Facility location 1 (FL1) 

in Figure 4.1 shows the two possible facility rotation angles for a single facility location. 

Finally, building material will be selected from a set of feasible design alternatives that 

are specified by planners.  
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Figure 4.1 Model Decision Variables 

 Objective Functions 

The present model is designed to accomplish two primary objectives: (1) 

minimize site facility destruction levels from explosive attacks; and (2) minimize site 

construction costs.  

4.2.2.1 Minimizing Site Facility Destruction Levels 

The first objective function in the present model is designed to minimize the 

destruction of site facilities inflicted by a specified explosive threat based on the 

performance of the selected site layout, perimeter blast walls and building materials. As 

shown in Eq. (4.1), the destruction of site facilities is quantified as the site destruction 

index (SDI), which ranges from 0% to 100%, where 0% represents no destruction and 
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100% represents complete destruction. SDI is quantified as the sum of the percent 

destruction of each facility (PFDi) multiplied by the importance weight of each facility on 

the site (𝑤𝑖), as assigned by project planners. The use of importance weights provides 

planners with the flexibility to assign priority to facilities based on their criticality to the 

mission and purpose of the remote construction site.    

The percent destruction of each facility (PFDi)  is calculated using a recently 

developed model for quantifying blast effects on facilities behind blast walls (Schuldt 

and El-Rayes 2017) in five main phases that focus on: (1) establishing specified facility 

damage levels (j); (2) defining the percent destruction of each facility damage level 

(PDj); (3) quantifying the standoff distances from an explosive at which each facility 

damage level is suffered; (4) determining the portion of every facility within each of the 

five damage level zones; and (5) computing the total percent destruction of each facility, 

as shown in Figure 4.2. The first phase of calculation establishes five facility damage 

levels (j), characterized by an increasing level of destruction: minimal, minor, moderate, 

heavy, and severe. This use of facility damage levels is consistent with established blast 

design practices and manuals (USACE 1999; DoD 2008b; FEMA 2011). The second 

phase defines the percent destruction for each facility damage level (PDj) from a range 

of destruction as reported in existing design manuals (USACE 1999; FEMA 2011; DoD 

2012). The PDj values utilized in the present model for the five specified damage levels 

are 10%, 20%, 40%, 60%, and 100%, respectively, which represent the upper limit of 

these reported ranges in the aforementioned design manuals. The third phase 

quantifies the standoff distances at which the facility damage levels occur for each 

design scenario. These standoff distances form rings, centered at the blast location, that 
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define the zone in which each facility damage level (DLj) is suffered. The fourth phase 

utilizes Shapely (Gillies 2013), a spatial analysis software package, to determine the 

portion of every facility within each of the five damage level zones. This phase employs 

automated computational geometry based on the defined grid-interval system to 

calculate the intersection areas of each facility and damage level zone. These 

intersection areas are expressed as the percent area of each facility within each of the 

five damage level zones (PFAij). The fifth phase computes the percent destruction of 

each facility (PFDi) as the sum of the percent area of a facility within each of the five 

damage level zones (PFAij) multiplied by the corresponding percent destruction of each 

damage level (PDj).  

The aforementioned third phase requires detailed calculations to quantify the 

required standoff distances, which are the minimum acceptable separation distances 

between facilities and explosive attacks that will provide the specified levels of 

protection (U.S. Dept. of the Air Force 1997), for each feasible design combination that 

considers varying damage levels (j), blast charge weights (W), building materials (M), 

and perimeter blast wall types (T), and heights (H), if any. The present model is 

designed to provide the flexibility to quantify the required standoff distances for: (a) 

perimeter types that provide no blast attenuation, such as chain-link fence; and (b) rigid 

and frangible wall types that provide varying levels of blast attenuation. As shown in 

Figure 4.2, these detailed calculations of phase three are performed in three steps that 

are designed to: (1) identify the required standoff distances for perimeter types that 

provide no blast attenuation (Sj); (2) calculate blast loads on facilities at the identified 



  
 

97 

standoff distances; and (3) quantify the blast wall-adjusted standoff distances (ASj) 

where blast loads on facilities are equal to those calculated in step two.   

The first step identifies the required standoff distances for each combination of 

facility damage level (j), blast charge weight (W), and building material (M) for perimeter 

types that provide no blast attenuation, as shown in Figure 4.2. To determine these 

standoff distances, planners typically perform the time-consuming and often error-prone 

process of manually extracting the data for each design scenario from existing design 

manuals and charts (USACE 1999; DoD 2002, 2008a). The present model overcomes 

this limitation by automatically and accurately extracting the standoff distances for each 

design combination utilizing WebPlotDigitizer (Rohatgi 2016). The model integrates a 

constructed database containing the standoff distances for each combination of facility 

damage level, blast charge weights ranging from 22.7 kg to 18,182 kg, and the most 

commonly used building materials. This automated extraction process (a) eliminates the 

tedious requirement for planners to manually extract data for each design scenario; (b) 

ensures accuracy and high data fidelity levels within the model; and (c) greatly 

increases model computational efficiency. When blast walls are utilized, further 

calculations are necessary to quantify the blast wall-adjusted standoff distances (ASj) 

required to provide an equivalent level of protection for facilities behind blast walls 

compared to the standoff distances (Sj) for facilities behind perimeter types that provide 

no blast attenuation. 

The second step calculates the blast loads on facilities at the standoff distances 

identified in step one. This step computes the total applied force acting upon an 

identified facility that causes the specified level of damage. The present model is 
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designed to perform these calculations on the basis of peak reflected pressure (kPa) 

and reflected impulse (kPa-ms/kg1/3). The listed equations in this paper present the 

performed calculations based on reflected impulse and it should be noted that the 

model computations based on reflected pressure are performed using a similar 

methodology. The reflected impulse loads are calculated for the standoff distances 

extracted from the aforementioned design manuals and charts in step one utilizing the 

Kingery-Bulmash equations (Kingery and Bulmash 1984), where reflected impulse is a 

function of scaled distance (standoff distance/blast charge weight1/3).  

The third step quantifies the blast wall-adjusted standoff distances (ASj) where 

the reflected impulse loads on facilities behind rigid or frangible walls are equal to the 

reflected impulse loads at the standoff distances (Ino wall,Sj
)  calculated in step two, 

utilizing a hybrid solving method for nonlinear equations (Moré et al. 1980). Therefore, 

ASj are the distances that provide an equivalent level of protection for facilities behind 

blast walls compared to the standoff distances for facilities behind perimeter types that 

provide no blast attenuation (Sj) identified in step one. The reflected impulse load 

behind a blast wall is calculated as the product of the impulse load when no wall is 

present (Ino wall,ASj
), the maximum reflected impulse adjustment factor for a rigid wall 

(AFImax,R
) (Zhou and Hao 2008), and the blast wall impulse effectiveness factor (EFI), 

as shown in Eq. (4.2) and Figure 4.2. EFI is a ratio that measures the performance of 

frangible blast wall types compared to a rigid blast wall in reducing impulse loading on 

facilities (Bogosian and Piepenburg 2002). As shown in Figure 4.3, the present model 

utilizes a newly developed set of effectiveness factors that expands the capability of 

AFImax,R
 to consider the effectiveness of feasible frangible blast wall types, which have 



  
 

99 

been reported to provide comparable or greater levels of blast mitigation than a 

standard, rigid wall (Bogosian and Piepenburg 2002; Rose et al. 1998). 

 
Figure 4.2 Phase Calculations of Percent Facility Destruction 

 

 
Figure 4.3 Newly Developed Set of Impulse Effectiveness Factors for 12 Frangible 

Wall Types 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝐷𝐼 = ∑ 𝑤𝑖×

𝐼

𝑖=1

𝑃𝐹𝐷𝑖 

(4.1) 

 𝐼𝑟,𝑆𝑗
= 𝐼𝑟,𝐴𝑆𝑗

×𝐴𝐹𝐼𝑚𝑎𝑥,𝑅
×𝐸𝐹𝐼 (4.2) 

where,  

SDI  = site destruction index; 

i  = facility number; 

I  = total number of facilities;  

𝑤𝑖  = importance weight for each facility i, where wi > 0 and   

       ∑ 𝑤𝑖 = 1𝐼
𝑖=1 ;  

𝑃𝐹𝐷𝑖  = total percentage of destruction to facility i;  

𝐼𝑟  = reflected impulse load on a facility (kPa-ms/kg1/3);  

𝑆𝑗  = standoff distance for a facility with no blast wall at damage level j 

(m);  

𝐴𝑆𝑗  = blast wall-adjusted standoff distance for a facility at damage level    

j (m);  

𝐴𝐹𝐼𝑚𝑎𝑥,𝑅
  = maximum reflected impulse adjustment factor for rigid walls; and 

𝐸𝐹𝐼   = blast wall impulse effectiveness factor. 

4.2.2.2 Minimizing Construction Cost 

The second objective function in the present model is designed to minimize the 

construction costs of integrating site security measures that include constructing 

perimeter blast walls and hardening site facilities. As shown in Eq. (4.3), the site 

construction cost (SCC) incorporates initial construction costs (ICC) and the present 

value of future wall replacement costs (WRC). First, ICC is comprised of the perimeter 
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wall construction costs and facility hardening costs [see Eq. (4.4)]. Perimeter wall costs 

are calculated as the product of the perimeter wall length (PL) and the wall construction 

unit cost (WCT,H), as shown in Eq. (4.4). The total perimeter wall length is calculated 

based upon the selection of the blast wall location decision variable from the set of 

feasible alternatives defined by planners. The wall construction unit cost is the cost to 

construct a linear meter of the selected blast wall based upon the wall type (T) and wall 

height (H). Facility hardening costs are calculated using the facility area (FAi) and the 

facility construction unit cost (FCM). The facility construction unit cost is the cost to 

construct a square meter of the selected building material (M). The total facility 

hardening cost is equal to the sum of the facility area multiplied by the facility 

construction unit cost for all site facilities, as shown in Eq. (4.4). 

Second, the present value of future perimeter wall replacement costs (WRC) is 

computed as the product of the perimeter wall length of the selected blast wall location 

(PLWL), the number of times a wall must be replaced over the anticipated site lifespan, 

the wall replacement unit cost (WRT,H), and discount rate (D) to calculate the present 

value of future costs as shown in Eq. (4.5). The number of times the selected wall will 

need to be replaced is calculated by rounding up the integer value of the anticipated site 

lifespan (LS) divided by the design life of the selected blast wall (DL) minus the initial 

wall construction, as shown in Eq. (4.5). For example, if a blast wall has a design life of 

six years and the anticipated site lifespan is twenty years, the blast wall will need to be 

replaced three times after the lifespan of the first constructed wall (20 divided by 6 – 1 = 

2.33, rounded up to 3). The wall replacement unit cost is the cost to remove and 
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reconstruct a linear meter of the selected blast wall based upon the wall type (T) and 

wall height (H).  

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝐶𝐶 = 𝐼𝐶𝐶 + 𝑊𝑅𝐶 (4.3) 

 
𝐼𝐶𝐶 = 𝑃𝐿𝑊𝐿×𝑊𝐶𝑇,𝐻 + ∑ 𝐹𝐴𝑖×𝐹𝐶𝑀

𝐼

𝑖=1

 (4.4) 

 
𝑊𝑅𝐶 = 𝐷 (𝑃𝐿𝑊𝐿× ⌈

𝐿𝑆

𝐷𝐿𝑇,𝐻
− 1⌉ ×𝑊𝑅𝑇,𝐻) (4.5) 

where, 

𝑆𝐶𝐶 = site construction cost ($);  

 𝐼𝐶𝐶 = initial construction cost ($); 

𝑊𝑅𝐶 = present value of future replacement costs of the perimeter wall 

($); 

𝑃𝐿𝑊𝐿 = perimeter wall length (m) based upon the selected option for wall 

location (WL);  

𝑊𝐶𝑇,𝐻 = wall construction unit cost based upon the selected wall type (T) 

and wall height (H) ($/m); 

𝐹𝐴𝑖 = area of facility i (m2); 

𝐹𝐶𝑀 = facility construction unit cost based upon the selected building 

material (M) ($/m2); 

𝐷 = discount rate to calculate the present value of future costs (%); 

𝐿𝑆 = expected site lifespan (years); 

𝐷𝐿𝑇,𝐻 = design life of selected blast wall based upon the wall type (T) and 

wall height (H) (years); and 
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𝑊𝑅𝑇,𝐻 = wall replacement unit cost based upon the selected wall type (T) 

and wall height (H) ($/m). 

 Model Constraints 

The present model was designed to comply with all practical constraints that can 

be encountered in the planning of remote construction sites, including: (1) site 

boundary; (2) facility overlap; (3) minimum distance; and (4) maximum distance. These 

constraints, as shown in Figure 4.4, ensure model efficacy and enhance model 

performance by incorporating planner preferences. Each of the constraint types is 

briefly discussed below.  

Site boundary and facility overlap constraints are mandatory to ensure the 

feasibility of generated solutions by avoiding spatial conflicts (El-Rayes and Said 2009; 

Zouein and Tommelein 1999). The first constraint type, site boundary, is employed to 

guarantee that all facilities are positioned within the selected site perimeter, as shown in 

Figure 4.4a. Boundary constraints are analyzed using automated computational 

geometry to calculate the area of each facility outside the site perimeter. The boundary 

constraint is violated when the calculated area of a facility outside the site perimeter is 

greater than zero. The second constraint type, facility overlap, is utilized to ensure that 

proposed facility locations do not overlap one another. Facility overlap constraints are 

tested by calculating the intersection area between each pair of proposed facility 

locations on the site. The facility overlap constraint is violated when the calculated 

intersection area between a pair of facilities is greater than zero. In Figure 4.4a, facility 1 

violates the site boundary constraint but complies with the facility overlap constraint, 

while facilities 2 and 3 comply with the site boundary constraint but violate the facility 
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overlap constraint, and facility 4 complies with both the site boundary and facility 

overlap constraints.  

Minimum and maximum distance constraints are incorporated into the present 

model to enforce compliance with security and safety requirements and to enable 

planners to integrate design preferences, as shown in Figure 4.4b. The third constraint 

of minimum distance establishes a buffer area around facilities in which other facilities 

cannot be constructed. For example, minimum separation distances between facilities 

may be required to allow for emergency vehicle access. Another example of this 

constraint is a specified minimum separation distance between hazardous materials 

(HAZMAT) storage areas and housing buildings. The fourth constraint of maximum 

distance establishes a buffer area around facilities in which other facilities must be 

located. For example, maximum distance constraints may be established to limit the 

walking distance of senior decision makers to the headquarters (HQ) office building in 

case of a rapid response scenario. Both minimum and maximum distance constraints 

are evaluated similarly to the aforementioned facility overlap constraints, where the 

intersection area between each pair of facilities is calculated; however, a buffer equal to 

the required minimum/maximum distance is added to the facility dimensions. The 

minimum distance constraint is violated when the calculated intersection area between 

a pair of facilities and their minimum separation distance is greater than zero. The 

maximum distance constraint is violated when the calculated intersection area is equal 

to zero. For example, there is a minimum separation distance from facility 1 in the layout 

in Figure 4.4b and therefore, facility 2 violates this constraint while facilities 3 and 4 

comply with this constraint. Similarly, there is a maximum distance constraint imposed 
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around facility 1 in Figure 4.4b and accordingly both facilities 2 and 3 violate this 

constraint.  

 
Figure 4.4 Model Constraints: (a) Boundary and Overlap; (b) Minimum/Maximum 

Distance 
 

4.3 Model Implementation 

In order to support planners in their critical task of analyzing optimal tradeoffs 

between minimizing facility destruction levels from explosive attacks and minimizing site 

construction costs, the present model is implemented as a multi-objective genetic 

algorithm (MOGA). MOGA was selected to perform the model computations because of 

its proven capabilities in: (1) modeling non-linear objective functions and constraints; (2) 

identifying near optimal solutions within a practical computational time; and (3) 

successfully modeling previous facility layout and construction optimization problems 

(Said and El-Rayes 2010; Mawdesley et al. 2002; Elbeltagi et al. 2004; Khalafallah and 
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El-Rayes 2011). The present model was implemented utilizing the nondominated 

sorting genetic algorithm II (NSGA-II) (Deb et al. 2002) and executed with the 

Distributed Evolutionary Algorithms toolbox (Fortin et al. 2012) for Python (Rossum 

1995). The model was implemented in four main steps: (1) data input; (2) initialization 

(3) fitness evaluation; and (4) data output, as shown in Figure 4.5 and described below.  

In the first implementation step, planners need to provide two sets of input data 

that specify: (1) all required site layout and security measure data; and (2) MOGA 

search parameters. The first set of input data includes: (a) feasible blast walls 

characteristics including perimeter location, type, height, and design life; (b) available 

building materials; (c) blast wall and building material cost data; (d) facility geometries; 

(e) facility importance weights; (f) site lifespan; and (g) blast charge weight. The second 

set of input data specifies the required MOGA search parameters, including: (a) 

population size (P); (b) number of generations (G); (c) mutation rate (pm); and (d) 

crossover rate (pc).  

The second implementation step initiates the search process by: (1) reading in 

the specified MOGA parameters; and (2) randomly generating an initial set of solutions 

(s = 1 to S) that forms the initial population (P1) of the first generation (g = 1). This set of 

solutions represents feasible alternatives of facility layout, blast wall, and building 

material decisions.  

The third implementation step evaluates the fitness of the generated solutions by: 

(1) calculating the site destruction index (SDI) based upon the facility layout and 

selected security measures for each solution (s) in generation (g); (2) calculating the 

site construction cost (SCC) of each solution (s) in generation (g) based upon the 
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selected blast wall and building materials; (3) computing a site penalty score for each 

solution (s) based upon the percent area of site facilities that violate specified geometric 

constraints; (4) selecting the fittest individuals within the population; and (5) utilizing 

selection, crossover, and mutation operators in order to generate a new offspring 

population (g = g+1). This five-step process is repeated until the specified number of 

generations (g = G) has been reached.  

In the fourth implementation step, the model can be used to generate and 

visualize the optimization output data. This enables planners to: (1) produce a database 

of the generated optimal tradeoff solutions between the objectives of minimizing SDI 

and minimizing SCC; (2) graphically represent the tradeoff curves of the nondominated 

Pareto frontier solutions, as shown in Figure 4.5; and (3) generate visualizations of the 

optimal site layout plans using matplotlib (Hunter 2007) (Figure 4.5). The output data 

and visualizations enable planners to analyze and select the optimal facility layout and 

selection of security measures based upon their required level of facility protection or 

available construction budget. 
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Figure 4.5 Model Implementation 

4.4 Performance Evaluation 

This stage analyzes an application example to evaluate the performance of the 

developed model and demonstrate its distinctive capabilities in optimizing remote 

construction site layouts and generating optimal tradeoffs between minimizing facility 

destruction levels from explosive attacks and minimizing site construction costs. The 

application example represents a hypothetical military forward operating base designed 

to house and support the operations of 75 personnel. In this example, the base is 

assumed to be: (1) located in a remote area in an overseas country with a construction 

area cost factor of 1.67 (USACE 2016); (2) positioned in an available site area of 90 

meters by 60 meters; and (3) comprised of one-story facilities with a three-meter 

minimum separation distance between all facilities.  
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The application example requires the construction of ten facilities to house and 

support the operations of the military base, including a headquarters office facility, 

dormitories, a senior officer dormitory, a dining facility, a gymnasium, a maintenance 

facility, and a storage facility. In order to perform the optimization of this application 

example, planners need to specify the input data discussed in the model 

implementation phase, including the: (1) characteristics of feasible perimeter blast wall 

types, as shown in Table 4.1; (2) available facility building materials, as shown in Table 

4.2; (3) estimated construction costs of blast walls and building materials, as well as 

replacement costs of blast walls, as shown in Table 4.1 and Table 4.2; (4) dimensions 

of each site facility (Lx, Ly), as shown in Table 4.3; (5) importance weight assigned to 

each site facility, as shown in Table 4.3; (6) expected operational lifespan of twenty 

years; and (7) anticipated maximum explosive threat of 454.5 kg (1,000 lb) based upon 

local intelligence, which is the design blast charge weight carried in a full-size van 

(FEMA 2011). This application example subjects the base to uniformly distributed 

threats from all four sides of the perimeter wall. It should be noted that the facility 

importance weights in Table 4.3 are assigned for the purpose of analyzing this 

application example and that the model provides the flexibility to assign priority to 

facilities based on their criticality to the mission and the purpose of the remote 

construction site.  
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Table 4.1 Characteristics of Available Blast Walls  

ID Wall type (WT) 

Wall height 
H (m) 

Construction Costa 
𝑊𝐶𝑇,𝐻 ($/m) 

Replacement Costa 
𝑊𝑅𝑇,𝐻($/m) 

Design Life  
DLT,H (years) 

1 Balsa wood, thick 2 544 816 20 
2 Balsa wood, thick 5 1,361 2,042 20 
3 Balsa wood, thin 2 436 654 20 
4 Balsa wood, thin 5 1,089 1,634 20 
5 CMU 2 438 657 10 
6 CMU 5 1,094 1,641 10 
7 Concrete, thin panel 2 431 647 15 
8 Concrete, thin panel 5 1,077 1,616 15 
9 Polystyrene 2 640 960 10 

10 Polystyrene 5 1,598 2,397 10 
11 Polythene sheet 2 561 842 10 
12 Polythene sheet 5 1,402 2,103 10 
13 Revetting material 2 601 902 10 
14 Revetting material 5 1,501 2,252 10 
15 Sand, thick 2 524 786 4 
16 Sand, thick 5 624 936 4 
17 Sand, medium 2 339 509 4 
18 Sand, medium 5 458 687 4 
19 Sand, thin 2 267 401 4 
20 Sand, thin 5 386 579 4 
21 Steel 2 1,015 1,523 20 
22  Steel 5 2,537 3,806 20 
23 Water, bag 2 752 1,128 7 
24 Water, bag 5 1,002 1,503 7 
25 Water, filled 2 534 801 7 
26 Water, filled 5 668 1,002 7 

aCosts were determined from the 2017 RS Means, when available, or Army Corps of Engineers subject 
matter experts 

 

Table 4.2 Building Material Options and Construction Costs 

ID Building Material 

Construction Cost 
𝐹𝐶𝑀 ($/m2) 

1 Wood frame 3,090 

2 Pre-engineered metal 3,150 

3 Unreinforced masonry 3,300 
4 Steel frame with lightly reinforced CMU infill walls 3,380 
5 Reinforced concrete 3,560 
6 Reinforced concrete with lightly reinforced CMU infill walls 4,400 

aCosts were determined from the 2017 RS Means, when available, or Army Corps of Engineers subject 
matter experts 
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Table 4.3 Site Facilities, Dimensions, and Importance Weights 

  Dimensions  

ID Description Lx (m) Ly (m) wi 

F1 Dormitory 12 9 0.05 

F2 Dormitory  12 9 0.05 

F3 Dormitory 12 9 0.05 

F4 Dormitory 12 9 0.05 

F5 Dining Facility 12 9 0.2 

F6 Gymnasium 12 9 0.05 

F7 Headquarters  12 6 0.3 

F8 Senior Officer Dormitory  12 9 0.2 

F9 Storage  15 9 0.02 

F10 Maintenance  12 6 0.03 

 

The developed optimization model was used to search for and identify optimal 

site layout and security decisions for this remotely located base. The optimization model 

utilizes the aforementioned multi-objective genetic algorithm (MOGA) computations. 

The optimal MOGA search parameters were identified for this application example 

based on a large number of experiments that evaluated a wide range of population 

sizes, number of generations, mutation rates, crossover rates, and crossover types as 

shown in Table 4.4. Accordingly, these MOGA parameters were specified for this 

application example to be a population size of 150, 600 generations, a mutation rate of 

0.01, and two-point crossover with a crossover rate of 0.50. 

Table 4.4 MOGA Search Parameter Experiments 

ID Population Generations Mutation rate Crossover rate Crossover Type 

1 50 150 0.001 0.10 one-point 
2 50 150 0.001 0.10 two-point 
3 50 150 0.001 0.25 one-point 
4 50 150 0.001 0.25 two-point 
5 50 150 0.001 0.50 one-point 
6 50 150 0.001 0.50 two-point 

7 50 150 0.001 0.75 one-point 
8 50 150 0.001 0.75 two-point 
9 50 150 0.001 0.90 one-point 

10 50 150 0.001 0.90 two-point 
11 50 150 0.002 0.10 two-point 
12 50 150 0.002 0.25 two-point 
13 50 150 0.002 0.50 two-point 
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Table 4.4 (cont.) 

14 50 150 0.002 0.75 two-point 
15 50 150 0.002 0.90 two-point 
16 50 150 0.005 0.10 two-point 
17 50 150 0.005 0.25 two-point 
18 50 150 0.005 0.50 two-point 
19 50 150 0.005 0.75 two-point 
20 50 150 0.005 0.90 two-point 
21 50 150 0.010 0.10 two-point 
22  50 150 0.010 0.25 two-point 
23 50 150 0.010 0.50 two-point 
24 50 150 0.010 0.75 two-point 
25 50 150 0.010 0.90 two-point 
26 150 150 0.010 0.50 two-point 

27 300 150 0.010 0.50 two-point 
28 600 150 0.010 0.50 two-point 
29 150 300 0.010 0.50 two-point 
30 300 300 0.010 0.50 two-point 

31a 150 600 0.010 0.50 two-point 
32 150 1,500 0.010 0.50 two-point 

aProvided the best combination of performance and computational time 

The search space for this application example includes more than 17.5 million 

unique combinations of facility layout and security decisions, which represents the 

product of multiplying the total number of all feasible alternatives for the aforementioned 

six decision variable types. Each of these 17.5 million possible combinations represents 

varying performance in the aforementioned objectives of minimizing SDI and minimizing 

SCC. The developed optimization model, performed using MOGA, was used to perform 

an efficient and effective search of this large search space of feasible design 

alternatives in order to identify near-optimal solutions. The model generated a broad 

spectrum of 72 Pareto-optimal (i.e. nondominated) solutions that represent a unique 

and optimal tradeoff between the two optimization objectives. The generated Pareto-

optimal solutions result in expected damage levels ranging from 14% to 68% and site 

construction costs between $5.25 million and $3.41 million, respectively, as shown in 

Figure 4.6.  
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Figure 4.6 Generated Pareto-optimal Solutions 

On one end of the spectrum, solution S1 represents the generated Pareto-

optimal solution that results in the lowest overall level of site destruction (14%). This 

minimum SDI was achieved by: (1) utilizing the layout shown in Figure 4.7a, where the 

standoff distances between the facilities and site perimeter are as large as possible and 

the facilities with the highest importance weights (wi) are placed near the center of the 

site; (2) constructing the most blast-resistant perimeter wall, a five-meter tall, thick sand 

blast wall; and (3) constructing all facilities from steel frame or reinforced concrete with 

lightly reinforced CMU infill walls, which provide the highest levels of blast-resistance. 

This solution, however, is the most expensive, with a site construction cost of $5.25 

million. 
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Figure 4.7 Site Layout Plan for Solutions (a) S1 and (b) S72 

At the other end of the spectrum, solution S72 represents the generated Pareto-

optimal solution that results in the lowest site construction cost ($3.41 million). This 

minimum SCC was achieved by: (1) employing the site layout shown in Figure 4.7b; (2) 

building a two-meter tall, thin, balsa wood blast wall; and (3) selecting wood-frame 

construction for all ten buildings. While this solution does result in the lowest site 

construction cost, planners face an extremely high expected site damage level of 68% 

in the event of a 454.5 kg explosive attack. The similarity between the site layouts of 

solutions S1 and S72 clearly illustrate that increasing standoff distance by locating all 

facilities towards the center of the site layout has a significant impact on minimizing the 

potential effects of an explosive attack with little or no additional cost. To achieve further 

reduction in site destruction levels, solution S1 selects more costly alternatives for the 

perimeter blast wall and building materials, which provides additional protection at an 

increased cost.   

Between the two ends of the spectrum, the model generated 70 other Pareto-

optimal solutions that enable planners to analyze and select the design that best meets 

their unique project requirements based upon: (1) maximum acceptable level of site 
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destruction; (2) maximum available construction budget; and/or (3) minimizing site 

destruction levels with the least additional cost. For example, solution S34 represents 

the solution that costs the least amount of money to construct a site ($4.18 million) 

where the expected level of destruction does not exceed 25%. Likewise, solution S42 

represents the solution that results in the lowest level of site destruction (31%) while 

complying with a maximum available construction budget of $4.00 million (see Figure 

4.7). Similarly, solution S18 represents the solution that results in a site destruction level 

of 17%, which is near the lowest overall level of site destruction identified in solution S1 

(14%), but is achieved at a substantially reduced cost of $4.46 million compared to 

$5.25 million for solution S1. Table 4.5 provides a sample of the optimal decision 

variable solutions for the solutions discussed in this section.  

Table 4.5 Sample Optimization Results 

  Building Material   

Solution 
Blast 
Wall 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 
SDI 
(%) 

SCC 
($M) 

S1 8 4 4 4 4 6 4 6 6 4 4 14 5.25 
S18 20 4 4 4 4 4 4 4 4 4 4 17 4.46 
S34 22 4 1 4 1 4 1 4 4 1 4 25 4.18 
S42 21 4 4 4 4 4 4 4 4 1 1 31 4.00 
S72 29 1 1 1 1 1 1 1 1 1 1 68 3.41 

 

4.5 Summary and Conclusions  

A novel multi-objective optimization model was developed to identify optimal site 

layout and security decisions for remote construction sites. The model provides the 

capability of generating optimal tradeoffs between the two main objectives of minimizing 

facility destruction levels from explosive attacks and minimizing site construction costs. 

The model was developed in three main stages: (1) formulation stage that defined the 

relevant decision variables, formulated the objective functions and identified practical 
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model constraints; (2) implementation stage that performed the optimization 

computations using multi-objective genetic algorithm; and (3) performance evaluation 

stage that analyzed an application example to evaluate model performance. The 

application example optimized the design and construction decisions to protect a 

hypothetical remote military base against the identified threat of a 454.5 kg (1,000 lb) 

explosive attack. The results of this analysis demonstrated the model’s distinctive 

capabilities in optimizing construction site layout and security decisions by generating 

72 Pareto-optimal solutions that represent unique optimal tradeoffs between minimizing 

facility destruction levels from explosive attacks and minimizing site construction costs.  

The primary contribution this research makes to the body of knowledge is the 

development of a novel model that is uniquely capable of: (a) optimizing both the site 

layout planning and selection of perimeter blast walls and building materials; and (b) 

generating optimal tradeoffs between minimizing facility destruction levels from 

explosive attacks and minimizing site construction costs. The developed model should 

prove useful for planners of high-threat, remote sites, enabling them to efficiently and 

effectively evaluate all feasible design alternatives. This capability results in the 

construction of cost-effective, high-performance sites that will lower the risks to site 

personnel and facilities from the devastating effects of an explosive attack. 
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BLAST CONSEQUENCE MITIGATION MODEL 

5.1 Introduction  

This chapter presents the development of a novel multi-objective optimization 

model for the layout and security planning of remote construction sites that provides the 

capability of minimizing the consequences of an explosive attack and minimizing the 

construction cost of remote sites. Designers and site layout planners of remote sites 

often have limited construction budgets and confined site layout spaces with which to 

meet the mission requirements of the site and provide maximum security to site 

personnel and facilities. The model is intended to support designers in their critical task 

of searching for and identifying optimal remote construction site layouts in order to 

construct remote sites that minimize the personnel loss, psychological impact, economic 

loss, and operational impact in the event of an explosive attack while minimizing site 

construction costs. The model is developed in three main stages: (1) consequence 

identification stage that quantifies the consequences of explosive attacks targeting 

facilities; (2) formulation stage that identifies the relevant decision variables, formulates 

the objective functions, and defines all practical constraints; and (3) implementation 

stage that performs the optimization computations using genetic algorithm and specifies 

the model input and output data, as shown in Figure 5.1. The performance of the 

developed model is analyzed using a case study that is designed to illustrate the use of 

the model and demonstrate its unique capabilities. The following sections describe 

these three development stages. 
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Figure 5.1. Optimization Model Development Stages 

5.2 Consequence Identification 

This stage of model development is designed to quantify the consequences of 

explosive attacks on remote construction sites. These consequences are identified and 

organized in the present model using a similar approach to the one adopted by the 

Federal Emergency Management Agency (FEMA). Accordingly, the present model 

quantifies four main consequences of explosive attacks: (1) personnel loss (PL); (2) 

psychological impact (PI); (3) economic loss (EL); and (4) operational impact (OI).  
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 Personnel Loss (PL) 

Personnel loss (PL) is designed to measure and minimize the extent of fatalities 

and injuries inflicted on occupants of a remote site from an explosive attack. The overall 

PL is presented as the site personnel loss equivalence (PLEsite), which is a measure of 

the total equivalent number of fatalities and is defined as the weighted sum of three 

personnel loss types: fatalities (PF), serious injuries (PSI), and minor injuries (PMI), as 

shown in Eq. (5.1). The use of weights (wPL) provides designers with the capability and 

flexibility to consider varying user-specified weights to represent the relative impact of 

these three personnel losses types (wF, wSI, wMI), which differs from one decision maker 

to another. For example, the model utilizes default weights of 1.0, 0.7 and 0.085 for 

fatalities, serious injuries and minor injuries, respectively, based on the reported 

compensations provided for these three personnel loss types after the 9/11 terrorist 

attacks (Dixon and Stern 2004).  

 𝑃𝐿𝐸𝑠𝑖𝑡𝑒 = ⌈P𝐹×𝑤𝐹 + P𝑆𝐼×𝑤𝑆𝐼 + P𝑀𝐼×𝑤𝑀𝐼⌉ (5.1) 

where,  

𝑃𝐿𝐸𝑠𝑖𝑡𝑒 = equivalent number of personnel fatalities on site; 

𝑃𝐹, P𝑆𝐼, P𝑀𝐼 = number of personnel expected to suffer fatalities, serious injuries 

and minor injuries, respectively; and 

𝑤𝐹, w𝑆𝐼, w𝑀𝐼 = importance weight for fatalities, serious injuries and minor 

injuries, respectively, where 0 ≤ 𝑤𝑃𝐿 ≤ 1. 

Each of the aforementioned personnel loss types: fatalities (PF), serious injuries 

(PSI), and minor injuries (PMI) is calculated in two main steps that are designed to 
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compute: (1) the percent area of each facility within specified damage levels; and (2) the 

number of personnel expected to suffer fatalities, serious injuries and minor injuries.   

 The first step is designed to compute the percent area of each facility that is 

subjected to either minimal, minor, moderate, heavy, or severe damage levels (PFA i,j) 

resulting from an explosive attack, as shown in Figure 5.2. The computations in this 

step are performed using a recently developed model for quantifying blast effects on 

facilities behind blast walls (Schuldt and El-Rayes 2017). The area of the 

aforementioned five damage levels are represented as concentric rings, centered at the 

blast location, with radii equal to the standoff distance at which each facility damage 

level occurs.  

 
Figure 5.2 Percent facility area within each damage level (PFAi,j) 

The second step computes the total number of personnel expected to suffer 

fatalities, serious injuries and minor injuries in all facilities on site. Each of these 
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personnel loss types is calculated as the product of multiplying the percent facility area 

within each damage level (PFAi,j), the assigned facility population (Popi), and the ratio of 

the facility population expected to suffer each personnel loss type within each facility 

damage level (𝑅𝑗
𝑃𝐿). For example, Eq. (5.2) illustrates the computations of the total 

number of fatalities in all facilities on site. Similarly, the total number of serious injuries 

and minor injuries in the entire site are calculated using similar equations to Eq. (5.2). 

These computations are based on two assumptions: (1) the assigned Popi is assumed 

to be uniformly distributed within each facility and is calculated based on the prorated 

amount of time individuals occupy a facility each day; and (2) 𝑅𝑗
𝑃𝐿 represents the upper 

limit of reported ranges of injury levels as identified in existing design manuals (DoD 

2012; USACE 1999), as shown in Figure 5.3.  

 
𝑃𝐹 = ∑ ∑ 𝑃𝐹𝐴𝑖,𝑗×𝑃𝑜𝑝𝑖×𝑅𝑗

𝐹

5

𝑗=1

𝐼

𝑖=1

 (5.2) 

where,  

i  = facility number; 

I  = total number of facilities on site; 

j = facility damage level, where j = 1,2,3,4,5 represents minimal, 

minor, moderate, heavy, and severe damage, respectively; 

𝑃𝐹𝐴𝑖,𝑗 = percent facility area (i) that suffers damage level (j);  

𝑃𝑜𝑝𝑖 = number of personnel assigned to facility i; and 

𝑅𝑗
𝐹 = ratio of personnel expected to suffer fatalities per damage level 

(j). 
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Figure 5.3 Ratio of personnel expected to suffer injury levels within each facility 

damage level (𝑹𝒋
𝑷𝑳) 

 Psychological Impact Index 

Psychological impact (PI) is designed to evaluate and minimize the degree of 

emotional and psychological disorders suffered by the survivors of explosive attacks on 

remote sites. Accordingly, the present study quantifies PI by the prevalence of post-

traumatic stress disorder (PTSD) among survivors because PTSD is the most studied, 

best-defined, and one of the most frequent and debilitating psychological disorders 

experienced in the aftermath of explosive attacks (Butler et al. 2003; Gabriel et al. 2007; 

Neria et al. 2008).  

Psychological impact is calculated as the total number of personnel expected to 

suffer PTSD on the site (PIsite). The rate that survivors of explosive attacks experience 

PTSD is reported to vary by personnel degree of exposure. Specifically, the prevalence 

of PTSD among personnel injured in an explosive attack is reported to range from 30-

40%, while the reported PTSD rate of uninjured personnel is between 5% and 10% 
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(Neria et al. 2008). To consider the most critical design cases, the present model 

utilizes the upper limit of these reported ranges (40% and 10%) to define the expected 

PTSD rates for injured (𝑃𝐼) and uninjured (𝑃𝑈) survivors, as shown in Eq. (5.3). The 

number of injured personnel is calculated using Eq. (5.4) and the number of uninjured 

personnel is equal to the site population (Popsite) minus the number of personnel 

fatalities and injured personnel, as shown in Eq. (5.5).  

 𝑃𝐼𝑠𝑖𝑡𝑒 = ⌈0.4×𝑃𝐼 + 0.1×𝑃𝑈⌉ (5.3) 

 𝑃𝐼 = 𝑃𝑆𝐼 + 𝑃𝑀𝐼 (5.4) 

 𝑃𝑈 = 𝑃𝑜𝑝𝑠𝑖𝑡𝑒 − (𝑃𝐹 + 𝑃𝐼) (5.5) 

where,  

𝑃𝐼𝑠𝑖𝑡𝑒 = number of site personnel expected to be diagnosed with PTSD; 

𝑃𝐼 = number of injured personnel on site;  

𝑃𝑈 = number of uninjured personnel on site; and 

𝑃𝑜𝑝𝑠𝑖𝑡𝑒 = total site population. 

 Economic Loss Index 

Economic loss (EL) is designed to assess and minimize the total economic loss 

inflicted on a site by an explosive attack. The overall EL represents the site total 

economic loss (TELsite) that consists of: (a) the sum of all facility direct losses (𝐷𝐿𝑖), 

including damages to facilities and assets, and (b) facility indirect losses (𝐼𝐿𝑖) resulting 

from facility interruptions that degrade the capability of the site to provide goods and 

services (Pelling et al. 2002), as shown in Eq. (5.10). TELsite is computed in four main 

steps that are designed to calculate: (1) the total percent destruction of each facility; (2) 
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the direct losses for each facility; (3) the indirect losses for each facility; (4) site total 

economic loss.  

The first step is designed to calculate the percent destruction inflicted on each 

facility from an explosive attack (PFDi). The quantification of these percent facility 

destruction values are performed using the aforementioned model for quantifying blast 

effects on facilities behind blast walls (Schuldt and El-Rayes 2017). The second step is 

to calculate the direct losses for each facility. Direct losses consist of both facility 

reconstruction costs (FRCi) and asset replacement costs (ARCi), as shown in Eq. (5.6). 

First, FRCi is calculated using the 𝑃𝐹𝐷𝑖, facility reconstruction unit cost (𝐹𝑅𝑀), which is 

the cost to reconstruct a square meter of the selected building material (M), and the 

facility area (𝐹𝐴𝑖). When the PFDi is low, building owners usually prefer to repair the 

damaged facility, as shown in Eq. (5.7). When the cost of repairing the damaged facility 

exceeds a certain percentage of the replacement cost, building owners typically decide 

to replace the damaged facility instead of repairing it. The present model utilizes FEMA 

P-58’s recommendation to reconstruct a facility when it suffers more than 40% damage 

(FEMA 2012), as shown in Eq. (5.7). Second, ARCi is the cost to replace the assets 

within a facility that are destroyed or damaged by an explosive attack. ARCi is 

calculated as the product of multiplying the total value of assets within a facility (FAVi) 

and its percent facility destruction (𝑃𝐹𝐷𝑖), where the assets are assumed to be uniformly 

distributed within the facility, as shown in Eq. (5.8). 

 𝐷𝐿𝑖 = 𝐹𝑅𝐶𝑖 + 𝐴𝑅𝐶𝑖 (5.6) 

   𝐹𝑅𝐶𝑖 = 𝑃𝐹𝐷𝑖×𝐹𝑅𝑀×𝐹𝐴𝑖      for 𝑃𝐹𝐷𝑖 < 0.40 

 𝐹𝑅𝐶𝑖 = 𝐹𝑅𝑀×𝐹𝐴𝑖                 for 𝑃𝐹𝐷𝑖 ≥ 0.40 
(5.7) 
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 𝐴𝑅𝐶𝑖 = 𝐹𝐴𝑉𝑖×𝑃𝐹𝐷𝑖 (5.8) 

where, 

𝐷𝐿𝑖 = direct losses for facility i ($);  

𝐹𝑅𝐶𝑖  = facility reconstruction cost for facility i ($); 

𝐴𝑅𝐶𝑖 = cost to replace destroyed assets in facility i ($);  

𝑃𝐹𝐷𝑖 = total percentage of destruction to facility i; 

𝐹𝑅𝑀 = facility reconstruction unit cost based upon the selected building 

material (M) ($/m2); 

𝐹𝐴𝑖 = area of facility i (m2); and 

𝐹𝐴𝑉𝑖 = total value of assets within facility i ($). 

The third step is to calculate the indirect losses for each facility ( 𝐼𝐿𝑖 ). ILi is 

calculated as the product of facility downtime (𝐹𝐷𝑖) and facility productivity rate (𝐹𝑃𝑅𝑖), 

as shown in Eq. (5.9). The downtime of a facility following an explosive attack includes 

the time necessary to plan, design, finance, and complete the required repairs on the 

damaged facility. As show in Table 5.1, this facility downtime (𝐹𝐷𝑖) is identified in the 

present model based on the percent facility destruction (𝑃𝐹𝐷𝑖) and the required repair 

time for different categories of repair that were reported by Comerio (2006). The fourth 

step computes the total economic loss for the entire site by summating the direct losses 

and indirect losses for all facilities on site, as shown in Eq. (5.10). 

 𝐼𝐿𝑖 = 𝐹𝐷𝑖×𝐹𝑃𝑅𝑖 (5.9) 

 
𝑇𝐸𝐿𝑠𝑖𝑡𝑒 = ∑(𝐷𝐿𝑖 + 𝐼𝐿𝑖)

𝐼

𝑖=1

 (5.10) 

where,  
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𝐼𝐿𝑖  = indirect losses for facility i ($); 

𝐹𝐷𝑖 = downtime of facility i (months); and 

𝐹𝑃𝑅𝑖 = productivity rate for facility i ($/month).  

 

Table 5.1 Facility Downtime Based on Facility Damage Level  

Percent Facility 
Destruction (PFDi) Repair Category 

Repair Timea 
(𝐹𝐷𝑖) (months) 

< 5% Minimal Effort N/A 
5-10% Cleanup 0.25 

10-20% Minor Repair 2 
20-30% Moderate Repair 4 
30-40% Major Repair 20 
> 40% Replacement 36 

a Reported repair time for facilities with an area less than 7,500 m2 (Comerio 2006) 

 Operational Impact Index 

Operational impact (OI) is designed to measure and minimize the reduction in 

site operational capacity due to the downtime of critical facilities damaged by an 

explosive attack. This impact is represented in the model using the site total operational 

impact (TOIsite), which is a measure of the total number of days the site will be unable to 

perform its primary mission. TOIsite is calculated in four steps that are designed to 

compute the: (1) mission dependency index of each facility; (2) effective mission 

dependency index based on facility destruction level; (3) site daily mission disruption; 

and (4) site total operational impact. 

The first step is designed to compute the mission dependency index of each 

facility (MDIi) using the standard measure of infrastructure criticality adopted by the 

United States Department of Defense (Antelman et al. 2008; Grussing et al. 2010). MDIi 

is measured on a normalized scale of 0% to 100% that represents the percentage 

degradation in the overall site operations if the facility is unable to perform its primary 
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function. MDIi is calculated using Eq. (5.11) (Grussing et al. 2010), where mission intra- 

and interdependency scores (MDW and MDB, respectively) are assigned from a scoring 

matrix based upon designers’ answers to questions designed to assess the: (a) length 

of time a facility can be inoperable before having an adverse impact on the site mission; 

(b) ability of another facility to perform the mission of the damaged facility; and (c) 

difficulty to replace the services provided by the damaged facility (Grussing et al. 2010).  

The second step calculates the effective mission disruption index of each facility 

(EMDIi) based on the total percentage of destruction to facility i (PFDi), as shown in Eq. 

(5.12). MDIi is incapable of quantifying the level of operational degradation when the 

facility suffers partial damage because it assumes the facility is completely destroyed or 

out of service. Accordingly, EMDIi accounts for the actual degradation of operational 

capacity based on the destruction level of each facility by multiplying the MDIi by the 

PFDi. For example, if a facility has an MDI value of 75% and is 100% damaged, the 

overall site operational capacity will be degraded 75%. If the same facility is only 10% 

damaged, the overall site operational capacity will only be degraded 7.5%.  

The third step calculates the overall daily mission disruption (DMDt) for each day 

(t) that site facilities are unable to perform their primary functions, as shown in Eq. 

(5.13). DMDt is calculated by summing up the EMDIi for all damaged facilities on day t 

while considering: (a) the time needed to restore each facility to its full operational 

capacity (TROi); and (b) that DMDt at any given day t should not exceed 100%, which 

represents complete disruption of site operations on that day. TROi is a user input that 

varies based upon the local conditions of the remote site and the availability of contract 

support to construct temporary facilities to restore functionality while long-term repairs 
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are conducted to repair damaged facilities. The fourth step calculates the site total 

operational impact (TOIsite) by summing the site DMDt values for each day until all 

facilities are returned to full operational capacity (TROsite+1), as shown in Eq. (5.14). 

Therefore, the TOIsite represents the total number of days the site will be unable to 

perform its primary mission.  

 𝑀𝐷𝐼𝑖 = 𝑀𝐷𝑊× (1 + (𝑀𝐷𝐵,𝑎𝑣𝑔 + 𝑙𝑛(𝑛)) /100) (5.11) 

 𝐸𝑀𝐷𝐼𝑖 = 𝑀𝐷𝐼𝑖×𝑃𝐹𝐷𝑖 (5.12) 

 𝐷𝑀𝐷𝑡 = ∑ 𝐸𝑀𝐷𝐼𝑖,𝑡
𝐼
𝑖=1        for ∑ 𝐸𝑀𝐷𝐼𝑖,𝑡

𝐼
𝑖=1 < 100% 

𝐷𝑀𝐷𝑡 = 100%                 for ∑ 𝐸𝑀𝐷𝐼𝑖,𝑡
𝐼
𝑖=1 ≥ 100% 

(5.13) 

 

𝑇𝑂𝐼𝑠𝑖𝑡𝑒 = ∑ 𝐷𝑀𝐷𝑡

𝑇𝑅𝑂𝑠𝑖𝑡𝑒+1

𝑡=1

 (5.14) 

where, 

𝑀𝐷𝐼𝑖 = mission dependency index value for facility i (0% to 100%); 

𝑀𝐷𝑤 = measure of mission intra-dependency;  

𝑀𝐷𝐵,𝑎𝑣𝑔 = average measure of mission interdependency;  

𝑛 = number of interdependencies with other function areas on site; 

𝐸𝑀𝐷𝐼𝑖 = effective mission dependency index value for facility i (0% to 

100%); 

𝐷𝑀𝐷𝑡 = the overall site daily mission disruption on day (t);  

t = day number; 

𝑇𝑅𝑂𝑠𝑖𝑡𝑒 = time to restore all site facilities to full operational capacity; and 

𝑇𝑂𝐼𝑠𝑖𝑡𝑒 = total site operational impact (number of operational days lost).  
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The calculation of TOIsite can be illustrated using a simplified example of a site 

consisting of five facilities with MDIi, PFDi, EMDi, and TROi values as shown in Table 

5.2. On day one, all five facilities are damaged and DMDt=1 is calculated as 150% using 

Eq. (5.13). As shown in Figure 5.4, DMDt is capped at 100% to reflect the complete 

degradation of operational capacity on a given day. On day two, facility F3 has been 

restored to full operational capacity and DMDt=2 is equal to 112% and capped at 100%. 

On day three, facilities F3 and F1 have been restored to full operational capacity and 

the site DMDt=3 is now 81%, meaning that the site is operating at 19% its full operational 

capacity. DMDt=4 and DMDt=5 are calculated in the same manner and are equal to 56% 

and 24%, respectively. The site is restored to full operational capacity on day six. TOIsite 

is then calculated by summing the DMDt values from day one to day six (TROsite+1) and 

is equal to 3.57 days, which represents the total number of days the site will be unable 

to perform its primary mission. 

Table 5.2 Daily Mission Disruption Example 

ID 

Mission dependency 
index (MDII)  

(%) 

Percent facility 
destruction (PFDi)  

(%) 

Effective mission 
disruption index 

(EMDIi)  
(%) 

Time to restore 
full operational 
capacity (TROi) 

(days) 

F1 80 25 20 2 

F2 60 60 36 3 

F3 50 75 38 1 

F4 40 80 32 4 

F5 30 80 24 5 
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Figure 5.4 Daily Mission Disruption Example Calculations 

5.3 Model Formulation 

This stage focuses on formulating a multi-objective optimization model that is 

capable of optimizing the site layout and protection strategies in order to minimize the 

explosive attack consequences (EC) and minimize the site construction costs (CC) of 

remote sites. The model is formulated in three steps that focus on: (1) identifying the 

relevant decision variables, (2) defining the objective functions, and (3) specifying all 

practical constraints. 

 Decision Variables 

The decision variables in the present model are selected to represent all relevant 

site layout and protection strategy decisions that have an impact on the aforementioned 

optimization objectives. Accordingly, the model incorporates these decision variables 

into two main categories: (1) site layout decision variables, and (2) protection strategy 

decisions variables, as shown in Figure 5.5. Site layout decision variables include the 

facility location (FLi) and facility orientation (𝜃𝑖). The model defines facility locations by 
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the placement of their centroids on a user-specified grid system that allows site layout 

planner to select their preferred grid interval. Facility orientation represents the degree 

that a facility is rotated about its centroid and is specified in the present model to be 0 or 

90°, which represents the conventional orientations for rectangular shaped facility 

layouts. Protection strategy decision variables consist of the facility building material 

(Mi), blast wall type (T), and blast wall height (H). 

 
Figure 5.5 Model Decision Variables 

 Objective Function(s) 

The model is designed to generate optimal tradeoffs between the two primary 

objectives of: (1) minimizing the explosive attack consequences (EC) for remote 

construction sites; and (2) minimizing the site construction costs (CC).  

5.3.2.1 Minimizing Site Explosive Attack Consequences  

The first objective function in the present model is designed to calculate and 

minimize the explosive attack consequences (EC) on remote sites, where 0% 
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represents no suffered consequences and 100% represents the highest level of 

consequences (see Eq. (5.15)). In this objective function, an overall EC index is 

calculated to represent the collective performance of the remote site in each of the 

earlier described four consequence types. Due to the various units that are used to 

measure these consequences, they cannot be directly aggregated to evaluate the 

overall level of site consequences. Accordingly, the present model transforms each of 

the aforementioned consequence measurements to an index that ranges from 0% to 

100% by utilizing utility functions with designer-specified utility curve rate parameters. 

The use of utility functions enables designers to: (1) aggregate and standardize the four 

consequence types that have inherently different units of measurements; and (2) 

integrate their individual risk tolerance levels for each of the various consequence types. 

The objective function is then calculated as the weighted sum of the four 

consequence indices. The use of weights provides designers and site layout planners 

with the flexibility to assign higher priority to the consequence types that are most 

critical to the mission and purpose of their remote construction site. Additionally, the 

utility curve rate parameters (rc) provide designers with the flexibility to incorporate their 

own acceptable level of risk tolerance for each consequence type, where: (i) rc <1 

defines a concave curve shape, which represents risk averse designers; (ii) rc =1 

defines a linear function; which represents risk neutral designers, and (iii) rc >1 defines a 

convex function, which represents a risk tolerant design approach (El-Anwar et al. 

2009), as shown in Figure 5.6. The utility functions for the personnel loss index (PLI), 

psychological impact index (PII), economic loss index (ELI), and operational impact 

index (OII) are shown in Eqs. (5.16), (5.17), (5.18) and (5.19), respectively.  
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 min 𝐸𝐶 = 𝑤1×𝑃𝐿𝐼 + 𝑤2×𝑃𝐼𝐼 + 𝑤3×𝐸𝐿𝐼 + 𝑤4×𝑂𝐼𝐼 (5.15) 

 
𝑃𝐿𝐼 = (

𝑃𝐿𝐸𝑠𝑖𝑡𝑒

𝑃𝑜𝑝𝑠𝑖𝑡𝑒
)

𝑟𝑃𝐿

×100% (5.16) 

 
𝑃𝐼𝐼 = (

𝑃𝐼𝑠𝑖𝑡𝑒

𝑃𝑜𝑝𝑠𝑖𝑡𝑒
)

𝑟𝑃𝐼

×100% (5.17) 

 
𝐸𝐿𝐼 = (

𝑇𝐸𝐿𝑠𝑖𝑡𝑒

𝑇𝐸𝐿𝑚𝑎𝑥
)

𝑟𝐸𝐿

×100% (5.18) 

 
𝑂𝐼𝐼 = (

𝑇𝑂𝐼𝑠𝑖𝑡𝑒

𝑇𝑂𝐼𝑚𝑎𝑥
)

𝑟𝑂𝐼

×100% (5.19) 

where,  

𝐸𝐶 = explosive attack consequences;  

𝑤𝑐 = importance weight for each consequence type, where 𝑤𝑐 > 0 and 

∑ 𝑤𝑐 = 14
𝑐=1 ; 

𝑃𝐿𝐼 = personnel loss index score for the site;  

𝑟𝑃𝐿 = personnel loss utility curve rate parameter; 

𝑃𝐼𝐼 = psychological impact index score for the site;  

𝑟𝑃𝐼 = psychological impact utility curve rate parameter;  

𝐸𝐿𝐼 = economic loss index score for the site;  

𝑇𝐸𝐿𝑚𝑎𝑥 = maximum total economic loss for the site ($);  

𝑟𝐸𝐿 = economic loss utility curve rate parameter;  

𝑂𝐼𝐼 = operational impact index score for the site;  

𝑇𝑂𝐼𝑚𝑎𝑥 = maximum total operational impact for the site (days); and 

𝑟𝑂𝐼 = operational impact utility curve rate parameter.  
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Figure 5.6 Calculation Steps of Site Explosive Attack Consequences 

5.3.2.2 Minimizing Site Construction Cost  

The model’s second objective function is designed to calculate and minimize total 

site construction cost (CC), as shown in Eq. (5.20). CC includes the construction cost of 

all site facilities and the perimeter wall, as well as wall replacement costs based on the 

number of times the wall may need to be replaced over the site lifespan. Wall 

replacement costs are necessary for wall types such as sand-filled containers, which 

have a design life of 3-5 years.  

 

𝑀𝑖𝑛 𝐶𝐶 = ∑(FAi×FCM)

I

i=1

+  PL(WCT,H + 𝐷×𝑅𝑇×WRT,H) 
(5.20) 

where, 

𝐶𝐶 = total site construction cost ($);  

𝑃𝐿 = perimeter wall length (m); 

𝑊𝐶𝑇,𝐻 = wall construction unit cost based on the selected wall type (T) and 

wall height (H) ($/m); 
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𝐷 = discount rate to calculate the present value of future costs (%); 

𝑅𝑇 = number of wall replacements over the site lifespan based on the 

selected wall type (T); 

𝑊𝑅𝑇,𝐻 = wall replacement unit cost based on the selected wall type (T) 

and wall height (H) ($/m); 

𝐹𝐴𝑖 = area of facility i (m2); and 

𝐹𝐶𝑀 = facility construction unit cost based on the selected building 

material (M) ($/m2). 

 Model Constraints 

The present facility layout optimization model is designed to comply with all 

practical geometric constraints, including: (1) site boundary, which ensures that all 

facilities are constructed within the available site area; (2) facility overlap, which ensures 

that proposed facility locations do not overlap one another; (3) minimum distance, which 

allows designers to establish minimum separation distances between facilities or 

minimum standoff distances from the site perimeter to enforce security and safety 

requirements; and (4) maximum distance, which allow designers to specify the 

maximum distances between facilities, such as locating emergency personnel near the 

fire station or hospital in the event of a rapid-response scenario. Automated 

computational geometry is utilized to analyze each of these geometric constraints and 

to ensure feasible site layout solutions are generated. 

5.4 Model Implementation 

The present model is implemented using multi-objective genetic algorithm (GA) 

to enable the generation of optimal site layout plans that present optimal tradeoffs 
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between minimizing site explosive attack consequences and minimizing site 

construction costs. GA was selected as the optimization algorithm based on its proven 

performance in handling non-linear objective functions and constraints, and successfully 

modeling facility layout and construction optimization problems (Abotaleb et al. 2016; 

Khalafallah and El-Rayes 2011; Said and El-Rayes 2010, 2013; Tong 2016). The model 

utilizes the nondominated sorting genetic algorithm II (NGSA-II) (Deb et al. 2002) and is 

written in Python (Rossum 1995). Model computations are accomplished in three main 

phases: (1) input phase to collect, integrate, and store data for the project site, blast 

wall, facility, and cost, as well as designer-specified importance weights and risk 

tolerance factors and GA search parameters; (2) multi-objective optimization phase that 

initializes the model, evaluates the fitness of generated solutions, selects the fittest 

individuals, generates a new offspring population utilizing the GA search parameters, 

and repeats until the specified number of generations is completed; and (3) output 

phase that facilities the retrieval and visualization of the generated optimal site layout 

plans by producing a database of the generated optimal tradeoff solutions, and 

graphically representing the tradeoff curves of the nondominated Pareto frontier 

solutions.   

5.5 Model Assumptions 

The development of the present model was based on a number of assumptions, 

including: (1) certainty in the specified input data; (2) utilization of single-story 

constructed facilities; (3) explosive attacks detonate near ground level; (4) use of 

conservative design values for facility destruction levels and rates of fatalities, injuries, 
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and post-traumatic stress disorder; and (5) remote construction site populations up to 

250 people.   

5.6 Case Study 

The performance of the developed model is analyzed using a case study that is 

designed to demonstrate the use of the model and display its unique capabilities in 

optimizing remote construction site layouts and generating optimal tradeoffs between 

minimizing site explosive attack consequences and minimizing site construction costs. 

The case study focuses on optimizing the site layout and protection strategies for a 

hypothetical military base that is located in a remote area of an overseas country with a 

construction area cost factor of 1.80 (USACE 2016). The base has an available site 

area of 90 x 60 meters in which to construct the 13 facilities that are required to house 

and support the operations of 110 personnel (see Table 5.3).  

The present model requires site layout planners and designers to specify a 

number of input parameters in order to carry out the optimization computations. Project 

site input data includes an expected site operational lifespan of 20 years and an 

anticipated maximum explosive threat of 454.5 kg, which is the design blast charge 

weight carried in a full-size van (FEMA 2011). Blast wall characteristics include the 

available blast wall types, blast wall heights, and their design lives, as shown in Table 

5.4. Facility characteristics consist of available building materials (see Table 5.5), facility 

dimensions (Lx and Ly) and the assigned facility population (Popi), asset value (FAVi), 

productivity rate (FPRi), and mission dependency index value (MDIi), as shown in Table 

5.3. Cost data is provided for blast walls (Table 5.4) and building materials (Table 5.5). 

A three-meter minimum separation distance between all facilities is also specified. The 
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importance weight (wc) and utility curve rate parameter value (rc) for each consequence 

type are selected based upon the mission and purpose of the remote construction site 

and the risk tolerance levels of site designers. Accordingly, the model enables 

designers to specify these input parameters, which can vary from one decision maker to 

another. For the analysis of this case study, importance weights are set to 0.5, 0.1, 0.1, 

and 0.3, and utility curve rate parameters are set to 0.5, 1.0, 1.0, and 0.75 for personnel 

loss, psychological impact, economic impact and operational impact, respectively. 

These importance weights and utility curve rate parameters reflect that the designers 

place greater emphasis on and are more sensitive to the consequences of personnel 

loss and operational impact. 

Table 5.3 Facility Input Data 

ID Description 

Dimensions 
Assigned 

Population 
(Popi) 

Asset Value 
(FAVi)  

($) 

Productivity 
Rate (FPRi) 
($/month) 

Mission 
Dependency 
Index (MDII) Lx (m)       Ly (m) 

F1-F4 Dormitory (x4) 15 10 12 25,000 1,000 17 

F5 Dining Facility 12 9 20 150,000 50,000 69 

F6 Headquarters 12 9 10 250,000 250,000 81 

F7 Senior Leader Dormitory 15 10 3 50,000 2,500 27 

F8 Storage 8 8 0 10,000 500 5 

F9 Gymnasium 15 10 12 100,000 5,000 51 

F10 Communications Building 8 8 2 375,000 100,000 81 

F11 Maintenance 8 8 3 50,000 25,000 69 

F12 Emergency Response 12 9 5 150,000 50,000 81 

F13 Medical Clinic 16 12 7 200,000 50,000 81 

 

Table 5.4 Blast Wall Input Data 

ID Wall type (WT) 

Wall height  
H (m) 

Construction Costa 
𝑊𝐶𝑇,𝐻 ($/m) 

Replacement Costa 
𝑊𝑅𝑇,𝐻($/m) 

Design Life  
DLT,H (years) 

1 Balsa wood, thick 2 588 881 20 

2 Balsa wood, thick 5 1,467 2,201 20 

3 Balsa wood, thin 2 469 704 20 

4 Balsa wood, thin 5 1,174 1,760 20 

5 CMU 2 472 708 10 
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Table 5.4 (cont.) 

6 CMU 5 1,179 1,769 10 

7 Concrete, thin panel 2 465 698 15 

8 Concrete, thin panel 5 1,161 1,741 15 

9 Polystyrene 2 690 1,035 10 

10 Polystyrene 5 1,722 2,583 10 

11  Polythene sheet 2 605 907 10 

12 Polythene sheet 5 1,512 2,268 10 

13 Revetting material 2 648 972 10 

14 Revetting material 5 1,619 2,428 10 

15 Sand, thick 2 566 849 4 

16 Sand, thick 5 674 1,011 4 

17 Sand, medium 2 366 549 4 

18 Sand, medium 5 494 741 4 

19 Sand, thin 2 288 432 4 

20 Sand, thin 5 416 624 4 

21 Steel 2 1,094 1,642 20 

22  Steel 5 2,736 4,104 20 

23 Water, bag 2 811 1,216 7 

24 Water, bag 5 1,080 1,620 7 

25 Water, filled 2 576 864 7 

26 Water, filled 5 720 1,080 7 

aCosts were determined from the 2017 RS Means, when available, or Army Corps of Engineers subject matter experts 

  

Table 5.5 Building Material Costs 

ID Building Material 

Construction Costa 
𝐹𝐶𝑀 ($/m2) 

1 Wood frame 3,341 
2 Pre-engineered metal 3,398 
3 Unreinforced masonry 3,557 
4 Steel frame with lightly reinforced CMU infill walls 3,643 
5 Reinforced concrete 3,830 
6 Reinforced concrete with lightly reinforced CMU infill walls 4,738 

aCosts were determined from the 2017 RS Means, when available, or Army Corps of Engineers subject matter experts 

 

The aforementioned input data were utilized by the present model to perform the 

optimization computations for this case study in order to generate optimal site layout 

solutions that provide an optimal tradeoff between minimizing site explosive attack 

consequences and minimizing site construction costs. The multi-objective genetic 
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algorithm (GA) computations are performed in four steps. First, the model randomly 

generates an initial set of solutions that forms the initial population of the first 

generation. This set of solutions represents feasible site layout and protection measure 

decisions. Second, the model evaluates the fitness of each solution and ranks them 

based on nondomination criteria (Deb et al. 2002). Third, the model selects the fittest 

individuals within the population. Fourth, utilizing selection, crossover, and mutation 

operators, the model generates a new offspring population. Steps two through four are 

repeated until the model termination conditions are reached. The optimization GA 

search parameters were established for this case study based on a large number of 

experiments that evaluated a wide range of population sizes, number of generations, 

mutation rates, crossover types, and crossover rates. Accordingly, these GA 

parameters were specified in the present case study to be a population size of 200, 500 

generations, a mutation rate of 0.01, two-point crossover with a crossover rate of 0.75.  

The developed optimization model was used to optimize the selection of facility 

locations and protection strategies to minimize the explosive attack consequences (EC) 

and minimize the construction cost (CC) of the remote construction site. The model 

generated a total of 53 nondominated optimal solutions, where each solution represents 

a unique and optimal tradeoff between the two optimization objectives, as shown in 

Figure 5.7. An analysis of this broad spectrum of generated nondominated solutions 

illustrates that the model was able to identify two extreme nondominated solutions. At 

one of end of the spectrum, solution S1 represents the nondominated solution that 

results in the lowest overall EC (14.8%) at the highest CC ($6.80 million). This minimum 

EC solution was achieved by: (1) constructing a five-meter tall, thick sand blast wall; (2) 
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utilizing the layout shown in Figure 5.7(a); and (3) constructing all facilities using steel 

frame or reinforced concrete with lightly reinforced CMU infill walls, which provide the 

highest levels of blast resistance, as shown in Table 5.6. This solution anticipates 5 

fatality equivalents, 27 personnel to be diagnosed with PTSD, $2.38 million in total 

economic losses, and 4.9 operational days lost. At the other end of the spectrum, 

solution S53 represents the nondominated solution that results in the lowest CC ($5.57 

million) but is expected to suffer the highest EC (54.3%). This lowest cost solution was 

achieved by: (1) constructing a two-meter tall, thick balsa wood blast wall; (2) utilizing 

the layout shown in Figure 5.7(b); and (3) constructing all facilities using wood-frame 

construction, which is the least expensive building material. This design solution 

anticipates individual consequence values of 47 fatality equivalents, 34 personnel to be 

diagnosed with PTSD, $20.1 million in total economic losses, and 21 operational days 

lost, as shown in Table 5.6. 

 
Figure 5.7 Generated Nondominated Solutions 
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Figure 5.8 Site Layout Plan for Solutions (a) S1 and (b) S53 

Between these two extreme solutions, the model generated a wide range of 51 

optimal tradeoff solutions. Designers can analyze the optimal tradeoff solutions and 

select the optimal site layout and protection strategy that best fits the specific 

requirements of their project based on their: (1) maximum acceptable level of explosive 

attack consequences; or (2) maximum available construction budget. For example, 

solution S12 represents the design that has the lowest construction cost ($6.30 million) 

where the anticipated EC does not exceed 20%, as shown in Figure 5.7. This design 

solution anticipates that the site will suffer the following consequences in the event of a 

454.5 kg explosive attack: 11 fatality equivalents, 15 personnel to be diagnosed with 

PTSD, $2.35 million in total economic losses, and 11.5 operational days lost. Table 5.6 

presents a sample of the optimal decision variable selections for the design solutions 

discussed in this section.  

Table 5.6 Sample Nondominated Solutions 

Solution 
Blast 
Wall Building Materials 

EC 
(%) 

SC  
($ M) 

PLEsite 

(people) 
PIsite 

(people) 
TELsite 

($ M) 
TOIsite 

(days) 

S1 16 (6,6,6,6,4,4,4,4,6,4,4,6,4) 14.8 6.80 5 27 2.38 4.9 

S12 21 (4,4,4,4,6,4,2,3,4,5,2,3,4) 19.6 6.30 11 15 2.35 11.5 

S53 1 (1,1,1,1,1,1,1,1,1,1,1,1,1) 54.3 5.57 47 34 20.1 21 
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The results of this case study analysis highlight the significance and practicality 

of the developed optimization model. The model was able to efficiently quantify the 

consequences of an explosive attack in order to generate a broad spectrum of optimal 

site layout solutions and protection strategies that provide optimal tradeoffs between 

minimizing the consequences of explosive attacks and minimizing site construction 

costs. In quantifying the explosive attack consequences, the model was able to: (1) 

compute the number of expected fatality equivalents that accounts for the total number 

of fatalities, serious injuries, and minor injuries resulting from the explosive attack; (2) 

quantify the extent of psychological impacts on survivors of the attack; (3) calculate the 

total economic loss from direct facility and asset damage as well as facility productivity 

losses; and (4) compute the number of operational days lost. These capabilities enable 

designers to select the optimal site layout and protection strategy that best meets the 

mission requirements of their remote construction site.   

5.7 Summary and Conclusions  

This chapter presented the development of a novel multi-objective optimization 

model for the layout and security planning of remote construction sites. The model was 

implemented using multi-objective genetic algorithms to search for and identify solutions 

that provide optimal tradeoffs between the competing objectives of minimizing site 

explosive attack consequences and minimizing site construction costs. The model was 

developed in three main stages that focused on: (1) quantifying the consequences of 

explosive attacks targeting facilities; (2) formulating the model by identifying the relevant 

decision variables, formulating the objective functions, and defining all practical 

constraints; and (3) implementing the model by specifying the input and output data and 
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performing the optimization computations using genetic algorithms. A case study was 

analyzed to demonstrate the use of the model and display its unique capabilities in 

selecting optimal design configurations for a hypothetical 110-person remote military 

base exposed to a 454.5 kg explosive attack. The results of analysis illustrate the new 

capabilities of the model in: (a) efficiently quantifying the consequences of explosive 

attacks on both unprotected and protected facilities; (b) evaluating the impact of serious 

and minor injuries on total personnel losses; (c) quantifying the extent of PTSD among 

survivors of explosive attacks; (d) measuring the total number of days the site is unable 

to perform its primary mission following an explosive attack; and (e) generating optimal 

tradeoffs between the conflicting objectives of minimizing site explosive attack 

consequences and minimizing site construction costs. The developed model should 

prove valuable to site layout planners and designers of remote construction sites in 

high-threat areas, enabling them to search for and select the optimal design 

configuration based on the mission of the remote construction site. This capability will 

result in the construction of cost-effective, secure sites that will reduce the risk of 

personnel loss, psychological impact, economic loss and operational impact in the event 

of an explosive terrorist attack.  
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CONCLUSIONS 

6.1 Summary  

The present research study focused on the design and construction decisions of 

remote construction sites in order to minimize the security risks to site personnel and 

facilities from the threat of an explosive attack. The new research developments of this 

study include: (1) an innovative blast effects assessment model; (2) an original facility 

protection optimization model; and (3) a novel blast consequence mitigation model.    

First, an innovative blast effects assessment model was developed enabling 

designers to accurately and efficiently quantify and visualize blast effects on constructed 

facilities behind rigid or frangible blast walls. The model was developed in five main 

stages: (1) blast wall analysis stage that developed a methodology to quantify the 

performance of feasible frangible blast wall types including sand-filled, water-filled, and 

wood walls in reducing reflected pressure and impulse loading on facilities; (2) facility 

damage assessment stage that computed the percent area of each facility within five 

specified damage levels in order to calculate an overall facility damage level; (3) blast 

damage visualization stage that displayed anticipated facility damage areas based upon 

blast charge weight, blast wall type, and building material combinations; (4) 

performance analysis stage that evaluated the accuracy and efficiency of the developed 

model; and (5) case study stage that analyzed the performance of the developed model 

using an application example. The case study analysis demonstrated the model’s 

unique capability to efficiently predict the blast damage level for a constructed facility 

and generate blast damage visualizations for all feasible facility location, blast wall type, 
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and building material design alternatives. This new capability should prove useful for 

designers and construction managers of high-threat sites, allowing them to evaluate 

design options that may not have been previously considered because of the significant 

computational time and effort required by numerical blast assessment models. This 

should also contribute to enhancing the design of remote construction sites in order to 

meet the functional and security requirements established by the site owners. 

Second, an original multi-objective facility protection optimization model was 

developed to optimize the site layout and selection of perimeter blast walls and building 

materials in order to minimize the facility destruction levels from explosive attacks while 

minimizing site construction costs. The model equips planners of remote construction 

sites with the capability to efficiently identify, from a set of feasible alternatives, optimal 

solutions for remote construction sites that minimize the site facility destruction levels 

resulting from explosive attacks in the most cost-effective manner. The model was 

developed in three main stages: (1) formulation stage that defined the relevant decision 

variables, formulated the objective functions, and identified practical model constraints; 

(2) implementation stage that performed the optimization computations using multi-

objective genetic algorithm; and (3) performance evaluation stage that analyzed an 

application example to evaluate and improve model performance. 

Third, a novel multi-objective blast consequence mitigation model was developed 

to optimize the site layout and security planning of remote construction sites in order to 

minimize the consequences of an explosive attack and minimize the construction costs 

of remote sites. The model was developed to support designers in their critical task of 

searching for and identifying optimal remote construction site layouts that minimize the 
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personnel loss, psychological impact, economic loss, and operational impact in the 

event of an explosive attack. The model was developed in three main stages: (1) 

consequence identification stage that quantified the consequences of explosive attacks 

targeting facilities; (2) formulation stage that identified the relevant decision variables, 

formulated the objective functions, and defined all practical constraints; and (3) 

implementation stage that performed the optimization computations using genetic 

algorithm and specified the model input and output data. The performance of the 

developed model was analyzed using a case study that was designed to illustrate the 

use of the model and demonstrate its unique capabilities.  

6.2 Research Contributions  

The main research contributions of this study include the development of: 

1. Novel analytical formulas and effectiveness factors capable of quantifying the 

performance of feasible frangible blast wall types in reducing reflected pressure 

and impulse loading on site facilities from explosive attacks. 

2. Innovative blast effects assessment model (BEAM) capable of efficiently 

quantifying and visualizing blast effects on constructed facilities behind blast 

walls.  

3. Original multi-objective model for optimizing the site layout and selection of 

perimeter blast walls and building materials that provides the unique capability of 

generating optimal tradeoffs between minimizing the destruction of site facilities 

from an explosive attack and minimizing site construction costs.  

4. New metric for evaluating the impact of serious and minor injuries on total 

personnel losses resulting from an explosive attack. 
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5. Novel methodology to quantify the extent of psychological impacts on survivors 

of explosive attacks.  

6. Innovative metric for measuring the impact of explosive attacks on the 

operational capacity of remote construction sites. 

7. Novel blast consequence mitigation model that is capable of identifying optimal 

site layout and protection strategies that minimize the consequences of explosive 

attacks on remote construction sites. 

6.3 Research Impact 

The aforementioned research developments and contributions are expected to 

have significant and broad impacts on the current practices for designing and 

constructing remote construction sites. They have a strong potential to: (1) enhance site 

protection through the use of frangible blast walls that provide comparable and often 

greater reductions in blast loading than rigid walls; (2) minimize facility destruction levels 

in remote construction sites resulting from explosive attacks; and (3) increase overall 

security of remote construction sites by minimizing the personnel losses, psychological 

impacts, economic losses, and operational impacts suffered from an explosive attack. 

6.4 Future Research Work 

While the present study fully achieved its research objectives, additional research 

areas have been identified to expand and build upon the completed research work. 

These future research opportunities include: (1) expanding blast modeling capabilities; 

(2) developing a bilevel optimization model that can consider the competing objectives 

of attackers; and (3) producing a multi-objective sustainability planning model for remote 

construction sites.  



  
 

149 

 Expanding Blast Modeling Capabilities 

The present study considers the most relevant and important design parameters 

and decision variables in quantifying blast effects on constructed facilities behind blast 

walls, including: blast charge weight, blast wall type, blast wall height, building size, 

building material, explosive-to-wall distance, and wall-to-facility distance. The 

methodology developed in the present study yields highly accurate blast analysis 

results, as shown by the performance analysis of the present model compared to the 

Defense Threat Reduction Agency’s Vulnerability Assessment and Protection Option 

(VAPO) software (Schuldt and El-Rayes 2017). The integration of additional decision 

variables and design parameters can expand the use of the model to consider a wider 

range of remote construction sites. These additional modeling considerations may 

include: (1) accounting for uncertainty in model input data; (2) utilizing multi-story 

facilities and various window material and glazing options; and (3) modeling battalion- 

and division-sized camps. 

 Utilizing Bilevel Optimization to Consider Attacker Objectives 

This research study focuses on accurately and efficiently evaluating all feasible 

design alternatives for remote construction sites in order to minimize the security risks 

to site personnel and facilities from the threat of explosive attacks. The optimization 

models developed in this study quantify the consequences of an explosive attack based 

upon the highest level of total facility damage inflicted from 20 possible attack locations. 

Developing a bilevel optimization model would enable decision makers to consider 

competing objectives of intelligent attackers. Bilevel optimization models utilize a leader-

follow scenario or a Stackelberg game (Simaan and Cruz Jr 1973), where designers 
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make construction site layout decisions and the attacker responds by selecting the 

attack location that will maximize his objective. The attacker’s strategies will in turn 

affect the designer’s strategies. This bilevel scenario may result in more resilient remote 

construction site protection strategies.  

 Producing a Sustainability Planning Model for Remote Construction Sites 

Remote construction sites are normally not connected to a local utility grid. This 

lack of established infrastructure creates unique sustainability and environmental 

challenges, including: (1) a heavy reliance on the delivery of resources such as fuel and 

water; and (2) difficulty in treating and disposing of generated wastes. These challenges 

result in several consequences, including: (1) increased energy consumption due to 

generating power on site and transporting fuel and water to the site; (2) higher 

construction and operating costs; (3) deleterious environmental impacts due to 

additional air emissions, natural resource consumption and disposal of generated 

wastes; and (4) adverse impacts on human health due to the level of noise produced by 

generators and harmful emissions from waste incineration. Accordingly, there is a need 

for an innovative multi-objective sustainability planning model for remote construction 

sites that is capable of generating optimal tradeoffs between maximizing site 

sustainability and minimizing construction and operating costs.  
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