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ABSTRACT

Ultrasonic technologies in kHz and MHz frequency regime have been well

developed and widely applied in the past half century, thanks to the uti-

lization of piezoelectric transducer. Acoustic techniques that can reach GHz

level is needed as the scales of materials under study reaches sub-micron

and nanometer. In this dissertation, I develop and improve surface acoustic

wave (SAW) techniques in optical pump-probe system, and apply them to

measure shear elastic constants of thin films and damping of high frequency

shear acoustic waves.

While longitudinal elastic constants of thin films can be measured con-

veniently in optical pump-probe system, there is no practical methods to

measure shear elastic constants of thin films. I develop a SAW measure-

ment technique using phase-shift mask in optical system. It is convenient

and compatible with various kinds of thin films materials. I demonstrate

the capability of the technique by measuring shear elastic constants of hard

materials, soft materials, and layered materials with thickness as small as 60

nm. Ultra small shear elastic constant is observed in misfit layered compound

[SnSe][MoSe2].

The intrinsic attenuation of GHz acoustic wave in dielectric sets the

upper bound of the quality factor of mechanical oscillation system operated at

GHz frequency regime. There was no reliable experimental results regarding

the intrinsic attenuation of GHz shear acoustic in Si. By careful experimental

design, I am able to measure the attenuation of 7 GHz SAW on Si, which

largely represents the attenuation of shear acoustic wave. The experimental

scheme can be readily applied to other dielectric materials.

For quantitative analysis, I implement a general calculation scheme

which can calculate SAW of layered structure with any number of layers of

anisotropic material and SAW of structure with thin grating on surface. It

can also be used to calculate various other acoustic modes such as Stoneley
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wave and Lamb wave.

Density functional theory (DFT) calculation is used in the these studies

to assist the analysis and understanding of the experiments. I calculate elastic

constant of cubic crystals and hexagonal layered materials (graphite, MoS2,

and misfit layered compound [SnSe][MoSe2]). I calculate the generalized

mode Grüneisen parameter of Si in order to understand the relatively small

attenuation of shear acoustic comparing with longitudinal acoustic wave in

Si.
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There is only one heroism in the world:

to see the world as it is, and to love it.

-Romain Rolland
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CHAPTER 1

INTRODUCTION

1.1 Surface acoustic wave research and applications

Surface acoustic wave (SAW) was initially investigated to understand earth-

quake, as it’s the wave form in earthquake that causes most damage. It was

first discussed by Lord Rayleigh [1] at 1885 where the earth shell is treated

as isotropic medium. The SAW on the surface of isotropic medium is later

named as Rayleigh wave. Rayleigh wave has the simplest form of SAW. In

Rayleigh wave, the wave energy is confined near the surface, within a fraction

of wavelength deep and the displacement plane (sagittal plane) of the wave

is perpendicular to the surface of the medium.

SAW of an anisotropic half-space was first studied by Stoneley [2],

Gold [3], Deresiewics [4], and Synege [5] etc. at 1940s and 1950s. However

most of the studies incorrectly concluded that SAW only exists in certain

discrete directions or regions. This was later corrected by Lim and Farnell

in a series of papers [6, 7] using better computational power at late 1960s.

This minor setback in SAW research may be seen as an indication of

the complexity of SAW when anisotropy is involved. However even in the

simplest case, SAW is still not intuitive comparing with bulk acoustic waves.

An evidence is that until now, some papers [8, 9] in high impact journals can

still make mistakes about features of SAW in isotropic material. A correct

and clear picture of deformation and particle motion of Rayleigh wave of

isotropic medium can be found in Professor Daniel A. Russell’s webpage:

http://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html. In

Chapter 3, I describe in detail a general calculation method for SAW and

other acoustic behaviors.

The development of piezoelectric transducer greatly expand the ap-

plication of SAW techniques. For example, SAW has been widely used in
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acoustic filters and sensors. SAW filters have been at the center of the wire-

less communication for decades till today. As the continuous development

of smart phones and the proposed “Internet of Things” in recent years, the

industries call for acoustic filters with higher frequencies and higher quality

factors. Two of the key fundamental knowledge involved in the development

of acoustic filters are the stiffness of the material and acoustic attenuation of

the materials, which are at the center of this thesis.

Recently, there is a renewed interest in SAW using piezoelectric trans-

ducer for the application of quantum computation [10, 11, 12, 13, 14]. Al-

though these studies are out of the scope of current thesis, it’s my hope

that this work can open up the possibilities of using optical systems in these

experiments.

From a broader perspective, the development of piezoelectric techniques

greatly improved the capability and application of acoustic techniques. Med-

ical ultrasound or diagnostic sonography has been a routine examination

in medical treatment. Acoustic method with piezoelectric transducer were

widely used to measure elastic constants of various bulk materials in the 50s

and 60s last century, especially by H. J. McSkimin in Bell Telephone Labora-

tories. The applications of acoustic technique as a non-destructive technique

in materials science and as sensor in biological or medical application are still

very active research areas.

The huge success of piezoelectric transducer, however, also pose a limi-

tation to the acoustic technology: the piezoelectric transducer is a necessity.

The available piezoelectric material is limited and the transducer needs to be

attached to the specimen. These requirements greatly limit the application

of acoustic waves as a general characterization tool for materials of small

scale.

Due to the reasons above, people started to investigate acoustic tech-

niques without piezoelectric transducers. In the late 80s and 90s, several

ultrasonic techniques using optical systems started to appear. The longitu-

dinal acoustic echo technique described in Sec. 2.2 is a very good example.

Another example is the spontaneous Brillouin scattering. It is widely used to

study the longitudinal speed of sound or elastic constant of transparent mate-

rials. In Chapter 2, I briefly describe the optical pump-probe systems which

I use extensively. My main work during Ph.D. is to develop, improve, and

utilize measurement techniques of SAW measurement in optical pump-probe
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systems.

Ultrasonic techniques using piezoelectric transducer have been utilized

to generate both longitudinal and transverse bulk acoustic wave in bulk ma-

terials, so people can measure the full set of elastic constants. Despite the

huge success in longitudinal acoustic echo technique, there are no effective

methods to generate bulk transverse acoustic wave in optical pump-probe

system. The key reason is that it’s difficult to break the symmetry in the

form of shear optically and it can also be difficult to detect the pure shear

deformation optically. In order to study the shear mechanical properties of

thin film materials, SAW is a good alternative. Because SAW involves com-

plicated deformation but mostly shear, which is demonstrated in Chapter 6.

SAW also has inherent advantage as characterization tool for thin film

materials, since the wave energy is mostly confined close to the surface within

about wavelength deep into the material. In another word, it is mostly

sensitive to the top layer. SAW with higher frequency (smaller wavelength)

is capable of measuring thinner films. The time-resolved optical pump-probe

system using femtosecond pulse laser provides the highest possible frequency

response. Other methods are needed to define a high spatial frequency in

order to generate high frequency SAW.

1.2 Surface acoustic wave techniques in optical

pump-probe system

If one wants to use high frequency SAW (high MHz to GHz) as a general

characterization tool, generating and detecting SAW by piezoelectric trans-

ducer is not a feasible approach. This is because it typically requires metal

fingers on top of a layer of piezoelectric materials, just like in a SAW filter.

Metal fingers are made by complicated fabrication process on the materials

under study and they limit the sensitivities of the measurement.

The optical method is preferable to generate high frequency SAW as

characterization tool for thin film materials, as it is inherently non-contact

and non-destructive. One method developed in the 90s and early this century

is the transient grating technique developed by Nelson group at MIT [15].

This technique is a modification of the standard optical pump-probe system

which is described in Chapter 2. In transient grating technique, the pump
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pulse is further split to two separate pump beams in the downstream and

focused on the sample surface at an angle θ with each other. Since the two

pump pulses are coherent, they interfere with each other and create a periodic

intensity pattern on the sample surface. The periodicity Λ of the pattern is:

Λ =
λ

2 sin(θ/2)
(1.1)

where λ is the laser wavelength and θ is the separation angle between two

pump pulses. This periodic intensity pattern causes periodic heating on the

metal surface and generates SAW by thermal expansion. The transient grat-

ing refers to the periodic heating pattern, in the sense that it only appears

at the moment when the two pump pulses interfere with each other on the

surface, not a permanent grating. The transient grating method is a com-

pletely non-contact technique. No sample preparation is required other than

a possible thin metal film deposited on the top surface. It has been used

mostly on polymer films to identify acoustic modes and detect possible de-

laminated interface between polymer and substrate [15]. It has also been

used to measure thickness of metal films [16] and later to measure nanoscale

thermal transport [17, 18].

However the wavelength of SAW generated by transient grating method

is limited by the laser wavelength and separation angle. In practice, it’s very

difficult to create a large θ. The typical wavelength generated by transient

grating is usually on the level on several micron. This means that it is

not sensitive films of sub-micron to tens of nanometer thickness. Another

difficulty in transient grating method is the detection scheme. In principle

it relies on surface displacement caused by SAW on a homogeneous surface

which is a second order effect. This can be mitigated using the thermal

background to make the signal to be at the first order. However it means

that if one wants to measure SAW propagated far away, the heterodyne

detection scheme must be used. This will further complicates the already

relatively complicated optical setup. Due to various restraint, the transient

grating method has not really been used to measure shear elastic constants

of thin films.

An alternative technique to transient grating is to use “permanent grat-

ing”. A sub-wavelength scale metal grating can be patterned on the sample

surface and interrogated using conventional pump-probe techniques [19]. In
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this case, the periodic heating is caused by the heating of periodic metal

bars. So the wavelength of SAW, which is the same as the periodicity of

the grating, can be as small as several tens of nanometers. But this is no

longer a non-contact measurement. The nanofabrication processes required,

such as electron-beam lithography and focused-ion beam machining, often

have restrictive requirements on the chemistry and surface properties of the

sample which make these approaches impractical for many materials of in-

terest. Electron-beam lithography and focused-ion beam machining are also

costly and time consuming. So the SAW measurements using metal grating

have not been widely used to measure elastic constants of different films [19].

However if more convenient and compatible nanofabrication techniques are

feasible, such as the laser lithography systems of Nanoscribe, the patterned

metal gratings can still be good approach to measure GHz frequency SAWs.

In Chapter 4, I describe the technique I have developed for generating

and detecting GHz frequency SAWs using a phase-shift elastomeric mask in

conventional optical pump-probe systems, for the purpose of measuring shear

elastic constant of thin film materials.

1.3 Outline of the Thesis

In this thesis, I focus on the SAW techniques in optical pump-probe system

and its application in mechanical property measurement, specifically, the

elastic constant measurements and attenuation measurements. This work

involves nanofabrication, characterization, calculation, and simulation. I try

to provide enough details of theories and experiments in the thesis for the

purpose that people who are interested can fully understand and reproduce

these results.

In Chapter 2, I describe the ultra-fast optical pump-probe system that

I use extensively in the work. The optical pump-probe measurement is a

rich measurement scheme with a further extension to the time-domain ther-

moreflectance (TDTR) technique. In this chapter I focus on two of the key

concepts of the systems: phase-sensitive detection and the measurement in

frequency domain. Two commonly used experimental methods in my work

are described, namely the longitudinal acoustic echo measurement and nano-

imprint lithography.
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Chapter 3 first summarizes fundamental knowledge that is necessary

for the calculation of SAW. Then I describe in detail the math involved in

the calculation of SAW on a half-space, layered structure of any number of

layers, and with thin metal grating on top of half-space. I also demonstrate

the generality of the calculation method by expanding the calculation to

acoustic modes other than SAW. At the end of the chapter, I briefly introduce

my implementation of the SAW calculation using MatLab.

Chapter 4 is about the new SAW measurement technique in optical

pump-probe system I developed using a phase-shift mask. This technique is

for the purpose of measuring shear elastic constant of any thin film materials

conveniently. The chapter includes the design, experimental procedures, and

experimental validation of the technique.

In Chapter 5, I describe how to measure shear elastic constant of dif-

ferent thin film materials. It summarizes several applications of the SAW

technique developed in Chapter 4 and demonstrates its capabilities. In the

chapter I list the observations, details, and tricks in the measurement so the

technique can be easily repeated and possibly improved later. At the end of

the chapter I especially talk about the ultra small shear elastic constants I

measured in the misfit layered compound [SnSe]n[MoSe2]n with n = 1, 2, 3.

In Chapter 6, I describe how to measure the attenuation of 7 GHz SAW

on Si. An accurate attenuation measurement for high frequency acoustic

wave requires careful experimental design and data analysis, which I state in

detail. This experiment process I developed can be readily used for measuring

attenuation of SAW on any materials that can be fabricated with a set of

thin metal gratings.

In Chapter 7, I describe how to calculate elastic constant and Grüneisen

parameter using density functional theory (DFT). The calculation of elastic

constants is to assist the shear elastic constants measurements for crystal

with relatively low symmetry. The calculation of Grüneisen parameter is for

further understanding of acoustic attenuation in silicon. A more involved

theory of solid mechanics is introduced to better understand the Grüneisen

parameter and experimentally measured third order elastic constant (TOEC)

Chapter 8 is the conclusion and summary of the whole dissertation.
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CHAPTER 2

EXPERIMENTAL METHODS

2.1 Experimental paradigm of optical pump-probe

system

Early applications of optical pump-probe system can be found in the work of

Paddock and Eesley [20] and of Maris and Tauc [21]. The concept of optical

pump-probe system is straightforward. A pump laser pulse first hits the

sample to excite certain physics phenomenon, such as thermal, mechanical,

or magnetic process. Then a probe pulse reflects from the sample surface

after a certain time delay and is collected by the detector. The change of

reflectance of probe pulse is extracted from the signal of photodiode by a

lock-in amplifier. The reflectance change is then interpreted to understand

the underlying physical process.

Generally an optical measurement can suffer from huge noise from the

ambient light. Typically the thermorelectance coefficients are on the order

of 10−5 K-1. The change of reflectance due to acoustic behavior in our mea-

surement is on the order of 10−6 to 10−5. The key technique that the optical

pump-probe system uses to capture such tiny reflectance change is the phase

sensitive detection. Next I briefly describe the concept of phase sensitive

detection.

2.1.1 Phase-sensitive detection

In phase-sensitive detection, we are given the signal V received by the detec-

tor which contains the signal of interest with frequency fs:

V = Vs sin(ωst+ θs) + Vnoise (2.1)

7



where Vs is the amplitude of the signal of interest, θs is the phase, and Vnoise

is the noise signal. The noise can be from many different sources and it is

typically huge and spreads over wide range of frequencies.

In the optical pump-probe systems, the pulsed excitation is modulated

at frequency fs. So the physical processes excited contain the response at

frequency fs (and angular frequency ωs = 2πfs) along with responses at

other frequencies. The behavior of the pulsed excitation and detection will

be discussed in detail later.

A band pass filter centered at fs cannot successfully filter out the signal

of interest. This is because a band-pass filter with extremely narrow band-

width (or extremely high quality factor) is difficult to make. Even if it is

possible, the properties of the devices (such as operational amplifiers) inside

the band-pass filter can vary due to environment, such as temperature. This

can cause the center frequency of the filter to drift which severely affect

performance.

The trick in phase-sensitive detection is to utilize a reference signal:

Vr sin(ωrt+ θr). The reference and the signal are multiplied with each other:

Vpsd = Vs sin(ωst+ θs)Vr sin(ωrt+ θr)

=
1

2
VsVr[cos((ωs − ωr)t+ θs − θr)− cos((ωs + ωr)t+ θs + θr)]

(2.2)

If ωs = ωr, the Vpsd has the DC component of VrVs cos(θs − θr). If Vpsd goes

through a low pass filter, which is easier to make and much more stable than

a narrow band-pass filter, the DC component left is:

Vpsd =
1

2
VrVs cos(θs − θr) (2.3)

which is proportional to Vs. For the noise and responses that are far away

from the reference frequency fr, their contribution after multiplication doesn’t

have DC components and they are completely removed by the low pass filter.

In practice, a second PSD signal is obtained by multiplying signal with

reference shifted by π/2, i.e., Vr sin(ωrt+θr+π/2). The low pass filter output

is

Vpsd2 =
1

2
VrVs sin(θs − θr) (2.4)

The purpose of the second PSD signal is to help remove the phase depen-
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dence. By setting the amplitude of reference to be 1, two output are obtained

from the lock-in amplifier: X = Vs cos(∆θ) and Y = Vs sin(∆θ), where ∆θ

is the phase difference between the signal and reference. X is called the in-

phase signal and Y is called the out-of-phase signal. Vs can be calculated:

Vs =
√
X2 + Y 2.

If eiωt is considered as a Fourier kernel rather than cos(ωt) or sin(ωt) in

the Fourier transform, the lock-in amplifier can also be viewed as a Fourier

transform machine that can output the Fourier components where the ref-

erence is at. In Fourier transform, the “reference signal” is eiωt. In lock-in

amplifier, if the reference signal is set to be in-phase with eiωt, then the in-

phase signal is the real part of the Fourier transform at frequency fr; the

out-of-phase signal is the imaginary part of the Fourier transform at fre-

quency fr.

In practice, the reference signal used is typically not sine wave, since

it is relatively difficult to generate a perfect sine wave in digital circuits. A

square wave with 50% duty cycle is usually used as the reference signal, which

contains multiple frequency components at fr, 3fr, 5fr, etc. In this case if

only the physical response at frequency fr is desired, the higher harmonic

components in the signal should be filtered out before the signal entering

the lock-in amplifier. Because lock-in amplifier is not capable of removing

frequency components that the reference signal also contains. In the optical

pump-probe system, a reference signal of square wave (fr ≈ 10 MHz in our

systems) is generated by a function generator and feeds into both the lock-

in amplifier and electro-optic modulator (EOM). The EOM modulates the

pump pulses so the excitation has the fr component (and also 3fr, 5fr, etc.),

which makes the response also contain the fr component (and 3fr, 5fr, etc.).

The reflected probe beam is collected by the photodiode and fed into the lock-

in amplifier after going through a resonance filter centered at fr. The lock-in

amplifier picks out the response at frequency fr and output both in-phase and

out-of-phase signals, comparing the phase of the signal with the reference.

This is the basic interpretation of the in-phase signal (Vin) and out-of-phase

signal (Vout) in our pump-probe systems. The physical interpretation of the

Vin and Vout in the measurement is more complicated and is discussed in

Sec. 2.1.3.
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2.1.2 Setup of optical pump-probe system

The optical pump-probe system has been developed in the past decades to

become the time domain thermoreflectance (TDTR) technique, which is one

of the best way to measure thermal properties of material. TDTR has been

the workhorse in Cahill group and I have been using the system for all the

acoustic measurements. The signal I collect is not the thermoreflectance but

the reflectance change due to acoustic phenomena.

The schematic of the optical pump-probe system I used can be found

in Fig. 2.1. The light source is a ≈ 80 MHz mode-locked Ti:sapphire laser

centered at wavelength of ≈ 785 nm. Every ≈ 12.5 ns, a laser pulse of

a few hundreds of femtosecond is emitted from the laser source, and the

laser pulse is separated by a polarizing beam splitter into a pump pulse and

probe pulse. The polarization of pump and probe pulse is perpendicular to

each other. The pump pulse then passes through an electro-optic modulator

(EOM) at ≈ 10 MHz, and a delay stage to change the length of optical

path of the pump beam, and finally focused on the sample surface by an

objective lens. The path of probe pulses is different. The probe pulses go

through a chopper modulated at 200 Hz before the probe pulses are focused

on the sample surface by the same objective lens. During measurements,

the length of the optical path of pump beam is changed by the delay stage,

which introduces a time delay between the arriving time of pump pulse and

the corresponding probe pulse at the sample surface. This time window is

limited by the length of the delay stage and is about 4 ns in our current

setup.

In our setup the pump and probe pulses are at normal incidence and

their paths are overlapped with each other. This is very convenient for the

setup and alignment. But in this geometry the pump pulse can be reflected

back into the photodiode. This part of pump pulse is the noise that cannot

be removed by the lock-in amplifier. There are two designs in the system

to remove the reflected pump pulse from final signal. First the pump-probe

system employs the two-tint feature, which means that pump and probe

pulses have slightly different wavelength and a sharp edge filter is used to

remove majority of the reflected pump beam. Second design is the addition

of a chopper on the probe path operating at 200 Hz. The chopper introduces

≈ 200 Hz frequency to the physical responses of interest. The in-phase and
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out-of-phase signal from the physical lock-in amplifier are next processed by a

computer lock-in amplifier with the reference frequency same as the chopper

frequency, which is read by a sensor located at the chopper.

One important feature in the measurements of optical pump-probe sys-

tems is the accumulation effect. In the thermal analysis, the accumulation

effect is related with the fact that the thermal process can last longer than

12.5 ns. The thermal responses corresponding to each pump pulse accu-

mulate with each other in time domain. Accumulation effect in thermal

measurement mostly affect the out-of-phase signal. It was indeed the under-

standing and utilization of the out-of-phase signal that greatly improved the

capability of TDTR in thermal measurement. A good picture is made by

Aaron Schmidt [22] to describe the accumulation effect in TDTR (although

the figure does not plot the accumulation effect quite correctly). The math-

ematical treatment can be found in the theory of TDTR by Cahill [23]. In

acoustic measurement, the accumulation effect also exists but in a clearer

form as I describe later in Chapter 6.

2.1.3 Pulsed excitation and detection in the frequency domain

The nature of pulsed excitation with modulation complicates the measure-

ment scheme. Although the final signal is plotted in the time domain (delay

time between pump and probe pulse), the measurement cannot be viewed

as simple time domain measurement. This section does not try to cover the

whole idea behind the experimental scheme in frequency domain but only

discusses the application in optical pump-probe systems, in order to deepen

the understanding of the application of optical pump-probe systems in the

measurements of mechanical oscillations.

I would like to introduce the concept of “excitation and response” or

more specifically the linear response to an excitation. This is used again in

Chapter 3. In my understanding, “response” is a way to view any physical

process. In this point of view, a physical process is composed of three compo-

nents: the excitation, the response function, and the response. A particular

excitation generates a particular response through the response function.

The excitation is applied to the system in experiments. The response func-

tion contains all the underlying physics. The response is observed/measured
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in experiments corresponding to the particular excitation. The advantage

of considering physics problem from this point of view is that the problem

can be first understood/solved under simple excitation and solutions to more

complicated cases can be constructed based on the solutions of simple cases.

based on the response theory. A simple excitation can be a plain wave excita-

tion, because it usually leads to very simple solution of the partial differential

equations; it can also be a delta function, because a delta function (in time

domain or spatial domain) contains all the Fourier components (in frequency

or spatial frequency domain).

A necessary theorem involved is the convolution theorem, which states

that the Fourier transform of a convolution of product in one domain (for

example, time domain) equals point-wise multiplication in the Fourier trans-

form domain (for example, frequency domain):

F [f ∗ g] = F [f ]F [g] (2.5)

where ∗ represents convolution and F represents Fourier transform.

In optical pump-probe method with pulsed laser, a single pulse can be

viewed as delta function since the length of one pump pulse (a few hundreds

fs) is assumed much shorter comparing with the physics process under in-

vestigation. The total excitation of the pump pulse train is a Dirac comb,

i.e. a periodic delta function, with frequency f0. In frequency domain the

excitation is also a Dirac Comb contain frequencies components: ... −2f0,

−f0, 0, f0, 2f0, 3f0, ... : ∑
n

δ(ω − nω0) (2.6)

where ω0 = 2πf0. If the response of the system is G(t) (in time domain) or

g(ω) (in frequency domain) with respect to a delta excitation, the responses

subject to an excitation of Dirac comb is the convolution between Direct

comb and G(t) at time domain and product between Direct comb and g(ω)

in frequency domain.

The probe pulse train, which is the same pulse train as the pump with a

time delay (which introduce a phase difference between the two in frequency

domain), measures the response. The measured signal is the product between

the probe and the response in the time domain. The measured signal can

also be calculated as the convolution between the probe and the responses
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in the frequency domain. The convolution in the frequency domain basically

makes sure that probe can collect all the responses excited by the pump pulse

train.

For thermal process, the thermal responses can be at any frequency. The

analysis of the measurement scheme of thermal measurement (i.e., TDTR

analysis) can be found in Ref. [23]. For mechanical oscillation, the situation

is slightly different. For a particular oscillation system, the response in fre-

quency domain is centered at one inherent frequency, which is determined by

the mechanical properties of the system. The width of the response in fre-

quency domain represents the quality factor Q of the mechanical oscillation.

Higher quality factor Q indicates narrow response of high peak amplitude

and low damping of the oscillation. In excitation, the Dirac comb of pump

excitation multiplies with this response in frequency domain. If the response

is very narrow, the excited responses can possibly be far away from the res-

onance frequency. This can be seen from the Fig. 2.2. In reality, there is

always damping in the mechanical system so the response always has finite

width. The damping can be from any energy loss mechanism or can be sim-

ply from the fact that the acoustic wave propagates out of the measurement

area.

If the laser frequency can be tuned so that the excitation can sweep

the response at frequency domain, the response function can be plotted in

frequency domain and the quality factor can be measured. I have tried this

in the past. But for various reasons I didn’t obtain useful results.

2.2 Longitudinal acoustic echo measurement

One of the success at the early stage of the development of optical pump-

probe system is the technique named by H. Maris and J. Tauc et al. as the

“picosecond ultrasonic” techniques [24]. Before people figured out how to

effectively analyze the thermal signal, one direct observation is the acoustic

signal appeared in the reflectance change. The advantage of the technique is

its convenience and versatility. It can be used to measure elastic constants,

film thickness, and acoustic attenuation. This technique was later commer-

cialized and is utilized now in the “MetaPULSE” system made by Rudolph

Technology. It is widely used, especially in the semiconductor industry, as
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a very convenient technique for thickness measurements for opaque layers

or multilayer. I refer to this technique as the longitudinal acoustic echo

measurement in order to distinguish it from the other SAW measurements.

2.2.1 Measurement techniques

The concept of the longitudinal acoustic echo measurement is very straight-

forward and the schematic is shown in Fig. 2.3. In the measurement, if the

top film or film of interest cannot absorb the laser effectively, a thin metal

film is deposit on the top. We usually use Al. In the optical pump-probe

measurement, a pump pulse first hits the sample surface. The pump pulse

is partially absorbed by the top metal layer, assuming Al. Then the tem-

perature of Al layer increases and causes thermal expansion within Al. The

thermal expansion causes strain and further generates a longitudinal acous-

tic wave. The longitudinal acoustic propagates downward into the structure

(not upward into air due to the huge impedance mismatch between metal and

air). During the propagation, part of the the longitudinal acoustic wave can

be reflected by every interface and propagates toward surface. The strength

of the reflected echo is determined by the acoustic impedance mismatch at

each interface. After the reflected echo reaches the top surface, it can be

measured by the probe beam in the time domain. Note that in our setup the

pump and probe beam are overlapped on the sample surface, which is not

shown in Fig. 2.3.

Fig. 2.4 shows a typical longitudinal acoustic echo signal corresponding

to the sample structure in Fig. 2.3. If one can identify each echo and assign it

to an interface, the travelling time tl of the longitudinal acoustic wave within

each layer can be calculated. So if the film thickness h is known, one can

calculate the velocity of longitudinal acoustic wave by vl = 2h/tl and further

calculate the corresponding elastic constant by cl = ρv2
l given the density of

the film ρ. On the other hand, if the velocity of longitudinal acoustic wave vl

is known, one can obtain the film thickness h = vltl/2. As mentioned before,

this technique is used mostly in industry to measure film thickness of opaque

films. During my work, this technique is used extensively to measure the

longitudinal elastic constant of thin films.

The longitudinal acoustic echo technique has been further used in other
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studies such as attenuation measurement [25], etc. I won’t describe the detail

of these studies.

2.2.2 Detection mechanism in longitudinal acoustic echo
measurement

It’s important to understand the generation and detection mechanism of the

physical process measured by pump-probe system in order to improve and

develop techniques. In longitudinal acoustic echo measurement, the longi-

tudinal acoustic wave is excited by the strain caused by thermal expansion.

In detection, the optical pump-probe technique measures the change of re-

flectance of the probe pulse. Generally speaking, two kinds of mechanisms

can contribute to the change of reflectance. The first one is the change of the

refractive index; the second kind is any phenomenon of interference, diffrac-

tion, or scattering.

In longitudinal acoustic echo measurement, the detection mechanism

is mostly from the piezooptic effect. The piezooptic effect, similar to the

piezoelectric effect, is the change of refractive index due to the strain applied

to the material. The reflected acoustic echo can certainly cause (mostly

perpendicular) displacement of the top surface. This bump on the surface

can scatter the probe beam. However in the typical setup the scattered

light can still be collected by the objective length and reflected back to the

photodiode, since detector has relatively large area and the deflection angle

is very small. So this surface displacement cannot contribute to the change of

reflectance in a typical pump-probe setup. More designs are needed in order

to be sensitive to the surface displacement, for example, the beam deflection

measurement. The SAW measurement introduced in Chapter 4 is sensitive

to the phase change due to the perpendicular surface displacement.

Since the detection is mostly from piezooptic effect, the materials with

smaller piezooptic coefficient have weaker detection signal. For example, the

standard longitudinal acoustic echo technique cannot be used for Au film.

To measure acoustic echo in Au film, the scattering of probe beam caused by

the small displacement is utilized. An aperture or blade can be put in front

of the photodiode to block part of the reflected probe that is scattered by

the bump at the surface.
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We will see later that for different acoustic behavior, the detection

mechanism may very well be different. A good understanding of the detection

mechanism is helpful to develop and improve the measurement techniques.

2.3 Nano-imprint lithography

As mentioned in Sec. 1.2, SAW can be generated and measured optically

using a patterned metal grating. A major restriction to this technique is the

nano-fabrication process. As is discussed in Chapter 6, the SAW technique

using metal grating is necessary in the attenuation measurement. The feature

size of metal bar is a ≈ 300 nm which is too small for the photolithography

capability on our campus. So I am in need of a nano-fabrication method,

that is capable of making feature size of a few hundred nanometer and also

convenient and have high throughput and large pattern area.

After many literature search and trials/experiments, I learned the hard

truth: it is very difficult to reproduce a non-standard or an advanced nano-

fabrication technique by just reading journal papers. But I was fortunate to

be able to learn the nano-imprint lithography from Li Gao, a former member

in Professor J. A. Rogers’ group. After some tuning and refinement, I was

able to successfully fabricate the required grating patterns. In this section,

I describe all the details in this nano-fabrication technique and hopefully

people who want to use it again would have a better experience than I did.

The nano-imprint lithography is a kind of soft-lithography [26]. The

main idea behind it is to define the nano-structure by deforming the soft

resist using a hard stamp. The commonly used hard stamp is a silicon mold

with desired feature. The commonly used soft resist is a certain kind of

PMMA. This “imprint” process typically requires external pressure on the

level of kPa or even MPa, using a special instrument to apply the external

pressure. This external pressure is one of the major disadvantages, because

it’s difficult to apply a homogeneous/proper pressure and it could damage

the hard stamp.

The nano-imprint lithography I describe here [27, 26] deviates from the

standard imprint lithography. To my understanding, the key is to use a kind

of SU8 monomer as the soft resist. This SU8 monomer has a workable 95 °C

glass transition temperature. And it has low enough viscosity so that it can
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be deformed easily without any external pressure when the temperature is

beyond the glass transition temperature. The full name of the resist monomer

in solid form is: Hexion EPON Resin SU-8 (Also known as EPIKOTE 157),

Bisphenol A novolac Epoxy Resin 28906-96-9. To make the solution of resist,

the monomer solid is dissolved in cyclopentanone (29770-1L Fluka Analytical

> 99.0%, C5H8O). The viscosity of the SU8 solution is determined by the

concentration. It’s very important to tune the viscosity to the proper level

to have the proper thickness of the resist. The concentration I use in the end

is 6% by weight.

With a resist that is very easy to work with, there are many options for

the stamp. The stamp I use is made of polydimethylsiloxane (PDMS), with

a layer of stiffer PDMS (hard-PDMS) on the grating side of the stamp. This

so-called “hard-PDMS” is made by first mixing of 3.4 g trimethylsiloxytermi-

nated vinylmethylsiloxane-dimethylsiloxane (VDT-731, Gelest) with 2 drops

of 1,3,5,7-Tetravinyl-1,3,5,7-Tetramethylcyclotetrasiloxane (SIT 7900.0, Gelest)

and 1 drop of Platinum-divinyltetramethyl-disiloxane comple in xylene (SIP

6831.2). Mix them for 2 minutes and then add 1 g of methylhydrosiloxane-

dimethylsiloxane (HMS-301, Gelest) copolymers [28], mixing for another 2

minutes. Then the mixer is cast on the surface a commercial silicon grating

mold (LightSmyth Technology) with the desired feature. Everything is now

placed in a plastic petri dish. The hard PDMS typically cannot wet the Si

master very well. One can try to evenly distribute it by blowing N2 on it.

In practice I found the hard PDMS can wet an old Si master that have been

used many times much better than a new Si master. There will be a lot

of bubbles in the solutions. So the petri dish is placed inside a desiccator

connected with a pump to degas. After any obvious bubbles are gone, the

petri dish is placed inside an oven at 80°C for about 6 mins to cure the hard

PDMS. The hard PDMS is cured very fast comparing with the conventional

PDMS. After curing, one can test the property of the hard PDMS using the

part that is not on the stamp. It’s not rubber like and very brittle. The

thickness of the hard PDMS layer is about 1 mm or less.

Then the conventional PDMS (Sylgard 184, Dow Corning) is cast on

top of everything. The conventional PDMS forms the majority of the stamp

so that it is easy to handle. I usually place a very thick layer (> 1 cm)

of PDMS on top. The recipe of the conventional PDMS is the typical 10:1

ratio of polymer and curing agent by weight. After mixing there are a lot
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of bubbles. The conventional PDMS is degassed again inside a desiccator

under vacuum until all obvious bubbles are gone. Then the whole petri dish

is placed in the oven at 80°C. After curing (at least 2 hours), the stamp is

peeled off from the Si master. Then its backside is immediately attached to

a new and clean glass slide. The clean surface of the newly made PDMS can

attach to the glass slide very well. It won’t fall off unless it is intentionally

peeled off. The purpose of the glass slide is again for the easy handle of the

stamp. One no longer needs to touch the PDMS part but can just work with

the large glass slide either with hand or tweezer. This stamp is now ready

to be used in nano-imprint lithography. Fig. 2.7 is a picture of one PDMS

stamp I made.

A thin Al layer (∼ 15 nm) is first sputtered onto the sample surface. To

prepare the sample for nano-imprint lithography, I spin coat (2000 rpm for

30 s) SU-8 monomer solution prepared before on top of the Al film, followed

by curing at 65 °C for 1 min and 95 °C for 1 min successively on a hot plate.

The glass transition temperature of the SU-8 monomer film is ≈ 95 °C. Then

the PDMS stamp is placed on top of the sample, on a 95 °C hot plate. The

weight of the stamp is sufficient to press the stamp into the resist; i.e., no

external force is needed. After ≈ 1 min, the sample is taken off the hot plate

and cooled to room temperature. In the end the stamp is peeled off and the

SU8 layer is deformed with the desired structure.

I then use reactive ion etching (RIE) to remove the thin SU-8 regions and

expose the Al underneath without etching through the thick SU-8 regions.

The RIE tool parameters are an oxygen pressure of 100 mTorr, rf power

of 100 W, and 20 s etching time. However the parameter can vary due to

different RIE tool and different environment such as temperature. So the

RIE condition needs to be tuned. In RIE, the etching process includes both

chemical etching and physical etching. The physical etching has a preferred

etching direction, i.e. it etches mostly in the direction perpendicular to the

surface. But the chemical etching is isotropic. It will also make the remaining

SU8 pillar narrower. The chemical etching is always inevitable. The width

of remaining SU8 directly affects the filling factor, i.e. the ratio between the

width of metal bars and the periodicity of grating, of the final grating feature.

As will be discussed in Chapter 6, the filling factor is an important parameter

to control. It’s usually preferable to have a relatively wide remaining SU8,

since one can always make it narrower with longer RIE etching time. One

18



trick is to choose the Si master with wider intrusion region (I use close to

55%) so the SU8 feature, which has the same geometry (inverse of PDMS

stamp) of Si master, inherently has wider protrusion part. Another trick is

to make the thin part of SU8 pattern as thin as possible so it only require

very short (a few tens of seconds) to etch away all the thin part of SU8.

To achieve this, one needs to tune the concentration of SU8 solution which

changes the viscosity and the thickness of the spin-cast film. Usually it’s

more effective to change the viscosity than the parameter in spin coating to

change the resulting film thickness. A change in viscosity can also affect how

much SU8 can be pushed away by the stamp during the imprint. They can

all affect the final thickness of the thin region of SU8. The concentration

cannot be too low either, or the result of imprint won’t be homogeneous.

Fig. 2.5 is the SEM image of after the RIE. The darker region is the SU8;

the brighter part is the exposed Al.

The exposed Al is then chemically etched (Al etchant D, Transene) at

room temperature for approximately 100 s. Finally the remaining SU-8 is

removed using RIE (100 mTorr oxygen, 400 W rf power, 5 mins). The filling

factor can also be tuned by controlling the time of Al wet etching. Al grating

with 50% and 35% filling factor have been fabricated in my experiment.

Fig. 2.6 is the SEM figure of the final grating structure.
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2.4 Figures

Figure 2.1: The schematic of optical pump-probe setup used in the exper-

iments. The laser is separated into pump and probe by a polarizing beam

spliter (PBS). The pump beam goes through the long pass filter, EOM, de-

lay stage, and is focused on sample surface by objective lens. The probe

beam goes through a chopper (not shown), short pass filter, and is focused

on sample by the same objective lens. The probe beam is then reflected by

the sample into the Si photodiode. The signal of Si photodiode is fed into a

RF lock-in amplifier.
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Figure 2.2: Schematic of the excitation of pump pulses in frequency do-
main. (a) the blue line represents the response of a thermal system which
spans over all frequencies. The response components that are excited are the
components overlapped with the periodic delta function. (b) the blue line
represents the response of a mechanical oscillation system which centred at
a particular frequency. The responses of system B excited by pump beams
are small.
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Figure 2.3: Schematic of the longitudinal acoustic echo measurement. In the
measurement, pump and probe beams are overlapped, unlike what looks like
in the figure. It is presented in this way for clarity.

Figure 2.4: The typical signal in the longitudinal acoustic echo measurement.
The echos are assigned to each interfaces
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Figure 2.5: SEM image of the sample after RIE of the region with thin SU8.
The bright region is the exposed Al. The dark region is the remaining SU8.

Figure 2.6: SEM image of the final Al grating pattern. The bright region is
Al. The dark region is exposed Si substrate.
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Figure 2.7: The hard PDMS stamp I use in nano-imprint lithography. The
glass slide is for easy handling. The bottom of the stamp is cut to be larger
than the top side intentionally, for identification as well as easy handling.
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Figure 2.8: Process flow diagram for the fabrication of Al gratings using
nano-imprint lithography.
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CHAPTER 3

THEORY AND CALCULATION OF
SURFACE ACOUSTIC WAVE AND ITS

IMPLEMENTATION

Although longitudinal and shear bulk acoustic wave is relatively easy for peo-

ple to understand and picture in mind, the concept of SAW is not straight-

forward and intuitive, as mentioned in the introduction. I think this is partly

because SAW is a complicated combination of different acoustic eigenmodes.

It differs from any bulk acoustic wave we are familiar with and it also differs

from the water surface waves that are common in daily life.

For SAW to be used as a quantitative measurement technique, a full

and detailed understanding of SAW properties are needed, such as its veloc-

ity, motion, stress distribution, strain distribution, and energy. A rigorous

mathematical treatment of the problem is necessary. Surprisingly, I didn’t

find a easy-to-use and complete calculation software to calculate SAW of a

multilayer structure composed of anisotropic materials. A finite element cal-

culation is not convenient and have limited help to physical understandings.

In this chapter, I lay out the details of the mathematical derivations involved

in SAW and my implementation of the calculation. The calculation method

can also be used in calculations of various other acoustic modes. The purpose

is to help anyone who wants to have a deep understanding of SAW and wants

to modify or improve my implementation of calculation.

The theory in this chapter and later in Chapter 7 involves a lot of

computation between vectors and tensors. In these derivations, I typically use

i, j, k, ... to represent the Cartesian coordinates 1, 2, and 3, unless specified

otherwise. I use the form of xi to represent a vector, xij to represent a second

order tensor, and so on (they can also be regarded as individual component

with no confusion). The arithmetic between vectors and tensors will be

written in the form like xi = Fijaj and the Einstein summation notation is

always implied, i.e., summation over all the values of the repeated index.

From my personal experience, the linear algebra involved in the the-

ory can be challenging initially, for example the fourth rank tensor elastic
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constant: cijkl. It may not be necessary to assign everything a physically

meaning immediately. Some concept can be initially treated just as a set

of parameters from the point of view of mathematics. And as the deriva-

tion proceeds, the physically meaning can manifest itself later. As for the

difficulties of the math involved, I will have to quote John von Neumann’s

response to Felix Smith: “Young man, in mathematics you don’t understand

things. You just get used to them.” So after writing down these equations

and derivations again and again, I finally felt like I understood them.

3.1 Solid mechanics and bulk acoustics wave

Continuum mechanics or solid mechanics is very wide subject that is studied

by people in areas of mechanics, civil engineering, and materials science, to

only name a few. People in different area of expertises have different focus

and can often use different names and descriptions for the same concept.

Because of this, it’s difficult to find one book that is perfect for the scope

of this study. It’s not in the purpose of this section to give the reader a

complete review of the subject of solid mechanics. I only want to summarize

and even simplify (based on my understanding) the necessary concept that

is needed for the calculation of SAW, in order to help people who don’t want

to or don’t have the time to delve into the huge books of solid mechanics.

In Chapter 7, I revisit some of the same concepts from a slightly different

point of view in order to understand the theory behind the third order elastic

constants.

I start from the concept of stress and strain. For a continuum, the

material within can be subject to two kinds of force, body force and traction.

Consider a small region P with boundary D inside the solid, the body force

acts at each point of the interior of P , which is force per unit volume. The

traction acts on the boundary D and has the unit of force per unit area. A

very common body force is the gravity.

If the body force is homogeneous across the whole solids, like gravity,

it can be omitted, since we are interested in the relative motion of particles

within the solids. We are more interested in the force applied on a certain

plane within the solid. The way to describe the traction is to use the stress

tensor σij, where i, j = 1, 2, 3 are the Cartesian coordinates. The stress
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tensor is constructed so that the traction Ti applied on a material plane with

normal vector nj can be calculated as:

Ti = njσij (3.1)

which is sometimes called the Cauchy’s Theorem. σij is also called the

Cauchy stress tensor, to distinguish with the other stress tensors that are

introduced in Chapter 7. σij is a 3 × 3 tensor. The physical meaning of σij

is that its the stress acting on the plane perpendicular to axis i and pointing

at direction j. A very important property of σij is it’s symmetric σij = σji.

The real symmetric tensor σij can always be diagonalized and the diago-

nals are the principle stresses. The principle stresses are very important in

many different analysis but not in the current case. The symmetric prop-

erty in stress tensor helps the simplification of stress-strain relation which is

described shortly.

Strain describes the change of the length of a certain material compo-

nent under deformation. In acoustic wave, the deformation of the material

is very small. Under this condition, the strain ηij can be defined as:

ηij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.2)

where ui is the displacement vector of the particle in solid which is very

small, and xi is the Cartesian coordinate. Here ηij is also a 3 × 3 tensor

and sometimes called the Lagrangian strain tensor. The full derivation of

Lagrangian tensor is introduced in Chapter 7. Here the acoustic wave under

discussion is within a undeformed material and the above definition is enough

for the strain generated by the acoustic wave. It is obvious from the definition

that the strain tensor is also symmetric.

Since the deformation in acoustic wave is very small, the material is

assumed to be always in the elastic regime, i.e. the stress is linear with respect

to the deformation which is the famous Hook’s Law. This set of coefficients is

the second order elastic constants. Notice that this set of coefficients connects

two 3 × 3 tensor. So the coefficient needs to be a 3 × 3 × 3 × 3 tensor to

establish the linear relationship:

σij = cijklηkl (3.3)
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The inverse relationship is captured by the compliance tensor sijkl which is

the inverse of the cijkl. Compliance tensor can be convenience and useful in

some stress-strain experiments. But it won’t be used and discussed in the

current context.

The full fourth-rank tensor cijkl contains 81 components. After con-

sidering the symmetry in ηij and σij, it can be shown that cijkl contain the

following symmetry:

cijkl = cijlk = cjikl = cjilk = cklij = ...

This can lead to great simplification in the notation. A most commonly used

notation is to convert the index:

11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, 12→ 6.

This conversion is not intuitive and I wrote it down on a sticky note and stuck

it on the wall right besides me in my first two years. This index conversion

is applied to stress, strain, and elastic constant to write down the Hooke’s

Law in a simplified manner:

σm = cmnηn, m, n = 1, 2, 3, 4, 5, 6 (3.4)

There is an subtle but important point involved in the conversion: both stress

and elastic constant can be converted directly as σij → σn and cijkl → cmn

based on the conversion rule above; but for strain the conversion is slightly

different: ηii → ηn and ηij → 0.5ηn for i 6= j. The extra coefficient in

components of shear strain is from the direct comparison between the original

equation and simplified equation. ηm with m = 1...6 is called the engineering

strain. The difference in shear components between Lagrangian strain and

engineering strain needs extra attention. Although through the thesis cmn

is commonly used, I only use Cauchy stress σij and Lagrangian strain ηij to

avoid any potential confusion and mistakes.

The simplified elastic constant tensor cmn has 36 components. Since

it is also symmetric, it only has 21 independent element. It can be further

simplified using the symmetry of crystal lattice. For isotropic crystal, there

are only two independent elastic constants c11 and c44; for cubic crystal, there

are three independent elastic constants c11, c12, and c44; for hexagonal crystal,

29



there are five independent elastic constants c11, c12, c13, c33, and c44. The

following is the elastic constant cij of a isotropic crystal and cubic crystal:

cij =



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44


The difference is that in isotropic crystal, there exists the relation: c44 =

(c11 − c12)/2. But this relationship no longer holds in cubic crystal.

To obtain the equation of motion of bulk acoustic waves, we consider the

variation of stress across an infinitesimal parallelepiped with its three edge

parallel to the Cartesian coordinates axes. The motion of this infinitesimal

material element is determined by the net force applied on it, which is the

summation of all stress on the boundaries. For example, the force acting in

the x1 direction is:

(σ11 +
∂σ11

∂x1

dx1) dx2 dx3 − σ11 dx2 dx3 + (σ12 +
∂σ12

∂x2

dx2) dx1 dx3 − σ12 dx1 dx3

+(σ11 +
∂σ11

∂x1

) dx2 dx3 − σ11 dx2 dx3 = (
∂σ11

∂x1

+
∂σ12

∂x2

+
∂σ13

∂x3

) dx1 dx2 dx3

(3.5)

According to the Newton’s second law, one can write down the equation of

motion:

ρ
∂2ui
∂t2

=
∂σij
∂xj

(3.6)

Utilizing Hooke’s Law and the relationship between Lagrangian strain and

displacement, we convert the equation of motion to be:

ρ
∂2ui
∂t2

= cijkl
∂ηkl
∂xj

= cijkl
∂2uk
∂xl∂xj

(3.7)

Now the equation of motion becomes a partial differential equation about

the displacement of the particles which is exactly what we want.

To solve this partial differential equation without any boundary condi-

tion, we can find the plane wave solution, or the general solution by assuming
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Table 3.1: Velocity of bulk acoustic wave at high symmetry direction in cubic
crystal

Mode parameter c
〈100〉 Transverse c = c44

〈100〉 Longitudinal c = c11

〈111〉 Transverse c = 1
3
(c11 − c12 + c44)

〈111〉 Longitudinal c = 1
3
(c11 + 2c12 + 4c44)

〈110〉 Transverse,polarization 〈001〉 c = c44

〈110〉 Transverse,polarization 〈11̄0〉 c = 1
2
(c11 − c12)

〈110〉 Longitudinal c = 1
2
(c11 + c12 + 2c44)

ui = Ui exp[i(kjxj − ωt)], where Ui is the amplitude of the wave (assuming

unit length), kj is the wave vector and ω is the angular frequency of the

wave. By inserting the plane wave solution back to the equation of motion,

one reaches the famous Christoffel equation:

(cijklkjkl − ρω2δik)Uk = 0 (3.8)

The physical meaning of the Christoffel equation is: for wave with wave

vector ki, which specifies both wavelength and direction, the angular fre-

quency of the acoustic wave is ω and ρω2 is the eigenvalue of the Cristoffel

matrix Γik ≡ cijklkjkl. Since Γij is a 3×3 tensor, it has three eigenvalues cor-

responding to three acoustic modes at certain direction. The three acoustic

modes contain one quasi-longitudinal wave and two quasi-transverse acoustic

wave. The reason that they are “quasi” is because in general the amplitude of

the wave may not have pure longitudinal or transverse relation with respect

to the propagation direction. For crystal with high symmetry, at certain high

symmetry directions, the Christoffel equation becomes simple and the speed

of sound at these directions can be easily calculated. These relationships can

be convenient if remembered or documented. Here I list the speed of sound

at high symmetry directions in cubic crystal with three independent elastic

constants c11, c12, and c44. The velocity of acoustic waves can be written in

the form of v =
√
c/ρ where c is a certain combination of elastic constants

and ρ is the density. c of cubic crystal at certain high symmetry direction

can be found in the Table. 3.1:

For isotropic material, one can replace (c11−c12)/2 by c44 and Table 3.1

can be used for isotropic material. Table 3.1 also assigns physical meanings

31



to the elastic constants in the sense that it conjugate elastic constants with

acoustic mode. For example, c11 corresponds to the bulk acoustic wave so

it can be viewed as the longitudinal elastic constant; c44 and (c11 − c12)/2

correspond to transverse acoustic wave and they can be viewed as shear

elastic constant. Actually (c11− c12)/2 of a cubic crystal has a specific name

which is the tetragonal shear elastic constant. In isotropic material, c44 =

(c11 − c12)/2. The difference between c44 and (c11 − c12)/2 can be viewed

as a parameter representing the degree of anisotropy of cubic crystals. r =

2c44/(c11−c12) can be defined as the anisotropy of cubic crystal. When r = 1,

it is isotropic. The material is more anisotropic as r deviates more from 1.

The relationship between elastic constants cmn and speed of sound like

Table. 3.1 is also the reason that in acoustic community people prefer to use

elastic constants instead of compliance matrix smn and other parameters like

Young’s modulus and Poisson’s ratio.

3.2 Calculation of surface acoustic wave of half-space

using Green’s function method

From a general point of view, there is nothing special about SAW in the

sense that, just like bulk acoustic wave, SAW is the motion of solid and it

is still governed by the equation of motion Eq. 3.7. But SAW is no longer

a general solution to the partial differential equation Eq. 3.7 but a special

solution because (at least) one boundary condition is applied: the free sur-

face. So solving SAW becomes a typical problem of solving partial differential

equations with boundary conditions.

Unfortunately, there is no analytical solution to the SAW like the so-

lutions the bulk acoustic wave in Table. 3.1. Even for the easiest case, the

isotropic material, one can at best reach to a non-linear equation. So nu-

merical solution is absolutely necessary. This fact possibly posed difficulties

for early researchers who studied SAW initially. Powerful computers and

algorithms weren’t available at that time.

Although we have much more powerful computers now, we still need

to pay attention to the difficulties from the fact that this is in the end a

numerical solution. As discussed later, since the free boundary condition

means no stress on the surface, in the end a numerical problem appears:
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what is numerically zero in the calculation? This is especially problematic

when the structure is complicated (layered), and multiple modes can exist.

Then it’s hard to distinguish between different modes and make sure that all

solutions are found. For example in the paper by Lim and Farnell [29] about

the “forbidden directions” of SAW in anisotropic crystals, the authors had

to carefully exam all possible solutions and tried to develop a algorithmic

process to successfully find all proper solutions numerically.

This is when the Green’s function method becomes useful. Green’s

function is used in many fields and people may have slightly different defi-

nition of it. Here I briefly summarize how it is used in the current problem

and its physical interpretation.

Mathematically, the Green’s function method means that the bound-

ary conditions are not homogeneous boundary conditions, but have a delta

function at time zero. Physically, I prefer to understand Green’s function

method as a “excitation-response” method, very similar with the response

theory discussed in Chapter 2. The delta function applied initially is the ex-

citation to the system and the solution is the response of the system to this

particular excitation. The delta excitation is usually a delta function in both

time domain and spatial domain. So this excitation is capable of exciting

all possible modes at all frequency and wave vector. Also one can directly

compare the amplitude of the response of each mode to tell whether a mode

is relatively strong or weak comparing with other modes. Another advantage

is that the excitation can be tailored to fit a particular requirement or exper-

imental setup. For example, one can apply excitation only at perpendicular

direction or only at parallel direction by setting the vector components of

the delta boundary condition. One can also put the excitation at an inter-

face instead of a surface to test the possible interface acoustic mode. This

generalization is discussed at the end of this chapter. All these advantages

are possible due to the Green’s function method. It makes the calculation a

much more general and flexible tool.

In this section I describe how to calculate SAW of a half-space. In

the later sections, I describe how to calculate more complicated structure

based on the method presented here. A brief discussion of the use of Green’s

function method to calculate SAW can be found in Ref. [30].
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3.2.1 SAW of half-space

I start with the calculation of a half-space (bare substrate). For any acous-

tic waves, the displacement Ū = [U1, U2, U3] satisfies the equation (adopts

Einstein summation notation):

cijkl
∂2Uk
∂xj∂xl

= ρ
∂2Ui
∂t2

, i, j, k, l = 1, 2, 3 (3.9)

where cijkl is the elastic constant tensor of the half-space, Ui is the displace-

ment at i direction, and ρ is density of substrate.

Again, the first step to solve the partial differential equation is to find

the general solution. Eq. 3.9 admits plane wave solution of:

Ui = Ũiexp[i(k̄ · x̄− ωt)] (3.10)

where Ũi is the unit polarization vector; k̄ = 2πn̄/λ is the wave vector; λ is

the wavelength and n̄ is the wave normal. Putting Eq. 3.10 back to Eq. 3.9

gives the famous Christoffel equation:

ΓikŨk ≡ CijklkjklŨk = ρω2Ũi (3.11)

Γik is defined as the Cristoffel matrix. For the eigenvalue problem of the 3×3

Cristoffel matrix to have solution, k̄ and ω should have the relationship:

det(Γik − ρω2δik) = 0 (3.12)

For SAW with wave vector k‖ = (k1, k2) and propagating on (x1, x2)

plane, the displacement Ui satisfies Eq. 3.9. Ui can be written in Fourier

space of (ω, k̄‖):

Ui(x̄, t) =

∫ ∞
−∞

dk̄‖

∫ ∞
−∞

dω ui(k̄‖, x3, ω)ei(k̄‖·x̄‖−ωt) (3.13)

With given ω and (k1, k2), Eq. 3.12 can be solved to give 6 k
(n)
3 (possible

complex numbers) and 6 corresponding eigenvectors α
(n)
i with the superscript

(n) ranging from 1 to 6. According to linear algebra, they are components

of SAW with ω and (k1, k2). SAW should not have wave components that

come from substrate or with higher energy when deeper into substrate. This
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selection rule eliminates three k
(n)
3 and corresponding α

(n)
i . With the three

solutions left, the Fourier kernel in Eq. 3.13 can be written as:

ui(k̄‖, x3, ω) =
3∑

n=1

A(n)α
(n)
i eik

(n)
3 x3 (3.14)

where A(n) are three coefficients of the linear combination of three wave

components. They are the only unknowns.

The boundary conditions are applied next to solve the coefficients A(n).

The boundary condition at surface x3 = 0 is point excitation:

σl3(x̄‖, x3 = 0, t) = Cl3pq
∂Up(x̄‖, x3 = 0, t)

∂xq
= δl3δ(x̄‖)δ(t) (3.15)

which can be written in Fourier space as:

δl3δ(x̄‖)δ(t) = δl3
1

(2π)2

∫ ∞
−∞

dk̄‖

∫ ∞
−∞

dω ei(k̄‖x̄‖−ωt) (3.16)

Applying Eqs. 3.13, 3.14 and 3.16 into Eq. 3.15, we have:

3∑
n=1

iCl3pqk
(n)
q α(n)

p A(n) = δl3 (3.17a)

k
(n)
1 = k1, k

(n)
2 = k2 (3.17b)

We can define the 3 × 3 matrix B
(n)
l = iCl3pqk

(n)
q α

(n)
p and solve the

equation B
(n)
l A(n) = δl3 to get all three A(n). Putting A(n) back to Eq. 3.14

gives ū(k̄‖, x3, ω). ū(k̄‖, x3 = 0, ω) is the third column (because the excitation

applied here is only at direction 3) of the surface elastodynamic Green’s

function in Fourier space Gij, thus G33 = u3(k̄‖, x3 = 0, ω) is obtained.

G33(k̄‖, x3 = 0, ω) can be mapped in (k‖, ω) space (for one particular k̄‖

direction) and its extreme points define the dispersion curve. For example,

the Fig. 3.1, Fig. 6.4a and Fig. 6.4c are the color maps of G33. Fig. 3.2,

Fig. 3.5 is from the extreme points of G33.
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3.2.2 Surface acoustic wave in crystal with high symmetry
propagating at high symmetry direction

Although there is no analytical solution to the problem, for crystal with

certain symmetry and SAW propagating at certain direction, one can obtain

a non-linear equation. This can be useful in certain cases. I refer interested

readers to Ref. [6, 31].

3.2.3 Example of calculation: Si

I use half-space of Si as an example to demonstrate the result of calcula-

tion described before. These detailed calculation about Si is also used in

Chapter 6.

Consider SAW on the Si (001) plane propagating at different directions.

Fig 3.1 shows the color map of G33 in the Fourier (ω and k‖) space. Fig. 3.2 is

the extreme points read from the color map, which represents the dispersion

curve. From a particular point (ω, k) on the dispersion curve, one can cal-

culate vSAW = ω/k for the particular wavevector k. This calculation is done

for different directions on the (001) plane and Fig 3.3 is obtained. Fig. 3.3

shows that after a certain angle, SAW degenerates into the bulk shear acous-

tic wave and another mode of SAW, the so-called pseudo surface acoustic

wave (PSAW) rises. Farnell [7] discussed this behavior extensively. With the

coefficient of linear combination, stress, strain, and displacement at different

depth can be calculated using the definition and relationship described in

last section. Fig 3.4 shows the strain energy in SAW at different depth. The

figure shows that SAW is mostly a shear wave. The detailed derivation of

strain energy is discussed in Chapter 6.

3.3 Surface acoustic wave of multilayer structure

Calculation of SAW on a half-space is the foundation of further calculations.

From last section, we can see that the calculation at its essence is solving

partial differential equations with boundary conditions. As the problem be-

comes more complicated, the principle and general procedure don’t change:

find the eigenmodes (general solutions, corresponds to bulk acoustic waves)
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of Cristoffel equations; the specific solution to the problem is the linear com-

bination of the general solutions so that it satisfies the specific boundary

conditions. The linear algebraic equations are formulated by the boundary

conditions.

When the structure contains multilayers, material of each layer has

its own Cristoffel equation, eigenmodes, and eigenvectors. The boundary is

no longer just surface, but also each interface between layers. The bound-

ary conditions at each interface are: continuity of stress and continuity of

displacement. Similar to the treatment in last section, stress and strain are

expressed at both side of the boundary and the linear equations are construct

through the continuity.

Consider a layered structure with M layers, with layer M as the sub-

strate and layer 1 as surface layer. The free surface of layer 1 locates at

x3 = 0 and the whole structure exists at the positive side of the x3 axis. The

substrate extends to x3 → +∞. This coordinate system is not natural but

it is convenient for the calculation. Keep in mind that the materials exist at

the positive half of the space. Omission of this can lead to mistakes (as I did

once). Next each boundary condition are considered and the notations are

consistent with last section and everything is written in Fourier space.

3.3.1 Surface located at x3 = 0

At top surface, only layer 1 is relevant, and the boundary condition is similar

to the boundary condition of the half-space case, i.e. continuity of stress with

the delta excitation:

i
6∑

n=1

A(1)(n)C(1)3lpqu(1)(n)
p k(1)(n)

q = δl3 (3.18)

where A(1), C(1), u(1), and k(1) are the coefficient, elastic constants, eigen-

vectors, and wave vectors of layer 1. The top coefficient (n) identifies each

eigensolution of the Cristoffel equation in layer 1. This boundary condi-

tion can be written in the form of dot product between matrix and linear
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coefficient as: Stress(1)Down


3×6

·

 A(1)


6×1

=

 0

0

1


with the matrix Stress(1)Down as C(1)3lpqu(1)

(n)
p k(1)

(n)
q . Note both p and q

are summed over and the index left is l which ranges from 1 to 3, and n which

ranges from 1 to 6. The footnote of each matrix is the size of the matrix.

This matrix form helps the implementation later in MatLab or Python (using

Numpy which is optimized for linear algebraic calculation).

3.3.2 Interface located at x3 = d1 between layer 1 and layer 2

The continuity of stress can be written as:

i
6∑

n=1

A(1)(n)C(1)3lpqu(1)(n)
p k(1)(n)

q exp(ik(1)
(n)
3 d1)

= i
6∑

n=1

A(2)(n)C(2)3lpqu(2)(n)
p k(2)(n)

q exp(ik(2)
(n)
3 d1)

(3.19)

Notice that the difference with the boundary condition at surface is that

the phase term exp(ik3x3) is no longer 1 at finite depth. The continuity of

displacement at direction i can be written as:

6∑
n=1

A(1)(n)u(1)
(n)
i exp(ik(1)

(n)
3 d1) =

6∑
n=1

A(2)(n)u(2)
(n)
i exp(ik(2)

(n)
3 d1)

(3.20)

These two can be written in matrix form as: Stress(1)Up


3×6

·

 A(1)


6×1

=

 Stress(2)Down


3×6

·

 A(2)


6×1 U(1)Up


3×6

·

 A(1)


6×1

=

 U(2)Down


3×6

·

 A(2)


6×1
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3.3.3 Interface located at x3 = dm between layer m and m+ 1

Generalize the equation between layer 1 and 2, one can obtain the matrix

form for interface located at x3 = dm: Stress(α)Up


3×6

·

 A(α)


6×1

=

 Stress(α + 1)Down


3×6

·

 A(α + 1)


6×1 U(α)Up


3×6

·

 A(α)


6×1

=

 U(α + 1)Down


3×6

·

 A(α + 1)


6×1

with:

Stress(α)Up(l,n) = C(α)3lpqu(α)(n)
p exp[ik(α)

(n)
3 dα] (3.21)

Stress(α + 1)Up(l,n) = C(α + 1)3lpqu(α + 1)(n)
p exp[ik(α + 1)

(n)
3 dα] (3.22)

U(α)Up(i,n) = u(α)
(n)
i exp[ik(α)

(n)
3 dα] (3.23)

U(α + 1)Up(i,n) = u(α + 1)
(n)
i exp[ik(α + 1)

(n)
3 dα] (3.24)

3.3.4 Interface located at x3 = dM−1 between layer M − 1 and
substrate layer M

Recall that at substrate layer M , only three eigenvalues and eigenvectors are

picked to form the general solution (This can also be viewed as a kind of

boundary condition). So the last boundary condition can be written as: Stress(M − 1)Up


3×6

·

 A(M − 1)


6×1

=

 Stress(M)Down


3×3

·

 A(M)


3×1 U(M − 1)Up


3×6

·

 A(M − 1)


6×1

=

 U(M)Down


3×3

·

 A(M)


3×1
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3.3.5 Summary

The matrix formation can be simplified by defining:

Down1 = Stress(1)Down(3×6)

UPα =

(
Stress(α)Up

U(α)Up

)
6×6

Downα =

(
Stress(α)Down

U(α)Down

)
6×6

So we can list all the boundary conditions:

UPM−1 · AM−1 = DOWNM · AM

UPM−2 · AM−2 = DOWNM−1 · AM−1

...

UP1 · A1 = DOWN2 · A2

DOWN1 · A1 = (0, 0, 1)T

This is a set of linear algebraic equations and all coefficient Aα can be

solved. With all coefficient, everything about SAW, such as stress, strain,

and energy, can be calculated.

3.4 Surface acoustic wave with thin grating on surface

The existence of thin metal grating complicates the problem by changing

the boundary condition at top surface. It introduces structures that are

potentially impossible to calculate through analytically formulation. That’s

why many of the literatures calculate this case using finite element simulation.

But if an assumption is posed: the metal grating is very thin in the sense

that it only perturb the system as mass loading, an analytically treatment

can be applied. This concept can be found in Ref. [32]. I use the same idea

and applied it in the Green’s function method. I start with the case when

the mass loading is uniform.
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3.4.1 Surface acoustic wave of half-space with uniform mass
loading

Although we can calculate SAW of layered structure rigorously, considering

the cases of uniform mass loading does have its own value. It mimics the situ-

ations when there is small amount of materials (such as molecules) deposited

on the top surface. These materials may not apply stress and deformation

to the substrate but they do pose a mass loading to the system. This is the

cases when SAW devices are used as sensors. My estimation of thickness

of condensation layer [33] uses exactly this calculation. Problem of uniform

mass loading also provides foundation for the calculation of periodic mass

loading.

If there is an uniform layer on top of the substrate, the boundary

condition becomes:

σl3(x‖, x3 = 0, t) = Cl3pq
∂Up(x‖, x3 = 0, t)

∂xq

= δl3δ(x‖)δ(t) + µ
∂2Ul(x‖, x3 = 0, t)

∂t2
(3.25)

Here µ is the mass per unit area. The mass loading term in Fourier space is:

µ
∂2Ul(x‖, x3 = 0, t)

∂t2
=

1

(2π)2

∫ ∞
−∞

dk‖

∫ ∞
−∞

dω ei(k‖x‖−ωt)(−µω2)

×
3∑

n=1

A(n)α
(n)
l eik

(n)
3 (k̄‖,ω)x3 (3.26)

k
(n)
1 = k1, k

(n)
2 = k2, k

(n)
3 = k

(n)
3 (3.27)

So the boundary condition at x3 = 0 is:

δl3 =
3∑

n=1

A(n)iCl3pqα
(n)
p k(n)

q eik
(n)
3 (k̄‖,ω)x3 − (−µω2)

3∑
n=1

A(n)α
(n)
l eik

(n)
3 (k̄‖,ω)x3

=
3∑

n=1

A(n)[iCl3pqα
(n)
p k(n)

q + µω2α
(n)
l ] (3.28)

Using this boundary condition together with solution of Eq. 3.12, A(n) can

be solved.
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3.4.2 SAW of Substrate with Periodic Grating

Similarly, the periodic mass loading from metal grating changes the boundary

condition into:

σl3(x‖, x3 = 0, t) = Cl3pq
∂Up(x‖, x3 = 0, t)

∂xq

= δl3δ(x‖)δ(t) + µ(x‖)
∂2Ul(x‖, x3 = 0, t)

∂t2
(3.29)

If µ(x‖) has a periodic rectangular dependence on position (rectangular

grating), its Fourier transform is:

µ(x‖) =
∞∑

m=−∞

µme
imGx‖ , |Ḡ| = 2π

λ
Ḡ = (g1, g2) (3.30)

where λ is the periodicity of the grating. When µ(x) is involved in boundary

conditions, it causes the mixing between components ui(k‖+nG, x3, ω), with

integer n from −∞ to ∞. So we rewrite the expression of surface displace-

ment:

Ui(x̄, t) =

∫ ∞
−∞

dk‖

∫ ∞
−∞

dω ui(k̄‖, x3, ω)ei(k‖x‖−ωt)

=
∞∑

m=−∞

∫ G/2

−G/2
dk‖

∫ ∞
−∞

dω ui(k̄‖ +mḠ, x3, ω)ei((k‖+mG)x‖−ωt)

=

∫ G/2

−G/2
dk‖

∫ ∞
−∞

dω
∞∑

m=−∞

ui(k̄‖ +mḠ, x3, ω)ei((k‖+mG)x‖−ωt)

=

∫ G/2

−G/2
dk‖

∫ ∞
−∞

dω

∞∑
m=−∞

3∑
n=1

A(n)(m)α
(n)(m)
i eik

(n)(m)
3 x3ei((k‖+mG)x‖−ωt)

(3.31)

k
(n)(m)
3 and α

(n)(m)
i correspond to the (k‖+mG‖) term of the solutions of the

Cristoffel equation. Actually α
(n)(m)
i is independent with the size of k‖; it

only depends on the direction. But I still assign it to each m for the sake

of programming the calculation. The similar process can be applied for the

stress:
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δl3δ(x‖)δ(t) = δl3
1

(2π)2

∫ ∞
−∞

dk‖

∫ ∞
−∞

dω ei(k‖x‖−ωt)

= δl3
1

(2π)2

∫ G/2

−G/2
dk‖

∫ ∞
−∞

dω
∞∑

m=−∞

ei((k‖+mG)x‖−ωt)(3.32)

and if the excitation has Gaussian shape, it can be written in a similar form:

e−2x2‖/L
2

= A

∫ ∞
−∞

e−
1
8
k2L2

eikx‖dk = A

∫ G/2

−G/2
dk

∞∑
m=−∞

e−
1
8

(k+mG)2L2

ei(k+mG)x‖

= A

∫ G/2

−G/2
dk

∞∑
m=−∞

e−
1
8

(k+mG)2L2

eimGx‖eikx‖ (3.33)

In these integral I require ‖k‖‖ < G/2. Putting all the expression into

boundary condition Eq. 3.31, we have:

i
∞∑

m=−∞

3∑
n=1

A(n)(m)C3lpqα
(n)(m)
p k(n)(m)

q eik
(n)(m)
3 x3eimGx‖

= δl3

∞∑
m=−∞

eimGx‖ − (
∞∑

M=−∞

µMe
iMGx‖)(

∞∑
m=−∞

3∑
n=1

ω2A(n)(m)α
(n)(m)
l eik

(n)(m)
3 x3eimGx‖)

(3.34)

Here we define k
(n)(m)
1 = k1 + mg1, k

(n)(m)
2 = k2 + mg2. Rearrange the index

and apply x3 = 0:

i

∞∑
m=−∞

3∑
n=1

A(n)(m)C3lpqα
(n)(m)
p k(n)(m)

q eimGx‖

= δl3

∞∑
m=−∞

eimGx‖ −
∞∑

m=−∞

3∑
n=1

ω2

∞∑
M=−∞

µMA
(n)(m−M)α

(n)(m−M)
l eimGx‖

(3.35)

which will give the final relationship between all the coefficients of linear
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combination:

∞∑
m=−∞

eimGx‖
3∑

n=1

[iA(n)(m)C3lpqα
(n)(m)
p k(n)(m)

q + ω2

∞∑
M=−∞

µMA
(n)(m−M)α

(n)(m−M)
l ]

= δl3

∞∑
m=−∞

eimGx‖ (3.36)

It is clear that the harmonic terms in periodic mass loading cause the

mixing between different eigenmodes. This is a linear algebra equation for

all A(n)(m). It is impractical to consider all the harmonic terms. In my

calculation I only consider up to the 5th harmonics, i.e. we treat A(n)(m) = 0

if |m| > 5. Solving all A(n)(m) can give u3(k̄‖, x3 = 0, ω).

Using this method, I calculate SAW on Si (001) plane with 20 nm Al

grating on top. The physics involved is discussed in Chapter 6. Fig. 3.5

is the dispersion curve of SAW with the presence of metal grating. Re(G33)

shows the dispersion curve of SAW. Fig. 3.5a shows that metal grating creates

band structure. Im(G33) represents the damping of SAW. Fig. 3.5b shows the

attenuation of SAW by metal grating is due to the coupling between SAW

and bulk acoustic wave.

3.5 Generalization of the calculation technique to

other acoustic modes

From a general point of view, any acoustic behavior can be calculated us-

ing the same procedure detailed before: find specific solutions using general

solutions, excitations, and boundary conditions. The following examples

demonstrate the generality and versatility of Green’s function method I im-

plemented.

I calculated Stoneley wave, or the interface wave located at the interface

between two half-space. In this case, there are two infinite half-space so

both materials have only three appropriate eigensolutions. The boundary

condition at interface is continuity of stress and displacement. To excite this

wave, a δ excitation is placed right at the interface. Then the Stoneley wave

can be observed, if there exists one. I have calculated the Stoneley wave

at the interface of amorphous Al (c11 = 111.3 GPa, c44 = 26.1 GPa) and
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amorphous W (c11 = 512 GPa and c44 = 153 GPa) and obtained velocity

of Stoneley wave to be 2.73 nm/ps, comparing with the result in reference

2.77 nm/ps. There were a lot of theoretical researches about Stoneley wave

regarding whether it exists or not for different materials combination.

Similar to Stoneley wave, in optical pump-probe system one can excite

acoustic mode at the interface between layers (not necessarily interface be-

tween two half-spaces). For example a back incidence through a transparent

substrate on an opaque film is this situation. To calculate this acoustic mode,

the delta excitation in the multilayer case is moved from the free surface to

the interface of chosen. The result is the mode excited by this particular

excitation.

Another widely studied acoustic mode is the Lamb mode. It’s the

vibration of a suspended film with two free surfaces. To calculate Lamb

mode, two free surface boundary conditions are applied at each surface which

means all six eigensolutions are used. A delta excitation is applied on either

side of the surface. Fig. 3.6 shows the color mapping of the Green’s function

of Lamb mode of a suspended Si layer of 2 µm thickness. There exist many

different modes. Green’s function method can conveniently show all of them

and their relative amplitudes.

3.6 Implementation of calculation

At the early stage of my work, I was surprised to find that there isn’t a calcu-

lation software for SAW calculation in the public domain. Most commercial

calculation tools are finite element analysis, which are too complicated for

my applications. They are also not helpful to build physical intuition about

the acoustic behaviors.

Peng Zhao, a former group member in Professor Ji-Cheng Zhao’s group

at Ohio State University, wrote a code to calculate SAW of a “one layer

on substrate” structure. He generously shared with me the code, which was

very helpful for my following development of the calculation described in this

chapter, to calculate SAW of multilayer structure and layered structure with

thin metal grating.

I have put the implementation of most of the calculation described in

this chapter in public domain: https://github.com/dongyaoli/SAW with
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the hope of helping any fellow researchers. The software is implemented

using MatLab right now. I am still working on a Python version. In this

section I briefly describe the structure of the software.

What stated mostly in this chapter is how to formulate the linear al-

gebraic equations. Once they are formed efficiently, the calculation software

(MatLab or Numpy of Python) tailored for linear algebra can handle the cal-

culation efficiently. However there is another non-linear equations, which

is to solve the six eigenvalues and eigenvectors of the Cristoffel equation.

There are two ways to solve the problem. The first one is to explicitly write

down the sixth order equation and solve it using a non-linear equation solver.

When it is implemented in MatLab, I found the accuracy of the solution is

not high enough. A problem, for example, is that it cannot get degenerate

eigenvalues since there is always small numerical difference. The solution to

this right now in my implementation is to use the second method to solve

the eigenvalues: the symbolic calculation package in MatLab. This is much

more slower but the accuracy is satisfying. In the current implementation,

the mapping of the dispersion curve in the Fourier domain is based on the

solutions of non-linear equation solver, while the accurate calculation of the

vSAW uses the symbolic calculation.

The implementation is written under the concept of objective oriented

programming (OOP) in order to conveniently add or remove layers without

modifying the internal code. There is a simple interface for the users to just

calculate the dispersion curve and vSAW . There is another more complete

interface to calculate detail properties of SAW, such as stress, strain, and

energy over depth. The implementation also try to serve as a dictionary

for mechanical properties of different materials to make the calculation more

convenient.
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3.7 Figures
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Figure 3.1: The color map of surface Green’s function of SAW propagating

on Si(001) plane at 〈100〉 direction, in the Fourier domain.
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Figure 3.2: The extreme points extracted from the color map of Fig. 3.1.
Certain modes that are not strong enough can also be picked up, like the
green points. So the two plots should be used together to identify the blue
points are the SAW and they form the dispersion curve.
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Figure 3.3: Comparison of velocity of different acoustic waves at different
direction in Si. Both SAW and PSAW are propagating on the Si (001) plane.
Line of bulk acoustic waves are from calculation. Points of PSAW and SAW
are from calculation. The blue lines and pink lines are merely guides of eyes.
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Figure 3.4: Relative strain energy at different depth of SAW propagating
on Si (001) plane and 〈110〉 direction. The plot shows the majority of the
strain energy is the shear strain energy. The detailed description of how to
calculate each energy can be found in Chapter 6.
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Figure 3.5: Dispersion curve of SAW from 0 to π/λ with metal grating,
drawn by plotting extreme points of G33(k‖, x3 = 0, ω). In both figures, the
blue line is the dispersion curve of bulk fast transverse acoustic waves and
the red line is the dispersion curve of bulk longitudinal acoustic waves at
Si 〈110〉 direction, and they are not from G33(k‖, x3 = 0, ω) calculation but
plotted separately. (a): Black line is Re(G33(k‖, ω, x3 = 0)), which shows
the mode folding and band structure in first Brillouin zone. (b): Black line
is Im(G33(k‖, ω, x3 = 0)). Imaginary part of Green’s function appears only
after SAW couples with bulk acoustic waves. The acoustic band gap is too
small to be visible on this plot.
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Figure 3.6: Map of surface Green’s function of acoustic modes of a suspended
Si film with thickness of 2 µm. Multiple modes can be identified as the Lamb
mode of different orders.
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CHAPTER 4

SURFACE ACOUSTIC WAVE TECHNIQUE
USING ELASTOMERIC PHASE-SHIFT

MASK

Longitudinal acoustic echo measurement is a successful technique to charac-

terize thin film materials. It is used to measure film thickness if the speed

of sound is known; or it is used to measure longitudinal elastic constant of

opaque films if film thickness is known. High frequency SAW has the poten-

tial to be used as a general probe for measuring thin film materials, since it

only exists in the surface region. But as discussed in Chapter 1, the exist-

ing methods, i.e. the transient grating method and patterned metal grating

method, have certain limitations that restrict them to be used as general

techniques. We are in needs of a convenient and compatible SAW technique

to study shear mechanical properties of various kinds of thin film materials.

The technique I developed is to measure SAW in optical pump-probe

system using a phase-shift mask. I briefly describe the concept of phase-shift

methodology in next section.

4.1 The concept of phase-shift methodology

Photolithography has long been the dominate lithography method in semi-

conductor industry due to its high stability and high yield. The feature size

in photolithography is limited by the wavelength of the laser. Laser with

small wavelength but high enough power is difficult to make. In order to in-

crease the resolution of photolithography, in the past decades, the so-called

phase-shift lithography has been developed and successfully applied in pho-

tolithography in semiconductor industry.

In the phase-shift lithography, certain transparent region of the pho-

tomask is designed to be thicker or thinner in order to tune the phase of

light arriving at the photoresist, so the light is designed to be constructively

or destructively interfere with each other at different position of the pho-
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toresist. Thus the feature size can break through the limitation of the laser

wavelength [34, 35].

Although the concept of phase-shift looks simple and straightforward,

the design cannot be based on simple phase estimation. This is because the

feature size in phase-shift mask is almost always below the wavelength of the

laser. To calculate the effect of the structure to the electromagnetic wave

requires carefully solving the Maxwell equations. Whether it’s a near field

effect or far field effect also matters greatly. So a finite element numerical

calculation of electromagnetic wave is almost always necessary. In fact there

is usually a whole team in big semiconductor company to design the phase-

shift mask to suit specific needs. It’s typically a very heavy computation.

Fortunately the phase-shift mask I utilize is a simple binary phase-shift mask

with only a few geometry variables. A commercial finite element software is

enough for the mask design, which I describe in Sec. 4.3.

4.2 Experimental design

As discussed in Chapter 1, one of the limitation of the transient grating

technique is that the wavelength of SAW is limited by both laser wavelength

and separation angle. High frequency SAW with sub-micron wavelength is

difficult to achieve. The concept of phase-shift is clearly a good solution. Ac-

tually back in 2002, the Maris group at Brown University has already tried a

similar approach [36]. They put a diffraction grating very close to the sam-

ple surface and did the measurement in standard pump-probe system. Later

in 2015 (after our technique is published in 2013), Maris group published

another paper [37] which refined their technique by carefully controlling the

distance between the hard optical grating and perform the measurement in

a cleanroom environment.

The problem of the approach of Maris group is the contact between the

hard glass grating and the sample surface, i.e., it’s difficult to guarantee a

good contact even in a cleanroom environment. Any small particles between

the hard grating and sample can cause a gap between grating and sample

surface, which directly changes the phase-shift behavior. So the signal is not

consistent and stable. If conformal contact between grating and sample is

needed, the hard grating requires the sample to be perfectly flat and clean.
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These requirements greatly limit the application of the technique.

4.2.1 Binary elastomeric phase-shift mask

To solve the contact problem, I use a soft phase-shift mask instead of a hard

mask. The fabrication of the elastomeric phase-shift mask is a simpler version

of how to make PDMS stamp described in Chapter 2. The prepolymer of

PDMS (Sylgard 184, Dow Corning) was cast and cured (80 °C, >2h) on a

silicon grating mold (LightSmyth Technology). Degassing is need before the

curing to remove any visible bubbles.

In the experiments, I usually use two silicon molds. One has 700 nm

periodicity, ≈ 50% duty cycle, and 350 nm groove depth. The second mold

has 500 nm periodicity, ≈ 50% duty cycle, and 350 nm groove depth. I choose

these groove depth because the calculation, described in Sec. 4.3, shows these

groove depths give relatively strong signal. A significant drawback of the

500 nm period PDMS mask is that the grating can be easily deformed into

domains of shorter and longer periods. This is because the aspect ratio of

the pitch of the PDMS grating is too high so it “collapses”. To solve this

problem, I incorporate a layer of PDMS with higher elastic constants on

the grating side of the mask, the so-called “hard PDMS” same as the one

used in nano-imprint lithography. So the process to make a “hard PDMS”

mask is the exact same as the process of making a PDMS stamp described

in Chapter 2, except the phase-shift mask is usually thinner (a few mm).

This “molding” process doesn’t cause any observable damage to the silicon

master. I have been using the same silicon master for years.

It seems to me that PDMS is the go-to material in nano-fabrication as a

handling material. It has very stable property and is very easy to work with.

There is no restrict requirement in neither the recipe nor curing process.

As a phase-shift mask, it completely solve the contact problem. PDMS is

relatively sticky, so it can adhere to the sample well enough to support its

own weight without any external force. It is also soft, so it can bend to

tolerate small particles and roughness, as long as the particle won’t cause a

complete delamination of the mask from the sample. One can just avoid the

region with particles or high roughness in the measurement. Since PDMS

is sticky, it is very easy to get dirty, especially if the sample itself doesn’t
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have a clean surface. Also I found the PDMS grating, after curing for a

few hours, can degrade after it is peeled off and exposed in air. One can

easily observe the degradation by looking at the sample with PDMS mask

through the CCD camera and objective length in the pump-probe system.

The degradation is the visible straight lines appeared. This problem can be

mitigated to some level by curing the PDMS mask for much longer time. But

it’s not very effective. So what I do is to make a new mask every time I need

to the measurement so I can be sure that the mask is clean and defect free.

The hard PDMS feature can be preserved much much longer. I don’t observe

any damage to it by just exposing it to air for years. The imprint process in

nano-imprint lithography can cause some damage to the hard PDMS stamp.

One needs to make a new stamp after about tens to hundreds of imprinting.

The disadvantage of hard PDMS phase-shift mask is that it is much less

sticky than the conventional PDMS so it is more difficult to form a good

contact with the sample.

4.2.2 Measurement mechanism

The schematic of the sample configuration is shown in Fig. 4.1, which is a

elastomeric binary mask attached on the surface of the sample. As in the

standard optical pump-probe system, if the sample does not have a short

optical absorption depth, i.e., the sample is a dielectric or semiconductor,

then it must be first coated with a metal film as transducer: I usually use Al.

To measure SAW, the PDMS phase-shift mask is physically attached to the

sample surface by tweezer, with the grating side towards the sample surface.

For a very clean and smooth surface, the phase-shift mask can immediately

form a conformal contact with the sample. If this is not the case, one can

gently tap the top of the mask to get rid of the air in between. One can easily

notice when the air is pushed out from the contact. One can also easily tell

if the contact is good or not by looking at the image of CCD camera with

sample illumination: area with good contact usually shows homogeneous

bluish color (color depends on the setting in camera and the illumination)

while an air gap between mask and sample has no color (black).

When the pump pulse goes through the phase-shift mask, it forms a

periodic intensity pattern on the metal transducer surface as shown in Fig 4.4,
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due to the design of phase-shift. The periodic intensity creates a spatially

periodic temperature profile along the surface, a corresponding thermoelastic

strain, and excitation of narrow band SAW.

The SAW is detected through time-dependent changes in the intensity

of the back-reflected probe beam. As discussed in Chapter 2, there are two

classes of effects that could conceivably contribute to the change in reflec-

tivity: i) the dependence of the refractive index of the meterials on strain;

and ii) the displacement of the metal surface as is typically the case in the

longitudinal acoustic echo measurement. The metal transducer in our mea-

surement is highly textured (deposited by sputtering). Due to symmetry of

the transducer film, a normal incidence probe beam is not sensitive to shear

strain perpendicular to the sample surface. Therefore I conclude that the

detection comes predominately from surface displacements. The change in

reflectivity created by a surface displacement is spatially modulated by the

PDMS mask. Experiments on a variety of metal films deposited on Si, which

is discussed in Sec. 4.4, support this conclusion.

I find that the pump and probe polarization relative to the orientation

of the grating of the mask strongly affects the signal intensity. In our pump-

probe system, pump and probe pulses have orthogonal linear polarization,

so that the scattered pump beam can be better separated from the reflected

probe. The maximum signal in the SAW measurement by phase-shift mask

is created when the electric-field polarization of the pump is perpendicular

to grating vector and, therefore, the polarization of the probe is parallel to

the grating vector. Prior work [36] using a metal-patterned polymeric mask

to generate SAW has also demonstrated the dependence of SAW intensity

on polarization of light relative to the grating orientation. I discuss the

polarization effects in Sec. 4.3 where I conclude that the change of signal

intensity for different configurations of polarization is mainly due to changes

in the sensitivity of the probe to surface displacements and not due to changes

in the absorption of the pump.

The attached PDMS phase-shift mask produces a strong periodic per-

turbation to the optical response. Since it is attached with the sample surface,

it also pose a periodic perturbation to the elastic response of the material.

The effect of a periodic perturbation to the properties of SAW is closely

examined in Chapter 6. The experimental validation described in Sec. 4.4

suggests that the effect of the PDMS mask on the SAW velocity is negligible.
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This aspect is brought up again in Sec. 4.5 and Chapter 5.

The example data are shown in Fig. 4.2, which is acquired with the

700 nm period PDMS mask and an Al-coated Si sample. The slowly de-

caying background is caused by the relaxation of the temperature of the Al

transducer. After background subtraction, I analyze the frequency f of the

oscillations using Fourier transforms and fitting of the data to a damped

sinusoidal function. An example of the fitting is shown in Fig. 4.11. The fit-

ting doesn’t need to be perfect, since the thermal background cannot be fully

removed and there can be some weaker acoustic modes and higher harmon-

ics. The fitting result for frequency is good enough and better than result

of Fourier transform. The SAW wavelength is the same as the period of the

mask. The SAW velocity is vSAW = λf

4.3 Design of optimal phase-shift mask geometry

To explore the optimal geometry for the phase-shift mask, I use a commercial

software (FDTD Solution, Lumerical) to estimate how efficiently the phase-

shift mask generates SAW by the pump beam and enables detection of SAW

by the probe beam. The calculations involve only the optics of the problem;

i.e., I consider only the spatial modulation of the absorption of the pump

beam and the change in the reflectivity of probe beam created by different

configurations of surface displacements. The calculations do not include the

thermoelastic mechanisms for generating SAWs by a laser pulse. I vary

the grating period and groove depth to determine which grating geometry

creates the highest spatial modulation of the absorption of the pump; and

which grating geometry creates the largest change in the reflectivity of the

probe when the acoustic wave has a phase of 0 or 180°relative to the grating.

The calculation is standard finite element calculation. The lateral di-

mension of the computational cell, see Fig. 4.3, is one grating period with

periodic boundary conditions to the left and right. The top and bottom

boundaries fully absorb incident light (perfect matching layer, PML). The

sample layer is modeled using the optical index of refraction of Al and is

optically opaque. I used n = 1.43 for the PDMS optical index of refraction.

A planar Gaussian wave-packet with a center wavelength of 785 nm (center

wavelength of our pump-probe system) and a full-width-at-half-maximum of
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600 nm was launched toward the Al layer through the PDMS mask. I use

a 1 nm mesh size for the Al layer and the region near the Al/PDMS inter-

face, and used gradually larger mesh sizes (≈ 10 nm) in the majority of the

area of the computational cell to reduce the calculation time. Al requires

finer mesh because it has very short absorption depth, in another word, the

electromagnetic wave can change very quickly spatially within the metal. A

“monitor” is placed over all Al to record the absorbed electromagnetic wave.

The intensity pattern in Fig. 4.4 is from the result of the calculation. A

“monitor” is placed on the path of the reflection to record the intensity of

reflected probe beam. The grating structure at the interface indeed behav-

ior like a grating in the far field. To record the reflected probe beam, the

calculation needs to be performed long enough until all the reflected probe

passes through the “monitor”. There is a obvious front of the reflected pulse.

But there is also a “tail”, which should be from the diffraction of the light

from the region outside of the calculation cell (recall the periodic boundary

condition is applied). The intensity of the reflected pulse should be the sum

of two parts. Fig. 4.5 shows the clear front of the reflected pulse and the tail.

I calculate the spatial modulation of optical absorption in the Al layer

to gain insight into the efficiency of the mask for generating SAW. Pump

pulses have perpendicular polarization relative to the grating vector. I sum

the absorbed energy over depth at each lateral position. Fig. 4.6 shows the

optical absorption density of the pump beam in one unit cell for different

geometries of the phase-shift mask. To make these comparisons, I set the

integral of the incident plane wave energy over a 700 nm interval to unity.

The lateral position, i.e., the x-axis of the plot, is normalized by the mask

period. In the left half of the computation cell, the Al film is in contact with

the PDMS mask; in the right half of the cell, the Al film is exposed to the

air gap. As the period becomes smaller, the contrast between the maximum

and minimum absorption decreases rapidly. I use the difference between the

mean absorption density of the left and right region to estimate the relative

amplitude of thermoelastically-generated SAW.

For detection, I simulate two configurations of the surface displacement:

displacing the left half of the Al surface versus displacing the right half of the

Al surface. A probe pulse with electric-field polarized parallel to the grating

vector of the mask is launched at the mask and Al film. I analyze the back

reflected intensity in the far-field and define the efficiency of detection as the
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difference between the reflected intensity in these two configurations of the

surface displacements.

The signal detected in the experiment is proportional to the product of

the acoustic wave amplitude generated by the pump pulse and the detection

efficiency of the probe. The calculated variation of signal intensity with

groove depth for the 700 nm period mask is shown in Fig. 4.7. The detection

efficiency and signal intensity show a peak near a groove depth of ≈ 300 nm,

close to the groove depth I use in the experiments, ≈ 350 nm.

The calculated signal intensities for a selection of mask periods and

groove depths is summarized in Fig. 4.8. I use a groove depth of 350 nm for

the 500 nm and 700 nm periods because the Si molds needed to fabricate these

masks are commercially available and these are the structures we studied

experimentally. I have not studied grating periods smaller than 500 nm

experimentally. For the calculations for the 300 nm and 200 nm period

gratings, I assume that it will be impractical to create groove depths that are

larger than the period and therefore set the groove depth equal to the period.

The signal intensity decreases rapidly with decreasing grating period. The

calculations predict a factor of ≈ 8 suppression of the signal for the 500 nm

mask relative to the 700 nm mask. In experiment, I observe a similar decrease

in the signal intensity, a factor of ≈ 6, see Fig. 4.8.

I also consider the polarization dependence of the signal intensity. The

calculations described above use the optimal polarization with the polariza-

tion of the probe parallel to the grating vector and the polarization of the

pump perpendicular to the grating vector. Rotating the polarization of pump

and probe by 90 degree, a configuration I refer to as “P2”, strongly suppresses

the signal intensity, by a factor of ≈ 100 in the calculation and by a factor

of ≈ 10 in the experiment, see Fig. 4.8. Most of the reduction in predicted

signal intensity comes from the reduction of the detection efficiency. I spec-

ulate that with the P2 polarization, the surface displacement of the sample

does not dominate the detection efficiency and other phenomena come into

play. For example, the calculations do not take into account the change in

the optical index of refraction of the PDMS with strain or deformations of

the PDMS mask in the lateral directions.
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4.4 Experiment validation

I perform two sets of experiments to validate this approach. First, I mea-

sured the SAW velocity vSAW on several materials with well-known elastic

constants, see Fig. 4.9. All of these materials are single crystals except for

Au; the Au sample is a polycrystalline film (≈ 1 µm thick) deposited by

sputtering with strong (111) texture; the grains are randomly oriented about

the [111] axis. All of the samples were coated by a 20 nm thick layer of Al

to serve as a transducer. The elastic constants, the surface orientation, the

direction along which we measured vSAW , and the measured and predicted

values are very similar.

In the second set of experiments, I measure vSAW for a wide range of

thicknesses of V films deposited on a Si substrate. The result is shown in

Fig. 4.10. The Si substrate affects the SAW velocity significantly when the

V film is thin. When the thickness exceeds ≈ 300 nm, the substrate effect

is quenched. For a layered structure, the SAW is dispersive. When the film

thickness is small compared to the wavelength, the wave extends further into

the substrate and vSAW approaches the value of the substrate. When the

film thickness is large compared to the wavelength, the wave is concentrated

in the film and vSAW approaches the value of the film.

In both cases, see Fig. 4.10, I compare the measured velocities to the

predicted velocities using SAW calculation described in Chapter 3 and previ-

ously published values of the elastic constants of each material. The relative

rms errors for these two sets of experiments are 0.036 and 0.017, respectively.

The data shows that the presence of PDMS grating does not affect the SAW

velocity significantly and the method can be used to reliably measure vSAW .

Finally, I measure the signal intensity created by different metal trans-

ducers to test the assertion that the detection efficiency is mainly determined

by surface displacements and not by the strain dependence of optical index

of refraction of the metal film transducer. I sputtered different metal trans-

ducers with thickness of ≈ 40 nm on (100) Si substrates and measured the

SAW signal intensity. The data is summarized in Fig. 4.12. I normalize the

signal intensity by the reflectivity and plot the result as the y axis. I do

not attempt to fully model the generation of the SAW but argue that the

thermoelastic stress should scale with the product of the optical absorption

1 − R, the biaxial modulus M and the coefficient of thermal expansion αT ;
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and inversely with the heat capacity per unit volume C. In Fig. 4.12, the

x axis is chosen to reflect this expected scaling. Interestingly, variations in

the normalized signal intensities ∆R/R and variations in (1−R)MαT/C are

relatively modest, spanning less than a factor of 2, but show a trend of in-

creasing signal ∆R/R with increasing (1−R)MαT/C. Since the dependence

of the optical index of refractions of the metals with stress is expected to

vary significantly, the relatively small variations in ∆R/R that are mostly

accounted for by variations in (1 − R)MαT/C supports the assertion that

the detection is mostly determined by surface displacements. The detailed

data used can be found in Ref. [38].

4.5 Possible modification to the elastomeric phase-shift

mask

As mentioned before, the PDMS mask poses a mechanical perturbation to

the system. The experimental validation in Sec. 4.4 demonstrate that this

effect is very small for hard material. But as is discussed in next chapter,

if the film of interest is a soft material, the mask can have clear effect to

the measurement in some cases. Also the mask poses substantial damping

to the SAW generated. One can barely measure the propagating SAW by

offsetting the pump and probe beam. This strong damping should be due to

the contact between the mask and the sample surface.

I propose a method to try to separate the mask and sample surface

by small amount so there won’t be direct contact for the purpose of easy

attenuation measurement. My idea is to suspend part (several µm wide)

of the mask through nano-fabrication. The structure can be successfully

fabricated. However the PDMS is not stiff enough to maintain that huge

aspect ratio and the suspended part would collapse on the sample surface.

Even the hard PDMS is not good enough. I spent appreciable amount of time

try to find a proper material but failed. The best candidate I can find to

have enough stiffness and is relatively convenient to fabricate is the Norland

optical adhesive of various kinds. But they still didn’t work. So either better

material or better design is needed to achieve this.

Since I wasn’t able to separate the mask with the sample, I tried to

quantify the effect of mask on vSAW . What I did is to use a second phase-

62



shift mask, no longer binary but with a square pattern. This can also be

purchased from the company LightSmyth. The mask with square pattern

can also create SAW following the same phase-shift philosophy but the signal

is weaker. I measured vSAW of an exfoliated graphite flake using two masks.

And I found the difference between the two results are much smaller than

the experimental error.
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4.6 Figures

Figure 4.1: Schematic of the sample geometry in SAW measurement with

phase-shift mask. The size of the mask is about 1 × 1 cm2. The mask is

physically attached to the sample by hand or tweezer without any external

pressure or glue.
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Figure 4.2: Typical data for the change in reflectivity as a function of delay
time between the pump and probe using the 700 nm period PDMS mask.
The sample is a 20 nm thick film of Al deposited on a Si (001) wafer..
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Figure 4.3: The computational cell (not to scale) for electromagnetic cal-
culation by finite-difference time-domain method. I use periodic boundary
conditions in lateral direction. The Al layer is 20 nm thick and therefore op-
tically opaque. The reflected intensity is monitored at the location labelled
“reflection monitor” > 40 µm from the Al surface.
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Figure 4.4: Surface heating after a pump pulse goes through the phase-shift
mask. The heating profile is from the FDTD calculation. The dark blue
region right beneath the mask is the Al layer.
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Figure 4.5: Profile of the reflected probe pulse. The strong front can be
identified. But there are clearly wave behind the front, which should be from
the diffraction due to the grating feature.
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Figure 4.6: The calculated optical absorption energy as a function of lateral
position in the Al layer for one unit cell of the grating. The x-axis of the plot
is scaled by the mask period and is therefore dimensionless. The absorption
density is calculated by setting the incident plane wave energy integrated over
a 700nm region to unity. For 700 nm and 500nm period masks, the groove
depth is 350 nm; for the 300 nm and 200 nm period masks, the groove depth
is the same as the period. The optical wavelength is 785 nm.
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Figure 4.7: Calculated generation (filled triangles), detection (open circles),
and signal efficiency (filled circles) variation with groove depth for the 700nm
period mask. The plotted intensities are scaled by the value for the 350 nm
groove depth that was used in the experiment.
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Figure 4.8: Calculated signal intensity of selected mask configuration. For
700 nm, and 500nm period phase-shift masks, the groove depth is 350 nm,
as used in the experiments. For the 300nm and 200 nm period masks, the
groove depth is the same as the period. Each set of data is scaled by the
value of 700nm period mask. The cross shows the experiment signal intensity
of the 500nm period mask. The star-shaped symbol shows the experiment
signal intensity of the P2 polarization using the 700nm period mask.
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Figure 4.9: Measured vSAW for variety of materials plotted as a function
of the predicted vSAW based on previously published values of the elastic
constants. The solid line denotes perfect agreement. In this set of data, the
relative RMS error is 0.036.
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Figure 4.10: Measured vSAW for V thin films deposited on a Si (001) wafer.
The V films are polycrystalline with a strong (110) texture. The measure-
ment is along the Si 〈110〉 direction. The solid line shows the predicted vSAW
which is averaged of all the combination between the crystal orientation of
(110) plane of V and the 〈110〉 direction of (100) Si plane. The relative RMS
error is 0.017.
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Figure 4.11: Fitting of the measured oscillation (after background is sub-
tracted and a Gaussian window is applied) with a Gaussian modulated sine
wave, in order to obtain the frequency of the signal. Both the center position
and the width of the Gaussian window are the fitting parameters. So the
total fitting parameters are five: frequency, phase, and amplitude of the sine
wave, and the width and center of the Gaussian window.
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Figure 4.12: Relationship between normalized signal intensity ∆R/R and
scaling factor for SAW generation (1− R)MαT/C for different transducers.
R is reflectivity, αT is coefficient of thermal expansion, C is volumetric heat
capacity, M is biaxial modulus.
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CHAPTER 5

MEASUREMENT OF SHEAR ELASTIC
CONSTANT OF THIN FILM MATERIAL

BY SURFACE ACOUSTIC WAVE

The purpose of the SAW technique developed in last chapter is to find a

convenient and compatible method for measuring shear elastic constant of

thin films. The advantages of using elastomeric phase-shift mask over other

methods, such as transient grating or metal grating method, is that it can be

conveniently applied to any materials as long as the surface is smooth enough

for the optical pump-probe experiment. One can physically attach the phase-

shift mask on the surface of the sample and peel it off from the sample without

any damage to it. No complicated nano-fabrication method is required. Also

the wavelength of the SAW I usually use is 700 nm, which means vSAW is

sensitive to films of thickness on the level of 100 nm. This would satisfy

most of our current needs. In this chapter I demonstrate the capability and

applicability of the technique by measuring shear elastic constant of various

different films. I also describe analysis and modifications of many aspects of

the method to suit for different kinds of materials.

5.1 General procedure of measuring shear elastic

constants of half-space and thin layers

5.1.1 Experiments detail

In a typical SAW measurement, after the phase-shift mask is attached to the

sample surface, the optical system is aligned the same way as in a front side

TDTR measurements. The typical measurement is done with overlapping

pump and probe beams. I find that offsetting the pump and probe beam by

a few micron to measure a propagating SAW doesn’t contribute much to the

quality of the signal and the signal can be too weak. To measure SAW or any

acoustic behavior in the optical pump-probe system, although the thermal
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signal is not of concern, I still set the phase of the signal to be in-phase with

the reference. I set the phase by making the out-of-phase signal flat across

the zero time delay which is the same method as in TDTR measurement.

Setting the phase correctly helps the identification of any abnormal behav-

ior. The SAW measured by one probe pulse is excited by the pump pulse

accompanied to this probe pulse. If the phase of the Lock-in amplifier is

set to compensate the phase changes caused by the other components of the

system, then the acoustic signal should be completely in-phase relative to the

reference. Because after 12.5 ns the SAW has already propagated out of the

measurement region or attenuated. So all the SAW signal is in the in-phase

channel. An longitudinal acoustic echo measurement is also performed to

measure the Al thickness and longitudinal elastic constant of the material.

After collecting the oscillation signal from the in-phase channel, the

next step is to analyze the frequency of SAW. The easiest way is to apply

a fast Fourier transform (FFT) to the signal and identify the peak in fre-

quency domain corresponding to the SAW. This require that the data points

collected in pump-probe system to be equally spaced (requirement of the

FFT algorithm). The time window of the measurement is ≈ 4 ns, which is

limited by the length of the delay stage. The time window limits the reso-

lution of Fourier transform to be around 0.4 GHz in our current case. The

SAW frequency is usually around a few GHz. So this resolution of frequency

is typically not good enough. An alternative is to fit the SAW oscillating

signal with a sine wave. What I usually do is to first subtract the thermal

background using polynomial or any function that can fit the background

relatively well (note not to introduce any new frequencies or change the fre-

quencies of interest); then I apply a Gaussian window on top of the signal

with the center of the Gaussian at the center of the total signal; the last

step is to fit the processed signal with a Gaussian modulated sine wave. The

fitting involves five parameters: amplitude, frequency, and phase of the sine

wave and the center and width of the Gaussian window. In my experience,

this fitting is not difficult if the initial parameter is set close enough to the

optimal value. The initial values can be easily estimated. The initial fre-

quency is from Fourier transform and the center and width of the packet can

be estimated using local maxims of the signal. The fitting only works if the

signal is dominated by one frequency. If there are strong interference between

frequencies, I find it is difficult to fit two frequencies out of the signal. There
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are too many variables.

In practice, I can always measure a weak component with frequency

at 1 ∼ 2 GHz in any SAW measurement. It poses a small background.

Sometime it can interfere with the SAW component at early delay time. I

can also observe possibly second harmonic of the SAW. It is damped greatly

in the early hundreds of picoseconds. So usually I can fit the signal with no

problem. The early signal can be omitted or damped by the edge of Gaussian

window.

vSAW can be directly calculated by SAW frequency. Then I model the

whole layered structure using the calculation software described in Chapter 3.

I can fit the shear elastic constants of the film of interest, by comparing the

calculated vSAW and measured vSAW . The accuracy of the obtained vSAW is

determined by the sensitivity.

5.1.2 Sensitivity of vSAW

Since the purpose of the measurement is to fit the shear elastic constant

(usually c44) using the measured vSAW , the sensitivity of the measurement

can be defined as:

S =
∂ ln vSAW
∂ ln c44

=
c44

vSAW

∆vSAW
∆c44

(5.1)

which means the ratio between relative change of c44 and relative change of

vSAW . Higher sensitivity means relative small changes in elastic constant

can lead relative big changes in vSAW . With higher sensitivity, vSAW is more

sensitive to c44 and fitting of c44 is more accurate, given the error of vSAW

stays constant.

vSAW is sensitive to the material on the surface within a fraction of

wavelength deep. The wavelength I typically use is 300 nm. Fig. 4.10 indi-

cates that the vSAW of 700 nm SAW is mostly sensitive to the top ≈ 350 nm

of the material. So when the material of interest is beyond several hundreds

nanometer, vSAW has the maximum sensitivity to the shear elastic constant

of the material. In this case, the film is almost like bulk materials for SAW. If

an Al transducer is necessary, for example when the material is transparent,

the thickness of the Al thickness should be minimal (I typically use 20 nm)

so vSAW is mostly sensitive to the material under study instead of the Al

layer.
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When the film thickness is less than 300 nm, the measurement is not

able to reach the maximum sensitivity, the sensitivity when the material

is bulk like. In this case, one can achieve highest possible sensitivity by

tuning the thickness of top Al transducer. I use the sample structure of

Al/SiO2/Si to demonstrate it. The SiO2 is a layer of thermal oxides act

as the material under study. The Si is the substrate layer. Fig. 5.4 shows

the sensitivity of different thickness of SiO2 layer with different thickness of

Al transducer layer on top. It shows that when the SiO2 layer is thin, a

thicker Al layer gives higher sensitivity to the shear elastic constant of SiO2.

This phenomenon can be understand qualitatively: the peak of strain energy

within a SAW is not located at the top surface but slightly beneath the top

surface. If the film of interest is located at where the strain energy is the

highest, the highest possible sensitivity can be achieved. In Chapter 6, I

plot the distribution of stress, strain, and strain energy over depth of SAW

on Si. Although the distribution varies for different materials and different

structures, the general phenomenon doesn’t change. So the thickness of the

transducer layer is decided for different cases to maximize the sensitivity.

For thin film materials with thickness much less than the SAW wave-

length (100 nm or less), I find that vSAW can have appreciable sensitivity

to the longitudinal elastic constant which corresponds to the longitudinal

acoustic wave perpendicular to the surface (usually c11 or c33). The sensi-

tivity is high especially when the film has small shear elastic constant. This

is reasonable because for thin films the strain of SAW penetrates through

the film into the layers underneath. This involves the longitudinal elastic

constant.

5.1.3 Measurement of shear elastic constant of hard material

The typical thin films of hard materials or half-space with high symmetry

is relatively easy to measure. In this section I use two measurements as

examples. One is the measurement of shear elastic constant of VN single

crystal films and the other is AlN films. Mechanical properties, especially

elastic constants, serve as important indicator in thin films growth research,

regarding whether the materials have good quality and how far the properties

deviate from bulk values.

79



Materials under study [39] are signal-crystal stoichiometric VN films,

grown by reactive magnetron sputtering deposition by members in Profes-

sor A. Rockett’s group. The structural information is obtained by various

standard instrumentation. VN has cubic symmetry with three independent

elastic constants, c11, c12, and c44. c11 is directly measured by longitudinal

acoustic echo measurements. In this case, VN films are made with [001],

[011], and [111] top surface orientations. Using the information at Table 3.1,

all three elastic constants can be solved from the three measurements. How-

ever if there are concerns that different orientations can have different film

properties, or more generally, not all orientations can be grown, then this

method cannot give all three elastic constants. I use SAW measurement

with phase-shift mask to measure vSAW and further fit c44 of the VN films.

c11 in the fitting process is obtained from longitudinal acoustic echo mea-

surements. vSAW has very small sensitivity to c12. So c44 can be fitted from

vSAW .

I have also measured shear elastic constant of VNx film with different

x. But due to poor material characterizations, the results are not reliable.

This has happened to me several times during my collaborations with other

groups. For the SAW technique to accurately fit the shear elastic constants,

one must have accurate characterizations of the structure, thickness, and

density of the films.

In order to improve the acoustic wave filter techniques in wireless com-

munication, it’s necessary to know accurately the elastic constants of the

materials involved. At the last few months of my Ph.D. I measured elastic

constant of AlN film for a company developing better materials for acous-

tic filters. Since the materials are from the company, I cannot list detailed

information. The oscillation signal looks weaker in comparison with other

materials. This is possibly because that the AlN film is stiffer than most

materials so the surface displacement of SAW is smaller comparing to oth-

ers. Possible solutions to weak SAW signal in stiff material is to use higher

power (since materials with high elastic constants usually have high thermal

conductivity and steady state heating won’t be an issue), or use metal trans-

ducers with low thermoreflectance coefficients so the thermal background is

smaller.

AlN has hexagonal symmetry and five independent elastic constants.

For thick AlN film (over 500 nm, which is the current case), vSAW is mostly

80



sensitive to c44. c33 can be measured using longitudinal acoustic echo tech-

nique. For other three elastic constants c11, c12, and c13, I use bulk values as

a good enough estimation in the fitting of c44.

5.2 Measuring shear elastic constants of polymers

Another kind of material that is in need of elastic constant measurement is

polymer. Elastic constants of polymers are difficult to measure using tradi-

tional techniques even for bulk polymers, let along polymer thin films. Elastic

constants of polymers are indication of the bonding strength within poly-

mers. For example, they can help to understand the thermal conductivity of

polymers. Since polymers are usually insulators, the thermal conductance is

dominated by phonon contribution. Thermal properties of various of poly-

mers are important for their engineering applications. TDTR can be used

to measure the thermal properties. Elastic constants are useful as a good

estimation and understanding of the thermal properties according to Debye

model. In this section I discuss several studies I have done regarding the elas-

tic constants of spin-cast polymer films, to assist the thermal measurement

performed by TDTR.

Polymers are typically treated as isotropic, although it may not be

accurate especially for spin-cast polymers. It has two independent elastic

constants: c11 and c44. The longitudinal elastic constant c11 can be measured

using longitudinal acoustic echo measurement. After obtaining c11, c44 can

be determined using SAW measurement. In the case of isotropic materials

such as polymers, we have enough experimental methods to measure the full

set of elastic constants.

Although in theory, a bulk like material for SAW would have the max-

imum measurement sensitivity to c44. In reality, I find that the SAW mea-

surement using a soft phase-shift mask is not suited for measuring SAW of

bulk polymer materials. It can be understand like this: if the polymer film

is very thick to be treated as bulk for SAW, then the structure looks like

two soft materials that sandwich a hard Al layer. The wave is no longer

generated at a surface but more like within this complicated structure.

The implication of the above observation is that there is a limitation

for film thickness in the case of polymers. For hard material, there is no
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limitation to the material thickness, in the sense that it won’t cause the

SAW measurement to fail, or in another word, SAW can always be measured.

The difference is whether the sensitivity is high or low. But in the case

of polymer, the thickness of the polymer needs to be carefully designed to

make sure we understand the modes that are measured. Fig. 5.3 shows

an example of a “failed” SAW measurement of polymer films. The very

high frequency component is clearly not SAW mode of the sample structure

Al/polymer/substrate. I suspect it to be some kind of vibration modes of the

Al film. And it may be developed in the future to measure certain properties

of hard thin films. Fortunately, most of the polymers have similar mechanical

properties. So by testing on one polymer, I can obtain a guideline for other

polymers.

The polymer I chose as an example is PMMA. PMMA is a well studied

polymer. Fig. 5.2 is a SAW measurement map in the space of “Al thickness”

and “polymer thickness”, which marks the region when the SAW can be suc-

cessfully measured using a phase-shift mask. The plot shows that the proper

polymer thickness for the measurement is related with the Al thickness. The

typical combination I use for most of the polymer studies is 100 ∼ 150 nm

polymer with ≈ 120 nm Al on top. The relatively thick Al layer can also

improve the sensitivity of the thin polymer film.

Another important factor in SAW measurements of polymers is how to

determine the density of the polymer films. The density can be the major

source of the measurement error. The density of polymers in our studies

are measured by two methods: Rutherford backscattering spectrometry or

quartz crystal microbalance. Note that in Rutherford backscattering spec-

tromety (RBS), the polymer film can be easily damaged by the incoming

alpha particle flux. Keep measuring the damaged spot can cause huge error

in the density estimation. One way to mitigate the damaging effect is to

constantly move the same during the process of RBS and don’t expose one

point of the polymer film to the flux longer than necessary.

Following the above mentioned guideline, shear elastic constants of

various polymers [40, 41] and macromolecules [42] have been measured. In

these studies, the measured elastic constants are used to understand the

thermal properties of the polymer films. They also mark a very narrow

region of Poisson’s ratio for all kinds of polymers.
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5.3 Measuring shear elastic constant of layered

material

Layered materials, such as graphite and MoS2, have received tremendous

attentions in recent decades. Unique physics phenomenon can happen in a

truly 2D material. Another interesting properties of the layered structure

is the Van der Waals force between atomic layers. An example is that the

layered materials with turbostratic disorder [43] and incommensurate inter-

faces [44] have been shown to have significantly small thermal conductivity.

They are candidates for potential thermoelectric application [45].

The origin of the ultralow through-plane thermal conductivity is not

fully understood. One explanation is that the strong anisotropy of the elastic

constants causes most of the transverse acoustic phonon travel in the in-plane

direction rather than the through-plane direction, which is called the phonon

focusing effect [46, 47]. The strong anisotropy is due to the weak interplanar

Van der Waals bonding, i.e. the small shear elastic constant c44 comparing

with others. Quantifying c44 of the disordered layered materials is needed to

evaluate the effect of phonon focusing.

From a different perspective, the shear elastic constant c44 of layered

materials represents the the strength of the static friction between atomic

layers without loading. The state of ultralow friction sliding is expected

between atomically flat surfaces with structural incommensurability, which

is referred to as “structural lubricity”. However the experimental analysis

of the phenomenon is challenging. c44 of incommensurate layered structure

provides an unique tool to understand how low the friction can be between

atomic interfaces due to lattice mismatch. This understanding is essential

to the development of viable nanoelectromechanical systems (NEMS) using

layered material, such as carbon nanotube [48, 49].

Layered materials have huge mechanical anisotropy. Using graphite as

an example, c11 of single crystal graphite is on the order of 1000 GPa, while

c44 is measured to be around 5 GPa. This huge anisotropy poses difficulties

in the traditional experiment techniques for shear elastic constants measure-

ment. In this section, I first describe the measurements of shear elastic

constant of common layered materials, graphite and MoS2, to demonstrate

the capability of the SAW technique with phase-shift mask. Then I describe

the measured ultrasmall shear elastic constant of misfit layered compound.
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5.3.1 Shear elastic constant measurement of graphite and
MoS2

The graphite and MoS2 flakes are exfoliated from the highly ordered py-

roliytic graphite and natural single crystal MoS2, respectively. They are

exfoliated on top of SiO2/Si wafer with 300 nm SiO2 layer. The exfoliation

process is standard and relatively easy since I am not looking for single layer

or few layer flakes. The flakes only need to be bigger than the spot size of the

laser. The length scale of the flake I typically use is on the order of 100 µm.

The thicknesses of the flakes are measured by AFM.

Due to the weak bounding between layers, if SAW measurements are

done on the layered materials with conventional PDMS phase-shift mask, the

sticky PDMS can easily peel off some atomic layers together with the sput-

tered Al film on top. To solve this problem, one can use a hard PDMS phase-

shift mask just like the hard PDMS stamp described in nano-imprint lithog-

raphy. The hard PDMS is much less sticky than the conventional PDMS so

it does not peel off the atomic layers. The downside of hard PDMS mask is

the mask does not easily attach to the sample surface. One may need to push

the hard PDMS mask with a tweezer to establish a good contact between

the mask and the sample.

Following the thin film measurements that discussed before, for exfoli-

ated flakes with thickness on the order of 100 nm, I sputter relatively thick Al

(around 120 nm) on top to increase the sensitivity. The longitudinal acoustic

echo measurement is performed at the same time to measure c33. For layered

structure, vSAW can be very sensitive to c33 so an accurate measurement of

film thickness and c33 is necessary. There are five independent elastic con-

stant in a hexagonal crystal. vSAW is typically not sensitive to c11, c12, and

c13. One can use a good estimation or result from density functional theory,

as I did in the following measurement, to fit c44.

≈ 170 nm thick MoS2 flake is exfoliated on SiO2-on-Si substrate with 300

nm SiO2. The thickness of MoS2 is measured by AFM. Al layer of≈ 135 nm is

sputtered on top of MoS2. The measured and calculated elastic constants are

compared with prior results in Table 5.1. Both calculation and experiment

agrees quite well with prior results.

Table 7.1 lists my measurement result for HOPG graphite and Table 7.2

is a more complete comparison between results of MoS2 single crystal. These
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Table 5.1: Measured and calculated elastic constants of MoS2 and comparison
with prior calculation and experiment.

a(Å) c(Å) c11(GPa) c12(GPa) c13(GPa) c33(GPa) c44(GPa)
DFT Calculation 3.16 12.05 223 49.9 6.52 51.8 16.9
Measurement 54.1 15.4
Volkova Cal [50] 3.18 12.35 214 58 56 18
Feldman Exp [51] 238 -54 23 52 18.6

measurements on the small exfoliated flakes further demonstrate the capa-

bility of SAW technique with phase-shift mask.

5.3.2 Shear elastic constant measurement of misfit layered
compound [SnSe]n[MoSe2]n

In this section, I present experimental studies of the incommensurate layered

material (misfit layered compound, MLC) [SnSe]n[MoSe2]n, n = 1 ∼ 4 to

quantify its shear elastic constant c44.

The [SnSe]n[MoSe2]n thin films is prepared by collaborators in Professor

David C. Johnson’s group at University of Oregon. They did the structural

characterizations of the film. I did elastic constants measurements and DFT

calculation. The films are synthesized on Si (100) substrate using the modu-

lated elemental reactants (MER) method described previously [52]. n bilay-

ers of Sn and Se with 1:1 atomic ratio is deposited onto Si (001) substrate

followed by n bilayers of Mo and Se with 1:2 atomic ratio. This sequence is

repeated to reach the desired thickness (∼ 60 nm). After the deposition, the

precursor film is annealed for 20 minutes on a hot plate at 400 °C in a N2

environment (< 1 ppm O2) to form the MLC of [SnSe]n[MoSe2]n. For com-

parison, single component MoSe2 thin film with disordered layered structure

is also synthesized by the same approach.

The thickness of the film is measured by specular X-ray reflectivity

(XRR). The average film compositions are obtained from X-ray fluorescence

(XRF). The in-plane lattice constant and grain size is measured by in-plane

X-ray diffraction (XRD). The c axis lattice constant in through plane direc-

tion is measured by XRD. High-angle annular dark field scanning transmis-

sion electron microscopy (HAADF STEM) is used to verify the quality of the

film.

The measured in-plane and through-plane structural information of
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Table 5.2: Structural information of [SnSe]n[MoSe2]n with n = 1 ∼ 4
n Film Thickness (nm) SnSe a (nm) MoSe2 a (nm) c (nm) Misfit Coefficient Sn/Mo Ratio
1 59.8(10) 0.6014(1) 0.331(1) 1.251(1) 1.06(1) 1.09(1)
2 58.9(7) 0.6057(3) 0.3334(3) 2.497(2) 1.06(1) 1.10(1)
3 57.6(7) 0.605(1) 0.3329(2) 3.752(3) 1.05(1) 1.11(1)
4 57.0(6) 0.607(1) 0.3322(4) 4.951(5) 1.04(1) 1.13(3)

[SnSe]n[MoSe2]n is listed in Table 5.2. The XRD scan suggests the precursor

crystallized into a layered film with strong crystallographic alignment to the

substrate. Both the c-axis and the in-plane lattice parameters of repeating

unit of each sample are consistent with previously reported values [52]. The

XRR scans indicate the samples are high quality with low interface roughness.

Based on derivation of Wainfan and Parratt [53], the film roughness is less

than 0.6 nm. The incommensurate in-plane lattice parameters suggests that

there is no epitaxial relationship between layers. The ratio of the in-plane

areas for the two constituents provides the structural misfit ratio. We also

obtain crystallite sizes from the peak width of in-plane XRD scan. Neglecting

strain effects, which are usually negligible in MER-prepared compounds [52,

54], Scherrer analysis indicates that the SnSe grain size increases from 3.5

nm for n = 1 to 7.5 nm for n = 4 and the MoSe2 grain size increases from

3.3 nm for n = 1 to 3.9 nm for n = 4.

HAADF STEM is performed to verify structural information. HAADF

STEM images of n = 1 and n = 4 samples are shown in Fig. 5.5. It supports

that the samples are crystallographically aligned to the substrate and consist

of alternating n layers of SnSe interleaved with n layers of MoSe2. The total

film thickness is confirmed to be the same as determined from analysis of

XRR. There is no apparent relationship between the alignment of grains

within one layer and the alignment of grains within an adjacent layer, showing

the turbostratic disorder characteristic. The MoSe2 layers are disordered even

within each block. The turbostratic disordering of adjacent dichalcogenide

layers prepared by MER was observed previously and is correlated with the

ability of the dichalcogenide to form multiple stacking arrangement [55, 56].

The [SnSe]n[MoSe2]n thin film is treated as an effective medium with

textured symmetry in the measurement length scale (0.7 ∼ 20 µm). It has

five independent elastic constants: c11, c12, c13, c33, and c44. I measure c33

using longitudinal acoustic echo [24] and c44 using SAW technique [38].

vSAW is generally sensitivity to the shear elastic constant. I calculate
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vSAW of layered structure using the calculation methods described in Chap-

ter 3 to extract the shear elastic constants by fitting the calculated vSAW to

the measured vSAW . The sensitivity of vSAW to elastic constant c is defined as:

(∂vSAW/∂c)(c/vSAW ), in current sample structure Al(≈ 145 nm)/MLC(≈ 60

nm)/Si, the sensitivity of vSAW to c33 of MLC is about 0.11; the sensitivity

to c44 is about 0.03; the sensitivity to c11 is about 0.01, while the sensitivities

to c12, and c13 are less than 0.001. c33 can be measured independently in

longitudinal acoustic echo measurement. c44 has the highest sensitivity other

than c33 so I can use vSAW to extract c44. In order to do it, the estimates

of c11, c12, and c13 are needed as input parameters. In Chapter 7, I describe

how I use density functional theory (DFT) calculation to compute c11, c12,

and c13 of a hexagonal crystal.

Since [SnSe]n[MoSe2]n is incommensurate with misfit coefficient slightly

larger than 1, it is impractical to perform DFT calculation for the true sup-

perlattice. For cases of n > 1, there are two many atoms in the cell and the

calculation is too time demanding. So I only calculate [SnSe]1[MoSe2]1 using

a supercell consisting of 1 atomic layer of 3 MoSe2 unit cell and 1 atomic

layer of 4 SnSe unit cell. Comparing with the lattice constants measured

in XRD, the relaxed supercell has ∼ 1% in-plane strain in MoSe2 layer and

∼ 5% in-plain strain in SnSe layer. We assume the strain is small enough

that the result of c11, c12, and c13 are good enough estimations. The results

of DFT calculation are listed in Table 5.3. To extract c44 of MLC of different

n from SAW experimental results, I use measured c33 with corresponding n

and calculated c11, c12, and c13 with n = 1.

In the measurement of elastic constants, I discovered that the measured

vSAW of n = 4 sample is too small that I cannot fit a c44 from it. Later

I collected XRD signal from the samples that I use to measure SAW. The

results show that many XRD peaks in the n = 4 samples disappeared while

the XRD signal for n = 1 ∼ 3 are similar to the one collected immediately

after synthesis at University of Oregon. This lead us to believe that the

quality of n = 4 sample is no longer as good as when it was synthesized and

we can no longer trust its structural information and we can no longer fit

c44 from vSAW . The cause of the degradation and resulting structure of the

n = 4 sample is currently unclear. It is possibly caused by the fact that the

storage environment is not always under good vacuum. It also shows that

the samples with bigger n are easier to degrade. The measured c33 and c44
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Table 5.3: Calculated and measured elastic constants of [SnSe]1[MoSe2]1. c
is measured by XRD; c33 is measured by longitudinal acoustic echo measure-
ment; c44 is measured by SAW measurement.

c(Å) c11(GPa) c12(GPa) c13(GPa) c33(GPa) c44(GPa)
DFT Calculation 12.458 109.4 40.5 4.5 48.3 4.1
Measurement 12.425 38.8 1.0

Table 5.4: Comparison of measured elastic constants of turbostratic MoSe2

synthesized by MER method and calculated elastic constant of bulk MoSe2.
c11(GPa) c12(GPa) c13(GPa) c33(GPa) c44(GPa)

Turbostratic, Exp. 33 3
Bulk crystal, Cal. [57] 196.1 44.7 9.8 44.7 32.9

of other three samples are plotted in Fig. 5.6.

The 2% error of c33 is dominated by error in echo measurement, since

both layer thickness and density are relatively accurate. The total error in

c44 is ≈ 30%, which is dominated by the error in c33 and measured frequency

of SAW. Since the sensitivity to c33 is ≈ 4 times of the sensitivity to c44,

≈ 2% error in c33 leads to ≈ 8% error in c44. We assume the uncertainty of

c11 is about 5% from the comparison of calculation and experiment of MoS2,

it contributes to ≈ 2% error in measurement of c44. So the error from c11

is dominated by error from other sources. The relatively large error in c44

comparing with our other measurements using the same technique is because

the c44 of [SnSe]n[MoSe2]n is extremely small so the vSAW is more sensitive

to c33 than to c44 and the overall sensitivity to the film is small because of

the relatively small thickness.

The results show that c44 of [SnSe]n[MoSe2]n decreases with increasing

n. At n = 1, there is no turbostratic disorder in MoSe2 layer since there

is only 1 atomic layer, and only incommensurate interfaces exist. As n in-

creases, more turbostratic disorder is introduced in MoSe2. To evaluate the

how much c44 can decrease due to turbostratic disorder, we measured c33 and

c44 of turbostratic MoSe2 synthesized by MER method. Table 5.4 compares

the measured elastic constants of turbostratic MoSe2 and calculated elastic

constants of single crystal MoSe2. It shows c44 of MoSe2 with turbostratic

disorder decreased by about 90% from its bulk value. Savini et al. [58] cal-

culated the elastic constants of graphite with turbostratic disorder and show

that c44 can drop to the order of 0.1 GPa, which is on the same order of
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magnitude of our measurements.

Also when n = 1, I suspect it is easier for the SnSe layer to arrange

itself so that the Sn atoms are nested between Se atoms in the MoSe2 layer.

When n is larger, the SnSe layer is better crystallized and the nesting effect

is less than before. The fact that grain size of SnSe is doubled from n = 1

to n = 4 is an evidence of it.
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5.4 Figures

Figure 5.1: Sensitivity of shear elastic constant c44 of the SiO2 with different

thickness of SiO2 layer. For thin films, a thicker Al layer on top can increase

the sensitivity.
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Figure 5.2: Map of successful and unsuccessful measurement of Al/PMMA/Si
sample structure with different Al thickness and PMMA thickness. The
elastic constants of PMMA can be found in Ref. [40]
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mode of the layered structure. It’s possibly the oscillation mode of a “sus-
pended” Al film.
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Figure 5.4: Measured c11 and c44 of various polymers. The blue and red lines
mark the narrow region of their Poisson’s ratio.
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Figure 5.5: STEM image of [SnSe]n[MoSe2]n with n = 1 (figure (a)) and
n = 4 (figure (b)).
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Figure 5.6: (a) Measured c33 of [SnSe]n[MoSe2]n with different n by longitudi-
nal acoustic echo method. (b) Measured c44 of [SnSe]n[MoSe2]n with different
n by SAW measurement.
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CHAPTER 6

ATTENUATION OF 7 GHZ SURFACE
ACOUSTIC WAVE ON SILICON

Most of this chapter was published in Ref. [59].

6.1 Acoustic attenuation in non-metallic crystals

In non-metallic crystals, the intrinsic attenuation of acoustic waves is gov-

erned by the interactions with thermally excited phonons mediated by the

anharmonicity of the interatomic potentials [60]. This intrinsic attenuation

imposes an upper limit to the quality factor Q of mechanical oscillators,

where Q is defined as 2π times the ratio between total stored energy and

energy dissipated per cycle of oscillation. The widely used mechanical oscil-

lators like microelectromechanical systems (MEMS) and nanoelectromechan-

ical systems (NEMS) can now operate at GHz frequencies. High Q factors

are needed for their applications as filters and sensors [61, 62, 63]. Near room

temperature, the Q is typically limited by multi-phonon relaxation process

where the strain of the acoustic wave disturbs the distribution of thermally

excited phonons and the relaxation of the distribution to an equilibrium re-

quires an increase of entropy and therefore causes dissipation of energy from

the acoustic wave.

Acoustic attenuation by the relaxation of the thermal phonon distri-

bution was first proposed by Akhiezer [64] under the constraint ωτ � 1,

where ω is the angular frequency of acoustic wave and τ is the time scale

over which the distribution of thermally excited phonons relaxes to a local

equilibrium, i.e., the average phonon relaxation time. The theory was later

extended using Boltzmann theory [65, 66, 60] to higher acoustic wave fre-

quencies, ωτ > 1. Maris [60] pointed out that the Akhiezer theory, or the

Boltzmann theory, should be applicable when ω � kBT/~ and ωτ 6� 1 is

satisfied. Throughout the paper we will call the attenuation from relaxation
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of thermally excited phonon at this frequency regime “Akhiezer damping”.

This definition of the range of applicability of Akheizer theory is less restric-

tive than the limit ωτ � 1 which is referred to as the Akhiezer regime in

much of the scientific literature on this topic.

A simplified expression for the acoustic attenuation α due to Akhiezer

damping is [67, 68, 69, 70]:

α =
CT

2ρv3

ω2τ

1 + ω2τ 2
(〈γ2〉 − 〈γ〉2) (6.1)

where C is the volumetric heat capacity, ρ is density, v is the speed of acous-

tic wave, and γ is the mode Grüneisen parameter of the thermally excited

phonons; γ depends on frequency and polarization of the phonon and the

mode of the strain. The brackets in Eq. 6.1 denote an average over the entire

population of thermally excited phonons. In Sec. 6.4 we discuss the condition

when Eq. 6.1 is a good approximation to Boltzmann theory.

At low frequencies, ω2τ 2 � 1, Eq. 6.1 has a simple quadratic dependence

on the frequency of the acoustic wave [60, 65]:

α =
CT

2ρv3
ω2τ(〈γ2〉 − 〈γ〉2) (6.2)

This relationship can also be described by a phenomenological equation [71,

72]:

α = ω2η/2ρv3 (6.3)

where η is the effective phonon viscosity. For bulk acoustic wave, η can be

calculated by the phonon viscosity tensor [72], which has the same symme-

try as the elastic constant tensor of the material. Comparing Eq. 6.2 and

Eq. 6.3, η contains information of both τ and mode Grüneisen parameters

and depends on the mode (normal or shear), polarization, and direction of

propagation of the acoustic wave. The ideal quality factor Q of an acoustic

wave is Q = ω/(2αv). Therefore, based on Eq. 6.3, the fQ product is inde-

pendent of frequency; fQ is often used as a figure of merit [73] for mechanical

oscillators.

The highest frequencies achieved in previous studies [74, 75, 76, 67,

77, 78] of attenuation of acoustic wave in Si at room temperature is ≈ 2
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GHz. If we estimate τ ∼ 20 ps [25], then ωτ ∼ 0.2 and it adequately

satisfies the condition ω2τ 2 � 1. Therefore, in the previous work, Eq. 6.3 is

a good approximation, α has a quadratic dependence on frequency, and the

effective phonon viscosity can be obtained from the proportionality between

attenuation and ω2. As I discuss below, previous results for the attenuation

of acoustic waves in Si show significant discrepancies. Similarly, data for the

phonon viscosity tensor also have large discrepancies [72, 75].

None of the previous studies of Si near RT are at frequencies high

enough to separate τ and the mean-square variations in the mode Grüneisen

parameters that appear in Eq. 6.1. When acoustic wave in Si is at several

hundreds MHz and experiment is done at temperature much lower than De-

bye temperature, ωτ ∼ 1 is satisfied [67, 68] and Eq. 6.1 has been used to

describe the low temperature measurements. At low temperatures, only a

small fraction of the phonon modes in acoustic branches are thermally ex-

cited. Since the majority of phonon modes of Si are thermally excited at RT,

the low temperature measurements cannot be reliably extrapolated to RT.

Daly et al. [25] recently used Eq. 6.1 to characterize the attenuation

of longitudinal acoustic wave in Si when ωτ ∼ 1. At RT, the measured

attenuation at 50 GHz and 100 GHz is consistent with the assumption of

〈γ2〉 − 〈γ〉2 = 1 and fitting of the data with τ ≈ 20 ps. Since both the relax-

ation of thermal phonon and the Grüneisen parameters are dependent on the

acoustic mode, the purpose of the present study is to better understand the

Akhiezer damping of acoustic modes with predominately transverse polariza-

tion when ωτ ∼ 1 at RT. When Eq. 6.1 is applicable, Q reaches minimum at

ωτ = 1. I use the temperature dependence of the attenuation in the regime

ωτ ∼ 1 to derive estimates of both the thermal phonon lifetime τ and the

mean-squared variation of the Grüneisen parameters.

An elastically aniostropic metal film can be used to generate high fre-

quency transverse acoustic wave through heating by a short duration optical

pulse but the efficiency is relatively low [79]. So I have chosen instead to use

a more experimentally convenient approach of measuring the attenuation of

surface acoustic waves (SAWs). I show in Sec. 6.3.1 that the attenuation

of SAWs can be connected to Akhiezer damping of bulk transverse acous-

tic waves. Since pure shear strain in cubic crystal like Si does not suffer

from thermoelastic damping, I can safely ignore thermoelastic damping in

our analysis.
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Together with the phase-shift mask technique, I have described three

technique to measure SAW in optical pump-probe system. As discussed

before, to detect propagating SAW in a transient grating experiment involves

mixing the scattered wavefront with a carrier, i.e., heterodyne detection [80].

This require complicated optical setup, especially if one wants to measure

SAW traveling far away. SAW measurement using a elastomeric phase-shift

mask is a convenient method for measurement of elastic constants of thin

layers. Unfortunately, however, the elastomeric mask in contact with the

sample produces strong damping and an attenuation length on the order

of 10µ m. It leaves with only one option: measure SAW with patterned

metal grating. Typically, the pattern of metal bars attenuates the SAW

significantly by coupling the SAW to bulk acoustic modes, as we discuss in

Sec. 6.3. By spatially separating the gratings used to generate and detect

the SAW, I can minimize and quantify damping created by the grating and

probe the intrinsic acoustic attenuation.

The attenuation of SAWs in the context of SAW devices has been discussed

previously by Slobodnik et al. [81, 82]. This study provides additional anal-

ysis of the intrinsic and extrinsic damping of SAWs.

6.2 Generation and Detection of SAWs Using a Metal

Grating

6.2.1 Sample Fabrication

The sample structure is shown in Fig. 6.1. I will discuss later the reason

for this geometry. Mircofabrication of the structure consists of two main

steps. First, I define the gap region by standard liftoff techniques. AZ-5214E

photoresist is used in image reversal mode to cover the gap region and form

a negative wall profile. Then, a thin Al layer (∼ 15 nm) is sputtered onto

the sample surface. After deposition, the photoresist pattern together with

the Al film is lifted off by acetone, leaving the gap region uncovered by Al.

Second, I define the Al grating by nano-imprint lithography described in

Chapter 2.
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6.2.2 Generation and detection scheme

Generation and detection of SAWs by optical pump-probe techniques has

been discussed previously [83]. When the pump optical pulse arrives at the

sample surface, the temperature of Al bars rises quickly while the temper-

ature of Si substrate remains relatively unchanged. The expansion of Al

causes spatially modulated stress and generates SAWs. The amplitude of

SAWs is therefore proportional to the temperature rise of the Al, which is

proportional to the average power of the pump beam.

In many experiments that probe SAWs optically, SAWs scatter light

due to surface displacements rather than elasto-optic coupling [84]. For the

specific case of the Al grating structure, the electric field reflected by the Al

regions of the sample are larger than the electric field reflected from the bare

Si regions of the sample. The perpendicular displacements of the Al bars

are in phase with each other when the wavelength of SAW is equal to the

periodicity of the Al grating. The modulation of the reflected electric field is

therefore linear in the displacements and the modulation of the reflectivity is

proportional to the SAW amplitude. By contrast, the scattering cross section

of SAWs on a grating-free surface is quadratic in the SAW amplitude [84].

In the experiments, the amplitude of the detected signal scales linearly with

the pump power, as expected.

In our pump-probe system, the laser has repetition rate of ≈ 74 MHz.

Each pump pulse excites a SAW wavepacket. The probe can be delayed

relative to the pump by up to ≈ 4 ns. Each probe pulse can detect SAW

wavepackets generated by any previous pump pulse; for example if the delay

line is set to 2 ns, then the probe pulses can detect SAW that have propagated

for 2 ns, 16 ns, 30 ns, 44 ns, etc. This is the “accumulation” effect that I

briefly mentioned in Chapter 2. I use spatially separated pump and probe

optical pulses to detect SAW that have propagated relatively long distances

to increase the sensitivity of the experiment to the intrinsic SAW attenuation.

I label the pump pulse that is split off from the given probe pulse as

pump pulse n = 0, the prior pump pulse to be n = −1, the pulse before

that to be n = −2, etc. We modulate the pump beam at ≈ 9.3 MHz

(1/8 of the laser repetition rate) and synchronously detect the modulation of

the reflected probe intensity with a fast photodiode and rf lock-in amplifier.

Detection of the SAW wavepacket generated by pump pulse n has a ≈ −nπ/4
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phase difference with respect to the reference signal.

Sec. 6.3.3 discusses how the grating structure with non 50% filling factor

creates a band gap at Brillouin zone center. Since I cannot make the grating

with exactly 50% filling factor, there is always a small band gap at the

Brillouin zone center. This band gap produces components with small group

velocity. These minor components of the signal will trail behind the wave

packet. Each response to a pump optical pulse is overlapped by the trailing

part of the response to the previous pump pulse because the current response

can catch up with the low group velocity component of the previous response.

To measure attenuation, we need to separate the responses; the phase

shifts described above help accomplish that task. When the spatial offset

between the pump and probe beam is set at ≈ 150 µm, which corresponds

to the position of SAW packets generated by pump pulse n = −2. The

signal has a π/2 phase shift and appears only in the out-of-phase channel.

The response from pump n = −3 will appear in both the in-phase and

out-of-phase channel. Since we observe that the in-phase signal is negligible

compared to the out-of-phase signal, we conclude that the out-of-phase signal

is not significantly contaminated by a contribution from pump n = −3.

Fig. 6.3a shows the typical signal for a small offset between pump and

probe and Fig. 6.3b shows the typical signal for a large offset. By comparing

the amplitude of the Gaussian wave packet as a function of beam offset, we

can determine the attenuation.

6.3 Properties of SAW on Silicon with metal grating

The difficulty of this attenuation measurement is that the intrinsic attenu-

ation is very small comparing to other possible factors that can cause wave

intensity change. A reliable measurement requires consideration and correc-

tion for additional mechanisms that cause the wave amplitude to change with

distance of propagation. In the following sections I will discuss the effect of

the mass of the Al grating and diffraction of the acoustic wave.
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6.3.1 SAW on Si (100) plane

Using a Green’s function method described in Chapter 3, I calculate the dis-

persion of SAWs of the bare substrate and the substrate patterned with a thin

metal grating. I define Cartesian axis where axis â1 and â2 are in the plane of

surface and axes â3 is perpendicular to the surface. Gij(k, ω, x3) is the elas-

todynamic Green’s function tensor in Fourier space (angular frequency and

wave vector) evaluated at depth x3. G33(k, ω, x3 = 0) is its (3, 3) component,

which is at surface x3 = 0 and represents the perpendicular displacement (in

the â3 direction) with excitation force at â3 direction. G33(k, ω, x3 = 0) has

the information of dispersion relation of SAW, which can be used to calculate

SAW velocity.

The measurements are on the Si (100) surface. For a cubic crystal,

SAWs propagating along the 〈100〉 or 〈110〉 direction are Rayleigh surface

acoustic waves (RSAW); i.e., the sagittal plane of SAWs is perpendicular to

the surface [6]. For Si(001), as the propagation direction of the SAW rotates

from 〈100〉 to 〈110〉, the SAW is a Rayleigh-like wave and it gradually converts

into the bulk transverse wave with polarization parallel to the surface. The

sagittal plane is no longer perpendicular to the surface but there is no wave

energy radiating into substrate. At directions close to 〈110〉, there is very

small or no displacement perpendicular to the surface in the Rayleigh-like

wave and it can no longer be measured in our experimental set up. Beyond ≈
37° from 〈100〉, another mode called pseudo surface acoustic wave (PSAW) [7]

arises. The PSAW has a wave component that radiates into the bulk. At

〈110〉 direction, the radiating component disappears and the wave becomes

RSAW again. What we measured is at 〈110〉 and it belongs to the PSAW

branch. To simplify the terminology in what follows, I use the term SAW

to describe both PSAWs and SAWs. Fig. 3.3 shows the the different SAW

modes propagating at different direction on Si (001) surface.

I calculate the SAW velocity (vSAW) using elastic constants of Si [85]:

c11 = 167.4 GPa, c12 = 65.2 GPa c44 = 79.6 GPa, and density ρ =

2.33 g/cm3. At 〈110〉 direction where the measurement are carried out,

vSAW = 5.09 nm/ps. SAW in our experiment has 700 nm wavelength. Thus,

the predicted frequency is f = 7.27 GHz or, equivalently, an angular fre-

quency of ω = 45.7 s-1. Experimentally, I observe f = 7.17 GHz. I attribute

the 1.3% difference to the mass of the patterned Al grating. From linear
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response theory, Im(G33(k‖, ω, x3 = 0)) arises because of dissipation. The

width of Im(G33(k, ω, x3 = 0)) in the frequency coordinate can be used to

infer the quality factor Q of the SAW created by coupling to bulk acoustic

waves. From the calculations, I find that for a propagation direction within

5° of 〈110〉 direction, the Q factor is > 3×104 due to radiation of acoustic en-

ergy into the bulk and therefore I can neglect this mechanisms for attenuation

of the PSAW.

I calculate the symmetric strain tensor εij with i, j = 1, 2, 3 in SAW at

the (100) plane and propagating in the 〈110〉 direction. The amplitude of

the density of elastic energy is Eel = 1
2
cijklεijε

∗
kl. The strain is represented

by complex number and ∗ stands for complex conjugate. For cubic crystals,

the nine components of the symmetric strain tensor can be viewed as the

basis of the representation of the group which is the symmetrized product

of the point group of the cubic crystal [86, 87, 88]. The resulting group is

reducible; therefore, the six independent components of strain tensor can be

recombined to form the new basis of the three irreducible representations.

The volumetric strain mode εv = ε11 + ε22 + ε33 corresponds to the the bulk

modulus cB = (c11 + 2c12)/3; The two equivalent stretch modes ε2 = ε11− ε22

and ε3 = (2ε33− ε11− ε22)/
√

3 correspond to tetragonal shear modulus (c11−
c12)/2; and three equivalent shear modes ε12, ε13, and ε23 correspond to shear

modulus c44. The density of elastic energy in a cubic crystal is then [89, 88]:

Eel =
1

2
cB|εv|2 +

c11 − c12

4
(|ε2|2 + |ε3|2) + 2c44(|ε12|2 + |ε13|2 + |ε23|2) (6.4)

When ω2τ 2 � 1 is satisfied, the concept of phonon viscosity can be

applied to calculate the Akhiezer damping of SAW as described by Maris [90].

I adopt part of Maris’s approach and provide a brief derivation of the effective

viscosity of SAW in the following. The average rate of energy loss Pv due to

phonon viscosity is [90]:

Pv =
1

2
ω2

∫
ηijklεijε

∗
kl dV (6.5)

where ηijkl is the phonon viscosity tensor and the integral is over volume.

The total energy of the SAW is the same as the amplitude of the elastic

energy, since the time average of elastic energy and kinetic energy is the
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same. Therefore, the total energy of the system is:

W =

∫
Eel dV (6.6)

Since the phonon viscosity tensor ηijkl has the same symmetry as elastic

constants tensor cijkl, the average rate of energy loss by Akhiezer damping

in Si is:

Pv =

∫
ω2

[
1

2
ηB|εv|2 +

η11 − η12

4
(|ε2|2 + |ε3|2) + 2η44(|ε12|2 + |ε13|2 + |ε23|2)

]
dV

(6.7)

where ηB = (η11 + 2η12)/3. By writing the attenuation coefficient as:

αSAW =
Pv

2WvSAW

=
ω2ηSAW

2ρv3
SAW

(6.8)

the effective viscosity of SAW can be defined as:

ηSAW =
ρv2

SAW

2W

∫ [
ηB|εv|2 +

η11 − η12

2
(|ε2|2 + |ε3|2) + 4η44(|ε12|2 + |ε13|2 + |ε23|2)

]
dV

(6.9)

For SAW on the Si (100) surface along the 〈110〉 direction, the effective

viscosity is:

ηSAW = 0.059ηB + 0.269

(
η11 − η12

2

)
+ 0.545η44 (6.10)

η44 is the effective viscosity of fast transverse (FT) bulk acoustic wave in the

〈110〉 direction; (η11− η12)/2 is the effective viscosity of slow transverse (ST)

bulk acoustic wave in the 〈110〉 direction. Thus, the SAW attenuation in our

measurements has predominantly shear character.

6.3.2 Diffraction and phonon focusing

SAW is generated by pump laser beam with 1/e2 spot size of w0 = 5.5 µm.

The propagation distance that separates the near-field from the far-field is

on the order of πw2
0/λ where λ is the acoustic wavelength. The propagation

distance in our experiments (≈ 150 µm) is comparable to πw2
0/λ ≈ 140 µm

and we must consider diffraction in our data analysis.
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We start by considering diffraction of a 2D wave for an isotropic medium

for a wave of wave-vector k = 2π/λ. The wave amplitude at an arbitrary

position (x0, y0) is the superposition of the circular waves generated by each

point of the source. For a line source centered at x = 0, y = 0 and extending

in y direction with Gaussian intensity distribution u0 ≡ exp (−2y2/L2) (L is

the 1/e2 spot radius), the wave amplitude at (x0, y0) is

U(x0, y0) ∝
∫ ∞
−∞

exp

(
−2

y2

L2

) exp
(
−ik

√
x2

0 + (y0 − y)2
)

(x2
0 + (y0 − y)2)

1/4
dy (6.11)

The exponential term in the numerator is the phase of circular waves. The

amplitude of a circular wave in 2D falls off with distance r as 1/
√
r

The Si (100) surface is not isotropic and the SAW velocity vSAW varies

with direction. We plot the slowness surface 1/vSAW in Fig. 6.6. From 〈100〉
to≈ 37° away from 〈100〉, SAW is Rayleigh-like and has relatively big perpen-

dicular displacement (so measurable in experiment) and its slowness surface

is plotted. Beyond ≈ 37° till 〈110〉, PSAW has much bigger perpendicular

displacement and its slowness surface is plotted. The discontinuity in Fig. 6.6

appears because the slowness surface of the two modes don’t intersect. The

vector normal to the slowness surface is the direction of the group velocity.

For directions near 〈110〉, the slowness surface has smaller curvature than a

circle and the vectors normal to the slowness surface tilt toward 〈110〉. This

phonon focusing effect concentrates energy toward 〈110〉 and suppresses the

effects of diffraction in this direction.

Taking into account phonon-focusing effects, the wave intensity at

(x0, y0) is [91, 92]:

U(x0, y0) ∝
∫ ∞
−∞

N∑
l=1

u0(y)√
|r̄|v(l)

g κ(l)
× exp

(
−ik̄(l) · r̄

)
dy, (6.12a)

r̄ = (x0, y0 − y), (6.12b)

u0(y) = exp
(
−2y2/L2

)
, (6.12c)

n̄ =
r̄

|r|
. (6.12d)

To evaluate Eq. 6.12, we first find n̄, the direction vector from point source

(0, y) to field point (x0, y0). Then we search the slowness surface to find points
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s(1) to s(N) whose group velocities have the same direction as n̄. These N

points have group velocity v̄
(l)
g , phase velocity v̄

(l)
p , curvature κ(l), and wave

vectors k̄(l) = ωv̄
(l)
p , l = 1 . . . N . Note that if the slowness surface is a circle,

then v̄g = v̄p = v̄ and only one point would satisfy the requirement.

I experimentally verify this calculation by measuring the wave ampli-

tude as a function of probe position displaced perpendicular to the wave

propagation direction, i.e., the transverse direction, at ≈ 150 µm from the

source, see Fig. 6.2. The calculation for the isotropic case, Eq. 6.11 (blue

line), gives a wider distribution along the transverse direction than experi-

ment. The calculation for the phonon-focusing case, Eq. 6.12 (red line), is

narrower and fits the measurement well.

6.3.3 Effect of metal grating

The effect of a thin metal grating on SAWs has been described previously [93,

32]. We numerically model the perturbation of SAWs created by the metal

grating using the mass loading approximation [32] and the surface Green’s

function method. (Details of our calculations are given in Appendix 3.2). The

grating creates changes in dispersion, i.e., band structure, and attenuation,

i.e., reduced lifetimes.

Without the grating, the dispersion is a straight line with equal group

and phase velocity. When a periodic array of metal bars are added to the

surface, these bars are displaced together with the surface by the SAW. The

surface must provide sufficient force to drive the displacement of the bars

and therefore the boundary condition at the surface is a periodic force field.

Similar to an electron wave function in a periodic potential, the dispersion

curves of SAWs are folded into the first Brillouin zone: −π/λ to π/λ, where

λ is the periodicity of the grating.

Because of the folding in k-space, the SAW dispersion curve intersects

the dispersion curve of fast bulk transverse acoustic waves and bulk longitu-

dinal acoustic waves. The figure in Appendix 3.4.2 shows the dispersion in

first Brillouin zone and coupling between SAW and bulk acoustic wave. Al

has relatively low density and produces less attenuation than a high density

metal such as Au [93].

Zone folding can create a band gap at the Brillouin zone center if the
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filling factor of the grating deviates from 0.5. Fig. 6.4 plots Im(G33(k‖, ω, x3 =

0)) near the Brillouin zone center with delta excitation. Fig. 6.4a shows if the

filling factor is 0.5, there is no band gap at Brillouin zone center. However,

if the filling factor is not 0.5, for example 0.35 as shown in Fig. 6.4c, there

is a significant band gap at Brillouin zone center from ≈ −0.04× 106 m-1 to

≈ 0.04× 106 m-1.

For a filling factor that deviates from 0.5, the k = 0 modes of the two

branches are standing waves with a π/2 phase difference. Because of this

phase difference, the two standing waves drive the metal bars with different

magnitudes displacements and accelerations and the energies of the two waves

are different, opening a gap. If the grating has a 0.5 filling factor, standing

waves with π/2 phase difference have the same magnitude of displacement

and hence the same energy, and the energy gap at k = 0 is zero.

Deviations from 0.5 filling factor and the opening of a gap at zone

center is important in our measurements. A SAW excited by a finite size

pump beam is composed of wave components over a range of wave vectors k

of −2π/L < k < 2π/L near the Brillouin zone center, where L ≈ 5.5 µm is

the 1/e2 radius of the focused pump. So the range of excited wave vector is

from ≈ −0.18× 106 m-1 to ≈ 0.18× 106 m-1. These components combine to

form a Gaussian wave packet. If a band gap exists at zone center, then the

wave components close to zone center have suppressed group velocity. After

propagating a long distance, these slower components of the wavepacket will

lag behind the other components of the wavepacket with k farther away

from the zone center. For grating with 0.35 filling factor, ≈ 20% of the wave

component has group velocity ranging from the SAW velocity vSAW to zero

(right at the center of band gap) as Fig. 6.4c shows. Thus, the shape of

the wave packet will not be Gaussian, as Fig. 6.4d shows, and difficult to

interpret. If the band gap is small, then the wave packet has a Gaussian

shape, as Fig. 6.4b shows, and is simpler to analyze.

6.4 Experimental results and discussion

We define the wave amplitude measured with closely separated ( lclose) pump

and probe as Rclose and the wave amplitude with widely separated (lfar)

pump and probe as Rfar; the total attenuation of SAW after it travels l =
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lclose − lfar is A = Rfar/Rclose. As discussed in Sec. 6.3, A contains effects

from diffraction, damping created by the metal grating, and the intrinsic

attenuation of Si:

A ≡ Rfar

Rclose

= f(l)D(l) exp (−αglg) exp (−αSil) (6.13)

αSi is the intrinsic attenuation coefficient; αg is the attenuation coefficient

of the Al grating; and lg is the width of Al grating region. D(l) is the

contribution of diffraction and phonon focusing. f(l) is sum of all other

effects that we are not considering, for example the effect of surface roughness

and the presence of the native oxide of Si.

As described in Sec. 6.2, for Rfar we want to measure SAW generated

by pump pulse n = −2 and place the signal in the out-of-phase channel. We

therefore separate the pump and probe by lfar = 147 µm which is how far

the SAW travels in ≈ 30 ns. In this way, we position the probe so that the

wave packet is at the center of the measurement window. To measure Rclose,

we want to suppress the thermal signal. We choose lclose = 10 µm so that

the thermal signal is small and the SAW wave-packet is in the center of the

measurement window.

We first consider the amplitude change D(l) caused by diffraction com-

bined with phonon focusing. Calculation using Eq. 6.12 gives D(l) = 0.85.

We then consider damping created by the grating. Experimentally, we

find αg > αSi. To increase the sensitivity of the experiment to αSi, we must

minimize lg. Even the grating within the small distance of propagation across

the width of the pump and probe optical beams creates appreciable damping

and therefore we must quantify the damping created by the Al grating to

improve the measurement of αSi. Based on Eq. 6.13, ln(Rfar/Rclose) changes

linearly with lg. Thus, we can fit a line to ln(Rfar/Rclose) versus lg and

extrapolate to lg = 0 to remove damping created by Al grating.

This is achieved by varying the gap width. Fig. 6.1 shows part of the

sample which has three different gap widths. In experiment we change the

gap size from 130 µm to 90 µm but keep lfar constant, i.e., the width of the

grating region varies from 17 µm to 57 µm. To align the relative position

of pump and probe along the transverse direction, we displace the pump

beam along the transverse direction and find the position where the signal is

maximized.
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The inset of Fig. 6.5 shows the experimental configuration to measure

Rfar. Fig. 6.5 shows the measured attenuation with five different widths of

grating region, fitting, and extrapolation to the point where attenuation from

Al grating is removed. We repeat the measurement at four temperatures:

30, 100, 200 and 250°C. If f(l) is assumed as 1, we can obtain: at 30°C,

αg = 152 cm−1, αSi = 9 cm−1; at 100°C, αg = 145 cm−1, αSi = 14.2 cm−1;

at 200°C, αg = 140 cm−1, αSi = 18.4 cm−1; at 250°C, αg = 136 cm−1 and

αSi = 19.4 cm−1.

In Boltzmann theory, the change in the occupation number of a mode

is generated by two processes: phonon transport between regions with dif-

ferent strain, and localized phonon relaxation due to phonon collisions [60].

Eq. 6.1 can be viewed as a result from localized relaxation theory [68], with

Q ∝ ωτ/(1 + ω2τ 2). Therefore, Eq. 6.1 is a good approximation when

phonons relax locally before they propogate to regions with different strain,

i.e. 〈vphonon〉τ � v/f , where 〈vphonon〉 is the averaged group velocity of ther-

mally excited phonons, f = ω/2π is the frequency of the acoustic wave,

and v is the velocity of acoustic wave. This condition can be written as

ωτ < v/〈vphonon〉. At temperature much lower than the Debye tempera-

ture, only a small fraction of the acoustic phonon branches are excited and

v/〈vphonon〉 > 1. Mason et al. [67, 68] show that Eq. 6.1 fits the measured

acoustic attenuation of Si well at low temperature when ωτ > 1. For Si at

RT, the majority of phonon modes are excited. The phonon modes with

larger wave vector generally have smaller group velocity and higher density

of states. In particular, the group velocity of optical phonons is much smaller

than v. Thus, we conclude that v/〈vphonon〉 > 1 in Si at RT. Our experiment

falls into the ωτ ∼ 1 and RT regime, ωτ < v/〈vphonon〉 is satisfied, and Eq. 6.1

is a good approximation.

I fit results for αSi to Eq. 6.1, see Fig. 6.7. In Eq. 6.1, we use the heat

capacity for Si from Ref. [94]. We assume that the relaxation time scales

as τ ∝ 1/T . The fitting gives τ = 30 ps and 〈γ2〉 − 〈γ〉2 = 0.053. The

experimental uncertainty in τ is large, approximately a factor of two. The

uncertainty in 〈γ2〉 − 〈γ〉2 is much smaller, on the order of ±0.01.

The measured intrinsic attenuation coefficient and Akhiezer model using

the fitted τ and (〈γ2〉−〈γ〉2) are compared with previous experimental results

and phonon viscosity modeling in Fig. 6.8, which also reveals discrepancies

among prior experiments and the phonon viscosity models.
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Based on our analysis of Sec. 6.3.1, the attenuation coefficient of SAW

by theory of phonon viscosity can be calculated by Eq. 6.3 with the effective

viscosity ηSAW calculated by Eq. 6.10. The results using phonon viscos-

ity tensors of Lamb & Richter [72] and Helme & King [75] are labeled as

“SAW-Lamb viscosity” and “SAW-Helme viscosity” respectively in Fig. 6.8.

Extrapolation of our experimental results to ω2τ 2 � 1 agrees better with the

calculation based on Helme & King’s phonon viscosity tensor. In the regime

of our measurements, ωτ ∼ 1, the Akhiezer damping predicted by Eq. 6.1

deviates significantly from the phonon viscosity model, Eq. 6.3.

The energy dissipation in mechanical oscillator can be from extrin-

sic and intrinsic mechanisms. Two important extrinsic mechanisms are air

damping [95] and clamping loss [96, 97]. The intrinsic damping mechanism

are thermoelastic dissipation [62, 98] and Akhiezer damping. For extrinsic

damping, vacuum packaging can be used to eliminate air damping and sym-

metrical design of mechanical oscillator can reduce the clamp damping. For

intrinsic damping, utilizing specific modes can suppress thermoelastic dis-

sipation. For example, a pure shear strain in cubic crystal does not cause

volume change and therefore no thermoelastic dissipation occurs. Akhiezer

damping is created by a local strain and represents a fundamental upper limit

to the Q of mechanical oscillators. Our measurements show that the mean-

squared variation of Grüneissen parameters 〈γ2〉 − 〈γ〉2 of shear strain is an

order of magnitude smaller than the corresponding paramaters for normal

strain [67, 99, 73]. Comparing with the Akhiezer damping of longitudinal

acoustic wave measured by Daily et al. [25], the Akhiezer damping of acous-

tic wave at GHz with predominately shear character is ∼ 6 times smaller. A

silicon mechanical oscillator with vibrational mode of mostly shear character

will have higher upper-limit of the Q factor than one with vibrational mode

of predominately normal character.

6.5 SAW by metal grating used as sensor

The experimental design described in this chapter can also be used as sen-

sor [33]. The exact same sample geometry such as Fig. 6.1 is put inside

a vacuum chamber. Then the pressure of refrigerant vapor is gradually in-

creased. In this process, the vSAW is measured by separating pump and probe
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beams far away from each other. As the refrigerant gradually condensed on

top of the Si substrate, it poses as a mass layer and changes vSAW . However

this change is very small. That’s the reason why I need to measure SAW after

it propagates for 150 µm. The small shift of SAW signal in time domain is

shown in Fig 6.9. This shift is indeed caused by the tiny change of vSAW . The

change of vSAW can be interpreted as the mass loading using the calculation

discussed in Chapter 3. The mass loading can then be converted to the mass

of the condensation layer using the calculation introduced in Chapter 3. In

the measurement I observed certain instability slightly below the saturation

pressure. But I didn’t further the investigation to understand it.
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6.6 Figures

20 μm 20 μm 

a

1 μm 

b

Figure 6.1: SEM image of the grating structure. In (a), the dark area is

exposed Si. The bright area is the Al grating. Al metal bars are fabricated

parallel to the edge of the gap region. Two red points illustrate schematically

how the pump and probe beams are separated. In our experiments, the

pump and probe beam are separated by 150 µm. The red wavy line indicates

the wave propagation from the pump grating to probe grating. (b) Higher

magnification image of the Al grating with 700 nm period, ≈ 15 nm thickness

and ≈ 50% filling factor.
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Figure 6.2: Relative signal intensity when the probe beam is offset at trans-
verse direction at far field. Black dots are experiment result. Red line is
calculation considering phonon focusing (Eq. 6.12). Blue line is calculated
diffraction for an isotropic plane (Eq. 6.11). The line labeled “No diffraction”
is the calculation if no diffraction is considered.
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Figure 6.3: (a) Typical in-phase signal for a close offset measurement. Pump
and probe beam are offset by 10 µm. (b) Typical out-of-phase signal for a
far offset measurement. Pump and probe beam are offset by 150 µm.
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Figure 6.4: (a): Im(G33) at Brillouin zone center with 0.5 grating filling
factor and delta excitation. (b) Far field signal with grating of ≈ 0.5 filling
factor. (c): Im(G13) at Brillouin zone center with 0.35 grating filling factor
and delta excitation. (d) Far field signal with grating of ≈ 0.35 filling factor.
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Figure 6.5: Ratio between wave amplitudes of far offset and close offset with
different length of grating region. The vertical axis is plotted at log scale and
data is fitted with straight lines. Each set of date is labeled by the sample
temperature. The slope can be used to calculate the attenuation coefficient
of the Al grating. The inset is the measurement configuration for far offset.
Red dots stand for pairs of positions of pump and probe beams. Repeat
the measurement for five different gap widths while keeping the distance
between pump and probe beam constant introduces five different length of
grating region. Comparing them with the close offset measurement gives five
data points at each temperature.The results are extrapolated to zero grating
length (on the vertical axis) to get intrinsic attenuation.
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Figure 6.6: Slowness surface of Rayleigh-like SAW (from 〈100〉 direction to
≈37° away, where the discontinuity is at) and the PSAW (from the discon-
tinuity to 〈110〉 direction) on the Si(100) plane and comparison between
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ficient. Red points are measurements. Black line is a fit to the data using
Eq. 6.1 and τ = 30 ps and (〈γ2〉 − 〈γ〉2) = 0.053.
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Figure 6.8: Comparison between our result and prior reports and phonon
viscosity model. L denotes longitudinal bulk acoustic wave. FT and ST
denotes bulk fast transverse acoustic wave and bulk slow transverse acoustic
wave. Notation like 〈100〉 denotes the propagation direction. Data [a] is from
Ref. [77]. Data [b] is from Ref. [74]. Data [c] is from Ref. [67]. Data [d] is
from Ref. [78]. Straight line of “SAW-Lamb viscosity” and dash line “SAW-
Helme viscosity” correspond to the attenuation coefficient of SAW calculated
using Eq. 6.3 and effective viscosity of SAW from Eq. 6.10. They use phonon
viscosity tensor from Lamb & Richter [72] and Helme & King [75] respectively.
Akhiezer model is calculated using Eq. 6.1, where τ and 〈γ2〉− 〈γ〉2 are from
our measurement.
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CHAPTER 7

CALCULATION OF ELASTIC
CONSTANTS AND GENERALIZED

GRÜNEISEN PARAMETER BY DENSITY
FUNCTIONAL THEORY

7.1 Revisit some concepts of solid mechanics

In Chapter 2, I briefly define stress, strain, and introduce the equation of

motion, to serve as the foundation of SAW calculation. In this chapter, the

calculation of second order elastic constant and generalized mode Grüneisen

parameters will be discussed. Experimentally, one can measure the mode

Grüneisen parameter of phonon at Gamma point. The relevant experiments

are the third order elastic constant (TOEC) measurement and the Raman

spectroscopy with material under strain. In both cases, the specimen is

subjected to a certain strain and the lattice deviates from its original, or

fully relaxed lattice. However the material properties are usually defined

for material with no deformation. So the experiments and description of

material are at different coordinate system. In the beginning of this chapter,

I introduce a more general and complete view of solid mechanics which is

useful in understanding the calculation of second order elastic constant and

comparison between TOEC and generalized mode Grüneisen parameter.

7.1.1 Lagrangian description and deformation gradient

This section is a selected combination of various online resources and Thurston’s

review article: Wave propagation in fluids and normal solids, which is the

first article of the first edition of the series: Physical Acoustics, Principles

and Methods. The following description is selected and rearranged by myself

and serves for the purpose of better understanding of the topic discussed

later.

If one lattice is strained and moved from it’s original position, it can be
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located by the spatial coordinates xi:

r̄ = (x1, x2, x3)

is the spatial coordinates of the material. From another point of view, every

particle can be identified by the coordinates ai when there is no strain:

ā = (a1, a2, a3)

which is the material coordinates. ā serves as a name for the particle. Coor-

dinates r̄ is associated with ā by the rule that r̄ is the present position vector

of the particle initially at ā, i.e.,:

r̄ = r̄(t, ā)

This is usually called the material description or Lagrangian description.

The relationship between r̄ and ā can be written using derivative:

Fij =
∂xi
∂aj

, (7.1)

which is a 3×3 matrix. Fij is usually called deformation gradient. This set of

derivatives can also be interpreted as vector operators defining the rotation

and stretch of material line element. The determinant of the deformation

gradient matrix is defined:

J ≡ det(Fij), (7.2)

and one can prove the properties:

J = lim
dV0→0

dV

dV0

, (7.3)

i.e. J is the relative volume element change or inverse of relative density

change:

J =
ρ0

ρ
, (7.4)

where V0 and ρ0 are the original volume and density and V and ρ are the

new volume and density after the strain.

The deformation gradient Fij is the starting point of solid mechanics.

The term strain always refers to a change in the relative position of the ma-
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terial points in a body. Changes in the distance between particles distinguish

strains from rigid body motions. So in the material description, the strain

component ηjk is defined as:

dxi dxi − dai dai = 2ηij daj dak, (7.5)

Since dxi = Fij daj, in the material description we have:

(
∂xi
∂aj

daj)(
∂xi
∂ak

dak)− dai dai = 2ηij daj dak, (7.6)

which leads to:

ηjk =
1

2
(FijFik − δjk), (7.7)

So the strain ηij is also called Lagrange strain.

We can derive the strain definition in Chapter 2 by introducing the

displacement vector as: ū = x̄− ā. Putting it back one can have

ηjk =
1

2
(
∂uj
∂ak

+
∂uk
∂aj

+
∂ui
∂aj

∂ui
∂ak

) (7.8)

When the displacement is small and the second order is omitted, ηij is the

same as the definition in Chapter 2.

A few more properties about deformation gradient that will be useful in

the derivation of the TOEC and Grüneisen parameter: the derivative of J is:

∂J/∂Fij = JF−1
ji (7.9)

The stretch rate is defined as

dij ≡
1

2
(
∂vi
∂xj

+
∂vj
∂xi

) (7.10)

dij quantifies the relative velocity of particles in the deformed solids.

The derivative of Lagrangian strain with respect to deformation tensor

can be calculated based on Eq. 7.7:

∂ηmi
∂(∂xk/∂am)

=
∂ηmi
∂Fkm

=
1

2
(Fkiδmm + Fkmδmi) =

1

2
(Fki) =

1

2
Fki(1 + δmi)

(7.11)
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7.1.2 Different stress measures

In Chapter 2, the Cauchy stress tensor σij is defined. It is the best phys-

ical measure of the internal force. However when working in the deformed

coordinates, the Cauchy stress tensor may not be the most convenient one

to use since it is the real stress in the spatial coordinates system. So for the

convenience of analysis, the second Piola-Kirchhoff stress is introduced as:

tij = JF−1
ik σklFjl (7.12)

It is also called the material stress or the thermodynamic tension. The ma-

terial stress is a fictitious stress tensor. The purpose of this definition is to

create a stress measure that is the work-conjugate of Lagrange strain tensor,

i.e. the rate of work Ẇ done by stresses acting on a small material element

with volume dV0 in the undeformed material is:

Ẇ = η̇ijtij dV0.

Then the definition of the second and third order elastic constant should be

based on the material stress:

cijkl =
∂tij
∂ηkl

= ρ0
∂2U

∂ηij∂ηkl
(7.13)

cijklmn =
∂cijkl
∂ηmn

= ρ0
∂2U

∂ηij∂ηkl∂ηmn
(7.14)

In the above discussion, I intentionally omit the discussion of thermo-

dynamics to make the argument as simple as possible. A rigorous deriva-

tion require distinguishing the “isothermal process” and “isentropic process”

which corresponds to two sets of formulation. In isentropic process, elastic

constants are defined by expanding the internal energy per unit mass U at

constant entropy:

ρ0U(ηij, S) = ρ0U(0, S) +
1

2
cSijklηijηkl +

1

6
cSijklmnηijηklηmn + ... , (7.15)

while in isothermal process, the isothermal elastic constants are defined by
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expanding Helmholtz free energy per unit mass at constant temperature:

ρ0F (ηij, T ) = ρ0F (0, T ) +
1

2
cTijklηijηkl +

1

6
cTijklmnηijηklηmn + ... , (7.16)

DFT calculation is done at constant effective temperature of 0 K. So

F (T = 0) = U(T = 0). The experimental values are mostly measured under

isentropic condition while the calculation is at the isothermal condition. In

practice I found for material I have studied, there is little difference between

the two cases, which will be briefly discussed later regarding the volume

change in elastic constant calculation.

7.2 Calculation of second order elastic constant by

density functional theory

In measurement of shear elastic constants described in Chapter 5, materials

with relatively low symmetry have five or more independent elastic constants

so we cannot directly measure all of them by acoustic methods. However it’s

necessary to have the full set of stiffness matrix to do SAW calculation and

fitting. One way to achieve this is to calculate elastic constant using density

functional theory (DFT).

The main purpose of this study is to calculate elastic constant of misfit

layered compound discussed in Chapter 5. To verify the capability of the

calculation, two layered materials, graphite and MoS2 are calculated. In the

following they are used as examples of materials with hexagonal structure

and Van der Waals bonding between atomic layers.

Our group has limited experience of DFT calculation. I learned the

calculation under the guidance of Professor André Schleife. I would like to

detail the procedure using the commercial software VASP in this chapter,

although some of which are basics and standard in DFT calculation. I hope

this could serve as convenient references for people later that may do similar

calculation.
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7.2.1 Standard procedures in density functional theory
calculation

DFT is such a wide and deep field that I do not intend to cover any theoret-

ically background in this section. There are many books and review papers

for that purpose. Professor Kieron Burke’s tutorial: The ABC of DFT may

be a good start. The free electronic version can be found on his group web-

site. In this section I focus instead on the procedure part of the calculation,

under the context of the DFT software VASP.

A standard DFT calculation starts from an initial atomic structure. The

calculation searches for electronic ground states (through electronic steps)

and then moves the positions of ions (ionic steps), if allowed, to search for

ground state of the system.

Before any calculations, a convergence test is done for the materials

under study. The purpose of convergence test is to determine the upper limit

for essential calculation parameters: the energy cutoff (ENCUT) and mesh of

k space (KPOINTS). Energy cutoff determines how many plane-wave basis are

included in the calculation; k-mesh determines the fineness of mesh in the

Brillouin zone. In convergence test, no relaxation is needed. The purpose is

to determine whether changes in energy cutoff or mesh fineness would lead

to significant changes in calculation results. ENCUT and KPOINTS are two

of the most important factors that control the accuracy and intensity of the

calculation. Choose high enough ENCUT and mesh in KPOINTS until they have

minimal effect to the calculated total energy. The calculation time may also

be a factor to consider to choose the proper ENCUT and mesh.

A basic application of the DFT calculation is to find the optimal atomic

structure of material. It also serves as an evaluation of accuracy of the

calculation by comparing the optimal structure with the experimental results.

To find the optimal structure, the “total energy vs. volume” curve is plotted.

For each volume, the structure is fully relaxed (reaches minimum energy) by

changing the cell shape and ion position. If the relaxation ends with more

than one ionic step, the calculation is repeated with the previous obtained

ionic position (in CONTCAR) as the new initial position of the calculation

(POSCAR), until the the calculation ends with only one ionic step. Then the

energy vs. volume curve is fitted by the equation of state (EOS). The EOS
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I use is:

E(V ) = E0 +
9

16
V0B0{[(

V0

V
)2/3−1]3B′0 +[(

V0

V
)2/3−1]2[6−4(

V0

V
)2/3]}, (7.17)

from which the bulk modulus B0 and optimal volume V0 can be fitted. The

other two fitting parameters: initial energy E0 and derivative of bulk mod-

ulus B′0 is usually not important. B′0 usually has the value around 9, for

the reasons I don’t understand. Once the optimal volume is obtained, the

structure is relaxed again at optimal volume to find the optimal cell shape

and positions of the atoms. Further calculation is performed on the basis of

the optimal structure.

7.2.2 Calculation of second order elastic constant

I use the method of homogeneous deformation to calculate elastic constants

in DFT. The method is based on the Eq. 7.13. A specifically designed La-

grangian strain tensor ηij is introduced to the optimal lattice structure, to

calculate a specific combination of elastic constant. By changing the size of

strain, I can calculate an “energy vs. strain” curve which corresponds to the

energy expansion in Eq. 7.16. If the third order term is omitted, the curve

is a parabola. The combination of the elastic constants can be obtained as

the coefficient of the second order term in fitting of the parabola.

Consider a primitive cell with three lattice vectors: ai = (a1, a2, a3),

bi = (b1, b2, b3), and ci = (c1, c2, c3). The volume of the primitive cell is

calculated from the determinant of the matrix: a1 a2 a3

b1 b2 b3

c1 c2 c3


If a small strain ηij is applied, the new lattice vectors become a′i = (δij+ηij)aj,

b′i = (δij + ηij)bj, and c′i = (δij + ηij)cj. The new volume can be calculated

with the same fashion. Using a simple strain as example:

ηij =

 δ 0 0

0 −δ 0

0 0 δ2/(1− δ2)
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After the strain is applied, the total energy of the cell of a cubic crystal can

be expressed as:

E(V, δ) = E(V0) + V (c11 − c12)δ2 +O(δ4) (7.18)

By omitting the fourth order term, the E vs. δ curve is a parabola and

c11 − c12 can be fitted.

The η33 term in the above example is designed solely for the purpose to

conserve the total volume after the strain. One can verify it by calculating the

determinant of the matrix formed by the new lattice vector. The argument

for volume conserving strain can be find in Ref. [100]. The argument is,

and I quote:“First, we assure the identity of our calculated elastic constants

with the stress-strain coefficients, which are appropriate for the calculation of

elastic wave velocities; this identity is non-trivial for finite applied pressure.

Second, the total energy depends on the volume much more strongly than

on strain; by choosing volume conserving strains we obviate the separation

of these two contributions to the total energy. Third, the change in the

basis set associated with the applied strain is minimized, thereby minimizing

computational uncertainties.” I don’t fully understand the first reason. For

the second point, I don’t see how one can distinguish the effect of strain

and volume change, which also means strain (hydrostatic or others). I don’t

understand the third point either. However in my calculation, I found there

is almost no difference between the results using a volume-conserving strain

or not. The strain I used is below 1%.

Crystals with different symmetry contain different number of indepen-

dent elastic constants. So strain tensors varies for different symmetries. Next

I describe the calculation of two symmetries: cubic symmetry and hexagonal

symmetry.

7.2.3 Elastic constant of cubic crystal

Cubic crystal has only three independent elastic constant c11, c12, and c44.

The bulk modulus B has already been obtained through EOS. For cubic

symmetry,

B = (c11 + 2c12)/3 (7.19)
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So we need two more equations to get all three elastic constants, one of which

is already given before:

ηij =

 δ 0 0

0 −δ 0

0 0 δ2/(1− δ2)


to calculate (c11 − c12). In order to fit c44, I introduce another strain:

ηij =

 0 δ/2 0

δ/2 0 0

0 0 δ2/(4− δ2)


The energy expansion under this strain is:

E(V, δ) = E(V0) +
1

2
V c44δ

2 +O(δ4) (7.20)

Again the purpose of the η33 term is to preserve volume and it doesn’t really

affect the results of Si from my experience.

Following the method detailed before, I calculated elastic constants

of Si. I calculate elastic constant of Si to be: c11 = 161.37 GPa, c12 =

64.65 GPa, and c44 = 75.84 GPa; comparing with the experimental values:

c11 = 165 GPa, c12 = 63 GPa, and c44 = 79.1 GPa, the calculation has good

quality.

7.2.4 Elastic constant of hexagonal crystal

Hexagonal crystal has a Bravais lattice vector as:

R = a

 1 0 0

−1
2

√
3

2
0

0 0 c
a


where a and c are lattice constants of a hexagonal crystal. To fit the equation

of state, I change the value of a and relax the cell while preserving the volume,

which means I set a constant c/a ratio in the initial structure of different

volumes.

In hexagonal crystal, there are five independent elastic constants. c11,
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c12, c13, c33, and c44. And there are two kind of bulk modulus: Voigt and

Reuss. The Voigt average (assuming constant strain across the structure) of

the bulk modulus of hexagonal crystal is written as:

B0 =
1

9
(2c11 + c33 + 2c12 + 4c13) (7.21)

The Reuss average (assuming constant stress across the structure) of the bulk

modulus of hexagonal crystal is:

B =
c33(c11 + c12)− 2c2

13

c11 + c12 + 2c33 − 4c13

(7.22)

The difference between Voigt and Reuss average is manifest in estimating

the elastic properties of the composite materials. We need to understand the

bulk modulus obtained in EOS. In practise, I found Voigt average is not the

proper definition of the bulk modulus of single crystal in EOS. I use Eq. 7.22

in my calculation. This can also be found in Ref. [100].

One can find several different designs of strain tensor to calculate elastic

constants of hexagonal crystal in the literatures. One set of the strain is very

straight forward:

ηij =

 δ 0 0

0 δ 0

0 0 0


which gives: E = E0 + V0(c11 + c12)δ2

ηij =

 δ 0 0

0 −δ 0

0 0 0


which gives: E = E0 + V0(c11 − c12)δ2

ηij =

 0 0 0

0 0 0

0 0 δ



129



which gives: E = E0 + 1
2
V0c33δ

2

ηij =

 0 0 δ

0 0 0

δ 0 0


which gives: E = E0 + 1

2
V0c33δ

2. These four strains together with the bulk

modulus can give all five elastic constants.

Another method is presented by Steinel-Neumann [100]. The authors

utilize strain:

ηij =

 δ 0 0

0 δ 0

0 0 (1 + δ)−2 − 1


which give: E = E(V0, 0) + V csδ

2 +O(δ3), with cs = c11 + c12 + 2c33 − 4c13.

ηij =

 δ 0 0

0 −δ 0

0 0 δ2/(1− δ2)


which gives: E = E(V0, 0) + 2V c66δ

2 +O(δ4)

ηij =

 0 0 δ

0 δ2/(1− δ2) 0

δ 0 0


which gives: E = E(V0, 0) + 2V c44δ

2 +O(δ4).

The last equation is about the dimensionless quantity R:

R = B(ka − kc) = −d ln(c/a)

d lnV
=

c33 − c11 − c12 + c13

c11 + c12 + 2c33 − 4c13

(7.23)

R can be fitted through the c/a-ratio vs. V curve. For graphite, the fitting

can be found in Fig. 7.4d

I calculated elastic constant of graphite, MoS2, and misfit layered com-

pound. Using graphite as an example, Fig. 7.1 shows the convergence test

using different energy cutoff and mesh in KPOINTS. From the convergence

test I choose to use 16× 16× 8 KPOINT and 1000 ENCUT in later calculation.

The energy difference in the convergence test using this set up is 6 × 10−5
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eV/atom.

I first use local-density approximation (LDA). Figure 7.2 shows the

calculated energy for each calculation. The energy points with only 1 ionic

step are fitted with EOS. The fitting gives the bulk modulus of graphite

and lattice constants of the unit cell. Using the fitted lattice constants, the

structure is relaxed again until one ionic step. The final CONTCAR is used as

structure of graphite (POSCAR) in the calculation of elastic constants.

Graphite is a special hexagonal crystal because of the Van der Waals

force between atomic layers. Typically DFT cannot calculate Van der Waals

interaction accurately. Several approximations have been introduced to cor-

rect this error. I chose to use Tkatchenko-Scheffler method implemented in

VASP. However for LDA, I didn’t use any van der Waals approximation. This

is because the Tkatchenko-Scheffler method (IVDW=2) doesn’t have parame-

ters of elements for LDA potential. The final results agree superisingly well

with experimental values. This behavior has also been noticed before. And

people conclude that this is just a coincidence.

For GGA potential, however, the calculation won’t reach to a reasonable

structure without Van der Waals correction. The failure of GGA in calcula-

tion of graphite is also confirmed in several papers. I repeat the calculation

using GGA potential together with Tkatchenko-Scheffler (TS) van der Waals

approximation (IVDW=2). VASP has implemented default parameters of el-

ements for TS Van der Waals approximation. The calculation follows the

same procedure as the one with LDA potential.

Fig. 7.3 shows all four energy vs. strain curves under LDA and the

fitting, using the first set of strains. The fitting using the second set of strain

is shown in Fig. 7.4. I found the results using the two different sets of strains

are almost identical.

A subtle but important behavior I observed in the calculation of graphite

is that: for strain that doesn’t preserve the hexagonal symmetry, the calcu-

lation shows small difference comparing with the calculation with symmetry

simplification. VASP can determine the symmetry of the crystal with certain

tolerance. But the symmetry simplification can be turned off in VASP. In cal-

culation of c44, since the energy change involved is very small and the strain

applied doesn’t conserve the symmetry of crystal, I have to remove the sym-

metry simplification when there is zero strain. Or otherwise the numerical

error (I think) will make the energy vs. strain curve not a parabola. The

131



comparison can be found in Fig. 7.5.

For layered structure, the force between layers is very small comparing

with the in-plain modulus. So the bulk modulus is basically c33. (c33 is

the interlayer elastic constants). This can be seen from both the calculation

and the experiment result. Difference in c33 between my two calculations

reflects the effect of Van der Waals functional used in GGA calculation.

Bulk modulus (and c33) deviates with experiment. The bulk modulus from

LDA is closer.

I summarized my calculation of single crystal graphite, experiment on

exfoliated HOPG, and results from other experiment and calculation in Ta-

ble 7.1. I only include calculations done by VASP. For GGA potential with

TS-vdW, since TS-vdW approximation is relatively new (the paper is pub-

lished in 2009, and the implementation in VASP is about 2012), I didn’t

find paper calculating the complete set of elastic constants using TS-vdW

and GGA. From the comparison of lattice constants and bulk modulus, my

calculation is consistent with other calculations.

I did notice one problem in the fitting: the disagreement of energy

minimum between the energy sweep and calculation with strain. It mostly

happens for GGA calculation. But it also happens in c33 calculation using

LDA. The disagreement is shown in figure 7.6

Recall that in calculation of c44, I need to turn off the symmetry

(ISYM=0) in no strain case in order to compare with the calculation with

strain (doesn’t conserve symmetry). I try to turn off the symmetry in both

volume sweep and c33 calculations, but the result remain unchanged. The

comparison is in Fig. 7.7. I also try to increase the accuracy in calculation of

force (EDIFFG). I increased it from default 10−5 to 10−6 and 10−7, the energy

vs. strain curve is still not symmetrical around zero strain. (with such high

EDIFFG, I cannot calculate c11 − c12. The software just give errors)

However, as can be seen from Fig. 7.7, the difference is tiny: ≈ 0.00001 eV.

Although I couldn’t figure out what cause this difference, I think it can be

ignored right now as it is very small comparing with the typically accuracy

in DFT calculation.

The calculation of MoS2 is identical with the case of graphite. The

calculation and experimental results are summarized in Table 7.2.
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7.3 Calculation of phonon of silicon

Since mode Grüneisen parameter is defined based on phonon, in this

section I describe the procedure of phonon calculation in Si.

7.3.1 Lattice dynamics in crystal

In solid state physics, phonon is used to describe the movement of atom, not

in the real space but in frequency domain. I will sketch the basic theory of

lattice dynamics in this section. Consider the κ atom located at unit cell l

moves around its equilibrium position R0(lκ) with displacement u(lκ). Here

l and κ are written together to identify one particular atom, which is similar

to the case when i and j are written together to identify a component such

as ηij. The instantaneous position of this atom can be written as:

R(lκ) = rl + rκ + u(lκ) = R0(lκ) + u(lκ) (7.24)

where rl is the position of unit cell and rκ is the position of atom within the

unit cell. The Hamiltonian of nuclear motion (since most of the atom mass

is in the nucleus) is:

H =
∑
lκ

P 2(lκ)

2mκ

+ Φ(rl1κ1 , rl2κ2 , ...) (7.25)

The first term is the kinetic energy and the second term is the potential

energy due to interaction between atoms. The crystal potential energy Φ can

be written as a function of the displacement of the atoms (Taylor expansion

with respect to the equilibrium position):

Φ = φ0 +
∑
lκ

∑
α

φα(lκ)uα(lκ) +
1

2

∑
ll′κκ′

∑
αβ

φαβ(lκ, l′κ′)uα(lκ)uβ(l′κ′) + ...

(7.26)

where α and β are the Cartesian indices ranging from 1 to 3. The coefficient

of this series expansion, φ0, φα(lκ), φαβ(lκ, l′κ′), etc. are the zeros, first, and

second order force constants respectively.

The zero order term is a constant energy term and can be omitted in

the current situation. At equilibrium, the first order term is zero since the
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net force on atoms is zero at equilibrium. If the displacement is considered

small, the harmonic approximation is reached and the terms higher than the

second order is omitted. The only term left is the 3 × 3 second order force

constant φαβ(lκ, l′κ′) corresponding to each atom pair (lκ; l′κ′). And the

crystal Hamiltonian can be simplified under harmonic approximation as:

H =
∑
lκ

P 2(lκ)

2mκ

+
1

2

∑
ll′κκ′

∑
αβ

φαβ(lκ, l′κ′)uα(lκ)uβ(l′κ′) (7.27)

Since it’s the dynamic we are interested in, the equation of motion is at

the center. The equation of motion for all nuclei in the real space are (classic

mechanics):

mκ
∂2uα(lκ)

∂t2
= −

∑
l′,κ′

φαβ(lκ, l′κ′)uβ(l′κ′) (7.28)

Following the standard method to solve partial differential equations, plane

waves are used to find the general solutions (just like in Chapter 3). In

another word, the problem is solved in the frequency domain and spatial

frequency domain rather than the time domain and spacial domain. For plane

wave with wavevector q, angular frequency ωkj, and “polarization” e(qjκ)

with j as a “branch index”, the displacement can be written as supperposition

of plane waves:

u(lκ) =
1√
V

∑
qj

U(qjκ)e(qjκ) exp[i(qrl − ωqjt]) (7.29)

This design of supperposition is not trivial. It’s based on the Bloch theorem

of crystal. The Bloch theorem confines the relevant q to be inside the first

Brillouin zone. If the periodic boundary condition is applied to the prob-

lem and each unit cell contains R atoms, there are total 3R modes for each

wavevector q, 1 ≤ j ≤ 3R. The phase factor exp(iqrl) contains the informa-

tion of long-range spatial modulation across unit cell (thus using the position

rl). The dependence with κ, i.e. within the unit cell, is contained inside the

complex e(qjκ). U(qjκ) is related with the energy of phonon which is not

derived here. The unit vector e(qjκ) contains information of the motion of

each atom within the unit cell for phonon mode qj. It gives the displace-

ment direction (thus “polarization”) and the phase of each atoms (thus it’s

complex). So one can distinguish acoustic phonon and optical phonon by the

134



phase difference between atoms within one unit cell.

The next step is to solve for phonon dispersion curve (ω vs. q). Put

Eq. 7.29 back into EOM Eq. 7.28 (Fourier transform of the original partial

differential equation), the EOM becomes a set of linear algebraic equations

(very similar to the case in Chapter 3). The problems becomes a standard

eigenvalue problem regarding the dynamic matrix D(q) with (3R × 3R)

dimensions:

D(q) =

 D11 ... D1R

... ... ...

DR1 ... DRR


Each submatrix Dκκ′ is the Fourier transform of the second order force con-

stant φ(lκ, l′κ′) with (3× 3) dimensions:

Dκκ′(q) =
1

√
mκmκ′

∑
l′

φ(0κ, l′κ′) exp(iq(rl′ − r0)) (7.30)

The eigenvector of the dynamic matrix is the similar grouping of the po-

larization vectors e(qjκ) across all atoms within unit cell to be a (3R × 1)

vector p(qj); the eigenvalue is ω2
qj. The eigenvalue problem is:

D(q)p(qj) = ω2
qjp(qj) (7.31)

Solving this linear algebraic equation, one can obtain phonon frequency ωqj

corresponding to wavevector q and branch j.

7.3.2 First principle calculation of phonon

Calculation procedure of phonon dispersion in the ab initio fashion can be

outlined based on the theory in last section: 1. calculate the second order

force constants; 2. obtain dynamic matrix by Fourier transform of the force

constants; 3. solve the eigenvalues of the dynamic matrix to obtain phonon

frequencies.

The force on a particular atom (lκ) can be written, with the harmonic

approximation, as:

Fα(lκ) = − ∂Φ

∂uα(lκ)
(7.32)
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and the second-order force constant can be related with the force as:

φαβ(lκ, l′κ′) =
∂2Φ

∂uα(lκ)∂uβ(l′κ′)
= −∂Fβ(l′κ′)

∂uα(lκ)
(7.33)

There are generally two methods to calculate the force constant in

DFT: finite displacement method and density-functional perturbation theory

(DFPT). In finite displacement method, one atom is artificially displaced in

an equilibrium structure and the force between atoms are calculated by DFT.

Then the force constant is calculated under finite difference approximation

using Eq. 7.33. In DFPT method, the force constants are directly calculated

by DFT. VASP incorporated DFPT method in its software so this is also a

convenient method. The finite displacement method is a straightforward and

easy to understand method which is often called the direct method. I mainly

use finite displacement method to calculate the phonon dispersion of Si. I

have also used DFPT method and find it gives very similar results for Si.

The open source software phononpy is used in the calculation process

process. phononpy decides how many displacement is needed in order to

calculate all phonon modes, based on the symmetry of the crystal. phononpy

records the displacement and create the new POSCAR for force calculation.

After the force is calculated by VASP, phononpy conduct the Fourier transform

and solving eigenvalue problem, thus output phonon frequencies. In the end

I write my own scripts to do final data analysis and plots.

In practise, the assumption of short range interaction is needed, which

means the interaction between atoms can be omitted beyond n nearest neigh-

bor where n is small. This is necessary because a very large supercell is too

expansive to calculate in DFT. Also in the calculation, the periodic boundary

condition is applied. By moving one particular atom, every other atom that

mirrors this atom will also be moved. This can possibly cause error in finite

displacement method. So one needs to find the supercell that is large enough

so the two problem mentioned can be omitted.

7.3.3 Si phonon dispersion calculated by finite displacement
method using VASP

Before one atom is artificially displaced, the equilibrium crystal structure

of Si is obtained by fitting the EOS, through standard DFT calculation de-
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scribed before. The the finite displacement method is applied to the fully

relaxed unitcell.

As pointed out in Sec. 7.3.2, one of the most important parameters to

determine in the calculation is the size of the supercell. So the “convergence

test” is performed to determine the proper size. Fig. 7.8 shows that 4×4×4

supercell gives almost same results as 5× 5× 5 supercell. Calculation using

5×5×5 supercell is also very computational expansive. So I chose supercell of

4×4×4. Notice that the biggest difference is at the acoustic phonon branch.

This point is mentioned again later. I think this is an inherent difficulty in

calculation of phonon by DFT: an accurate calculation of acoustic phonon

requires accurate calculation of force, which can be very challenging. I did

similar convergence test to determine both ENCUT and KPOINTS. From the

convergence test I chose ENCUT=400 and k-mesh to be 4× 4× 4

Using these parameters, I calculated phonon dispersion of Si. Fig. 7.9

shows the comparison between my calculation and experimental results [101].

It shows my calculation agrees very well with measurements.

7.4 Calculation of generalized Mode Grüneisen

parameters of Si

Chapter 6 discusses experimental results regarding the attenuation of SAW.

It shows that attenuation of shear acoustic wave is much less than attenua-

tion of longitudinal acoustic wave. And according to the fitting results, the

difference is mostly in generalized mode Grüneisen parameters of Si. To bet-

ter understand this phenomenon, I calculate the generalized mode Grüneisen

parameters of Si using DFT calculation.

7.4.1 Mode Grüneisen parameter of Si

The mode Grüneisen parameter is defined as:

γp =
V

ωp

∂ωp
∂V

(7.34)

where V is the volume of the lattice and ωp is the phonon frequency of mode

p. In real calculation, the derivative is replaced by finite difference. Then
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the definition becomes:

γp =
∆ωp/ωp
∆V/V

(7.35)

In the calculation, I change the volume of lattice V by ∆V and calculate

the phonon frequency before and after the volume change, using the finite

displacement method described before. The ratio of the relative change of

phonon frequency and volume is the mode Grüneisen parameter. To check

the assumption of linearity and finite difference, I choose relative change

of volume to be 0.3 percent, 0.6 percent, and 0.9 percent. Fig. 7.10 shows

the results of my calculation (colored line) of three different volume change,

comparing with the calculation in Ref. [102] (black dots). The calculation

converges in the sense that different volume change won’t result in different

Grüneisen parameters. And my calculation results is in reasonable agree-

ments with results of others. This also means the volume change I choose is

proper.

7.4.2 Generalized mode Grüneisen parameters of Si

The definition of generalized mode Grüneisen parameter is the change of

phonon frequency to a particular strain applied to the crystal. It can be

written as:

γijp =
1

ωp

∂ωp
∂ηij

(7.36)

where ωp is the angular frequency of phonon mode p. ηij is the component of

Lagrange strain tensor. Similar as before, in finite difference approximation,

the definition becomes:

γijp =
∆ωp/ωp
ηij

(7.37)

To calculate generalized mode Grüneisen parameter, the straightforward

procedure is: first a particular strain mode is applied to the lattice; and then

the new phonon dispersion under strain is compared with the original phonon

dispersion and generalized mode Grüneisen parameters can be calculated for

each phonon mode. However as I will show later, there needs to be some

modification to this process due to a possible numerical inaccuracy.

After a particular strain is applied, the lattice should not be relaxed.

For example, if a longitudinal strain is applied at x direction, the lattice

cannot be relaxed at the y and z direction. This is because the definition
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of Grüneisen parameter is based on the derivative with regard to one strain

component. If the crystal is relaxed at other directions, it introduces other

strain components that are not under consideration.

For example, when a normal strain δ at x3 direction is applied to the

fulled relaxed cell, just like how it is applied in the calculation of elastic

constants.

ηij =

 0 0 0

0 0 0

0 0 δ


The cell cannot relax at x1 and x2 directions, i.e., η11 and η22 should be zero

to study the effect of η33.

To compute generalized mode Grüneisen parameters, I compare the

change of phonon frequencies due to the strain applied. I discovered a serious

problem. Fig. 7.11 shows the comparison of phonon frequency with 0%, +1%,

+2%, and +3% normal strain. For optical phonons, the changes of phonon

frequencies is linear with the change of strain. However for acoustic phonon

branches, although the frequencies change looks almost linear between +1%,

+2%, and +3% strain, it is not if one consider the zero strain case. This can

be observed by the zoom-ined Fig. 7.12. Fig. 7.13 shows the comparison of

phonon frequencies with -1%, 0%, and +1%. One can see that if only these

three points are considered, they are linear. But it’s definitely not linear if

strains with different magnitude are included. This phenomenon means that:

if the generalized mode Grüneisen parameter is calculated by comparing with

the zero strain case, the results will be dependent on the magnitude of strain.

It is still the case if one uses positive and negative strains, because the phonon

frequencies of zero strain are in the center of phonon frequencies of positive

and negative strains.

The non-linearity of acoustic phonon frequency change with strain is

certainly not physical. And this is not a human error, because it only happens

for acoustic branch not optical branch. Also this problem is not in the

case of hydrostatic strain, as I show in Fig. 7.10. And this non-linearity

happens between zero and non-zero strain but not between non-zero strains.

So there is difference between calculation of zero strain lattice and non-zero

strain lattice in non-hydrostatic strain case. But this difference disappears

for hydrostatic strain case. I think these indicate this difference is symmetry

related, since for non-hydrostatic strain, the symmetry of lattice changes;
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while in hydrostatic strain the symmetry of lattice is preserved.

One possible solution to this problem, is to only use the linearity be-

tween non-zero strains with the same sign. Fig. 7.14 shows the generalized

mode Grüneisen parameter of Si under normal strain.

7.5 Third order elastic constant and mode Grüneisen

parameters

The full generalized mode Grüneisen parameters cannot be directly measured

experimentally. The measurement of third order elastic constant (TOEC)

represents behavior of generalized mode Grüneisen parameter at Γ point for

acoustic phonon branches. During my work, I found that the relationship

between TOEC and generalized mode Grüneisen parameter is not straight-

forward at all. It involves derivations and theories that are not familiar to me

or maybe many students in physics or material science major. This deriva-

tion was done by Thurston and Brugger [103, 104] in a series of papers. I

don’t have any new contribution to the original theory. However I would like

to present the full derivation of the related theories, as the original papers

didn’t contain most of the details which are not trivial in my opinion. Hope-

fully this derivation is helpful to anyone who, like me, has been misled by

wrong derivation results in journals and books before.

This derivation is also the reason why I revisit some of the concept

in solid mechanics. TOEC is an experimental results and we need to think

about how the experiment is done. Previously I introduced two coordinate

system, the unstrained one and the one with strain. Now as we will discuss

acoustic wave in strained material, we need to consider three coordinate

system. For initial temperature T , ai is the coordinates in the natural or

unstressed state; Xi(aj) is the coordinate in homogeneously stressed initial

state; ui = xi − Xi is the component of displacement from initial strained

state due to the acoustic wave.

Consider the material that is under homogeneous strain. To construct

the equation of motion in a deformed material, Cauchy stress tensor describes

the physical force:

ρ
∂2xj
∂t2

=
∂τkj
∂xk

(7.38)
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Notice the density involved is density ρ of the deformed state which can be

different with density ρ0 of undeformed material. We want to describe the

problem in the original coordinates. The method to achieve this is to use the

various stress measure introduced before.

Recall the second order Piola-Kirchhoff stress tpq that satisfies:

τkj =
1

J

∂xk
∂qp

∂xj
∂aq

tpq (7.39)

Substitute τkj and utilize the properties listed in first section, we obtain the

equation of motion using density and coordinates of undeformed states:

ρ0
∂2xj
∂t2

=
∂Pjp
∂ap

(7.40)

and Pjp = Fjptpq is the first Piola-Kirchhoff stress tensor. Expand Pjp about

the initial state P 0
jp of coordinates Xi:

Pjp − P 0
jp =

∂Pjp
∂(∂xk/∂am)

(
∂xk
∂am

− ∂Xk

∂am
) + ... = A0

jkpm

∂uk
∂am

(7.41)

with A0
jkpm ≡

∂P 0
jp

∂(∂xk/∂am)
. Since the strain applied to the material is ho-

mogeneous, the first Piola-Kirchhoff stress is uniform through the material:

∂P 0
jp/∂ap = 0 and ∂A0

jkpm/∂ap = 0. The equation of motion is:

ρ0
∂2uj
∂t2

=
∂

∂ap

[
P 0
jp + A0

jkpm(
∂xk
∂am

− ∂Xk

∂am
)

]
= A0

jkpm

∂2uk
∂ap∂am

(7.42)
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The coefficient Ajkpm can be expressed as:

Ajkpm ≡
∂Pjp
∂Fkm

=
∂(Fjqtpq)

∂Fkm
= δjktpm + Fjq

∂tpq
∂Fkm

= δjktpm + Fjq

[∑
i 6=m

∂tpq
∂ηmi

∂ηmi
∂Fkm

+
∑
i 6=m

∂tpq
∂ηim

∂ηim
∂Fkm

+
∂tpq
∂ηmm

∂ηmm
∂Fkm

]

= δjktpm + Fjq

[
1

2

∑
i 6=m

∂tpq
∂ηmi

Fki +
1

2

∑
i 6=m

∂tpq
∂ηim

Fki +
∂tpq
∂ηmm

Fkm]

]

= δjktpm + FjqFki
∂tpq
∂ηmi

= δjktpm + FjqFki

[
ρ0

∂2U

∂ηpq∂ηmi

]
= δjktpm + FjqFkicpqmi

(7.43)

So A0
jkpm = δjkt

0
pm + F 0

jqF
0
kicpqmi, where F 0

ij is the deformation tensor of the

original homogeneous strain.

Next we assume the plane wave solution: uj = Mj exp[iω(t−(Niai/W ))].

The wave front is a material plane which has unit normal Ni in the natural

state; a wave front moves from the plane Niai = 0 to Niai = L in the time

L/W , where W is the wave speed referred to the natural dimensions and it

is called the natural velocity for propagation normal to a plane of natural

normal Ni. Put the plane wave solution back to the equation of motion, one

obtains:

ρ0W
2uj = A0

jkpmNpNmuk (7.44)

So the ρ0W
2 are the eigenvalues of the second rank tensor

Sjk(Ni) ≡ A0
jkpmNpNm (7.45)

To obtain a representation completely independent of rotation, trans-

form the particle displacement ui back to the natural undeformed direction

of the material line along it by the transformation ui = (∂Xi/∂aq)Uq. Then

ρ0W
2Uj = wjkUk (7.46)
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with:

wjk =
∂aj
∂Xr

∂Xs

∂ak
Srs =

∂aj
∂Xr

∂Xs

∂ak
A0
rspmNpNm

=
∂aj
∂Xr

∂Xs

∂ak

[
δjkt

0
pm + F 0

jqF
0
kicpqmi

]
NpNm

= NpNm

[
δjkt

0
pm +

∂aj
∂Xr

∂Xs

∂ak

∂Xr

∂aq

∂Xs

∂ai
cpqmi

]
= NpNm[δjkt

0
pm + (2ηki + δki)δkjcpqmi)]

= NpNm[δjkt
0
pm + (2ηki + δki)cpjmi)]

(7.47)

The above is how Brugger [104] arrives at the equation:

ρ0W
2Uu = wuvUv (7.48)

with:

wuv = [δuvt
0
mn + (δvw + 2η0

vw)cmunw]NmNn (7.49)

again, Ni is the propagation direction, Ui is displacement unit vector, W is

the acoustic velocity, all in unstrained reference; tmn is the thermodynamic

tension, ηvw is Lagrange strain, cmunw is elastic constant, in deformed state.

The definition of generalized mode Grüneisen parameter can be rewrit-

ten as:

γ(jk)
p (Ni) = − 1

2ωp(Ni)

∂[ρ0W
2
p (Ni)]

∂ηjk
(7.50)

with ωp = ρ0W
2 evaluated at no strain state η = 0. Since Ui is the unit

vector, and ρ0W
2ŪT Ū = ŪTwŪ , i.e. ρ0W

2 = UuUvwuv. Thus at η = 0 case,

ωp = cmunvUuUvNmNn.

The next is the final step of the derivation is to connect Grüneisen
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parameter with the TOEC:

γ(jk)
p (Ni) = − 1

2ωp

[
δuv

∂t0mn
∂ηjk

+ δvw
∂cmunw
∂ηjk

+ 2
∂(ηvwcmunw)

∂ηjk

]
NmNnUvUu

= − 1

2ωp
[cjkmnNmNn + δvwcjkmunwNmNnUuUv+

2ηvwcjkmunwNmNnUuUv + 2cmunw
∂ηvw
∂ηjk

NmNnUuUv]

= − 1

2ωp
[(cjkmn + cjkmunvUuUv)NmNn + 2cmunwδvjδwkNmNnUuUv]

= − 1

2ωp
[(cjkmn + cjkmunvUuUv)NmNn + 2cmunkNmNn(Uu/Uk)UkUj]

= − 1

2ωp
[2ωpUjUk + (cjkmn + cjkmunvUuUv)NmNn]

(7.51)

This is the key equation derived by Brugger about the relationship between

generalized mode Grüneisen parameters and TOEC.

7.6 Calculation settings in VASP

Following is the typical calculation parameters I used in INCAR file in elastic

constant calculations for graphite. In volume sweep (to fit EOS), ISIF=4.

When calculating energy with strain applied, ISIF=2 to preserve the strain.

Here I specify EDIFFG to be 10 times more accurate than default, which is

10*EDIFF.

1 PREC = High

2 LREAL = .FALSE

3 IALGO = 48

4 ISMEAR = 0; SIGMA = 0.0001

5 ENCUT = 1000

6

7 EDIFF = 1.E-6

8 EDIFFG = 1.E-6

9 NBANDS = 48

10
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11 ISIF = 4 (or 2)

12 IBRION = 2

13 NSW = 100

Next is the typical calculation parameters I used in INCAR file to calcu-

late force constant in order to calculate phonon frequencies of Si, using finite

displacement method. Since one atom is displaced, during calculation, there

shouldn’t be any relaxation of ionic positions.

1 PREC = Accurate

2 LREAL = .FALSE

3

4 ISMEAR = 0; SIGMA = 0.00001

5 ENCUT = 400

6 ADDGRID = TRUE

7

8 EDIFF = 1.E-8

9

10 ISIF = 2

11 IBRION = -1

12 NSW = 0
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7.7 Figures and tables
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Figure 7.1: Convergence test of calculation of graphite (LDA).
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ironic step. The star is the final calculation with only one ionic step. The

red line is the fitting of star symbols using equation of states.
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Figure 7.3: Fitting of energy vs. strain curve in graphite for different strains
(in method 1) applied, in order to obtain (a). c11 + c12, (b). c11 − c12, (c).
c33, (d). c44.
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Figure 7.4: Fitting of energy vs. strain curve for different strain applied.
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Figure 7.5: Comparison between calculations with and without symmetry,
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difference considered here is below the accuracy of DFT.
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Figure 7.6: Comparison between volume sweep and c33 calculation of
graphite, using GGA and TSvdW. The minimum found by volume sweep
and c33 calculation are different.
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calculation. The final results overlap with each other (the multiple red dots
are steps before only 1 ionic step). The minimum found by volume sweep
and c33 calculation are different.
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Figure 7.8: Convergence test for the size of supercell in phonon calculation
of Si. “333” means a supercell of size 3 × 3 × 3 of the unit cell, so is “444”
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Figure 7.9: Phonon dispersion of Si: comparison between DFT calculation
(color lines) and experiments [101] (black points).
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Figure 7.10: Comparison of calculated mode Grüneisen parameter. Color
lines are my calculation and black dots are calculation from Ref. [102].(a).
0.3% volume change; (b). 0.6% volume change;(c). 0.9% volume change.
Different volume changes have little effect on the calculation results.
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Figure 7.11: Comparison of phonon frequencies under different normal strain:
0%, +1%, +2%, and +3%.
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Figure 7.12: Acoustic phonon zoomed in of Fig. 7.11. The change of phonon
frequency is not linear between zero and non-zero strain.
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Table 7.1: Elastic constants of graphite. Comparison between my results
and various results from references. The unit of elastic constants and bulk
modulus is GPa; unit of lattice constant is �A. Note that my experiment is
on HOPG which is the possible reason that c44 is smaller.

Lattice
Con-
stant

Bulk
Modu-

lus

c11 c12 c33 c44 Method

My LDA a=2.446,
c=6.668

27 1091 211 27 4.67 LDA,
no
vdW

My GGA a=2.454,
c=6.690

60 1073 198 67 4.65 GGA,
TS-
vdW

My Exp 30.2 2

Bosaka 36.4 1109 139 38.7 5.0 Exp.

Hasegawab a=2.441,
c=6.64

30.4 LDA,no
vdW

Mounetc 27.8 c11+c12=1283 29 4.5 LDA,
no
vdW

Buckod a=2.46,
c=6.68

59 GGA,
TSvdW

Al-Saidie a=2.46,
c=6.65

56 GGA,
TSvdW

aPhys. Rev. B 75, 153408 (2007)
bPhys. Rev. B 70, 205431 (2004)
cPhys. Rev. B 71, 205214 (2005)
dPhys. Rev. B 87, 064110 (2013)
eJ. Chem. Theory Comput. 8, 1503(2012)
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Table 7.2: Elastic constants of MoS2. Comparison between my calculation
result of MoS2 and reference. The unit of elastic constants and bulk modulus
is GPa; unit of lattice constant is �A

Lattice
Con-
stant

Bulk
Mod-
ulus

c11 c12 c13 c33 c44 Method

My Cal a=3.158,
c=12.05

40.1 223 49.9 -59 51.8 16.9 TS,
vdW

My Exp 54.1 15.4

Exp1a a=3.160,
c=12.29

53 Exp.

Exp2b 238 -54 23 52 18.6 Exp.

Buckoc a=3.16,
c=12.01

43 GGA,
TSvdW

Peelaersd 238 64 -68 57 18 hybrid

Volkovae a=3.18,
c=12.35

214 58 56 18 GGA,
TS-
vdW

aZ. Anorg. Allg. Chem. 541, 15 (1986)
bJ. Phys. Chem. Solids 37, 141 (1976)
cPhys. Rev. B 87, 064110 (2013)
dJ. Phys. Chem. C, 118, 12073 (2014)
ePhys. Rev. B 86, 104111 (2012)
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CHAPTER 8

CONCLUSION

Despite the huge success of the application of piezoelectric material in ul-

trasonic techniques, new techniques are needed to meet the requirements in

industry and scientific communities regarding the studies and applications of

thin film materials. Optical measurement is inherently non-contact and non-

destructive. The time-resolved optical pump-probe system using femtosecond

pulse laser provides the highest possible frequency response. Both qualities

make the optical pump-probe system an ideal candidate for high frequency

acoustic wave applications. This dissertation makes several contributions to

developing and improving surface acoustic wave (SAW) experimental tech-

niques in optical pump-probe system. The calculations tools and processes

developed along the way help the design, analysis, and understanding of the

experiments.

I develop a simple and convenient method for measuring the velocity of

surface acoustic waves at GHz frequencies using an elastomeric phase-shift

mask. This approach is applicable to almost any samples with a smooth

surface, without any micro-fabrication or special sample preparations. Using

electromagnetic calculations, I obtain the optimal geometry of the phase-

shift mask for high measurement efficiency corresponding to the 785 laser

wavelength. The measurement is verified with various well known materials.

I implement the general calculations scheme for the properties of surface

acoustic wave using Green’s function methods. The software is capable of

calculating surface acoustic wave of any layered structure with any number of

layers of anisotropic materials. The properties that can be calculated include

dispersion curve, as well as displacement of particles, stress, strain, and strain

energy at different depth. With small changes, the software can further be

used in calculation of other acoustic modes such as Lamb mode and Stoneley

mode. The implementation should be able to cover almost any needs in

the studies of acoustic mode in thin film structure. It can even calculate
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acoustic modes with patterns of small mass, such as gratings. An analytical

calculation software with numerical solution like this one is not only accurate

but also convenient comparing with, for example, finite element simulations.

One can deepen the physical intuition and understanding by using and tweak

an analytical software, which is very difficult to achieve using a FE simulation

software.

The shear elastic constants of various thin film materials that are dif-

ficult or maybe impossible to measure before, are measured using the SAW

technique with phase-shift mask. Materials studied include hard materials

grown by different deposition techniques, soft materials prepared by spin-

coating, and layered materials prepared by mechanical exfoliation or thin

film growth. Thickness of films under study spans from 60 nm to micron.

The measured shear elastic constants have helped the analysis of thermal

conductivity, magnetostrictive behavior, and to understand thin film quality

for applications such as acoustic filters. When film thickness is small, thicker

metal transducer on top can help improve the sensitivity. And the tech-

nique have one limitation that it cannot be used to measure SAW of typical

polymer films of more than several hundred nanometer thick. But overall,

I demonstrate the high versatility and compatibility of the SAW technique

with phase-shift mask.

By fully understanding the details involved in propagation of surface

acoustic wave generated by metal grating, I am able to design a better exper-

iment and sample structure to measure the intrinsic attenuation of 7.2 GHz

surface acoustic on Si, to be αSi ≈ 9 cm−1 at room temperature, which rep-

resents the intrinsic attenuation of transverse acoustic wave in Si. By fitting

the attenuation at different temperature, I am able to obtain the phonon

relaxation time under shear strain and the mean-squared variation of the

generalized mode Grüneisen parameters. The result of small mean-squared

variation of Grüneissen parameters for shear strain comparing with longi-

tudinal strain indicates high Q factor for mechanical oscillator with mostly

shear character. The experimental design can be readily used for other di-

electric material. The attenuation properties obtained can be useful in the

design of high frequency MEMS and acoustic filters.

DFT calculation is applied in calculation of second order elastic con-

stant, phonon dispersion (both are harmonic behavior) and mode Grüneisen

parameters (anharmonic behavior). The performance is generally good. How-
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ever I observed that the numerical difference caused by the consideration of

symmetry or not in DFT calculation (specifically VASP), can be appreciable

when the strain applied is relatively small but big enough to break the crystal

symmetry. This may not be a very serious problem if it’s not the absolute

values but the coefficients of change that matters.
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[71] H. E. Bömmel and K. Dransfeld Phys. Rev., vol. 117, p. 1245, 1960.

[72] J. Lamb and J. Richter Proc. Roy. Soc. London A, vol. 293, p. 479,
1966.

[73] S. Ghaffari, S. A. Chandorkar, S. Wang, E. J. Ng, C. H. Ahn, V. Hong,
Y. Yang, and T. W. Kenny Sci. Rep., vol. 3, p. 3244, 2013.

[74] J. Lamb, M. Redwood, and Z. Shteinshleifer Phys. Rev. Lett, vol. 3,
p. 28, 1959.

[75] B. G. Helme and P. J. King Phys. Stat. Sol. (a), vol. 45, p. K33, 1978.
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