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Abstract

Spreadsheet software is the tool of choice for ad-hoc tabular data manage-

ment, manipulation, querying, and visualization with adoption by billions

of users. However, spreadsheets are not scalable, unlike database systems.

We develop DataSpread, a system that holistically unifies databases and

spreadsheets with a goal to work with massive spreadsheets: DataSpread

retains all of the advantages of spreadsheets, including ease of use, ad-hoc

analysis and visualization capabilities, and a schema-free nature, while also

adding the scalability and collaboration abilities of traditional relational

databases. We design DataSpread with a spreadsheet front-end and a reg-

ular relational database back-end. To integrate spreadsheets and databases,

in this thesis, we develop a storage and indexing engine for spreadsheet

data. We first formalize and study the problem of representing and ma-

nipulating spreadsheet data within a relational database. We demonstrate

that identifying the optimal representation is NP-Hard via a reduction

from partitioning of rectangles; however, under certain reasonable assump-

tions, can be solved in PTIME. We develop a collection of mechanisms for

representing spreadsheet data, and evaluate these representations on a work-

load of typical data manipulation operations. We augment our mechanisms

with novel positionally-aware indexing structures that further improve per-

formance. DataSpread can scale to billions of cells, returning results for

common operations within seconds. Lastly, to motivate our research ques-

tions, we perform an extensive survey of spreadsheet use for ad-hoc tabular

data management.
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Chapter 1

Introduction

Spreadsheet software, from the pioneering VisiCalc [1] to Microsoft Excel [2]

and Google Sheets [3], have found ubiquitous use in ad-hoc manipulation,

management, and analysis of tabular data. The billions who use spread-

sheets take advantage of not only its ad-hoc nature and flexibility but also

the in-built statistical and visualization capabilities. Spreadsheets cater to

both novice and advanced users, spanning businesses, universities, organi-

zations, government, and home.

Yet, this mass adoption of spreadsheets breeds new challenges. With the

increasing sizes and complexities of data sets, as well as types of analyses, we

see a frenzy to push the limits: users are struggling to work with spreadsheet

software on large datasets; they are trying to import large data sets into

Excel (e.g., billions of gene-gene interactions) and are failing at doing so.

In response, spreadsheet softwares are stretching the size of data they can

support ; e.g., Excel has lifted its size limits from 65k to 1 million rows, and

added Power Query and PowerPivot [4, 5] to support one-shot import of

data from databases in 2010; Google Sheets has expanded its size limit to 2

million cells. Despite these developments, these moves are far from the kind

of scale, e.g., beyond memory limits, and functionality, e.g., expressiveness,

that databases natively provide.

This discussion raises the following question: can we leverage rela-

tional databases to support spreadsheets at scale? That is, can we

retain the spreadsheet front-end that so many end-users are so comfortable

with, while supporting that front-end with a standard relational database,

seamlessly leveraging the benefits of scalability and expressiveness?

To address this question, our first challenge is to efficiently represent

spreadsheet data within a database. First, notice that while databases na-

tively use an unordered “set” semantics, spreadsheets utilize position as a

first-class primitive, thus it is not natural to represent and store spreadsheet

data in a database. Further, spreadsheets rarely obey a fixed schema — a

user may paste several “tabular” or table-like regions within a spreadsheet,
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often interspersed with empty rows or columns. Users may also embed for-

mulae into spreadsheets, along with data. This means that considering the

entire sheet as a single relation, with rows corresponding to rows of the

spreadsheet, and columns corresponding to columns of the spreadsheet, can

be very wasteful due to sparsity. At the other extreme, we can consider

only storing cells of the spreadsheet that are filled-in: we can simply store

a table with schema (row number, column number, value): this can be ef-

fective for highly sparse spreadsheets, but is wasteful for dense spreadsheets

with well-defined tabular regions. One can imagine hybrid representation

schemes that use both “tabular” and “sparse” representation schemes as

well or schemas that take access patterns, e.g., via formulae, into account.

In this thesis, we show that it is NP-Hard to identify the optimal storage

representation, given a spreadsheet. Despite this wrinkle, we characterize a

certain natural subset of representations for which identifying the optimal

one is in fact, PTIME; furthermore, we identify a collection of optimiza-

tion techniques that further reduce the computation complexity to the point

where the optimal representation can be identified in the time it takes to

make a single pass over the data.

The next challenge is in supporting operations on the spreadsheet. Notice

first that the most primitive operation on a spreadsheet is scrolling to an

arbitrary position on a sheet. Unlike traditional databases, where order

is not a first class citizen, spreadsheets require positionally aware access.

This motivates the need for positional indexes; we develop and experiment

with indexing mechanisms that adapt traditional indexing schemes, to take

position into account. Furthermore, we need to support modifications to

the spreadsheet. Note that even a small modification can be rather costly:

inserting a single row can impact the row number of all subsequent rows.

How do we support such modifications efficiently? We develop positional

mapping schemes that allow us to avoid the expensive computation that

results from small modifications.

By addressing the aforementioned challenges, we answer the question of

whether we can leverage relational databases to support spreadsheets at scale

in the affirmative in this thesis. We build a system, DataSpread, that can

not only efficiently support operations on billions of records, but naturally

incorporates relational database features such as expressiveness and collabo-

ration support. DataSpread uses a standard relational database as a back-

end (currently PostgreSQL, but nothing ties us to that database), with a

web-based spreadsheet system [6] as the frontend. By using a standard rela-

tional database, with no modifications to the underlying engine, we can just
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seamlessly leverage improvements to the database, while allowing the same

data to be used by other applications. This allows a clean encapsulation

and separation of front-end and back-end code, and also admits portability

and a simpler design. DataSpread is fully functional — the DataSpread

resources, along with video and code can be found at dataspread.github.io.

A primitive version of DataSpread was demonstrated at the VLDB con-

ference last year [7].

While there have been many attempts at combining spreadsheets and

relational database functionality, ultimately, all of these attempts fall short

because they do not let spreadsheet users perform ad-hoc data manipulation

operations [8, 9, 10]. Other work supports expressive and intuitive querying

modalities without addressing scalability issues [11, 12, 13], addressing an

orthogonal problem. There have been efforts that enhance spreadsheets or

databases without combining them [14]. Furthermore, while there has been

work on array-based databases, most of these systems do not support edits:

for instance, SciDB [15] supports an append-only, no-overwrite data model.

We describe related work in more detail in Chapter 8.

Rest of the Thesis. The outline of the rest of the thesis is as follows.

• We begin with an empirical study of four real spreadsheet datasets,

plus an on-line user survey, targeted at understanding how spreadsheets

are used for data analysis in Chapter 2.

• Then, in Chapter 3, we introduce the notion of a conceptual data model

for spreadsheet data, as well as the set of operations we wish to support

on this data model.

• In Chapter 4, we propose three primitive data models for supporting

the conceptual data model within a database, along with a hybrid data

model that combines the benefits of these primitive data models. We

demonstrate that identifying the optimal hybrid data model is NP-

Hard, but we can develop a PTIME dynamic programming algorithm

that allows us to find an approximately optimal solution.

• Then, in Chapter 5, we motivate the need for, and develop indexing

solutions for positional mapping—a method for reducing the impact of

cascading updates for inserts and deletes on all our data models.

• We give a brief overview of the system architecture from the per-

spective of our data models in Chapter 6. We also describe how we

seamlessly support standard relational operations in DataSpread.

• We perform experiments to evaluate our data models and positional

mapping schemes in Chapter 7, and discuss related work in Chapter 8.

3
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Chapter 2

Spreadsheet Usage in Practice

In this chapter, we empirically evaluate how spreadsheets are used for data

management. We use the insights from this evaluation to both motivate

the design decisions for DataSpread, and develop a realistic workload for

spreadsheet usage. To the best of our knowledge, no such evaluation, focused

on the usage of spreadsheets for data analytics, has been performed in the

literature.

We focus on two aspects: (a) structure: identifying how users structure

and manage data on a spreadsheet, and (b) operations: understanding the

common spreadsheet operations that users perform.

To study these two aspects, we first retrieve a large collection of real

spreadsheets from four disparate sources, and quantitatively analyze them

on different metrics. We supplement this quantitative analysis with a small-

scale user survey to understand the spectrum of operations frequently per-

formed. The latter is necessary since we do not have a readily available

trace of user operations from the real spreadsheets (e.g., indicating how

often users add rows or columns, or edit formulae.)

We first describe our methodology for both these evaluations, before div-

ing into our findings for the two aspects.

Dataset Sheets Sheets with Sheets with % of formulae
formulae > 20% formulae

Internet 52311 29.15% 20.26% 1.30%
ClueWeb09 26148 42.21% 27.13% 2.89%

Enron 17765 39.72% 30.42% 3.35%
Academic 636 91.35% 71.26% 23.26%

Table 2.1: Spreadsheet datasets: formulae statistics
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Dataset Sheets Sheets with Sheets with
< 50% density < 20% density

Internet 52311 22.53% 6.21%
ClueWeb09 26148 46.71% 23.8%

Enron 17765 50.06% 24.76%
Academic 636 90.72% 60.53%

Table 2.2: Spreadsheet datasets: density statistics

0

5 K

10 K

15 K

20 K

0.2 0.4 0.6 0.8 1

#
Sh

ee
ts

Density

(a) Internet

0

2 K

4 K

6 K

0.2 0.4 0.6 0.8 1

#
Sh

ee
ts

Density

(b) ClueWeb09

0

1 K

2 K

3 K

4 K

0.2 0.4 0.6 0.8 1

#
Sh

ee
ts

Density

(c) Enron

0

100

200

300

0.2 0.4 0.6 0.8 1

#
Sh
ee
ts

Density

(d) Academic

Figure 2.1: Data density distribution across spreadsheet datasets
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Figure 2.2: Formulae distribution across spreadsheet datasets
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2.1 Methodology

As described above, we have two forms of evaluation of spreadsheet use:

the first, via an analysis of spreadsheets, and the second, via interviews of

spreadsheet users. The datasets can be found at dataspread.github.io.

2.1.1 Real Spreadsheet Datasets

For our evaluation of real spreadsheets, we assemble four datasets from a

wide variety of sources.

Internet. This dataset was generated by crawling the web for Excel (.xls)

files, using a search engine, across a wide variety of domains. As a result,

these 53k spreadsheets vary widely in content, ranging from tabular data to

images.

ClueWeb09. This dataset of 26k spreadsheets was generated by extracting

.xls file URLs from the ClueWeb09 [16] web crawl dataset.

Enron. This dataset was generated by extracting 18k spreadsheets from

the Enron email dataset [17]. These spreadsheets were used to exchange

data within the Enron corporation.

Academic. This dataset was collected from an academic institution; this

academic institution used these spreadsheets to manage internal data about

course workloads of instructors, salaries of staff, and student performance.

We list these four datasets along with some statistics in Table 2.1 and

Table 2.2. Since the first two datasets are from the open web, they are

primarily meant for data publication: as a result, only about 29% and 42%

of these sheets (column 3, Table 2.1) contain formulae, with the formulae

occupying less than 3% of the total number of non-empty cells for both

datasets (column 5, Table 2.1). The third dataset is from a corporation,

and is primarily meant for data exchange, with a similarly low fraction of

39% of these sheets containing formulae, and 3.35% of the non-empty cells

containing formulae. The fourth dataset is from an academic institution,

and is primarily meant for data analysis, with a high fraction of 91% of the

sheets containing formulae, and 23.26% of the non-empty cells containing

formulae.

2.1.2 User Survey

To evaluate the kinds of operations performed on spreadsheets, we solicited

participants for a qualitative user survey: we recruited thirty participants

6

http://dataspread.github.io


from the industry who exclusively use spreadsheets for data management

and analysis. This survey was conducted via an online form, with the partic-

ipants answering a small number of multiple-choice and free-form questions,

followed by the authors aggregating the responses.

2.2 Structure Evaluation

We now use our spreadsheet datasets to understand how data is laid out on

spreadsheets.

2.2.1 Across Spreadsheets: Data Density

First, we study how similar real spreadsheets are to relational data conform-

ing to a specific tabular structure. To study this, we estimate the density of

each spreadsheet, defined as the ratio of the filled-in cells to the total num-

ber of cells—specified by the minimum bounding rectangular box enclosing

the filled-in cells—within a spreadsheet. We depict the results in Table 2.2,

and in Figure 2.1, which depicts the distribution of this ratio. We note that

spreadsheets within Internet, Clueweb09, and Enron datasets are typically

dense, i.e., more than 50% of the spreadsheets have density greater than

0.5. On the other hand, for the Academic dataset, we note a high propor-

tion (greater than 60%) of spreadsheets have density values less than 0.2.

This low density is because the latter dataset embeds a number of formulae

and use forms to report data in a user-accessible interface. Thus, we have:

Takeaway 1: Real spreadsheets vary widely in their density, ranging from

highly sparse to highly dense, necessitating data models that can adapt

to such variations.

2.2.2 Within a Spreadsheet: Tabular regions

For the spreadsheets that are sparse, we further analyzed them to evaluate

whether there are regions within these spreadsheets with high density—

essentially indicating that these regions can be regarded as tables. To iden-

tify these tabular regions, we first constructed a graph consisting of filled-in

cells within each spreadsheet, where two cells (i.e., nodes) have an edge be-

tween them if they are adjacent either vertically or horizontally. We then

computed the connected components on this graph. We declare a connected

7



Dataset Tables Table cells %Coverage

Internet 67,374 124,698,013 66.03
ClueWeb09 37,164 52,257,649 67.68

Enron 9,733 8,135,241 60.98
Academic 286 18,384 12.10

Table 2.3: Tabular regions in spreadsheets

component to be a tabular region if it spans at least two columns and five

rows, and has an overall density of at least 0.7, defined as before as the ratio

of the filled-in cells to the total number of cells in the minimum bounding

rectangle encompassing the connected component. In Table 2.3, for each

dataset, we list the total number of tabular regions identified (column 2),

the number of filled-in cells covered by these regions (column 3), and the

fraction of the total filled-in cells that are captured within these tabular

regions (column 4).

For the Internet Crawl, ClueWeb09, and Enron datasets, we observe that

greater than 60% of the cells are part of tabular regions. We also note that

for the Academic dataset, where the sheets are rather sparse, there still are

a modest number of regions that are tabular (286 across 636 sheets).

Takeaway 2: Even within a single spreadsheet, there is often high skew,

with areas of both high density and low density, indicating the need for

fine-grained data models that can treat these regions differently.

2.3 Operation Evaluation

We now move onto evaluating the operations performed on spreadsheets,

both the formulae embedded with spreadsheets, as well as other data ma-

nipulation, viewing and modification operations.

2.3.1 Popularity: Formulae Usage

We begin by studying how often formulae are used within spreadsheets. On

examining Table 2.1, we find that there is a high variance in the fraction of

cells that are formulae (column 5), ranging from 1.3% to 23.26%. We note

that the academic institution dataset embeds a high fraction of formulae,

indicating that the spreadsheets in that case are used primarily for data

management and analysis as opposed to data sharing or publication. Despite

8



Dataset Total Cells Cells accessed Components
Accessed per Formula per Formula

Internet 2,460,371 334.26 2.5
ClueWeb09 2,227,682 147.99 1.92

Enron 446,667 143.05 1.75
Academic 35,335 3.03 1.54

Table 2.4: Cells accessed by formulae

that, all of the datasets have a substantial fraction of spreadsheets where

the formulae occupy more than 20% of the cells (column 4)—20.26% and

higher for all datasets.

Takeaway 3: Formulae are very common in spreadsheets, with over 20%

of the spreadsheets containing a large fraction of over 1
5 of formulae,

across all datasets. The high prevalence of formulae indicates that opti-

mizing for the access patterns of formulae when developing data models

is crucial.

2.3.2 Access: Formulae Distribution and Access Patterns

Next, we study the distribution of formulae used within spreadsheets—see

Figure 2.2. Not surprisingly, arithmetic operations are very common across

all datasets. The first three datasets have an abundance of conditional for-

mulae through IF statements (e.g., second bar in Figure 2.2a)—these state-

ments were typically used to fill in missing data or to change the data type,

e.g., IF(H67=true,1.0,0.0). In contrast, the Academic dataset is dominated

by formulae on numeric data. Overall, there is a wide variety of formulae

that span both a small number of cell accesses (e.g., arithmetic), as well as

a large number of them (e.g., SUM, VL short for VLOOKUP). The last two

correspond to standard database operations such as aggregation and joins.

To gain a better understanding of how much effort is necessary to execute

these formulae, we measure the number of cells accessed by each formula.

Then, we tabulate the average number of cells accesses per formula in column

3 of Table 2.4 for each dataset. As we can see in the table, the average

number of cells accesses per formula is not small—with up to 300+ cells

per formula for the Internet dataset, and about 140+ cells per formula for

the Enron and ClueWeb09 datasets. The Academic dataset has a smaller

average number—many of these formulae correspond to derived columns

that access a small number of cells at a time. Next, we wanted to check
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Figure 2.3: Operations performed on spreadsheets

if the accesses made by these formulae were spread across the spreadsheet,

or could exploit spatial locality. To measure this, we considered the set of

cells accessed by each formula, and then generated the corresponding graph

of these accessed cells as described in the previous section for computing

the number of tabular regions. We then counted the number of connected

components in this graph, and tabulated the results in column 4 in the

same table. As can be seen, even though the number of cells accessed may

be large, these cells stem from a small number of connected components; as

a result, we can exploit spatial locality to execute them more efficiently.

Takeaway 4: Formulae on spreadsheets access cells on the spreadsheet

by position; some common formulae such as SUM or VLOOKUP access

a rectangular range of cells at a time. The number of cells accessed

by these formulae can be quite large, and most of these cells stem from

contiguous areas of the spreadsheet.

2.3.3 User-Identified Operations

In addition to identifying how users structure and manage data on a spread-

sheet, we now analyze the common spreadsheet operations that users per-

form. To this end, we conducted a small-scale online survey of 30 partic-

ipants to study how users operate on spreadsheet data. This qualitative

study is valuable since real spreadsheets do not reveal traces of user oper-

ations performed on them (e.g., revealing how often users perform ad-hoc

operations like scrolling, sorting, deleting rows or columns). Our questions in

this study were targeted at understanding (a) how users perform operations

on the spreadsheet and (b) how users organize data on the spreadsheet.

With the goal of understanding how users perform operations on the

spreadsheet, we asked each participant to answer a series of questions where

each question corresponded to whether they conducted the specific operation

10



under consideration on a scale of 1–5, where 1 corresponds to “never” and 5

to “frequently”. For each operation, we plotted the results in a stacked bar

chart in Figure 2.3, with the higher numbers stacked on the smaller ones

like the legend indicates.

We find that all the thirty participants perform scrolling, i.e., moving up

and down the spreadsheet to examine the data, with 22 of them marking 5

(column 1). All participants reported to have performed editing of individual

cells (column 2), and many of them reported to have performed formula

evaluation frequently (column 3). Only four of the participants marked < 4

for some form of row/column-level operations, i.e., deleting or adding one or

more rows or columns at a time (column 4).

Takeaway 5: There are several common operations performed by spread-

sheet users including scrolling, row and column modification, and editing

individual cells.

Our second goal for performing the study was to understand how users

organize their data on a spreadsheet. We asked each participant if their data

is organized in well-structured tables, or if the data scattered throughout the

spreadsheet, on a scale of 1 (not organized)–5 (highly organized)—see Fig-

ure 2.3. Only five participants marked < 4 which indicates that users do or-

ganize their data on a spreadsheet (column 5). We also asked the importance

of ordering of records in the spreadsheet on a scale of 1 (not important)–5

(highly important). Unsurprisingly, only five participants marked < 4 for

this question (column 6). We also provided a free-form textual input where

multiple participants mentioned that ordering comes naturally to them and

is often taken for granted while using spreadsheets.

Takeaway 6: Spreadsheet users typically try to organize their data as

far as possible on the spreadsheet, and rely heavily on the ordering and

presentation of the data on their spreadsheets.
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Chapter 3

Spreadsheet Desiderata

The goal for DataSpread is to combine the ease of use and interactiv-

ity of spreadsheets, while simultaneously providing the scalability, expres-

siveness, and collaboration capabilities of databases. Thus, as we develop

DataSpread, having two aspects of interest: first, how do we support

spreadsheet semantics over a database backend, and second, how do we sup-

port database operations within a spreadsheet. Our primary focus will be on

the former, which will occupy the bulk of the thesis. We return to the latter

in Chapter 6. For now, we focus on describing the desiderata for support-

ing spreadsheet semantics over databases. We first describe our conceptual

spreadsheet data model, and then describe the desired operations that need

to be supported on this conceptual data model.

3.1 Conceptual Data Model

A spreadsheet consists of a collection of cells. A cell is referenced by two

dimensions: row and column. Columns are referenced using letters A, . . .,

Z, AA, . . .; while rows are referenced using numbers 1, 2, . . . Each cell con-

tains either a value, or a formula. A value is a constant belonging to some

fixed type. For example, in Figure 3.1 a screenshot from our working im-

plementation of DataSpread, B2 (column B, row 2) contains the value

10. In contrast, a formula is a mathematical expression that contains val-

ues and/or cell references as arguments, to be manipulated by operators

or functions. The expression corresponding to a formula eventually unrolls

into a value. For example, in Figure 3.1, cell F2 contains the formula =AV-

ERAGE(B2:C2)+D2+E2, which unrolls into the value 85. The value of F2

depends on the value of cells B2, C2, D2, and E2, which appear in the formula

associated with F2.

In addition to a value or a formula, a cell could also additionally have

formatting associated with it; e.g., a cell could have a specific width, or

the text within a cell can have bold font, and so on. For simplicity, we
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Figure 3.1: Sample spreadsheet (DataSpread screenshot).

ignore formatting aspects, but these aspects can be easily captured within

our representation schemes without significant changes.

3.2 Spreadsheet Operations

We now describe the operations that we aim to support on DataSpread,

drawing from the operations we found in our user survey (takeaway 5). We

consider the following read-only operations:

• Scrolling: This operation refers to the act of retrieving cells within a

certain range of rows and columns. For instance, when a user scrolls

to a specific position on the spreadsheet, we need to retrieve a rect-

angular range corresponding to the window that is visible to the user.

Accessing an entire row or column, e.g., A:A, is a special case of rect-

angular range where the column/row corresponding to the range is not

bounded.

• Formula evaluation: Evaluating formulae can require accessing mul-

tiple individual cells (e.g., A1) within the spreadsheet or ranges of cells

(e.g., A1:D100).

Note that in both cases, the accesses correspond to rectangular regions of

the spreadsheet. We consider the following four update operations:

• Updating an existing cell: This operation corresponds to access-

ing a cell with a specific row and column number and changing its

value. Along with cell updates, we are also required to reevaluate any

formulae dependent on the cell.

• Inserting/Deleting row/column(s): This operation corresponds

to inserting/deleting row/column(s) at a specific position on the spread-

sheet, followed by shifting subsequent row/column(s) appropriately.

Note that, similar to read-only operations, the update operations require
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updating cells corresponding to rectangular regions.

In the next chapter, we develop data models for representing the concep-

tual data model as described in this chapter, with an eye towards supporting

the operations described above.
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Chapter 4

Representing Spreadsheets

We now address the problem of representing a spreadsheet within a rela-

tional database. For the purpose of this section and the next, we focus on

representing one spreadsheet, but our techniques seamlessly carry over to the

multiple spreadsheet case; like we described earlier, we focus on the content

of the spreadsheet as opposed to the formatting, as well as other spreadsheet

metadata, like spreadsheet name(s), spreadsheet dimensions, and so on.

We describe the high-level problem of representation of spreadsheet data

here; we will concretize this problem subsequently.

4.1 Problem Description

The conceptual data model corresponds to a collection of cells, represented

as C = {C1, C2, . . . , Cm}; as described in the previous section, each cell Ci

corresponds to a location (i.e., a specific row and column), and has some

contents—either a value or a formula. Our goal is to represent and store

the cells C comprising the conceptual data model, via one of the physical

data models, P. Each T ∈ P corresponds to a collection of relational tables

{T1, . . . , Tp}. Each table Ti records the data in a certain portion of the

spreadsheet, as we will see subsequently. Given a collection of cells C, a

physical data model T is said to be recoverable with respect to C if for each

Ci ∈ C,∃Tj ∈ T such that Tj records the data in Ci, and ∀k 6= j, Tk does

not record the data in Ci. Thus, our goal is to identify physical data models

that are recoverable.

At the same time, we want to minimize the amount of storage required

to record T within the database, i.e., we would like to minimize size(T ) =∑p
i=1 size(Ti). Moreover, we would like to minimize the time taken for ac-

cessing data using T , i.e., the access cost, which is the cost of accessing a

rectangular range of cells for formulae (takeaway 4) or scrolling to specific

locations (takeaway 5), which are both common operations. And we would

like to minimize the time taken to perform updates, i.e., the update cost,
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which is the cost of updating individual cells or a range of cells, and the

insertion and deletion of rows and columns.

Overall, starting from a collection of cells C, our goal is to identify a

physical data model T such that: (a) T is recoverable with respect to C,

and (b) T minimizes a combination of storage, access and update costs,

among all T ∈ P.

We begin by considering the setting where the physical data model T has a

single relational table, i.e., T = {T1}. We develop three ways of representing

this table: we call them primitive data models, and are all drawn from

prior work, each of which work well for a specific structure of spreadsheet—

this is the focus of Section 4.2. Then, we extend this to the setting where

|T | > 1 by defining the notion of a hybrid data model with multiple tables

each of which uses one of the three primitive data models to represent a

certain portion of the spreadsheet—this is the focus of Section 4.4. Given

the high diversity of structure within spreadsheets and high skew (takeaway

2), having multiple primitive data models, and the ability to use multiple

tables, gives us substantial power in representing spreadsheet data.

4.2 Primitive Data Models

Our primitive data models represent trivial solutions for spreadsheet rep-

resentation with a single table. Before we describe these data models, we

discuss a small wrinkle that affects all of these models. To capture a cell’s

identity, i.e., its row and column number, we need to implicitly or explicitly

record a row and column number with each cell. Say we use an attribute to

capture the row number for a cell. Then, the insertion or deletion of rows

requires cascading updates to the row number attribute for all subsequent

rows. As it turns out, all of the data models we describe in this section suffer

from performance issues arising from cascading updates, but the solution to

deal with these issues is similar for of these all of them, and will be described

in Chapter 5.

Also, note that the access and update cost of various data models depends

on whether the underlying database is a row store or a columnar store. For

the rest of this section and the thesis, we focus on a row store, such as

PostgreSQL, which is what we use in practice, and is also more tailored for

hybrid read-write settings.

We now describe the three primitive data models:
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RowID Col1 ... Col6

1 ID, NULL ... Total, NULL

2 Alice, NULL ... 85, AVERAGE(B2:C2)+D2+E2

... ... ... ...

Figure 4.1: ROM data model for Figure 3.1

ColID Row1 ... Row5

1 ID,NULL ... Dave,NULL

2 HW1,NULL ... 8,NULL

... ... ... ...

Figure 4.2: COM data model for Figure 3.1

4.2.1 Row-Oriented Model (ROM)

The row-oriented data model (ROM) is straightforward, and is akin to data

models used in traditional relational databases. Let rmax and cmax represent

the maximum row number and column number across all of the cells in C.

Then, in the ROM model, we represent each row from row 1 to rmax as a

separate tuple, with an attribute for each column Col1 . . ., Colcmax, and an

additional attribute for explicitly capturing the row identity, i.e., RowID.

The schema for ROM is: TableROM(RowID, Col1, . . ., Colcmax)—we illus-

trate the ROM representation of Figure 3.1 in Figure 4.1: each entry is a

pair corresponding to a value and a formula, if any. For dense spreadsheets

that are tabular (takeaways 1 and 2), this data model can be quite efficient

in storage and access, since it minimizes redundant information: each row

number is recorded only once, independent of the number of columns. Over-

all, the ROM representation shines when entire rows are accessed at a time,

as opposed to entire columns. It is also efficient for accessing a large range

of cells at a time.

4.2.2 Column-Oriented Model (COM)

The second representation is also straightforward, and is simply the trans-

pose of the ROM representation. Often, we find that certain spreadsheets

have many columns and relatively few rows, necessitating such a represen-

tation. The schema for COM is: TableCOM(ColID, Row1, . . ., Rowrmax).

The COM representation of Figure 3.1 is provided in Figure 4.2. Like ROM,

COM shines for dense data; while ROM shines for row-oriented operations,

COM shines for column-oriented operations.
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4.2.3 Row-Column-Value Model (RCV)

The Row-Column-Value Model (RCV) is inspired by key-value stores, where

the Row-Column number pair is treated as the key, i.e., the row and column

identifiers are explicitly captured as two attributes. The schema for RCV is

TableRCV(RowID, ColID, V alue). The RCV representation for Figure 3.1

is provided in Figure 4.3. For sparse spreadsheets that are often found in

practice (takeaway 1 and 2), this model is quite efficient in storage and access

since it records only the cells that are filled in, but for dense spreadsheets,

it incurs the additional cost of recording and retrieving both the row and

column number for each cell as compared to ROM and COM, and has a much

larger number of tuples. RCV is also efficient when it comes to retrieving

specific cells at a time.

RowID ColID Value

1 1 ID, NULL

... ... ..., ...

2 2 10, NULL

... ... ..., ...

2 6 85, AVERAGE(B2:C2)+D2+E2

... ... ..., ...

Figure 4.3: RCV data model for Figure 3.1

4.3 Optimality of Primitive Data Models

The three primitive data models we described in Section 4.2 are natural ex-

tensions of models common in the database literature. A natural question is

whether these models are reasonable choices, and whether any of them dom-

inate the others. We now introduce the notion of rectangular data models,

a generalized class of data models that all of these primitive data models

belong to, and show that these primitive data models represent optimal

extreme points in that space.

4.3.1 Rectangular Data Models

We define the space of rectangular data models as those that store a spread-

sheet in a single table, where each tuple corresponds to a rectangular region

of equal size, comprising of a× b cells, with a rows of cells vertically, and b

rows of cells horizontally, laid out as a× b attributes. In addition, there are
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two attributes representing the row and column number of the cell that is

at the top left corner. For example, if we had a 8× 8 spreadsheet, one such

data model within the space of rectangular data models would have just

four tuples, formed by dividing the region into two horizontally as well as

vertically: one corresponding to rows 1:4 and columns 1:4, one correspond-

ing to rows 5:8 and columns 1:4, and so on. Another data model within this

space would have sixteen tuples, formed by dividing the region using four

cuts horizontally and four vertically, with a separation of two cells between

the cuts.

Now, it is easy to see that ROM, COM and RCV are extremes within the

space of rectangular data models: ROM is formed from using only horizontal

cuts, one per row of the spreadsheet; COM from using only vertical cuts;

and RCV from using horizontal and vertical cuts corresponding to each

row and column of the spreadsheet. Note that in ROM and COM, we can

additionally avoid storing the column and row identifiers respectively, since

they can be inferred from the attribute names, saving some additional space.

4.3.2 Valuable Extremes

In this section, we demonstrate that the three primitive data models repre-

sent valuable extreme points and dominate other rectangular data models

under certain settings that occur naturally in practice. Our focus in this

section is the use of a single table to represent the entire area of the spread-

sheet. In Section 4.4, we will consider the setting when there are multiple

tables to represent a spreadsheet.

We consider the cost of storage in order to perform this analysis. Our

cost model will differ slightly from Section 4.4 since we’re focusing on one

table.

In terms of access cost, as we noted in Chapter 3, spreadsheet operations,

e.g., scrolling, formula evaluation, are rectangular, i.e., access a rectangular

range of cells. This motivates us to consider a workload comprising rectan-

gular accesses, specifically n1, n2, and n3 of cell, row, and column lookups

respectively. We formalize our claim as below.

We quantify the optimality of a data model based on its storage require-

ments and its performance in terms of response time for typical spreadsheet

operations. Inspired by traditional relational databases’ cost models, to

quantify the response time, we consider the following two factors (a) the

number random accesses DS and (b) the amount of data transfer DT . To

quantify the storage cost, we consider the following factors: (i) table cre-
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ation cost c1, (ii) cell storage cost c2, (iii) schema storage cost c3, and (iv) key

storage cost c4.

We claim that depending on the spreadsheet density and workload, one

proposed primitive data models, i.e., ROM, COM and RCV, is optimal for

representing a spreadsheet S, when the operations are restricted to rectan-

gular regions. As noted in Chapter 3, spreadsheet operations, e.g., scrolling,

formula evaluation, are rectangular, i.e., access a rectangular range of cells.

This motivates us to consider a workload comprising rectangular accesses,

specifically n1, n2, and n3 of cell, row, and column lookups respectively. We

formalize our claim as below.

Proposition 1. Primitive Data Model Optimality: For a spreadsheet S,

with respect to minimizing (i) response time, i.e., the number of random

accesses DS and the amount of data transfer DT for a workload comprising

of n1, n2, and n3 of cell, row, and column lookups respectively and (ii) stor-

age cost, i.e., table creation cost c1, cell storage cost c2, schema storage

cost c3, and key storage cost c4; we have: (a) RCV is optimal when S is

sparse and n1 � n2 and n1 � n3. (b) ROM is optimal when S is dense and

n2 � n1 and n2 � n3. (c) COM is optimal when S is dense and n3 � n1

and n3 � n2.

Proof. Consider a spreadsheet of dimensions m×n, which can be visualized

as a rectangle. We store this spreadsheet as a table in a relational database

by dividing the sheet into non-overlapping rectangles, where each rectangle

corresponds to a tuple in the table. Let the tuples be of dimension p × q.

The question we address in this section is the following: how to determine

p and q, given an instance of the spreadsheet, along with the associated

workload of formulae we wish to perform on the said spreadsheet.

We factor in the workload of formulae while determining the data model

(finding the optimal tuple dimensions p × q) because formulae are quite

common in spreadsheets, and optimizing for access patterns while designing

data models is crucial—recall takeaway 3 from Chapter 2. Consider a general

workload where:

• Number of cell-based formulae: n1 (e.g., B2=A2+5)

• Number of row-based formulae: n2 (e.g., E1=AVERAGE(B1:B30))

• Number of column-based formulae: n3 (e.g., F5=SUM(A1:A100))

We consider the aforementioned workload because typical formulae in

spreadsheets access a rectangular range of cells at a time (takeaway 4). To
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compute a formulae, we need to consider the following two classical metrics:

1) number of disk seeks required to execute the formulae and 2) the amount

of data transferred. These two metrics trade-off because as we increase the

size of the tuple (p×q), the number of disk seeks reduces while the amount of

data transferred increases, and vice-versa. We shall formalize this interplay

soon.

We assume that for a given formulae, the disk seeks are independent of

each other. Throughout this proof, we assume that each lookup operation

to execute a formulae corresponds to a disk seek. Note that this assumption

is representative of the worse-case scenario when data accesses are truly

random.

Problem Formulation. We shall denote the number of disk seeks as DS ,

and the amount of data transferred as DT . We assume a general workload

where the number of cell-based formulae, row-based formulae and column-

based formulae are n1, n2 and n3 respectively.

DS = n1 + n2 ·
n

q
+ n3 ·

m

p
and

DT = n1 · p · q + n2 · p · n + n3 · q ·m.

We represent the relative importance of DS over DT as k, where 0 ≤ k ≤ 1.

Therefore, we want to minimize k ·DS +(1−k) ·DT . Depending on whether

we want to give more importance to minimizing DS or DT , we have the

value of k less 0.5 or more than 0.5 respectively. Therefore, we want to

minimize1:

f(p, q) = k ·DS + (1− k) ·DT (4.1)

= k ·
(
n1 + n2 ·

n

q
+ n3 ·

m

p

)
+ (1− k) · (n1 · p · q + n2 · p · n + n3 · q ·m) (4.2)

Since we have 1 ≤ p ≤ m, 1 ≤ q ≤ n, and p, q ∈ N, we can enumerate all

admissible values of p, q and find the optimal value in O(m · n) time.

Since a spreadsheet’s density impacts the values of p and q, we consider

two cases based on the density of the spreadsheet. We formally show that

our primitive data models are optimal in these considerations.

Case 1: Sparse spreadsheets. Spreadsheets that are relatively sparse

are typically meant for presentation of data and hence we presume that

individual cell lookups are important and dominate the access in contrast

1We show optimizing for storage costs as intractable in Section 4.4.
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with row-based and column-based accesses. Therefore, we have n1 � n2

and n1 � n3. From Equation 4.2, we have:

f(p, q) = k ·
(
n1 + n2 ·

n

q
+ n3 ·

m

p

)
+ (1− k) · (n1 · p · q + n2 · p · n + n3 · q ·m)

= n1 · k ·
(

1 +
n2

n1
· n
q

+
n3

n1
· m
p

)
+ n1 · (1− k) ·

(
p · q +

n2

n1
· p · n +

n3

n1
· q ·m

)
.

Since we have n2
n1
≈ 0, n3

n1
≈ 0,

f(p, q) ≈ n1 · (k + (1− k) · p · q).

Therefore, when the spreadsheet is sparse, f(p, q) is minimized when p =

1, q = 1. Hence, restricting each tuple to a single cell of the spreadsheet

minimizes disk seeks and data transfer. Note that this is independent of the

value of k, for k < 1. This justifies a data model where a cell corresponds

to a tuple is an optimum choice for sparse spreadsheets.

Case 2: Dense spreadsheets. Dense spreadsheets typically correspond

to logical tables that contain lots of data. We consider the two fundamental

ways of arranging two dimensional data in a spreadsheet: row-oriented and

column-oriented. We posit that for data laid out in a row-oriented fashion,

row lookups would dominate column lookups and cell lookups. Hence in this

case, n2 � n1 and n2 � n3. From Equation 4.2, an approximation similar

to the sparse case leads us to:

f(p, q) = k ·
(
n1 + n2 ·

n

q
+ n3 ·

m

p

)
+ (1− k) · (n1 · p · q + n2 · p · n + n3 · q ·m)

= n2 · k
(
n1

n2
+

n

q
+

n3

n2
· m
p

)
+ n2 · (1− k) ·

(
n1

n2
· p · q + p · n +

n3

n2
· q ·m

)
.
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A B C D E F G H I
1 ✕ ✕ ✕ ✕

2 ✕ ✕ ✕

3 ✕ ✕ ✕

4 ✕ ✕ ✕

5 ✕ ✕ ✕

6 ✕ ✕ ✕ ✕

7 ✕ ✕ ✕

23
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Figure 4.4: Hybrid data model and its recursive decomposition

Since we have n1
n2
≈ 0, n3

n2
≈ 0,

f(p, q) ≈ n2 ·
(
k · n
q

+ (1− k) · p · n
)

Therefore, when the spreadsheet is dense, f(p, q) is minimized when q is

maximized and p is minimized. Since q ≤ n, p ≥ 1, the optimal value of

(p, q) = (1, n). Hence, restricting each tuple to a single row of the spread-

sheet minimizes disk seeks and loading extra cells for 0 < k < 1.

Similarly, if the data is laid out in a column-oriented fashion, column

lookups would dominate row lookups and cell lookups. Hence in this case,

n3 � n1 and n3 � n2. An argument similar to the row-oriented case would

result in the optimal value of (p, q) to be (m, 1), which corresponds to having

each tuple as a single column of the spreadsheet.

This completes the proof of Proposition 1.

4.4 Hybrid Data Model: Intractability Results

So far, we developed three primitive data models, that represent reasonable

extremes if we are to represent and store a spreadsheet within a single table

in a database system. If, however, we do not limit data models to have a

single table, we may be able to develop even better solutions by combin-

ing the benefits of the three primitive data models, and decomposing the

spreadsheet into multiple tables each of which is represented by one of the

primitive data models. We call these data models as hybrid data models.

Definition 1 (Hybrid Data Models). Given a collection of cells C, we define
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hybrid data models as the space of physical data models that are formed

using a collection of tables T such that T is recoverable with respect to C,

and further, each Ti ∈ T is either a ROM, COM, or an RCV table.

As an example, for the spreadsheet in Figure 4.4, we might want the dense

areas, i.e., B1:D4 and D5:G7, represented via a ROM or COM table each

and the remaining area, specifically, H1 and I2 to be represented by an RCV

table.

Cost Model. Next, the question is how do we model the cost for a specific

hybrid data model. As discussed earlier, the storage, the access cost, and

the update cost all impact our choice of hybrid data model. For the purpose

of this section, we will focus exclusively on the storage. We will generalize

to the access cost in Section 4.3. The update cost will be the focus of the

next section. Furthermore, our focus will now be on ROM tables; we will

generalize to RCV and COM tables in Section 4.7.

Given a hybrid data model T = {T1, . . . , Tp}, where each ROM table Ti

has ri rows and ci columns, the cost of T is defined as:

cost(T ) =

p∑
i=1

s1 + s2 · (ri × ci) + s3 · ci + s4 · ri. (4.3)

Here, the constant s1 is the cost of initializing a new table, as well as

storing table-related metadata, while the constant s2 is the cost of storing

each individual cell (empty or not) in the ROM table. Note that the non-

empty cells that have content may require even more space than s2; however

this is a constant cost that does not depend on the specific hybrid data

model instance, and hence is excluded from the cost above. The constant s3

is the cost corresponding to each column, while s4 is the cost corresponding

to each row. The former is necessary to record schema information per

column, while the latter is necessary to record the row information in the

RowID attribute. Overall, while the specific costs si may differ quite a bit

across different database systems, what is clear is that all of these different

costs matter.

Formal Problem. We are now ready to state our formal problem below.

Problem 1 (Hybrid-ROM). Given a spreadsheet with a collection of cells

C, identify the hybrid data model T with only ROM tables that minimizes

cost(T ).

The main result of this section is as follows:
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Figure 4.5: Minimum number of rectangles (– – –) does not coincide with
minimum edge length (· · · )

Theorem 1 (Intractability). Problem 1 is NP-Hard.

We now formally show the hardness of the problem. As before, the cost

model is defined as:

cost(T ) =

p∑
i=1

s1 + s2 · (ri × ci) + s3 · ci + s4 · ri.

The decision version of the above problem has the following structure: a

value k is provided, and the goal is to test whether there is a hybrid data

model with cost(T ) ≤ k.

We reduce the minimum edge length partitioning problem [18] of recti-

linear polygons to Problem 1, thereby showing that it is NP-Hard. First, a

rectilinear polygon is a polygon in which all edges are either aligned with the

x-axis or the y- axis. We consider the problem of partitioning a rectilinear

polygon into disjoint rectangles using the minimum amount of “ink”. In

other words, the minimality criterion is the total length of the edges (lines)

used to form the internal partition. Notice that this doesn’t correspond to

the minimality criterion of reducing the number of components. We illus-

trate this in Figure 4.5, which is borrowed from the original paper [18]. The

following decision problem was shown to be NP-Hard in [18]: Given any

rectilinear polygon P and a number k, is there a rectangular partitioning

whose edge length does not exceed k? We now provide the reduction.

Proof for Problem 1. Consider an instance of the polygon partitioning prob-

lem with minimum edge length required to be at most k. We are given a

rectilinear polygon P . We now represent the polygon P in a spreadsheet by

filling the cells interior of the polygon, and not filling any other cell in the

spreadsheet. Let C = {C1, C2, . . . , Cm} represent the set of all filled cells in
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the spreadsheet. We claim that a minimum edge length partition of the given

rectilinear polygon P of length at most k exists iff the following setting of

the optimal hybrid data model problem: s1 = 0, s2 = 2|C|+ 1, s3 = s4 = 1,

where the storage cost should not exceed k′ = k + Perimeter(P )
2 + s2|C| for

some decomposition of the spreadsheet.

⇒ Let us assume that the spreadsheet we generate using P has a decompo-

sition of rectangles whose storage cost is less than k′ = k+Perimeter(P )
2 +s2|C|.

We have to show that there exists a partition with minimum edge length of

at most k. We first make the following key observations:

1. There exists a valid decomposition that doesn’t store any blank cell.

Let’s assume the contrary and consider a decomposition that stores a

blank cell. Since we are now storing |C|+ 1 cells at minimum,

k′ > s2(|C|+ 1) = |C|s2 + s2 = |C|s2 + 2|C|+ 1

k′ > |C|(s2 + 1 + 1)︸ ︷︷ ︸
storing each cell in a separate table

Therefore, if we have a decomposition that stores a blank cell, we also

have a decomposition that does not store any blank cell and has lower

cost.

2. There exists a decomposition of the spreadsheet where all the tables

are disjoint. The argument is similar to the previous case since storing

the same cell twice in different tables is equivalent to storing an extra

blank cell.

From our above two observations, we conclude that there exists a de-

composition where all tables are disjoint, and no table stores a blank cell.

Therefore, this decomposition corresponds to partitioning the given spread-

sheet into rectangles. We represent this partition of the spreadsheet by

T = {T1, T2, . . . , Tp}. We now show that this partition of the spreadsheet

corresponds to a partitioning of the rectilinear polygon P with edge-length

less than k.

cost(T ) =

p∑
i=1

s1 + s2 · (ri × ci) + s3 · ci + s4 · ri

=

p∑
i=1

s1 + s2

p∑
i=1

·(ri × ci) + s3

p∑
i=1

ci + s4

p∑
i=1

ri
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substituting s1 = 0, s2 = 2|C|+ 1, s3 = s4 = 1, we get:

=

p∑
i=1

0 + s2|C|+ 1 ·

(
p∑

i=1

ci +

p∑
i=1

ri

)

since cost(T ) ≤ k′ = k + Perimeter(P )
2 + s2|C|,

cost(T ) = s2|C|+ 1 ·

(
p∑

i=1

ci +

p∑
i=1

ri

)

=⇒
p∑

i=1

(ri + ci) ≤ k +
Perimeter(P )

2

=⇒
p∑

i=1

Perimeter(Ti)

2
≤ k +

Perimeter(P )

2

=⇒
p∑

i=1

Perimeter(Ti) ≤ 2× k + Perimeter(P )

Since, the sum of perimeters of all the tables Ti counts the boundary

of P exactly once, and the edge length partition of P exactly twice, the

partition of the spreadsheet T = {T1, T2, . . . , Tp} corresponds to an edge-

length partitioning of the given rectilinear polygon P with edge-lengh less

than k.

⇐ Let us assume that the given rectilinear polygon P has a minimum

edge length partition of length at most k. We have to show that there

exists a decomposition of the spreadsheet whose storage cost is at most k′ =

k+Perimeter(P )
2 +s2|C|. Let us represent the set of rectangles that corresponds

to an edge length partition of P of at most k as T = {T1, T2, . . . , Tp}. We

shall use the partition T of P as the decomposition of the spreadsheet itself:

cost(T ) =

p∑
i=1

s1 + s2 · (ri × ci) + s3 · ci + s4 · ri

=

p∑
i=1

s1 + s2

p∑
i=1

·(ri × ci) + s3

p∑
i=1

ci + s4

p∑
i=1

ri
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substituting s1 = 0, s2 = 2|C|+ 1, s3 = s4 = 1, we get:

=

p∑
i=1

0 + s2|C|+ 1 ·

(
p∑

i=1

ci +

p∑
i=1

ri

)

= s2|C|+
p∑

i=1

(ri + ci) = s2|C|+
p∑

i=1

Perimeter(Ti)

2

since
∑p

i=1 Perimeter(Ti) = 2× k + Perimeter(P ), we have:

cost(T ) = s2|C|+ k +
Perimeter(P )

2
= k′

=⇒ cost(T ) = k′

Therefore, the decomposition of the spreadsheet using T corresponds to

a decomposition whose storage cost equals k′. Note that our reduction

can be done in polynomial time. Therefore we can solve the minimum

length partitioning problem in polynomial time if we have a polynomial

time solution to the optimal storage problem. However, since it is shown in

[18] that the minimum length partitioning problem is NP-Hard, the optimal

hybrid data model problem is NP-Hard. This completes our proof.

4.5 Optimal Recursive Decomposition

Instead of directly solving Problem 1, which is intractable, we instead aim to

make it tractable, by reducing the search space of solutions. In particular,

we focus on hybrid data models that can be obtained by recursive decompo-

sition. Recursive decomposition is a process where we repeatedly subdivide

the spreadsheet area from [1 . . . rmax, 1 . . . cmax] by using a vertical cut be-

tween two columns or a horizontal cut between two rows, and then recurse

on the two areas that are formed. As an example, in Figure 4.4, we can

make a cut along line 1 horizontally, giving us two regions from rows 1 to

4 and rows 5 to 6. We can then cut the top portion along line 2 vertically,

followed by line 3, separating out one table B1:D4. By cutting the bottom

portion along line 4 and line 5, we can separate out the table D5:G7. Further

cuts can help us carve out tables out of H1 or I2, not depicted here.

As the example illustrates, recursive decomposition is very powerful, since

it captures a broad space of hybrid models; basically anything that can be

obtained via recursive cuts along the x and y axis. Now, a natural question

is: what sorts of hybrid data models cannot be composed via recursive
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A B C D E F G H I
1 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

2 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

3 ✕ ✕

4 ✕ ✕ ✕ ✕

5 ✕ ✕

6 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

7 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

A C D G H
1 ✕ ✕ ✕ ✕

3 ✕

4 ✕ ✕

5 ✕

6 ✕ ✕ ✕ ✕2	

2	
1	
1	
1	

2			1			3			1		2	

Figure 4.6: (a) Counterexample (b) Weighted Representation

decomposition? We present an example in Figure 4.6(a).

Observation 1 (Counterexample). In Figure 4.6(a), the tables: A1:B4,

D1:I2, A6:F7, H4:I7 can never be obtained via recursive decomposition.

To see this, note that any vertical or horizontal cut that one would make at

the start would cut through one of the four tables, making the decomposition

impossible. Nevertheless, the hybrid data models obtained via recursive

decomposition form a natural class of data models.

As it turns out, identifying the solution to Problem 1 is PTIME for the

space of hybrid data models obtained via recursive decomposition. The

algorithm involves dynamic programming. Informally, our algorithm makes

the most optimal “cut” horizontally or vertically at every step, and proceeds

recursively. We now describe the dynamic programming equations.

Consider a rectangular area formed from x1 to x2 as the top and bottom

row numbers respectively, both inclusive, and from y1 to y2 as the left and

right column numbers respectively, both inclusive, for some x1, x2, y1, y2.

We represent the optimal cost by the function Opt(). Now, the optimal

cost of representing this rectangular area, i.e., Opt((x1, y1), (x2, y2)), is the

minimum of the following possibilities:

• If there is no filled cell in the rectangular area (x1, y1), (x2, y2), then

we do not use any data model. Hence, we have

Opt((x1, y1), (x2, y2)) = 0
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• Do not split, i.e., store as a ROM model (romCost()):

romCost((x1, y1), (x2, y2)) = s1 + s2 · (r12 × c12)

+ s3 · c12 + s4 · r12, (4.4)

where number of rows r12 = (x2−x1 + 1), and the number of columns

c12 = (y2 − y1 + 1).

• Perform a horizontal cut (CH):

CH = min
i∈{x1,...,x2}

Opt((x1, y1), (i, y2))+Opt((i+1, y1), (x2, y2)) (4.5)

• Perform a vertical cut (CV ):

CV = min
j∈{y1,...,y2}

Opt((x1, y1), (x2, j)) + Opt((x1, j + 1), (x2, y2))

(4.6)

Therefore, when there are filled cells in the rectangle,

Opt((x1, y1), (x2, y2)) = min
(

romCost((x1, y1) , (x2, y2)), CH , CV

)
else Opt((x1, y1), (x2, y2)) = 0.

The base case is when the rectangular area is of dimension 1 × 1. Here,

we store the area as a ROM table if it is a filled cell. Hence, we have,

Opt((x1, y1), (x1, y1)) = c1 + c2 + c3 + c4, if filled, and 0 if not.

We have the following theorem:

Theorem 2 (Dynamic Programming Optimality). The optimal ROM-based

hybrid data model based on recursive decomposition can be determined via

dynamic programming.

Time Complexity. Our dynamic programming algorithm runs in poly-

nomial time with respect to the size of the spreadsheet. Let the length of

the larger side of the minimum enclosing rectangle of the spreadsheet be of

size n. Then, the number of candidate rectangles is O(n4). For each rect-

angle, we have O(n) ways to perform the cut. Therefore, the running time

of our algorithm is O(n5). However, this number could be very large if the

spreadsheet is massive—which is typical of the use-cases we aim to tackle.

Weighted Representation. We now describe a simple optimization that

helps us reduce the time complexity substantially, while preserving optimal-

ity for the cost model that we have been using so far. Notice that in many
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real spreadsheets, there are many rows and columns that are very similar to

each other in structure, i.e., they have the same set of filled cells. We exploit

this property to reduce the effective size n of the spreadsheet. Essentially,

we collapse rows that have identical structure down to a single weighted

row, and similarly collapse columns that have identical structure down to a

single weighted column.

Consider Figure 4.6(b) which shows the weighted version of Figure 4.6(a).

Here, we can collapse column B down into column A, which is now asso-

ciated with weight 2; similarly, we can collapse row 2 into row 1, which

is now associated with weight 2. In this manner, the effective area of the

spreadsheet now becomes 5×5 as opposed to 7×9.

Now, we can apply the same dynamic programming algorithm to the

weighted representation of the spreadsheet: in essence, we are avoiding mak-

ing cuts “in-between” the weighted edges, thereby reducing the search space

of hybrid data models. As it turns out, this does not sacrifice optimality, as

the following theorem shows:

Theorem 3 (Weighted Optimality). The optimal hybrid data model ob-

tained by recursive decomposition on the weighted spreadsheet is no worse

than the optimal hybrid data model obtained by recursive decomposition on

the original spreadsheet.

4.6 Greedy Decomposition Algorithms

To improve the running time even further from Section 4.5, we propose a

greedy heuristic that avoids the high complexity of the dynamic program-

ming algorithm, but sacrifices somewhat on optimality.

4.6.1 Greedy Decomposition

The greedy algorithm essentially repeatedly splits the spreadsheet area in

a top-down manner, making a greedy locally optimal decision, instead of

systematically considering all alternatives, like in the dynamic programming

algorithm. Thus, at each step, when operating on a rectangular spreadsheet

area (x1, y1), (x2, y2), it identifies the operation that results in the lowest

local cost. We have three alternatives: Either we do not split, in which

case the cost is from Equation 4.4, i.e., romCost((x1, y1), (x2, y2)). Or we

split horizontally (vertically), in which case the cost is the same as CH (CV )

from Equation 4.5 (Equation 4.6), but with Opt() replaced with romCost(),
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since we are making a locally optimal decision. The smallest cost decision

is followed, and then we continue recursively decomposing using the same

rule on the new areas, if any.

Complexity. This algorithm has a complexity of O(n2), since each step

takes O(n) and there are O(n) steps. While the greedy algorithm is sub-

optimal, the local decision that it makes is optimal in the worst case, i.e.,

with no further information about the structure of the areas that arise as a

result of the decomposition, this is the best decision to make at each step.

4.6.2 Aggressive Greedy Decomposition

The greedy algorithm described above stops exploration as soon as it is

unable to find a cut that reduces the cost locally, based on a worst case as-

sumption. This may cause the algorithm to halt prematurely, even though

exploring further decompositions may have helped reduce the cost. An al-

ternative to the greedy algorithm described above is one where we don’t stop

subdividing, i.e., we always choose to use the best horizontal or vertical cut,

and then subdivide the area based on that cut in a depth-first manner. We

keep doing this until we end up with rectangular areas where all of the cells

are filled in with values. (At this point, it provably doesn’t benefit us to

subdivide further.) After this point, we backtrack up the tree of decomposi-

tions, bottom-up, assembling the best solution that was discovered, similar

to the dynamic programming approach, considering whether to not split, or

perform a horizontal or vertical split.

Complexity. Like the greedy approach, the aggressive greedy approach

has complexity O(n2), but takes longer since it considers a larger space of

data models than the greedy approach.

4.7 Extensions

In this section, we describe extensions to the cost model and algorithms

to handle COM and RCV tables in addition to ROM. We then describe

other extensions, including incorporating access cost along with storage,

including the costs of indexes, and dealing with situations when database

systems impose limitations on the number of columns in a relation. We will

describe these extensions to the cost model, and then describe the changes

to the basic dynamic programming algorithm; modifications to the greedy

and aggressive greedy decomposition algorithms are straightforward.
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4.7.1 RCV and COM

The cost model can be extended in a straightforward manner to allow each

rectangular area to be a ROM, COM, or an RCV table. First, note that it

doesn’t benefit us to have multiple RCV tables—we can simply combine all

of these tables into one, and assume that we’re paying a fixed up-front cost

to have one RCV table. Then, the cost for a table Ti, if it is stored as a

COM table is:

comCost(Ti) = s1 + s2 · (ri × ci) + s4 · ci + s3 · ri.

This equation is the same as Equation 4.3, but with the last two constants

transposed. And the cost for a table Ti, if it is stored as an RCV table is

simply:

rcvCost(Ti) = s5 ×#cells.

where s5 is the cost incurred per tuple. Once we have this cost model

set up, it is straightforward to apply dynamic programming once again to

identify the optimal hybrid data model encompassing ROM, COM, and

RCV. The only step that changes in the dynamic programming equations is

Equation 4.4, where we have to consider the COM and RCV alternatives in

addition to ROM. We have the following theorem.

Theorem 4 (Optimality with ROM, COM, and RCV). The optimal ROM,

COM, and RCV-based hybrid data model based on recursive decomposition

can be determined via dynamic programming.

4.7.2 Access Cost

So far, within our cost model, we have only been focusing on storage. As it

turns out, our cost model can be extended in a straightforward manner to

handle access cost—both scrolling-based operations, and formulae, and our

dynamic programming algorithms can similarly be extended to handle access

cost without any substantial changes. We focus on formulae since they are

often the more substantial cost of the two; scrolling-based operations can be

similarly handled. For formulae, there are multiple aspects that contribute

to the time for access: the number of tables accessed, and within each table,

since data is retrieved at a tuple level, the number of tuples that need to be

accessed, and the size of these tuples. Once again, each of these aspects can

be captured within the cost model via constants similar to s1, . . . , s5, and
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can be seamlessly incorporated into the dynamic programming algorithm.

Thus, we have:

Theorem 5 (Optimality with Access Cost). The optimal ROM, COM, and

RCV-based hybrid data model based on recursive decomposition, across both

storage and access cost, can be determined via dynamic programming.

4.7.3 Size Limitations of Present Databases

Current databases impose limitations on the number of columns within a

relation2; since spreadsheets often have an arbitrarily large number of rows

and columns (sometimes 10s of thousands each), we need to be careful when

trying to capture a spreadsheet area within a collection of tables that are

represented in a database.

This is relatively straightforward to capture in our context: in the case

where we don’t split (Equation 4.4), if the number of columns is too large

to be acceptable, we simply return ∞ as the cost.

Theorem 6 (Optimality with Size Constraints). The storage optimal ROM,

COM, and RCV-based hybrid data model, with the constraint that no tables

violate size constraints, based on recursive decomposition, can be determined

via dynamic programming.

4.7.4 Incorporating the Costs of Indexes

Within our cost model, it is straightforward to incorporate the costs asso-

ciated with storage of indexes, since the size of the indexes are typically

proportional to the number of tuples for a given table, and the cost of in-

stantiating an index is another fixed constant cost. Since our cost model is

general, by suitably reweighting one or more of s1, s2, s3, s4, we can capture

this aspect within our cost model, and apply the same dynamic program-

ming algorithm.

Theorem 7 (Optimality with Indexes). The storage optimal ROM-based

hybrid data model, with the costs of indexes included, based on recursive

decomposition, can be determined via dynamic programming.

2Oracle column number limitations: https://docs.oracle.com/cd/B19306_01/server.102/

b14237/limits003.htm#i288032; MySQL column limitations: https://dev.mysql.com/doc/

mysql-reslimits-excerpt/5.5/en/column-count-limit.html; PostgreSQL column limitations:
https://www.postgresql.org/about/
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Chapter 5

Positional Mapping

As discussed in Chapter 4, for all of the data models, storing the row and/or

column numbers may result in substantial overheads during insert and delete

operations due to cascading updates to all subsequent rows or columns—this

could make working with large spreadsheets infeasible. In this chapter, we

develop solutions for this problem by introducing the notion of positional

mapping to eliminate the overhead of cascading updates. For our discus-

sion we focus on row numbers; the techniques can be analogously applied

to columns. To keep our discussion general, we use the term position to

represent the ordinal number, i.e., either row or column number, that cap-

tures the location of the cell along a specific dimension. In addition, row

and column numbers can be dealt with independently.

Problem. We require a data structure to efficiently support positional

operations without the overhead of cascading updates. In particular, we

want a data structure on items (here tuples) that can capture a specific

ordering among the items and efficiently support the following operations:

(a) fetch items based on a position, (b) insert items at a position, and

(c) delete items from a position. The insert and delete operations require

updating the positions of the subsequent items, e.g., inserting an item at

the nth position requires us to first increment by one the positions of all the

items that have a position greater than or equal to n, and then add the new

item at the nth position. Due to the interactive nature of DataSpread, our

goal is to perform these operations within a few hundred milliseconds.

5.1 Row Number as-is

We motivate the problem by demonstrating the impact of cascading updates

in terms of time complexity. Storing the row numbers as-is with every tuple

makes the fetch operation efficient at the expense of making the insert and

delete operations inefficient. With a traditional index, e.g., a B-Tree index,

the complexity to access an arbitrary row identified by a row number is
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Row Number as-is

Operation RCV ROM

Insert 87,821 1,531

Fetch 312 244

Positional Mapping

Operation RCV ROM

Insert 9.6 1.2

Fetch 30,621 273

Table 5.1: The performance of (in ms) (a) storing Row Number as-is (b)
Monotonic Positional Mapping.
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Figure 5.1: (a) Monotonic Positional Mapping (b) Index for Hierarchical
Positional Mapping

O(logN). On the other hand, insert and delete operations require updating

the row numbers of the subsequent tuples. These updates also need to be

propagated in the index, and therefore it results in a worst case complexity

of O(N logN). To illustrate the impact of these complexities in practice, in

Table 5.1(a), we display the performance of storing the row numbers as-is

for two operations—fetch and insert—on a spreadsheet containing 106 cells.

We note that irrespective of the data model used, the performance of inserts

is beyond our acceptable threshold whereas that of the fetch operation is

acceptable.

Intuition. To improve the performance of inserts and deletes for ordered

items, we introduce the idea of positional mapping. At its core, the idea

is remarkably simple: we do not store positions but instead store what we

call positional mapping keys. These positional mapping keys p are proxies

that have a one-to-one mapping with the positions r, i.e., p � r. Formally,

positional mapping M is a bijective function that maintains the relationship

between the row numbers and positional mapping keys, i.e., M(r)→ p.

5.2 Monotonic Positional Mapping

One approach towards positional mapping is to have positional mapping keys

monotonically increase with position, i.e., for two arbitrary positions ri and
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Operation on nth record.
Positional Mapping Method Fetch Insert/Delete

Row Number as-is O(logN) O(N)

Monotonic Positional Mapping O(N) O(logN)

Hierarchical Positional Mapping O(logN) O(logN)

Table 5.2: Complexity of different positional mapping methods.

rj , if ri > rj then M(rj) > M(ri). For example, consider the ordered list

of items shown in Figure 5.1(a). Here, even though the positional mapping

keys do not correspond to the row number, and even though there can be

arbitrary differences between consecutive positional mapping keys, we can

fetch the nth record by scanning the positional mapping keys in an increasing

order while maintaining a running counter to skip n-1 records. The gaps

between the consecutive positional mapping keys reduce or even eliminate

the renumbering during insert and delete operations.

Thus, monotonic positional mapping trades-off the performance of the

fetch operation for making insert and delete operations efficient. To fetch the

nth item, in the absence of the stored position we need to scan n items, i.e.,

the average time complexity is O(N), where N is the total number of items.

If we know the positional mapping key of the item we are fetching (which is

often not the case), and we have a traditional B+tree index on this key, then

the complexity of this operation is O(logN). Similarly, the complexity of

inserting an item if we know the positional mapping key, determined based

on the positional mapping keys of neighboring items, is O(logN), which is

the effort spent to update the underlying indexing structure. In Table 5.1(b),

we experimentally observe that benefits from monotonic positional mapping

for the insert operations come at the expense of the fetch operation, leading

to unacceptable latencies.

5.3 Hierarchical Positional Mapping

We now describe a scheme, titled hierarchical positional mapping, that en-

hances monotonic positional mapping, by adding a new indexing structure

that alleviates the cost of insert and delete operations, while not sacrificing

the performance of the fetch operation. This new indexing structure adapts

classical work on order-statistic trees [19]. Just like a typical B+Tree is used

to capture the mapping from keys to the corresponding records, we can use

the same structure to map positions to positional mapping keys. Here, in-
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stead of storing a key we store the count of elements stored within the entire

sub-tree. The leaf nodes store the values, while the remaining nodes store

pointers to the children along with counts.

For the positional mapping shown in Figure 5.1(a), we show the corre-

sponding hierarchical positional mapping index structure in Figure 5.1(b).

Similar to a B+tree of order m, our structure satisfies the following invari-

ants. (a) Every node has at most m children. (b) Every non-leaf node

(except root) as at-least
⌈
m
2

⌉
children. (c) All leaf nodes appear at the same

level. Again similar to B+tree, we ensure the invariants by either splitting

a node into two when the number of children overflow or merging two nodes

into one when the number of children underflow. This ensures that the

height of the tree is at most logdm/2eN .

5.3.1 Hierarchical Positional Mapping: Fetch

Our hierarchical indexing structure makes accessing the item at the nth

position efficient, using the following steps: (i) We start from the root node.

(ii) At a node, we identify the child node to traverse next, by subtracting the

count associated with the children iteratively from n, left to right, as long

as the remainder is positive. This step adjusts the value of n; we then move

one level down in the tree to that child node. (iii) We repeat the previous

step until we reach a leaf node, after which we extract the nth element from

this node. Now, we have the key with which to probe a traditional B+tree

index on the positional mapping keys, as in monotonic positional mapping.

Overall, the complexity of this operation is O(logN).

5.3.2 Hierarchical Positional Mapping: Insert/Delete

Insert and delete operations require updating the counts associated with all

of the nodes that fall on the path between the root and the leaf node corre-

sponding to the position that is being updated. As before, we first identify

the leaf node as discussed for a fetch operation, followed by updating the

item at the leaf node, and traversing back up the tree to the root. Simul-

taneously, we use the traditional B+tree index on the positional mapping

keys to update the corresponding positional mapping key. Once again, the

complexity of this operation is O(logN).

In Table 5.2, we contrast the complexity of this scheme against other po-

sitional mapping schemes, and demonstrate it effectiveness. We empirically

evaluate our positional mapping schemes in Chapter 7.
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Chapter 6

DataSpread Architecture

We have implemented DataSpread as a web-based tool on top of a Post-

greSQL relational database implementing the Model-View-Controller ap-

proach. The system currently supports basic spreadsheet operations, e.g.,

scrolling to arbitrary positions, insertion of rows or columns, and formu-

lae insert and evaluation, on large spreadsheets that are persisted in the

PostgreSQL database.

Figure 6.1 illustrates DataSpread’s architecture, which at a high level

can be divided into three main layers, i.e., (a) user interface, (b) execution

engine, and (c) storage. The user interface layer consists of a spreadsheet

widget, which presents a spreadsheet on a web-based interface to users and

records the interactions on it. The execution engine layer is a web applica-

tion developed in Java that resides on an application server. The controller

accepts user interactions in form of events and identifies the corresponding

actions, e.g., a formula update is sent to the formula parser, an update to

a cell is sent to the cell cache. The dependency graph captures the for-

mula dependencies between the cells and aids in triggering the computation

of dependent cells. The positional mapper translates the row and column

numbers into the corresponding stored identifiers and vice versa. The ROM,

COM, RCV, and hybrid translators use their corresponding spreadsheet rep-

resentations and provide a “collection of cells” abstraction to the upper lay-

ers. This collection of cells are then cached in memory via an LRU cell

cache. The storage layer consists of a relational database, which is responsi-

ble for persisting data. This data is persisted using a combination of ROM,

COM and RCV data models (as described in Chapter 4) along with posi-

tional indexes, which map row and column numbers to corresponding stored

identifiers (as described in Chapter 5), and metadata, which records infor-

mation about the hybrid data model, and which tables are responsible for

handling which rectangular areas on the spreadsheet. The hybrid optimizer

determines the optimal hybrid data model and is responsible for migrating

data across different tables and primitive data models.
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Figure 6.1: DataSpread Architecture

6.1 Supporting Relational Operations

In addition to standard spreadsheet operations, DataSpread benefits from

being built on a standard relational database, and as a result, seamlessly

supports standard relational operations as well. To support relational op-

erations from the spreadsheet interface, and in particular to enable table

declaration and query execution, we introduce two functions in our system,

namely DBTable and DBSQL.

DBTable enables a user to declare a portion of the spreadsheet front-end

as a database table. Here, the displayed table cells reflect the content of

the database table. This is a cue for the hybrid optimizer to “force” this

region to be stored as a separate ROM table. Note that there is a two-way

synchronization for such a table, i.e., any updates to the table from the

front-end is reflected at the back-end and vice versa.

DBSQL enables a user to execute arbitrary SQL queries combining data

present on the spreadsheet, and other tables present in the relational database.

To support positional addressing or referencing of spreadsheet data using

DBSQL, we introduce two functions: RangeValue and RangeTable. The for-

mer allows a user to refer a scalar value contained in a cell, e.g., SELECT

FROM Actors WHERE ActorId = RangeValue(A1); here, RangeValue(A1)

refers to the value of cell A1. RangeTable allows a user to refer to a range,
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and perform operations on this range like a database table. This enables

any range on a spreadsheet to be treated as a table, e.g., SELECT FROM

Actors NATURAL JOIN RangeTable(A1:D100).
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Chapter 7

Experimental Evaluation

In this section, we present an evaluation of DataSpread. Our high-level

goals are to evaluate the feasibility of DataSpread to work with large

spreadsheets with billions of cells; in addition, we attempt to understand

the impact of the hybrid data models, and the impact of the positional

mapping schemes. Recent work has identified 500ms as a yardstick of inter-

activity [20], and we aim to verify if DataSpread can actually meet that

yardstick.

7.1 Experimental Setup

We now describe our experimental setup, and identify the goals of our eval-

uation.

7.1.1 Environment

Our data models and positional mapping techniques were implemented on

top of a PostgreSQL (version: 9.6) database. The database was config-

ured with default parameters. We run all of our experiments on a work-

station with the following configuration: Processor: Intel Core i7-4790K

4.0 GHz, RAM: 16 GB, Operating System: Windows 10. Our test scripts

are single-threaded applications developed in Java. While we have also de-

veloped a full-fledged web-based front-end application (see Figure 3.1), our

test scripts are independent of this front-end, so that we can isolate the

back-end performance implications. We ensured fairness by clearing the

appropriate cache(s) before every run.

7.1.2 Datasets

We evaluate our algorithms on a variety of real and synthetic datasets. Our

real datasets are the ones listed in Table 2.1: Internet, ClueWeb09, Enron,
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Figure 7.1: Storage comparisons across databases

and Academic. The first three have over 10,000 sheets each while the last

one has about 700 sheets. To test scalability, our real-world datasets are in-

sufficient, because they are limited in scale by what current spreadsheet tools

can support. Therefore, we constructed additional large synthetic spread-

sheet datasets. The spreadsheets in the datasets each have between 10–100

columns, with the number of rows varying from 103 to 107, and a density

between 0–1; this last quantity indicates the probability that a given cell

within the spreadsheet area is filled-in. Our largest synthetic dataset has a

billion non-empty cells, enabling us to explicitly verify the premise of the

title of this work.

We identify several goals for our experimental evaluation:

7.1.3 Goal 1: Impact of Hybrid Data Models on Real Datasets

We evaluate the hybrid data models selected by our algorithms against the

primitive data models, when the cost model is optimized for storage. The al-

gorithms evaluated include: ROM, COM, RCV (the primitive data models,

using a single table to represent a sheet), DP (the dynamic programming
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algorithm from Section 4.5), and Greedy and Agg (the greedy and aggressive-

greedy algorithms from Section 4.6). We evaluate these data models on both

storage, as well as formulae access cost, based on the formulae embedded

within the spreadsheets. In addition, we evaluate the running time of the

hybrid optimization algorithms for DP, Greedy, and Agg.

7.1.4 Goal 2: Scalability on Synthetic Datasets

Since our real datasets aren’t very large, we turn to synthetic datasets for

testing out the scalability of DataSpread. We focus on the primitive data

models, i.e., ROM and RCV, coupled with positional mapping schemes, and

evaluate the performance of select, update, and insert/delete on these data

models on varying the number of rows, number of columns, and the density

of the dataset.

7.1.5 Goal 3: Impact of Positional Mapping Schemes

We evaluate the impact of our positional mapping schemes in aiding posi-

tional access on the spreadsheet. We focus on Row-number-as-is, Monotonic,

and Hierarchical positional mapping schemes applied on the ROM primitive

model, and evaluate the performance of fetch, insert, and delete operations

on varying the number of rows.

7.2 Impact of Hybrid Data Models

Takeaways: Hybrid data models provide substantial benefits over prim-

itive data models, with up to 20% reductions in storage, and up

to 50% reduction in formula access or evaluation time on Post-

greSQL on real spreadsheet datasets, compared to the best primitive data

model. While DP has better performance on storage than Greedy and

Agg, it suffers from high running time; Agg is able to bridge the gap

between Greedy and DP, while taking only marginally more running

time than Greedy. Lastly, if we were to design a database storage en-

gine from scratch, the hybrid data models would provide up to 50%

reductions in storage compared to the best primitive data model.

The goal of this section is to evaluate our data models—both our primi-

tive and hybrid data models—on real datasets. For each sheet within each
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dataset, we run the dynamic programming algorithm (denoted DP), the

greedy algorithm (denoted Greedy), and the aggressive greedy algorithm

(denoted Agg) that help us identify effective hybrid data models. We com-

pare the resulting data models against the primitive data models: ROM,

COM and RCV, where the entire spreadsheet is stored in a single table.

7.2.1 Storage Evaluation on PostgreSQL

We begin with an evaluation of storage for different data models on Post-

greSQL. The costs for storage on PostgreSQL as measured by us is as follows:

s1 is 8 KB, s2 is 1 bit, s3 is 40 bytes, s4 is 50 bytes, and s5 is 52 bytes. We

plot the results in Figure 7.1(a): here, we depict the average normalized

storage across sheets: for the Internet, ClueWeb09, and Enron datasets, we

found RCV to have the worst performance, and hence normalized it to a

cost of 100, and scaled the others accordingly; for the Academic datasets,

we found COM to have the worst performance, and hence normalized it to

a cost of 100, and scaled the others accordingly. For the first three datasets,

recall that these datasets are primarily used for data sharing, and as a re-

sult are quite dense. As a result, the ROM and COM data models do well,

using about 40% of the storage of RCV. At the same time, DP, Greedy and

Agg perform roughly similarly, and better than the primitive data models,

providing an additional reduction of 15-20%. On the other hand, the last

dataset, which is primarily used for computation as opposed to sharing, and

is very sparse, RCV does better than ROM and COM, while DP, Greedy,

and Agg once again provide additional benefits.
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7.2.2 Storage Evaluation on an Ideal Database

Note that the reason why RCV does so poorly for the first three datasets is

because PostgreSQL imposes a high overhead per tuple, of 50 bytes, consid-

erably larger than the amount of storage required to store each cell. So, to

explore this further, we investigated the scenario if we had the ability to re-

design our database storage engine from scratch. We consider a theoretical

“ideal” cost model, where additional overheads are minimized. For this cost

model, the cost of a ROM or COM table is equal to the number of cells, plus

the length and breadth of the table (to store the data, the schema, as well

as positional identifiers), while the cost of an RCV row is simply 3 units (to

store the data, as well as the row and column number). We plot the results

in Figure 7.1(b) in log scale for each of the datasets—we exclude COM for

this chart since it has the same performance as ROM. Here, we find that

ROM has the worst cost across most of the datasets since it no longer lever-

ages benefits from minimizing the number of tuples. (For Internet, ROM

and RCV are similar, but RCV is slightly worse.) As before, we normalize

the cost of the ROM model to 100 for each sheet, and scaled the others

accordingly, followed by taking an average across all sheets per dataset. As

an example, we find that for the ClueWeb09 corpus, RCV, DP, Greedy and

Agg have normalized costs of about 36, 14, 18, and 14 respectively—with

the hybrid data models more than halving the cost of RCV, and getting
1
7

th
the cost of ROM. Furthermore, in this ideal cost model, DP provides

additional benefits relative to Greedy, and Agg ends up bringing us close to

or equal to DP performance.
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7.2.3 Running Time of Hybrid Optimization Algorithm

Our next question is how long our hybrid data model optimization algo-

rithms for DP, Greedy, and Agg, take on real datasets. In Figure 7.2, we

depict the average running time of these algorithms on the four real datasets.

The results for all datasets are similar—as an example, for Enron, DP took

6.3s on average, Greedy took 45ms (a 140× reduction), while Agg took

345ms (a 20× reduction). Thus DP has the highest running time for all

datasets, since it explores the entire space of models that can be obtained

by recursive partitioning. Between Greedy and Agg, Greedy turns out to

take less time. Note that these observations are consistent with our com-

plexity analyses from Section 4.6. That said, Agg allows us to trade off a

little bit more running time for improved performance on storage (as we

saw earlier). We note that for the cases where the spreadsheets were large,

we terminated DP after about 10 minutes, since we want our optimization

to be relatively fast. (Note that using a similar criterion for termination,

Agg and Greedy did not have to be terminated for any of the real datasets.)

To be fair across all the algorithms, we excluded all of these spreadsheets

from this chart—if we had included them, the difference between DP and

the other algorithms would be even more stark.

7.2.4 Formulae Access Evaluation on PostgreSQL

Next, we wanted to evaluate if our hybrid data models, optimized only on

storage, have any impact on the access cost for formulae within the real

datasets. Our hope is that the formulae embedded within spreadsheets

end up focusing on “tightly coupled” tabular areas, which our hybrid data

models are able to capture and store in separate tables. For this evaluation,

we focused on Agg, since it provided the best trade-off between running

time and storage costs. Given a sheet in a dataset, for each data model,

we measured the time taken to evaluate the formulae in that sheet, and

averaged this time across all sheets and all formulae. We plot the results for

different datasets in Figure 7.3 in log scale in ms. As a concrete example,

on the Internet dataset, ROM has a formula access time of 0.23, RCV has

3.17, while Agg has 0.13. Thus, Agg provides a substantial reduction of

96% over RCV and 45% over ROM—even though Agg was optimized for

storage and not for formula access. This validates our design of hybrid

data models to store spreadsheet data. Note that while the performance

numbers for the real spreadsheet datasets are small for all data models
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(due to the size limitations in present spreadsheet tools) when scaling up

to large datasets, and formulae that operate on these large datasets, these

numbers will increase in a proportional manner, at which point it is even

more important to opt for hybrid data models.

7.3 Scalability of Data Models

Takeaway: Our primitive data models, augmented with positional map-

ping provide interactive (<500ms) response time on spreadsheet

datasets ranging up to 1 billion cells for select, insert, and update

operations.

Since our real datasets did not have any spreadsheets that are extremely

large, we now evaluate the scalability of the DataSpread data models in

supporting very large synthetic spreadsheets. We focus on the two primitive

data models i.e., ROM and RCV, with the spreadsheet being represented as

a single table in these data models. Since we use synthetic datasets where

cells are “filled in” with a certain probability, we did not involve hybrid data

models, since they would (in this artificial context) typically end up prefer-

ring the ROM data model. These primitive data models are augmented with

hierarchical positional mapping. We consider the performance on varying

several parameters of these datasets: the density (i.e., the number of cells

that are filled in), the number of rows, and the number of columns. The

default values of these parameters are 1, 107 and 100 respectively. We repeat

each operation 500 times and report the averages.

In Figure 7.4, we depict the charts corresponding to average time to per-

form a random select operation on a region of 1000 rows and 20 columns.

This is, for example, the operation that would correspond to a user scrolling

to a certain position on our spreadsheet. As can be seen in Figure 7.4(a),

ROM starts dominating RCV beyond a certain density, at which point it

makes more sense to store the data in as tuples that span rows instead of in-

curring the penalty of creating a tuple for every cell. Nevertheless, the best

of these two models takes less than 150ms across sheets of varying densities.

In Figure 7.4(b)(c), since the spreadsheet is very dense (density = 1), ROM

takes less time than RCV. Overall, in all cases, even on spreadsheets with

100 columns and 107 rows and a density of 1, the average time to select a

region is well within 500ms.

We first report briefly on the update and insert performance. Overall, for

both RCV and ROM, for inserting a row, the time is well below 500ms for
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Figure 7.5: Update range performance vs—(a) Sheet density, (b) Column
count, (c) Row count

all of the charts; for updates of a large region, while ROM is still highly

interactive, RCV ends up taking longer since 1000s of queries need to be

issued to the database. In practice, users won’t update such a large region

at a time, and we can batch these queries.

7.4 Scalability of Inserts and Updates

We now supplement our evaluation of the scalability of selects with an eval-

uation of the scalability of inserts and updates for the primitive data models

on a synthetic dataset. Figures 7.5 and 7.6 depict the corresponding charts
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for updating a region of 100 rows and 20 columns, and inserting one row

of 100 columns for the primitive data models. In Figures 7.5, we find that

the update time taken for RCV is a lot higher than the time for inserts or

selects. This is because in this benchmark, DataSpread assumes that the

entire region update happens at once, and fires 100 × 20 = 2000 update

queries one at a time to the underlying database, to update each individual

cell. In practice, users may only update a small number of cells at a time;

and further, we may be able to batch these queries or issue them in parallel

to further save time. In Figures 7.6, we find that like in Figures 7.5, the

time taken for updates on ROM is faster than RCV since it only needs to

issue one query, while RCV needs to issue multiple queries. However, in this

case, since the number of queries issued is small, the response time is always

within 100ms.

7.5 Evaluation of Positional Mapping

Takeaway: Hierarchical positional mapping retains the rapid fetch bene-

fits of row-number-as-is, while also providing the rapid insert and update

benefits of monotonic positional mapping. Overall, hierarchical posi-

tional mapping is able to perform positional operations within

a few milliseconds, while the other positional mapping schemes scale

poorly, taking seconds on large datasets for certain operations.

We now compare the performance of our different positional mapping meth-

ods as described in Chapter 5. Specifically, we contrast between (i) stor-

ing row-number-as is (denoted row-number-as-is), (ii) monotonic positional

mapping (denoted monotonic), and (iii) hierarchical positional mapping (de-

noted hierarchical). As described previously, we operate on a dense dataset

ranging from 103 to 107 rows, with 100 columns, all of whose cells are filled.

The evaluation was performed on a single ROM table that captures all of the

data on the sheet; evaluations for other primitive data models are similar.

Figure 7.7 displays the average time taken to perform a fetch, insert, and

delete of a single (random) row, averaged across 1000 iterations.

We see that the storing the row number as-is performs well for the fetch

operation. However, the time for insert and delete operations increases

rapidly with the data size, due to cascading updates of subsequent rows;

thus, beyond a data size of 105, row number-as-is is no longer interactive

(> 500ms) for insert and delete. On the other hand, the response time of
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the monotonic positional mapping for fetch operation increases rapidly with

data size. This is again expected, as we need to search linearly through the

positional mapping keys to retrieve the required records—making it infea-

sible to use on large datasets. Lastly, we find that hierarchical positional

mapping performs well for all operations and performance does not get de-

grade even with data sizes of 109 tuples. In comparison with the other

schemes, hierarchical positional mapping performs all the three aforemen-

tioned operations in few milliseconds, which makes it the practical choice

for positional mapping for DataSpread.

54



Chapter 8

Related Work

Our work draws on related work from multiple areas; we review papers in

each of the areas, and describe how they relate to DataSpread. We dis-

cuss 1) efforts that enhance the usability of databases, 2) those that attempt

to merge the functionality of the spreadsheet and database paradigms, but

without a holistic integration, and 3) using array-based database manage-

ment systems. The vision for DataSpread was described in an earlier demo

paper [21].

1. Making databases more usable. There has been a lot of recent work

on making database interfaces more user friendly [22, 23]. This includes

recent work on gestural query and scrolling interfaces [24, 25, 26, 27, 28],

visual query builders [29, 30], query sharing and recommendation tools [31,

32, 33, 34], schema-free databases [35], schema summarization [36], and

visual analytics tools [37, 38, 39, 40]. However, none of these tools can

replace spreadsheet software which has the ability to analyze, view, and

modify data via a direct manipulation interface [41] and has a large user

base.

2a. One way import of data from databases to spreadsheets. There

are various mechanisms for importing data from databases to spreadsheets,

and then analyzing this data within the spreadsheet. This approach is fol-

lowed by Excel’s Power BI tools, including Power Pivot [5], with Power

Query [4] for exporting data from databases and the web or deriving addi-

tional columns and Power View [4] to create presentations; and Zoho [42]

and ExcelDB [43] (on Excel), and Blockspring [44] (on Google Sheets [45])

enabling the import from a variety of sources including the databases and the

web. Typically, the import is one-shot, with the data residing in the spread-

sheet from that point on, negating the scalability benefits derived from the

database. Indeed, Excel 2016 specifies a limit of 1M records that can be

analyzed once imported, illustrating that the scalability benefits are lost;

Zoho specifies a limit of 0.5M records. Furthermore, the connection to the

base data is lost: any modifications made at either end are not propagated.
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2b. One way export of operations from spreadsheets to databases.

There has been some work on exporting spreadsheet operations into database

systems, such as the work from Oracle [8, 9] as well as startups 1010Data [46]

and AirTable [47], to improve the performance of spreadsheets. However,

the database itself has no awareness of the existence of the spreadsheet,

making the integration superficial. In particular, positional and ordering

aspects are not captured, and user operations on the front-end, e.g., inserts,

deletes, and adding formulae, are not supported.

2c. Using a spreadsheet to mimic a database. There has been some

work on using a spreadsheet as an interface for posing traditional database

queries. For example, Tyszkiewicz [14] describes how to simulate database

operations in a spreadsheet. However, this approach loses the scalability

benefits of relational databases. Bakke et al. [11, 48, 49] support joins by

depicting relations using a nested relational model. Liu et al. [10] use spread-

sheet operations to specify single-block SQL queries; this effort is essentially

a replacement for visual query builders. Recently, Google Sheets [45] has

provided the ability to use single-table SQL on its frontend, without avail-

ing of the scalability benefits of database integration. Excel, with its Power

Pivot and Power Query [4] functionality has made moves towards support-

ing SQL in the front-end, with the same limitations. Like this line of work,

we support SQL queries on the spreadsheet frontend, but our focus is on

representing and operating on spreadsheet data within a database.

3. Array database systems. While there has been work on array-

based databases, most of these systems do not support edits: for instance,

SciDB [15] supports an append-only, no-overwrite data model.
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Chapter 9

Conclusions

We presented DataSpread, a data exploration tool that holistically unifies

spreadsheets and databases with a goal towards working with large datasets.

We proposed three primitive data models for representing spreadsheet data

within a database, along with algorithms for identifying the optimal hybrid

data model arising from recursive decomposition to give one or more prim-

itive data models. Our hybrid data models provide substantial reductions

in terms of storage (up to 20–50%) and formula evaluation (up to 50%)

over the primitive data models. Our primitive and hybrid data models,

coupled with positional mapping schemes, make working with very large

spreadsheets—over a billion cells—interactive.
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