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ABSTRACT

With the introduction of next-generation sequencing (NGS) technologies,

DNA sequencing is becoming an increasingly widespread process. When

performed on human patients, it can allow for the prediction and prevention

of diseases. An essential part of this bioinformatics pipeline is short read

alignment, which refers to aligning short fragments of DNA to the large and

expansive reference genome. This can be a very time-consuming process

with much room for improvement. This thesis improves on Bowtie 2, an

aligner that is already very popular and high-performing. Through the use

of OpenCL, it is possible to parallelize this application for both GPU and

FPGA by using the same code. Several different levels of parallelism are

implemented in order to achieve speedup on Bowtie 2.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Humans are an extremely complex and varied species, with many different

expressions for the same underlying features. Deoxyribonucleic acid, com-

monly known as DNA, serves as the blueprint for each individual human.

This means that it is not only responsible for those characteristics that make

us human, but also the variations that make each of us unique. The majority

of our genetic code is encoded in DNA using an alphabet with four unique

elements. Furthermore, the human DNA is encoded in a double helix strand,

so each element in the code has a complementary element. Together they

are known as base pairs (bp). Knowledge of a person’s DNA sequence has

great implications. For example, the onset of some diseases can be predicted

through the presence of mutations at certain key locations in the genome. By

identifying this mutation in specific people, we are able to take preventative

measures that can prolong a person’s life or even completely mitigate these

diseases.

1.2 Sequencing

In order to properly interpret a person’s genetic code, his/her DNA must

be sequenced. With improving DNA sequencing technology, it has become

cheaper and more accessible for a person to have his/her DNA sequenced.

As a result, DNA sequencing is becoming an increasingly popular process

that has the potential for great utility in the medical field. The most modern

developments in sequencing are known as next-generation sequencing (NGS),

which refers to the latest high-throughput technologies, including Illumina
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and Roche sequencing. These processes take the physical strands of DNA

from human beings as the input and seek to convert them into a digital

format, so that they may be analyzed. The outputs of these sequencers are

short fragments known as reads, which can vary in length from under 50 bp

to several hundred bp.

Before much sense can be made of these reads, they must be aligned to the

reference human genome, which is approximately 3.2 billion bp long. There

are many different software tools developed to achieve this task. Examples of

popular short read aligners include Bowtie 2 and Burrows Wheeler Aligner

(BWA). Due to the independent nature of aligning each read as well as the

seeds within each read, there are massive opportunities for parallelism in

these algorithms. With the rapidly emerging paradigm of parallel computing

through the use of hardware such as graphics processing units (GPUs) and

field-programmable gate arrays (FPGAs), it is only natural that these short

read aligners should reap the benefits of these hardware platforms. This

thesis focuses on the parallelization of the Bowtie 2 aligner through the use

of FPGA.
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CHAPTER 2

BACKGROUND

2.1 DNA

Described in the overview, DNA encoding consists of four elements, known as

nucleobases or bases. These four bases are guanine (G), cytosine (C), adenine

(A), and thymine (T). DNA is structured as a double helix, which means that

each DNA molecule consists of two complementary strands. Therefore, with

knowledge of the sequence of one strand, it is also possible to deduce the

contents of the other. The mapping between the bases on one strand and the

complementary strand are one-to-one and symmetrical. G is always matched

with C, and A is always matched with T. The length of DNA varies greatly

between different species. Primarily, we will deal with the human genome,

which is approximately 3.2 billion bp long. By comparing a sequenced human

genome to the reference human genome, it is possible to check for mutations

at key positions, leading to important insights about one’s health.

2.2 Sequencing Technologies

Before DNA can be analyzed on a digital basis, it must go through a se-

quencing method. One important consequence of utilizing these sequencing

technologies is that the sequencers will fragment the DNA into reads, rather

than recovering the entire sequence altogether. The read length varies be-

tween technologies. There are a few common technologies that are used for

next-generation sequencing. They are as follows:

1. Illumina (Solexa) Sequencing

2. SOLiD Sequencing
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3. 454 Pyrosequencing

4. Ion Torrent Semiconductor Sequencing

Each technology has its unique accuracy, read length, speed, and cost

trade-offs. A rigorous discussion of the different sequencing technologies is

omitted, since the technical details of the sequencing technology are not

of particular concern for the performance of the short read aligner. Some

particularly important factors directly related to the sequencing technology,

when considering a short read aligner’s performance, are the read length,

whether the reads are single-end or paired-end, and the sequencing error

rate.

2.3 Alignment Overview

After the reads are generated, they need to be aligned to the reference

genome. The alignment process for a read seeks to determine which spe-

cific location with the reference genome the read corresponds to. Due to the

nature of biology, often there can be multiple compelling locations that a read

might align to. The aligner must account for this possibility and determine

the best possible alignment location for a read. It is this process which makes

the reads useful, giving them a meaningful context and basis for comparison.

Without this context, one would be challenged to make much sense from the

sequence contained within a read. Once the read is aligned, one is able see

what insertions, deletions, or substitutions, if any, exist, by comparing the

aligned sequence to the reference sequence. The following shows a general

algorithm for a short read aligner operating on a single read:

1. Generate all seeds for a read.

2. Find all exact matches for the seed in the reference genome.

3. Extend each seed hit in the reference genome to reflect the full length

of the original read.

4. Determine the quality of alignment between each read and candidate

alignment location.

5. Report the best alignment within all the candidate alignments.
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2.3.1 Indexing the Reference Genome

A reference genome is often billions of base pairs long, depending on the

species. It can be quite costly to search for a string within such a reference

genome without any indexing. There are two different schemes for indexing

reference genomes that are seen in the most popular aligners today.

Each reference genome must go through a relatively time-consuming in-

dexing process, but only once. Afterwards, the same index can be reused

for each read that is being aligned to the same reference genome. So, this is

a one-time cost and generally not a significant factor when considering the

performance of alignment.

Burrows Wheeler Transform

The most commonly used method for indexing the reference genome utilizes

what is known as the Burrows Wheeler Transform (BWT) [1], which is closely

related with the FM-Index. This indexing method works in great synergy

with read alignment. It allows for a highly efficient method to obtain the

location of all exact matches of a specific search sequence within the reference

genome.

The Burrows Wheeler Transform and FM-index search relies on several

different structures to make it work:

1. Wavelet Tree for rank queries

2. Suffix Array to allow for traversing the resultant ranges

3. Burrows Wheeler Transform to allow for backwards search

4. Character Occurrence Table to allow for character count queries

Figure 2.1 is a demonstration of the BWT being generated. The example

string will is “ILLINOIS”. It is typical to use a symbol for marking the end

of the string. In this example, “$” is used. The first step is to create a matrix

that shows every possible circular shift of the characters in the string. Then,

the rows are sorted alphabetically according to the first character in each

row, as shown in Figure 2.2
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I L L I N O I S $
$ I L L I N O I S
S $ I L L I N O I
I S $ I L L I N O
O I S $ I L L I N
N O I S $ I L L I
I N O I S $ I L L
L I N O I S $ I L

Figure 2.1: Burrows-Wheeler Transform Circular Shifts

I L L I N O I S $
I N O I S $ I L L
I S $ I L L I N O
L I N O I S $ I L
N O I S $ I L L I
O I S $ I L L I N
S $ I L L I N O I
$ I L L I N O I S

Figure 2.2: Sorted Burrows-Wheeler Transform Circular Shifts

2.3.2 Inexact vs. Exact Match

Searching for an exact match of a string within a reference genome repre-

sents a much less computationally complex problem than inexact matching.

One example of a technique implemented to perform inexact matching is

called backtracking [2]. This is used by the Bowtie and Bowtie 2 aligners.

If an exact match is not found on the original query sequence, the program

backtracks and tries to perform another exact match, except with a substitu-

tion/deletion/insertion applied to the original search query. If still nothing is

found, the program continues to make further changes to the sequence until

some sort of limit is reached. This algorithm can very quickly multiply the

number of computations being performed in search of a match. This makes

backtracking a computationally expensive process to perform.

2.3.3 Seed-and-Extend

Performing an exact search on a very long search sequence decreases the

likelihood of a match being found. On the other hand, using inexact search

can quickly become very time-consuming. Helping to minimize computation
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time and maximize search hits, aligners typically adopt a strategy that is

known as seed-and-extend [2].

Utilizing the FM-Index and Burrows Wheeler Transform, one can very

quickly perform an exact match on a substring of the read, finding all loca-

tions within the reference genome. Afterwards, with the potential locations

already determined, the exact matched substring can be extended to match

the full-length read and then compared. Examples of alignment programs

that use this scheme are Bowtie 2, BWA, and SNAP [3], [4], [5]. The program

performs an exact match on short substrings of the original search sequence.

This does not require any inexact matching to be done and has a relatively

high probability of obtaining a hit compared to the original full length search

queries. These matched substrings represent what are known as seeds.

The algorithm then takes the seed and its location on the reference genome

and extends the sequence around its seed in order to account for those nu-

cleobases that were cut off during this process. The extended sequence will

represent a greater length, which corresponds to the length of the read. This

process is known as the extension portion of the seed-and-extend method.

After extension, there may be mismatches when comparing the search se-

quence to the extended hit on the reference genome. Note that through

this method, it was possible to essentially obtain an inexact match without

performing the costly backtracking procedure.

Some programs combine the seed-and-extend techniques with backtrack-

ing, allowing the user to configure a small number of mismatches on the seed,

which will be handled using the backtracking technique. Using a small num-

ber of mismatches (i.e., 1-2) provides a compromise between the complexity

of backtracking and results quality.

2.3.4 Scoring

After the seed-and-extend process is completed, the aligner must determine

which candidate alignment is the best. In other words, the quality of each

candidate must be evaluated. Naturally, this utilizes a score value, which is

calculated based on the reported quality of each nucleobase and whether or

not it matches the reference genome.

Further increasing the complexity, the quality calculation must also con-
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sider possible insertions/deletions, which may shift the alignment by a num-

ber of nucleobases. This inclusion of insertions/deletions makes the scoring

process no longer a trivial calculation. The most popular method used for

finding the highest scoring alignment between two strings is known as the

Smith-Waterman algorithm.

Smith-Waterman Algorithm

The Smith-Waterman algorithm is used to perform local alignment [6]. That

is, it will take two sequences and figure out the most efficient way that they

align to each other. It is considered a dynamic programming algorithm. The

algorithm is commonly represented in the form of a matrix. There is also a

corresponding scoring scheme which assigns positive or negative point values

for the occurrences of a match, mismatch, insertion, or deletion.

Each element in the matrix is defined as follows:

H(i, j) = max


0

H(i− 1, j − 1) + s(ai, bj) Match/Mismatch

maxk≥1{H(i− k, j) + Wk} Deletion

maxl≥1{H(i, j − l) + Wl} Insertion


1 ≤ i ≤ m, 1 ≤ j ≤ n

The first row and column start with the initial values of zero. The first

row and first column do not correspond to any part of either sequence. As

described in the equation above, the representation starts in the second row

and column of the matrix.

Accordingly, the matrix can be generated in O(mn) time, where m and

n correspond to the lengths of the read and the substring of the reference

genome that is being compared to.

2.4 Field-Programmable Gate Array (FPGA)

A stark contrast to the CPU that is often used for general computing, the

FPGA represents a piece of hardware whose circuit can be configured accord-

ing to a custom design [7]. When using a CPU, the developer only has control
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over what software is being run on the hardware. The hardware elements

of the CPU are already designed and implemented as a permanent solution

and cannot be reconfigured. On the other hand, when utilizing FPGA, the

developer may have full control over the hardware, configuring a specially de-

signed circuit in order to meet the unique demands of each application. This

FPGA design is most often represented and developed using a hardware de-

scription language (HDL). The two most prominent HDLs being used today

are Verilog and VHDL.

As one can imagine, designing and implementing hardware can be an ex-

tremely tedious and time-consuming task. The nature of hardware design

presents many challenges for verification. A typical way of testing a hardware

design is using a testbench for simulation. The entire design is encapsulated

within a testbench module. Then, the tester decides what vectors should be

applied to the circuit in order to achieve a certain behavior. One can then

use assertions in order to verify that the behavior is as expected.

FPGAs consist of many programmable logic blocks, among which are

programmable interconnects. This arrangement allows the hardware to be

routed in a massive number of configurations. Programmable logic blocks

often contain components such as lookup tables, multiplexers, and flip-flops.

This general architecture is shown in Figure 2.3 [8].

Figure 2.3: FPGA Architecture

After an HDL is written for the desired circuit, it is then synthesized. The

process of synthesis converts the relatively high-level HDL into a gate-level
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representation of the circuit. At this point, simulation can be performed in

order to verify the correctness of the circuit. However, it is not yet ready to

be programmed to an FPGA.

Following the synthesis process is a step known as place-and-route. This is

usually done automatically by utilizing a place-and-route tool. The synthe-

sized HDL outputs a netlist. The place-and-route tool determines how the

circuit will be actually configured on a specific FPGA in order to represent

the desired circuit. Placing refers to assigning a physical circuit element on

the FPGA to represent a portion of the circuit. Routing refers to configuring

the interconnects in order to represent the synthesized netlist.

2.5 Heterogeneous Parallel Computing

In order to achieve the maximum performance gain with an FPGA, the het-

erogeneous parallel computing system methodology is implemented. This

relies on utilizing different platforms in order to perform well-suited compu-

tations. In this project, the desired usage for this project is to use the CPU

for general purpose computations, but then algorithms with high amounts of

parallelism can be computed on the target device.

In a typical setup, the host system will be running the bulk of the code,

including the code that invokes the parallel computing kernel, which is run

on the device. It is important to consider that data must be deliberately

transferred between the host and device, an overhead that is not incurred

in typical programs where the entire application is run on what would be

the host system. Figure 2.4 shows the memory hierarchy for CUDA appli-

cations running on GPU [9]. In order for the GPU to use any data, it must

first be transmitted to the global memory on the GPU. Once the data is in

global memory, it must be optimized by being moved to faster memory as

appropriate for the specific application. This is the only way to achieve max-

imum speedup. In summary, careful consideration of memory management

is essential when accelerating an application using heterogeneous computing.
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Figure 2.4: CUDA Memory Model

2.6 High-Level Synthesis

HLS is a technology that allows for the conversion of high-level code into

a bitstream that may be directly utilized on the FPGA. HLS, if desired,

can be performed directly on C code in conjunction with some optimization

pragmas.

For this project, HLS is performed on OpenCL, a language that is based

on an open standard for parallel computing. In contrast to another popular

parallel computing language called CUDA, which only works natively with

Nvidia GPUs, OpenCL is compatible with many different platforms. In

particular, OpenCL can be run on GPU much like CUDA. However, the same

code can also be synthesized to run on FPGA. This synthesis is typically done

by using HLS tools provided by Altera or Xilinx.

The use of high-level code in order to describe hardware designs that are

typically implemented at the circuit level is an emerging technology. Such

solutions are very desirable because they greatly improve the productivity
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of hardware design, allowing efficient solutions to be deployed much faster

than if the technology were being implemented at the hardware description

language (HDL) level. The difference in productivity is clear by looking at

Figure 2.5 [10].

Figure 2.5: Normal vs. HLS Design Flow

By writing code meant for parallel processing in OpenCL, the parallel

structure of the code is more directly apparent during synthesis. If synthe-

sizing directly from normal C or C++ code, there is no guarantee that the

synthesis tool is able to see the parallel structure that is so apparent to the

developer and can be more efficiently described by utilizing OpenCL.

2.6.1 CPU vs. GPU/FPGA

The CPU has its advantage as a low latency device. On the other hand, it has

relatively low throughput. It works the best when operating on computations

that are necessarily serial—that is, the next step cannot proceed without

some result from the first step. For programs that follow this flow, it is
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advantageous to perform each individual computation as fast possible. Much

of the CPU was designed in order to excel at this type of processing. The

classic structure of the CPU involves a pipeline that is focused on getting a

single instruction through the pipeline as fast as possible.

On the other hand, parallel computing hardware is advantageous in situa-

tions that require high throughput: a parallel processor, can perform many,

many computations at the same time. However, parallel computing hardware

generally has much higher latency than its CPU counterpart. The implica-

tion of this is that there will be a huge performance hit if there is not enough

parallelism to combat the high latency.

To summarize, the CPU will shine during computations that require low

throughput, while parallel computing will excel when there are many ele-

ments that can be processed at the same time. For example, if we want to

perform a single addition, the CPU has lower latency and will be able to fin-

ish this computation faster than the parallel computing hardware. However,

if we want to perform 10,000 additions, the CPU does not have the through-

put to process all of this at once, whereas the parallel computing hardware

could process all 10,000 additions in parallel, resulting in a large performance

gain over the CPU despite its higher latency on a single computation.

2.7 Related Works

There are several existing FPGA-based short read aligners. Although some

may be high performing, it was sometimes found that capabilities were

greatly reduced in order to assist FPGA implementation.

One example of an FPGA-based aligner is Shepard [11]. It is about 60

times faster than GPU implementations. However, it can only perform exact

matches. This significantly reduces the computational complexity of the

application. When performing exact match, the Smith-Waterman algorithm

is not necessary. The Smith-Waterman algorithm represents a significant

portion of the runtime in most aligners.

VelociMapper is a commercial FPGA aligner [12]. There are not many

details to its implementation, but it claims to be faster than aligners such as

BWA and Bowtie 2, while allowing for a high number of mismatches.

An FPGA aligner implemented by Arram et al. [13] implements FM-Index

13



and backtracking on 8 Altera Stratix-V FPGAs. They achieve 28x speedup

over Bowtie 2.
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CHAPTER 3

PROFILING

The main objective of this project is to obtain speedup on a short read aligner

by utilizing the FPGA for processing strategic portions of the program. In-

stead of manually developing Verilog, high-level synthesis (HLS) is utilized

in order to achieve the desired results.

3.1 Selecting an Aligner

The project goal is to obtain speedup on a pre-existing aligner rather than

write a new one wholly from scratch. This will help in demonstrating the

utility of OpenCL and HLS as a viable and efficient method to accelerate a

pre-existing program. However, special care must be taken to select a suitable

program for use with heterogeneous programming. Since the processing is

no longer happening solely on the CPU, data must be transferred onto an

external chip before computation can be performed. With this data transfer,

there are new potential constraints and bottlenecks to be considered. The

first consideration is the amount of memory available on the FPGA/GPU,

which is generally less than that available to the CPU. Therefore, there may

be major performance implications if the selected program is particularly

memory-intensive. Secondly, there is the possibility of an IO bottleneck

when performing data transfers. Even if the algorithm on the FPGA/GPU

is extremely fast, its performance enhancements may be covered by the speed

of transferring data back and forth. Therefore, it is important to consider

how much data transfer a specific program will utilize when working as a

heterogeneous application.
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3.1.1 Dataset

Reference Genome

When gathering data, we utilize the Anopheles gambiae (anoGam1) reference

genomes.

anoGam1 is selected because it is unnecessarily time-consuming to run

alignments on the relatively long human genome when the goal is to verify

the correctness of an implementation. Correctness is not dependent on the

size or length of the dataset. A constant reference genome is also useful for

determining speedup due to changes in program implementation.

Reads

There are two classes of reads that we can utilize. First, there are the reads

that are from an actual organism and sequenced using technologies such as

Illumina HiSeq [14]. This type of dataset has several advantages:

1. Realistic nucleotide sequences

2. Quality data for each nucleobase

Second, using a real sequenced dataset provides some challenges that may

hinder the ability to collect results. For example, it may be difficult to find

a dataset with exactly the desired read length. More importantly, there

is generally no golden model for the alignment results of these datasets.

Therefore, it would be very difficult to establish the accuracy of an alignment.

If the accuracy of an alignment cannot be established, then its speed may not

be meaningful. It is primarily for this reason that the second class of reads,

called simulated reads, is used in experiments analyzing the performance.

For this experiment, the wgsim application is used in order to simulate the

desired reads. There are several distinct advantages of using simulated reads:

1. Ability to evaluate the quality of alignment

2. Full control over read length

3. Ability to specify error rate of read sequences
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However, the most overwhelming disadvantage of read simulators is that

wgsim does not simulate the quality of the each nucleobase. Each nucleotide

in the sequence is hard-coded with the same quality score.

3.1.2 Profiling Speed and Accuracy

It is desired to select a pre-existing aligner that was already high perform-

ing. This will make the acceleration efforts more meaningful by pushing the

cutting edge of alignment performance rather than accelerating an average

application. Some surveying was performed in order to select a variety of

aligners that are popular. The selected aligners are listed in Table 3.1.

Table 3.1: Selected Aligners for Profiling

Aligner Version
Bowtie 2 bowtie2-2.2.5
BWA bwa-0.7.12
SNAP snap-0.15.4
SOAP2 soap2.20

In order to evaluate these aligners, a dataset was generated using wgsim.

The command used to generate these reads was:

1 . / wgsim −N100000 −1200 −d0 −S11 −e0 −r0 . 02 \
2 . . / . . / r e f /anoGam1 . f a . . / anoGam−200−02. fq /dev/ n u l l

This generated dataset has the specifications listed in Table 3.2

Table 3.2: Performance Measuring Dataset

Genome Read length (bp) Number of reads Error rate
anoGam1 200 100,000 0.02

3.1.3 Profiling Memory Usage

In addition to raw speed, it was also important to consider the memory usage

of these programs. When performing heterogeneous parallel programming,

data needs to be moved back and forth from the target device. For both
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GPU and FPGA, this memory transfer is done over the PCI-Express bus.

This issue is not as significant when we are dealing with processing that

is occurring purely on CPU. As such, it is important to measure the peak

memory usage of each aligner.

The memory transfer between host and device is an extremely important

metric of suitability for heterogeneous programming because alignment is a

relatively IO intensive process. This means that even with the most efficient

parallel algorithms, the performance may be dictated by the memory transfer

speeds to the GPU or FPGA.

The peak memory usage of the program was measured using:

1 / usr / bin / time −v

This built-in Linux utility is generally used to measure the runtime of a cer-

tain process, but also contains an option which allows the user to measure the

peak memory usage of the process during that specific run. This benchmark

is performed using the CPU-only system shown in Table 5.1

3.1.4 Profiling Results and Discussion

After collecting the results shown in Table 3.3, a holistic comparison was

made in order to determine the highest performing aligner.

Table 3.3: Performance Results (anoGam1, 200bp, 0.02 Error Rate)

Aligner Time (s) Aligned (%) Peak Memory (MB)
Bowtie 2 56.2 99.99 327
BWA 109.3 93.39 586
SNAP 118.9 99.98 4681
SOAP2 23.5 82.32 1087

Bowtie 2 has the lowest memory usage by far. Without considering any

other performance metrics, the SOAP2 and SNAP aligners are largely out

of contention due to their high memory usage, especially SNAP. Bowtie 2

also has the highest alignment rate, closely followed by SNAP. However, as

discussed before, SNAP’s memory usage is simply far too high for a GPU/F-

PGA application. SOAP2 is faster than Bowtie 2, but the significance of

this speed is limited considering the relatively low alignment rate. Based on

these results, Bowtie 2 prevails as the overall highest performing aligner.
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3.2 Accelerating Bowtie 2

3.2.1 Identifying Target Functions

Heterogeneous parallel programming does not seek to port the entire appli-

cation onto FPGA. It is common to encounter certain “problem” functions

within a program that compose a significant portion of the runtime. There-

fore, a minority of the code may be responsible for majority of the runtime. If

this minority of code is suitable for parallelization, then it would be extremely

appropriate for FPGA acceleration. Therefore, the goal of this profiling is to

find those “problem” functions for FPGA acceleration.

Based on previous knowledge of how short read aligners work, it is ex-

pected that the algorithm will have extremely high levels of parallelization

on multiple levels. In order to verify these expectations and assist with iden-

tifying key functions, profiling is performed to obtain a call graph for the

application. This call graph shows not only the flow of the application, but

also the number of calls and percentage of time spent in each function.

This profiling is performed using a program known as gprof, a GNU util-

ity. This application provides the user with a text-based call graph for a

specific run of an executable. Using an application called gprof2dot, it can

be converted into a graphical call graph which is seen in Figure 3.1. This

graphical view of the call graph simplifies the matter of understanding the

program’s flow.

Call Graph Analysis

The complete call graph for Bowtie 2 consists mostly of minor functions

which represent insignificant amounts of runtime. There are only a few key

functions which represent over 90% of the runtime. This specific region in

the program flow is shown in Figure 3.1.

The call graph allows us to see which functions correspond to which por-

tions of the Bowtie 2 algorithm. This in-depth algorithm is shown in Figure

3.2 [3].

A higher-level pseudocode of this algorithm is shown in Figure 3.3

In the call graph, the most ideal function for acceleration is contained

within SwDriver:extendSeeds which in turn contains SwAligner::align.
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Figure 3.1: Key Region of Bowtie 2 Call Graph

Figure 3.2: Bowtie 2 Program Flow

The target function is called SwAligner:alignNucleotidesEnd2EndSseU8.

This function represents the calculation of the Smith-Waterman matrix. This
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1 for read in reads :
2 s eeds = g e n e r a t e s e e d s ( read )
3 for seed in s eeds :
4 i f ( exactMatch ( seed ) > 0 ) :
5 h i t s . add ( exactMatch ( seed ) )
6 for h i t in h i t s :
7 s c o r e s . add ( smithWaterman ( h i t ) )
8 b e s t h i t = max( s c o r e s )
9 al ignment = backtrace ( b e s t h i t )

Figure 3.3: Pseudocode of Bowtie 2 Program Flow

is also referred to as SIMD dynamic programming aligner under step 4 in

Figure 2.5. The Smith-Waterman scoring calculation represents about 93-

94% of the runtime. This function is selected as the target function for

parallel acceleration because it represents the function which occupies the

largest amount of runtime without including any specific function within it

that represents the significant majority of that runtime.

3.2.2 Striped Smith-Waterman

Bowtie 2 utilizes an accelerated version known as the Striped Smith-Waterman

algorithm [15]. This algorithm utilizes SIMD instructions that operate on

128 bit registers in order to introduce instruction level parallelism to Smith-

Waterman. The 128 bit SIMD registers generally correspond to 16 elements

of 8 bits each. In some cases, higher precision is required and instead the

128 bits are divided into 8 elements of 16 bits each. The SIMD is processed

by utilizing Intel’s SSE2 instruction set. Farrar’s algorithm also generates

a query profile, used in determining each cell’s score in a striped memory

access fashion, creating greater efficiency. This implementation is able to

achieve 2-8x speedup over pre-existing SIMD implementations [15].
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CHAPTER 4

KERNEL DESIGN

The plan is to accelerate the application by adapting the Striped Smith-

Waterman functionality for OpenCL execution. From there, various levels of

parallelism can be attained, resulting in an overall acceleration of the appli-

cation. The different types of parallelism that are achieved will be described

in detail in this chapter. When the Smith-Waterman kernel is written using

OpenCL, it is possible to both run it on GPU and synthesize for FPGA with

the same code. It is expected that running the kernel on GPU will be more

straightforward and have a shorter development time than needed to get it

running on FPGA. This is because setting up the data transfers is relatively

simple and well-documented for GPUs, while one usually encounters some

additional levels of complexity when performing data transfers onto FPGA.

Since the same code can be used for both, it is a natural stepping stone to

verify functionality and fine-tune the code by running the kernel on GPU,

first.

4.1 Striped Smith-Waterman Adaptations

The Smith-Waterman function already incorporates instruction-level paral-

lelism, which is replicated in the OpenCL kernel. However, OpenCL does

not have a 128-bit datatype like the SSE2 instruction set does. The solution

was to basically re-write all of the used SSE2 instructions in vectorized form.

Instead of a primitive datatype, an equivalent representation is implemented

in the form of an array of 8 bit chars or 16 bit shorts, depending on the

granularity needed by the SIMD instruction. The OpenCL compiler will au-

tomatically vectorize code that is written in an appropriate format. In this

way, high performance, utilizing instruction level parallelism, was achieved

on the code.
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4.2 Parallelism Overview

The application of read alignment has many potential levels of parallelism.

Each read is aligned completely independently of all other reads. Within each

read, the candidate seeds can be processed independently of the other seeds

within a read. Already, there are two levels of parallelism. For each seed, the

Smith-Waterman matrix must be generated. Within an individual Smith-

Waterman computation, there exists some opportunity for data parallelism.

This data parallelism within the kernel is largely based on the Striped Smith-

Waterman optimization by Farrar [15].

4.3 Read-level Parallelism

In the unmodified Bowtie 2 code, each read is put through the entire align-

ment pipeline before moving onto the next read. While it makes sense to

parallelize the entire pipeline, this represents a large amount of complexity

for a device like the GPU and FPGA. Additionally, a majority of the runtime

is occupied by a relatively minor portion of the pipeline, the Smith-Waterman

scoring algorithm. As such, the aim is to parallelize the minimum portion

of the codebase in order to allow for this level of parallelization. Perform-

ing any additional parallelization will result in much greater memory usage,

while not increasing runtime much at all. In fact, due to constraints on mem-

ory transfer time and scarcity of device memory available, parallelizing these

non-intensive portions of the pipeline may result in overall slowdown.

Due to the serial nature of the pre-existing code, restructuring of the pro-

gram flow is required in order to obtain the desired parallelism. The compar-

ison of the very high-level pseudocode in Figures 4.1 and 4.2 illustrate the

change in program flow.

1 for read in reads :
2 g e n e r a t e s e e d s
3 match and extend seeds
4 s c o r e h i t s
5 r e tu rn be s t a l i gnment

Figure 4.1: Bowtie 2 Unmodified Alignment Pipeline
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With this type of program flow, it is impossible to get read-level parallelism

unless the entire pipeline is parallelized. As discussed before, this is not

optimal. Figure 4.2 shows the optimal flow for maximum parallelism.

1 for read in reads :
2 g e n e r a t e s e e d s
3 for read in reads :
4 match and extend seeds
5 for read in reads :
6 s c o r e h i t s
7 for read in reads :
8 r e tu rn be s t a l i gnment

Figure 4.2: Bowtie 2 Restructured Alignment Pipeline

This program flow restructuring is achieved by using the pthreads li-

brary, which allows the application to run multiple threads at a time. For

each of n threads, one read will be processed. Once all threads reach the

desired score hits stage, the data from the reads of all the different threads

are batched together and processed in parallel on the target device. In this

way we can achieve n-way parallelism.

When using pthreads to achieve this parallelism, it is not necessary to

explicitly parallelize all steps in the alignment process. A barrier is used right

before the score hits portion is reached so that all threads will sync up at

that place, allowing the parallel kernel to execute. However, the concurrence

and order of execution of the alignment steps before and after this parallel

kernel execution are not of particular importance.

4.4 Seed-level Parallelism

Similar to the read-level parallelism, the alignments of all the seed candidates

within a read are totally independent of each other and can be processed in

parallel. Much like the issue with the program flow for the reads, Bowtie

2 processes the seeds in a non-parallel friendly manner. That is, each seed

is fully processed in serial before moving onto the next seed. However, the

sole desired function of the parallel kernel is to perform the Smith-Waterman

scoring. At the seed-level, it is feasible to directly modify the code in order
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to achieve the desired program flow. As such, there is no need to rely on the

pthreads method in order to restructure the application.

4.5 High-Level Synthesis Optimizations

In order to fully exploit the parallel nature of the code, pragmas are used in

the OpenCL code in order to explicitly denote where parallelism exists. For

this kernel, loop unrolling and pipelining will in theory provide some benefit,

allowing certain parts within each parallel thread to execute concurrently.

4.5.1 Vectorization

The pre-existing code was already vectorized to exploit high levels of paral-

lelism. Instead of calculation being performed on one element, it was being

performed on eight elements at a time. As an artifact of this manual paral-

lelization, loop iterations were no longer independent of each other. There is

only one main loop in the entire kernel. As a result, using the loop unrolling

pragma presented the identical circuit as the non-unrolled version.

1 uchar16 uc cmpeq epi16 ( uchar16 a , uchar16 b) {
2 short8 ∗ a sho r t8 = &a ;
3 short8 ∗ b shor t8 = &b ;
4 short8 f o u r f = ( short8 )0 x f f f f ;
5 shor t8 f o u r 0 = ( short8 )0 x0000 ;
6 (∗ a sho r t8 ) = (∗ a sho r t8 ) == (∗ b shor t8 ) ?
7 f o u r f : f o u r 0 ;
8
9 return a ;

10 }

Figure 4.3: Vectorized Comparison Function

Figure 4.3 shows one example of the vectorized function that is built into

the kernel, exploiting parallelism at a low level. This function performs the

equals operator across 8 elements at once.

Figure 4.4 shows an application of the unrolling pragma. If the function

were simple enough and did not have dependencies within loop iterations,
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1 // For each charac t e r in the r e f e r e n c e tex t :
2 s i z e t j ;
3 #pragma u n r o l l
4 for ( j = 0 ; j < i ter ; j++) {
5 // Load c e l l s from E, c a l c u l a t e d p r e v i o u s l y
6 ve = u c l o a d s i 1 2 8 (pvELoad ) ;
7
8 pvELoad += ROWSTRIDE;
9

10 // Store c e l l s in F, c a l c u l a t e d p r e v i o u s l y
11 // veto some r e f gap ex t en s i on s
12 v f = uc subs epu8 ( vf , pvScore [ 1 ] ) ;
13 . . .
14 . . .
15 . . .
16 // Save E va lues
17 u c s t o r e s i 1 2 8 ( pvEStore , ve ) ;
18 pvEStore += ROWSTRIDE;
19
20 // Update v f va lue
21 vtmp = uc subs epu8 (vtmp , r fgapo ) ;
22 v f = uc subs epu8 ( vf , r f gape ) ;
23
24 v f = uc max epu8 ( vf , vtmp ) ;
25
26 pvScore += 2 ;
27 }

Figure 4.4: Unrolling Pragma on the Kernel

extra hardware would be utilized allowing sequential iterations to run con-

currently, instead.

4.5.2 Pipelining

Pipelining allows different stages of the program execution to overlap each

other. It was found that this had a tangible benefit. When high amounts

of data were being processed, the kernel execution time would decrease by a

factor of up to 5x. The pragma for pipelining is applied on a kernel basis, as

shown in Figure 4.5
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1
2 k e r n e l void my alignNucleotidesEnd2EndSseU8 (
3 g l o b a l a ln data ∗ r e s t r i c t input ,
4 g l o b a l uchar16 ∗ r e s t r i c t pro fbu f ,
5 myTAlScore minsc ,
6 int

readGapOpen val ,
7 int

refGapOpen val ,
8 int

readGapExtend val ,
9 int

refGapExtend val ) {
10
11 #pragma HLS PIPELINE
12 . . .
13 . . .
14 . . .
15 }

Figure 4.5: Pipelining Pragma on the Kernel
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CHAPTER 5

RESULTS

The same system was used for both CPU and GPU benchmarks. It is im-

portant that the same CPU is used in both benchmarks in order to hold all

factors constant except for the introduction of the GPU kernel. The detailed

configuration is shown in Table 5.1.

Table 5.1: System Specifications

Processor Intel Xeon E5-2603
RAM 32 GB
Graphics Card Nvidia GTX 770
VRAM 4096 MB

5.1 GPU Performance

5.1.1 Kernel Memory Performance

Initially, the kernel was IO bound, attributing the majority of its runtime

to memory transfer. The majority of the data being transferred back and

forth between the host and device belonged to the Smith-Waterman matrix.

It turns out that the content of this matrix is used solely for the backtracing

procedure. Since the matrix is being generated within the kernel already, it

makes sense to incorporate the backtracing procedure as part of the kernel

as well. This way, the computation can be directly performed on the data

instead of having to transfer it back to CPU.

With the backtrace operation being performed on the kernel, the significant

majority of data being transferred from device to host was eliminated. This

resulted in a massive amount of speedup for the overall kernel. The results

shown in Figure 5.1 illustrate the vast difference in the kernel’s performance
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Figure 5.1: GPU Kernel Memory Performance

with and without this optimization. It is also apparent that the performance

of this kernel is IO bound rather than compute bound.

5.1.2 Kernel Execution Performance

The results in Figure 5.2 show the difference in the Smith-Waterman perfor-

mance of the Bowtie 2 CPU vs. GPU version. The total kernel runtime is

measured as the time including memory transfer from the host to the ker-

nel, executing the kernel, and memory transfer from the kernel to the host.

The CPU runtime measures the total time that the Smith-Waterman com-

putation is being executed. This is performed on the anoGam1 genome with

varying read lengths. With the pthreads optimization, the application is

able to achieve a level of parallelism equivalent to the number of threads

that are executed. For this experiment, 512 threads are used. Ideally, the

more threads, the better. However, there are some diminishing returns when

executing this many different threads on CPU due to the need to switch con-

texts when changing between threads. Eventually, the amount of time lost
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Figure 5.2: GPU Smith-Waterman Kernel Runtime

to processes such as cache evictions outweighs the benefits of more paral-

lelism. It was discovered that 512 threads represent a good tradeoff between

parallelism and performance hit from too many different threads.

The amount of speedup can greatly vary depending on the dataset and

configuration of the application. While a longer read represents more data

to process in serial on the CPU, resulting in a somewhat linear increase in

runtime, the effect is not as apparent on GPU. This is because longer reads

result in many more seeds, but there is ample parallelism available on GPU

for this, mitigating the performance hit.

5.1.3 Application Runtime

The Smith-Waterman memory transfer and execution performance were strong

enough that speedup could be expected in the overall application runtime as

well. The program source code had to be modified in order to induce par-

allelism at the seed-level, resulting in some slowdown. Some accuracy had

to be sacrificed in order to achieve a high performance on the kernel. This
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Figure 5.3: GPU Bowtie 2 Runtime

manifested as an alignment rate that usually differed by less than 10% from

the unmodified CPU version. The genome used was anoGam1 with 10000

reads generated using wgsim. Various lengths for reads and seed length were

used.

Consistent speedup is shown across various read lengths from anoGam1, as

seen in Figure 5.3. However, there is less of a speedup when the read sizes

are smaller, but this is not surprising since more seed-level parallelism exists

when the reads are larger.

5.2 High-Level Synthesis for FPGA

After validating the performance of the OpenCL code on GPU, the next step

is to synthesize the same code for FPGA. In this project, the Altera Arria

10 GX FPGA is utilized.

31



5.2.1 Issues

Redundant Initialization on Subsequent Kernel Runs

Getting the kernel to work on FPGA was trickier than the GPU imple-

mentation. A few errors resulted in major performance hits, but were later

rectified. Firstly, the kernel initialization can persist between multiple uses

of the kernel. On average, this initialization took between 1 and 2 seconds

and represented an insurmountable overhead when tacked onto each kernel

execution. However, after using a persistent kernel object for multiple runs,

this dropped to a single instantiation time with near zero initialization for

subsequent runs.

Unaligned Host Memory Objects and Direct Memory Access (DMA)

When using FPGA, one can use DMA to move data back and forth between

the host and device, bypassing the CPU, resulting in higher performance

than traditional methods. Originally, this was not being performed. It was

found that this required the host vectors to be 64-byte aligned. This was

achieved by padding the structs.

Thread-Safety on Altera OpenCL Host Functions

It was found that the Altera OpenCL library did not have fully thread-safe

functions. Attempts were made to resolve this, but it was found that it

resulted in unstable behavior. This meant that read-level parallelism could

not be exploited on the FPGA version.

5.2.2 Resource Utilization

Table 5.2 shows the resources available on this FPGA.

There were issues with synthesizing the complete kernel. However, it was

found that removing the backtracing process from the OpenCL code allowed

the synthesis to complete successfully. Altera’s high-level synthesis tool, aoc,

provides a report on the resource usage of the OpenCL kernel. Table 5.3

shows the resource usage of the synthesized Smith-Waterman FPGA kernel.
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Table 5.2: FPGA Specifications

Adaptive Logic Modules 427,200
Logic Elements 1,150,000
Registers 1,708,800
IO Pins 992
DSP Blocks 1,518
Memory (Kb) 55,562
RAM Blocks 2,713

Table 5.3: FPGA Resource Usage

Adaptive Lookup Tables 106,891
Registers 191,556
Logic Utilization 95,016
IO Pins 161
DSP Blocks 27
Memory (Kb) 12,087
RAM Blocks 1,007
Actual Clock Frequency (MHz) 150.6
Kernel fmax (MHz) 150.6
Highest non-global fanout 11,068

5.2.3 Kernel Memory Performance

Similar to the GPU analysis, results are collected on the kernel execution

itself. The kernel performance data is shown in Figure 5.4. Note that the

backtracing process was previously moved onto the GPU in order to reduce

memory transfer time.

Due to the increased computational capabilities of the FPGA and the omis-

sion of the backtracing process, both the kernel execution time and overall

runtime show significant speedup over the GPU. The reduced resource usage

from omitting the backtracing process also allows for further optimization

using other techniques.

5.2.4 Kernel Execution Performance

The kernel execution runtime is measured using the same process as for GPU.

The results are shown in Figure 5.5.

These results show a predictable but significant speedup already suggested

33



Execution Copy to Device Copy from Device

0

50

100

150

200
207

8 9

112

19 15

R
u
n
ti

m
e

(m
s)

GPU FPGA

Figure 5.4: FPGA Kernel Memory Performance

100 bp 150 bp 200 bp

0

500

1,000

1,500

2,000

2,500

1,240

1,714

2,306

224 271 342

146 188 249

R
u
n
ti

m
e

(m
s)

CPU GPU FPGA

Figure 5.5: FPGA Smith-Waterman Kernel Runtime
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by the kernel memory performance.

5.2.5 Application Runtime

The application runtime requires a higher number of reads to mitigate the

effects of the overhead. This is especially important for GPU and FPGA

where the kernel initialization time may be non-trivial for very small datasets.

As such, a size of 10,000 reads with a read length of 100 bp on the anoGam1

dataset was used. 512 threads were used on the CPU and GPU version,

which included an implementation of pthreads in order to induce read-

level parallelism. This did not work for the FPGA version since the AOCL

host OpenCL functions were not fully thread-safe. Attempts to use multiple

threads achieved little success and caused the system to hang. Figure 5.6

shows the FPGA runtime results. Although it is slower than the CPU and

GPU results, recall that it is not exploiting read level parallelism in the way

that the CPU and GPU versions are. Theoretically, one would expect a great

performance increase as the number of threads increased. The FPGA kernel

computation time would remain relatively constant with only the memory

transfer speeds scaling with the number of threads.
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CHAPTER 6

CONCLUSION

6.1 Discussion

Through a survey and benchmark of the most popular short read aligners,

it was determined that Bowtie 2 had the highest performance. Afterwards,

algorithmic analysis and profiling were performed on Bowtie 2 in order to

identify suitable parallelization opportunities. There were multiple levels of

potential parallelization available, all directly related to the Striped Smith-

Waterman algorithm that is used to score candidate alignments. The pro-

gram flow was restructured by using pthreads and direct code modification.

Vectorization was used within the kernel to achieve higher performance. In

the end, read-level, seed-level and instruction-level parallelism were imple-

mented successfully. An efficient OpenCL kernel was developed that showed

speedup both by itself and when integrated into the Bowtie 2 application.

The program performed well for GPU. The next step was to synthesize this

kernel for FPGA.

It was found that the memory transfer times on FPGA were fast enough

that the backtracing process could be performed on CPU, freeing up resources

for other purposes. As such, the FPGA version of the kernel does not perform

backtracing. The synthesis process for this kernel was successful, producing

resource utilization rates that were within the capabilities of the Arria 10

GX FPGA. The kernel execution time of the FPGA kernel showed significant

speedup over both the CPU and GPU versions. The FPGA kernel execution

time showed about 2x speedup over the GPU version.

The FPGA has some tradeoffs that affect performance in various ways

compared to the GPU version. Even so, it must be noted that the inputs

and outputs are identical even with these differences. The GPU version is

able to perform backtracing on the device, reducing the amount of memory
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that needs to be moved back and forth between the host and device. This

proved to be too complex for the high-level synthesis engine. As a result, the

FPGA version suffers a hit in the memory performance. Overall, the FPGA

kernel performance is higher. However, a big hit in the FPGA performance

comes from the inability to use pthreads due to the lack of fully thread-safe

host functions. This is seen as the primary limiting factor of the FPGA

performance.

Although there are existing aligners implemented on GPU and FPGA, this

project makes two novel contributions. First, it is a direct port of Bowtie 2,

allowing for the use of the same input and output formats while using the

same algorithms. Second, OpenCL is used for portability in an extremely

large project, allowing for the fast and efficient deployment on both GPU

and FPGA with the same codebase.

6.2 Future Work

This project showed great potential with positive results for the kernel speed

and overall program acceleration on GPU. Although the FPGA kernel showed

promising standalone performance, the memory bandwidth and thread-safety

issues prevented the application from achieving max performance. The next

step is to explore ways to work around the thread-safety issues, allowing the

Smith-Waterman kernel to be efficiently used on the FPGA with multiple

host threads.

Even before further optimizing the kernel for FPGA, there are improve-

ments that can be implemented to increase speedup on GPU. It is expected

that these optimizations would also increase FPGA performance. First, the

utility of pthreads was limited due to the overhead presented by the con-

stant context switching on each CPU thread. It is likely that even more

speedup can be achieved with direct modification of the program’s control

flow, allowing for more efficient production of data for the device to con-

sume. The load balancing can also be improved. There are cases where not

all threads are being used on the GPU. In those scenarios, speedup could

be obtained by distributing the work between more threads. In the current

implementation, each thread is responsible for the computation of an entire

Smith-Waterman matrix. This could be improved by using multiple threads
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to compute a single Smith-Waterman matrix when appropriate.
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