
c© 2017 Pramod Srinivasan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158321778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NEURAL GEOLOCATION PREDICTION IN TWITTER

BY

PRAMOD SRINIVASAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Adviser:

Professor ChengXiang Zhai

ABSTRACT

Inferring the location of a user has been a valuable step for many applica-

tions that leverage social media, such as marketing, security monitoring and

recommendation systems. Motivated by the recent success of Deep Learning

techniques for many tasks such as computer vision, speech recognition, and

natural language processing, we study the application of neural models to

the problem of geolocation prediction and experiment with multiple tech-

niques to analyze neural networks for geolocation inference based solely on

text. Experimental results on the dataset suggest that choosing appropriate

network architecture can all increase performance on this task and demon-

strate a promising extension of neural network based models for geolocation

prediction. Our systematic extensive study of four supervised and three un-

supervised tweet representations reveal that Convolutional Neural Networks

(CNNs) and fastText best encode the textual and geolocational properties

of tweets. fastText emerges as the best model for low resource settings,

providing very little degradation with reduction in embedding size.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

Foremost, I would like to thank Professor Chengxiang Zhai for and giving

me the opportunity to work on the project. I am grateful for his support

throughout my Masters’, teaching me various concepts of Text Information

Systems and guiding through the milestones. My special thanks to Ismini

Lourentzou and Alex Morales for their contribution in this research, for de-

veloping my research skills, and for their continued support beyond the scope

of this research. Finally, I would like to thank my parents, all of my peers and

friends who have been encouraging and supportive throughout the duration

of this project.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Outline . 2

CHAPTER 2 RELATED WORK . 3
2.1 Geolocation inference based methods 3
2.2 Generative methods . 3
2.3 Geodesic methods . 5
2.4 Neural network based methods 6
2.5 2016 Workshop on Noisy User Generated Text 6

CHAPTER 3 PROBLEM DEFINITION 7
3.1 Models . 7
3.2 Dataset . 9
3.3 Evaluation methodology . 11
3.4 Evaluation metrics . 11

CHAPTER 4 MODELS . 13
4.1 Unsupervised learning . 13
4.2 Supervised models . 16

CHAPTER 5 EXPERIMENTAL EVALUATION 23
5.1 Tweet-level tasks . 23
5.2 User-level tasks . 29

CHAPTER 6 CONCLUSION . 32

REFERENCES . 33

v

CHAPTER 1

INTRODUCTION

With the prevalence of social media applications, an increasing number of

internet users are publishing text information online. This influx provides a

wealth of both text and social graph information and has thus become a rich

source of insights into the people, opinions and events of the world. Pop-

ular social media services provide features to declare the location either by

geo-tagging posts with GPS-based check-ins or by filling a text field in their

profile description. Geolocation – the task of identifying the social media

message’s location can prove vital to various downstream applications, such

as advertising, personalization, event discovery and trend analysis [1]. How-

ever such text-based descriptions are often unreliable and imprecise, leading

to the issue of location sparsity [2]. Estimating user location is therefore

essential for the necessary location annotation.

1.1 Motivation

Geographical information is a vital component for analytics where histori-

cal data is used to provide insights. For instance, responses to early signals

of disease outbreaks or natural disasters have proven to be more effective

with geolocation metadata [3]. Geographical information could be utilized

at different granularities, such as the comparison rural and city mental health.

However, most social media platforms do not provide geographical metadata.

For instance, it is reported that less than 3% of Twitter data is accompanied

by geo-coordinates [4], even though the platform supports geolocation meta-

data. This has restricted the usability of several tweets for location-based

services and studies. Other platforms, such as discussion forums and blogs

often do not have geolocation capabilities. There is thus a need to develop

approaches to predict location information for social media content.

1

Motivated by the success of Deep Learning techniques such as computer

vision, speech recognition and natural language processing, we study the

application of neural networks to the problem of geolocation prediction. Re-

cently, Deep Learning has shown good performance on various natural lan-

guage processing (NLP) tasks, such as language modeling, sentiment anal-

ysis, POS tagging, named entity recognition and several others. An added

advantage of these methods is that they perform well without the need of

domain knowledge in the form of time-consuming feature engineering.

Although Deep Learning has been revolutionizing fields such as vision and

language processing, the Information Retrieval communities are only begin-

ning to leverage such approaches. Moreover, there is an increasing interest in

both industry and academia on tapping the applications of neural network

architectures to Social Media [5, 6].

The primary contribution of the work is the large scale comparison of state-

of-the-art deep learning architectures. Our experiments have shown that

carefully designed architectures can achieve better performance than a simple

use of popular neural models such as auto-encoders. As most applications

of deep learning advance by improving known models, this work serves as a

good starting point that could benefit DNN practitioners to identify areas

for further improvements in “neural geotagging”.

1.2 Outline

The outline of the rest of this thesis comes in the following structure:

• We begin with a brief overview of the previous work done in geolocation

prediction in Chapter 2.

• Then in Chapter 3, we introduce the notion of neural geolocation pre-

diction, as well as describe the characteristics of the dataset;

• In Chapter 4, we presents the various architectures developed to detect

location entities from tweets.

• We perform experiments to evaluate our text-based models and analyze

the parameter tuning schemes in Chapter 5.

2

CHAPTER 2

RELATED WORK

Several researchers have studied how social media content such as tweets

and posts can be used to predict user location. Almost all these geolocation

prediction algorithms are primarily dependent on two common parameters:

(1) a definition of what comprises a relationship in Twitter to create the social

network, and (2) a source of ground truth location data to use in inference

[4]. Following, we discuss the algorithms, how these different sources of

information are used, and their complexities.

2.1 Geolocation inference based methods

One of the early works in location prediction was by Quercini et al [7]. The

intuition is that if a place is frequently mentioned by users in their tweets,

they are likely tweeting from that region. Gazetters were developed as ge-

ographical references to identify places that are known regardless of their

geographic location in text to geo-tag news articles. Despite the premature

success on longer and more homogeneous documents, there are several issues

in applying this approach to social networks. For instance, its performance is

impeded by the nature of tweets : they are short and informal, and moreover

the chances of a user not mentioning the gazetted places in their tweets is

very high.

2.2 Generative methods

Cheng et al [2] proposed a generative model for city-level geolocation of U.S

Twitter users that identifies words in tweets with a strong local geo-scope

(location-indicative words). In their approach, they considered tweets from

a set of users belonging to a set of cities across the United States. They

3

estimated the probability distribution of terms used in these tweets, across

the cities considered in their data set. This probability distribution is then

used to estimate the user location, given the set of terms used by a user,

in his/her tweets. Experimenting with various smoothing techniques, their

methods calculate the posterior probability of a user being from a city given

his/her tweets. However, the tweet messages are considered as independent

entities and relationship between different tweet messages, such as reply-

tweet messages of the same user has been ignored. This failure to leverage

such relationship information has an impact on the distribution of terms

across the cities considered.

Eisenstein et al. created a geographic topic model by treating tweets as

documents generated by two latent variables [8], i.e., topic and region. The

problem is formulated as both a regression task that predicts geographical

coordinates and a classification task, where labels are either the 48 contigu-

ous U.S. states or Washington D.C. or a division between regions (West,

Midwest, North-east and South). Their experiments included topical mod-

elling, k-nearest neighbors, and several statistical methods such as LDA and

regression. Although the model is limited to small datasets due to compu-

tational efficiency, an important contribution of this work is the creation of

the first dataset available for the geolocation prediction task. However one

has to deal with sparsity issues such as class imbalance due to the relatively

small size of the dataset.

There have been several subsequent studies using generative models [9],

discovering a fixed hierarchical structure over context, via a merging of global

topics and regional languages. Extending this idea, Ahmed et al. [10] con-

sider the relations between regions and propose a Chinese Restaurant Fran-

chise based model to study users’ geographical topics. Specifically, there is

a hierarchical organization of the regions where regions in upper levels geo-

graphically encompass those in lower levels, and therefore are more diverse

in terms of topics. A tweet defines a path from the root region to the leaf

region, where its coordinates are sampled based on the Gaussian distribution

of the leaf region [11], and its text content is generated based on the topics

and language model of the leaf region.

4

2.3 Geodesic methods

Wing and Baldridge [12] divide the geographic surface of the Earth into

uniform grids and then construct a pseudo-document for each grid. By con-

trolling the granularity of a grid, document similarity is computed using

language models and a nearest neighbors’ approach is employed for location

prediction.

Uniform grids do not take into account the skewness of the pseudo-document

distribution; case in point being metropolitan areas typically cover most of

the tweets, whereas rural areas face the issue of sparsity. Roller et al. [13]

address this issue by constructing grids using a k-d adaptive tree, which en-

ables the creation of more balanced pseudo-documents. They experiment

on two datasets of geotagged tweets as well as dataset of geotagged English

Wikipedia articles. A limitation with this work is that it is unable to dis-

cover shared structures in a location, without explicitly controlling the grid

sizes. More recently, Wing and Baldridge [14] have showed the effectiveness

of using logistic regression models on hierarchy of nodes in grids.

Han et al. [15] investigated several feature selection methods for identi-

fying location-indicative words, such as Information gain ratio, geographic

density and Ripleys K-statistic, as well as the impact of several additional

features, such as non-geo-tagged tweets and metadata on predicting the city

of a Twitter user or the actual coordinates. They discussed the effectiveness

of these features on both regional and global datasets and analyze how user

behavior can impact geolocation prediction.

Cha et al. [16] expanded upon Eisenstein’s previous efforts through the use

of unsupervised sparse vector training and supervised classification to predict

user location based on k-nearest neighbor tweets with a cosine similarity

measure. Using the Eisenstein corpus, Cha improved upon the accuracy

results by 9% and 14% on the 4-way regional and 48-way 50 state level

classification tasks, respectively. Their semi-supervised approach has shown

state-of-the-art results for the GeoText dataset. However, the performance

increase is due to incorporating word order information, i.e. word sequences,

and therefore cannot be applied to already the already preprocessed datasets.

5

2.4 Neural network based methods

Liu and Inkpen [6] created a Neural Network architecture for the geolocation

task. A three layer stacked denoising auto-encoder, paired with great-circle

distance a loss function and early stopping is tested on Twitter datasets.

Model training is based on backpropagation and stochastic gradient descent.

The input to both models is a vector space representation for the text includ-

ing the frequency counts for the 5,000 most frequent term unigrams, bi-grams

and trigrams. The authors have analyzed two similar models for the task of

estimating Twitter users’ locations, namely one model that predicts the US

state, and a second model that predicts the latitude and longitude coordi-

nates of the user’s location. Although this is the first approach leveraging

deep neural network architectures to solve the geolocation task, little insight

was given on how the choice of different components affects performance,

for example the activation function, the number of layers, pre-training or

parameter tuning. Besides, the datasets suffer from label imbalance which

inturn had a negative effect on statistical classifiers, and adversely affected

regression models because many target values were not sampled.

2.5 2016 Workshop on Noisy User Generated Text

As part of the 2016 Workshop on Noisy User-generated Text1, a shared task

to infer geolocation for Twitter posts and users was organized [17]. Partic-

ipants were given a large training set collected from over one million users.

The goal was two-fold: (1) infer the location for a given English Twitter

post (tweet-level prediction); and (2) for a Twitter user (authoring primarily

English Tweets), infer the users base city (user-level prediction).

1http://noisy-text.github.io/2016/geo-shared-task.html

6

CHAPTER 3

PROBLEM DEFINITION

There are four key components to a geolocation prediction system, which we

discuss in this section and the following sections - (1) the models, (2) the

dataset, (3) the evaluation methodology and (4) the evaluation metrics.

3.1 Models

The models developed for the geotagging task should capture the linguistic

similarities among Twitter users by learning representations for users, also

known as “user embeddings” alongside with the tweet embeddings. Geolo-

cation task can be bolstered by unsupervised techniques on unlabeled social

media. In machine learning terms, the task can be expressed as two distinct

problems – classification task which puts each user into a geographical region

[6] and regression predicts the most likely location of each user in terms of

geographical coordinates.

The regression problem is defined by assigning a latitude/longitude tuple

to a given input tweet and measuring the distance between the predicted

co-ordinates and the true GPS labelled point. For the prediction task, the

models produce latitudes and longitudes of a location. The objective func-

tion is defined as the great-circle distance between the estimated and actual

coordinates. We can approximate the great-circle distance between any two

locations on the surface of earth, using the Harvesine formula – the equation

is given where Latitude is φ, Longitude is λ, and the Earth’s radius is r.

dgc = 2r arcsin

(√
sin2 φ2 − φ1

2
+ cosφ1 + cosφ2 sin2

(
λ2 − λ1

2

))
(3.1)

where,

7

• r is the Earth radius

• φ1, φ2 and λ1, λ2 are the latitude and longitude of the predicted and

true coordinates

• dgc is the final calculation of the distance, and consequently our error

loss function.

The problem of geolocation prediction can also be cast as a text classifi-

cation task, i.e. tweets from a particular geographical territory can be also

be grouped to represent a class. As shown in Figure 3.1, models can be de-

veloped to predict the location from a set of pre-defined mutually exclusive

classes such as the contiguous states of U.S. or a designated set of metropoli-

tan city centres, thereby becoming a multi-class classification problem [17].

For this task, we used categorical cross entropy as the objective function.

When the output layer activation is the softmax function, categorical cross

entropy can be interpreted as the negative log likelihood or the KL-divergence

between the output distribution and the target distribution, and is a typical

loss function used in the deep learning literature.

Figure 3.1: Neural models for Geolocation

The publicly-available Geoname dataset1 was chosen as the the basis for

the city classification. Geoname consists of city-level metadata, including the

1http://www.geonames.org/

8

full city name, population, latitude and longitude. The city name is associ-

ated with hierarchical regional information, such as its state and country it

is located in, so as to distinguish London in Britain from London in Canada.

The loss functions are defined without regularizing the weights; to pre-

vent overfitting, the early stopping technique is adopted [18] i.e., training

stops when the models performance on the validation set no longer improves.

Early stopping is an inexpensive way to avoid overfitting because even if the

other hyper-parameters would lead to overfitting, early stopping has proven

to considerably reduce the overfitting damage that would otherwise ensue.

Specifically, we adopt the patience heuristic which defines the minimim num-

ber of training examples to be observed before deciding to stop training [19];

the pseudocode is shown below :
initialization

patience = 20, iteration = 1;

while iteration < patience do

update parameters;

if the performance improves then

patience := max(patience, iteration * 2);

end

iteration += 1;

end
Algorithm 1: Early stopping

3.2 Dataset

We focus on social media posts from the website Twitter, which are an excel-

lent testing ground for both word-level and character-level based models due

to the noisy nature of text. Heavy use of slang and abundant misspellings

mean that there are many orthographically and semantically similar tokens,

and special characters such as emojis are also immensely popular and often

convey useful semantic information.

The experiments are conducted on the WNUT dataset [14], which com-

prises the geotagged English language tweets from 2013 to 2016. In total,

there were 1 million users for training, and 10K users for development and

test, respectively, with every user assigned a class label to denote his or her

9

primary location. These class labels have been extracted from metropolitan

city centres in GeoNames [15] – a total of 2998 cities. We present the distri-

bution of these classes in Fig 3.2. For reference, the top four labels with the

majority of training data correspond to cities such as New York, Los Angeles

and San Francisco, leading to a class imbalance problem [2]. The training

data for the tweet-level task is based on a unique tweet from each of these 1

million users. The development and test data sizes are both 10K messages,

different from the user-level development and test data.

Figure 3.2: Distribution of training data across the cities

All tweets were filtered by Twitters language ID code, so as to include only

text labelled as English. This was accomplished in two passes: in the first

round, all users with geotagged tweets were selected; and in the second pass,

users with atleast 10 geotagged tweets. The authors state that 10 geotagged

tweets was an empirical requirement in order to obtain a reliable prediction

of a users primary location and at the same time excluding the incorporation

of bot-generated messages.

The training set consists of 12.8M tweets, the user-level development and

test sets consist of 128k and 99k tweets, respectively, and the tweet-level

development and test sets each contain 10k tweets. Figure 3.3 shows the

spread of the WNUT training dataset in terms of the number of geo-tagged

twitter posts by users in a given city. This analysis shows that most cities

have a relatively small number of geo-tagged tweets.

10

Figure 3.3: Statistical profile of the WNUT dataset

3.3 Evaluation methodology

The evaluation of the models can be done on two levels: tweet-level and

user-level. The tweet-level is more practical in real world applications, as a

tweet is a basic text unit created by a Twitter user and often is associated

with a unique location. However, as a single tweet text can be brief and

may not contain explicitly geolocation information, another popular setting

has been user-level prediction, after aggregating a given users tweets. This

is based on the assumption that every user has a primary location and that

the primary location can be inferred from the aggregated tweet data. Both

these approaches leverage the abundant high-quality geographical informa-

tion offered by tweet metadata.

3.4 Evaluation metrics

To evaluate our models, we use the following evaluation metrics:

• Accuracy: The proportion of tweets (and users) that is correctly clas-

sified to their home location (city), out of all tweets (and users). This

metric allows us to measure the correctness of our prediction algorithm

in terms of percentage of true labelled cities.

11

• Mean Error Distance: The average error, in terms of distance, be-

tween the predicted cities and the ground truth cities of the tweets

(and users). Even for mislabelled cities, a mislabelled city nearer to

the ground truth city is deemed better, e.g., New York mislabelled as

Chicago, is considered better than New York mislabelled as London.

The mean error distance, measured in kilometers, aims to capture this

aspect.

• Median Error Distance: The median error, in terms of distance,

between the predicted cities and the ground truth cities of the tweets

(and users). Similar to the Mean Error Distance, except that we are

measuring the error distance in terms of median values.

The classification accuracy determines how well a given system performs in

a hard classification task setting, in terms of whether they correctly predict

the city or not. In addition to the accuracy, a number of evaluation metrics

which capture spatial proximity are considered because they provide a soft

evaluation as they reward near-miss predictions and penalize wildly long

predictions.

12

CHAPTER 4

MODELS

In this chapter we describe the various models chosen for comparison. For

each model, we give a brief summary of the architecture, while comparing and

contrasting various character and word based approaches for both regression

and classification tasks. Some models such as Convolutional neural networks

capture the local contextual structure whereas recurrent neural networks are

designed to model the global structure of the social media posts.

4.1 Unsupervised learning

Unsupervised learning tasks have no specific goals, which means the data are

not labeled. A typical example of unsupervised learning is clustering, which

aims to divide the whole dataset into multiple subsets such that one training

example is more similar to training examples in the same subset than to

those in other subsets. Below we list the set of unsupervised representation

learning models which require an additional classifier in general to do the

final classification.

4.1.1 Skip Thought Vectors

Kiros et al. created skip-though vectors [20], an encoder-decoder architecture

which encodes whole sentences into a vector space, in a manner similar to

the skip-gram method for learning word embeddings. It is based on the idea

that a word’s meaning is embedded by the surrounding vectors. Sentences

that share semantic and syntactic properties are mapped to similar vector

representations. The encoder maps the input sentence to a fixed-length vec-

tor representation and a decoder generates the sentences surrounding the

original sentence – the encoded vectors are called skip-thought vectors.

13

Figure 4.1: Skip-Thoughts Network architecture [21]

The encoder is built either using a recurrent neural network (RNN) layer

or a bidirectional layer is able to capture the temporal patterns of sequential

words vectors. The encoder uses a lookup table layer also known as an

embedding layer to convert each word into a vector. The inputs represented

as hidden states of the encoder are fed into two separate decoders - each

to predict the previous and subsequent sentences. The decoders in turn use

another set of recurrent layers, which share the same look-up table layer with

the encoder as shown in Fig 4.1.

4.1.2 Stacked Denoising Auto-encoders

Autoencoders are trained to extract significant features by compressing input

data to low-dimensional vectors. A denoising encoder is a stochastic version

of the auto-encoder. As it reconstructs the input from its corrupted version,

it aims to preserve the original information as well as undo the effect of the

corruption process as shown in Fig 4.2.

Because each auto-encoder learns an abstract representation of the input,

stacking a number of auto-encoders is likely to generate even more abstract

representations, which in turn could improve the performance of the task.

14

Denoising autoencoders can be stacked in a greedy layerwise fashion for pre-

training the weights of a neural network [22]. The outputs of each layer are

wired to the inputs of the successive layer. The unsupervised pre-training,

done one layer at a time captures a useful hierarchical grouping by minimizing

the error in reconstructing the input. After the pre-training process, the

network undergoes a second stage of training called fine-tuning in order to

minimize the prediction error on a supervised task.

Figure 4.2: A graphical representation of the denoising autoencoder [23].
After the input x is corrupted to x̃, the auto-enconder maps it to the
hidden representation h and attempts to reconstruct x.

4.1.3 Variational Auto-encoders

Variational auto-encoders is a directed probabilistic graphical model based

on a regularized version of the standard autoencoder that learns the pa-

rameters of a probability distribution modeling the input data. The VAE

learns sentences not as single points, but as soft ellipsoidal regions in latent

space, forcing the sentences to latent the space rather than memorizing the

training data as isolated sentences. It is this constraint that differentiates a

variational encoder from other standard encoders.

These parameters are trained via two loss functions : a generative loss

which is the mean squared error Eq that measures how accurately the net-

work reconstructs the input text and a latent loss, the KL-divergence between

the learned latent distribution and the prior distribution which act as a reg-

ularization term.

Formally, the generative model pθ(x, z) = pθ(x|z)pθ(z) is trained for data

15

x using latent variables z and an inference model q(z|x, φ) by optimizing a

variational lower bound to the likelihood pθ(x). The objective is a valid lower

bound on the true log likelihood of the data, making the VAE a generative

model, as shwon in Equation 4.1.

L(x, θ, φ) = − [q(z|x, φ)||p(z|θ)]︸ ︷︷ ︸
KL term

+Eq [log p(x|z, θ)]︸ ︷︷ ︸
autoencoding term

≤ log pθ(x) (4.1)

4.2 Supervised models

Below we list the set of supervised representation learning models which are

capable of performing end-to-end classification.

4.2.1 Convolutional Neural Networks

The most basic deep learning model is a sequential convolutional neural

network that can be trained on on top of word vectors obtained from an

unsupervised neural language model. The inputs of the network classifier

are preprocessed tweets that consist of a sequence of words. The model

converts each word in the sequence into a continuous high-dimensional word

vector. Therefore for each sentence, a sentence matrix is obtained as shown

in the Fig 4.3. The first layer of the model is a convolutional layer, which

applies a filter matrix of h× k to a window of h words to produce a feature.

The ith feature generated from a window of words xi:i+h−1 is represented by:

ci = f(w · xi:i+h−1 + b)

The filter is applied to every window of words in the sentence matrix using

the sliding window technique. Then, the next layer consists of the produced

features which is called a feature map as shown in Equation 4.2.

c = [c1, c2, . . . , cn−h+1] (4.2)

As the actual model contains several filters, each resulting in multiple feature

maps. Finally, there is max-pooling layer which extracts the most important

16

feature i.e. max value from each feature map before propagating it to the

next layer. At the end, those extracted features are passed through a fully-

connected layer and softmax layer to produce the probability distribution

over class labels. Although the model used a very simple idea of convolu-

tional layers, it produced notable results and achieved the state-of-the-art

performance in various sentence classification tasks.

Figure 4.3: The Sequential CNN model architecture [24]

This model is considered sequential because the filters in the convolutional

layer are applied to words sequentially in the order as they appear in the

original input sentence. Thus, sequential CNNs present some limitations

in their capability to capture structural features as well as long-distance

dependencies of the sentence.

4.2.2 Long Short Term Memory Networks

LSTMs are recurrent neural networks that can be trained to construct low-

dimensional vector representations of sentences from word embeddings [25].

LSTMs were introduced to address the problem of vanishing gradient problem

– gradients must flow from later time steps of the sequence back to earlier

parts of the input. This is difficult for long sequences, as the gradient tends

to degrade, or vanish as it is passed backwards through time.

As shown in the Figure 4.4, the LSTM introduces a memory cell structure,

governed by three gates in addition to a hidden state vector. An input gate

is used to control how much the memory cell will be influenced by the new

input; a forget gate dictates how much previous information in the memory

cell will be forgotten; and an output gate controls how much the memory cell

17

Figure 4.4: The various interacting layers of an LSTM module [26]

will influence the current hidden state. All three of these gates depend on

the previous hidden state and the current input.

Here we formally describe the LSTM model [27] . Given an input sequence

X =(x1, x2, ..., xN), the hidden vector sequence h =(h1, h2, ..., hN) and output

vector sequence Y =(y1, y2, ..., yN) are computed by the LSTM. At each

time step, the output of the module is controlled by a set of gates as a

function of the previous hidden state ht1 and the input at the current time

step xt, the forget gate ft, the input gate it, and the output gate ot. These

gates collectively decide the transitions of the current memory cell ct and

the current hidden state ht. The LSTM transition functions are defined as

follows:

it = σ(Wi · [ht−1, xt] + bi)

ft = σ(Wf · [ht−1, xt] + bf)

lt = tanh(Wl · [ht−1, xt] + bl)

ot = σ(Wo[ht−1, xt] + bo)

ct = ft � ct−1 + it � lt
ht = ot � tanh(ct)

(4.3)

Here, σ is the sigmoid function that has an output in [0, 1], tanh denotes

the hyperbolic tangent function that has an output in [−1, 1], and � denotes

the scalar product. The variable ft controls the extent to which the infor-

mation in the old memory cell is discarded, while the extent to which new

information is stored in the current memory cell is controlled by it, and ot is

the output based on the memory cell ct. In sequence-to-sequence generation

tasks, an LSTM defines a distribution over outputs and sequentially predicts

18

tokens using a softmax function.

P (Y |X) =
∏

t∈[1,N]

exp(g(ht−1, yt))∑
y′ exp(g(ht1, y′t)

(4.4)

where g is the activation function.

4.2.3 FastText

The fastText model is an extension of the word2vec [28] that can tackle sen-

tence and document classification. Although it is at par with deep learning

models in terms of accuracy, it can be trained an order of magnitude faster

on a standard CPU. The input to the model is a sequence of words as shown

in Fig 4.5, the word embeddings are averaged into text representations and

fed to a linear classifier. It is trained with stochastic gradient descent and

backpropagation with a linear decaying learning rate. The text representa-

tion can be considered as a hidden state that can be shared among features

and classes. The softmax layer represents a probability distribution over a

set of pre-defined classes [29].

Figure 4.5: Model architecture of fastText for a sentence with N ngram
features [29]

Although it is built on top of linear models with a rank constraint and a fast

loss approximation, the authors have employed several computational tricks

to boost its performance. Firstly, hierarchical softmax is used to decrease

the training cost of the classifiers. Taking word order into account to track

19

sequential data would add incredible amounts of complexity. However, in

fastText, the sequential information is preserved without the use of RNNs

by using a bag of n-gram features to capture partial information about local

word order. Finally, the hashing trick [30] is employed to maintain fast and

memory efficient mapping of the n-grams.

4.2.4 Tweet2Vec

This is a character composition model [31] operating directly on the char-

acter sequences to predict the user-annotated hashtags in a tweet. The Bi-

directional Gated Recurrent Unit (Bi-GRU) does a forward and a backward

pass on the entire sequence and the final states of the GRU are linearly com-

bined to obtain the tweet embedding as shown in Figure 4.6. Subsequently,

posterior probabilities over hashtags are computed by projecting this embed-

ding to a softmax output layer.

Figure 4.6: Tweet2Vec encoder architecture [31]

Formally, the input to the network is defined by a set of characters C. The

input tweet is decomposed into a stream of characters c1, c2, . . . , cm each of

which is represented as one-hot vectors, which are subsequently projected to

20

a character space. Each of the GRU units process these vectors sequentially

and start with the initial state h0 to compute the sequence h1, h2, . . . , hm as

follows:

rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz)

h̃t = tanh(WhxtUh(rt � ht−1) + bh)

ht = (1− zt)� ht−1 + zt � h̃t

(4.5)

Here rt, zt are called the reset and update gates respectively, and h̃t is the

candidate output state which is converted to the actual output state ht. The

final state hfm from the forward-GRU and the initial state from the backward

GRU are combined using a fully connected layer to give the tweet embedding

et:

et = W fhfm +W bhb0

Finally the tweet embedding is passed through a linear layer whose output

is the same size as the number of hashtags L in the dataset. The softmax

layer is used to compute the posterior hashtag probabilities.

4.2.5 Hierarchical Attention Networks

The idea of attention in neural network architectures is loosely based on the

visual attention mechanism found in humans. Human visual attention is able

to focus on a certain portion of an image with high resolution while perceiving

the neighboring image in low resolution, and adjusting the focal point over

time. Incorporating attention to a document classification results in better

performance because it captures which words and sentences contribute to the

classification decision which can be of value in applications and analysis.

The intuition underlying the attention models is that not every portion of

a document are equally relevant and that determining the useful sections of

text involves modeling the interactions of the words, rather than modeling

their presence in isolation.

Hierarchical attention networks are designed to mirror two important ideas

in documents - the hierarchical structure where words combine to form sen-

tences and sentences combine to form documents and the fact that different

21

Figure 4.7: Hierarchical Attention Network [32]

words and sentences in a document are differentially informative. The model

progressively builds a document vector by aggregating important words into

sentence vectors and then aggregating important sentences vectors to docu-

ment vectors [32].

As shown in Figure 4.7, it consists of a word sequence encoder, a word-

level attention layer, a sentence encoder and a sentence-level attention layer.

The word encoder embeds the words in a given input sentence into word

vectors using a Bi-directional Gated Recurrent Unit [33]. The word-level

attention layer extracts words that are important to the meaning of the

sentence and collects the representation of such informative words to form a

context vector. The entire process is repeated to get a document vector in a

similar manner. The document vector, v as shown in Figure 4.7 is viewed as

a high level representation of the document and can be utilized as features

for the document classification task.

22

CHAPTER 5

EXPERIMENTAL EVALUATION

In this section, we present an evaluation of our models on the WNUT Task

[17]. Our high-level goals are to evaluate the performances of various archi-

tectures in the geolocation prediction task; in addition, we attempt to un-

derstand the impact of the parameters affecting the evaluation metrics and

understand the best configuration suitable for this task. All experiments

were run on GeForce GTX 1080 graphics cards, with CUDA 8.0, CuDNNv3,

and bleeding-edge installations of Keras and Theano. We present our results

and compare across the various models that perform the same tasks, i.e.

classification and regression at the tweet-level and the user-level.

5.1 Tweet-level tasks

The training data for the tweet-level task is based on a unique tweet from

each of the same 1 million users. The development and test data sizes are

both 10K messages in size, different from the user-level development and test

data.

5.1.1 Classification

Tables 5.1 and 5.2 represent the comparison of the classification of tweets

across various models on the development and test datasets respectively. We

observe that the Convolutional Neural networks outperform the traditional

methods such as Autoencoders and embedding approaches. This is because

neural networks capture more contextual information of the features com-

pared with traditional methods based and therefore may be more immune

from the data sparsity problem.

It is also observed that the tweet2vec model outperforms the autoencoder

23

Table 5.1: Results on the Development Set for the Tweet Classification Task

Case Loss Accuracy (in %)

CNN 6.00 36.8
fastText 8.08 32.9

VAE 6.4 23.2
SDA 7.29 23.1

tweet2vec 7.04 33.08
LSTM 5.16 23.2
HAN 7.8 24.5

Table 5.2: Results on the Test Set for the Tweet Classification Task

Case Loss Accuracy (in %)

CNN 6.19 48.29
fastText 8.09 32.76

VAE 6.81 42.8
SDA 7.305 33.16

tweet2vec 7.40 33.04
LSTM 5.16 33.1
HAN 7.8 34.6

models by performing significantly well in the development set and compa-

rably well in the test set. However, the improved performance comes at the

cost of increased training time since moving from words to characters results

in longer input sequences to the Gated Recurrent Unit (GRU) [31].

We now present the subsequent experimental findings which were employed

to improve the performance of the CNN architecture for the WNUT Dataset.

Specifically, we have covered the following aspects:

• Interlayer Batch Normalization

• Dropout

• Different Optimization Techniques

Interlayer Batch Normalization

Batch normalization is a simple and effective way to improve the performance

of a neural network [34]. It is established that batch normalization enables

the use of higher learning rates besides acting as a regularizer thus achieving

24

Figure 5.1: Parameter tuning for the tweet classification task

a speed-up in the training process. In the figure 5.2, we observe the positive

effect of batch normalization as we increase the number of weight layers.

An important observation is that during the test time, Batch Normalization

layer functions differently. The mean and variance are not computed based

on batch instead a single fixed empirical mean of activations during training

is used.

Batch Normalization has clearly improved the gradient flow through the

network :

• It also acts a great regularizer and can even serve as a worthy substitute

of dropout if need arises.

• It has the potential to reduce dependence on initialization and can

allow higher learning rates.

Dropout

As we have discussed earlier, a standard CNN consists of alternating convo-

lutional and pooling layers, with fully-connected layers on top. Compared to

regular feed-forward networks with similarly-sized layers, CNNs have much

fewer parameters and connections and are therefore less prone to overfitting.

We train various CNN models by separately and simultaneously introducing

25

Figure 5.2: Train performance of various Architectures with and without
Batch Normalization

dropout with max-pooling as shown in Figure 5.3. Here are some observa-

tions, we can infer from this experiment.

• The retention probability p is varied to observe the change in perfor-

mance.

• There is visible increase in training error after having incorporated

dropout.

• The main purpose of dropout is the regularization which can prevent

overfitting for a value of p = 0.4, we observe the model performs better

than the one with dropout.

• No dropout converges faster than dropout but not necessarily to the

global optimum.

26

Figure 5.3: Train performance of various Architectures for various dropout
probabilities

Different pooling and optimization techniques

By reducing the spatial size of the representation, the pooling layers not only

help reduce the number of parameters but also provide a form of translational

invariance and help improve generalization. This can help reduce computa-

tional time between the successive convolutional layers. The introduction of

pooling layers have been also shown to counter the effects of overfitting as

depicted in Figure 5.4.

5.1.2 Regression

Tables 5.1 and 5.2 represent the comparison of the classification of tweets

across various models on the development and test datasets respectively.

Comparing the various approaches, once again the Convolutional neural net-

works outperform the other approaches. This illustrates that the convolution-

based framework is more suitable for constructing the semantic representa-

tion of texts compared with previous neural networks.The main reason is

that CNN can select more features through the max-pooling layer and cap-

ture contextual information through convolutional layer [35].

27

Figure 5.4: Train performance of various Architectures for various
optimization strategies

Table 5.3: Results on the Test Set for the Tweet Regression Task

Case Mean Distance (km) Median Distance (km) Acc@161 (in %)

CNN 5220 4260 33.03

fastText 8969 9121 32.6

SDA 7033 6123 30.4

tweet2vec 5988 4834 41.8

LSTM 6134 6541 32.4

HAN 3315 3451 23.1

Table 5.4: Results on the Development Set for the Tweet Regression Task

Case Mean Distance (km) Median Distance (km) Acc@161 (in %)

CNN 4563 4413 43.81

fastText 6355.83 5187.50 40.71

SDA 5613 6233.83 40.92

tweet2Vec 5188 4134 31.1

LSTM 6243 6721 33.1

HAN 3515 3481 24.1

28

5.2 User-level tasks

As a single twitter post can be brief and may not contain explicitly geolo-

cation information, another popular setting has been user-level prediction.

This is performed after aggregating the set of tweets posted by users. The

guiding assumption is that every user has a primary location and that the

primary location can be inferred from the aggregated tweet data.

5.2.1 Classification

Tables 5.5 and 5.6 represent the comparison of the classification of tweets at

the user level across various models on the development and test datasets

respectively. These results indicate that Convolutional neural network based

model has high scalability and is a competitive approach in geolocation pre-

diction.

Table 5.5: Results on the Development Set for the User Classification Task

Case Loss Accuracy (in %)

CNN 9.55 33.15
SDA 8.12 23.63

fastText 7.778 23.45
tweet2Vec 10.40 23.45

LSTM 12.12 24.5
HAN 11.46 23.1

Table 5.6: Results on the Test Set for the User Classification Task

Case Dev Loss Accuracy (in %)

CNN 9.25 35.13
SDA 6.8531 33.2

fastText 7.778 33.45
tweet2Vec 10.65 32.3

LSTM 11.6 34.1
HAN 12.5 22.9

29

5.2.2 Regression

Tables 5.7 and 5.8 represent the comparison of the classification of tweets at

the user level across various models on the development and test datasets

respectively.

Table 5.7: Results on the Test Set for the User Regression Task

Case Mean Distance (km) Median Distance (km) Acc@161 (in %)

CNN 5220 4260 23.03

SDA 5429 3906 21.12

fastText 3849 5057 34.15

tweet2Vec 4560 4667 22.56

LSTM 5013 3130 21.5

HAN 5312 4561 22.8

Table 5.8: Results on the Development Set for the User Regression Task

Case Mean Distance (km) Median Distance (km) Acc@161 (in %)

CNN 5514 6134 34.66

SDA 5867 4711 30.34

fastText 5786 5938 38.66

tweet2Vec 8312 8453 31.45

LSTM 6031 6534 22.67

HAN 5812 5956 23.2

In table 5.9, we show the words with the smallest average distance errors

for select cities. Our fastText model is able to distinguish several location

indicative words, for instance it finds several restaurants local to a given city,

for example, ’Chadwick’ is a popular Brooklyn restaurant in New York. The

model is also able to distinguish vernacular in twitter for those locations.

In New York city, there are frequent mentions of clothing brands and their

quality, which makes sense as it is often described as the fashion capital of

the U.S.; in San Francisco technology terms take precedence owing to its

proximity to Silicon Valley. These terms show that the tweets have some

dynamic property to them and thus there is scope to incorporate methods

30

that utilize temporal aspects, such as event discovery in order to better learn

location indicative terms.

Table 5.9: Selected words with smallest average user errors in WNUT

New York Dallas Los Angeles San Francisco

cashmere sundance fitzpatrick engineers

authenticity bachmann 2pac bot

trousers immigrants guste gadgets

chadwick administration morningside workflow

afterparty follow good birthday

wahlberg brutality afterhours unfriend

pearls socialist alvaro https

31

CHAPTER 6

CONCLUSION

We have investigated various neural network architectures for predicting the

location of the Twitter social media users. This is the first systematic study of

comparing various deep learning techniques for geolocation prediction, where

each model has been trained on an order of magnitude more data than any

prior work. Specifically, we explored how the parameters of each architecture

affect the evaluation metrics. To compare the various models, we identified

three key criteria and corresponding metrics, which fully capture the perfor-

mance behavior of each method and allow for meaningful comparison, both

in this and future work. The results indicate that the deep neural networks

are capable of learning representations from raw input data that helps the

inference of location of users without having to design any hand-engineered

features. It also shows that deep learning models have the potential of being

applied to solve real business problems that require location detection, in

addition to their recent success in natural language processing tasks and to

their well-established success in computer vision and speech recognition.

Future work will encompass the creation of datasets which can capture het-

erogeneous information in order to facilitate the hyperparameter tuning and

for more advanced error analysis. There is also scope for further improvement

by exploring unlabeled social media data with unsupervised techniques, such

as, pre-training with autoencoders or adding social network and word order

information with architectures, such as siamese [36] and recurrent networks

[37] that would facilitate such user/word representation and might advance

the neural geolocation task. We also plan to work on interpretation of dis-

tributed representations of nodes in a social network by leveraging various

interesting graph properties.

32

REFERENCES

[1] M. Dredze, M. Osborne, and P. Kambadur, “Geolocation for twitter:
Timing matters,” in Proceedings of NAACL-HLT, 2016, pp. 1064–1069.

[2] Z. Cheng, J. Caverlee, and K. Lee, “You are where you tweet: a content-
based approach to geo-locating twitter users,” in Proceedings of the 19th
ACM international conference on Information and knowledge manage-
ment. ACM, 2010, pp. 759–768.

[3] K. Lee, A. Agrawal, and A. Choudhary, “Real-time disease surveillance
using twitter data: demonstration on flu and cancer,” in Proceedings of
the 19th ACM SIGKDD international conference on Knowledge discov-
ery and data mining. ACM, 2013, pp. 1474–1477.

[4] D. Jurgens, J. McCorriston, Y. T. Xu, and D. Ruths, “Geolocation
prediction in twitter using social networks: A critical analysis and review
of current practice.” 2015.

[5] D. Y. Li Deng, “Deep learning: Methods and applications,” Tech.
Rep., May 2014. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/deep-learning-methods-and-applications/

[6] J. Liu and D. Inkpen, “Estimating user location in social media with
stacked denoising auto-encoders,” in Proceedings of the 1st Workshop on
Vector Space Modeling for Natural Language Processing, NAACL, 2015,
pp. 201–210.

[7] G. Quercini, H. Samet, J. Sankaranarayanan, and M. D. Lieberman,
“Determining the spatial reader scopes of news sources using local lexi-
cons,” in proceedings of the 18th SIGSPATIAL international conference
on advances in geographic information systems. ACM, 2010, pp. 43–52.

[8] J. Eisenstein, B. O’Connor, N. A. Smith, and E. P. Xing, “A latent
variable model for geographic lexical variation,” in Proceedings of the
2010 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2010, pp. 1277–1287.

33

[9] J. Eisenstein, A. Ahmed, and E. P. Xing, “Sparse additive generative
models of text.” in ICML, L. Getoor and T. Scheffer, Eds. Omnipress,
2011, pp. 1041–1048.

[10] A. Ahmed, L. Hong, and A. J. Smola, “Hierarchical geographical model-
ing of user locations from social media posts,” in Proceedings of the 22nd
international conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 2013, pp. 25–36.

[11] Q. Yuan, G. Cong, K. Zhao, Z. Ma, and A. Sun, “Who, where, when, and
what: A nonparametric bayesian approach to context-aware recommen-
dation and search for twitter users,” ACM Transactions on Information
Systems (TOIS), vol. 33, no. 1, p. 2, 2015.

[12] B. P. Wing and J. Baldridge, “Simple supervised document geoloca-
tion with geodesic grids,” in Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language
Technologies-Volume 1. Association for Computational Linguistics,
2011, pp. 955–964.

[13] S. Roller, M. Speriosu, S. Rallapalli, B. Wing, and J. Baldridge, “Su-
pervised text-based geolocation using language models on an adaptive
grid,” in Proceedings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Lan-
guage Learning. Association for Computational Linguistics, 2012, pp.
1500–1510.

[14] B. Wing and J. Baldridge, “Hierarchical discriminative classification for
text-based geolocation.” in EMNLP, 2014, pp. 336–348.

[15] B. Han, P. Cook, and T. Baldwin, “Text-based twitter user geoloca-
tion prediction,” Journal of Artificial Intelligence Research, pp. 451–500,
2014.

[16] M. Cha, Y. Gwon, and H. Kung, “Twitter geolocation and regional
classification via sparse coding,” in Proceedings of the 9th International
Conference on Weblogs and Social Media (ICWSM 2015), 2015, pp.
582–585.

[17] B. Han, A. Hugo, A. Rahimi, L. Derczynski, and T. Baldwin, “Twitter
geolocation prediction shared task of the 2016 workshop on noisy user-
generated text,” WNUT 2016, p. 213, 2016.

[18] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in gradient
descent learning,” Constructive Approximation, vol. 26, no. 2, pp. 289–
315, 2007.

34

[19] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” in Neural Networks: Tricks of the Trade. Springer,
2012, pp. 437–478.

[20] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Tor-
ralba, and S. Fidler, “Skip-thought vectors,” in Advances in neural in-
formation processing systems, 2015, pp. 3294–3302.

[21] NervanaBlog, “Building skip-thought vectors for document understand-
ing,” https://www.nervanasys.com/building-skip-thought-vectors-
document-understanding, 2017, accessed: 2017-01-05.

[22] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in
a deep network with a local denoising criterion,” Journal of Machine
Learning Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[23] Y. Zhang, “Stacked denoising autoencoders,”
http://psyyz10.github.io/2015/11/SDA/, 2015, accessed: 2015-11-
09.

[24] D. Britz, “Understanding convolutional neural networks for nlp,”
http://www.wildml.com/2015/11/understanding-convolutional-neural-
networks-for-nlp/, 2015, accessed: 2015-11-07.

[25] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015.

[26] “Colah’s Blog understanding lstms,” http://colah.github.io/posts/2015-
08-Understanding-LSTMs/.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[28] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositional-
ity,” in Advances in neural information processing systems, 2013, pp.
3111–3119.

[29] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” arXiv preprint arXiv:1607.01759, 2016.

[30] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg,
“Feature hashing for large scale multitask learning,” in Proceedings of
the 26th Annual International Conference on Machine Learning. ACM,
2009, pp. 1113–1120.

35

[31] B. Dhingra, Z. Zhou, D. Fitzpatrick, M. Muehl, and W. W. Cohen,
“Tweet2vec: Character-based distributed representations for social me-
dia,” arXiv preprint arXiv:1605.03481, 2016.

[32] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierar-
chical attention networks for document classification,” in Proceedings of
NAACL-HLT, 2016, pp. 1480–1489.

[33] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[34] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[35] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural
networks for text classification.” 2015.

[36] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric dis-
criminatively, with application to face verification,” in Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, vol. 1. IEEE, 2005, pp. 539–546.

[37] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

36

