

DEVELOPMENT OF ENABLING TECHNOLOGIES FOR SINGLE CELL ANALYSIS WITH
MASS SPECTROMETRY

BY

TROY J. COMI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Chemistry

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

Professor Jonathan V. Sweedler, Chair
Professor Martha U. Gillette
Associate Professor Mary L. Kraft
Professor Yi Lu

ii

ABSTRACT

Mass spectrometry (MS) is an effective methodology for untargeted, label-free, highly

multiplexed analyses of trace compounds based on their mass-to-charge ratios. For biological

applications, these properties have generated interest in determining biomarkers of diseased

states, detecting drug compounds and metabolites, and observing previously unknown chemical

messengers. Recent developments in instrumentation have provided exquisite sensitivity with

robust performance. A growing field of single cell chemical analysis has arisen around these

figures of merit. While early reports utilized manual isolation and extraction, recent

developments in high-throughput sampling have enabled the examination of large populations of

cells. One such method includes the analysis of dispersed single cells on a flat surface. When

cells are randomly seeded onto the surface, their locations have to be determined by optical

imaging to direct acquisition of isolated cells efficiently. A variety of microprobe ionization

sources are suitable for such analyses, though smaller probe footprints can utilize more densely

seeded samples.

This dissertation describes two technologies for performing single cell analysis with mass

spectrometry. The first, synchronized desorption electrospray ionization (DESI), facilitates

ambient ionization MS with high mass resolution, low duty cycle mass analyzers. The initial

report utilized synchronized DESI for mass spectrometry imaging, but interrupting the

desorption plume would be useful for profiling several locations on a surface in an arbitrary

order for single cell analysis. The second methodology utilizes microscopy images to guide MS

profiling. Specifically, image analysis software, called microMS, was developed to perform cell

finding and correlate optical coordinates with the physical coordinates in a mass spectrometer.

Since most of the functionality of microMS is decoupled from the mass spectrometer, the

iii

workflow can be easily extended to a variety of instruments. Using matrix-assisted laser

desorption/ionization (MALDI) time of flight (TOF)-MS, rodent pancreatic islet cells were

investigated and heterogeneous peptide processing was detected at the single cell level. With

secondary ion mass spectrometry, disparate tissue from the mammalian nervous system was

differentiated and further stratified into separate populations. A unique feature of such analyses

is that only a fraction of the sample is consumed and the location of a cell is constant once the

sample is dried. This property greatly simplifies sequential, follow-up analysis. As an example,

MALDI-TOF-MS was utilized to rapidly screen a population of islet cells to select alpha and

beta cell types. The locations of those cells were then targeted for liquid microjunction extraction

in order to examine their metabolite profiles with capillary electrophoresis-MS. Finally, while

microscopy-guided MS profiling is accurate enough to target single cells, the methodology is

flexible enough to analyze much larger samples, including tissue sections or bacterial colonies.

As an application, natural product mutant libraries were screened directly from E. coli colonies

using microMS. The suite of technologies and protocols described increases the applicability of

many mass spectrometers to characterize a range of cells, colonies and similar objects for their

chemical composition.

iv

To my family,

for their love and support

v

ACKNOWLEDGEMENTS

I am greatly indebted to all of my teachers and mentors, which have contributed to my education

and growth as a scientist. Most recently, and importantly for this dissertation, is Prof. Jonathan

Sweedler, who accepted me into his lab and has provided profound insight into each challenge. It

is clear that Jonathan is a master of the craft of research and his tutelage has continually refined

my ideas and refocused my work. It has been a privilege to be part of the Sweedler group for the

last 3 years. I also must acknowledge Prof. Richard Perry for his advising early in my graduate

work. Those formative years influenced how I conduct research and supplied an environment

where I could fearlessly approach new topics and skills to tackle any project. The insight and

support of my committee members have also been invaluable; I must thank Prof. Martha Gillette,

Prof. Mary Kraft, and Prof. Yi Lu for their tireless service. Prof. Ryan Bailey also provided

essential feedback and support on my committee for the majority of my graduate work. I also

must thank Stephanie Baker, Julie Sides, and Becky Duffield for their help and support.

 I have been truly lucky to work with amazing scientists within the Sweedler group. My

success was possible only through close collaborations with Dr. Thanh Do, Dr. Bin Li, Dr. Tong

Si, Dr. Qian Wu, Dr. Erik Jansson, Dr. Ta-Hsuan Ong, Sage Dunham, Elizabeth Neumann,

Marina Philip, Monika Makurath, and Joseph Ellis. Their friendship, advice and support have

been as appreciated as their scientific contributions. Dr. Stanislav Rubakhin and Dr. Elena

Romanova were essential in most of the work within this dissertation and provided valuable

insight and advice throughout many projects. I also recognize the wonderful collaborators I have

interacted with including the Gillette and Bhargava Labs as part of the BRAIN Initiative and Dr.

Maja Engelstoft. From the Perry lab, Dr. Edward Chainani, Kevin Peters, Heather Robison,

vi

Seung Ryu, Kevin Parker, Jed Veach, Yao-Min Liu, and Corryn Neumann were close friends

and collaborators.

 Finally I thank my family for their enduring love and support. Many nights, weekends

and holidays were part of this dissertation and I am grateful for their understanding. Beryl Jones

has been a wonderful friend, constant companion and loving editor. We have helped each other

through graduate school and I could not have done this alone.

 The support by the National Institute of Drug Abuse under Award No. P30 DA018310 to

the Neuroproteomics and Neurometabolomics Center on Cell-Cell Signaling at the University of

Illinois at Urbana-Champaign is gratefully acknowledged. I also acknowledge support from the

Training Program at Chemistry-Interface with Biology support through NIH T32 GM070421, the

Springborn endowment, and the National Science Foundation Graduate Research Fellowship

Program.

 	

vii

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION AND DISSERTATION OVERVIEW ...1

CHAPTER 2 - IMAGING MASS SPECTROMETRY IN PROTEOMICS9

CHAPTER 3 - CATEGORIZING CELLS ON THE BASIS OF THEIR CHEMICAL
PROFILES: PROGRESS IN SINGLE-CELL MASS SPECTROMETRY45

CHAPTER 4 - SYNCHRONIZED DESORPTION ELECTROSPRAY IONIZATION
MASS SPECTROMETRY IMAGING ..80

CHAPTER 5 - MICROMS: A PYTHON PLATFORM FOR IMAGE-GUIDED
MASS SPECTROMETRY PROFILING ..111

CHAPTER 6 - SINGLE CELL PEPTIDE HETEROGENEITY OF
RAT ISLETS OF LANGERHANS ...138

CHAPTER 7 - SINGLE CELL PROFILING USING IONIC LIQUID MATRIX-
ENHANCED SECONDARY ION MASS SPECTROMETRY FOR
NEURONAL CELL TYPE DIFFERENTIATION ...176

CHAPTER 8 - MALDI-MS GUIDED LIQUID MICROJUNCTION EXTRACTION
FOR CE-MS ANALYSIS OF SINGLE MURINE
PANCREATIC ISLET CELLS ..222

CHAPTER 9 - OPTICALLY-GUIDED MALDI-MS PROFILING OF MICROBIAL
COLONIES FOR HIGH-THROUGHPUT ENGINEERING OF MULTI-
STEP ENZYMATIC REACTIONS ..260

APPENDIX A - SELECTED SOURCE CODE ...298

APPENDIX B - MICROMS USER MANUAL ..503

 	

1

CHAPTER 1

INTRODUCTION AND DISSERTATION OVERVIEW

Since Robert Hooke’s description of biological cells in 1665,1 the field of single cell analysis has

developed from optical observations to chemical characterization. Cells are the smallest

functional unit of life and present a challenging benchmark for analytical methods. Every cell is

unique due to its ancestry and local microenvironment; populations appear only as homogenous

as our inability to differentiate individuals. While not all heterogeneity is biologically relevant,

new analytical methods provide views of single cells within increasing chemical information.

Due to the low absolute abundance of compounds and their large diversity, no technique can

currently provide a complete profile at the resolution of single cells. Genomics and

transcriptomics can circumvent low copy numbers by amplifying initial sequences,2 but for

direct measurements of metabolites, peptides and proteins, instrumental detection limits are

imperative. Optical and electrochemical methods are frequently applied to biological systems

including single cells. Single molecule fluorescence detection and imaging is well developed,3

while electrochemical methods can achieve nanomolar detection limits,4 but each fail to provide

highly multiplexed information. Mass spectrometry (MS) provides attomole sensitivity of several

hundreds to thousands of compounds simultaneously. While many approaches are available for

the analysis of single cells, this dissertation covers two direct measurement methods: MS

imaging and optically-guided single cell profiling.

 Chapter 2 presents a review on mass spectrometry imaging in the context of proteomics

research.5 The background encompasses many aspects commonly associated with single cell

analysis, especially performing images from tissue at cell-scale resolution. Discussions also

include sample preparation and matrix application, which greatly affect the final data and spatial

2

resolution. Several ionization methods are also briefly mentioned, including the recent develop

of ambient ionization techniques within the last decade.

Chapter 3 introduces the topic of single cell analysis with mass spectrometry, organized

by the type of sample preparation involved.6 While many MS-based approaches are suitable for

single cell analysis, methods which utilize dissociated cells are highlighted for their high

throughput and ease of preparation. One such technique is optically-guided single cell profiling

of dissociated cells, which utilizes microscopy images to direct mass spectral acquisition. High

throughput is achieved with optically-guided MS by selectively targeting only the cell locations.

Unique aspects of optically-guided MS include its modular nature and ability to repeatedly visit

the same cells. As discussed later, the choice of optical imaging and mass spectrometer do not

affect basic performance. Since cells are adhered to the sample surface, their location can be

revisited for follow-up analysis with the same instrument or by different platforms.

 Chapter 4 discusses the implementation and performance of a modified desorption

electrospray ionization (DESI) source which synchronizes ionization with low duty cycle mass

analyzers.7 DESI was among the earliest ambient ionization techniques and shows great promise

in applications requiring direct analysis of samples at atmospheric pressures. A drawback of

DESI when coupled to low duty cycle mass analyzers, such as Orbitrap or Fourier transform ion

cyclotron resonance, is that DESI will desorb the sample surface even while the instrument is not

trapping ions. This leads to decreased sensitivity from analyte losses. Since ultrahigh resolution

mass analyzers are important for resolving the chemical content of complex systems, it is

imperative to adapt DESI to such instruments. The approach presented is synchronized DESI, in

which the desorption spray is directed away from the sample surface while the mass analyzer is

not accepting ions. Originally developed by Huang, et al. for a miniature mass spectrometer,8

3

synchronized DESI showed improved sensitivity on the order of the duty cycle. The source was

adapted from a commercial DESI emitter and assessed for its performance with MSI. It was

found that synchronized DESI is especially effective for analytes weakly bound to the sample

surface, an observation supported by a model developed to simulate analyte migration during

DESI-MSI. While not directly applied to single cell analysis, the integration of synchronized

DESI would be important for single cell profiling in order to prevent unnecessary desorption of

cell content while traveling between targets.

 Chapter 5 introduces the image analysis and spatial correlation software utilized in the

remaining chapters. While any optical image is suitable, the software is focused on microscopy

guided MS, called microMS. microMS provides a feature-rich graphical user interface to

encapsulate many processes required to utilize an optical image for MS analysis. Functions

include automatic cell finding, population stratification on morphology, and distance filtering.

Support for four separate instruments is described; three are utilized in specific projects in the

remaining chapters. The optical and physical positions are correlated through a point-based

similarity registration which requires selection of several fiducial markers. Target positions may

be patterned, their analysis order optimized and finally exported in an instrument-specific format.

By design of the software architecture, instrument objects interact with the graphical user

interface through an abstract base class. The base class defines a limited set of functions which

must be implemented for full support while including implementations of common algorithms,

such as the point-based similarity registration. The design greatly simplifies the addition of new

instruments and provides a unified user interface across platforms. Chapter 5 also demonstrates a

powerful aspect of single cell analysis from sample substrates: sequential analysis of the same

cell. Once a cell is located on the sample surface, its location is uniquely specified by its pixel

4

position. The sample can simply be moved between mass analyzers and repeatedly analyzed.

Such experiments would be difficult to perform without microMS and this feature should find

additional applications in the future.

 Chapter 6 presents the application of microscopy-guided MALDI-TOF MS profiling for

pancreatic islets of Langerhans.9 Islets are composed of at least four cell types, defined by the

expression of peptide hormones. Alpha cells express glucagon, beta cells express insulin, gamma

cells express pancreatic polypeptide, and delta cells express somatostatin. During embryonic

development, the pancreas forms from two buds from the gut tube which fuse into the mature

organ. The difference in origin manifests as distinct populations of cell types for islets derived

from the dorsal or ventral bud. Dorsal-derived islets contain more alpha cells and ventral-derived

islets have more gamma cells. Using single cell MS profiling, thousands of pancreatic cells were

classified with k-means clustering based on the abundance of the four hormones listed above.

The cell type heterogeneity between dorsal- and ventral-derived islets was successfully repeated

using the methodology. As a label-free method, MALDI-TOF-MS also allowed further

investigation of the chemical composition of each cell type. Focusing on dorsal/ventral

heterogeneity, m/z values which differ between the anatomical regions were examined for each

cell type. Gamma cells presented several significantly different peaks, which were identified as

cleavage products of the full length pancreatic polypeptide from mass matching with LC-MS

peptidomics. From full length pancreatic polypeptide (PP), cleavage at the monobasic site R17

results in PP(1-16) and PP(18-36) and dibasic cleavage at RR25-26 generates PP(1-24) and

PP(27-36), which were all detected from single cells. Interestingly, the full length PP was not

significantly different, indicating heterogeneity in peptide processing within dorsal- and ventral-

5

derived gamma cells. This is also the first report of endogenous production of these cleavage

products and was confirmed with MSI of pancreatic tissue.

 Chapter 7 presents an adaptation of microMS for utilization with a lab-built C60

secondary ion mass spectrometer (SIMS).10 While MALDI-MS provides information on intact

biomolecules as large as several kDa, interference from the small molecule MALDI matrix

frequently prevents analysis of metabolites. In contrast, SIMS can be performed without matrix

and garners more information on small molecule metabolites. Due to limitations of the custom

SIMS instrumentation, additional data analysis is required to accurately parse spectra and assign

them to specific cells. Matlab scripts for performing these analyses are presented in Appendix A.

While specifics slightly vary, overall the operation of SIMS single cell profiling is similar to

MALDI-TOF. A difficulty found with single cell SIMS is that the sensitivity of native SIMS for

intact lipid analysis was insufficient to classify cells. To improve sensitivity, samples were

coated with a mixture of ionic liquid matrices which were previously shown to improve limits of

detection while providing a uniform coating. With matrix enhanced SIMS, samples of dorsal root

ganglia cells were easily differentiated from cerebellum cells by t-distributed stochastic neighbor

embedding (t-SNE).11 Further analysis of the two groups revealed additional subclasses which

were differentiated by the relative signal intensity of phosphatidylcholine lipids PC(32:0) and

PC(34:1).

 Chapter 8 is an example of follow-up analysis of samples surveyed with MALDI-TOF-

MS. The particular application utilized a liquid microjunction extraction system controlled by

microMS which performs targeted extractions for capillary electrophoresis (CE)-MS analysis.

While CE-MS can provide quantitative measurements of metabolites, its throughput is quite low

with each separation taking ~40 minutes. As such, comprehensive surveys of large populations

6

are prohibitively time consuming. Instead, MALDI-TOF-MS can provide an initial classification

of cells to guide follow-up extraction. In addition to determining the accuracy and extraction

efficiency, the workflow was applied to single pancreatic islet cells. MALDI-MS successfully

classified populations of cells into alpha, beta and gamma cells. Six alpha and five beta cells

were targeted for qualitative, CE-MS analysis. Several amino acids were putatively identified by

matching exact mass and relative migration order. In both cell types, dopamine was directly

detected and confirmed by matching migration time of a standard. While quantitative,

comparative analysis was not performed, the addition of internal standards would facilitate such

studies in the future.

 Chapter 9 is an extension of microMS for high throughput screening of bacterial colonies

for the production of natural products and engineered mutations. Plasmid libraries were

transformed into E. coli strain BL21 (DE3) and grown on a porous hydrophilic membrane.

Following induction, the colonies were transferred onto ITO-coated glass slides by imprinting.

The colonies were found to auto-fluoresce sufficiently that no nuclear stain was required.

Besides the larger size, the randomly seeded colonies resembled single cells and could be found

with the existing machine vision algorithms. Each colony was sampled multiple times around its

perimeter and the resulting dataset was analyzed by t-SNE and manually clustered to detect

mutated peptides by mass matching. The high-throughput, label-free, direct analysis of bacterial

colonies has direct implications for screening campaigns on mutant libraries.

 Appendix A supplements several chapters by providing documented source code for

simulations of DESI MSI, microMS, and analysis scripts for SIMS single cell profiling, CE-MS

extracted ion electropherograms, and the determination of removal efficiency for the liquid

microjunction system.

7

 Appendix B presents a user manual for microMS covering basic functions and two

examples of how to extend the source code to support new instrumentation.

 While a diverse range of topics are presented throughout the dissertation, all chapters

describe methodology with direct or indirect applications to MS for single cell analysis. In

particular, the development of microMS greatly simplifies microscopy guided MS and is flexible

enough to analyze diverse samples. The work includes new information on cell heterogeneity in

pancreatic islets, nervous systems, and natural product libraries achieved by improvements in

MS sampling approaches.

References

(1) Hooke, R. Micrographia: or some physiological descriptions of minute bodies made by

magnifying glasses, with observations and inquiries thereupon; J. Martyn and J. Allestry:

London, 1665.

(2) Shapiro, E.; Biezuner, T.; Linnarsson, S. Nature Reviews Genetics 2013, 14, 618.

(3) Weiss, S. Science 1999, 283, 1676.

(4) Jackowska, K.; Krysinski, P. Analytical and Bioanalytical Chemistry 2013, 405, 3753.

(5) Comi, T. J.; Yoon, S.; Monroe, E. B.; Sweedler, J. V. In Reference Module in Chemistry,

Molecular Sciences and Chemical Engineering; Elsevier: 2016.

(6) Comi, T. J.; Do, T. D.; Rubakhin, S. S.; Sweedler, J. V. Journal of the American Chemical

Society 2017.

(7) Comi, T. J.; Ryu, S. W.; Perry, R. H. Analytical Chemistry 2016, 88, 1169.

(8) Huang, G.; Li, G.; Ducan, J.; Ouyang, Z.; Cooks, R. G. Angewandte Chemie International

Edition 2011, 50, 2503.

8

(9) Jansson, E. T.; Comi, T. J.; Rubakhin, S. S.; Sweedler, J. V. ACS Chemical Biology 2016, 11,

2588.

(10) Do, T. D.; Comi, T. J.; Dunham, S. J. B.; Rubakhin, S. S.; Sweedler, J. V. Analytical

Chemistry 2017, 89, 3078.

(11) Maaten, L. v. d.; Hinton, G. Journal of Machine Learning Research 2008, 9, 2579.

9

CHAPTER 2

IMAGING MASS SPECTROMETRY IN PROTEOMICS

Notes and Acknowledgements

This chapter was as update of DOI: 10.1016/B978-0-12-409547-2.11698-1, with coauthors S.

Yoon, E.B. Monroe, and J.V. Sweedler, adapted and reproduced here with permission from

Elsevier. The update was published as “‘OMICS’: PROTEOMICS | Imaging MS in Proteomics”

in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier:

2016. (DOI: 10.1016/B978-0-12-409547-2.11698-1). The chapter presents an overview of mass

spectrometry imaging with a focus on peptidomics and recent advances, including ambient

ionization imaging.

Introduction

The application of mass spectrometric imaging (MSI) as a tool to study the native distribution of

molecules within biological tissues presents an intriguing method for proteomics. Within a single

experiment, the distribution of hundreds of known and previously uncharacterized compounds

may be studied, including peptides and proteins. MSI typically uses a microprobe ionization

source to collect mass spectra from hundreds to millions of spatially defined locations across a

sample and, following data acquisition, enables the creation of distribution maps of selected

signals. Although relatively little sample preparation is needed for such analyses, retaining the

native distribution of compounds of interest is required, and specific steps must be taken to limit

analyte redistribution during tissue processing. Here we present a review of MSI methods and

instrumentation, protocols for sample preparation, and experimental considerations that are

required for successful MSI experiments.

10

Many mass spectrometric approaches to biological tissue characterization involve

extraction from tissue homogenates, followed by multiple stages of liquid-phase separations,

e.g., liquid chromatography (LC) or two-dimensional (2D) gel electrophoresis, before

introduction to a mass analyzer to achieve information-rich detection. Separation-based mass

spectrometry (MS) approaches simultaneously obtain qualitative and quantitative information on

numerous distinct analytes from extremely complex samples; however, homogenization destroys

spatial information and can dilute scarce analytes below the limit of detection. In contrast, by

sampling in discrete areas over the sample, MSI can directly assay tissue sections without

requiring interim homogenization or separations. Moreover, MSI retains important spatial

information on compounds within the tissue, which is particularly useful when examining

heterogeneous samples such as tumors or brain slices. Nevertheless, without a separation stage,

MSI detects fewer compounds due to the inherent chemical complexity of tissues, which can also

limit the performance of MS-based fragmentation. The two methodologies are therefore

complementary, and one often needs to implement both approaches in order to understand both

the spatial and chemical characteristics of a particular sample.

The development of several direct desorption/ionization techniques has revolutionized

our ability to study proteins and peptides from tissues with MSI. The levels of sensitivity and the

high information content resulting from MS measurements allow for the detection, identification,

and characterization of proteins and metabolites directly from thin tissue sections. In addition,

the spatial distribution of a compound of interest is revealed via the examination of a chemical

image, or distribution map. Techniques that provide information about the location of a molecule

within a tissue have benefited biologists for decades, yet such methods often require specific

antibodies or labels to visualize molecular distributions within a sample. In contrast, MSI

11

generates images for a wide range of analytes in a single experiment without requiring

preselection or labeling.

To create an ion image using MSI, mass spectra are collected from an ordered array of

locations across the sample. During data processing, the intensity of selected ions is plotted to

produce a 2D distribution map across the tissue (Figure 2.1). Because a mass spectrum contains

intensity values for numerous compounds, a single MSI experiment provides hundreds of ion

images for both known and uncharacterized molecules.

When measuring the contents of an entire organ, individual compounds can be difficult to

detect due to their low average global concentration within the tissue. Furthermore, MSI analysis

of the spatial localization of compounds within a sample provides information that can suggest a

biological function. For example, an analyte localizing within a specific region may indicate that

it is involved in processes intrinsic to the biological structure in which it is present. Additionally,

when looking for regional (cellular) differences in protein expression, high-resolution MSI

provides many of the same benefits as single-cell MS. Specifically, investigating the profile of

peptides and proteins at such small spatial scales benefits from the high local concentration of

molecules of interest, particularly when these analytes are localized to a single cell or small

cluster of cells within a tissue.

This chapter describes the MS methodologies, basic instrumentation, and sample

preparation requirements that are integral to the chemical imaging of peptides and proteins in

biological tissues. Current image acquisition procedures and sample preparation protocols are

also examined, highlighting the latest research methods, and their successes and limitations.

Throughout the review, the complementary nature of MSI and LC-MS should become more

apparent.

12

MS Methods and Instrumentation

Proteins have major roles in many biological pathways and so the ability to localize their spatial

distributions can enhance our understanding of many physiological processes. The goal of an

MSI investigation is to utilize the high information content obtained via MS to map the location

of both known and unknown compounds in a sample. To accomplish this, mass spectra must be

collected for an array of locations across a sample by selectively interrogating each position.1

Two traditional MS techniques are well-suited for these analyses: matrix-assisted laser

desorption / ionization (MALDI)-MS and secondary ion mass spectrometry (SIMS). In these

methods, a laser or ion microprobe, typically with micron or submicron dimensions, desorbs and

ionizes compounds from the sample at a specific location. Similarly, recently developed ambient

ionization methods with discrete desorption areas can be directly translated to MSI. Examples

include desorption electrospray ionization (DESI),2 nanospray DESI (nanoDESI),3 and laser

ablation electrospray ionization (LAESI).4 Once ionized, compounds are separated on the basis

of their mass-to-charge ratio (m/z) and detected. Because the ions originate near the probe beam,

the spatial location of the molecules is inferred. Application-specific software enables selection

of an analyte signal from the thousands that are obtained and plots the intensity for each point in

the array, resulting in an ion image. Although MALDI MS, SIMS and the ambient methods

discussed are all microprobe analyses, they vary with regard to their ionization mechanisms,

sample handling requirements, and mass detection range.

MALDI MS

Developed in the late 1980s,5,6 MALDI MS is one of the most powerful methods available to

ionize intact biological compounds. In this approach, analytes are incorporated into a low-

molecular-mass organic matrix, which strongly absorbs energy from an impinging laser beam. A

13

wide variety of matrices have been developed for both ultraviolet7 and infrared excitation,

including glycerol and derivatives of benzoic and cinnamic acids, among others.5 Nanosecond

laser pulses resonantly excite the matrix and cause its rapid vaporization, resulting in the ejection

of neutral and charged analyte molecules, matrix molecules, and matrix–analyte clusters. Owing

to particle interactions, ionization occurs in the matrix crystals and the subsequent MALDI

plume, producing predominantly monoprotonated [M + H]+ species in positive-ion mode, and

deprotonated [M − H]− species in negative-ion mode operation. Typically, MALDI MS is

coupled to a time-of-flight (TOF) mass analyzer that detects ions over a wide mass range (up to

hundreds of kilodaltons (kDa)), making MALDI-TOF MS suitable for peptide and protein

studies.8,9 TOF analyzers typically display mass accuracies of 20–200 ppm and a resolving

power of 30,000.10,11 High performance analyzers (e.g., Fourier transform ion cyclotron

resonance (FT-ICR) or the Orbitrap) can be coupled to MALDI sources to provide higher mass

accuracy and a resolving power of better than 5 ppm and 100,000,10 respectively. These powerful

mass analyzers can provide confident assignments of molecular composition from single-stage

mass spectra. At higher masses, fewer molecules of a protein tend to exist in each interrogated

spatial region, an issue that is compounded by lower sensitivity of the detector for larger ions.

Both factors limit which proteins will be detected in an MSI experiment. At the lower mass

range (< 1,000 Da), matrix compounds can form adducts with analytes, further complicating

analyses.

In proteomics, two types of approaches are commonly used for protein identification. In

the first, known as top-down, intact proteins are directly identified by their molecular mass and

peptide fragments produced by tandem mass spectrometry (MS/MS). Alternatively, the bottom-

up method utilizes on-tissue enzymatic digestion of proteins prior to mass spectral analysis.

14

Protein identification can be accomplished by peptide mass fingerprinting12 and MS/MS

sequencing of the digested peptides. MALDI MS is a versatile technique that can be used with

either approach for proteomic studies. It also brings several benefits to imaging biological

tissues. Foremost, prepared tissues are directly analyzed by applying either a thin coating of

matrix13,14 or an array of droplets13 on a tissue section. Analyses are also remarkably salt-

tolerant; physiological salts may form adducts to analyte molecules but do not inhibit or

otherwise significantly perturb spectra. Additionally, several histological stains, including cresyl

violet and methylene blue,15 are compatible with MALDI MS and permit the optical

identification of morphological structures. These unique advantages help explain why MALDI

MSI is the most widely used method for imaging peptides, proteins, and lipids in biological

tissues. Examples of the MSI of a rat brain tissue are shown in Figure 2.2.

Selection of the most appropriate matrix is a critical step to ensure the production of high

quality chemical images.16 Robust protocols for matrix application have been established and

optimized for each analyte type or molecular weight. For protein analysis, α-cyano 5-

hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), and 3,5-dimethoxy-4-

hydroxycinnamic acid (sinapinic acid, SA) are commonly used. CHCA is generally more

sensitive for detection of low-mass peptides (< 2,500 Da),17 whereas DHB provides less matrix

interference during analysis of peptides or lipids in both positive- and negative-ion modes.16 For

larger peptides and proteins, SA performs better.17,18 Other matrices offer improved ionization of

specific compounds: 2,4-dinitrophenylhydrazine is used for formalin-fixed paraffin embedded

samples,19,20 3-hydroxypicolinic acid for oligonucleotides or glycoproteins,21 1,5-

diaminonaphtahlene for lipids,22 and aniline as an ionic matrix for digested actin or hemoglobin

proteins.23,24 Homogeneous deposition of the matrix with small crystal sizes is vital for obtaining

15

high spatial resolution MALDI chemical images.25 Each matrix and application approach

produces crystals of different sizes and variable analyte extraction efficiencies, which may also

limit the spatial resolution obtained. Typical spatial resolutions in protein analysis range from

about 100 µm to 250 µm for routine images.26 For example, a recent MSI study using matrix

sublimation of SA acquired images of chicken liver and mouse brain tissue with a spatial

resolution of 10 µm.26 Spatial resolution may also be limited by the laser spot size and pitch

between ablation spots (pixels). In commercial MALDI instruments, laser spot sizes range from

200 µm down to 20 µm.27 Recently, high spatial resolution in MALDI MSI was achieved with a

transmission geometry ion source that irradiates the back side of tissue samples.28 The back-side

illumination allows closer placement of optics, resulting in a laser spot focused to a diameter of

less than 1 µm. Acquisition with submicron pixel sizes is an exciting advance that provides the

capability of direct imaging with sub-cellular resolution.

Traditionally, microprobe MALDI MSI has been limited in resolution to roughly the size

of the laser beam profile. Image oversampling is another approach to improve spatial resolution

using commercially available spectrometers; pixels are acquired with a pitch that is less than the

laser spot diameter.29 In oversampling, the laser is used to ablate the layer of matrix from one

position on the sample, prior to moving to the next position on the sample. When the distance

between two adjacent points is less than the size of the laser beam, any signals from the new

position arise only from the region of the beam profile that is still coated with matrix. This

allows for the effective imaging of samples at resolutions below the size of the laser beam.

Atmospheric pressure MALDI is a novel ionization technique developed by the Burlingame

group.30 Unlike traditional MALDI sources, ions are generated from the laser pulse at

atmospheric pressure. Recently, the Spengler group11,31 introduced atmospheric pressure

16

scanning microprobe MALDI using an imaging source attached to an FT-ICR mass analyzer that

displays high spatial resolution and accurate mass measurement. They achieved a mass accuracy

of 2 ppm and typically obtained a spatial resolution of 10 µm; however, slight oversampling with

a laser ablation spot diameter of 5 µm can decrease resolution further to 3 µm.32

SIMS

SIMS has been widely used in materials science, including during semiconductor fabrication, for

quality control and surface analysis with atomic-level chemical resolution.33 Figure 2.3 presents

a SIMS image of the lipids and other molecules, such as vitamin E, found within a single cell

extracted from Aplysia californica using an Au+ primary ion beam. Unlike the laser pulses used

in MALDI, SIMS utilizes a tightly focused beam of primary ions that impact the sample to

desorb and ionize analytes directly from the surface. Energy from the primary ions are

transferred to analytes via a collision cascade, which subsequently ejects secondary ions that are

analyzed by their m/z.34 This process causes greater molecular fragmentation than MALDI due to

the high kinetic energy of the primary ion beams (in the range of 1–30 keV), thereby limiting the

upper mass range of SIMS to the low kDa range.35 As a result, most SIMS imaging focuses on

small molecules, lipids, and atomic ions. Commonly-used primary ion beams include

monoatomic (Au+, Ga+, and Bi+) or polyatomic (Aun
+, Bin

+, and Csn
+) sources. The primary ion

beam may be readily focused to diameters of a few hundred nanometers so that high spatial-

resolution imaging is possible. Although focusing cluster ion beams is more difficult than atomic

beams (e.g., the focused size of a C60
+ ion beam is around 1 µm), the spatial resolution is still

superior to the 10–100 μm spatial resolutions typical of MALDI MSI.

Recently developed cluster ion sources,36,37 matrix-enhanced SIMS (ME-SIMS),38,39 and

metallization (Met-SIMS)40,41 provide softer ionization, allowing detection of compounds as

17

large as several kDa. The Winograd42 research group developed ion sources for SIMS that enable

the analysis of organic compounds and thereby, extend SIMS as an imaging technique for the

biological sciences. Cluster ions, such as C60
+ or Arn

+ (n = 1000–4000), fragment upon impact,

distributing the large kinetic energy of the ion between analytes and many fragments from the

ion beam.43,44 As a result, SIMS with a cluster primary ion source can analyze peptides and

proteins with high molecular masses in addition to small molecules. Smith et al.45 reported the

chemical imaging of mouse brain tissue by C60
+ SIMS FT-ICR MS. Argon-cluster SIMS can

expand the mass range up to 25 kDa and increase secondary ion yield by controlling the kinetic

energy per atom of the Ar cluster ion.37,46 As an alternative to cluster ion sources, surface

modifications such as ME-SIMS or Met-SIMS can improve the analysis of intact biological

compounds. ME-SIMS, which uses a thin layer of MALDI matrix (e.g., CHCA or DHB) applied

to the sample, can measure biological compounds at higher mass ranges. Similar to MALDI,

ME-SIMS produces mass spectra up to several kDa from various biological compounds.

Recently, MacAlees et al.47 reported identification of trypsin-digested bovine serum albumin and

savinase via ME-SIMS imaging of nanoLC fractions collected on a SIMS sample plate. ME-

SIMS allowed ionization of peptides up to nearly 5 kDa using a gold liquid metal ion gun. Met-

SIMS is another surface modification used to improve the analysis of intact biomolecules.

Coating the sample surface with a thin (1 nm to 5 nm) metal coating such as gold can extend the

mass range available for SIMS analysis.41 The metal coating is thought to reduce surface

charging and analyte fragmentation by taking the brunt of the primary ion impacts.43,44

MS/MS is an important technique that provides more confident analyte identification.

The lack of MS/MS capability with standard, commercial SIMS instruments has been a

drawback to many biological studies. In efforts to address these limitations, Winograd and

18

colleagues36 utilized a C60
+ ion source coupled with a quadrupole orthogonal TOF mass

spectrometer to acquire product ion spectra. They obtained chemical images of vitamin E,

cholesterol, and other lipid compounds on the surface of individual Aplysia californica neurons.

More recently, using SIMS with MS/MS, they identified 1-hexadecyl-2-octadecenoyl-sn-

glycero-3-phosphocholine [PC(16:0e/18:1)] as a major lipid constituent of the neural

membrane.48

Although more limited in mass range than MALDI MSI, SIMS is capable of analyzing

tissues at spatial resolutions exceeding that of MALDI MSI. Furthermore, SIMS can be used to

examine tissue sections without significant sample preparation, allowing higher throughput and

less analyte migration than MALDI. As discussed, the addition of a MALDI matrix or metal

coating softens ionization, leading to the observation of intact, molecular ions.

Ambient Ionization

Ambient ionization MS is an emerging technique in which ions are generated at atmospheric

pressure without sample preparation.49,50 Following direct desorption and ionization under open-

atmospheric conditions, generated ions are analyzed in vacuum. The ability to directly analyze

biological samples under ambient conditions is a major advantage over SIMS or MALDI MSI.

DESI, introduced by the Cooks group in 2004,2 produces ions from charged microdroplets

generated with an electrospray emitter. Solvent from the microdroplets pools on the sample to

create a thin liquid film that extracts analytes from the surface.51 Desorption from the film occurs

by momentum transfer between incoming droplets and the film to generate secondary

droplets.52,53 Gas phase ions form by an electrospray ionization (ESI)-like mechanism54-56 and

are drawn into the mass spectrometer through an atmospheric pressure interface. As ionization is

restricted to the impinging electrospray, DESI MSI is performed by rastering the spray over the

19

sample area.57,58 In most experiments, the mass range is limited up to m/z 2,000, with a lateral

spatial resolution of about 100 to 200 µm. With careful optimization of operating conditions,

including reducing the inner diameter of the DESI emitter capillary, the lateral resolution can

improve to 35 µm.59 DESI MSI studies typically focus on profiling lipids in various biological

tissues, including brain,60 spinal cord,61 prostate,62 kidney,63 and adrenal glands,64 among others,

for the characterization and diagnosis of diseased states. DESI MS is typically less sensitive than

MALDI MS for protein analysis;65 the limits of detection were poorer with analytes having a

larger mass due to less efficient desorption. Although the low sensitivity of DESI MSI currently

limits its utilization in proteomic research, recent improvements in DESI MS for protein analysis

have focused on detecting larger proteins. Shin et al.66 measured purified proteins in a mass

range from 12 kDa to 66 kDa, applied as a uniform layer on glass and Teflon via an oscillating

nebulizer sample deposition system.66,67 Though promising, more research is needed to realize

ambient imaging of protein distributions with DESI.

In 2010, the Laskin group3 introduced nanoDESI by modifying the ion source with a

nanoelectrospray probe. In this approach, a liquid junction formed by two narrow capillaries was

used to extract analytes on the sample surface and transfer them into the mass spectrometer via

nanoelectrospray. They observed 3 pmol of cytochrome c (12 kDa) in a bovine heart sample

deposited on a hydrophobic substrate. The isolated extraction and direct transfer to the mass

spectrometer inlet allowed lateral resolution as low as 10 µm with high sensitivity.68 By

introducing an internal standard to the perfusion solvent, rough quantitation was possible to

account for ions with multiple adducted cation variants (e.g., sodiated and potassiated lipids).69

Some technical issues remain, including sample diffusion in the capillary and difficulties in

20

forming and maintaining the fragile liquid junction, which currently limits the usage of

nanoDESI in ambient MSI.

In contrast to the two ambient ionization methods discussed above, which desorb analytes

via liquid extraction, laser ablation electrospray ionization (LAESI) utilizes a focused sampling

laser beam for desorption and extractive ESI as a post-ionization process.4 LAESI is a hybrid

ambient method that combines representative characteristics of MALDI and ESI. Ionization

occurs from a gaseous plume of analyte ions/neutrals desorbed by laser irradiation when

electrospray droplets merge with the plume during post-ionization. By decoupling desorption and

ionization, each process can be independently optimized for overall higher analytical

performance. LAESI uses a mid-infrared laser to excite the endogenous water found in biological

samples.70 Kiss et al.71 reported top-down identification with MSI of intact proteins by LAESI

combined with a hybrid ion trap FT-ICR mass spectrometer. Hemoglobin α chain was identified

directly from collision induced dissociation, which was utilized to induce fragmentations for the

top-down analysis. The work demonstrates that proteins from biological tissue sections in native

environments can be analyzed by LAESI MSI for proteomics.

Multimodal Imaging

An emerging interest in the field is to combine multiple imaging modalities to acquire

complementary information and gain further insight on the biological system under

investigation.72 Multimodal MSI can employ a variety of optical images, ionization techniques,

or MS approaches. The most common strategy is the acquisition of histological stains that are

registered with mass spectral images. This routine procedure allows histology-guided

classification of different regions within chemical images. Distributions of specific antigens can

be targeted using immunostaining methods such as immunohistochemistry73 or

21

immunofluorescence.74 Correlating chemical information with traditional medical images is

another area of interest. For example, magnetic resonance imaging generates three dimensional

(3D) models of tissue samples within their native context. MSI of biopsies from the same region

provides specific chemical information and additional diagnostic power for the diseased state.

Medical images may also present a scaffold for building 3D MSI images from serial tissue

sections.75 Vibrational microscopy is another nondestructive method to image tissue sections

prior to MSI. The spectra can corroborate chemical identification obtained from MS, and images

may be acquired at higher spatial resolution than with MSI.76

Beyond optical methods, several studies have combined multiple types of MSI to gain

insight from their complementary chemical coverage or spatial resolution. Using MALDI MSI to

measure protein content is enhanced further by acquiring a separate image for the metabolite and

lipid content. Eberlin et al.77 reported sequential imaging using DESI, followed by MALDI to

measure lipid and protein content within a single tissue section. When morphologically friendly

solvents are utilized for DESI MSI,78 the tissue remains unperturbed and can be analyzed with

MALDI following matrix deposition. The morphology is maintained sufficiently following

MALDI to allow for histological staining. A different approach was utilized by Lanni et al.79 for

combined SIMS and MALDI imaging of bacterial biofilms. Instead of utilizing MALDI for

protein profiling, a gold-coated sample was rapidly analyzed with laser desorption ionization

(LDI) at low spatial resolution (500 µm or 1000 µm) to target regions of interest with high

resolution SIMS imaging (0.6 µm). The initial LDI image was necessary as a biofilm sample is

optically homogenous. In the above cases, the complimentary performances of two ionization

sources were leveraged for better analyte coverage or higher throughput.

22

Although performing sequential MSI experiments garners additional chemical

information, the need to have multiple instruments or custom hybrid ionization sources may limit

widespread utilization. An alternative is to analyze the same tissue using one ionization source

with multiple MS experiments. Korte and Lee80 utilized a spiral raster to subdivide each pixel

into multiple MALDI MS experiments, including high resolution-positive and -negative mode,

single-stage MS on a LTQ-Orbitrap Discovery mass spectrometer. During transient acquisition

in the Orbitrap, the linear ion trap performed MS/MS acquisition of selected ions to produce

multiplexed data for nine distinct images. The single-stage images provided high mass accuracy

profiles of a wide range of analytes and the MS/MS images displayed increased specificity and

sensitivity, albeit for only a few, selected compounds. These types of imaging experiments

should find application in locating drug and metabolite accumulation by selecting exogenous

compounds for MS/MS images. Difficulties with the approach arise from the requirement of a

single matrix to provide high sensitivity for both positive- and negative-mode MALDI, and the

repeated high voltage cycling required for polarity switching. In instances where serial sections

are available, it may be advantageous to correlate images between tissue sections so that matrix

composition is optimized to each experiment.

A final consideration with multimodal imaging is how to handle the complex data sets. In

most cases, qualitative information from one image informs conclusions on the other. For

example, histology will highlight an area within a tissue section containing large concentrations

of cancer cells. The spectra within this area are then examined to discover putative biomarkers

specific for the diseased state. Similarly, examination of one image can dictate which regions

should be subjected to further analysis. Quantitative data fusion is more difficult and requires

precise registration of the two images. Examples of image fusion include SIMS images

23

combined with scanning electron micrographs81 or MALDI MSI fused with hematoxylin and

eosin stains.82 In these studies, high spatial resolution microscopy images were used to predict

the chemical distribution acquired by MSI. The implicit assumption with these methods is that

the chemical distributions match features visible in the other modality, which may not always be

valid. Technologies for fusing mass spectral data for MSI are still under development. One

example of fusing mass spectra in positive and negative polarity is from a report of profiling

single oocytes.83 Following principal component analysis (PCA), the predominant principal

components from positive and negative mode were jointly considered for linear discriminant

analysis. Quantitative data fusion represents a challenge for multimodal imaging that should see

further development in the near future.

Sampling Protocols

For chemical imaging experiments to succeed, sample preparation procedures should preserve

the original distribution of analytes in the tissue. Preparing a tissue section minimally requires

tissue dissection, sectioning, transfer and placement on an appropriate target, followed by MS-

based data acquisition, as illustrated in Figure 2.4. For SIMS and many ambient methods, the

tissue may be directly imaged, whereas MALDI requires application of a matrix coating before

imaging. Because each of these steps can cause analyte migration, a wide range of preparative

protocols have been developed to optimize the chemical imaging of tissues with MS. SIMS has

been successful for small molecule imaging and is used in many situations for cation and lipid

imaging. For protein applications requiring information on higher molecular masses, MALDI

MSI is often the more appropriate approach; as a result, many of the sample preparation and

experimental considerations in the literature focus on MALDI MSI techniques.

24

Tissue Preparation

Animal sacrifice and tissue dissection protocols, like other preparative steps, must seek to

maintain the native complement and distribution of analytes. Therefore, rapid decapitation of

animals is the preferred method, particularly in studies of nervous tissues where pharmaceutical

euthanasia agents may alter the production and processing of proteins and peptides prior to

death. Additionally, rapid tissue dissection and disruption of enzymatic processes is imperative.

Following death, if enzymatic activity is not quenched, significant protein degradation may

result. To reduce this undesirable effect, tissue samples are typically frozen on dry ice, liquid

nitrogen, or liquid nitrogen-slushed liquid propane. One common method uses liquid propane

because of its relatively high thermal conductivity and ability to remain a liquid at the slightly

elevated temperatures often present at the tissue–liquid interface during freezing.84 In practice,

the tissue sample is loosely wrapped in a small piece of aluminum foil and plunged into a liquid

nitrogen and liquid propane mixture. The sample is removed after several minutes and typically

stored at −80°C to reduce analyte migration during storage. Similar preparative strategies using

dry ice and/or liquid nitrogen alone have also been shown to limit enzymatic degradation.

Chemical fixation is another, yet rarely used technique, as interference caused by the fixative

during MS analysis is common.

In general, the preparation of tissue sections is relatively straightforward and varies little

from histological techniques. It is important, however, to limit the contact between tissues and

traditional embedding media, which typically consists of a polymer matrix having a broad range

of molecular masses; sections cut from embedded tissues tend to produce contaminant peaks

arising from these polymers throughout the mass spectrum. As sections are cut, a thin layer of

polymer may be spread over the surface of each section from the microtome blade. To reduce or

25

eliminate the need for embedding media, sections for MSI applications are often prepared using

a cryomicrotome operated at −20°C. Tissues may be affixed to the microtome stage using either

frozen water (ice) or a small drop of embedding media. If embedding media is used, it is

important to apply only enough to affix the tissue to the stage while preventing contact between

the media and the sectioning blade. If tissues are encased in ice to help maintain morphological

stability during sectioning, they should be rapidly dried to prevent analyte redistribution.

Although the preparation of thin tissue sections of non-embedded tissues may be more difficult,

5–10 μm sections are readily obtained and are ideal for chemical imaging. Analysis of smaller

sections can create issues, both for maintaining tissue morphology and for analyte detection, as

less analyte is present in thinner sections. For irregular, fatty or porous tissues, embedding media

is necessary to maintain native morphology during sectioning. Embedding is also utilized with

3D images as it can simplify image reconstruction by preventing tearing and deformation from

cutting and mounting. Several types of MSI-compatible embedding media have been reported,

including carboxymethylcellulose,85 gelatin,39 or agarose.86 While spectral backgrounds are

cleaner than with traditional polymeric media, application-specific evaluation is recommended

before embedding critical tissue samples. Another alternative is to stabilize fragile sections with

double-sided conductive tape.87,88 Due to the abundance of tissue archives for a variety of disease

states, significant efforts have focused on recovering proteomic information from formalin-fixed

paraffin-embedded tissues. A protocol developed by Casadonte and Caprioli89 involves

sectioning, paraffin removal, antigen retrieval, and in situ trypsin digestion to prevent MS

interference and release peptides from their crosslinks. Numerous options are available for

preparing thin tissue sections from dissected samples. The methods adopted at this step can

greatly affect the success of analysis and should be chosen and optimized carefully.

26

Following sectioning, samples must be transferred to a target suitable for the specific

instrument being used, typically a metal plate or a glass slide. Transfer may be achieved by

blotting the target onto the tissue, or lifting the sample onto the target using a small artist's brush,

and then allowed to warm and dry. This warming and drying should be performed rapidly and

may be aided by the addition of a stream of warm air or placement in a desiccator. Once on the

target, the dried tissue sections may be rinsed with cold ethanol to assist in removing some

physiological salts and lipids, both of which can complicate proteomic analyses and reduce

instrumental sensitivity.90 Histological staining for morphological structure identification may be

performed following drying as well. Some histological stains have been shown to reduce signal

intensity for families of proteins, although as stated previously, both cresyl violet and methylene

blue may be used without causing interference or reduction in MS sensitivity. In many cases,

histological stains may also be performed following MSI.

Another method for preparing samples for imaging is by dissection of well-defined tissue

regions using microsurgery or laser capture microdissection (LCM).91 In LCM, a laser and

polymer film are used to selectively remove small portions of tissue from a larger section. This

technique is often used for profiling experiments, as small, distinct regions may be selected

under magnification; however, LCM may also be used to isolate larger regions for imaging

experiments.92

Matrix Application

Central to the capabilities of both MALDI MS and SIMS to detect proteins and peptides is the

application of a matrix compound to the tissue surface in order to assist in analyte desorption and

ionization. Generally, this involves applying a matrix-containing solution to the tissue via

droplets or spray and allowing the matrix to crystallize on the surface. During the crystallization

27

process, analytes need to be extracted and then co-crystallized with the matrix. It is important to

balance these processes. Maintaining wetness and an appropriate contact period increases analyte

extraction, and thus, sensitivity, but also increases the likelihood of analyte redistribution. One

option to address this issue is to apply the matrix in a dryer form, or create an environment that

promotes rapid drying; although analyte migration is reduced, sensitivity suffers. Here we

describe several protocols that are designed to not only resolve these concerns, but also to

optimize the sensitivity and spatial resolution of a collection of mass spectra.

As an image may be thought of as an array of individual points (pixels), the application

of an array of droplets on a sample can allow image acquisition when these spots are

interrogated. An automated strategy aids in the formation of a regular array of small droplets to

enable the creation of chemical images across a tissue. Automated application of microdroplets

can be generated with an acoustic ejection system,93 which is capable of depositing 200 μm spots

at spatial resolutions of ~200 μm.

Another sample preparation method for imaging is to apply a thin layer of matrix across

the tissue using either an electrospray emitter,86 a gas nebulizer, or even an artist's airbrush. The

goal is to provide adequate extraction while minimizing analyte redistribution by applying the

matrix solution in a relatively dry manner. Typically, the matrix is a concentrated (10–30 mg

mL−1), largely organic solution (e.g., 1:2, water/acetone); the high organic composition generates

smaller microdroplets via evaporation during spray formation. Using the electrospray technique,

a small amount of matrix solution is placed into a pulled glass capillary and a high voltage is

applied between the tip and the grounded sample, generating a fine spray. For the spray to form,

the tip must be kept relatively close to the sample surface (< 1 cm) and moved over the sample to

coat large areas of tissue. Electrospray application tends to produce small matrix crystals, which

28

are beneficial for imaging applications. Perhaps the most common means to apply matrix is via

aerosol spray, generated either by a gas nebulizer, such as those used to develop thin layer

chromatography plates, or by an artist's airbrush. Several thin coats of matrix are applied by

passing the aerosol spray across the sample multiple times and then pausing for several minutes

to allow the sample to dry. Often, the last series of passes consist of solvent alone to form

regularly sized and well-formed crystals. Both the nebulizer and airbrush operate in a

comparable manner to produce similarly sized matrix crystals, and permit control over the

amount of liquid applied with the matrix. The airbrush method also allows more control of the

direction of the spray; however, more samples may be coated at one time using a nebulizer. As

mentioned previously, a wet application of matrix increases analyte extraction but may result in

analyte redistribution.

In contrast to spray-based methods, matrix can also be applied without solvent using

sublimation.14 In this protocol, the sample is cooled and held above a solid matrix under vacuum.

As the matrix is heated, it begins to sublime and solidify upon the sample. Tissues may be thaw-

mounted onto slides that are precoated with a matrix deposited by sublimation.94 Generally,

sublimation produces small crystals but results in poorer extraction than wet applications. To

increase sensitivity, the coating may be re-crystalized by incubating in a heated chamber with

water or organic solvent vapor.26,95 Again, a balance has to be met between small crystals and

sufficient extraction efficiency.

These matrix coating techniques, initially developed for MALDI MSI, may be readily

adapted to ME-SIMS experiments without modification, keeping in mind that smaller crystal

sizes are desired for ME-SIMS due to the higher spatial resolutions obtainable from SIMS

instruments. As mentioned earlier, the surface metallization technique, Met-SIMS,40,41 was

29

developed to extend the available mass range and sensitivity of SIMS, and has also been applied

to MALDI MS. A thin layer of metal (e.g., gold or silver) is applied with a sputter coater, as

would be traditionally used to prepare samples for electron microscopy experiments. For

MALDI MSI applications, this layer is applied on top of the matrix-coated sample.38,39 In both

MALDI MS and SIMS applications, the metal coating is believed to assist by reducing buildup

of an electrical charge on the sample during analysis.96 Unlike matrix coating, however, analytes

do not appear to be directly integrated into the coating.

Chemical Imaging Experiments

Chemical imaging involves the collection of an array of mass spectra acquired at regular

intervals across a sample, with some variations depending on instrumentation. In practice, the

imaging process involves operating the instrument in an automated acquisition mode during

which a list of locations is created. A complete mass spectrum is collected for each of those

locations based upon a series of instrumental parameters, (e.g., mass range, laser power, number

of acquisitions, etc.), which remain the same for each spot. This ‘spot-by-spot’ or microprobe

process is the most commonly used means of imaging whereby each collected mass spectrum

corresponds to an individual pixel in the resulting chemical image.

An alternate imaging mode developed for TOF MSI involves irradiating a large area of

the sample with the laser and then separating the desorbed ions in a spatially defined manner

using specialized ion optics.97 The optics allow ions to maintain their spatial positioning

throughout the TOF separation; the ions are then detected with a spatially resolved detector. A

single laser pulse results in the creation of a complete ion image. In addition, this stigmatic

imaging approach tends to produce higher-resolution chemical images because the size of the

laser beam does not affect image resolution. However, microscope mode may require the

30

preselection of a mass range to image ratio as opposed to the point-by-point approach, which

collects entire mass spectra at each point.

Following spectra collection, software is used to convert intensity data into distribution

maps of selected analytes. When utilizing most open source programs, it is necessary to convert

data from proprietary software into an open source format such as imzML.98 Open source

formats typically have larger file sizes than their proprietary counterparts, but ongoing design

efforts are working to decrease file sizes. Several challenges arise when analyzing MSI data,

primarily resulting from the immense size of the data sets. In simple implementations, m/z and

tolerance values are input and signals within that range are plotted into a 2D array of intensity

values. It is common to up-sample the image with some interpolation, and to recolor intensities

with a color map. Careful consideration is necessary to balance data sizes and accuracy of

results. Common non-targeted approaches include binning m/z values and peak finding.99 Both

approaches can drastically reduce the overall memory requirements, but binning leads to reduced

mass spectral resolving power and mass accuracy, whereas peak finding can overlook rare or less

abundant species. Software packages may be commercial and proprietary, open source, or

written for a particular user. Biomap (Novartis), a free software package, is popular for

displaying images and superficial inspection of mass spectra, but lacks capabilities for more

advanced statistical analysis. Many instrument manufacturers offer software for analyzing MSI

data, e.g., FlexImaging from Bruker Daltonics and ImageQuest from Thermo Scientific. SCiLS

Lab, a partner of Bruker, is another option for MSI data analysis that allows for a variety of

univariate analyses, including hypothesis testing as well as supervised and unsupervised

multivariate analyses.

31

Numerous reports have introduced alternative MSI analysis tools, typically addressing a

shortcoming of commercial software or introducing statistical methods. As one example, to

retain the mass resolving power of FT-ICR MSI, Smith et al.100 developed Chameleon, an MSI

visualization package with bin widths of 0.001 Da. In this work, hardware limitations for storing

large data sets were overcome by using a mosaic data cube, a subdivided version of a continuous

data cube that can be read into memory piecewise. For nanoDESI MSI, integrating image

acquisition with analysis allowed for fine adjustment of sample geometry during imaging and

real-time display of ion images to assess image quality.68 New multivariate analyses have been

integrated into MSI including PCA hyperspectral visualization,101 classification by PCA,102,103

and hierarchical clustering,104 among others. For a more thorough review of statistical analysis in

MSI, refer to the review by Jones et al.105

Several considerations must be given weight when creating an ion image. The display

scale should be easy to comprehend and provide contrast across the range of intensities.

Topographical features of the sample can cause peaks to shift in detected m/z. To correct for

these shifts, ion images may be created for a larger m/z window or standards may be added to the

matrix solution to allow the internal calibration of each individual mass spectrum in the image.

In cases where semi-quantitation is desired, defects in ionization across the sample due to, for

instance, sample preparation defects or topographical features, may be minimized by

normalizing analyte signals using one of a variety of metrics.106

Conclusions

The development of MSI for localizing the distribution of peptides and proteins in biological

tissues makes available a valuable new toolset that benefits a wide range of research disciplines.

Contemporary mass spectrometers provide the high sensitivity necessary to detect a range of

32

biological compounds in intact tissues while requiring relatively minimal sample preparation.

The major goal of these advanced imaging approaches is to obtain information on

heterogeneously distributed analytes, which is otherwise difficult to acquire using the more

common technique of dissection to extract tissues for analysis with LC-MS. While MSI is a

relatively new addition to the investigative options available to the mass spectrometrist, it likely

will become more common in applications that require profiling of heterogeneous samples.

The sample preparation protocols described herein for MALDI MSI and SIMS imaging

are similar, and both enhance analyte detection while limiting contaminants and analyte

redistribution prior to analysis. Sample preparation requirements are minimized when using

ambient ionization methods, which allow direct analysis of tissues that are irregularly shaped or

not vacuum stable. The automated collection of thousands of mass spectra can result in a

multitude of chemical images for a given experiment; these images often prove to be highly

beneficial when used as discovery tools in the analyses of biological tissues. We anticipate even

further refinements to these approaches to address specific analytical challenges.

Figures

Figure 2
mass spe
spectra fr
at left on
signals o
relative
fragment
phosphat
center of
reside.

2.1. Chemica
ectrometry (S
from a 600 μ
n the optica

of interest fr
thermal sca
ts, includin
tidylcholine
f the spinal

al imaging o
SIMS). The
μm × 600 μm
al image). T
rom which t
ale and show
g an acyl
(m/z 184). C
cord, where

of a rat spin
ionizing mic

m region of a
The average
to create ion
w the distri

chain frag
Cholesterol i
eas the lipid

33

nal cord with
croprobe wa
a 10-μm-thic
spectrum is

n images. Th
ibution of c
gment (C5H
is found larg

signals are

h MSI, in th
as used to co
ck section o
s presented
he presented
cholesterol (
H9, m/z 69
gely in the m

present in t

his case, usin
ollect 65,536
of spinal cord

above and
d ion image
(m/z 384) a
9), choline

myelinated w
the region w

ng secondar
6 individual
d (outlined i
is used to s
s are shown
and several

(m/z 86),
white matter a
where cell b

ry ion
mass

in red
select
n in a

lipid
and

at the
bodies

Figure 2
The high
down pr
performe
with perm
Mass Ac
Mass Spe

2.2. High ma
h mass accur
roteomics se
ed after MA
mission from
ccuracy to L
ectrometry 2

ass resolution
racy of FT-I
equencing f

ALDI analys
m Spraggins
Link Protein
26:974-985.)

n MALDI M
ICR MS was
from other
sis to compa
JM et al. (2
Images with

)

34

MSI of intact
s utilized to
experiments
are protein

2015) MALD
h Proteomic

proteins wit
correlate sin

s. A hemato
distributions

DI FT-ICR I
cs Data. Jour

thin a rat bra
ngle stage m
oxylin and
s with histo
IMS of Intac
rnal of Ame

ain tissue sec
m/z values to

eosin stain
ology. (Repr
ct Proteins: U
erican Societ

ction.
o top-
n was
rinted
Using
ty for

Figure 2
cellular l
(c) vitam
(top) and
permissio
membran

2.3. Imaging
lipids by the

min E (m/z 4
d choline (bo
on from Mo
ne. Journal o

g a single n
e (a) choline
430) is local
ottom) also il
onroe EB et
of the Americ

neuron with
e fragment (m
ized at the s
llustrate this
al. (2005) V

can Chemica

35

h SIMS illu
m/z 86) and
soma-neurite
s distribution
Vitamin E im
al Society 12

ustrates the
(b) acyl-ch

e junction. (
n. Scale bars
maging and
27: 12152–1

homogenou
hain fragmen
(d) Line sca
s are 100 μm
d localization

2153.)

us distributio
nt (m/z 69), w
ans for vitam

m. (Reprinted
n in the neu

on of
while

min E
d with
uronal

Figure 2
dissection
sectionin
MALDI
GD, Will
(2000) T
www.mb

2.4. Schemat
n. For MSI

ng, (b) trans
matrix and/o
liams AG, C

The Mouse B
bl.org.

tic showing
I studies, sa
sfer to suita
or metal suc

Capra JA, Co
Brain Libra

the tissue p
ample prepa
able surface
h as silver o

onnolly MT,
ary @ www

36

preparation p
aration consi

and coating
or gold, and (
 Cruz B, Lu

w.mbl.org. In

process afte
ists of seve
g of the sa
(c) imaging.

u L, Airey DC
nt Mouse G

er animal sac
eral general
ample with
. Images ada
C, Kulkarni

Genome Con

crifice and t
steps: (a) t

a small lay
apted from R
K, Williams

nference 14:

tissue
tissue

yer of
Rosen
s RW

166.

37

References

(1) Stoeckli, M.; Chaurand, P.; Hallahan, D. E.; Caprioli, R. M. Nature Medicine 2001, 7, 493.

(2) Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Science 2004, 306, 471.

(3) Roach, P. J.; Laskin, J.; Laskin, A. Analyst 2010, 135, 2233.

(4) Nemes, P.; Vertes, A. Analytical Chemistry 2007, 79, 8098.

(5) Karas, M.; Bahr, U.; Giessmann, U. Mass Spectrom Rev 1991, 10, 335.

(6) Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Rapid

Communications in Mass Spectrometry 1988, 2, 151.

(7) Beavis, R. C.; Chait, B. T.; Standing, K. G. Rapid Communications in Mass Spectrometry

1989, 3, 436.

(8) Remoortere, A.; van Zeijl, R. M.; van den Oever, N.; Franck, J.; Longuespée, R.; Wisztorski,

M.; Salzet, M.; Deelder, A.; Fournier, I.; McDonnell, L. J Am Soc Mass Spectrom 2010, 21,

1922.

(9) Mainini, V.; Bovo, G.; Chinello, C.; Gianazza, E.; Grasso, M.; Cattoretti, G.; Magni, F.

Molecular BioSystems 2013, 9, 1101.

(10) Aichler, M.; Walch, A. Laboratory Investigation 2015, 95, 422.

(11) Römpp, A.; Spengler, B. Histochemistry and Cell Biology 2013, 139, 759.

(12) Clauser, K. R.; Baker, P.; Burlingame, A. L. Analytical Chemistry 1999, 71, 2871.

(13) Kaletaş, B. K.; van der Wiel, I. M.; Stauber, J.; Lennard, J. D.; Güzel, C.; Kros, J. M.;

Luider, T. M.; Heeren, R. M. A. PROTEOMICS 2009, 9, 2622.

(14) Hankin, J. A.; Barkley, R. M.; Murphy, R. C. J Am Soc Mass Spectrom 2007, 18, 1646.

(15) Chaurand, P.; Schwartz, S. A.; Billheimer, D.; Xu, B. J.; Crecelius, A.; Caprioli, R. M.

Analytical Chemistry 2004, 76, 1145.

38

(16) Chughtai, K.; Heeren, R. M. A. Chemical Reviews 2010, 110, 3237.

(17) Cillero-Pastor, B.; Heeren, R. M. A. Journal of Proteome Research 2014, 13, 325.

(18) Franck, J.; Arafah, K.; Barnes, A.; Wisztorski, M.; Salzet, M.; Fournier, I. Analytical

Chemistry 2009, 81, 8193.

(19) Fenaille, F.; Tabet, J.-C.; Guy, P. A. Analytical Chemistry 2004, 76, 867.

(20) Lemaire, R.; Desmons, A.; Tabet, J. C.; Day, R.; Salzet, M.; Fournier, I. Journal of

Proteome Research 2007, 6, 1295.

(21) Wu, K. J.; Steding, A.; Becker, C. H. Rapid Communications in Mass Spectrometry 1993, 7,

142.

(22) Yang, J.; Caprioli, R. M. Analytical Chemistry 2013, 85, 2907.

(23) Lemaire, R.; Tabet, J. C.; Ducoroy, P.; Hendra, J. B.; Salzet, M.; Fournier, I. Analytical

Chemistry 2006, 78, 809.

(24) Franck, J.; El Ayed, M.; Wisztorski, M.; Salzet, M.; Fournier, I. Analytical Chemistry 2009,

81, 8305.

(25) MacAleese, L.; Stauber, J.; Heeren, R. M. A. PROTEOMICS 2009, 9, 819.

(26) Yang, J.; Caprioli, R. M. Analytical Chemistry 2011, 83, 5728.

(27) Norris, J. L.; Caprioli, R. M. Chemical Reviews 2013, 113, 2309.

(28) Zavalin, A.; Todd, E. M.; Rawhouser, P. D.; Yang, J.; Norris, J. L.; Caprioli, R. M. Journal

of Mass Spectrometry 2012, 47, 1473.

(29) Jurchen, J. C.; Rubakhin, S. S.; Sweedler, J. V. J Am Soc Mass Spectrom 2005, 16, 1654.

(30) Laiko, V. V.; Baldwin, M. A.; Burlingame, A. L. Analytical Chemistry 2000, 72, 652.

(31) Koestler, M.; Kirsch, D.; Hester, A.; Leisner, A.; Guenther, S.; Spengler, B. Rapid

Communications in Mass Spectrometry 2008, 22, 3275.

39

(32) Guenther, S.; Römpp, A.; Kummer, W.; Spengler, B. International Journal of Mass

Spectrometry 2011, 305, 228.

(33) Heeren, R. M. A.; McDonnell, L. A.; Amstalden, E.; Luxembourg, S. L.; Altelaar, A. F. M.;

Piersma, S. R. Applied Surface Science 2006, 252, 6827.

(34) Vickerman, J. C. In Surface Analysis – the Principal Techniques; John Wiley & Sons, Ltd:

2009, p 113.

(35) Pól, J.; Strohalm, M.; Havlíček, V.; Volný, M. Histochemistry and Cell Biology 2010, 134,

423.

(36) Carado, A.; Passarelli, M. K.; Kozole, J.; Wingate, J. E.; Winograd, N.; Loboda, A. V.

Analytical Chemistry 2008, 80, 7921.

(37) Rabbani, S.; Barber, A. M.; Fletcher, J. S.; Lockyer, N. P.; Vickerman, J. C. Analytical

Chemistry 2011, 83, 3793.

(38) Wu, K. J.; Odom, R. W. Analytical Chemistry 1996, 68, 873.

(39) Altelaar, A. F. M.; van Minnen, J.; Jiménez, C. R.; Heeren, R. M. A.; Piersma, S. R.

Analytical Chemistry 2005, 77, 735.

(40) Altelaar, A. F. M.; Piersma, S. In Mass Spectrometry Imaging; Rubakhin, S. S., Sweedler, J.

V., Eds.; Humana Press: 2010; Vol. 656, p 197.

(41) Altelaar, A. F. M.; Klinkert, I.; Jalink, K.; de Lange, R. P. J.; Adan, R. A. H.; Heeren, R. M.

A.; Piersma, S. R. Analytical Chemistry 2006, 78, 734.

(42) Pacholski, M. L.; Winograd, N. Chemical Reviews 1999, 99, 2977.

(43) Wucher, A.; Tian, H.; Winograd, N. Rapid Communications in Mass Spectrometry 2014,

28, 396.

40

(44) Mochiji, K.; Hashinokuchi, M.; Moritani, K.; Toyoda, N. Rapid Communications in Mass

Spectrometry 2009, 23, 648.

(45) Smith, D. F.; Robinson, E. W.; Tolmachev, A. V.; Heeren, R. M. A.; Paša-Tolić, L.

Analytical Chemistry 2011, 83, 9552.

(46) Kozo, M. J. Anal. Bioanal. Techniques 2011, S2:001.

(47) MacAleese, L.; Duursma, M. C.; Klerk, L. A.; Fisher, G.; Heeren, R. M. A. J Proteomics

2011, 74, 993.

(48) Passarelli, M. K.; Ewing, A. G.; Winograd, N. Analytical Chemistry 2013, 85, 2231.

(49) Harris, G. A.; Galhena, A. S.; Fernandez, F. M. Analytical Chemistry 2011, 83, 4508.

(50) Alberici, R. M.; Simas, R. C.; Sanvido, G. B.; Romao, W.; Lalli, P. M.; Benassi, M.; Cunha,

I. B.; Eberlin, M. N. Anal Bioanal Chem 2010, 398, 265.

(51) Bereman, M. S.; Muddiman, D. C. J Am Soc Mass Spectrom 2007, 18, 1093.

(52) Costa, A. B.; Cooks, R. G. Chemical Communications 2007, 3915.

(53) Costa, A. B.; Cooks, R. G. Chemical Physics Letters 2008, 464, 1.

(54) Takats, Z.; Wiseman, J. M.; Cooks, R. G. Journal of Mass Spectrometry 2005, 40, 1261.

(55) Kebarle, P. Journal of Mass Spectrometry 2000, 35, 804.

(56) Myung, S.; Wiseman, J. M.; Valentine, S. J.; Takáts, Z.; Cooks, R. G.; Clemmer, D. E.

Journal of Physical Chemistry B 2006, 110, 5045.

(57) Wiseman, J. M.; Ifa, D. R.; Song, Q.; Cooks, R. G. Angew Chem Int Ed Engl 2006, 45,

7188.

(58) Ifa, D. R.; Gumaelius, L. M.; Eberlin, L. S.; Manicke, N. E.; Cooks, R. G. Analyst 2007,

132, 461.

41

(59) Campbell, D. I.; Ferreira, C. R.; Eberlin, L. S.; Cooks, R. G. Analytical and Bioanalytical

Chemistry 2012, 404, 389.

(60) Eberlin, L. S.; Dill, A. L.; Golby, A. J.; Ligon, K. L.; Wiseman, J. M.; Cooks, R. G.; Agar,

N. Y. R. Angewandte Chemie International Edition 2010, 49, 5953.

(61) Girod, M.; Shi, Y.; Cheng, J.-X.; Cooks, R. G. Analytical Chemistry 2011, 83, 207.

(62) Eberlin, L. S.; Dill, A. L.; Costa, A. B.; Ifa, D. R.; Cheng, L.; Masterson, T.; Koch, M.;

Ratliff, T. L.; Cooks, R. G. Analytical Chemistry 2010, 82, 3430.

(63) Dill, A. L.; Eberlin, L. S.; Zheng, C.; Costa, A. B.; Ifa, D. R.; Cheng, L.; Masterson, T. A.;

Koch, M. O.; Vitek, O.; Cooks, R. G. Analytical and Bioanalytical Chemistry 2010, 398, 2969.

(64) Wu, C.; Ifa, D. R.; Manicke, N. E.; Cooks, R. G. Analyst 2010, 135, 28.

(65) Douglass, K. A.; Venter, A. R. Journal of Mass Spectrometry 2013, 48, 553.

(66) Shin, Y.-S.; Drolet, B.; Mayer, R.; Dolence, K.; Basile, F. Analytical Chemistry 2007, 79,

3514.

(67) Basile, F.; Kassalainen, G. E.; Ratanathanawongs Williams, S. K. Analytical Chemistry

2005, 77, 3008.

(68) Lanekoff, I.; Heath, B. S.; Liyu, A.; Thomas, M.; Carson, J. P.; Laskin, J. Analytical

Chemistry 2012, 84, 8351.

(69) Lanekoff, I.; Thomas, M.; Laskin, J. Analytical Chemistry 2014, 86, 1872.

(70) Nemes, P.; Woods, A. S.; Vertes, A. Analytical Chemistry 2010, 82, 982.

(71) Kiss, A.; Smith, D. F.; Reschke, B. R.; Powel, M. J.; Heeren, R. M. A. Proteomics 2013, 14,

1283.

(72) Masyuko, R.; Lanni, E. J.; Sweedler, J. V.; Bohn, P. W. Analyst 2013, 138, 1924.

42

(73) Rauser, S.; Marquardt, C.; Balluff, B.; Deininger, S.-O.; Albers, C.; Belau, E.; Hartmer, R.;

Suckau, D.; Specht, K.; Ebert, M. P.; Schmitt, M.; Aubele, M.; Höfler, H.; Walch, A. Journal of

Proteome Research 2010, 9, 1854.

(74) Solé-Domènech, S.; Sjövall, P.; Vukojević, V.; Fernando, R.; Codita, A.; Salve, S.;

Bogdanović, N.; Mohammed, A.; Hammarström, P.; Nilsson, K. P.; LaFerla, F.; Jacob, S.;

Berggren, P.-O.; Giménez-Llort, L.; Schalling, M.; Terenius, L.; Johansson, B. Acta

Neuropathologica 2013, 125, 145.

(75) Sinha, T. K.; Khatib-Shahidi, S.; Yankeelov, T. E.; Mapara, K.; Ehtesham, M.; Cornett, D.

S.; Dawant, B. M.; Caprioli, R. M.; Gore, J. C. Nat Methods 2008, 5, 57.

(76) Li, Z.; Chu, L.-Q.; Sweedler, J. V.; Bohn, P. W. Analytical Chemistry 2010, 82, 2608.

(77) Eberlin, L. S.; Liu, X.; Ferreira, C. R.; Santagata, S.; Agar, N. Y. R.; Cooks, R. G.

Analytical Chemistry 2011, 83, 8366.

(78) Eberlin, L. S.; Ferreira, C. R.; Dill, A. L.; Ifa, D. R.; Cheng, L.; Cooks, R. G. Chembiochem

2011, 12, 2129.

(79) Lanni, E. J.; Masyuko, R. N.; Driscoll, C. M.; Aerts, J. T.; Shrout, J. D.; Bohn, P. W.;

Sweedler, J. V. Analytical Chemistry 2014, 86, 9139.

(80) Korte, A. R.; Lee, Y. J. J Am Soc Mass Spectrom 2013, 24, 949.

(81) Tarolli, J. G.; Jackson, L. M.; Winograd, N. Journal of the American Society for Mass

Spectrometry 2014, 25, 2154.

(82) Van de Plas, R.; Yang, J.; Spraggins, J.; Caprioli, R. M. Nature Methods 2015, 12, 366.

(83) González-Serrano, A. F.; Pirro, V.; Ferreira, C. R.; Oliveri, P.; Eberlin, L. S.; Heinzmann,

J.; Lucas-Hahn, A.; Niemann, H.; Cooks, R. G. Plos One 2013, 8, e74981.

43

(84) Ryan, K. P.; Bald, W. B.; Neumann, K.; Simonsberger, P.; Purse, D. H.; Nicholson, D. N.

Journal of Microscopy 1990, 158, 365.

(85) Stoeckli, M.; Staab, D.; Schweitzer, A. International Journal of Mass Spectrometry 2007,

260, 195.

(86) Kruse, R.; Sweedler, J. J Am Soc Mass Spectrom 2003, 14, 752.

(87) Chaurand, P.; Stoeckli, M.; Caprioli, R. M. Analytical Chemistry 1999, 71, 5263.

(88) Goodwin, R. J.; Nilsson, A.; Borg, D.; Langridge-Smith, P. R.; Harrison, D. J.; Mackay, C.

L.; Iverson, S. L.; Andren, P. E. Journal of Proteomics 2012, 75, 4912.

(89) Casadonte, R.; Caprioli, R. M. Nature Protocols 2011, 6, 1695.

(90) Todd, P. J.; Schaaff, T. G.; Chaurand, P.; Caprioli, R. M. Journal of Mass Spectrometry

2001, 36, 355.

(91) Xu, B.; Caprioli, R.; Sanders, M.; Jensen, R. J Am Soc Mass Spectrom 2002, 13, 1292.

(92) Chaurand, P.; Caprioli, R. M. Electrophoresis 2002, 23, 3125.

(93) Shimma, S.; Furuta, M.; Ichimura, K.; Yoshida, Y.; Setou, M. Surface and Interface

Analysis 2006, 38, 1712.

(94) Grove, K.; Frappier, S.; Caprioli, R. J Am Soc Mass Spectrom 2011, 22, 192.

(95) Bouschen, W.; Schulz, O.; Eikel, D.; Spengler, B. Rapid Communications in Mass

Spectrometry 2010, 24, 355.

(96) Delcorte, A.; Bour, J.; Aubriet, F.; Muller, J. F.; Bertrand, P. Analytical Chemistry 2003, 75,

6875.

(97) Luxembourg, S. L.; Mize, T. H.; McDonnell, L. A.; Heeren, R. M. A. Analytical Chemistry

2004, 76, 5339.

44

(98) Schramm, T.; Hester, A.; Klinkert, I.; Both, J. P.; Heeren, R. M.; Brunelle, A.; Laprevote,

O.; Desbenoit, N.; Robbe, M. F.; Stoeckli, M.; Spengler, B.; Rompp, A. Journal of Proteomics

2012, 75, 5106.

(99) Yang, C.; He, Z.; Yu, W. BMC Bioinformatics 2009, 10, 4.

(100) Smith, D. F.; Kharchenko, A.; Konijnenburg, M.; Klinkert, I.; Pasa-Tolic, L.; Heeren, R.

M. Journal of the American Society for Mass Spectrometry 2012, 23, 1865.

(101) Fonville, J. M.; Carter, C. L.; Pizarro, L.; Steven, R. T.; Palmer, A. D.; Griffiths, R. L.;

Lalor, P. F.; Lindon, J. C.; Nicholson, J. K.; Holmes, E.; Bunch, J. Analytical Chemistry 2013,

85, 1415.

(102) Pirro, V.; Eberlin, L. S.; Oliveri, P.; Cooks, R. G. Analyst 2012, 137, 2374.

(103) Veselkov, K. A.; Mirnezami, R.; Strittmatter, N.; Goldin, R. D.; Kinross, J.; Speller, A. V.

M.; Abramov, T.; Jones, E. A.; Darzi, A.; Holmes, E.; Nicholson, J. K.; Takats, Z. Proceedings

of the National Academy of Sciences of the United States of America 2014, 111, 1216.

(104) Deininger, S. O.; Ebert, M. P.; Futterer, A.; Gerhard, M.; Rocken, C. Journal of Proteome

Research 2008, 7, 5230.

(105) Jones, E. A.; Deininger, S. O.; Hogendoorn, P. C.; Deelder, A. M.; McDonnell, L. A.

Journal of Proteomics 2012, 75, 4962.

(106) Deininger, S.-O.; Cornett, D.; Paape, R.; Becker, M.; Pineau, C.; Rauser, S.; Walch, A.;

Wolski, E. Anal Bioanal Chem 2011, 401, 167.

45

CHAPTER 3

CATEGORIZING CELLS ON THE BASIS OF THEIR CHEMICAL
PROFILES: PROGRESS IN SINGLE-CELL MASS SPECTROMETRY

Notes and Acknowledgements

This chapter was published as an invited perspective in J. Am. Chem. Soc. 2017, DOI:

10.1021/jacs.6b12822, coauthored by T. D. Do, S. S. Rubakhin and J. V. Sweedler. The article is

adapted and reprinted here with permission from the American Chemical Society, copyright

2017. We gratefully acknowledge support from the National Institutes of Health, Award Number

P30 DA018310 from the National Institute on Drug Abuse, U01 MH109062 from the National

Institute of Mental Health, and the National Science Foundation, Award No. CHE 16-067915. T.

J. C. acknowledges support from the NSF Graduate Research Fellowship Program, the

Springborn Fellowship, and the Training Program at Chemistry-Interface with Biology (T32

GM070421).

The chemical differences between individual cells within large cellular populations

provide unique information on organisms’ homeostasis and the development of diseased states.

Even genetically identical cell lineages diverge due to local microenvironments and stochastic

processes. The minute sample volumes and low abundance of some constituents in cells hinder

our understanding of cellular heterogeneity. Although amplification methods facilitate single-cell

genomics and transcriptomics, the characterization of metabolites and proteins remains

challenging both because of the lack of effective amplification approaches and the wide diversity

in cellular constituents. Mass spectrometry has become an enabling technology for the

investigation of individual cellular metabolite profiles with its exquisite sensitivity, large

dynamic range, and ability to characterize hundreds to thousands of compounds. While advances

46

in instrumentation have improved figures of merit, acquiring measurements at high throughput

and sampling from large populations of cells are still not routine. This chapter highlights the

current trends and progress in mass-spectrometry-based analysis of single cells, with a focus on

the technologies that will enable the next generation of single-cell measurements.

Introduction

Cells are the “atomic unit” of life. Inspired by Robert Hooke’s discovery of biological cells in

1665,1 scientists, evoking the philosophical musings of Marcus Aurelius,2 began to ponder: “The

thing, what is it, fundamentally? What is its nature and substance, its reason for being?” These

central questions set the framework for defining cell biology. Much of the early single-cell work

relied on observations of cells with optical microscopy; current research has extended these

investigations to the chemical and molecular regimes. Studies examining complex chemical

questions about cells have detailed, extended, and even challenged established dogma as new

measurements are made.3−7 Much of the research emphasis has shifted from the characterization

of bulk cell populations to that of individual cells, from cell types to subtypes, and from directly

observing macroscopic traits to measuring single-cell genomes, proteomes, and metabolomes.

While all cells share a core set of biochemical compounds, they also display an astonishing

chemical diversity that allows the formation of unicellular communities and complex

multicellular species. With improved analytical capabilities, morphologically homogeneous

populations of cells emerge as unique, with individual characteristics and properties.3

Early successes of single-cell electrophoresis were reported from the 1950s to 1970s. In

1956, Edström8 successfully determined the relative composition of ribose nucleic acids within

large, mammalian neuronal cells by microphoresis with a cellulose fiber. Separation of

hemoglobin from individual erythrocytes using polyacrylamide fiber electrophoresis followed in

47

1965.9 Two-dimensional gel electrophroesis of proteins from single Aplysia californica neurons

was reported in 1977,10 around the time single-cell mass spectrometry (MS) began to develop. In

their pioneering work in the 1970s, Hillenkamp and co-workers11 used laser ablation mass

analysis to generate mass spectra from tissue sections and cultured cells. They ablated several

<5-μm-diameter regions on an inner-ear tissue section with a laser to obtain mass spectra

containing low-molecular-weight ions at each associated laser spot.12 As another example from

the 1970s, Iliffe et al.13 demonstrated single-cell gas chromatography−mass spectrometry of

amino acids in an Aplysia neuron. This period also witnessed the introduction of flow cytometry

and fluorescence-activated cell sorting.14 However, it was not until 1992, when James

Eberwine’s group15 demonstrated that the molecular profile of a single, potentiated CA1 neuron

depends on the abundance of multiple RNAs, that the field of comprehensive single-cell

chemical analysis began to take shape.

After these early seminal reports, single-cell chemical characterization approaches

became more robust and provided greater information, enabling astounding advances in

bioanalytical techniques that have progressively revealed single-cell heterogeneity.

Interdisciplinary developments include single-cell genomics and transcriptomics,16−19

electrochemistry,20−22 single-molecule microscopy and spectroscopy,23−26 nuclear magnetic

resonance,27,28 capillary electrophoresis (CE),29−32 MS,6,33−37 and microfluidics,38,39 to name a

few. Clearly, single-cell “omics” comprises a number of rapidly growing interdisciplinary fields.

We view MS as the major analytical platform for single-cell metabolomics and proteomics

(SCMP) due to its versatility, multiplexed capabilities, and relatively high throughput. Modern

MS instruments provide limits of detection and analyte coverages that are suitable for non-

targeted SCMP. However, effective, high-throughput single-cell sampling remains a major

48

challenge. In fact, details related to sampling often dictate the selection of the most appropriate

MS instrument and experimental protocols to use for a specific investigation.

This chapter describes recent progress in the development of MS-based analytical

techniques and the attendant cell isolation approaches used for SCMP investigations. These

diverse MS-based methodologies are ideally suited for the characterization of heterogeneous

cellular populations through qualitative and quantitative chemical profiling of individual cells.

Setting the Stage: Mass Spectrometry Instrumentation in Single-Cell Research

MS has evolved from a gas-phase, one-dimensional analytical technique into a versatile

approach that provides high mass resolution, analyte coverage, and sensitivity. Several key

advances in instrumentation, combined with innovative methodologies, have set performance

benchmarks for an eclectic range of MS applications (for comprehensive reviews, see refs 40 and

41). Here, we focus on the aspects of MS that make it uniquely suited to single-cell analysis.

The major challenges to single-cell chemical measurements lie in the relatively small

quantity of analytes, the low volume of material, and the chemical diversity of cellular

constituents. SCMP measurements are made possible by improving the sensitivity and analyte

coverage of analytical techniques capable of handling the small-volume (femto-scale) samples

extracted from single cells (e.g., eukaryotic cells are 5−100 μm in diameter; bacterial cells range

from 0.2 to 2 μm). Small molecules, such as metabolites and lipids, are often concentrated within

cells, whereas peptides, proteins, and genetic material may exist at only a few copies. Ionizing

intact biomolecules requires soft MS probes that minimize molecular fragmentation.

A variety of MS methods are suitable for single-cell studies. Matrix-assisted laser

desorption/ionization (MALDI) and electrospray ionization (ESI) are two robust approaches for

49

the ionization of intact peptides and proteins from single cells. Secondary ion mass spectrometry

(SIMS) utilizes a focused, accelerated primary ion beam to sputter sample surfaces and has been

used for sampling from cells for several decades. While traditional primary ion beams induce

molecular fragmentation, newly developed cluster ion sources can desorb and ionize intact

metabolites, lipids, and small peptides. Furthermore, SIMS ionization, when performed below

the static limit, causes negligible damage to sample surfaces, which permits subsequent analyses

of the same samples. Lastly, the speed, sensitivity, and precision of inductively coupled plasma

(ICP) MS is the foundation for mass cytometry, a prominent technique for targeted single-cell

analysis.

The detection limit of an MS-based platform depends on the performance of the mass

analyzer. Many modern instruments offer sufficiently high ion transmission efficiency, a wide

mass range, and high mass accuracy to measure cellular content, with several commercially

available MS platforms that are appropriate for SCMP measurements.4,6,42,43 Among them, the

time-of-flight (TOF) mass analyzer has been widely used in single-cell research because of its

relatively low cost, large m/z detection window, and satisfactory performance for most MS

profiling and imaging experiments, especially when fast scan rates are required. Limits of

detection for TOF-MS can be below an attomole of a peptide while maintaining a mass

resolution above 20 000. Spectra are acquired in tens of microseconds, though several hundred

TOF spectra are frequently summed for a better signal-to-noise ratio (S/N). In “omics” work

requiring high mass accuracy and mass resolution, ion cyclotron resonance (ICR)44,45 and

Orbitrap mass analyzers46 offer superior performance. Based on the duration of the transient

acquired for Fourier transformation, resolution in excess of 100 000 is routine, with an

acquisition frequency of about 1 Hz. In hybrid instruments, high-resolution mass analyzers are

50

coupled to collision cells, enabling selection of precursor ions and exact mass measurements on

their fragments. Multistage fragmentation of ions (MSn) and analysis of fragments are essential

for characterization of unknowns.

Herein, we focus on the strengths, weaknesses, and future prospects of MS-based SCMP

methods. From among a myriad of techniques, these were chosen to provide an overview of the

field because they offer great promise for advancing single-cell research. As stated earlier,

sample properties and preparation strategies oftentimes determine the appropriate MS instrument

to use for a specific application. Thus, while this discussion focuses on the MS technologies, it is

organized by the sampling approaches. In the first method (Figure 3.1A), intact tissue slices can

be directly analyzed using imaging technologies that provide subcellular spatial resolution.

Alternatively, targeted cells can be isolated from tissues (Figure 3.1B) prior to MS

measurements. The success of this approach depends on prior classification of cell types and

subtypes, and on the dexterity of the researcher performing the cell isolation. Finally, single-cell

samples can be prepared by digesting tissues into thousands to millions of single cells (Figure

3.1C). Dissociation alleviates the stringent requirements of the first two methods and creates

additional opportunities for cells to stabilize prior to analysis.

Direct Tissue Analysis: Placing Single Cells into Context

Mass spectrometry imaging (MSI), an information-rich approach for direct tissue analysis,

provides unprecedented details on the chemical composition of tissue and cell specimens.

Typically, an MS image is acquired by sampling a regularly spaced grid on a thin tissue section

or dispersed cell population, collecting a mass spectrum at each spot. MSI is an attractive option

when determining the spatial context of individual cells within tissues is important, or when

single-cell isolation is not feasible. Different MS ionization methods facilitate the successful

51

analysis of numerous biochemical classes, including proteins, small peptides, lipids, and

metabolites (Figure 3.2). MALDI-MSI (Figure 3.2A) is the most common technique used in

tissue imaging. A recent review by Römpp and Spengler47 highlights several successful studies

in which MALDI-MSI provided detailed histological information on phospholipids, drug

molecules, neuropeptides, and tryptic peptides at (or close to) the single-cell level. While 10−35-

μm pixel widths are common, MALDI-MSI at 3 μm spatial resolution was performed on the

lateral ventricle region of a coronal mouse brain section to image phospholipids.47

MSI at nanometer resolution can be achieved by SIMS imaging, which employs a tightly

focused, accelerated primary ion beam for desorption and ionization (Figure 3.2B). SIMS is

suitable for mapping elements, metabolites, small molecules, lipids, and peptide fragments at

subcellular resolution (for a review on the fundamentals of SIMS, see Boxer et al.48). Several

primary ion beams are suitable for biological analyses. High-energy and reactive sources may

provide sufficient ion current to afford submicron spatial resolution but tend to fragment the

chemical bonds of larger molecules.48 Ostrowski et al.49 utilized an indium liquid metal ion beam

focused to 200 nm to examine the plasma membrane of Tetrahymena. The images revealed a

decrease in abundance of phosphatidylcholine and an increase in aminoethylphosphonolipid at

highly curved fusion pores, which are utilized during cell mating. Subsequent to this report, a

variety of cell types have been analyzed by SIMS imaging,50−54 providing subcellular

distributions of lipids, metabolites, and small molecules.

Elemental secondary ions can be characterized by a magnetic sector analyzer equipped

with up to seven detectors set to particular m/z values - a technique referred to as nanoSIMS.

State-of-the-art nanoSIMS is quantitative, can achieve spatial resolution <50 nm, and allows 3D

chemical mapping. NanoSIMS has been applied for subcellular-resolution imaging of metabolic

52

pathways, interacting microorganisms, and microbial communities.34,55−59 The main drawbacks

are relatively low sample throughput and the high cost of isotope-labeled substrates.

Nevertheless, the clever use of isotopes allows nanoSIMS to interrogate the 3D composition of

representative cell subtypes.

Recent developments with polyatomic and cluster ion sources have expanded the

biochemical coverage of SIMS by allowing direct measurement of intact molecules below m/z

2000. The cluster ion sources achieve primary ion beam diameters approaching 1 μm, equivalent

to high-resolution MALDI sources.60 Complementary MS imaging, non-MS analyses,61 and

matrix-enhanced reagents62−64 have been incorporated to improve molecular coverage and

quantitation of SIMS imaging. Aspects of the sample preparation pipeline contribute

significantly to the spatial integrity of measured molecular distributions. SIMS is especially

sensitive to minute amounts of environmental contamination, as analysis is restricted to the

topmost layer of the surface. While primary ion beams may be focused to tens of nanometers,

obtaining such high spatial resolution is still extremely challenging.

Most MSI experiments are non-targeted and label free, but at the pixel widths required

for subcellular imaging, only abundant compounds will be detectible. Imaging mass cytometry

(Figure 3.2C), can improve the limits of detection for specific compounds by using affinity-

based probes to selectively localize target antigens. As a direct analog to immuno-gold staining

used with electron microscopy, imaging mass cytometry couples metal-conjugated antibodies

developed for mass cytometry with a laser or ion beam, allowing antigen localization in tissue

sections and individual cells. Giesen et al.65 used imaging mass cytometry with a high spatial

resolution laser ablation system to localize 32 proteins and posttranslational modifications

(PTMs) at 1 μm resolution to delineate cell heterogeneity in human breast cancer tissue sections.

53

Angelo et al.66 adapted the mass cytometry pipeline to SIMS imaging, effectively improving the

spatial resolution of the method to 50 nm. The chelated metal isotope adducts generated

secondary ions, which were analyzed via a magnetic sector mass spectrometer equipped with

multiple detectors. The technique, referred to as multiplexed ion beam imaging (MIBI), was

successfully applied to human breast cancer samples to reveal tumor immunophenotypes. The

current acquisition rate for MIBI is 2 h for a 0.250 mm2 field-of-view for 10 distinct targets.66

Rastering the desorption probe over large areas, as in MSI, effectively analyzes each cell,

but does so at the expense of throughput and considerable cost in instrument time and assay

sensitivity. At the Nyquist frequency to resolve individual cells, each cell should be sampled at

least four times; this divides the cellular analytes among each pixel and may cause some

compounds to fall below the limit of detection. Still, the drive to acquire higher resolution MS

images has spurred the development of improved ion beam optics, sensitive mass analyzers, and

optimized sample preparation protocols. We expect instrument capabilities will continue to

progress and cellular resolution will become standard in commercial MALDI-MS

instrumentation over the next few decades. A limitation to the continued development of smaller

pixel sizes is the absolute abundance of compounds within a given region. A 1-μm pixel contains

just over 1% of the area of a 10-μm diameter cell, requiring analyte concentrations 2 orders of

magnitude higher to be observable in a single pixel as opposed to the entire cell. Compounding

this effect for MALDI-MS is the compromise between analyte extraction and delocalization

during matrix application.

Imaging mass cytometry circumvents these issues with the application of rare-earth-

labeled antibodies. Each antibody holds several hundred isotope atoms, which amplifies the

signal from a single binding event. The shortcomings of mass cytometry imaging are inherited

54

from affinity labels: the a priori selection of antigens, cost of generating antibodies, and limited

plexity (though not as severe as fluorescence probes). We envision mass cytometry imaging

experiments will be performed on a tissue section following non-targeted MSI acquisition,

similar to work performed with immunohistochemistry. Such an experiment could place the non-

targeted data into the context of more traditional cell subtyping to improve biomarker

identification. As subcellular MSI resolution becomes more widespread, the distinction between

imaging and single-cell analysis will be less pronounced. The capability to examine each cell

within its native environment would revolutionize medical, pharmaceutical, and fundamental

research.

Specific Cell-Type Targeting: Meeting the Needs for Separation and Quantitation

When molecular characterization is the paramount experimental objective, measurements that do

not provide spatial information can be undertaken. Additional analytical dimensions, such as

separation and quantitation, can be coupled with MS to enable information-rich single-cell

measurements. CE is a qualitative and quantitative technique used in analyses of single cells and

subcellular compartments. It features rapid analyte separations based on the electrophoretic

mobility of molecules, including those with the same molecular weights (e.g., diastereomers),

with high resolving power and low sample consumption (a microliter or less).31,32 Many aspects

of CE have greatly progressed in recent decades, and include the development of advanced

separation modes and nanoscale sampling, and the interface of CE with different detection

methods.30,67 While CE is powerful on its own, it is even more productive when coupled with

optical, electrochemical, or MS-based detection. For example, CE-MS provides a label-free and

unique characterization method for investigation of endogenous biomolecules in complex

cellular mixtures (Figure 3.3). Hyphenating CE with other detection modalities, such as laser-

55

induced fluorescence, allows targeted cell analysis based on chemical signatures, but those

approaches are limited to molecules with native fluorescence and those that can be tagged with a

fluorophore via derivatization chemistry.67 Single-cell metabolomics studies using CE-ESI-MS

have demonstrated detection limits for molecules in the low nanomolar range, high-efficiency

separations, and increased analyte coverage. The injection of only 0.1% of the total content from

a single Aplysia californica metacerebral cell (150 μm in diameter) yielded unambiguous

detection of more than 100 compounds.68 Preconcentration methods further improve analyte

coverage, especially when initial concentrations of extracted analytes are below the detection

limits of MS systems.30,42 Improvements in sheathless CE-MS interfaces have allowed

investigation of complex bioanalytical problems, as in the characterization of protein isoforms

and combinatorial PTMs reported by Yates and co-workers.69,70 Recent examples from Dovichi71

and Nemes72,73 of the developing Xenopus laevis embryo demonstrate the great promise for CE-

MS-based single-cell proteomics.

Though capable of sensitive, quantitative analysis, a limitation of CE is its low

throughput. Even a state-of-the-art CE platform operates at a rate of less than one cell per

minute.74,75 Typical separations, performed in longer capillaries, can last between 5 and 60 min

to achieve optimal resolution; however, chip-based CE devices do increase throughput.

Moreover, the duration of a set of experiments may be constrained by the endurance of intact

cells within a physiological solution prior to analysis (a few hours), which ultimately limits the

number of cells that can be assayed from one population.74 Further constraining throughput, each

sample and target analyte requires an optimal set of CE conditions, including background

electrolyte, chiral selectors, pH, separation voltage, and temperature, among others.

56

To increase throughput, researchers have focused on the development of automated cell-

handling modules that are compatible with a wide range of background electrolytes and analyte

classes. CE columns can be embedded in, or coupled with, microfluidic devices that permit

fluorescence-activated cell sorting (FACS) and automatic cell trapping, culturing, sorting, and

lysis prior to CE separation. Higher peak capacities are achieved by combining multiple capillary

columns in series to provide complementary separation dimensions. Examples include the

velocity gap mode, which manipulates the electrical fields on connected capillaries with

conductivity detection at the joint,76 and 2D-CE, which employs orthogonal separation

conditions in connected capillaries.77

Recent advances in CE have overcome technical hurdles for the detection and separation

of chiral molecules, such as D/L-amino acids and peptide diastereomers,78 at a resolution and

sensitivity that is currently inaccessible by other label-free, MS-coupled mobility spectrometry or

spectroscopy approaches.79 Furthermore, these molecules are separated non-destructively with

minimal loss, which is another advantage of CE over MS-based separation methods. In addition,

performing the separation post-ionization can introduce additional complexity due to the

formation of protomers (molecular isomers that differ only in the site of protonation).80

However, many conditions used in chiral separations have yet to be made compatible with ESI-

MS, awaiting future optimization.

Owing to its superb sensitivity and prospects for high throughput, CE-MS has become a

method of choice for separation-based, quantitative analyses of single cells. Compared to other

single-cell techniques, CE-MS applications that directly introduce cells into the capillary for

lysis and separation reduce the time between cell rupture and analyte characterization. Such rapid

analyses limit unwanted side reactions and degradation that lead to non-specific profile

57

variations. The future of high-throughput CE-MS offers a unique approach to classify cell types

and identify new subtypes, which will provide complementary profiles to other methods.

Dissociated and Cultured Cell Samples: Searching for Cell Subtypes and Rare Cells

In the final approach discussed here, cells are either separated from tissue sections by

dissociation or cultured. Once in solution, cells may be labeled for mass cytometry, or deposited

onto a surface for single-cell profiling. The native connections between cells in the tissue are

dismantled and extraction is more limited than with specific cell isolation, but dissociated cell

measurement approaches can have a higher per-cell throughput than the MS methods described

above.

Mass cytometry is one of the most versatile MS-based techniques for multiplexing single-

cell measurements on an “omics” scale. As briefly mentioned when discussing MSI, mass

cytometry operates much like flow cytometry, in which fluorescently labeled markers, including

antibodies, are used to characterize the presence of a panel of antigens in large populations of

individual cells. However, instead of fluorescence labels, mass cytometry uses rare earth metal

isotope tags with high plexity (Figure 3.4A). The binding of the conjugates to molecular targets

is quantified with an inductively coupled plasma (ICP)-MS instrument. The ICP torch

completely consumes the cells while atomizing sample droplets, which provides low background

and elimination of matrix effects.81 The throughput of mass cytometry is currently limited by the

lifetime of analytes in the ion cloud (∼300 μs),82 which allows measurement of up to 1000 cells

per second.83 This throughput is several-fold higher than that offered by imaging mass cytometry

but comes at the expense of information on tissue organization. Most mass cytometers are

coupled to TOF mass analyzers (e.g., the commercialized CyTOF) as they are capable of rapid

acquisition times (13 μs per scan) and allow 20−30 scans per cell.84 Additional DNA stains are

58

used to discriminate cellular events from debris and distinguish single cells from doublets or

aggregates of cells. Metal calibration beads are also spiked into each sample to serve as internal

standards.85 Cell-based multiplexing methods, such as mass-tag cell barcoding,86,87 can be

utilized to reduce antibody consumption, acquisition time, and eliminate cell-to-antibody ratio-

dependent effects.81,82 For example, a binary barcoding can utilize n rare metal isotopes to

uniquely label 2n individual cell samples before they are mixed, stained, and analyzed in one

batch.88 Mass cytometry has assisted the discovery of complex aspects of single-cell chemistry,

including different stages of the cell cycle, phenotypes and signaling responses, cytokine

expression, and cell viability.82,88−92

Cell surface markers, the degree of expression, and PTM events can be used to identify

cellular phenotypes and distinguish cell populations. For example, a single-cell mass cytometry

study using 31 distinct transition and rare earth metal isotopes to label two antibody staining

panels revealed 24 distinct immune cell populations in bone marrow during hematopoiesis.89

Currently, mass cytometry surpasses other MS-based single-cell techniques in the total number

of analyzed cells per experiment. Newell et al.93 combined mass cytometry with combinatorial

peptide-major histocompatibility complex staining to analyze samples of 84 million T-cells for

distinct phenotypes and their ability to recognize viral epitopes.

A technical inefficiency of mass cytometry lies in the nebulization of single cells, which

stochastically loses approximately 70% of the cells in the process of forming droplets.81

Although this loss does not inherently introduce a significant sampling bias, improvements in

cell introduction efficiency would reduce cell consumption. The sensitivity of mass cytometry is

greatly affected by the loading of metal atoms on each antibody. The metal chelating chemistry

facilitates a maximum of ∼100 metal reporter ions per antibody molecule.81 Mass cytometry can

59

seamlessly measure 58 or more different parameters simultaneously, though this requires a priori

knowledge about the cells and well-defined molecular targets with specific antibodies. The

limited number of commercially available rare metal isotopes also limits the number of antigens

that can be measured simultaneously. Currently, 37 stable lanthanide isotopes that are compatible

with metal chelating chemistry are available at sufficient purity.82 While antibodies can

recognize a wide range of antigens, mass cytometry is less effective for smaller molecules, such

as metabolites and peptides, which may not be accessible to antibodies or cross-linked by

fixation. These molecules can be specific biomarkers for disease-transformed cells.94 Therefore,

the complexity of multidimensional single-cell analysis is another area worth improving,95

including new affinity agents that can bind small-molecule metabolites.

Mass cytometry is poised to extend the capabilities of many immunofluorescence

methods beyond the limitation of fluorescence spectral overlap. In a clinical setting, the rapid

and accurate quantification of numerous biomarkers can facilitate deeper subtyping of tissue

sections or biopsy samples. Though mass cytometry requires preselection of antigens, it should

continue to find application in targeted cell population profiling. While mass cytometry can

profile cellular states at given points in time with high throughput and plexity, an important

caveat is that cells are destroyed by the ICP torch, preventing follow-up characterization of

selected cellular subtypes.

A distinct non-targeted approach involves dispersing cells onto sample surfaces where

they are analyzed with an MS microprobe. In contrast to MSI, the contents of one cell are

completely sampled during a single analysis. Manual placement of cells is a low-throughput

implementation of this type of handling.43 A higher throughput method is to disperse cells

sufficiently such that no neighbors are within the microprobe region. With the correct choice of

60

seeding density, separated cells greatly relax instrumental sampling requirements and allow more

stringent extraction procedures, further increasing analyte sensitivity. As described below, two

methods of dispersed cell sampling have been developed recently for MALDI-MS analysis of

single cells, one based on constrained cell positions and the other on randomly seeding the cells.

The first cell-dispersed approach involves constraining the cell positions. A variety of

microfluidic constructs are available for trapping single cells for subsequent high-throughput

analysis. Microdroplet arrays can systematically trap single cells in microwells, allowing

subsequent profiling by ESI-MS.96 The sensitivity of the trapping depends on the ratio of the

diameters of the cell and the microwell, limiting the sizes of analyzed cells. The current

implementation also requires manual sampling of each well. For high throughput sampling,

Zenobi and co-workers97 developed an omniphobic, patterned surface specifically for

constraining microdroplets of MALDI matrix solution, called microarrays for MS (MAMS)

(Figure 3.4B). By depositing cells into these microwells, their contents remain isolated due to the

omniphobic microarray walls. This isolation allows the application of more rigorous extraction

methods, such as shock freezing,98 as analytes neither severely dilute nor become contaminated

by nearby cells. Cell deposition in MAMS is achieved by a variety of methods, including

piezoelectric printing of cellular solutions99 or submerging the surface in a cell solution.97,100

Each well contains a variable number of cells described by a Poisson distribution.98 As such,

with a cell concentration generating the maximum probability of wells containing one cell

(average, λ = 1), approximately 37% of wells are occupied by one cell. Another 37% of the wells

are empty, with the remaining 26% containing two or more cells. Orthogonal methods, such as

optical microscopy, can enumerate the cell counts in each well. Once cell number and positions

are determined, cellular analytes are extracted and samples are coated with MALDI matrix. The

61

contents are analyzed by simply collecting spectra at each predetermined point in a regular array.

Unlike subcellular MSI, the required positional accuracy and laser spot size are easily achieved

by most commercial instruments.

Using this methodology, the metabolic profiles of several single-celled microorganisms

were investigated, showing quantities of nucleoside di- and triphosphates, as well as lipids

unique for each species, with concentrations proportional to the number of cells within a given

well; Raman spectra were also obtained and correlated with a given microwell.97 Further

experiments correlated fluorescence and Raman microspectroscopy acquired from the freshwater

algae Haematococcus pluvialis and combined the images with MS measurements to discriminate

between encystment stages.100 In addition, using Saccharomyces cerevisiae as a model organism,

Zenobi and coworkers98 investigated the metabolic consequences of environmental and genetic

perturbations on several metabolites, recapitulating population-level changes and discriminating

genotypic differences.

Advantages of MAMS include the capabilities to thoroughly extract analytes from

deposited cells and ensure each sample is isolated from nearby cells, limiting cross

contamination. However, the efficiency for random seeding is low (only 37% of wells contain

single cells) and the spatial constraints of the microwells limit investigations of long-range

cellular outgrowth and changes related to cell-to-cell signaling. Theoretically, MAMS could

facilitate studies of interactions between small cell populations. With conventional random

seeding or printing, the likelihood of two cells from each of two populations occupying the same

well is 0.372 = 14%; however, the cases when a well is occupied by more than one cell of each

type are also interesting. This would allow investigations into the competition between malignant

and immune cells for small populations of each, generating a large, random assortment of

62

populations on a single device. FACS could also be used as an enabling, selective cell deposition

technology coupled to MAMS. Precise seeding of specific, preselected phenotypes could

construct complex cell distributions to allow full utilization of each MAMS device.

An alternative method for high throughput analysis of isolated, individual cells involves

randomly dispersing them on a surface, and using optical microscopy to precisely locate the

dispersed cells on a transparent indium tin oxide-coated glass slide.101 Suspensions of cells are

deposited onto conductive surfaces and the cells allowed to attach to the substrate. High-contrast,

fluorescence images of a nuclear stain deliver a simple data set to locate individual cells.

Registration of the microscopy image with the mass spectrometer coordinate system provides the

location of each selected cell. Once MALDI matrix is applied, the laser is positioned over each

cell in turn and a spectrum acquired (Figure 3.4C). In the initial report, microscopy-guided

single-cell MALDI-MS was coupled to principal component analysis-based outlier detection to

perform an unsupervised analysis in a population of dispersed pituitary cells. Several peptides

were detected at high S/N from individual pituitary cells, including arginine vasopressin,

oxytocin, and α-melanocyte-stimulating hormone. Additional MS profiling of cells from

pancreatic islets of Langerhans demonstrated single-cell sensitivity to canonical peptide

hormones, including intact insulin, glucagon, pancreatic polypeptide, and somatostatin. In a

follow-up study on single islet cells,102 the levels of peptide hormones were used to classify cells

into traditional histological classes, showing good agreement with previous reports. Furthermore,

cell-type-specific peptide heterogeneity was compared between the dorsal- and ventral-derived

islets, with results indicating an increased abundance of processed pancreatic polypeptide within

ventral-derived γ-cells. The peptides were not previously observed endogenously, and the

63

anatomical heterogeneity in peptide processing would be difficult to detect with bulk

measurements.

Successful analyte profiling using microscopy-guided MALDI-MS largely depends on

accurate cell positioning under the laser probe, requiring the ability to locate a 10-μm cell over a

∼20 cm2 microscope slide. Assuming a random seeding, the probability of individual cells being

sufficiently far apart is determined by a spatial Poisson point process, which has the same form

as a Poisson distribution. Again, at ideal conditions, only 37% of the seeded cells will be

sufficiently spaced for analysis, but there is a relatively large area available for seeding. As such,

the total number of cells analyzed in a given footprint will be larger than with reported examples

of MAMS. Furthermore, long-range interactions should be easier to observe, as there is no

physical barrier between cells. Coupling with FACS may be more difficult, as the cells in

droplets impacting the surface could migrate without being confined in omniphobic wells.

While both high throughput studies described above used MALDI-MS, these

methodologies could be adapted to work with other microprobe-based MS analyses such as

DESI, SIMS, or liquid microjunction probes.103

An exciting aspect of dispersed-cell methods is the ease with which they can be coupled

with complementary analytical methods, e.g., combining with optical microscopy to count the

number of cells in each MAMS well or locate cell bodies. A clear extension of the methodology

is the use of exogenous or endogenous probes or reporters to provide pre-MS subtyping of cells.

For example, transfection of cells with fluorescent probes could simplify rare cell detection

within a population. Any spatially localized analytical technique capable of sampling from a

surface is readily adapted to provide additional information on analyzed cells. Vibrational

microscopy, a nondestructive profiling method, could be used to generate further information on

64

cellular contents. Additional MS experiments are also possible, if performed in the correct order.

Unlike MSI, the data sets are easily combined based on the unique cell location, greatly

simplifying data fusion. For sample preparation, we expect to see FACS utilized in more

powerful and efficient seeding setups. Precise deflection of cell-containing droplets would allow

placement of suitable numbers of cells at evenly spaced intervals. Combined with appropriate

molecular biology and pharmacology tools, interactions between different cell types could be

assayed, as described earlier.

Finally, an intriguing aspect of MALDI-MS is that only a small fraction of the cell is

consumed for analysis.104 Material remaining on the substrate is available for subsequent, follow

up analysis by tandem MS or other methods on the same cell. The prospects are especially

exciting for the integration of MALDI-MS-based profiling with orthogonal analytical and

biochemical approaches. High-throughput MALDI-MS could provide a non-targeted, label-free

profile of thousands of cells within a population. Utilizing multidimensional analysis on such a

data set would facilitate the selection of individual cells that are representative of a given

subclass. Focusing subsequent assays on the characteristic cells would reduce the number of

analyses required to practically characterize an entire population. For instance, preselecting cells

with MALDI-MS would greatly enhance the effective throughput of CE or single-cell

transcriptomics by targeting cells that provide the most information on the population

composition.

Outlook and Concluding Remarks

Mass spectrometry is an information-rich analytical technology, positioned at the forefront of

single-cell metabolomics, peptidomics, and proteomics. Progress thus far has been impressive.

Current-generation instruments display exquisite sensitivity for the multiplexed, label-free

65

measurement of hundreds of biomolecules from cellular samples. With careful sample

preparation, analyte separation, and/or labeling, relative and absolute quantitative MS analysis of

single cells becomes feasible. Issues with single-cell investigations arise from sampling, during

the transition from organism to the instrument. Manual sample manipulation is suitable for

detailed analysis of a small subset of cells;4,105 however, this sampling approach is less

applicable for the characterization of large-scale cellular heterogeneity in complex structures.

Automatic profiling of an entire tissue section by MSI can collect spectra from thousands of

cells, but has not solved issues related to matrix effects and subdividing cell contents. In contrast,

representative populations of dispersed cells may be seeded on surfaces for microprobe-based

MS analysis. By physically separating cells, MALDI matrix application can be optimized to

improve analyte extraction and limit matrix effects from nearby cells, allowing the identification

of rare individuals within a population. Sample throughput is enhanced over MSI, albeit at the

cost of locational context within the native tissue. Each method offers a unique set of

performance characteristics that are suitable to approach a given biological question.

Beyond more advanced instrumentation, a key shortcoming to the methods discussed

herein is their limited utilization outside of MS research groups. Mass cytometry is gaining

momentum as an alternative to flow cytometry by providing rapid, quantitative assessments of

hundreds of antigens at a rate of thousands of cells per hour. These targeted methods, together

with label-free MS analyses, greatly enhance the capabilities of SCMP-MS for discovery and

hypothesis-driven investigations. Wider acceptance of single-cell MS technologies as practical

analytical methods will broaden the breadth of questions addressed by SCMP-MS and facilitate

its further integration with more routine genomics and transcriptomics approaches. Streamlining

66

the workflows and simplifying data interpretation will encourage further acceptance by a wider

multidisciplinary user base.

Willard Quine once said, “Physics investigates the essential nature of the world, and

biology describes a local bump.”106 The advent of single-cell MS created an opportunity to

explore changes in “local bumps” at a finer resolution than ever before. Through

interdisciplinary investigations, we are beginning to discover the low-abundance cellular

minorities in homogeneously bulk populations of cells that may cause drastic phenotypic

changes. Sampling techniques that provide high throughput, high spatial and/or temporal

resolution, and broad molecular coverage enable the determination of individual cellular

properties while discriminating between unusual cell profiles and statistical noise. The body of

work produced in SCMP, aligned with results gathered by transcriptomics and genomics, allows

detailed understanding of changes occurring in individual cells during normal and pathological

states, with promising applications in medicine.

Figures

Figure 3
may be s
(B) Spec
may be d

3.1. Overvie
sectioned and
ific large ce

dissociated o

w of the sin
d mounted o
lls can be is

or cultured in

ngle-cell sam
on a suitable
olated from

n growth med

67

mpling meth
e surface for

tissue for su
dium.

hods covered
imaging nat

ubsequent an

d in this ch
tive distribu
nalysis. (C)

hapter. (A) T
utions of ana

Cells from t

Tissue
alytes.
tissue

Figure 3
required
spatial re
lipids and
primary i
compoun
with reso

3.2. Several
for MALDI

esolution is
d peptides a
ion beams bu
nds. (C) Ima
olutions simi

MSI metho
I-MSI and m
poorer than

are detectable
ut is limited

aging mass c
ilar to SIMS

ods obtain si
must be optim

with SIMS
e. (B) SIMS

d in analyte c
cytometry is
.

68

ingle-cell re
mized to ma
, MALDI io

S provides th
coverage, typ
s capable of

esolution. (A
aintain nativ
onization is
he highest sp
pically detec
targeted loc

A) Applicatio
e spatial dis
much softer

patial resolut
cting fragme
calization of

on of a matr
stributions. W
r, such that i
tion with foc

ent ions and
f protein ant

rix is
While
intact
cused
small
tigens

Figure 3
endogeno
manually
or lysed,

3.3. Illustrati
ous molecul
y or (B) chem
and its cont

ion of an ex
les in single
mically label
tent is subjec

xperimental w
e cells. Spe
led and sorte
cted to CE-M

69

workflow ut
cific cell ty
ed by microf

MS separatio

tilizing CE-M
ypes are eith
fluidic devic
on and quant

MS to separ
her (A) isol
ces. Each cel
titation.

rate and qua
lated from t
ll is homogen

antify
tissue
nized

Figure 3
SCMP-M
quantitat
and data
cells can
randomly

3.4. Analysi
MS method.

ively measu
can be visu
also be atta

y seeded and

s of dissoci
. (A) Mass

ure up to hun
ualized with
ched to surf

d targeted by

iated or cult
s cytometry
ndreds of pre
traditional c

faces for MA
y (C) opticall

70

tured cells p
y uses rare
eselected ant
cytometry pl

ALDI-MS pr
ly guided pr

provides the
e earth me
tigens. The c
lots or multi
rofiling with
rofiling.

e highest th
tal-labeled
current throu
ivariate anal

hin (B) micro

hroughput of
affinity tag

ughput is ∼1
lysis. Dissoc
oarrays for M

f any
gs to
1 kHz
ciated
MS or

71

References

(1) Hooke, R. Micrographia: or, Some physiological descriptions of minute bodies made by

magnifying glasses. With observations and inquiries thereupon; J. Martyn and J. Allestry:

London, 1665.

(2) Aurelius, M. Meditations: A new translation; Modern Library: New York, 2002.

(3) Ackermann, M. Nat. Rev. Microbiol. 2015, 13, 497−508.

(4) Nemes, P.; Rubakhin, S. S.; Aerts, J. T.; Sweedler, J. V. Nat. Protoc. 2013, 8, 783−799.

(5) Zenobi, R. Science 2013, 342, 1243259.

(6) Rubakhin, S. S.; Romanova, E. V.; Nemes, P.; Sweedler, J. V. Nat. Methods 2011, 8, S20−

29.

(7) Chen, X.; Love, J. C.; Navin, N. E.; Pachter, L.; Stubbington, M. J.; Svensson, V.; Sweedler,

J. V.; Teichmann, S. A. Nat. Biotechnol. 2016, 34, 1111−1118.

(8) Edström, J.-E. Biochim. Biophys. Acta 1956, 22, 378−388.

(9) Matioli, G. T.; Niewisch, H. B. Science 1965, 150, 1824−1826.

(10) Ruchel, R. J. Chromatogr. 1977, 132, 451−468.

(11) Kupka, K. D.; Schropp, W. W.; Schiller, C.; Hillenkamp, F. Scan. Electron Microsc. 1980,

635−640.

(12) Meyer zum Gottesberge-Orsulakova, A.; Kaufmann, R. Scan. Electron Microsc. 1985, 393−

405.

(13) Iliffe, T. M.; McAdoo, D. J.; Beyer, C. B.; Haber, B. J. Neurochem. 1977, 28, 1037−1042.

72

(14) Herzenberg, L. A.; Parks, D.; Sahaf, B.; Perez, O.; Roederer, M.; Herzenberg, L. A. Clin.

Chem. 2002, 48, 1819−1827.

(15) Mackler, S. A.; Brooks, B. P.; Eberwine, J. H. Neuron 1992, 9, 539−548.

(16) Shapiro, E.; Biezuner, T.; Linnarsson, S. Nat. Rev. Genet. 2013, 14, 618−630.

(17) Wang, Y.; Navin, N. E. Mol. Cell 2015, 58, 598−609.

(18) Saliba, A. E.; Westermann, A. J.; Gorski, S. A.; Vogel, J. Nucleic Acids Res. 2014, 42, 8845

−8860.

(19) Eberwine, J.; Sul, J. Y.; Bartfai, T.; Kim, J. Nat. Methods 2014, 11, 25−27.

(20) Clausmeyer, J.; Schuhmann, W. TrAC, Trends Anal. Chem. 2016, 79, 46−59.

(21) Li, X.; Dunevall, J.; Ewing, A. G. Acc. Chem. Res. 2016, 49, 2347−2354.

(22) Kang, M.; Momotenko, D.; Page, A.; Perry, D.; Unwin, P. R. Langmuir 2016, 32, 7993−

8008.

(23) Lord, S. J.; Lee, H. L.; Moerner, W. E. Anal. Chem. 2010, 82, 2192−2203.

(24) Xia, T.; Li, N.; Fang, X. Annu. Rev. Phys. Chem. 2013, 64, 459−480.

(25) Konig, I.; Zarrine-Afsar, A.; Aznauryan, M.; Soranno, A.; Wunderlich, B.; Dingfelder, F.;

Stuber, J. C.; Pluckthun, A.; Nettels, D.; Schuler, B. Nat. Methods 2015, 12, 773−779.

(26) Wang, X.; Li, X.; Deng, X.; Luu, D. T.; Maurel, C.; Lin, J. Nat. Protoc. 2015, 10, 2054−

2063.

(27) Rubakhin, S. S.; Lanni, E. J.; Sweedler, J. V. Curr. Opin. Biotechnol. 2013, 24, 95−104.

(28) Webb, A. Anal. Chem. 2012, 84, 9−16.

73

(29) Huang, W.-H.; Ai, F.; Wang, Z.-L.; Cheng, J.-K. J. Chromatogr. B: Anal. Technol. Biomed.

Life Sci. 2008, 866, 104−122.

(30) Frost, N. W.; Jing, M.; Bowser, M. T. Anal. Chem. 2010, 82, 4682−4698.

(31) Kleparnik, K. Electrophoresis 2013, 34, 70−85.

(32) Zhong, X.; Zhang, Z.; Jiang, S.; Li, L. Electrophoresis 2014, 35, 1214−1225.

(33) Passarelli, M. K.; Ewing, A. G. Curr. Opin. Chem. Biol. 2013, 17, 854−859.

(34) Watrous, J. D.; Dorrestein, P. C. Nat. Rev. Microbiol. 2011, 9, 683−694.

(35) Musat, N.; Foster, R.; Vagner, T.; Adam, B.; Kuypers, M. M. FEMS Microbiol. Rev. 2012,

36, 486−511.

(36) Ong, T. H.; Tillmaand, E. G.; Makurath, M.; Rubakhin, S. S.; Sweedler, J. V. Biochim.

Biophys. Acta, Proteins Proteomics 2015, 1854, 732−740. (37) Spengler, B. Anal. Chem. 2015,

87, 64−82.

(38) Sanchez-Freire, V.; Ebert, A. D.; Kalisky, T.; Quake, S. R.; Wu, J. C. Nat. Protoc. 2012, 7,

829−838.

(39) Yin, H.; Marshall, D. Curr. Opin. Biotechnol. 2012, 23, 110−119.

(40) Glish, G. L.; Vachet, R. W. Nat. Rev. Drug Discovery 2003, 2, 140−150.

(41) Maher, S.; Jjunju, F. P. M.; Taylor, S. Rev. Mod. Phys. 2015, 87, 113−135.

(42) Liu, J. X.; Aerts, J. T.; Rubakhin, S. S.; Zhang, X. X.; Sweedler, J. V. Analyst 2014, 139,

5835−5842.

(43) Rubakhin, S. S.; Garden, R. W.; Fuller, R. R.; Sweedler, J. V. Nat. Biotechnol. 2000, 18,

172−175.

74

(44) Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Mass Spectrom. Rev. 1998, 17, 1−35.

(45) Nikolaev, E. N.; Kostyukevich, Y. I.; Vladimirov, G. N. Mass Spectrom. Rev. 2016, 35,

219−258.

(46) Eliuk, S.; Makarov, A. Annu. Rev. Anal. Chem. 2015, 8, 61−80.

(47) Römpp, A.; Spengler, B. Histochem. Cell Biol. 2013, 139, 759−783.

(48) Boxer, S. G.; Kraft, M. L.; Weber, P. K. Annu. Rev. Biophys. 2009, 38, 53−74.

(49) Ostrowski, S. G.; Van Bell, C. T.; Winograd, N.; Ewing, A. G. Science 2004, 305, 71−73.

(50) Fletcher, J. S.; Rabbani, S.; Henderson, A.; Blenkinsopp, P.; Thompson, S. P.; Lockyer, N.

P.; Vickerman, J. C. Anal. Chem. 2008, 80, 9058−9064.

(51) Passarelli, M. K.; Ewing, A. G.; Winograd, N. Anal. Chem. 2013, 85, 2231−2238.

(52) Passarelli, M. K.; Winograd, N. Surf. Interface Anal. 2011, 43, 269−271.

(53) Tucker, K. R.; Li, Z.; Rubakhin, S. S.; Sweedler, J. V. J. Am. Soc. Mass Spectrom. 2012, 23,

1931−1938.

(54) Kraft, M. L.; Klitzing, H. A. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2014, 1841,

1108−1119.

(55) Popa, R.; Weber, P. K.; Pett-Ridge, J.; Finzi, J. A.; Fallon, S. J.; Hutcheon, I. D.; Nealson,

K. H.; Capone, D. G. ISME J. 2007, 1, 354−360.

(56) Musat, N.; Halm, H.; Winterholler, B.; Hoppe, P.; Peduzzi, S.; Hillion, F.; Horreard, F.;

Amann, R.; Jorgensen, B. B.; Kuypers, M. M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105,

17861−17866.

(57) Ghosal, S.; Fallon, S. J.; Leighton, T. J.; Wheeler, K. E.; Kristo, M. J.; Hutcheon, I. D.;

Weber, P. K. Anal. Chem. 2008, 80, 5986−5992.

75

(58) Finzi-Hart, J. A.; Pett-Ridge, J.; Weber, P. K.; Popa, R.; Fallon, S. J.; Gunderson, T.;

Hutcheon, I. D.; Nealson, K. H.; Capone, D. G. Proc. Natl. Acad. Sci. U. S. A. 2009, 106,

9931−9931.

(59) Liu, W. T.; Yang, Y. L.; Xu, Y. Q.; Lamsa, A.; Haste, N. M.; Yang, J. Y.; Ng, J.; Gonzalez,

D.; Ellermeier, C. D.; Straight, P. D.; Pevzner, P. A.; Pogliano, J.; Nizet, V.; Pogliano, K.;

Dorrestein, P. C. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 16286−16290.

(60) Angerer, T. B.; Blenkinsopp, P.; Fletcher, J. S. Int. J. Mass Spectrom. 2015, 377, 591−598.

(61) Lanni, E. J.; Masyuko, R. N.; Driscoll, C. M.; Dunham, S. J.; Shrout, J. D.; Bohn, P. W.;

Sweedler, J. V. Anal. Chem. 2014, 86, 10885−10891.

(62) Dertinger, J. J.; Walker, A. V. J. Am. Soc. Mass Spectrom. 2013, 24, 348−355.

(63) Fitzgerald, J. J.; Kunnath, P.; Walker, A. V. Anal. Chem. 2010, 82, 4413−4419.

(64) Svara, F. N.; Kiss, A.; Jaskolla, T. W.; Karas, M.; Heeren, R. M. Anal. Chem. 2011, 83,

8308−8313.

(65) Giesen, C.; Wang, H. A.; Schapiro, D.; Zivanovic, N.; Jacobs, A.; Hattendorf, B.; Schuffler,

P. J.; Grolimund, D.; Buhmann, J. M.; Brandt, S.; Varga, Z.; Wild, P. J.; Gunther, D.;

Bodenmiller, B. Nat. Methods 2014, 11, 417−422.

(66) Angelo, M.; Bendall, S. C.; Finck, R.; Hale, M. B.; Hitzman, C.; Borowsky, A. D.;

Levenson, R. M.; Lowe, J. B.; Liu, S. D.; Zhao, S.; Natkunam, Y.; Nolan, G. P. Nat. Med. 2014,

20, 436−442.

(67) Lin, Y.; Trouillon, R.; Safina, G.; Ewing, A. G. Anal. Chem. 2011, 83, 4369−4392.

(68) Lapainis, T.; Rubakhin, S. S.; Sweedler, J. V. Anal. Chem. 2009, 81, 5858−5864.

76

(69) Han, X.; Wang, Y.; Aslanian, A.; Bern, M.; Lavallee-Adam, M.; Yates, J. R., 3rd Anal.

Chem. 2014, 86, 11006−11012.

(70) Wang, Y.; Fonslow, B. R.; Wong, C. C.; Nakorchevsky, A.; Yates, J. R., 3rd Anal. Chem.

2012, 84, 8505−8513.

(71) Sun, L.; Dubiak, K. M.; Peuchen, E. H.; Zhang, Z.; Zhu, G.; Huber, P. W.; Dovichi, N. J.

Anal. Chem. 2016, 88, 6653−6657.

(72) Lombard-Banek, C.; Moody, S. A.; Nemes, P. Angew. Chem., Int. Ed. 2016, 55, 2454−2458.

(73) Lombard-Banek, C.; Reddy, S.; Moody, S. A.; Nemes, P. Mol. Cell. Proteomics 2016, 15,

2756−2768.

(74) Chen, S.; Lillard, S. J. Anal. Chem. 2001, 73, 111−118.

(75) Marc, P. J.; Sims, C. E.; Allbritton, N. L. Anal. Chem. 2007, 79, 9054−9059.

(76) Li, X.; Li, Y.; Zhao, L.; Shen, J.; Zhang, Y.; Bao, J. J. Electrophoresis 2014, 35, 2778−

2784.

(77) Kohl, F. J.; Sanchez-Hernandez, L.; Neususs, C. Electrophoresis 2015, 36, 144−158.

(78) Bai, L.; Sheeley, S.; Sweedler, J. V. Bioanal. Rev. 2009, 1, 7−24.

(79) Domalain, V.; Hubert-Roux, M.; Tognetti, V.; Joubert, L.; Lange, C. M.; Rouden, J.;

Afonso, C. Chem. Sci. 2014, 5, 3234−3239.

(80) Warnke, S.; Seo, J.; Boschmans, J.; Sobott, F.; Scrivens, J. H.; Bleiholder, C.; Bowers, M.

T.; Gewinner, S.; Schollkopf, W.; Pagel, K.; von Helden, G. J. Am. Chem. Soc. 2015, 137, 4236−

4242.

77

(81) Bendall, S. C.; Nolan, G. P.; Roederer, M.; Chattopadhyay, P. K. Trends Immunol. 2012,

33, 323−332.

(82) Bjornson, Z. B.; Nolan, G. P.; Fantl, W. J. Curr. Opin. Immunol. 2013, 25, 484−494.

(83) Bandura, D. R.; Baranov, V. I.; Ornatsky, O. I.; Antonov, A.; Kinach, R.; Lou, X.; Pavlov,

S.; Vorobiev, S.; Dick, J. E.; Tanner, S. D. Anal. Chem. 2009, 81, 6813−6822.

(84) Di Palma, S.; Bodenmiller, B. Curr. Opin. Biotechnol. 2015, 31, 122−129.

(85) Atkuri, K. R.; Stevens, J. C.; Neubert, H. Drug Metab. Dispos. 2015, 43, 227−233.

(86) Krutzik, P. O.; Crane, J. M.; Clutter, M. R.; Nolan, G. P. Nat. Chem. Biol. 2008, 4, 132−142.

(87) Krutzik, P. O.; Nolan, G. P. Nat. Methods 2006, 3, 361−368.

(88) Bodenmiller, B.; Zunder, E. R.; Finck, R.; Chen, T. J.; Savig, E. S.; Bruggner, R. V.;

Simonds, E. F.; Bendall, S. C.; Sachs, K.; Krutzik, P. O.; Nolan, G. P. Nat. Biotechnol. 2012, 30,

858−867.

(89) Bendall, S. C.; Simonds, E. F.; Qiu, P.; Amir, E.-a. D.; Krutzik, P. O.; Finck, R.; Bruggner,

R. V.; Melamed, R.; Trejo, A.; Ornatsky, O. I.; Balderas, R. S.; Plevritis, S. K.; Sachs, K.; Pe’er,

D.; Tanner, S. D.; Nolan, G. P. Science 2011, 332, 687−696.

(90) Chattopadhyay, P. K.; Gierahn, T. M.; Roederer, M.; Love, J. C. Nat. Immunol. 2014, 15,

128−135.

(91) Newell, E. W.; Sigal, N.; Bendall, S. C.; Nolan, G. P.; Davis, M. M. Immunity 2012, 36, 142

−152.

78

(92) Behbehani, G. K.; Bendall, S. C.; Clutter, M. R.; Fantl, W. J.; Nolan, G. P. Cytometry, Part

A 2012, 81, 552−566.

(93) Newell, E. W.; Sigal, N.; Nair, N.; Kidd, B. A.; Greenberg, H. B.; Davis, M. M. Nat.

Biotechnol. 2013, 31, 623−629.

(94) Tomita, M.; Kami, K. Science 2012, 336, 990−991.

(95) Amir, E.-a. D.; Davis, K. L.; Tadmor, M. D.; Simonds, E. F.; Levine, J. H.; Bendall, S. C.;

Shenfeld, D. K.; Krishnaswamy, S.; Nolan, G. P.; Pe’er, D. Nat. Biotechnol. 2013, 31, 545−552.

(96) Fujita, H.; Esaki, T.; Masujima, T.; Hotta, A.; Kim, S. H.; Noji, H.; Watanabe, T. M. RSC

Adv. 2015, 5, 16968−16971.

(97) Urban, P. L.; Jefimovs, K.; Amantonico, A.; Fagerer, S. R.; Schmid, T.; Madler, S.;

Puigmarti-Luis, J.; Goedecke, N.; Zenobi, R. Lab Chip 2010, 10, 3206−3209.

(98) Ibanez, A. J.; Fagerer, S. R.; Schmidt, A. M.; Urban, P. L.; Jefimovs, K.; Geiger, P.;

Dechant, R.; Heinemann, M.; Zenobi, R. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 8790−8794.

(99) Krismer, J.; Sobek, J.; Steinhoff, R. F.; Fagerer, S. R.; Pabst, M.; Zenobi, R. Appl. Environ.

Microbiol. 2015, 81, 5546−5551.

(100) Fagerer, S. R.; Schmid, T.; Ibanez, A. J.; Pabst, M.; Steinhoff, R.; Jefimovs, K.; Urban, P.

L.; Zenobi, R. Analyst 2013, 138, 6732−6736.

(101) Ong, T. H.; Kissick, D. J.; Jansson, E. T.; Comi, T. J.; Romanova, E. V.; Rubakhin, S. S.;

Sweedler, J. V. Anal. Chem. 2015, 87, 7036−7042.

(102) Jansson, E. T.; Comi, T. J.; Rubakhin, S. S.; Sweedler, J. V. ACS Chem. Biol. 2016, 11,

2588−2595.

79

(103) Pan, N.; Rao, W.; Kothapalli, N. R.; Liu, R.; Burgett, A. W.; Yang, Z. Anal. Chem. 2014,

86, 9376−9380.

(104) Page, J. S.; Sweedler, J. V. Anal. Chem. 2002, 74, 6200−6204.

(105) Rubakhin, S. S.; Sweedler, J. V. Anal. Chem. 2008, 80, 7128−7136.

(106) Quine, W. V. Theories and things; Harvard University Press: Cambridge, MA, 1981.

80

CHAPTER 4

SYNCHRONIZED DESORPTION ELECTROSPRAY IONIZATION MASS SPECTROMETRY IMAGING

Notes and Acknowledgements

This chapter was published as an original research article in Analytical Chemistry 2016, DOI:

10.1021/acs.analchem.5b03010, coauthored by S. W. Ryu and R. H. Perry. The article is adapted

and reprinted here with permission from the American Chemical Society, copyright 2015. T. J.

Comi performed most mass spectrometry analyses, data analysis, simulations and authoring of

the manuscript. S. W. Ryu performed confirmatory experiments on mass spectrometry imaging

of Rhodamine 6G spots and assisted in manuscript editing. Funding for this work was provided

by the University of Illinois at Urbana−Champaign, NIH Training Program at Chemistry-

Interface with Biology (NIH T32 GM070421), National Science Foundation Graduate Research

Fellowship Program, and the Springborn Fellowship. Dr. Edward T. Chainani is gratefully

acknowledged for help in designing initial circuitry, assisting with valve latency measurements,

and many useful conversations.

Introduction

Fingerprint evidence is universally recognized as a reliable method for biometric identification of

criminal suspects.1 Latent fingermarks, impressions of fingerprint ridge patterns on surfaces,

consist of endo-, semi-exo-, and exogenous compounds related to suspect physiology, diet, and

fingertip contact with external chemical compounds including illicit drugs and explosives.2,3

Typically, fingermark visualization at crime scenes is achieved by imaging photoluminescent

agents, including ninhydrin and nanoparticles that target endogenous chemical compounds such

as amino acids and glycerides, respectively.1,2,4,5 Mass spectrometry imaging (MSI) techniques

81

such as secondary ion MS (SIMS),6-9 matrix-assisted laser desorption/ionization (MALDI),10-17

and desorption electrospray ionization (DESI),9,18-21 provide high selectivity and the capability to

identify unlabeled chemical components, which can significantly improve the accuracy of

suspect identification and provide evidence of recent activities.

One of the advantages of DESI is that it enables direct fingermark imaging at atmospheric

pressure without the need for pretreatment,22-31 thereby preserving evidence integrity. It is often

beneficial to perform MSI experiments at high spatial resolutions (step size ≤ 75 µm) on mass

analyzers capable of high m/z-resolution (> 60 000) and accurate mass measurements (< 2 ppm).

When DESI-MSI is performed on a pulsed mass analyzer such as the Orbitrap,32-34 the

percentage of time that the desorbed plume is effectively sampled by the instrument is given by

the ratio of the injection time (viz. ion accumulation period (IT)) to the total time required to

acquire each spectrum (t = IT + transient acquisition time). For a typical IT = 500 ms and a

resolution setting of 100 000 at m/z 400 (transient acquisition = 1.8 s for an LTQ-Orbitrap XL),

the desorbed species are sampled for only ~0.2t while the remaining desorbed material is

discarded.35,36 In addition, the redistribution and spreading of analytes on the surface, known as

the “washing effect”,37 negatively impacts spatial resolution throughout the entire scan, a

problem that is exacerbated for analytes weakly attached to smooth surfaces such as fingermarks

at crime scenes.

Cooks and coworkers developed a DESI source that synchronizes the nebulizing gas and

DESI voltage (sDESI-MS) with the IT of a discontinuous atmospheric pressure interface on a

rectilinear ion trap miniature mass spectrometer. This modification increased sensitivity,

desorbed material only during the IT, and reduced the amount of solvent deposited on the surface

in DESI.38,39 In this report, we develop an sDESI-MS imaging source coupled to a high-

82

resolution MS (HRMS; Figure 4.1). The sDESI-MSI source utilizes two solenoid valves (Figure

4.1). One valve synchronizes the nebulizing gas flow with the IT of a LTQ-Orbitrap XL HRMS.

During transient acquisition, the DESI nebulizing gas is turned off and the second valve delivers

a perpendicular stream of nitrogen gas (N2) that prevents solvent accumulation at the emitter tip.

Thus, solvent is deposited only during IT, minimizing analyte redistribution by the “washing

effect”. In addition to improving sensitivity and decreasing the amount of sample desorbed per

HRMS scan, our results show that synchronization improves spatial resolution by a factor of

∼4−6 for analytes (e.g. Rhodamine 6 G spots) weakly attached to smooth surfaces (e.g.

photographic paper). In addition, under specific experimental conditions, synchronization was

essential to obtain distinct MS images of low-intensity endogenous fatty acids (FA) in

fingermarks on glass. For example, using a step size of 25 µm and a microdroplet spray

composition of CH3OH:H2O (9:1), sDESI-MSI images of the fingermark ridge patterns were

generated using ion signals for lignocercic acid and cerotic acid. However, for the same set of

conditions, continuous desorption did not yield distinct MS images. Simulations modeling

analyte movement during desorption and the "washing effect" replicate these experimental

results by varying the washing parameter. All these results demonstrate that synchronization

improves spatial resolution and sensitivity by decreasing the time analytes are redistributed by

the “washing effect”. Generally, sDESI expands the scope of analytes, surfaces, and

experimental conditions available for study such as the high-resolution imaging of analytes that

are weakly attached to smooth surfaces.

83

Methods

Materials

ACS grade chloroform (CHCl3), HPLC-grade water (H2O; Macron Fine Chemicals, Center

Valley, PA), HPLC-grade methanol (CH3OH; Fisher Scientific, Pittsburgh, PA), Rhodamine 6G,

(R6G; Sigma-Aldrich, St. Louis, MO), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC;

Avanti Polar Lipids, Alabaster, AL, USA), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) (DPPG; Avanti Polar Lipids), bovine brain total lipid extract (BBE; Avanti Polar

Lipids), Ampicillin (AMP; Sigma-Aldrich), Bradykinin (BK; Sigma-Aldrich), and ultra-high

purity nitrogen (N2; S.J. Smith Co., Decatur, IL) were used as received.

Synchronized Desorption Electrospray Ionization Mass Spectrometry Imaging Source

The sDESI-MSI source (Figure 4.1) involves modifying a commercial Prosolia 2D Omnispray

DESI-MSI source (Indianapolis, IN, USA) to include two three-way valves (ASCO, Florham

Park, NJ, USA). One of the valves modulates the nebulizing gas (180 psi) and the second

regulates a perpendicular N2 gas stream (shutter gas; 20 psi). When the nebulizing gas is off the

shutter gas removes solvent delivered to the emitter tip in a direction that is parallel to the sample

surface. The three-way valve that regulates the nebulizing gas (V1) is normally closed, while the

shutter gas is normally open (V2) (Figure 4.1c). Gas is emitted from the three-way valve

common ports so that N2 backpressure rapidly vents to atmosphere when switching between ion

source ON (Figure 4.1b) and OFF states (Figure 4.1c). Valve modulation and timing is controlled

with a home-built electronic circuit (Figure 4.2). Direct measurement of gas flow impinging on a

microphone shows a valve latency of 16.6 ± 2.9 ms and a 10.5 ± 2.7 ms for switching the shutter

gas to the OFF and ON states, respectively, and 494.2 ± 4.6 ms desorption for 500 ms IT (Figure

4.3). In a typical sDESI-MSI experiment, valve latency is ~3% of IT.

84

Analyte Depletion Rate and Sensitivity

DESI-MS and sDESI-MS extracted ion chromatograms (XIC) were used to estimate the rates of

analyte depletion for R6G (100 pg), DPPC (10 ng), DPPG (20 ng), AMP (20 ng), BK (200 µg) or

BBE (200 µg) deposited on polytetrafluoroethylene (PTFE) Omni Slides (Prosolia, Inc.). Five

XICs were acquired per analyte when the sDESI-MS source was stationary (static mode) and

then averaged to generate decay curves. The exponential regression constant reflects the rate of

sample depletion from the surface.

Sensitivity was characterized by rastering the ionization source across deposited spots of various

analytes in seven evenly distributed rows. The source was continuously moved to investigate

sensitivity independent of desorption rates at the spray impact site, maintain good reproducibility

without internal standards,40 and simulate imaging conditions. A custom MATLAB (Mathworks,

Natick, Massachusetts, USA) script was used to integrate analyte signal intensity across each

spot. Differences in sensitivity (i.e. slope of calibration curves) were tested for significance using

analysis of covariance (ANCOVA; R software environment).

Latent Fingermark Imaging

Sebum-enhanced fingermark impressions on glass microscope slides were produced from a male

donor using previously reported methods41 and analyzed immediately (optical images of

fingerprints were manually distorted to protect donor privacy). Briefly, after thorough hand-

washing, the finger was rubbed against the side of the nose and then pressed against a glass slide.

Selected regions of the fingermarks were imaged using either CHCl3:CH3OH (1:1; 2 µL/min) or

CH3OH:H2O (9:1; 1 µL/min) with pixel widths of 150 µm, 75 µm, or 25 µm (emitter voltage = -

5 kV; capillary temperature = 275 oC; IT = 500 ms; resolution setting = 100,000; m/z range = 100

– 400). At the smallest pixel width of 25 µm, a 1 mm2 area is analyzed in approximately one

85

hour; sDESI does not affect image acquisition time. Optical images of fingerprints on regular

office paper were acquired using a flatbed scanner (Epson Perfection 2400 Photo). The

fingerprints were deposited on paper using an inkless fingerprint pad (Lee Products Company,

Bloomington, MN).

We designed a software package (C# programming language) to process and visualize MSI

data. Thermo Fisher Scientific RAW data files are converted to the mzXML file format using

ProteoWizard.42 The software loads the mzXML files into memory without data reduction or

binning of m/z values, and then generates chemical images using false colors to represent signal

intensities (Figure 4.4). The software package also provides the capability to average spectra

within user-drawn regions of interest (ROI), subtract spectra between ROIs, export spectra as

comma-separated value text, and perform hyperspectral visualization43 with m/z binning as

described by Xiong et. al.44

Spatial Resolution

The spatial resolution of DESI-MSI and sDESI-MSI were compared using patterns of R6G dots

on photographic paper (Epson, Long Beach, CA). The patterns were generated from a red

Sharpie marker (Sanford Corp., Oak Brook, IL) and an unpolished stainless steel mesh template

(Small Parts Inc., Miramar, FL). The R6G patterned surfaces were fabricated by pressing the SS

mesh on top of the photographic paper immediately after it was drawn on with Sharpie, which

produces an array of R6G dots (~100 µm diameter) spaced by ~500 µm. Then, a second array

was superimposed on the first, generating a R6G dots with variable spacing. Optical images of

the R6G dots were acquired using an EVOS fl Inverted Fluorescence Microscope (Advanced

Microscopy Group, Life Technologies, Thermo Fisher Scientific). Pattern dimensions were

estimated from the fluorescence images using ImageJ (http://imagej.nih.gov/ij/).

86

Simulations of Desorption and the “Washing Effect”

Simulations estimating the relative impact of the desorption/ionization and washing (W)

efficiencies on sensitivity, decay rate, and spatial resolution, were performed using the finite

difference method45 (implemented in MATLAB). For simplicity, the model estimates a circular

spray profile at the surface (Figure 4.5), instantaneous analyte dissolution and immediate thin

film formation upon spray impact. The rate of desorption is modeled as a two-dimensional

Gaussian distribution that accounts for concentric regions of high (H; 100 µm diameter) and low

(L; 500 µm diameter) ionization efficiency within the spray profile at the surface.46 The model

for desorption is combined with a cosine-distributed “washing effect” parameter to describe

analyte movement on the surface relative to the center of the spray profile (; Figure 4.5). The

magnitudes of the washing and desorption/ionization efficiencies were modified by adjusting

their corresponding rate constants (washing: RW; desorption/ionization: RL + RH). At each time

step Δ (10 ms), the amount of analyte () at a given input pixel () changes due to low

efficiency desorption from the outer spray plume, high efficiency desorption/ionization from the

inner spray plume, washing from to neighboring pixels (Wout), and washing from neighboring

pixels to (Win). I for a given pixel is updated for the next time step by the following

relationship:

Δ Δ

where Wout, is distributed to neighboring pixels at position i () based on the magnitude of their

projections on the radial vector	 . The fraction of analyte redistributed to pixel i is:

	 	 	 	 	 	 	 	
〈 , 〉

∑ 〈 , 〉〈 , 〉
,

87

where, 〈 , 〉 denotes an inner product. After each Δt, the center of the spray profile at the

surface was moved a distance equal to the xy-translation stage velocity × Δt = 1.3 µm. At the end

of each row of the output image, the spray profile is moved to the beginning of the next row,

simulating the fly-back motion of a xy-translation stage used for DESI-MSI. Simulations of

sDESI-MSI were performed identically but the input analyte distribution was only updated

during IT. Source code for simulations is provided in Appendix A.

Results and Discussion

The impact of synchronization on sensitivity was evaluated by comparing the DESI and sDESI

calibration curves for R6G spots on Omni Slides. The calibration curves were acquired at various

velocities of the xy-translation stage (100 μm/s, 50 μm/s, 25 μm/s, and 0 μm/s) to simulate MSI

conditions. Our results show that synchronization of DESI with IT improved sensitivity by

factors of 1.77 ± 0.13, 2.02 ± 0.15, 2.96 ± 0.43, and 3.51 ± 0.55, respectively. Further

experiments showed that the magnitudes of these improvements in sensitivity depend on various

experimental conditions such as the composition of the microdroplet spray, the sample surface,

and the nature of the analyte (Figure 4.6 and Table 4.1).38,39 The sensitivity improvement with

slower raster speeds is particularly important for MSI, as it suggests that synchronization will

largely benefit images acquired at high spatial resolution.

The depletion rate was estimated by recording the intensity of specific lipid signals from

BBE samples as function of time, and then calculating the decay constant from exponential

regression curves (Figure 4.7). With synchronization, signals for [36:1 PS – H]- (m/z 788.536),

[40:6 PS – H]- (m/z 834.520), [38:4 PI – H]- (m/z 885.541), and [42:2 sulfatide (ST) – H]- (m/z

888.614) decayed slower by an average factor of 5.90 ± 0.71 (Figure 4.7b – 4.7e), which is in

agreement with a desorption period of ~0.2t for sDESI. The decay curves also show that the

88

DESI and sDESI variances are relatively similar (Figure 4.6), indicating that synchronization

does not significantly degrade reproducibility between technical replicates.

After performing DESI and sDESI MSI of R6G spots on photographic paper, optical images

showed higher amounts of residual R6G when desorption/ionization was synchronized with IT

(Figure 4.8a,b and 4.9), which agrees with the trends observed for the DESI and sDESI decay

rates (Figure 4.7). In addition, the MS images and XICs of the R6G spots on photographic paper

show baseline-resolution for sDESI (Figure 4.8a), while the DESI XICs contain valleys between

spots with intensities as high as ~20-25% (Figure 4.8b). By considering two spots as resolved

when the valley intensity is less than 10%, these results demonstrate that synchronization

improves spatial resolution by a factor of ~4. Although the microdroplet spray profiles at the

surface of water-sensitive paper have relatively similar dimensions, sDESI deposits less liquid on

the surface, as indicated by the lower intensity of the blue color (Figure 4.8c). As a result, the

R6G spots rapidly dissolve and diffuse within the liquid pool, degrading spatial resolution via the

“washing effect”.

To demonstrate the utility of sDESI-MSI, we performed high-resolution imaging of low-

abundance chemical compounds in latent fingermarks, which are typically located on smooth

surfaces such as glass at crime scenes. Using a step size of 150 µm and microdroplet spray

composition of CHCl3:CH3OH (1:1), endogenous FAs with ion abundance less than 5% relative

intensity, such as [24:0 FA – H]- (m/z 367.390) and [26:0 FA – H]- (m/z 395.424) produce distinct

ridge patterns with and without synchronization (Figures 4.10 and 4.11; see Table 4.2 for the

identification of other endogenous FAs). However, chemical images of these FAs in fingermarks

were only observed at step sizes of 75 µm (CHCl3:CH3OH (1:1)) and 25 µm (CH3OH:H2O (9:1))

with sDESI-MSI (Figure 4.10). These results show that sDESI-MSI is a sensitive method for

89

mapping the spatial distribution of low-abundance chemicals in fingermarks, which has potential

applications in forensics.

To gain preliminary insights about the mechanisms of sDESI, we simulated analyte motion

as a function of parameters that describe desorption (RH, RL; the magnitude is the combined

effect of RH and RL) and the "washing effect" (RW; Figure 4.12). Using fluorescent images of the

R6G spots (Figure 4.8) as input distributions for the simulations, the magnitude of the desorption

parameter had a proportional relationship to the analyte signal intensity while the washing

parameter was inversely proportional. In addition, the simulated ratio of the signal intensities for

sDESI and DESI is always greater than unity, supporting the experimental observation that

synchronization improves sensitivity (Figure 4.12a and 4.13).

Simulated XICs for sDESI-MSI contain peaks that do not broaden or distort at high

magnitudes of RW (Figure 4.12b). This result is reflected in the higher spatial resolution obtained

for simulated sDESI-MS images compared to a continuous microdroplet spray (RW = 1 and RH =

0.01,RL = 0.005; Figure 4.12c). Interestingly, when the magnitudes of both RW and RH, RL were

increased, the model only generated MS images for sDESI-MSI (RW = 1 and RH = 0.025,RL =

0.01; Figure 4.12c), replicating the results shown in Figure 4.10. It appears, for a continuous

microdroplet spray, analytes are washed away by the outer region of the spray profile before they

can interact with the central region of higher ionization efficiency (Figure 4.5). When the

magnitude of RW was reduced to 0.1, the spatial resolution is relatively similar for DESI and

sDESI MS images, which is agrees with experimental MS images of lipids embedded in the

extracellular matrix of rat brain tissue sections (Figure 4.14). Since RW is related to the

magnitude of the analyte-surface interaction, synchronization produces the greatest

improvements for analytes that have a weak interaction with the surface. The simulations also

90

suggest that synchronization of desorption/ionization with IT improves sensitivity and spatial

resolution by reducing the time that the “washing effect” is operating during each MS scan.

Conclusions

In this report we describe the development and characterization of a DESI-MS imaging source

that synchronizes desorption/ionization with the ion accumulation period (IT) of an LTQ-

Orbitrap XL mass spectrometer. Our results show that synchronization improves sensitivity,

increases spatial resolution, and reduces the amount of sample consumed per MS scan by factors

as high as ~4-6. These improvements were necessary to obtain informative, high-resolution MS

images (step sizes ≤75 μm) of low-intensity fatty acids in latent fingermarks on glass,

highlighting the utility of sDESI for mapping the spatial distribution of weakly-bound analytes

on smooth surfaces. MSI simulations support that the benefits of sDESI are the result of

depositing a lower volume of solvent on the surface per MS scan, thereby minimizing the

redistribution and spreading of analytes on the surface ("washing effect"). Overall sDESI

expands the range of analytes, surfaces, and experimental conditions accessible to DESI-MSI.

Figures a

Figure 4
shows sy
transient
(c) Valve

and Tables

4.1. (a) Three
ynchronizati

acquisition,
e positions of

e-dimension
on of the n
, respectivel
f sDESI-MS

nal represent
nebulizing g
ly. (b) Valve
SI during tran

91

ation of the
as ON and

e positions o
nsient acquis

sDESI-MSI
OFF states

of sDESI-M
sition.

I source. Th
s with ion a

MSI during io

e timing dia
accumulation
on accumula

agram
n and
ation.

92

Solid-
State
Relay

Injection
Period

(from LTQ)

+5 V

MCT2EM-ND
Opto Coupler

On/Off
Switch

Manual/Auto
Switch

220 Ω +

-

Figure 4.2. Circuit diagram of LTQ-Orbitrap XL MALDI to transistor-transistor logic (TTL)
converter. Valve modulation and timing is controlled by the TTL signals which are synchronized
with ion accumulation. The optoelectronic coupler isolates instrument electronics and removes
noise from the input signal. The valves are powered with 120 V AC that is switched ON and OFF
with a solid-state relay.

93

5.3 5.5 5.7 5.9
Time (s)

(16.6 ± 2.9) ms

500 ms

(494.2 ± 4.6) ms

(10.5 ± 2.7) ms

Ion Accumulation
Microphone/Gas Response

0 30
‐0.2

0

0.2

M
ic

ro
ph

on
e

R
ep

on
se

 (
ar

b
)

Figure 4.3. Characterization of V2 latency (bottom panel shows zoomed-in view of 5.3 – 6.0 s).
A microphone was placed in close proximity to the shutter gas outlet to record ON and OFF
times of the N2 gas relative to an input trigger generated from a data acquisition board. Gas
impinging on the microphone diaphragm causes large amplitude noise while the valve is open.
Initial capacitance charging in the microphone electronic circuit caused a rise in baseline voltage
unrelated to valve performance.

94

Figure 4.4. Screen capture of in-house developed MSI analysis software. Image displayed is
DESI MSI of a coronal mouse brain section acquired with 3 µL/min of 1:1 CHCl3:CH3OH, 180
psi N2, 150 µm pixel width.

Figure 4
during D

4.5. Scheme
DESI and sDE

showing the
ESI-MSI.

e variables u

95

used in simullating analyt

te removal aand redistrib

bution

Figure 4
Bradykin
sn-glycer
(blue) an
30%. De
S.D. n =
Asterisks

4.6. Mass sp
nin (BK), (c)
ro-3-phosph
nd sDESI (re
cays shown
3. sDESI/D

s (*) represen

pectra, decay
) 1,2-dipalm
o-(1'-rac-gly
ed). Dotted
with shadin

DESI relative
nt statistical

y curves, an
mitoyl-sn-glyc
ycerol) (DPP
lines repres

ng for ± 1 S.D
e standard de
ly significan

96

nd calibratio
cero-3-phosp
PG), and (
sent the time
D., n=5, cali
eviation esti
nt difference

on curves fo
phocholine
e) Rhodami
e at which s
ibration curv
imated from
s determined

or (a) Ampic
(DPPC), (d)
ine 6G (R6
signal intens
ves shown w

m the first 10
d by ANCOV

cillin (AMP
) 1,2-dipalm
6G) using D
sity decrease

with error bar
0 s of acquis
VA (p < 0.05

), (b)
itoyl-
DESI
es by
rs ± 1
sition.
5).

Figure 4
(b) m/z 7
areas rep
decreases
[38:4 PI –

4.7. (a) Mass
788.537, (c)
present ±1 S
s to 30% of
–H]- was det

 spectra of B
m/z 834.520

S.D. of five
f the highest
termined dir

BBE for DES
0, (d) m/z 88

measuremen
t intensity. T
rectly from t

97

SI (blue) and
85.541, and (
nts and dott
The time po
the graph, ow

d sDESI (red
(e) m/z 888.6
ted lines sho

oint at which
wing to a poo

d). Signal de
614 at a sing
ow the time
h signal dec
or exponenti

ecay of spec
gle point. Sh
e at which s
cayed to 30%
ial fit.

cies at
haded
signal
% for

Figure 4
paper. Im
CHCl3:C
XICs for
are cente
relative i
sensitive
sensitive

4.8. (a) sDE
mages of th

CH3OH spray
r one row (re
ered on the
ntensity. (c)
paper with
paper chang

SI-MS and
he R6G do
y solvent an
ed arrows) ar
XIC for 4.8
Profiles of t

h xy-translati
ges color fro

(b) DESI-M
ots were ac
nd 40 µm pix
re also show

8b, several d
the DESI an
ion stage ve

om yellow to

98

MS analysis
cquired usin
xel width), a

wn for each M
dots are part

nd sDESI mic
elocities of

o blue upon i

of R6G dot
ng fluoresce
and a flatbe
MS image. N
rtially sampl
crodroplet sp
100, 50, 25

interaction w

ts deposited
ence micros
d scanner in
Note that wh
led in 4.8a l
prays at the
5, and 10 µ

with water in

on photogr
scopy, MSI
n the listed o
hile the R6G
leading to v
surface of w

µm/s. The w
n the solvent

aphic
(1:1

order.
G dots
varied
water-
water-
.

99

DESIsDESI

Optical image
after analysis

 MSI

Low High 500 µm

Figure 4.9. Mass spectrometry and optical images of R6G spots deposited on photographic
paper using 1:1 CHCl3:CH3OH spray solvent and a resolution setting of 60,000. The optical
images were acquired after DESI and sDESI analysis. In contrast to Figure 4, these images were
acquired with a scan rate 50% faster but with the same pixel width. The faster scanning appears
to more severely smear DESI-MSI.

Figure 4
fingerma
(b). MS
lignoceri
same inte

4.10. Optical
ark on glass

images we
ic acid (24:0
ensity scale.

 scans of a f
analyzed wi

ere generate
0 FA) and c

fingerprint a
ith CHCl3:CH
d by plottin

cerotic acid

100

and MS imag
H3OH (1:1)
ng the spati
(26:0 FA). M

ges showing
(a) and CH

ial distribut
MS images

g the ridge pa
3OH:H2O (9
tion of the
grouped by

atterns of a l
9:1) spray so
fatty acids

y braces hav

latent
olvent

(FA)
ve the

101

(b)
sDESI (150 m)

NL: 1.82E5

0

100 255.255

227.222
283.289 367.390

395.424
(~2%)

(c)
DESI (75 m)

NL: 7.07E3

0

100
255.255

283.289227.221

367.390
(< 0.5%) 395.424

(< 0.05%)

(d)
sDESI (75 m)

NL: 5.62E4

120 400
m/z

0

100
255.255

227.222
367.390

395.424

DESI (150 m)
(a)

NL: 4.19E4

0

100

255.255
[16:0 – H]-

227.222
[14:0 – H]- 367.390

[24:0 – H]-

395.424
[26:0 – H]-

R
el

a
tiv

e
A

b
un

d
an

ce
R

el
a

tiv
e

A
b

un
d

an
ce

120 400
m/z

Figure 4.11. (a) DESI and (b) sDESI mass spectra using a pixel width of 150 µm. (c) DESI and
(d) sDESI mass spectra using a pixel width of 75 µm. Mass spectra represent an average across
one row of the corresponding images shown in Figure 4.10a.

Figure 4
for static
Simulate
effect of
ionization
XICs and
condition

4.12. Simulat
c profiling. (
d images fo

f various ph
n. RL and R
d MS image
ns that replic

ted DESI an
(b) Line sca
r DESI and

hysical and
H were varie

es. The value
cate experim

nd sDESI an
ans from an
sDESI. The
chemical pr

ed while kee
es of the par

mental observ

102

nalysis. (a) C
image corr

e parameters
roperties on

eping RW con
rameters in t
vations.

Comparison
responding t
 RW, RL, an

n the "wash
nstant and n
the figure re

of sensitivit
to the XIC
d RH represe

hing effect",
noting the eff
epresent one

ty and decay
in Figure 4b
ent the comb
 desorption

ffect on simu
e set of simu

y rate
b. (c)
bined
, and

ulated
ulated

103

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

In
te
n
si
ty
 (N

o
rm

al
iz
ed

)

sDESI/DESI:
1.855

 bsDESI:‐0.021

bDESI:‐0.027

DESI‐MS
sDESI‐MS

bsDESI:‐0.027

Lo
w
 D
e
so
rp
ti
o
n

H
ig
h
 D
e
so
rp
ti
o
n

Low Washing High Washing

In
te
n
si
ty
 (
N
o
rm

al
iz
ed

)

0 20 40 60 80 100 120
Time (s)

0 20 40 60 80 100 120
Time (s)

0 20 40 60 80 100 120
Time (s)

0 20 40 60 80 100 120
Time (s)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

sDESI/DESI:
2.33

sDESI/DESI:
3.86

sDESI/DESI:
3.73

 bsDESI:‐0.0037

bDESI:‐0.017

bDESI:‐0.094

 bsDESI:‐0.0062

bDESI:‐0.13

Figure 4.13. Example decay curves for simulated DESI and sDESI with the plume held at a
single position. sDESI/DESI corresponds to the ratio of integrated intensity over the two minute
simulation time.

104

[36:1P
S

 - H
] -

(m
/z 788.537)

[40:6 P
S

 - H
] -

(m
/z 834.520)

sDESI-MSIDESI-MSI

500 µm
Figure 4.14. DESI and sDESI MS images of rat brain (25 µm sampling period; 1:1
CHCl3:CH3OH spray solvent at a flow rate of 3 µL/min). Sagittal tissue sections of unstripped
rat brain (Pel-Freez, Rogers, AR, USA) were cut without embedding media using a Leica
CM3050 S cryostat microtome.

105

Table 4.1. Ratio of sDESI/DESI sensitivity to Rhodamine 6G
(R6G) for various solvent and surface compositions. For all
experiments, R6G was desorbed using a raster velocity of 100
µm/s, mass resolution setting of 100,000, and an ion
accumulation time of 500 ms. Asterisks (*) represent
statistically significant differences determined by ANCOVA (p
< 0.05).

Solvent Surface sDESI/DESI

1:1 CHCl3:CH3OH

Omni-Slide

1.77 ± 0.13*

CH3OH 0.953 ± 0.071

1:1 CH3OH:H2O 1.130 ± 0.069*

1:1 CHCl3:CH3OH

Paper 1.25 ± 0.19

Dollar Bill 2.01 ± 0.18*

Stainless Steel 1.73 ± 0.51*

TLC Plate 1.14 ± 0.18

Glass 1.40 ± 0.33

106

Table 4.2. Some of the fatty
acids (FA) identified in
latent fingermarks.

FA
[M - H]-

(Da)

14:0 227.202

15:0 241.217

16:1 253.217

16:0 255.232

17:0 269.248

18:1 281.248

18:0 283.264

21:4 317.250

22:0 339.326

24:0 367.357

25:0 381.373

26:0 395.424

107

References

(1) Green, F. M.; Salter, T. L.; Stokes, P.; Gilmore, I. S.; O'Connor, G. Surface and Interface

Analysis 2010, 42, 347.

(2) Francese, S.; Bradshaw, R.; Ferguson, L. S.; Wolstenholme, R.; Clench, M. R.; Bleay, S.

Analyst 2013, 138, 4215.

(3) Weyermann, C.; Roux, C.; Champod, C. J. Forensic Sci. 2011, 56, 102.

(4) Jelly, R.; Patton, E. L. T.; Lennard, C.; Lewis, S. W.; Lim, K. F. Anal. Chim. Acta 2009, 652,

128.

(5) Choi, M. J.; McDonagh, A. M.; Maynard, P.; Roux, C. Forensic Sci. Int., 179, 87.

(6) Attard-Montalto, N.; Ojeda, J. J.; Reynolds, A.; Ismail, M.; Bailey, M.; Doodkorte, L.; de

Puit, M.; Jones, B. J. Analyst 2014, 139, 4641.

(7) Bailey, M. J.; Jones, B. N.; Hinder, S.; Watts, J.; Bleay, S.; Webb, R. P. Nucl. Instrum.

Methods Pys. Res., Sect. B 2010, 268, 1929.

(8) Bright, N. J.; Webb, R. P.; Bleay, S.; Hinder, S.; Ward, N. I.; Watts, J. F.; Kirkby, K. J.;

Bailey, M. J. Anal. Chem. 2012, 84, 4083.

(9) Bailey, M. J.; Ismail, M.; Bleay, S.; Bright, N.; Levin Elad, M.; Cohen, Y.; Geller, B.;

Everson, D.; Costa, C.; Webb, R. P.; Watts, J. F.; de Puit, M. Analyst 2013, 138, 6246.

(10) Tang, H.-W.; Lu, W.; Che, C.-M.; Ng, K.-M. Anal. Chem. 2010, 82, 1589.

(11) Wolstenholme, R.; Bradshaw, R.; Clench, M. R.; Francese, S. Rapid Commun. Mass

Spectrom. 2009, 23, 3031.

(12) Ferguson, L. S.; Creasey, S.; Wolstenholme, R.; Clench, M. R.; Francese, S. J. Mass

Spectrom. 2013, 48, 677.

108

(13) Bradshaw, R.; Wolstenholme, R.; Blackledge, R. D.; Clench, M. R.; Ferguson, L. S.;

Francese, S. Rapid Commun. Mass Spectrom. 2011, 25, 415.

(14) Ferguson, L.; Bradshaw, R.; Wolstenholme, R.; Clench, M.; Francese, S. Anal. Chem. 2011,

83, 5585.

(15) Bradshaw, R.; Rao, W.; Wolstenholme, R.; Clench, M. R.; Bleay, S.; Francese, S. Forensic

Sci. Int. 2012, 222, 318.

(16) Ferguson, L. S.; Wulfert, F.; Wolstenholme, R.; Fonville, J. M.; Clench, M. R.; Carolan, V.

A.; Francese, S. Analyst 2012, 137, 4686.

(17) Bradshaw, R.; Bleay, S.; Clench, M. R.; Francese, S. Sci. Justice 2014, 54, 110.

(18) Ifa, D. R.; Wiseman, J. M.; Song, Q. Y.; Cooks, R. G. International Journal of Mass

Spectrometry 2007, 259, 8.

(19) Takats, Z.; Wiseman, J. M.; Cooks, R. G. Journal of mass spectrometry : JMS 2005, 40,

1261.

(20) Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Science 2004, 306, 471.

(21) Bailey, M.; Bradshaw, R.; Francese, S.; Salter, T. L. R.; Costa, C.; Ismail, M.; Webb, R.;

Bosman, I.; Wolff, K.; de Puit, M. Analyst 2015.

(22) Cooks, R. G.; Ouyang, Z.; Takats, Z.; Wiseman, J. M. Science 2006, 311, 1566.

(23) Albert, A.; Shelley, J. T.; Engelhard, C. Anal. Bioanal. Chem. 2014, 406, 6111.

(24) Awad, H.; Khamis, M. M.; El-Aneed, A. Appl. Spectrosc. Rev. 2015, 50, 158.

(25) Harris, G. A.; Galhena, A. S.; Fernandez, F. M. Analytical Chemistry 2011, 83, 4508.

(26) Ifa, D. R.; Wu, C. P.; Ouyang, Z.; Cooks, R. G. Analyst 2010, 135, 669.

109

(27) Li, L. P.; Feng, B. S.; Yang, J. W.; Chang, C. L.; Bai, Y.; Liu, H. W. Analyst 2013, 138,

3097.

(28) Monge, M. E.; Harris, G. A.; Dwivedi, P.; Fernandez, F. M. Chem. Rev. 2013, 113, 2269.

(29) Venter, A.; Nefliu, M.; Cooks, R. G. TrAC, Trends Anal. Chem. 2008, 27, 284.

(30) Weaver, E. M.; Hummon, A. B. Adv. Drug Delivery Rev. 2013, 65, 1039.

(31) Wu, C. P.; Dill, A. L.; Eberlin, L. S.; Cooks, R. G.; Ifa, D. R. Mass Spectrom. Rev. 2013,

32, 218.

(32) Hu, Q. Z.; Noll, R. J.; Li, H. Y.; Makarov, A.; Hardman, M.; Cooks, R. G. J. Mass

Spectrom. 2005, 40, 430.

(33) Perdian, D. C.; Lee, Y. J. Anal. Chem. 2010, 82, 9393.

(34) Perry, R. H.; Cooks, R. G.; Noll, R. J. Mass Spectrom. Rev. 2008, 27, 661.

(35) Makarov, A.; Denisov, E.; Kholomeev, A.; Baischun, W.; Lange, O.; Strupat, K.; Horning,

S. Analytical Chemistry 2006, 78, 2113.

(36) Gustafsson, J. O.; Eddes, J. S.; Meding, S.; Koudelka, T.; Oehler, M. K.; McColl, S. R.;

Hoffmann, P. Journal of proteomics 2012, 75, 5093.

(37) Pasilis, S. P.; Kertesz, V.; Van Berkel, G. J. Analytical Chemistry 2007, 79, 5956.

(38) Huang, G.; Li, G.; Ducan, J.; Ouyang, Z.; Cooks, R. G. Angewandte Chemie 2011, 123,

2551.

(39) Cooks, R. G. D., J. ; Huang, G. ; Li, G. ; Yan, X. ; Sokol, E. ; Li, X.; US. Patent US

20130280819 A1: 2013.

(40) Wiseman, J. M.; Evans, C. A.; Bowen, C. L.; Kennedy, J. H. Analyst 2010, 135, 720.

110

(41) Ifa, D. R.; Manicke, N. E.; Dill, A. L.; Cooks, G. Science 2008, 321, 805.

(42) Chambers, M. C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D. L.; Neumann, S.;

Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; Hoff, K.; Kessner, D.; Tasman, N.; Shulman, N.;

Frewen, B.; Baker, T. A.; Brusniak, M.-Y.; Paulse, C.; Creasy, D.; Flashner, L.; Kani, K.;

Moulding, C.; Seymour, S. L.; Nuwaysir, L. M.; Lefebvre, B.; Kuhlmann, F.; Roark, J.; Rainer,

P.; Detlev, S.; Hemenway, T.; Huhmer, A.; Langridge, J.; Connolly, B.; Chadick, T.; Holly, K.;

Eckels, J.; Deutsch, E. W.; Moritz, R. L.; Katz, J. E.; Agus, D. B.; MacCoss, M.; Tabb, D. L.;

Mallick, P. Nat Biotech 2012, 30, 918.

(43) Fonville, J. M.; Carter, C. L.; Pizarro, L.; Steven, R. T.; Palmer, A. D.; Griffiths, R. L.;

Lalor, P. F.; Lindon, J. C.; Nicholson, J. K.; Holmes, E.; Bunch, J. Anal. Chem. 2013, 85, 1415.

(44) Xiong, X.; Xu, W.; Eberlin, L.; Wiseman, J.; Fang, X.; Jiang, Y.; Huang, Z.; Zhang, Y.;

Cooks, R. G.; Ouyang, Z. J. Am. Soc. Mass. Spectrom. 2012, 23, 1147.

(45) Grossmann, C.; Roos, H. G.; Stynes, M. Numerical Treatment of Partial Differential

Equations; Springer Berlin Heidelberg, 2007.

(46) Kertesz, V.; Van Berkel, G. J. Rapid Commun. Mass Spectrom. 2008, 22, 2639.

111

CHAPTER 5

MICROMS: A PYTHON PLATFORM FOR IMAGE-GUIDED MASS SPECTROMETRY PROFILING

Notes and Acknowledgements

This chapter is adapted from a completed manuscript written with coauthors by E. K. Neumann,

T. D. Do, and J. V. Sweedler, submitted for publication on March 28, 2017. T. J. Comi prepared

the majority of the manuscript and wrote the described source code. E. K. Neumann and T. D.

Do performed acquisitions for sequential MS analyses and assisted with code design and

debugging. Stanislav Rubakhin is acknowledged for assistance with sample preparation, and

Tong Si for useful discussions. Support from the National Institutes of Health, Award Number

P30 DA018310 from the National Institute on Drug Abuse and from the National Institute of

Mental Health Award Number 1U01 MH109062 are also acknowledged. T. J. Comi and E. K.

Neumann acknowledge support from the National Science Foundation Graduate Research

Fellowship Program and the Springborn Fellowship. T. J. Comi received additional support

through the Training Program at Chemistry-Interface with Biology (T32 GM070421).

Introduction

Image-guided mass spectrometry (MS) provides a link between the spatial dimensions in a

digital image and the physical location of a sample within a microprobe system. MS imaging

(MSI) is a subset of image guided chemical sampling that frequently utilizes regularly spaced

acquisition positions overlaid on an optical scan to recreate the spatial distribution of analytes

within a sample. However, traditional MSI is low throughput and less sensitive than targeted

profiling when the target objects (e.g. biological cells and bacterial colonies) are widely

dispersed or smaller than the microprobe size. In the past decades, single cell analysis with MS

has attracted great interest due to its sensitivity and ability to handle volume-limited samples.1-6

112

Many classes of biomolecules within individual cells are detectible with a variety of MS probes,

facilitating new discoveries of single cell heterogeneity and a better understanding of the

relationship between chemical contents and cellular functions. When MSI is applied to tissue

sections,7-10 the resolution to differentiate neighboring cells requires sampling each cell multiple

times, effectively splitting available analytes among pixels. Due to difficulties in sample

preparation and stringent instrument requirements, MSI at or below single cell resolution is far

from routine in most laboratories. In the case of dispersed cells,11,12 traditional MS imaging is not

an optimal approach as most of the measurement time is spent characterizing the space between

the cells. The limitations of MSI for high throughput analysis of single cells have led to the

development of new methods to locate or deposit cells.

 Recently, high throughput approaches to single cell MS have driven analyses of

dissociated single cells which are either chemically labeled13 or coordinate registered. MS

profiling of adhered cells provides advantages in data fusion by simplifying data processing and

allowing sequential analysis of the same cell. Microarrays for mass spectrometry14-16 (MAMS)

have demonstrated such capabilities by combining Raman microspectroscopy with MS.17 As an

alternative to MAMS, cells may be randomly seeded on a substrate, greatly relaxing fabrication

requirements at the expense of a necessarily gentle sample extraction. Ong et al. presented such

an approach, by locating single cells on an indium tin oxide (ITO)-coated glass slide based on

their position in a whole-slide fluorescence microscopy image.18 A challenge with this initial

report was the complex scheme for generating custom geometry files, which required manual

interaction through several disjointed pieces of software. To facilitate broader adoption of

optically-guided single cell profiling, we sought to streamline the process of directing MS

acquisition with whole-slide microscopy images. As reported by Jansson et al., the first iteration

113

utilized a point-based similarity registration scheme, which improved target localization

accuracy over the previously reported piece-wise linear transform.19 User interaction was also

simplified, allowing fluid interaction with microscope images through a graphical user interface

(GUI). All functions required to begin acquiring single cell mass spectra on a Bruker

ultrafleXtreme instrument were contained in the single piece of software.

Here we present the first version of microMS to support microscopy-guided MS for a

variety of image files and mass spectrometers. The software architecture permits new

microprobe instruments to be supported with minor modifications to the source code. Virtually

any spatially restricted sampling probe capable of precisely recording and moving to a given

location can perform such profiling.

First, the unique features of microMS are described along with the necessary

modifications to expand device support for both commercial and customized instruments. We

then illustrate an example of using microMS on three MS systems for off-line, targeted profiling

of single cells from the mammalian nervous system.

Materials and Methods

Software

microMS is written in python v3.5. In addition to base components, microMS requires the

matplotlib, PyQt5, numpy, scipy, openslide, skimage, pyserial packages. Installation instructions,

usage details and most recent source code may be found at

http://neuroproteomics.scs.illinois.edu/microMS.htm.

The program structure is modeled in Figure 5.1. The main GUI class is composed of two

widgets in the GUICanvas package for displaying a microscope image or population-level

statistics as a histogram. Each widget interacts with a microMSModel object, which represents a

114

single microscopy experiment (as a blobList and slideWrapper) and mass spectrometer (as a

coordinateMapper).

Targets in microMS are represented as objects called “blobs”, to generalize a biological

cell as any object formed by a group of high intensity pixels. In Figure 5.2, there are three blobs;

each with a unique Cartesian (x, y) location on the image, a corresponding effective radius, and

circularity. The circularity is a ratio of the blob area to its perimeter squared, scaled between 0

and 1, with 1 being a perfect circle, i.e. blobs 1 and 3 are single cells whereas blob 2 is not. A

collection of blobs is stored in a blobList object, which also implements methods to query and

filter a population of targets.

A slideWrapper provides an object for interacting with a set of microscopy images

representing brightfield and multiple fluorescence channel images. The current field of view is

maintained to simplify controller interaction with the image. The ImageUtilities package also

contains modules for cell finding, patterning target positions, and optimizing travel paths.

Object models for MS instruments are contained in the coordinateMappers package, as

shown in the model in Figure 5.1. The coordinateMapper is an abstract base class providing an

interface which the GUI software utilizes to interact with different instrument systems. The core

functionality of the mapper is to align pixel positions with physical coordinates and provide a

means to translate target positions on an image to instrument-specific directions. The design of

the software architecture simplifies the addition of new instruments. Integration of ambient

ionization methods, including the single-probe20,21 or nanoDESI22 are enticing candidates as they

have demonstrated single cell sensitivities in imaging and profiling applications. Currently, four

concrete implementations are supplied in the CoordianteMappers package: a Bruker

UltrafleXtreme, a Bruker SolariX, the AB Sciex oMALDI sample stage attached to a custom

115

hybrid MALDI/C60
+-SIMS, and a lab-built 3-axis liquid microjunction probe. Details about the

implementations will be discussed in the next section. Demonstrations for the addition of new

instruments to microMS may be found in the user manual packaged with the source code and in

Appendix B.

Chemicals

All chemicals were purchased from Sigma Aldrich (St. Louis, MO) and used without further

purification.

Single Cell Dissociation

Two, 2-2.5 month old male Sprague Dawley outbred rats (Rattus norvegicus) (www.envigo.com)

were housed on a 12-h light cycle and fed ad libitum. Animal euthanasia was performed in

accordance with the appropriate institutional animal care guidelines (the Illinois Institutional

Animal Care and Use Committee), and in full compliance with federal guidelines for the humane

care and treatment of animals. Dissected cerebellum and suprachiasmatic nucleus (SCN) tissues

were incubated in a solution of 1% Hoechst 33342 in oxygenated modified Gey’s balanced salt

solution (mGBSS) for 30 minutes at 37°C. The mGBSS solution was removed and the tissues

were incubated in an oxygenated solution of 6 units of papain, 1 mM L-cysteine, and 0.5 mM

ethylenediaminetetraacetic acid for 80 minutes at 37°C. Tissue was then mechanically

dissociated in mGBSS with 0.04% paraformaldehyde. A solution of 80% glycerol in mGBSS

was added to a final concentration of 40% glycerol. The cell suspension was then transferred

onto ITO-coated glass slides (Delta Technologies, Loveland, CO) with at least 12 fiducial marks

etched by a diamond-tipped pen.

116

Microscopy Imaging

Brightfield and fluorescence images were acquired on a Zeiss Axio Imager M2 (Zeiss, Jena,

Germany) equipped with an Ab cam Icc5 camera, X-CITE Series 120 Q mercury lamp (Lumen

Dynamics, Mississauga, Canada), and a HAL 100 halogen illuminator (Zeiss, Jena, Germany).

The 31000v2 DAPI filter set was used for fluorescence excitation. The images were acquired in

mosaic mode with a 10x objective and 13% overlap. Images were processed and exported as tiff

files using ZEN software version 2 blue edition (Zeiss, Jena, Germany).

Sample Preparation

Slides were coated with 50 mg/mL 2,5-dihydroxybenzoic acid (DHB) dissolved in 1:1 (v/v) LC-

grade ethanol:water with 0.1% trifluoroacetic acid with an automatic sprayer described

previously.19,23 The matrix solution was supplied at 10 mL/hr and nebulized with N2 gas at 50 psi

over 100 passes. Samples were affixed to a rotating plate with the nebulizer positioned 1.5 cm

above the samples, resulting in a MALDI matrix thickness of ~0.1-0.2 mg/cm2.

Instrument Parameters

Single cell analysis was performed on three instruments. The UltrafleXtreme mass spectrometer

(Bruker Daltonics, Billerica, MA) was set with a mass window of m/z 400-3000. The “Ultra”

(~100 µm footprint) laser setting was used with 300 laser shots at 1000 Hz for each cell to

generate a MALDI-TOF mass spectrum at each cell. The second instrument is a 7 T SolariX FT-

ICR mass spectrometer (Bruker Daltonics, Billerica, MA), operated with a mass window of m/z

150-3000, yielding a 4 Mword time-domain transient. Spectra were calibrated to the

phosphatidylcholine headgroup at m/z 184.07332. Adsorption mode was used to effectively

double the mass resolving power. Each MALDI spectrum was acquired with 20 laser shots at

1000 Hz and 60% laser energy. The laser setting produced a ~100 µm footprint. The last

117

instrument is a custom hybrid MALDI/C60
+ Q-TOF mass spectrometer, described in detail

elsewhere.11 The C60
+ ion beam was utilized for secondary ion mass spectrometry (SIMS), with

the mass analyzer operated in positive mode with a mass range of m/z 60-850. Correctly parsing

the spectra requires additional instrument modifications and data analysis routines, described

elsewhere.24

Results and Discussion

Instrument support in microMS

Bruker instruments are discussed first as their MALDI sample stages and coordinate mappers are

similar. The commonality is exploited by the brukerMapper abstract base class, which is a

derived class of coordinateMapper. BrukerMapper implements methods for reading and writing

xeo geometry files, which are required in Bruker software for automatic acquisition. The

brukerMapper class also defines an intermediate coordinate system between physical, motor

coordinates and the fractional distances used in xeo files. The classes derived from

brukerMapper require a limited set of concrete method implementations to be fully functional as

many features are supported in the bases class. The simplest case is ultraflexMapper, for the

Bruker ultrafleXtreme instrument, which defines the required methods to parse user input.

The solarixMapper class for a Bruker SolariX instrument is similar to the

ultraflexMapper class with three minor modifications: 1) the xeo files are limited to 400

positions, 2) an xlsx Excel file is also required for automatic acquisition, and 3) input coordinates

are read directly from the system clipboard. The flexImagingSolarix object extends

solarixMapper and overrides the saved file format for import in flexImaging software. These two

instruments provide examples of supporting microscopy-guided MS on Bruker MALDI sources.

118

Instruments from other vendors inherit directly from the coordinateMapper. One example

is the oMALDIMapper for interfacing with an AB Sciex oMALDI server. With this instrument,

the sample positions are encoded in ptn pattern files which contain an x,y coordinate relative to

the starting position with calibrated motor steps. Hence, in comparison to brukerMapper,

oMALDIMapper transforms motor coordinates to ptn coordinates instead of fractional distances.

To further simplify correlation of mass spectra to image coordinates, a corresponding text file is

also exported with pixel positions of each target. As a final consideration, the sample stage was

found to have significant motor slop upon changing direction. The motor slop is corrected before

exporting the ptn file to ensure accurate targeting.

In the preceding examples, microscopy images are correlated with physical positions on a

mass spectrometer sample stage to generate instrument-specific target coordinates. This off-line

workflow is ideal for instruments lacking support for external control of the sample stage, as is

usually the case. To demonstrate capabilities with on-line analysis and instrument control,

additional interfaces were developed for controlling Zaber linear actuators. The zaberMapper

class contains a simple implementation of the abstract base class coordinateMapper. It also has

an instance variable connectedInstrument, which is used by microMS to interact with the sample

stage. Another abstract base class, connectedInstrument specifies the method signatures

necessary for a connected instrument. The concrete implementation provided is a system with

three linear actuator stages, zaber3axis. This module inherits from zaberInterface, containing

serial wrappers to simplify interaction with each stage, and implements the connectedInstrument

interface. In addition to reading the current, physical position for coordinate registration, the user

directs stage movement on the optical image or with key strokes.

119

microMS Functionalities

General features of microMS include locating targets, filtering the target population, patterning

each target, and coordinating the image with the physical location of a mass spectrometer stage.

Only the last step is instrument specific. Users should refer to the User Guide in Appendix B for

a comprehensive illustration of these functionalities.

 (a) Locating targets. Targets may be specified on the microscope image either by manually

selecting locations or by performing automatic blob finding. In the former approach, targets are

added via holding the “shift” key and left mouse clicking on the center of the feature of interest.

This generates a blob of default radius and circularity of 1. A custom radius is specified by

clicking and dragging from the circumference to the center of the feature.

In automatic blob finding, the search takes place over the entire image area unless a

region of interest (ROI) is specified. ROIs are defined by clicking and dragging a rectangular

area or drawing the region a vertex at a time. The blob finding algorithm thresholds the specified

image color and then groups together pixels above that threshold, as shown in Figure 5.2B. Each

group is then evaluated for its size and circularity. Putative blobs falling outside the user-

specified parameters are discarded. Several features are available to assist with selection of

suitable blob finding parameters. Different blob finding parameters are interactively tested on the

current image field of view. Additionally, microMS reports pixel intensities, object size and

circularity of positions selected with a middle mouse button click. Judicious selection of these

parameters will find most cells while excluding imaging and background artifacts.

After the targets are located, their properties are stored as lists within microMS. Up to ten

separate target lists are maintained and each list is displayed as a different color. New target sets

120

generated by filtering or patterning are automatically stored in an empty list with the original

target set left intact.

(b) Filtering targets. Frequently, it is beneficial to filter the target list, either to refine putative

blobs or to stratify targets based on morphology. Basic filtering methods provided by microMS

are selected through the menu bar which include ROI filtering and distance filtering. Within a

specific ROI, the blobs can be selectively removed or exclusively retained in a new target list.

ROI filtering is especially useful for removing targets which are near fiducials or potentially

contaminated by substrate background. Distance filtering helps to ensure each MS target position

will correspond to a unique object (e.g. a single cell). An appropriate value for distance filtering

is chosen based on the microprobe size, target accuracy, and the desired number of samples per

blob. For example, a 100 µm diameter probe on a system with 50 µm target accuracy would

require distance filtering of at least 100 µm to minimize the chance of sampling a nearby blob.

During distance filtering, any target with a neighbor closer than the specified value is removed

from the blob list.

In addition to common filtering functions, microMS supports interactive examination of

population-level statistics through the histogram window to partition the target list (Figure 5.3).

Metrics include blob size, circularity, nearest neighbor distance, and fluorescence intensity. Note

that there is some redundancy between histogram filtering and blob finding. The overlap permits

the selection of lenient blob finding parameters to exhaustively identify all putative cells which

are then refined to the final target set. Such a scheme allows distance filtering to identify all

possible contaminating objects and sub-classification based on size.

High and low pass filters of the targets may be defined on the histogram window. Targets

falling within a filter range are dynamically displayed on the microscope image in the

121

corresponding color (Figure 5.3B-C). Selecting a blob in the microscope image highlights its

value on the histogram to assist with defining filter limits. High and low pass filters define new

target lists that may be further refined by additional histogram operations. This function allows

operations such as filtering a population based on size followed by selection of targets with a

particular fluorescent stain. More routinely, the histogram provides a simple method to identify

and remove artifacts from blob finding. Figure 5.3C shows an example of isolating unresolved

cells, which helps ensure data quality.

(c) Patterning targets. By default, microMS generates one acquisition target per blob. Single

target sampling is sufficient when the microprobe size is similar to or larger than the target

object. However, when the object is larger than the probe, a single acquisition is insufficient to

robustly sample heterogeneous objects. Alternatively, MSI of each blob can be acquired at each

target location. To address advanced sampling requirements, microMS provides three sample

patterning schemes, shown in Figure 5.4.

The first option is a rectangular packed array of points centered on the target (Figure

5.4A). Users select a raster spacing and number of layers to define the overall size of the image.

Alternatively, the size is dynamically adjusted to the target radius to ensure complete sampling

of heterogeneously sized populations. The resulting data is directly interpretable as an MS image

with common MSI software.

Similar to rectangular packing is the hexagonal close packing pattern (Figure 5.4B). With

a circular desorption probe, the hexagonal packing provides denser sampling of the target. Users

define the target separation, number of layers, and specify dynamic layering. While hexagonally

packed data are more difficult to reconstruct into an image, averaging the spectra yields a

representative spectrum for the blob.

122

Finally, the circular pattern generates targets around the circumference of each blob

(Figure 5.4C). In some cases, analyzing the center of a blob produces low sensitivity due to the

morphology of the target or the biological nature of the samples. Instead, targets are placed

immediately outside of a blob to acquire representative spectra. For circular patterning, the user

defines a minimum target-to-target distance, maximum number of targets, and offset from the

circumference. The actual number of targets around a blob is determined by the blob size and the

specified offset while maintaining the target-to-target distance above the minimum limit. Targets

are then equally spaced around the blob. Averaging the resulting data provides a characteristic

spectrum of the area directly surrounding each blob.

(d) Coordinate transformation to instrument systems. Once all targets are determined, the pixel

positions must be translated into the physical coordinates of a mass spectrometer or similar

platform. Image correlation in microMS is accomplished through a point-based similarity

registration. In point-based registration, the target localization error scales inversely with the

square root of the number of fiducial points. As such, while microMS supports arbitrary numbers

of fiducials, at least 12 fiducials are recommended for robust coordinate training. Similarity

transformations do not correct for shearing of images, so the field of view must remain normal to

the sample surface during image acquisition and MS analysis.

Generally, a fiducial is located in the microscope image and the instrument system with

the assistance of an integrated video camera. When the microprobe is positioned over the center

of a fiducial mark, the same location is selected on the image in microMS with a right mouse

click. This opens a popup window requesting the physical x, y position. A default x, y position is

displayed in the popup which directly reads the stage position, pastes text from the computer

clipboard, or predicts the closest location, depending on the selected instrument.

123

Fiducials are displayed on the microscope image as blue circles with labels corresponding

to the nearest set position on the instrument, as shown in the schematic of Figure 5.5. A few

feedback features are included to help the user assess the quality of the current registration. If

applicable, labels display set points of the instrument coordinate system. The labels shown in

Figure 5.5B correspond to a Bruker MTP slide II adapter. For some instruments, a set of

preprogrammed positions are displayed, showing the predicted location of those points on the

microscope image. A large deviation, typically due to an inaccurate input will be detected by a

discrepancy in the expected and displayed label. Finally, the fiducial with the worst fiducial

localization error is highlighted in red, indicating that specific position assignment should be

reconsidered. Correcting the problematic fiducial will cause the next worst fiducial to be

highlighted. Once the same fiducial stays highlighted, the registration is close to optimal.

Adjusting the worst fiducial is good practice to produce accurate targets.

With a full set of fiducials, the target positions may be saved in instrument-specific

format for offline analysis. Alternatively, microMS can communicate directly with an instrument

to instruct it to move and perform an analysis. Due to limited vendor support, direct instrument

control is demonstrated on a lab-built stage.

The current microMS distribution supports the Bruker ultrafleXtreme, Bruker solariX,

AB Sciex oMALDI server, and a lab-built liquid microjunction extraction stage. For the

supported MS systems, the user registers fiducials and saves instrument positions without

modifications. Furthermore, microMS has ample room for customization due to the abstract base

class construction of the CoordinateMappers package. The general framework remains

unchanged, but there are opportunities to tune each function to a specific application. Examples

124

include the ability to directly read fiducial positions from an instrument, grab the contents of the

computer clipboard, and perform stage movement slop correction.

Accuracy of point based similarity registration. A vital metric for optically guided profiling is

the target localization error. An accurate transformation between optical image and physical

location ensures that each sample corresponds to the position of interest. microMS allows

training sets of arbitrary sizes. Including more fiducials reduces target localization error,

effectively distributing uncertainty of a given fiducial over the entire transformation. Several

factors influence accuracy including the precision of stage movement, fiducial localization

accuracy (in both image and physical coordinate systems), number of fiducials, whole-slide

image stitching, and proper sample positioning during image and MS acquisition. Users should

carefully consider these factors to establish adequate probe size and distance cutoffs prior to data

acquisition.

To assess the accuracy of an MS system with microMS, an image based method was

developed to link the requested and actual target positions, as shown in Figure 5.6. The target

localization error is defined as the Euclidean distance between a requested position and the

actual, transformed position during coordinate registration and is synonymous with accuracy. To

assess this value, a thin layer of DHB matrix was coated on an ITO glass slide to act as a tracer

for the probe position. A standard sample was prepared with 16-24 fiducials along the exterior of

a target. An additional set of fiducials were included within this region to mimic the location of

samples in a profiling experiment. The interior marks were not used for coordinate registration,

but rather to assist with overlaying the pre- and post-analysis images. Several target locations

were manually placed around each interior fiducial. Dividing the targets between multiple trials

is useful for designing experiments to test the effect of possible confounding variables.

125

Next, fiducial training was performed with the MS system and the set of targets was

desorbed with sufficient time to noticeably remove the DHB matrix. After desorption, the target

area was optically imaged again to reveal the actual position of sampling events. Desorption

locations and sizes are marked as blobs in microMS and saved for further analysis. To overlay

the two images, subsets of the pre- and post-desorption image were cropped and roughly

positioned prior to intensity-based registration with custom scripts in MATLAB (R2015b). The

resulting transformation was used to map the target pixel positions onto the post-extraction

image. The distance between the requested and actual desorption positions is a direct

measurement of the target localization error. With this method, the target localization of the

Bruker ultrafleXtreme was found to be 38.3 ± 3.9 µm (mean ± S.E.M, n = 71, Figure 5.6) over

an area of approximately half a microscope slide, an error of about one part per thousand. As

previously mentioned, the probe radius should be as large as the target localization error and the

distance filter applied should be larger than the sum of this error and the probe radius.

In experiments to assess the effect of various confounding factors on target accuracy,

desorption was repeated multiple times with the same sample and slide image. Different laser

spot sizes, users, target locations and fiducial training sets were examined. The only significant

factor found was the fiducial training set (Figure 5.6D). Overall accuracy is not dependent on

the target location (Figure 5.6E), laser spot size or user (data not shown). Within an experiment,

the accuracy is fairly constant, independent of the user or location on the sample. However,

repeating an experiment with the same sample could produce significantly different accuracy.

This result confirms the profound effect of quality fiducial training sets on the target accuracy.

Extreme care is required when training fiducials to ensure the image target locations correspond

to the expected mass spectra.

126

A demonstration: Sequential analysis of the same target

For single cell profiling experiments, the physical location of a cell on the slide effectively

isolates it from neighbors and prevents mixing, which greatly simplifies data fusion. microMS

provides a utility for performing sequential analysis of the same target on different instruments

with ease. Using the optical image as a map to record each target address, the image position can

be transformed into any supported instrument coordinate system. A careful selection of the order

of experiments facilitates the repeated analysis of a sample to provide complementary chemical

information.

Figure 5.7 shows two examples of sequential single cell profiling using MS instruments

with different capabilities. In panel A, dispersed, rat cerebellum cells were initially profiled with

a Bruker ultrafleXtreme to rapidly assess the lipid content with moderate resolution and mass

accuracy. From the initial mass spectral dataset, cells without significant lipid signals are

discarded from further consideration as they likely represent artifacts from optical imaging or

sample preparation such as dust particles. The resulting population is then selected for follow-up,

high resolution, high mass accuracy analysis with a Bruker solariX FT-ICR. Due to the increased

sample acquisition time, exhaustive analysis of large populations is cost-prohibitive. Performing

a preliminary filtering maximizes the efficiency of subsequent data analysis, without consuming

the entire cellular content.

While the overall lipid profiles are similar, there are some discrepancies between lipid

ratios of the two methods. This could represent changes in the sample layers that each technique

is analyzing. Nonetheless, the advantage of single cell FT-ICR is immediately apparent with the

ppm mass accuracy and over an order of magnitude higher mass resolution, shown in each inset

for putative [PC(32:0)+H]+. Once the MALDI-TOF has identified cells with abundant lipid

127

signal, they are filtered to locate individuals requiring exact mass measurement for elemental

composition analysis. Such a workflow facilitates exhaustive cell population analysis while

efficiently utilizing the FT-ICR as needed.

As a second example, Figure 5.7B displays a C60
+-SIMS mass spectrum and the

corresponding MALDI-TOF mass spectrum of a single cell derived from the rat suprachiasmatic

nucleus. Here, the low sample consumption of SIMS was leveraged by follow-up MALDI-TOF

to provide more, complementary information than would be possible with either technique alone.

In the low mass range, peaks corresponding to phosphatidylcholine headgroup and a cholesterol

fragment are apparent in the SIMS spectrum at m/z 184.09 and 369.31 respectively. MALDI-

TOF demonstrates better sensitivity to intact lipids and detects lipid dimers and peptides.

Comparing the identity of lipids over the same range, SIMS appears to favor sodiated adducts

([PC(32:0)+Na]+ and [PC(34:1)+Na]+ at m/z 756.47 and 782.55 respectively) more than the

protonated forms seen in MALDI-TOF ([PC(32:0)+H]+ and [PC(34:1)+H]+ at m/z 734.54 and

760.55 respectively). These relative intensities likely reflect the different ionization processes

occurring in each instrument. Together, a wide mass range is covered to provide a more

complete profile of the sample.

These examples may represent the first demonstration of multiple MS platforms

measuring the same individual cells with high throughput. In each example, the ability to

repeatedly analyze the same cell was leveraged to acquire complementary information from

multiple instruments. Such an experiment would be difficult to perform at high throughput

without linking the target locations by the optical image of each sample. With microMS,

sequential analysis is facile, enabling each cell to be exhaustively characterized by multiple

techniques.

128

Conclusions and Future Directions

microMS is the first generation of an open source python package for robust image analysis and

coordinate registration, which are essential for optically-guided MS profiling. microMS provides

a rich feature set for image analysis suited for optically-guided MS profiling. Targets may be

automatically located, filtered, stratified and patterned prior to MS analysis. These functions

provide access to single cell profiling with multichannel fluorescence image analysis. The unique

aspect of microMS is how mass spectrometers are represented for MS profiling. The

implementation of specific MS systems through an abstract base class and software architecture

provides a straightforward means for adapting microMS to arbitrary microprobe instruments.

While this simplifies connecting microMS to new systems, it also facilitates sequential analysis

of the same target by uniquely addressing each cell coordinate. We believe the rich feature set

and ease of extending microMS to a variety of mass spectrometers and other instruments will

facilitate the growth of single cell profiling.

Figures

Figure 5
organizat
controlle
which ho
between
interactin
another c

5.1. Unified
tion and rel
r design pat
olds the GU
ImageUtilit

ng with mic
coordinate sy

d Modeling
lation betwe
ttern. The v
UI compone
ties and Coo
croscopy im
ystem for on

Language
een each fil
view and con
ents and the
ordinateMap

mages and ta
n-line or off-

129

(UML) cla
le. The over
ntroller are
e controller

ppers packag
argets. Coor
line analysis

ass diagram
rall architec
contained in

r (microMSM
ges. ImageU
rdinateMapp
s of targets.

m of microM
cture follow
n the GUIC
Model). Th

Utilities cont
pers provide

MS showing
ws a model-v
Canvases pac
he model is
ains module
s an interfa

g the
view-
ckage

split
es for
ace to

Figure 5
intensity
neighbor
pixels) an

image. †T

5.2. Overvie
is filtered b

ring pixels to
nd circularit

The effectiv

ew of blob
by a thresho
o generate p
ty. The area

e radius is c

finding wit
old intensity
putative blob

(A) and per

alculated as

130

th microMS
y. (B) Pixels
bs. Each gro
rimeter (P) a

. ‡The

S. From an
s above the

oup of pixels
are directly m

e circularity

input imag

e threshold a
s is evaluate
measured fr

is calculated

ge (A), the
are grouped
ed for its siz
rom the thre

d as .

pixel
with

ze (in
shold

Figure 5
blobs ma
The histo
blobs dyn

5.3. Populati
ay be filtered
ogram can b
namically co

on-level filte
d by size, ci

be divided in
olored in the

ering throug
ircularity, m
nto a low pa
e microscope

131

gh the histog
inimum pair

ass, high pas
e image (B a

gram window
rwise distan

ss, or single
and C).

w. (A) A pop
nce, or fluore

interval wit

pulation of f
escence inte
th the approp

found
nsity.
priate

Figure 5
example
packing p
provides
the circum

5.4. Schemat
shows dyna
produces ev
more efficie
mference of

tic illustratio
amic pattern
en x,y spacin
ent sampling
f each blob.

on of the thr
sizes, thoug
ng around th

g of the entir

132

ree patternin
gh static patt
he center po
re blob. (C) C

ng methods
terning is als
oint of each b
Circular pac

provided in
so available.
blob. (B) He

cking positio

n microMS.
. (A) Rectan
exagonal pac
ons targets ar

Each
ngular
cking
round

Figure 5
such as e
nearest n
worst fid
displayed
dynamica

5.5. Schemat
etched x mar
named coord
ducial localiz
d. (C) After
ally highligh

tic of fiducia
rks on the gl
inate for eac

zation error,
r removing
hted.

al training. (
lass slide. (B
ch fiducial. F
which is in r
and retrain

133

(A) The inpu
B) An initial
Fiducials are
red. A set of
ning the wo

ut image inc
attempt at r

e shown in b
f predicted lo
orst fiducial

cludes severa
registration w
lue, except t
ocations in y
l the next w

al fiducial po
with labels o
the point wit
yellow are al
worst fiduci

oints,
of the
th the
lso be
ial is

Figure 5
around a
matrix an
location
registrati
desorptio
localizati
simultane
shown he
significan
0.3) did n

5.6. Determi
an image of
nd analyzed
of resulting

ion of panels
on marks. O
ion error of
eously inclu
ere. A three-
ntly affected
not.

nation of ta
an etched x
by optically

g desorption
s A and B a

Overlap is sho
f the registr
uding multip
way linear A

d accuracy (p

arget localiza
x mark. The
y-guided MS

events (red
allows the di
own in yello
ration set. T
ple training
ANOVA dem
p << 0.05),

134

ation error. (
sample is th

S to generate
d) are determ
irect mappin
ow. The dista
The effect o

sets, locati
monstrated th
the location

(A) Target l
hen coated
 desorption

mined by op
ng of reques
ance betwee
of various p
ion on slide
hat while the

on the slide

locations (gr
with a thin
craters in the

ptical micros
sted target lo
en these posi
parameters m
e, or size of
e specific fid
e (p = 0.6) a

reen) are ma
layer of MA
e matrix. (B
scopy. (C) Im
ocations ont
itions is the t
may be ass
f microprob
ducial trainin
and spot size

arked
ALDI
) The
mage
to the
target
essed

be, as
ng set
e (p =

Figure 5
been loc
allowing
of a cere
high thro
Here, FT
composit
MS (bot
informati
species,
coverage

5.7. Sequenti
ated in the
two instrum
bellum-deriv

oughput scre
T-ICR provid
tion of select
ttom) with
ion on smal
such as lipid

e from each m

ial analysis o
optical ima

ments to prob
ved cell foll
eening of th
des high ma
ted cellular c
a DHB-co

ll molecule
d dimers an
modality.

of the same
age (top), its
be the same
lowed by MA
housands of
ss resolution
contents. (B

oated, supra
compounds
d peptides.

135

cell with tw
s location re
set of select
ALDI-FT-IC
cells to high
n and high m
) SIMS prof

achiasmatic
s while MA
The inset de

wo separate M
emains fixe
ted cells. (A
CR MS (bott
hlight rare o
mass accurac
filing (middl

nucleus de
ALDI-TOF M

emonstrates

MS systems
ed through m
A) MALDI-T

tom). MALD
or representa
cy for unequ
le) followed
erived cell.
MS effective

some overl

s. Once a cel
multiple ana
TOF MS (mi
DI-TOF pro
ative individ
uivocal elem
by MALDI-
SIMS pro

ely detects l
lap of intact

ll has
alyses
iddle)

ovides
duals.

mental
-TOF

ovides
larger
lipid

136

References

(1) Lanni, E. J.; Rubakhin, S. S.; Sweedler, J. V. J Proteomics 2012, 75, 5036.

(2) Rubakhin, S. S.; Lanni, E. J.; Sweedler, J. V. Current Opinion in Biotechnology 2013, 24, 95.

(3) Comi, T. J.; Do, T. D.; Rubakhin, S. S.; Sweedler, J. V. Journal of the American Chemical

Society 2017.

(4) Armbrecht, L.; Dittrich, P. S. Analytical Chemistry 2017, 89, 2.

(5) Chen, X.; Love, J. C.; Navin, N. E.; Pachter, L.; Stubbington, M. J. T.; Svensson, V.;

Sweedler, J. V.; Teichmann, S. A. Nat Biotech 2016, 34, 1111.

(6) Zenobi, R. Science 2013, 342, 1243259.

(7) Korte, A. R.; Yandeau-Nelson, M. D.; Nikolau, B. J.; Lee, Y. J. Anal Bioanal Chem 2015,

407, 2301.

(8) Kompauer, M.; Heiles, S.; Spengler, B. Nat Meth 2016, advance online publication.

(9) Lee, J. K.; Jansson, E. T.; Nam, H. G.; Zare, R. N. Analytical Chemistry 2016, 88, 5453.

(10) Passarelli, M. K.; Ewing, A. G. Current opinion in chemical biology 2013, 17, 854.

(11) Lanni, E. J.; Dunham, S. J.; Nemes, P.; Rubakhin, S. S.; Sweedler, J. V. Journal of The

American Society for Mass Spectrometry 2014, 25, 1897.

(12) Yeager, A. N.; Weber, P. K.; Kraft, M. L. Biointerphases 2016, 11, 02A309.

(13) Spitzer, Matthew H.; Nolan, Garry P. Cell 2016, 165, 780.

(14) Pabst, M.; Fagerer, S. R.; Kohling, R.; Kuster, S. K.; Steinhoff, R.; Badertscher, M.; Wahl,

F.; Dittrich, P. S.; Jefimovs, K.; Zenobi, R. Anal Chem 2013, 85, 9771.

137

(15) Ibáñez, A. J.; Fagerer, S. R.; Schmidt, A. M.; Urban, P. L.; Jefimovs, K.; Geiger, P.;

Dechant, R.; Heinemann, M.; Zenobi, R. Proceedings of the National Academy of Sciences 2013,

110, 8790.

(16) Krismer, J.; Sobek, J.; Steinhoff, R. F.; Fagerer, S. R.; Pabst, M.; Zenobi, R. Applied and

environmental microbiology 2015, 81, 5546.

(17) Fagerer, S.; Schmid, T.; Ibanez, A.; Pabst, M.; Steinhoff, R.; Jefimovs, K.; Urban, P.;

Zenobi, R. Analyst 2013.

(18) Ong, T. H.; Kissick, D. J.; Jansson, E. T.; Comi, T. J.; Romanova, E. V.; Rubakhin, S. S.;

Sweedler, J. V. Anal Chem 2015.

(19) Jansson, E. T.; Comi, T. J.; Rubakhin, S. S.; Sweedler, J. V. ACS Chemical Biology 2016,

11, 2588.

(20) Pan, N.; Rao, W.; Liu, R.; Kothapalli, N.; Burgett, A.; Yang, Z. Planta Medica 2015, 81,

IL55.

(21) Pan, N.; Rao, W.; Kothapalli, N. R.; Liu, R.; Burgett, A. W.; Yang, Z. Analytical Chemistry

2014, 86, 9376.

(22) Laskin, J.; Heath, B. S.; Roach, P. J.; Cazares, L.; Semmes, O. J. Analytical Chemistry 2012,

84, 141.

(23) Li, B.; Comi, T. J.; Si, T.; Dunham, S. J.; Sweedler, J. V. Journal of Mass Spectrometry

2016, 51, 1030.

(24) Do, T. D.; Comi, T. J.; Dunham, S. J. B.; Rubakhin, S. S.; Sweedler, J. V. Analytical

Chemistry 2017.

138

CHAPTER 6

SINGLE CELL PEPTIDE HETEROGENEITY OF RAT ISLETS OF LANGERHANS

Notes and Acknowledgements

This chapter was published as an original research article in ACS Chemical Biology 2016, DOI:

10.1021/acschembio.6b00602, coauthored by E.T. Jansson, S.S. Rubakhin, and J.V. Sweedler.

The article is adapted and reprinted here with permission from the American Chemical Society,

copyright 2016. E.T. Jansson performed islet isolation, LC-MS analysis, molecular dynamics

simulations and authoring of the manuscript. T.J. Comi performed MALDI MS analyses,

multivariate statistics, and authoring of the manuscript. The project described was supported by

the National Institutes of Health, Award Number P30 DA018310 from the National Institute on

Drug Abuse, and Award Number U01 MH109062 from the National Institute of Mental Health.

The Core Facilities at the Carl R. Woese Institute for Genomic Biology, UIUC, provided access

to the digital pathology scanner. We thank Ning Yang, UIUC, for technical assistance with the

FT-ICR MS.

Introduction

The heterogeneity and variability of individual cells is critical for the survival and propagation of

life. Cellular heterogeneity is thought to be necessary for higher-level systems, suggesting that

“variation is function”, where nuanced variation across single cells provides a means of graded

response.1 Greater phenotypic heterogeneity is also vital; for example, the cellular heterogeneity

of islets of Langerhans, which are composed of four major cell types. Each type of endocrine cell

is functionally interconnected, yet chemically distinct, providing plastic responses of an

organism to fluctuating environments. Cellular heterogeneity facilitates the endocrine functions

of islets of Langerhans that are essential for glucose homeostatis.2,3

139

Due to the importance of islets of Langerhans in normal and pathological glucose

utilization, the cellular heterogeneity and variability of this microorgan are well studied using

approaches such as immunohistochemical profiling,4-7 single cell transcriptomics analysis,1,8,9

and metabolomic and proteomic profiling.10,11 Mass spectrometry (MS) has become an important

tool for the investigation of peptide content in organelles, cells, and tissues, such as the endocrine

pancreas. MS has been efficiently used to probe the secretome, metabolome, peptidome, and

proteome of whole islets.12-16 MS investigations of the peptide content of islets have revealed

unknown cell-to-cell signaling molecules and indicated novel prohormone processing. However,

most prior studies utilized individual or pooled islets, consisting of thousands of cells. Hence,

these ensemble measurements conceal the biological variability and functional heterogeneity of

individual cells. Matrix-assisted laser desorption/ionization (MALDI) MS is uniquely suitable

for the detection and characterization of peptides in small samples, including single cells, due to

its high sensitivity and low sample consumption. Beginning with the MALDI MS analysis of

single neurons from Lymnaea stagnalis and Aplysia californica more than 20 years ago,17,18 the

technique has evolved into a powerful tool for measuring peptide content in minute samples such

as cells and even individual organelles.19-24

Microscopy-guided, single cell MALDI MS greatly increases sample throughput,

facilitating the measurement of peptide and metabolite content for thousands of cells.10,11 Such

rapid analysis of cell populations is key to successfully assessing cellular heterogeneity. The

technique is amenable to peptide detection from virtually any type of cell. Non-targeted, label-

free analysis of large populations coupled with multivariate statistical analysis allows detection

of rare cellular phenotypes and enables the study of differential peptide expression in cellular

subtypes. Here, using microscopy-guided, single cell MALDI MS we examined the cellular

140

heterogeneity of islets of Langerhans located in the dorsal and ventral regions of the rat pancreas.

By classifying each spectrum based on canonical and cell-specific peptide expression, the

cellular composition of individual islets was directly measured and the proportion of α-, β-, γ-,

and δ-cells was found to differ between the pancreatic regions. Furthermore, the dataset revealed

novel prohormone processing products as well as their location-specific abundance.

Methods

Chemicals

Collagenase P (from Clostridium histolyticum) used in the enzymatic isolation of islets of

Langerhans was purchased from Roche Diagnostics (Indianapolis, IN). Mass spectrometer

calibration was performed using a Peptide Calibration Standard Kit II (angiotensin II,

angiotensin I, substance P, bombesin, ACTH clip 1–17, ACTH clip 18–39, somatostatin 28,

bradykinin fragment 1–7, renin substrate tetradecapeptide porcine with added bovine insulin)

obtained from Bruker Daltonics (Billerica, MA). All other chemicals were purchased from

Sigma-Aldrich (St. Louis, MO).

Isolation of Islets of Langerhans and Single Cell Preparation

Male, four-month old Sprague-Dawley rats from Harlan Laboratories (Indianapolis, IN) were

euthanized by decapitation. The vertebrate animal use protocol was approved by the Institutional

Animal Care and Use Committee at the University of Illinois at Urbana–Champaign. Islet

isolation was performed as described elsewhere,52 with minor modifications. Modified Gey’s

balanced salt solution (mGBSS) was prepared, containing 1.5 mM CaCl2, 4.9 mM KCl, 0.2 mM

KH2PO4, 11 mM MgCl2, 0.3 mM MgSO4, 138 mM NaCl, 27.7 mM NaHCO3, 0.8 mM NaH2PO4,

and 25 mM HEPES dissolved in Milli-Q water (Millipore, Billerica, MA), with the pH adjusted

to 7.2 using NaOH in Milli-Q water. For islet isolation, the mGBSS was supplemented to a final

141

concentration of 5 mM d-glucose and 1% (w/v) bovine serum albumin (buffer 1). Each pancreas

was injected through the bile duct with 2 mL of 1.4 mg/mL collagenase P solution dissolved in

buffer 1. Next, the ventral and dorsal regions were surgically dissected following morphological

landmarks along the lower duodenum as described elsewhere.5 The two resulting tissues were

placed in separate glass vials, each containing 1 mL of the collagenase P solution. The pancreatic

tissues were incubated in a recirculating water bath for 20–30 min at 37 °C to digest exocrine

tissue while leaving islets primarily intact. The resulting suspension was washed twice with

buffer 1 and centrifuged for 3 min at 300 × g. The resulting pellet was resuspended in 10 mL

buffer 1 and islets were manually isolated with a micropipette under visual control using an

inverted microscope.

To stabilize the cells and label their nuclei for fluorescent targeting, each islet was

transferred to 20 µL of a staining and cell stabilization solution consisting of 40% (v/v) glycerol

in buffer 1 with 0.1 mg/mL Hoechst 33342.53 Islets were incubated for 2 h at 15 °C before

trituration of individual islets into single cells onto indium tin oxide (ITO)-coated glass

microscopy slides (Delta Technologies, Loveland, CO). Studies of intact islets were performed

as above but without trituration. To decrease bias, single cell dispersions from individual islets

were randomly placed onto subdivided areas of the slides, such that each slide contained cells

from at least two different animals. These efforts ensured that significant differences in

abundance were not due to batch effects between slides.

For the LC–MS experiments, about 100 islets were collected and transferred to an

Eppendorf tube containing 200 µL acidified methanol (90% MeOH, 9% formic acid (FA), 1%

H2O) for peptide extraction, sonicated for 5 min, and incubated on ice for 1 h. The sample was

centrifuged for 20 min (20 000 × g, 4 °C), the supernatant was then dried down in a Savant

142

SpeedVac vacuum concentrator (Thermo Scientific, Waltham, MA) and reconstituted in 50 µL

5% MeOH, 0.1% FA. Sample clean-up was performed with a C18 spin-column (Thermo

Scientific) pre-equilibrated with 5% MeOH, 0.1% FA. After sample loading and analyte

retention, the column was washed twice with 1 mL 5% MeOH, 0.1% FA. The retained peptides

were eluted twice using 50 µL 70% MeOH, 0.1% FA. The final sample used for LC–MS

analysis was prepared by lyophilizing the eluent and reconstituting it in 10 µL 5% MeOH, 0.1%

FA.

Optical Imaging for Registration of Fiducial Marks and Single Cell Locations

To create a system of spatial coordinates, a set of fiducial marks were made on conductive ITO

slides. Cross marks were made prior to single cell suspension deposition with a diamond pen on

10–15 locations spread across each slide. Glycerol-stabilized cells or individual islets were

deposited onto the slides. After overnight incubation in a minimal volume of glycerol-containing

solution at ambient conditions, the slides were quickly rinsed with 150 mM ammonium acetate,

pH 10, and dried with a gentle stream of nitrogen gas.54 Cells and fiducial markers were located

using a Nanozoomer digital slide-scanner system (Hamamatsu, Middlesex, NJ). Silver paint

applied with a marking pen surrounding the dispersed cells was targeted for autofocusing to

acquire fluorescent and bright-field images of the suspension area. The images were processed

and analyzed to determine the relative coordinates of cells, islets, and fiducial markers.

Single Cell MALDI MS Profiling

To provide a higher throughput and more reproducible coating than via a typical airbrush, an

automatic sprayer system was developed using low-cost electric motors and linear actuators to

coat up to four slides simultaneously (Figure 6.1). Pumping matrix solution through a fused silica

capillary inserted into a stainless steel tube, similar to prototype desorption electrospray

143

ionization sources, generated the nebulizing spray. The slides were affixed to a rotating plate

with the nebulizer oscillating radially over them. By rapidly rotating the samples and performing

numerous oscillating passes, uncertainty in sprayer position was averaged and an even MALDI

matrix coating was achieved. A solution of 50 mg/mL 2,5-dihydroxybenzoic acid (DHB) in an

acetone/H2O mixture, 1/1 (v/v) with 0.05% trifluoroacetic acid (TFA), delivered at 0.5 mL/min,

was used in sample preparation for MALDI MS. For single cell profiling, the nebulizer was

placed 1 cm above the surface and oscillated over the samples 25 times with a nitrogen gas

pressure of 50 psi, resulting in a DHB coating of ~0.2 mg/cm2. Intact islets required a thicker,

dryer coating, with the sprayer operated at a 7 cm distance from the sample with nebulizing gas

pressure at 100 psi and 100 passes.

A point-based similarity registration algorithm55 was utilized to align the relative

coordinates of cells, islets, and fiducial points on the ITO slides with the stage positions of a

Bruker ultrafleXtreme MALDI-TOF/TOF mass spectrometer (Bruker Daltonics). Scored

crosshairs, acting as fiducial markers on the slides, were located in the bright-field image and in

the ultrafleXtreme camera system. Python scripts written in-house were utilized to mark fiducial

locations and input corresponding stage locations to the registration model (Figure 6.2).

Implementing a simple threshold and group algorithm, the same software was then used to find

cells in the fluorescent and bright-field images (Figure 6.3), allowing selective recognition of the

biological structure by user-defined levels of fluorescence signal intensity, cell size, and cell

circularity. Pixel positions in the microscopy image were transformed to fractional distances,

which are required to generate custom geometry files with the registration parameters. In

addition to saving information on the registration points and cell-finding parameters, the

software generated a custom geometry file for direct import to the flexControl software (Bruker

144

Daltonics) that operated the MALDI MS automatic acquisition. Spectra were acquired with a

Bruker ultrafleXtreme MALDI-TOF/TOF mass spectrometer equipped with a frequency tripled

Nd-YAG solid state laser. The mass scan window was set to m/z 400–6000 and the laser set to

the “Ultra” footprint setting at an ~100-µm footprint diameter. The Bruker ultrafleXtreme

AutoXecute feature was utilized with the custom geometry file as previously reported.24 Each

spectrum represents the summed signals acquired during 1000 laser shots fired at 1000 Hz. From

the 48 dispersed islets analyzed, approximately 32,000 spots were profiled based on fluorescence

microscopy identification of the locations of single cells. A 100-µm distance filter removed half

of the spectra to ensure each profile corresponded to a single cell (Figure 6.4). The dataset was

then imported into ClinProTools software (Bruker Daltonics) with a 16-fold data reduction to

perform null spectra exclusion, baseline subtraction, and total ion current normalization. Initial

examination of the principal component analysis (PCA) loading plots suggested the major

contributors to sample variance were classical biochemical markers for each cell type (glucagon,

insulin, somatostatin, and PP). The mass accuracy for peptides observed with MALDI MS are

listed in Table 6.1. To simplify comparison with previous histological reports, the intensities of

somatostatin, glucagon, PP, and insulin were exported from ClinProTools for further analysis in

MATLAB (Mathworks, Natick, MA). After parsing the xml files, empty spectra were excluded

by removing samples with peptide intensities of less than 3.5 times the median value of each

peptide. Cell phenotyping was performed by k-means clustering using a cosine distance, and then

further validated with the same threshold based on the median intensity. To visualize the classes

on a single plot, the dimension of the data was reduced with PCA as shown in Figure 6.6. The

cell counts from each cluster were then matched to their corresponding cellular populations,

shown in Table 6.2.

145

Next, the inter-anatomical differences between pancreatic islet and cellular subtypes were

evaluated. Mass spectra were classified based on their peptide content and the dorsal and ventral

islet-derived cells were considered as two separate classes in the ClinProTools analyses. The 50

most intense signals between m/z 1000–6000 were evaluated for statistically significant

differences for each of the four cell types. The dataset was tested for univariate normality with

the Anderson–Darling test, which showed the data not to be normally distributed. Hence,

statistical tests of differences were performed with the Wilcoxon test applying the Benjamini–

Hochberg procedure for false discovery rate correction, with p < 0.05 considered to be

statistically significant.

Improved Precision and Throughput of Microscopy-guided Single Cell MALDI MS

To facilitate the accurate targeting of small (<10 µm) features located at distances of more than 1

cm, as well as to enable high throughput MALDI MS profiling, multiple enhancements have

been made over our previous efforts. After samples were deposited on ITO glass slides, cell

finding and registration were performed via a custom Python graphical user interface,

automating many manual steps from the original protocol (see “Details of the Python Script for

Cell Finding and Generating Custom XEO Geometry Files” section below, Figure 6.3, and

Chapter 5). The geometric transformation for generating mass spectral spatial coordinates

developed in our laboratory was replaced with a probabilistic transformation using a point-based

similarity algorithm. Point-based registration is more robust in preventing fiducial localization

errors and decreases the target localization error by fourfold. When Gaussian noise, N(µ = 0 µm,

σ = 100 µm) was added to the fiducial coordinates, simulating fiducial localization uncertainty,

the target localization error decreased from 164 ± 72 µm to 38 ± 15 µm (Figure 6.2), with the

similarity transformation compared with the geometric transformation. Fluorescence images of

146

cell suspensions deposited on ITO glass slides were acquired with a histological slide scanner,

operating in batch mode with automatic image stitching. Finally, a custom MALDI matrix

application system was designed to generate more consistent matrix coatings compared to

manual artistic airbrush application (Figure 6.1); four slides can be coated simultaneously in less

than 10 min.

MALDI MSI of regions surrounding individual cells suggests that analyte spreading is

restricted to the first 50 µm, at which point the signal intensity drops to 10% of its peak value

(Figure 6.4). The analyte spreading metric required a minimum 100 µm cell-to-cell distance to

obtain single cell MALDI MS profiling data. Overall, we increased the robustness of the small

cell localization process, and decreased the sample preparation time prior to MALDI MS

acquisition from >2 h per sample to 45 min per sample.

MALDI MSI

MSI was performed on sections of rat pancreas. The tissue was fast frozen after dissection and

sectioned in 5-µm thick slices without chemical fixation at −25 °C using a Leica CM 3050 S

cryostat (Leica Microsystems, Bannockburn, IL). Pancreas sections were deposited on ITO-

coated glass slides at room temperature (23–25 °C). Specimens for MSI were spray coated with

5 mg/mL 2-(4-hydroxyphenylazo) benzoic acid in a methanol/H2O mixture (20/80 v/v)

containing 0.1% FA and 0.01% TFA with an artist’s airbrush. MSI was performed with an

utrafleXtreme MALDI-TOF/TOF mass spectrometer operating in reflector mode at positive

polarity. The laser beam was set to “ultra”, corresponding to an ~100 µm footprint. The mass

spectra were acquired in 25- or 50-µm-spaced arrays, with some expected oversampling. The MS

calibration standards were deposited onto slide locations nearby the tissue sections. The peptide

ions, and in some cases known endogenous ions, such as several of the most common lipids, as

147

well as MALDI matrix ions, were used in the post-processing step for data recalibration. MSI

data acquisition and processing was performed with flexControl, flexImaging, and ClinProTools

software (all Bruker Daltonics).

NanoLC–Fourier Transform (FT)-Ion Cyclotron Resonance (ICR) MS

Peptide identification was performed via an FT-ICR mass spectrometer (LTQ-FT Ultra, Thermo

Scientific) coupled with a nanoLC system (Eksigent 1D Plus, Eksigent, Dublin, CA). Peptide

extract (2 µL) from islets was mixed with 8 µL of loading solvent (5% acetonitrile (ACN), 0.2%

FA), injected onto a peptide trap column (150 µm inner diameter (i.d.) × 2 cm length, 5 µm

Magic AQ particles, 100 Å pore size, New Objective, Inc., Woburn, MA) and desalted with the

loading solvent. The column was flushed with loading solvent. The trap column was then placed

in line with the analytical column (PicoFrit column, 75 µm i.d. × 15 cm length, 5 µm Magic AQ

particles, 100 Å pore size, New Objective). Mixtures of ACN/water with 0.2% FA were used as

chromatographic solvents A (5/95 v/v) and B (95/5 v/v). The analytes were separated with a flow

rate of 300 nL/min over a gradient with a solvent A and B mixture as follows: 0–10 min, 0–20%

solvent B; 10–65 min, 20–55% solvent B. For MS acquisition, the mass scan window was set to

m/z 300–2000, data-dependent precursor selection was restricted to the top five most intense

ions, dynamic exclusion was enabled with a repeat count of 2, and an exclusion duration of 180s.

Peptide Sequencing

Native Thermo LC–MS data in raw file format were processed with PEAKS 7 (Bioinformatics

Solutions Inc., ON, Canada) for peptide sequencing. The data were searched against a

UniprotKB/SwissProt rat database of canonical sequences (June 2015 release, Rattus norvegicus,

7923 entries). The parent mass error tolerance was set to 50 ppm, the fragment mass error

tolerance was set to 0.01 Da. Enzymatic digestion was set to “none”. Acetylation (N-term and

148

K), amidation, oxidation (M), Pyro-glu (E and Q), half of a disulfide bridge, and phosphorylation

were allowed as variable modifications. The filtering conditions used (peptide −10 log P ≥ 15,

protein −10 log P ≥ 20, proteins unique peptide ≥ 0) resulted in a false discovery rate of 1.5% for

peptide spectrum matches.

Bioinformatic Analysis

Probabilities for processing of dibasic sites in the pancreatic prohormone (PAHO_RAT) were

calculated using the NeuroPred tool (available online at http://neuroproteomics.scs.illinois.edu),

with mammalian as the selected model option.

Ab initio calculations of PP, PP(1–24), and PP(27–36) folding were performed using the PEP-

FOLD tool (available online at http://mobyle.rpbs.univ-paris-diderot.fr), with the sequence for

full-length PP obtained from Uniprot KB (PAHO_RAT).

Results and Discussion

Intra- and Inter-islet Cellular Heterogeneity

High-throughput single cell MALDI MS profiling was used for phenotyping cells from islets of

Langerhans to uncover the chemical cellular heterogeneity of islets in anatomically and

developmentally distinct parts of the pancreas. Isolated from 48 individual islets (6 dorsal and 6

ventral islets each from a total of 4 animals), cells were deposited on ITO-coated glass slides and

examined with single cell MALDI MS. Single cell dispersions of individual islets were deposited

on separated areas of the ITO slides to keep track of the source islet. Acquired mass spectra were

classified and counted. Each successful measurement revealed the presence of chemically

distinct hormone profiles in individual cells (Figures 6.5 and 6.6). A number of peptides

characteristic for islet cell types, including glucagon (α-cells), insulin (β-cells), PP (γ-cells), and

somatostatin-14 (δ-cells) were observed (Figure 6.5). The cellular composition of individual

149

islets from the same pancreatic lobe were similar. In contrast, significant differences were found

between cell populations of the islets of the dorsal and ventral pancreas. Our findings show that

α-cells are more abundant in dorsal pancreas islets and γ-cells are more prevalent in ventral

pancreas islets (Figure 6.6, Table 6.2, and Figure 6.7). A χ2-test for independence on the

contingency table showed significant differences between islet cell populations in the two

regions (nDtot = 1768, nVtot = 1738, p < 0.00001, n = 24 dorsal islets, n = 24 ventral islets).

Importantly, these findings are in agreement with previously published histological reports

focused only on major biomarkers due to the use of affinity probes.4-7 Here, our non-targeted and

multiplex analytical technology generated a dataset to test for differential processing of islet

prohormones between anatomical regions of the rat pancreas.

Discovery of Endogenous Pancreatic Prohormone-Originated Peptides and their Different

Abundances in γ-Cells of Dorsal and Ventral Islets

A statistically significant increase in pancreatic prohormone-related peptide signal intensities

was observed in γ-cells from ventral islets when compared to dorsal islets collected from four

animals (Figures 6.8 and 6.9). These include PP(1–24) +34%, PP(27–36) +32%, PP(1–16) +7%,

and PP(18–36) +44%. In addition, correlation plots of signal intensities for PP against signal

intensities for the other peptide products within single γ-cells indicate heterogeneity of the

chemical content in cells from the ventral lobe, whereas cells from the dorsal lobe appear more

clustered together (Figure 6.10). Parent ion m/z values of peptides detected with single cell

MALDI MS were matched to m/z values of pancreatic prohormone peptides identified with LC–

MS sequencing (Tables 6.1 and 6.3). We hypothesize that the peptides are formed by

endogenous, enzymatic cleavage of the pancreatic prohormone at the dibasic or monobasic sites

of full-length PP (Figures 6.8 and 6.9). This hypothesis is supported by MALDI mass

150

spectrometry imaging (MSI) of fast-frozen pancreas sections from which we detected molecular

signals corresponding to the PP(27–36) peptide, concomitant with full-length PP (Figure 6.11),

adding confidence to the notion that PP(27-36) is synthesized endogenously. Interestingly, the

relative signal intensity of the pancreatic prohormone C-terminal peptide (aa69–98) was 25%

higher in cells of the ventral pancreas islets compared to those from the dorsal pancreas. No

significant differences in the relative intensities of full-length PP were found in the same cellular

populations.

Although the internal dibasic site of PP has been recognized as a possible processing

site,47 the resulting products have only been reported in CA-77 cells transfected with full-length

pancreatic prohormone,26 and have not been described in previous studies using MS.12-16

Bioinformatic analysis of the pancreatic prohormone using the NeuroPred tool48 predicts that the

dibasic RR site in the PP sequence is a potential processing site with a probability of 0.53 ± 0.10

and a 95% confidence interval (CI). The probability for processing at the C-terminal site

resulting in full-length PP is 0.91 ± 0.04 (95% CI). This modeling suggests that the prohormone

convertase processing of full-length PP at its dibasic site may form PP(27–36).

Molecular modeling using the PEP-FOLD tool49 indicates that PP(1–24) and PP(27–36)

retain the α-helix secondary structure.40,41,49 Hence, the dibasic cleavage does not disrupt the

shape of the C-terminus of PP. The region has an exact match to the C-terminal of the TRPRY-

NH2 motif, suggesting that PP(27–36) may possess some affinity to NPY receptors. Other

fragments of NPY, which exhibit the C-terminal motif TRPRY-NH2, display some bioactivity

and binding affinity to NPY receptors, albeit more weakly than the full-length peptide.38-45

Previous studies of N-terminal truncation of PP demonstrated the binding affinity of PP(27–36)

to be 3 orders of magnitude weaker than PP. In functional assays, the maximum inhibition of

151

cAMP accumulation of PP(27–36) was 50% of the full-length PP with an EC50 of 3.5 µM for

PP(27–36) compared to 0.09 nM of PP.36,37 This suggests that PP(27–36) acts as a partial agonist

to the Y4 receptor. The studies discussed above utilized simplified models that cannot be used to

uncover all of the spatiotemporal activities in which PP(27–36) may participate in vivo.

We observed that the C-terminal peptide of pancreatic prohormone, as well as PP(1–24),

PP(27–36), PP(1–18), and PP(20–36), displayed higher signal intensities in ventral islet-derived

γ-cells. This finding, in conjunction with equal signal intensities of full-length PP, could be

explained by heterogeneous expression or regulation of prohormone convertases for the

shortened PP products, whereas the convertases yielding full-length PP remained the same in

each set of islets. MALDI MSI and LC–MS also detected products of PP at its monobasic site,

resulting in the formation of PP(1–16) and PP(18–36). Processing of the pancreatic prohormone

at a single arginyl residue has previously been reported to occur,50 however, the exact processing

pathway remains unclear. Our findings indicate these peptides are generated endogenously from

the pancreatic prohormone and display a specific, heterogeneous distribution. Though the

peptides display weaker binding affinity and less efficacy to G protein-coupled receptors

compared to full-length PP, these molecules may operate within the feedback mechanism of Y4

receptors as partial agonists. It has been reported that the pancreatic prohormone is less amenable

to processing with prohormone convertases than other NPY-family peptides.26 Although less

common, prohormone processing may be tissue-specific, such that the final peptide products

vary between anatomical regions, in agreement with our findings.26-35

Other Neuropeptides in Islets of Langerhans

WE-14 peptide (m/z 1677.8) from the chromogranin A prohormone was detected with LC–

tandem MS analysis of extracts of homogenized islets of Langerhans (Table 6.3); however, due

152

to homogenization, its cellular origin was uncertain. Further leveraging detection of rare

phenotypes, single cell MALDI MS analysis of cellular populations obtained by islet dissociation

revealed that WE-14 is selectively localized to δ-cells. WE-14 was accounted for among the top

50 most-intense analyte signals in δ-cells, but in no other cell types. Furthermore, WE-14 had a

similar abundance between dorsal- and ventral-derived islet cells (2.50 ± 0.64, nDδ = 16; 3.2 ±

2.7, nVδ = 15; p = 0.94, n.s.). Rat islets of Langerhans have a complex spherical microarchitecture

consisting of a core occupied by β-cells, with the other secretory cell types lining the periphery

of the islet.6 A previous peptidomic study using MS revealed the presence of WE-14 in analyte

extracts of homogenized islets of Langerhans,15 and an immunohistochemical study localized

WE-14 to the outer edge of rat islets of Langerhans where δ-cells are located.25 The results

presented here are in good agreement with these previous findings but provide additional

important details, including the localization of WE-14 in δ-cells within the islets of Langerhans.

By isolating the rare δ-cells from the thousands of neighboring endocrine cells, their peptidome

could be selectively investigated. Other neuropeptides were also detected in analyte extracts

from islets of Langerhans using LC–MS, including aa513–532 (N- and C-terminal dibasic site

processing) from the secretogranin-1 prohormone, and secretoneurin from the secretogranin-2

prohormone (Table 6.3). These peptides were not observed in our single cell data obtained with

MALDI MS, which may reflect differences in analyte extraction due to sample preparation,

ionization efficiency, and/or their lower abundance.

Conclusions

Determining the mechanisms involved in modulating the synthesis and processing of

endogenous peptides, and regulation mediated through ligand–receptor interactions, is integral to

understanding normal physiology as well as diseased states. From pancreatic islets, we have

153

detected cell type-specific expression of known peptide hormones displaying anatomical

heterogeneity. Peptides resulting from the processing of PP were detected endogenously and

found to be enriched in γ-cells from ventral islets. Furthermore, we located the neuropeptide

WE-14 with high abundance in δ-cells. The physiological roles and mechanisms of action of

both PP and WE-14 are less understood compared to many other peptide hormones such as

insulin. The detection of such molecules and determination of their specific localization are

initial steps towards determining signaling mechanisms and physiological effects. A more

complete understanding of pancreatic cell-to-cell signaling hormones may help reveal the

mechanisms of metabolic diseases, in particular, the development of type 2 diabetes mellitus — a

disease affecting a growing number of individuals worldwide.

MALDI MS of individual islet cells allowed detection and colocalization of previously

unreported peptides with well-studied pancreatic hormones. The non-targeted, single cell

MALDI MS profiling facilitated measurements of the peptide content of rare cells (γ-cells in

dorsal islets) and tests for significant differences in abundance for the same cell type derived

from a more abundant source of cells (γ-cells in ventral islets). The method is label-free and

capable of detecting hundreds of compounds in thousands of cells within an hour, enabling

experiments that would not be feasible with traditional flow cytometry. Moreover, the sampling

procedure for comparative analysis of endocrine cells is suitable for many other types of

peptidergic system studies. Examples include investigating temporal changes of tissue

microarchitecture and pathological or drug-induced changes in peptide production.

Figures a

Figure 6
are affixe
linear act
distance
surface a

and Tables

6.1. Three-di
ed to the su
tuator oscilla
increases, th

area covered

mensional d
urface of a ro
ates the matr
he linear sp
by the spray

depiction of t
otating disk
rix nebulizer

peed of the a
y.

154

the automate
with slide c
r over the sa
actuator dec

ed MALDI m
clamps. As t
ample surfac
creases to co

matrix coatin
the disk rota
ce. As the ce
ompensate f

ng system. S
ates (~ 7 Hz
enter-to-nebu
for the chan

Slides
z) the
ulizer

nge in

Figure 6
(blue) re
N(µ = 0
point rep
the mode
15 fiduci

6.2. Compar
gistration tr
µm, σ = 10

presents the m
el, the target
ials were util

rison of the
ansformation

00 µm), was
mean ± SEM
localization

lized for eve

e accuracy a
n. To simul

s added to th
M for 100 sim
n error decre
ery slide.

155

and robustne
ate uncertain
he x- and y-
mulations of
ases below t

ess of geom
nty in fiduc
-coordinates
f noise. As m
the added no

metric (red)
cial location,
s of the fidu
more fiducia
oise. To ensu

and point-b
, Gaussian n

ucial marks.
ls are includ
ure accuracy

based
noise,
Each

ded in
y, 10–

Figure 6
images a
pixels ar
determin
Single ce
eliminati

6.3. Overvie
allow a simpl
re grouped

ne if the inten
ell locations
ing those wit

ew schematic
le threshold
together to

nsity and cir
are further e

thin 100 µm

c of the cel
and group m
generate a

rcularity are
evaluated by
of each othe

156

ll-finding alg
method to lo
a putative c
within range

y calculating
er.

gorithm. Th
ocate the cen
cell. Each p
e, which elim

g the pairwis

he high-cont
nter of each c
possible cell
minates back
e distance b

trast fluoresc
cell. Neighb
l is evaluate
kground arti
etween each

cence
boring
ed to
facts.

h cell,

Figure 6
measured
centered
ITO glas
the relati
even a 3
from the
µm as a
interfered

6.4. Insulin C
d with MAL
around sing

ss slides coa
ive intensity
0 µm step. A
center of th

a cell-to-cell
d with neigh

C-peptide re
LDI MSI. (

gle cells (poi
ated with ma

as a functio
Analysis of
he cell, wher
l distance c

hboring cells

edistribution
(a) Represen
nt-to-point d

atrix. (b) De
on of distanc

multiple sp
re the intens
cut-off to ex
.

157

n from singl
ntative figur
distance, 30
efining the c
ce from cent
ots indicated
sity had drop
xclude cells

le cells after
re of a hex
µm), analyz

center point
ter showed a
d peptide sp
pped by ~90
s which we

r MALDI m
xagonally pa
zed for 18 β-
as the most
a rapid drop
preading is l
0%. (c) All
ere too clos

matrix applic
acked raster
-cells on mu
intense pos
in intensity

limited to 50
data utilized

sely located,

cation
r grid
ultiple
sition,
y after
0 µm
d 100
, and

Figure 6
as an in
qualifiers
(γ-cells),
Many oth

6.5. Represen
ntact islet
s/biomarkers
and somato

her character

ntative mass
of Langerh

s: glucagon
ostatin-14 m/
ristic signals

s spectra acq
hans collect
m/z 3481.5 (
/z 1637.7 (δ
s were obser

158

quired from
ted from th
(α-cells), ins

δ-cells). Thes
rved in the ce

individual α
he dorsal
sulin m/z 57
se signals ar
ells as descr

α-, β-, γ-, an
pancreas. P
99.9 (β-cells
re highlighte
ribed herein.

nd δ-cells, as
Peptide cell
s), PP m/z 43
ed with aste

s well
l-type
397.2
risks.

Figure 6
cell popu
the dorsa
normaliz
Results o
cells (blu
count the
on TIC-n
composit
of α- (re
analysis
(b) Dorsa

6.6. MALDI
ulations obta
al (filled circ
zed intensitie
of k-means c
ue), δ-cells
e different ce
normalized
tion between
ed) and γ- (
for visualiza
al pancreas i

MS charact
ained from in
cles) and ven
es of insulin
clustering of
(purple). k-m
ell types obs
peptide sign

n islets from
(blue) cells.
ation purpos
islet cells (n

erization of
ndividual isl
ntral (crosse
, glucagon,

f single cell d
means clust

served in sing
nal intensitie

m dorsal and v
 The data w
es only, here
= 1768). (c)

159

intact islets
lets. (a) Intac
es) pancreas.
and PP sign
data shown
ering was u
gle cell prep
es. The clas
ventral panc
were dimen
e shown with
) Ventral pan

of Langerha
ct islets have
. Distribution
nals acquired
in color: α-c

used on the
parations fro
ssification h
creata, reflec
nsion-reduce
h principal c

ncreas islet c

ans and corr
e different p
ns of total io
d from intac
cells (red), β
full data se
m islets of L

highlights di
cted in the re
d with prin
components
cells (n = 173

responding s
peptide profi
on current (T
t islets. (b a

β-cells (gree
et to classify
Langerhans b
ifferences in
elative abund
ncipal compo

(PC) 1, 2, a
38).

single
les in
TIC)-

and c)
n), γ-
y and
based
n cell
dance
onent
and 4.

Figure 6
using pri
angle.

6.7. PCA allo
ncipal comp

ows visualiza
ponents 1–3.

ation of the
 Figure 6.6 c

160

four canonic
contains PC

cal cell type
 1,2, and 4 a

es observed w
and is displa

with MALD
ayed at a diff

DI MS
ferent

Figure 6
prohormo
the dibas
pancreati
site is ou
(sea gree
helix fold

6.8. Sequenc
one. (a) Seq
sic sites are
ic prohormo
utlined in ma
en and sky b
ding of the p

ce and pred
quence of rat
underlined.

one (filled co
agenta. (d) M
blue, respec

parent peptid

dicted structu
t pancreatic
(b) Observe

olor boxes).
Molecular m
tively) resul

de.

161

ure of pepti
prohormone

ed peptide p
(c) Ab initi

modeling sho
lting from c

ides origina
e (UNIPROT
products resu
io-calculated
ows that the
cleavage at t

ating from th
T ID: P0630
ulting from p
d structure o
e N- and C-t
the dibasic

he rat pancr
03, PAHO_R
processing o

of PP; the di
terminal pro
site retain th

reatic
RAT);
of the
ibasic

oducts
he α-

Figure 6
dorsal an
normaliz
PP, left: P
monobas
Canonica
3037.4; r

6.9. Compari
nd ventral i

zed signal int
PP(1–24), m

sic cleavage
al peptide p
right: PP, m/z

ison of panc
islets (nDγ =
tensities are

m/z 2808.2; r
e of PP, lef
products fro
z 4397.2.

creatic proho
= 79 cells,

shown for (
right: PP(27–
ft: PP(1–16)
om the pan

162

ormone pept
nVγ = 418
a) peptide pr
–36), m/z 12
), m/z 1818

ncreatic proh

tide signals
cells). Box
roducts from
295.7. (b) Pe
8.8; right: P
hormone, le

acquired fro
and whiske

m internal di
eptide produ
PP(18–36),
eft: C-termin

om γ-cells o
er plots of
basic cleava

ucts from int
m/z 2441.3

nal peptide

of the
TIC-

age of
ternal
3. (c)
, m/z

163

Figure 6.10. MALDI MS signal intensity of PP plotted against the signal intensities of PP(1–24),
PP(27–36), PP(1–16), PP(18–36), and the C-terminal peptide from the pancreatic prohormone
within single γ-cells (nDγ = 79 cells, nVγ = 418 cells) from ventral and dorsal islets are compared.

Figure 6
pancreati
are show

6.11. Compa
ic islet cross

wn on the MA

arison of ma
s-section (bo
ALDI MS im

ass spectra a
ottom). Color
mage (center)

164

acquired from
r-coded mol
).

m a single γ
lecular ion d

γ-cell (top)
distributions

and a pixel
for four pep

on a
ptides

165

Table 6.1. Canonical and processed PP-peptides from islets of Langerhans detected with

MALDI MS.

Peptide PTM
Elemental
composition*

Monoisotopic
mass* (Da)

Observed
mass (Da)

Mass error
(ppm)

Insulin 1 (a+b chain)
3 internal
disulfides C259H388N65O75S6 5800.687 5799.906 134.6

Insulin 2 (a+b chain)
3 internal
disulfides C256H383N64O76S7 5793.612 5792.84 133.3

Glucagon C153H226N43O49S 3481.624 3481.472 43.66

Somatostatin-14
1 internal
disulfide C76H105N18O19S2 1637.724 1637.704 12.21

PP
C-terminal
amidation C195H299N58O57S 4397.2 4397.172 6.368

PP C-peptide
1 internal
disulfide C128H216N37O42S3 3037.491 3037.415 25.02

PP(27-36)
C-terminal
amidation C59H95N18O15 1295.722 1295.71 9.261

PP(1-24) C124H183N32O41S 2808.294 2808.231 22.43

PP(1-16) C81H116N19O27S 1818.801 1818.76 22.54

PP(18-36)
C-terminal
amidation C108H174N35O30 2441.317 2441.257 24.58

*Masses are given as [M+H]+

166

Table 6.2. Population fractions of cell types for dorsal (n = 24) and ventral (n = 24) rat
pancreatic islets of Langerhans measured with MALDI MS analysis of single cell populations.

 Cell type Dorsal Ventral

α 0.43 0.081

β 0.51 0.67
γ 0.045 0.24
δ 0.0090 0.0086
ncells 1768 1738

167

T
ab

le
 6

.3
. P

ep
ti

de
s

de
te

ct
ed

 w
it

h
L

C
-M

S
 f

ro
m

 r
at

 is
le

ts
 o

f
L

an
ge

rh
an

s.
 A

ll
 s

eq
ue

nc
es

 w
er

e
un

iq
ue

ly
 f

ou
nd

 w
it

hi
n

th
e

da
ta

ba
se

.

P
ro

te
in

A

cc
es

si
on

E

nt
ry

 n
am

e
Pe

pt
id

e
S

co
re

(%

)
-1

0l
gP

M

as
s

pp
m

m

/z

R
T

P
01

32
3

IN
S

2_
R

A
T

R

.E
V

E
D

P
Q

V
A

Q
L

E
L

G
G

G
P

G
A

G
D

L
Q

T
L

A
L

E
V

A
R

Q
.K

99

.8

53
.8

8
31

59
.6

04
7

-0
.5

10

54
.2

08
4

33
.6

3

P
01

32
3

IN
S

2_
R

A
T

E

.L
G

G
G

P
G

A
G

D
L

Q
T

L
A

L
E

V
A

R
Q

.K

99
.8

49

.8
8

19
22

.0
22

1
-1

.1

96
2.

01
73

32

.4
5

P
01

32
3

IN
S

2_
R

A
T

R

.E
V

E
D

P
Q

V
A

Q
L

E
L

G
G

G
P

G
A

G
D

L
Q

T
L

A
L

.E

99
.7

48

.2
3

25
76

.2
96

9
-2

.6

12
89

.1
52

3
34

.0
2

P
01

32
3

IN
S

2_
R

A
T

Q

.L
E

L
G

G
G

P
G

A
G

D
L

Q
T

L
A

L
E

V
A

R
Q

.K

99
.6

45

.5
5

21
64

.1
48

7
-2

.2

10
83

.0
79

2
33

.4
8

P
01

32
3

IN
S

2_
R

A
T

R

.E
(-

18
.0

1)
V

E
D

P
Q

V
A

Q
L

E
L

G
G

G
P

G
A

G
D

L
Q

T
L

A
L

E
V

A
R

Q
.K

99

.6

40
.3

5
31

41
.5

94
2

-1

10
48

.2
04

3
35

.8
7

P
01

32
3

IN
S

2_
R

A
T

R

.E
V

E
D

P
Q

V
A

Q
L

E
L

G
G

G
P

G
A

G
D

L
Q

T
L

.A

99
.6

40

.0
5

23
92

.1
75

8
-2

.3

11
97

.0
92

4
32

.3
8

P
01

32
3

IN
S

2_
R

A
T

R

.E
V

E
D

P
Q

V
A

Q
L

E
L

G
G

G
P

G
A

G
D

L
Q

T
L

A
L

E
V

A
.R

99

.5

38
.8

5
28

75
.4

45
1

-0
.6

95

9.
48

83

35
.5

3

P
01

32
3

IN
S

2_
R

A
T

R

.E
V

E
D

P
Q

V
A

Q
L

E
L

G
G

G
P

G
A

G
D

L
Q

T
L

A
.L

99

.1

37
.3

9
24

63
.2

12
9

-1
.6

12

32
.6

11
7

32
.1

7

P
01

32
3

IN
S

2_
R

A
T

G

.G
P

G
A

G
D

L
Q

T
L

A
L

E
V

A
R

Q
.K

98

.6

36
.2

5
16

94
.8

95
1

-2
.2

84

8.
45

29

31
.8

6

P
01

32
3

IN
S

2_
R

A
T

L

.E
L

G
G

G
P

G
A

G
D

L
Q

T
L

A
L

E
V

A
R

Q
.K

98

.5

34
.6

2
20

51
.0

64
7

-0
.8

10

26
.5

38
8

32
.7

9

P
01

32
3

IN
S

2_
R

A
T

R

.E
V

E
D

P
Q

V
A

Q
L

E
L

G
G

G
P

G
A

G
D

L
.Q

93

.9

29
.0

3
20

49
.9

85
4

-1
.6

10

25
.9

98
3

31
.5

9

P
01

32
3

IN
S

2_
R

A
T

F

.V
K

(+
42

.0
1)

Q
H

L
C

(-
1.

01
)G

S
H

L
V

E
A

L
Y

L
V

C
(-

1.
01

)

G
E

R
G

F
F

Y
T

PM
SR

R
E

V
E

D
P

Q
V

A
Q

L
E

L
G

G
G

P
G

A
G

D
L

Q
T

L
.A

81

.3

24
.9

4
60

09
.9

60
4

-6
.7

12

02
.9

91
3

32
.2

8

P
01

32
3

IN
S

2_
R

A
T

D

.P
Q

V
A

Q
L

E
L

G
G

G
P

G
A

G
D

L
Q

T
L

A
L

E
V

A
R

Q
.K

57

.1

22
.2

4
26

87
.4

24
1

-1
.3

89

6.
81

41

33
.6

1

P
01

32
2

IN
S

1_
R

A
T

R

.E
V

E
D

P
Q

V
P

Q
L

E
L

G
G

G
P

E
A

G
D

L
Q

T
L

A
L

E
V

A
R

Q
.K

99

.9

57
.7

5
32

57
.6

41
4

-2
.1

10

86
.8

85
5

34
.4

3

P
01

32
2

IN
S

1_
R

A
T

E

.L
G

G
G

P
E

A
G

D
L

Q
T

L
A

L
E

V
A

R
Q

.K

99
.8

51

.3
4

19
94

.0
43

2
-1

.4

99
8.

02
75

32

.6

P
01

32
2

IN
S

1_
R

A
T

R

.E
V

E
D

P
Q

V
P

Q
L

E
L

G
G

G
P

E
A

G
D

L
Q

T
L

.A

99
.6

41

.3
4

24
90

.2
12

4
-2

.3

12
46

.1
10

6
32

.8
6

P
01

32
2

IN
S

1_
R

A
T

R

.E
(-

18
.0

1)
V

E
D

P
Q

V
P

Q
L

E
L

G
G

G
P

E
A

G
D

L
Q

T
L

A
L

E
V

A
R

Q
.K

99

.6

41
.2

1
32

39
.6

30
9

-0
.4

10

80
.8

83
8

36
.0

2

P
01

32
2

IN
S

1_
R

A
T

Q

.L
E

L
G

G
G

P
E

A
G

D
L

Q
T

L
A

L
E

V
A

R
Q

.K

99
.6

40

.6

22
36

.1
69

9
-0

.4

11
19

.0
91

8
33

.5
5

P
01

32
2

IN
S

1_
R

A
T

R

.E
V

E
D

P
Q

V
P

Q
L

E
L

G
G

G
P

E
A

G
D

L
Q

T
L

A
L

.E

99
.5

39

.4
4

26
74

.3
33

7
-1

.6

89
2.

45
04

34

.4
7

P
01

32
2

IN
S

1_
R

A
T

R

.E
V

E
D

P
Q

V
P

Q
L

E
L

G
G

G
P

E
A

G
D

L
Q

T
L

A
.L

99

.5

38
.6

5
25

61
.2

49
5

-0
.3

12

81
.6

31
6

32
.5

7

P
01

32
2

IN
S

1_
R

A
T

R

.E
V

E
D

P
Q

V
P

Q
L

E
L

G
G

G
P

E
A

G
D

L
Q

.T

98
.5

33

.7

22
76

.0
80

8
-1

.4

11
39

.0
46

1
31

.1
9

P
01

32
2

IN
S

1_
R

A
T

D

.P
Q

V
P

Q
L

E
L

G
G

G
P

E
A

G
D

L
Q

T
L

A
.L

97

.6

32
.2

5
20

89
.0

69
1

-2
.2

10

45
.5

39
6

32
.3

2

P
01

32
2

IN
S

1_
R

A
T

R

.E
V

E
D

P
Q

V
P

Q
L

E
L

G
G

G
P

E
A

G
D

L
Q

T
L

A
L

E
V

A
.R

97

31

.5
8

29
73

.4
81

7
-2

.3

99
2.

16
56

35

.7
2

P
06

88
3

G
L

U
C

_R
A

T

G
.S

W
Q

H
A

P
Q

D
T

E
E

N
A

R
S

F
P

A
S

Q
T

E
P

L
E

D
P

D
Q

IN
E

(-
.9

8)
.D

99

.6

45
.9

5
36

64
.6

30
1

-1
.5

12

22
.5

48
8

27
.9

1

P
06

88
3

G
L

U
C

_R
A

T

G
.S

W
Q

H
A

P
Q

D
T

E
E

N
A

R
S

F
P

A
S

Q
T

E
P

L
E

D
P

D
Q

IN
E

D
(-

.9
8)

.K

99
.6

45

.1
2

37
79

.6
57

-4

.4

12
60

.8
87

5
27

.9
3

168

T
ab

le
 6

.3
. (

co
nt

.)

P
ro

te
in

A

cc
es

si
on

E

nt
ry

 n
am

e
Pe

pt
id

e
S

co
re

(%

)
-1

0l
gP

M

as
s

pp
m

m

/z

R
T

P
06

88
3

G
L

U
C

_R
A

T

Q
.H

A
P

Q
D

T
E

E
N

A
R

S
F

P
A

S
Q

T
E

P
L

E
D

P
D

Q
IN

E
(-

.9
8)

.D

99
.6

44

.0
8

32
63

.4
60

2
-0

.4

10
88

.8
26

9
26

.8
5

P
06

88
3

G
L

U
C

_R
A

T

Q
.H

A
P

Q
D

T
E

E
N

A
R

S
F

P
A

S
Q

T
E

P
L

E
D

P
D

Q
IN

E
(-

.9
8)

.D

99
.6

44

.0
8

32
63

.4
60

2
-0

.4

10
88

.8
26

9
26

.8
5

P
06

88
3

G
L

U
C

_R
A

T

R
.H

S
Q

G
T

F
T

S
D

Y
S

K
Y

L
D

S
R

R
A

Q
D

F
V

Q
W

L
M

N
T

.K

99
.6

42

.8
8

34
80

.6
15

7
-2

87

1.
15

95

33
.4

6

P
06

88
3

G
L

U
C

_R
A

T

R
.H

S
Q

G
T

F
T

S
D

Y
S

K
Y

L
D

S
.R

99

.1

36
.9

3
18

34
.8

00
9

-1
.7

91

8.
40

61

28
.4

P
06

88
3

G
L

U
C

_R
A

T

Q
.H

A
P

Q
D

T
E

E
N

A
R

S
F

P
A

S
Q

T
E

P
L

E
D

P
D

Q
IN

E
D

(-
.9

8)
.K

98

.6

35
.7

9
33

78
.4

87
1

-1

11
27

.1
68

5
26

.9

P
06

88
3

G
L

U
C

_R
A

T

Q
.H

A
P

Q
D

T
E

E
N

A
R

S
F

P
A

S
Q

T
E

P
L

E
D

P
D

Q
IN

(-
.9

8)
.E

97

.6

31
.9

9
31

34
.4

17
7

-2
.3

10

45
.8

10
8

26
.8

8

P
06

88
3

G
L

U
C

_R
A

T

R
.S

F
P

A
S

Q
T

E
P

L
E

D
P

D
Q

IN
E

D
(-

.9
8)

.K

93
.7

28

.5
5

21
29

.9
39

-2

.4

10
65

.9
74

2
28

.6
8

P
06

88
3

G
L

U
C

_R
A

T

R
.S

F
P

A
S

Q
T

E
P

L
E

D
P

D
Q

IN
E

(-
.9

8)
.D

90

.5

26
.9

20

14
.9

11
9

-0
.3

10

08
.4

62
9

28
.7

5

P
06

88
3

G
L

U
C

_R
A

T

Q
.H

A
P

Q
D

T
E

E
N

A
R

S
F

P
A

S
Q

T
E

P
L

E
D

P
D

Q
IN

E
D

K
(+

42
.0

1)

R
H

S
(+

79
.9

7)
Q

G
T

F
T

S
D

Y
S

K
Y

L
D

S
R

R
A

Q
D

F
V

Q
W

(-
.9

8)
.L

81

24

.7
9

67
88

.0
50

3
-7

.7

11
32

.3
40

3
27

.6
6

P
06

88
3

G
L

U
C

_R
A

T

G
.S

W
Q

H
A

P
Q

D
T

E
E

N
A

.R

57
.9

22

.7
7

15
11

.6
27

7
-0

.6

75
6.

82
07

19

.9
8

P
06

30
3

P
A

H
O

_R
A

T

G
.A

P
L

E
P

M
Y

P
G

D
Y

A
T

H
E

Q
R

A
Q

Y
E

T
Q

L
R

R
Y

IN
T

L
T

R
P

R
Y

(-
.9

8)
.G

99

.7

46
.6

4
43

96
.1

92
4

-1
.3

73

3.
70

5
29

.9
2

P
06

30
3

P
A

H
O

_R
A

T

G
.A

P
L

E
P

M
Y

P
G

D
Y

A
T

H
E

Q
R

A
Q

Y
E

T
Q

L
.R

99

.7

46
.1

9
28

07
.2

86
1

-1
.7

93

6.
76

78

28
.9

6

P
06

30
3

P
A

H
O

_R
A

T

G
.A

P
L

E
P

M
Y

P
G

D
Y

A
T

H
E

Q
.R

99

.6

44
.6

7
18

17
.7

93

-0
.3

90

9.
90

34

28
.5

5

P
06

30
3

P
A

H
O

_R
A

T

G
.A

P
L

E
P

M
(+

15
.9

9)
Y

P
G

D
Y

A
T

H
E

Q
R

A
Q

Y
E

T
Q

L
.R

99

.5

39
.8

3
28

23
.2

81

-1

94
2.

1
28

.2
2

P
06

30
3

P
A

H
O

_R
A

T

G
.A

P
L

E
P

M
Y

P
G

D
Y

A
T

H
E

.Q

98
.5

33

.6
2

16
89

.7
34

4
0.

8
84

5.
87

51

28
.8

2

P
06

30
3

P
A

H
O

_R
A

T

G
.A

P
L

E
P

M
Y

P
G

D
Y

A
T

H
E

Q
R

A
Q

Y
E

T
.Q

98

.1

33
.3

1
25

66
.1

43
3

-0
.7

85

6.
38

78

27
.9

9

P
06

30
3

P
A

H
O

_R
A

T

R
.A

Q
Y

E
T

Q
L

R
R

Y
IN

T
L

T
R

P
R

Y
(-

.9
8)

.G

95
.3

30

.5
4

24
40

.3
08

6
0.

4
61

1.
08

47

29
.3

4

P
06

30
3

P
A

H
O

_R
A

T

R
.Y

IN
T

L
T

R
P

R
Y

(-
.9

8)
.G

81

24

.7
6

12
94

.7
14

6
-0

.9

43
2.

57
84

25

.6
1

P
06

30
3

P
A

H
O

_R
A

T

G
.A

P
L

E
P

M
Y

P
G

D
Y

A
T

H
E

Q
R

A
Q

Y
E

.T

34
.6

20

.4
2

24
65

.0
95

7
-1

.1

82
2.

70
5

27
.9

9

P
06

30
3

P
A

H
O

_R
A

T

G
.A

P
L

E
P

M
Y

P
G

D
Y

A
T

H
E

Q
R

A
Q

Y
E

T
Q

L
R

R
Y

IN
T

L
T

R
P

R
Y

.G

9.
6

16
.1

3
43

97
.1

76
3

-2
.1

73

3.
86

85

28
.7

1

P
62

32
9

T
Y

B
4_

R
A

T

M
.S

D
K

(+
42

.0
1)

P
D

M
(+

15
.9

9)
A

E
IE

K
F

D

K
S

K
L

K
K

T
E

T
Q

E
K

N
P

L
P

S
K

E
T

IE
Q

E
K

Q
A

G
E

S

99
.8

53

.4
2

49
76

.4
81

-1

.1

83
0.

41
99

25

.5
3

P
62

32
9

T
Y

B
4_

R
A

T

M
.S

D
K

(+
42

.0
1)

P
D

M
A

E
IE

K
F

D
K

S
K

L
K

K
T

E
T

Q
E

K
N

P
L

P
S

K
E

T
IE

Q
E

K
Q

A
G

E
S

99

.8

51
.1

2
49

60
.4

86
3

-2

82
7.

75
34

25

.9
4

169

T
ab

le
 6

.3
. (

co
nt

.)

P
ro

te
in

A

cc
es

si
on

E

nt
ry

 n
am

e
Pe

pt
id

e
S

co
re

(%

)
-1

0l
gP

M

as
s

pp
m

m

/z

R
T

P
62

32
9

T
Y

B
4_

R
A

T

K
.L

K
K

T
E

T
Q

E
K

N
P

L
P

S
K

E
T

IE
Q

E
K

Q
A

G
E

S

94
.4

30

.0
6

30
69

.5
83

1.

1
76

8.
40

39

17
.5

4

P
62

32
9

T
Y

B
4_

R
A

T

M
.S

D
K

(+
42

.0
1)

P
D

M
A

E
IE

K
F

D
K

S
K

L
K

K
T

(+
79

.9
7)

E
T

Q
E

K
N

P
L

P
S

K
E

T
IE

Q
E

K
Q

A
G

E
S

90

.5

26
.9

8
50

40
.4

52
6

-2

84
1.

08
1

26
.2

6

P
62

32
9

T
Y

B
4_

R
A

T

M
.S

(+
42

.0
1)

D
K

PD
M

A
E

IE
K

F
D

K
SK

L
K

K
T

E
T

Q
E

K
N

P
L

P
S

K
E

T
IE

Q
E

K
Q

A
G

.E

89
.8

26

.3

47
44

.4
11

6
-0

.1

79
1.

74
25

26

.0
7

P
62

32
9

T
Y

B
4_

R
A

T

F.
D

K
S

K
L

K
K

T
E

T
Q

E
K

N
P

L
P

S
K

E
T

IE
Q

E
K

Q
A

G
E

S

56
.7

22

35

27
.8

31
8

-2
.6

70

6.
57

18

15
.1

7

P
62

32
9

T
Y

B
4_

R
A

T

K
.K

T
E

T
Q

E
K

N
P

L
P

S
K

E
T

IE
Q

E
K

Q
A

G
E

S

10
.4

18

.0
6

28
28

.4
03

8
-0

.3

70
8.

10
8

22
.8

9

P
62

32
9

T
Y

B
4_

R
A

T

M
.S

(+
42

.0
1)

D
K

P
D

M
A

E
IE

K
F

D
.K

9.

5
15

.8

15
65

.6
91

9
-2

.4

78
3.

85
14

29

.2
8

P
63

31
2

T
Y

B
10

_R
A

T

M
.A

(+
42

.0
1)

D
K

P
D

M
G

E
IA

S
F

D
K

A
K

L
K

K
T

E
T

Q
E

K
N

T
L

PT
K

E
T

IE
Q

E
K

R
SE

IS

99
.9

64

.2
9

49
33

.5
22

9
-1

.9

82
3.

25
95

26

.4
7

P
63

31
2

T
Y

B
10

_R
A

T

M
.A

D
K

(+
42

.0
1)

P
D

M
G

E
IA

S
F

D
K

A
K

L
K

K
T

E
T

Q
E

K
N

T
L

PT
K

E
T

IE
Q

E
K

R
SE

.I

95
.7

30

.9
9

47
33

.4
06

7
-2

.5

67
7.

20
65

26

.3
6

P
63

31
2

T
Y

B
10

_R
A

T

M
.A

D
K

(+
42

.0
1)

P
D

M
(+

15
.9

9)
G

E
IA

S
F

D
K

A
K

L
K

K
T

E
T

Q
E

K
N

T
L

PT
K

E
T

IE
Q

E
K

R
SE

IS

93
.8

28

.5
9

49
49

.5
17

6
-1

.6

82
5.

92
55

25

.8
9

P
63

31
2

T
Y

B
10

_R
A

T

M
.A

D
K

(+
42

.0
1)

P
D

M
G

E
IA

S
F

D
K

A
K

L
K

K
T

(+
79

.9
7)

E
T

Q
E

K
N

T
L

PT
K

E
T

IE
Q

E
K

R
SE

IS

57
.3

22

.3
5

50
13

.4
89

3
-1

.2

83
6.

58
78

26

.7
6

P
25

88
6

R
L

29
_R

A
T

K

.A
P

A
Q

A
P

K
G

A
Q

A
P

V
K

A
P

99

.5

39
.0

9
15

00
.8

41
2

-0
.3

50

1.
28

75

14
.8

P
25

88
6

R
L

29
_R

A
T

K

.V
Q

T
K

A
E

A
K

A
P

A
K

A
Q

A
K

A
P

A
Q

A
P

K
G

A
Q

A
P

V
K

A
P

97

.7

32
.6

1
31

21
.7

72
2

-0
.9

52

1.
30

22

10
.7

7

P
25

88
6

R
L

29
_R

A
T

K

.A
E

A
K

A
P

A
K

A
Q

A
K

A
P

A
Q

A
PK

G
A

Q
A

P
V

K
A

P

90
.8

27

.4
6

26
65

.5
02

7
-4

.7

53
4.

10
53

11

.2
3

O
35

31
4

S
C

G
1_

R
A

T

R
.L

G
A

L
F

N
P

Y
F

D
P

L
Q

W
K

N
S

D
F

E
.K

99

.6

44
.8

8
24

00
.1

42
6

-4

12
01

.0
73

7
36

.5
5

P
10

36
2

S
C

G
2_

R
A

T

R
.I

P
A

G
S

L
K

N
E

D
T

P
N

R
Q

Y
L

D
E

D
M

L
L

K
V

L
E

Y
L

N
Q

E
Q

A

E
Q

G
R

E
H

L
A

(-
.9

8)
.K

97

.6

32
.1

7
48

66
.4

24
3

-8
.6

97

4.
28

38

33
.3

P
10

36
2

S
C

G
2_

R
A

T

R
.T

N
E

IV
E

E
Q

Y
T

P
Q

S
L

A
T

L
E

S
V

F
Q

E
L

G
K

L
T

G
P

S
N

Q
.K

55

.3

21
.0

8
36

49
.7

99
8

1.
3

12
17

.6
08

8
38

.0
6

P
13

66
8

S
T

M
N

1_
R

A
T

M

.A
(+

42
.0

1)
S

S
D

IQ
V

K
E

L
E

K
R

A
S

G
Q

A
F

E
L

.I

99
.1

37

.0
2

23
47

.2
01

9
-0

.7

78
3.

40
73

30

.1
4

P
50

87
8

R
L

4_
R

A
T

K

.K
L

K
K

P
A

G
K

K
V

V
T

K
K

P
A

E
K

K
P

T
T

E
E

K
K

S
A

A

98
.5

33

.9
4

31
47

.9
07

-2

52

5.
65

74

8.
72

P
10

35
4

C
M

G
A

_R
A

T

R
.W

SR
M

D
Q

L
A

K
E

L
T

A
E

.K

93
.9

29

.0
2

16
76

.8
19

2
-1

.8

83
9.

41
54

30

.0
6

B
2R

Z
37

R

E
E

P
5_

R
A

T

K
.E

V
K

K
A

T
V

N
L

L
G

D
E

K
K

S
T

90

.1

26
.5

3
18

59
.0

36
4

-1

46
5.

76
59

17

.6
5

170

T
ab

le
 6

.3
. (

co
nt

.)

P
ro

te
in

A

cc
es

si
on

E

nt
ry

 n
am

e
Pe

pt
id

e
S

co
re

(%

)
-1

0l
gP

M

as
s

pp
m

m

/z

R
T

Q
4Q

R
B

4
T

B
B

3_
R

A
T

F.

S
V

V
P

S
P

K
V

S
D

T
V

V
E

P
Y

.N

89
.9

26

.3
8

17
01

.8
82

4
-1

.1

85
1.

94
76

28

.5
6

P
69

89
7

T
B

B
5_

R
A

T

F.
S

V
V

P
S

P
K

V
S

D
T

V
V

E
P

Y
.N

89

.9

26
.3

8
17

01
.8

82
4

-1
.1

85

1.
94

76

28
.5

6

Q
6P

9T
8

T
B

B
4B

_R
A

T

F
.S

V
V

P
S

P
K

V
S

D
T

V
V

E
P

Y
.N

89

.9

26
.3

8
17

01
.8

82
4

-1
.1

85

1.
94

76

28
.5

6

P
12

96
9

IA
P

P
_R

A
T

R

.N
V

A
E

D
P

N
R

E
S

L
D

F
L

L
L

57

.1

22
.2

5
18

43
.9

31
5

-1
.3

92

2.
97

18

34
.6

4

P
62

63
0

E
F

1A
1_

R
A

T

Y
.K

IG
G

IG
T

V
P

V
G

R
V

E
T

G
V

L
K

P
G

M
V

V
T

.F

55
.4

21

.1

24
63

.4
24

6
0.

8
82

2.
14

94

28
.9

8

171

References

(1) Dueck, H.; Eberwine, J.; Kim, J. Bioessays 2015, 38, 172-180.

(2) Wills, Q. F.; Boothe, T.; Asadi, A.; Ao, Z.; Warnock, G. L.; Kieffer, T. J.; Johnson, J. D. Islets

2016, 8, 48-56.

(3) Benninger, R. P.; Hutchens, T.; Head, W. .; McCaughey, M.; Zhang, M.; Le Marchand, S.;

Satin, L.; Piston, D. Biophys. J. 2014, 107, 2723-2733.

(4) Baetens, D.; Malaisse-Lagae, F.; Perrelet, A.; Orci, L. Science 1979, 206, 1323-1325.

(5) Elayat, A. A.; el-Naggar, M. M.; Tahir, M. J. Anat. 1995, 186, 629-637.

(6) Suckale, J.; Solimena, M. Front. Biosci. 2008, 13, 7156-7171.

(7) Merkwitz, C.; Blaschuk, O. W.; Schulz, A.; Lochhead, P.; Meister, J.; Ehrlich, A.; Ricken, A.

M. Prog. Histochem. Cytochem. 2013, 48, 103-140.

(8) Battich, N.; Stoeger, T.; Pelkmans, L. Cell 2015, 163, 1596-1610.

(9) Li, J.; Klughammer, J.; Farlik, M.; Penz, T.; Spittler, A.; Barbieux, C.; Berishvili, E.; Bock,

C.; Kubicek, S. EMBO Rep. 2015, 17, 178-187.

(10) Rubakhin, S. S.; Romanova, E. V.; Nemes, P.; Sweedler, J. V. Nat. Meth. 2011, 8, S20-S29.

(11) Zenobi, R. Science 2013, 342, DOI: 10.1126/science.1243259.

(12) Edwards, J. L.; Kennedy, R. T. Anal. Chem. 2005, 77, 2201-2209.

(13) Schmudlach, A.; Felton, J.; Cipolla, C.; Sun, L.; Kennedy, R. T.; Dovichi, N. J. Analyst

2016, 141, 1700-1706.

(14) Waanders, L. F.; Chwalek, K.; Monetti, M.; Kumar, C.; Lammert, E.; Mann, M. Proc. Natl.

Acad. Sci. U.S.A. 2009, 106, 18902-18907.

172

(15) Boonen, K.; Baggerman, G.; D'Hertog, W.; Husson, S. J.; Overbergh, L.; Mathieu, C.;

Schoofs, L. Gen. Comp. Endocrinol. 2007, 152, 231-241.

(16) Stewart, K. W.; Phillips, A. R. J.; Whiting, L.; Jüllig, M.; Middleditch, M. J.; Cooper, G. J.

S. Rapid Commun. Mass Spectrom. 2011, 25, 3387-3395.

(17) Jimenez, C. R.; van Veelen, P. A.; Li, K. W.; Wildering, W. C.; Geraerts, W. P. M.; Tjaden,

U. R.; van der Greef, J. J. Neurochem. 1994, 62, 404-407.

(18) Garden, R. W.; Moroz, L. L.; Moroz, T. P.; Shippy, S. A.; Sweedler, J. V. J. Mass Spectrom.

1996, 31, 1126-1130.

(19) Rubakhin, S. S.; Greenough, W. T.; Sweedler, J. V. Anal. Chem. 2003, 75, 5374-5380.

(20) Neupert, S.; Predel, R. Biochem. Biophys. Res. Commun. 2005, 327, 640-645.

(21) Altelaar, A. F. M.; Taban, I. M.; McDonnell, L. A.; Verhaert, P. D. E. M.; de Lange, R. P. J.;

Adan, R. A. H.; Mooi, W. J.; Heeren, R. M. A.; Piersma, S. R. Int. J. Mass Spectrom. 2007, 260,

203-211.

(22) Jarecki, J. L.; Andersen, K.; Konop, C. J.; Knickelbine, J. J.; Vestling, M. M.; Stretton, A. O.

ACS Chem. Neurosci. 2010, 1, 505-519.

(23) Chen, R.; Ouyang, C.; Xiao, M.; Li, L. In situ identification and mapping of neuropeptides

from the stomatogastric nervous system of Cancer borealis. Rapid Commun. Mass Spectrom.

2014, 28, 2437-2444.

(24) Ong, T.; Kissick, D. J.; Jansson, E. T.; Comi, T. J.; Romanova, E. V.; Rubakhin, S. S.;

Sweedler, J. V. Anal. Chem. 2015, 87, 7036-7042.

(25) Barkatullah, S. C.; Curry, W. J.; Johnston, C. F.; Hutton, J. C.; Buchanan, K. D. Histochem.

Cell Biol. 1997, 107, 251-257.

173

(26) Wulff, B. S.; Johansen, T. E.; Dalbøge, H., H.; O'Hare, M. M. T.; Schwartz, T. W. J. Biol.

Chem. 1993, 268, 13327-13335.

(27) Brakch, N.; Galanopoulou, A. S.; Patel, Y. C.; Boileau, G.; Seidah, N. G. FEBS Lett. 1995,

362, 143-146.

(28) Itoh, Y.; Tanaka, S.; Takekoshi, S.; Itoh, J.; Osamura, R. Y. Pathol. Int. 1996, 46, 726-737.

(29) Tanaka, S.; Kurabuchi, S.; Mochida, H.; Kato, T.; Takahashi, S.; Watanabe, T.; Nakayama,

K. Arch. Histol. Cytol. 1996, 59, 261-271.

(30) Rawdon, B. B.; Larsson, L. I. Histochem. Cell Biol. 2000, 114, 105-112.

(31) Portela-Gomes, G. M.; Stridsberg, M. J. Histochem. Cytochem. 2001, 49, 483-490.

(32) Webb, G. C.; Dey, A.; Wang, J.; Stein, J.; Milewski, M.; Steiner, D. F. J. Biol. Chem. 2004,

279, 31068-31075.

(33) Rholam, M.; Fahy, C. Cell Mol. Life Sci. 2009, 66, 2075-2091.

(34) Ozawa, S.; Katsuta, H.; Suzuki, K.; Takahashi, K.; Tanaka, T.; Sumitani, Y.; Nishida, S.;

Yoshimoto, K.; Ishida, H. Endocr. J. 2014, 61, 607-614.

(35) Katsuta, H.; Ozawa, S.; Suzuki, K.; Takahashi, K.; Tanaka, T.; Sumitani, Y.; Nishida, S.;

Kondo, T.; Hosaka, T.; Inukai, K.; Ishida, H. Endocr. J. 2015, 62, 485-492.

(36) Walker, M. W.; Smith, K. E.; Bard, J.; Vaysse, P. J. J.; Gerald, C.; Daouti, S.; Weinshank, R.

L.; Branchek, T. A. Peptides 1997, 18, 609-612.

(37) Bard, J. A.; Walker, M. W.; Branchek, T.; Weinshank, R. L. U.S. Patent 5,976,814, Nov 2,

1999.

(38) Gehlert, D. R.; Schober, D. A.; Beavers, L.; Gadski, R.; Hoffman, J. A.; Smiley, D. L.;

Chance, R. E.; Lundell, I.; Larhammar, D. Mol. Pharmacol. 1996, 50, 112-118.

174

(39) Cerdá-Reverter, J. M.; Larhammar, D. Biochem. Cell Biol. 2000, 78, 371-392.

(40) Berglund, M. M.; Lundell, I.; Eriksson, H.; Söll, R.; Beck-Sickinger, A. G.; Larhammar, D.

Peptides 2001, 22, 351-356.

(41) Keire, D. A.; Bowers, C. W.; Solomon, T. E.; Reeve, J.R.,Jr. Peptides 2002, 23, 305-321.

(42) Balasubramaniam, A.; Mullins, D. E.; Lin, S.; Zhai, W.; Tao, Z.; Dhawan, V. C.; Guzzi, M.;

Knittel, J. J.; Slack, K.; Herzog, H.; Parker, E. M. J. Med. Chem. 2006, 49, 2661-2665.

(43) Parker, M. S.; Sah, R.; Sheriff, S.; Balasubramaniam, A.; Parker, S. L. Regul. Pept. 2005,

132, 91-101.

(44) Walther, C.; Mörl, K.; Beck-Sickinger, A. G. J. Pept. Sci. 2011, 17, 233-246.

(45) Domin, H.; Pięketa, E.; Piergies, N.; Święch, D.; Kim, Y.; Proniewicz, L. M.; Proniewicz, E.

J. Colloid Interface Sci. 2015, 437, 111-118.

(46) Li, J.; Tian, Y.; Wu, A. Regen. Biomater. 2015, 2, 215-219.

(47) Boel, E.; Schwartz, T. W.; Norris, K. E.; Fiil, N. P. EMBO J. 1984, 3, 909-912.

(48) Southey, B. R.; Amare, A.; Zimmerman, T. A.; Rodriguez-Zas, S. L.; Sweedler, J. V. Nucleic

Acids Res. 2006, 34, W267-W272.

(49) Shen, Y.; Maupetit, J.; Derreumaux, P.; Tufféry, P. J. Chem. Theory Comput. 2014, 10, 4745-

4758.

(50) Schwartz, T. W. J. Biol. Chem. 1987, 262, 5093-5099.

(51) Atkins Jr., N.; Mitchell, J. W.; Romanova, E. V.; Morgan, D. J.; Cominski, T. P.; Ecker, J. L.;

Pintar, J. E.; Sweedler, J. V.; Gillette, M. U. PLoS ONE 2010, 5, 1-13.

(52) Carter, J. D.; Dula, S. B.; Corbin, K. L.; Wu, R.; Nunemaker, C. S. Biol. Proced. Online

2009, 11, 3-31.

175

(53) Tucker, K. R.; Li, Z.; Rubakhin, S. S.; Sweedler, J. V. J. Am. Soc. Mass Spectrom. 2012, 23,

1931-1938.

(54) Berman, E. S. F.; Fortson, S. L.; Checchi, K. D.; Wu, L.; Felton, J. S.; Wu, K. J. J.; Kulp, K.

S. J. Am. Soc. Mass Spectrom. 2008, 19, 1230-1236.

(55) Fitzpatrick, J. M.; Hill, D. L. G.; Maurer Jr., C. R. Handbook of Medical Imaging. In

Handbook of medical imaging, volume 2. Medical image processing and analysis.; Fitzpatrick, J.

M., Sonka, M., Eds.; SPIE Press, Bellingham WA, USA: 2009; Vol. 2, pp 447-513.

176

CHAPTER 7

SINGLE CELL PROFILING USING IONIC LIQUID MATRIX-ENHANCED SECONDARY ION
MASS SPECTROMETRY FOR NEURONAL CELL TYPE DIFFERENTIATION

Notes and Acknowledgements

This chapter was published as an original research article in Analytical Chemistry 2017, DOI:

10.1021/acs.analchem.6b04819, coauthored by T.D. Do, S.J.B. Dunham, S.S. Rubakhin and J.V.

Sweedler. The article is adapted and reprinted here with permission from the American Chemical

Society, copyright 2017. T.D. Do and T.J. Comi authored the manuscript, designed the hardware

modifications and programmed the Arduino microcontroller. T.J. Comi performed data analysis

and T.D. Do acquired data. The project was supported by the National Institutes of Health,

Award Number P30 DA018310 from the National Institute on Drug Abuse, and Award Number

1U01 MH109062 from the National Institute of Mental Health. The authors also acknowledge

Xiying Wang for help with sample preparation, and Joseph Ellis and Elizabeth Neumann for

assistance with instrumentation and useful discussions.

Introduction

Single cell heterogeneity appears in seemingly homogeneous cell populations, even when

derived from identical genetic blueprints. Adjacent cells within tissues have distinct identities

and chemical contents; probing these differences aids in our understanding of the interplay

between chemistry, cell activity, and function in complex tissues. As a single cell divides and

differentiates into distinct subpopulations or into a malignant tumor, fluctuations in chemical

composition and changes in cellular state manifest as diverging cell lineages, confounded with

decisions related to cell fate from environmental cues.1 Cell populations appear only as

homogeneous as our ability to detect differences in their chemical composition. Newly

177

developed techniques measure heterogeneity in genetic materials, proteins, peptides, lipids, and

metabolites.2-11 Recent successes in single cell studies help address confounding questions in cell

biology and shape the next generation of drug discovery and development efforts.1,12 Even so,

there remains a need for single cell techniques that are capable of simultaneously detecting many

classes of biological molecules in populations of cells.13 The search for rare cells, which for

decades was akin to finding a needle in a haystack, has become tractable with the emergence of

high-throughput and sensitive measurement techniques.

Typical mammalian cells contain a few picoliters of volume, with analyte concentrations

ranging from picomolar to millimolar. Thus, a successful single cell analytical technique should

provide a low absolute detection limit, a high dynamic range, and multiplexed coverage of

analyte classes.5 Mass spectrometry (MS) has become a versatile and robust method for

performing volume-limited biological measurements. Mass spectrometry imaging (MSI) is at the

forefront of MS-based, label-free platforms for analyzing single cells,6,14-18 demonstrating

cellular and subcellular spatial resolution19-21 and untargeted detection of biological molecules.5,8

If cellular analytes are efficiently desorbed and ionized, the gas phase ions can be further

interrogated with hybrid MS instrumentation for structural fragmentation,22,23 ion sizes and

shapes,23-26 secondary structures,27,28 and thermodynamic properties.29,30

Secondary ion mass spectrometry (SIMS) and matrix-assisted laser desorption/ionization

(MALDI) are two common MS ionization microprobes that are suitable for spatially-resolved

surface analysis of single cells.31-34 MALDI uses focused laser light to desorb and ionize sample

analytes incorporated into a suitable matrix. In contrast, SIMS utilizes a beam of accelerated

primary ions or larger clusters that bombards the sample surface to sputter and generate

178

secondary ions in the gas phase for mass-to-charge (m/z) analysis. Since the primary ion beam

can be tightly focused, SIMS can achieve subcellular spatial resolution.31

Previous SIMS imaging investigations have established sample preparation methods that

improve the limits of detection and molecular coverage of biological samples, including metal

assisted35-37 and ionic liquid (IL) matrix-enhanced SIMS.38-40 Many IL mixtures have unique

physical and chemical properties that can be optimized for SIMS- and MALDI-based

detection.40,41

Recently, we demonstrated the capability of a high-throughput, microscopy-guided

MALDI MS profiling method to classify dissociated rat pituitary cells, including rare cells, as

well as elucidate the cellular heterogeneity of rat islets of Langerhans.32,33 The approach

circumvents the need for MS raster imaging42,43 of a large region of interest, which is time

consuming and often splits cell signals over multiple pixels. However, most single cell SIMS

studies also utilize raster imaging22,34,35,44-50 to fully leverage the subcellular spatial resolution of

the method and localize analytes within single cells, albeit at low throughput and reduced

sensitivity.

Establishing optically-guided single cell SIMS profiling should facilitate lipidomics and

metabolomics studies on large populations of cells. Here we report a combination of matrix-

enhanced SIMS (ME-SIMS) and multivariate statistical analysis to profile single cells from the

Aplysia californica central nervous system, the rat dorsal root ganglion (DRG), and the rat

cerebellum. These neuronal cell types were chosen because they represent well-characterized

large (>75 µm in diameter), medium (10–50 µm), and small (5–10 µm) cells, respectively. The

A. californica samples included large neurons with well-studied metabolite and lipid

contents,22,35,42,46,49 and are therefore suitable for our method validation experiments. The DRG

179

contains the cell bodies of sensory neurons actively participating in neuropathic pain.51 DRGs are

traditionally classified based their on size,52 electrophysiological properties,53 and peptide

content.54 Cellular heterogeneity within the DRG was previously shown to affect opioid peptide

sensitivity55 and produce differential responses to neuropathic pain.56 The cerebellar cells are

critical to cognitive function and motor control,57 and were chosen as small cell targets for this

study.

Here we performed ME-SIMS utilizing three different IL matrixes to determine their

ability to enhance the sputtering/ionization efficiency and chemical signals for single cell SIMS

profiling. In addition, ME-SIMS tandem MS was performed to identify and characterize

metabolites, including lipids, from single cells. Data sets acquired from populations of DRG and

cerebellar cells were classified by t-distributed stochastic neighbor embedding (t-SNE). Each

cellular population was further sub-divided by the same method, revealing their heterogeneity

based on lipid content.

Methods

Chemicals

All chemicals were purchased from Sigma Aldrich (St. Louis, MO) and used without further

purification.

Matrix Preparation

Three IL matrix solutions were evaluated. The first, MI-CHCA, was prepared by dissolving 250

mg of α-cyano-4-hydroxycinnamic acid (CHCA; > 98% purity) in 10 mL LC-grade methanol,

followed by an addition of 105 µL of 1-methylimidazole (MI; Reagent Plus, 99%), with 10 mL

of LC-grade acetonitrile added to the total volume of 20 mL. The second, TRIP-CHCA, was

similarly prepared using 252 µL of tripropylamine (TRIP; > 98% purity). The third, Mix-CHCA,

180

was prepared by mixing equal volumes of the MI-CHCA and TRIP-CHCA solutions. DHB

matrix was prepared by dissolving DHB (99% purity) to 50 mg/mL in 1:1 (v/v) LC-grade

ethanol:water and 0.1% trifluoroacetic acid solvent.

Sample Preparation

Aplysia californica. Two Aplysia californica (100–250 g body weight) were purchased from the

National Resource for Aplysia (Rosenstiel School of Marine and Atmospheric Science

University of Miami, FL). The mollusks were kept in aerated, circulated, filtered and chilled to

20 °C sea water prepared from Instant Ocean Sea Salt (Instant Ocean, Aquarium Systems Inc.,

Mentor, OH) dissolved in purified water. Animals were anesthetized by injection of isotonic

MgCl2 (~30% to 50% of body weight) into the body cavity. Central nervous system ganglia were

dissected and placed in artificial sea water (ASW) containing 460 mM NaCl, 10 mM KCl, 10

mM CaCl2, 22 mM MgCl2, 26 mM MgSO4 and 10 mM HEPES in Milli-Q water (Millipore,

Billerica, MA), with the pH adjusted to 7.8 using 1 M NaOH in Milli-Q water. Ganglia were

treated with enzyme solution consisting of 1% (wt/vol) protease type IX (Sigma Aldrich, St.

Louis, MO) in ASW supplemented with 100 units/mL penicillin G, 100 µg/mL streptomycin,

and 100 µg/mL gentamicin for 45 min at 34.4 °C. The connective tissue surrounding neurons and

neuropil was surgically removed and multiple individual neurons mechanically isolated. Cells

were deposited on indium-titanium oxide (ITO)-coated glass slides, 70–100 ohms, 25 × 75 × 1.1

mm (Delta Technologies, Loveland, CO), which were washed with Milli-Q water and ethanol

before use. ITO-coated glass slides were placed in ASW and cells were allowed to adhere for 30

min. Next, ASW was replaced with a 33% glycerol 67% ASW (v/v) solution that was decanted

after a 5 min incubation. Cells were left to dry overnight.

181

Rattus norvegicus. Seven 2.5–3 month old male Sprague-Dawley outbred rats (Rattus

norvegicus) (www.envigo.com) were housed on a 12-h light cycle and fed ad libitum. Animal

euthanasia was performed in accordance with the appropriate institutional animal care guidelines

(the Illinois Institutional Animal Care and Use Committee), and in full compliance with federal

guidelines for the humane care and treatment of animals. The studies were planned in accordance

with the ARRIVE guidelines.58

Rats were killed by quick decapitation using a sharp guillotine. Rat trunks were placed on

ice, where all surgical procedures were performed. Dorsal root ganglia (DRG) were surgically

isolated during the ~10-min dissection procedure and placed into ~5 mL of cold Modified Gey’s

balanced salt solution (mGBSS) containing 1.5 mM CaCl2, 4.9 mM KCl, 0.2 mM KH2PO4, 11

mM MgCl2, 0.3 mM MgSO4, 138 mM NaCl, 27.7 mM NaHCO3, 0.8 mM NaH2PO4, and 25 mM

HEPES dissolved in Milli-Q water, with the pH adjusted to 7.2 using 1 M NaOH in Milli-Q

water.

To remove the surrounding connective tissue and isolate individual neurons, the DRG

were incubated in 2.5% collagenase in oxygenated mGBSS for 25 min. All steps in the protocol

were carried out at 37 °C, and oxygenated mGBSS was used in all cases. The DRG were then

washed with 1% bovine serum albumin (BSA) in mGBSS for 7 min. The BSA solution was

replaced with mGBSS and the DRG were incubated for an additional 20 min. Next, the DRG

were treated with 0.65% trypsin in mGBSS for 20 min, followed by a 1% BSA solution wash for

7 min. The BSA solution was replaced with mGBSS containing Hoechst 33342 nuclear stain

(Thermo Fisher Scientific, Waltham, MA) (1 mg/mL Hoechst 33342 stock solution, stored at 14

°C, diluted 1:500 in mGBSS) in which the DRG were incubated for 10 min. The Hoechst nuclear

stain solution was then replaced with mGBSS and the DRG were mechanically dissociated by

182

trituration. Cells were stabilized using a 40% glycerol, 60% mGBSS (v/v) mixture and after 5–10

min, plated on ITO-coated glass slides. The samples were then stored in the dark overnight to

allow the cells to adhere onto the glass surface. On the next day, excess glycerol-containing

media was removed from the preparations. At this stage, the cells were either subjected to

immediate SIMS or MALDI analysis, or left to adhere to the ITO-coated glass surface in a

nitrogen-purged dry box for 24 h before the MS measurements. Before analysis, the sample

slides were rinsed with 2 mL of 150 mM ammonium acetate buffer (pH 10). This step helped

remove the excess glycerol and did not induce observable damage to the cells.32,33,59

Instrumentation

The single cell profiling experiments were performed on two instruments. The first, a customized

hybrid MALDI/C60-SIMS Q-TOF mass spectrometer, described in detail elsewhere,46 was

operated in positive ion mode for all SIMS measurements. Negative ion mode on the custom

instrument did not provide sufficient ion current during single cell experiments. The 40-μm

diameter, 20 kV C60
+ ion beam (Ionoptika, Ltd., Hampshire, UK) was operated in continuous

mode with 500 pA sample current to yield an ion dose of 2.5 × 1014 ions/cm2. Positive secondary

ions were collected from m/z 60–850 using a Q1 bias of 5%, 5%, 20%, 35% and 35% at m/z 100,

180, 300, 500 and 700, respectively. The signal accumulation time was set to 2 s. The time-bins-

to-sum was set to 10. Tandem MS spectra were collected in product-ion mode with the argon

collision gas and collision-induced dissociation energy set at 35 eV. The C60-SIMS instrument

required minor hardware modifications to utilize the previously-reported cell finding

software32,33 for single cell measurements.

Several modifications were made to the cell coordinate registration protocol and

hardware of the previously-reported C60 SIMS instrument.46 For the registration protocol, three

183

types of coordinate systems were utilized to interface with the instrument and optical images.

The first system was in pixel coordinates in the microscopy image such that each dispersed cell

had a unique (X, Y) pixel location. The second coordinate system was the stepper motor location

(Xmotor, Ymotor) of the instrument x,y-translation stage. When the ITO-coated glass slide was

loaded into the instrument stage, the fiducial markers were used to calculate the transformation

from (X, Y) to (Xmotor, Ymotor) for each cell. These steps were identical to the previously reported

coordinate registration protocol.32,33 Unfortunately, the oMALDI Server software (AB Sciex,

Framingham, MA) does not accept motor coordinates as direct inputs. The “Search Pattern”

feature directed the stage to dwell at a series of points relative to a pre-set origin dictated by a

separate coordinate system, which we refer to as the “Pattern” (PTN) coordinate system. One

PTN unit is equivalent to 0.5 mm. The origin was set at the point Xmotor, Ymotor = (8,000, 17,600)

which was equal to XPTN, YPTN = (5, 5) in the PTN coordinate system. Through two coordinate

transformations, each cell from the optical image was mapped to a PTN coordinate readable by

oMALDI Server. Cells were then analyzed with the 20kV C60
+ ion beam as the stage traveled

through the locations in the "Search Pattern" inputs.

An Arduino Atmega 2560 board (https://www.arduino.cc/) was programmed by the

Arduino Software, v1.6.9, to do the described tasks (Figure 7.1A). Since each stepper motor was

tracked by a linear encoder, its signals from the quadrature channels A/B were tapped out and

connected to two interrupt pins on the Arduino board, which provide fast response times. A 4x

decoding method was used to determine when the stage was moving (i.e., changes in signals of

either encoder) and when the stage stopped (i.e., no changes in both encoders). As the data

acquisition on the mass spectrometer was initiated by Analyst (AB Sciex), a 5 V signal from the

mass spectrometer control board was received by interrupt pin 19 on the Arduino board to

184

activate stage monitoring and synchronize the start times of the stage and mass spectrometer.

When the stage stopped at a cell, the Arduino board would delay for 3 s and then send a 5 V

signal through pin 13 to a relay controlling the C60
+ beam, initiating desorption for 1 s (see

Figure 7.1B). Longer beam “On” times cause damage on the sample surface and generate more

chemical noise. The beam “Off” delays ensured no contamination occurred between cells of

interest and surrounding neighbors. Data from the Arduino, including clock time, elapsed time,

encoder position and ion beam status, were recorded with the PLX-DAQ add-on for Excel 2010

(https://www.parallax.com/downloads/plx-daq).

Single cell SIMS profiling was accomplished by registering the x,y translation stage of

the oMALDI server (AB Sciex, Framingham, MA) with whole-slide, bright-field, and

fluorescence images. Cells deposited onto indium-titanium oxide (ITO)-coated glass slides were

placed into a custom sample holder that can accommodate slides as large as 40 × 25 mm2 (about

one-half of a standard microscope slide). Several mechanically-etched fiducial markers

facilitated point-based similarity registration to map cell locations back to their stage

coordinates. Because of the limitations with the SIMS instrument control, mass spectral data

were continuously acquired as the stage moved. Because the sample stage repeatedly travels and

stops at cell locations, it is critical to synchronize its movements with the primary C60
+ ion beam

activity and record when a cell is reached. The ion beam should only be “On” when the cell

location is reached, and "Off" during sample stage movement, to ensure that only targeted cells

are bombarded with primary ions. The dwell time of the translation stage was set to 6 s per cell.

For each cell, the C60
+ ion beam was signaled to turn on for 1 s after a 3 s delay. The 1 s

sputtering time was found to be optimal, as shorter times yielded inadequate signals whereas

longer beam exposure caused IL matrix depletion and complication of the mass spectra with

185

additional background ion signals. The acquisition rate on the mass spectrometer was set to 2 s to

improve the likelihood that the entire analyte sputtering event was captured in a single scan. In

~20% of scans, the analyte sputtering event was split between two acquisition windows,

resulting in a separation of low mass and high mass ions between two mass spectra (see Figure

7.1C).

The second instrument used was a Bruker ultrafleXtreme MALDI TOF/TOF mass

spectrometer with a frequency tripled Nd:YAG solid state laser. Single cell MALDI MS analysis

was performed as previously reported.32,33 The molecular mass scan window was set to m/z

400−8000 and the laser was operated in the “Ultra” mode, producing a ∼100-μm diameter

footprint. The ultrafleXtreme AutoXecute feature (Bruker Daltonics, Billerica, MA) was utilized

with the custom geometry file as previously reported.33 Each spectrum represents the summed

signals acquired during 1,000 laser shots fired at 1 kHz.

Optical Imaging and Determination of Pixel Coordinates for Individual Cells

Each dispersed cell population on an ITO-coated glass slide was imaged using an Axio Imager

M2 (Carl Zeiss, Oberkochen, Germany) in fluorescence and bright-field modes. An X-CITE 120

mercury lamp (Lumen Dynamics, Mississauga, Canada) and a 31000v2 DAPI filter set (Chroma

Technology, Irvine, CA) were employed for fluorescence imaging. Because the ITO glass slides

are transparent and conductive, they are compatible for both MALDI-MS and SIMS single cell

profiling experiments. A 10× objective was used to obtain a mosaic image of the targeted surface

with 13% overlap between neighboring images. Images were taken using an AxioCam 503 Mono

camera (Carl Zeiss) with a resolution of 1936 × 1460 pixels. All mosaic optical images were

stitched with a minimum overlap of 5% and maximum shift of 10%. The stitched image was

loaded into microMS32 for either manual or automatic cell finding. The fiducial marks were used

186

to register the image coordinates to the x,y translation stage coordinate of the mass

spectrometers. On the basis of the registration, the cell coordinates were saved in either a pattern

coordinate file-format readable by the oMALDI server for SIMS experiments or a custom

geometry file for the MALDI-MS FlexControl software for mass spectral acquisition.

Matrix Application

ITO-coated glass slides were affixed onto a rotating plate for automatic matrix application, as

described elsewhere.32 Spraying conditions were optimized for each MS system. The distance

between the spray tip and the rotating plate was 5 cm for SIMS and 2 cm for MALDI MS, with a

nitrogen gas pressure of 50 psi. The solution flow rate was set to 30 mL/h for SIMS and 10 mL/h

for MALDI MS, resulting in a matrix coating of 6 mg/cm2 and 15 mg/cm2, respectively. DHB

matrix was also employed for MALDI MS for comparison with the IL matrixes. The same

spraying conditions were used for DHB as in IL MALDI-MS.

Multivariate Statistical Analysis

Data analysis was performed with custom scripts written in MATLAB (R2015b). MALDI MS

data were read directly with the readbrukermaldi function (https://github.com/AlexHenderson/

readbrukermaldi), resampled to 10,000 m/z values in the range m/z 500–1000, background

corrected, smoothed, and normalized by standardizing the area under each spectrum to the

median of the data set. SIMS data was first converted from the native wiff format into mzXML

with msconvert60 for import into MATLAB. The cell coordinates, diameters, and the

corresponding log file from the instrument microcontroller were also utilized to parse continuous

SIMS acquisition files. As the Arduino monitors when an acquisition begins, the start time for

mass spectral acquisition and stage movement were synchronized. In MATLAB, the x,y

translational stage stop events were recorded and used to delineate mass spectra corresponding to

187

target cell positions. Stage dwell events shorter than 3 s or longer than 7 s were discarded as

noise in the stage or encoders. As the ion beam is only “On” for 1 s within the 6 s dwell time, the

spectrum with the highest intensity phosphocholine head group (m/z 184.07) and PC(34:1) (m/z

760.56) signal was selected as the single cell spectrum. Dwell events of single cell signals that

occurred in two adjacent acquisition windows were discarded as “split cells”. Finally, all mass

spectra acquired from DRG and cerebellar cells were filtered for an intensity of the m/z 184.07

signal greater than 250 counts.

Statistical significance was established with a Wilcoxon rank sum test as intensity

distributions were non-normal by a Kolmogrov-Smirnov test. Initial mass spectral data

visualization was performed with principal component analysis (PCA) to evaluate the effects of

different ionic liquid formulations. Unsupervised cell classification for DRG and cerebellum

samples was performed with t-SNE61 to reduce and group the data in two dimensions, followed

by k-means clustering with a Euclidean distance metric. The number of clusters was determined

by the mean silhouette value as a function of k.

For PCA, each cell spectrum was considered as an independent sample with the different

m/z channels as the measured variables. The intensities of each m/z value for each cell produced

a two dimensional matrix which was decomposed to score and loading values with the built-in

pca function in MALTAB. Principal component (PC) scores for 1 and 2 were displayed on a

scatter plot to assess data grouping based on ionic liquid formulation. The loading plot of PC1

was also displayed to determine the cause of data spread in PC1 axis. In this plot, negative

loading for a specific m/z indicates the specie is present in high abundance in cells found in the

negative PC1 range and similar for positive values. Based on this interpretation and the

assistance of average spectra, it was determined negative PC scores correspond largely to cells

188

with high chemical noise while positive values contained biologically relevant lipid and

phosphocholine signals.

Results and Discussion

IL Matrix Enables Detection of Lipids in Single Cell SIMS Profiling Experiments

SIMS ionization allows the characterization of small molecules with high spatial resolution.

Although SIMS does not require a matrix,31 analysis of small-volume samples and low-

concentration analytes can benefit from such treatments.36,38,39,62 A. californica pedal ganglia

neurons (~75 µm or larger in diameter) were used to validate cell targeting and examine the

effects of the IL-matrix coating. Several room temperature ILs have been reported to enhance

lipid, cholesterol, and peptide signals in SIMS measurements.38-40 The enhancements are

somewhat predictable, as ILs used in ME-SIMS are typically mixtures of an organic base and a

traditional MALDI matrix, such as CHCA, acting as an acid.

Unlike ME-SIMS with a traditional MALDI matrix, the components of ILs are positively

and negatively charged species that favorably assist proton transfer to, or capture from, analytes

while preventing matrix crystallization. A total of 47 pedal neurons from two A. californica were

examined with SIMS, producing one mass spectrum per cell. The averaged mass spectrum

acquired with native conditions is shown in the left two panels of Figure 7.2A. The same sample

was then coated with the MI-CHCA matrix and the same 47 cells were profiled to assess the

effect of the IL matrix in SIMS analysis. The averaged mass spectrum acquired with the MI-

CHCA coating is shown on the right side of Figure 7.2A. In both cases, the characteristic signals

from α-tocopherol were detected at m/z 430.35 for the intact molecular ion as well as m/z 165.05

and m/z 205 for the fragments.22,35,49 However, many lipids were detected in the m/z 600–850

mass range exclusively in the presence of MI-CHCA. Although the relative intensity of vitamin

189

E (m/z 430.35) was not significantly different after IL application (p = 0.73), the relative

intensity of the phosphocholine head group (m/z 184.07) increased significantly, by two-fold (p

<0.005) (Figure 7.2B). Finally, signals corresponding to fragments, sodiated and potassiated

adducts of known glycerophospholipids (m/z 709.5, m/z 782.5, and m/z 808.6), and

diacylglycerophosphocholines (m/z 746.5 and m/z 768.5) increased significantly (Figure 7.3),

consistent with previously published SIMS imaging data.49 Profiling of metabolites in the A.

californica neurons demonstrates the utility of an IL matrix for SIMS analysis of individual cells.

IL Matrix Optimization for SIMS Analysis of DRGs

While the profiling of pedal ganglion neurons demonstrates the capabilities of MI-CHCA for

SIMS single cell lipid detection, other matrix compositions were investigated to improve the

figures of merit.

Matrix Composition

A matrix capable of proton transfer will likely assist in the ionization of lipid compounds during

SIMS ionization.38 Furthermore, for single cell profiling experiments it is imperative that the

matrix uniformly covers the sample. Uniform coverage partially depends on interactions between

the IL and substrate surface. Micrographs of an ITO-coated glass slide spray-coated with the MI-

CHCA matrix (Figure 7.4A) show the matrix deposition non-uniformity when MI-CHCA

solution was sprayed coated on a clean ITO glass slide. Similar to many imidazolium-based ILs,

the high surface tension of MI-CHCA may lead to generation of non-uniform “puddles” on the

surface.41 Poor matrix coverage introduces experimental cell-to-cell variability and redistributes

analytes and background contaminants from uncoated regions of the substrate. Therefore, while

MI-CHCA is a suitable matrix for general-purpose SIMS analyses, single cell SIMS

measurements require improvements in matrix properties. Advantages of using IL matrixes

190

include the flexibility to tailor their physical properties by modifying IL components, or by

utilizing different matrix mixtures.

Previous studies on IL structures suggest that increasing the alkyl chain lengths produces

ILs with lower surface tensions, leading to more uniform sample coverage.41 As such, the TRIP-

CHCA matrix was considered, as well as an equal-volume mixture of MI-CHCA and TRIP-

CHCA, referred to here as Mix-CHCA. Both TRIP-CHCA and Mix-CHCA showed more

uniform sample coverage with the same coating conditions (see Figure 7.4A). Although previous

reports demonstrated that MI-CHCA provides higher signal enhancement for SIMS than TRIP-

CHCA,38,39 the uniformity of the matrix coating was not considered in those studies; rather, the

matrix and analyte solutions were mixed and spotted on the substrate.38,39

The three IL matrixes—MI-CHCA, TRIP-CHCA, Mix-CHCA—were evaluated for lipid

analysis of rat DRG cells. The DRG contains a variety of physiologically important lipids,

making it a viable model for method development in the study of biologically significant lipid

contents.63,64 Lipids have been shown to influence the activities of DRG neurons, and changes in

lipid metabolism have been implicated in chronic neuropathic and inflammatory pain.64-67 For

these comparisons between IL matrixes, glycerol-stabilized DRG cell samples were washed with

ammonium acetate buffer and stored in a nitrogen-purged dry box for 24 h before IL matrix

application and MS analysis.

The observed lipid profiles obtained from the same animal using the three different IL

matrixes, and using Mix-CHCA across different animals, were compared. At least 300 DRG

cells in each sample were profiled in each set of measurements. To prevent measurement bias

from inadequate lipid signals occurring due to: (a) systematic errors in cell coordinate

registration; (b) random motor slop; (c) IL matrix application quality; or (d) inadequate

191

ionization enhancement provided by the investigated matrix,38,39 single cell spectra with an m/z

184.07 (phosphocholine head group) signal intensity of less than 250 counts were removed from

subsequent analyses. The fraction of removed cells provides a measure of matrix quality,

assuming systematic errors did not vary significantly among different batches. As shown in

Figure 7.4B, TRIP-CHCA had the highest fraction of removed mass spectra, likely reflecting

lower repeatability of analyte extraction or matrix enhancement with this IL matrix. The fraction

of removed single cell mass spectra using Mix-CHCA was lower than even MI-CHCA when

comparing samples from the same animal.

Figure 7.5A shows the principal component analysis (PCA) score and loading plots of the

filtered data sets. The data acquired using the three IL matrixes are well separated (no overlap of

the 95% confidence ellipses), whereas the three data sets obtained using three animals and Mix-

CHCA overlap significantly. The score plots suggest that the matrix-related differences in data

sets are larger than day-to-day and animal-to-animal variability. Mass spectra of individual cells

investigated with MI-CHCA and characterized by negative PC1 scores generally had lower lipid

signals and strong chemical noise in the m/z 200–400 range, as shown by the averaged mass

spectra and the loading plot of PC1 (Figure 7.5A). The use of Mix-CHCA improved the number

of cells with abundant lipid signals while reducing chemical noise. The relative signal intensities

and number of analytes observed with Mix-CHCA are comparable to that of MI-CHCA, and

better than TRIP-CHCA (see Figure 7.5B), suggesting that the presence of TRIP in the mixture

does not adversely affect lipid signal intensities. Taking into account the uniform sample

coverage and matrix enhancement, Mix-CHCA was chosen for further single-cell profiling with

ME-SIMS.

192

Sample Preparation

Previous single cell studies suggested that cells analyzed shortly after isolation and sample

preparation produce higher analyte signal intensities than those with prolonged storage, as

sample degradation significantly reduces endogenous analyte concentrations.35 In agreement

with these findings, Figure 7.6 shows that sample storage profoundly impaired data quality. DRG

cell samples prepared and analyzed on the same day produced lipid signals three-fold more

intense than signals acquired from similar samples that were stored for one day in a dry nitrogen

atmosphere prior to IL matrix application. The improved sensitivity allows the detection of many

minor lipid species. Most lipids detected in the m/z 600–850 range are phosphatidylcholines

(PCs), as confirmed by tandem MS (Figure 7.7 and Table 7.1). A number of the observed PCs

exhibit alkyl chains possessing between 30 and 36 carbons. The alkyl chains have at least two

unsaturated forms as well as the fully saturated form (inset in Figure 7.6B). The improved

sensitivity from analysis of fresh biological samples is in agreement with prior MALDI-MSI data

from rat brain tissue.68

ME-SIMS Single Cell Profiling Provides Complementary Data to MALDI MS

From individual DRG cells, PC(34:1) at m/z 760.56 and PC(32:0) at m/z 734.54 displayed the

highest relative intensity, with m/z 760.56 as the base peak with SIMS. To verify that the single

cell SIMS measurements produce semi-quantitative information on endogenous lipid levels

similar to MALDI MS, DRG cell profiling was also conducted with the Bruker ultrafleXtreme

MALDI TOF/TOF mass spectrometer. A comparative analysis of freshly prepared samples

coated with either DHB or MI-CHCA matrix was conducted. The Mix-CHCA matrix performed

poorly for MALDI MS (lower total ion counts with a strong bias toward low-mass matrix peaks;

data not shown) although the lipid distributions obtained with Mix-CHCA are consistent with

193

those obtained with MI-CHCA and DHB (see Figure 7.8 and Figure 7.9). The analyte signal

profiles in the averaged mass spectra in the m/z 500–850 region agree qualitatively.

Quantitatively, the m/z 760.56 peak was typically the base peak in either analysis but the relative

intensity of m/z 734.54 increased in the ME-SIMS experiments. Whereas SIMS investigates only

the top few molecular layers of a sample, the inherent analyte extraction from sample volumes

that occurs during MALDI matrix application leads to acquisition of mass spectra representative

of the whole-cell content. Therefore, SIMS mass spectra likely possess signals more specific for

the surface of cell membranes, producing the observed difference in lipid intensity ratios

between the two approaches (Figure 7.9B). However, since the relative abundance of the two PC

lipids is not significantly different between MALDI MS using DHB and MI-CHCA (Figure 7.9),

the choice of the IL matrix in MALDI MS measurements may not lead to a change in the relative

sensitivity during lipid detection.

The mass spectral peaks at m/z 478.3, 496.3, 522.3, and 550.3 (data not shown) are likely

fragments of glycerophospholipids. This conclusion is made based on similarity in their m/z

values to those of reported molecules and the presence of a peak at m/z 184.07 in the tandem MS

product ion mass spectra of PC(32:0) at m/z 734.54 and PC(34:1) at m/z 760.56, and other lipids

(Figure 7.7). Therefore, variations in the degree of analyte fragmentation between SIMS and

MALDI MS may also account for the offset in detected ratios of intact lipids (Figure 7.9B). In

summary, the relative lipid composition observed with SIMS appears to reflect endogenous cell

content and provides complementary chemical information to MALDI MS.

194

Single Cell Profiling with SIMS Enables Differentiation of Cell Types with Similar Lipid

Compositions

As discussed in the previous section, the relative PC lipid ratio from single cell ME-SIMS

profiling appears to be an intrinsic property of a given cellular origin, at least for the cell types

assayed here. However, incorporating more intact lipids into a multivariate dimension reduction,

such as t-SNE, may improve identification of additional subpopulations based on variations in

minor lipid species. To determine the capability of SIMS to distinguish single cells with similar

lipid profiles, cell populations from the DRG and cerebellum were individually profiled. For

each cell type, two technical replicates were performed with a total of 548 DRG cells and 995

cerebellum cells. The same threshold limit of 250 counts for m/z 184.07 was applied as before.

The set of lipid compounds detected from cerebellum neurons is similar to DRG cells, and the

two most dominant PC lipids, PC(32:0) and PC(34:1), are the same in both cell types. The mass

spectra acquired from DRG and cerebellar cells have a number of signals within the m/z 700–850

range, corresponding to intact lipids. The spectra were normalized to intensities of the PC(34:1)

m/z 760.56 signal.

The resulting data set was analyzed with t-SNE to provide a visual representation of the

sample heterogeneity. Figure 7.10A shows the separation of DRG and cerebellum neurons

determined by t-SNE. These cells from different origins are well-separated, with minimal

overlap between the corresponding data sets, depicted by 95% confidence ellipses. The identity

of the base peaks is distinct between the two averaged mass spectra acquired from each cell type.

For DRGs, the unsaturated PC(34:1) at m/z 760.56 is the most intense signal, whereas for

cerebellum neurons, the saturated PC(32:0) is the most intense peak. The high intensities of

PC(32:0) and PC(34:1) signals may reflect the specific roles of these compounds in membrane

195

integrity and fluidity. The cerebellar cell membranes, with relatively more PC(32:0), are

expected to be less rigid than the membranes of larger DRG cells in which unsaturated PC(34:1)

produces the strongest signal. This simple test illustrates the facile differentiation of nervous

system cell types corresponding to their origin, based on lipid profiles.

Multivariate Statistical Analysis Reveals Subpopulations of DRG and Cerebellar Cells

Figure 7.11A shows the two clusters obtained from k-means clustering of the t-SNE

distributions. k-means classifies spectra according to their distance on the t-SNE plot and groups

them into a specified number of clusters. Qualitatively, the two clusters differ based on the

relative intensities of PC(34:1) and PC(32:0) signals, as well as the relative abundance of minor

lipids such as PC(36:1) at m/z 788.60, PC(38:5) at m/z 808.60, and PC(40:5) at m/z 836.60. One

can argue that the difference observed here arose due to experimental factors such as target

accuracy and cell finding errors. However, the average spectra contain similar signal to noise

ratios (S/N) (see Figure 7.11B), indicating the cells from each subpopulation were analyzed with

similar target accuracy. Additionally, if target accuracy was poor, the mass spectra would be

expected to cluster based on cell diameters, since larger cells could tolerate higher uncertainty in

target positioning. Therefore, our data suggest the presence of at least two chemically distinct

DRG cell populations. As seen in Figure 7.11B, in the first subpopulation (red), the relative

signal intensities of other lipids to PC(34:1) are higher than in the second population (blue). The

two cell clusters appear to distribute similarly along the cell size axis (Figure 7.11C). A previous

study suggested that an increase in the relative lipid content due to peripheral inflammation

occurs mainly in small-diameter DRG cells, but not in larger-diameter cells.64 Thus, the method

described here can be instrumental in further characterization of such changes on a single cell

level within these populations.64 6060

196

A similar multivariate analysis was performed on the cerebellar cell data set (Figure

7.12). Here, k-means clustering was optimal with four subpopulations. Unlike the outcome of the

DRG data set analysis, the clusters are more distinct in the t-SNE space (Figure 7.12A).

Qualitatively, the most intense PC(32:0) signal changed noticeably between clusters, increasing

in clockwise order from the green to red cluster in the t-SNE space. The intensity of the saturated

PC(34:0) at m/z 762.56 also followed the same trend (Figure 7.12B). Taking into account cell

diameter and the size of the primary ion beam footprint, it is unlikely that some cells were

partially sampled and passed the quality threshold (Figure 7.12C). However, the S/N for the

yellow cluster is lower than the other clusters, primarily in the region outlined in Figure 7.13,

suggesting that the cells in this cluster with high values of Int(734.54)/Int(760.56) may be

"nearly-missed" cells rather than a separate subpopulation. The population and subpopulation

classifications for the DRG and cerebellum cells were repeated with another pair of animals.

This set of data was obtained one month after the first set to ensure that the conclusions were not

biased by instrument and animal variations.

Furthermore, since instrument parameters were optimized for each experiment, the

difference in the chemical noise profile for each data set may induce non-biological separation

among animals. Hence, we did not combine the two data sets in the same analysis. Nevertheless,

in the second data set, a total of 324 DRG cells and 1,249 cerebellum cells were subjected to t-

SNE analysis and k-means clustering. The results are consistent with the data presented above

for the first data set, and shown in Figures 7-14-7.16. However, for the cerebellum, the presence

of only two cellular subpopulations in the second data set was observed. The values of

Int(734.54)/Int(760.56) for the first two populations shown in Figure 7.12 are identical to the two

populations shown in Figure 7.16 (i.e., 1.3 and 2.0), suggesting that these two populations are

197

biologically relevant. It would be of great interest to correlate these subpopulations to known

cerebellum cellular subtypes through the means of other techniques such as

immunohistochemistry.

Conclusions

We describe a high-throughput method for single cell analysis using IL-assisted SIMS with a 20

kV C60
+ primary ion beam. The IL matrix, composed of 50:50 (v/v) MI-CHCA and TRIP-

CHCA, provided uniform coating coverage and robust enhancement of a number of lipid signals

that were otherwise undetectable. Cells from three different model systems were studied: the A.

californica central nervous system, and the rat DRG and cerebellum. For each cell type,

characteristic metabolites (e.g., α-tocopherol) and lipids (e.g., PCs) were observed. While

PC(34:1) was the most abundant lipid in a majority of the studied DRG cells, there were a few

cells with more abundant saturated PC(32:0) than unsaturated PC(34:1). These cells also showed

an increase in absolute intensities of lipid signals. Therefore, at least two subpopulations (types)

of DRG cells can be classified using the approaches presented here. Analysis of the lipid profiles

of cells isolated from the rat cerebellum revealed similar lipid compositions as those found in

DRG cells. However, PC(32:0) was more frequently observed as the base lipid peak—a

characteristic molecular signature to differentiate these two cell types from each other. Further

classification of cerebellar cells based on lipid profiles revealed at least two cellular

subpopulations.

Our method provides a unique approach to differentiate cell types and subtypes by

utilizing lipid ratios as biomarkers, and is applicable to different classes of neuronal cells.

Optically-guided ME-SIMS can profile up to 2,000 cells in one experiment at the rate of ~600

cells/h. These figures of merit are limited by three factors: (a) the size of the sample holder/slide,

198

(b) the control of the ion beam state and its synchronization to mass spectral acquisition, and (c)

the ionization efficiency of the primary ion beam. The maximum number of cells assayed per

experiment is proportional to the sample area but is also limited by the degradation of IL matrix

inside the vacuum chamber, typically occurring after 3–4 h of analysis. A higher energy ion

beam would improve ionization efficiency and decrease the acquisition time per cell. Together

with better communication and synchronization between the ion beam, sample stage, and mass

analyzer, an acquisition rate as fast as 1 Hz can be achieved. The availability of subcellular

resolution with SIMS will aid in the discovery of compartment-specific cellular markers. A

combination of SIMS and MALDI MS profiling with other non-MS based techniques, including

microscopy and spectroscopy, will allow simultaneous and multidimensional characterization of

various analyte classes in the same sample, yielding unique and complementary information for

each cell.

Figures a

Figure 7
movemen
second d
stage mo
aligned a
the top
acquisitio

and Table

7.1. (A) Sc
nts, mass sp

dwell time an
otion, and b
and split spe
two mass s
on windows

chematic of
pectrometer a
nd a “split” c
beam state a
ectra are high
spectra, the
. In the botto

f the microc
acquisition,
cell with a 2

as a function
hlighted abo
signals of

om two mass

199

controller in
and C60

+ ion
2 s acquisitio
n of time fo
ove. (D) Rep
vitamin E
s spectra, the

ntegration t
n beam statu
on time. (C)
or a represe
presentative
(m/z 430.4)
e lipid signa

to synchron
us. (B) An il
 Overlay of

entative sam
examples o

) are split b
als are also sp

nize motor
llustration of

f total ion cu
mple. Instanc
of “split” cel
between the
plit.

stage
f a 6-

urrent,
ces of
lls. In
e two

Figure 7
ganglion
of single
with MI-
group (m
significan
n.s. - not

7.2. Effect o
neurons wit

e A. californ
-CHCA mat
m/z 184.07)
nce in each
significant,

f the IL ma
th C60-SIMS

nica pedal g
trix. (B) Box
) signal int
comparison
n = 47 cells

trix, MI-CH
S. (A) The av
ganglion neu
x plots of α
tensities det

n was determ
s from two an

200

HCA, on sing
veraged SIM

urons not tre
α-tocopherol
tected at tw

mined by a W
nimals.

gle cell prof
MS mass spe
eated (left, r
 (m/z 430.3
wo studied
Wilcoxon ra

filing of A.
ectrum acqui
red) and trea
5) and phos

conditions
ank sum test

californica p
ired from a b
ated (right,
sphocholine
. The stati
t, *** p <0.0

pedal
batch
blue)
head

istical
0005,

Figure 7
(blue) for
in each c
= 47 cell

7.3. Box plo
r lipid signal

comparison w
s from two A

ot graph sum
ls identified
was determin
Aplysia.

mmarizing d
in a previou

ned by a Wi

201

data for no-
us SIMS ima
lcoxon rank

-matrix (red
aging report.
k sum test, **

d) and matri
.49 The statis
* p <0.005,

ix-assisted S
stical signific
*** p <0.00

SIMS
cance

005, n

Figure 7
(ii) TRIP
cells was
the same

7.4. (A) Repr
P-CHCA, an
s removed d
animals.

resentative f
nd (iii) Mix-C
due to unacce

fluorescent m
CHCA. (B)
eptably low

202

micrograph o
The fraction
lipid signal

of ITO slide
n of data ac
s. The black

es coated wi
cquired from
k lines indic

th (i) MI-CH
m individual

ate samples

HCA,
DRG
from

Figure
measurem
separatio
condition
negative
regions i
annotated

7.5. Multiv
ments of 122
on between t
n with regio

(i) and pos
i–iv for m/z
d with their m

variate analy
29 individua
the three dif
ns of intere

sitive (ii) PC
z regions po
m/z values.

ysis of the
al DRG cells
fferent IL ma
st outlined a

C1 score reg
opulated by

203

 effects of
s. (A) PCA s
atrixes. 95%
and labeled
gions. The c
intact lipid

f different
score and PC

% confidence
(i-iv). (B) A

correspondin
signals. Th

IL matrixe
C1 loading p
e ellipses are
Averaged sp
ng averaged
he identified

es on ME-S
plots showin
e shown for
pectra of DR
d mass spect
d lipid peak

SIMS
ng the
r each
RG in
tra of

ks are

Figure 7
for each

7.6. (A) PCA
sample type

A score plot o
, (i) 1-day ol

of 1-day old
ld samples, (

204

and fresh D
(ii) fresh sam

DRG samples
mples.

s. (B) Averaaged mass sp

pectra

Figure 7
tentative

7.7. Tandem
identity of e

mass spectr
each lipid is

ra of major l
provided in

205

lipids obtain
Table 7.1.

ned from SIMMS single cell profiling

g. The

Figure 7
(top) and
ratio of t
between

7.8. (A) Com
d cerebellum
two domina
the two cell

mparison of
m (Cer) cells
ant lipids, P

types, *** p

f lipid profil
(bottom) us
C(32:0) and
p <0.005 by

206

es obtained
sing Mix-CH
d PC(34:1) a
a Wilcoxon

from MAL
HCA. (B) Qu
at 734.54 an
rank sum te

LDI MS of s
uantitative c
nd 760.56 m

est.

single DRG
comparison o
m/z, respecti

cells
of the
ively,

Figure 7
MALDI
blue) an
intensitie
SIMS an
Wilcoxon

7.9. Compar
MS. (A) Th

nd MALDI
es of two do
nd MALDI M
n rank sum t

rison of lipi
he averaged

MS (bottom
minant lipid
MS measure
test. The num

id profiles d
mass spectr

m, red). (B
ds, PC(32:0)
ements. ***
mber n indic

207

detected in
ra acquired f

B) Quantitati
at m/z 734.
p <0.005, n

cates the tota

single DRG
from single
ive compar
54 and PC(3
n.s. - not sig
al number of

G cells using
DRG cells u

rison of the
34:1) at m/z
gnificant as
f DRG cells i

g ME-SIMS
using SIMS
e ratio of s

760.56, bet
determined

in each data

S and
(top,

signal
tween

by a
set.

Figure 7
t-SNE pl
averaged

7.10. Origin-
lot of DRG

d mass spectr

-related diffe
and cerebel

ra acquired f

erentiation o
llar (Cer) ce
from single D

208

of cell types
ell data sets
DRG (red) a

based on sin
with 95%

and cerebella

ngle cell SIM
confidence
ar cells (blue

MS profiling
ellipses. (B)

e).

g. (A)
) The

Figure 7
clusters b
(B) Repr
734.54 an
glycerol
plot are
normaliz
(blue), re
the relati
the corre

7.11. Identifi
based on t-S
resentative a
nd m/z 760.5
stabilization
colored in

zed intensitie
espectively.
ive signal int
sponding co

ication of ch
SNE distribut
averaged sp
56 signals as
n and drying
n correspond
es of PC(32
A horizonta
tensity ratio

olor. The 95%

hemically di
tion of data

pectra for ea
s a function

g, and theref
dence with
2:0) signals
al histogram

between PC
% confidenc

209

stinct subpo
sets acquire

ach cluster.
of cell diam

fore, are sma
the k-mean

are 0.91 an
m of the relat
C(32:0) and
e ellipses are

opulations of
ed from popu
(C) Plot of

meter. Cell di
aller than ex
ns clusters

nd 0.59 for c
tive populat
PC(34:1) is
e shown in s

f DRG neuro
ulations of s
f ratios of i
iameters are

xpected in vi
in panel A

cluster 1 (re
tion of each

shown as an
scatter plots

ons. (A) k-m
single DRG
ntensities o

e determined
ivo. Points o
A. The aver
ed) and clus
cluster base

n area filled
in A and C.

means
cells.
f m/z

d after
on the
raged
ster 2
ed on

d with

Figure 7
(A) k-me
cluster. T
cluster 1
shows th
734.54 a
determin
vivo). A
signal in
correspon

7.12. Multiv
eans clusterin
The average
(green), clu

he relative in
and m/z 760
ned after trea

horizontal h
ntensity ratio
nding color.

ariate analys
ng of t-SNE

ed normalize
uster 2 (yello
ntensity of m
0.56 signals
atment with
histogram o
o between
The 95% co

sis of data a
E distribution
ed intensitie
ow), cluster

m/z 762.56 fo
s (Y axis) a
glycerol and

of the relativ
PC(32:0) an

onfidence ell

210

acquired from
ns. (B) Repre
es of PC(32:

3 (blue), an
or each clust
as a functio
d drying, and
ve populatio
nd PC(34:1
lipses are sh

m populatio
esentative av
:0) signals a

nd cluster 4
ter. (C) Plot
on of cell d
d therefore,

on of each c
) is shown

hown.

ons of single
veraged mas
are 1.3, 2.0,
(red), respec
of ratios of

diameter (ce
are smaller

cluster based
as an area

e cerebellar
ss spectra of
, 2.2 and 2.
ctively. The
intensities o

ell diameter
than expect

d on the rel
a filled with

cells.
f each
9 for
inset

of m/z
rs are
ted in
lative
h the

Figure 7
reproduc
mass spe
S/N.

7.13. (A) M
ed from Fig

ectrum of si

ultivariate a
gure 7.12. A
ingle cerebe

analysis of s
subsection

ellum cells i

211

single cereb
of the yellow
n the subse

ellum cells
w cluster is
ction highli

including k
annotated. (
ghted in (A

k-mean clust
(B) The aver

A) showing l

tering
raged
lower

Figure 7
t-SNE pl
(B) The a

7.14. Differe
lot of intact
averaged SIM

ntiation of t
lipids from

MS spectra o

two neurona
DRG and c

of single DR

212

al cell types b
cerebellar (C

RG (red) and

based on sin
Cer) cells w
d cerebellar c

ngle cell SIM
with 95% con
cells (blue).

MS profiling
nfidence elli

g. (A)
ipses.

Figure 7
based on
averaged
respectiv
the k-me
The 95%

7.15. Identifi
n t-SNE dist
d normalized
vely. (C) Plo
ans clusters

% confidence

ication of su
tribution of

d intensities o
ot of Int(734

in panel A.
ellipses are

ubpopulation
single DRG

of PC(32:0)
.56)/Int(760
Overlay: a
shown in A

213

ns within sin
G cells. (B)
are 0.80 and

0.56) as a fun
histogram o
 and C.

ngle DRG n
Averaged

d 0.49 cluste
nction of ce

of the relativ

eurons. (A)
spectra of e

er 1 (red) and
ell diameter
ve intensities

k-means clu
each cluster.
d cluster 2 (b
colored base

s for each clu

usters
. The
blue),
ed on
uster.

Figure 7
distributi
PC(32:0)
diameter
cluster in

7.16. Multiv
ions. (B) A
) are 2.0 and

versus Int(
n terms of siz

ariate analys
veraged spe
d 1.3 for clu
(734.54)/Int(
ze. Overlay:

sis of single
ectra of eac
uster 1 (red)
(760.56) sho
histograms

214

e cerebellum
ch cluster. T
) and cluste
owing the re
of the lipid r

m cells. (A) k
The average

er 2 (blue), r
elative distr
ratio for eac

k-means clu
ed normaliz
respectively
ribution of c
ch cluster.

ustering of t-
zed intensiti
. (C) Plot o
cells within

-SNE
es of
f cell
each

215

Table 7.1. Tentative assignments of lipids observed in SIMS single cell profiling of DRG.

Species [M+H]+ (Da) Observed

PC(40:5) 836.54 836.60

PC(38:1) 816.64 816.60

PC(38:5) 808.60 808.60

PC(38:6) 806.56 806.54

PC(36:1) 788.61 788.60

PC(36:2) 786.64 786.60

PC(36:3) 784.58 784.56

PC(36:4) 782.56 782.56

PC(35:1) 774.60 774.58

PC(35:2) 772.58 772.56

PC(34:0) 762.60 762.60

PC(34:1) 760.59 760.56

PC(34:2) 758.56 758.56

PC(33:0) 748.58 748.60

PC(33:1)/PC(O-34:1) 746.56 746.60

PC(32:0) 734.57 734.54

PC(32:1) 732.55 732.50

PC(26:0)/PC(O-28:0) 650.47 650.40

SM(18:0) 731.60 731.60

PC(31:0) 720.55 720.50

PC(30:0) 706.53 706.50

PC(32:0) Frag 478.32 478.30

LysoPC(16:0)/PC(16:0) 496.33 496.40

PC(34:1) Frag/LysoPE(20:3) 504.40 504.30

PC(O-18:1)/PC(18:0)/LysoPC(18:1) 522.34 522.30

PC(O-20:1)/PC(19:1)/ 550.35 550.30

216

References

(1) Navin, N. E. Genome Research 2015, 25, 1499.

(2) Schwartzman, O.; Tanay, A. Nature Reviews: Genetics 2015, 16, 716.

(3) Gawad, C.; Koh, W.; Quake, S. R. Nature Reviews: Genetics 2016, 17, 175.

(4) Rubakhin, S. S.; Romanova, E. V.; Nemes, P.; Sweedler, J. V. Nature Methods 2011, 8, S20.

(5) Ong, T. H.; Tillmaand, E. G.; Makurath, M.; Rubakhin, S. S.; Sweedler, J. V. Biochimica et

Biophysica Acta (BBA) - Bioenergetics 2015, 1854, 732.

(6) Li, L.; Garden, R. W.; Sweedler, J. V. Trends in Biotechnology 2000, 18, 151.

(7) Zenobi, R. Science 2013, 342, 1243259.

(8) Svatos, A. Analytical Chemistry 2011, 83, 5037.

(9) Gode, D.; Volmer, D. A. Analyst 2013, 138, 1289.

(10) Kolitz, S. E.; Lauffenburger, D. A. Biochemistry 2012, 51, 7433.

(11) Patel, A. P.; Tirosh, I.; Trombetta, J. J.; Shalek, A. K.; Gillespie, S. M.; Wakimoto, H.;

Cahill, D. P.; Nahed, B. V.; Curry, W. T.; Martuza, R. L.; Louis, D. N.; Rozenblatt-Rosen, O.;

Suva, M. L.; Regev, A.; Bernstein, B. E. Science 2014, 344, 1396.

(12) Heath, J. R.; Ribas, A.; Mischel, P. S. Nature Reviews: Drug Discovery 2016, 15, 204.

(13) Chen, X.; Love, J. C.; Navin, N. E.; Pachter, L.; Stubbington, M. J. T.; Svensson, V.;

Sweedler, J. V.; Teichmann, S. A. Nature Biotechnology 2016, 34, 1111.

(14) Lanni, E. J.; Rubakhin, S. S.; Sweedler, J. V. J Proteomics 2012, 75, 5036.

(15) Fujii, T.; Matsuda, S.; Tejedor, M. L.; Esaki, T.; Sakane, I.; Mizuno, H.; Tsuyama, N.;

Masujima, T. Nature Protocols 2015, 10, 1445.

217

(16) Si, T.; Li, B.; Zhang, K.; Xu, Y.; Zhao, H.; Sweedler, J. V. Journal of Proteome Research

2016, 15, 1955.

(17) Amantonico, A.; Urban, P. L.; Fagerer, S. R.; Balabin, R. M.; Zenobi, R. Analytical

Chemistry 2010, 82, 7394.

(18) Fernandez, R.; Carriel, V.; Lage, S.; Garate, J.; Diez-Garcia, J.; Ochoa, B.; Castro, B.;

Alaminos, M.; Fernandez, J. A. ACS Chemical Neuroscience 2016, 7, 624.

(19) Rompp, A.; Spengler, B. Histochemistry and Cell Biology 2013, 139, 759.

(20) Rompp, A.; Guenther, S.; Takats, Z.; Spengler, B. Analytical and Bioanalytical Chemistry

2011, 401, 65.

(21) Soltwisch, J.; Kettling, H.; Vens-Cappell, S.; Wiegelmann, M.; Muthing, J.; Dreisewerd, K.

Science 2015, 348, 211.

(22) Monroe, E. B.; Jurchen, J. C.; Lee, J.; Rubakhin, S. S.; Sweedler, J. V. Journal of the

American Chemical Society 2005, 127, 12152.

(23) Song, Y.; Nelp, M. T.; Bandarian, V.; Wysocki, V. H. ACS Cent. Sci. 2015, 1, 477.

(24) Shrestha, B.; Vertes, A. Analytical Chemistry 2014, 86, 4308.

(25) Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K. Nature 2015, 526, 241.

(26) Bernstein, S. L.; Dupuis, N. F.; Lazo, N. D.; Wyttenbach, T.; Condron, M. M.; Bitan, G.;

Teplow, D. B.; Shea, J. E.; Ruotolo, B. T.; Robinson, C. V.; Bowers, M. T. Nature Chemistry

2009, 1, 326.

(27) Kopysov, V.; Makarov, A.; Boyarkin, O. V. Journal of Physical Chemistry Letters 2016, 7,

1067.

218

(28) Gonzalez Florez, A. I.; Mucha, E.; Ahn, D. S.; Gewinner, S.; Schollkopf, W.; Pagel, K.; von

Helden, G. Angewandte Chemie, International Edition in English 2016, 55, 3295.

(29) Cong, X.; Liu, Y.; Liu, W.; Liang, X.; Russell, D. H.; Laganowsky, A. Journal of the

American Chemical Society 2016, 138, 4346.

(30) Gault, J.; Donlan, J. A.; Liko, I.; Hopper, J. T.; Gupta, K.; Housden, N. G.; Struwe, W. B.;

Marty, M. T.; Mize, T.; Bechara, C.; Zhu, Y.; Wu, B.; Kleanthous, C.; Belov, M.; Damoc, E.;

Makarov, A.; Robinson, C. V. Nature Methods 2016, 13, 333.

(31) Boxer, S. G.; Kraft, M. L.; Weber, P. K. Annu. Rev. Biophys. 2009, 38, 53.

(32) Jansson, E. T.; Comi, T. J.; Rubakhin, S. S.; Sweedler, J. V. ACS Chemical Biology 2016,

11, 2588.

(33) Ong, T. H.; Kissick, D. J.; Jansson, E. T.; Comi, T. J.; Romanova, E. V.; Rubakhin, S. S.;

Sweedler, J. V. Analytical Chemistry 2015, 87, 7036.

(34) Passarelli, M. K.; Newman, C. F.; Marshall, P. S.; West, A.; Gilmore, I. S.; Bunch, J.;

Alexander, M. R.; Dollery, C. T. Analytical Chemistry 2015, 87, 6696.

(35) Tucker, K. R.; Li, Z.; Rubakhin, S. S.; Sweedler, J. V. Journal of the American Society for

Mass Spectrometry 2012, 23, 1931.

(36) Dunham, S. J.; Comi, T. J.; Ko, K.; Li, B.; Baig, N. F.; Morales-Soto, N.; Shrout, J. D.;

Bohn, P. W.; Sweedler, J. V. Biointerphases 2016, 11, 02A325.

(37) Wehbe, N.; Mouhib, T.; Prabhakaran, A.; Bertrand, P.; Delcorte, A. Journal of the

American Society for Mass Spectrometry 2009, 20, 2294.

(38) Dertinger, J. J.; Walker, A. V. Journal of the American Society for Mass Spectrometry

2013, 24, 348.

219

(39) Fitzgerald, J. J.; Kunnath, P.; Walker, A. V. Analytical Chemistry 2010, 82, 4413.

(40) Bundaleski, N.; Caporali, S.; Chenakin, S. P.; Moutinho, A. M. C.; Teodoro, O. M. N. D.;

Tolstogouzov, A. Int. J. Mass Spectrom. 2013, 353, 19.

(41) Tariq, M.; Freire, M. G.; Saramago, B.; Coutinho, J. A.; Lopes, J. N.; Rebelo, L. P.

Chemical Society Reviews 2012, 41, 829.

(42) Zimmerman, T. A.; Rubakhin, S. S.; Sweedler, J. V. Journal of the American Society for

Mass Spectrometry 2011, 22, 828.

(43) Schober, Y.; Guenther, S.; Spengler, B.; Rompp, A. Analytical Chemistry 2012, 84, 6293.

(44) Hua, X.; Szymanski, C.; Wang, Z.; Zhou, Y.; Ma, X.; Yu, J.; Evans, J.; Orr, G.; Liu, S.;

Zhu, Z.; Yu, X. Y. Integrative Biology: Quantitative Biosciences from Nano to Macro 2016, 8,

635.

(45) Parry, S.; Winograd, N. Analytical Chemistry 2005, 77, 7950.

(46) Lanni, E. J.; Dunham, S. J.; Nemes, P.; Rubakhin, S. S.; Sweedler, J. V. Journal of the

American Society for Mass Spectrometry 2014, 25, 1897.

(47) Sjovall, P.; Lausmaa, J.; Johansson, B. Analytical Chemistry 2004, 76, 4271.

(48) Phan, N. T.; Fletcher, J. S.; Ewing, A. G. Analytical Chemistry 2015, 87, 4063.

(49) Passarelli, M. K.; Ewing, A. G.; Winograd, N. Analytical Chemistry 2013, 85, 2231.

(50) Angerer, T. B.; Pour, M. D.; Malmberg, P.; Fletcher, J. S. Analytical Chemistry 2015, 87,

4305.

(51) Sapunar, D.; Kostic, S.; Banozic, A.; Puljak, L. Journal of Pain Research 2012, 5, 31.

(52) Kishi, M.; Tanabe, J.; Schmelzer, J. D.; Low, P. A. Diabetes 2002, 51, 819.

220

(53) Villiere, V.; McLachlan, E. M. Journal of Neurophysiology 1996, 76, 1924.

(54) Usoskin, D.; Furlan, A.; Islam, S.; Abdo, H.; Lonnerberg, P.; Lou, D.; Hjerling-Leffler, J.;

Haeggstrom, J.; Kharchenko, O.; Kharchenko, P. V.; Linnarsson, S.; Ernfors, P. Nature

Neuroscience 2015, 18, 145.

(55) Werz, M. A.; Macdonald, R. L. Nature 1982, 299, 730.

(56) Boateng, E. K.; Novejarque, A.; Pheby, T.; Rice, A. S.; Huang, W. European Journal of

Pain (London, England) 2015, 19, 236.

(57) Wang, S. S.; Kloth, A. D.; Badura, A. Neuron 2014, 83, 518.

(58) Kilkenny, C.; Browne, W. J.; Cuthill, I. C.; Emerson, M.; Altman, D. G. PLoS Biology

2010, 8, e1000412.

(59) Berman, E. S.; Fortson, S. L.; Checchi, K. D.; Wu, L.; Felton, J. S.; Wu, K. J.; Kulp, K. S.

Journal of the American Society for Mass Spectrometry 2008, 19, 1230.

(60) Chambers, M. C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D. L.; Neumann, S.;

Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; Hoff, K.; Kessner, D.; Tasman, N.; Shulman, N.;

Frewen, B.; Baker, T. A.; Brusniak, M. Y.; Paulse, C.; Creasy, D.; Flashner, L.; Kani, K.;

Moulding, C.; Seymour, S. L.; Nuwaysir, L. M.; Lefebvre, B.; Kuhlmann, F.; Roark, J.; Rainer,

P.; Detlev, S.; Hemenway, T.; Huhmer, A.; Langridge, J.; Connolly, B.; Chadick, T.; Holly, K.;

Eckels, J.; Deutsch, E. W.; Moritz, R. L.; Katz, J. E.; Agus, D. B.; MacCoss, M.; Tabb, D. L.;

Mallick, P. Nature Biotechnology 2012, 30, 918.

(61) Maaten, L. J. P. v. d.; Hinto, G. E. J. Mach. Learn. Res. 2008, 9, 2579.

(62) Dertinger, J. J.; Walker, A. V. Journal of the American Society for Mass Spectrometry 2013,

24, 1288.

221

(63) Calderon, R. O.; Attema, B.; DeVries, G. H. Journal of Neurochemistry 1995, 64, 424.

(64) Barabas, M. E.; Mattson, E. C.; Aboualizadeh, E.; Hirschmugl, C. J.; Stucky, C. L. Journal

of Biological Chemistry 2014, 289, 34241.

(65) Gnanasekaran, A.; Sundukova, M.; van den Maagdenberg, A. M.; Fabbretti, E.; Nistri, A.

Molecular Pain 2011, 7, 77.

(66) Zhang, Y. H.; Khanna, R.; Nicol, G. D. Neuroscience 2013, 248, 562.

(67) Patti, G. J.; Yanes, O.; Shriver, L. P.; Courade, J. P.; Tautenhahn, R.; Manchester, M.;

Siuzdak, G. Nature Chemical Biology 2012, 8, 232.

(68) Jackson, S. N.; Wang, H. Y.; Woods, A. S. Analytical Chemistry 2005, 77, 4523.

222

CHAPTER 8

MALDI-MS GUIDED LIQUID MICROJUNCTION EXTRACTION FOR CE-MS

ANALYSIS OF SINGLE MURINE PANCREATIC ISLET CELLS

Notes and Acknowledgements

This chapter is adapted from a manuscript in preparation for publication as of March 29, 2017,

coauthored by M. A. Makurath, M. C. Philip, S. S. Rubakhin, and J. V. Sweedler. T. J. Comi

performed MALDI-MS, data analysis, wrote control software, isolated islets, and assisted with

extractions. M. C. Philip performed single cell CE-MS, single cell extractions, and assisted with

data analysis. M. A. Makurath designed the initial extraction system and performed radiography

experiments. Dr. Ta-Hsuan Ong is acknowledged for his help with initial testing and Dr. Meng

Qi for assistance with data analysis. We also thank the UIUC School of Chemical Sciences

machine shop for their expertise in designing and machining components for the vacuum

chamber and stage. Support from the National Institutes of Health, Award Number P30

DA018310 from the National Institute on Drug Abuse and from the National Institute of Mental

Health Award Number 1U01 MH109062 are also acknowledged. T. J. Comi acknowledges

support from the National Science Foundation Graduate Research Fellowship Program, the

Springborn Fellowship and the Training Program at Chemistry-Interface with Biology (T32

GM070421).

Introduction

Assessing heterogeneity in single cells from biological tissues continues to be a challenging task

in the field of physiology.1-4 Frequently, bulk homogenates mask unique features of individual

cells by averaging the population content.5 While a biological organ or tissue needs many types

of distinct cells to function properly, a malfunction can manifest from subpopulations as small as

223

a single cell.6,7 Furthermore, even cells indistinguishable by histology or fluorescent labeling

may possess unique intracellular chemistry.8-10 Detecting and understanding the heterogeneity

between different cells will lead to innovative treatments and biomedical diagnostics.

An important example of single cell heterogeneity exists in pancreatic islets of

Langerhans. The cellular composition of islets are traditionally categorized by the main peptide

hormones they release into the endocrine duct, typically detected by immunohistochemistry.11

Recently, further stratification of cell subtypes became possible with the advent of new analytical

technologies. Flow cytometry and transcriptomics of insulin-secreting β cells identified up to

four different subtypes in humans.12 Using optically-guided MALDI-MS, differential peptide

processing was detected in gamma cells derived from dorsal and ventral regions of the rat

pancreas.13 The development of new methods has revealed the inadequacies of purely

histological classifications of islet cells.

Mass spectrometry is among the most popular analytical method for non-targeted single

cell analysis.4 The recent development of single cell MS analysis was made possible due to

advances in sensitivity, mass resolution, and sample throughput of mass analyzers. Specifically,

the analysis of dispersed cells enables high throughput MS analysis.14 MALDI-MS is well suited

for single cell analysis of a wide range of biological molecules, including for investigating the

lipidome and peptidome.15 The analysis is label-free and consumes a fraction of surface

analytes.16 By locating cells with optical microscopy, the analysis can proceed at acquisition

rates of approximately 1 Hz.17 Most peptides have sufficiently high molecular mass that MALDI

matrix interference is minimal, but many metabolites are obscured, limiting investigations of

metabolites and peptides from the same cell. Another pertinent method for single cell analysis is

capillary electrophoresis (CE)-MS, which can quantitatively identify metabolites at sensitivity

224

relevant to individual cells.18-20 Sample preparation for CE-MS typically requires the extraction

of an entire cell, which has been isolated manually, or through microfluidics.21 In contrast to

MALDI-MS, CE-MS has relatively low throughput, limited to a few cells an hour, which

eliminates the possibility of an exhaustive cell-by-cell analysis of even modestly sized

populations.

Coupling preliminary classification of cells with MALDI-MS to CE-MS could facilitate

targeting of rare and representative cells from a large population. The preselection would allow

CE-MS to efficiently analyze large populations by selecting the most informative individuals.

Previous attempts to combine MALDI-MS and CE-MS have utilized microfluidic22,23 or

hydrodynamic24,25 interfaces. Although the same sample was analyzed with both instruments, the

methods had relatively low throughput and required excessive manual sample handling. It is

critical that the interface method collects small sample volumes with high collection efficiency to

reveal chemical heterogeneity from large populations of cells.

Here, we present a semi-automated, microscopy-guided liquid microjunction probe for

extraction of single cells targeted by their MALDI-MS profiles. While MALDI-MS is not

required for performing liquid extraction, it can complement the microscopy information by

providing label-free classification of large populations. The probe has three axes of linear

freedom controlled with lab-built graphical user interface to perform microscopy guided cell

targeting. The software is an extension of previous microscopy-guided work with MALDI-MS13

and secondary ion MS.26 Each extraction takes 1 minute per cell and can locate targets with an

accuracy of 42.8 ± 2.3 µm over an area of ~ 12 cm2 (approximately 2/3 of a standard microscope

slide). The probe extracts all visible MALDI matrix in an elliptical area with a major diameter of

225

422 ± 21 µm and minor diameter of 335 ± 27 µm. Radiography of a standard peptide

demonstrates removal of 90.6 ± 0.6% of surface compounds.

The methodology allows selective extraction based on peptide content and enables

investigations of specific cell types. Here, small molecules of single cell extracts from individual

rat pancreatic α cells were profiled using CE-MS. By interfacing two powerful analytical tools

for small-volume samples, the combined data from CE-MS and MALDI-MS successfully

classified and analyzed 6 α and 5 β cells. Each cell was identified as a standard histological class

by the detection of glucagon and insulin, respectively, by MALDI-MS. Small molecules detected

with CE-MS include 18 proteinogenic amino acids as well as dopamine. While the presence of

required enzymes for dopamine synthesis has implicated the endogenous presence of dopamine

in β cells,27,28 it has not been directly detected at the single cell level in both α and β cells. Based

on the cell-to-cell distance, liquid microjunction extraction accuracy, and removal efficiency, we

conclude the extracts are representative of single cell contents and are suitable for CE-MS with a

variety of sample systems.

Materials and Methods

Chemicals

All chemicals were purchased from Sigma Aldrich (St. Louis, MO) and used without further

purification.

Isolation of Islet of Langerhans and Single Cell Preparation

A four-month old, male Sprague-Dawley outbred rat (Rattus norvegicus) was housed on a 12-h

light cycle and fed ad libitum. Animal euthanasia was performed in accordance with the

appropriate institutional animal care guidelines (the Illinois Institutional Animal Care and Use

Committee), and in full compliance with federal guidelines for the humane care and treatment of

226

animals. Islets of Langerhans were manually isolated from digested pancreas as previously

reported.13 Briefly, pancreata are injected through the bile duct with 2 mL of 1.4 mg/mL

collagenase P in modified Gey’s balanced salt solution (mGBSS) supplemented with 5 mM

glucose and 1% (w/v) bovine serum albumin (BSA). mGBSS contains 1.5 mM CaCl2, 4.9 mM

KCl, 0.2 mM KH2PO4, 11 mM MgCl2, 0.3 mM MgSO4, 138 mM NaCl, 27.7 mM NaHCO3,

0.8 mM NaH2PO4, and 25 mM HEPES dissolved in Milli-Q water (Millipore, Billerica, MA),

with the pH adjusted to 7.2. The pancreas was then surgically dissected and placed into 8 mL of

collagenase P solution. Solutions were incubated in a recirculating water bath for 20-30 minutes

at 37 °C to dissociate bulk tissue. Excess collagenase P was washed from the resulting tissue

with mGBSS containing glucose and BSA, and centrifuged for 3 minutes at 300g. The resulting

tissue pellet was dispersed into mGBSS and islets were manually isolated with a micropipette.

Single islets were incubated in 20 µL of mGBSS with glucose and BSA supplemented further

with 0.1 mg/mL Hoechst 33342 and 40% (v/v) glycerol to stain cell nuclei and stabilize their

metabolite content.29 After 30 minutes, single cells were dissociated onto clean ITO-coated glass

slides by gentle trituration in the staining solution and allowed to adhere to the slide overnight.

Prior to imaging, excess glycerol was aspirated and the surface was rinsed with 150 mM

ammonium acetate (pH 10).

Optically-Guided Single Cell Profiling

The first step in the experimental workflow outlined in Scheme 8.1 is to locate cells by optical

microscopy. ITO-coated glass slides were prepared for optically-guided single cell profiling by

marking the perimeter of dissociated cells with ~20 fiducial marks. Each mark consisted of an

etched ‘x’ which remained visible through MALDI-MS and liquid microjunction extraction. The

locations of fiducials and cells were determined by whole-slide brightfield and fluorescence

227

microscopy on an Axio Imager M2 (Carl Zeiss, Jena, Germany). Images were acquired with a

10× objective and tiled to cover the entire region of interest. Florescence imaging of Hoechst

33342 utilized an X-CITE 120 mercury lamp (Lumen Dynamics, Mississauga, Canada) and a

31000v2 DAPI filter set.

Whole slide images were utilized for optically-guided single cell profiling using lab-built

software which has been modified to control the liquid microjunction extraction system. The

pixel locations of each fiducial are correlated to their physical position in the mass spectrometer.

A point-based similarity registration is then utilized to map cell locations on the image to their

corresponding physical location.

After optical imaging, samples were coated with MALDI matrix using an artistic airbrush

to apply 50 mg/mL 2,5-dihydroxybenzoic acid (DHB) in a 1:1 (v/v) ethanol:water with 0.1%

trifluoroacetic acid (TFA) nebulized with 40 psi nitrogen. Coating thickness was assessed

optically during matrix application with typical thicknesses of 0.2-0.4 mg/cm2. Samples were

stored at room temperature in a nitrogen dry box until analyzed.

MALDI-MS

Pancreatic cell populations were rapidly profiled with MALDI-MS to stratify the population into

traditional histological classes. Specifically, α and β cells were identified based on the detection

of glucagon (monoisotopic m/z 3481.6) or insulin-1 C peptide (m/z 3259.8). To prevent

contamination from adjacent cells during follow-up extraction, all cell coordinates were first

passed through a 300 µm distance filter. From a single islet dispersed on an ITO-coated glass

slide, approximately 200-400 pancreatic cells satisfied the collection criteria.

Mass spectra were acquired on a Bruker ultrafleXtreme MALDI TOF/TOF mass

spectrometer with a frequency tripled Nd:YAG solid state laser. Each cell was profiled with

228

1000 shots using a 1 kHz laser repetition rate with the “Ultra” spot size (~100 µm). The resulting

spectra were read into MATLAB 8.6.0 with the readbrukermaldi function

(https://github.com/AlexHenderson/readbrukermaldi). Mass windows corresponding to the

peptide hormones of interest were extracted and intensities were plotted as shown in Figure 8.1.

Cells were classified based on their spectral profiles as α or β using signal intensities at m/z

3483.9 and 3259.8 as classifiers. For each mass channel, a threshold value was manually

determined to identify cell types with high confidence. Due to stringent filter values,

approximately 100 cells were successfully classified by this approach for each islet. Classified

cells were then examined to ensure no adjacent cells would contaminate the extraction.

Liquid Microjunction Extraction Probe System

As shown in Figure 8.2, the liquid microjunction extraction system consists of a lab-built,

concentric capillary probe coupled to a 3-axis linear actuator positioning system. The single-cell

collection setup was designed to transfer cell metabolites from an ITO-coated glass slide into a

0.2 µL microcentrifuge tube. The basic operating principle is similar to a liquid microjunction

surface sampling probe except the solution is aspirated by vacuum pressure instead of an

electrospray. The diameters of the probe capillaries were selected to be larger than the diameter

of individual pancreatic cells to ensure complete extraction, prevent clogging and accommodate

the stage accuracy. The sizes of the inner and outer capillaries were 100 m/170 m and 250

m/350 m (Polymicro Technologies/Molex), and the diameter of pancreatic cells is ~10-15

m.30 Sample carryover may result in the detection of unwanted metabolites, therefore, ~5 mm

of polyimide coating is thermally removed at the end of each capillary.31 Following each

extraction, the probe was immersed in extraction solution to thoroughly wash out the interior.

229

The extraction solution consisted of 1:1 methanol:water with 0.5% acetic acid (v/v) which was

previously shown to facilitate metabolite extraction and detection with the CE-MS.32 As shown

in Figure 8.3, a small meniscus forms at the probe tip during operation. Eight collections can be

performed sequentially without interruption, currently limited by the vacuum chamber capacity.

Extraction liquid is delivered at 1.5 L/min with a PHD 2000 syringe pump (Harvard Apparatus,

Holliston, MA) and aspirated with 7-10 mmHg of vacuum, supplied with a diaphragm

vacuum/pressure pump (Cole-Parmer, Vernon Hills, IL). The liquid microjunction is positioned

with three linear stages (Zaber Technologies, Vancouver, British Colombia) controlled with in-

house written software. First, the user moves the x,y-translation stage away from the cell

deposition and lowers the probe to the surface. The software records the z-axis position at the

slide surface to enable automatic extraction. The probe position is monitored in real-time with a

digital video camera (Sony DFW-X700). Next, coordinates from the whole-slide image and

linear actuator positions are correlated with a point-based similarity registration based on more

than 18 etched fiducial marks. Once all fiducials have been located on the sample surface, cell

positions are loaded into the software. Clicking on a cell position on the image moves the x,y-

translation stage into position for extraction. The user initiates semi-automatic extractions by

moving over target cells and signaling the software with a key press. During extraction, the

probe is lowered to the slide for 60s and then retracted. Alternatively, a population of cells may

be sequentially extracted and pooled into a single collection vial. Following either collection

scheme, the probe is returned to the home position and submerged into a reservoir of extraction

solution for 90s to rinse the probe exterior and flush the inner capillary. The cell content at each

coordinate travels from the MALDI target, through the inner capillary and into the

microcentrifuge tube contained in the vacuum chamber. Inside the vacuum chamber, the

230

microcentrifuge tubes are covered with a thin strip of parafilmM to prevent carryover when

moving between collection vials. The inner capillary is retracted from the current collection tube,

the tube carousel is indexed to the next position and the inner capillary is placed into the next

collection tube without breaking vacuum. Individual samples were dried using Mi-Vac sample

concentrator (SP Scientific, Warminster, PA) and stored at -20C prior to CE-MS analysis.

Characterization of Probe Removal Efficiency

Tritiated (3H) angiotensin was utilized to determine the extraction profile and removal efficiency

of the extraction probe. All radioactivity experiments were performed in accordance with Illinois

Radiation Protection Act under the University of Illinois at Urbana-Champaign Type A Broad

Scope Radioactive Materials License issued by the Illinois Emergency Management Agency

(IEMA). To quantify the extraction efficiency, five spots of ~1 L of 1,000 pCi 3H-angiotensin

were deposited onto the surface of an ITO-coated glass slide and allowed to dry for 24 hr at room

temperature (~ 22C). Liquid microjunction extraction of the radioactive material was performed

as described above with minor adjustments to minimize the possibility of radioactive

contamination of the equipment. A movable stereomicroscope (Leica Wild M3Z) was mounted

to monitor the extraction location and the position of the probe in the z-direction was adjusted

manually. To replicate single cell extraction conditions, each 3H-angiotensin spot was extracted

for 60 sec. The pre- and post-extraction radioactivity was monitored with a Storage Phosphor

Screen (BAS-IP TR 2025 E Tritium Screen) exposed for 6h. Developing the screen with a

phosphorimager (Molecular Dynamics Phosphorimager SI) allowed for relative quantitation of

the removal. Image processing was performed with custom MATLAB scripts. The fraction of

material removed was determined by the background-corrected, normalized intensity at each

231

pixel before and after extraction. The removal efficiency was estimated by fitting the 2

dimensional distribution to a general Gaussian function, as described in Table 8.1.

Determination of Target Localization Error

To ensure each extraction is from the expected cell, it is imperative to determine the target

localization error. Extraction locations were tracked by the removal of MALDI matrix from a

MALDI target. Image registration of fiducial markers allowed the correlation of requested target

points and realized extraction positions.

A glass slide was etched with 18 fiducial marks for point-based registration, similar to typical

cell extractions. An additional six etched marks were placed within these fiducials to assist with

image registration as they remain visible after MALDI matrix application and extraction. Eight

target locations were manually placed around each of the six, interior etched marks in pairs to

assess the effect of repeated registrations. The slide was then coated with DHB and placed into

the liquid extraction stage as before. Two users each performed two sets of extractions with

twelve targets spread over the six etched marks. This design of experiment allowed evaluation of

the user, registration, and location on the target localization error. Each target was extracted for 5

s and the probe was washed for 60 s after each set of twelve extractions.

Following extraction, the sample was imaged again to locate target etched marks and

extraction locations. Extraction centers and diameters were manually annotated. A custom

MATLAB script was utilized to assess the target localization error of each extraction. Regions

surrounding each etched mark were cropped from the whole slide image. Several locations on

each mark were utilized to overlay the pre- and post-extraction images. Target locations on the

pre-extraction image were then mapped to the post-extraction image with the same coordinate

transformation. The pixel distance between the target and actual positions were scaled to

232

microns. A three-way linear ANOVA was utilized to assess the effect of each confounding

variable.

CE-MS Analysis

Each cell was resuspended in 1 μL 1% formic acid in water. CE-MS was performed as reported

previously using a micrOTOF mass spectrometer (Bruker Daltonics, Billerica, MA).32 All

analyses were performed in positive ion mode using a separation capillary length of 70.7 cm, a

separation potential of 17 kV, and a sample and standard injection volume of ~ 15 nL. Extracted

ion electropherograms were exported using custom scripts in Bruker DataAnalysis version 4.4.

Compounds were identified from the electropherograms by matching the migration order and m/z

values with standards. In MATLAB, each extracted ion electropherogram was baseline

subtracted and smoothed with a 7-point moving average filter. Migration times were aligned to

an arbitrary sample (α1) using a linear regression between migration times of a set of amino

acids found in each sample (i.e. glycine, alanine, threonine, leucine/isoleucine, histidine,

phenylalanine; Figure 8.4). To confirm the presence of dopamine, a standard mix of 10 μM

glycine, alanine, threonine, leucine, histidine, and phenylalanine in 1% formic acid in water was

analyzed with a 68 cm capillary at 10 kV with and without the addition of 10 μM dopamine. The

resulting electropherograms were migration time-corrected and compared to the cell samples.

Results and Discussion

Extraction Accuracy, Area and Efficiency

As described above, MALDI-matrix was utilized as a tracer to monitor the extraction position to

assess the target localization error of the liquid microjunction system (Figure 8.5). While the

operator and target location did not significantly influence the target localization error (p = 0.15

and 0.06 respectively), there was a significant effect on the registration trial (p = 0.004). This

233

highlights the importance of accurate determination of fiducial locations as the largest influence

on target localization error. The overall target localization error was determined as 42.8 ± 2.3 µm

(± SEM, n = 48; range 3.9 to 88.5 µm), which is well within the average extraction radius of

206.3 ± 1.7 µm determined from removal of DHB from the surface. Therefore, it is assumed that

each extraction contained the target cell and a cell-to-cell distance filter larger than 250 µm is

sufficient to ensure each extraction is free from contamination of neighboring cells.

The same experiment provided a high resolution, qualitative assessment of the extraction

area. Figure 8.6 shows a montage of the extracted area. Generally, the footprint was found to be

circular, though some irregularities are present, likely due to imperfect construction of the probe

or the presence of glass shards from the fiducials. An average radius of 206.3±1.7 µm was found

from manual measurement of each extraction spot.

The removal efficiency was investigated quantitatively with 3H-angiotensin spotted onto

an ITO-coated glass slide. Fitting the radiographic images to a two-dimensional, general

Gaussian function (Figures 8.7 and 8.8) estimates a removal efficiency of 90.6 ± 0.6% (Table

8.1). The extraction footprint was found to be elliptical with major diameter of 422 ± 21 µm and

minor diameter of 335 ± 27 µm, in agreement with optical measurements of DHB removal.

Profiles of Small Molecules

CE-MS complements MALDI-MS analyses by identifying small molecules from a single-cell.

We present example extracted ion electropherograms with corresponding MALDI mass spectra

in Figure 8.9. The complete collection of electropherograms is in Figure 8.10.

Detected compounds include a majority of the proteinogenic amino acids, precursor

molecules, and endocrine signaling molecules. No obvious differences were found between α

and β cells, though a more quantitative analysis could identify subtle heterogeneity between each

234

population. An interesting observation was the presence of dopamine in all α and β cells (Figures

8.11 and 8.12). Endogenous dopamine has been detected in single islets via an ELISA assay,28

but not in single cells. β cells are known to have the required enzymes for synthesis, metabolism,

and storage of dopamine, such as tyrosine hydroxylase33 and vesicular monoamine transporter

type 2,34 thus it is generally accepted that dopamine is produced in β cells.27 Dopamine within α

cells is less studied, and whether dopamine is endogenous to α cells has not yet been

investigated. We report the first direct detection of dopamine in single α and β cells, illustrating

the unique capabilities of such small-scale analyses.

Conclusions

We present a method to couple high throughput single cell profiling with MALDI-MS with CE-

MS metabolomics. The approach leverages the low sample consumption of MALDI-MS to

enable follow-up analysis by CE-MS. Combining MALDI-MS and CE-MS resulted in

identification of cell types by peptide profile, detection of most amino acids and the signaling

molecule dopamine, a difficult task for either technique alone. The approach demonstrates

sequential analysis of single cells adhered to a surface. While CE-MS provides insight for small

molecules and metabolites, MALDI-MS supplies a label-free classification method at high

throughput to highlight individual cells requiring further examination.

Scheme,

Scheme
Langerha
MALDI-
extraction
ITO-coat

 Figures, an

8.1. Overvie
ans are isola
-MS assays
n targets. Th
ted glass slid

nd Table

ew of MALD
ated from a
the hormone
he liquid mi
de for follow

DI-MS guide
a rat pancrea
e profile of
icrojunction

w-up CE-MS

235

ed liquid mic
as and disso
individual c
probe colle

S analysis.

crojunction
ociated onto
cells from a

ects cells fro

extraction ap
o an ITO-co
a large popu
om specified

pproach. Isle
oated glass
ulation to ide
d locations o

ets of
slide.
entify
on the

Figure 8
primarily
Classific
analysis.
single pa
the spect

8.1. MALDI-
y of α (bl
ations are b
Cell identit

ancreatic cel
ra.

-MS classifi
ue) and β
ased on a th

ties in remai
lls identified

ication of pa
cells (red)

hreshold abu
ining figures
d in panel A

236

ancreatic cel
), containin
undance to i
s correspond
. Mass wind

lls. (A) A sin
ng glucagon
identify cell
d to labeled
dows for eac

ngle dorsal i
n and insu
 types for fo
α and β cell
ch peptide a

islet is comp
ulin respecti
ollow-up CE
ls. (B) Spect
are highlight

posed
ively.
E-MS
tra of
ted in

Figure 8.
syringe p
microjunc
linear actu
aspirated
view of th
matched i
joint to th
Overview
of cells to
interest an
flush the
extract so
carousel a
droplets h
vacuum.

2. Schematic
pump (1) to
ction probe (B
uators (4,5).
through the c

he liquid micr
inlet capillary
he collection

w of interactio
o correlate sta
nd lowered to
capillaries an

olution from
accommodate
hanging on t

of liquid mic
deliver extra

B). The positi
Solution is d

capillary (6)
rojunction ex
y to the outer
chamber. ii) T
n with target
age positions
o begin extra

nd transfer ex
the surface

es eight tubes
the capillary

crojunction ex
action solutio
on of the sam

delivered to t
attached to th
traction probe

r capillary. So
The inner cap
surface. Seve
 with optical

action. ii) Aft
xtracts to the
into microce

s with indexe
from transfe

237

xtraction instr
on (2) throug
mple and mani
the surface to
he collection
e. i) The extra

olution aspira
pillary is sligh
eral x marks a

images. i) T
ter 60 s, the p
collection tub

entrifuge tube
d positions to

ferring betwe

rument. (A) T
gh the liquid
ifold are cont
o extract from
chamber held
action solutio

ated from the
htly withdraw
are positioned

The probe is m
probe is retra
be. (D) A cus
es covered w
o simplify ali

een samples,

The overall sy
d supply side
trolled throug
m target loca
d at vacuum
on is delivere
surface is dr

wn from the o
d around the p
moved over t
acted and sol
stom vacuum
with parafilm
ignment. i) P
but must be

ystem consist
e (3) of the
gh an xyz syst
ations before

(7). (B) Expa
d through the
awn through
outer capillar
perimeter of a
the top of a c
lution continu
chamber asp

M. The colle
ParafilmM pre
e open to pr

ts of a
liquid

tem of
being
anded
e size-
the t-

ry. (C)
a field
cell of
ues to
pirates
ection
events
rovide

Figure 8
solution
touches t
inner cap

8.3. Microgr
forms a me
the surface,
pillary is with

aphs of the
niscus at th
solution flo
hdrawn ~50

liquid micro
e probe tip,

ow remains c
µm from th

238

ojunction pr
 indicated w
constant, wi

he outer capil

robe. (A) Wh
with a white
ithout air en
llary for stab

hile operatin
e arrow. (B)
ntering the c
ble flow.

ng, the extra
When the p

capillary. (C)

action
probe
) The

Figure 8
alignmen
The migr
each time

8.4. Example
nt. The migra
ration times
e scale. The

e extracted i
ation time of
s are mapped
resulting eq

on electroph
f each m/z v
d to one sam

quation is use

239

herograms o
value is deter
mple (α1) to
ed to calcula

of compound
rmined from
o determine
ate a new set

ds utilized fo
m the raw EIE

a linear reg
t of migratio

or migration
Es, shown in
gression bet
n times (B).

n time
n (A).
tween

Figure 8
were pos
microsco
Box plot
confound

8.5. Represe
sitioned arou
ope image w
t of accuracy
ding variable

entative extr
und fiducial

with the posi
y over four t
e found to si

ractions for
l marks pla
ition of targ
trials of fidu
gnificantly a

240

determining
ced in the c

get locations
ucial registra
affect target

g target loca
center of a
s (green) an
ation. The re
localization

alization err
glass slide.

nd extraction
egistration t
 error.

ror. Target p
. (A) Overla
n areas (red)
trial was the

points
ay of
). (B)
e only

Figure 8
DHB-coa
of 206.3

8.6. Montage
ated microsc
± 1.7 µm.

e of extractio
cope slide. T

on areas. Eac
The extractio

241

ch spot is the
on profile is

e result of 5
s roughly cir

seconds of
rcular with a

extraction fr
an average r

rom a
radius

Figure 8
utilized t
respectiv
and ii) ar
distributi
Residual
500 µm.

8.7. Measur
to measure

vely. (C) Sam
re utilized to
ion is fit to a
s of the fit (

rement of r
angiotensin

mple analysis
o determine t
a general tw
(v) are non-s

removal effi
distribution

s of the left-m
the distributi

wo dimension
structured in

242

iciency of 3

ns pre- and
most spot. S
ion of the fra
nal Gaussian
ndicating the

3H-angiotens
post- extrac

Subregions s
action of rad
n (iv) to dete
e model is ap

sin. A phos
ction, shown
urrounding e
dioactivity re
ermine the f
ppropriate. A

sphorimager
n in (A) and
each extract
emoved (iii)
fraction remo
All scale bar

r was
d (B)
tion (i
). The
oved.
rs are

Figure 8
efficiency
Normaliz
Backgrou
(C). E) A

8.8. Comple
y. Each colu
zed intensity
und correcte

Absolute, resi

ete set of
umn corresp
y distributio

ed, fraction r
idual intensi

subregions
ponds to a s
on prior to
removed inte
ity scaled the

243

and Gauss
single extrac

extraction.
ensity. (D) T
e same as (C

sian fits for
ction from s

(B) Same
Two dimensio
C). Scale bar

r determina
spot 1 (left)
region after
onal Gaussia

r is 500 µm.

ation of rem
to 5 (right)

r extraction
an fit of ima

moval
). (A)
n. (C)
age in

Figure 8
Correspo
amino ac

8.9. (A) Re
onding CE-M
cids (B) and

epresentative
MS extracted

lower intens

e single cel
d ion electrop
sity amino ac

244

ll MALDI-M
pherograms
cids (C).

MS profiles
of the same

s of a singl
cells, showi

le α and β
ing high inte

cell.

ensity

Figure 8
MALDI-
metabolit
annotated
cell ident

8.10. Single
-MS, (B) hig
tes and back
d points in F
tity, e.g. α6.1

e cell MAL
gh intensity
kground sign
Figure 8.1. T
1 and α6.2.

DI-MS and
amino acids

nals. The cel
Technical rep

245

d extracted
s, (C) lower
ll identities a
plicates of C

ion electrop
r intensity am
are displaye

CE-MS are in

pherograms.
mino acids,
d in panel (A

ndicated as d

(A) Single
and (D) sel

A) and matc
decimals afte

e cell
lected
ch the
er the

Figure 8

.10. (cont.)

246

Figure 8

.10. (cont.)

247

Figure 8

.10. (cont.)

248

Figure 8

.10. (cont.)

249

Figure 8

.10. (cont.)

250

Figure 8

.10. (cont.)

251

Figure 8

.10. (cont.)

252

Figure 8
time mat
Dopamin
sodiated

8.11. Extract
tching dopam
ne was dete
leucine. Cel

ted ion elect
mine standa
ectable in ev
lls with techn

tropherogram
ards is filled
very cell an
nical replica

253

ms for m/z 1
for each el

nalyzed. The
ates are anno

154.09 ± 0.0
ectropherog
e peak at ~

otated with d

01. The pea

gram. (A) α
~16 minutes
decimals, e.g

ak with migr
cells (B) β

s is attribute
g. α6.1.

ration
cells.
ed to

Figure 8
Intensitie
were util
Dopamin
main text

8.12. Extrac
es are norma
lized for m
ne is assigne
t.

cted ion elec
alized to phe
igration tim
ed to the pe

ctropherogra
enylalanine i

me alignment
eak migratin

254

ams for ami
in each samp
t due to low

ng at ~12 mi

ino acid sta
ple. A subset
w sensitivity
inutes as hi

andards com
t of the amin
y in the ex
ghlighted in

mpared with
no acid stan

xcluded chan
n Figure 6 o

α 1.
dards
nnels.
of the

255

Table 8.1. Summary of fitting values for determining the fraction of 3H-angiotensin removed.
The fraction removed was modeled as a general, two-dimensional Gaussian distribution centered
on each sub-image. The model equation is

, exp μ 	2 μ μ μ

Where A is the fraction removed at the center, e.g. (x,y) = (µx, µy) and (µx, µy) is the center of the
distribution. The variables a,b,c are further defined as

cos
2

sin
2

sin 2
4

sin 2
4

sin
2

cos
2

Where , are the standard deviation of the distribution and is the rotation in radians. With
the constraints that ∈ 0,2 , μ , μ ∈ , , , ∈ 0, , ∈ 0,2 where s is the
subregion size, 500 µm. Reported values represent the 95% confidence intervals for each
parameter.

Spot A µx (µm) µy (µm) θ (radians) σx (µm) σy (µm)

1 0.889 ± 0.079 15 ± 10 18.9 ± 7.9 1.51 ± 0.25 88.4 ± 7.9 114 ± 10

2 0.91 ± 0.14 24 ± 15 9 ± 13 5.08 ± 0.72 77 ± 13 91 ± 15

3 0.908 ± 0.094 4 ± 12 35 ± 11 5.68 ± 0.90 115 ± 12 106 ± 11

4 0.904 ± 0.099 0 ± 12 16.5 ± 9.0 3.04 ± 0.24 112 ± 12 82.2 ± 9.0

5 0.92 ± 0.13 20 ± 13 24.1 ± 8.9 0.09 ± 0.24 96 ± 13 64.9 ± 8.9

256

References

(1) Onjiko, R. M.; Moody, S. A.; Nemes, P. Proceedings of the National Academy of Sciences of

the United States of America 2015, 112, 6545.

(2) Armbrecht, L.; Dittrich, P. S. Analytical Chemistry 2016.

(3) Malucelli, E.; Fratini, M.; Notargiacomo, A.; Gianoncelli, A.; Merolle, L.; Sargenti, A.;

Cappadone, C.; Farruggia, G.; Lagomarsino, S.; Iotti, S. Analyst 2016.

(4) Zenobi, R. Science 2013, 342.

(5) Altschuler, S. J.; Wu, L. F. Cell 2010, 141, 559.

(6) Lawson, D. A.; Bhakta, N. R.; Kessenbrock, K.; Prummel, K. D.; Yu, Y.; Takai, K.; Zhou,

A.; Eyob, H.; Balakrishnan, S.; Wang, C.-Y.; Yaswen, P.; Goga, A.; Werb, Z. Nature 2015, 526,

131.

(7) Powell, A. A.; Talasaz, A. H.; Zhang, H.; Coram, M. A.; Reddy, A.; Deng, G.; Telli, M. L.;

Advani, R. H.; Carlson, R. W.; Mollick, J. A.; Sheth, S.; Kurian, A. W.; Ford, J. M.; Stockdale,

F. E.; Quake, S. R.; Pease, R. F.; Mindrinos, M. N.; Bhanot, G.; Dairkee, S. H.; Davis, R. W.;

Jeffrey, S. S. PLOS ONE 2012, 7, e33788.

(8) Zeisel, A.; Munoz-Manchado, A. B.; Codeluppi, S.; Lonnerberg, P.; La Manno, G.; Jureus,

A.; Marques, S.; Munguba, H.; He, L.; Betsholtz, C.; Rolny, C.; Castelo-Branco, G.; Hjerling-

Leffler, J.; Linnarsson, S. Science 2015, 347, 1138.

(9) Fagerer, S.; Schmid, T.; Ibanez, A.; Pabst, M.; Steinhoff, R.; Jefimovs, K.; Urban, P.; Zenobi,

R. Analyst 2013.

257

(10) Ibáñez, A. J.; Fagerer, S. R.; Schmidt, A. M.; Urban, P. L.; Jefimovs, K.; Geiger, P.;

Dechant, R.; Heinemann, M.; Zenobi, R. Proceedings of the National Academy of Sciences 2013,

110, 8790.

(11) Chiang, M. K.; Melton, D. A. Developmental Cell 2003, 4, 383.

(12) Dorrell, C.; Schug, J.; Canaday, P. S.; Russ, H. A.; Tarlow, B. D.; Grompe, M. T.; Horton,

T.; Hebrok, M.; Streeter, P. R.; Kaestner, K. H.; Grompe, M. Nature Communications 2016, 7,

11756.

(13) Jansson, E. T.; Comi, T. J.; Rubakhin, S. S.; Sweedler, J. V. ACS Chemical Biology 2016,

11, 2588.

(14) Comi, T. J.; Do, T. D.; Rubakhin, S. S.; Sweedler, J. V. Journal of the American Chemical

Society 2017.

(15) Li, L. J.; Garden, R. W.; Sweedler, J. V. Trends in Biotechnology 2000, 18, 151.

(16) Page, J. S.; Sweedler, J. V. Analytical Chemistry 2002, 74, 6200.

(17) Ong, T.-H.; Kissick, D. J.; Jansson, E. T.; Comi, T. J.; Romanova, E. V.; Rubakhin, S. S.;

Sweedler, J. V. Analytical Chemistry 2015, 87, 7036.

(18) Nemes, P.; Knolhoff, A. M.; Rubakhin, S. S.; Sweedler, J. V. Analytical Chemistry 2011,

83, 6810.

(19) Jankowski, J. A.; Tracht, S.; Sweedler, J. V. Trac-Trends in Analytical Chemistry 1995, 14,

170.

(20) Lapainis, T.; Rubakhin, S. S.; Sweedler, J. V. Analytical Chemistry 2009, 81, 5858.

(21) Cecala, C.; Sweedler, J. V. Analyst 2012, 137, 2922.

258

(22) Liu, J.; Tseng, K.; Garcia, B.; Lebrilla, C. B.; Mukerjee, E.; Collins, S.; Smith, R. Analytical

Chemistry 2001, 73, 2147.

(23) Rejtar, T.; Hu, P.; Juhasz, P.; Campbell, J. M.; Vestal, M. L.; Preisler, J.; Karger, B. L.

Journal of Proteome Research 2002, 1, 171.

(24) Page, J. S.; Rubakhin, S. S.; Sweedler, J. V. Analytical Chemistry 2002, 74, 497.

(25) Fan, Y.; Lee, C. Y.; Rubakhin, S. S.; Sweedler, J. V. Analyst 2013, 138, 6337.

(26) Do, T. D.; Comi, T. J.; Dunham, S. J. B.; Rubakhin, S. S.; Sweedler, J. V. Analytical

Chemistry 2017.

(27) Garcia Barrado, M. J.; Iglesias Osma, M. C.; Blanco, E. J.; Carretero Hernández, M.;

Sánchez Robledo, V.; Catalano Iniesta, L.; Carrero, S.; Carretero, J. PLOS ONE 2015, 10,

e0123197.

(28) Ustione, A.; Piston, D. W. Molecular Endocrinology 2012, 26, 1928.

(29) Tucker, K. R.; Li, Z.; Rubakhin, S. S.; Sweedler, J. V. Journal of The American Society for

Mass Spectrometry 2012, 23, 1931.

(30) Giordano, E.; Cirulli, V.; Bosco, D.; Rouiller, D.; Halban, P.; Meda, P. American Journal of

Physiology-Cell Physiology 1993, 265, C358.

(31) Mayer, B. X. Journal of Chromatography A 2001, 907, 21.

(32) Nemes, P.; Rubakhin, S. S.; Aerts, J. T.; Sweedler, J. V. Nat. Protocols 2013, 8, 783.

(33) Borelli, M. I.; Rubio, M.; García, M. E.; Flores, L. E.; Gagliardino, J. J. BMC Endocrine

Disorders 2003, 3, 2.

259

(34) Raffo, A.; Hancock, K.; Polito, T.; Xie, Y.; Andan, G.; Witkowski, P.; Hardy, M.; Barba, P.;

Ferrara, C.; Maffei, A.; Freeby, M.; Goland, R.; Leibel, R. L.; Sweet, I. R.; Harris, P. E. Journal

of Endocrinology 2008, 198, 41.

260

CHAPTER 9

OPTICALLY-GUIDED MALDI-MS PROFILING OF MICROBIAL COLONIES FOR HIGH-
THROUGHPUT ENGINEERING OF MULTI-STEP ENZYMATIC REACTIONS

Notes and Acknowledgements

This chapter is adapted from a manuscript in preparation for publication as of March 29, 2017,

coauthored by T. Si, B. Li, Y. Ui, P. Hu, Y. Wu, Y. Min, D. A. Mitchell, H. Zhao, and J. V.

Sweedler. T. J. Comi developed sampling protocols for MALDI-MS screening and performed

data analysis on resulting MALDI-MS datasets. T. Si performed molecular engineering, cloning,

mutagenesis, and LC-MS analysis. B. Li performed MALDI-MS and MS/MS experiments,

developed the imprinting scheme and analyzed FT-ICR and MS/MS data. E. K. Neumann is

acknowledged for her assistance with performing FT-ICR analysis. Support from the National

Institutes of Health, Award Number P30 DA018310 from the National Institute on Drug Abuse

and from the National Institute of Mental Health Award Number 1U01 MH109062 are also

acknowledged. T. J. Comi acknowledges support from the National Science Foundation

Graduate Research Fellowship Program, the Springborn Fellowship and the Training Program at

Chemistry-Interface with Biology (T32 GM070421).

Introduction

With the current, incomplete understanding of complicated biological systems, it remains

indispensable to screen recombinant variant libraries in biological research and engineering.1-3

Traditional screening methods are either limited to photometrically-active molecules and labeled

surrogates, or require chromatographic separation in low throughput1. Mass spectrometry (MS)

offers label-free analysis of target molecules with high specificity, and matrix-assisted laser

desorption/ionization (MALDI)-MS is particularly well suited for rapid inspection of a large

261

number of samples due to its simple sample preparation, high salt tolerance, and wide coverage

of diverse biomolecules.4,5 For rapid profiling of enzymatic reactions, MALDI mass

spectrometry imaging (MSI) has been increasingly applied.6-11 However, MALDI-MSI screening

utilizes fixed raster steps for sampling, which requires high-density deposition of reaction

components in a regular array to increase throughput9-11. Such protocols generate technical

challenges in co-localizing multiple enzymes, which may explain the limited reports of MSI-

based screening of multi-step biochemical reactions. On the other hand, multi-step biosynthesis

is vital for production of many important molecules including fuels, fine chemicals, and

pharmaceuticals.1 In particular, natural products (NPs) synthesized via secondary metabolism

often contain complex chemical modifications installed by a number of enzymes. Research on

NPs advances fundamental biochemistry and provides a valuable source for medicines.12,13 NP

analogs are widely applied in mechanistic studies focusing on mode-of-action, substrate

tolerance, and structure-activity relationships14. NP variants are also engineered to develop

compounds with improved medicinal properties14. To engineer a multi-step reaction such as NP

biosynthesis, modified intermediates must be accepted at each step of the catalytic sequence to

obtain a final product. Engineering an individual step in isolation ignores possible downstream

effects. Therefore, current MSI screening platforms primarily designed for single-step enzymatic

reactions may be ill-suited for engineering entire multi-step pathways.

In this work, we sought to apply optically-guided MALDI-MS to engineer multi-step

enzymatic reactions via high-throughput, direct profiling of microbial colonies. Using microbial

cells as reaction vessels, a set of enzymes can be encoded as a biosynthetic pathway on a DNA

vector. Routine molecular biology enables mutagenesis, delivery, and expression of multiple

enzymes encapsulated in a single cell. In addition, cell growth and metabolism in colonies

262

facilitates analyte accumulation, which may help to eliminate the current requirement of analyte

immobilization/capture for MSI screening. MALDI-MSI has been utilized to study spatial

heterogeneity of microbial metabolism in biofilms15-17 or multi-species co-cultures.18-20 Such

analyses have yet been applied to screen libraries of microbial colonies, which are randomly

distributed and widely spaced on agar media when prepared using standard techniques. MSI of

such sparse objects is inefficient as most acquisitions occur on the space between colonies due to

the fixed raster steps for sampling.21 Additionally, as beneficial mutations are generally rare, a

large number of mutants are often created and screened to isolate desirable variants. Advanced

liquid handling systems may be applied to deposit colonies into defined patterns for MSI

screening,9-11 but are costly and time-consuming. Instead, we developed an approach which

utilizes microscopy images and simple machine vision to program MALDI-MS acquisition for

rapid “colony picking” (Figure 9.1). The approach of optically-guided MS profiling for bacterial

colonies is an extension of methodology developed for single-cell MS analysis22-24.

Engineering multi-step enzymatic pathways may modify the structures and/or quantities

of products. Such changes can be reflected in mass spectra, such as mass shifts in non-

isomerization reactions, or differences in relative ion intensities of congeners due to altered

enzymatic specificities. The mass spectra resulting from microbial screening produce a large,

information-rich data set, which requires computational tools to extract, interpret and visualize

the most relevant signals to aid mutant recovery. The diverse molecular profiles can be surveyed

with targeted, multivariate clustering if the molecular weight information of desired products is

available. Alternatively, non-targeted clustering can group colonies exhibiting similar spectra

without a priori knowledge for discovery efforts. For researchers with limited MS experience, it

is highly desirable to visualize screening data in a manner similar to classical, colorimetric

263

assays. Given the wide application of multi-step enzymatic reactions, data analysis pipelines

tailored for diverse engineering objectives are needed.

As a proof-of-concept, we applied optically-guided MALDI-MS to study and modify

catalytic specificity of multi-step NP biosynthesis. With the designed workflow, we

characterized the substrate tolerance of a five-enzyme pathway which synthesizes the antibiotic

plantazolicin (1) from a precursor peptide. We then applied MALDI-MS screening in directed

protein evolution to alter congener compositions of rhamnolipids (RLs) synthesized by a two-

enzyme pathway. Custom sampling and analysis algorithms were developed for each system,

with the former focusing on structural variations of analogues and the latter on relative

abundances of target congeners. We demonstrated successful application of optically guided

MALDI-MS profiling in both examples, resulting in the discovery of new compounds and

isolation of enzymes with desirable chemical selectivity.

Materials and Methods

Strains, media and cultivation conditions

Zymo 5α Z-competent E. coli (Zymo Research, Irvine, CA) and NEB 10β Electrocompetent E.

coli (New England Biolabs, Ipswich, MA) were used for general plasmid amplification and

library construction, respectively. E. coli BL21 (DE3) (Cell Media Facility, UIUC, Urbana) was

used as a host for expression of multiple enzymes. For plasmid construction, E. coli strains were

cultured at 37°C and 250 r.p.m. in Luria broth (LB) liquid media (Fisher Scientific, Pittsburgh,

PA), or at 37°C on LB plates solidified with 1.5% (w/v) agar. For plasmid maintenance using

antibiotic selection, LB was supplemented with 100 μg mL-1 ampicillin and/or 50 μg mL-1

kanamycin. For inducible protein expression, BL21 (DE3) cells were cultured at 30°C instead of

37°C, and isopropyl β-D-1-thiogalactopyranoside (IPTG) was supplemented at a final

264

concentration of 1 mM. M9 minimal media supplemented with BME vitamin mix (Sigma-

aldrich, cat. #B6891), trace mineral solution (ATCC, cat. #MD-TMS) and 2 g l-1 acetate was

used for PZN production. All chemicals were purchased through Sigma-Aldrich or Fisher

Scientific unless noted otherwise.

DNA and strain construction

The list of primers used can be found in Table 9.1. All enzymes used for recombinant DNA

cloning, including Q5 PCR polymerase, restriction digestion enzymes, were from New England

Biolabs unless otherwise noted. Plasmid assembly was performed using Gibson Assembly

Cloning Kit (New England Biolabs) or T4 ligase following the manufacturer’s instructions.

QIAprep Spin Plasmid Mini-prep Kits (Qiagen, Valencia, CA) were utilized to isolate plasmid

DNA from E. coli. PCR, digestion and ligation products were purified by QIAquick PCR

Purification and Gel Extraction Kits (Qiagen). Error-prone PCR was performed using

GeneMorph II Random Mutagenesis Kits (Agilent Technologies, Santa Clara, CA). The genomic

DNA of Pseudomonas aeruginosa PAO1c was a kind gift from Prof. Joshua D Shrout at

University of Notre Dame.

For PZN production, the partial operon containing the biosynthetic genes essential for

PZN production (ptnC, ptnD, ptnB, ptnE and ptnL) were PCR-amplified in two pieces from a

fosmid bearing the complete PZN pathway25 with primer pairs NP5/NP6 and NP7/NP8. PCR

products and the vector pRSFDuet-1 linearized by NdeI and MfeI at the multiple cloning site II

(MCSII) were assembled into pRSFDuet-T7-ptnJCDBEL(II), so that expression of the partial

operon was under control of a T7 promoter. We have previously discovered N-terminal fusion of

the maltose-binding protein (MBP) was necessary for efficient production of the precursor

peptide,25 so pET28a-MBP-bamA was used for precursor expression in trans on a separate

265

plasmid. The kanamycin resistance gene in pRSFDuet-T7-ptnJCDBEL(II) was replaced by the

ampicillin resistance gene to allow co-selection with pET28a-MBP-bamA. For site-saturation

mutagenesis, the NNK degenerative codons at I34 or I35 positions were introduced in primers

NP127 and NP128, respectively. The plasmid libraries assembled using two PCR products

amplified from pET28a-MBP-bamA using primer pair #1 (NP119/NP124) and primer pair #2

(NP125/NP127 or NP125/NP128). Gibson assembly products were used to transform NEB 10β

cells on agar media to obtain >104 independent transformants for each library. Plasmid DNA was

isolated and used to transform BL21(DE3) harboring pRSFDuet-T7-pntJCDBEL for strain

library creation.

For mono-rhamnolipid production, the rhlB gene was PCR-amplified using the primer

pair NP21/NP22 from P. aeruginosa PAO1c genomic DNA. The PCR product was digested

using EcoRI and HindIII, and ligated into MCSI of pRSFDuet-1 treated with the same set of

enzymes to create pRSFDuet-T7-rhlB(I). The WT rhlA gene was PCR amplified using the

primer pair NP23/NP24 from P. aeruginosa PAO1c genomic DNA, digested using MfeI/KpnI,

and ligated into MCSII of pRSFDuet-T7-rhlB(I). The resulting plasmid, pRSFDuet-T7-rhlB(I)-

T7-rhlA(II), was used to transform BL21 (DE3) to create the ‘wild-type’ production strain. To

introduce random mutagenesis to rhlA, error-prone PCR was performed at an average mutation

rate of ~1.8 bp kb-1 (or 1.6 bp per the 888 bp rhlA gene) with the following PCR conditions: 800

ng of pRSFDuet-T7-rhlB(I)-T7-rhlA(II) (WT or mutants) as a template, NP23/NP24 as primers,

and 30 PCR cycles. The PCR product was digested using MfeI and KpnI before being ligated

into pRSFDuet-T7-rhlB(I) treated with the same set of enzymes. Ligation products were used to

transform electrocompetent NEB 10β cells, obtaining >105 independent transformants for each

266

strain library on agar media. Plasmid DNA was isolated and transformed into BL21 (DE3) cells

for strain library construction.

Microscopy-guided MALDI-MS with microMS

To prepare colonies for MALDI-MS profiling, plasmid DNA libraries were used to transform

BL21 (DE3) cells, which were spread on DuraporeTM PVDF membrane filters (0.22 µm pore

size, 90 mm diameter, EMD Millipore, Kankakee, IL, cat. #GVWP08050) to allow growth using

non-inducing LB agar media. After cultivation at 30°C for 16~20 h, the filters were transferred

to induction plates containing 1 mM IPTG (M9+acetate media for PZN, and LB media for

rhamnolipid) for incubation at 30°C for 24 h. To transfer biomass onto MALDI targets, a colony-

bearing filter was placed onto a clean, stainless steel substrate with colonies facing upwards. An

indium-tin oxide (ITO)-coated glass slide (Delta Technologies, Loveland, CO) was delicately

placed on the filter with ITO coating facing the colonies. Colony patterns were imprinted onto

the ITO slide by gently applying ~3.5 N force by hand for 10 s.

High-throughput MALDI-MS screening of E. coli colonies was performed using lab-built

image analysis software, microMS (available at

http://neuroproteomics.scs.illinois.edu/microMS.htm) following previously reported single-cell

profiling workflows22-24 with modifications. Specifically, ITO-coated glass slides were etched

with more than 16 fiducials surrounding the imprint region. Auto-fluorescence of E. coli colonies

in the DAPI channel was used to aid colony finding. Whole-slide bright-field and fluorescence

images were acquired on a Ziess Axio Imager M2 (Zeiss, Jena, Germany) using an Ab cam Icc5

camera, a HAL 100 halogen illuminator (Zeiss), and an X-CITE Series 120 Q mercury lamp

(Lumen Dynamics, Mississauga, Canada). The 31000v2 DAPI filter set was used for auto-

fluorescence excitation. The images were acquired as tiled mosaics using the 10x objective and

267

10% overlap. Images were processed and exported at 1/8 magnification as tiff files using ZEN

software version 2 blue edition (Zeiss). The whole-slide tiff images were loaded into microMS,

which performed automatic colony finding, target patterning around each colony, and correlation

with the Bruker ultrafleXtreme MALDI-ToF/ToF mass spectrometer (Bruker Daltonics,

Billerica, MA). Coordinate registration and correlation is performed by locating the etched

fiducials in the mass spectrometer and recording their locations in microMS. The procedure is

found to be accurate within ~20 µm when at least 16 fiducials are included in the training set.

Target patterning positioned at most 10 targets around each colony, offset from the

circumference by 25 pixels (110 µm), with a minimum shot-to-shot spacing of 10 pixels (44

µm). The custom geometry file was then ready to load into the mass spectrometer for automated

acquisition.

Before spectra acquisition, the sample slide was coated with MALDI matrix using an

artist’s airbrush with a 0.2 mm nozzle (Paasche Airbrush Company, Chicago, IL). Several

parameters were optimized to ensure even deposition of matrix on the imprinted colonies. The

N2 pressure was set at 40 psi and the imprint glass slides were spray coated at a distance of 30–

35 cm with 50 mg mL-1 2,5-dihydroxybenzoic acid (DHB) (Sigma-Aldrich) dissolved in

methanol:H2O (1:1, v/v). After spraying 2 mL of the DHB solution with the airbrush, the sample

was dried for 1 min to avoid over-wetting and analyte delocalization. A total of 10 mL of DHB

solution was applied in 10 min per target plate.

Measurements were performed using a frequency tripled Nd:YAG solid state laser

(λ=355 nm). The laser footprint was set to “Ultra” at a ∼100 μm diameter. Mass spectrometer

calibration was performed using Peptide Calibration Standard Kit II (Bruker Daltonics). Data

acquisition was run in positive reflection mode with pulsed ion extraction and a mass range of

268

440-700 Da for the detection of rhamnolipids and 905-2005 Da for PZN variants. Colony

imprints were analyzed following the custom geometry file with 500 laser shots fired at 2000 Hz.

Resulting spectra were analyzed as detailed below.

Multivariate data analysis

Spectra were read directly into MATLAB 2015b with the readbrukermaldi function

(github.com/AlexHenderson/readbrukermaldi) and manually recalibrated with a third order

polynomial to correct for mass shifts between analyses. Spectra were resampled with bin widths

of 0.025 Da for RL and 0.5 Da for PZN.

For PZN, untargeted t-SNE26 was performed utilizing each, binned m/z value to evaluate

population heterogeneity and variance in sample processing. It was determined that mutations

resulted in mass shifts from the fully processed form of PZN while other clusters were due to

experimental factors, including polymer contamination. Next, targeted t-SNE was performed to

locate colonies expressing each point mutation. The maximum intensity of each monoisotopic

amino acid substitution was extracted from every spectrum with a tolerance of ±0.25 Da. The

reduced dataset was examined with t-SNE to cluster similar spectra. Apparent groups were

examined manually to assign spectra to specific substitutions. Spectra without peptide signal

were combined into the “N/A” cluster. These correspond to background, imaging artifacts, and

spectra acquired on non-circular colonies. Additional filtering of putative colonies at the stage of

optical image analysis could reduce the abundance of the N/A cluster. Next, the spectral

classifications were mapped onto the optical image, leveraging the pixel positions encoded into

the filename of each spectrum. To facilitate mutant recovery, the most common cluster is shown

over the optical image, excluding the N/A cluster.

269

For RL, a targeted analysis was performed to visualize the relative abundance of 5b. The

intensities of protonated, sodiated, and potassiated monoisotopic masses of 5a, 5b, 5c, and 5d

were extracted with a tolerance of ±0.2 Da. Spectra were filtered to remove colonies within 200

µm of each other and total intensity of RL less than 500 (arbitrary counts). The intensities of

each RL were summed for spectra surrounding each colony. To visualize the molecular content

of mutants on the target, the total RL intensity and relative content of 5b were mapped onto the

optical image of the colonies. The log base 10 of total abundance of RLs determined the size of

each data point overlaid on the whole slide image. The relative abundance of 5b dictated the

color of each point. Such a visualization allows rapid assessment of desirable mutants in terms of

total expression and relative abundance of 5b.

In situ high-resolution and tandem MS analysis for PZN analogs

In situ measurement of accurate masses of peptides was conducted on colony imprints using a 7T

solariX Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer (Bruker

Daltonics) equipped with a dual ESI/MALDI source and a Smartbeam II laser. Mass calibrations

were performed externally using DHB and Peptide Calibration Standard Kit II (Bruker

Daltonics). An m/z range of 150-3000 was acquired at 4 Mword. Data was analyzed in Data

Analysis version 4.0 software (Bruker Daltonics). In situ tandem MS was conducted on the

colony imprints using the MALDI ToF/ToF LIFT mode of the mass spectrometer under manual

control. Tandem mass spectra were smoothed, baseline-corrected and analyzed in FlexAnalysis 3

(Bruker Daltonics).

Relative quantification of RL congeners using LC-MS/MS with MRM mode

To compare direct MALDI-MS profiling results with LC-MS or MALDI-MS quantification of

RL congeners following organic solvent extraction, a filter bearing ~100 colonies with the WT

270

mono-RL pathway subsequent to IPTG induction as described above was extracted using 500 µl

of chloroform:ethanol (2:1, v/v) solution. The filter and cell debris were separated from

supernatant using centrifugation (5 min, 10,000 r.p.m., 4°C), and the lower organic phase was

dried under vacuum in a rotary flash evaporator (MiVac, GeneVac, UK). The samples were

reconstituted in 50 µL of acetonitrile:H2O (1:9, v/v) solution containing 2 mM ammonium

acetate. For MALDI-MS analyses, 1 µl of the reconstituted extracts was mixed with 1 µl of DHB

solution (50 mg mL-1 in acetonitrile:H2O (1:1, v/v)) and spotted onto a MTP 384 polished steel

target (Bruker Daltonics). MALDI spectra were acquired in positive reflection mode as described

above. LC-MS quantification was performed as detailed below. The same extraction and

quantification procedure was also used to analyze the colonies of mutant strains subsequent to

plasmid retransformation.

To characterize the ratios of RL congeners in liquid fermentation products, single

colonies were obtained by streaking glycerol frozen stocks of the WT and mutant RL-producing

strains on agar plates. Three colonies for each strain were inoculated into 3 mL of LB+Kan

media. Following cultivation at 30°C and 250 r.p.m. for 16 h, 60 µl of cell cultures was added to

3 mL of fresh LB media to continue growth until cell densities reached OD600=0.4~0.8. IPTG

was added to a final concentration of 1 mM, and induction was performed at 30°C and 250 r.p.m.

for 24 h. Culture supernatants were obtained via centrifugation for cell separation (10 min, 4,000

r.p.m., 20°C), and were filtered through 0.22 µm-pore-size cellulose acetate membrane

centrifuge tube filters (Sigma) before LC-MS analyses as detailed below.

A multiple reaction monitoring (MRM) assay was performed in negative-ion mode using

an ultrahigh performance liquid chromatography–triple quadrupole–electrospray ionization mass

spectrometry (UHPLC-QqQ-ESI MS) system (Bruker Daltonics) consisting of an Advance

271

UHPLC module and an EVOQ Elite triple quadrupole-mass spectrometer. A Kinetex 1.7 μm

C18 150 × 2.1 mm internal diameter column (Phenomenex, Torrance, Calif., USA) was used for

LC analyte separation. Mobile phase A was H2O containing of 4 mM ammonium acetate and

mobile phase B was acetonitrile. The gradient program was conducted as follows: 0-2 min, 5%

B; 2-2.1 min, 5-50% B; 2.1-8 min, 50-90% B; 8-15 min, 90% B; 15-15.1 min, 90-5% B; 15.1-17

min, 5% B. Total run time was 17 min. The injection volume was 2 μL. The EVOQ source

parameters were as follows: HESI, spray voltage (-) 4500 V; cone temperature, 250 °C; cone gas

flow, 25; heated probe temperature, 450 °C; probe gas flow, 45; nebulizer gas flow, 65; exhaust

gas, Off. Monitored MRM transitions for Rha-C8-C10 (and Rha-C10-C8) were 475→305,

475→169; Rha-C10-C10 were 503→333, 503→169; Rha-C10-C12 (and Rha-C12-C10) were

531→333, 531→169 and Rha-C12-12 were 559→395, 559→169. The m/z 169 product intensity

was utilized as a quantitation transition while the other transitions provided confirmation of RL

identities. EVOQ MRM chromatograms were analyzed using Data Review 8.2 (Bruker

Daltonics). The peak area of quantitation transition of a specific RL congener was used to

calculate its fraction relative to the sum of all RL peak areas.

Results and Discussion

Workflow development

We devised a workflow for high-throughput MALDI-based characterization of bacterial colonies

consisting of strain library creation, optically-guided MALDI-MS profiling, and data

analysis/visualization. Recombinant variants of a multi-enzymatic pathway are constructed as

plasmid DNA libraries, which are used to transform a production host such as E. coli (Figure

9.1A). The transformants are plated on a filter membrane,27 allowing facile manipulation of

many colonies simultaneously, such as exchanging culture media or imprinting onto MALDI

272

targets. Microbial cells are initially cultivated on non-inducing agar media to obtain individual

colonies and transferred onto induction plates to initiate enzyme expression and target molecule

production. Each clonal population contains a single variant of the multi-step pathway. For

analysis, colonies are imprinted on conductive, indium tin oxide (ITO)-coated glass slides

(Figure 9.1B). The use of transparent MALDI targets allows acquisition of optical images prior

to matrix application to determine the relative coordinates of microbial colonies and fiducial

markers (Figure 9.1C). MALDI matrix is then applied using an artistic airbrush. Lab-built

software, microMS, was developed in Python to generate MALDI laser coordinates for

automatic colony profiling (Figure 9.1C). Laser shots are patterned around the peripheries of

imprinted colonies for optimal sensitivity, as described below. Resulting mass spectra are

processed using multivariant statistical analysis, and high-dimensional data sets are visualized

over the optical images to aid mutant recovery (Figure 9.1D).

Substrate Libraries of a Peptidic NP

Ribosomally synthesized and post-translationally modified peptides (RiPPs) form a major class

of natural products that are ubiquitous in currently sequenced genomes.28,29 As the product is

synthesized from a ribosomally synthesized peptide, combinatorial variants can be generated by

mutagenesis of the precursor gene.30,31 Plantazolicin (PZN, 1) is a member of a RiPP subclass

termed linear azol(in)e-containing peptides. During biosynthesis of this subclass, a trimeric

heterocycle synthetase (BCD) converts select Cys, Ser, and Thr residues in the C-terminal (core)

region of the precursor peptide to thiazole, oxazole, and methyloxazol(in)e moieties,

respectively. 1 is naturally produced by Bacillus velezensis FZB4232 and exhibits remarkable

antibacterial selectivity against Bacillus anthracis,33 the causative agent of anthrax. We

previously achieved heterologous production of 1 in E. coli using a fosmid bearing the

273

corresponding biosynthetic gene cluster.25 Analogs of 1 were also created by site-directed

mutagenesis of the precursor peptide gene (bamA), followed by a medium-throughput screening

involving liquid cultivation and methanol extraction before MS analyses.25 For successful

synthesis of an analog of 1, a mutant precursor peptide must be accepted as a substrate by

multiple steps of the biosynthetic pathways, including cyclodehydration, dehydrogenation, leader

peptidolysis, N-terminal demethylation, and export.

To apply optically-guided MALDI-MS screening to E. coli colonies producing 1 analogs,

we targeted two non-cyclized positions, I34 and I35 (Scheme 9.1, red), where mutations are

relatively tolerated by the biosynthesis machinery.25 Site-saturation mutagenesis was performed

using degenerate codon (NNK)-containing primers. Polyclonal plasmid DNA was transformed

into competent E. coli cells harboring a refactored version of the PZN cluster, where native

Bacillus promoters were replaced with a strong T7 promoter to enhance production. IPTG was

used to induce production of 1 on M9 medium containing acetate as the sole carbon source.

For I34 and I35 libraries, 352 and 393 colonies were screened, respectively, achieving

>99.9% probability of full coverage on the NNK libraries.34 Following the analysis workflow,

we first performed unsupervised clustering of the resulting 2389 and 1623 MALDI mass spectra

for the I34 and I35 libraries, respectively. We manually examined each spectral class for

tentative PZN peaks, and found all the base peaks (Figure 9.2) consistent with single-residual-

mutation analogues with ‘wild-type-like’ modifications: nine azole rings, one azoline ring, leader

peptidolysis N-terminal to Arg28, and N-terminal demethylation (Scheme 9.1).

We observed 12 and 9 variant classes of 1for the I34 (Figure 9.3A) and I35 (Figure 9.2) libraries,

respectively, from MALDI-ToF MS data alone. High-resolution MS analysis further revealed

both K and Q substitutions at I34, but only Q at I35 (Figure 9.2). Colonies belonging to each

274

class were inoculated in liquid cultures for plasmid isolation and DNA sequencing. Each colony

sequenced presented mutations consistent with predicted and observed mass shifts in base peaks

assuming full maturation (Figure 9.2). In this study, all previously isolated PZN analogs with

single residue mutations at I34 or I35 were detected as well as previously unreported variants

(Figure 9.2).25 Select analogs with sufficient residual analyte were subjected to in situ ion

identification with tandem MS (Figure 9.4-7). The tandem mass spectra suggested “wild-type-

like” modifications (Scheme 9.1) for examined base peaks (Figure 9.4-7). Detection of

unreported PZN analogs in this study reflects the improved methodology. First, PZN variant

production was increased through pathway refactoring and growth medium optimization,

enabling observation of variants that were not detected before due to insufficient amount. Also,

enhanced production allowed detection of 1 analogs directly from single colonies, eliminating

laborious liquid cultivation and extraction steps that were necessary previously.25 This

improvement was leveraged by optically-guided MALDI-MS to substantially increase analysis

throughput, allowing more comprehensive codons (NNK vs NNC) for mutagenesis while

retaining high probabilities of full library coverage.

In addition to spectral classes containing base peaks matching predicted m/z values of

PZN analogs, classes exhibiting low signal to noise or chemical background were also observed

(Figure 9.3). This spectral class likely resulted from (1) mutations that are not tolerated by the

biosynthetic machinery or lead to analog production below our detection limit, (2) the UAG stop

codon contained in the degenerate NNK codon, (3) artifacts during optical image acquisition

such as dust, and (4) problems targeting irregularly shaped colony imprints (Figure 9.8, I34M).

The first two possibilities were not further studied given the consistency between current and

previous results.25 The latter two can be alleviated through more vigilant colony finding and

275

target patterning. In particular, we found the best sensitivity was obtained when directing

MALDI laser to the peripheries of imprinted biomass (Figure 9.8). Direct sampling on the

imprinted biomass often yielded mass spectra with low signal to noise (Figure 9.8, I34M and

I34R), possibly due to insufficient matrix-to-analyte mixing, poor laser focus, or inefficient ion

transfer from the elevated sample heights.

Enzyme libraries in biosynthesis of 4

Next, we sought to engineer enzyme specificity in a two-step biochemical pathway for

rhamnolipid (RL) synthesis (Scheme 9.2). Initially discovered from Pseudomonas aeruginosa,35

RLs are a class of biosurfactants extensively studied for potential applications in enhanced oil

recovery, biodegradation and bioremediation36,37. To form mono-rhamnolipids (mono-RLs, 5),

RhlB (rhamnosyltransferase 1 chain B) catalyzes condensation of 3 and 4. Different variants of 3

are synthesized by RhlA (rhamnosyltransferase 1 chain A) using 2 of varying chain lengths and

degrees of unsaturation,38 contributing to the structural diversity of RL lipid moieties in nature.39

The most abundant RL species produced by P. aeruginosa and other bacteria consist of β-

hydroxydecanoyl-β-hydroxydecanoate (C10-C10) as the fatty acyl moiety, which is attributed to

the role of RhlA as a “molecular ruler” with high preference towards β-hydroxydecanoyl-ACP

(2, n=9) in vitro.38 Different fatty acyl chain lengths affect the physiochemical and biological

properties of RLs,35,40 so it is desirable to produce RLs with custom congener compositions for

specific applications. Previous screening assays relied on the link between antimicrobial activity

and RL mixture composition and suffered from low chemical specificity.40 Here we sought to

directly measure relative abundances of different RL congeners using MALDI-MS in high

throughput.

276

We first explored the possibility to measure relative abundance of 5 mixtures produced

from recombinant E. coli colonies using optically-guided MALDI-MS screening. Heterologous

production of 5 in E. coli was achieved by co-expression of the wild-type rhlA and rhlB genes of

P. aeruginosa as previously reported (denoted as WT).41 Following the screening workflow

(Figure 9.1), eight peaks in the MALDI mass spectra were tentatively assigned as Na+ and K+

adduct ions of 5a-d based on mass matching (Figure 9.9A) and comparison of tandem MS results

with previous reports15,16 (Figure 9.9B). Compared with LC-MS/MS quantification using

multiple reaction monitoring (MRM) after organic solvent extraction, we found that optically-

guided MALDI-MS screening provided a good estimate on the fraction of 5b relative to total

mono-RL amount produced from single colonies (Figure 9.9), when ion intensities of 5a-d peaks

in MALDI mass spectra were utilized to calculate relative abundances of RL congeners (see SI

for details). For the percentiles of 5a, 5c and 5d, however, significant differences were observed

in quantification between MALDI-MS screening of colonies and LC-MS analysis of extracts

(Figure 9.10). Such discrepancies may result from two sources—congeners may exhibit different

ionization efficiency between MALDI-MS and LC-MS (Figure 9.10) or the relative congener

transfer efficiency during imprinting differs from solvent extraction. To confirm phenotypes of

mutant strains identified with MALDI-screening, liquid cultivation was performed followed by

LC-MS/MS without solvent extraction to quantify RL congener abundance.

We then applied directed protein evolution to RhlA to engineer relative abundances of

5a-d in mono-RL production. Random mutations were introduced in the WT rhlA gene using

error-prone PCR. The PCR product was inserted into a plasmid harboring a WT rhlB gene, and

the resulting DNA library was used to transform E. coli cells. Following the MALDI-MS

screening workflow (Figure 9.1), the resulting data sets were visualized by overlaying the optical

277

image with a bubble chart to provide a rapid assessment of the variance in relative abundance

and total production of RL molecules (Figure 9.11). Each circle has a radius determined by the

log-base 10 intensity of the sum of all RL peaks. The color is determined by the relative

abundance of 5b. Compared with the WT strain (Figure 9.11A), the strain library in the first

round of mutagenesis (denoted as R1) exhibited increased diversity in terms of both total

intensities of RL ions and relative percentiles of 5b (Figure 9.11B). These results agree with the

description of rhlA as the ‘molecular ruler’ of RL lipid moiety synthesis.38 From R1, variant

strains producing 5b at larger fractions relative to WT were recovered with the visual aid of

bubble charts (large, red cycles). After plasmid isolation and retransformation into a fresh strain

background, two mutant strains (R1#6 and R1#15) were confirmed to produce significantly

larger proportions of 5b than WT in liquid cultures (Figure 9.12). R1#6 and R1#15 each harbors

a single amino acid mutation of V10I and A64V, respectively.

The mutated rhlA gene from the R1#6 strain was subjected to another round of

mutagenesis to further increase relative abundance of 5b. However, the majority of recovered

strains from the second round of screening (R2) were found to contain no additional mutations

relative to the parent R1#6. After retransformation, one mutant strain (R2#71) was isolated

bearing a single amino acid mutation (L269I) that reduced proportions of 5c and 5d in liquid

cultures compared with WT, but failed to further enhance the relative abundance of 5b relative to

R1#6 (Figure 9.12). Further investigation is needed to elucidate the mechanisms on why selected

mutations confer observed phenotypes.

Conclusions

We have developed an integrated workflow for sample preparation, automatic MALDI-MS

acquisition, and data processing and visualization for high-throughput screening of multi-step

278

enzymatic reactions in bacterial colonies. MS provides a label-free, highly sensitive platform for

monitoring products, reactants, and byproducts with high specificity. Incorporating machine

vision and automatic target patterning greatly improves MS acquisition efficiency over

traditional MSI assays, especially for randomly distributed colonies. The resulting datasets may

be subjected to multivariate clustering or reduced into univariate plots to quickly assess and

select mutants with desirable phenotypes. Optically-guided MALDI-MS was successfully

applied to screen substrate and enzyme libraries directly from recombinant E. coli colonies

prepared by standard microbiology methods. The workflow should be applicable to a wide range

of multi-step enzyme reactions and facilitate high-throughput screening in microbial systems.

Currently, it takes ~1 h to acquire a whole-slide microscopy image of a 25 mm × 75 mm ITO-

coated glass target, on which ~1000 colonies can be screened with a MS sampling rate of 1~2.5 s

(2,000~10,000 MALDI laser shots) per colony. The upper limit of colony numbers per slide is

due to the manual step for mutant recovery, as it becomes more challenging for a human

researcher to locate a specific strain with higher colony density. Robotic recovery of mutant

colonies may help to overcome this limitation. Further improvement may also be achieved

through faster acquisition of optical images, automatic imprinting/matrix coating to enhance

sample uniformity, and derivatization of analytes with poor native MALDI-MS sensitivity.

Schemes

Scheme

s, Figures, a

9.1. Precurs

and Table

or and structture of 1.

279

Scheme

9.2. Biosyntthesis of 4.

280

Figure 9
of the gla

9.1. Optically
ass slide.

y-guided MA

ALDI-MS s

281

screening. BBlue arrows

indicate the ITO-coated

d side

Figure 9
MALDI-
summariz
spectra, t
MALDI-
select co
tentative
study25.

9.2. Summa
-ToF mass sp
zes the info
theoretical an
-FT-ICR), a
olonies from

Q and K m

ry of PZN
pectrum of t
ormation of
nd measured
nd DNA se
the same sa

mutants, as w

analogs ob
the E. coli c
1 analogs

d monoisoto
equencing re
ample target

well as select

282

served in th
colony is inc
including A
pic m/z valu
esults. High
t subsequent
1 analogs (

his study. F
cluded on th

AA mutation
ue of the [M+
h-resolution
t to MALDI

(shown in re

For each 1 a
he left. The t
n assignment
+H]+ ion (by
FT-ICR wa

I-MS screen
ed) not repor

analog, a ty
table on the
t based on
y MALDI-T
as performe
ning, focusin
rted in a prev

ypical

right
mass

ToF or
ed on
ng on
vious

Figure 9
clustering
spectrum
spectra w
mapped o
which are

9.3. Multiva
g of the I34

m with each c
without obser
onto the opt
e displayed i

ariate analy
 library from
cluster surro
rvable peptid
ical image to
in more deta

ysis of PZN
m a single e
ounded by a
de signals. T
o aid mutant
ail in Figure

283

N analogs.
experiment. E

95% confid
The position
t recovery. T
9.8.

(A) Visuali
Each point c

dence ellipso
 of each mut

Three coloni

zation with
corresponds
oid. The N/A
tant (B) or N
ies are highli

h targeted t-
to a single

A cluster con
N/A colony (
ighted in pan

-SNE
mass

ntains
(C) is
nel B

Figure. 9
I35V. Th
Peaks wi

9.4. In situ M
hese analogs
ith m/z value

MALDI-ToF
s were repor
es consistent

F/ToF tande
rted previou
with previo

284

m mass spe
usly25 with t
ous results w

ectra of PZN
tandem mas

were labeled.

N-I34V, PZN
ss spectra (d

N-I34T and P
denoted as b

PZN-
blue).

Figure 9
These an
Fragmen

9.5. In situ M
nalogs were
nts derived fr

MALDI-ToF/
reported pr

rom multiple

/ToF tandem
reviously25
e bond cleav

285

m mass spect
without tand

vages are den

tra of (A) P
dem mass s

noted by aste

ZN-I34L an
spectra (den
erisks.

nd (B) PZN-
noted as ora

I34S.

ange).

Figure 9
These an

9.6. In situ M
nalogs were n

MALDI-ToF/
not reported

/ToF tandem
previously25

286

m mass spect
5 (denoted a

tra of (A) PZ
as red).

ZN-I34K and (B) PZN-I

I34Q.

Figure 9
These an
bond clea

9.7. In situ M
nalogs were n
avages are d

MALDI-ToF/
not reported

denoted by as

/ToF tandem
d previously2

sterisks.

287

m mass spect
25 (denoted a

tra of (A) PZ
as red). Frag

ZN-I34Y an
gments deriv

nd (B) PZN-
ved from mu

I35T.

ultiple

Figure 9
correspon
displayed

9.8. Detailed
nds to the t-
d with the ba

d view of a
-SNE plot in
ase peak labe

annotated co
n Figure 9.3
eled. Mutatio

288

olonies from
. Average sp
ons were con

m Figure 9.3
pectra of ea
nfirmed by D

3. The color
ach cluster fo
DNA sequen

r of each cl
or the colon
ncing.

luster
ny are

Figure 9
colony-M
portions
lines. (B)
m/z value

9.9. MALDI
MALDI-ToF
of 5c and 5d
) In situ LIF
es consistent

I mass spec
mass spect

d relative to
FT ToF/ToF
t with previo

tra of mono
ra from WT
WT. Tentati
analysis on

ous reports15

289

o-RLs produ
T and a mut
ve peak assi
tentative so

,16 were labe

uced from E
tant strain. T
ignments of
odiated ions
eled.

E. coli colon
The mutant
5a-d are lab
of 5a-d. Fra

nies. (A) Ty
produced gr

beled with da
agment ions

ypical
reater
ashed
s with

Figure 9
induction
mutant st
extraction
a RL spe
indicate
technical

9.10. Relativ
n. Optically-
train, ~100
n, and the ex
ecies relativ
standard de

l triplicates (

ve abundanc
-guided MA
colonies on
xtract was an

ve to total R
eviations of
(n=3) for MA

ce of RL c
ALDI-MS w

a filter afte
nalyzed usin

RL amount w
f biological
ALDI-MS or

290

ongeners pr
was performe
er IPTG indu
ng either MA
was calculat

replicates
r LC-MS/M

roduced from
ed on WT
uction were
ALDI-MS or
ted as descr
(n=81) for

S measurem

m colonies
colonies. Fo
subjected to

r LC-MS/MS
ribed in Met

MALDI-M
ment of the sa

following I
or WT and
o organic so
S. The fracti
thods. Error

MS screenin
ame extract.

IPTG
each

olvent
ion of
r bars
g, or

Figure 9
colonies.

9.11. Visual
 (A) WT. (B

lization of M
B) Strain libr

MALDI-MS
ary in the fir

291

S screening
rst round of m

results of m
mutagenesis

mono-RL-pr
s (R1).

roducing E.

. coli

Figure 9
strains qu
of biolog
an indep
Significa

9.12. Compa
uantified usi

gical triplicat
pendent two
ance levels: *

arison of RL
ing LC-MS/
tes. Signific
o-tailed, two
* p < 0.05; *

L production
/MS in MRM
ant differenc
o-sample t-

** p < 0.01;

292

in liquid cu
M mode. Er
ces were det
-test for eq
*** p < 0.00

ultures betw
rror bars ind
termined bet

qual sample
01.

ween WT and
dicate the sta
tween WT a

sizes and

d isolated m
andard devia
and mutants u

equal vari

mutant
ations
using
iance.

293

Table 9.1. DNA sequences in this study.

Primers

NP5 T7-PZN-2 For tataagaaggagatatacatgtgaaaattcactacatgggag

NP6 T7-PZN-2 Rev tcgcgtggccggccgatatctcacgtataccttttgttttttataatcc

NP7 PZN-2-mid For gatgtgaattcttctccgag

NP8 PZN-2-mid Rev ctcggagaagaattcacatc

NP119 ptnA-I34 Rev tgtggtacaggtacagcgtg

NP124 pET28-Mid For2 catcctgcgatgcagatccggaacataatggtg

NP125 pET28-Mid Rev2 ctgcatcgcaggatgctgc

NP127 ptnA-I34-NNK For cacgctgtacctgtaccacannkatctctagttcatctacgttttaagcgg

NP128 ptnA-I35-NNK For cacgctgtacctgtaccacaatcnnktctagttcatctacgttttaagcgg

RL021 pRSF-MCSI-RhlB For atcaccacagccaggatccgaattcgatgcacgccatcctcatc

RL022 MCSI-RhlB Rev ttaagcattatgcggccgcaagctttcaggacgcagccttcag

RL023 MCSII-RhlA For atatacatatggcagatctcaattggatgcggcgcgaaagtctg

RL024 MCSII-RhlA Rev tttaccagactcgagggtacctcaggcgtagccgatggc

294

References

(1) Dietrich, J. A.; McKee, A. E.; Keasling, J. D. Annu Rev Biochem 2010, 79, 563.

(2) Romero, P. A.; Arnold, F. H. Nat Rev Mol Cell Biol 2009, 10, 866.

(3) Macarron, R.; Banks, M. N.; Bojanic, D.; Burns, D. J.; Cirovic, D. A.; Garyantes, T.; Green,

D. V.; Hertzberg, R. P.; Janzen, W. P.; Paslay, J. W.; Schopfer, U.; Sittampalam, G. S. Nat Rev

Drug Discov 2011, 10, 188.

(4) Bothner, B.; Chavez, R.; Wei, J.; Strupp, C.; Phung, Q.; Schneemann, A.; Siuzdak, G. J Biol

Chem 2000, 275, 13455.

(5) Greis, K. D. Mass Spectrom Rev 2007, 26, 324.

(6) Northen, T. R.; Lee, J.-C.; Hoang, L.; Raymond, J.; Hwang, D.-R.; Yannone, S. M.; Wong,

C.-H.; Siuzdak, G. Proceedings of the National Academy of Sciences 2008, 105, 3678.

(7) Ban, L.; Pettit, N.; Li, L.; Stuparu, A. D.; Cai, L.; Chen, W.; Guan, W.; Han, W.; Wang, P.

G.; Mrksich, M. Nat Chem Biol 2012, 8, 769.

(8) Heins, R. A.; Cheng, X.; Nath, S.; Deng, K.; Bowen, B. P.; Chivian, D. C.; Datta, S.;

Friedland, G. D.; D'Haeseleer, P.; Wu, D.; Tran-Gyamfi, M.; Scullin, C. S.; Singh, S.; Shi, W.;

Hamilton, M. G.; Bendall, M. L.; Sczyrba, A.; Thompson, J.; Feldman, T.; Guenther, J. M.;

Gladden, J. M.; Cheng, J. F.; Adams, P. D.; Rubin, E. M.; Simmons, B. A.; Sale, K. L.; Northen,

T. R.; Deutsch, S. ACS Chem Biol 2014, 9, 2082.

(9) Gurard-Levin, Z. A.; Scholle, M. D.; Eisenberg, A. H.; Mrksich, M. ACS Comb Sci 2011, 13,

347.

295

(10) Greving, M.; Cheng, X.; Reindl, W.; Bowen, B.; Deng, K.; Louie, K.; Nyman, M.; Cohen,

J.; Singh, A.; Simmons, B.; Adams, P.; Siuzdak, G.; Northen, T. Analytical and Bioanalytical

Chemistry 2012, 403, 707.

11) de Rond, T.; Danielewicz, M.; Northen, T. Current Opinion in Biotechnology 2015, 31, 1.

(12) Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Nat Chem 2016, 8, 531.

(13) Newman, D. J.; Cragg, G. M. J Nat Prod 2012, 75, 311.

(14) Kim, E.; Moore, B. S.; Yoon, Y. J. Nat Chem Biol 2015, 11, 649.

(15) Masyuko, R. N.; Lanni, E. J.; Driscoll, C. M.; Shrout, J. D.; Sweedler, J. V.; Bohn, P. W.

Analyst 2014, 139, 5700.

(16) Lanni, E. J.; Masyuko, R. N.; Driscoll, C. M.; Aerts, J. T.; Shrout, J. D.; Bohn, P. W.;

Sweedler, J. V. Anal Chem 2014, 86, 9139.

(17) Si, T.; Li, B.; Zhang, K.; Xu, Y.; Zhao, H.; Sweedler, J. V. J Proteome Res 2016, 15, 1955.

(18) Yang, Y. L.; Xu, Y.; Straight, P.; Dorrestein, P. C. Nat Chem Biol 2009, 5, 885.

(19) Dunham, S. J.; Ellis, J. F.; Li, B.; Sweedler, J. V. Acc Chem Res 2017, 50, 96.

(20) Watrous, J. D.; Dorrestein, P. C. Nat Rev Microbiol 2011, 9, 683.

(21) Yan, C.; Parmeggiani, F.; Jones, E. A.; Claude, E.; Hussain, S. A.; Turner, N. J.; Flitsch, S.

L.; Barran, P. E. J Am Chem Soc 2017, 139, 1408.

(22) Ong, T. H.; Kissick, D. J.; Jansson, E. T.; Comi, T. J.; Romanova, E. V.; Rubakhin, S. S.;

Sweedler, J. V. Anal Chem 2015, 87, 7036.

(23) Jansson, E. T.; Comi, T. J.; Rubakhin, S. S.; Sweedler, J. V. ACS Chem Biol 2016, 11, 2588.

296

(24) Do, T. D.; Comi, T. J.; Dunham, S. J.; Rubakhin, S. S.; Sweedler, J. V. Anal Chem 2017, 89,

3078.

(25) Deane, C. D.; Melby, J. O.; Molohon, K. J.; Susarrey, A. R.; Mitchell, D. A. ACS Chem Biol

2013, 8, 1998.

(26) Maaten, L. v. d.; Hinton, G. Journal of Machine Learning Research 2008, 2579.

(27) Cornvik, T.; Dahlroth, S. L.; Magnusdottir, A.; Herman, M. D.; Knaust, R.; Ekberg, M.;

Nordlund, P. Nat Methods 2005, 2, 507.

(28) Skinnider, M. A.; Johnston, C. W.; Edgar, R. E.; Dejong, C. A.; Merwin, N. J.; Rees, P. N.;

Magarvey, N. A. Proc Natl Acad Sci U S A 2016, 113, E6343.

(29) Arnison, P. G.; Bibb, M. J.; Bierbaum, G.; Bowers, A. A.; Bugni, T. S.; Bulaj, G.;

Camarero, J. A.; Campopiano, D. J.; Challis, G. L.; Clardy, J.; Cotter, P. D.; Craik, D. J.;

Dawson, M.; Dittmann, E.; Donadio, S.; Dorrestein, P. C.; Entian, K. D.; Fischbach, M. A.;

Garavelli, J. S.; Goransson, U.; Gruber, C. W.; Haft, D. H.; Hemscheidt, T. K.; Hertweck, C.;

Hill, C.; Horswill, A. R.; Jaspars, M.; Kelly, W. L.; Klinman, J. P.; Kuipers, O. P.; Link, A. J.;

Liu, W.; Marahiel, M. A.; Mitchell, D. A.; Moll, G. N.; Moore, B. S.; Muller, R.; Nair, S. K.;

Nes, I. F.; Norris, G. E.; Olivera, B. M.; Onaka, H.; Patchett, M. L.; Piel, J.; Reaney, M. J.;

Rebuffat, S.; Ross, R. P.; Sahl, H. G.; Schmidt, E. W.; Selsted, M. E.; Severinov, K.; Shen, B.;

Sivonen, K.; Smith, L.; Stein, T.; Sussmuth, R. D.; Tagg, J. R.; Tang, G. L.; Truman, A. W.;

Vederas, J. C.; Walsh, C. T.; Walton, J. D.; Wenzel, S. C.; Willey, J. M.; van der Donk, W. A.

Nat Prod Rep 2013, 30, 108.

(30) Young, T. S.; Dorrestein, P. C.; Walsh, C. T. Chem Biol 2012, 19, 1600.

(31) Ruffner, D. E.; Schmidt, E. W.; Heemstra, J. R. ACS Synth Biol 2015, 4, 482.

297

(32) Scholz, R.; Molohon, K. J.; Nachtigall, J.; Vater, J.; Markley, A. L.; Sussmuth, R. D.;

Mitchell, D. A.; Borriss, R. J Bacteriol 2011, 193, 215.

(33) Molohon, K. J.; Blair, P. M.; Park, S.; Doroghazi, J. R.; Maxson, T.; Hershfield, J. R.; Flatt,

K. M.; Schroeder, N. E.; Ha, T.; Mitchell, D. A. ACS Infect Dis 2016, 2, 207.

(34) Nov, Y. Appl Environ Microbiol 2012, 78, 258.

(35) Howe, J.; Bauer, J.; Andra, J.; Schromm, A. B.; Ernst, M.; Rossle, M.; Zahringer, U.;

Rademann, J.; Brandenburg, K. FEBS J 2006, 273, 5101.

(36) Dobler, L.; Vilela, L. F.; Almeida, R. V.; Neves, B. C. New Biotechnol 2016, 33, 123.

(37) Muller, M. M.; Kugler, J. H.; Henkel, M.; Gerlitzki, M.; Hormann, B.; Pohnlein, M.;

Syldatk, C.; Hausmann, R. J Biotechnol 2012, 162, 366.

(38) Zhu, K.; Rock, C. O. J Bacteriol 2008, 190, 3147.

(39) Abdel-Mawgoud, A. M.; Lepine, F.; Deziel, E. Appl Microbiol Biotechnol 2010, 86, 1323.

(40) Han, L.; Liu, P.; Peng, Y.; Lin, J.; Wang, Q.; Ma, Y. J Appl Microbiol 2014, 117, 139.

(41) Cabrera-Valladares, N.; Richardson, A. P.; Olvera, C.; Trevino, L. G.; Deziel, E.; Lepine,

F.; Soberon-Chavez, G. Appl Microbiol Biotechnol 2006, 73, 187.

298

APPENDIX A

SELECTED SOURCE CODE

Notes and Acknowledgements

The following are a collection of source code used throughout the preceding chapters and for

other projects which did not appear in this dissertation but could be useful in the future. The

organization follows the presentation through the dissertation where possible. Code is heavily

commented but additional notes will appear when necessary along with a brief introduction on

the motivation. Source code has been formatted to ease reading and may not run by simply

copying and pasting from the document due to line numbers and indenting.

Simulation of Analyte Movement During DESI-MSI

Motivation, Overview and Extensions

During the development of synchronized DESI MSI, a question that was commonly posed is

what effect the synchronization had on spatial resolution of the resulting image. A complication

to the question is that the effect of fundamental properties of an analyte system on imaging

resolution had not been developed in a systematic way. While fluid simulations of droplets

impacting a thin layer were performed and extrapolated for the desorption process of DESI,

simulations of analyte movement on a surface had not been performed. As an initial attempt to

understand the DESI imaging process, we developed a simplified model considering only

desorption and washing (redistribution) under the movement of a circular DESI spray. The

details of the model may be found in Chapter 4, here is the complete source code for the

simulation.

299

While image convolution to assess aperture effects is well developed for optical systems,

DESI is fundamentally different due to the spray interactions with the analyte of interest. In

addition to acquiring an average intensity from the spray plume, analytes must dissolve into the

thin liquid film which develops during the DESI process. Within the film, compounds of interest

are removed by desorption (some amount forms gas phase ions which are ultimately detected)

while those remaining on the surface may redistribute. The influence of the nebulizing gas

accelerates this process, causing rivulets of solvent and delocalization, especially when probing

smooth surfaces. Due to the resemblance of cleaning a surface with a pressure washer, this

phenomenon has been named the “washing effect”.

As it pertains to MSI, the washing effect can cause smearing to the leading edge of the

plume or redistribution to the next row. The choice of a sampling period (pixel size) must be

considered against the longer period of time for both washing and desorption of material. In

contrast to MALDI MSI, oversampling with DESI is frequently unsuccessful as analytes may be

removed from the outer ridges of the desorption area before they enter the area with high

ionization efficiency. As such, there appears to be a minimum pixel size for a given sample and

set of operating parameters, below which no image is produced. The minimum size is larger

than would be expected based on sensitivity and pixel size, and appears to be governed largely

by the washing effect. Synchronizing desorption with ion injection appeared to improve the

situation by preventing analyte delocalization when the mass analyzer was not actively collecting

ions. To better understand the mechanisms behind apparent improvements in resolution, the

washing and desorbing efficiencies were adjusted with both continuous and synchronized DESI

sources.

300

The simulation code is written in MATLAB. The main method is batchRun, which

performs several simulations with altered parameters in each set. Following the completion of

each MSI simulation, the image distributions and a video of the simulation are saved. At the

start of batchRun, Initialize is run to set all imaging parameters and read in the input image. The

actual simulation is performed by MSIsimulation, which steps through an entire MSI run,

iteratively updating the analyte distribution and recording a simulated output. MSIsimulation

utilizes the helper functions cosDistribution and UpdateIntensities. cosDistribution generates a

cosine distributed probability function which forms the washing efficiency distribution.

UpdateIntensities performs a single time step of analyte desorption and migration on the input

image.

The simulation was successful in determining how washing and desorption affected

output image intensity and as a phenomenological model, captured many experimental results.

Improvements could be made on the formulation of the model, to define unitless parameters as

physical, measureable properties of the analytes and surface. The spray profile could also be

refined into an ellipse, which would more closely mimic actual DESI sprays. The washing

produces an artifact which moves analyte to the corners more than should be expected, causing

slight deviations from circular symmetry. Implementing a similar model in a hexagonal basis set

would eliminate some of the issues with rectangular pixels.

301

batchRun.m
01 %refresh workspace
02 close all
03 clear
04
05 %the base filename for all output
06 start = 'pulImg100_';
07
08 %load image and simulation parameters
09 Initialize;
10
11 %experiment 1, pulsed with specified efficiencies
12 continuous = false;
13 spotEff = .005;
14 ionEff = .01;
15 washingEff = 1;
16
17 %perform simulation to populate msi, alter inputImg, and figure movie (F)
18 MSIsimulation;
19
20 %save output images
21 save([start '005_01_1_p.mat'], 'msi');
22 save([start '005_01_1_pPost.mat'], 'inputImg');
23
24 %save figure movie
25 wo = VideoWriter([start '005_01_1_p.avi']);
26 wo.FrameRate = 10;
27 open(wo);
28 writeVideo(wo,F);
29 close(wo)
30
31 %experiment 2, continuous with efficiencies from above
32 continuous = true;
33
34 %perform simulation to populate msi, alter inputImg, and figure movie (F)
35 MSIsimulation;
36
37 %save output images
38 save([start '005_01_1_c.mat'], 'msi');
39 save([start '005_01_1_cPost.mat'], 'inputImg');
40
41 %save figure movie
42 wo = VideoWriter([start '005_01_1_c.avi']);
43 wo.FrameRate = 10;
44 open(wo);
45 writeVideo(wo,F);
46 close(wo)
47
48 %etc...

302

Initialize.m
01 %all units in µm, s, and fractional
02
03 %sizes
04 spotD = 250; %spot diameter
05 spotSTD = 125; %spot stdev/dropoff
06 ionD = 25; %ionization diameter
07 ionSTD = 25; %ionization dropoff
08 T = 20; %sampling period/pixel size
09
10 %depletion efficiencies
11 %.1 .5 good for slick
12 %.01 .05 for tissue
13 %high wash 5.625 low 0.01
14 spotEff = .01;%removal from spot
15 ionEff = .05;%removal from ionization area, not accounting spot
16 washingEff = .01;%washing effect movement
17
18 %times
19 deltaT = 0.1; %simulation time step
20 MST = 2.2; %scan length (excluding ion injection)
21 IT = 0.1; %ion injection time
22
23 %read image, convert to grayscale
24 % test = 256-transpose(double(rgb2gray(imread('swirl.jpg', 'JPEG'))));
25 % imgDPI = 9600;
26 % test = 256-transpose(double(imread('iso-rag.jpg', 'JPEG')));
27 % imgDPI = 478;
28 % test = 256-transpose(double(rgb2gray(imread('AF-TT-4x6.jpg', 'JPEG'))));
29 % imgDPI = 1200;
30 test = double((imread('pulsedInput.png')));
31
32 %find some derived values
33 % pixelSize = 25400/imgDPI;
34 pixelSize = 1000/460;
35
36 %how quickly to move the plume (µm/s) for the given pixel size and scan
time
37 scanRate = T/(MST+IT);
38 %direction of neighboring pixels
39 directions = [1 0; 1 1; 0 1; -1 0; -1 -1; 0 -1; 1 -1; -1 1];
40 %unit vectors of each direction.
41 dirUnit = [1 0; 1/sqrt(2) 1/sqrt(2); 0 1; -1 0; -1/sqrt(2)

-1/sqrt(2); 0 -1; 1/sqrt(2) -1/sqrt(2); -1/sqrt(2) 1/sqrt(2)];
42
43 continuous = true;%if spray is continuous or not
44
45 %how to distribute analytes in the center most pixel
46 centerUnit = [1 1 1 1 1 1 1 1];

303

MSIsimulation.m
001 %generate masks of intensities, 50% larger than spotD for washing
002
003 %spot is the combined effect of desorption and ionization
004 %Gaussian of specified size
005 spot = fspecial('gaussian', round(spotD/pixelSize*2),

round(spotSTD/pixelSize));
006 %normalize and scale by efficiency
007 spot = spot/max(spot(:))*spotEff;
008
009 %ionization leads to signal output along with desorption
010 ion = fspecial('gaussian', round(spotD/pixelSize*2),

round(ionSTD/pixelSize));
011 ion = ion / max(ion(:))*ionEff;
012 %include ionization with desorption (spot)
013 spot=spot+ion;
014
015 %washing mask with cosine distribution
016 wash = cosDistribution(round(spotD/pixelSize*2),

round(4*ionSTD/pixelSize))*washingEff;
017
018 %dot products of each neighbor for washing
019 dots = zeros(size(spot,1),size(spot,2),8);
020
021 %washing shouldn't change through iterations, just the position which is
022 %taken care of in update
023
024 %middle position
025 middle = ceil(size(spot)/2);
026 %make radial vectors for each spot in mask
027 %shift row and column numbers to place middle at 0
028 rr = (1:size(spot,1))-middle(1);
029 rc = (1:size(spot,2))-middle(2);
030
031 %populate dots with the dot product of radial vector with unit
032 for ii = 1:8
033 [x,y] = meshgrid(rc*dirUnit(ii,2),rr*dirUnit(ii,1));
034 dots(:,:,ii) = x+y;
035 end
036
037 %set middle of mask to the centerUnit
038 dots(middle(1),middle(2),:) = centerUnit;
039
040 %normalize dot products, temp is the sum
041 tempDots = zeros(size(dots));
042 %remove negative values (would indicate movement into pixel)
043 dots(dots<0)= 0;
044 %should be a repmat here
045 tempDots(:,:,1) = sum(dots,3);
046 for ii = 2 :8
047 tempDots(:,:,ii) = tempDots(:,:,ii-1);
048 end
049 dots = dots./tempDots;
050
051 current = [1 1]; %current/start position in top left
052 currentT = 0; %current time

304

053 %output intensity image
054 msi = zeros(round(size(inputImg)*pixelSize/T));
055
056 %add border to input image to facilitate masking edges
057 inputImg = zeros(size(test) + ceil(size(spot)/2));
058 %copy over test to prevent repeated reading
059 inputImg(1:size(test,1),1:size(test,2)) = test;
060
061 %clear F movie from previous runs
062 clear F;
063 %index counter
064 ii =1;
065 %handle to output image
066 h = figure('units','normalized','outerposition',[0 0 1 1]);
067 %start timer to track elapsed time
068 tic
069 %while the current probe position is within the vertical bounds of the

image
070 while current(2) < size(inputImg,2)*pixelSize
071 %while probe in horizontal bounds
072 while current(1) < size(inputImg,1)*pixelSize
073 % convert current (µm) to pixel position
074 pix = ceil(current/pixelSize);
075 % convert current to pixel of output image
076 outPix = ceil(current/T);
077 % check if in bounds
078 if(pix(1)+size(ion,1)-1 < size(inputImg,1) &&...
079 pix(2)+size(ion,2)-1 < size(inputImg,2))
080 % if in IT, add to output pixel
081 if(mod(currentT,(MST+IT)) < IT)
082 %add intensity to output
083 msi(outPix(1),outPix(2)) = msi(outPix(1),outPix(2)) + ...

%previous intens
084 %analyte intens, scaled by ionization
085 sum(sum(inputImg(pix(1):pix(1)+size(ion,1)-1,

pix(2):pix(2)+size(ion,2)-1) .* ion))...
086 %times deltaT
087 *deltaT;
088 %update intensities on input
089 UpdateIntensities;
090 %For non-continuous DESI, this is skipped
091 elseif(continuous)
092 UpdateIntensities;
093 end
094 end
095
096 %move probe position in x direction
097 current(1) = current(1) + scanRate*deltaT;
098 %update time
099 currentT = currentT + deltaT;
100 end
101 %probe has run over the x bounds
102 %reset x to start
103 current(1) = 1;
104 %step y by T
105 current(2) = current(2) + T;
106 %display percent completed after each row

305

107 current(2)/(size(inputImg,2)*pixelSize)*100
108 %make currentT the next scan of the instrument to ensure first column

is the start of a scan
109 currentT = ceil(currentT/2.3)*2.3;
110 %update figure every 10th iteration
111 if mod(ii,10) == 0
112 subplot(1,2,1);
113 %show input
114 imshow(transpose(imresize(inputImg,size(msi)*2)), [0 256]);
115 subplot(1,2,2);
116 %show output
117 imshow(transpose(imresize(mat2gray(msi),size(msi)*2,'bicubic')));
118 %record frame
119 F(ii/10) = getframe(h);
120 end
121 %update iteration counter
122 ii = ii+1;
123 %report elapsed time
124 toc
125 end
126

cosDistribution.m
01 function [dist] = cosDistribution(SIZE, radius)
02 %Generates a cosine distribution mask of given SIZE with
03 %radius = the zero crossing of cosine
04 %initialize mask
05 dist = zeros(SIZE);
06
07 %calculate radius from center
08 r = (1:SIZE)-SIZE/2;
09 [x,y] = meshgrid(r,r);
10
11 %fill distribution with cosine of radius
12 dist = cos(sqrt(x.^2+y.^2)/(radius*2)*pi);
13 %remove values outside of radius
14 dist(sqrt(x.^2+y.^2) > radius) = 0;
15 end
16

306

UpdateIntensities.m
01 %%washing
02 %sub image of size of mask
03 Img = inputImg(pix(1):pix(1)+size(spot,1)-1,pix(2):pix(2)+size(spot,2)-1);
04 %washing effect (image scaled by washing distribution)
05 %this is the total amount of analyte REMOVED from a given pixel
06 temp = wash.*Img;
07 %elements which will lose more than the initial value are set to initial

value
08 temp(temp > Img/deltaT) = Img(temp>Img/deltaT)/deltaT;
09 %change in intensity by change in time (d in / d t). negate as intensity

is leaving
10 dindt = -temp;
11
12 %copy temp to match dots size
13 temps = zeros(size(spot,1),size(spot,2),8);
14 %should be a repmat
15 temps(:,:,1) = temp;
16 for j = 2:8
17 temps(:,:,j) = temps(:,:,j-1);
18 end
19
20 %account for direction of washing
21 temps = temps.*dots;
22
23 %distribute temps to each neighbor as an offset of dindt
24 % 1 0
25 dindt(2:end,:) = dindt(2:end,:) + temps(1:end-1,:,1);
26 % 1 1
27 dindt(2:end,2:end) = dindt(2:end,2:end) + temps(1:end-1,1:end-1,2);
28 % 0 1
29 dindt(:,2:end) = dindt(:,2:end) + temps(:,1:end-1,3);
30 % -1 0
31 dindt(1:end-1,:) = dindt(1:end-1,:) + temps(2:end,:,4);
32 % -1 -1
33 dindt(1:end-1,1:end-1) = dindt(1:end-1,1:end-1) + temps(2:end,2:end,5);
34 % 0 -1
35 dindt(:,1:end-1) = dindt(:,1:end-1) + temps(:,2:end,6);
36 % 1 -1
37 dindt(2:end,1:end-1) = dindt(2:end,1:end-1) + temps(1:end-1,2:end,7);
38 % -1 1
39 dindt(1:end-1,2:end) = dindt(1:end-1,2:end) + temps(2:end,1:end-1,8);
40
41 %depletion
42 % exponential decay based on spot
43 dindt =dindt -spot.*inputImg(pix(1):pix(1)+size(spot,1)-1,...
44 pix(2):pix(2)+size(spot,2)-1);
45
46 %update input image by dindt * dt
47 tempInput = ...
48 inputImg(pix(1):pix(1)+size(spot,1)-1,pix(2):pix(2)+size(spot,2)-1)...
49 + dindt *deltaT;
50
51 %set negative values to 0
52 tempInput(tempInput<0) = 0;
53

307

54 %copy back into input image
55 inputImg(pix(1):pix(1)+size(spot,1)-1,pix(2):pix(2)+size(spot,2)-1) =
tempInput;

308

Monitoring DESI-MSI During Acquisition

Motivation, Overview and Extensions

DESI MSI was performed on a Thermo LTQ Orbitrap XL which produced proprietary .raw files.

In most offline analysis, these were converted to mzXML files for subsequent analysis. The file

structure consisted of a series of files, one per row of MS image, containing a chromatogram

with uniform sampling. During acquisition, the sample stage would scan at a constant rate to

produce a given pixel width. After each row, the file would be saved and the next row started

with a new file.

Particularly for high resolution images, acquisition can take several hours and common

output consisted of just monitoring the current spectrum or loading a previous row and

attempting to glean the image quality from that. What was missing was a lightweight program

capable of monitoring image quality during acquisition so that changes or loss of intensity could

be addressed immediately. This led to the development of ImageMonitor, which was a small

GUI executable which ran during MSI acquisition, shown in Figure A.1. The target m/z value

and data directory were provided along with optional scaling factors for minimum and maximum

intensities. When the update checkbox was enabled, the software would be triggered upon the

generation of a new file in the target directory. This caused the raw file to be directly read and

the displayed image updated. Of note, all previous rows stayed in memory as simply the intensity

of the requested m/z value so the executable did not consume much memory. Since only one file

was read upon update, disk usage was also minimized. Changing the m/z value would force the

entire data set to be read again from disk. As the underlying code to generate the image was from

the same library as the offline analysis code, the output displayed by the monitor would be

similar to the expected output. While this particular implementation is not generally applicable to

309

different instrument systems, for MSI instruments which produce images a row at a time, a

similar algorithm could be useful in monitoring image acquisition.

ImageMonitor is written in C#. The main method in Program.cs simply creates a new

form and runs it. The From1 is the main GUI window, designed in Visual Studio. The

automatically generated From1.Designer.cs is included for completeness. The main logic is

contained in Form1.cs. The only dependency of Form1.cs is DoubleImage, which was part of an

MSI library. DoubleImage models an intensity matrix with double precision.

Figure A

values. O

produced

update th

A.1. ImageM

Once all val

d in the targ

he image wit

Monitor GUI

ues are set,

get directory

th another ro

I. The text

clicking up

. This caus

ow.

310

tboxes acros

pdate causes

ses the moni

ss the top a

s the GUI to

itor to read j

are filled in

o update wh

just the mo

with the de

hen a new f

st recent file

esired

file is

e and

311

Program.cs
01 using System;
02 using System.Collections.Generic;
03 using System.Linq;
04 using System.Threading.Tasks;
05 using System.Windows.Forms;
06
07 namespace ImageMonitor
08 {
09 static class Program
10 {
11 /// <summary>
12 /// The main entry point for the application.
13 /// </summary>
14 [STAThread]
15 static void Main()
16 {
17 Application.EnableVisualStyles();
18 Application.SetCompatibleTextRenderingDefault(false);
19 Application.Run(new Form1());
20 }
21 }
22 }

312

Form1.Designer.cs
001 using System.Windows.Forms;
002 namespace ImageMonitor
003 {
004 partial class Form1
005 {
006 /// <summary>
007 /// Required designer variable.
008 /// </summary>
009 private System.ComponentModel.IContainer components = null;
010
011 /// <summary>
012 /// Clean up any resources being used.
013 /// </summary>
014 /// <param name="disposing">true if managed resources should be

disposed; otherwise, false.</param>
015 protected override void Dispose(bool disposing)
016 {
017 if (disposing && (components != null))
018 {
019 components.Dispose();
020 }
021 base.Dispose(disposing);
022 }
023
024 #region Windows Form Designer generated code
025
026 /// <summary>
027 /// Required method for Designer support - do not modify
028 /// the contents of this method with the code editor.
029 /// </summary>
030 private void InitializeComponent()
031 {
032 this.btDirectory = new System.Windows.Forms.Button();
033 this.lblMonitoring = new System.Windows.Forms.Label();
034 this.tbMass = new System.Windows.Forms.TextBox();
035 this.pbImage = new System.Windows.Forms.PictureBox();
036 this.lblMass = new System.Windows.Forms.Label();
037 this.tbDirectory = new System.Windows.Forms.TextBox();
038 this.lblMin = new System.Windows.Forms.Label();
039 this.tbMin = new System.Windows.Forms.TextBox();
040 this.lblMax = new System.Windows.Forms.Label();
041 this.tbMax = new System.Windows.Forms.TextBox();
042 this.cbUpdate = new System.Windows.Forms.CheckBox();
043
((System.ComponentModel.ISupportInitialize)(this.pbImage)).BeginInit();
044 this.SuspendLayout();
045 //
046 // btDirectory
047 //
048 this.btDirectory.Location = new System.Drawing.Point(658, 9);
049 this.btDirectory.Name = "btDirectory";
050 this.btDirectory.Size = new System.Drawing.Size(60, 35);
051 this.btDirectory.TabIndex = 0;
052 this.btDirectory.Text = "Choose Folder";
053 this.btDirectory.UseVisualStyleBackColor = true;

313

054 this.btDirectory.Click += new
System.EventHandler(this.btDirectory_Click);

055 //
056 // lblMonitoring
057 //
058 this.lblMonitoring.AutoSize = true;
059 this.lblMonitoring.Location = new System.Drawing.Point(519,

9);
060 this.lblMonitoring.Name = "lblMonitoring";
061 this.lblMonitoring.Size = new System.Drawing.Size(62, 13);
062 this.lblMonitoring.TabIndex = 1;
063 this.lblMonitoring.Text = "Monitoring: ";
064 //
065 // tbMass
066 //
067 this.tbMass.Location = new System.Drawing.Point(18, 26);
068 this.tbMass.Name = "tbMass";
069 this.tbMass.Size = new System.Drawing.Size(100, 20);
070 this.tbMass.TabIndex = 2;
071 this.tbMass.KeyUp += new

System.Windows.Forms.KeyEventHandler(this.tbMass_TextChanged);
072 //
073 // pbImage
074 //
075 this.pbImage.BackColor = System.Drawing.Color.Black;
076 this.pbImage.Location = new System.Drawing.Point(18, 52);
077 this.pbImage.Name = "pbImage";
078 this.pbImage.Size = new System.Drawing.Size(700, 650);
079 this.pbImage.TabIndex = 3;
080 this.pbImage.TabStop = false;
081 //
082 // lblMass
083 //
084 this.lblMass.AutoSize = true;
085 this.lblMass.Location = new System.Drawing.Point(51, 9);
086 this.lblMass.Name = "lblMass";
087 this.lblMass.Size = new System.Drawing.Size(32, 13);
088 this.lblMass.TabIndex = 1;
089 this.lblMass.Text = "Mass";
090 //
091 // tbDirectory
092 //
093 this.tbDirectory.Location = new System.Drawing.Point(441,26);
094 this.tbDirectory.Name = "tbDirectory";
095 this.tbDirectory.Size = new System.Drawing.Size(211, 20);
096 this.tbDirectory.TabIndex = 2;
097 this.tbDirectory.TextChanged += new

System.EventHandler(this.tbDirectory_TextChanged);
098 this.tbDirectory.KeyUp += new

System.Windows.Forms.KeyEventHandler(this.tbMass_TextChanged);
099 //
100 // lblMin
101 //
102 this.lblMin.AutoSize = true;
103 this.lblMin.Location = new System.Drawing.Point(141, 9);
104 this.lblMin.Name = "lblMin";
105 this.lblMin.Size = new System.Drawing.Size(66, 13);

314

106 this.lblMin.TabIndex = 1;
107 this.lblMin.Text = "Min Intensity";
108 //
109 // tbMin
110 //
111 this.tbMin.Location = new System.Drawing.Point(133, 26);
112 this.tbMin.Name = "tbMin";
113 this.tbMin.Size = new System.Drawing.Size(83, 20);
114 this.tbMin.TabIndex = 2;
115 this.tbMin.TextChanged += new

System.EventHandler(this.tbMin_TextChanged);
116 this.tbMin.KeyUp += new

System.Windows.Forms.KeyEventHandler(this.tbMass_TextChanged);
117 //
118 // lblMax
119 //
120 this.lblMax.AutoSize = true;
121 this.lblMax.Location = new System.Drawing.Point(246, 9);
122 this.lblMax.Name = "lblMax";
123 this.lblMax.Size = new System.Drawing.Size(69, 13);
124 this.lblMax.TabIndex = 1;
125 this.lblMax.Text = "Max Intensity";
126 //
127 // tbMax
128 //
129 this.tbMax.Location = new System.Drawing.Point(239, 26);
130 this.tbMax.Name = "tbMax";
131 this.tbMax.Size = new System.Drawing.Size(83, 20);
132 this.tbMax.TabIndex = 2;
133 this.tbMax.TextChanged += new

System.EventHandler(this.tbMax_TextChanged);
134 this.tbMax.KeyUp += new

System.Windows.Forms.KeyEventHandler(this.tbMass_TextChanged);
135 //
136 // cbUpdate
137 //
138 this.cbUpdate.AutoSize = true;
139 this.cbUpdate.Location = new System.Drawing.Point(346, 19);
140 this.cbUpdate.Name = "cbUpdate";
141 this.cbUpdate.Size = new System.Drawing.Size(67, 17);
142 this.cbUpdate.TabIndex = 4;
143 this.cbUpdate.Text = "Update?";
144 this.cbUpdate.UseVisualStyleBackColor = true;
145 this.cbUpdate.CheckedChanged += new

System.EventHandler(this.cbUpdate_CheckedChanged);
146 //
147 // Form1
148 //
149 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
150 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
151 this.ClientSize = new System.Drawing.Size(734, 712);
152 this.Controls.Add(this.cbUpdate);
153 this.Controls.Add(this.pbImage);
154 this.Controls.Add(this.tbDirectory);
155 this.Controls.Add(this.tbMax);
156 this.Controls.Add(this.lblMax);
157 this.Controls.Add(this.tbMin);

315

158 this.Controls.Add(this.lblMin);
159 this.Controls.Add(this.tbMass);
160 this.Controls.Add(this.lblMass);
161 this.Controls.Add(this.lblMonitoring);
162 this.Controls.Add(this.btDirectory);
163 this.Name = "Form1";
164 this.Text = "MSI Monitor";
165 ((System.ComponentModel.ISupportInitialize)(this.pbImage)).EndInit();
166 this.ResumeLayout(false);
167 this.PerformLayout();
168
169 }
170
171 #endregion
172
173 private System.Windows.Forms.Button btDirectory;
174 private System.Windows.Forms.Label lblMonitoring;
175 private System.Windows.Forms.TextBox tbMass;
176 private System.Windows.Forms.PictureBox pbImage;
177 private Label lblMass;
178 private TextBox tbDirectory;
179 private Label lblMin;
180 private TextBox tbMin;
181 private Label lblMax;
182 private TextBox tbMax;
183 private CheckBox cbUpdate;
184 }
185 }

316

Form1.cs
001 using System;
002 using System.Collections.Generic;
003 using System.ComponentModel;
004 using System.Data;
005 using System.Drawing;
006 using System.IO;
007 using System.Linq;
008 using System.Text;
009 using System.Threading.Tasks;
010 using System.Windows.Forms;
011 using MassSpecLibrary;
012 using ThermoRawFileReaderDLL.FinniganFileIO;
013 using System.Runtime.CompilerServices;
014
015 namespace ImageMonitor
016 {
017 public partial class Form1 : Form
018 {
019 //trigger to detect file creation
020 private FileSystemWatcher watcher = new FileSystemWatcher();
021 //image data
022 private List<List<double>> image;
023 //target m/z value
024 private double? mzValue;
025 //path to monitor
026 private String path;
027 //list of files already analyzed
028 private List<String> processed = new List<String>();
029 //out variable for file information
030 private FinniganFileReaderBaseClass.udtScanHeaderInfoType header;
031 //raw file with data
032 private XRawFileIO rawFile;
033 //m/z tolerance
034 private double tolerance = 0.05;
035 //min and max scaling
036 private double? min;
037 private double? max;
038 //lock for multithreading
039 private object thisLock = new object();
040
041 //constructor
042 public Form1()
043 {
044 InitializeComponent();
045 //add a function for when the file system changes
046 watcher.Created += watcher_Changed;
047 //only consider raw files
048 watcher.Filter = "*.raw";
049 }
050
051 private void watcher_Changed(object sender,FileSystemEventArgs e)
052 {
053 //reset the image when a new file is created
054 RefreshImage(reset: false);
055 }

317

056
057 //handle changes in mass values
058 private void tbMass_TextChanged(object sender, KeyEventArgs e)
059 {
060 double temp;
061
062 //parse value
063 if (Double.TryParse(tbMass.Text, out temp) == true)
064 mzValue = temp;
065 else
066 mzValue = null;
067 //refresh image
068 RefreshImage(reset: true);
069 }
070
071 //handle clicking on the browse directory button
072 private void btDirectory_Click(object sender, EventArgs e)
073 {
074 //popup a new folder browser
075 FolderBrowserDialog diag = new FolderBrowserDialog();
076 if (diag.ShowDialog() == DialogResult.OK)
077 {
078 //get directory, set watcher path and text box
079 tbDirectory.Text = watcher.Path = path =

diag.SelectedPath;
080 //enable watcher to respond
081 watcher.EnableRaisingEvents = true;
082 //refresh image
083 RefreshImage(reset: true);
084 }
085 }
086
087 [MethodImpl(MethodImplOptions.Synchronized)]
088 private void RefreshImage(bool reset)
089 {
090 //set image to blank if no m/z value is specified, the

directory doesn't exist, or the update box is unchecked
091 if (mzValue.HasValue == false || !Directory.Exists(path) ||

cbUpdate.Checked == false)
092 {
093 pbImage.Image = null;
094 return;
095 }
096
097 //if reset is passed in (when the entire image needs to be

reset)
098 if (reset == true)
099 {
100 //initialize new image
101 image = new List<List<double>>();
102 //initialize new list of processed raw files (none

are processed)
103 processed = new List<String>();
104 }
105
106 //get target m/z value
107 double mz = mzValue.Value;

318

108
109 //create list of all files
110 var files = Directory.EnumerateFiles(path, "*.raw")
111 //not in processed list
112 .Except(processed)
113 //ordered by creation time
114 .OrderBy(f => File.GetCreationTime(f))
115 .ToList();
116
117 //if fewer than 2 files, keep blank image
118 if (files.Count < 2)
119 {
120 pbImage.Image = null;
121 return;
122 }
123
124 //don't include last file, it will usually be actively

written
125 files.RemoveAt(files.Count - 1);
126
127 //initialize variables which will be passed by ref or out

in COM methods
128 rawFile = new XRawFileIO();
129 double[] mzs, intens;
130 int scans, numPeaks;
131 //flag to check if m/z is in range
132 bool checkmz = false;
133
134 //for each file
135 foreach (String file in files)
136 {
137 //try to open
138 if (rawFile.OpenRawFile(file) == true)
139 {
140 //get number of scans
141 scans = rawFile.GetNumScans();
142 //initialize new row in image
143 image.Add(new List<double>(scans));
144
145 //for each scan (pixel) in row (note 1 based

indexing)
146 for (int i = 1; i <= scans; i++)
147 {
148 //read in header
149 rawFile.GetScanInfo(i, out header);
150 //get number of peaks
151 numPeaks = header.NumPeaks;
152 //initialize m/z and intensity arrays
153 mzs = new double[numPeaks];
154 intens = new double[numPeaks];
155
156 //read in scan data to arrays
157 rawFile.GetScanData(i, ref mzs, ref intens, ref

header);
158
159 //have not previously checked if m/z in range
160 if (checkmz == false)

319

161 {
162 //check value
163 checkmz = true;
164 if(mzs[0] > mz || mzs[mzs.Length - 1] < mz)
165 {
166 //make image blank if outside

of range
167 pbImage.Image = null;
168 return;
169 }
170 }
171
172 //iterate through each m/z
173 double maxInt = 0;
174 for (int j = 0; j < mzs.Length; j++)
175 //record max intensity for m/zs in range
176 if (mzs[j] >= mz - tolerance &&

mzs[j] <= mz + tolerance)
177 maxInt = intens[j] > maxInt ? intens[j] :

maxInt;
178
179 //add in pixel intensity
180 image.Last().Add(maxInt);
181 }
182 //add to the processed list
183 processed.Add(file);
184 }
185 //close file at end
186 rawFile.CloseRawFile();
187 }
188
189 //create new double image of current image data
190 DoubleImage dblImg = new DoubleImage(image);
191
192 //set min and max values
193 if (min.HasValue == true)
194 dblImg.SetMin(min.Value);
195
196 if (max.HasValue == true)
197 dblImg.SetMax(max.Value);
198
199 //draw image
200 pbImage.Image = dblImg
201 .DrawBitmap(pbImage.Width, pbImage.Height,
202 DoubleImage.Coloring.Rainbow,
203 System.Drawing.Drawing2D.InterpolationMode.HighQualityBicubic);
204 }
205
206 //handle changes in directory text box
207 private void tbDirectory_TextChanged(object sender, EventArgs e)
208 {
209 if(Directory.Exists(tbDirectory.Text) == true)
210 {
211 //set new watcher path and trigger new events
212 watcher.Path = path = tbDirectory.Text;
213 watcher.EnableRaisingEvents = true;
214 //refresh image

320

215 RefreshImage(reset: true);
216 }
217 }
218
219 //handle min text box changes
220 private void tbMin_TextChanged(object sender, EventArgs e)
221 {
222 //try to parse value
223 double temp;
224 if (Double.TryParse(tbMin.Text, out temp) == true)
225 {
226 //refresh image if changed
227 min = temp;
228 RefreshImage(reset: true);
229 }
230 else
231 min = null;
232 }
233
234 //handle max text box changes
235 private void tbMax_TextChanged(object sender, EventArgs e)
236 {
237 //try to parse value
238 double temp;
239 if (Double.TryParse(tbMax.Text, out temp) == true)
240 {
241 //refresh image if needed
242 max = temp;
243 RefreshImage(reset: true);
244 }
245 else
246 max = null;
247 }
248
249 //handle interactions with check box
250 private void cbUpdate_CheckedChanged(object sender, EventArgs e)
251 {
252 //force reset (will be blank if box is unchecked)
253 RefreshImage(reset: true);
254 }
255 }
256 }

321

DoubleImage.cs
001 using System;
002 using System.Collections.Generic;
003 using System.Linq;
004 using System.Text;
005 using System.Threading.Tasks;
006
007 using System.Drawing;
008 using System.Drawing.Drawing2D;
009 using System.Drawing.Imaging;
010 using System.IO;
011
012
013 namespace MassSpecLibrary
014 {
015 /// <summary>
016 /// A 2D array representing an image, but has double precision.
017 /// </summary>
018 public class DoubleImage
019 {
020 /// <summary>
021 /// Gets the image values.
022 /// </summary>
023 /// <value>
024 /// The image array with double values.
025 /// </value>
026 public double[,] Image {get; private set;}
027
028 public double min = Double.MaxValue, max = Double.MinValue;
029 private int intensMax = 255, intensMin = 0, width, height;
030
031 /// <summary>
032 /// An enum of the possible color values.
033 /// </summary>
034 public enum Coloring {
035 /// <summary>
036 /// The rainbow color map
037 /// </summary>
038 Rainbow,
039 /// <summary>
040 /// The green color map
041 /// </summary>
042 Green,
043 /// <summary>
044 /// The greyscale color map
045 /// </summary>
046 Greyscale ,
047
048 WhiteAndBlack
049 }
050
051 public DoubleImage(List<List<double>> image)
052 {
053 width = image.Min(row => row.Count);
054 height = image.Count;
055

322

056 max = image.AsParallel().Max(row => row.Max());
057 min = image.AsParallel().Min(row => row.Min());
058
059 Image = new double[height, width];
060
061 for (int i = 0; i < height; i++)
062 for (int j = 0; j < width; j++)
063 Image[i, j] = image[i][j];
064 }
065
066 /// <summary>
067 /// Initializes a new instance of the <see cref="DoubleImage"/>

class. Simply allocates the array space of specified size.
068 /// </summary>
069 /// <param name="rows">The number of rows to allocate.</param>
070 /// <param name="cols">The number of columns to allocate.</param>
071 public DoubleImage(int rows, int cols)
072 {
073 Image = new double[rows, cols];
074 width = cols;
075 height = rows;
076 }
077
078 /// <summary>
079 /// Adds the specified value to [row,col]. Has minimal error

checking and updates the value of min and max.
080 /// </summary>
081 /// <param name="row">The row to add to.</param>
082 /// <param name="col">The column to add to.</param>
083 /// <param name="val">The value to add to [row,col].</param>
084 public void Add(int row, int col, double val)
085 {
086 if (row >= 0 && row < Rows() && col >= 0 && col < Cols())
087 {
088 Image[row, col] = val;
089 max = max < val ? val : max;
090 min = min > val ? val : min;
091 }
092 }
093
094 /// <summary>
095 /// Subtracts the values of one double image from the instance,

ie this - other. Returns if dimensions do not match.
096 /// </summary>
097 /// <param name="other">The other double image.</param>
098 public void Subtract(DoubleImage other){
099 if(other.Rows() != Rows() || other.Cols() != Cols())
100 return;
101 for (int i = 0; i < Rows(); i++)
102 for (int j = 0; j < Cols(); j++)
103 Image[i, j] -= other.Image[i, j];
104 }
105
106 /// <summary>
107 /// Draws the bitmap of the internal data in black and white with

no scaling.
108 /// </summary>

323

109 /// <returns>A bitmap of the data in black and white with no
scaling.</returns>

110 public Bitmap DrawBitmap()
111 {
112 int rows = Image.GetLength(0), cols = Image.GetLength(1);
113 Bitmap result = new Bitmap(cols, rows); // this is

transposed for the bitmap
114
115 if (max == min)
116 return result; //this would cause an error, just return a

blank image
117
118 //populate bitmap image scaled by min and max
119
120 for (int i = 0; i < rows; i++)
121 {
122 for (int j = 0; j < cols; j++)
123 {
124 //scale intensities linearly from min to max, if min

== max intens is 0
125 //int intens = max == min ? 0 : (int)((intensMax –

intensMin) / (max - min) * (image[i, j])) + intensMin;
126 int intens = max == min ? 0 : (int)((255) / (max –

min) * (Image[i, j]));
127 //rescale between min and max intensity, < min is 0 >

max = 255
128 intens = intensMax == intensMin ? 0 :

(int)((double)255 / (intensMax-intensMin) *
(intens -intensMin)) ;

129 intens = intens < 0 ? 0 : (intens > 255 ? 255 :
intens);

130 result.SetPixel(j, i, Color.FromArgb(intens, intens,
intens));

131 }
132 }
133 return result;
134 }
135
136 /// <summary>
137 /// Draws the unscaled bitmap with specified color.
138 /// </summary>
139 /// <param name="color">The colormap to use for drawing.</param>
140 /// <returns>A colored bitmap with no resizing</returns>
141 public Bitmap DrawBitmap(Coloring color)
142 {
143 Bitmap result = DrawBitmap();
144
145 Graphics g = Graphics.FromImage(result);
146
147 ImageAttributes attr = new ImageAttributes();
148 if(color == Coloring.Rainbow)
149 attr.SetRemapTable(RecolorPallette.RainbowMap);
150 if (color == Coloring.Green)
151 attr.SetRemapTable(RecolorPallette.GreenMap);
152 if (color == Coloring.WhiteAndBlack)
153 attr.SetRemapTable(RecolorPallette.WhiteAndBlackMap);
154 g.DrawImage(result, new Rectangle(0, 0, result.Width,

324

result.Height), 0, 0, result.Width, result.Height,
GraphicsUnit.Pixel, attr);

155
156 return result;
157 }
158
159 /// <summary>
160 /// Draws the scaled bitmap with specified interpolation and

coloring. Width and height are the allowable maximums, the
resulting bitmap will fit in this area maintaining the
aspect ratio.

161 /// </summary>
162 /// <param name="width">The desired maximum width.</param>
163 /// <param name="height">The desired maximum height.</param>
164 /// <param name="color">The colormap to use.</param>
165 /// <param name="interp">The interpolation mode.</param>
166 /// <returns>Scaled, colored, interpolated bitmap.</returns>
167 public Bitmap DrawBitmap(int width, int height, Coloring color,

InterpolationMode interp)
168 {
169 int mag = Magnification(width, height);
170 Bitmap temp = DrawBitmap();
171 Bitmap result = new Bitmap(this.width * mag, this.height *

mag);
172 //resize
173
174 Graphics g = Graphics.FromImage(result);
175 g.InterpolationMode = interp;
176
177 g.DrawImage(temp, 0, 0, result.Width, result.Height);
178
179 ImageAttributes attr = new ImageAttributes();
180 if (color == Coloring.Rainbow)
181 attr.SetRemapTable(RecolorPallette.RainbowMap);
182 if (color == Coloring.Green)
183 attr.SetRemapTable(RecolorPallette.GreenMap);
184 if (color == Coloring.WhiteAndBlack)
185 attr.SetRemapTable(RecolorPallette.WhiteAndBlackMap);
186 g.DrawImage(result, new Rectangle(0, 0, result.Width,

result.Height), 0, 0, result.Width,
result.Height, GraphicsUnit.Pixel, attr);

187
188 return result;
189 }
190
191 public Bitmap DrawBitmap(int magnification, Coloring color,

InterpolationMode interp)
192 {
193 Bitmap temp = DrawBitmap();
194 Bitmap result = new Bitmap(this.width * magnification,

this.height * magnification);
195 //resize
196
197 Graphics g = Graphics.FromImage(result);
198 g.InterpolationMode = interp;
199
200 g.DrawImage(temp, 0, 0, result.Width, result.Height);

325

201
202 ImageAttributes attr = new ImageAttributes();
203 if (color == Coloring.Rainbow)
204 attr.SetRemapTable(RecolorPallette.RainbowMap);
205 if (color == Coloring.Green)
206 attr.SetRemapTable(RecolorPallette.GreenMap);
207 if (color == Coloring.WhiteAndBlack)
208 attr.SetRemapTable(RecolorPallette.WhiteAndBlackMap);
209 g.DrawImage(result, new Rectangle(0, 0, result.Width,

result.Height), 0, 0, result.Width,
result.Height, GraphicsUnit.Pixel, attr);

210
211 return result;
212 }
213
214 /// <summary>
215 /// Draws the bitmap with a colored ROI.
216 /// </summary>
217 /// <param name="coloring">The coloring of the image to

use.</param>
218 /// <param name="inROI">The locations that are in the ROI. True

implies the pixel is in the ROI.</param>
219 /// <param name="ROIColor">Color of the ROI.</param>
220 /// <returns>A bitmap with the ROI colored in</returns>
221 public Bitmap DrawBitmap(Coloring coloring, bool[,] inROI, Color

ROIColor)
222 {
223 //start with normal bitmap
224 Bitmap result = DrawBitmap(coloring);
225 //recolor points in list
226 for (int i = 0; i < inROI.GetLength(0); i++)
227 for (int j = 0; j < inROI.GetLength(1); j++)
228 if (inROI[i, j] == true)
229 result.SetPixel(j, i, ROIColor); //transpose for

image!
230 return result;
231 }
232
233 /// <summary>
234 /// Draws the bitmap at the desired scale, specified color, with

ROI colored in.
235 /// </summary>
236 /// <param name="width">The desired maximum width.</param>
237 /// <param name="height">The desired maximum height.</param>
238 /// <param name="color">The colormap to use.</param>
239 /// <param name="interp">The interpolation mode.</param>
240 /// <param name="inROI">The locations that are in the ROI. True

implies the pixel is in the ROI.</param>
241 /// <param name="ROIColor">Color of the ROI.</param>
242 /// <returns>Bitmap that is rescaled, colored and has ROI

colored.</returns>
243 public Bitmap DrawBitmap(int width, int height, Coloring color,

InterpolationMode interp, bool[,] inROI,
Color ROIColor)

244 {
245 //start with normal bitmap, resized as needed
246 Bitmap result = DrawBitmap(width, height, color, interp);

326

247 int mag = Magnification(width, height);
248 Graphics g = Graphics.FromImage(result);
249 Brush b = new SolidBrush(ROIColor);
250
251 //draw in rectangular pixels
252 for (int i = 0; i < inROI.GetLength(0); i++)
253 for (int j = 0; j < inROI.GetLength(1); j++)
254 if (inROI[i, j] == true)
255 g.FillRectangle(b, j * mag -mag/2, i * mag –

mag/2,mag, mag); //transpose for image!
256
257
258 //return
259 return result;
260 }
261
262 public Bitmap DrawBitmap(int width, int height, Coloring color,

InterpolationMode interp,
List<List<Point>> ROI, Color ROIColor)

263 {
264 //start with normal bitmap, resized as needed
265 Bitmap result = DrawBitmap(width, height, color, interp);
266 int mag = Magnification(width, height);
267 Graphics g = Graphics.FromImage(result);
268 Brush b = new SolidBrush(ROIColor);
269 SolidBrush sb = new SolidBrush(Color.White);
270
271 for (int i = 0; i < ROI.Count; i++)
272 {
273 float? x = null, y = null; //hold the maxes
274 foreach (Point p in ROI[i])
275 {
276 x = x > p.X ? x : p.X;
277 y = y > p.Y ? y : p.Y;
278 g.FillRectangle(b, p.Y * mag - mag / 2, p.X * mag –

mag / 2, mag, mag);
279 }
280 g.DrawString(i.ToString(), new Font("Arial", 6), sb, new

PointF(y.Value * mag - mag / 2,
x.Value * mag - mag / 2));

281 }
282
283
284
285 //return
286 return result;
287 }
288
289
290
291 /// <summary>
292 /// Determines the magnification to the target width and height

that maintains the aspect ratio and integer pixel values
293 /// </summary>
294 /// <param name="targetWidth">Target width.</param>
295 /// <param name="targetHeight">Target height.</param>
296 /// <returns>The scaling magnification as an integer.</returns>

327

297 public int Magnification(int targetWidth, int targetHeight)
298 {
299 return (targetWidth / width < targetHeight / height ?

targetWidth / width : targetHeight / height);
300 }
301
302 /// <summary>
303 /// Get the number of rows of the image.
304 /// </summary>
305 /// <returns>The number of rows.</returns>
306 public int Rows()
307 {
308 return Image.GetLength(0);
309 }
310
311 /// <summary>
312 /// Get the number of columns of the image.
313 /// </summary>
314 /// <returns>The number of columns of the image.</returns>
315 public int Cols()
316 {
317 return Image.GetLength(1);
318 }
319
320 /// <summary>
321 /// Sets the intensity maximum of the resulting bitmap. Checks

the supplied value is greater than the minimum and
less than 255.

322 /// </summary>
323 /// <param name="val">The new intensity maximum.</param>
324 public void SetIntMax(int val)
325 {
326 //max should be between min and 255
327 intensMax = val < intensMin ? intensMin : (val > 255 ? 255 :

val);
328 }
329
330 /// <summary>
331 /// Sets the intensity minimum of the resulting bitmap. Checks

the supplied value is less than the maximum and greater
than 0.

332 /// </summary>
333 /// <param name="val">The new intensity minimum.</param>
334 public void SetIntMin(int val)
335 {
336 //min should be between 0 and max
337 intensMin = val < 0 ? 0 : (val > intensMax ? intensMax :

val);
338 }
339
340 public void SetMin(double val)
341 {
342 min = val;
343 }
344
345 public void SetMax(double val)
346 {

328

347 max = val;
348 }
349
350 /// <summary>
351 /// Determines the difference between two double images.

Intensities are scaled between 0 and 1, and the square
difference is calculated. Min and max are set to 0 and 1.

352 /// </summary>
353 /// <param name="other">The other DoubleImage to subtract with.

Assumes the instances are the same size.</param>
354 /// <returns>A new double image with values equal to the square

difference between pixels in the input images.</returns>
355 public DoubleImage ScaledSquareDiff(DoubleImage other)
356 {
357 DoubleImage result = new DoubleImage(Rows(), Cols());
358 for (int i = 0; i < Rows(); i++)
359 {
360 for (int j = 0; j < Cols(); j++)
361 {
362 result.Image[i,j] = Math.Pow((Image[i, j] - min) /

(max - min) - (other.Image[i, j] - other.min) /
(other.max - other.min), 2);

363 }
364 }
365 result.min = 0;
366 result.max = 1;
367 return result;
368 }
369
370 /// <summary>
371 /// Saves the double image as an ascii tab delineated file.
372 /// </summary>
373 /// <param name="filename">The filename to save to.</param>
374 public void Save(String filename)
375 {
376 StreamWriter writer = new StreamWriter(filename);
377 for (int i = 0; i < Rows(); i++)
378 {
379 for (int j = 0; j < Cols(); j++)
380 {
381 writer.Write(Image[i, j] + "\t");
382 }
383 writer.WriteLine();
384 }
385 writer.Close();
386 }
387
388 public static void SaveScale(string file, int pixelheight,

Coloring color)
389 {
390 DoubleImage di = new DoubleImage(pixelheight, 256);
391 for (int i = 0; i < 256; i++)
392 for (int j = 0; j < pixelheight; j++)
393 di.Image[j,i] = i;
394 di.SetMin(0);
395 di.SetMax(255);
396 di.DrawBitmap(color).Save(file);

329

397 }
398 }
399 }

330

microMS

Motivation, Overview and Extensions

After the initial demonstration of single cell profiling with MALDI MS using

fluorescence imaging to locate cells, it was clear that a more user friendly option was necessary

to promote widespread adoption. The first reported workflow required significant manual effort

on the user and could result in inaccurate target localization due to handling of tiled images, a

coordinate registration which was vulnerable to small errors, and utilizing fixed fiducial marks

generated prior to microscopy. While these issues were addressed by microMS, a continuing

goal was to make optically-guided single cell profiling approachable to novice users on a variety

of instruments. The result is a feature rich GUI which displays each step of the process and

provides ample feedback to ensure quality data results. On the back end, the implementation of

coordinate mappers as an abstract base class greatly simplifies the addition of new instruments;

only a handful of functions need implementation before the image analysis features are available

to new systems. Decoupling target positions from instrument positions also has the advantage of

simplifying repeated analysis of the same targets on different instruments.

The complete source code, written in Python, is presented here, though updates may be

found at http://neuroproteomics.scs.illinois.edu/microMS.htm. Also note the full user manual is

found in Appendix B with examples of usage and implementing new coordinate mappers. A

further discussion of microMS can be found in Chapter 5, which also shows the project

organization in Figure 5.1. Briefly, the main method in microMS.py creates a new

microMSQTwindow object and starts the main thread. microMSQTwindow contains the

widgets slideCanvas and histCanvas, which allow interactions with a microscope image and

population level statistics of found blobs. microMSQTwindow also has code for the menu bar,

331

handles interactions between widgets, and spawns popup option windows. Each GUI component

interacts with the controller, microMSModel which models a single imaging experiment,

complete with an image, collection of targets and a coordinate mapper. As such, it contains

instance variables of many classes in ImageUtilities (handling image interactions and blob

methods) and CoordinateMappers (which model a physical instrument). The source code is

presented as the main method, followed by the packages GUICanvases, ImageUtilities, and

CoordinateMappers in that order. Each source file is heavily documented including descriptions

of each class.

332

microMS.py

01 #! /usr/bin/env python3
02 # -*- coding: utf-8 -*-
03
04 import sys
05 import ctypes
06 from PyQt5 import QtGui, QtCore, QtWidgets
07
08 from GUICanvases.microMSQTWindow import MicroMSQTWindow
09
10 def main():
11 '''
12 main method that begins execution of the QApplication
13 '''
14 qApp = QtWidgets.QApplication(sys.argv)
15
16 #set up icon
17 if sys.platform == 'win32':
18 myappid = 'uiuc.sweedlerlab.microms.v1'
19 ctypes.windll.shell32

.SetCurrentProcessExplicitAppUserModelID(myappid)
20 qApp.setWindowIcon(QtGui.QIcon(r'GUICanvases/Icon/icon_sm.png'))
21
22 #start application
23 aw = MicroMSQTWindow()
24 aw.setWindowTitle("MicroMS")
25 aw.show()
26 sys.exit(qApp.exec_())
27
28 if __name__ == '__main__':
29 main()

333

GUICanvases/__init__.py
01 '''
02 The GUICanvases package contains classes for display and user interaction
03 GUIConstants.py: a collection of constant variables for display
04 histCanvas.py: a widget for displaying and interacting with

population level metrics
05 microMSModel.py: controller class for a single experiment
06 microMSQTWindow.py: main GUI window
07 mplCanvas.py: an abstract class extending figure canvas for

displaying matplotlib figures
08 popup.py: a collection of small, custom windows for user IO to

set parameters with blob finding, histogram display,
09 and intermediate maps
10 slideCanvas.py a widget to display and interact with a slideWrapper

object.
11 Contains most of the programming logic
12 '''

334

GUICanvases/GUIConstants.py
001
002 ###colors and sizes of GUI components in slideCanvas
003 #default and boarder color of the slide image
004 IMAGE_BACKGROUND = 'black'
005 #color of temporary or test blob find
006 TEMP_BLOB_FIND = 'turquoise'
007 #predicted locations from the current mapper
008 PREDICTED_POINTS = 'yellow'
009 #color of circle and text of highest FLE
010 FIDUCIAL_WORST = 'red'
011 #color of the rest of the fiducial circles and text
012 FIDUCIAL = 'blue'
013 #background label of fiducial marks
014 FIDUCIAL_LABEL_BKGRD = 'white'
015 #ROI boundary
016 ROI = 'yellow'
017 #ROI minimum distance
018 ROI_DIST = 10 #pixels
019 #colors of blob list
020 MULTI_BLOB = ['lime', 'salmon', 'skyBlue', 'orangeRed',
021 'plum', 'hotPink', 'aqua', 'yellow',
022 'olive', 'green']
023 #text display of grouped targets from expanding blobs
024 EXPANDED_TEXT = 'purple'
025 #default blob radius in pixels
026 DEFAULT_RADIUS = 8
027 #default fiducial radius in pixels
028 FIDUCIAL_RADIUS = 100
029 #maximum number of blobs to draw when limit is selected
030 DRAW_LIMIT = 150
031 #maximum number of blobs to check prior to deselecting TSP optimization
032 TSP_LIMIT = 1000
033
034
035 ###colors of GUI components in histCanvas
036 #colors of bars in histogram for red, green, blue, size, circularity,

and distance
037 BAR_COLORS = ['red', 'green', 'blue', 'gray', 'gray',

'gray']
038 #color of bars and blobs with values less than the cutoff
039 LOW_BAR = 'cyan'
040 #color of bars and blobs with values greater than the cutoff
041 HIGH_BAR = 'hotpink'
042 #color of bars and blobs with values in a single bar
043 SINGLE_BAR = 'darkorange'
044 #color of line to indicate a single blob position
045 SINGLE_BLOB = 'red'
046
047 ###constants for blob shapes
048 DEFAULT_BLOB_RADIUS = DEFAULT_RADIUS
049 DEFAULT_PATTERN_RADIUS = DEFAULT_RADIUS
050
051 ###standard test files for the debug load
052 #directory to check for prior to trying to load
053 DEBUG_DIR = r'T:\Cerebellum One Left Stitched _'

335

054 #image file
055 DEBUG_IMG_FILE = r'T:\Cerebellum One Left Stitched

_\Cerebellum One Left Stitched __c1.tif'
056 #blob find file
057 DEBUG_BLOB_FIND = r'T:\Cerebellum One Left Stitched

_\sol_find.txt'
058 #registration file
059 DEBUG_REG_FILE = r'T:\Cerebellum One Left Stitched

_\sol.msreg'
060
061 ###help message text
062 IMAGE_HOTKEYS = ("w,s,a,d\t\tMove\n"
063 "W,S,A,D\tMove Farther\n"
064 "q,e\t\tZoom out/in\n"
065 "r\t\tReset view\n"
066 "t\t\tSwitch views\n"
067 "b\t\tTest blob find\n"
068 "B\t\tSwitch to threshold view\n"
069 "m\t\tMirror x axis\n"
070 "p\t\tToggle predicted location\n"
071 "o\t\tToggle drawn shapes\n"
072 "O\t\tToggle drawing all blob lists\n"
073 "Ctrl + C\tClear all found blobs\n"
074 "C\t\tClear current blob list\n"
075 "c\t\tClear ROI\n\n"
076 "#\t\tToggle channel\n"
077 "Ctrl+#\t\tSet channel\n"
078 "Alt+#\t\tSet manual blob list\n\n"
079 "LMB\t\tMove to center\n"
080 "LMB+Shift\tAdd/remove points\n"
081 "LMB+Ctrl\tDraw ROI\n"
082 "MMB\t\tGet pixel values\n"
083 "RMB\t\tAdd slide coordinate\n"
084 "RMB+Shift\tRemove slide coordinate\n"
085 "Scroll\t\tZoom in/out"
086)
087
088 INSTRUMENT_HOTKEYS = ("i,k,j,l\t\tMove\n"
089 "Ctrl + I,K,J,L\tMove Far\n"
090 "I,K,J,L\t\tMove Farther\n"
091 "+,-\t\tMove probe up/down\n"
092 "V\t\tSet probe position\n"
093 "v\t\tToggle probe position\n"
094 "h\t\tHome stage\n"
095 "H\t\tFinal position\n"
096 "x\t\tSingle analysis\n\n"
097 "LMB+Alt\tMove to spot\n"
098 "RMB\t\tAdd coordinate\n"
099 "RMB+Shift\tRemove coordinate\n"
100)
101
102 HISTOGRAM_HOTKEYS = ("LMB\t\tSet lower threshold\n"
103 "LMB+Shift\tSet lower cutoff\n"
104 "MMB\t\tSet single bar\n"
105 "RMB\t\tSet upper threshold\n"
106 "RMB+Shift\tSet upper cutoff\n"
107 "Scroll\t\tZoom in/out")

336

GUICanvases/histCanvas.py
001 from __future__ import unicode_literals
002
003 import numpy as np
004 from PyQt5 import QtGui, QtCore, QtWidgets
005 from copy import copy
006
007 from GUICanvases.mplCanvas import MplCanvas
008 from GUICanvases import GUIConstants
009
010 from ImageUtilities.blobFinder import blobFinder
011 from ImageUtilities.blobList import blobList
012
013 class HistCanvas(MplCanvas):
014 '''
015 HistCanvas is an implementation of MplCanvas that interacts

with a slideCanvas
016 to display population level information on a collection

of blob objects.
017 Most of the control logic is contained here as the view is

simply a bar chart
018 '''
019 def __init__(self, master, model, *args, **kwargs):
020 '''
021 Initialize and connect listeners
022 master: the master widget, a microMSQT
023 slideCanvas: the connected slideCanvas to interact with
024 '''
025 MplCanvas.__init__(self, *args, **kwargs)
026 self.draw()
027 #start by showing the blob areas
028 self.populationMetric = 3
029 self.populationValues = None
030 self.blobSet = None
031 #the image of the collection from slideWrapper to analyze
032 self.imgInd = 1
033 #toggle to move the slide position to the first single blob
034 self.moveSlide = False
035
036 #listeners for mouse interaction
037 self.mpl_connect('button_release_event', self.mouseUp)
038 self.mpl_connect('scroll_event', self.mouseZoom)
039
040 self.master = master
041 self.model = model
042
043 #offset from blob radius to consider when extracting fluorescence
044 self.offset = 0
045
046 #x axis limits for zooming
047 self.xlo = None
048 self.xhi = None
049
050 #toggle to indicate if the maximum or average intensity should be

displayed
051 self.reduceMax = False

337

052
053 #a list of the currently available metrics
054 self.metrics = ['Red', 'Green', 'Blue', 'Size', 'Circularity',

'Distance']
055
056 #initialize display variables
057 self.resetVariables()
058
059 def resetVariables(self, resetZoom = True, resetBlobs = False):
060 '''
061 reset variables related to splitting the population and display
062 resetZoom: reset the zoom on the x axis
063 resetBlobs: reset the list of blobs currently investigated
064 '''
065 #lowIntens and lowLimit hold thresholds for low values of the

population
066 #low blobs have I such that lowLimit < I < lowIntens
067 self.lowIntens = None
068 self.lowLimit = None
069 #high blobs have I such that highIntens < I < highLimit
070 self.highIntens = None
071 self.highLimit = None
072 #single bar is a value bin in the histogram
073 self.singleBar = None
074 #single blob contains the index of a single blob to show the

position of in the histogram
075 self.singleBlob = None
076
077 if resetZoom:
078 #zoom level on the x axis
079 self.zoomLvl = 0
080 #center of the x axis
081 self.xcent = None
082
083 if resetBlobs:
084 #the color channel or morphology
085 self.populationMetric = 3
086 #set of population values
087 self.populationValues = None
088 #the actual blob list
089 self.blobSet = None
090
091 def removeBlob(self, index):
092 #return immediately if globalBlbs is not set
093 if self.populationValues is None or self.populationValues.size <

index:
094 return
095
096 self.populationValues = np.delete(self.populationValues, index)
097 self._calculateHist(resetVars = False)
098
099 def _calculateHist(self, resetVars = True):
100 #return immediately if globalBlbs is not set
101 if self.populationValues is None:
102 self.update_figure()
103 return
104

338

105 #metric >= 3 -> look at morphology
106 if self.populationMetric >= 3:
107 self.counts, self.bins, patches =

self.axes.hist(self.populationValues, bins = 100)
108
109 #metric == [0, 1, 2] -> look at intensities of [r, g, b] channel

of image at imgInd
110 else:
111 self.counts, self.bins, patches =

self.axes.hist(self.populationValues, bins=100,
range=(0,255))

112
113 self.bins = self.bins[1:]
114
115 #reset limits and redraw
116 if resetVars == True:
117 self.resetVariables()
118 self.update_figure()
119
120
121
122 def calculateHist(self):
123 '''
124 calculate the population values with either the current set of

blobs from the model
125 this can require some calculation time to complete due to

repeated disk reads on the image
126 '''
127 #set a new set of global blbs
128 self.blobSet = self.model.blobCollection[self.model.currentBlobs]
129
130 #return immediately if globalBlbs is not set
131 if self.blobSet is None or len(self.blobSet.blobs) == 0:
132 self.populationValues = None
133 self._calculateHist()
134 return
135
136 #metric == 3 -> look at the area (= pi * r^2)
137 if self.populationMetric == 3:
138 self.populationValues = np.array([x.radius*x.radius*3.14 for

x in self.blobSet.blobs])
139
140 #metric == 4 -> look at circularity
141 elif self.populationMetric == 4:
142 self.populationValues = np.array([x.circularity for x in

self.blobSet.blobs])
143
144 #metric == 5 -> look at minimum distance between samples
145 elif self.populationMetric == 5:
146 self.populationValues =

np.array(self.blobSet.minimumDistances())
147
148 #metric == [0, 1, 2] -> look at intensities of [r, g, b] channel

of image at imgInd
149 else:

339

150 self.populationValues =
np.array(self.model.slide.getFluorInt(self.blob
Set.blobs, self.populationMetric, self.imgInd,
self.offset, self.reduceMax))

151
152 self._calculateHist()
153
154 def mouseUp(self,event):
155 '''
156 handles click events by updating the high and low limits
157 event: mpl mouse click event
158 '''
159 #click out of bounds
160 if event.xdata is None or event.ydata is None or

self.populationValues is None:
161 return
162
163 #LMB to set low values
164 if event.button == 1:
165 #shift LMB to set the lower limit
166 if QtWidgets.QApplication.keyboardModifiers() ==

QtCore.Qt.ShiftModifier:
167 self.lowLimit = event.xdata
168 #LMB to set a lower threshold
169 else:
170 self.lowIntens = event.xdata
171 #display a message if a lower threshold is set
172 if self.lowIntens is not None:
173 if self.lowLimit is not None:
174 self.master.statusBar().showMessage(

str(sum((self.populationValues <
self.lowIntens) & (self.populationValues >
self.lowLimit)))

175 + ' below {:.1f} and above
{:.1f}'.format(self.lowIntens, self.lowLimit))

176 else:
177 self.master.reportFromModel(

str(sum(self.populationValues <
self.lowIntens))

178 + ' below {:.1f}'.format(self.lowIntens))
179
180 #MMB to select a single bin
181 if event.button == 2:
182 self.singleBar = event.xdata
183 self.master.reportFromModel('Clicked on {:.1f}'

.format(event.xdata))
184 self.moveSlide = True
185
186 #RMB to set high values
187 if event.button == 3:
188 #shift RMB to set the higher limit
189 if QtWidgets.QApplication.keyboardModifiers() ==

QtCore.Qt.ShiftModifier:
190 self.highLimit = event.xdata
191
192 #RMB to set the higher threshold
193 else:

340

194 self.highIntens = event.xdata
195
196 #display message if a higher threshold is set
197 if self.highIntens is not None:
198 if self.highLimit is not None:
199 self.master.statusBar().showMessage(

str(sum((self.populationValues >
self.highIntens) & (self.populationValues <
self.highLimit)))

200 + ' above {:.1f} and below {:.1f}'
.format(self.highIntens,
self.highLimit))

201 else:
202 self.master.statusBar().showMessage(

str(sum(self.populationValues >
self.highIntens))

203 + ' above {:.1f}'.format(self.highIntens))
204
205 #redraw figure
206 self.update_figure()
207
208 def mouseZoom(self,event):
209 '''
210 handle mouse scrolling by zooming in and out
211 event: mpl mouse scroll event
212 '''
213 if self.populationValues is not None and event.xdata is not None:
214
215 if event.button == 'up':
216 self.zoomLvl += 1#zoom in
217 else:
218 self.zoomLvl -= 1#zoom out
219
220 self.zoomLvl = 0 if self.zoomLvl < 0 else

(10 if self.zoomLvl > 10 else self.zoomLvl)
221 self.xcent = int(event.xdata)
222
223 #redraw the zoom lvl
224 self.redraw_zoom()
225
226 def setBlobNum(self, target):
227 '''
228 automatically sets a high and low threshold to select
229 approximately the same number of blobs in each condition
230 target: the target number of blobs to find
231 '''
232 #return when values not set
233 if self.populationValues is None:
234 return
235 #subdivide the population by a larger factor
236 counts, bins= np.histogram(self.populationValues, bins = 2560)
237
238 #find lower cutoff, binary search
239 left = 0
240 right = len(counts)
241 c = 0
242 lowlimit = 0 if self.lowLimit is None else

341

np.argmin(np.abs(bins – self.lowLimit))
243 while left < right and c < 20:
244 ind = (left + right) // 2
245 tempCount = sum(counts[lowlimit:ind])
246 if tempCount < target:
247 left = ind +1
248 elif tempCount > target:
249 right = ind -1
250 else:
251 break
252 c += 1
253 self.lowIntens = bins[ind+1]
254 tclow = sum(counts[lowlimit:ind])
255
256 #find upper cutoff, binary search
257 left = 0
258 right = len(counts)
259 c = 0
260 highlimit = len(counts)-1 if self.highLimit is None

else np.argmin(np.abs(bins - self.highLimit))
261 while left < right and c < 20:
262 ind = (left + right) // 2
263 tempCount = sum(counts[ind:highlimit])
264 if tempCount < target:
265 right = ind -1
266 elif tempCount > target:
267 left = ind +1
268 else:
269 break
270 c += 1
271 self.highIntens = bins[ind-1]
272 tchigh = sum(counts[ind:highlimit])
273 self.update_figure()
274
275 self.master.reportFromModel('Found ' + str(tclow) + ' below and '

+ str(tchigh) + ' above')
276
277 def clearFilt(self):
278 '''
279 Clear the current set of filter parameters and redraw figure
280 '''
281 self.resetVariables(False)
282 self.update_figure();
283
284 def savePopulationValues(self, filename):
285 '''
286 saves the population values of the currently displayed histogram
287 filename: text file to save
288 '''
289 if self.populationValues is None or len(self.populationValues) ==
0:
290 return 'Nothing to save'
291 output = open(filename, 'w')
292 output.write('Blob\t{}\n'

.format(self.metrics[self.populationMetric]))
293 for i,b in enumerate(self.model.blobCollection[

self.model.currentBlobs].blobs):

342

294 output.write('0_x_{0:.0f}y_{1:.0f}\t{2}\n'.format(b.X, b.Y,
295 self.populationValues[i]))
296 return 'Saved histogram values'
297
298 def saveHistImage(self, filename):
299 '''
300 Saves the current histogram image
301 filename: image file to write
302 '''
303 self.fig.savefig(filename)
304
305 def getFilteredBlobs(self):
306 '''
307 Get the set of blobs which pass the current filters
308 returns list of blobLists with the filters already set
309 '''
310 result = []
311 #low intensity
312 if self.lowIntens is not None:
313 if self.lowLimit is not None:
314 tempbool = (self.populationValues < self.lowIntens) &
315 (self.populationValues >

self.lowLimit)
316 else:
317 tempbool = self.populationValues < self.lowIntens
318
319 lowblbs = [self.blobSet.blobs[i] for i in

np.where(tempbool)[0]]
320 result.append(self.blobSet.partialDeepCopy(lowblbs))
321 result[-1].filters

.append(self._getFilterDescription(self.lowLimit,
self.lowIntens))

322
323 #high intensity
324 if self.highIntens is not None:
325 if self.highLimit is not None:
326 tempbool = (self.populationValues > self.highIntens) &
327 (self.populationValues < self.highLimit)
328 else:
329 tempbool = self.populationValues > self.highIntens
330
331 highblbs = [self.blobSet.blobs[i] for i in

np.where(tempbool)[0]]
332 result.append(self.blobSet.partialDeepCopy(highblbs))
333 result[-1].filters

.append(self._getFilterDescription(self.highIntens,
self.highLimit))

334
335 return result
336
337 def _getFilterDescription(self, lowVal, highVal):
338 '''
339 returns a succinct string description of the current filter set
340 lowVal: low value, part of # < channel < #
341 highVal: high value, other part of # < channel < #
342 '''
343 result = ''

343

344 if lowVal is None and highVal is None:
345 return None
346
347 channel = 'c{}[{}]'.format(self.imgInd,

self.metrics[self.populationMetric])
348
349 if lowVal is not None:
350 result += "{:.1f}<".format(lowVal)
351 result += channel
352 if highVal is not None:
353 result += "<{:.1f}".format(highVal)
354 result += ';'
355
356 result += 'max' if self.reduceMax else 'mean'
357 result += ';offset={}'.format(self.offset)
358
359 return result
360
361 def redraw_zoom(self):
362 '''
363 redraw the widget after a zoom change,

does not update the underlying graph
364 '''
365 #find range of the x axis scaled by zoom
366 rng = (self.xhi - self.xlo) / 2**(self.zoomLvl+1)
367 #determine center position
368 if self.xcent is None:
369 self.xcent = (self.xhi - self.xlo) / 2
370 #find high and low positions, center +/- range
371 (low, high) = (self.xcent - rng, self.xcent + rng)
372 #keep low and high bounded by the min and max
373 (low, high) = (self.xlo if low < self.xlo else low,
374 self.xhi if high > self.xhi else high)
375 #if no zoom, autoscale
376 if self.zoomLvl == 0:
377 self.axes.autoscale(True, 'both')
378 else:#autoscale y but use high and low for x
379 self.axes.set_xlim([low,high])
380 self.axes.autoscale(True, 'y')
381
382 self.draw()
383
384 def update_figure(self):
385 '''
386 redraw the figure by recalculating the graph and recoloring
387 The blob subsets are passed back to the model
388 '''
389 if self.populationValues is None:
390 self.axes.cla()
391 else:
392 #draw bar chart of entire population
393 self.axes.bar(self.bins, self.counts,

width = self.bins[0] – self.bins[1],
394 color = GUIConstants

.BAR_COLORS[self.populationMetric])
395 self.axes.hold(True)
396 blbSubset = []

344

397 blbColors = []
398 #handle low intens
399 if self.lowIntens is not None:
400 if self.lowLimit is not None:
401 #tempbool is the bins that pass the filter
402 tempbool = (self.bins < self.lowIntens) &

(self.bins > self.lowLimit)
403 #tempbool2 is the blobs that pass the filter
404 tempbool2= (self.populationValues < self.lowIntens) &
405 (self.populationValues > self.lowLimit)
406 else:
407 tempbool = self.bins < self.lowIntens
408 tempbool2 = self.populationValues < self.lowIntens
409 #draw the low threshold bars
410 self.axes.bar(self.bins[tempbool], self.counts[tempbool],
411 width = self.bins[0]-self.bins[1],

 color = GUIConstants.LOW_BAR)
412 #add the low threshold blobs to the blob subset

to pass to slideCanvas
413 if np.any(tempbool2):
414 blbSubset.append(copy(self.blobSet))
415 blbSubset[-1].blobs = [self.blobSet.blobs[i] for i in

np.where(tempbool2)[0]]
416 blbSubset[-1].description = 'low'
417 blbSubset[-1].threshCutoff = int(self.lowIntens)
418 blbColors.append(GUIConstants.LOW_BAR)
419
420 #handle high intens
421 if self.highIntens is not None:
422 if self.highLimit is not None:
423 tempbool = (self.bins > self.highIntens) &

(self.bins < self.highLimit)
424 tempbool2=(self.populationValues > self.highIntens) &
425 (self.populationValues < self.highLimit)
426 else:
427 tempbool = self.bins > self.highIntens
428 tempbool2 = self.populationValues > self.highIntens
429 #draw the high threshold bars
430 self.axes.bar(self.bins[tempbool], self.counts[tempbool],
431 width = self.bins[0]-self.bins[1],

 color = GUIConstants.HIGH_BAR)
432 #add the high threshold blobs to the blob subset

to pass to slideCanvas
433 if np.any(tempbool2):
434 blbSubset.append(copy(self.blobSet))
435 blbSubset[-1].blobs = [self.blobSet.blobs[i] for i in

np.where(tempbool2)[0]]
436 blbSubset[-1].color = GUIConstants.HIGH_BAR
437 blbSubset[-1].description = 'high'
438 blbSubset[-1].threshCutoff = int(self.highIntens)
439 blbColors.append(GUIConstants.HIGH_BAR)
440
441 #handle single bar selected
442 if self.singleBar is not None:
443 temp = self.bins - self.singleBar
444 ind = int(np.sum(temp < 0))
445 ind = 0 if ind < 0 else len(self.bins)-1 if

345

ind >= len(self.bins) else ind
446 #draw the single bar
447 self.axes.bar(self.bins[ind], self.counts[ind],
448 width = self.bins[0]-self.bins[1],

 color = GUIConstants.SINGLE_BAR)
449 #add the single bar blobs to the subset for slideCanvas
450 tempbool = (self.populationValues < self.bins[ind])
451 if ind == len(self.bins) -1:
452 tempbool = self.populationValues >= self.bins[ind-1]
453 elif ind != 0:
454 tempbool = tempbool & (self.populationValues

>= self.bins[ind-1])
455 if np.any(tempbool):
456 blbSubset.append(copy(self.blobSet))
457 blbSubset[-1].blobs = [self.blobSet.blobs[i] for i in

np.where(tempbool)[0]]
458 blbSubset[-1].description = 'single'
459 blbSubset[-1].threshCutoff = int(self.bins[ind])
460 if self.moveSlide == True:
461 firstBlob = blbSubset[-1].blobs[0]
462 self.model.slide.pos = [firstBlob.X, firstBlob.Y]
463 self.moveSlide = False
464 blbColors.append(GUIConstants.SINGLE_BAR)
465
466
467 #draw lines displaying the values used for filtering
468 #a single blob to highlight
469 if self.singleBlob is not None:
470 if self.singleBlob >= 0 and

self.singleBlob < len(self.populationValues):
471 self.axes.vlines(

self.populationValues[self.singleBlob], 0,
472 self.axes.get_ylim()[1],

colors = GUIConstants.SINGLE_BLOB)
473 #draw limits
474 if self.lowLimit is not None:
475 self.axes.vlines(self.lowLimit, 0,

self.axes.get_ylim()[1],
476 colors = GUIConstants.LOW_BAR,

linestyles='dashed')
477 if self.highLimit is not None:
478 self.axes.vlines(self.highLimit, 0,

self.axes.get_ylim()[1],
479 colors = GUIConstants.HIGH_BAR,

linestyles='dashed')
480
481 #draw thresholds
482 if self.lowIntens is not None:
483 self.axes.vlines(self.lowIntens, 0,

self.axes.get_ylim()[1],
484 colors = GUIConstants.LOW_BAR,

linestyles='dashdot')
485 if self.highIntens is not None:
486 self.axes.vlines(self.highIntens, 0,

self.axes.get_ylim()[1],
487 colors = GUIConstants.HIGH_BAR,

linestyles='dashdot')

346

488
489 #tell slide canvas about the new subset
490 self.master.report_blbsubset((blbSubset, blbColors))
491
492 self.axes.hold(False)
493 #update the axes labels and x axis limits
494 self.axes.set_ylabel('Count')
495 if self.populationMetric == 3:
496 self.axes.set_xlabel('Size')
497 self.xlo, self.xhi = self.axes.get_xlim()
498 elif self.populationMetric == 4:
499 self.axes.set_xlabel('Circularity')
500 self.xlo, self.xhi = self.axes.get_xlim()
501 elif self.populationMetric == 5:
502 self.axes.set_xlabel('Distance')
503 self.xlo, self.xhi = self.axes.get_xlim()
504
505 #colors are labeled as intensity and limited to 0,255
506 else:
507 self.xlo, self.xhi = 0,255
508 self.axes.set_xlabel('Intensity')
509
510 self.redraw_zoom()
511

347

GUICanvases/microMSModel.py
001 from PIL import ImageDraw, ImageFont
002 import matplotlib as mpl
003 from matplotlib.path import Path
004 from matplotlib.collections import PatchCollection
005 import matplotlib.pyplot as plt
006 import os
007 import random
008 from scipy.spatial.distance import pdist
009 import numpy as np
010 from copy import deepcopy, copy
011
012 from GUICanvases import GUIConstants
013
014 from ImageUtilities import slideWrapper
015 from ImageUtilities import blobFinder
016 from ImageUtilities import blob
017 from ImageUtilities import TSPutil
018 from ImageUtilities.enumModule import Direction, StepSize
019 from ImageUtilities import blobList
020
021 from CoordinateMappers import supportedCoordSystems
022
023 class MicroMSModel(object):
024 '''
025 The model of a microMS experiment consisting of
026 a slide, blob finder, and blobs
027 Performs several vital functions for interacting
028 with each object and maintains a list of blobs
029 '''
030 def __init__(self, GUI):
031 '''
032 Initialize a new model setup. Slide starts as None.
033 The coordinateMapper is set as the first mapper

of the supported mappers.
034 Also calls self.resetVariables to clear other instance variables.
035 GUI: the supporting GUI
036 '''
037 self.slide = None
038 self.coordinateMapper = supportedCoordSystems.supportedMappers[0]
039 self.GUI = GUI
040 self.resetVariables()
041
042 def setupMicroMS(self, filename):
043 '''
044 Loads an image and sets up a new session
045 filename: the image to load
046 '''
047 self.slide = slideWrapper.SlideWrapper(filename)
048 self.resetVariables()
049
050 def resetVariables(self):
051 '''
052 Clears and initializes all instance variables
053 '''
054 self.blobCollection = [blobList.blobList(self.slide) for i in
 range(10)]

348

055
056 self.setCurrentBlobs(0)
057 self.tempBlobs = None
058 self.histogramBlobs = None
059 self.histColors = None
060 self.coordinateMapper.clearPoints()
061 self.mirrorImage = False
062 self.showPatches = True
063 self.drawAllBlobs = False
064 self.showPrediction = False
065 self.showThreshold = False
066
067 def setCoordinateMapper(self, newMapper):
068 '''
069 Sets a new coordinate mapper and clears its points
070 newMapper: the new instance of coordinateMapper to use
071 '''
072 self.coordinateMapper = newMapper
073 self.coordinateMapper.clearPoints()
074
075 def saveEntirePlot(self, fileName):
076 '''
077 saves the entire slide image at the current zoom level
078 fileName: the file to write to
079 *NOTE: this can take a while to run and generate

large files at max zoom
080 '''
081 #save the current size and position
082 size, pos = self.slide.size, self.slide.pos
083 #match size to whole slide, position at center
084 self.slide.size, self.slide.pos = \
085 (self.slide.dimensions[0]//2**self.slide.lvl,
086 self.slide.dimensions[1]//2**self.slide.lvl), \
087 (self.slide.dimensions[0]//2, self.slide.dimensions[1]//2)
088
089 #get whole image
090 wholeImg = self.slide.getImg()
091 draw = ImageDraw.Draw(wholeImg)
092
093 #markup image
094 linWid = 1 if 6-self.slide.lvl < 1 else 6-self.slide.lvl
095 tfont = ImageFont.truetype("arial.ttf",linWid+6)
096 #for each blob list
097 for ii in range(len(self.blobCollection)):
098 if self.blobCollection[ii].length() > 0:
099 drawnlbls = set()
100 drawlbl = self.blobCollection[ii].blobs[0].group

is not None
101 #for each blob
102 for i,gb in enumerate(self.blobCollection[ii].blobs):
103 p = self.slide.getLocalPoint((gb.X,gb.Y))
104 rad = gb.radius/2**self.slide.lvl
105 #draw blob outline
106 draw.ellipse((p[0]-rad, p[1]-rad,
107 p[0]+rad, p[1]+rad),
108 outline=GUIConstants.MULTI_BLOB[ii])
109 #draw label if group exists

349

110 if drawlbl and gb.group not in drawnlbls:
111 draw.text((p[0]+10/2**self.slide.lvl,
112 p[1]-10/2**self.slide.lvl)
113 str(gb.group),
114 font=tfont,
 fill=GUIConstants.EXPANDED_TEXT)
115 drawnlbls.add(gb.group)
116
117 #save image
118 wholeImg.save(fileName)
119
120 #restore size and position
121 self.slide.size, self.slide.pos = size, pos
122
123 def saveCurrentBlobFinding(self, filename):
124 '''
125 Save the current blob finder and currently selected blob list
126 filename: file to save to
127 '''
128 #slide not set up
129 if self.slide is None:
130 return "No slide loaded"
131 #current list is empty
132 if self.blobCollection[self.currentBlobs].length() == 0:
133 return "List {} contains no blobs!"
134 .format(self.currentBlobs +1)

#plus one for GUI display
135 #save blobs
136 self.blobCollection[self.currentBlobs].saveBlobs(filename)
137 return "Saved blob information of list {}"
138 .format(self.currentBlobs+1)
139
140 def saveHistogramBlobs(self, filename):
141 '''
142 Save up to 3 files for different histogram filters
143 filename: the filename to save
144 '''
145 #slide not set up
146 if self.slide is None:
147 return "No slide loaded"
148 #no histogram blobs to save
149 if self.histogramBlobs is None or len(self.histogramBlobs) == 0:
150 return "No histogram divisions provided"
151 #save different divisions
152 f, ex = os.path.splitext(filename)
153 for blbs in self.histogramBlobs:
154 if blbs.length() > 0:
155 blbs.saveBlobs('{}_{}_{}{}'
156 .format(f, blbs.description,

blbs.threshCutoff, ex))
157 return "Saved histogram divisions with base name {}"
158 .format(os.path.split(f)[1])
159
160 def saveAllBlobs(self, filename):
161 '''
162 Save each list of blobs in its own list
163 filename: a full filename with extension.

350

 The list number will be added as such:
164 dir/test.txt -> dir/test_1.txt
165 '''
166 #slide not set up
167 if self.slide is None:
168 return "No slide loaded"
169 f, ex = os.path.splitext(filename)
170 #save each blob list
171 for i, blbs in enumerate(self.blobCollection):
172 if blbs.length() > 0:
173 blbs.saveBlobs('{}_{}{}'.format(f, i, ex))
174
175 return "Saved blobs with base name '{}'"
176 .format(os.path.split(f)[1])
177
178 def saveCoordinateMapper(self, filename):
179 '''
180 Save the current coordinate mapper
181 filename: file to save to
182 '''
183 #no fiducials trained
184 if len(self.coordinateMapper.pixelPoints) < 1:
185 return "No coordinates to save"
186
187 self.coordinateMapper.saveRegistration(filename)
188 return "Saved coordinate mapper"
189
190 def saveInstrumentPositions(self,filename, tspOpt, maxPoints = None):
191 '''
192 save positions of blobs in instrument coordinate system
193 fileName: file to save to
194 tspOpt: bool indicating whether or not
195 to perform traveling salesman optimization
196 maxPoints: maximum number of blobs to save.

Default (None) saves all
197 '''
198 #check if the file can be saved
199 if len(self.coordinateMapper.physPoints) < 2:
200 return "Not enough training points to save instrument file"
201
202 if self.blobCollection[self.currentBlobs].length() == 0:
203 return "No blobs to save"
204
205 #get current blob list
206 blobs = self.blobCollection[self.currentBlobs].blobs
207 #if maxPoints is valid
208 if maxPoints is not None and maxPoints > 0 and
209 maxPoints < self.currentBlobLength():
210 #obtain a random sample of blobs
211 blobs = random.sample(blobs,maxPoints)
212
213 #if tspOpt is requested
214 if tspOpt == True:
215 #reorder visit order
216 soln = TSPutil.TSPRoute(blob.blob.getXYList(blobs))
217 blobs = [blobs[i] for i in soln]
218

351

219 #save list of blobs
220 self.coordinateMapper.saveInstrumentFile(filename,
221 blobs)
222 return "Saved instrument file of list {}"
223 .format(self.currentBlobs +1)
224
225 def saveInstrumentRegistrationPositions(self, filename):
226 '''
227 Save fiducial locations in the instrument coordinate system
228 '''
229 if len(self.coordinateMapper.physPoints) < 2:
230 return "Not enough training points to save fiducial

locations"
231 self.coordinateMapper.saveInstrumentRegFile(filename)
232 return "Saved instrument registration positions"
233
234 def loadCoordinateMapper(self,filename):
235 '''
236 load a prior registration file
237 changes the current mapper to the one specified in the file
238 filename: file to load
239 returns a status display string, and the index of the new mapper
240 '''
241 #get old index
242 old = supportedCoordSystems.supportedMappers
243 .index(self.coordinateMapper)
244 #get first line in file
245 reader = open(filename,'r')
246 line = reader.readline().strip()
247 reader.close()
248 #see if that is a name of a coordinatemapper
249 try:
250 i = supportedCoordSystems.supportedNames.index(line)
251 except:
252 return 'Unsupported instrument: {}'.format(line), old
253
254 #See if mapper has changed to warn the user
255 result = 'Loaded {} registration'.format(line)
256 if i != old:
257 result = 'Warning, changing instrument to {}'.format(line)
258 self.coordinateMapper =

supportedCoordSystems.supportedMappers[i]
259 self.coordinateMapper.loadRegistration(filename)
260 return result, i
261
262 def loadBlobFinding(self, filename):
263 '''
264 Loads the blobs in the provided filename to
265 the current list of blobs and sets
266 the blobfinder to the previous values
267 filename: file to load
268 '''
269 self.blobCollection[self.currentBlobs].loadBlobs(filename)
270 return "Finished loading blob positions into list {}"
271 .format(self.currentBlobs+1)
272
273 def loadInstrumentPositions(self, filename):

352

274 '''
275 Load an instrument position file to the current blob list.
276 Will not have proper radius, but should retain the groups.
277 filename: file to load
278 '''
279 self.blobCollection[self.currentBlobs].blobs = \
280 self.coordinateMapper.loadInstrumentFile(filename)
281 self.blobCollection[self.currentBlobs].generateGroupLabels()
282 return "Finished loading instrument file into list {}"
283 .format(self.currentBlobs+1)
284
285 def currentBlobLength(self):
286 '''
287 Gets the length of the current blob list
288 '''
289 return self.blobCollection[self.currentBlobs].length()
290
291 def currentInstrumentExtension(self):
292 '''
293 Gets the instrument extension of the current coordinate mapper
294 '''
295 return self.coordinateMapper.instrumentExtension
296
297 def runGlobalBlobFind(self):
298 '''
299 Performs global blob finding on the current slide
300 and sets to current blob list
301 '''
302 if self.slide is None:
303 return "No slide was open"
304 return self.blobCollection[self.currentBlobs].blobSlide() +
305 " in list {}".format(self.currentBlobs+1)
306
307 def updateCurrentBlobs(self, newBlobs):
308 if not isinstance(newBlobs, blobList.blobList):
309 raise ValueError('New blobs must be a blobList')
310
311 #find first unused blob index
312 for i in range(len(self.blobCollection)):
313 if self.blobCollection[i].length() == 0:
314 #add new blobs
315 self.blobCollection[i] = newBlobs
316 self.setCurrentBlobs(i)
317 return
318
319 def distanceFilter(self, distance):
320 '''
321 filters the global blob list to remove blobs
322 which are closer than 'distance' pixels
323 the prior list is stored in previous current index
324 distance: distance threshold
325 '''
326 if self.currentBlobLength() == 0:
327 return "No blobs to filter"
328
329 self.updateCurrentBlobs(
330 self.blobCollection[self.currentBlobs]

353

331 .distanceFilter(distance, verbose = True))
332
333 return "Finished distance filter in list {}"
334 .format(self.currentBlobs+1)
335
336 def roiFilter(self):
337 '''
338 filters the blob list to remove blobs outside the current ROI
339 '''
340 if self.currentBlobLength() == 0:
341 return "No blobs to filter"
342 if len(self.blobCollection[self.currentBlobs].ROI) < 3:
343 return "No ROI selected"
344 startLen = self.currentBlobLength()
345 self.updateCurrentBlobs(
346 self.blobCollection[self.currentBlobs]
347 .roiFilter())
348 endLen = self.currentBlobLength()
349 return "{} blobs removed, {} remain in list {}"
350 .format(startLen - endLen, endLen, self.currentBlobs+1)
351
352 def roiFilterInverse(self):
353 '''
354 filters the blob list to remove blobs inside the current ROI
355 '''
356 if self.currentBlobLength() == 0:
357 return "No blobs to filter"
358 if len(self.blobCollection[self.currentBlobs].ROI) < 3:
359 return "No ROI selected"
360 startLen = self.currentBlobLength()
361 self.updateCurrentBlobs(
362 self.blobCollection[self.currentBlobs]
363 .roiFilterInverse())
364 endLen = self.currentBlobLength()
365 return "{} blobs removed, {} remain in list {}"
366 .format(startLen - endLen, endLen, self.currentBlobs+1)
367
368
369 def hexPackBlobs(self, separation, layers, dynamicLayering = False):
370 '''
371 expands each blob into hexagonally closest packed positions
372 sep: minimum separation between points
373 layers: number of layers to generate
374 dynamicLayering: adjust the number of layers with the blob radius
375 '''
376 self.updateCurrentBlobs(self.blobCollection[self.currentBlobs]\
377 .hexagonallyClosePackPoints(separation,
378 layers,
379 dynamicLayering = dynamicLayering))
380
381
382 def rectPackBlobs(self, separation, layers, dynamicLayering = False):
383 '''
384 expands each blob into rectangularly packed positions
385 sep: minimum separation between points
386 layers: number of layers to generate
387 dynamicLayering: adjust the number of layers with the blob radius

354

388 '''
389 self.updateCurrentBlobs(self.blobCollection[self.currentBlobs]\
390 .rectangularlyPackPoints(separation,
391 layers,
392 dynamicLayering = dynamicLayering))
393
394 def circularPackBlobs(self, separation, maxShots, offset):
395 '''
396 expands each blob into circularly packed

positions around the blob
397 sep: minimum separation between spots
398 shots: maximum number of spots to place around each blob
399 offset: offset from the current circumference,
400 offset > 0 places spots outside the current blob
401 '''
402 self.updateCurrentBlobs(self.blobCollection[self.currentBlobs]\
403 .circularPackPoints(separation, maxShots,

offset, minSpots = 4))
404
405 def analyzeAll(self):
406 '''
407 if the current mapper is connected to an instrument,
408 triggers analysis of all blobs currently found
409 '''
410 #get all pixel points and translate to motor coords
411 if self.currentBlobLength() == 0:
412 return "No targets currently selected"
413 if len(self.coordinateMapper.physPoints) <= 2:
414 return "Not enough training points"
415 if self.coordinateMapper.connectedInstrument is None or \
416 self.coordinateMapper.connectedInstrument.connected == False:
417 return "No connected instrument"
418
419 targets = list(map(lambda b:

self.coordinateMapper.translate((b.X, b.Y)),
420 self.blobCollection[self.currentBlobs].blobs))
421
422 #send to connected instrument
423 self.coordinateMapper.connectedInstrument.collectAll(targets)
424
425 return "Finished collection"
426
427 def setBlobSubset(self, blobSubset):
428 '''
429 Sets the histogram blobs supplied by a histcanvas
430 blobSubset: an odd object, tuple of lists,
431 first is a blobList, second a list of colors
432 '''
433 self.histogramBlobs = blobSubset[0]
434 self.histColors = blobSubset[1]
435
436 def reportSlideStep(self, direction, stepSize):
437 '''
438 Moves the slide in the specified direction,
439 taking into account mirroring
440 direction: a slideWrapper.direction in the observed direction
441 stepSize: enum dictating if the step size

355

442 '''
443 if self.slide is not None:
444 if self.mirrorImage:
445 if direction == Direction.left:
446 self.slide.step(Direction.right, stepSize)
447 elif direction == Direction.right:
448 self.slide.step(Direction.left, stepSize)
449 else:
450 self.slide.step(direction, stepSize)
451
452 self.slide.step(direction, stepSize)
453
454 def testBlobFind(self):
455 '''
456 Performs a test blob find on the current position
457 Sets the zoom level to the maximum
458 value to match test blob finding
459 '''
460 self.slide.lvl = 0
461 if self.slide is not None:
462 self.tempBlobs = self.blobCollection[self.currentBlobs]
463 .blobFinder.blobImg()
464
465 def setCurrentBlobs(self, ind):
466 '''
467 Sets the current blob index to the specified value
468 ind: integer value of list to show
469 '''
470 self.currentBlobs = ind
471 if self.GUI is not None:
472 self.GUI.setTitle(self.currentBlobs)
473
474 def reportSize(self, newSize):
475 '''
476 Sets the size of the slidewrapper to the specified value.
477 Sets the max number of pixels to 600 but keeps the aspect ratio
478 newSize = (width, height)
479 '''
480 w,h = newSize
481 factor = 600/max(w,h)
482 w, h = int(w*factor), int(h*factor)
483 self.slide.size = [w, h]
484
485 def getCurrentImage(self):
486 '''
487 gets the image to display, accounting for showing thresholds
488 '''
489 #show the threshold image produced by blobfinder helper method
490 if self.showThreshold:
491 im, num = blobFinder
492 .blobFinder._blbThresh(self.slide.getImg(),
493 self.blobCollection[self.currentBlobs].blobFinder.colorChannel,
494 self.blobCollection[self.currentBlobs].blobFinder.threshold)
495 return im
496 #else, use current image view
497 else:
498 return self.slide.getImg()

356

499
500 def getPatches(self, limitDraw):
501 '''
502 Gets the patches of all blobs, registration

marks and predicted points.
503 limitDraw: boolean toggle to limit the number of blobs to draw
504 '''
505 ptches = []
506 #nothing requested or nothing to show
507 if self.showPatches == False or self.slide is None:
508 return PatchCollection(ptches)
509
510 #temp blobs from blob finding test. Only drawn once
511 if self.tempBlobs is not None:
512 ptches = [plt.Circle((blb.X, blb.Y),
513 blb.radius,
514 color = GUIConstants.TEMP_BLOB_FIND,
515 linewidth = 1,
516 fill = False)
517 for blb in self.tempBlobs]
518 #reset temp blobs
519 self.tempBlobs = None
520 #return patches, if none to show match_original
 needs to be false
521 return PatchCollection(ptches,

match_original=(len(ptches) != 0))
522
523 #draw predicted points from coordinate mapper
524 lineWid = 1 if 6-self.slide.lvl < 1 else 6-self.slide.lvl
525 if self.showPrediction and

len(self.coordinateMapper.physPoints) >= 2:
526 points, inds = self.slide
527 .getPointsInBounds(
528 self.coordinateMapper.predictedPoints())
529 ptches.extend(
530 [plt.Circle(p,
 GUIConstants.FIDUCIAL_RADIUS/2**self.slide.lvl,
531 color = GUIConstants.PREDICTED_POINTS,
532 linewidth = lineWid,
533 fill = False)
534 for p in points]
535)
536
537 #draw fiducial locations, showing the worst

FLE in a different color
538 worstI = -1
539 if len(self.coordinateMapper.physPoints) > 2:
540 worstI = self.coordinateMapper.highestDeviation()
541 points, inds = self.slide
542 .getPointsInBounds(self.coordinateMapper.pixelPoints)
543 for i,p in enumerate(points):
544 if inds[i] == worstI:
545 ptches.append(
546 plt.Circle(p,

GUIConstants.FIDUCIAL_RADIUS/2**self.slide.lvl,
547 color = GUIConstants.FIDUCIAL_WORST,
548 linewidth = lineWid,

357

549 fill=False)
550)
551 else:
552 ptches.append(
553 plt.Circle(p,

GUIConstants.FIDUCIAL_RADIUS/2**self.slide.lvl,
554 color = GUIConstants.FIDUCIAL,
555 linewidth = lineWid,
556 fill=False)
557)
558
559 #draw region of interest
560 ptches.extend(self.getROIPatches())
561
562 #draw histogram blobs
563 if self.histogramBlobs is not None and
564 len(self.histogramBlobs) != 0:
565 for i, blbs in enumerate(self.histogramBlobs):
566 ptches.extend(blbs.getPatches(limitDraw,
567 self.slide,
568 self.histColors[i]))
569
570 #draw blobs
571 else:
572 #draw all blob lists with their own color
573 if self.drawAllBlobs == True:
574 for j, blobs in enumerate(self.blobCollection):
575 ptches.extend(blobs.getPatches(limitDraw,
576 self.slide,
577 GUIConstants.MULTI_BLOB[j]))
578
579 #show only the current blob list
580 else:
581 ptches.extend(
582 self.blobCollection[self.currentBlobs]
583 .getPatches(limitDraw, self.slide,
584 GUIConstants.MULTI_BLOB[self.currentBlobs]))
585
586 #return list of patches as a patch collection,

if none match_original must be false
587 return PatchCollection(ptches, match_original=(len(ptches) != 0))
588
589 def getROIPatches(self, newPoint = None, append = False):
590 ptches = []
591 tROI = self.blobCollection[self.currentBlobs]
592 .getROI(newPoint,
593 GUIConstants.ROI_DIST *2**self.slide.lvl,
594 append)
595
596 if len(tROI) > 1:
597 verts = []
598 for roi in tROI:
599 verts.append(self.slide.getLocalPoint(roi))
600 verts.append(self.slide.getLocalPoint(tROI[0]))
601 ptches.append(
602 mpl.patches.PathPatch(Path(verts, None),
603 color = GUIConstants.ROI,

358

604 fill = False))
605
606 return ptches
607
608 def reportROI(self, point, append = False):
609 '''
610 Handles ROI additions and removals based on position
611 point: the point in global coordinates
612 '''
613 self.blobCollection[self.currentBlobs].ROI = \
614 self.blobCollection[self.currentBlobs]
615 .getROI(point,
616 GUIConstants.ROI_DIST *2**self.slide.lvl,
617 append)
618
619 def drawLabels(self, axes):
620 '''
621 draw text labels on the supplied axis.

Assume the axis is displaying the
622 slide image and blobs of the current state of everything.
623 '''
624 if self.slide is None or self.showPatches == False:
625 return
626
627 #fiducial labels
628 lineWid = 1 if 6-self.slide.lvl < 1 else 6-self.slide.lvl
629 #draw fiducial labels, showing the worst FLE in a different color
630 worstI = -1
631 if len(self.coordinateMapper.physPoints) > 2:
632 worstI = self.coordinateMapper.highestDeviation()
633 points, inds = self.slide.getPointsInBounds(
634 self.coordinateMapper.pixelPoints)
635 for i,p in enumerate(points):
636 if inds[i] == worstI:
637 col = GUIConstants.FIDUCIAL_WORST
638 else:
639 col = GUIConstants.FIDUCIAL
640 axes.text(p[0] +

GUIConstants.FIDUCIAL_RADIUS/2**self.slide.lvl,
641 p[1] –

GUIConstants.FIDUCIAL_RADIUS/2**self.slide.lvl,
642 self.coordinateMapper.predictLabel(
643 self.coordinateMapper.physPoints[inds[i]]),
644 fontsize = lineWid + 6,
645 fontweight='bold',
646 color = col,
647 bbox=dict(

facecolor=GUIConstants.FIDUCIAL_LABEL_BKGRD))
648 #show group labels
649 #hist blobs have no text
650 if self.histogramBlobs is not None and
651 len(self.histogramBlobs) != 0:
652 pass
653 #normal blobs can have group labels
654 else:
655 pass
656 #show group names of all lists

359

657 if self.drawAllBlobs == True:
658 for blobs in self.blobCollection:
659 self._drawBlobLabels(axes, blobs, lineWid)
660
661 #show only the current list
662 else:
663 self._drawBlobLabels(axes,
664 self.blobCollection[self.currentBlobs],
665 lineWid)
666
667 def _drawBlobLabels(self, axes, blobs, lineWid):
668 '''
669 Helper method to draw blob labels onto the provided axis
670 axes: matplotlib axes to draw text to
671 blobs: blobList with labels to draw
672 lineWid: the linewidth to use for drawing
673 '''
674 #get grouplabels from blobs
675 labels = list(blobs.groupLabels.keys())
676 pos = list(blobs.groupLabels.values())
677 if len(labels) != 0:
678 points, inds = self.slide.getPointsInBounds(pos)
679 for i,p in enumerate(points):
680 #add offset from normal position
681 axes.text(p[0]+

GUIConstants.DEFAULT_RADIUS/2**self.slide.lvl,
682 p[1]-
 GUIConstants.DEFAULT_RADIUS/2**self.slide.lvl,
683 labels[inds[i]],
684 fontsize=lineWid+6,
685 color=GUIConstants.EXPANDED_TEXT)
686
687 def reportInfoRequest(self, localPoint):
688 '''
689 Handles a request for image/blob

information at the supplied local point
690 localPoint: (x,y) tuple of the query point

 in the local coordinate space
691 of the slide image
692 returns a string description of the point
693 '''
694 #nothing to query against
695 if self.slide is None:
696 return "No slide loaded"
697
698 point = self.slide.getGlobalPoint(localPoint)
699 #if the histogram canvas is shown, highlight that blob's location
700 if self.GUI is not None and self.GUI.showHist:
701 #find blob if user clicked in bounds
702 if self.blobCollection[self.currentBlobs] is not None and \
703 self.blobCollection[self.currentBlobs].length() > 0:
704
705 points, inds = self.slide
706 .getPointsInBounds(
707 blob.blob.getXYList(
708 self.blobCollection[self.currentBlobs].blobs))
709 found = False

360

710 for i,p in enumerate(points):
711 #see if click point is within radius
712 if (localPoint[0]-p[0])**2 +

 (localPoint[1] - p[1])**2 <= \
713 (self.blobCollection[self.currentBlobs]
714 .blobs[inds[i]].radius/2**self.slide.lvl)**2:
715 self.GUI.histCanvas.singleBlob = inds[i]
716 found = True
717 break
718 #if not found, set to None
719 if not found:
720 self.GUI.histCanvas.singleBlob = None
721
722 #get pixel color and alpha (discarded)
723 try:
724 r,g,b,a = self.slide.getImg().getpixel(localPoint)
725 except IndexError:
726 r,g,b = 0,0,0
727
728 #get the size and circ of an area > thresh if on blb view
729 if self.showThreshold:
730 area,circ = self.blobCollection[self.currentBlobs]
731 .blobFinder.getBlobCharacteristics(localPoint)
732 return "x = %d, y = %d r,g,b = %d,

%d,%d\tArea = %d\tCirc = %.2f"
733 %(point[0], point[1], r, g, b, area, circ)
734 #show rgb and x,y location
735 else:
736 return "x = %d, y = %d r,g,b = %d,%d,%d"
737 %(point[0], point[1], r, g, b)
738
739 def reportFiducialRequest(self, localPoint,

removePoint, extras = None):
740 '''
741 handles a fiducial request.
742 localpoint: (x,y) tuple in the image coordinate system
743 removePoint: boolean toggle. If true,

the closest fiducial is removed
744 extras: a debugging object to bypass GUI display.

Must define text and ok
745 '''
746 #no slide to register against
747 if self.slide is None:
748 return "No slide loaded"
749
750 globalPos = self.slide.getGlobalPoint(localPoint)
751
752 #shift RMB to remove closest fiducial
753 if removePoint:
754 if len(self.coordinateMapper.physPoints) == 0:
755 return "No points to remove"
756 self.coordinateMapper.removeClosest(globalPos)
757 return "Removed fiducial"
758
759 #get physical location from user
760 else:
761 #mapper returns predicted location

361

762 predicted = self.coordinateMapper.predictName(globalPos)
763
764 #prompt user
765 if self.GUI is None and extras is None:
766 return "No input provided"
767 if extras is not None:#make this check first for debugging
768 text = extras.text
769 ok = extras.ok
770 elif self.GUI is not None:
771 text, ok = self.GUI.requestFiducialInput(predicted)
772
773 if ok:
774 #validate entry
775 if self.coordinateMapper.isValidEntry(text):
776 #add position to mapper
777 self.coordinateMapper
778 .addPoints(globalPos,
779 self.coordinateMapper.extractPoint(text))
780 return "%s added at %d,%d"

% (text, globalPos[0], globalPos[1])
781 else:
782 return "Invalid entry: {}".format(text)
783
784 def reportBlobRequest(self, localPoint, radius):
785 '''
786 Tries to add the blob to the current blob list.
787 If overlap with current blob, remove that point
788 localPoint: (x,y) tuple in the image coordinate space
789 radius: the radius of the new blob to be added
790 '''
791 #no slide to add blobs onto
792 if self.slide is None:
793 return "No slide loaded"
794
795 globalPnt = self.slide.getGlobalPoint(localPoint)
796 added, removeInd = self.blobCollection[self.currentBlobs]
797 .blobRequest(globalPnt, radius)
798 if added == True:
799 if self.GUI is not None and self.GUI.showHist:
800 self.GUI.toggleHistWindow()
801 return "Adding blob at {}, {}"

.format(globalPnt[0], globalPnt[1])
802 else:
803 if self.GUI is not None and self.GUI.showHist:
804 self.GUI.histCanvas.removeBlob(removeInd)
805 return "Removed blob at {}, {}"

.format(globalPnt[0], globalPnt[1])
806
807 def requestInstrumentMove(self, localPoint):
808 '''
809 Handles requests for moving the connected instrument
810 localPoint: (x,y) tuple in the current image coordinate system
811 returns a string summarizing the effect of the action
812 '''
813 #no slide is set up
814 if self.slide is None:
815 return "No slide loaded"

362

816
817 #the connected instrument isn't initialized or present
818 if self.coordinateMapper.connectedInstrument is None or \
819 not self.coordinateMapper.connectedInstrument.connected:
820 return "Instrument not connected"
821
822 #perform actual movement
823 pixelPnt = self.slide.getGlobalPoint(localPoint)
824 if len(self.coordinateMapper.physPoints) >= 2:
825 motorPnt = self.coordinateMapper.translate(pixelPnt)
826 self.coordinateMapper
827 .connectedInstrument
828 .moveToPositionXY(motorPnt)
829 return "Moving to {:.0f}, {:.0f}"

.format(motorPnt[0], motorPnt[1])
830 #not enough registration points
831 else:
832 return "Not enough training points"

363

GUICanvases/microMSWindow.py
0001 from __future__ import unicode_literals
0002 import os
0003 from PyQt5 import QtGui, QtCore, QtWidgets
0004
0005 from CoordinateMappers import supportedCoordSystems
0006 from CoordinateMappers import connectedInstrument
0007
0008 from ImageUtilities.slideWrapper import SlideWrapper
0009 from ImageUtilities.enumModule import Direction, StepSize
0010
0011 from GUICanvases.histCanvas import HistCanvas
0012 from GUICanvases.slideCanvas import SlideCanvas
0013 from GUICanvases.popup import blbPopupWindow,
 gridPopupWindow, histPopupWindow
0014 from GUICanvases.microMSModel import MicroMSModel
0015 from GUICanvases import GUIConstants
0016
0017 class MicroMSQTWindow(QtWidgets.QMainWindow):
0018 '''
0019 A QT implementation of the MicroMS window.
0020 Interacts with the MicroMSModel, a SlideCanvas and a HistCanvas
0021 Mainly handles the menu, key presses, and coordinating canvases
0022 '''
0023 def __init__(self):
0024 '''
0025 initialize a new microMSQT window,
0026 setting up the layout and some instance variables
0027 '''
0028 QtWidgets.QMainWindow.__init__(self)
0029 self.setAttribute(QtCore.Qt.WA_DeleteOnClose)
0030 self.main_widget = QtWidgets.QWidget(self)
0031 self.fileName = None
0032
0033 #model with slide and blob data
0034 self.model = MicroMSModel(self)
0035
0036 self.layout = QtWidgets.QHBoxLayout(self.main_widget)
0037
0038 #new slide canvas for displaying the image
0039 #and handling mouse interactions.
0040 self.slideCanvas = SlideCanvas(self,
0041 self.model,
0042 self.main_widget,
0043 width=6, height=6, dpi=100)
0044 self.layout.addWidget(self.slideCanvas, stretch = 1)
0045
0046 #histogram canvas for showing and interacting
0047 #with population level measurements
0048 self.histCanvas = HistCanvas(master=self,
0049 model=self.model,
0050 width=6, height=6, dpi=100)
0051 self.layout.addWidget(self.histCanvas, stretch = 1)
0052 self.histCanvas.hide()
0053
0054 self.showHist = False

364

0055
0056
0057 self.main_widget.setFocus()
0058 self.setCentralWidget(self.main_widget)
0059
0060 #dictionary of popup windows to keep handle of each
0061 self.popups = {
0062 'imageHelp' : self.createMessageBox(
0063 GUIConstants.IMAGE_HOTKEYS,
0064 'Image Help'),
0065 'instHelp' : self.createMessageBox(
0066 GUIConstants.INSTRUMENT_HOTKEYS,
0067 'Instrument Help'),
0068 'histHelp' : self.createMessageBox(
0069 GUIConstants.HISTOGRAM_HOTKEYS,
0070 'Histogram Help'),
0071 'blobFind' : blbPopupWindow(self),
0072 'grid' : gridPopupWindow(self),
0073 'histOpts' : histPopupWindow(self.histCanvas, self)
0074 }
0075
0076 self.setupMenu()
0077
0078 def setupMenu(self):
0079 '''
0080 setup the menubar and connect instance functions
0081 '''
0082 #file menu
0083 self.file_menu = QtWidgets.QMenu('&File', self)
0084
0085 #open button
0086 openFile = QtWidgets.QAction(QtGui.QIcon('open.png'),
0087 'Open', self)
0088 openFile.setShortcut('Ctrl+O')
0089 openFile.setStatusTip('Open new File')
0090 openFile.triggered.connect(self.fileOpen)
0091 self.file_menu.addAction(openFile)
0092
0093 #decimation submenu
0094 decSub = QtWidgets.QMenu('Decimate...',self)
0095 self.file_menu.addMenu(decSub)
0096 decSub.addAction('Single Image', self.decimateImageSingle)
0097 decSub.addAction('Image Group', self.decimateImageGroup)
0098 decSub.addAction('Directory', self.decimateDirectory)
0099
0100 #instrument selection
0101 instSub = QtWidgets.QMenu('&Instrument...', self)
0102 self.file_menu.addMenu(instSub)
0103 self.instruments = QtWidgets.QActionGroup(self, exclusive=True)
0104 self.instruments.triggered.connect(self.mapperChanged)
0105 #populate with all instruments currently supported
0106 for s in supportedCoordSystems.supportedNames:
0107 a = self.instruments.addAction(QtWidgets.QAction(s,
0108 instSub, checkable=True))
0109 instSub.addAction(a)
0110 self.instruments.actions()[0].setChecked(True)
0111

365

0112 #save submenu
0113 saveSub = QtWidgets.QMenu('&Save...',self)
0114 self.file_menu.addMenu(saveSub)
0115
0116
0117 saveSub.addAction('&Instrument Positions',
0118 self.saveInstrumentPositions)
0119 saveSub.addAction('&Fiducial Positions',
0120 self.saveFiducialPositions)
0121
0122 saveSub.addSeparator()
0123
0124 saveSub.addAction('&Registration', self.saveReg)
0125 saveSub.addAction('&Current Blobs', self.saveCurrentFind)
0126 saveSub.addAction('&Histogram Divisions',
 self.saveHistogramBlobs)
0127 saveSub.addAction('All Lists of Blobs', self.saveAllBlobs)
0128
0129 saveSub.addSeparator()
0130
0131 saveSub.addAction('&Image', self.saveImg,
0132 QtCore.Qt.CTRL + QtCore.Qt.Key_S)
0133 saveSub.addAction('&Whole Image', self.saveWholeImg)
0134
0135 saveSub.addSeparator()
0136 saveSub.addAction('Histogram Image',self.histSaveImage)
0137 saveSub.addAction('Histogram Values',self.histSaveValues)
0138
0139 #load submenu
0140 loadSub = QtWidgets.QMenu('&Load...',self)
0141 self.file_menu.addMenu(loadSub)
0142
0143 loadSub.addAction('&Registration', self.loadReg)
0144 loadSub.addAction('&Found Blobs', self.loadBlobFind)
0145 loadSub.addAction('&Instrument Positions',
0146 self.loadInstrumentPositions)
0147
0148 #quit button
0149 self.file_menu.addAction('&Quit', self.fileQuit,
0150 QtCore.Qt.CTRL + QtCore.Qt.Key_Q)
0151 self.menuBar().addMenu(self.file_menu)
0152
0153 #tools menu
0154 self.tools_menu = QtWidgets.QMenu('&Tools',self)
0155
0156 #blob find
0157 self.tools_menu.addAction('&Blob Find', self.globalBlob)
0158 #blob options
0159 self.tools_menu.addAction('&Blob Options',self.blbPopup,
0160 QtCore.Qt.CTRL + QtCore.Qt.Key_B)
0161 #limit drawn blobs toggle
0162 self.limitDraw = QtWidgets.QAction('Limit Drawn Blobs',
0163 self.tools_menu, checkable=True)
0164 self.limitDraw.setChecked(True)
0165 self.tools_menu.addAction(self.limitDraw)
0166 self.tools_menu.addSeparator()
0167 #Histogram options

366

0168 self.tools_menu.addAction(
'Histogram Window',self.toggleHistWindow,

0169 QtCore.Qt.CTRL + QtCore.Qt.Key_H)
0170 self.tools_menu.addAction('Histogram Options',self.histOptions)
0171 self.tools_menu.addAction('Pick Extremes',self.histSelect)
0172 self.tools_menu.addAction('Apply Filter',self.histFilter,
0173 QtCore.Qt.CTRL + QtCore.Qt.Key_A)
0174 #blob position options
0175 self.tools_menu.addSeparator()
0176 self.tools_menu.addAction('Distance Filter',self.distanceFilter)
0177 self.tools_menu.addAction('ROI Filter Retain',self.roiFilter)
0178 self.tools_menu.addAction('ROI Filter Remove',
0179 self.roiFilterInverse)
0180 self.tools_menu.addSeparator()
0181 self.tools_menu.addAction('Rectangular Pack', self.rectPack)
0182 self.tools_menu.addAction('Hexagonal Pack', self.hexPack)
0183 self.tools_menu.addAction('Circular Pack', self.circPack)
0184
0185 #instrument settings
0186 self.tools_menu.addSeparator()
0187 self.tools_menu.addAction('Instrument Setting',self.gridPopup,
0188 QtCore.Qt.CTRL + QtCore.Qt.Key_G)
0189 self.menuBar().addSeparator()
0190 self.menuBar().addMenu(self.tools_menu)
0191
0192 #device submenu
0193 self.inst_menu = QtWidgets.QMenu('Device', self)
0194 self.inst_menu.addAction('Establish Connection',
0195 self.initializeInstrument)
0196 self.inst_menu.addAction('Set Dwell Time', self.setDwell)
0197 self.inst_menu.addAction('Set Wash Time', self.setWash)
0198 self.inst_menu.addAction('Analyze All', self.analyzeAll)
0199
0200 self.menuBar().addSeparator()
0201 self.menuBar().addMenu(self.inst_menu)
0202 self.inst_menu.setEnabled(self.model.coordinateMapper
0203 .isConnectedToInstrument)
0204
0205 #help menu
0206 self.help_menu = QtWidgets.QMenu('&Help', self)
0207 self.menuBar().addSeparator()
0208 self.menuBar().addMenu(self.help_menu)
0209 self.help_menu.addAction('&Image Hotkeys', self.imgHotkeyMsg)
0210 self.help_menu.addAction('&Instrument Hotkeys',

self.instHotkeyMsg)
0211 self.help_menu.addAction('&Histogram Hotkeys',

self.histHotkeyMsg)
0212
0213 ###most of the following functions are simple
0214 #popups to parse input and pass to canvases
0215 def fileOpen(self, extras=None):
0216 '''
0217 open and setup a slide. only ndpi and tif are supported
0218 '''
0219 if extras is None or not hasattr(extras, 'fileName'):
0220 fileName = QtWidgets.QFileDialog.getOpenFileName(
0221 self, 'Open File',

367

0222 filter='Slide Scans (*.ndpi *.tif)')[0]
0223
0224 else:
0225 fileName = extras.fileName
0226
0227 if fileName:
0228 self.setupCanvas(fileName)
0229
0230 def decimateImageGroup(self, extras = None):
0231 '''
0232 decimate a tif file (to speed up zooming out) and open the file
0233 '''
0234 if extras is None or not hasattr(extras, 'fileName'):
0235 fileName = QtWidgets.QFileDialog.getOpenFileName(
0236 self, 'Open File to Decimate',
0237 filter='Slide Scans (*.tif)') [0]
0238
0239 else:
0240 fileName = extras.fileName
0241
0242 if fileName:
0243 SlideWrapper.generateDecimatedImgs(fileName)
0244 #open file once done
0245 self.setupCanvas(fileName)
0246 self.raise_()
0247 self.activateWindow()
0248
0249 def decimateImageSingle(self, extras = None):
0250 '''
0251 decimate a single file and open the image group
0252 '''
0253 if extras is None or not hasattr(extras, 'fileName'):
0254 fileName = QtWidgets.QFileDialog.getOpenFileName(
0255 self, 'Open File to Decimate',
0256 filter='Slide Scans (*.tif)')[0]
0257
0258 else:
0259 fileName = extras.fileName
0260
0261 if fileName:
0262 (path, file) = os.path.split(fileName)
0263 SlideWrapper.generateDecimatedImage(path, file)
0264 #open file once done
0265 self.setupCanvas(fileName)
0266 self.raise_()
0267 self.activateWindow()
0268
0269 def decimateDirectory(self, extras = None):
0270 '''
0271 decimate a tif file (to speed up zooming out) and open the file
0272 '''
0273 if extras is None or not hasattr(extras, 'directory'):
0274 directory = QtWidgets.QFileDialog
0275 .getExistingDirectory(self,
0276 'Open Directory to Decimate')
0277
0278 else:

368

0279 directory = extras.directory
0280
0281 if directory:
0282 SlideWrapper.decimateDirectory(directory)
0283 self.raise_()
0284 self.activateWindow()
0285
0286 def setupCanvas(self, fileName):
0287 '''
0288 opens the file specified by filename and
0289 sets up some instance variables
0290 '''
0291 self.model.setupMicroMS(fileName)
0292 self.statusBar().showMessage("Opened {}".format(fileName))
0293 self.directory = os.path.dirname(fileName)
0294 self.fileName = os.path.splitext(os.path.basename(fileName))[0]
0295 self.setTitle(self.model.currentBlobs)
0296 self.showHist = False
0297 self.histCanvas.resetVariables(True, True)
0298 self.histCanvas.hide()
0299 self.model.reportSize((float(self.slideCanvas.size().width()),
0300 float(self.slideCanvas.size().height())))
0301 self.model.slide.resetView()
0302 self.slideCanvas.draw()
0303
0304 def setTitle(self, blobList):
0305 if self.fileName is not None:
0306 self.setWindowTitle('MicroMS: {} (List #{})'
0307 .format(self.fileName, blobList+1))
0308 else:
0309 self.setWindowTitle('MicroMS')
0310
0311
0312 def mapperChanged(self, action):
0313 '''
0314 action triggered by the mapper

changing in the instrument submenu
0315 Changes the mapper of imagecanvas to the selected one
0316 and updates the device menu and canvas
0317 '''
0318 i = supportedCoordSystems.supportedNames.index(action.text())
0319 self.model.setCoordinateMapper(supportedCoordSystems
0320 .supportedMappers[i])
0321 self.inst_menu.setEnabled(self.model.coordinateMapper
0322 .isConnectedToInstrument)
0323 self.slideCanvas.draw()
0324
0325 def saveImg(self, extras = None):
0326 '''
0327 save the image of the image canvas to the selected location
0328 '''
0329 if self.model.slide is None:
0330 self.statusBar().showMessage("No image to save")
0331 return
0332 if extras is None or not hasattr(extras, 'fileName'):
0333 fileName = QtWidgets.QFileDialog
0334 .getSaveFileName(self,

369

0335 "Select save file",
0336 self.directory,
0337 filter='*.png')
0338 f = os.path.splitext(fileName[0])[0]
0339 ex = os.path.splitext(fileName[1])[1]
0340 fileName = f+ex
0341
0342 else:
0343 fileName = extras.fileName
0344
0345 if fileName:
0346 self.slideCanvas.savePlt(fileName)
0347
0348 def saveWholeImg(self, extras = None):
0349 '''
0350 saves the entire image at the selected zoom
0351 to the selected location
0352 Can produce large images!!
0353 '''
0354 if extras is None or not hasattr(extras, 'fileName'):
0355 fileName = QtWidgets.QFileDialog.getSaveFileName(self,
0356 "Select save file",
0357 self.directory,
0358 filter='*.png')
0359 f = os.path.splitext(fileName[0])[0]
0360 ex = os.path.splitext(fileName[1])[1]
0361 fileName = f+ex
0362
0363 else:
0364 fileName = extras.fileName
0365
0366 if fileName:
0367 self.model.saveEntirePlot(fileName)
0368 if extras is None or not hasattr(extras, 'fileName'):
0369 msg = QtWidgets.QMessageBox(self)
0370 msg.setText("Finished saving")
0371 msg.setWindowTitle("")
0372 msg.exec_()
0373
0374 def saveAll(self, extras = None):
0375 '''
0376 saves files necessary for replicating the blob finding:
0377 -Blob finding file with pixel locations of
0378 spots and find parameters
0379 -Registration file with pixel to physical locations of fiducials
0380 '''
0381 if extras is None or not hasattr(extras, 'text'):
0382 text, ok = QtWidgets.QInputDialog
0383 .getText(self,'Save All',
0384 'Enter base filename:')
0385
0386 else:
0387 text = extras.text
0388 ok = extras.ok
0389
0390 if ok:
0391 self.statusBar().showMessage(

370

0392 self.model.saveCurrentBlobFinding(
0393 os.path.join(self.directory, text+".txt"))
0394)
0395 self.statusBar().showMessage(
0396 self.model.saveCoordinateMapper(
0397 os.path.join(self.directory, text+".msreg"))
0398)
0399
0400 def saveReg(self, extras = None):
0401 '''
0402 save just the msreg file
0403 '''
0404 if extras is None or not hasattr(extras, 'fileName'):
0405 fileName = QtWidgets.QFileDialog.getSaveFileName(self,
0406 "Select save file",
0407 self.directory,
0408 filter='*.msreg')
0409 f = os.path.splitext(fileName[0])[0]
0410 ex = os.path.splitext(fileName[1])[1]
0411 fileName = f+ex
0412
0413 else:
0414 fileName = extras.fileName
0415
0416 if fileName:
0417 self.statusBar().showMessage(
0418 self.model.saveCoordinateMapper(fileName)
0419)
0420
0421 def saveCurrentFind(self, extras = None):
0422 '''
0423 save blob finding of the current blob list
0424 '''
0425 if extras is None or not hasattr(extras, 'fileName'):
0426 fileName = QtWidgets.QFileDialog.getSaveFileName(self,
0427 "Select save file",
0428 self.directory,
0429 filter='*.txt')
0430 f = os.path.splitext(fileName[0])[0]
0431 ex = os.path.splitext(fileName[1])[1]
0432 fileName = f+ex
0433 else:
0434 fileName = extras.fileName
0435
0436 if fileName:
0437 self.statusBar().showMessage(
0438 self.model.saveCurrentBlobFinding(fileName)
0439)
0440
0441 def saveHistogramBlobs(self, extras = None):
0442 '''
0443 save blob finding of all histogram filters
0444 '''
0445 if extras is None or not hasattr(extras, 'fileName'):
0446 fileName = QtWidgets.QFileDialog.getSaveFileName(self,
0447 "Select save file",
0448 self.directory,

371

0449 filter='*.txt')
0450 f = os.path.splitext(fileName[0])[0]
0451 ex = os.path.splitext(fileName[1])[1]
0452 fileName = f+ex
0453 else:
0454 fileName = extras.fileName
0455
0456 if fileName:
0457 self.statusBar().showMessage(
0458 self.model.saveHistogramBlobs(fileName)
0459)
0460
0461 def saveAllBlobs(self, extras = None):
0462 '''
0463 save blob finding of all blob lists
0464 '''
0465 if extras is None or not hasattr(extras, 'fileName'):
0466 fileName = QtWidgets.QFileDialog.getSaveFileName(self,
0467 "Select save file",
0468 self.directory,
0469 filter='*.txt')
0470 f = os.path.splitext(fileName[0])[0]
0471 ex = os.path.splitext(fileName[1])[1]
0472 fileName = f+ex
0473 else:
0474 fileName = extras.fileName
0475
0476 if fileName:
0477 self.statusBar().showMessage(
0478 self.model.saveAllBlobs(fileName)
0479)
0480
0481 def saveInstrumentPositions(self, extras = None):
0482 '''
0483 save instrument-specific file for sample positions
0484 '''
0485 if extras is None or not hasattr(extras, 'fileName'):
0486 fileName = QtWidgets
0487 .QFileDialog.getSaveFileName(self,
0488 "Select save file",
0489 self.directory,
0490 filter='*' +
0491 self.model
0492 .currentInstrumentExtension())
0493 f = os.path.splitext(fileName[0])[0]
0494 ex = os.path.splitext(fileName[1])[1]
0495 fileName = f+ex
0496 else:
0497 fileName = extras.fileName
0498
0499 if fileName:
0500 if extras is None or not hasattr(extras, 'fileName'):
0501 text,ok = QtWidgets
0502 .QInputDialog.getText(self, "Input Required",
0503 "Input max number of spots or OK for all " +
0504 str(self.model.currentBlobLength()))
0505

372

0506 if ok and not text == '':
0507 maxnum = int(float(text))
0508 elif ok:
0509 maxnum = self.model.currentBlobLength()
0510 else:
0511 return
0512
0513 maxnum = min(self.model.currentBlobLength(), maxnum)
0514
0515 reply = QtWidgets
0516 .QMessageBox
0517 .question(self, 'Run optimization?',
0518 '''Perform TSP optimization?
0519 Not recommended for over {} targets
0520 Currently have {}'''.format(
0521 GUIConstants.TSP_LIMIT, maxnum),
0522 buttons = QtWidgets.QMessageBox.No |
0523 QtWidgets.QMessageBox.Yes,
0524 defaultButton = QtWidgets.QMessageBox.Yes
0525 if maxnum < GUIConstants.TSP_LIMIT
0526 else QtWidgets.QMessageBox.No)
0527 tsp = reply == QtWidgets.QMessageBox.Yes
0528 else:
0529 maxnum = extras.maxnum
0530 tsp = extras.tsp
0531 self.statusBar().showMessage(
0532 self.model.saveInstrumentPositions(
0533 fileName,
0534 tsp,
0535 maxnum)
0536)
0537
0538 self.raise_()
0539 self.activateWindow()
0540
0541 def saveFiducialPositions(self, extras = None):
0542 '''
0543 save instrument specific file
0544 for fiducial locations to check registration
0545 '''
0546 if extras is None or not hasattr(extras, 'fileName'):
0547 fileName = QtWidgets.QFileDialog.getSaveFileName(self,
0548 "Select save file",
0549 self.directory,
0550 filter='*' +
0551 self.model.currentInstrumentExtension())
0552 f = os.path.splitext(fileName[0])[0]
0553 ex = os.path.splitext(fileName[1])[1]
0554 fileName = f+ex
0555 else:
0556 fileName = extras.fileName
0557
0558 if fileName:
0559 self.statusBar().showMessage(
0560 self.model.saveInstrumentRegistrationPositions(fileName)
0561)
0562

373

0563 def loadReg(self, extras = None):
0564 '''
0565 load a registration file
0566 sets the instrument and loads pixel and
0567 physical positions of fiducials
0568 '''
0569 if extras is None or not hasattr(extras, 'fileName'):
0570 fileName = QtWidgets.QFileDialog.getOpenFileName(
0571 self, 'Open File',
0572 self.directory,
0573 filter='*.msreg')[0]
0574 else:
0575 fileName = extras.fileName
0576
0577 if fileName:
0578 message, index = self.model.loadCoordinateMapper(fileName)
0579 self.statusBar().showMessage(
0580 message
0581)
0582
0583 self.inst_menu.setEnabled(
0584 self.model.coordinateMapper.isConnectedToInstrument)
0585 self.instruments.actions()[index].setChecked(True)
0586 self.slideCanvas.draw()
0587
0588 def loadBlobFind(self, extras = None):
0589 '''
0590 load sample positions and blob finding parameters
0591 '''
0592 if extras is None or not hasattr(extras, 'fileName'):
0593 fileName = QtWidgets.QFileDialog.getOpenFileName(
0594 self, 'Open File',
0595 self.directory,
0596 filter='*.txt')[0]
0597 else:
0598 fileName = extras.fileName
0599
0600 if fileName:
0601 self.statusBar().showMessage(
0602 self.model.loadBlobFinding(fileName)
0603)
0604 self.slideCanvas.draw()
0605
0606 if self.showHist == True:
0607 self.toggleHistWindow()
0608
0609 def loadInstrumentPositions(self, extras = None):
0610 '''
0611 loads samples from an instrument file to display pixel positions
0612 '''
0613 if extras is None or not hasattr(extras, 'fileName'):
0614 fileName = QtWidgets.QFileDialog.getOpenFileName(
0615 self, 'Open File',
0616 self.directory,
0617 filter='*' + self.model.currentInstrumentExtension())[0]
0618 else:
0619 fileName = extras.fileName

374

0620
0621 if fileName:
0622 self.statusBar().showMessage(
0623 self.model.loadInstrumentPositions(fileName)
0624)
0625 self.slideCanvas.draw()
0626
0627 if self.showHist == True:
0628 self.toggleHistWindow()
0629
0630 def fileQuit(self):
0631 '''
0632 quit through the file -> quit button
0633 '''
0634 self.close()
0635
0636 def closeEvent(self, ce):
0637 '''
0638 print the filename of the image that
was displayed prior to closing
0639 '''
0640 if self.model.coordinateMapper
0641 .isConnectedToInstrument == True and\
0642 self.model.coordinateMapper
0643 .connectedInstrument.connected == True:
0644 self.model.coordinateMapper.connectedInstrument.homeAll()
0645 if self.fileName is not None:
0646 print("Exiting from file {}".format(self.fileName))
0647
0648 def globalBlob(self, extras = None):
0649 '''
0650 blob find over the entire slide area or ROI
0651 '''
0652 self.statusBar().showMessage('Starting blob finding')
0653 self.statusBar().showMessage(
0654 self.model.runGlobalBlobFind()
0655)
0656 self.saveAll(extras)
0657 self.slideCanvas.draw()
0658
0659 if self.showHist == True:
0660 self.toggleHistWindow()
0661
0662 def blbPopup(self):
0663 '''
0664 popup the blob finding parameters
0665 '''
0666 blbFind = self.model
0667 .blobCollection[self.model.currentBlobs].blobFinder
0668 if blbFind is not None:
0669 self.popups['blobFind'].loadParams(blbFind)
0670 self.popups['blobFind'].show()
0671 self.popups['blobFind'].activateWindow()
0672
0673 def toggleHistWindow(self):
0674 '''
0675 toggles the display of the histogram canvas

375

0676 and initializes the instance
0677 '''
0678 self.showHist = not self.showHist
0679 if self.showHist:
0680 #reset histogram to default values
0681 self.histCanvas.resetVariables(resetBlobs=True)
0682 self.histCanvas.show()
0683 self.histCanvas.calculateHist()
0684 else:
0685 self.histCanvas.hide()
0686 self.histCanvas.clearFilt()
0687 if self.popups['histOpts'].isVisible():
0688 self.popups['histOpts'].hide()
0689
0690 def histOptions(self):
0691 '''
0692 pops up a window to adjust histogram canvas display
0693 also resets the sample positions (globalBlbs)
0694 '''
0695 if self.showHist:
0696 self.popups['histOpts'].loadParams(self.histCanvas)
0697 self.popups['histOpts'].show()
0698 self.popups['histOpts'].activateWindow()
0699
0700 def histSelect(self, extras = None):
0701 '''
0702 select the top and bottom X blobs from the histogram
0703 '''
0704 if extras is None or not hasattr(extras, 'text'):
0705 text,ok = QtWidgets
0706 .QInputDialog.getText(self,
0707 "Input Required",
0708 "Input number of highest and \
0709 lowest value blobs to find")
0710 else:
0711 text = extras.text
0712 ok = extras.ok
0713 if ok and not text == '':
0714 self.histCanvas.setBlobNum(int(text))
0715
0716 def histSaveImage(self, extras = None):
0717 '''
0718 Saves the current figure image as a png
0719 extras: optional extra parameters to bypass GUI input
0720 '''
0721 if self.showHist == False:
0722 return
0723
0724 if extras is None or not hasattr(extras, 'fileName'):
0725 fileName = QtWidgets.QFileDialog.getSaveFileName(self,
0726 "Select image file to save",
0727 self.directory,
0728 filter='*.png')
0729 f = os.path.splitext(fileName[0])[0]
0730 ex = os.path.splitext(fileName[1])[1]
0731 fileName = f+ex
0732 else:

376

0733 fileName = extras.fileName
0734
0735 if fileName:
0736 self.statusBar().showMessage(
0737 self.histCanvas.saveHistImage(fileName)
0738)
0739
0740 def histSaveValues(self, extras = None):
0741 '''
0742 Saves all the blob locations and values of
0743 the current histogram metric
0744 extras: optional data to bypass GUI display
0745 '''
0746 if self.showHist == False:
0747 return
0748 if extras is None or not hasattr(extras, 'fileName'):
0749 fileName = QtWidgets.QFileDialog.getSaveFileName(self,
0750 "Select save file",
0751 self.directory,
0752 filter='*.txt')
0753 f = os.path.splitext(fileName[0])[0]
0754 ex = os.path.splitext(fileName[1])[1]
0755 fileName = f+ex
0756 else:
0757 fileName = extras.fileName
0758
0759 if fileName:
0760 self.statusBar().showMessage(
0761 self.histCanvas.savePopulationValues(fileName)
0762)
0763
0764 def histFilter(self):
0765 '''
0766 applies the filter to the histogram,
0767 updating the blob find positions to

those matching the filter
0768 the filter is also recorded for writing the blob find file
0769 '''
0770 filt = self.histCanvas.getFilteredBlobs()
0771 if len(filt) == 0:
0772 self.statusBar().showMessage('Invalid histogram filter')
0773 else:
0774 for blbs in filt:
0775 self.model.updateCurrentBlobs(blbs)
0776 self.statusBar().showMessage('Applied {} filter'
0777 .format(len(filt)))
0778 self.histCanvas.calculateHist()
0779 self.slideCanvas.draw()
0780
0781 def distanceFilter(self, extras = None):
0782 '''
0783 Performs distance filter of the

 sample positions and updates histogram display
0784 '''
0785 if extras is None or not hasattr(extras, 'text'):
0786 text,ok = QtWidgets.QInputDialog
0787 .getText(self, "Input Required",

377

0788 "Input distance filter in pixels")
0789 else:
0790 text = extras.text
0791 ok = extras.ok
0792
0793 if ok and not text == '':
0794 self.statusBar().showMessage('Starting distance filter')
0795 self.statusBar().showMessage(
0796 self.model.distanceFilter(int(text))
0797)
0798 if self.showHist:
0799 self.histCanvas.calculateHist()
0800 self.slideCanvas.draw()
0801 self.raise_()
0802 self.activateWindow()
0803
0804 def roiFilter(self):
0805 '''
0806 Performs filtering of blobs falling within the ROI
0807 '''
0808 self.statusBar().showMessage(
0809 self.model.roiFilter()
0810)
0811 if self.showHist:
0812 self.histCanvas.calculateHist()
0813 self.slideCanvas.draw()
0814
0815 def roiFilterInverse(self):
0816 '''
0817 Performs filtering of blobs falling within the ROI
0818 '''
0819 self.statusBar().showMessage(
0820 self.model.roiFilterInverse()
0821)
0822 if self.showHist:
0823 self.histCanvas.calculateHist()
0824 self.slideCanvas.draw()
0825
0826 def rectPack(self, extras = None):
0827 '''
0828 expand each spot into a rectangularly packed grid
0829 Get the separation and number of layers from the user
0830 '''
0831 if self.model.currentBlobLength() > 0:
0832
0833 if extras is None or not hasattr(extras, 'sep'):
0834 text,ok = QtWidgets.QInputDialog
0835 .getText(self,
0836 "Input Required",
0837 "Input separation in pixels")
0838 if ok:
0839 sep = int(text)
0840 else:
0841 sep = 50
0842
0843 text,ok = QtWidgets.QInputDialog
0844 .getText(self,

378

0845 "Input Required",
0846 "Input number of layers")
0847 if ok:
0848 layers = int(text)
0849 else:
0850 layers = 1
0851
0852 dynamicLayering = QtWidgets.QMessageBox
0853 .question(self, 'Input Required',
0854 'Adjust layering to blob size?',
0855 QtWidgets.QMessageBox.Yes,
0856 QtWidgets.QMessageBox.No)
0857
0858 if dynamicLayering == QtWidgets.QMessageBox.Yes:
0859 dynamicLayering = True
0860 else:
0861 dynamicLayering = False
0862
0863 else:
0864 sep = extras.sep
0865 layers = extras.layers
0866 dynamicLayering = extras.dynamicLayering
0867
0868 self.model.rectPackBlobs(sep, layers, dynamicLayering)
0869 self.slideCanvas.draw()
0870 if self.showHist:
0871 self.toggleHistWindow()
0872
0873 def hexPack(self, extras = None):
0874 '''
0875 expand each spot into a hexagonally closed packed grid
0876 Get the separation and number of layers from the user
0877 '''
0878 if self.model.currentBlobLength() > 0:
0879 if extras is None or not hasattr(extras, 'sep'):
0880 text,ok = QtWidgets.QInputDialog
0881 .getText(self, "Input Required",
0882 "Input separation in pixels")
0883 if ok:
0884 sep = int(text)
0885 else:
0886 sep = 50
0887
0888 text,ok = QtWidgets.QInputDialog
0889 .getText(self, "Input Required",
0890 "Input number of layers")
0891 if ok:
0892 layers = int(text)
0893 else:
0894 layers = 1
0895
0896 dynamicLayering = QtWidgets.QMessageBox
0897 .question(self, 'Input Required',
0898 'Adjust layering to blob size?',
0899 QtWidgets.QMessageBox.Yes,
0900 QtWidgets.QMessageBox.No)
0901

379

0902 if dynamicLayering == QtWidgets.QMessageBox.Yes:
0903 dynamicLayering = True
0904 else:
0905 dynamicLayering = False
0906
0907 else:
0908 sep = extras.sep
0909 layers = extras.layers
0910 dynamicLayering = extras.dynamicLayering
0911
0912 self.model.hexPackBlobs(sep, layers, dynamicLayering)
0913 self.slideCanvas.draw()
0914 if self.showHist:
0915 self.toggleHistWindow()
0916
0917 def circPack(self, extras = None):
0918 '''
0919 expand each spot into circularly spaced positions
0920 around the spot circumference
0921 get separation, max number of spots and offset from user
0922 '''
0923 if self.model.currentBlobLength() > 0:
0924 if extras is None or not hasattr(extras, 'sep'):
0925 text,ok = QtWidgets.QInputDialog
0926 .getText(self, "Input Required",
0927 "Input minimum separation in pixels")
0928 if ok:
0929 sep = int(text)
0930 else:
0931 sep = 50
0932
0933 text,ok = QtWidgets.QInputDialog
0934 .getText(self, "Input Required",
0935 "Input max number of spots")
0936 if ok:
0937 shots = int(text)
0938 else:
0939 shots = 10
0940
0941 text,ok = QtWidgets.QInputDialog
0942 .getText(self, "Input Required",
0943 "Input offset in pixels")
0944 if ok:
0945 offset = int(text)
0946 else:
0947 offset = 10
0948
0949 else:
0950 sep = extras.sep
0951 shots = extras.shots
0952 offset = extras.offset
0953
0954 self.model.circularPackBlobs(sep, shots, offset)
0955 self.slideCanvas.draw()
0956 if self.showHist:
0957 self.toggleHistWindow()
0958

380

0959 def gridPopup(self):
0960 '''
0961 popup a window to edit the

 intermediate map of the mapper instance
0962 '''
0963 self.popups['grid'].loadParams(self.model)
0964 self.popups['grid'].show()
0965 self.popups['grid'].activateWindow()
0966
0967 def initializeInstrument(self, extras = None):
0968 '''
0969 Initialize instrument on the user specified COM port
0970 '''
0971 if extras is None or not hasattr(extras, 'text'):
0972 text,ok = QtWidgets.QInputDialog
0973 .getText(self, "Enter COM Port",
0974 "Connections at {}"
0975 .format(
0976 self.model.coordinateMapper
0977 .connectedInstrument.findPorts())
0978)
0979 else:
0980 text = extras.text
0981 ok = extras.ok
0982
0983 if ok:
0984 try:
0985 self.model.coordinateMapper
0986 .connectedInstrument.initialize(text)
0987 self.statusBar().showMessage(
0988 'Connected to {}'.format(text))
0989 except:
0990 self.statusBar().showMessage(
0991 'Error connecting to {}'.format(text))
0992
0993 def setDwell(self, extras = None):
0994 '''
0995 Set the dwell time for analysis with a connected instrument
0996 '''
0997 if extras is None or not hasattr(extras, 'text'):
0998 text,ok = QtWidgets.QInputDialog
0999 .getText(self, "Input Required",
1000 "Set dwell time (s)"
1001)
1002 else:
1003 text = extras.text
1004 ok = extras.ok
1005
1006 if ok:
1007 try:
1008 self.model.coordinateMapper
1009 .connectedInstrument.dwellTime = float(text)
1010 except:
1011 self.statusBar().showMessage('Input error')
1012
1013 def setWash(self, extras = None):
1014 '''

381

1015 Set the dwell time for analysis with a connected instrument
1016 '''
1017 if extras is None or not hasattr(extras, 'text'):
1018 text,ok = QtWidgets.QInputDialog
1019 .getText(self, "Input Required",
1020 "Set wash time (s), -1 for continuous"
1021)
1022 else:
1023 text = extras.text
1024 ok = extras.ok
1025
1026 if ok:
1027 try:
1028 self.model.coordinateMapper
1029 .connectedInstrument
1030 .postAcqusitionWait = float(text)
1031 except:
1032 self.statusBar().showMessage('Input error')
1033
1034 def analyzeAll(self):
1035 '''
1036 analyze all positions of the specified samples,
1037 acquire for time specified by dwell time
1038 '''
1039 self.statusBar().showMessage(
1040 self.model.analyzeAll()
1041)
1042
1043 def report_blbsubset(self, blbSubset):
1044 self.model.setBlobSubset(blbSubset)
1045 self.slideCanvas.draw()
1046
1047 def createMessageBox(self, message, title):
1048 msg = QtWidgets.QMessageBox(self)
1049 msg.setWindowIcon(self.windowIcon())
1050 msg.setText(message)
1051 msg.setWindowTitle(title)
1052 msg.setStandardButtons(QtWidgets.QMessageBox.Ok)
1053 msg.setModal(False)
1054 return msg
1055
1056 '''
1057 These are popup messages with the
1058 hotkeys defined in the included canvases
1059 '''
1060 def imgHotkeyMsg(self):
1061 self.popups['imageHelp'].show()
1062 self.popups['imageHelp'].activateWindow()
1063
1064 def instHotkeyMsg(self):
1065 self.popups['instHelp'].show()
1066 self.popups['instHelp'].activateWindow()
1067
1068 def histHotkeyMsg(self):
1069 self.popups['histHelp'].show()
1070 self.popups['histHelp'].activateWindow()
1071

382

1072 def keyPressEvent(self, event):
1073 '''
1074 key press event handler
1075 '''
1076 if self.model.slide is not None:
1077 shift = event.modifiers() & QtCore.Qt.ShiftModifier
1078 #move with wsad
1079 if shift and event.modifiers() &
 QtCore.Qt.ControlModifier and\
1080 event.modifiers() & QtCore.Qt.AltModifier:
1081 stepSize = StepSize.giant
1082 elif shift and event.modifiers() &
 QtCore.Qt.ControlModifier:
1083 stepSize = StepSize.medium
1084 elif shift:
1085 stepSize = StepSize.large
1086 else:
1087 stepSize = StepSize.small
1088 if event.key() == QtCore.Qt.Key_A:
1089 self.model.reportSlideStep(Direction.left, stepSize)
1090 elif event.key() == QtCore.Qt.Key_D:
1091 self.model.reportSlideStep(Direction.right, stepSize)
1092 elif event.key() == QtCore.Qt.Key_W:
1093 self.model.reportSlideStep(Direction.up, stepSize)
1094 elif event.key() == QtCore.Qt.Key_S:
1095 self.model.reportSlideStep(Direction.down, stepSize)
1096
1097 #zoom in and out
1098 elif event.key() == QtCore.Qt.Key_Q:
1099 self.model.slide.zoomOut()
1100 elif event.key() == QtCore.Qt.Key_E:
1101 self.model.slide.zoomIn()
1102
1103 #reset view to top left corner
1104 elif event.key() == QtCore.Qt.Key_R:
1105 self.model.slide.resetView()
1106
1107 #toggle display of target blob locations
1108 elif event.key() == QtCore.Qt.Key_O:
1109 if shift:
1110 self.model.drawAllBlobs =

not self.model.drawAllBlobs
1111 else:
1112 self.model.showPatches= not self.model.showPatches
1113
1114 #cycle between image channels with t or z
1115 elif event.key() == QtCore.Qt.Key_T or
1116 event.key() == QtCore.Qt.Key_Z:
1117 self.model.slide.switchType()
1118
1119 #toggle display of predicted locations from mapper
1120 elif event.key() == QtCore.Qt.Key_P:
1121 self.model.showPrediction =

not self.model.showPrediction
1122
1123 #toggle left/right mirror
1124 elif event.key() == QtCore.Qt.Key_M:

383

1125 self.model.mirrorImage = not self.model.mirrorImage
1126
1127 elif event.key() == QtCore.Qt.Key_B:
1128 #toggle threshold view
1129 if shift:
1130 self.model.showThreshold =

not self.model.showThreshold
1131 #perform blob finding on max zoom image
1132 else:
1133 self.model.testBlobFind()
1134
1135 elif event.key() == QtCore.Qt.Key_C:
1136 #clears all target positions
1137 if event.modifiers() & QtCore.Qt.ShiftModifier and \
1138 event.modifiers() & QtCore.Qt.ControlModifier:
1139 self.model.resetVariables()
1140 self.histCanvas.resetVariables(True, True)
1141 if self.showHist == True:
1142 self.histCanvas.calculateHist()
1143 #clears current target positions
1144 elif event.modifiers() & QtCore.Qt.ShiftModifier:
1145 self.model
1146 .blobCollection[self.model.currentBlobs]
1147 .blobs = []
1148 self.histCanvas.resetVariables(True, True)
1149 if self.showHist == True:
1150 self.histCanvas.calculateHist()
1151 #clears filters and ROI positions
1152 else:
1153 self.model
1154 .blobCollection[self.model.currentBlobs]
1155 .ROI = []
1156 self.histCanvas.clearFilt()
1157
1158 keys = [QtCore.Qt.Key_1, QtCore.Qt.Key_2, QtCore.Qt.Key_3,
1159 QtCore.Qt.Key_4, QtCore.Qt.Key_5, QtCore.Qt.Key_6,
1160 QtCore.Qt.Key_7, QtCore.Qt.Key_8, QtCore.Qt.Key_9,
1161 QtCore.Qt.Key_0]
1162
1163 #for each numeric key
1164 for i,k in enumerate(keys):
1165 if event.key() == k:
1166 #set global blobs to the multiblob specified
1167 if event.modifiers() & QtCore.Qt.AltModifier:
1168 self.model.setCurrentBlobs(i)
1169 self.statusBar()
1170 .showMessage(
1171 'Picking blobs into list #{},
1172 contains {} blobs'
1173 .format(i+1,
1174 self.model.currentBlobLength()))
1175 if self.showHist:
1176 self.histCanvas.calculateHist()
1177 #switch to image channel i
1178 elif event.modifiers() & QtCore.Qt.ControlModifier:
1179 self.model.slide.switchToChannel(i)
1180

384

1181 #toggle image channel on and off
1182 else:
1183 self.model.slide.toggleChannel(i)
1184 break
1185 mapper = self.model.coordinateMapper
1186 if mapper.isConnectedToInstrument == True and \
1187 mapper.connectedInstrument.connected == True:
1188
1189 #move instrument position with ikjl
1190 if event.key() == QtCore.Qt.Key_I:
1191 mapper.connectedInstrument.move(
1192 Direction.up,
1193 stepSize)
1194 elif event.key() == QtCore.Qt.Key_K:
1195 mapper.connectedInstrument.move(
1196 Direction.down,
1197 stepSize)
1198 elif event.key() == QtCore.Qt.Key_J:
1199 mapper.connectedInstrument.move(
1200 Direction.left,
1201 stepSize)
1202 elif event.key() == QtCore.Qt.Key_L:
1203 mapper.connectedInstrument.move(
1204 Direction.right,
1205 stepSize)
1206
1207 elif event.key() == QtCore.Qt.Key_V:
1208 #set probe position
1209 if shift:
1210 mapper.connectedInstrument.setProbePosition()
1211
1212 #toggle probe position
1213 else:
1214 mapper.connectedInstrument.toggleProbe()
1215
1216 #perform single collection
1217 elif event.key() == QtCore.Qt.Key_X:
1218 mapper.connectedInstrument.collect()
1219
1220 #move probe up and down
1221 elif event.key() == QtCore.Qt.Key_Equal:
1222 mapper.connectedInstrument.moveProbe(
1223 Direction.up,
1224 stepSize)
1225 elif event.key() == QtCore.Qt.Key_Minus:
1226 mapper.connectedInstrument.moveProbe(
1227 Direction.down,
1228 stepSize)
1229 elif event.key() == QtCore.Qt.Key_Plus:
1230 mapper.connectedInstrument.moveProbe(
1231 Direction.up,
1232 stepSize)
1233 elif event.key() == QtCore.Qt.Key_Underscore:
1234 mapper.connectedInstrument.moveProbe(
1235 Direction.down,
1236 stepSize)
1237

385

1238 #home all positions
1239 elif event.key() == QtCore.Qt.Key_H:
1240 if event.modifiers() & QtCore.Qt.ShiftModifier:
1241 mapper.connectedInstrument.finalPosition()
1242 else:
1243 mapper.connectedInstrument.homeAll()
1244
1245 elif event.key() == QtCore.Qt.Key_F and \
1246 event.modifiers() & QtCore.Qt.ControlModifier:
1247 x,y = mapper.connectedInstrument.getPositionXY()
1248 z = mapper.connectedInstrument.getProbePosition()
1249 self.statusBar()
1250 .showMessage(
1251 'Stage at ({}, {}); probe at {}'
1252 .format(x,y,z))
1253
1254 self.slideCanvas.draw()
1255 else:
1256 #debug autoload
1257 if event.key() == QtCore.Qt.Key_D and
1258 event.modifiers() & QtCore.Qt.ControlModifier:
1259 self.debugLoad()
1260
1261 def debugLoad(self):
1262 '''
1263 a debugging function that automatically
1264 sets up an example image and data set
1265 '''
1266 #check if debug data exists
1267 if os.path.isdir(GUIConstants.DEBUG_DIR):
1268 #image filename
1269 fileName = GUIConstants.DEBUG_IMG_FILE
1270 self.setupCanvas(fileName)
1271 #preset position and zoom level
1272 self.model.slide.pos = [30500, 30000]
1273 self.model.slide.lvl = 0
1274
1275 #the blob finding file
1276 self.model.loadBlobFinding(GUIConstants.DEBUG_BLOB_FIND)
1277 #the registration file
1278 self.model.loadCoordinateMapper(GUIConstants.DEBUG_REG_FILE)
1279 self.slideCanvas.draw()
1280
1281 def reportFromModel(self, message = "",
1282 redrawSlide = False,
1283 redrawHist = False):
1284 '''
1285 Method for the model to interact with the GUI and windows.
1286 Displays the supplied message and redraws selected canvases
1287 message: String message to display
1288 redrawSlide: boolean to dictate if slideCanavas should redraw
1289 redrawHist: boolean to dictate if histCanavas should be redrawn
1290 '''
1291 self.statusBar().showMessage(message)
1292 if redrawSlide:
1293 self.slideCanvas.draw()
1294 if redrawHist and self.showHist:

386

1295 self.histCanvas.update_figure()
1296
1297 def requestFiducialInput(self, defaultStr):
1298 '''
1299 Method for microMSModel to receive input from the user
1300 defaultStr: the string to initially display to the user
1301 '''
1302 return QtWidgets.QInputDialog
1303 .getText(self,'Coordinate Dialog',
1304 'Enter plate coordinate:',
1305 text=defaultStr)

387

GUICanvases/mplCanvas.py
01 from __future__ import unicode_literals
02
03 from PyQt5 import QtGui, QtWidgets
04 from matplotlib.figure import Figure
05 from matplotlib.backends.backend_qt5agg import
06 FigureCanvasQTAgg as FigureCanvas
07
08 class MplCanvas(FigureCanvas):
09 """Ultimately, this is a QWidget
10 (as well as a FigureCanvasAgg, etc.)."""
11 def __init__(self, parent=None, width=5, height=4, dpi=100):
12 self.fig = Figure(figsize=(width, height),
13 dpi=dpi,tight_layout=True)
14
15 self.axes = self.fig.add_subplot(111)
16 # We want the axes cleared every time plot() is called
17 self.axes.hold(False)
18
19 self.compute_initial_figure()
20
21 FigureCanvas.__init__(self, self.fig)
22 self.setParent(parent)
23
24 FigureCanvas.setSizePolicy(self,
25 QtWidgets.QSizePolicy.Expanding,
26 QtWidgets.QSizePolicy.Expanding)
27 FigureCanvas.updateGeometry(self)
28
29 def compute_initial_figure(self):
30 pass

388

GUICanvases/popup.py
001
002 """
003 a collection of small, custom popup windows used by microMSQT
004 """
005
006 from PyQt5 import QtWidgets
007
008 class blbPopupWindow(QtWidgets.QDialog):
009 '''
010 Window for setting blob finding parameters
011 '''
012 def __init__(self, parent=None):
013 '''
014 setup GUI and populate with current values
015 blobFinder: the blob finding object
016 parent: the parent, calling widget, a MicroMSQTWindow
017 '''
018 super(blbPopupWindow,self).__init__(parent)
019
020 self.master = parent
021
022 self.setWindowTitle("Blob Find Entry")
023
024 #user input widgets
025 self.minText = QtWidgets.QLineEdit(self)
026 self.maxText = QtWidgets.QLineEdit(self)
027 self.minCirText = QtWidgets.QLineEdit(self)
028 self.maxCirText = QtWidgets.QLineEdit(self)
029 self.intens = QtWidgets.QLineEdit(self)
030 self.imgInd = QtWidgets.QLineEdit(self)
031 self.channel = QtWidgets.QComboBox(self)
032 self.channel.addItem("Red")
033 self.channel.addItem("Green")
034 self.channel.addItem("Blue")
035
036 #add to vbox layout with labels
037 vbox = QtWidgets.QVBoxLayout()
038 vbox.addWidget(QtWidgets.QLabel("Minimum Size",self))
039 vbox.addWidget(self.minText)
040 vbox.addWidget(QtWidgets.QLabel("Maximum Size",self))
041 vbox.addWidget(self.maxText)
042 vbox.addWidget(QtWidgets.QLabel("Minimum Circularity",self))
043 vbox.addWidget(self.minCirText)
044 vbox.addWidget(QtWidgets.QLabel("Maximum Circularity",self))
045 vbox.addWidget(self.maxCirText)
046 vbox.addWidget(QtWidgets.QLabel("Threshold",self))
047 vbox.addWidget(self.intens)
048 vbox.addWidget(QtWidgets.QLabel("Image Channel",self))
049 vbox.addWidget(self.imgInd)
050 vbox.addWidget(QtWidgets.QLabel("Color",self))
051 vbox.addWidget(self.channel)
052 self.setButton = QtWidgets.QPushButton("Set Parameters",self)
053 self.setButton.clicked.connect(self.setParams)
054 vbox.addWidget(self.setButton)
055

389

056 self.setLayout(vbox)
057
058 def loadParams(self, blbFinder):
059 self.blobFinder = blbFinder
060 self.minText.setText(str(blbFinder.minSize))
061 self.maxText.setText('' if blbFinder.maxSize is None
062 else str(blbFinder.maxSize))
063 self.minCirText.setText(str(blbFinder.minCircularity))
064 self.maxCirText.setText('' if blbFinder.maxCircularity is None
065 else str(blbFinder.maxCircularity))
066 self.intens.setText(str(blbFinder.threshold))
067 self.imgInd.setText(str(blbFinder.imageIndex+1))
068 self.channel.setCurrentIndex(blbFinder.colorChannel)
069
070
071 def setParams(self):
072 '''
073 sets the parameters for blob finding
074 based on the current GUI values
075 Calls on the slideCanvas to perform
076 blob finding on the current image
077 '''
078 try:
079 self.blobFinder.minSize = int(self.minText.text())
080 except:
081 self.minText.setText(str(self.blobFinder.minSize))
082
083 try:
084 self.blobFinder.maxSize = None if self.maxText.text() is ''
085 else int(self.maxText.text())
086 except:
087 self.maxText.setText('' if self.blobFinder.maxSize is None
088 else str(self.blobFinder.maxSize))
089
090 try:
091 self.blobFinder.minCircularity =

float(self.minCirText.text())
092 except:
093 self.minCirText.setText(str(self.blobFinder.minCircularity))
094
095 try:
096 self.blobFinder.maxCircularity = None
097 if self.maxCirText.text() is ''
098 else float(self.maxCirText.text())
099 except:
100 self.maxCirText.setText('' if self.blobFinder.maxCircularity
101 is None
102 else str(self.blobFinder.maxCircularity))
103
104 try:
105 self.blobFinder.threshold = int(self.intens.text())
106 except:
107 self.intens.setText(str(self.blobFinder.threshold))
108
109 try:
110 self.blobFinder.imageIndex = int(self.imgInd.text())-1
111 except:

390

112 self.imgInd.setText(str(self.blobFinder.imageIndex+1))
113
114 self.blobFinder.colorChannel = int(self.channel.currentIndex())
115 #blob find
116 if self.master is not None:
117 self.master.model.testBlobFind()
118 self.master.slideCanvas.draw()
119
120 class gridPopupWindow(QtWidgets.QDialog):
121 '''
122 displays a table with the current intermediate
123 map of the mapper for the user to edit
124 '''
125 def __init__(self, parent = None):
126 '''
127 populate the GUI with previous points
128 previousPoints: list of triples of the set
129 coordinate and its x and y physical position
130 parent: the microMSQT window calling the popup
131 '''
132 super(gridPopupWindow,self).__init__(parent)
133
134 self.setWindowTitle("Stage Locations")
135 vbox = QtWidgets.QVBoxLayout()
136 self.table = QtWidgets.QTableWidget(self)
137 vbox.addWidget(self.table)
138 self.setLayout(vbox)
139
140 def loadParams(self, model):
141
142 self.model = model
143 previousPoints = model.coordinateMapper.getIntermediateMap()
144
145 self.table.setRowCount(len(previousPoints))
146 self.table.setColumnCount(3)
147 self.table.setHorizontalHeaderLabels(["Coord","X","Y"])
148 self.table.update()
149 for i,m in enumerate(previousPoints):
150 for j,el in enumerate(m):
151 self.table.setItem(i,j,
152 QtWidgets.QTableWidgetItem(str(el)))
153
154 def closeEvent(self,evnt):
155 '''
156 parse the information in the table and return
157 it to the current mapper
158 '''
159 result = []
160 for i in range(self.table.rowCount()):
161 coord = self.table.item(i,0).text()
162 x = self.table.item(i,1).text()
163 y = self.table.item(i,2).text()
164 result.append((coord, x, y))
165
166 self.model.coordinateMapper.setIntermediateMap(result)
167 #close
168 self.hide()

391

169
170 class histPopupWindow(QtWidgets.QDialog):
171 '''
172 a popup window to adjust histogram options
173 such as display image and metric
174 '''
175 def __init__(self, histCanvas, parent=None):
176 '''
177 setup GUI and initialize it with the current settings
178 histCanvas: a histCanvas widget contained within parent
179 parent: a microMSQT window
180 '''
181 super(histPopupWindow,self).__init__(parent)
182
183 self.hist = histCanvas
184 self.master = parent
185
186 self.setWindowTitle("Histogram Options")
187
188 #generate user io widgets
189 self.imgInd = QtWidgets.QLineEdit(self)
190 self.channel = QtWidgets.QComboBox(self)
191 for m in self.hist.metrics:
192 self.channel.addItem(m)
193
194 self.offset = QtWidgets.QLineEdit(self)
195 self.max = QtWidgets.QRadioButton(self)
196 self.max.setText('Max Intensity')
197 self.mean = QtWidgets.QRadioButton(self)
198 self.mean.setText('Average Intensity')
199
200 #add to vbox layout with labels
201 vbox = QtWidgets.QVBoxLayout()
202 vbox.addWidget(QtWidgets.QLabel("Image Channel",self))
203 vbox.addWidget(self.imgInd)
204 vbox.addWidget(QtWidgets.QLabel("Color or Morphology",self))
205 vbox.addWidget(self.channel)
206 vbox.addWidget(QtWidgets.QLabel("Offset (pixels)",self))
207 vbox.addWidget(self.offset)
208 vbox.addWidget(self.max)
209 vbox.addWidget(self.mean)
210
211 btn = QtWidgets.QPushButton("Set Parameters",self)
212 btn.clicked.connect(self.setParams)
213 vbox.addWidget(btn)
214
215 self.setLayout(vbox)
216
217
218 def loadParams(self, histCanvas):
219
220 self.hist = histCanvas
221
222 #generate user io widgets
223 self.imgInd.setText(str(self.hist.imgInd+1))
224
225 self.channel.setCurrentIndex(self.hist.populationMetric)

392

226 self.offset.setText(str(self.hist.offset))
227 self.mean.setChecked(not self.hist.reduceMax)
228 self.max.setChecked(self.hist.reduceMax)
229
230 def setParams(self):
231 '''
232 trigger to set the new histogram
233 parameters and redraw the histogram
234 '''
235 try:
236 self.hist.imgInd = int(self.imgInd.text())-1
237 except:
238 self.imgInd.setText(str(self.hist.imgInd+1))
239
240 try:
241 self.hist.offset = int(self.offset.text())
242 except:
243 self.offset.setText(str(self.hist.offset))
244
245 self.hist.populationMetric = int(self.channel.currentIndex())
246
247 if self.master is not None and
248 self.master.model.slide is not None:
249 self.master.model.slide.switchToChannel(self.hist.imgInd)
250
251 self.hist.reduceMax = self.max.isChecked()
252 self.hist.calculateHist()

393

GUICanvases/slideCanvas.py
001 from __future__ import unicode_literals
002
003 from PyQt5 import QtCore, QtWidgets, QtGui
004 from PyQt5.QtCore import Qt
005 from PyQt5.QtGui import QCursor
006
007 import numpy as np
008 import random
009 import os
010
011 import matplotlib.pyplot as plt
012 from matplotlib.collections import PatchCollection
013 from PIL import ImageDraw, ImageFont, Image
014
015 from GUICanvases.mplCanvas import MplCanvas
016 from GUICanvases import GUIConstants
017 from ImageUtilities import blobFinder
018 from ImageUtilities import TSPutil
019 from ImageUtilities import blob
020
021 from CoordinateMappers import supportedCoordSystems
022 from CoordinateMappers import connectedInstrument
023
024 class SlideCanvas(MplCanvas):
025 '''
026 A QWidget for displaying and interfacing slide images
027 This also has quite a bit of control code
028 '''
029 def __init__(self, master, model, *args, **kwargs):
030 '''
031 initialize a new instance of a slide canvas
032 sets up several instance variables and default display settings
033 model: the microMSModel shared with the window GUI
034 '''
035 MplCanvas.__init__(self, *args, **kwargs)
036
037 #modify display defaults
038 self.axes.xaxis.set_visible(False)
039 self.axes.yaxis.set_visible(False)
040 self.axes.set_axis_bgcolor(GUIConstants.IMAGE_BACKGROUND)
041 self.setCursor(QCursor(Qt.CrossCursor))
042
043 #temporary image for drawing rectangles, circles, etc quickly
044 self.tempIm = None
045
046 #variables related to mouse actions
047 self.mDown = False #mouse pressed for drawing a ROI
048 self.startP = None #starting position of a mouse drag
049 self.endP = None #end position of a mouse drag
050 self.mDownCirc = False #mouse down for drawing a global blob
051 self.mMoveCirc = False #mouse moved drawing a global blob
052 self.mMoveROI = False #mouse moved ROI with control alt
053
054 self.model = model
055 self.master = master

394

056
057 #connect mouse events
058 self.mpl_connect('button_release_event', self.mouseUp)
059 self.mpl_connect('button_press_event', self.mouseDown)
060 self.mpl_connect('motion_notify_event', self.mouseMove)
061 self.mpl_connect('scroll_event', self.mouseZoom)
062
063 def compute_initial_figure(self):
064 '''
065 Draw the initial image shown before anything is loaded.
066 Shows a high res version of the icon image
067 '''
068 tdir,f = os.path.split(__file__)
069 icon = Image.open(os.path.join(tdir, 'Icon', 'icon.png'))
070 self.axes.imshow(icon)
071
072 def draw(self):
073 '''
074 redraw canvas with markups using current settings
075 '''
076 if self.mMoveROI == True:
077 return#redrawROI handles redraws here
078 if self.model.slide is not None:
079 #reset size as needed
080 self.model.reportSize((float(self.size().width()),
081 float(self.size().height())))
082
083 #get base image from slideWrapper and show
084 self.tempIm = self.model.getCurrentImage()
085 self.axes.imshow(self.tempIm)
086
087 #add on the blobs, predicted coordinates, and fiducial set
088 self.axes.add_collection(self.model
089 .getPatches(
090 self.master.limitDraw.isChecked()))
091 #the text labels can't be patches,
092 #have to pass in the axes object to draw
093 self.model.drawLabels(self.axes)
094
095 #mirror left/right as needed
096 if self.model.mirrorImage:
097 self.axes.invert_xaxis()
098 super().draw()
099
100 def mouseUp(self,event, extras = None):
101 '''
102 handles mouse events when the user releases
103 event: an mpl mouse event
104 '''
105 if event.xdata is None or event.ydata is None:
106 return
107
108 if self.model.slide is None:
109 return
110
111 if extras is not None and hasattr(extras, 'modifiers'):
112 modifiers = extras.modifiers

395

113 else:
114 modifiers = QtWidgets.QApplication.keyboardModifiers()
115
116 #left mouse button click without dragging
117 #generally handles image movement
118 #and interaction with target locations
119 if(event.button == 1 and not self.mDown):
120 #remove or add global blob with shift click
121 if modifiers == QtCore.Qt.ShiftModifier:
122
123 #check if global blbs exists,
124 #if any points are within click
125 globalPnt = self.model.slide
126 .getGlobalPoint((event.xdata, event.ydata))
127
128 #if shift click and drag, add blob with specified radius
129 if self.mDownCirc and self.mMoveCirc:
130 rad = np.sqrt((globalPnt[0]-self.startPC[0])**2
131 + (globalPnt[1]-self.startPC[1])**2)
132 #minimum size of default radius pixels
133 rad = GUIConstants.DEFAULT_RADIUS if \
134 rad < GUIConstants.DEFAULT_RADIUS else rad
135
136 #just a shift click
137 else:
138 rad = GUIConstants.DEFAULT_RADIUS
139
140 #reset manual drawing flags
141 self.mDownCirc = False
142 self.mMoveCirc = False
143
144 self.master.reportFromModel(
145 self.model.reportBlobRequest(
146 (event.xdata, event.ydata),
147 radius = rad)
148)
149
150 #control + alt + LMB to add ROI point
151 elif modifiers & QtCore.Qt.AltModifier and \
152 modifiers & QtCore.Qt.ControlModifier:
153 self.model.reportROI(self.model.slide.getGlobalPoint(
154 (event.xdata, event.ydata)))
155
156 #control + shift + LMB to append ROI point
157 elif modifiers & QtCore.Qt.ShiftModifier and \
158 modifiers & QtCore.Qt.ControlModifier:
159 self.model.reportROI(self.model.slide.getGlobalPoint(
160 (event.xdata, event.ydata)),
161 append = True)
162
163 #alt + LMB to move connected instrument to specified position
164 elif modifiers == QtCore.Qt.AltModifier:
165 self.master.reportFromModel(
166 self.model.requestInstrumentMove((event.xdata,
167 event.ydata))
168)
169

396

170 #plain LMB moves the image center to the mouse position
171 else:
172 self.model.slide.moveCenter((event.xdata, event.ydata))
173
174 #right button to interact with fiducial registration
175 elif(event.button == 3):
176 self.master.reportFromModel(
177 self.model.reportFiducialRequest(
178 (event.xdata, event.ydata),
179 removePoint = modifiers == QtCore.Qt.ShiftModifier,
180 extras = extras)
181)
182
183 #middle mouse button to get information on mouse position
184 elif(event.button == 2):
185 self.master.reportFromModel(
186 self.model.reportInfoRequest((event.xdata, event.ydata)),
187 redrawHist = self.master.showHist
188)
189
190 #mouse was dragged to draw an ROI
191 if(self.mDown):
192 #convert two point to a 4point rectangle
193 p1 = self.model.slide.getGlobalPoint((event.xdata,

event.ydata))
194 p2 = self.model.slide.getGlobalPoint(self.ROI)
195 xlow, ylow = min(p1[0], p2[0]), min(p1[1], p2[1])
196 xhigh, yhigh = max(p1[0], p2[0]), max(p1[1], p2[1])
197 self.model.blobCollection[self.model.currentBlobs]
198 .ROI = [(xlow, ylow),
199 (xlow, yhigh),
200 (xhigh, yhigh),
201 (xhigh, ylow)]
202
203 self.mDown = False
204 self.draw()
205
206 def mouseDown(self, event, extras = None):
207 '''
208 mouseDown sets variables for drawing ROIs
209 or target positions with variable radii
210 event: an mpl mouse down event
211 '''
212 if event.xdata is None or event.ydata is None:
213 return
214
215 if self.model.slide is None:
216 return
217
218 if extras is not None and hasattr(extras, 'modifiers'):
219 modifiers = extras.modifiers
220 else:
221 modifiers = QtWidgets.QApplication.keyboardModifiers()
222
223 #ROI drawing
224 if event.button == 1 and \
225 modifiers == QtCore.Qt.ControlModifier:

397

226 self.mDown = True
227 self.ROI = (event.xdata, event.ydata)
228
229 #target drawing
230 elif event.button == 1 and \
231 modifiers == QtCore.Qt.ShiftModifier:
232 self.mDownCirc = True
233 self.startPC = self.model.slide
234 .getGlobalPoint((event.xdata, event.ydata))
235
236 def mouseMove(self,event, extras = None):
237 '''
238 mouse moves redraw ROI or blob positions as appropriate
239 event: an mpl mouse move event
240 '''
241 if event.xdata is None or event.ydata is None:
242 return
243
244 if self.model.slide is None:
245 return
246
247 #ROI movement
248
249 if extras is not None and hasattr(extras, 'modifiers'):
250 modifiers = extras.modifiers
251 else:
252 modifiers = QtWidgets.QApplication.keyboardModifiers()
253
254 if self.mDown == True:
255 self.redrawRect((event.xdata, event.ydata))
256
257 elif modifiers & QtCore.Qt.AltModifier and \
258 modifiers & QtCore.Qt.ControlModifier:
259 self.redrawROI((event.xdata, event.ydata))
260 self.mMoveROI = True
261
262 elif modifiers & QtCore.Qt.ShiftModifier and \
263 modifiers & QtCore.Qt.ControlModifier:
264 self.redrawROI((event.xdata, event.ydata), append = True)
265 self.mMoveROI = True
266
267 elif self.mMoveROI == True:
268 self.mMoveROI = False
269 self.draw()
270
271
272 #target drawing
273 elif self.mDownCirc == True:
274 self.redrawCirc((event.xdata, event.ydata))
275 self.mMoveCirc = True
276
277 def mouseZoom(self,event):
278 '''
279 handle scroll wheel movement, which zooms the slide in and out
280 event: an mpl mouse wheel event
281 '''
282 if event.xdata is None or event.ydata is None:

398

283 return
284
285 if self.model.slide is None:
286 return
287
288 #zoom in or out
289 if event.button == 'up':
290 self.model.slide.zoomIn()
291 self.model.slide.moveCenter((event.xdata, event.ydata))
292 else:
293 self.model.slide.zoomOut()
294
295 #reset temporary blobs and update
296 self.draw()
297
298 def redrawROI(self, pnt, append = False):
299 '''
300 helper method to draw ROI polygon during mouse movement
301 pnt: the current point in local (image) coordinates
302 '''
303 if self.tempIm is not None:
304 self.axes.imshow(self.tempIm)
305 roi = self.model.getROIPatches(
306 self.model.slide.getGlobalPoint(pnt),
307 append)
308 self.axes.add_collection(PatchCollection(roi,
309 match_original=(len(roi) != 0)))
310 if self.model.mirrorImage:
311 self.axes.invert_xaxis()
312 super().draw()
313
314 def redrawRect(self, pnt):
315 '''
316 helper method to draw the yellow ROI
317 rectangle during mouse movement
318 pnt: the current point in local (image) coordinates
319 '''
320 if self.tempIm is not None:
321 tempStartP = self.ROI
322 self.axes.imshow(self.tempIm)
323 lowerL = ((min(tempStartP[0], pnt[0]),
324 min(tempStartP[1], pnt[1])))
325 x = abs(tempStartP[0]- pnt[0])
326 y = abs(tempStartP[1]- pnt[1])
327 r = plt.Rectangle(lowerL, x, y,
328 color=GUIConstants.ROI,
329 fill=False)
330 self.axes.add_patch(r)
331 if self.model.mirrorImage:
332 self.axes.invert_xaxis()
333 super().draw()
334
335 def redrawCirc(self, pnt):
336 '''
337 helper method to draw the green circle for manually added blobs
338 pnt: the current mouse position in local (image) coordinates
339 '''

399

340 if self.tempIm is not None:
341 tempStartP = self.model.slide.getLocalPoint(self.startPC)
342 self.axes.imshow(self.tempIm)
343 rad = np.sqrt((tempStartP[0]-pnt[0])**2 +
344 (tempStartP[1]-pnt[1])**2)
345
346 c = plt.Circle(pnt, rad,
347 color=GUIConstants.MULTI_BLOB[self.model.currentBlobs],
348 linewidth=1,
349 fill=False)
350 self.axes.add_patch(c)
351 if self.model.mirrorImage:
352 self.axes.invert_xaxis()
353 super().draw()
354
355 def savePlt(self, fileName):
356 '''
357 saves the current figure
358 fileName: the file to write to
359 '''
360 self.fig.savefig(fileName)

400

ImageUtilities/__init__.py
01 '''
02 The ImageUtilities package contains the classes required
03 to display and analyze microscope images
04 blob.py: object model of the blob objects found with
05 blobFinder and some helpful methods
06 blobList.py: a collection of blobs
07 blobFinder.py: performs blob finding with a simple
08 threshold and group algorithm
09 enumModule.py: a collection of enums for movement
10 slideWrapper.py: wraps and extends the openslide functions
11 to handle ndpi and tif images
12 TSPutil.py: implements traveling salesperson optimization
13 of a collection of tuples
14 '''

401

ImageUtilities/blob.py
01 from GUICanvases import GUIConstants
02 import matplotlib as mpl
03
04 class blob(object):
05 """
06 Representation of a target point
07 """
08 def __init__(self, x = float(0), y = float(0),
09 radius = float(GUIConstants.DEFAULT_BLOB_RADIUS),
10 circularity = float(1), group = None):
11 '''
12 Initialize a new blob with the specified position,
13 shape and group
14 x: x coordinate, default 0.0
15 y: y coordinate, default 0.0
16 radius: effective radius of the blob,
17 default to value specified in GUIConstants
18 circularity: 0 < circ < 1, default value is 1 (perfect circle)
19 '''
20 self.X = x
21 self.Y = y
22 self.radius = float(radius)
23 #keep circularity in bounds
24 self.circularity = 1 if circularity > 1 else \
25 (0 if circularity < 0 else circularity)
26 self.group = group
27
28 @staticmethod
29 def getXYList(blobs):
30 '''
31 Method to convert a list of blobs to their x,y coordinates
32 blobs: list of blobs
33 returns a list of (x,y) tuples of each blob in order
34 '''
35 if blobs is None:
36 return None
37 return list(map(lambda b: (b.X, b.Y), blobs))
38
39 @staticmethod
40 def blobFromSplitString(instrings):
41 '''
42 Tries to parse all information from
43 a split string to make a new blob
44 instrings: list of strings, produced from
45 splitting a blob.toString()
46 returns a new blob with the indicated x,y,r and circularity
47 '''
48 result = blob()
49
50 if instrings is None:
51 return result
52
53 if (len(instrings) == 3 or len(instrings) == 4):
54 result.X = float(instrings[0])
55 result.Y = float(instrings[1])

402

56 result.radius = float(instrings[2])
57 if len(instrings) == 4:
58 result.circularity = float(instrings[3])
59
60 return result
61
62 def toString(self):
63 '''
64 Generates a tab delimited string with the x, y,
65 radius and circularity of the blob
66 '''
67 return "{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}"
68 .format(self.X, self.Y,
69 self.radius, self.circularity)

403

ImageUtilities/blobFinder.py
001 import skimage
002 from skimage import measure
003 import numpy as np
004 from itertools import product
005 import time
006 import scipy
007
008 from ImageUtilities.blob import blob
009
010 import matplotlib
011 import matplotlib.pyplot as plt
012
013 class blobFinder(object):
014 '''
015 performs blob finding on a slidewrapper object
016 '''
017 def __init__(self, slide, minSize = 50, maxSize = None,
018 minCircularity = 0.6, maxCircularity = None,
019 colorChannel = 2, threshold = 75, imageIndex = 1):
020 '''
021 set up the slidewrapper
022 slide: slidewrapper to interact with
023 minSize: minimum blob size in pixels
024 maxSize: maximum blob size in pixels, None for no maximum
025 minCircularity: minimum blob circularity
026 maxCircularity: maximum blob circularity, None for no max
027 colorChannel: [0, 1, 2] -> [R, G, B] channel to select
028 threshold: maximum pixel intensity to consider a blob
029 imageIndex: index of multi-slide object to consider
030 '''
031 self.slide = slide
032 self.minSize = minSize
033 self.maxSize = maxCircularity
034 self.minCircularity = minCircularity
035 self.maxCircularity = maxCircularity
036 self.colorChannel = colorChannel
037 self.threshold = threshold
038 self.imageIndex = imageIndex
039
040 def copyParameters(self, other):
041 '''
042 Copies blob finding parameters from another blobFinder instance
043 other: blobFinder object to copy parameters from
044 '''
045 self.minSize = other.minSize
046 self.maxSize = other.maxSize
047 self.minCircularity = other.minCircularity
048 self.maxCircularity = other.maxCircularity
049 self.colorChannel = other.colorChannel
050 self.threshold = other.threshold
051 self.imageIndex = other.imageIndex
052
053
054 def getParameters(self):
055 '''

404

056 get the set of parameters as a dictionary
057 returns a dictionary of string -> value
058 pairs of all parameters for blob finding
059 '''
060 return {
061 'minSize' : self.minSize,
062 'maxSize' : self.maxSize,
063 'minCir' : self.minCircularity,
064 'maxCir' : self.maxCircularity,
065 'channel' : self.colorChannel,
066 'thresh' : self.threshold,
067 'ImageInd' : self.imageIndex}
068
069 def setParameterFromSplitString(self, toks):
070 '''
071 Sets the parameters dictated in the toks list.
072 String must match from getParameters
073 toks: list of strings generated from string.split
074 '''
075 if toks is None or len(toks) < 2:
076 return
077
078 if toks[0] == 'minSize':
079 if toks[1] == 'None\n':
080 raise(ValueError('None type not acceptable for minSize'))
081 self.minSize = int(toks[1])
082
083 elif toks[0] == 'maxSize':
084 if toks[1] == 'None\n':
085 self.maxSize = None
086 else:
087 self.maxSize = int(toks[1])
088
089 elif toks[0] == 'minCir':
090 if toks[1] == 'None\n':
091 raise(ValueError('None type not acceptable for minCirc'))
092 self.minCircularity = float(toks[1])
093
094 elif toks[0] == 'maxCir':
095 if toks[1] == 'None\n':
096 self.maxCircularity = None
097 else:
098 self.maxCircularity = float(toks[1])
099
100 elif toks[0] == 'channel':
101 if toks[1] == 'None\n':
102 raise(ValueError('None type not acceptable for channel'))
103 self.colorChannel = int(toks[1])
104
105 elif toks[0] == 'thresh':
106 if toks[1] == 'None\n':
107 raise(ValueError('None type not acceptable for thresh'))
108 self.threshold = int(toks[1])
109
110 elif toks[0] == 'ImageInd':
111 if toks[1] == 'None\n':
112 raise(ValueError('None type not accepted for ImageInd'))

405

113 self.imageIndex = int(toks[1])
114
115
116 def getBlobCharacteristics(self, pnt):
117 '''
118 Gets the area and circularity for a
119 blob containing the supplied point
120 Returns 0,0 if no blob containing point
121 pnt: (x,y) of the requested point
122 '''
123 #get current image
124 img = self.slide.getImg()
125 #threshold image
126 lbl, num = blobFinder._blbThresh(img,
127 self.colorChannel, self.threshold)
128 slices = scipy.ndimage.find_objects(lbl)
129 area, circ = 0,0
130 #for each blob in region
131 for i in range(num):
132 s = slices[i]
133 dx, dy = s[:2]
134 #check if point is within the bounds of the blob
135 if dx.start < pnt[1] and dx.stop > pnt[1] and \
136 dy.start < pnt[0] and dy.stop > pnt[0]:
137 #convert blob to boolean image
138 region = lbl[dx.start-1:dx.stop+1, dy.start-1:dy.stop+1]
139 region = region == i+1
140 #get area and circularity
141 area = np.sum(region)
142 perim = skimage.measure.perimeter(region)
143 if perim == 0:
144 circ = 1
145 else:
146 circ = min(4*np.pi * area / perim**2, 1)
147 #scale area by zoom level
148 #these get less accurate with higher zoom level
149 area = area * 2**(2*self.slide.lvl)
150 break
151 return area, circ
152
153 @staticmethod
154 def _blbHelp(img, sizes, channel = 2, threshold = 200,
155 circs = (0.7,None), xShift=0, yShift = 0):
156 '''
157 helper function to perform blob finding on the image
158 returns a list of blobs
159 img: the image to blob find
160 sizes: (min, max) size to consider max == None means no max size
161 channel: r,g,b channel to threshold
162 threshold: minimum pixel intensity to count as blob
163 circs: (min, max) circularity to consider

max == None means no max
164 xShift: amount to add to x coordinate
165 to shift into global coordinate
166 yShift: amount to add to y coordinate
167 to shift into global coordinate
168 '''

406

169 #blob find
170 lbl, num = blobFinder._blbThresh(img, channel, threshold)
171 slices = scipy.ndimage.find_objects(lbl)
172 result = []
173 #for each blob
174 for i in range(num):
175 #convert to boolean image
176 s = slices[i]
177 dx, dy = s[:2]
178 region = lbl[dx.start-1:dx.stop+1, dy.start-1:dy.stop+1]
179 region = region == i+1
180 #area is total number of true pixels
181 area = np.sum(region)
182 #if passes size threshold
183 if area > sizes[0] and (sizes[1] is None or area < sizes[1]):
184 #calculate circularity = 4 pi area / perimeter^2
185 perim = skimage.measure.perimeter(region)
186 circ = 4*np.pi * area / perim**2
187 #if passes circularity threshold
188 if circ > circs[0] and
189 (circs[1] is None or circ < circs[1]):
190 #determine center of mass, ignoring intensity
191 (x,y) = scipy.ndimage
192 .measurements.center_of_mass(region)
193 #calculate radius assuming circle
194 r = np.sqrt(area/np.pi)
195 #add to result, note x,y transpose!
196 result.append(blob(y=x+dx.start-1+yShift,
197 x = y+dy.start-1+xShift,
198 radius = r,
199 circularity = circ))
200 return result
201
202 @staticmethod
203 def _blbThresh(img, channel = 2, threshold = 200):
204 '''
205 helper function to threshold and group image
206 returns the label and total number of objects from ndimage.label
207 img: image to consider
208 channel: r,g,b channel to threshold
209 threshold: min intensity cutoff
210 '''
211 img = np.array(img.split()[channel])
212 thresh = img > threshold
213 return scipy.ndimage.label(thresh)
214
215 def blobImg(self):
216 '''
217 perform blob finding on the current
218 position of slideWrapper at max zoom
219 returns a list of blobs in image
220 '''
221 inputImg = self.slide.getMaxZoomImage(imgInd = self.imageIndex)
222 return blobFinder._blbHelp(inputImg,
223 (self.minSize, self.maxSize),
224 self.colorChannel,
225 self.threshold,

407

226 (self.minCircularity,
227 self.maxCircularity))
228
229 def blobSlide(self, subSize = 8192, ROI = None):
230 '''
231 perform blob finding on the entire image bounded by ROI
232 only reads a subregion of the image at once,
233 which causes an initial grouping of blobs
234 returns a list of blobs in image
235 subSize: size in pixels of one side of the
236 subregion to iterate over
237 larger values may use up lots of RAM
238 ROI: a list of points for ROI polygon.
239 Only used to determine bounding box.
240 '''
241 #the amount of overlap between regions,
242 #would matter with larger objects but is currently ignored
243 overlap = 0
244
245 #if ROI is none, get max size and (0,0)
246 if ROI is None or len(ROI) < 2:
247 botR = self.slide.getSize()
248 topL = (0,0)
249 ROI = [topL, botR]
250 else:
251 topL = (min(map(lambda x: x[0], ROI)),
252 min(map(lambda x: x[1], ROI)))
253 botR = (max(map(lambda x: x[0], ROI)),
254 max(map(lambda x: x[1], ROI)))
255
256 #set of x and y values of the center of each sub image
257 xs = np.arange(topL[0] + subSize//2,
258 botR[0]+subSize//2, subSize-overlap)
259 ys = np.arange(topL[1] + subSize//2,
260 botR[1]+subSize//2, subSize-overlap)
261
262 #Cartesian product of xs and ys
263 centers = product(xs,ys)
264
265 #initialize time, blob list, and iterator count
266 start = time.time()
267 total = len(xs) * len(ys)
268 print("starting %d images" % total)
269 blbs = []
270 i = 1
271
272 #for each subregion
273 for cent in centers:
274 #get max zoom image
275 inputImg = self.slide
276 .getMaxZoomImage((int(cent[0]),int(cent[1])),
277 (subSize,subSize),
278 imgInd = self.imageIndex)
279 #blob find
280 blb = blobFinder._blbHelp(inputImg,
281 (self.minSize, self.maxSize),
282 self.colorChannel, self.threshold,

408

283 (self.minCircularity,
284 self.maxCircularity),
285 cent[0]-subSize/2, cent[1]-subSize/2)
286 blbs.extend(blb)
287 #print out expected time remaining, not super accurate
288 if i % 10 == 0 or i == 1:
289 print("finished %d of %d subareas, %d seconds left"
290 % (i, total, (time.time()-start)/ i * (total-i)))
291 i = i+1
292
293 print("took {:.3f} minutes".format((time.time() - start)/60))
294
295 return blbs

409

ImageUtilities/blobList.py
001 import numpy as np
002 import scipy
003 from scipy.spatial.distance import pdist
004 import matplotlib.pyplot as plt
005 from matplotlib.path import Path
006 from copy import deepcopy
007 import ast
008
009 from GUICanvases import GUIConstants
010
011 from ImageUtilities import blob
012 from ImageUtilities import blobFinder
013
014 class blobList(object):
015 """
016 A collection of blob objects.
017 Underlying data is the list self.blobs and supplies several
018 utilities for filtering, drawing and expanding blobs.
019 Each bloblist also contains its own blobfinder and filters
020 """
021
022 def __init__(self, slide = None):
023 self.blobs = []
024 self.blobFinder = blobFinder.blobFinder(slide)
025 self.filters = []
026 self.description = None
027 self.threshCutoff = None
028 self.ROI = []
029 self.groupLabels = dict()
030 ##Add any new instance vars to deepcopy!
031
032 def append(self, blb):
033 if isinstance(blb, blob.blob):
034 self.blobs.append(blb)
035
036 def length(self):
037 return len(self.blobs)
038
039 def __copy__(self):
040 cls = self.__class__
041 result = cls.__new__(cls)
042 result.__dict__.update(self.__dict__)
043 return result
044
045 def __deepcopy__(self, memo):
046 cls = self.__class__
047 result = cls.__new__(cls)
048 memo[id(self)] = result
049
050 result.blobs = deepcopy(self.blobs)
051 result.filters = deepcopy(self.filters)
052 result.description = deepcopy(self.description)
053 result.ROI = deepcopy(self.ROI)
054 result.threshCutoff = self.threshCutoff
055 result.groupLabels = deepcopy(self.groupLabels)

410

056
057 result.blobFinder = blobFinder.blobFinder(self.blobFinder.slide)
058 result.blobFinder.copyParameters(self.blobFinder)
059
060 return result
061
062 def partialDeepCopy(self, newBlobs):
063 cls = self.__class__
064 result = cls.__new__(cls)
065
066 result.blobs = newBlobs
067 result.generateGroupLabels()
068 result.filters = deepcopy(self.filters)
069 result.description = deepcopy(self.description)
070 result.ROI = deepcopy(self.ROI)
071 result.threshCutoff = self.threshCutoff
072
073 result.blobFinder = blobFinder.blobFinder(self.blobFinder.slide)
074 result.blobFinder.copyParameters(self.blobFinder)
075
076 return result
077
078
079 def saveBlobs(self, filename):
080 '''
081 save the current blob coordinates in pixels
082 and the set of blob find parameters
083 and histogram filters applied to generate the set
084 fileName: file to save to
085 '''
086 if len(self.blobs) == 0:
087 return
088 output = open(filename,'w')
089 #save blob finding parameters
090 for key, val in self.blobFinder.getParameters().items():
091 output.write("{}\t{}\n".format(key,val))
092 #save ROI
093 output.write('ROI: {}\n'.format(self.ROI))
094 #save histogram filters
095 if len(self.filters) != 0:
096 output.write("->{}->\n".format('->'.join(self.filters)))
097 else:
098 output.write("->\n")
099 #blb parameter header
100 output.write("x\ty\tr\tc\n")
101 #save blobs
102 for b in self.blobs:
103 output.write("{}\n".format(b.toString()))
104
105 output.close()
106
107 def loadBlobs(self, filename):
108 '''
109 Loads the blobs and sets the blob finding
110 parameters from a filename
111 filename: the txt file to read in. Formatted from saveBlobs
112 '''

411

113 reader = open(filename,'r')
114 lines = reader.readlines()
115 self.blobs = []
116 for l in lines:
117 toks = l.split('\t')
118 if len(toks) == 2:
119 #set blob finder parameters
120 self.blobFinder.setParameterFromSplitString(toks)
121 elif toks[0] != 'x' and len(toks) > 2:
122 #add new blob
123 self.blobs.append(blob.blob.blobFromSplitString(toks))
124 else:
125 #get filters
126 toks = l.split('->')
127 if len(toks) > 1:
128 self.filters = toks[1:-1]
129 elif l[0:3] == 'ROI':
130 self.ROI = ast.literal_eval(l[5:])
131
132 self.generateGroupLabels()
133
134 def blobRequest(self, globalPoint, radius):
135 '''
136 Tries to add the blob to the current blob list.
137 If overlap with current blob, remove that point
138 globalPoint: (x,y) tuple in the image coordinate space
139 radius: the radius of the new blob to be added
140 returns true if a blob was added, false if one was removed
141 '''
142 for i,b in enumerate(self.blobs):
143 if (globalPoint[0]-b.X)**2 + (globalPoint[1]-b.Y)**2 <= \
144 b.radius**2:
145 self.blobs.pop(i)
146 return False, i
147
148 self.blobs.append(blob.blob(globalPoint[0],
149 globalPoint[1], radius))
150 return True, -1
151
152
153 def blobSlide(self):
154 if len(self.ROI) < 3:
155 self.blobs = self.blobFinder.blobSlide()
156 return "Finished blob finding on whole slide, found {} blobs"
157 .format(len(self.blobs))
158 else:
159 self.blobs = self.blobFinder.blobSlide(ROI = self.ROI)
160 if len(self.blobs) != 0:
161 roi = Path(self.ROI)
162 points = np.array([(b.X,b.Y) for b in self.blobs])
163 self.blobs = [self.blobs[i]
164 for i in np.where(
165 roi.contains_points(points))[0]]
166 return "Finished blob finding in ROI, found {} blobs"
167 .format(len(self.blobs))
168
169 def getROI(self, point, distCutoff, append = False):

412

170 '''
171 Performs checks and additions to interacting with an ROI.
172 Does not alter ROI
173 point: global point to check
174 returns a new list of tuples of the ROI
175 '''
176 result = self.ROI.copy()
177 if point is not None and len(self.ROI) > 2 and append == False:
178 #find distances between point and ROI
179 dists = pdist([point] + result)[:len(result)]
180 #remove first point with dist <= ROI_DIST
181 for i,d in enumerate(dists):
182 if d < distCutoff:
183 result.pop(i)
184 return result
185
186 #add between the two closest dists
187 dists = np.append(dists, dists[0])
188 dist2 = []
189 for i in range(len(dists) -1):
190 dist2.append(dists[i] + dists[i+1])
191 #quick, no check for intersection
192 #result.insert(np.argmin(dist2)+1, point)
193
194 #slower, checks for overlapping,
195 #returns the shortest distance without overlap
196 pos = np.argsort(dist2)
197 for p in pos:
198 #check first leg of path
199 segment = Path([result[p], point])
200 testSeg = Path(result[p+1:] + result[:p],
201 [Path.MOVETO] + [Path.LINETO]*(len(result)-2))
202 if testSeg.intersects_path(segment):
203 continue
204
205 #check second leg of path
206 if p+1 == len(result):
207 segment = Path([point, result[0]])
208 testSeg = Path(result[1:],
209 [Path.MOVETO] + [Path.LINETO]*(len(result)-2))
210 if testSeg.intersects_path(segment):
211 continue
212 else:
213 segment = Path([point, result[p+1]])
214 testSeg = Path(result[p+2:] + result[:p+1],
215 [Path.MOVETO] + [Path.LINETO]*(len(result)-2))
216 if testSeg.intersects_path(segment):
217 continue
218
219 #passed, return:
220 result.insert(p+1, point)
221 return result
222
223 elif point is not None:
224 result.append(point)
225
226 return result

413

227
228 def roiFilter(self):
229 if len(self.ROI) < 3:
230 return deepcopy(self)
231 roi = Path(self.ROI)
232 points = np.array([(b.X,b.Y) for b in self.blobs])
233 if points.size == 0:
234 return self.partialDeepCopy([])
235 result = self.partialDeepCopy([self.blobs[i]
236 for i in np.where(
237 roi.contains_points(points))[0]])
238 return result
239
240 def roiFilterInverse(self):
241 if len(self.ROI) < 3:
242 return deepcopy(self)
243 roi = Path(self.ROI)
244 points = np.array([(b.X,b.Y) for b in self.blobs])
245 if points.size == 0:
246 return self.partialDeepCopy([])
247 result = self.partialDeepCopy(
248 [self.blobs[i]
249 for i in np.where(
250 np.logical_not(roi.contains_points(points)))[0]])
251 return result
252
253 def distanceFilter(self, dist, subblocks = None, verbose = False):
254 '''
255 Filter blob positions based on a set separation distance.
256 Implemented by dividing the area into different subregions.
257 Blobs are binned into at least one region,
258 then all pairwise distances
259 are compared to the distance cutoff.
260 Returns list of bool with result[i] == true
261 if i has a neighbor too close (< dist away)
262
263 blobs: list of blobs
264 dist: the distance cutoff
265 subblocks: specify the number of sublocks to divide the area.
266 Divides the x and y into subblocks sections
267 = None allows the function to dynamically
268 determine number of subblocks
269 verbose: set if output message is printed to console
270 '''
271 if self.blobs is None or len(self.blobs) == 0:
272 return
273 #initialize result and determine subblocks
274 result = [False] * len(self.blobs)
275 if subblocks is None:
276 subblocks = int(np.ceil(np.sqrt(len(self.blobs)/100)))
277 subblocks = min(subblocks, 5)
278
279 subLocs = self._groupBlobs(dist, subblocks)
280
281 #perform distance filtering on each sub block
282 for i in range(subblocks+1):
283 for j in range(subblocks+1):

414

284 #number of points in sub region
285 n = len(subLocs[i][j])
286 #np array of points
287 locs = np.zeros((n,2))
288 #populate locs
289 for ii,v in enumerate(subLocs[i][j]):
290 locs[ii,0] = self.blobs[v].X
291 locs[ii,1] = self.blobs[v].Y
292 #distance filter the sub region list
293 #tooClose[i] == true if too close to a neighbor
294 tooClose = blobList._distFilter(locs, dist)
295 #set result, index is the subLocs[x][y]
296 #and the kth point in that subregion list
297 for k in np.where(tooClose)[0]:
298 result[subLocs[i][j][k]] = True
299
300 #determine number of blobs passing filter
301 count = np.sum(result)
302 #report to console
303 if verbose: print("Done! {} blobs within {} pixels, {} remaining"
304 .format(count, dist, len(result) - count))
305
306 newList = self.partialDeepCopy([self.blobs[i]
307 for i in np.where(~np.array(result))[0]])
308 newList.filters.append("distance > {}".format(dist))
309 return newList
310
311
312 @staticmethod
313 def _distFilter(locs, dist):
314 '''
315 A helper function for performing distance
316 filtering of a np matrix.
317 Returns a list of bool with result[i] == true
318 if too close to another point
319 locs: np array of points[n][2]
320 dist: the distance cutoff
321 '''
322 #number of points
323 n = len(locs)
324 #map between square form of row i, column j,
325 #and the row vector from pdist
326 q = lambda i,j,n: int(n*j - j*(j+1)/2+i-1-j)
327 #initialize result
328 result = [False] * n
329 #calculate Euclidean distance
330 dists = pdist(locs)
331 #for each x,y pair
332 for i in range(1,n):
333 for j in range(i):
334 #if distance between i and j is less than distance
335 if dists[q(i,j,n)] < dist:
336 #both blobs fail, ie result = true
337 result[i] = True
338 result[j] = True
339 return result
340

415

341 def minimumDistances(self, subblocks = None, overlap = 250):
342 '''
343 Calculate the minimum distance between each blob.
344 Similar algorithm to distFilter, but records the min distance
345 returns a list of floats with the minimum distance
346 between each point
347 blobs: list of blobs
348 subblocks: number of subdivisions of x and y dimension
349 = None to dynamically choose number of subblocks
350 overlap: the amount of overlap in pixels between subregions,
351 in a sense defines the maximum, reliable distance reported
352 '''
353
354 if self.blobs is None or self.length() == 0:
355 return None
356
357 #initialize result
358 result = [float("inf")] * len(self.blobs)
359 #determine subblocks size
360 if subblocks is None:
361 subblocks = int(np.ceil(np.sqrt(len(self.blobs)/100)))
362 subblocks = min(subblocks, 5)
363
364 subLocs = self._groupBlobs(overlap, subblocks)
365
366 #for each sub region list
367 for i in range(subblocks+1):
368 for j in range(subblocks+1):
369 #number of points
370 n = len(subLocs[i][j])
371 #initialize temporary list of points
372 locs = np.zeros((n,2))
373 #add points into locs
374 for ii,v in enumerate(subLocs[i][j]):
375 locs[ii,0] = self.blobs[v].X
376 locs[ii,1] = self.blobs[v].Y
377 #calculate distances
378 dists = blobList._minDists(locs)
379 #record minimum of the distances and previous value
380 for k, d in enumerate(dists):
381 result[subLocs[i][j][k]] =
382 min(result[subLocs[i][j][k]], d)
383
384 temp = np.array(result)
385 maxVal = max(temp[temp != float("inf")])
386 maxVal = max(maxVal, overlap)
387 for i, r in enumerate(result):
388 if r == float("inf"):
389 result[i] = maxVal
390 return result
391
392 @staticmethod
393 def _minDists(locs):
394 '''
395 A helper function to calculate the closest
396 neighbor of each blob
397 returns a list of floats with result[i]

416

398 indicating there exists another neighbor
399 that distance away.
400 locs: an np array of the x,y coordinates
401 '''
402 #get number of points
403 n = len(locs)
404 #lambda function to convert index in square and row form
405 q = lambda i,j,n: int(n*j - j*(j+1)/2+i-1-j)
406 #initialize result
407 result = [float("inf")] * n
408 #calculate Euclidean distance between each point
409 dists = pdist(locs)
410 #for each x,y pair
411 for i in range(1,n):
412 for j in range(i):
413 #record the minimum of the current distance
414 #and the previous value
415 result[i] = min(result[i], dists[q(i,j,n)])
416 result[j] = min(result[j], dists[q(i,j,n)])
417 return result
418
419 def _groupBlobs(self, overlap, subblocks):
420 '''
421 A helper function for grouping blobs into subregions
422 defined by the number of subblocks
423 return a 2d list of indices split by the blob x and y coordinates
424 overlap: amount of overlap for adding duplicate blobs
425 subblocks: number of subdivisions in x and y
426 '''
427 #find min and max limits of x and y
428 lowX = min(map(lambda x : x.X, self.blobs))
429 highX = max(map(lambda x : x.X, self.blobs))
430 lowY = min(map(lambda x : x.Y, self.blobs))
431 highY = max(map(lambda x : x.Y, self.blobs))
432
433 #find subblock size of x and y
434 subX = (highX - lowX)/ subblocks
435 subY = (highY - lowY)/subblocks
436
437 #initialize a 2d array of empty lists to hold each point
438 result = [[[] for x in range(subblocks+1)]
439 for y in range(subblocks+1)]
440
441 #place indices of points into subLocs list
442 for i,v in enumerate(self.blobs):
443 #get divisor and remainder
444 (xd, xm) = (0,0) if subX == 0 else divmod(v.X-lowX, subX)
445 (yd, ym) = (0,0) if subY == 0 else divmod(v.Y-lowY, subY)
446 xd, yd = int(xd), int(yd)
447 #put into 'normal block'
448 result[xd][yd].append(i)
449 #place into overlap region
450 #in the top left corner
451 if (xm <=2*overlap and ym <= 2*overlap) and
452 (xd-1 >=0 and yd -1 >=0):
453 result[xd-1][yd-1].append(i)
454 #in the left margin

417

455 if xm <= 2*overlap and xd-1 >= 0:
456 result[xd-1][yd].append(i)
457 #in the top margin
458 if ym <= 2*overlap and yd -1 >= 0:
459 result[xd][yd-1].append(i)
460
461 return result
462
463 def circularPackPoints(self, spacing, maxSpots, offset, minSpots = 4,
464 r=GUIConstants.DEFAULT_PATTERN_RADIUS, c = 1):
465 '''
466 Expands each blob into several points surrounding the blob.
467 blobs: list of blobs to expand
468 spacing: minimum spacing between points
469 maxSpots: max number of spots to expand for each blob
470 offset: offset of circumference to space blobs
471 minSpots: minimum number of spots for each blob.
472 Ignores spacing with min spots
473 r: radius of new blobs
474 c: circumference of new blobs
475 returns a list of blobs of the expanded positions
476 '''
477 #check maxspots to ensure less than min
478 maxSpots = minSpots if maxSpots < minSpots else maxSpots
479 #calculate min and max r:
480 maxR = maxSpots*spacing/(2* np.pi)-offset
481 #angles and unit vectors of max spots
482 thetas = np.linspace(0,2*np.pi,maxSpots,False)
483 maxUnits = np.vstack((np.cos(thetas),np.sin(thetas)))
484
485 minR = minSpots*spacing/(2*np.pi)-offset
486 #angles and unit vectors at min number of spots
487 thetas = np.linspace(0,2*np.pi,minSpots,False)
488 minUnits = np.vstack((np.cos(thetas),np.sin(thetas)))
489
490
491 result = []
492 ind = 0
493 for blb in self.blobs:
494 #check radius for min, max or between
495 if(blb.radius > maxR):
496 unitvec = maxUnits
497 elif(blb.radius < minR):
498 unitvec = minUnits
499 #between min and max, use max spots while retaining the spacing
500 else:
501 spots = np.floor(2*np.pi*(blb.radius + offset)/spacing)
502 thetas = np.linspace(0,2*np.pi,spots,False)
503 unitvec = np.vstack((np.cos(thetas),np.sin(thetas)))
504
505 #expand each blob into a new x,y positions
506 targetSpots = unitvec*(blb.radius + offset) + \
507 np.matlib.repmat(np.array((blb.X, blb.Y))
508 ,unitvec.shape[1],1).T
509 #add targets to result
510 for e in targetSpots.T:
511 result.append(blob.blob(x = e[0],y = e[1],

418

512 radius = r, circularity = c, group = ind))
513 #increment group number for next blob
514 ind += 1
515
516 result = self.partialDeepCopy(result)
517 result.generateGroupLabels()
518 return result
519
520 def rectangularlyPackPoints(self, spacing, numLayers,
521 r = GUIConstants.DEFAULT_PATTERN_RADIUS,
522 c = 1,
523 dynamicLayering = False):
524 '''
525 Expands each blob into a grid of points,
526 with regular rectangular spacing
527 blobs: list of blob objects to expand
528 spacing: spacing between new blobs
529 numLayers: number of layers around each blob.
530 1 generates a grid of 3x3 with the
531 initial blob in the center. This can be adjusted for radius
532 r: radius to set new blobs to
533 c: circularity of new blobs
534 dynamicLayering: set to True to account for
535 blob size in making pattern positions
536 '''
537 #marcher is a list of directions to move to for generating spacing
538 #this starts at the right, moves down, left,
539 #up, right, down, to spiral around the blob
540 #additional layers are generated by
541 #applying the marcher multiple times
542 marcher = np.array([[0 , 1],
543 [-1. , 0.],
544 [-1. , 0.],
545 [0. , -1.],
546 [0. , -1.],
547 [1. , 0.],
548 [1. , 0.],
549 [0 , 1]])
550 #use one mask each time
551 if dynamicLayering == False:
552 #start at center
553 mask = np.array([[0,0]])
554 for n in range(numLayers):
555 #move to the right by n spaces
556 current = np.array([[n+1.,0]])
557 for i in range(8):
558 #add the marcher n times
559 direction = marcher[i,:]
560 for j in range(n+1):
561 current += direction
562 mask = np.append(mask,current,axis=0)
563 #scale unit mask by spacing
564 mask *= spacing
565
566 result = []
567 ind = 0
568 for blb in self.blobs:

419

569 #use new mask each blob,
570 #with number of layers being size dependent
571 if dynamicLayering == True:
572 mask = np.array([[0,0]])
573 #only change from above is the blb.radius/spacing
574 for n in range(numLayers +
575 int(np.ceil(blb.radius / spacing))):
576 current = np.array([[n+1.,0]])
577 for i in range(8):
578 direction = marcher[i,:]
579 for j in range(n+1):
580 current += direction
581 mask = np.append(mask,current,axis=0)
582
583 mask *= spacing
584 #expand blb by mask
585 for b in map(lambda x: blob.blob(x = x[0],
586 y = x[1], radius = r,
587 circularity=c,
588 group=ind),
589 list(mask+(blb.X, blb.Y))
590):
591 #add each point to result
592 result.append(b)
593 ind += 1
594
595 result = self.partialDeepCopy(result)
596 result.generateGroupLabels()
597 return result
598
599 def hexagonallyClosePackPoints(self, spacing, numLayers,
600 r = GUIConstants.DEFAULT_PATTERN_RADIUS,
601 c = 1,
602 dynamicLayering = False):
603 '''
604 Expands each blob into a grid of points,
605 with hexagonal close packed spacing
606 blobs: list of blob objects to expand
607 spacing: spacing between new blobs
608 numLayers: number of layers around each blob.
609 1 generates a grid of 7 with the
610 initial blob in the center. This can be adjusted for radius
611 r: radius to set new blobs to
612 c: circularity of new blobs
613 dynamicLayering: set to True to account for blob size
614 in making pattern positions
615 '''
616 #this may save some computation time to precompute
617 sqrt3ov2 = np.sqrt(3)/2
618 #list of directions to march along to generate a layer
619 marcher = np.array([[-0.5 , sqrt3ov2],
620 [-1. , 0.],
621 [-0.5 , -sqrt3ov2],
622 [0.5 , -sqrt3ov2],
623 [1. , 0.],
624 [0.5 , sqrt3ov2]])
625 #use one mask each time

420

626 if dynamicLayering == False:
627 #start at center
628 mask = np.array([[0,0]])
629 for n in range(numLayers):
630 current = np.array([[n+1.,0]])
631 for i in range(6):
632 direction = marcher[i,:]
633 for j in range(n+1):
634 current += direction
635 mask = np.append(mask,current,axis=0)
636
637 mask *= spacing
638
639
640 #strip off radius
641 result = []
642 ind = 0
643 for blb in self.blobs:
644 #use new mask each blob,
645 #with number of layers being size dependent
646 if dynamicLayering == True:
647 mask = np.array([[0,0]])
648 #change number of layers by blb radius
649 for n in range(numLayers +
650 int(np.ceil(blb.radius / spacing))):
651 current = np.array([[n+1.,0]])
652 for i in range(6):
653 direction = marcher[i,:]
654 for j in range(n+1):
655 current += direction
656 mask = np.append(mask,current,axis=0)
657
658 mask *= spacing
659 #expand blb into points based on mask
660 for b in map(lambda x: blob.blob(x = x[0], y = x[1],
661 radius = r, circularity=c,
662 group=ind),
663 list(mask+(blb.X, blb.Y))
664):
665 result.append(b)
666 ind += 1
667
668 result = self.partialDeepCopy(result)
669 result.generateGroupLabels()
670 return result
671
672 def generateGroupLabels(self):
673 '''
674 Populates groupLabels, a dict of NAME -> (x,y)
675 for each group member.
676 (x,y) is the top right corner (max X, min Y)
677 in global coordinates
678 '''
679
680 self.groupLabels = dict()
681 for b in self.blobs:
682 if b.group is not None:

421

683 #add in current blob
684 if b.group not in self.groupLabels:
685 self.groupLabels[b.group] = (b.X, b.Y)
686 else:
687 #update tuple
688 p = self.groupLabels[b.group]
689 self.groupLabels[b.group] =
690 (max(b.X, p[0]), min(b.Y, p[1]))
691
692
693 def getPatches(self, limitDraw, slideWrapper, blobColor):
694
695 todraw = slideWrapper.getBlobsInBounds(self.blobs)
696
697 if limitDraw and len(todraw) > GUIConstants.DRAW_LIMIT:
698
699 todraw = [todraw[i]
700 for i in range(0, len(todraw),
701 len(todraw)//GUIConstants.DRAW_LIMIT)]
702
703 return list(map(lambda el: plt.Circle((el[0],el[1]), el[2],
704 color = blobColor,
705 linewidth = 1,
706 fill = False), todraw))

422

ImageUtilities/enumModule.py
01 from enum import Enum, unique
02
03 @unique
04 class Direction(Enum):
05 '''
06 Enum class to encode directions for slide stepping
07 '''
08 left = 1
09 right = 2
10 up = 3
11 down = 4
12
13 @unique
14 class StepSize(Enum):
15 '''
16 Enum class to encode sizes for slide stepping
17 '''
18 small = 1
19 medium = 2
20 large = 3
21 giant = 4

423

ImageUtilities/slideWrapper.py
001 import openslide
002 from PIL import Image, TiffImagePlugin
003 import PIL.ImageOps
004 import numpy as np
005 import numpy.matlib
006 import os
007 import fnmatch
008 import matplotlib as mpl
009 from matplotlib.path import Path
010
011 from ImageUtilities.enumModule import Direction, StepSize
012 from ImageUtilities import blob
013
014 class SlideWrapper(object):
015 '''
016 Class to encapsulate interactions with microscopy experiments.
017 Wraps the openslide package to support multiple
018 channels/images and zoom levels.
019 Keeps track of current view window so movement
020 is called by step functions.
021 '''
022 def __init__(self, fileName, size = [1024,1024], startLvl = 0):
023 '''
024 Create a new slideWrapper instance with the fileName experiment
025 Automatically looks for multiple images.
026 Ndpi image pairs should end in Brightfield or Triple.
027 Single Ndpi images are also supported. Tif images
028 should end in c#.tif (e.g. c1.tif) to be grouped together.
029 The tif image set doesn't need to be consecutive.
030 Single Tif images are also supported
031 fileName: a tif or ndpi image
032 size: The width and height of the image to load
033 startLvl: the starting zoom level. 0 <= startLvl,
034 with 0 being the max zoom
035 '''
036
037 (p,f) = os.path.split(fileName)
038 (f,ex) = os.path.splitext(f)
039
040 self.slides = []
041 self.filetype = ex
042
043 #nanozoomer, ends in triple or brightfield
044 if ex == '.ndpi':
045 #brightfield image selected
046 if "Brightfield" == f[-11:]:
047 self.slides.append([openslide.open_slide(fileName)])
048 if os.path.exists(os.path.join(p,f[:-11]+'Triple'+ex)):
049 self.slides.append([openslide.open_slide(
050 os.path.join(p,f[:-11]+'Triple'+ex))])
051
052 #fluorescence image selected
053 elif "Triple" == f[-6:]:
054 if os.path.exists(os.path.join(p,
055 f[:-6]+'Brightfield'+ex)):

424

056 self.slides.append([openslide.open_slide(
057 os.path.join(p,f[:-6]+'Brightfield'+ex))])
058 self.slides.append([openslide.open_slide(fileName)])
059
060 #single image selected
061 else:
062 self.slides.append([openslide.open_slide(fileName)])
063
064 #zeiss, ends in c#.tif
065 elif ex == '.tif':
066 #iterate through each number, 1-9
067 if "c" == f[-2] and f[-1].isdigit():
068 for i in range(1,9):
069 if os.path.exists(os.path.join(

p,f[:-1]+str(i) + ex)):
070 self.slides.append(
071 [openslide.open_slide(
072 os.path.join(p,f[:-1]+str(i) + ex))])
073 if os.path.exists(os.path.join(p,
074 '64x' + f[:-1]+str(i) + ex)):
075 self.slides[-1].append(openslide.open_slide(
076 os.path.join(p,
077 '8x' + f[:-1]+str(i) + ex)))
078 self.slides[-1].append(openslide.open_slide(
079 os.path.join(p,
080 '64x' + f[:-1]+str(i) + ex)))
081 else:
082 self.slides.append(None)
083 #single image
084 else:
085 self.slides.append([openslide.open_slide(
086 os.path.join(p,f + ex))])
087 #load decimated images if they exist
088 if os.path.exists(os.path.join(p,'64x' + f + ex)):
089 self.slides[-1].append(openslide.open_slide(
090 os.path.join(p,'8x' + f + ex)))
091 self.slides[-1].append(openslide.open_slide(
092 os.path.join(p,'64x' + f + ex)))
093 #remove end until not empty
094 while self.slides[-1] is None:
095 self.slides.pop()
096
097 else:
098 raise ValueError("Only tif and ndpi currently supported")
099
100 ind = 0
101 #get first non-blank channel
102 while self.slides[ind] is None:
103 ind += 1
104
105 #initialize variables
106 self.level_count = self.slides[ind][0].level_count
107 self.dimensions = self.slides[ind][0].dimensions
108
109 self.displaySlides = [True]*len(self.slides)
110 self.brightInd = ind #index of brightfield image,
111 #determines how channels are merged

425

112 self.size = size
113 self.lvl = startLvl
114 self.lvl = 0 if self.lvl < 0 else self.lvl
115 limit = self.level_count-1+2
116 if len(self.slides[ind]) > 2:
117 limit += 6
118 self.lvl = limit if self.lvl > limit else self.lvl
119 self.pos = [size[0]*2**(self.lvl-1), size[1]*2**(self.lvl-1)]
120
121 def getImg(self):
122 '''
123 Reads the slide image from disk at the current position,
124 zoom, and channels
125
126 '''
127 fluorImg = None
128 brightImg = None
129 for i,display in enumerate(self.displaySlides):
130 #read in brightfield and fluorescence images
131 if display == True:
132 #only one image is designated as brightfield
133 if i == self.brightInd:
134 brightImg = self._getImg(i)
135 #fluorescence images are merged by summing the
136 #intensity in each channel. this can lead to overflow
137 #in images that are not 'pure' R,G,B
138 else:
139 if fluorImg is None:
140 fluorImg = self._getImg(i)
141 else:
142 imgs = []
143 splitOld = fluorImg.split()
144 splitNew = self._getImg(i).split()
145 for j in range(4):#skip alpha
146 if np.max(splitOld[j]) < np.max(splitNew[j]):
147 imgs.append(splitNew[j])
148 else:
149 imgs.append(splitOld[j])
150 fluorImg = Image.merge('RGBA', imgs)
151
152 #merge bright and fluorescence image, or return one of them
153 if brightImg is None and fluorImg is None:
154 slideImg = Image.new("RGB",self.size,"black")
155 elif brightImg is not None and fluorImg is None:
156 slideImg = brightImg
157 elif fluorImg is not None and brightImg is None:
158 slideImg = fluorImg
159 else:
160 slideImg =Image.blend(brightImg, fluorImg,0.5)
161
162 return slideImg
163
164 def _getImg(self, imageInd):
165 '''
166 Helper method to read in an image from a single channel.
167 Uses instance position and zoom
168 imageInd: the image index to read

426

169 '''
170 #have to convert the position to keep self.pos at the center
171 #read_region take the top left point
172 tempPos = list(map(lambda x, y: int(x-y*2**(self.lvl-1)),
173 self.pos, self.size))
174 #if zoom level is in bounds for openslide
175 if self.lvl < self.level_count:
176 if self.slides[imageInd] is None:
177 return None
178 return self.slides[imageInd][0].read_region(tempPos,
179 self.lvl,
180 self.size)
181 #decimate image to desired zoom level
182 else:
183 #read in larger area and resize down to desired size
184 if self.lvl - self.level_count < 2:
185 tempPos = list(map(lambda x, y: int(x-y*2**(self.lvl-1)),
186 self.pos, self.size))
187 tempSize = list(map(lambda x:
188 int(x*2**(self.lvl-self.level_count+1)),
189 self.size))
190 return self.slides[imageInd][0].read_region(tempPos,
191 self.level_count-1, tempSize)
192 .resize(self.size)
193
194 #same as above, but with 8x decimated image
195 elif self.lvl - self.level_count < 5 and
196 len(self.slides[imageInd]) > 1:
197 tempPos[0] //= 8
198 tempPos[1] //= 8
199 tempSize = list(map(lambda x:
200 int(x*2**(self.lvl-3)),
201 self.size))
202 return self.slides[imageInd][1]
203 .read_region(tempPos, 0, tempSize)
204 .resize(self.size)
205
206 #same as above, but with 64x decimated image
207 elif len(self.slides[imageInd]) > 2 and
208 self.lvl-self.level_count < 8:
209 tempPos[0] //= 64
210 tempPos[1] //= 64
211 tempSize = list(map(lambda x:
212 int(x*2**(self.lvl-6)),
213 self.size))
214 return self.slides[imageInd][2]
215 .read_region(tempPos, 0, tempSize)
216 .resize(self.size)
217
218 #zoom is outside of bounds for this channel
219 else:
220 return None
221
222 def getMaxZoomImages(self, baseDir, positions,
223 size = None, prefix = '',
224 invert = False, imgInd = 1):
225 '''

427

226 Saves images of each position provided.
227 baseDir: Directory to save all images
228 positions: list of tuples with x,y positions of blobs
229 size: size of images to save in pixels
230 prefix: prefix of images to save
231 invert: toggle color inversion. Can be useful for printing
232 imgInd: the image index to use
233 '''
234 if size is None:
235 size = self.size
236 for p in positions:
237 imgInd = min(len(self.slides), imgInd)
238 tempPos = list(map(lambda x, y: int(x-y/2), p, size))
239 if invert:
240 fp = os.path.join(baseDir, "{}{}_{}_inv.png"
241 .format(prefix,p[0], p[1]))
242 img = self.slides[imgInd][0]
243 .read_region(tempPos, 0, size)
244 img = Image.merge('RGB', img.split()[0:3])
245 PIL.ImageOps.invert(img).save(fp)
246 else:
247 fp = os.path.join(baseDir, "{}{}_{}.png"
248 .format(prefix,p[0], p[1]))
249 self.slides[imgInd][0]
250 .read_region(tempPos, 0, size).save(fp)
251
252 def getMaxZoomImage(self, position = None, size = None, imgInd = 1):
253 '''
254 Get the image at the maximum zoom level. Used in blob finding
255 position: tuple of x,y position of image center.
256 None to use self.position
257 size: tuple of width and height, None for self.size
258 imgInd: the image index to read
259 '''
260 imgInd = min(len(self.slides)-1, imgInd)
261 if position is None:
262 position = self.pos
263 if size is None:
264 size = self.size
265 tempPos = list(map(lambda x, y: int(x-y/2),
266 position, size))
267 return (self.slides[imgInd][0]).read_region(tempPos, 0, size)
268
269 def step(self, direction, stepSize):
270 '''
271 Step the position in the designated direction.
272 direction: a slideWrapper.Direction enum
273 stepSize: enum of step size. large = image size,
274 medium 1/2, small 1/10 that size
275 '''
276 if stepSize == StepSize.large:
277 factor = 1
278 elif stepSize == StepSize.medium:
279 factor = 2
280 else:
281 factor = 10
282 dirMap = {

428

283 Direction.left : [-1,0],
284 Direction.right : [1,0],
285 Direction.up : [0,-1],
286 Direction.down : [0,1],
287 }
288 self._movePos(factor, dirMap[direction])
289
290 def _movePos(self, factor, direction):
291 '''
292 Helper method to perform position movement.
293 factor: division factor to step size
294 direction: an x,y list of the step to perform
295 '''
296 #have to scale position movement by the current zoom level
297 self.pos[0] += direction[0] * self.size[0]//factor*2**self.lvl
298 self.pos[1] += direction[1] * self.size[1]//factor*2**self.lvl
299
300 def _zoom(self, amt):
301 '''
302 Zoom helper method to bound self.lvl properly
303 amt: integer change in zoom level. <0 is zooming in
304 '''
305 self.lvl += amt
306 #keep >= 0
307 self.lvl = 0 if self.lvl < 0 else self.lvl
308 #limit sets the amount of software decimation to use.
309 #2 doesn't cause too much lag on GUI
310 limit = self.level_count-1+2
311 ind = 0
312 while self.slides[ind] is None:
313 ind += 1
314 #if the images have 8 and 64x decimations available,
315 #extra zoom levels are possible
316 if len(self.slides[ind]) > 2:
317 limit += 6
318 self.lvl = limit if self.lvl > limit else self.lvl
319
320 def zoomIn(self):
321 '''
322 Zoom the image in one step (2x smaller pixels)
323 '''
324 self._zoom(-1)
325
326 def zoomOut(self):
327 '''
328 Zoom the image out one step (2x larger pixels)
329 '''
330 self._zoom(1)
331
332 def resetView(self):
333 '''
334 Reset the position and zoom level
335 Useful for debugging if the position gets far out of bounds
336 '''
337 self.lvl = 0
338 self.pos = [self.size[0]/2, self.size[1]/2]
339

429

340 def switchType(self):
341 '''
342 Cycle through image channels available,
343 moving +1 from first true
344 '''
345 ind = 0
346 for i in range(len(self.slides)):
347 if self.displaySlides[i] == True:
348 ind = i+1
349 break
350 ind %= len(self.slides)
351
352 self.switchToChannel(ind)
353
354 def switchToChannel(self, ind):
355 '''
356 Turn the target image channel on and the rest off
357 ind: image channel to activate.
358 Performs index out of bounds checks
359 '''
360 self.displaySlides = [False]*len(self.slides)
361 if ind < len(self.slides):
362 ind = 0 if ind < 0 else ind
363 self.displaySlides[ind] = True
364
365 def toggleChannel(self,ind):
366 '''
367 Toggle the supplied image channel on or off
368 ind: the image channel to toggle
369 '''
370 ind = 0 if ind < 0 else ind
371 if ind < len(self.slides):
372 self.displaySlides[ind] = not self.displaySlides[ind]
373
374 def setBrightfield(self,ind):
375 '''
376 Set the index of the brightfield image.
377 If the supplied index is the current brightfield index,
378 turns off the brightfield
379 ind: the image channel to set as brightfield
380 '''
381 if ind == self.brightInd:
382 self.brightInd = -1
383 else:
384 self.brightInd = ind
385
386 def moveCenter(self, imgPos):
387 '''
388 Move self.pos to the supplied image position, in pixels.
389 imgPos: the x,y pixel position to move to
390 '''
391 #have to modify by the current zoom level
392 self.pos[0] += int((imgPos[0]-self.size[0]/2)*2**self.lvl)
393 self.pos[1] += int((imgPos[1]-self.size[1]/2)*2**self.lvl)
394
395 def getGlobalPoint(self, point):
396 """

430

397 Convert the local point in the image view to
398 a slide global point
399 point: the local pixel position as tuple
400 returns the same point, relative to the top left
401 of the image at max zoom
402 """
403 result = [0,0]
404 result[0] = self.pos[0]
405 + round((point[0]-self.size[0]/2)*2**self.lvl)
406 result[1] = self.pos[1]
407 + round((point[1]-self.size[1]/2)*2**self.lvl)
408 return (result[0], result[1])
409
410 def getLocalPoint(self, point):
411 """
412 Convert the global point in slide to

position in the current image
413 point: the global pixel point
414 returns the pixel position in the current image view
415 """
416 return [round((point[0] - self.pos[0])
417 /2**self.lvl + self.size[0]/2),
418 round((point[1] - self.pos[1])
419 /2**self.lvl + self.size[1]/2)]
420
421 def getPointsInBounds(self, points):
422 """
423 Test the supplied global points to see if they land
424 in the current image.
425 points: list of global slide pixel positions
426 returns the points in bounds translated into local
427 image coordinate system and the indices of those
428 points in the input list
429 """
430 #get bounds of image in global coordinate
431 xlow, ylow = self.getGlobalPoint((0,0))
432 xhigh, yhigh = self.getGlobalPoint(self.size)
433 zero = (xlow,ylow)
434 result = []
435 indices = []
436 #for each point
437 for i, p in enumerate(points):
438 #if in bounds
439 if p[0] >= xlow and p[0] <= xhigh and
440 p[1] >= ylow and p[1] <=yhigh:
441 #add local point and the index of that point
442 result.append(((p[0]-zero[0])/2**self.lvl,
443 (p[1]-zero[1])/2**self.lvl))
444 indices.append(i)
445 return result, indices
446
447 def getBlobsInBounds(self, blobs):
448 """
449 Test the supplied global points to see if they land
450 in the current image.
451 blobs: a list of blobs in global coordinates
452 returns a list of (x,y,r) translated into local image

431

453 coordinate system with radius scaled to zoom level
454 """
455 if len(blobs) == 0:
456 return []
457 #get bounds of image in global coordinate
458 xlow, ylow = self.getGlobalPoint((0,0))
459 xhigh, yhigh = self.getGlobalPoint(self.size)
460
461 return [((b.X-xlow)/2**self.lvl,
462 (b.Y-ylow)/2**self.lvl,
463 b.radius/2**self.lvl)
464 for b in blobs
465 if b.X > xlow and b.X < xhigh and\
466 b.Y > ylow and b.Y < yhigh]
467
468
469 def getSize(self):
470 '''
471 Returns the dimensions of the slide image
472 '''
473 return self.dimensions
474
475 def getFluorInt(self, blobs, channel, imageInd,
476 offset = 0, reduceMax = False):
477 '''
478 Determines the intensity of pixels around each blob
479 blobs: list of blob objects to analyze
480 channel: the R,G,B channel to analyze (0, 1, 2)
481 imageInd: the image channel to analyze
482 offset: adjusts the blob radius to consider
483 smaller or larger regions
484 reduceMax: toggle between returning the average (False)
485 or max (True) intensity
486 '''
487 result = []
488 #use the max or mean intensity
489 if reduceMax:
490 reduction = lambda x: np.max(np.array(x.split()[channel]))
491 else:
492 reduction = lambda x: np.mean(np.array(x.split()[channel]))
493 for i,b in enumerate(blobs):
494 #note that this considers the square circumscribing the blob
495 img = self.getMaxZoomImage((int(b.X),int(b.Y)),
496 (int(b.radius+offset)*2,
497 int(b.radius+offset)*2),
498 imgInd=imageInd)
499 #calc summed intens in area
500 result.append(reduction(img))
501 #report every 100 blobs
502 if (i+1)%100 == 0:
503 print(str(i+1) + ' blobs read')
504 return result
505
506 @staticmethod
507 def decimateImg(img, factor):
508 '''
509 Static utility to decimate the image provided

432

510 img: a openslide instance
511 factor: integer factor to reduce size by
512 returns a PIL.Image of img at the reduced size
513 '''
514 result = Image.new('RGB', tuple(map(lambda x:
515 x//factor,img.dimensions)))
516 import time
517 start = time.time()
518
519 #determines how large of a region to read in at once,
520 #works in strips of image
521 loadFac = 64
522
523 #read in horizontal strips, this seems to be moderately faster
524 for i in range(result.size[1]//loadFac):
525 result.paste(img.read_region((0,i*factor*loadFac),
526 0,(result.size[0]*factor,factor*loadFac))
527 .resize((result.size[0],loadFac)),
528 0,i*loadFac,result.size[0],(i+1)*loadFac))
529 if i!= 0 and i % 10 == 0 or i == 1:
530 print("finished %d of %d subareas, %d seconds left" %
531 (i, result.size[1]//loadFac,
532 (time.time()-start)/i *
533 (result.size[1]//loadFac-i)))
534
535 #copy remainder
536 if result.size[1] % loadFac != 0:
537 result.paste(
538 img.read_region(
539 (0,result.size[1]//loadFac*loadFac*factor),
540 0,
541 (result.size[0]*factor,
542 result.size[1] % loadFac*factor))
543 .resize((result.size[0], result.size[1]%loadFac)),
544 (0,result.size[1]//loadFac*loadFac,
545 .size[0], result.size[1]))
546
547 return result
548
549 @staticmethod
550 def generateDecimatedImage(path, baseFile):
551 '''
552 Saves 8x and 64x image of the single file
553 path: path containing image file. New images written here
554 baseFile: base file name with extension,
555 8x and 64x will be prepended onto base name
556 '''
557 TiffImagePlugin.WRITE_LIBTIFF = True
558 SlideWrapper.decimateImg(
559 openslide.open_slide(
560 os.path.join(path,baseFile)),8)
561 .save(os.path.join(path,'8x' + baseFile),
562 compression='tiff_lzw')
563 SlideWrapper.decimateImg(
564 openslide.open_slide(
565 os.path.join(path,'8x' + baseFile)),8)
566 .save(os.path.join(path,'64x' + baseFile),

433

567 compression='tiff_lzw')
568 TiffImagePlugin.WRITE_LIBTIFF = False
569
570 @staticmethod
571 def generateDecimatedImgs(filename):
572 '''
573 Saves 8x and 64x images of given image in filename as
574 8xFILENAME and 64xFILENAME
575 filename: Full path to tif image
576 '''
577
578 (p,f) = os.path.split(filename)
579 (f,ex) = os.path.splitext(f)
580 #zeiss, ends in c#.tif
581 if ex == '.tif':
582 #filename has c# form, decimate each
583 if "c" == f[-2] and f[-1].isdigit():
584 totimgs = 0
585 for i in range(1,9):
586 if os.path.exists(os.path.join(

p,f[:-1]+str(i) + ex)):
587 totimgs += 1
588 for i in range(1,9):
589 if os.path.exists(os.path.join(

p,f[:-1]+str(i) + ex)):
590 print("starting channel {} of {}"
591 .format(i, totimgs))
592 SlideWrapper.generateDecimatedImage(p,
593 f[:-1]+str(i) + ex)
594 #filename is a single tif image
595 else:
596 SlideWrapper.generateDecimatedImage(p,f + ex)
597
598 @staticmethod
599 def decimateDirectory(dirName):
600 #get all dirs in parent dir
601 for subd in [os.path.join(dirName,o)
602 for o in os.listdir(dirName)
603 if os.path.isdir(os.path.join(dirName,o))]:
604 targetFiles = [os.path.join(subd, o)
605 for o in os.listdir(subd)
606 if fnmatch.fnmatch(o, '*.tif')]
607 for fname in targetFiles:
608 (path, file) = os.path.split(fname)
609 if (not os.path.exists(os.path.join(path, '8x' + file))
610 or not os.path.exists(
611 os.path.join(path, '64x' + file))) \
612 and file[0:2] != '8x' and file[0:3] != '64x':
613 print(fname)
614 SlideWrapper.generateDecimatedImage(path, file)
615 print('Finished!')

434

ImageUtilities/TSPutil.py
001 from scipy.spatial.distance import pdist
002 import numpy as np
003 import time
004 import random
005
006 def TSPRoute(inlist, optT1 = 30, optT2 = 60):
007 '''
008 optimizes the traversal order of a list of points
009 should be close to optimal after completing all iterations
010 returns a list of indices to visit in optimized order
011 inlist: a list of the positions
012 optT1: max optimization time for the initial,
013 nearest neighbor optimization in seconds
014 optT2: max optimization time for the 2-opt in seconds
015 '''
016
017 if inlist is None or len(inlist) == 0:
018 return None
019
020 dat = np.array([])
021
022 #strip off just the x and y values
023 for l in inlist:
024 dat = np.append(dat,[l[0], l[1]])
025
026 dat = np.reshape(dat,(np.size(dat)//2,2))
027 #calculate pair-wise distances
028 dists = pdist(dat)
029 #map the i,j values of a square form matrix
030 #to the flat form returned by pdist
031 def sqr(i,j,n=dat.shape[0]):
032 if i < j:
033 return int(n*i-(i+1)*i/2 + (j-i-1))
034 return int(n*j-(j+1)*j/2 + (i-j-1))
035
036 #nearest neighbor traversal
037 bestDist = float("inf")
038 inds = list(range(dat.shape[0]))
039
040 #randomize starting index
041 random.seed(0)#for testing purposes
042 random.shuffle(inds)
043
044 iterat = 0
045 start_time = time.time();
046 #while not timed out
047 while time.time()-start_time < optT1 and iterat < dat.shape[0]:
048 #the current solution start point
049 soln = [inds.pop()]
050 #current iteration
051 iterat += 1
052 #remaining points to visit in this iteration
053 remaining = [i for i in range(0,dat.shape[0])]
054 remaining.pop(soln[0])
055

435

056 #for each point
057 for count in range(1,dat.shape[0]):
058 #visit next closest neighbor
059 nextI = np.argmin(list(map(lambda i:
060 dists[sqr(i,soln[-1])],
061 remaining)))
062 #add to solution and remove from remaining
063 soln.append(remaining.pop(nextI))
064
065 #calculate the total traversed distance
066 dist = sum(map(lambda i: dists[sqr(soln[i],soln[i+1])],
067 range(dat.shape[0]-1)))
068 #if better than previous nearest neighbor traversal
069 if dist<bestDist:
070 #update best path and print update
071 bestDist = dist
072 bestSoln = soln[:]
073 print("{0} iterations of nearest neighbor in {1:.1f} seconds"
074 .format(iterat, time.time()-start_time))
075
076 print("{} iterations of nearest neighbor".format(iterat))
077 soln=bestSoln
078
079 #add a blank node to end, won't move from the end
080 #allows the start position to move around
081 soln.append(len(soln))
082 dists = np.append(dists, np.zeros(len(soln)))
083
084 start_time = time.time();
085 iterat=0
086
087 #2-opt
088 #while not timing out and still optimizing
089 while time.time()-start_time < optT2:
090 iterat += 1
091 #keep track of if a switch in the path was made
092 pathChanged = False
093 #for each point
094 for i in range(1,dat.shape[0]):
095 #for each point between i and end
096 for j in range(i+1,dat.shape[0]-1):
097 #check if switching i-1 -> i to i-1 -> j is improvement
098 if dists[sqr(soln[i-1],soln[i])]
099 + dists[sqr(soln[j],soln[j+1])] > \
100 dists[sqr(soln[i],soln[j+1])]
101 + dists[sqr(soln[j],soln[i-1])]:
102 #reverse the order of points visited
103 soln[i:j+1] = reversed(soln[i:j+1])
104 pathChanged = True
105 break #go to next i
106 if pathChanged == False:
107 break #stop if no switches were made over each for loop
108 if iterat % 5 == 0:
109 print("{0} iterations of TSP in {1:.1f} seconds"
110 .format(iterat, time.time()-start_time))
111 print("{0} iterations of TSP in {1:.1f} seconds"
112 .format(iterat, time.time()-start_time))

436

113
114 del soln[-1] #remove last, dummy point
115 print("TSP optimization finished!")
116 return soln

437

CoordinateMappers/__init__.py
01 '''
02 Package with all coordinate system mappers and connected instruments
03 brukerMapper.py: An abstract base class implementing coordinateMapper
04 specific for bruker type instruments using their
05 fractional distance.
06 connectedInstrument.py: An abstract base class specifying functions
07 required for interacting with a connected
08 instrument
09 coordinateMapper.py: An abstract base class with some standard
10 methods for mapping pixel positions to physical
11 locations in an instrument.
12 flexImagingSolarix.py: An extension of solarixMapper which generates
13 files suitable for acquisition with flexImaging.
14 oMaldiMapper.py: Implementation of coordinate mapper for
15 acquisition with the AB Sciex oMaldi server.
16 Contains methods for slop correction
17 solarixMapper.py: Implementation of brukerMapper for the solarix
18 FT-ICR that generates xeo and xls files
19 for autoacquisition
20 supportedCoordSystems.py: A collection of coordinatemappers. Only
21 mappers included here will be accessible
22 to the GUI
23 ultraflexMapper.py: An implementation of brukerMapper for the
24 ultraflextreme tof/tof that generates xeo
25 files for autoexecute
26 zaber3axis.py Concrete implementation of a connected instrument
27 for an XYZ stage for liquid microjunction
28 extraction.
29 zaberInterface.py: An abstract base class with methods for
30 interacting with zaber linear actuators.
31 zaberMapper.py: An implementation of coordinateMapper with a
32 connected zaber3axis used for the liquid
33 microjunction extraction.
34 '''

438

CoordinateMappers/brukerMapper.py
001 from CoordinateMappers import coordinateMapper
002 from GUICanvases import GUIConstants
003 from ImageUtilities import blob
004 import abc
005 import numpy as np
006 import itertools
007
008 class brukerMapper(coordinateMapper.CoordinateMapper,
009 metaclass=abc.ABCMeta):
010 """
011 A generic bruker mapper with constants for the slide II adaptor
012 and xeo headers. all physical points are stored as motor
013 coordinates so if a user enters C5 that has to be converted.
014 Upon saving, the motor coordinates are finally converted
015 in one step.
016 """
017
018 '''
019 also need to define:
020 self.motorCoordinateFilename: filename for intermediate
021 mapping positions. Should be unique
022 '''
023
024 def __init__(self):
025 super().__init__()
026 self.MTPMapY = {
027 'C':0.478261,
028 'D':0.391304,
029 'E':0.304348,
030 'F':0.217391,
031 'G':0.130435,
032 'J':-0.130435,
033 'K':-0.217391,
034 'L':-0.304348,
035 'M':-0.391304,
036 'N':-0.478261,
037 }
038
039 self.MTPMapX = {
040 '5':-0.652174,
041 '6':-0.565217,
042 '7':-0.478261,
043 '8':-0.391304,
044 '9':-0.304348,
045 '10':-0.217391,
046 '11':-0.130435,
047 '12':-0.043478,
048 '13':0.043478,
049 '14':0.130435,
050 '15':0.217391,
051 '16':0.304348,
052 '17':0.391304,
053 '18':0.478261,
054 '19':0.565217,
055 '20':0.652174,

439

056 }
057
058 self.header = ('<!-- $Revision: 1.5 $-->\n'
059 '<PlateType>\n'
060 '\t<GlobalParameters PlateTypeName="MTP Slide Adapter II"

ProbeType="MTP"\n'
061 '\t RowsNumber="100" ChipNumber="1" ChipsInRow="1"\n'
062 '\t X_ChipOffsetSize="0" Y_ChipOffsetSize="0"\n'
063 '\t HasDirectLabels="false" HasColRowLabels="true"\n'
064 '\t HasNearNeighbourCalibrants="false"\n'
065 '\t ProbeDiameterX="103.5" SampleDiameter="2"\n'
066 '\t SamplePixelRadius="5" ZoomFactor="1"\n'
067 '\t FirstCalibrant="TPX1" SecondCalibrant="TPX2"

ThirdCalibrant="TPX3"\n'
068 '\t />\n'
069 '\t<MappingParameters mox="56.239998" moy="42.635009"'
070 ' sinphi="0.0" cosphi="1.0" '
071 'alpha="51.750000" beta="51.750000" tansigma="0.0"/>\n')
072
073 self.footer = """\t</PlateSpots>
074 <AutoTeachSpots>
075 <PlateSpot PositionIndex="0" PositionName="TPX1"
076 UnitCoord_X="-0.729469" UnitCoord_Y="0.550725"/>
077 <PlateSpot PositionIndex="1" PositionName="TPX2"
078 UnitCoord_X="0.729469" UnitCoord_Y="0.550725"/>
079 <PlateSpot PositionIndex="2" PositionName="TPX3"
080 UnitCoord_X="0.729469" UnitCoord_Y="0.057971"/>
081 <PlateSpot PositionIndex="3" PositionName="TPX4"
082 UnitCoord_X="-0.729469" UnitCoord_Y="0.057971"/>
083 <PlateSpot PositionIndex="4" PositionName="TPY1"
084 UnitCoord_X="-0.729469" UnitCoord_Y="-0.057971"/>
085 <PlateSpot PositionIndex="5" PositionName="TPY2"
086 UnitCoord_X="0.729469" UnitCoord_Y="-0.057971"/>
087 <PlateSpot PositionIndex="6" PositionName="TPY3"
088 UnitCoord_X="-0.729469" UnitCoord_Y="-0.550725"/>
089 <PlateSpot PositionIndex="7" PositionName="TPY4"
090 UnitCoord_X="0.729469" UnitCoord_Y="-0.550725"/>
091 </AutoTeachSpots>
092 </PlateType>"""
093
094 #list of all MTP points, used for drawing predicted points
095 self.allPoints = list(itertools.product(self.MTPMapX.values(),
096 self.MTPMapY.values()))
097 #a tuple of (R,s,t) for PBSR of motor coordinates to MTP
098 self.motor2MTP = None
099 #list of motor training coordinates
100 self.motor = []
101 #list of mtp training points
102 self.mtp = []
103
104 #load the stored training coordinates
105 self.loadStagePoints()
106
107 @abc.abstractmethod
108 def loadStagePoints(self):
109 '''
110 read in or hard code the map from motor coordinates

440

111 to MTP points. should populate the self.motor2MTP = (R,s,t)
112 '''
113
114 @abc.abstractmethod
115 def isValidMotorCoord(self, inStr):
116 '''
117 tests if the user-entered string is a valid motor coordinate
118 inStr: the string to test if it follows motor coordinate format
119 returns true if inStr can be successfully
120 parsed by extractMotorPoint
121 '''
122
123 def isValidEntry(self, inStr):
124 '''
125 Test if the string is a valid entry for a physical coordinate.
126 Can be a motor coordinate or MTP string
127 inStr: string to test
128 returns true if inStr can be successfully parsed by extractPoint
129 '''
130 if inStr is None or len(inStr) < 2:
131 return False
132 return self.isValidMTP(inStr) or self.isValidMotorCoord(inStr)
133
134 def isValidMTP(self, inStr):
135 '''
136 Test if the provided string is a valid MTP named coordinate
137 inStr: String to test
138 returns true if the point is encoded
139 '''
140 if inStr is None or len(inStr) < 2:
141 return False
142 Y = inStr[0].upper()
143 X = inStr[1:]
144 return X in self.MTPMapX and Y in self.MTPMapY
145
146 def extractPoint(self, inStr):
147 '''
148 Extract motor coordinate of the supplied point.
149 inStr: string to parse
150 returns the motor coordinate or None if the string is not valid
151 '''
152 if self.isValidMTP(inStr):
153 return self.extractMTPPoint(inStr)
154 elif self.isValidMotorCoord(inStr):
155 return self.extractMotorPoint(inStr)
156 else:
157 return None
158
159 def extractMTPPoint(self, inStr, needMTP = False):
160 '''
161 From a provided, named MTP point, returns the motor position.
162 inStr: the named position to try and parse
163 needMTP: optional toggle to get the fractional distance
164 instead of translating to a motor coordinate
165 returns an (x,y) tuple of motor coordinate,
166 fractional distance (needMTP == True)
167 or None if instr is invalid

441

168 '''
169 if inStr is None or len(inStr) < 2:
170 return None
171 Y = inStr[0].upper()
172 X = inStr[1:]
173
174 if X in self.MTPMapX and Y in self.MTPMapY:
175 if needMTP:
176 return (self.MTPMapX[X], self.MTPMapY[Y])
177 else:
178 return self.MTPtoMotor((self.MTPMapX[X],
179 self.MTPMapY[Y]))
180 else:
181 return None
182
183 @abc.abstractmethod
184 def extractMotorPoint(self, inStr):
185 '''
186 given a user-entered motor coordinate,
187 parse out the x and y coordinates
188 inStr format could change between instruments
189 if copy/paste is supported
190 '''
191
192 def predictName(self, pixelPoint):
193 '''
194 predict the name of a given pixel position
195 By default returns the named mtp coordinate
196 '''
197 if len(self.physPoints) < 2:
198 return ''
199
200 #convert pixel to motor
201 motor = self.translate(pixelPoint)
202 return self.predictLabel(motor)
203
204 def mtpLabel(self, mtpCoord):
205 '''
206 From a given mtpCoordinate, returns the named position
207 on an mtp slide II adapter
208 mtpCoord: (x,y) tuple in fractional distance coordinates
209 '''
210 X,Y = mtpCoord
211
212 #return MTP coordinate
213 Ymin, Ykey = abs(Y-next(iter(self.MTPMapY.values()))), \
214 next(iter(self.MTPMapY.keys()))
215 Xmin, Xkey = abs(X-next(iter(self.MTPMapX.values()))), \
216 next(iter(self.MTPMapX.keys()))
217 for key, val in self.MTPMapY.items():
218 if abs(Y-val) < Ymin:
219 Ymin, Ykey = abs(Y-val), key
220 for key, val in self.MTPMapX.items():
221 if abs(X-val) < Xmin:
222 Xmin, Xkey = abs(X-val), key
223 return Ykey+Xkey
224

442

225 def predictLabel(self, physPoint):
226 '''
227 Predicts the label of a registration mark
228 based on the physical position
229 physPoint: (x,y) in motor coordinate system
230 returns the named, mtp point
231 '''
232 #motor to MTP
233 return self.mtpLabel(self.motorToMTP(physPoint))
234
235 def predictedPoints(self):
236 '''
237 Gets all the predicted points of the named, mtp positions
238 '''
239 if len(self.physPoints) < 2:
240 return []
241 result = []
242 for p in self.allPoints:
243 result.append(self.invert(self.MTPtoMotor(p)))
244
245 return result
246
247 def motorToMTP(self, motorCoord):
248 '''
249 Performs translation of the motor coordinate
250 system to fractional distance
251 with the self.motor2MTP map.
252 motorCoord: (x,y) tuple the motor coordinate
253 returns the (xy) tuple in fractional distance
254 '''
255 (R,s,t) = self.motor2MTP
256 mtp = s * R * np.matrix([[motorCoord[0]],[motorCoord[1]]]) + t
257 return (mtp[0,0], mtp[1,0])
258
259 def MTPtoMotor(self, MTPcoord):
260 '''
261 Translates the fractional distance to a motor coordinate.
262 MTPcoord: (x,y) tuple a fractional distance
263 returns the (x,y) tuple in motor coordinate
264 '''
265 (R,s,t) = self.motor2MTP
266 motor = np.linalg.inv(R)*\
267 (np.matrix([[MTPcoord[0]],[MTPcoord[1]]]) - t)/s
268 return (motor[0,0], motor[1,0])
269
270 def writeXEO(self, filename, blobs):
271 '''
272 write an xeo file of the provided list of
273 blobs with appropriate header
274 and format to use as a Bruker geometry file.
275 filename: the xeo file to save
276 blobs: list of blobs to save
277 '''
278 if blobs is None or len(blobs) == 0:
279 return
280 output = open(filename, 'w')
281

443

282 output.write(self.header)
283 output.write(' <PlateSpots PositionNumber="{}">\n'

.format(len(blobs)))
284
285 for i,p in enumerate(blobs):
286 trans = self.motorToMTP(self.translate((p.X, p.Y)))
287 if p.group is None:
288 output.write(' <PlateSpot PositionIndex="{0}" \
289 PositionName="x_{1:.0f}y_{2:.0f}" \
290 UnitCoord_X="{3:.6f}" \
291 UnitCoord_Y="{4:.6f}"/>\n'.format(
292 i, p.X, p.Y, trans[0], trans[1]))
293 else:
294 output.write(' <PlateSpot PositionIndex="{0}" \
295 PositionName="s_{5:.0f}x_{1:.0f}y_{2:.0f}" \
296 UnitCoord_X="{3:.6f}" \
297 UnitCoord_Y="{4:.6f}"/>\n'.format(
298 i, p.X, p.Y, trans[0], trans[1], p.group))
299
300
301 output.write(self.footer)
302 output.close()
303
304 def loadXEO(self,filename):
305 '''
306 From the provided xeo, parse a list of target positions
307 filename: xeo file to parse
308 '''
309 infile = open(filename, 'r')
310 lines = infile.readlines()
311 result = []
312 #ignore header and footer
313 for l in lines[13:-12]:
314 toks = l.split('"')
315 pos = toks[3].split('_')
316 #parse pixel position and group
317 if len(pos) == 4:
318 offset = 1
319 x = int(pos[1+offset][:-1])
320 y = int(pos[2+offset])
321 s = int(pos[1][:-1])
322 result.append(blob.blob(x=x, y=y, group = s))
323 else:
324 offset= 0
325 x = int(pos[1+offset][:-1])
326 y = int(pos[2+offset])
327 result.append(blob.blob(x = x, y = y))
328
329 return result
330
331
332 def getIntermediateMap(self):
333 '''
334 populates the intermediate map using the list of
335 motor and mtp points
336 '''
337 result = []

444

338 for i in range(len(self.motor)):
339 result.append((self.mtpLabel(self.mtp[i]),
340 self.motor[i][0], self.motor[i][1]))
341
342 return result
343
344
345 def loadStagePoints(self):
346 '''
347 loads in the intermediate map at self.motorCoordFilename
348 '''
349 #read in data file
350 reader = open(self.motorCoordFilename, 'r')
351 for l in reader.readlines():
352 toks = l.split('\t')
353 self.mtp.append(self.extractMTPPoint(toks[0],
354 needMTP=True));
355 self.motor.append((int(toks[1]), int(toks[2])))
356
357 #update map
358 self._updateMotor2MTP()
359
360 def setIntermediateMap(self, points):
361 '''
362 From the list of points, generate a new intermediate map
363 points: list of (name, x, y) training points
364 '''
365 #parse returned points
366 self.motor = []
367 self.mtp = []
368 writer = open(self.motorCoordFilename, 'w')
369 for t in points:
370 self.mtp.append(self.extractMTPPoint(t[0],
371 needMTP=True));
372 self.motor.append((int(t[1]), int(t[2])))
373 #save new file
374 writer.write("{}\t{}\t{}\n".format(t[0], t[1], t[2]))
375
376 writer.close()
377 #update motor coordinate
378 self._updateMotor2MTP()
379
380 def _updateMotor2MTP(self):
381 '''
382 helper method to perform point based similarity registration
383 from the motor coordinate system to the fractional distance
384 '''
385 self.motor2MTP = self._PBSR(self.motor, self.mtp, False)

445

CoordinateMappers/connectedInstrument.py
01 import abc
02
03 class ConnectedInstrument(object, metaclass=abc.ABCMeta):
04 """
05 A abstract base class of a connected instrument which
06 specifies the most basic set of functions to support for microMS
07 to interface with the instrument
08 """
09 def __init__(self):
10 '''
11 Create a new connected instrument, with some important constants
12 '''
13 self.dwellTime = 1#seconds
14 self.postAcqusitionWait = 0#seconds
15 self.connected = False#has a connection been established
16 super().__init__()
17
18 @abc.abstractmethod
19 def getPositionXY(self):
20 '''
21 Returns the current XY position of the connected instrument
22 returns a tuple of (x,y)
23 '''
24
25 @abc.abstractmethod
26 def moveToPositionXY(self, xypos):
27 '''
28 Move the stage to the specified (x,y) coordinate.
29 xypos: (x,y) tuple in the instrument coordinate space
30 '''
31
32 @abc.abstractmethod
33 def move(self, direction, stepSize):
34 '''
35 Move the stage in the specified direction.
36 The direction the stage moves should match
37 the probe movement.
38 direction: a enumModule.Direction enum
39 stepSize: enumModule.StepSize specifying
40 if the step should be large
41 '''
42
43 @abc.abstractmethod
44 def moveProbe(self, direction, stepSize):
45 '''
46 Move the probe in the specified direction.
47 This may not be general but is necessary
48 for 3-axis collection
49 direction: a enumModule.Direction enum
50 stepSize: enumModule.StepSize specifying
51 if the step should be large
52 '''
53
54 @abc.abstractmethod
55 def setProbePosition(self):

446

56 '''
57 Signal the instrument that the probe
58 is in the optimized position
59 '''
60
61 @abc.abstractmethod
62 def getProbePosition(self):
63 '''
64 Get the current position of the probe
65 for queries on probe position
66 '''
67
68 @abc.abstractmethod
69 def collect(self):
70 '''
71 Perform a single collection at the current position
72 for self.dwellTime (in seconds)
73 '''
74
75 @abc.abstractmethod
76 def collectAll(self, positions):
77 '''
78 Perform sequential collections at each point specified.
79 After collection, the probe should return
80 to self.finalPosition() for self.postAcqusitionWait seconds.
81 if postAcqusitionWait == -1 stay at finalPosition.
82 positions: list of (x,y) tuples
83 '''
84
85 @abc.abstractmethod
86 def initialize(self, portname):
87 '''
88 Begin connection with an instrument.
89 portname: port to connect two
90 '''
91
92 @abc.abstractmethod
93 def finalPosition(self):
94 '''
95 Move the probe to the final "resting" position
96 '''

447

CoordinateMappers/coordinateMapper.py
001 import abc
002 import numpy as np
003
004 from ImageUtilities import blob
005
006 class CoordinateMapper(object, metaclass=abc.ABCMeta):
007 """
008 An abstract interface of a coordinate mapper object.
009 Used to translate between coordinate systems for each
010 supported instrument
011 """
012
013 def __init__(self):
014 self.physPoints = []
015 self.pixelPoints = []
016 self.update = False
017
018 self.isConnectedToInstrument = False
019 self.connectedInstrument = None
020 self.reflectCoordinates = False
021
022 '''
023 also need to define the strings
024 self.instrumentExtension: extension of file used by instrument
025 for target positions
026 self.instrumentName: Name of instrument for display and logic.
027 Should be unique
028
029 finally supportedCoordSystems needs to be updated with
030 the import and supportedMappers
031 '''
032
033 @abc.abstractmethod
034 def isValidEntry(self, inStr):
035 '''
036 checks if the user-entered coordinate is valid
037 inStr: the user entry
038 returns a bool, true if the entry was valid
039 '''
040
041 @abc.abstractmethod
042 def extractPoint(self, inStr):
043 '''
044 converts the entered point to a physical coordinate
045 in simplest case can just parse the input,
046 could require other conversions
047 inStr: user entry, should be validated prior to passing in
048 returns a tuple in physical coordinates
049 '''
050
051 @abc.abstractmethod
052 def predictName(self, pixelPoint):
053 '''
054 used to predict the user entry, is frequently overwritten when
055 setting a registration point. Can be a "named" coordinate

448

056 to match instrumentation or just the predicted
057 physical coordinate
058 pixelPoint: a tuple of the x,y pixel position
059 returns a string with the predicted input
060 '''
061
062 @abc.abstractmethod
063 def predictLabel(self, physPoint):
064 '''
065 given a physical position of a registration point,
066 the label to draw on the image
067 can be a 'named' coordinate or a short position
068 '''
069
070 @abc.abstractmethod
071 def predictedPoints(self):
072 '''
073 returns a list of pixel points of predicted 'named' positions
074 used to show the predicted grid if the instrument has preset
075 positions
076 Returns [] if not implemented or not enough training points set
077 '''
078
079 @abc.abstractmethod
080 def loadInstrumentFile(self, filename):
081 '''
082 read in an instrument file produced by saveInstrumentFile
083 filename: the name of the instrument file
084 should return a list of blobs used in blob finding,
085 radius and circularity can be hard coded as
086 GUIConstants.DEFAULT_BLOB_RADIUS and 1 for display purposes
087 '''
088
089 @abc.abstractmethod
090 def saveInstrumentFile(self, filename, blobs):
091 '''
092 write the file used by the instrument to profile each position
093 typically requires special formatting. It is also possible to
094 write meta data in a separate file to simplify loading later
095 filename: output file name
096 blobs: list of blobs
097 '''
098
099 def saveInstrumentRegFile(self, filename):
100 '''
101 Similar to saveInstrumentFile, but saves the positions of the
102 pixelPoints used for registration
103 '''
104 regBlobs = [blob.blob(p[0], p[1]) for p in self.pixelPoints]
105 self.saveInstrumentFile(filename, regBlobs)
106
107 @abc.abstractmethod
108 def getIntermediateMap(self):
109 '''
110 return the coordinates needed to construct the intermediate map,
111 where necessary the intermediate map is used to convert from
112 physical positions to a coordinate system used by the

449

113 instrument. These are typically set points on the instrument
114 which could change.
115 the output should be a list of tuples which are used to
116 populate a table in the GUI.
117 Subclasses should save and load these points as needed,
118 preferably to a txt file with the class name
119 '''
120
121 @abc.abstractmethod
122 def setIntermediateMap(self, points):
123 '''
124 Update the intermediate map based on the points supplied.
125 The user will likely update some of the points so format
126 should be similar to the structure returned by
127 getIntermediateMap
128 points: a list of tuples
129 '''
130
131 def PBSR(self):
132 '''
133 calculates R, t and s for point based registration from
134 pixels (x) to physical positions (y)
135 '''
136 (self.R, self.s, self.t) = self._PBSR(self.pixelPoints,
137 self.physPoints,
138 self.reflectCoordinates)
139
140 def translate(self, pixelPoint):
141 '''
142 Translate a provided pixel point to physical coordinate
143 pixelPoint: a x,y tuple in pixel space
144 '''
145 return self._translate(pixelPoint, self.reflectCoordinates)
146
147 def invert(self, physPoint):
148 '''
149 Translate a provided physical point to pixel coordinate
150 physPoint: a x,y tuple in physical space
151 '''
152 return self._invert(physPoint, self.reflectCoordinates)
153
154 def addPoints(self, pixelPoint, physPoint):
155 '''
156 Adds the provided x,y tuples to the appropriate lists
157 Does some type checking and signals the need for a pbsr update
158 pixelPoint: (x,y) tuple in global pixel space
159 physPoint: (x,y) tuple of physical coordinate
160 '''
161 #check if tuples of list two
162 if isinstance(pixelPoint, tuple) and \
163 isinstance(physPoint, tuple) and \
164 len(pixelPoint) == 2 and \
165 len(physPoint) == 2:
166
167 self.physPoints.append(physPoint)
168 self.pixelPoints.append(pixelPoint)
169 self.update = True

450

170
171 def clearPoints(self):
172 '''
173 Resets all physical and pixel points
174 '''
175 self.physPoints = []
176 self.pixelPoints = []
177 self.update = True
178
179 def _translate(self, pixelPoint, reflected):
180 '''
181 a helper method of translate that has the extra variable
182 for reflection
183 pixelPoint: (x,y) tuple in global pixel space
184 reflected: boolean to signal if the two coordinate
185 spaces are reflected
186 returns an (x,y) tuple in physical space
187 '''
188 #can't perform transformation
189 if len(self.physPoints) < 2:
190 raise KeyError('Not enough training points')
191
192 #update if needed
193 if self.update == True:
194 self.PBSR()
195 self.update = False
196
197 #if reflecting, negate the y axis
198 if reflected:
199 result = self.s *
200 self.R *
201 np.matrix([[pixelPoint[0]],[-pixelPoint[1]]])
202 + self.t
203 else:
204 result = self.s *
205 self.R *
206 np.matrix([[pixelPoint[0]],[pixelPoint[1]]])
207 + self.t
208
209 return (result[0,0], result[1,0])
210
211 def _invert(self, physPoint, reflected):
212 '''
213 helper method for inverting a physical point to a pixel position
214 physPoint: (x,y) coordinate of physical position
215 reflected: boolean toggle to indicate if the coordinate
216 spaces are reflections
217 return (x,y) in pixel positions
218 '''
219 #not enough training points
220 if len(self.physPoints) < 2:
221 raise KeyError('Not enough training points')
222
223 #update transformation as needed
224 if self.update == True:
225 self.PBSR()
226 self.update = False

451

227
228 #calculate inverse transformation
229 result = np.linalg.inv(self.R)*\
230 (np.matrix([[physPoint[0]],[physPoint[1]]]) - self.t)/self.s
231
232 #negate y axis if reflected
233 if reflected:
234 return (result[0,0], -result[1,0])
235 else:
236 return (result[0,0], result[1,0])
237
238 def _PBSR(self, X, Y, reflected = False):
239 '''
240 calculate R, t and s for point based registration from
241 pixel (x) to physical (y)
242 X: list of tuples of pixel coordinates
243 Y: list of tuples of physical coordinates
244 reflected: boolean switch to indicate if the coordinates
245 are related by a reflection
246 returns (R, s, t)
247 y ~ s*R*x+t
248 '''
249 flip = -1 if reflected else 1
250
251 xbar = [0,0]
252 ybar = [0,0]
253 n = len(X)
254 for i in range(n):
255 xbar[0] += X[i][0]
256 xbar[1] += flip*X[i][1]
257 ybar[0] += Y[i][0]
258 ybar[1] += Y[i][1]
259 xbar[0] /= n
260 xbar[1] /= n
261 ybar[0] /= n
262 ybar[1] /= n
263
264 xtilde = list(map(lambda x:
265 (x[0]-xbar[0], (flip*x[1])-xbar[1]), X))
266 ytilde = list(map(lambda x: (x[0]-ybar[0], x[1]-ybar[1]), Y))
267
268 H = np.matrix('0 0; 0 0')
269
270 for s,p in zip(xtilde, ytilde):
271 H = H + np.outer(s,p)
272
273 U,s,V = np.linalg.svd(H)
274
275 R = np.dot(
276 np.dot(V,
277 np.matrix([[1,0],
278 [0,np.linalg.det(np.dot(V,U))]])),
279 np.transpose(U))
280
281 sTop = 0
282 sBot = 0
283 for s,p in zip(xtilde, ytilde):

452

284 sTop += np.dot(np.dot(R,s), p)
285 sBot += np.dot(s,s)
286 s = sTop/sBot
287 s = s[0,0]
288
289 if s < 0:
290 s = -s
291 R = -R
292
293 sbar = np.matrix([[xbar[0]],[xbar[1]]])
294 pbar = np.matrix([[ybar[0]],[ybar[1]]])
295 t = pbar-s*R*sbar
296 return (R,s,t)
297
298 def removeClosest(self, pixelPoint):
299 '''
300 remove the closest fiducial pair to the provided pixel point
301 pixelPoint: (x,y) tuple to remove
302 '''
303 closestI = 0
304 if self.pixelPoints:
305 #start with distance to fist point
306 closestDist = (self.pixelPoints[0][0]-pixelPoint[0])**2
307 +(self.pixelPoints[0][1]-pixelPoint[1])**2
308 for i,p in enumerate(self.pixelPoints):
309 #update if p is closer
310 if (p[0]-pixelPoint[0])**2
311 +(p[1]-pixelPoint[1])**2 < closestDist:
312 closestDist = (p[0]-pixelPoint[0])**2
313 +(p[1]-pixelPoint[1])**2
314 closestI = i
315 #remove points and signal the need to update
316 self.pixelPoints.pop(closestI)
317 self.physPoints.pop(closestI)
318 self.update = True
319
320
321 def highestDeviation(self):
322 '''
323 returns the index of pixelPoints with the highest deviation
324 in target registration error
325 '''
326 if len(self.physPoints) < 2:
327 raise KeyError('Not enough training points')
328
329 #update as needed
330 if self.update == True:
331 self.PBSR()
332 self.update = False
333
334 #get all predicted pixel positions
335 predPixPoints = list(map(lambda x: self.invert(x),
336 self.physPoints))
337 dists = []
338 #calculate deviations (dist squared)
339 for i in range(len(predPixPoints)):
340 dists.append((self.pixelPoints[i][0]

453

341 - predPixPoints[i][0])**2
342 +(self.pixelPoints[i][1]
343 - predPixPoints[i][1])**2)
344 #return max deviation
345 return np.argmax(dists)
346
347 def loadRegistration(self, filename):
348 '''
349 load the msreg file by populating the physical and pixel lists
350 filename: the msreg file to load
351 '''
352 #clear list
353 self.physPoints = []
354 self.pixelPoints = []
355
356 infile = open(filename, 'r')
357
358 #toss lines until hitting 'image x'
359 l = infile.readline()
360 while 'image x' not in l:
361 l = infile.readline()
362
363 #then get next
364 l = infile.readline()
365
366 #read while lines are not none
367 while l:
368 #parse out the points
369 toks = l.rstrip().split('\t')
370 self.pixelPoints.append((int(float(toks[0])),
371 int(float(toks[1]))))
372 self.physPoints.append((float(toks[2]), float(toks[3])))
373 l = infile.readline()
374 #update pbsr if possible
375 if len(self.physPoints) > 2:
376 self.PBSR()
377
378 def saveRegistration(self, filename):
379 '''
380 save the registration file
381 filename: the msreg file to write
382 '''
383 #update if needed and enough points
384 if self.update == True and len(self.physPoints) > 2:
385 self.PBSR()
386 self.update = False
387 output = open(filename, 'w')
388 output.write(self.instrumentName + '\n')
389 #write the registration transformation
390 if len(self.physPoints) > 2:
391 output.write("S:{}\nR:{}\nT:{}\n"
392 .format(self.s, self.R, self.t))
393 #write the coordinates
394 output.write("image x\timage y\tphysical coordinate\n")
395 for i,s in enumerate(self.pixelPoints):
396 output.write("{}\t{}\t{}\t{}\n".format(s[0], s[1],
397 self.physPoints[i][0],self.physPoints[i][1]))

454

398
399 output.close()

455

CoordinateMappers/flexImagingSolarix.py
01 from CoordinateMappers.solarixMapper import solarixMapper
02 from ImageUtilities.blob import blob
03 import os
04
05 class flexImagingSolarix(solarixMapper):
06 '''
07 This is another implementation for the solarix which uses
08 flexImaging to perform profiling, instead of autoexecute.
09 Most functions are directly inherited from the solarix mapper
10 '''
11
12 def __init__(self):
13 '''
14 Create a new solarix mapper
15 Only overwriting is the instrument extension and name
16 '''
17 super().__init__()
18 self.instrumentExtension = '.txt'
19 self.instrumentName = 'flexImagingSolarix'
20
21 def saveInstrumentFile(self, filename, blobs):
22 '''
23 Save the instrument file of the provided list of blobs
24 filename: the file to write to
25 blobs: list of blob targets to save
26 file format is a space delineated x, y, name, region
27 '''
28 if blobs is None or len(blobs) == 0:
29 return
30 output = open(filename, 'w')
31 output.write('# X-pos Y-pos spot-name region\n')
32 #write out the fiducial locations for registration
33 for i in range(len(self.physPoints)):
34 phys = self.physPoints[i]
35 pix = self.pixelPoints[i]
36 output.write('{0:.0f} {1:.0f} fiducial{2} 01\n'
37 .format(phys[0], -phys[1], i))
38
39 for b in blobs:
40 phys = self.translate((b.X, b.Y))
41 if b.group is not None:
42 output.write('{0:.0f} {1:.0f} s{4}_x{2:.0f}_y{3:.0f} 01\n'
43 .format(phys[0], -phys[1], b.X, b.Y, b.group))
44 else:
45 output.write('{0:.0f} {1:.0f} x{2:.0f}_y{3:.0f} 01\n'
46 .format(phys[0], -phys[1], b.X, b.Y))
47
48 output.close()
49
50 def saveInstrumentRegFile(self, filename):
51 if self.pixelPoints is None or len(self.pixelPoints) == 0:
52 return
53 output = open(filename, 'w')
54 output.write('# X-pos Y-pos spot-name region\n')
55

456

56 for p in self.pixelPoints:
57 phys = self.translate((p[0], p[1]))
58 output.write('{0:.0f} {1:.0f} x{2:.0f}_y{3:.0f} 01\n'
59 .format(phys[0], -phys[1], p[0], p[1]))
60
61
62 def loadInstrumentFile(self, filename):
63 '''
64 Loads target locations from a target file
65 filename: the file to read
66 returns a list of blobs
67 '''
68 input = open(filename, 'r')
69 result = []
70 for l in input.readlines()[1:]:
71 toks = l.split(' ')
72 toks = toks[2].split('_')
73 if len(toks) == 3:
74 result.append(blob(int(toks[1][1:]), int(toks[2][1:]),
75 group = int(toks[0][1:])))
76 elif len(toks) == 2:
77 result.append(blob(int(toks[0][1:]), int(toks[1][1:])))
78 return result

457

CoordinateMappers/oMaldiMapper.py
001 from CoordinateMappers import coordinateMapper
002 import os
003 import numpy as np
004 import itertools
005
006 from ImageUtilities import blob
007
008 class oMaldiMapper(coordinateMapper.CoordinateMapper):
009 '''
010 coordinate mapper of an ab sciex oMaldi server.
011 Tries to account for slide slop in generation of instrument files
012 '''
013
014 def __init__(self):
015 '''
016 creates a new oMaldiMapper and sets some constant values
017 '''
018 super().__init__()
019
020 self.instrumentExtension = '.ptn'
021 self.instrumentName = 'oMALDI'
022 self.reflectCoordinates = True
023
024 #these are rough estimates, but shouldn't be used
025 #beyond predicting labels
026 self.SIMSMapY = {
027 0:30400,
028 10:27200,
029 20:24000,
030 30:20800,
031 40:17600,
032 50:14400,
033 60:11200,
034 70:8000,
035 80:4800,
036 90:1600
037 }
038
039 self.SIMSMapX = {
040 10:30400,
041 9:27200,
042 8:24000,
043 7:20800,
044 6:17600,
045 5:14400,
046 4:11200,
047 3:8000,
048 2:4800,
049 1:1600
050 }
051
052 self.allPoints = list(itertools.product(self.SIMSMapX.values(),
053 self.SIMSMapY.values()))
054
055 def isValidEntry(self, inStr):

458

056 '''
057 Tests if the string is a valid motor entry.
058 Sample entry is two ints separated by a space
059 inStr: string to test
060 returns true if the string can be successfully parsed
061 '''
062 if " " in inStr:
063 toks = inStr.split(" ")
064 try:
065 int(toks[0])
066 int(toks[1])
067 return True
068 except:
069 return False
070 else:
071 return False
072
073 def extractPoint(self, inStr):
074 '''
075 Extracts a motor coordinate from the provided string.
076 inStr: the string to parse
077 returns an (x,y) tuple in physical coordinate space
078 '''
079 if not self.isValidEntry(inStr):
080 return None
081 toks = inStr.split(" ")
082 return((int(toks[0]), int(toks[1])))
083
084 def predictName(self, pixelPoint):
085 '''
086 Predicts the motor coordinate from a pixel position.
087 pixelPoint: (x,y) tuple
088 returns a blank string
089 '''
090 return ""
091
092 def predictLabel(self, physicalPoint):
093 '''
094 Predict the label of a physical point.
095 physicalPoint: (x,y) tuple of the position to predict
096 returns a string of the position of a standard 100 spot plate
097 '''
098 Y = physicalPoint[1]
099 X = physicalPoint[0]
100 Ymin, Ykey = abs(Y-next(iter(self.SIMSMapY.values()))), \
101 next(iter(self.SIMSMapY.keys()))
102 Xmin, Xkey = abs(X-next(iter(self.SIMSMapX.values()))), \
103 next(iter(self.SIMSMapX.keys()))
104 #find closest position
105 for key, val in self.SIMSMapY.items():
106 if abs(Y-val) < Ymin:
107 Ymin, Ykey = abs(Y-val), key
108 for key, val in self.SIMSMapX.items():
109 if abs(X-val) < Xmin:
110 Xmin, Xkey = abs(X-val), key
111 return Ykey+Xkey
112

459

113 def predictedPoints(self):
114 '''
115 Returns a list of predicted points of the standard 100 spot plate
116 '''
117 if len(self.physPoints) < 2:
118 return []
119 result = []
120 for p in self.allPoints:
121 result.append(self.invert(p))
122 return result
123
124 def loadInstrumentFile(self, filename):
125 '''
126 Loads all the targets associated with a given instrument file.
127 filename: the ptn file to load. Actually gets information
128 from a partner text file.
129 returns a list of blobs of the target locations
130 '''
131 result = []
132 if os.path.exists(filename[0:-4] + '.txt'):
133 reader = open(filename[0:-4] + '.txt', 'r')
134 for l in reader.readlines():
135 toks = l.split('\t')
136 if len(toks) == 3:
137 result.append(blob.blob(float(toks[0]),
138 float(toks[1]),
139 group = int(toks[2])))
140 else:
141 result.append(blob.blob(float(toks[0]),
142 float(toks[1])))
143 else:
144 print('{} containing pixel positions not found!'
145 .format(filename[0:-4] + '.txt'))
146 return result
147
148 def saveInstrumentFile(self, filename, blobs):
149 '''
150 Save the list of blobs to the provided filename
151 filename: the base ptn filename to save
152 blobs: list of blobs to save
153 '''
154 if blobs is None or len(blobs) == 0:
155 return
156 slop = 0.1
157 #assuming start at spot 43:
158 scale = 0.0031249999999999984;
159 rot = np.matrix([[-1.000e+00, 2.77555756e-16],
160 [2.22044605e-16, -1.000e+00]]);
161 transl = np.matrix([[30.],
162 [-50.]]);
163
164 points = [];
165
166 output = open(filename[0:-4] + '.txt', 'w')
167 for b in blobs:
168 trans = self.translate((b.X,b.Y))
169 result = scale

460

170 * rot
171 * np.matrix([[trans[0]],[-trans[1]]])
172 + transl
173 points.append((result[0,0], result[1,0]))
174 if b.group is not None:
175 output.write('{0:.0f}\t{1:.0f}\t{2}\n'
176 .format(b.X, b.Y, b.group))
177 else:
178 output.write('{0:.0f}\t{1:.0f}\n'.format(b.X, b.Y))
179 output.close()
180
181 points = self.SlopCorrection(points, slop, slop)
182
183 output = open(filename, 'w')
184 for p in points:
185 output.write('{0:.3f}\t{1:.3f}\n'.format(p[0], p[1]))
186 output.close()
187
188 def SlopCorrection(self, points, xcorr, ycorr):
189 '''
190 Attempts to correct for linear actuator motor slop in the stage.
191 As the stage changes direction from positive to negative
192 direction in either axis, a constant value is added or
193 subtracted to make the stage move a little further or less
194 depending on slop in drive screw.
195 Assume start at spot 43, apply when changing directions
196 pattern value at start is 5,5 coming in direction of 6,4
197 points: list of points to visit
198 xcorr: x slop correction value
199 ycorr: y slop correction value
200 returns a new list of points with slop correction
201 '''
202 path = []
203 output = []
204 #path contains the last "two points visited" in x and y
205 #to determine what kind of slope correction, if any, to apply
206 path.append((6,4))
207 path.append((5,5))
208 xslop = 0
209 yslop = 0
210 for p in points:
211 path.append(p)
212 #update xslop
213 # +-
214 if path[0][0] < path[1][0] and path[1][0] > path[2][0]:
215 xslop -= xcorr
216 #-+
217 elif path[0][0] > path[1][0] and path[1][0] < path[2][0]:
218 xslop += xcorr
219 #no change, forward point
220 elif path[1][0] == path[2][0]:
221 path[1] = (path[0][0], path[1][1])
222 #update yslop
223 # +-
224 if path[0][1] < path[1][1] and path[1][1] > path[2][1]:
225 yslop -= ycorr
226 #-+

461

227 elif path[0][1] > path[1][1] and path[1][1] < path[2][1]:
228 yslop += ycorr
229 #no change, forward point
230 elif path[1][1] == path[2][1]:
231 path[1] = (path[1][0], path[0][1])
232
233 output.append((p[0]+xslop,p[1]+yslop))
234 path.pop(0)
235 return output
236
237 def getIntermediateMap(self):
238 '''
239 The intermediate map is hard coded
240 '''
241 return [('Not in use', 0, 0)]
242
243 def setIntermediateMap(self, points):
244 '''
245 This is unused
246 '''
247 pass

462

CoordinateMappers/solarixMapper.py

001 from CoordinateMappers import brukerMapper
002 import xlsxwriter
003 from PyQt5 import QtCore, QtGui, QtWidgets
004 import os
005
006 class solarixMapper(brukerMapper.brukerMapper):
007 """
008 coordinate mapper for the solarix
009 noticeable changes include encoding of motor coordinates,
010 requirement of xls for auto acquisition, and limiting number of blobs
011 """
012
013 def __init__(self):
014 '''
015 initialize a new solarix mapper with some specified constants
016 '''
017 d, f = os.path.split(__file__)
018 self.motorCoordFilename = os.path.join(d,
019 'solarixMapperCoords.txt')
020 self.instrumentExtension = '.xeo'
021 self.instrumentName = 'solariX'
022 super().__init__()
023 self.reflectCoordinates = True
024
025 def isValidMotorCoord(self,instr):
026 '''
027 Checks if the supplied string is a valid motor coordinate.
028 Solarix motor coordinates are delimited by a '/'
029 instr: the string to test
030 returns true if the string can be successfully parsed
031 '''
032 if instr is None:
033 return False
034 if "/" in instr:
035 toks = instr.split("/")
036 try:
037 int(toks[0])
038 int(toks[1])
039 return True
040 except:
041 return False
042 else:
043 return False
044
045 def extractMotorPoint(self,inStr):
046 '''
047 Parse the suppled string to generate a motor point
048 inStr: the string to parse
049 returns an (x,y) tuple of the motor coordinate
050 '''
051 if not self.isValidMotorCoord(inStr):
052 return None
053 toks = inStr.split("/")
054 return((int(toks[0]), int(toks[1])))

463

055
056 def loadInstrumentFile(self, filename):
057 '''
058 Load target locations of a given XEO
059 filename: the file to load
060 returns a list of blobs of the targets in the file
061 '''
062 return self.loadXEO(filename)
063
064 def saveInstrumentFile(self, filename, blobs):
065 '''
066 saves an instrument file of the provided list of blobs
067 filename: the file to write to
068 if more than 900 points, uses filename as a base name
069 blobs: list of target positions
070 '''
071 if blobs is None or len(blobs) == 0:
072 return
073 maxPoints = 400
074 if len(blobs) > maxPoints:
075 fn = filename[:-4]
076 for i in range(len(blobs) // maxPoints):
077 self.writeXEO(fn + '_' + str(i) + '.xeo',
078 blobs[i*maxPoints:(i+1)*maxPoints])
079 self.writeAutoXlsx(fn + '_' + str(i) + '.xlsx',
080 blobs[i*maxPoints:(i+1)*maxPoints])
081 #get the remainder
082 self.writeXEO(fn + '_' + str(len(blobs)//maxPoints) + '.xeo',
083 blobs[-(len(blobs) % maxPoints):])
084 self.writeAutoXlsx(fn + '_' + str(len(blobs)//maxPoints)
085 + '.xlsx',
086 blobs[-(len(blobs) % maxPoints):])
087
088 else:#write a single xeo
089 self.writeXEO(filename,blobs)
090 filename = filename[:-3] + 'xlsx'
091 self.writeAutoXlsx(filename, blobs)
092
093 def writeAutoXlsx(self, filename, blobs):
094 '''
095 Write the xlsx file required for autoexecute
096 filename: the xlsx name
097 blobs: list of blobs to save
098 '''
099 workbook = xlsxwriter.Workbook(filename)
100 ws = workbook.add_worksheet()
101
102 header = ['Spot Number', 'Chip Number', 'Data Directory',
103 'Data File Name', 'Method Name', 'Sample Name',
104 'Comment']
105 for i,h in enumerate(header):
106 ws.write(0, i, h)
107
108 for i,p in enumerate(blobs):
109 ws.write(i+1, 0, "x_{0:.0f}y_{1:.0f}".format(p.X, p.Y))
110 ws.write(i+1, 1, "0")
111 ws.write(i+1, 5, "x_{0:.0f}y_{1:.0f}".format(p.X, p.Y))

464

112
113 workbook.close()
114
115 def predictName(self, pixelPoint):
116 '''
117 predict the motor coordinate or name from the pixel point
118 Tries to read the coordinate from the clipboard of a QT GUI
119 pixelPoint: (x,y) tuple of global pixel space
120 returns the predicted string
121 '''
122 clipboard = QtWidgets.QApplication.clipboard()
123 if clipboard is not None and \
124 clipboard.text() is not None and \
125 clipboard.text() != '':
126 return clipboard.text()
127 return super().predictName(pixelPoint)

465

CoordinateMappers/supportedCoordSystems.py
01 '''
02 Contains all the supported coordinate systems and a list of
03 instances of each type.
04 '''
05
06 ###add new import here
07 from CoordinateMappers import ultraflexMapper
08 from CoordinateMappers import solarixMapper
09 from CoordinateMappers import oMaldiMapper
10 from CoordinateMappers import zaberMapper
11 from CoordinateMappers import flexImagingSolarix
12
13 ###add new mapper instance here
14 supportedMappers = [ultraflexMapper.ultraflexMapper(),
15 solarixMapper.solarixMapper(),
16 flexImagingSolarix.flexImagingSolarix(),
17 oMaldiMapper.oMaldiMapper(),
18 zaberMapper.zaberMapper()]
19
20
21 #check for defined names here
22 supportedNames = list(map(lambda x: x.instrumentName, supportedMappers))
23 list(map(lambda x: x.instrumentExtension, supportedMappers))

466

CoordinateMappers/ultraflexMapper.py
01 from CoordinateMappers import brukerMapper
02 import os
03
04 class ultraflexMapper(brukerMapper.brukerMapper):
05 """
06 coordinate mapper for the ultrafleXtreme
07 """
08
09 def __init__(self):
10 '''
11 set up a new ultraflex mapper and set some constants
12 '''
13 #the intermediate map coordinates
14 d, f = os.path.split(__file__)
15 self.motorCoordFilename = os.path.join(d,
16 'ultraflexMapperCoords.txt')
17 self.instrumentExtension = '.xeo'
18 self.instrumentName = 'ultrafleXtreme'
19 super().__init__()
20 self.reflectCoordinates = True
21
22
23 def isValidMotorCoord(self, instr):
24 '''
25 Test if the supplied string is a valid coordinate.
26 Valid strings are separated by a space and contain two ints
27 instr: string to test
28 returns true if the string is able to be parsed
29 '''
30 if instr is None:
31 return False
32 if " " in instr:
33 toks = instr.split(" ")
34 try:
35 int(toks[0])
36 int(toks[1])
37 return True
38 except:
39 return False
40 else:
41 return False
42
43 def extractMotorPoint(self,inStr):
44 '''
45 Parses the string to generate a motor coordinate
46 inStr: the string to parse
47 returns an (x,y) tuple if the string successfully parses
48 '''
49 if not self.isValidMotorCoord(inStr):
50 return None
51 toks = inStr.split(" ")
52 return((int(toks[0]), int(toks[1])))
53
54 def loadInstrumentFile(self, filename):
55 '''

467

56 Loads an xeo file and returns a list of blobs.
57 filename: the xeo file to read
58 returns a list of blobs representing the target coordinates
59 '''
60 return self.loadXEO(filename)
61
62 def saveInstrumentFile(self, filename, blobs):
63 '''
64 Save the provided list of blobs as an xeo file
65 filename: the file to write to
66 blobs: list of target blobs
67 '''
68 self.writeXEO(filename, blobs)

468

CoordinateMappers/zaber3axis.py
001 from CoordinateMappers import zaberInterface
002 from CoordinateMappers import connectedInstrument
003 from ImageUtilities.enumModule import Direction, StepSize
004 import time
005
006 class Zaber3Axis(zaberInterface.ZaberInterface,
007 connectedInstrument.ConnectedInstrument):
008 '''
009 A connected zaber linear stage with XYZ axes.
010 Note the multiple inheritance
011 '''
012
013 def __init__(self):
014 '''
015 Setup, but not connect the stage
016 Initializes a few constants that may need changing
017 and some instance variables
018 '''
019 super().__init__()
020 self.xdev = 2
021 self.ydev = 1
022 self.zdev = 3
023
024 self.smallStep = 500 #microsteps
025
026 self.smallZstep = 50 #microsteps
027
028 self.mediumFactor = 10
029 self.largeFactor = 100
030 self.giantFactor = 1000
031
032 #the position of the z axis when the probe is at the surface
033 self.bottomPosition = 0;
034 #true if the probe is at the surface, else false
035 self.atBottom = False
036
037
038 def initialize(self, portName, timeout = None):
039 '''
040 Attempt to connect to the specified port and initialize stage
041 portName: the port to connect to
042 timeout: how long to listen to the port, None for blocking calls
043 '''
044 try:
045 self._openPort(portName,timeout)
046 except:
047 self.connected = False
048 return
049 #set the connection to true
050 self.connected = True
051 #renumber to make sure all ids are unique and as expected
052 self.renumber()
053 #clear replies from renumber
054 self.checkReplies(3)
055 #home all stages

469

056 self.homeAll()
057 #move xyz to 100,000 to engage each stage
058 self.moveToPositionXY((1, 1))
059 self._send(self.zdev, self.COMMANDS['MOVE_ABS'], 1)
060 self._receive()
061
062 def homeAll(self):
063 '''
064 home all stages and clear replies.
065 Homes the z axis first to help protect the probe
066 '''
067 if not self.connected:
068 return
069 self.home(3)
070 self._receive()
071 self.home(2)
072 self.home(1)
073 self._receive()
074 self._receive()
075 self.atBottom = False
076
077 def checkReplies(self, numreads):
078 '''
079 Performs multiple receive calls and checks for rejections
080 numreads: the number of reads to perform
081 returns true if no errors or rejections occurred
082 '''
083 if not self.connected:
084 return
085 result = True
086 for i in range(numreads):
087 (device, command, data) = self._receive()
088 if command == 255:
089 print('Rejected command')
090 result = False
091
092 return result
093
094 def getPositionXY(self):
095 '''
096 get the current x,y position
097 returns (x,y) in stage coordinates
098 '''
099 if not self.connected:
100 return None
101 x = self.getPosition(self.xdev)
102 y = self.getPosition(self.ydev)
103 return (x,y)
104
105 def moveToPositionXY(self, xypos):
106 '''
107 Move the stage to the specified xy position. A blocking call.
108 Will also retract the probe if it is at the sample surface.
109 xypos: (x,y) tuple to move to
110 '''
111 if not self.connected:
112 return

470

113 if self.atBottom:
114 self.toggleProbe()
115 x,y = xypos
116 self._send(self.xdev, self.COMMANDS['MOVE_ABS'], x)
117 self._send(self.ydev, self.COMMANDS['MOVE_ABS'], y)
118 self._receive()
119 self._receive()
120
121 def move(self, direction, stepSize):
122 '''
123 performs a relative move in the specified direction
124 direction: a enumModule.Direction enum
125 stepSize: enumModule.StepSize specifying the step
126 '''
127 #if not connected, do nothing
128 if not self.connected:
129 return
130 #retract probe if it's at the surface
131 if self.atBottom:
132 self.toggleProbe()
133
134 #calculate the steps to perform
135 step = self.smallStep
136 if stepSize == StepSize.large:
137 step *= self.largeFactor
138 elif stepSize == StepSize.medium:
139 step *= self.mediumFactor
140
141 #change device for each direction
142 if direction == Direction.left or \
143 direction == Direction.right:
144 dev = self.xdev
145 elif direction == Direction.down or \
146 direction == Direction.up:
147 dev = self.ydev
148 else:
149 raise ValueError('Invalid direction')
150 #this is inverted relative to the stage,
151 #but correct relative to the probe
152 #retract for these directions
153 if direction == Direction.down or \
154 direction == Direction.right:
155 step = -1 * step
156
157 #blocking call
158 self._send(dev, self.COMMANDS['MOVE_REL'], step)
159 self._receive()
160
161 def _collect(self, position):
162 '''
163 Perform a single collection at the specified position
164 position: (x,y) of stage coordinate to sample
165 '''
166 #do nothing if not connected
167 if not self.connected:
168 return
169

471

170 #move the probe into place (is blocking)
171 self.moveToPositionXY(position)
172 #collect at the current position
173 self.collect(finish = False)
174
175 def collect(self, finish = True):
176 '''
177 Collect at the current position for self.dwellTime
178 finish: call self.finishCollection at end of collection
179 '''
180 #do nothing if not connected
181 if not self.connected:
182 return
183 #if probe is not at the bottom
184 if not self.atBottom:
185 self.toggleProbe()#lower, otherwise do nothing
186 #wait for dwellTime
187 time.sleep(self.dwellTime)
188 self.toggleProbe()#raise
189 if finish == True:
190 self.finishCollection(forceHome = False)
191
192 def collectAll(self, positions):
193 '''
194 Collect from each position specified
195 positions: a list of (x,y) coordinates in motor positions
196 '''
197 #do nothing if not connected
198 if not self.connected or self.bottomPosition == 0:
199 return
200 #start by homing all
201 self.homeAll()
202 #collected from each position
203 for i, p in enumerate(positions):
204 print("Collecting from sample {}".format(i+1))
205 self._collect(p)
206 print("Finished collection")
207 self.finishCollection(forceHome = True)
208
209 def finishCollection(self, forceHome):
210 #if self.postAcqusitionWait is not 0,
211 #have to move to final position
212 if self.postAcqusitionWait != 0:
213 self.finalPosition()
214 if self.postAcqusitionWait != -1:
215 time.sleep(self.postAcqusitionWait)
216 self.homeAll()
217 elif forceHome == True:
218 #finish homing all
219 self.homeAll()
220
221 def moveProbe(self, direction, stepSize):
222 '''
223 Move the probe relative to the current position
224 direction: a valid connectedInstrument.Direction
225 stepSize: enum for step size
226 '''

472

227 #do nothing without a connection
228 if not self.connected:
229 return
230 #find step size
231 step = self.smallZstep
232 if stepSize == StepSize.medium:
233 step *= self.mediumFactor
234 elif stepSize == StepSize.large:
235 step *= self.largeFactor
236 elif stepSize == StepSize.giant:
237 step *= self.giantFactor
238 if direction == Direction.up:
239 step = -step
240 self._send(self.zdev, self.COMMANDS['MOVE_REL'], step)
241 self._receive()
242 #regardless of position, the probe is no longer at the bottom
243 self.atBottom = False
244
245 def setProbePosition(self):
246 '''
247 set the probe position as at the surface
248 '''
249 if not self.connected:
250 return
251 #store the current position
252 self.bottomPosition = self.getPosition(self.zdev)
253 #probe is now at the bottom
254 self.atBottom = True
255 #automatically retract
256 self.toggleProbe()
257
258 def getProbePosition(self):
259 if not self.connected:
260 return None
261 return self.getPosition(self.zdev)
262
263 def toggleProbe(self):
264 '''
265 toggle the current probe position.
266 If at bottom, raise, else lower
267 '''
268 if self.bottomPosition == 0 or not self.connected:
269 return
270 if self.atBottom:
271 pos = self.bottomPosition
272 - self.smallZstep * self.largeFactor*5
273 pos = 0 if pos < 0 else pos
274 else:
275 pos = self.bottomPosition
276
277 self._send(self.zdev, self.COMMANDS['MOVE_ABS'], pos)
278 self._receive()
279 self.atBottom = not self.atBottom
280
281 def finalPosition(self):
282 '''
283 Move the probe to the washing position,

473

284 which is 10000 above the slide position
285 '''
286 if self.bottomPosition == 0 or not self.connected:
287 return
288 self.homeAll()
289 pos = self.bottomPosition - 10000#NOTE CONSTANT VALUE
290
291 self._send(self.zdev, self.COMMANDS['MOVE_ABS'], pos)
292 self._receive()

474

CoordinateMappers/zaberInterface.py
001 import serial, struct, abc
002
003 class ZaberInterface(object, metaclass=abc.ABCMeta):
004 '''
005 An abstract base class for interacting with zaber linear stages
006 Encodes methods for basic IO with a stage
007 '''
008 def __init__(self):
009 #the serial object to talk to
010 self.stage = None
011
012 #standard commands, more at
013 #http://www.zaber.com/wiki/Manuals/
014 #Binary_Protocol_Manual#Quick_Command_Reference
015 self.COMMANDS = {
016 'HOME' : 1,
017 'RENUMBER' : 2,
018 'MOVE_ABS' : 20,
019 'MOVE_REL' : 21,
020 'CUR_POS' : 60
021 }
022 super().__init__()
023
024 '''
025 home and renumber don't receive
026 as they don't know the number of connected devices
027 '''
028 def home(self, device = 0):
029 '''
030 home the specified device or all
031 device: the device to home
032 '''
033 self._send(device, self.COMMANDS['HOME'])
034
035 def renumber(self):
036 '''
037 renumber all devices
038 '''
039 self._send(0, self.COMMANDS['RENUMBER'])
040
041 def getPosition(self, device):
042 '''
043 provides the current location of the requested device
044 device: the device to query
045 '''
046 self._send(device, self.COMMANDS['CUR_POS'])
047 (deviceOut, command, data) = self._receive()
048 #sometimes the receives can get misaligned
049 if device == deviceOut:
050 return data
051 else:
052 return -1
053
054 def _openPort(self, portName, timeout=None):
055 '''

475

056 begin communication with a serial stage
057 portName: the name of the port to communicate with
058 timeout: the time to wait for a reply.
059 Set to None for blocking calls
060 '''
061 try:
062 self.stage = serial.Serial(portName, 9600, 8,
063 'N', 1, timeout=timeout)
064 except Exception as ext:
065 print(ext)
066 print("Error initializing {}!".format(portName))
067 raise ValueError("stage not initialized!")
068
069 def _send(self, device, command, data=0):
070 '''
071 send a packet using the specified device number,
072 command number, and data
073 The data argument is optional and defaults to zero
074 device: the id of the connected device
075 command: a command, using the dictionary in init
076 data: the optional data to send as well
077 '''
078 if self.stage == None:
079 raise ValueError("stage not initialized!")
080 data = int(data)
081 packet = struct.pack('<BBl', device, command, data)
082 self.stage.write(packet)
083
084 def _receive(self):
085 '''
086 reads the serial port
087 there must be 6 bytes to receive (no error checking)
088 returns the (device, command, data)
089 '''
090 if self.stage == None:
091 raise ValueError("stage not initialized!")
092 r = [0,0,0,0,0,0]
093 for i in range (6):
094 r[i] = ord(self.stage.read(1))
095
096 data = (256.0**3.0*r[5])
097 + (256.0**2.0*r[4])
098 + (256.0*r[3])
099 + (r[2])
100 if r[5] > 127:
101 data -= 256.0**4
102
103 device = r[0]
104 command = r[1]
105
106 return (device, command, data)
107
108 def findPorts(self):
109 '''
110 Query each COM port for a possible connection.
111 Will work for windows only
112 '''

476

113 result = []
114 for i in range(256):
115 try:
116 name = 'COM{}'.format(i)
117 s = serial.Serial(name)
118 result.append(name)
119 s.close()
120 except serial.SerialException:
121 pass
122 return result

477

CoordinateMappers/zaberMapper.py
001 from CoordinateMappers import coordinateMapper
002 from CoordinateMappers import zaber3axis
003
004 from ImageUtilities import blob
005
006 class zaberMapper(coordinateMapper.CoordinateMapper):
007 '''
008 A coordinate mapper of the zaber XYZ stage.
009 Has a connected instrument, but otherwise the coordinate
010 mapping is fairly simple.
011 '''
012
013 def __init__(self):
014 '''
015 Set up a new instance of zaberMapper
016 '''
017 super().__init__()
018 #note there is a connected instrument
019 self.isConnectedToInstrument = True
020 self.instrumentExtension = '.txt'
021 self.instrumentName = 'Zaber LMJ'
022 self.reflectCoordinates = False
023 #set up the instrument as a 3axis zaber stage
024 self.connectedInstrument = zaber3axis.Zaber3Axis()
025
026 def isValidEntry(self, inStr):
027 '''
028 Validate the possible coordinate
029 inStr: the string to test, expects two floats separated
030 by a space
031 returns true if extract point will successfully parse
032 '''
033 if " " in inStr:
034 toks = inStr.split(" ")
035 try:
036 float(toks[0])
037 float(toks[1])
038 return True
039 except:
040 return False
041 else:
042 return False
043
044 def extractPoint(self, inStr):
045 '''
046 Parse the physical coordinate from the provided string
047 inStr: the input string
048 returns an (x,y) tuple of the physical coordinate,
049 or None if string is not valid
050 '''
051 if not self.isValidEntry(inStr):
052 return None
053 toks = inStr.split(" ")
054 return((float(toks[0]), float(toks[1])))
055

478

056 def predictName(self, pixelPoint):
057 '''
058 Predicts the physical location from the pixel position.
059 When the instrument is connected, reads in the
060 actual physical point
061 pixelPoint: (x,y) tuple in global coordinate space
062 '''
063 #read position if instrument is initialized
064 if self.connectedInstrument.connected:
065 xy = self.connectedInstrument.getPositionXY()
066 return '{} {}'.format(xy[0], xy[1])
067 #else return blank string
068 return ''
069
070 def predictLabel(self, physPoint):
071 '''
072 Predict the label of a registration point based on
073 the physical location. Since there are no set, named points
074 for the stage this always returns a blank string
075 physPoint: (x,y) tuple in physical coordinate space
076 '''
077 return ''
078
079 def predictedPoints(self):
080 '''
081 Returns a list of predicted, set points in the pixel
082 coordinate space. In this particular implementation,
083 only returns the current position of the probe when the
084 instrument is connected and enough training points
085 are provided.
086 '''
087 if len(self.physPoints) < 2 or
088 not self.connectedInstrument.connected:
089 return []
090 else:
091 phys = self.connectedInstrument.getPositionXY()
092 return [self.invert(phys)]
093
094 def loadInstrumentFile(self, filename):
095 '''
096 Loads a zaberMapper instrument file and returns a list of blobs
097 with the target locations.
098 filename: the file to load
099 returns a list of blob objects
100 '''
101 result = []
102 reader = open(filename, 'r')
103
104 for l in reader.readlines():
105 toks = l.split('\t')
106 if len(toks) == 3:
107 #group is encoded
108 result.append(blob.blob(float(toks[0]), float(toks[1]),
109 group = int(toks[2])))
110 else:
111 #no group
112 result.append(blob.blob(float(toks[0]), float(toks[1])))

479

113
114 return result
115
116 def saveInstrumentFile(self, filename, blobs):
117 '''
118 Save the list of target locations as an instrument file
119 filename: the file to save
120 blobs: the list of target blob locations
121 '''
122 if blobs is None or len(blobs) == 0:
123 return
124 output = open(filename, 'w')
125 for p in blobs:
126 if p.group is not None:
127 output.write('{0:.0f}\t{1:.0f}\t{2}\n'
128 .format(p.X, p.Y, p.group))
129 else:
130 output.write('{0:.0f}\t{1:.0f}\n'.format(p.X, p.Y))
131 output.close()
132
133 def getIntermediateMap(self):
134 '''
135 This is ignored as no intermediate map is required
136 '''
137 return [('Not in use', 0, 0)]
138
139 def setIntermediateMap(self, points):
140 '''
141 This is ignored as no intermediate map is required
142 '''
143 pass

480

Single Cell Profiling on the C60 SIMS

Motivation, Overview and Extensions

The lab-built, hybrid C60 SIMS/MALDI mass spectrometer is a prototype instrument for

performing SIMS analysis on biological samples. Utilizing the cluster ion beam facilitates

desorption/ionization of intact molecules < 1000 Da. With the Q-Star mass analyzer, tandem MS

could provide structural information on unknown constituents. Single cell profiling with SIMS

would complement the established MALDI-MS analysis by providing spectral information on

low-mass compounds with minimal sample damage. However, several limitations in

instrumentation prevented direct application of existing workflows for optically-guided MS.

Spectra could not be acquired at specific, discrete locations and stored into separate data files.

Instead, a “chromatogram” was acquired during the entire experiment. To parse the continuous

stream of spectra, the time and location of the sample stage had to be monitored. This was

accomplished with an Arduino microcontroller which output time and position to a separate

computer. The board could further regulate the primary ion beam by detecting stage motion and

modulating the gate voltage accordingly. The file containing stage information was utilized

along with the mass spectra to analyze spectra from single cells. This section presents the

Arduino and Matlab code for performing these experiments. The Matlab scripts should be run in

order of ConvertAllWifftoMZ, LoadData, DataCleanup, RemoveSplits. Afterwards, the data

variable will contain m/z and intensity values suitable for a variety of multivariate analyses. Five

helper functions for LoadData are also included. Additional details may be found in Chapter 7.

Clearly improvements in usability are possible, but would require finer control of the mass

analyzer or sample stage including hardware modifications, which were avoided.

481

SIMS_linear_encoder_tracker.ino
001 //keep track of current count of steps
002 volatile long countAB = 0;
003 volatile long countCD = 0;
004 //previous value of count
005 volatile long countABp = 0;
006 volatile long countCDp = 0;
007 //additional variables for times
008 volatile unsigned long timep, time, etime, times, lastMoveTime;
009 //the current state of each encoder
010 boolean A, B, C, D;
011 //state of MS and if acquisition has started
012 boolean I, started;
013 //State of encoders and their previous values
014 byte stateAB, stateABp, indexAB, stateCD, stateCDp, indexCD;
015 //convert state to a step movement
016 volatile int QEM[16]={0,-1,0,1,1,0,-1,0,0,1,0,-1,-1,0,1,0};
017 //control when the bean is turned on and off
018 long beamStart = 30; //microseconds
019 long beamStop = 40; //microseconds
020
021 void setup()
022 {
023 //start serial communication at 9600 baud
024 Serial.begin(9600);
025 //signal recording computer
026 Serial.println("CLEARDATA");
027 //header of output file
028 Serial.println("LABEL,Time,t,AB,CD,C60status");
029 pinMode(19,INPUT);//Mass spec state
030 //handle change in instrument state
031 attachInterrupt(4,Trigger,CHANGE);
032 I = digitalRead(19);
033 //check if instrument is already reading
034 if ((I==HIGH))
035 started = 1;
036 else
037 started = 0;
038 //initialize input pins for encoder and handle changes
039 pinMode(2, INPUT);//Channel A of encoder 1 blue
040 pinMode(3, INPUT);//Channel B of encoder 1 black
041 pinMode(21, INPUT);//Channel A of encoder 2 purple
042 pinMode(20, INPUT);//Channel B of encoder 2 green
043 attachInterrupt(0,ABchange,CHANGE);
044 attachInterrupt(1,ABchange,CHANGE);
045 attachInterrupt(2,CDchange,CHANGE);
046 attachInterrupt(3,CDchange,CHANGE);
047
048 pinMode(13,OUTPUT);//LED PIN and beam control
049 digitalWrite(13,HIGH);//send 5V to Relay, beam OFF
050 timep = micros(); //set initial time
051 lastMoveTime = micros();
052 //read the initial value of A,B,C,D encoders
053 A = digitalRead(2);//Y axis
054 B = digitalRead(3);
055 C = digitalRead(21);//X axis

482

056 D = digitalRead(20);
057 //set initial state value
058 if ((A==HIGH)&&(B==HIGH)) stateABp = 0;
059 if ((A==HIGH)&&(B==LOW)) stateABp = 1;
060 if ((A==LOW)&&(B==LOW)) stateABp = 2;
061 if ((A==LOW)&&(B=HIGH)) stateABp = 3;
062
063 if ((C==HIGH)&&(D==HIGH)) stateCDp = 0;
064 if ((C==HIGH)&&(D==LOW)) stateCDp = 1;
065 if ((C==LOW)&&(D==LOW)) stateCDp = 2;
066 if ((C==LOW)&&(D=HIGH)) stateCDp = 3;
067 }
068
069 //main control loop
070 void loop()
071 {
072 I = digitalRead(19);
073 //only perform checks if MS is acquiring
074 if ((I==HIGH))
075 {
076 //current time
077 time = micros();
078 //elapsed time
079 etime = time - timep;
080 //update if > 100 microseconds elapsed
081 if (etime > 1) //0.1s
082 {
083 //print time delay (time - start time)
084 Serial.print("DATA,TIME,");
085 Serial.print(time-times);
086 Serial.print(",");
087 //print counts of encoders
088 Serial.print(countAB);
089 Serial.print(",");
090 Serial.print(countCD);
091 Serial.print(",");
092 //print if the stage is moving
093 Serial.println((countAB == countABp) &&
094 (countCD == countCDp) ?
095 "stopped" : "moving");
096 //record time of previous update
097 timep = time;
098
099 //if the stage is stopped (no change from previous values)
100 if ((countAB == countABp) && (countCD == countCDp))
101 {
102 //determine how long since last movement
103 long tempTime = micros() - lastMoveTime;
104 //if within the beam start and stop times, turn on beam
105 if (tempTime > beamStart && tempTime < beamStop)
106 digitalWrite(13, LOW);
107 else
108 digitalWrite(13, HIGH);
109 }
110 //beam off while moving
111 else
112 {

483

113 digitalWrite(13, HIGH);
114 //update last move time
115 lastMoveTime = micros();
116 }
117 //record previous counts
118 countABp = countAB;
119 countCDp = countCD;
120
121 }
122
123 }
124 }
125
126 //handle state change on the MS status
127 void Trigger ()
128 {
129 I = digitalRead(19);
130 //if analysis has not started
131 if ((started==0)&&(I==HIGH))
132 {
133 //record start time and initialize counts
134 times = micros();
135 started=1;
136 countAB=0;
137 countCD=0;
138 noInterrupts ();
139 }
140 }
141
142 //handle Y encoder change
143 void ABchange()
144 {
145 A = digitalRead(2);
146 B = digitalRead(3);
147 //determine state value
148 if ((A==HIGH)&&(B==HIGH)) stateAB = 0;
149 if ((A==HIGH)&&(B==LOW)) stateAB = 1;
150 if ((A==LOW)&&(B==LOW)) stateAB = 2;
151 if ((A==LOW)&&(B==HIGH)) stateAB = 3;
152 indexAB = 4*stateAB + stateABp;
153 byte oldSREG = SREG; // remember if interrupts are on or off
154 noInterrupts ();
155 //update count based on state
156 countAB = countAB + QEM[indexAB];
157 SREG = oldSREG; // turn interrupts back on, if they were on
158 //record previous state
159 stateABp = stateAB;
160 }
161
162 void CDchange()
163 {
164 C = digitalRead(21);
165 D = digitalRead(20);
166 //determine state value
167 if ((C==HIGH)&&(D==HIGH)) stateCD = 0;
168 if ((C==HIGH)&&(D==LOW)) stateCD = 1;
169 if ((C==LOW)&&(D==LOW)) stateCD = 2;

484

170 if ((C==LOW)&&(D==HIGH)) stateCD = 3;
171 indexCD = 4*stateCD + stateCDp;
172 byte oldSREG = SREG; // remember if interrupts are on or off
173 noInterrupts ();
174 //update count based on state
175 countCD = countCD + QEM[indexCD];
176 SREG = oldSREG; // turn interrupts back on, if they were on
177 //record previous state
178 stateCDp = stateCD;
179 }

485

ConvertAllWifftoMZ.m
01 function [] = ConvertAllWifftoMZ(dirpath, ptrn)
02 %%Generates mzXML files for each wiff in dirpath
03 %dirpath: string of full path to directory containing files
04 %ptrn: string for regex matching to export just a subset
05
06 t = cd(dirpath);
07
08 files = dir([ptrn '*.wiff']);
09
10 for i = 1:length(files)
11 filename = files(i).name;
12 %only convert if the mzXML does not exist. Assumes -Sample 1 is
13 %appended to the file
14 if exist([filename(1:end-5) '-Sample 1.mzXML'],'file') ~= 2
15 %call msconvert from proteowizard. also must add binary
16 %to path variable in windows!
17 system(['msconvert ' filename ' --mzXML'])
18 end
19 end
20 cd(t);
21 end

486

LoadData.m
001 clear
002
003 %name of directory containing wiffs (and therefore mzxmls)
004 wiffLocation = 'wiff';
005 %name of directory containing positions (xlsx files)
006 posLocation = 'arduino';
007 %the dwell time on the stage
008 dwellTime = 6; %seconds
009 %mz range to resample to
010 mzrange = [100 850];
011 %number of mz values for binning
012 resampleN = 10000;
013
014 parentDirs = {'../../SIMS/20160524_DRG_TRIPCHCA/',...
015 %list additional dirs, relative to current path
016 };
017 mzxmls = {'slide15b-Sample 1.mzXML',...
018 %list additional files here, relative to parentDirs
019 };
020 %directory with cell locations (cell find files from microMS)
021 locDir = '../../SIMS/20160524_mixCHCA/images';
022 %specific cell find files relative to locDir
023 celllocs = {'slide15b/slide15bcells.txt',...
024 %list additional files here
025 };
026
027 for i = 1:length(mzxmls)
028 %should be -sample, get first token
029 %will break if '-' is in file name
030 t = strsplit(mzxmls{i}, '-');
031 %record name and directory
032 data(i).name = t{1};
033 data(i).dirname = parentDirs{i};
034
035 %read location file. the 8 is for header lines and is 9 in current
036 %version of microMS
037 t = dlmread(fullfile(locDir, celllocs{i}), '\t', 8,0);
038
039 %read in arduino-generated file
040 t = xlsread(fullfile(parentDirs{i}, posLocation,
041 [data(i).name '.xlsx']));
042
043 %correct time for overflow on long experiments
044 if sum(diff(t(:,2)) < 0) == 1
045 ind = find(diff(t(:,2)) < 0)+1;
046 t(ind:end,2) = t(ind:end,2) + t(ind-1,2);
047 elseif sum(diff(t(:,2)) < 0) > 1
048 error('too many overflows!')
049 end
050
051 %correct for slight time shift between wall time and arduino time
052 lm = fitlm(t(:,2), t(:,1)*24*60*60, 'linear');
053 startT = t(1,2);
054 t(:,2) = predict(lm, t(:,2));
055 t(:,2) = t(:,2) - t(1,2)+startT/1e6;

487

056
057 %record corrected time and x/y positions
058 data(i).pos = t(:,2:4);
059
060 %determine when stopping occurred with helper function
061 data(i).stops = detectStopping(data(i).pos(:,2:3));
062
063 %parse stop times from stops and dwell times
064 [data(i).stepStart, data(i).stepEnd] = ...
065 parseStopTimes(data(i).stops, data(i).pos(:,1), dwellTime);
066
067 %read in mzxml
068 t = mzxmlread(fullfile(parentDirs{i}, wiffLocation,mzxmls{i}), ...
069 'Verbose', false);
070
071 %parse time from string in retentionTime
072 data(i).MStime = cellfun(@(a) str2double(a(3:end-1)), ...
073 {t.scan(:).retentionTime});
074
075 %get 184 and 760 intensity
076 cur184 = arrayfun(@(a) extractIntens(184.09, a.peaks.mz), t.scan);
077 cur760 = arrayfun(@(a) extractIntens(760.6, a.peaks.mz), t.scan);
078
079 %determine which scans contain MS for a single cell using findInd
080 data(i).MSscans = arrayfun(@(a,b) ...
081 findInd(a, b, data(i).MStime, cur184), ...
082 data(i).stepStart, data(i).stepEnd);
083 data(i).MSscans760 = arrayfun(@(a,b) ...
084 findInd(a, b, data(i).MStime, cur760), ...
085 data(i).stepStart, data(i).stepEnd);
086
087 %report number of 'missing' scans before removing
088 sum(data(i).MSscans == 0)
089 data(i).MSscans = data(i).MSscans(data(i).MSscans ~= 0);
090
091 %resample just the scans containing data as separate temp variables
092 data(i).mzs = linspace(mzrange(1), mzrange(2), resampleN);
093 t3 = arrayfun(@(a) ...
094 parseAndResample(a.peaks.mz, resampleN, mzrange), ...
095 t.scan(data(i).MSscans), 'UniformOutput', false);
096 t2 = arrayfun(@(a) ...
097 parseAndResample(a.peaks.mz, resampleN, mzrange), ...
098 t.scan(data(i).MSscans760), 'UniformOutput', false);
099
100 %record intensity matrices for 184 and 760
101 data(i).intens = vertcat(t3{:});
102 data(i).intens760 = vertcat(t2{:});
103 data(i).sumIntens = (data(i).intens + data(i).intens760);
104
105 end
106 %clear temp variables before saving
107 clear i t posLocation wiffLocation mzxmls tic t2 t3 t4 t5 ans
108 save loadedData184_760

488

detectStopping.m
1 function [stopped] = detectStopping(positions)
2 %takes a nx2 matrix of x,y positions
3 %returns true if there was a stop
4 %output(1) is always false
5 dists = diff(positions);
6 stopped = [dists(:,1) == 0 & dists(:,2) == 0;0];
7 end

parseStopTimes.m
01 function [startTimes, endTimes] = ...
02 parseStopTimes(stopped, time, dwellTime)
03 %takes the boolean array stopped, the time in seconds,
04 %and nominal dwell time and determines the start and end times
05 %of analysis
06
07 %good way to find when state changes in boolean array
08 steps = [0; diff(stopped)];
09 startTimes = time(steps==1);
10 endTimes = time(steps==-1);
11
12 %remove first stop if < first start (stage stopped at beginning)
13 if startTimes(1) > endTimes(1)
14 endTimes(1) = [];
15 end
16
17 %remove points larger than end times, for stage stopping at end
18 if length(startTimes) > length(endTimes)
19 startTimes(length(endTimes):end) = [];
20 end
21
22 %remove stops < 1/2 dwell or > dwell + 1
23 durations = endTimes - startTimes;
24
25 startTimes(durations < dwellTime / 2 | ...
26 durations > dwellTime +1) = [];
27 endTimes(durations < dwellTime / 2 | ...
28 durations > dwellTime +1) = [];
29
30 end

extractIntens.m
01 function [intens] = extractIntens(mzval, input)
02 %given a target mzval and input from readmzxml, return intensity
03 %closest to mzval. A helper function for vectorizing processing
04
05 %separate intercalated data
06 intens = input(2:2:end);
07 mzs = input(1:2:end);
08
09 %find closest mz value and return intens
10 [~, ind] = min(abs(mzval - mzs));

489

11 intens = intens(ind);
12 end

490

findInd.m
01 function [ind] = findInd(start, stop, times, tic)
02 %helper function for vectorizing processing
03 %given a start and stop time along with time array and
04 %tic of the ion of interest, returns which index had max intens
05
06 %find difference between start and time
07 dif = times-start;
08
09 %if no times are after start time, return 0
10 if isempty(min(dif(dif >= 0)))
11 ind = 0;
12 else
13 %find start index, smallest dif > 0
14 indStart = find(dif == min(dif(dif >= 0)));
15 %same thing for stop index
16 dif = times - stop;
17 if isempty(max(dif(dif <= 0)))
18 ind = 0;
19 else
20 indEnd = find(dif == max(dif(dif <= 0)));
21 %find max index between start and end
22 [~, ind] = max(tic(indStart:indEnd));
23 %offset by indstart so it matches the whole time series
24 ind = ind + indStart - 1;
25 end
26 end
27
28 end
29

parseAndResample.m
01 function [intens, mzsout] = parseAndResample(inputmz, N, mzrange)
02 %helper function for resampling data from readmzxml
03 %given input data, number of mz values, and mz range
04 %returns the resampled intensity and output mz values
05
06 %separate mz and intens from intercalated data
07 mzs = inputmz(1:2:end);
08 intens = inputmz(2:2:end);
09
10 %calculate linearly spaced mz values in range
11 mzsout = linspace(mzrange(1), mzrange(2), N);
12 %determine bin size
13 bin = (mzsout(2) - mzsout(1))/2;
14
15 %calculate intensity as sum intensity within bin width
16 intens = arrayfun(@(a) ...
17 sum(intens(mzs < a + bin & mzs > a - bin)),...
18 mzsout);
19
20 end

491

DataCleanup.m
01 clear
02 load loadedData184_760
03
04 %remove end position which corresponds to the stage moving back to start
05 for i = 1:length(data)
06 data(i).stepStart(end) = [];
07 data(i).stepEnd(end) = [];
08 data(i).MSscans(end) = [];
09 data(i).MSscans760(end) = [];
10 data(i).intens(end,:) = [];
11 data(i).intens760(end,:) = [];
12 data(i).sumIntens(end,:) = [];
13 end
14
15 %any additional modifications go here. When two cells are too close
16 %the stage doesn't move enough to count as a separate event
17 i = 1;
18 data(i).celllocs(59:60,:) = [];
19 data(i).celllocs(74:75,:) = [];
20 data(i).celllocs(321,:) = [];
21
22 %this code can be uncommented and run with F9 to find discrepancies
23 %between the MS and movement.
24
25 % i = 9; len = 15;
26 % figure
27 % for j = 15:5:400
28 % subplot(2,1,1)
29 % plot(data(i).celllocs(j:j+len,1), data(i).celllocs(j:j+len,2),'o-')
30 % for k = j:j+len
31 % text(data(i).celllocs(k,1), data(i).celllocs(k,2), num2str(k));
32 % end
33 % tt = data(i).pos(:,1) > data(i).stepStart(j) & ...
34 % data(i).pos(:,1) < data(i).stepEnd(j);
35 % for k = j+1:j+len
36 % tt = tt | (data(i).pos(:,1) > data(i).stepStart(k) & ...
37 % data(i).pos(:,1) < data(i).stepEnd(k));
38 % end
39 % subplot(2,1,2)
40 % plot(data(i).pos(tt,3), -data(i).pos(tt,2), 'o-')
41 % title(num2str(j))
42 % pause
43 % end
44
45 %this is for data quality
46 %remove first 10 cells
47 for i = 1:length(data)
48 data(i).stepStart(1:10) = [];
49 data(i).stepEnd(1:10) = [];
50 data(i).MSscans(1:10) = [];
51 data(i).MSscans760(1:10) = [];
52 data(i).intens(1:10,:) = [];
53 data(i).intens760(1:10,:) = [];
54 data(i).sumIntens(1:10,:) = [];
55 data(i).celllocs(1:10,:) = [];

492

56 end
57
58
59 %remove low signal (m/z 184 < 250)
60 for i = 1:length(data)
61 [~, ind184] = min(abs(data(i).mzs - 184.07));
62 toremove = max(data(i).intens(:,ind184-1:ind184+1), [], 2) < 250;
63 sum(toremove)/length(toremove)
64 mz184stats(i).startCells = length(data(i).stepStart);
65 mz184stats(i).removedCells = toremove;
66 mz184stats(i).celllocs = data(i).celllocs;
67 data(i).stepStart(toremove) = [];
68 data(i).stepEnd(toremove) = [];
69 data(i).MSscans(toremove) = [];
70 data(i).MSscans760(toremove) = [];
71 data(i).intens(toremove,:) = [];
72 data(i).intens760(toremove,:) = [];
73 data(i).sumIntens(toremove,:) = [];
74 data(i).celllocs(toremove,:) = [];
75 mz184stats(i).remainCells = length(data(i).stepStart);
76 end
77
78 save cleanDataLow184

RemoveSplits.m
01 clear
02 load cleanData
03
04 %remove data where the 184 and 760 intensity
05 %do not occur in the same scan
06 for i = 1:length(data)
07 toRemove = data(i).MSscans ~= data(i).MSscans760;
08 disp(sum(toRemove)/length(data(i).stepStart));
09 data(i).stepStart(toRemove) = [];
10 data(i).stepEnd(toRemove) = [];
11 data(i).MSscans(toRemove) = [];
12 data(i).MSscans760(toRemove) = [];
13 data(i).intens(toRemove,:) = [];
14 data(i).intens760(toRemove,:) = [];
15 data(i).sumIntens(toRemove,:) = [];
16 data(i).celllocs(toRemove,:) = [];
17 end
18
19 save cleanNoSplitData

493

Determination of Removal Efficiency from Radiographic Images

Motivation, Overview and Extensions

For characterization of the liquid microjunction extraction probe (Chapter 8), one parameter

which had to be determined was the removal efficiency from a MALDI target plate. The

experimental details are described more fully in Chapter 8, but for the discussion here the output

data consisted of two images, before and after extraction, where the intensity at each pixel

corresponded to the radiographic intensity at the position. To estimate the removal efficiency, the

normalized intensity was compared between each image to determine the spatial distribution of

the fraction removed during extraction. Since the resulting distribution contained random noise,

the removal efficiency was estimated by fitting the distribution to a general, 2-dimensional

Gaussian function. Details on the fitting equation are found in Chapter 8. The code below

utilizes hard coded values which could be adapted for future analyses. The output is a series of

images as seen in Figure 8.8 and the fitting parameters, reported in Table 8.1.

494

RemovalFit.m
001 close all
002 %input images
003 pre=imread('1.tif','tiff');
004 post=imread('2.tif','tiff');
005
006 %cropping points
007 x1=15;
008 x2=425;
009 y1=30;
010 y2=100;
011
012 %crop and convert to double arrays for fitting
013 pre=double(pre(y1:y2,x1:x2));
014 post=double(post(y1:y2,x1:x2));
015
016 %the approximate centers of the extraction points, from data cursor
017 approxCents = [46 26
018 132 26
019 214 26
020 292 26
021 379 26
022];
023
024 %center of background region, not on a spot
025 bkgrd = [80 50];
026 %size of subregion to examine
027 window = 10;
028
029 %center of region, on a spot but not extracted
030 offEx = [33 40];
031 %account for transpose with matlab images
032 x = offEx(2);
033 y = offEx(1);
034 %crop out off-spot image
035 preOff = pre(x-window:x+window,y-window:y+window);
036 postOff = post(x-window:x+window,y-window:y+window);
037
038 %normalize images to mean in offExtraction area
039 %to account for exposure differences
040 pre = pre/mean(preOff(:));
041 post = post/mean(postOff(:));
042
043 %repeat extraction with background area
044 x = bkgrd(2);
045 y = bkgrd(1);
046 preBack = pre(x-window:x+window,y-window:y+window);
047 postBack = post(x-window:x+window,y-window:y+window);
048
049 %temporary image for estimated intensities
050 temp = zeros(size(preBack));
051
052 %functions for fitting
053 aval = @(theta, sigx, sigy) ...
054 cos(theta)^2/(2*sigx^2) + sin(theta)^2/(2*sigy^2);
055 bval = @(theta, sigx, sigy)...

495

056 -sin(2*theta)/(4*sigx^2) + sin(2*theta)/(4*sigy^2);
057 cval = @(theta, sigx, sigy)...
058 sin(theta)^2/(2*sigx^2) + cos(theta)^2/(2*sigy^2);
059
060 %gaussian 2d functions
061 gaus2d = @(A, mux, muy, theta, sigx, sigy, x, y)...
062 A*exp(-(aval(theta, sigx, sigy) .* (x-mux).^2 ...
063 -2*bval(theta, sigx, sigy) .* (x-mux) .* (y-muy)...
064 +cval(theta, sigx, sigy) .*(y-muy).^2));
065
066 %open new figure, initialize fits (fts)
067 figure;
068 fts = [];
069
070 %keep x,y coordinates as they are reused
071 [xs, ys] = meshgrid(-window:window,-window:window);
072 xs = xs(:);
073 ys = ys(:);
074
075 %for each extraction
076 for i = 1:size(approxCents,1)
077 %cut out region around center
078 %transpose the centers
079 x = approxCents(i,2);
080 y = approxCents(i,1);
081 %subtract background intensity
082 preImg = pre(x-window:x+window,y-window:y+window) ...
083 - mean(preBack(:));
084 postImg = post(x-window:x+window,y-window:y+window) ...
085 - mean(postBack(:));
086 %show previous image
087 subplot(5,5, 5*(i-1)+1);
088 imshow(mat2gray(preImg, [0 1.5]));
089 %show post image
090 subplot(5,5, 5*(i-1)+2);
091 imshow(mat2gray(postImg, [0 1.5]));
092
093 %show removal distribution (1-post/pre)
094 subplot(5,5, 5*(i-1)+3);
095 diff = 1-(postImg)./(preImg);
096 %absolute is to make the residuals match here
097 imshow(mat2gray(abs(diff), [0 1]));
098
099 %determine fit, A is in [0, 2], x,y in [+/- window], theta 0,2pi,
100 %sigma in 0,window size
101 fts{i} = fit([xs ys], diff(:), gaus2d,...
102 'StartPoint', [.6, 0, 0, pi, 5, 5], ...
103 'Lower', [0, -window, -window, 0, 0, 0],...
104 'Upper', [2, window, window, 2*pi, window, window]);
105
106 %plot estimated extraction profile
107 subplot(5,5,5*(i-1)+4);
108 temp(:) = fts{i}([xs, ys]);
109 imshow(mat2gray(temp, [0 1]));
110
111 %show absolute residuals
112 subplot(5,5,5*(i-1)+5);

496

113 imshow(mat2gray(abs(diff-temp), [0 1]));
114 end;
115
116 %draw titles on just the first row
117 titles = {'Before', 'After', 'Fraction Removed', 'Fit', 'Residuals'};
118 for i = 1:5
119 subplot(5,5,i)
120 title(titles{i});
121 end
122 colormap hot
123
124 %display fit information in console
125 for i = 1:5
126 fts{i}
127 end

497

Migration Time Alignment for CE MS

Motivation, Overview and Extensions

A challenge in any separation is the comparison of migration times between runs. For CE,

numerous variables are difficult to control due to sample or environmental variation, leading to

variance in migration times. In the simplest case, as assumed here, the change is a linear

relationship between samples. To correct and align migration times, all that is required is the

determination of migration time for several compounds found in each sample, followed by

mapping the two migration times onto each other by linear regression.

First, extract ion electropherograms are exported from Bruker DataAnalysis using the

method replicated below for each m/z value of interest. The resulting text files are then read into

Matlab with the provided extractEIE function for analysis. While code is present for attempting

to normalize to the migration time “standard” peaks, the data was not utilized in a quantitative

way. A clear improvement would be the direct analysis of raw electropherogram data instead of

exporting the intermediate values. Addition of internal standards could facilitate more

quantitative multivariate analysis.

498

Export EIC Method
01 Option Explicit
02
03 'Remove previous analyses
04 Analysis.Chromatograms.Clear
05 Analysis.Compounds.Clear
06
07 Dim i
08
09 'initialize array with m/z values from bigList
10 Dim vaMyArray
11 vaMyArray = Array(155.0344,179.1446,175.1195,203.223571,146.165722,
12 89.107873,112.087472,131.129671,189.135151,161.129,104.1075,
13 241.1301,114.0660,133.097703,90.0543,147.112,123.0558,136.06232,
14 146.1181,104.0712,156.0773,138.091889,138.0919,132.1009,162.113019,
15 152.057235,139.050753,170.081719,154.0868,137.0594,136.0841,
16 177.1028,191.118438,168.102454,170.0817,209.092618,219.149738,
17 204.1236,184.0974,76.0399,132.0768,161.092618,244.092,242.125315,
18 268.1046,239.1066,325.043696,90.0543,130.086804,138.055,291.13046,
19 104.071154,295.129398,104.071154,90.055504,118.0858,120.0661,
20 106.0504,132.102454,132.1009,223.075255,124.039854,132.102454,
21 120.066069,133.0646,205.0977,150.058876,147.076968,176.103517,
22 148.060984,247.140631,166.086804,235.108268,268.10458,182.0817,
23 100.039854,139.050753,137.046336,116.071154,196.097369,198.0766,
24 104.071154,122.027576,134.045334,118.0862,144.102,306.145382,
25 132.066069,255.085834,208.0971,279.08034,221.0926,235.108268,
26 269.088596,142.026922,348.070913,324.05968,184.073872,86.060589,
27 364.0653,233.129003,265.112308,126.022491,245.077363,192.102454,
28 243.098098,162.0889,178.0868,134.060589,279.08034,206.081719,
29 192.0665,220.118,308.091634,330.060348,249.145048,164.038141,
30 130.050419,190.0499,244.0928)
31
32 Dim nArraySize
33 nArraySize = UBound(vaMyArray) - LBound(vaMyArray)
34 ReDim vaEICDefinitions(nArraySize)
35
36 'add new EIC definition for each m/z value
37 For i = LBound(vaMyArray) To UBound(vaMyArray)
38 Call AddEICDefinition(i, CStr(vaMyArray(i)))
39 Next
40
41 'add all definitions to the current EICs and smooth
42 Analysis.Chromatograms.AddChromatograms(vaEICDefinitions)
43 Analysis.Chromatograms.Smooth
44
45 Form.close
46
47 'helper function for defining an EIC
48 Sub AddEICDefinition(i, sRange)
49 Dim EIC
50 Set EIC = CreateObject("DataAnalysis.EICChromatogramDefinition")
51 EIC.MSFilter.Type = daMSFilterMS
52 EIC.ScanMode = daScanModeFullScan
53 EIC.Polarity = daPositive
54 EIC.WidthLeft = "0.005"
55 EIC.WidthRight = "0.005"

499

56 EIC.Range = sRange
57
58 Set vaEICDefinitions(i) = EIC
59 End Sub
60
61 'save each chromatogram as a separate txt file
62 dim chrom
63 For i = LBound(vaMyArray) To UBound(vaMyArray)
64 set chrom = Analysis.Chromatograms(i - LBound(vaMyArray)+1)
65 chrom.Export "D:\Data\" +CStr(vaMyArray(i))+".txt", daXY
66 Next
67
68 Form.close

500

extractEIE.m
01 function [masses, migrationTime, intensities] = extractEIE(dirname)
02 %from a directory of text files, extracts the masses, migrationTime
03 %and intensities for each EIE
04
05 %get all files in directory
06 filenames = dir(dirname);
07 %remove directories from filenames
08 filenames = filenames([filenames(:).isdir] == false);
09
10 %read in first file to determine sizes of migration times and masses
11 data = dlmread(fullfile(dirname, filenames(1).name));
12
13 %initialize variable sizes
14 migrationTime = data(:,1);%seconds
15 masses = zeros(1, length(filenames));
16 intensities = zeros(length(migrationTime), length(masses));
17
18 %for each text file
19 for i = 1:length(filenames)
20 %read file
21 data = dlmread(fullfile(dirname, filenames(i).name));
22 %record mass from file name and intensities
23 masses(i) = str2double(filenames(i).name(1:end-4));
24 intensities(:,i) = data(:,2);
25 end
26 end

501

ceAlignAndAnalyze.m
001 clear; close all; clc;
002
003 %directories for sample sets
004 sampleDirs = {
005 '../../Tube 2'
006 '../../Tube 5'
007 };%add more here
008
009 %since reading the raw data is slow, try to read the mat file
010 if ~exist('dataraw.mat', 'file')
011
012 %for each directory
013 for i = 1:length(sampleDirs)
014 %read in text files
015 [mass, time, intens] = ExtractEIE(sampleDirs{i});
016 %record name
017 [~,name,~] = fileparts(sampleDirs{i});
018
019 %perform average smoothing
020 windowSize = 7;
021 intens = filter(ones(1,windowSize)/windowSize, 1, intens);
022 %background adjust
023 intens = msbackadj(time, intens);
024
025 %record all values
026 data(i).mass = mass;
027 data(i).rt = time;
028 data(i).intens = intens;
029 data(i).name = name;
030 end
031 %save for next run
032 save dataraw data
033
034 else
035 load dataraw
036 end
037
038 %read in name/mz values from big list
039 [num, txt] = xlsread('../../Big List.xlsx', 1, '', 'basic');
040 mzs = num(:,2);
041 names = txt(2:end,2);
042
043 %specify mz values to use for alignment
044 mzAlign = [120.0661 132.1025 156.0773 166.0868 76.0399 90.0543];
045 nameAlign = {'Threonine', 'Leucine', 'Histidine', ...
046 'Phenylalanine', 'Glycine', 'Alanine'};
047
048 mass = data(1).mass;
049
050 %determine alignment times and areas
051 for i = 1:length(data)
052 %migration times to use for calibration
053 data(i).calTimes = zeros(size(mzAlign'));
054 %total peak area of each MT standard
055 data(i).calPA = 0;

502

056 intens = data(i).intens;
057 time = data(i).rt;
058 name = data(i).name;
059 %for each peak in MT standard
060 for ii = 1:length(mzAlign)
061 %find nearest mass
062 %if one, use the intensity
063 if(sum(abs(mass-mzAlign(ii)) < 0.001) == 1)
064 inten = intens(:, abs(mass-mzAlign(ii)) < 0.001);
065 %else for more, use the average intensity
066 else
067 inten = mean(intens(:, abs(mass-mzAlign(ii)) < 0.001),2);
068 end
069 %find peak in EIE
070 [pks, locs, w, p] = findpeaks(inten, time, ...
071 %find one peak
072 'NPeaks', 1, 'MinPeakDistance', ...
073 time(end)-time(2));%find largest peak
074 %record time
075 data(i).calTimes(ii) = locs;
076 %calculate peak area for norm
077 data(i).calPA = data(i).calPA + ...
078 trapz(time(abs(time-locs)<w),inten(abs(time-locs)<w));
079 end
080 end
081
082 %determine corrected migration times
083 %first is used as standard
084 data(1).corrRT = data(1).rt;
085 %for all others
086 for i = 2:length(data)
087 %fit to first sample
088 fit2one = fit(data(i).calTimes, data(1).calTimes, 'poly1');
089 %calculate corrected time
090 data(i).corrRT = fit2one(data(i).rt);
091 end
092
093 %draw each m/z value, pausing between
094 figure;
095 for j = 1:length(mass)
096 for i = 1:length(data)
097 subplot(5,4,i); hold on;
098 plot(data(i).corrRT, data(i).intens(:,j))
099 title(data(i).name)
100 xlim([0 2000])
101 end
102 set(gcf, 'Name', num2str(mass(j)))
103 pause
104 end

503

APPENDIX B

MICROMS USER MANUAL

Notes and Acknowledgements

The following is a detailed description of the operation of microMS for performing microscopy-

guided mass spectrometry profiling. First, the capabilities are explained and demonstrated to

enable novice users to quickly begin performing experiments. The second half of the guide

details how to add support for new instrumentation through modifying the source code, which is

found in Appendix A.

microMS is a feature-rich GUI for performing basic image analysis and correlation of image

positions into physical coordinate spaces. The overall goal of this package is to image and locate

a field of cells or other objects dispersed across a microscope slide, allow subpopulations to be

selected based on flexible and user defined criteria, convert the cell / object locations to a

platform dependent set of positions to be used for follow-up assays such as selected cell

collections or mass spectrometry profiling. While developed for single cell analysis by mass

spectrometry, with few modifications, the underlying code is versatile enough for a variety of

targets, image modalities, and follow-up analytical systems. microMS aims to simplify cell

finding, improve coordinate registration, and provide an interface suitable for novice users.

Several additional features are added to expand the repertoire of profiling experiments. For more

advanced users, the addition of new, off-line instrument platforms and even direct instrument

control are possible. This guide will introduce the most common usage of microMS, detail

additional features, and provide a starting point for adding new instrument coordinate systems.

The operation and use of this code has been described in Chapter 5, including an application for

504

high throughput single cell profiling via MALDI (Chapter 6), SIMS (Chapter 7), and follow-up

CE-MS analysis (Chapter 8).

Installation and Startup Instructions

Refer to http://neuroproteomics.scs.illinois.edu/microMS.htm for the most recent instructions for

installation and startup.

Windows Installation and Execution

Most dependencies of microMS are included in standard distribution packages of python 3. We

have had success using anaconda which also includes an IDE

(https://www.continuum.io/downloads). A python 3.X (X >= 5) version is required to be

installed. After installation, pyserial and openslide require separate installations. Pyserial is

installed by opening Windows PowerShell and entering pip install pyserial. This

should automatically install the most recent version. Openslide requires additional binaries,

located here: http://openslide.org/download/ under Windows Binaries. Download and extract the

folders, placing them in your documents or program files. The contained bin folder also must be

added to the operating system path (e.g. C:\Program Files\Openslide\bin\):

http://www.howtogeek.com/118594/how-to-edit-your-system-path-for-easy-command-line-

access/ Once added correctly, the openslide python wrapper is simply installed by entering pip

install openslide-python in PowerShell.

With these dependencies installed, microMS is installed by downloading and extracting the ZIP

file. The main script is run with python microMS.py in a command prompt in the script

directory or by double clicking the microMS.bat file which runs the above command and waits

for a key press.

505

Linux Installation and Execution

With an installation of python 3, the required packages are installed in the terminal with pip3

install <package>. Openslide is installed with:

apt-get install python-openslide
pip3 install openslide-python

After unzipping the microMS file, the main method is run with either python microMS.py

or ./microMS.py after executable permission is granted (i.e. chmod +x microMS.py).

Adding the microMS directory to the PATH variable will allow execution from any directory.

Image File Types

microMS utilizes openslide to read sections of whole slide images. Any openslide-supported

format should be a suitable input, though only Hamamatsu ndpi and bigTiff images have been

thoroughly tested and are accepted by default. For multichannel images, ndpi files should end

with ‘Brightfield’ (for channel 1, brightfield) and ‘Triple’ (for channel 2, RGB fluorescence).

Tiff images should not start with ‘8x’ or ‘64x’. Multichannel tiff images should be indicated

with the suffix ‘c#.tif’ where ‘#’ is a digit between 1 and 9. By default, tiff images can only be

zoomed out by 4x. Tiff images may be decimated to 8x and 64x, generating the files ‘8x<image

name>’ and ‘64x<image name>’ with <image name> being the original file name.	

Opening an Image

On startup, the main GUI window is displayed with the program icon:

An imag

selection

Selecting

filename

ge is opened

n dialog whic

g any image

s as describe

d by selectin

ch prompts

e of a multi

ed above.

ng Open in t

the user for

ichannel-dat

506

the File men

the desired

ta image set

nu (or Ctrl +

d file which

t will open

+ O). This w

will subsequ

all channel

will launch

uently be lo

ls with matc

a file

aded.

ching

Multiple

other:

Image D

Non-pyra

further z

decimate

Both ‘Sin

image of

the set w

image chan

Decimation

amidal tiff i

zoom levels

ed by selectin

ngle Image’

f a multichan

will be decim

nnels (if they

images will

 from 1X t

ng the Decim

and ‘Image

nnel-data im

mated. The ‘

y exist) are l

by default

to 1/256x (

mate option i

 Group’ opti

mage set is se

‘Directory’ o

507

loaded at the

only be abl

(which is re

in the File m

ions are for

elected with

option allow

e same time

le to display

ecommended

menu. Severa

the selection

the ‘Image

ws the select

e and overlai

y at up to

d), tiff ima

al options ar

n of one tiff

Group’ opti

tion of a sing

id on top of

1/4x. To en

age sets mu

e available:

f image. Wh

ion, all imag

gle directory

f each

nable

ust be

en an

ges of

y. All

508

images cotained in sub-directories of the selected directory be decimated as shown

schematically below:

509

Followin

automati

Notice th

displayed

repeated

automati

Image N

Images m

movemen

Each step

frame, an

ng decimatio

cally opened

hat since a

d at higher z

the next ti

cally load th

Navigation

may be navig

nts, the keys

p moves 1/1

nd Shift mov

on of a single

d. The max

single imag

zoom levels.

ime the im

he full image

gated with a

s W, A, S, D

10 of the fra

ves a full fram

e image or a

zoom level i

ge (brightfie

. After deci

age set is o

e stack.

a combinatio

D move the

ame size. C

me. The key

510

a group of m

increases fro

 to:

eld) was de

imation is co

opened. Se

on of keyboa

e view frame

Combining e

ys Q and E zo

multichannel

om:

ecimated, on

omplete, the

electing the

ard and mou

e up, left, do

each key wi

oom out and

images, the

nly the spec

e process doe

e non-decim

use controls

own, and rig

ith Ctrl+Shif

d in:

e image(s) w

cified chann

es not need

mated image

. With keyb

ght, respecti

ift moves 1/

will be

nel is

to be

e will

board

ively.

/2 the

511

512

With the mouse, the scroll wheel is used to zoom in (wheel up) and out (wheel down). When

zooming in, the center of the frame also moves to keep the mouse location in the same position.

Left clicking a position moves that spot to the center of the frame:

The key R will reset the field of view to the top left corner at full zoom. This operation is useful

if the field of view moves too far from the sample area. Moving around an image data set should

be smooth, but due to the size of images, some lag between input and display may occur. Also

note that images are read from disk (not stored into memory/RAM). This design choice was

made to allow microMS to run on a variety of systems without requiring large amounts of

memory. However, reading images on a network drive or external hard drive (USB 2) is very

slow!

513

Switching Image Channels

Displaying different image channels is controlled through the numeric keys and is cycled with

the T or Z key. Each image is enumerated based on its name. For ndpi files, “Brightfield” is

number 1 and “Triple” is number 2. With multichannel tiff images, the number in “c#.tif” is

parsed and assigned to the corresponding image number. Pressing the number of an image will

toggle that corresponding channel on and off. The combination of Crtl + ‘image number’ will

turn all channels off except for the selected channel. It is possible to turn off all image channels,

which will display a black background.

514

Up to 9 different channels may be utilized in one experiment, but only one color (red, green or

blue) is taken from each fluorescent channel during image overlay. The color channel with the

highest intensity is utilized as the “color” for that channel. The brightfield image must be

channel one. Since each image is read from disk, displaying more channels will slow the

response time proportionally.

Blobs

All points of interest in microMS are represented as objects called blobs. Each blob consists of

an x and y coordinate, in pixels, an effective radius and the object’s circularity. The blob area

(used to determine size and circularity) is taken as the number of pixels above the fluorescence

threshold. A blob’s effective radius is then and it’s circularity is 	 ∈ 0,1 . Due

to the calculation of perimeter with pixels, the circularity is generally larger than would be

expected for a non-pixelated object. The x and y position is the center of mass for the Boolean

image of pixels above the specified threshold. Note that this does not account for the intensity of

the underlying image. When blobs are added manually, the resulting circularity is always 1.

Blobs may optionally have a group assigned to them as part of packing routines explained below.

Collections of blobs are stored in lists. Up to 10 different blob lists can be utilized in one image

set. Each list is treated as an independent set of targets and by default only one list is displayed

at a time. Lists spawn new child lists during packing and filtering procedures. Generally, the

first empty list (in increasing order) will be filled with automatically generated target sets.

Loading found cells or instrument positions will populate the currently selected list, possibly

overwriting its contents.

 	

515

Displaying target collections

Each list of blobs is designated with a unique color. The currently selected list is displayed and

is changed by the combination of Alt + ‘the list number’. By default, only the currently selected

list will be displayed. All subsequent discussions regarding changes to the blob list will only

affect the current list. It is occasionally useful to see multiple lists simultaneously. Drawing all

blob lists is toggled with Shift + O. Blobs which overlap will show a blended color, though

generally it is difficult to see which combination is overlaid.

 	

516

Manual addition of targets

New blobs are added to the current list with a left mouse button click with Shift held. The

default, minimum radius of a manually added blob is 10 pixels. Larger blobs can also be added

by performing a left click and drag. The circumference is set when the mouse button is

depressed and the center upon its release. During the dragging, all other features will disappear

and the resulting blob will be dynamically drawn. Blobs are removed by holding Shift and left

mouse click anywhere inside of them. Releasing a custom drawn blob inside of an existing blob

will remove the existing blob without drawing the custom blob.

Automat

Input blo

Automat

are found

have hig

compared

circular

discrimin

for cell f

channel t

fluoresce

tic blob findi

ob finding p

ic blob findi

d with a thre

gh contrast a

d with the su

objects wil

nate objects

finding, with

to extract fo

ence in the im

ing

parameters

ing is at the

eshold and gr

and low bac

upplied inten

l have circu

from backgr

h image cha

or performin

mage channe

e core of per

roup algorith

ckground. B

nsity thresho

threshold ar

of pixels in

examined. I

the collectio

The param

ensure only

blob findin

blob finding

Blob Optio

corresponds

the intensit

ularity clos

round. Imag

annel 1 corre

ng thresholdi

el 2.

517

rforming hig

hm, which is

Briefly, the

old value. A

re part of th

n a putative b

If these char

on of pixels

eters for ce

y targets of in

g is possibl

g are shown

ons under th

s to the num

ty threshold

er to 1. T

ge channel is

esponding to

ing. The sc

gh throughpu

s sufficient t

intensity of

Adjacent pixe

he same, put

blob (size) a

racteristics a

is considere

ell finding m

nterest are s

e as discuss

n to the left a

he Tools me

mber of adja

d. Circular

Threshold is

s the image w

o brightfield

creenshot abo

ut analysis.

to locate brig

f each pixel

els with inte

ative blob. N

and its shape

are within the

ed a blob.

must be cho

elected, thou

sed later. Th

and are acce

enu (or Ctrl

acent pixels

rity is defin

s the intens

within the da

d. Finally, c

ove is of an

 Currently, b

ght objects w

 in the ima

ensities abov

Next, the nu

e (circularity

e supplied ra

osen careful

ugh filtering

he parameter

essed by sele

+ B). The

which are a

ned above;

sity thresho

ataset to con

color is the

n analysis of

blobs

which

age is

ve the

umber

y) are

anges

lly to

g after

rs for

ecting

e size

above

more

old to

nsider

RGB

f blue

518

Size, threshold and channel should be integers, circularity can be floating point. Maximum size

and circularity may be left blank to indicate there is no upper boundary to these values. Any

invalid inputs will be reverted to the last valid input on clicking “Set Parameters”. In addition to

setting the cell finding parameters, “Set Parameters” performs an initial cell finding of the

current position at the maximum zoom level. If the current field of view is zoomed out, it will be

automatically set to the max zoom level. Any found objects will be highlighted with a turquoise

circle. Performing any other action will clear these found blobs. Test blob finding can also be

performed by pressing B.

Pixel Information and Threshold View

An easy way to determine suitable blob finding parameters, or identify why some blobs are

excluded, is by examining the Pixel Information and utilizing Threshold View. At any time,

clicking the middle mouse button will display information about the current pixel. This includes

the pixel position relative to the maximum zoom image and the RGB values of the displayed

image. The RGB values help establish a suitable threshold for positive pixels. Shift + B toggles

the threshold view for the current image set. The current threshold and color channel are utilized

to visualize blobs that pass the threshold. The background is displayed in a dark blue color.

Pixels passing the threshold are then grouped and displayed as a unique color. Changing the

blob parameters updates the threshold view and shows the currently found cells. Additionally,

while in threshold view, performing a middle mouse button click on a blob will also provide its

area and circularity in the status bar. This quickly provides feedback on why some blobs are

ignored and help with selecting blob finding parameters.

519

As seen above, at a threshold of 75, the selected blob is not included in found blobs because its

circularity is below the set point of 0.6. Increasing the threshold removes the right feature of the

blob and its circularity increases to 0.83, hence passing the circularity threshold.

Regions of Interest

Once blob finding parameters are chosen, automatic blob finding is performed by selecting the

Blob Find option under the Tools menu. By default, this will perform blob finding on the entire

slide. Note that this operation can take several minutes for large areas. Upon completion, the

user is prompted for a base filename which is used to write a <BASE>.txt cell finding file and

<BASE>.msreg file in the image file directory. These will be described in further detail below.

All found blobs will be stored in the current cell finding list. By default, only a random set of

150 blobs will be drawn in a field of view. This significantly speeds up drawing speed when

moving

toggled b

the Tools

Since m

present i

excluded

to restric

prior to

performe

is restrict

blob find

areas are

rectangle

hold Ctr

diagonal

moves, t

ROI wo

released.

image is

are show

behave id

Ctrl and

moves, s

around a sl

by the Limit

s menu.

multiple sam

in one imag

d, it is freque

ct blob findin

blob findin

ed on an exis

ted to an RO

ding when

e excluded.

es or polygo

rl and left c

vertices of t

the ROI wil

ould look i

 To reduc

displayed d

wn). Once dr

dentically to

Alt, and mo

showing the

lide. This

t Drawn Blo

mple popula

ge and fidu

ently useful

ng. An RO

ng or ROI f

sting blob lis

OI, so it is f

the fiducia

 ROIs are

ons. To dr

lick and dra

the rectangle

ll update to

if the mou

ce latency,

during this pr

rawn, a recta

o a hand-draw

ove the mou

e ROI that

option may

obs option un

ations may

ucials should

to draw an

I may be se

filtering can

st. Blob find

faster to perf

als and exte

drawn as ei

raw a rectan

ag between

e. As the mo

o show how

use button

only the s

rocess (no b

angular ROI

wn polygon

use around t

would resu

520

y be

nder

y be

d be

ROI

et up

n be

ding

form

erior

ither

ngle,

two

ouse

w the

was

slide

blobs

will

ROI. To in

the ROI. A

ult upon a

nteract with

Again, the RO

mouse clic

ROIs on a v

OI will upd

ck. The R

vertex level,

date as the m

ROI cannot

, hold

mouse

have

521

overlapping edges and its vertices are removed by clicking on or near them. Alternatively,

vertices can be added in order, by holding Ctrl and Shift. This simplifies drawing complex

shapes, but is more difficult to modify. Finally, ROIs are cleared by pressing the C key.

522

ROI filtering can also be performed at any time after blob finding. Simply draw an ROI for the

area to keep blobs, and select either ROI Filter Retain or ROI Filter Remove under the Tools

menu. T

resulting

placing a

number i

Saving a

Once blo

paramete

plain text

The first

will still

first imag

stored as

finding, t

The former

list to the

all blobs out

in either case

and loading b

obs have be

ers can be sa

t format and

7 lines corr

be present

ge is 0) and

s a list of xy

this may not

operation re

next open

tside the RO

e.

blob lists

een found a

aved for late

d human read

respond to th

for manually

channel is e

y pixel coord

t represent th

emoves all

blob list. T

OI into a ne

automatically

er examinati

dable, as sho

he blob findi

y found cell

encoded so t

dinates for t

he correct RO

523

blobs outsid

he latter op

ew list. The

y or manua

ion or for us

own below:

ing paramete

ls. Also no

that [0,1,2] -

the polygon

OI used thro

de of the sp

peration perf

e original b

ally placed,

se in other a

ers used for

ote the ‘Imag

-> [Red, Gre

. Since the

oughout the o

pecified RO

forms the o

lob list is re

their positi

analysis step

automatic c

geInd’ is zer

een, Blue].

 ROI may c

operation, bu

I and move

opposite filte

etained in it

ions and fin

ps. The file

cell finding.

ro based (i.e

Next, the R

change after

ut rather the

es the

ering,

ts list

nding

 is in

 This

e. the

ROI is

r blob

most

524

recent ROI. However, after automatic cell finding the current blobs are saved which will include

the ROI. Next, the arrow symbol “->” is used to list the “filters” used during the generation of

the blob list. Entries include distance filtering and histogram filtering. These are not used in the

software logic but provide a limited record of parameters used for generating a list of blobs.

Finally, the x,y coordinate, radius and circularity of each blob are recorded.

There are three options for saving the blob lists: (1) The Save Current Blobs option under the

File menu, (2) Histogram Divisions, and (3) All lists of blobs. The first option will launch a save

file dialog, allowing the user to specify the filename to save the current blob list. This is useful if

only the last step of filtering and processing is needed or if only one list was utilized. The

second option, histogram divisions, will be covered in more detail later, but this option saves the

low and high intensity populations as separate files with encoded filenames. When the user

selects a file, it is used as a base file name with additional information added to the end. Note

that because no actual filtering was performed, the final divisions are not included in the filters

list. Finally, the last option, saving all lists of blobs, provides a quick way to export all blob lists.

Again, the user-specified file is utilized as a base file name and each list number is saved as

<BASE>_<LIST NUMBER>.txt in the specified directory. The list number is again zero based

so that the first list is saved as <BASE>_0.txt.

Previously generated blob list files can be loaded back into microMS. This restores the blob

finder parameters from the file, the ROI, the filter list and the collection of blobs. To open a blob

file, select the Load/Found Blobs under the File menu. The contained blobs will be used to

populate the currently selected blob list, overwriting any existing information.

525

Filtering and Stratifying Blobs

After all blobs have been found or manually selected, it is frequently useful to begin segregating

different classes and remove uninteresting blobs. In addition to refining the ROI as mentioned

above, microMS provides filtering based on size, circularity, pairwise distance, and fluorescence

channels. All of these metrics can be examined and filtered by interacting with the population

level histogram. Additionally, pairwise distance filtering is applied by selecting the Distance

Filter under the Tools menu.

Introduction to the histogram

The histogram interface of microMS provides an interactive method for examining population-

level statistics of the blob list. Details of each population metric are described in more detail

below. This section will discuss how to set, interact with and utilize the histogram.

Once a list of blobs is generated, the histogram is activated by selecting the Histogram Window

option under the Tools menu or Ctrl + H. Changing blob lists, opening a new blob list, or

performing blob finding will have the histogram be recalculated. Opening a new image,

manually adding a blob, or performing blob patterning will close the histogram window. By

default, the distribution of sizes of the current blob list will be shown when the histogram is

initially opened.

The abov

were fou

there are

pixels an

mouse s

histogram

the Tool

histogram

Color or

The rem

examine

correspon

red inten

Offset co

ve histogram

und with a siz

e two popu

nd some app

scroll wheel

m settings ar

ls menu. He

m and some

r Morpholog

aining optio

for parsing

nding color

nsity, collect

orresponds t

m shows a sa

ze less than

ulations pres

proximately

l zooms th

re accessed

ere the metr

e useful para

gy the fluore

ons relate so

g fluorescen

channel mu

ed in sampl

to the amou

ample distrib

300 pixels (

sent, those

y twice as l

he x axis i

in Histogra

rics used fo

ameters are

escence cha

olely to fluo

nce intensitie

st also be sp

e_c3.tif, ima

unt to incre

526

bution where

in area). Cle

with areas

arge. Usin

in and out.

am Options u

or generatin

selected. U

annel, size, c

orescence int

es, where 1

pecified. Fo

age channel

ase (> 0) o

e cells

early,

~100

ng the

 The

under

ng the

Under

circularity o

tensity. Im

1 refers to t

r example, i

should be “

or decrease

or distance m

mage channel

the brightfie

if you wante

“3” and ‘Co

(< 0) the b

may be sele

l is the ima

eld image.

ed to examin

olor’ must be

blob radius w

ected.

age to

 The

ne the

e red.

when

527

examining the blob region. Finally, the intensity to display may correspond to the maximum or

mean intensity within the blob region. To improve speed of analysis, the intensity corresponds

to the entire circumscribed square for each blob. As such, neighbors at the “corners” of each

region may skew results. Furthermore, the mean intensity has a dependence on the size of

circular objects.

At any time, the values displayed in the histogram and the histrogram image may be saved by

selecting Save/ Histogram Image or Save/Histogram Values option under the File menu. The

image is a png of the current figure with all markup described below. Values are tab deliniated

text files with the name (x,y coordinates) and corresponding metric value for each blob.

The histogram and slide image interact with each other to assist with picking values for filtering

the population. A middle mouse button (MMB) click selects a single blob in the image or bar in

the histogram. When a blob is MMB-selected, its population metric (e.g. size) is shown on the

histogram as a red, vertical line. This is helpful to assess where in the histogram certain blobs

are located. MMB clicking a bar on the histogram shows just the blobs falling in that range of

values. The bar and blob are both colored orange. Additionally, the image view is centered on

the first blob falling in that range. Showing a single bar is helpful to see what blobs look like

which fall in a specific bin in the histogram. To clear this, and any histogram filters, press C.

528

Examining single blobs and bars are useful for determining threshold values, but cannot be used

as filters. Two independent filters are provided to partition the blob populations. Nominally

they correspond to high and low pass filters, but they can overlap and function similarly. The

low pass filter is activated with the left mouse button, high pass with the right mouse button.

These set a high or low pass threshold for the histogram and cause the image to redraw, showing

the blob locations satisfying the filter. The threshold values are shown as vertical lines and bins

of the histogram within range are colored to match the corresponding blobs. The value selected

and the number of blobs within range are also displayed on the status bar. High and low limits

are applied for the low and high pass filters, respectively, by performing a Shift+ Left or Right

Mouse Click at the desired location.

529

Filters can also be generated automatically, which is useful for examining a set number of

extreme members within a population. In the example above, there appear to be two

populations. The following steps illustrate how the largest and smallest cells (250 cells for each

530

category) within the population centered on 100 pixels are selected. First, select high and low

limits with Shift clicking (LMB = left mouse button, RMB = right mouse button).

Note this step does not set any filters, only defines limits. The extremes within these limits (or

the entire population, if no limits are set) are found by selecting the Pick Extremes option under

the Tools menu. This launches a popup box requesting the number of blobs to try and find for

each filter; in this example, ‘250’ should be entered. Next, microMS attempts to find the

histogram divisions that provide approximately the requested number of cells in the high and low

range of the population. The actual numbers in each filter are displayed in the status bar.

Because

the same

the follow

this distribu

e distance fr

wing:

ution is fairl

om the limi

ly symmetric

ts. Howeve

531

c, the locati

er, repeating

ions of the t

g the request

thresholds a

t without se

are approxim

et limits prod

mately

duces

Where th

number o

Using th

With the

used to g

select Sa

save the

<BASE>

depends

region.

loaded as

Alternati

instrumen

option un

he range of

of blobs as th

e ranges: sa

appropriate

generate add

ave/Histogra

resulting te

>_<high or

on the filte

To utilize t

s separate lis

ively, the filt

nt files. To

nder the Too

f values incl

he low thresh

aving and fil

e filters in pl

ditional blob

m Divisions

ext files. Fo

low>_<VAL

er division,

the output f

sts to genera

ters can gene

 utilize this

ols menu.

luded in the

hold.

ltering regio

lace, their ou

lists for fur

 under the F

or each hist

LUE>.txt w

and VALU

for performi

ate an instrum

erate new bl

feature, sele

532

e high thresh

ons

utput is eithe

rther filtering

File menu. T

togram divis

where BASE

E is the hig

ing measure

ment file.

lob lists for f

ect the range

hold is muc

er saved as s

g. To save

This prompt

sion, a text

E is supplied

gh or low t

ements, the

further filter

es of interes

ch larger to

separate blo

the current

ts the user fo

file is save

d by the us

threshold va

generated c

ring or gener

st and select

obtain the

ob finding fil

histogram fi

or a base nam

d with the n

ser, high or

alue definin

cell lists mu

ration of sep

t the Apply F

same

les or

filters,

me to

name

r low

g the

ust be

parate

Filter

Each filte

of additio

used to g

like:

Where t

channel

offset of

actions p

Morphol

Note that

is freque

populatio

that are c

er generates

onal filters p

generate the

the line “-

1 (c1) was u

0. Addition

produced the

logy: Size an

t size and ci

ntly useful t

on later. Fo

clustered tog

its own blob

prior to sav

blob list is s

->71.0<c1

used to filter

nal filter step

current blob

nd circularit

ircularity eff

to perform a

llowing this

gether. Using

b list and fil

ing. Note t

stored in the

1[Size]<

r using Size

ps will be li

b list.

ty

fectively pro

automatic bl

s protocol en

g the same p

533

lls an empty

that unlike s

e blob findin

126.7;me

between 71

isted in the o

ovide the sam

ob finding w

nsures that d

population as

y list. The ne

saving histo

ng file. For e

an;offse

.0 and 126.7

order they w

me filtering

with less stri

distance filte

s above:

ew list allow

gram divisio

example, the

et=0->”

7, with a me

were perform

as blob find

ingent metri

ering does no

ws the applic

ons, the filte

e list above

indicates im

ean reduction

med to show

ding. Howev

ics and refin

ot skip neigh

cation

er set

looks

mage

n and

what

ver, it

ne the

hbors

Notice th

resolve d

However

during bl

Circulari

hat dividing

during cell

r, the cells n

lob finding.

ity is also he

the populati

finding (sh

near the cent

As such, the

lpful to iden

ion in half o

hown in pin

ter of the im

ey will not b

ntify unresolv

534

on size allow

nk) while in

mage are not

be considered

ved cells or

ws the identi

ndividual ce

identified be

d during dist

other debris

ification of

ells are hig

ecause they

tance filterin

s:

cells too clo

ghlighted in

were not lo

ng.

ose to

teal.

cated

Now the

Examinin

other ima

Distance

Proper di

value wi

delocaliz

distance

Only fou

for distan

passing t

filter ma

pairwise

e unresolved

ng the size a

aging artifac

e filtering

istance filter

ill depend o

zation during

filter should

und blobs wi

nce filtering

the filter wil

ay be invest

distance is c

d cells are sh

and circularit

cts.

ring is crucia

n the instru

g sample p

d be larger t

ll be conside

g in the Dista

l be copied t

tigated by u

calculated. G

hown in the

ty helps ensu

al to ensure

ument positio

preparation (

than the prob

ered with dis

ance Filter u

to the next o

using the h

Generally, th

535

e low pass f

ure data qual

acquired sp

on accuracy

(e.g. MALD

be size to pr

stance filteri

under the To

open blob lis

histogram w

he distributio

filter becaus

lity by remo

pectra belong

y, probe size

DI matrix a

revent conta

ing. At any

Tools menu.

st. Alternati

window. W

on should be

se they have

oving unreso

g to a single

e, and any s

application).

amination du

time, a set v

Upon comp

ively, an app

When selecte

e Poisson. L

e low circul

olved feature

e blob. The

suspected an

 Generally

uring acquis

value can be

pletion, the b

propriate dis

d, the mini

Large popula

larity.

es and

exact

nalyte

y, the

sition.

e used

blobs

stance

imum

ations

536

of blobs very close together indicate a high seeding density. By selecting high pass filters,

microMS will report the number of blobs passing the filter in the status bar and display their

locations.

Fluorescence intensity

While the previous metrics provided sample quality checks, fluorescence intensity helps generate

orthogonal “labeling” of blobs even before mass spectral acquisition. Additionally, examining

the same fluorescence channel as used for blob finding helps remove dim blobs from

consideration. Generating the intensity histograms will be slower than morphology due to the

required image analysis steps.

Blob patterning

Once blobs have been found and filtered, it is occasionally useful to further pattern target

positions, either to acquire an “image” of the area surrounding each blob or to more effectively

sample blobs much larger than the probe size. Three different packing patterns are available for

performing blob patterning: circular, rectangular, and hexagonally close packed. Each pattern is

accessed through the Tools menu and prompts the user for additional packing parameters. The

resulting patterns are stored in a new blob list which consists of x,y points, a single radius,

circularity of 1, and a group number which uniquely ties each pattern to a parent blob. Note that

generated patterns may cause overlap of target positions.

Rectangular packing generates even x,y spacing in a grid of target positions, effectively allowing

the generation of mass spectral images over each blob. Rectangular packing requires three

parameters: spot to spot distance, number of layers, and whether to perform dynamic layering.

The spacing dictates the pitch, or pixel size, of the resulting image. The number of layers

corresponds to the number of horizontal/vertical pixels from the center to generate. A value of 0

537

results in a single target per blob, 1 results in 9 targets, 3 in 25 targets, etc. Due to the way the

patterns are generated, acquisition proceeds by spiraling out from the center position. With static

layering, all resulting patterns will be the same size, regardless of blob shape. If dynamic

layering is chosen, the number of layers will be adjusted for each blob to ensure that the entire

area is covered in targets. In this case, the input number of layers controls the extra layers to

include during patterning.

The same set of parameters is required for hexagonal and rectangular packing, except instead of

having constant x,y spacing, targets are positioned in a hexagonally close packed arrangement to

maximize the number of acquisitions per area. Resulting data can provide mass spectral images,

but most analysis software assumes rectangular packing.

538

Finally, circular packing allows the analysis of the circumference of blobs. This allows an

efficient sampling of compounds which migrate from blob locations or are only found around the

exterior of blobs. Unlike the previous packing, circular packing requires the minimum

separation, maximum number of targets per blob and an offset from the circumference. There is

also a minimum number of targets which is set to 4 by default and must be adjusted in the source

code.

539

In circular packing, the number of targets is always dynamically adjusted based on the blob

radius plus the user supplied offset; negative values of offset place targets in the blob interior.

Very large blobs will have the maximum number of targets placed evenly around their

circumference. Smaller blobs will have fewer targets, but will maintain the minimum separation

between targets. Very small blobs will have the minimum 4 targets, regardless of the resulting

target separation. This strategy provides several replicates per blob, but prevents repetitive

acquisition for larger blobs.

Instrument correlation

Once all targets are found, filtered and patterned, the blob information needs to be translated to

instrument input. MicroMS provides an interface for performing instrument integration either

offline or with direct instrument control. Full instrument control requires significant extensions

of the connected Instrument interface and will differ dramatically between instruments. As such,

this section will only cover aspects applicable to all instruments.

Point-based similarity registration and fiducials

At its core, microMS utilizes a point-based similarity registration to map a set of fiducials

between physical space and an image coordinate system. The target locations in physical space

are then inferred from their locations in the image using a linear coordinate transformation. The

specific registration accounts for translation, rotation and scaling. Some limited support is

available for reflections, but no corrections are made for skewed perspectives.

Accurately analyzing target locations depends on the precision of the sample stage, the

microprobe size, correct stitching of optical images, and accurate estimations of the fiducial

locations. The location of fiducials has drastic effects on accuracy and therefore requires care.

We have successfully utilized etched fiducial markers in the shape of an X. Location of the

540

intersection of the two lines can be performed accurately and is less susceptible to distortion

between image systems, particularly after MALDI matrix application. Other options include

placement of dyes/paints, selective laser ablation, or beads. Generally, smaller fiducials are

located with higher precision, but they must be large enough to locate on the instrument camera

system. Ideally, the fiducials would fluoresce in the same wavelength as the blobs, otherwise

multiple image channels must accurately overlay.

No assumptions are made regarding the instrument besides the basic requirements that fiducial

locations must be found and recorded, and the instrument must be directed to arbitrary target

locations. Frequently, several intermediate steps are required to accomplish these goals, even in

the simplest cases. Each instrument has its own coordinateMapper which defines instrument-

specific functions for interacting with microMS. Some instruments have multiple

coordinateMappers if different instrument control software is targeted (e.g. the solariX targets

positions through autoexecute or flexImaging functions). The current instrument is displayed

and changed under the Instrument option under the File menu.

Instrument settings and intermediate coordinates

Occasionally instruments utilize more than one coordinate system for physical locations. For

example, Bruker MALDI instruments provide direct output of the 2D linear stage positions.

However, the coordinates used to direct motion during automatic acquisition are scaled fractions

of the entire sample plate. In this case, microMS must utilize an additional coordinate

transformation to map between the intermediate, motor position and the final, fractional distance

position. To adjust or calibrate these positions, microMS provides a simple interface displaying

set coordinates:

Here C20

point, the

incorpora

and the

different

Closing t

folder.

Some co

are not u

0 refers to a

e motor coor

ates this info

final output

set of teac

the window

ordinate map

sed:

set position

rdinate has t

ormation to g

t. These va

ching points

updates the

ppers do not

n in the ultra

the x,y posit

generate a n

alues rarely

s cause them

information

t require this

541

afleX softwa

tion of -2321

new intermed

change, bu

m to move

n of the coord

s intermedia

are, and when

15, -13605.

diate map be

ut adjusting

and should

dinate mapp

ate map and

n the stage i

 The coordin

etween the m

the motor

d be calibrat

per and a txt

will display

is directed to

nate mapper

motor coordi

stage or us

ted occasion

file in the so

that these v

o that

r then

inates

ing a

nally.

ource

values

Interacti

Accurate

image. O

the image

A predic

quick wa

least 2 fi

record th

ing with fidu

e fiducial tra

Once found

e. This caus

ted location

ay to assess i

iducials are t

he fiducial:

ucial marker

aining requi

in the instru

ses a popup w

is displayed

if the registr

trained. Ent

rs

ires precise

ument, the p

window to a

d for some i

ration is dras

tering the co

542

location of

physical posi

appear to inp

nstruments (

stically incor

oordinate an

f the fiducia

ition is inpu

put the physi

(G9 above)

rrect. This w

nd clicking “

al on the ins

ut into micro

ical coordina

but should o

will only be

“OK”, or pr

strument an

oMS by RM

ate:

only be used

available af

essing enter

d the

MB on

d as a

fter at

r, will

Fiducials

point. If

bar and th

To help l

instrumen

located.

The qua

fiducials

or deviat

fiducial t

red, e.g. G

s are display

f the input v

he fiducial w

locate fiduci

nts. These

Here the pre

lity of the

are supplied

tions betwee

training erro

G9 in the fo

yed as eithe

value cannot

will not be re

ials in the in

represent se

edicted locat

fiducial set

d, the predic

en actual po

ors by highli

llowing ima

er red or blu

be parsed c

ecorded. Fid

nstrument, m

et points on

tion of G9 is

t is assessed

cted points ar

ositions indi

ighting the f

age:

543

ue circles w

correctly, an

ducials are re

microMS dis

n the stage w

s shown in y

d interactive

re updated.

icate poor a

fiducial with

with text ind

n error messa

emoved by h

splays predic

which are e

yellow:

ely through

Large move

accuracy. m

h the worst

dicating the

age will app

holding Shift

cted plate lo

encoded pos

predicted p

ements of pr

microMS als

fiducial loc

closest pred

pear on the s

ft and RMB.

ocations for

sitions and e

points. As

redicted loca

so tries to d

calization err

dicted

status

some

easily

new

ations

detect

ror in

The fidu

physical

deviation

or an un

reselecte

be the wo

Two fidu

Generally

accuracy

found su

possible

ucial localiz

location of

n is then dra

nacceptable

d until it is n

orst, which i

ucials are req

y the error d

y. Accuracy

urrounding t

interference

ation error

f each fiduc

wn in red. W

amount of

no longer th

indicates the

quired to uti

decreases by

also depend

the target a

 of chemical

	

is estimate

ial based on

While this i

error. Gen

he worst. Th

e registration

ilize predict

y 1/sqrt(num

ds on fiducia

area with fi

l information

544

d by using

n its pixel p

s the “worst

nerally, the

his process i

n can no long

tions, worst

mber of fiduc

al location r

ducials prod

n between fi

the current

position. T

t” fiducial m

worst fiduc

is repeated u

ger be impro

fiducials, an

cials), so mo

relative to th

duces high

iducial and s

t registratio

The fiducial

mark, it is no

cial should

until the fidu

oved.

nd save instr

ore fiducials

he target pos

accuracy w

sample.

on to predic

with the la

ot necessarily

be removed

ucial continu

rument posit

s result in h

sitions. We

while minim

ct the

argest

y bad

d and

ues to

tions.

higher

have

mizing

Saving a

The curre

selecting

registrati

The first

transform

records th

Previous

populates

not advis

as small

at every t

Saving a

With a g

Again, th

and loading r

ent registrati

g Save/Regis

ion) file, whi

t line has t

mation for m

he pixel and

registration

s the fiducia

sed to reuse

changes in s

target locatio

and loading i

good set of

here is an o

registration

ion informat

stration und

ich is a hum

the instrume

mapping pixe

d physical loc

ns are loade

al training se

registration

sample posit

on.

instrument f

fiducials tra

opportunity t

tion, includi

der the File

an readable

ent name.

l positions to

cation of eac

d by selecti

et and chang

if the sampl

tioning mani

files

ained, the b

to assess fid

545

ing the instru

e menu. Th

text file.

The next 5

o the physic

ch fiducial m

ing Load/ R

ges the curre

le has been r

ifest as syste

lob position

ducial trainin

ument name

his generate

5 lines con

al coordinat

mark.

Registration

ent instrumen

removed and

ematic errors

ns for the in

ng by selec

e and fiducia

es an msreg

ntain variabl

tes. The rem

under the F

nt if needed

d inserted in

s, casing a m

nstrument m

cting Save/F

al set, is save

g (mass spe

les of the l

mainder of th

File menu.

d. Generally

nto the instru

missed acquis

may be gener

Fiducial Posi

ed by

ectral

linear

he file

This

y, it is

ument

sition

rated.

itions

under th

fiducials

and actua

To gener

Only the

specific

prompted

This func

useful to

the speci

“Cancel”

microMS

optimize

resulting

target to

he File menu

. By using t

al fiducial lo

rate target po

e current blo

file type is

d for the num

ction provid

 conserve in

ified number

” stops the ex

S uses a sim

s the travel

path will n

minimize th

u. This ge

the fiducial

ocation helps

oints (blob p

ob list will b

saved, but t

mber of blob

des a method

nstrument tim

r of blobs f

xport operat

mplified ver

path, but b

not be fully

he total dist

enerates an

file as input

s determine i

positions), se

be used for

there are sev

b positions sh

d to randoml

me. Clickin

for analysis.

ion. Next, th

rsion of trav

bounds the o

optimal. T

tance travele

546

instrument-s

t for the instr

if accuracy i

elect Save/In

generating

veral more o

hould be exp

y select a su

ng “OK” wit

 Leaving th

he user is as

veling sales

optimization

The optimiza

ed. Howev

specific file

trument, the

is sufficient

nstrument Po

target positi

options duri

ported:

ubset of the b

th a valid nu

he box blank

sked about p

sperson path

n run time t

ation determ

er, the comp

e of target l

difference b

for the given

ositions und

ions. Again

ing export.

blobs for an

umber in the

k uses all sp

ath optimiza

h (TSP) opt

to at most 3

mines the or

mputation req

locations fo

between exp

n experimen

er the File m

n, an instrum

First, the us

nalysis, espec

e text box se

pots and clic

ation:

timization w

3 minutes, s

rder to visit

quires calcul

or the

pected

nt.

menu.

ment-

ser is

cially

elects

cking

which

o the

each

lating

547

each pairwise distance between targets, effectively consuming RAM on the order of the number

of points squared. Clicking “No” orders the points from top to bottom, left to right, and

generally causes the stage to move about twice as far as the optimized path.

Sample positions can also be loaded from instrument files. Targets will retain their x,y position

and group number, but will lose their size and circularity measurements. As such, if these values

are important they should be loaded from a found cell file.

 	

548

Advanced topics

The above should be sufficient for most users. However, the real power of microMS comes from

the design choice to make instruments an abstract base class, greatly simplifying the work

required to support new and diverse instruments. microMS also offers more advanced operations

including direct instrument control.

Customizing GUI Settings

Several settings for the GUI are set in the file GUICanvases/GUIConstants.py. This file is fully

commented with brief descriptions. The top section defines several colors for blob lists,

predicted points, and fiducials. Of note, MULTI_BLOB contains the colors for all blob lists, in

order from List 1 to 10. The ROI_DIST is the minimum distance between two vertices before

the current vertex is removed. Lowering the value will allow drawing more complex shapes, but

make deleting points more difficult. Next, some constant values are provided for the default

blob radius and default fiducial radius. The default blob and fiducial values were chosen for a

particular application which may not be suitable for all purposes. Setting the

DEFAULT_RADIUS to the probe size simplifies detection of targets too close together. Fiducial

radius should be approximately the size of a given fiducial mark to help assess if the fiducial was

placed in the correct position in the image. Next, the DRAW_LIMIT and TSP_LIMIT define

limits on the maximum number of blobs for computationally expensive operations. More

powerful computers can increase these values as needed, or if higher performance is required

they may be decreased. DRAW_LIMIT defines the maximum number of blobs to draw from

each list. This is overridden in the menu bar option. TSP_LIMIT defines how long a blob list

to consider for TSP optimization be default. Again, this can be bypassed in the GUI when

saving instrument positions, but this acts as a simple guard to consuming too much memory.

549

The next section lists colors utilized in drawing the population level histogram. These are all

aesthetic changes and do not affect function of the histogram. The constants for blob shapes

allows further customization of the default blob size, for either manually drawn targets or

automatically generated patterns of targets.

Next, several files and directories are defined for performing standard debugging loads. These

assist in opening a “standard” image data set for testing new features or replicating bugs. Once

all files are defined, the debug data set is opened by pressing Ctrl + D. This is only operational

when microMS first opens and if all files exist on the current machine.

Supporting new instruments

The goal is that a user with moderate python experience will be able to support new instruments

in the future while maintaining the image analysis functionality of microMS. Hopefully, this

section will act as a template for generating offline instrument coordinate mappers with arbitrary

systems. The details are not important for a general reader, but should help guide more advanced

users to support their own instruments. This section will demonstrate how to support two new

instruments, a hypothetical Generic XYsampler and equally-absurd Bruker flexArmstrong.

microMS coordinate mapper organization and requirements

The main GUI of microMS interacts with coordinate mappers through the

supportedCoordSystems.py module. This initializes new instances of each supported mapper

and generates their names for display. Each member in supportedMappers must inherit from the

abstract base class defined in coordinateMapper.py. This module defines all necessary functions

to fully leverage microMS and implements some basic functions. CoordinateMappers may also

have an instance of connectedInstrument.py (another abstract base class) to interface with

550

instruments. However, implementing direct control will not be covered here as it is specific for

each instrument.

Due to the shared characteristics between Bruker MALDI mass spectrometers, another abstract

base class is included with microMS, brukerMapper.py. This contains implementations for

many of the functions specified in coordinateMapper and defines a smaller set of functions

required for off-line analysis with Bruker instruments.

Implementing coordinateMapper for the Generic XYsampler

coordinateMapper.py contains the required methods and information on how to implement them.

To reemphasize, inheriting classes must:

 Define self.instrumentExtension and self.instrumentName

 Implement isValidEntry, extractPoint, predictName, predictLabel, predictedPoints,

loadInstrumentFile, saveInstrumentFile, getIntermediateMap and

setIntermeidateMap.

 Add an import and initialize an instance in supportedCoordSystems.

Note that any methods not overridden will cause an error immediately upon running microMS.

The Generic XYsampler is a fictional, new mass analyzer with some interesting requirements:

 Motor positions are read from the instrument, and are of the form

<Xcoordinate>_<Ycoordinate> as floating point numbers. When moving down in the

image, the Y coordinate increases.

 There are 25 set points in a 5x5 grid at motor positions 0..100..400 labeled A-Y from

left to right, top to bottom.

Start by

genericX

And add

Instrumen

two x and

GenericC

years.

y making

XYsampler.p

the genericX

nt files are i

d y coordinat

oordinates a

a new p

y that inheri

XYsampler t

in .csv form

tes in “Gene

are an offset

python cla

its from coor

to the suppor

551

at, with the

ericCoordina

of +100 in b

ass in the

rdinateMapp

rtedCoordSy

first column

ates”.

both directio

e coordinat

per.

ystems

n the sampl

ons, but coul

teMappers

le name, the

ld change on

package c

e next

n leap

called

Running

Next, fil

methods:

microMS ca

ll in generic

:

auses the fol

cXYsampler

llowing error

r with some

552

r:

e unimplemeented metho

ods for eachh of the ab

stract

Running now generaates the followwing error:

553

Because

instrumen

The instr

registrati

Adding t

XY samp

IMPORT

In compu

instrument

ntExtension

rumentName

ion file. As

these variabl

pler:

TANT AND

uter graphic

tName hasn

in the __ini

e is used to

s such it sho

les results in

D CONFUSI

cs (microMS

n’t been de

t__ method:

o display th

ould be fair

n a running,

ING! The la

S is no exce

554

efined. De

he instrumen

rly short and

but complet

ast paramete

ption), the t

efine that

nt in the me

d unique am

tely nonfunc

er to set in __

top left of a

variable na

enubar and

mong suppo

ctional versio

_init__ is re

an image is

ame as we

is saved fo

rted instrum

on of the Ge

eflectCoordin

defined as

ell as

or the

ments.

eneric

nates.

(0,0).

The x co

microMS

reflectCo

register

instrumen

to the im

If only o

the x and

with just

In this ca

Next, im

isValidEn

string is

validate i

oordinate in

S utilizes a s

oordinates B

properly.

nt, if the x a

mage/sample)

one increases

d y coordina

a rotation, r

ase, moving

mplement th

ntry and ex

a valid mo

it with isVal

creases mov

similarity reg

Boolean cont

Setting this

axis increase

) reflectCoor

s, it should b

ates of a tria

reflectCoord

down the im

he remainin

xtractPoint n

tor coordina

lidEntry and

ving right, t

gistration, it

trols if the in

s incorrectl

s and the y a

rdinates shou

be true. An

angle in both

dinates is fals

mage causes t

ng required

need to be i

ate and retu

return a new

555

the y coordi

will not han

nstrument co

y will prod

axis increase

uld be false.

nother way to

h coordinate

se.

the Y coordi

methods.

implemented

urns true if i

w tuple with

inate increas

ndle reflectio

oordinate sy

duce inaccu

es moving do

. If both dec

o assess this

e spaces. If

inate to incr

 First, for

d. IsValidE

it is. extrac

 x,y coordin

ses moving

ons properly

ystem needs

urate positio

own and to t

crease it sho

s is generate

the position

ease, so:

handling

Entry checks

ctPoint shou

nates as nume

down. Bec

y by default.

to be invert

oning! For

the right (rel

ould also be

e a scatter pl

ns orient pro

motor posit

s if the sup

uld take a s

erics:

cause

 The

ted to

r the

lative

false.

lot of

operly

tions,

pplied

tring,

Now new

The next

user adds

next to t

Finally, p

positions

w points may

t methods ha

s a fiducial m

the fiducial

predictPoints

s of 0..100..4

y be validate

andle predict

mark. Here,

mark (curre

s is a set of p

400 in a 5x5

ed and added

tions. Predi

it should ret

ently None)

pixel positio

array mentio

556

d to the coord

ictName is u

turn the clos

). Again, th

ons to show

oned above

dinate mapp

used to fill i

sest label in

his should b

when toggle

for Generic

per:

n the popup

A-Y. Predi

be the close

ed with P. T

XY. While

p text box wh

ictLabel is sh

est label in

These are the

PredictNam

hen a

hown

A-Y.

e grid

me and

PredictLa

PredictN

first adds

fiducial i

when the

PredictN

First, gen

PredictN

physical

Note that

implemen

closest m

abel appear

Name uses a

s a fiducial,

is entered, th

e return valu

Name, but the

nerate the gr

Name will tak

location:

t self.transla

nted in the

motor positio

r to perform

pixel positio

the pixel po

he physical p

ues should

e closest MT

id of locatio

ke a pixelPo

ate is a meth

base class.

n:

m the same

on while Pre

osition is kn

position is kn

differ. The

TP point in P

ons and a list

osition and t

hod for conv

 predictLab

557

e function

edictLabel t

nown, so Pre

nown and Pr

solarixMapp

PredictLabel.

t of labels in

try to predic

verting pixel

bel is imple

here, there

takes a phys

edictName i

redictLabel i

per returns

.

the same or

ct the label

l coordinates

emented by

 are impor

sical position

s used for th

is called. Th

the system

rder (in this c

by translati

s to motor c

iteratively s

rtant differe

n. When the

he text. Afte

ere are also

clipboard d

case a string

ng the pixel

oordinates a

searching fo

ences.

e user

er the

cases

during

g).

l to a

and is

or the

Predicted

Executin

fiducial i

dPoints is se

ng microMS

input (bottom

lf.gridLocati

now shows

m right in thi

ions when in

predicted po

is case):

558

nverted to pi

oints in yello

ixel position

ow, labeled

ns (another b

fiducials, an

ase method)

nd a predicti

):

ion of

Before m

the form

would ne

uses a sim

Intermed

(e.g. mo

microMS

point (A-

the Grid

stored as

initialize

moving to the

m of <Xcoor

eed to chang

milar method

diate maps ar

otor coordin

S passes inte

-Y, here) an

d Settings in

s a separate

as a static m

e intermedia

rdinate>_<Y

ge to accept

d for predict

re a way to m

nates) and a

ermediate tra

d the next tw

the Tools m

file to save

map and upd

ate mapper, n

Ycoordinate>

letters and

ting location

move betwe

a system u

aining points

wo being an

menu. In m

e intermediat

ates will last

559

note that ente

>. To corr

map a letter

ns.

en a coordin

sed by the

s as lists of

n X and Y co

most applicat

te maps betw

t only during

ering ‘Y’ is

rect this, isV

r to its moto

nate system

 instrument

tuples, with

oordinate. T

tions, the co

tween execu

g execution.

not a valid e

ValidEntry

or coordinate

readily acce

t (e.g. Gen

h the first ele

The list popu

oordinates w

utions. Here

entry as it is

and extract

e. brukerMa

essible to the

ericCoordin

ement being

ulates the tab

would need

e, the values

n’t in

tPoint

apper

e user

nates).

a set

ble in

to be

s will

In coordi

the secon

instrumen

as it is b

intermed

accuracy

converts

To furthe

specified

brukerM

method t

Where (1

inateMapper

nd coordina

nt positions,

based on a p

diate coordin

y. For these

them only o

er simplify g

d with one po

apper for ex

o map from

100,100) is f

r, the interm

ate system an

, but if the in

revious inte

nate system

e reasons, m

on saving ins

genericXYsa

oint. In prac

xamples. A

motor to Ge

from the spec

mediate map

nd store the

ntermediate

ermediate ma

it is difficul

microMS util

strument file

ampler, we w

ctice a point

A new varia

enericCoordi

cification.

560

could imm

em in self.p

map change

ap. Also, si

lt to examin

lizes the mo

es.

will assume o

t based regis

able is neede

inates:

mediately con

hysPoints.

es, the curren

ince the use

ne the regist

otor coordin

only translat

stration is req

ed to store

nvert physic

This would

nt registratio

er typically c

tration file l

nates for phy

tion is possib

quired, see o

the translat

cal coordinat

d simplify sa

on will be in

cannot acces

later to asse

ysical points

ble and is ex

oMaldiMapp

tion as well

tes to

aving

nvalid

ss the

ess its

s and

xactly

per or

 as a

Now the

‘Get’ pop

list of tri

on the u

instrumen

Each entr

get and set i

pulates the s

iples. Set ut

ser input. U

nt settings:

ry can be mo

intermediate

single table

tilizes the fi

Upon runnin

odified, for e

eMap implem

row from th

rst point to

ng microMS

example:

561

mentations:

he first point

recalculate t

S, selecting t

t in label/gri

translation,

the generic

id. Note the

with minim

instrument,

e return type

al error chec

and openin

e is a

cking

ng the

Which sh

by the pr

A:

Finally, s

microMS

Loading

the origin

radius an

actual blo

to an ima

For instru

the x, y, g

For gene

or <X>#<

the blob p

by self.

saveInstr

hould set the

rint statemen

save and loa

S on saving

an instrume

nal x,y pixel

nd circularity

obs. Howev

age and patt

uments whe

group data a

ericXYsampl

<Y>#<Grou

pixel positio

f.translation,

rumentFile:

e translation

nt. Opening

ad instrumen

an instrume

nt file requir

l position an

y in instrum

ver, the pixel

tern. Where

ere the instru

as a separate

ler, the blob

up> as appro

ons to be tran

before w

to (100, -10

the instrume

ntFile need i

ent file, allo

res the meth

d group (if r

ment files as

l positions an

e possible, m

ument file ca

metadata fil

b information

opriate. The

nsformed by

writing the

562

00) once the

ent settings

implementat

owing arbitra

hod to return

relevant). M

s instrument

nd groups ar

microMS en

annot have a

le (see oMal

n will be en

 X and Y co

y self.transla

contents.

e window is

again shows

tions. There

ary format s

n a new list o

MicroMS mak

files specif

re required t

ncodes the c

a sample na

ldiMapper).

ncoded in the

oordinates in

ate to motor

 Here i

closed. The

s the new va

e are few re

specific for

of blobs (not

kes no attem

fy target pos

o correlate t

oordinates a

ame, it may b

e sample na

n GenericCo

coordinates,

is an imp

 result is ver

alue of coord

equirements

each instrum

t a blobList)

mpt to record

sitions inste

those targets

as sample na

be useful to

ame as <X>#

oordinates re

, and then sh

plementation

rified

dinate

from

ment.

) with

d blob

ad of

 back

ames.

o save

#<Y>

equire

hifted

n of

Running

The samp

adjustabl

Loading

(don’t fo

the code gen

ple name fo

le in the form

the instrum

rget to impo

nerates a csv

ormatting is

mat call.

ment file requ

ort blob from

v like this:

ugly as it d

uires parsing

m ImageUtilit

563

displays the

g just the sa

ties):

entire floati

ample name

ing point nu

e to populate

umber, but th

e a new blo

his is

ob list

Now gen

Impleme

To comb

fictional

base cla

including

coordinat

for a mic

greatly si

The solar

used as

coordinat

slightly m

splits list

autoexec

inherits f

Classes i

nericXYsamp

enting bruk

bat the risin

flexArmstro

ss within m

g handling

tes and xeo

croscope sli

implifies the

rixMapper a

further exa

tes separated

more compl

ts into xeo fi

ute in the

from solarixM

nheriting fro

pler is comp

kerMapper f

ng popularity

ong mass an

microMS th

xeo files, f

positions. T

ides which a

e addition of

and ultraflex

amples. ul

d by a space

licated as it

iles of 400 p

instrument

Mapper, but

om brukerM

pletely functi

for the Bruk

y of the gen

nalyzer. As

hat handles

fractional di

The slideIIad

are referenc

f a new Bru

xMapper are

ltraflexMapp

 and saves a

populates f

oints (a soft

control soft

defines a di

apper must:

564

ional!

ker flexArm

nericXYsam

mentioned e

many com

istances, and

dapter xeo g

ced by bruke

uker instrume

e both imple

per is a si

a single XEO

fiducial loca

ware maxim

tware. flex

ifferent set o

mstrong

mpler, Bruke

earlier, bruk

mmon functi

d an interm

geometry file

erMapper.

ent, assumin

mentations

imple imple

O file for eac

ations from

mum), and ge

xImagingSola

of instrument

er has introd

kerMapper is

ons of Bru

mediate map

e defines a s

The brukerM

ng the xeo fi

of brukerMa

ementation

ch blob list.

the clipboar

enerates xlsx

arix is anot

tFiles for use

duced its eq

s another ab

uker instrum

p between m

set of coordi

Mapper inte

files are iden

apper and ca

that uses m

solarixMapp

rd, automati

x files for sta

ther mapper

e in flexIma

qually

stract

ments,

motor

inates

erface

ntical.

an be

motor

per is

ically

arting

r that

aging.

The flex

similar to

Note that

Similar

flexArms

And add

Define m

an instrum

Implemen

saveInstru

Add an im

xArmstrong

o the ultrafle

It handles

automatic

Motor coo

Motor co

coordinat

The slideI

t the last feat

to the ge

strongMappe

the mapper

motorCoordF

mentExtensio

nt isValid

umentFile.

mport and in

is a new m

ex:

s arbitrarily

c acquisition

ordinates are

ordinates ar

e decreases

IIadaptor is

ture is the on

enericXYsam

er which inh

to supported

ilename to s

on, instrume

MotorCoord

itialize an in

mass analyze

long xeo fi

n.

e input as <X

re equal to t

as the stages

supported an

nly requirem

mpler, creat

herits from b

dCoordSyste

565

store interm

entName and

d, extractM

nstance in su

er with cont

iles and req

X>$<Y>.

the fractiona

s moves dow

nd unchange

ment for inhe

te a new

rukerMappe

ems

mediate maps

d reflectCoor

MotorPoint,

upportedCoo

trol software

quires no ad

al distances

wn the slide.

ed from prev

eriting from b

class in

er:

s between ru

rdinates

loadInstr

ordSystems.

e and autoe

dditional file

multiplied b

vious version

brukerMapp

coordinate

uns of micro

rumentFile

execute func

es for perfor

by 1000. T

n.

per.

mappers c

oMS,

and

ctions

rming

The Y

called

Running

Adding i

again gener

n method stu

rates errors f

ubs and instr

for missing m

rumentExten

566

methods and

nsion, name

d missing var

and reflectC

riables:

Coordinates:

Where re

down the

Which co

the oper

eflectCorodi

e image (and

omplains ab

rating syste

inates is Tru

d pixel positi

bout the lack

m, though

ue since the

ions increase

k of a motor

for simplic

567

 Y motor c

e). Running

rCoordFilena

city microM

oordinate de

again produ

ame. The fi

MS uses th

ecreases as

uces a new e

filename can

he directory

the stage m

error:

n be anywhe

y containing

moves

ere on

g the

coordinat

ultraflex:

Where th

columns

to the u

performin

What is n

teMappers.

:

he first colu

are the x an

ser and app

ng a similar

needed is a u

 The actual

umn correspo

nd y coordin

plying chang

rity registrati

unique filena

l file should

onds to an x

nates. bruker

ges to set t

ion on the in

ame and corr

568

d be tab deli

xeo position

rMapper tak

the intermed

ntermediate

responding t

imited text,

n on the slid

kes care of r

diate mappe

mapper to g

text file with

similar to t

deIIadapter a

reading this

er. Write x

generate frac

h the initial c

the followin

and the nex

file, present

xeo also ha

ctional dista

coordinates:

ng for

t two

ting it

andles

ances.

Note that

to read th

are the fr

nonfunct

t motorCoor

he file. The

ractional dis

tional:

rdFilename m

e values in th

tances multi

must be defin

he Coords fi

iplied by 100

569

ned prior to

file were cho

00. Now m

calling supe

osen based o

microMS is ru

er().__init__

on the third

unning, thou

_(), which wi

specification

ugh the mapp

ill try

n and

per is

But it is

genericX

C5), gene

s closer to

XYsampler.

erate predict

functional t

Already the

ted names, la

than you m

e flexArmst

abels and po

570

might think

trongMapper

oints, and get

based on th

r handles na

t and set inte

he amount

amed MTP

ermediate m

of work fo

coordinates

maps!

or the

(like

What it c

files. M

genericX

Since bru

must che

Classes i

are identi

cannot do y

Motor coordi

XYsampler fo

ukerMapper

eck for a va

inheriting fro

ical. Now th

et is utilize

inate metho

or extracting

accepts nam

alid MTP or

om brukerM

he flexArms

motor coord

ds are fairly

g entries:

med position

r motor coo

Mapper only

trongMappe

571

dinates as fi

y simple an

ns (C5) in ad

rdinate and

have to han

er properly h

iducial locat

nd are almo

ddition to mo

call the app

ndle motor c

handles moto

tions or save

ost copied d

otor coordin

propriate ex

oordinates a

or coordinate

e/load instru

directly from

ates, extract

xtraction me

as the MTP

es:

ument

m the

tPoint

ethod.

cases

And fina

the base m

And that

check tha

the mapp

act as a s

ally loading

methods of b

t’s it! When

at their loca

per code. Wh

starting guide

and saving i

brukerMapp

n testing ini

ations are ac

hile it is imp

e to getting t

	

instrument f

per are suitab

tial accuracy

curate. Lar

possible to p

things up an

572

files. As not

ble to load an

y, it is impo

rge deviation

predict future

nd running.

thing specia

nd write XE

ortant to sav

ns indicate a

e tweaks in

al is required

EO files:

ve the Fiduc

an issue with

new instrum

d of the xeo

cial Position

h some aspe

ments, this sh

files,

s and

ect of

hould

573

Direct instrument control

This section describes the organization of code and operation of microMS when used for direct

instrument control. As the only supported instrument is a lab-built xyz stage prototype, it is

highly unlikely to be useful to general readers, but can assist with attempts to integrate another

instrument.

Code Organization

Instrument control with microMS is performed through a coordinateMapper with an instance of a

connectedInstrument. ConnectedInstrument is another abstract base class that defines a set of

required methods for interacting with connected instruments, such as moving, getting a position,

and collecting from positions. The implemented instrument is a Zaber xyz stage used for liquid

extraction. microMS interacts with the zaberMapper implementation of the coordinateMapper.

This is a fairly simple coordinateMapper as there is no intermediate map or predicted labels. The

novel aspects are a connectedInstrument, discussed more below, and directly reading the stage

position for predicting the name of a fiducial. The predicted name is then directly read as a

fiducial location. Predicted points are also generated from the current stage position.

The connectedInstrument of zaberMapper is a zaber3axis object, which inherits from

connectedInstrument and zaberInterface. The zaberInterface is another abstract base class which

has a number of wrapper methods and a dictionary of commands to simplify communication

with Zaber linear stages. zaber3axis implements communication with the stage including device

renumbering, stage initialization, movement and collection. The main GUI interacts with the

connectedInstrument of a coordinateMapper, when the instrument is not None and

instrument.connected is true.

Direct in

To begin

connecte

Device ta

connecte

Selecting

With a li

serial com

and click

nstrument o

n direct instr

dInstrument

ab in the me

d instrumen

g Establish C

st of valid co

mmunication

king OK cau

operation

rument cont

t, currently Z

enu bar beco

ts:

Connection c

onnections.

n would ena

ses microMS

trol, first sel

ZaberLMJ i

omes enable

causes the fo

 This is only

able it with o

S to attempt

574

lect an instr

is the only s

ed, providing

ollowing win

y functional

other operati

t communica

rument whic

such mapper

g additional

ndow to popu

with a Wind

ing systems.

ation at the p

ch has a non

r. With a v

l options for

up:

dows compu

. Entering a

port and call

n-None valu

valid mapper

r interacting

uter, but adju

a valid COM

ls homeAll()

ue for

r, the

g with

usting

M port

). All

575

calls to zaber3axis are blocking so the GUI will appear to freeze while the stage is actively

moving.

The stage is moved with the following hotkeys:

 i, j, k, l moves the stage up, left, down, right a small amount, respectively.

 Shift and i, j, k, l moves the position 100 times farther than the small step.

 Shift and Ctrl with i, j, k, l moves the stage 10 times farther than a small step.

 + moves the probe up, or sets a focus

 - moves the probe down. Shift and Ctrl function similar to i, j, k, l. Additionally,

Shift+Ctrl+Alt causes the probe to take a giant step, equal to 1000 times a small step.

Once a fiducial is located on the stage and image, its position is trained by pressing the right

mouse button on the image location. The current stage position is read as a predicted point

which is directly used in training. As before, Shift + RMB removes the closest fiducial and the

worst fiducial is shown in red.

With at least 2 fiducials, the stage is moved to a position on the image by pressing Alt+LMB.

Pressing P to toggle predicted points will cause the current stage position to be read during GUI

redraws and displays the probe location as a yellow circle. Note that this function causes lag

during stage interactions as each movement triggers a redraw and additional stage

communication. Alternatively, pressing Ctrl+F will display the stage x,y and z position in motor

coordinates in the status bar.

To perform a collection or measurements, the probe position must be set. With the probe in the

correct position, press Shift + V to set the position. This also causes the probe to retract. After

the position is set, the probe is moved in and out of acquisition position by pressing V. To

576

collect at an arbitrary location, press X. This moves the probe into position and collects for the

amount set in Set Dwell Time in the Device menu. If the wash time (in Set Wash Time) is not 0,

the probe will then move into its final position for the specified amount of time. After washing,

all stages are homed. Setting Wash Time to -1 causes the probe to stay in its final position until

the user homes the stages. If wash time is 0, the probe will simply retract, staying in the same

x,y location. Pressing H causes all stages to home, Shift + H moves the probe to the final

position and stays there.

The final available function is to collect all, in Analyze All. This causes the stage to first home,

then visit each target blob location for the dwell time. After visiting all blobs, the stage will

either home, move to final position, or move to final position for “wash time” and then home if

wash time is 0, -1 or a positive value respectively.

