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ABSTRACT 

Mass spectrometry (MS) is an effective methodology for untargeted, label-free, highly 

multiplexed analyses of trace compounds based on their mass-to-charge ratios. For biological 

applications, these properties have generated interest in determining biomarkers of diseased 

states, detecting drug compounds and metabolites, and observing previously unknown chemical 

messengers. Recent developments in instrumentation have provided exquisite sensitivity with 

robust performance. A growing field of single cell chemical analysis has arisen around these 

figures of merit.  While early reports utilized manual isolation and extraction, recent 

developments in high-throughput sampling have enabled the examination of large populations of 

cells. One such method includes the analysis of dispersed single cells on a flat surface.  When 

cells are randomly seeded onto the surface, their locations have to be determined by optical 

imaging to direct acquisition of isolated cells efficiently.  A variety of microprobe ionization 

sources are suitable for such analyses, though smaller probe footprints can utilize more densely 

seeded samples. 

This dissertation describes two technologies for performing single cell analysis with mass 

spectrometry. The first, synchronized desorption electrospray ionization (DESI), facilitates 

ambient ionization MS with high mass resolution, low duty cycle mass analyzers. The initial 

report utilized synchronized DESI for mass spectrometry imaging, but interrupting the 

desorption plume would be useful for profiling several locations on a surface in an arbitrary 

order for single cell analysis. The second methodology utilizes microscopy images to guide MS 

profiling. Specifically, image analysis software, called microMS, was developed to perform cell 

finding and correlate optical coordinates with the physical coordinates in a mass spectrometer. 

Since most of the functionality of microMS is decoupled from the mass spectrometer, the 
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workflow can be easily extended to a variety of instruments. Using matrix-assisted laser 

desorption/ionization (MALDI) time of flight (TOF)-MS, rodent pancreatic islet cells were 

investigated and heterogeneous peptide processing was detected at the single cell level. With 

secondary ion mass spectrometry, disparate tissue from the mammalian nervous system was 

differentiated and further stratified into separate populations.  A unique feature of such analyses 

is that only a fraction of the sample is consumed and the location of a cell is constant once the 

sample is dried.  This property greatly simplifies sequential, follow-up analysis.  As an example, 

MALDI-TOF-MS was utilized to rapidly screen a population of islet cells to select alpha and 

beta cell types. The locations of those cells were then targeted for liquid microjunction extraction 

in order to examine their metabolite profiles with capillary electrophoresis-MS.  Finally, while 

microscopy-guided MS profiling is accurate enough to target single cells, the methodology is 

flexible enough to analyze much larger samples, including tissue sections or bacterial colonies. 

As an application, natural product mutant libraries were screened directly from E. coli colonies 

using microMS. The suite of technologies and protocols described increases the applicability of 

many mass spectrometers to characterize a range of cells, colonies and similar objects for their 

chemical composition.  
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CHAPTER 1 

INTRODUCTION AND DISSERTATION OVERVIEW 

Since Robert Hooke’s description of biological cells in 1665,1 the field of single cell analysis has 

developed from optical observations to chemical characterization. Cells are the smallest 

functional unit of life and present a challenging benchmark for analytical methods. Every cell is 

unique due to its ancestry and local microenvironment; populations appear only as homogenous 

as our inability to differentiate individuals. While not all heterogeneity is biologically relevant, 

new analytical methods provide views of single cells within increasing chemical information. 

Due to the low absolute abundance of compounds and their large diversity, no technique can 

currently provide a complete profile at the resolution of single cells. Genomics and 

transcriptomics can circumvent low copy numbers by amplifying initial sequences,2 but for 

direct measurements of metabolites, peptides and proteins, instrumental detection limits are 

imperative. Optical and electrochemical methods are frequently applied to biological systems 

including single cells. Single molecule fluorescence detection and imaging is well developed,3 

while electrochemical methods can achieve nanomolar detection limits,4 but each fail to provide 

highly multiplexed information. Mass spectrometry (MS) provides attomole sensitivity of several 

hundreds to thousands of compounds simultaneously. While many approaches are available for 

the analysis of single cells, this dissertation covers two direct measurement methods: MS 

imaging and optically-guided single cell profiling. 

 Chapter 2 presents a review on mass spectrometry imaging in the context of proteomics 

research.5 The background encompasses many aspects commonly associated with single cell 

analysis, especially performing images from tissue at cell-scale resolution. Discussions also 

include sample preparation and matrix application, which greatly affect the final data and spatial 
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resolution. Several ionization methods are also briefly mentioned, including the recent develop 

of ambient ionization techniques within the last decade. 

Chapter 3 introduces the topic of single cell analysis with mass spectrometry, organized 

by the type of sample preparation involved.6 While many MS-based approaches are suitable for 

single cell analysis, methods which utilize dissociated cells are highlighted for their high 

throughput and ease of preparation. One such technique is optically-guided single cell profiling 

of dissociated cells, which utilizes microscopy images to direct mass spectral acquisition. High 

throughput is achieved with optically-guided MS by selectively targeting only the cell locations. 

Unique aspects of optically-guided MS include its modular nature and ability to repeatedly visit 

the same cells. As discussed later, the choice of optical imaging and mass spectrometer do not 

affect basic performance.  Since cells are adhered to the sample surface, their location can be 

revisited for follow-up analysis with the same instrument or by different platforms.  

 Chapter 4 discusses the implementation and performance of a modified desorption 

electrospray ionization (DESI) source which synchronizes ionization with low duty cycle mass 

analyzers.7 DESI was among the earliest ambient ionization techniques and shows great promise 

in applications requiring direct analysis of samples at atmospheric pressures. A drawback of 

DESI when coupled to low duty cycle mass analyzers, such as Orbitrap or Fourier transform ion 

cyclotron resonance, is that DESI will desorb the sample surface even while the instrument is not 

trapping ions. This leads to decreased sensitivity from analyte losses. Since ultrahigh resolution 

mass analyzers are important for resolving the chemical content of complex systems, it is 

imperative to adapt DESI to such instruments. The approach presented is synchronized DESI, in 

which the desorption spray is directed away from the sample surface while the mass analyzer is 

not accepting ions. Originally developed by Huang, et al. for a miniature mass spectrometer,8 
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synchronized DESI showed improved sensitivity on the order of the duty cycle. The source was 

adapted from a commercial DESI emitter and assessed for its performance with MSI. It was 

found that synchronized DESI is especially effective for analytes weakly bound to the sample 

surface, an observation supported by a model developed to simulate analyte migration during 

DESI-MSI. While not directly applied to single cell analysis, the integration of synchronized 

DESI would be important for single cell profiling in order to prevent unnecessary desorption of 

cell content while traveling between targets. 

 Chapter 5 introduces the image analysis and spatial correlation software utilized in the 

remaining chapters. While any optical image is suitable, the software is focused on microscopy 

guided MS, called microMS. microMS provides a feature-rich graphical user interface to 

encapsulate many processes required to utilize an optical image for MS analysis. Functions 

include automatic cell finding, population stratification on morphology, and distance filtering. 

Support for four separate instruments is described; three are utilized in specific projects in the 

remaining chapters. The optical and physical positions are correlated through a point-based 

similarity registration which requires selection of several fiducial markers. Target positions may 

be patterned, their analysis order optimized and finally exported in an instrument-specific format. 

By design of the software architecture, instrument objects interact with the graphical user 

interface through an abstract base class. The base class defines a limited set of functions which 

must be implemented for full support while including implementations of common algorithms, 

such as the point-based similarity registration. The design greatly simplifies the addition of new 

instruments and provides a unified user interface across platforms. Chapter 5 also demonstrates a 

powerful aspect of single cell analysis from sample substrates: sequential analysis of the same 

cell. Once a cell is located on the sample surface, its location is uniquely specified by its pixel 
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position. The sample can simply be moved between mass analyzers and repeatedly analyzed. 

Such experiments would be difficult to perform without microMS and this feature should find 

additional applications in the future. 

 Chapter 6 presents the application of microscopy-guided MALDI-TOF MS profiling for 

pancreatic islets of Langerhans.9 Islets are composed of at least four cell types, defined by the 

expression of peptide hormones. Alpha cells express glucagon, beta cells express insulin, gamma 

cells express pancreatic polypeptide, and delta cells express somatostatin. During embryonic 

development, the pancreas forms from two buds from the gut tube which fuse into the mature 

organ. The difference in origin manifests as distinct populations of cell types for islets derived 

from the dorsal or ventral bud. Dorsal-derived islets contain more alpha cells and ventral-derived 

islets have more gamma cells. Using single cell MS profiling, thousands of pancreatic cells were 

classified with k-means clustering based on the abundance of the four hormones listed above. 

The cell type heterogeneity between dorsal- and ventral-derived islets was successfully repeated 

using the methodology. As a label-free method, MALDI-TOF-MS also allowed further 

investigation of the chemical composition of each cell type. Focusing on dorsal/ventral 

heterogeneity, m/z values which differ between the anatomical regions were examined for each 

cell type. Gamma cells presented several significantly different peaks, which were identified as 

cleavage products of the full length pancreatic polypeptide from mass matching with LC-MS 

peptidomics. From full length pancreatic polypeptide (PP), cleavage at the monobasic site R17 

results in PP(1-16) and PP(18-36) and dibasic cleavage at RR25-26 generates PP(1-24) and 

PP(27-36), which were all detected from single cells. Interestingly, the full length PP was not 

significantly different, indicating heterogeneity in peptide processing within dorsal- and ventral-
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derived gamma cells. This is also the first report of endogenous production of these cleavage 

products and was confirmed with MSI of pancreatic tissue. 

 Chapter 7 presents an adaptation of microMS for utilization with a lab-built C60 

secondary ion mass spectrometer (SIMS).10 While MALDI-MS provides information on intact 

biomolecules as large as several kDa, interference from the small molecule MALDI matrix 

frequently prevents analysis of metabolites. In contrast, SIMS can be performed without matrix 

and garners more information on small molecule metabolites. Due to limitations of the custom 

SIMS instrumentation, additional data analysis is required to accurately parse spectra and assign 

them to specific cells. Matlab scripts for performing these analyses are presented in Appendix A. 

While specifics slightly vary, overall the operation of SIMS single cell profiling is similar to 

MALDI-TOF. A difficulty found with single cell SIMS is that the sensitivity of native SIMS for 

intact lipid analysis was insufficient to classify cells. To improve sensitivity, samples were 

coated with a mixture of ionic liquid matrices which were previously shown to improve limits of 

detection while providing a uniform coating. With matrix enhanced SIMS, samples of dorsal root 

ganglia cells were easily differentiated from cerebellum cells by t-distributed stochastic neighbor 

embedding (t-SNE).11 Further analysis of the two groups revealed additional subclasses which 

were differentiated by the relative signal intensity of phosphatidylcholine lipids PC(32:0) and 

PC(34:1).  

 Chapter 8 is an example of follow-up analysis of samples surveyed with MALDI-TOF-

MS. The particular application utilized a liquid microjunction extraction system controlled by 

microMS which performs targeted extractions for capillary electrophoresis (CE)-MS analysis. 

While CE-MS can provide quantitative measurements of metabolites, its throughput is quite low 

with each separation taking ~40 minutes. As such, comprehensive surveys of large populations 
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are prohibitively time consuming. Instead, MALDI-TOF-MS can provide an initial classification 

of cells to guide follow-up extraction. In addition to determining the accuracy and extraction 

efficiency, the workflow was applied to single pancreatic islet cells. MALDI-MS successfully 

classified populations of cells into alpha, beta and gamma cells. Six alpha and five beta cells 

were targeted for qualitative, CE-MS analysis. Several amino acids were putatively identified by 

matching exact mass and relative migration order. In both cell types, dopamine was directly 

detected and confirmed by matching migration time of a standard. While quantitative, 

comparative analysis was not performed, the addition of internal standards would facilitate such 

studies in the future. 

 Chapter 9 is an extension of microMS for high throughput screening of bacterial colonies 

for the production of natural products and engineered mutations. Plasmid libraries were 

transformed into E. coli strain BL21 (DE3) and grown on a porous hydrophilic membrane. 

Following induction, the colonies were transferred onto ITO-coated glass slides by imprinting. 

The colonies were found to auto-fluoresce sufficiently that no nuclear stain was required. 

Besides the larger size, the randomly seeded colonies resembled single cells and could be found 

with the existing machine vision algorithms. Each colony was sampled multiple times around its 

perimeter and the resulting dataset was analyzed by t-SNE and manually clustered to detect 

mutated peptides by mass matching. The high-throughput, label-free, direct analysis of bacterial 

colonies has direct implications for screening campaigns on mutant libraries. 

 Appendix A supplements several chapters by providing documented source code for 

simulations of DESI MSI, microMS, and analysis scripts for SIMS single cell profiling, CE-MS 

extracted ion electropherograms, and the determination of removal efficiency for the liquid 

microjunction system. 
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 Appendix B presents a user manual for microMS covering basic functions and two 

examples of how to extend the source code to support new instrumentation. 

 While a diverse range of topics are presented throughout the dissertation, all chapters 

describe methodology with direct or indirect applications to MS for single cell analysis. In 

particular, the development of microMS greatly simplifies microscopy guided MS and is flexible 

enough to analyze diverse samples. The work includes new information on cell heterogeneity in 

pancreatic islets, nervous systems, and natural product libraries achieved by improvements in 

MS sampling approaches.  
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CHAPTER 2 

IMAGING MASS SPECTROMETRY IN PROTEOMICS 

 
Notes and Acknowledgements 

This chapter was as update of DOI: 10.1016/B978-0-12-409547-2.11698-1, with coauthors S. 

Yoon, E.B. Monroe, and J.V. Sweedler, adapted and reproduced here with permission from 

Elsevier. The update was published as “‘OMICS’: PROTEOMICS | Imaging MS in Proteomics” 

in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: 

2016. (DOI: 10.1016/B978-0-12-409547-2.11698-1). The chapter presents an overview of mass 

spectrometry imaging with a focus on peptidomics and recent advances, including ambient 

ionization imaging.  

Introduction 

The application of mass spectrometric imaging (MSI) as a tool to study the native distribution of 

molecules within biological tissues presents an intriguing method for proteomics. Within a single 

experiment, the distribution of hundreds of known and previously uncharacterized compounds 

may be studied, including peptides and proteins. MSI typically uses a microprobe ionization 

source to collect mass spectra from hundreds to millions of spatially defined locations across a 

sample and, following data acquisition, enables the creation of distribution maps of selected 

signals. Although relatively little sample preparation is needed for such analyses, retaining the 

native distribution of compounds of interest is required, and specific steps must be taken to limit 

analyte redistribution during tissue processing. Here we present a review of MSI methods and 

instrumentation, protocols for sample preparation, and experimental considerations that are 

required for successful MSI experiments. 
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Many mass spectrometric approaches to biological tissue characterization involve 

extraction from tissue homogenates, followed by multiple stages of liquid-phase separations, 

e.g., liquid chromatography (LC) or two-dimensional (2D) gel electrophoresis, before 

introduction to a mass analyzer to achieve information-rich detection. Separation-based mass 

spectrometry (MS) approaches simultaneously obtain qualitative and quantitative information on 

numerous distinct analytes from extremely complex samples; however, homogenization destroys 

spatial information and can dilute scarce analytes below the limit of detection. In contrast, by 

sampling in discrete areas over the sample, MSI can directly assay tissue sections without 

requiring interim homogenization or separations. Moreover, MSI retains important spatial 

information on compounds within the tissue, which is particularly useful when examining 

heterogeneous samples such as tumors or brain slices. Nevertheless, without a separation stage, 

MSI detects fewer compounds due to the inherent chemical complexity of tissues, which can also 

limit the performance of MS-based fragmentation. The two methodologies are therefore 

complementary, and one often needs to implement both approaches in order to understand both 

the spatial and chemical characteristics of a particular sample. 

The development of several direct desorption/ionization techniques has revolutionized 

our ability to study proteins and peptides from tissues with MSI. The levels of sensitivity and the 

high information content resulting from MS measurements allow for the detection, identification, 

and characterization of proteins and metabolites directly from thin tissue sections. In addition, 

the spatial distribution of a compound of interest is revealed via the examination of a chemical 

image, or distribution map. Techniques that provide information about the location of a molecule 

within a tissue have benefited biologists for decades, yet such methods often require specific 

antibodies or labels to visualize molecular distributions within a sample. In contrast, MSI 
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generates images for a wide range of analytes in a single experiment without requiring 

preselection or labeling. 

To create an ion image using MSI, mass spectra are collected from an ordered array of 

locations across the sample. During data processing, the intensity of selected ions is plotted to 

produce a 2D distribution map across the tissue (Figure 2.1). Because a mass spectrum contains 

intensity values for numerous compounds, a single MSI experiment provides hundreds of ion 

images for both known and uncharacterized molecules. 

When measuring the contents of an entire organ, individual compounds can be difficult to 

detect due to their low average global concentration within the tissue. Furthermore, MSI analysis 

of the spatial localization of compounds within a sample provides information that can suggest a 

biological function. For example, an analyte localizing within a specific region may indicate that 

it is involved in processes intrinsic to the biological structure in which it is present. Additionally, 

when looking for regional (cellular) differences in protein expression, high-resolution MSI 

provides many of the same benefits as single-cell MS. Specifically, investigating the profile of 

peptides and proteins at such small spatial scales benefits from the high local concentration of 

molecules of interest, particularly when these analytes are localized to a single cell or small 

cluster of cells within a tissue. 

This chapter describes the MS methodologies, basic instrumentation, and sample 

preparation requirements that are integral to the chemical imaging of peptides and proteins in 

biological tissues. Current image acquisition procedures and sample preparation protocols are 

also examined, highlighting the latest research methods, and their successes and limitations. 

Throughout the review, the complementary nature of MSI and LC-MS should become more 

apparent.  
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MS Methods and Instrumentation 

Proteins have major roles in many biological pathways and so the ability to localize their spatial 

distributions can enhance our understanding of many physiological processes. The goal of an 

MSI investigation is to utilize the high information content obtained via MS to map the location 

of both known and unknown compounds in a sample. To accomplish this, mass spectra must be 

collected for an array of locations across a sample by selectively interrogating each position.1 

Two traditional MS techniques are well-suited for these analyses: matrix-assisted laser 

desorption / ionization (MALDI)-MS and secondary ion mass spectrometry (SIMS). In these 

methods, a laser or ion microprobe, typically with micron or submicron dimensions, desorbs and 

ionizes compounds from the sample at a specific location. Similarly, recently developed ambient 

ionization methods with discrete desorption areas can be directly translated to MSI. Examples 

include desorption electrospray ionization (DESI),2 nanospray DESI (nanoDESI),3 and laser 

ablation electrospray ionization (LAESI).4 Once ionized, compounds are separated on the basis 

of their mass-to-charge ratio (m/z) and detected. Because the ions originate near the probe beam, 

the spatial location of the molecules is inferred. Application-specific software enables selection 

of an analyte signal from the thousands that are obtained and plots the intensity for each point in 

the array, resulting in an ion image. Although MALDI MS, SIMS and the ambient methods 

discussed are all microprobe analyses, they vary with regard to their ionization mechanisms, 

sample handling requirements, and mass detection range. 

MALDI MS 

Developed in the late 1980s,5,6 MALDI MS is one of the most powerful methods available to 

ionize intact biological compounds. In this approach, analytes are incorporated into a low-

molecular-mass organic matrix, which strongly absorbs energy from an impinging laser beam. A 
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wide variety of matrices have been developed for both ultraviolet7 and infrared excitation, 

including glycerol and derivatives of benzoic and cinnamic acids, among others.5 Nanosecond 

laser pulses resonantly excite the matrix and cause its rapid vaporization, resulting in the ejection 

of neutral and charged analyte molecules, matrix molecules, and matrix–analyte clusters. Owing 

to particle interactions, ionization occurs in the matrix crystals and the subsequent MALDI 

plume, producing predominantly monoprotonated [M + H]+ species in positive-ion mode, and 

deprotonated [M − H]− species in negative-ion mode operation. Typically, MALDI MS is 

coupled to a time-of-flight (TOF) mass analyzer that detects ions over a wide mass range (up to 

hundreds of kilodaltons (kDa)), making MALDI-TOF MS suitable for peptide and protein 

studies.8,9 TOF analyzers typically display mass accuracies of 20–200 ppm and a resolving 

power of 30,000.10,11 High performance analyzers (e.g., Fourier transform ion cyclotron 

resonance (FT-ICR) or the Orbitrap) can be coupled to MALDI sources to provide higher mass 

accuracy and a resolving power of better than 5 ppm and 100,000,10 respectively. These powerful 

mass analyzers can provide confident assignments of molecular composition from single-stage 

mass spectra. At higher masses, fewer molecules of a protein tend to exist in each interrogated 

spatial region, an issue that is compounded by lower sensitivity of the detector for larger ions. 

Both factors limit which proteins will be detected in an MSI experiment. At the lower mass 

range (< 1,000 Da), matrix compounds can form adducts with analytes, further complicating 

analyses. 

In proteomics, two types of approaches are commonly used for protein identification. In 

the first, known as top-down, intact proteins are directly identified by their molecular mass and 

peptide fragments produced by tandem mass spectrometry (MS/MS). Alternatively, the bottom-

up method utilizes on-tissue enzymatic digestion of proteins prior to mass spectral analysis. 
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Protein identification can be accomplished by peptide mass fingerprinting12 and MS/MS 

sequencing of the digested peptides. MALDI MS is a versatile technique that can be used with 

either approach for proteomic studies. It also brings several benefits to imaging biological 

tissues. Foremost, prepared tissues are directly analyzed by applying either a thin coating of 

matrix13,14 or an array of droplets13 on a tissue section. Analyses are also remarkably salt-

tolerant; physiological salts may form adducts to analyte molecules but do not inhibit or 

otherwise significantly perturb spectra. Additionally, several histological stains, including cresyl 

violet and methylene blue,15 are compatible with MALDI MS and permit the optical 

identification of morphological structures. These unique advantages help explain why MALDI 

MSI is the most widely used method for imaging peptides, proteins, and lipids in biological 

tissues. Examples of the MSI of a rat brain tissue are shown in Figure 2.2. 

Selection of the most appropriate matrix is a critical step to ensure the production of high 

quality chemical images.16 Robust protocols for matrix application have been established and 

optimized for each analyte type or molecular weight. For protein analysis, α-cyano 5-

hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), and 3,5-dimethoxy-4-

hydroxycinnamic acid (sinapinic acid, SA) are commonly used. CHCA is generally more 

sensitive for detection of low-mass peptides (< 2,500 Da),17 whereas DHB provides less matrix 

interference during analysis of peptides or lipids in both positive- and negative-ion modes.16 For 

larger peptides and proteins, SA performs better.17,18 Other matrices offer improved ionization of 

specific compounds: 2,4-dinitrophenylhydrazine is used for formalin-fixed paraffin embedded 

samples,19,20 3-hydroxypicolinic acid for oligonucleotides or glycoproteins,21 1,5-

diaminonaphtahlene for lipids,22 and aniline as an ionic matrix for digested actin or hemoglobin 

proteins.23,24 Homogeneous deposition of the matrix with small crystal sizes is vital for obtaining 
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high spatial resolution MALDI chemical images.25 Each matrix and application approach 

produces crystals of different sizes and variable analyte extraction efficiencies, which may also 

limit the spatial resolution obtained. Typical spatial resolutions in protein analysis range from 

about 100 µm to 250 µm for routine images.26 For example, a recent MSI study using matrix 

sublimation of SA acquired images of chicken liver and mouse brain tissue with a spatial 

resolution of 10 µm.26 Spatial resolution may also be limited by the laser spot size and pitch 

between ablation spots (pixels). In commercial MALDI instruments, laser spot sizes range from 

200 µm down to 20 µm.27 Recently, high spatial resolution in MALDI MSI was achieved with a 

transmission geometry ion source that irradiates the back side of tissue samples.28 The back-side 

illumination allows closer placement of optics, resulting in a laser spot focused to a diameter of 

less than 1 µm. Acquisition with submicron pixel sizes is an exciting advance that provides the 

capability of direct imaging with sub-cellular resolution.  

Traditionally, microprobe MALDI MSI has been limited in resolution to roughly the size 

of the laser beam profile. Image oversampling is another approach to improve spatial resolution 

using commercially available spectrometers; pixels are acquired with a pitch that is less than the 

laser spot diameter.29 In oversampling, the laser is used to ablate the layer of matrix from one 

position on the sample, prior to moving to the next position on the sample. When the distance 

between two adjacent points is less than the size of the laser beam, any signals from the new 

position arise only from the region of the beam profile that is still coated with matrix. This 

allows for the effective imaging of samples at resolutions below the size of the laser beam. 

Atmospheric pressure MALDI is a novel ionization technique developed by the Burlingame 

group.30 Unlike traditional MALDI sources, ions are generated from the laser pulse at 

atmospheric pressure. Recently, the Spengler group11,31 introduced atmospheric pressure 
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scanning microprobe MALDI using an imaging source attached to an FT-ICR mass analyzer that 

displays high spatial resolution and accurate mass measurement. They achieved a mass accuracy 

of 2 ppm and typically obtained a spatial resolution of 10 µm; however, slight oversampling with 

a laser ablation spot diameter of 5 µm can decrease resolution further to 3 µm.32 

SIMS 

SIMS has been widely used in materials science, including during semiconductor fabrication, for 

quality control and surface analysis with atomic-level chemical resolution.33 Figure 2.3 presents 

a SIMS image of the lipids and other molecules, such as vitamin E, found within a single cell 

extracted from Aplysia californica using an Au+ primary ion beam. Unlike the laser pulses used 

in MALDI, SIMS utilizes a tightly focused beam of primary ions that impact the sample to 

desorb and ionize analytes directly from the surface. Energy from the primary ions are 

transferred to analytes via a collision cascade, which subsequently ejects secondary ions that are 

analyzed by their m/z.34 This process causes greater molecular fragmentation than MALDI due to 

the high kinetic energy of the primary ion beams (in the range of 1–30 keV), thereby limiting the 

upper mass range of SIMS to the low kDa range.35 As a result, most SIMS imaging focuses on 

small molecules, lipids, and atomic ions. Commonly-used primary ion beams include 

monoatomic (Au+, Ga+, and Bi+) or polyatomic (Aun
+, Bin

+, and Csn
+) sources. The primary ion 

beam may be readily focused to diameters of a few hundred nanometers so that high spatial-

resolution imaging is possible. Although focusing cluster ion beams is more difficult than atomic 

beams (e.g., the focused size of a C60
+ ion beam is around 1 µm), the spatial resolution is still 

superior to the 10–100 μm spatial resolutions typical of MALDI MSI.  

Recently developed cluster ion sources,36,37 matrix-enhanced SIMS (ME-SIMS),38,39 and 

metallization (Met-SIMS)40,41 provide softer ionization, allowing detection of compounds as 
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large as several kDa. The Winograd42 research group developed ion sources for SIMS that enable 

the analysis of organic compounds and thereby, extend SIMS as an imaging technique for the 

biological sciences. Cluster ions, such as C60
+ or Arn

+ (n = 1000–4000), fragment upon impact, 

distributing the large kinetic energy of the ion between analytes and many fragments from the 

ion beam.43,44 As a result, SIMS with a cluster primary ion source can analyze peptides and 

proteins with high molecular masses in addition to small molecules. Smith et al.45 reported the 

chemical imaging of mouse brain tissue by C60
+ SIMS FT-ICR MS. Argon-cluster SIMS can 

expand the mass range up to 25 kDa and increase secondary ion yield by controlling the kinetic 

energy per atom of the Ar cluster ion.37,46 As an alternative to cluster ion sources, surface 

modifications such as ME-SIMS or Met-SIMS can improve the analysis of intact biological 

compounds. ME-SIMS, which uses a thin layer of MALDI matrix (e.g., CHCA or DHB) applied 

to the sample, can measure biological compounds at higher mass ranges. Similar to MALDI, 

ME-SIMS produces mass spectra up to several kDa from various biological compounds. 

Recently, MacAlees et al.47 reported identification of trypsin-digested bovine serum albumin and 

savinase via ME-SIMS imaging of nanoLC fractions collected on a SIMS sample plate. ME-

SIMS allowed ionization of peptides up to nearly 5 kDa using a gold liquid metal ion gun. Met-

SIMS is another surface modification used to improve the analysis of intact biomolecules. 

Coating the sample surface with a thin (1 nm to 5 nm) metal coating such as gold can extend the 

mass range available for SIMS analysis.41 The metal coating is thought to reduce surface 

charging and analyte fragmentation by taking the brunt of the primary ion impacts.43,44  

MS/MS is an important technique that provides more confident analyte identification. 

The lack of MS/MS capability with standard, commercial SIMS instruments has been a 

drawback to many biological studies. In efforts to address these limitations, Winograd and 
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colleagues36 utilized a C60
+ ion source coupled with a quadrupole orthogonal TOF mass 

spectrometer to acquire product ion spectra. They obtained chemical images of vitamin E, 

cholesterol, and other lipid compounds on the surface of individual Aplysia californica neurons. 

More recently, using SIMS with MS/MS, they identified 1-hexadecyl-2-octadecenoyl-sn-

glycero-3-phosphocholine [PC(16:0e/18:1)] as a major lipid constituent of the neural 

membrane.48  

Although more limited in mass range than MALDI MSI, SIMS is capable of analyzing 

tissues at spatial resolutions exceeding that of MALDI MSI. Furthermore, SIMS can be used to 

examine tissue sections without significant sample preparation, allowing higher throughput and 

less analyte migration than MALDI. As discussed, the addition of a MALDI matrix or metal 

coating softens ionization, leading to the observation of intact, molecular ions.  

Ambient Ionization 

Ambient ionization MS is an emerging technique in which ions are generated at atmospheric 

pressure without sample preparation.49,50 Following direct desorption and ionization under open-

atmospheric conditions, generated ions are analyzed in vacuum. The ability to directly analyze 

biological samples under ambient conditions is a major advantage over SIMS or MALDI MSI. 

DESI, introduced by the Cooks group in 2004,2 produces ions from charged microdroplets 

generated with an electrospray emitter. Solvent from the microdroplets pools on the sample to 

create a thin liquid film that extracts analytes from the surface.51 Desorption from the film occurs 

by momentum transfer between incoming droplets and the film to generate secondary 

droplets.52,53 Gas phase ions form by an electrospray ionization (ESI)-like mechanism54-56 and 

are drawn into the mass spectrometer through an atmospheric pressure interface. As ionization is 

restricted to the impinging electrospray, DESI MSI is performed by rastering the spray over the 
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sample area.57,58 In most experiments, the mass range is limited up to m/z 2,000, with a lateral 

spatial resolution of about 100 to 200 µm. With careful optimization of operating conditions, 

including reducing the inner diameter of the DESI emitter capillary, the lateral resolution can 

improve to 35 µm.59 DESI MSI studies typically focus on profiling lipids in various biological 

tissues, including brain,60 spinal cord,61 prostate,62 kidney,63 and adrenal glands,64 among others, 

for the characterization and diagnosis of diseased states. DESI MS is typically less sensitive than 

MALDI MS for protein analysis;65 the limits of detection were poorer with analytes having a 

larger mass due to less efficient desorption. Although the low sensitivity of DESI MSI currently 

limits its utilization in proteomic research, recent improvements in DESI MS for protein analysis 

have focused on detecting larger proteins. Shin et al.66 measured purified proteins in a mass 

range from 12 kDa to 66 kDa, applied as a uniform layer on glass and Teflon via an oscillating 

nebulizer sample deposition system.66,67 Though promising, more research is needed to realize 

ambient imaging of protein distributions with DESI. 

In 2010, the Laskin group3 introduced nanoDESI by modifying the ion source with a 

nanoelectrospray probe. In this approach, a liquid junction formed by two narrow capillaries was 

used to extract analytes on the sample surface and transfer them into the mass spectrometer via 

nanoelectrospray. They observed 3 pmol of cytochrome c (12 kDa) in a bovine heart sample 

deposited on a hydrophobic substrate. The isolated extraction and direct transfer to the mass 

spectrometer inlet allowed lateral resolution as low as 10 µm with high sensitivity.68 By 

introducing an internal standard to the perfusion solvent, rough quantitation was possible to 

account for ions with multiple adducted cation variants (e.g., sodiated and potassiated lipids).69 

Some technical issues remain, including sample diffusion in the capillary and difficulties in 
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forming and maintaining the fragile liquid junction, which currently limits the usage of 

nanoDESI in ambient MSI.  

In contrast to the two ambient ionization methods discussed above, which desorb analytes 

via liquid extraction, laser ablation electrospray ionization (LAESI) utilizes a focused sampling 

laser beam for desorption and extractive ESI as a post-ionization process.4 LAESI is a hybrid 

ambient method that combines representative characteristics of MALDI and ESI. Ionization 

occurs from a gaseous plume of analyte ions/neutrals desorbed by laser irradiation when 

electrospray droplets merge with the plume during post-ionization. By decoupling desorption and 

ionization, each process can be independently optimized for overall higher analytical 

performance. LAESI uses a mid-infrared laser to excite the endogenous water found in biological 

samples.70 Kiss et al.71 reported top-down identification with MSI of intact proteins by LAESI 

combined with a hybrid ion trap FT-ICR mass spectrometer. Hemoglobin α chain was identified 

directly from collision induced dissociation, which was utilized to induce fragmentations for the 

top-down analysis. The work demonstrates that proteins from biological tissue sections in native 

environments can be analyzed by LAESI MSI for proteomics. 

Multimodal Imaging 

An emerging interest in the field is to combine multiple imaging modalities to acquire 

complementary information and gain further insight on the biological system under 

investigation.72 Multimodal MSI can employ a variety of optical images, ionization techniques, 

or MS approaches. The most common strategy is the acquisition of histological stains that are 

registered with mass spectral images. This routine procedure allows histology-guided 

classification of different regions within chemical images. Distributions of specific antigens can 

be targeted using immunostaining methods such as immunohistochemistry73 or 
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immunofluorescence.74 Correlating chemical information with traditional medical images is 

another area of interest. For example, magnetic resonance imaging generates three dimensional 

(3D) models of tissue samples within their native context. MSI of biopsies from the same region 

provides specific chemical information and additional diagnostic power for the diseased state. 

Medical images may also present a scaffold for building 3D MSI images from serial tissue 

sections.75 Vibrational microscopy is another nondestructive method to image tissue sections 

prior to MSI. The spectra can corroborate chemical identification obtained from MS, and images 

may be acquired at higher spatial resolution than with MSI.76 

Beyond optical methods, several studies have combined multiple types of MSI to gain 

insight from their complementary chemical coverage or spatial resolution. Using MALDI MSI to 

measure protein content is enhanced further by acquiring a separate image for the metabolite and 

lipid content. Eberlin et al.77 reported sequential imaging using DESI, followed by MALDI to 

measure lipid and protein content within a single tissue section. When morphologically friendly 

solvents are utilized for DESI MSI,78 the tissue remains unperturbed and can be analyzed with 

MALDI following matrix deposition. The morphology is maintained sufficiently following 

MALDI to allow for histological staining. A different approach was utilized by Lanni et al.79 for 

combined SIMS and MALDI imaging of bacterial biofilms. Instead of utilizing MALDI for 

protein profiling, a gold-coated sample was rapidly analyzed with laser desorption ionization 

(LDI) at low spatial resolution (500 µm or 1000 µm) to target regions of interest with high 

resolution SIMS imaging (0.6 µm). The initial LDI image was necessary as a biofilm sample is 

optically homogenous. In the above cases, the complimentary performances of two ionization 

sources were leveraged for better analyte coverage or higher throughput. 
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Although performing sequential MSI experiments garners additional chemical 

information, the need to have multiple instruments or custom hybrid ionization sources may limit 

widespread utilization. An alternative is to analyze the same tissue using one ionization source 

with multiple MS experiments. Korte and Lee80 utilized a spiral raster to subdivide each pixel 

into multiple MALDI MS experiments, including high resolution-positive and -negative mode, 

single-stage MS on a LTQ-Orbitrap Discovery mass spectrometer. During transient acquisition 

in the Orbitrap, the linear ion trap performed MS/MS acquisition of selected ions to produce 

multiplexed data for nine distinct images. The single-stage images provided high mass accuracy 

profiles of a wide range of analytes and the MS/MS images displayed increased specificity and 

sensitivity, albeit for only a few, selected compounds. These types of imaging experiments 

should find application in locating drug and metabolite accumulation by selecting exogenous 

compounds for MS/MS images. Difficulties with the approach arise from the requirement of a 

single matrix to provide high sensitivity for both positive- and negative-mode MALDI, and the 

repeated high voltage cycling required for polarity switching. In instances where serial sections 

are available, it may be advantageous to correlate images between tissue sections so that matrix 

composition is optimized to each experiment. 

A final consideration with multimodal imaging is how to handle the complex data sets. In 

most cases, qualitative information from one image informs conclusions on the other. For 

example, histology will highlight an area within a tissue section containing large concentrations 

of cancer cells. The spectra within this area are then examined to discover putative biomarkers 

specific for the diseased state. Similarly, examination of one image can dictate which regions 

should be subjected to further analysis. Quantitative data fusion is more difficult and requires 

precise registration of the two images. Examples of image fusion include SIMS images 
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combined with scanning electron micrographs81 or MALDI MSI fused with hematoxylin and 

eosin stains.82 In these studies, high spatial resolution microscopy images were used to predict 

the chemical distribution acquired by MSI. The implicit assumption with these methods is that 

the chemical distributions match features visible in the other modality, which may not always be 

valid. Technologies for fusing mass spectral data for MSI are still under development. One 

example of fusing mass spectra in positive and negative polarity is from a report of profiling 

single oocytes.83 Following principal component analysis (PCA), the predominant principal 

components from positive and negative mode were jointly considered for linear discriminant 

analysis. Quantitative data fusion represents a challenge for multimodal imaging that should see 

further development in the near future. 

Sampling Protocols 

For chemical imaging experiments to succeed, sample preparation procedures should preserve 

the original distribution of analytes in the tissue. Preparing a tissue section minimally requires 

tissue dissection, sectioning, transfer and placement on an appropriate target, followed by MS-

based data acquisition, as illustrated in Figure 2.4. For SIMS and many ambient methods, the 

tissue may be directly imaged, whereas MALDI requires application of a matrix coating before 

imaging. Because each of these steps can cause analyte migration, a wide range of preparative 

protocols have been developed to optimize the chemical imaging of tissues with MS. SIMS has 

been successful for small molecule imaging and is used in many situations for cation and lipid 

imaging. For protein applications requiring information on higher molecular masses, MALDI 

MSI is often the more appropriate approach; as a result, many of the sample preparation and 

experimental considerations in the literature focus on MALDI MSI techniques. 
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Tissue Preparation  

Animal sacrifice and tissue dissection protocols, like other preparative steps, must seek to 

maintain the native complement and distribution of analytes. Therefore, rapid decapitation of 

animals is the preferred method, particularly in studies of nervous tissues where pharmaceutical 

euthanasia agents may alter the production and processing of proteins and peptides prior to 

death. Additionally, rapid tissue dissection and disruption of enzymatic processes is imperative. 

Following death, if enzymatic activity is not quenched, significant protein degradation may 

result. To reduce this undesirable effect, tissue samples are typically frozen on dry ice, liquid 

nitrogen, or liquid nitrogen-slushed liquid propane. One common method uses liquid propane 

because of its relatively high thermal conductivity and ability to remain a liquid at the slightly 

elevated temperatures often present at the tissue–liquid interface during freezing.84 In practice, 

the tissue sample is loosely wrapped in a small piece of aluminum foil and plunged into a liquid 

nitrogen and liquid propane mixture. The sample is removed after several minutes and typically 

stored at −80°C to reduce analyte migration during storage. Similar preparative strategies using 

dry ice and/or liquid nitrogen alone have also been shown to limit enzymatic degradation. 

Chemical fixation is another, yet rarely used technique, as interference caused by the fixative 

during MS analysis is common. 

In general, the preparation of tissue sections is relatively straightforward and varies little 

from histological techniques. It is important, however, to limit the contact between tissues and 

traditional embedding media, which typically consists of a polymer matrix having a broad range 

of molecular masses; sections cut from embedded tissues tend to produce contaminant peaks 

arising from these polymers throughout the mass spectrum. As sections are cut, a thin layer of 

polymer may be spread over the surface of each section from the microtome blade. To reduce or 
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eliminate the need for embedding media, sections for MSI applications are often prepared using 

a cryomicrotome operated at −20°C. Tissues may be affixed to the microtome stage using either 

frozen water (ice) or a small drop of embedding media. If embedding media is used, it is 

important to apply only enough to affix the tissue to the stage while preventing contact between 

the media and the sectioning blade. If tissues are encased in ice to help maintain morphological 

stability during sectioning, they should be rapidly dried to prevent analyte redistribution. 

Although the preparation of thin tissue sections of non-embedded tissues may be more difficult, 

5–10 μm sections are readily obtained and are ideal for chemical imaging. Analysis of smaller 

sections can create issues, both for maintaining tissue morphology and for analyte detection, as 

less analyte is present in thinner sections. For irregular, fatty or porous tissues, embedding media 

is necessary to maintain native morphology during sectioning. Embedding is also utilized with 

3D images as it can simplify image reconstruction by preventing tearing and deformation from 

cutting and mounting. Several types of MSI-compatible embedding media have been reported, 

including carboxymethylcellulose,85 gelatin,39 or agarose.86 While spectral backgrounds are 

cleaner than with traditional polymeric media, application-specific evaluation is recommended 

before embedding critical tissue samples. Another alternative is to stabilize fragile sections with 

double-sided conductive tape.87,88 Due to the abundance of tissue archives for a variety of disease 

states, significant efforts have focused on recovering proteomic information from formalin-fixed 

paraffin-embedded tissues. A protocol developed by Casadonte and Caprioli89 involves 

sectioning, paraffin removal, antigen retrieval, and in situ trypsin digestion to prevent MS 

interference and release peptides from their crosslinks. Numerous options are available for 

preparing thin tissue sections from dissected samples. The methods adopted at this step can 

greatly affect the success of analysis and should be chosen and optimized carefully.  
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Following sectioning, samples must be transferred to a target suitable for the specific 

instrument being used, typically a metal plate or a glass slide. Transfer may be achieved by 

blotting the target onto the tissue, or lifting the sample onto the target using a small artist's brush, 

and then allowed to warm and dry. This warming and drying should be performed rapidly and 

may be aided by the addition of a stream of warm air or placement in a desiccator. Once on the 

target, the dried tissue sections may be rinsed with cold ethanol to assist in removing some 

physiological salts and lipids, both of which can complicate proteomic analyses and reduce 

instrumental sensitivity.90 Histological staining for morphological structure identification may be 

performed following drying as well. Some histological stains have been shown to reduce signal 

intensity for families of proteins, although as stated previously, both cresyl violet and methylene 

blue may be used without causing interference or reduction in MS sensitivity. In many cases, 

histological stains may also be performed following MSI. 

Another method for preparing samples for imaging is by dissection of well-defined tissue 

regions using microsurgery or laser capture microdissection (LCM).91 In LCM, a laser and 

polymer film are used to selectively remove small portions of tissue from a larger section. This 

technique is often used for profiling experiments, as small, distinct regions may be selected 

under magnification; however, LCM may also be used to isolate larger regions for imaging 

experiments.92 

Matrix Application 

Central to the capabilities of both MALDI MS and SIMS to detect proteins and peptides is the 

application of a matrix compound to the tissue surface in order to assist in analyte desorption and 

ionization. Generally, this involves applying a matrix-containing solution to the tissue via 

droplets or spray and allowing the matrix to crystallize on the surface. During the crystallization 
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process, analytes need to be extracted and then co-crystallized with the matrix. It is important to 

balance these processes. Maintaining wetness and an appropriate contact period increases analyte 

extraction, and thus, sensitivity, but also increases the likelihood of analyte redistribution. One 

option to address this issue is to apply the matrix in a dryer form, or create an environment that 

promotes rapid drying; although analyte migration is reduced, sensitivity suffers. Here we 

describe several protocols that are designed to not only resolve these concerns, but also to 

optimize the sensitivity and spatial resolution of a collection of mass spectra.  

As an image may be thought of as an array of individual points (pixels), the application 

of an array of droplets on a sample can allow image acquisition when these spots are 

interrogated. An automated strategy aids in the formation of a regular array of small droplets to 

enable the creation of chemical images across a tissue. Automated application of microdroplets 

can be generated with an acoustic ejection system,93 which is capable of depositing 200 μm spots 

at spatial resolutions of ~200 μm.  

Another sample preparation method for imaging is to apply a thin layer of matrix across 

the tissue using either an electrospray emitter,86 a gas nebulizer, or even an artist's airbrush. The 

goal is to provide adequate extraction while minimizing analyte redistribution by applying the 

matrix solution in a relatively dry manner. Typically, the matrix is a concentrated (10–30 mg 

mL−1), largely organic solution (e.g., 1:2, water/acetone); the high organic composition generates 

smaller microdroplets via evaporation during spray formation. Using the electrospray technique, 

a small amount of matrix solution is placed into a pulled glass capillary and a high voltage is 

applied between the tip and the grounded sample, generating a fine spray. For the spray to form, 

the tip must be kept relatively close to the sample surface (< 1 cm) and moved over the sample to 

coat large areas of tissue. Electrospray application tends to produce small matrix crystals, which 
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are beneficial for imaging applications. Perhaps the most common means to apply matrix is via 

aerosol spray, generated either by a gas nebulizer, such as those used to develop thin layer 

chromatography plates, or by an artist's airbrush. Several thin coats of matrix are applied by 

passing the aerosol spray across the sample multiple times and then pausing for several minutes 

to allow the sample to dry. Often, the last series of passes consist of solvent alone to form 

regularly sized and well-formed crystals. Both the nebulizer and airbrush operate in a 

comparable manner to produce similarly sized matrix crystals, and permit control over the 

amount of liquid applied with the matrix. The airbrush method also allows more control of the 

direction of the spray; however, more samples may be coated at one time using a nebulizer. As 

mentioned previously, a wet application of matrix increases analyte extraction but may result in 

analyte redistribution. 

In contrast to spray-based methods, matrix can also be applied without solvent using 

sublimation.14 In this protocol, the sample is cooled and held above a solid matrix under vacuum. 

As the matrix is heated, it begins to sublime and solidify upon the sample. Tissues may be thaw-

mounted onto slides that are precoated with a matrix deposited by sublimation.94 Generally, 

sublimation produces small crystals but results in poorer extraction than wet applications. To 

increase sensitivity, the coating may be re-crystalized by incubating in a heated chamber with 

water or organic solvent vapor.26,95 Again, a balance has to be met between small crystals and 

sufficient extraction efficiency.  

These matrix coating techniques, initially developed for MALDI MSI, may be readily 

adapted to ME-SIMS experiments without modification, keeping in mind that smaller crystal 

sizes are desired for ME-SIMS due to the higher spatial resolutions obtainable from SIMS 

instruments. As mentioned earlier, the surface metallization technique, Met-SIMS,40,41 was 
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developed to extend the available mass range and sensitivity of SIMS, and has also been applied 

to MALDI MS. A thin layer of metal (e.g., gold or silver) is applied with a sputter coater, as 

would be traditionally used to prepare samples for electron microscopy experiments. For 

MALDI MSI applications, this layer is applied on top of the matrix-coated sample.38,39 In both 

MALDI MS and SIMS applications, the metal coating is believed to assist by reducing buildup 

of an electrical charge on the sample during analysis.96 Unlike matrix coating, however, analytes 

do not appear to be directly integrated into the coating.  

Chemical Imaging Experiments  

Chemical imaging involves the collection of an array of mass spectra acquired at regular 

intervals across a sample, with some variations depending on instrumentation. In practice, the 

imaging process involves operating the instrument in an automated acquisition mode during 

which a list of locations is created. A complete mass spectrum is collected for each of those 

locations based upon a series of instrumental parameters, (e.g., mass range, laser power, number 

of acquisitions, etc.), which remain the same for each spot. This ‘spot-by-spot’ or microprobe 

process is the most commonly used means of imaging whereby each collected mass spectrum 

corresponds to an individual pixel in the resulting chemical image. 

An alternate imaging mode developed for TOF MSI involves irradiating a large area of 

the sample with the laser and then separating the desorbed ions in a spatially defined manner 

using specialized ion optics.97 The optics allow ions to maintain their spatial positioning 

throughout the TOF separation; the ions are then detected with a spatially resolved detector. A 

single laser pulse results in the creation of a complete ion image. In addition, this stigmatic 

imaging approach tends to produce higher-resolution chemical images because the size of the 

laser beam does not affect image resolution. However, microscope mode may require the 
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preselection of a mass range to image ratio as opposed to the point-by-point approach, which 

collects entire mass spectra at each point. 

Following spectra collection, software is used to convert intensity data into distribution 

maps of selected analytes. When utilizing most open source programs, it is necessary to convert 

data from proprietary software into an open source format such as imzML.98 Open source 

formats typically have larger file sizes than their proprietary counterparts, but ongoing design 

efforts are working to decrease file sizes. Several challenges arise when analyzing MSI data, 

primarily resulting from the immense size of the data sets. In simple implementations, m/z and 

tolerance values are input and signals within that range are plotted into a 2D array of intensity 

values. It is common to up-sample the image with some interpolation, and to recolor intensities 

with a color map. Careful consideration is necessary to balance data sizes and accuracy of 

results. Common non-targeted approaches include binning m/z values and peak finding.99 Both 

approaches can drastically reduce the overall memory requirements, but binning leads to reduced 

mass spectral resolving power and mass accuracy, whereas peak finding can overlook rare or less 

abundant species. Software packages may be commercial and proprietary, open source, or 

written for a particular user. Biomap (Novartis), a free software package, is popular for 

displaying images and superficial inspection of mass spectra, but lacks capabilities for more 

advanced statistical analysis. Many instrument manufacturers offer software for analyzing MSI 

data, e.g., FlexImaging from Bruker Daltonics and ImageQuest from Thermo Scientific. SCiLS 

Lab, a partner of Bruker, is another option for MSI data analysis that allows for a variety of 

univariate analyses, including hypothesis testing as well as supervised and unsupervised 

multivariate analyses.  
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Numerous reports have introduced alternative MSI analysis tools, typically addressing a 

shortcoming of commercial software or introducing statistical methods. As one example, to 

retain the mass resolving power of FT-ICR MSI, Smith et al.100 developed Chameleon, an MSI 

visualization package with bin widths of 0.001 Da. In this work, hardware limitations for storing 

large data sets were overcome by using a mosaic data cube, a subdivided version of a continuous 

data cube that can be read into memory piecewise. For nanoDESI MSI, integrating image 

acquisition with analysis allowed for fine adjustment of sample geometry during imaging and 

real-time display of ion images to assess image quality.68 New multivariate analyses have been 

integrated into MSI including PCA hyperspectral visualization,101 classification by PCA,102,103 

and hierarchical clustering,104 among others. For a more thorough review of statistical analysis in 

MSI, refer to the review by Jones et al.105 

Several considerations must be given weight when creating an ion image. The display 

scale should be easy to comprehend and provide contrast across the range of intensities. 

Topographical features of the sample can cause peaks to shift in detected m/z. To correct for 

these shifts, ion images may be created for a larger m/z window or standards may be added to the 

matrix solution to allow the internal calibration of each individual mass spectrum in the image. 

In cases where semi-quantitation is desired, defects in ionization across the sample due to, for 

instance, sample preparation defects or topographical features, may be minimized by 

normalizing analyte signals using one of a variety of metrics.106 

Conclusions 

The development of MSI for localizing the distribution of peptides and proteins in biological 

tissues makes available a valuable new toolset that benefits a wide range of research disciplines. 

Contemporary mass spectrometers provide the high sensitivity necessary to detect a range of 
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biological compounds in intact tissues while requiring relatively minimal sample preparation. 

The major goal of these advanced imaging approaches is to obtain information on 

heterogeneously distributed analytes, which is otherwise difficult to acquire using the more 

common technique of dissection to extract tissues for analysis with LC-MS. While MSI is a 

relatively new addition to the investigative options available to the mass spectrometrist, it likely 

will become more common in applications that require profiling of heterogeneous samples. 

The sample preparation protocols described herein for MALDI MSI and SIMS imaging 

are similar, and both enhance analyte detection while limiting contaminants and analyte 

redistribution prior to analysis. Sample preparation requirements are minimized when using 

ambient ionization methods, which allow direct analysis of tissues that are irregularly shaped or 

not vacuum stable. The automated collection of thousands of mass spectra can result in a 

multitude of chemical images for a given experiment; these images often prove to be highly 

beneficial when used as discovery tools in the analyses of biological tissues. We anticipate even 

further refinements to these approaches to address specific analytical challenges. 
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CHAPTER 3 

CATEGORIZING CELLS ON THE BASIS OF THEIR CHEMICAL  
PROFILES: PROGRESS IN SINGLE-CELL MASS SPECTROMETRY 
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The chemical differences between individual cells within large cellular populations 

provide unique information on organisms’ homeostasis and the development of diseased states. 

Even genetically identical cell lineages diverge due to local microenvironments and stochastic 

processes. The minute sample volumes and low abundance of some constituents in cells hinder 

our understanding of cellular heterogeneity. Although amplification methods facilitate single-cell 

genomics and transcriptomics, the characterization of metabolites and proteins remains 

challenging both because of the lack of effective amplification approaches and the wide diversity 

in cellular constituents. Mass spectrometry has become an enabling technology for the 

investigation of individual cellular metabolite profiles with its exquisite sensitivity, large 

dynamic range, and ability to characterize hundreds to thousands of compounds. While advances 
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in instrumentation have improved figures of merit, acquiring measurements at high throughput 

and sampling from large populations of cells are still not routine. This chapter highlights the 

current trends and progress in mass-spectrometry-based analysis of single cells, with a focus on 

the technologies that will enable the next generation of single-cell measurements. 

Introduction 

Cells are the “atomic unit” of life. Inspired by Robert Hooke’s discovery of biological cells in 

1665,1 scientists, evoking the philosophical musings of Marcus Aurelius,2 began to ponder: “The 

thing, what is it, fundamentally? What is its nature and substance, its reason for being?” These 

central questions set the framework for defining cell biology. Much of the early single-cell work 

relied on observations of cells with optical microscopy; current research has extended these 

investigations to the chemical and molecular regimes. Studies examining complex chemical 

questions about cells have detailed, extended, and even challenged established dogma as new 

measurements are made.3−7 Much of the research emphasis has shifted from the characterization 

of bulk cell populations to that of individual cells, from cell types to subtypes, and from directly 

observing macroscopic traits to measuring single-cell genomes, proteomes, and metabolomes. 

While all cells share a core set of biochemical compounds, they also display an astonishing 

chemical diversity that allows the formation of unicellular communities and complex 

multicellular species. With improved analytical capabilities, morphologically homogeneous 

populations of cells emerge as unique, with individual characteristics and properties.3 

Early successes of single-cell electrophoresis were reported from the 1950s to 1970s. In 

1956, Edström8 successfully determined the relative composition of ribose nucleic acids within 

large, mammalian neuronal cells by microphoresis with a cellulose fiber. Separation of 

hemoglobin from individual erythrocytes using polyacrylamide fiber electrophoresis followed in 
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1965.9 Two-dimensional gel electrophroesis of proteins from single Aplysia californica neurons 

was reported in 1977,10 around the time single-cell mass spectrometry (MS) began to develop. In 

their pioneering work in the 1970s, Hillenkamp and co-workers11 used laser ablation mass 

analysis to generate mass spectra from tissue sections and cultured cells. They ablated several 

<5-μm-diameter regions on an inner-ear tissue section with a laser to obtain mass spectra 

containing low-molecular-weight ions at each associated laser spot.12 As another example from 

the 1970s, Iliffe et al.13 demonstrated single-cell gas chromatography−mass spectrometry of 

amino acids in an Aplysia neuron. This period also witnessed the introduction of flow cytometry 

and fluorescence-activated cell sorting.14 However, it was not until 1992, when James 

Eberwine’s group15 demonstrated that the molecular profile of a single, potentiated CA1 neuron 

depends on the abundance of multiple RNAs, that the field of comprehensive single-cell 

chemical analysis began to take shape. 

After these early seminal reports, single-cell chemical characterization approaches 

became more robust and provided greater information, enabling astounding advances in 

bioanalytical techniques that have progressively revealed single-cell heterogeneity. 

Interdisciplinary developments include single-cell genomics and transcriptomics,16−19 

electrochemistry,20−22 single-molecule microscopy and spectroscopy,23−26 nuclear magnetic 

resonance,27,28 capillary electrophoresis (CE),29−32 MS,6,33−37 and microfluidics,38,39 to name a 

few. Clearly, single-cell “omics” comprises a number of rapidly growing interdisciplinary fields. 

We view MS as the major analytical platform for single-cell metabolomics and proteomics 

(SCMP) due to its versatility, multiplexed capabilities, and relatively high throughput. Modern 

MS instruments provide limits of detection and analyte coverages that are suitable for non-

targeted SCMP. However, effective, high-throughput single-cell sampling remains a major 
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challenge. In fact, details related to sampling often dictate the selection of the most appropriate 

MS instrument and experimental protocols to use for a specific investigation.  

This chapter describes recent progress in the development of MS-based analytical 

techniques and the attendant cell isolation approaches used for SCMP investigations. These 

diverse MS-based methodologies are ideally suited for the characterization of heterogeneous 

cellular populations through qualitative and quantitative chemical profiling of individual cells.  

Setting the Stage: Mass Spectrometry Instrumentation in Single-Cell Research  

MS has evolved from a gas-phase, one-dimensional analytical technique into a versatile 

approach that provides high mass resolution, analyte coverage, and sensitivity. Several key 

advances in instrumentation, combined with innovative methodologies, have set performance 

benchmarks for an eclectic range of MS applications (for comprehensive reviews, see refs 40 and 

41). Here, we focus on the aspects of MS that make it uniquely suited to single-cell analysis. 

The major challenges to single-cell chemical measurements lie in the relatively small 

quantity of analytes, the low volume of material, and the chemical diversity of cellular 

constituents. SCMP measurements are made possible by improving the sensitivity and analyte 

coverage of analytical techniques capable of handling the small-volume (femto-scale) samples 

extracted from single cells (e.g., eukaryotic cells are 5−100 μm in diameter; bacterial cells range 

from 0.2 to 2 μm). Small molecules, such as metabolites and lipids, are often concentrated within 

cells, whereas peptides, proteins, and genetic material may exist at only a few copies. Ionizing 

intact biomolecules requires soft MS probes that minimize molecular fragmentation. 

A variety of MS methods are suitable for single-cell studies. Matrix-assisted laser 

desorption/ionization (MALDI) and electrospray ionization (ESI) are two robust approaches for 
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the ionization of intact peptides and proteins from single cells. Secondary ion mass spectrometry 

(SIMS) utilizes a focused, accelerated primary ion beam to sputter sample surfaces and has been 

used for sampling from cells for several decades. While traditional primary ion beams induce 

molecular fragmentation, newly developed cluster ion sources can desorb and ionize intact 

metabolites, lipids, and small peptides. Furthermore, SIMS ionization, when performed below 

the static limit, causes negligible damage to sample surfaces, which permits subsequent analyses 

of the same samples. Lastly, the speed, sensitivity, and precision of inductively coupled plasma 

(ICP) MS is the foundation for mass cytometry, a prominent technique for targeted single-cell 

analysis. 

The detection limit of an MS-based platform depends on the performance of the mass 

analyzer. Many modern instruments offer sufficiently high ion transmission efficiency, a wide 

mass range, and high mass accuracy to measure cellular content, with several commercially 

available MS platforms that are appropriate for SCMP measurements.4,6,42,43 Among them, the 

time-of-flight (TOF) mass analyzer has been widely used in single-cell research because of its 

relatively low cost, large m/z detection window, and satisfactory performance for most MS 

profiling and imaging experiments, especially when fast scan rates are required. Limits of 

detection for TOF-MS can be below an attomole of a peptide while maintaining a mass 

resolution above 20 000. Spectra are acquired in tens of microseconds, though several hundred 

TOF spectra are frequently summed for a better signal-to-noise ratio (S/N). In “omics” work 

requiring high mass accuracy and mass resolution, ion cyclotron resonance (ICR)44,45 and 

Orbitrap mass analyzers46 offer superior performance. Based on the duration of the transient 

acquired for Fourier transformation, resolution in excess of 100 000 is routine, with an 

acquisition frequency of about 1 Hz. In hybrid instruments, high-resolution mass analyzers are 
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coupled to collision cells, enabling selection of precursor ions and exact mass measurements on 

their fragments. Multistage fragmentation of ions (MSn) and analysis of fragments are essential 

for characterization of unknowns.  

Herein, we focus on the strengths, weaknesses, and future prospects of MS-based SCMP 

methods. From among a myriad of techniques, these were chosen to provide an overview of the 

field because they offer great promise for advancing single-cell research. As stated earlier, 

sample properties and preparation strategies oftentimes determine the appropriate MS instrument 

to use for a specific application. Thus, while this discussion focuses on the MS technologies, it is 

organized by the sampling approaches. In the first method (Figure 3.1A), intact tissue slices can 

be directly analyzed using imaging technologies that provide subcellular spatial resolution. 

Alternatively, targeted cells can be isolated from tissues (Figure 3.1B) prior to MS 

measurements. The success of this approach depends on prior classification of cell types and 

subtypes, and on the dexterity of the researcher performing the cell isolation. Finally, single-cell 

samples can be prepared by digesting tissues into thousands to millions of single cells (Figure 

3.1C). Dissociation alleviates the stringent requirements of the first two methods and creates 

additional opportunities for cells to stabilize prior to analysis.  

Direct Tissue Analysis: Placing Single Cells into Context  

Mass spectrometry imaging (MSI), an information-rich approach for direct tissue analysis, 

provides unprecedented details on the chemical composition of tissue and cell specimens. 

Typically, an MS image is acquired by sampling a regularly spaced grid on a thin tissue section 

or dispersed cell population, collecting a mass spectrum at each spot. MSI is an attractive option 

when determining the spatial context of individual cells within tissues is important, or when 

single-cell isolation is not feasible. Different MS ionization methods facilitate the successful 
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analysis of numerous biochemical classes, including proteins, small peptides, lipids, and 

metabolites (Figure 3.2). MALDI-MSI (Figure 3.2A) is the most common technique used in 

tissue imaging. A recent review by Römpp and Spengler47 highlights several successful studies 

in which MALDI-MSI provided detailed histological information on phospholipids, drug 

molecules, neuropeptides, and tryptic peptides at (or close to) the single-cell level. While 10−35-

μm pixel widths are common, MALDI-MSI at 3 μm spatial resolution was performed on the 

lateral ventricle region of a coronal mouse brain section to image phospholipids.47  

MSI at nanometer resolution can be achieved by SIMS imaging, which employs a tightly 

focused, accelerated primary ion beam for desorption and ionization (Figure 3.2B). SIMS is 

suitable for mapping elements, metabolites, small molecules, lipids, and peptide fragments at 

subcellular resolution (for a review on the fundamentals of SIMS, see Boxer et al.48). Several 

primary ion beams are suitable for biological analyses. High-energy and reactive sources may 

provide sufficient ion current to afford submicron spatial resolution but tend to fragment the 

chemical bonds of larger molecules.48 Ostrowski et al.49 utilized an indium liquid metal ion beam 

focused to 200 nm to examine the plasma membrane of Tetrahymena. The images revealed a 

decrease in abundance of phosphatidylcholine and an increase in aminoethylphosphonolipid at 

highly curved fusion pores, which are utilized during cell mating. Subsequent to this report, a 

variety of cell types have been analyzed by SIMS imaging,50−54 providing subcellular 

distributions of lipids, metabolites, and small molecules.  

Elemental secondary ions can be characterized by a magnetic sector analyzer equipped 

with up to seven detectors set to particular m/z values - a technique referred to as nanoSIMS. 

State-of-the-art nanoSIMS is quantitative, can achieve spatial resolution <50 nm, and allows 3D 

chemical mapping. NanoSIMS has been applied for subcellular-resolution imaging of metabolic 
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pathways, interacting microorganisms, and microbial communities.34,55−59 The main drawbacks 

are relatively low sample throughput and the high cost of isotope-labeled substrates. 

Nevertheless, the clever use of isotopes allows nanoSIMS to interrogate the 3D composition of 

representative cell subtypes.  

Recent developments with polyatomic and cluster ion sources have expanded the 

biochemical coverage of SIMS by allowing direct measurement of intact molecules below m/z 

2000. The cluster ion sources achieve primary ion beam diameters approaching 1 μm, equivalent 

to high-resolution MALDI sources.60 Complementary MS imaging, non-MS analyses,61 and 

matrix-enhanced reagents62−64 have been incorporated to improve molecular coverage and 

quantitation of SIMS imaging. Aspects of the sample preparation pipeline contribute 

significantly to the spatial integrity of measured molecular distributions. SIMS is especially 

sensitive to minute amounts of environmental contamination, as analysis is restricted to the 

topmost layer of the surface. While primary ion beams may be focused to tens of nanometers, 

obtaining such high spatial resolution is still extremely challenging.  

Most MSI experiments are non-targeted and label free, but at the pixel widths required 

for subcellular imaging, only abundant compounds will be detectible. Imaging mass cytometry 

(Figure 3.2C), can improve the limits of detection for specific compounds by using affinity-

based probes to selectively localize target antigens. As a direct analog to immuno-gold staining 

used with electron microscopy, imaging mass cytometry couples metal-conjugated antibodies 

developed for mass cytometry with a laser or ion beam, allowing antigen localization in tissue 

sections and individual cells. Giesen et al.65 used imaging mass cytometry with a high spatial 

resolution laser ablation system to localize 32 proteins and posttranslational modifications 

(PTMs) at 1 μm resolution to delineate cell heterogeneity in human breast cancer tissue sections. 
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Angelo et al.66 adapted the mass cytometry pipeline to SIMS imaging, effectively improving the 

spatial resolution of the method to 50 nm. The chelated metal isotope adducts generated 

secondary ions, which were analyzed via a magnetic sector mass spectrometer equipped with 

multiple detectors. The technique, referred to as multiplexed ion beam imaging (MIBI), was 

successfully applied to human breast cancer samples to reveal tumor immunophenotypes. The 

current acquisition rate for MIBI is 2 h for a 0.250 mm2 field-of-view for 10 distinct targets.66  

Rastering the desorption probe over large areas, as in MSI, effectively analyzes each cell, 

but does so at the expense of throughput and considerable cost in instrument time and assay 

sensitivity. At the Nyquist frequency to resolve individual cells, each cell should be sampled at 

least four times; this divides the cellular analytes among each pixel and may cause some 

compounds to fall below the limit of detection. Still, the drive to acquire higher resolution MS 

images has spurred the development of improved ion beam optics, sensitive mass analyzers, and 

optimized sample preparation protocols. We expect instrument capabilities will continue to 

progress and cellular resolution will become standard in commercial MALDI-MS 

instrumentation over the next few decades. A limitation to the continued development of smaller 

pixel sizes is the absolute abundance of compounds within a given region. A 1-μm pixel contains 

just over 1% of the area of a 10-μm diameter cell, requiring analyte concentrations 2 orders of 

magnitude higher to be observable in a single pixel as opposed to the entire cell. Compounding 

this effect for MALDI-MS is the compromise between analyte extraction and delocalization 

during matrix application.  

Imaging mass cytometry circumvents these issues with the application of rare-earth-

labeled antibodies. Each antibody holds several hundred isotope atoms, which amplifies the 

signal from a single binding event. The shortcomings of mass cytometry imaging are inherited 
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from affinity labels: the a priori selection of antigens, cost of generating antibodies, and limited 

plexity (though not as severe as fluorescence probes). We envision mass cytometry imaging 

experiments will be performed on a tissue section following non-targeted MSI acquisition, 

similar to work performed with immunohistochemistry. Such an experiment could place the non-

targeted data into the context of more traditional cell subtyping to improve biomarker 

identification. As subcellular MSI resolution becomes more widespread, the distinction between 

imaging and single-cell analysis will be less pronounced. The capability to examine each cell 

within its native environment would revolutionize medical, pharmaceutical, and fundamental 

research. 

Specific Cell-Type Targeting: Meeting the Needs for Separation and Quantitation  

When molecular characterization is the paramount experimental objective, measurements that do 

not provide spatial information can be undertaken. Additional analytical dimensions, such as 

separation and quantitation, can be coupled with MS to enable information-rich single-cell 

measurements. CE is a qualitative and quantitative technique used in analyses of single cells and 

subcellular compartments. It features rapid analyte separations based on the electrophoretic 

mobility of molecules, including those with the same molecular weights (e.g., diastereomers), 

with high resolving power and low sample consumption (a microliter or less).31,32 Many aspects 

of CE have greatly progressed in recent decades, and include the development of advanced 

separation modes and nanoscale sampling, and the interface of CE with different detection 

methods.30,67 While CE is powerful on its own, it is even more productive when coupled with 

optical, electrochemical, or MS-based detection. For example, CE-MS provides a label-free and 

unique characterization method for investigation of endogenous biomolecules in complex 

cellular mixtures (Figure 3.3). Hyphenating CE with other detection modalities, such as laser-
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induced fluorescence, allows targeted cell analysis based on chemical signatures, but those 

approaches are limited to molecules with native fluorescence and those that can be tagged with a 

fluorophore via derivatization chemistry.67 Single-cell metabolomics studies using CE-ESI-MS 

have demonstrated detection limits for molecules in the low nanomolar range, high-efficiency 

separations, and increased analyte coverage. The injection of only 0.1% of the total content from 

a single Aplysia californica metacerebral cell (150 μm in diameter) yielded unambiguous 

detection of more than 100 compounds.68 Preconcentration methods further improve analyte 

coverage, especially when initial concentrations of extracted analytes are below the detection 

limits of MS systems.30,42 Improvements in sheathless CE-MS interfaces have allowed 

investigation of complex bioanalytical problems, as in the characterization of protein isoforms 

and combinatorial PTMs reported by Yates and co-workers.69,70 Recent examples from Dovichi71 

and Nemes72,73 of the developing Xenopus laevis embryo demonstrate the great promise for CE-

MS-based single-cell proteomics.  

Though capable of sensitive, quantitative analysis, a limitation of CE is its low 

throughput. Even a state-of-the-art CE platform operates at a rate of less than one cell per 

minute.74,75 Typical separations, performed in longer capillaries, can last between 5 and 60 min 

to achieve optimal resolution; however, chip-based CE devices do increase throughput. 

Moreover, the duration of a set of experiments may be constrained by the endurance of intact 

cells within a physiological solution prior to analysis (a few hours), which ultimately limits the 

number of cells that can be assayed from one population.74 Further constraining throughput, each 

sample and target analyte requires an optimal set of CE conditions, including background 

electrolyte, chiral selectors, pH, separation voltage, and temperature, among others.  
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To increase throughput, researchers have focused on the development of automated cell-

handling modules that are compatible with a wide range of background electrolytes and analyte 

classes. CE columns can be embedded in, or coupled with, microfluidic devices that permit 

fluorescence-activated cell sorting (FACS) and automatic cell trapping, culturing, sorting, and 

lysis prior to CE separation. Higher peak capacities are achieved by combining multiple capillary 

columns in series to provide complementary separation dimensions. Examples include the 

velocity gap mode, which manipulates the electrical fields on connected capillaries with 

conductivity detection at the joint,76 and 2D-CE, which employs orthogonal separation 

conditions in connected capillaries.77  

Recent advances in CE have overcome technical hurdles for the detection and separation 

of chiral molecules, such as D/L-amino acids and peptide diastereomers,78 at a resolution and 

sensitivity that is currently inaccessible by other label-free, MS-coupled mobility spectrometry or 

spectroscopy approaches.79 Furthermore, these molecules are separated non-destructively with 

minimal loss, which is another advantage of CE over MS-based separation methods. In addition, 

performing the separation post-ionization can introduce additional complexity due to the 

formation of protomers (molecular isomers that differ only in the site of protonation).80 

However, many conditions used in chiral separations have yet to be made compatible with ESI-

MS, awaiting future optimization.  

Owing to its superb sensitivity and prospects for high throughput, CE-MS has become a 

method of choice for separation-based, quantitative analyses of single cells. Compared to other 

single-cell techniques, CE-MS applications that directly introduce cells into the capillary for 

lysis and separation reduce the time between cell rupture and analyte characterization. Such rapid 

analyses limit unwanted side reactions and degradation that lead to non-specific profile 
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variations. The future of high-throughput CE-MS offers a unique approach to classify cell types 

and identify new subtypes, which will provide complementary profiles to other methods. 

Dissociated and Cultured Cell Samples: Searching for Cell Subtypes and Rare Cells  

In the final approach discussed here, cells are either separated from tissue sections by 

dissociation or cultured. Once in solution, cells may be labeled for mass cytometry, or deposited 

onto a surface for single-cell profiling. The native connections between cells in the tissue are 

dismantled and extraction is more limited than with specific cell isolation, but dissociated cell 

measurement approaches can have a higher per-cell throughput than the MS methods described 

above.  

Mass cytometry is one of the most versatile MS-based techniques for multiplexing single-

cell measurements on an “omics” scale. As briefly mentioned when discussing MSI, mass 

cytometry operates much like flow cytometry, in which fluorescently labeled markers, including 

antibodies, are used to characterize the presence of a panel of antigens in large populations of 

individual cells. However, instead of fluorescence labels, mass cytometry uses rare earth metal 

isotope tags with high plexity (Figure 3.4A). The binding of the conjugates to molecular targets 

is quantified with an inductively coupled plasma (ICP)-MS instrument. The ICP torch 

completely consumes the cells while atomizing sample droplets, which provides low background 

and elimination of matrix effects.81 The throughput of mass cytometry is currently limited by the 

lifetime of analytes in the ion cloud (∼300 μs),82 which allows measurement of up to 1000 cells 

per second.83 This throughput is several-fold higher than that offered by imaging mass cytometry 

but comes at the expense of information on tissue organization. Most mass cytometers are 

coupled to TOF mass analyzers (e.g., the commercialized CyTOF) as they are capable of rapid 

acquisition times (13 μs per scan) and allow 20−30 scans per cell.84 Additional DNA stains are 
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used to discriminate cellular events from debris and distinguish single cells from doublets or 

aggregates of cells. Metal calibration beads are also spiked into each sample to serve as internal 

standards.85 Cell-based multiplexing methods, such as mass-tag cell barcoding,86,87 can be 

utilized to reduce antibody consumption, acquisition time, and eliminate cell-to-antibody ratio-

dependent effects.81,82 For example, a binary barcoding can utilize n rare metal isotopes to 

uniquely label 2n individual cell samples before they are mixed, stained, and analyzed in one 

batch.88 Mass cytometry has assisted the discovery of complex aspects of single-cell chemistry, 

including different stages of the cell cycle, phenotypes and signaling responses, cytokine 

expression, and cell viability.82,88−92  

Cell surface markers, the degree of expression, and PTM events can be used to identify 

cellular phenotypes and distinguish cell populations. For example, a single-cell mass cytometry 

study using 31 distinct transition and rare earth metal isotopes to label two antibody staining 

panels revealed 24 distinct immune cell populations in bone marrow during hematopoiesis.89 

Currently, mass cytometry surpasses other MS-based single-cell techniques in the total number 

of analyzed cells per experiment. Newell et al.93 combined mass cytometry with combinatorial 

peptide-major histocompatibility complex staining to analyze samples of 84 million T-cells for 

distinct phenotypes and their ability to recognize viral epitopes.  

A technical inefficiency of mass cytometry lies in the nebulization of single cells, which 

stochastically loses approximately 70% of the cells in the process of forming droplets.81 

Although this loss does not inherently introduce a significant sampling bias, improvements in 

cell introduction efficiency would reduce cell consumption. The sensitivity of mass cytometry is 

greatly affected by the loading of metal atoms on each antibody. The metal chelating chemistry 

facilitates a maximum of ∼100 metal reporter ions per antibody molecule.81 Mass cytometry can 
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seamlessly measure 58 or more different parameters simultaneously, though this requires a priori 

knowledge about the cells and well-defined molecular targets with specific antibodies. The 

limited number of commercially available rare metal isotopes also limits the number of antigens 

that can be measured simultaneously. Currently, 37 stable lanthanide isotopes that are compatible 

with metal chelating chemistry are available at sufficient purity.82 While antibodies can 

recognize a wide range of antigens, mass cytometry is less effective for smaller molecules, such 

as metabolites and peptides, which may not be accessible to antibodies or cross-linked by 

fixation. These molecules can be specific biomarkers for disease-transformed cells.94 Therefore, 

the complexity of multidimensional single-cell analysis is another area worth improving,95 

including new affinity agents that can bind small-molecule metabolites.  

Mass cytometry is poised to extend the capabilities of many immunofluorescence 

methods beyond the limitation of fluorescence spectral overlap. In a clinical setting, the rapid 

and accurate quantification of numerous biomarkers can facilitate deeper subtyping of tissue 

sections or biopsy samples. Though mass cytometry requires preselection of antigens, it should 

continue to find application in targeted cell population profiling. While mass cytometry can 

profile cellular states at given points in time with high throughput and plexity, an important 

caveat is that cells are destroyed by the ICP torch, preventing follow-up characterization of 

selected cellular subtypes.  

A distinct non-targeted approach involves dispersing cells onto sample surfaces where 

they are analyzed with an MS microprobe. In contrast to MSI, the contents of one cell are 

completely sampled during a single analysis. Manual placement of cells is a low-throughput 

implementation of this type of handling.43 A higher throughput method is to disperse cells 

sufficiently such that no neighbors are within the microprobe region. With the correct choice of 
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seeding density, separated cells greatly relax instrumental sampling requirements and allow more 

stringent extraction procedures, further increasing analyte sensitivity. As described below, two 

methods of dispersed cell sampling have been developed recently for MALDI-MS analysis of 

single cells, one based on constrained cell positions and the other on randomly seeding the cells.  

The first cell-dispersed approach involves constraining the cell positions. A variety of 

microfluidic constructs are available for trapping single cells for subsequent high-throughput 

analysis. Microdroplet arrays can systematically trap single cells in microwells, allowing 

subsequent profiling by ESI-MS.96 The sensitivity of the trapping depends on the ratio of the 

diameters of the cell and the microwell, limiting the sizes of analyzed cells. The current 

implementation also requires manual sampling of each well. For high throughput sampling, 

Zenobi and co-workers97 developed an omniphobic, patterned surface specifically for 

constraining microdroplets of MALDI matrix solution, called microarrays for MS (MAMS) 

(Figure 3.4B). By depositing cells into these microwells, their contents remain isolated due to the 

omniphobic microarray walls. This isolation allows the application of more rigorous extraction 

methods, such as shock freezing,98 as analytes neither severely dilute nor become contaminated 

by nearby cells. Cell deposition in MAMS is achieved by a variety of methods, including 

piezoelectric printing of cellular solutions99 or submerging the surface in a cell solution.97,100 

Each well contains a variable number of cells described by a Poisson distribution.98 As such, 

with a cell concentration generating the maximum probability of wells containing one cell 

(average, λ = 1), approximately 37% of wells are occupied by one cell. Another 37% of the wells 

are empty, with the remaining 26% containing two or more cells. Orthogonal methods, such as 

optical microscopy, can enumerate the cell counts in each well. Once cell number and positions 

are determined, cellular analytes are extracted and samples are coated with MALDI matrix. The 
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contents are analyzed by simply collecting spectra at each predetermined point in a regular array. 

Unlike subcellular MSI, the required positional accuracy and laser spot size are easily achieved 

by most commercial instruments.  

Using this methodology, the metabolic profiles of several single-celled microorganisms 

were investigated, showing quantities of nucleoside di- and triphosphates, as well as lipids 

unique for each species, with concentrations proportional to the number of cells within a given 

well; Raman spectra were also obtained and correlated with a given microwell.97 Further 

experiments correlated fluorescence and Raman microspectroscopy acquired from the freshwater 

algae Haematococcus pluvialis and combined the images with MS measurements to discriminate 

between encystment stages.100 In addition, using Saccharomyces cerevisiae as a model organism, 

Zenobi and coworkers98 investigated the metabolic consequences of environmental and genetic 

perturbations on several metabolites, recapitulating population-level changes and discriminating 

genotypic differences.  

Advantages of MAMS include the capabilities to thoroughly extract analytes from 

deposited cells and ensure each sample is isolated from nearby cells, limiting cross 

contamination. However, the efficiency for random seeding is low (only 37% of wells contain 

single cells) and the spatial constraints of the microwells limit investigations of long-range 

cellular outgrowth and changes related to cell-to-cell signaling. Theoretically, MAMS could 

facilitate studies of interactions between small cell populations. With conventional random 

seeding or printing, the likelihood of two cells from each of two populations occupying the same 

well is 0.372 = 14%; however, the cases when a well is occupied by more than one cell of each 

type are also interesting. This would allow investigations into the competition between malignant 

and immune cells for small populations of each, generating a large, random assortment of 
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populations on a single device. FACS could also be used as an enabling, selective cell deposition 

technology coupled to MAMS. Precise seeding of specific, preselected phenotypes could 

construct complex cell distributions to allow full utilization of each MAMS device.  

An alternative method for high throughput analysis of isolated, individual cells involves 

randomly dispersing them on a surface, and using optical microscopy to precisely locate the 

dispersed cells on a transparent indium tin oxide-coated glass slide.101 Suspensions of cells are 

deposited onto conductive surfaces and the cells allowed to attach to the substrate. High-contrast, 

fluorescence images of a nuclear stain deliver a simple data set to locate individual cells. 

Registration of the microscopy image with the mass spectrometer coordinate system provides the 

location of each selected cell. Once MALDI matrix is applied, the laser is positioned over each 

cell in turn and a spectrum acquired (Figure 3.4C). In the initial report, microscopy-guided 

single-cell MALDI-MS was coupled to principal component analysis-based outlier detection to 

perform an unsupervised analysis in a population of dispersed pituitary cells. Several peptides 

were detected at high S/N from individual pituitary cells, including arginine vasopressin, 

oxytocin, and α-melanocyte-stimulating hormone. Additional MS profiling of cells from 

pancreatic islets of Langerhans demonstrated single-cell sensitivity to canonical peptide 

hormones, including intact insulin, glucagon, pancreatic polypeptide, and somatostatin. In a 

follow-up study on single islet cells,102 the levels of peptide hormones were used to classify cells 

into traditional histological classes, showing good agreement with previous reports. Furthermore, 

cell-type-specific peptide heterogeneity was compared between the dorsal- and ventral-derived 

islets, with results indicating an increased abundance of processed pancreatic polypeptide within 

ventral-derived γ-cells. The peptides were not previously observed endogenously, and the 
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anatomical heterogeneity in peptide processing would be difficult to detect with bulk 

measurements.  

Successful analyte profiling using microscopy-guided MALDI-MS largely depends on 

accurate cell positioning under the laser probe, requiring the ability to locate a 10-μm cell over a 

∼20 cm2 microscope slide. Assuming a random seeding, the probability of individual cells being 

sufficiently far apart is determined by a spatial Poisson point process, which has the same form 

as a Poisson distribution. Again, at ideal conditions, only 37% of the seeded cells will be 

sufficiently spaced for analysis, but there is a relatively large area available for seeding. As such, 

the total number of cells analyzed in a given footprint will be larger than with reported examples 

of MAMS. Furthermore, long-range interactions should be easier to observe, as there is no 

physical barrier between cells. Coupling with FACS may be more difficult, as the cells in 

droplets impacting the surface could migrate without being confined in omniphobic wells.  

While both high throughput studies described above used MALDI-MS, these 

methodologies could be adapted to work with other microprobe-based MS analyses such as 

DESI, SIMS, or liquid microjunction probes.103  

An exciting aspect of dispersed-cell methods is the ease with which they can be coupled 

with complementary analytical methods, e.g., combining with optical microscopy to count the 

number of cells in each MAMS well or locate cell bodies. A clear extension of the methodology 

is the use of exogenous or endogenous probes or reporters to provide pre-MS subtyping of cells. 

For example, transfection of cells with fluorescent probes could simplify rare cell detection 

within a population. Any spatially localized analytical technique capable of sampling from a 

surface is readily adapted to provide additional information on analyzed cells. Vibrational 

microscopy, a nondestructive profiling method, could be used to generate further information on 
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cellular contents. Additional MS experiments are also possible, if performed in the correct order. 

Unlike MSI, the data sets are easily combined based on the unique cell location, greatly 

simplifying data fusion. For sample preparation, we expect to see FACS utilized in more 

powerful and efficient seeding setups. Precise deflection of cell-containing droplets would allow 

placement of suitable numbers of cells at evenly spaced intervals. Combined with appropriate 

molecular biology and pharmacology tools, interactions between different cell types could be 

assayed, as described earlier.  

Finally, an intriguing aspect of MALDI-MS is that only a small fraction of the cell is 

consumed for analysis.104 Material remaining on the substrate is available for subsequent, follow 

up analysis by tandem MS or other methods on the same cell. The prospects are especially 

exciting for the integration of MALDI-MS-based profiling with orthogonal analytical and 

biochemical approaches. High-throughput MALDI-MS could provide a non-targeted, label-free 

profile of thousands of cells within a population. Utilizing multidimensional analysis on such a 

data set would facilitate the selection of individual cells that are representative of a given 

subclass. Focusing subsequent assays on the characteristic cells would reduce the number of 

analyses required to practically characterize an entire population. For instance, preselecting cells 

with MALDI-MS would greatly enhance the effective throughput of CE or single-cell 

transcriptomics by targeting cells that provide the most information on the population 

composition. 

Outlook and Concluding Remarks  

Mass spectrometry is an information-rich analytical technology, positioned at the forefront of 

single-cell metabolomics, peptidomics, and proteomics. Progress thus far has been impressive. 

Current-generation instruments display exquisite sensitivity for the multiplexed, label-free 
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measurement of hundreds of biomolecules from cellular samples. With careful sample 

preparation, analyte separation, and/or labeling, relative and absolute quantitative MS analysis of 

single cells becomes feasible. Issues with single-cell investigations arise from sampling, during 

the transition from organism to the instrument. Manual sample manipulation is suitable for 

detailed analysis of a small subset of cells;4,105 however, this sampling approach is less 

applicable for the characterization of large-scale cellular heterogeneity in complex structures. 

Automatic profiling of an entire tissue section by MSI can collect spectra from thousands of 

cells, but has not solved issues related to matrix effects and subdividing cell contents. In contrast, 

representative populations of dispersed cells may be seeded on surfaces for microprobe-based 

MS analysis. By physically separating cells, MALDI matrix application can be optimized to 

improve analyte extraction and limit matrix effects from nearby cells, allowing the identification 

of rare individuals within a population. Sample throughput is enhanced over MSI, albeit at the 

cost of locational context within the native tissue. Each method offers a unique set of 

performance characteristics that are suitable to approach a given biological question.  

Beyond more advanced instrumentation, a key shortcoming to the methods discussed 

herein is their limited utilization outside of MS research groups. Mass cytometry is gaining 

momentum as an alternative to flow cytometry by providing rapid, quantitative assessments of 

hundreds of antigens at a rate of thousands of cells per hour. These targeted methods, together 

with label-free MS analyses, greatly enhance the capabilities of SCMP-MS for discovery and 

hypothesis-driven investigations. Wider acceptance of single-cell MS technologies as practical 

analytical methods will broaden the breadth of questions addressed by SCMP-MS and facilitate 

its further integration with more routine genomics and transcriptomics approaches. Streamlining 
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the workflows and simplifying data interpretation will encourage further acceptance by a wider 

multidisciplinary user base.  

Willard Quine once said, “Physics investigates the essential nature of the world, and 

biology describes a local bump.”106 The advent of single-cell MS created an opportunity to 

explore changes in “local bumps” at a finer resolution than ever before. Through 

interdisciplinary investigations, we are beginning to discover the low-abundance cellular 

minorities in homogeneously bulk populations of cells that may cause drastic phenotypic 

changes. Sampling techniques that provide high throughput, high spatial and/or temporal 

resolution, and broad molecular coverage enable the determination of individual cellular 

properties while discriminating between unusual cell profiles and statistical noise. The body of 

work produced in SCMP, aligned with results gathered by transcriptomics and genomics, allows 

detailed understanding of changes occurring in individual cells during normal and pathological 

states, with promising applications in medicine.  
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CHAPTER 4 

SYNCHRONIZED DESORPTION ELECTROSPRAY IONIZATION MASS SPECTROMETRY IMAGING 
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Introduction 

Fingerprint evidence is universally recognized as a reliable method for biometric identification of 

criminal suspects.1 Latent fingermarks, impressions of fingerprint ridge patterns on surfaces, 

consist of endo-, semi-exo-, and exogenous compounds related to suspect physiology, diet, and 

fingertip contact with external chemical compounds including illicit drugs and explosives.2,3 

Typically, fingermark visualization at crime scenes is achieved by imaging photoluminescent 

agents, including ninhydrin and nanoparticles that target endogenous chemical compounds such 

as amino acids and glycerides, respectively.1,2,4,5 Mass spectrometry imaging (MSI) techniques 
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such as secondary ion MS (SIMS),6-9 matrix-assisted laser desorption/ionization (MALDI),10-17 

and desorption electrospray ionization (DESI),9,18-21 provide high selectivity and the capability to 

identify unlabeled chemical components, which can significantly improve the accuracy of 

suspect identification and provide evidence of recent activities.  

One of the advantages of DESI is that it enables direct fingermark imaging at atmospheric 

pressure without the need for pretreatment,22-31 thereby preserving evidence integrity. It is often 

beneficial to perform MSI experiments at high spatial resolutions (step size ≤ 75 µm) on mass 

analyzers capable of high m/z-resolution (> 60 000) and accurate mass measurements (< 2 ppm). 

When DESI-MSI is performed on a pulsed mass analyzer such as the Orbitrap,32-34 the 

percentage of time that the desorbed plume is effectively sampled by the instrument is given by 

the ratio of the injection time (viz. ion accumulation period (IT)) to the total time required to 

acquire each spectrum (t = IT + transient acquisition time). For a typical IT = 500 ms and a 

resolution setting of 100 000 at m/z 400 (transient acquisition = 1.8 s for an LTQ-Orbitrap XL), 

the desorbed species are sampled for only ~0.2t while the remaining desorbed material is 

discarded.35,36 In addition, the redistribution and spreading of analytes on the surface, known as 

the “washing effect”,37 negatively impacts spatial resolution throughout the entire scan, a 

problem that is exacerbated for analytes weakly attached to smooth surfaces such as fingermarks 

at crime scenes.  

Cooks and coworkers developed a DESI source that synchronizes the nebulizing gas and 

DESI voltage (sDESI-MS) with the IT of a discontinuous atmospheric pressure interface on a 

rectilinear ion trap miniature mass spectrometer. This modification increased sensitivity, 

desorbed material only during the IT, and reduced the amount of solvent deposited on the surface 

in DESI.38,39 In this report, we develop an sDESI-MS imaging source coupled to a high-
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resolution MS (HRMS; Figure 4.1). The sDESI-MSI source utilizes two solenoid valves (Figure 

4.1). One valve synchronizes the nebulizing gas flow with the IT of a LTQ-Orbitrap XL HRMS. 

During transient acquisition, the DESI nebulizing gas is turned off and the second valve delivers 

a perpendicular stream of nitrogen gas (N2) that prevents solvent accumulation at the emitter tip. 

Thus, solvent is deposited only during IT, minimizing analyte redistribution by the “washing 

effect”. In addition to improving sensitivity and decreasing the amount of sample desorbed per 

HRMS scan, our results show that synchronization improves spatial resolution by a factor of 

∼4−6 for analytes (e.g. Rhodamine 6 G spots) weakly attached to smooth surfaces (e.g. 

photographic paper). In addition, under specific experimental conditions, synchronization was 

essential to obtain distinct MS images of low-intensity endogenous fatty acids (FA) in 

fingermarks on glass. For example, using a step size of 25 µm and a microdroplet spray 

composition of CH3OH:H2O (9:1), sDESI-MSI images of the fingermark ridge patterns were 

generated using ion signals for lignocercic acid and cerotic acid. However, for the same set of 

conditions, continuous desorption did not yield distinct MS images. Simulations modeling 

analyte movement during desorption and the "washing effect" replicate these experimental 

results by varying the washing parameter. All these results demonstrate that synchronization 

improves spatial resolution and sensitivity by decreasing the time analytes are redistributed by 

the “washing effect”. Generally, sDESI expands the scope of analytes, surfaces, and 

experimental conditions available for study such as the high-resolution imaging of analytes that 

are weakly attached to smooth surfaces. 
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Methods 

Materials 

ACS grade chloroform (CHCl3), HPLC-grade water (H2O; Macron Fine Chemicals, Center 

Valley, PA), HPLC-grade methanol (CH3OH; Fisher Scientific, Pittsburgh, PA), Rhodamine 6G, 

(R6G; Sigma-Aldrich, St. Louis, MO), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC; 

Avanti Polar Lipids, Alabaster, AL, USA), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) (DPPG; Avanti Polar Lipids), bovine brain total lipid extract (BBE; Avanti Polar 

Lipids), Ampicillin (AMP; Sigma-Aldrich), Bradykinin (BK; Sigma-Aldrich), and ultra-high 

purity nitrogen (N2; S.J. Smith Co., Decatur, IL) were used as received.  

Synchronized Desorption Electrospray Ionization Mass Spectrometry Imaging Source 

The sDESI-MSI source (Figure 4.1) involves modifying a commercial Prosolia 2D Omnispray 

DESI-MSI source (Indianapolis, IN, USA) to include two three-way valves (ASCO, Florham 

Park, NJ, USA). One of the valves modulates the nebulizing gas (180 psi) and the second 

regulates a perpendicular N2 gas stream (shutter gas; 20 psi). When the nebulizing gas is off the 

shutter gas removes solvent delivered to the emitter tip in a direction that is parallel to the sample 

surface. The three-way valve that regulates the nebulizing gas (V1) is normally closed, while the 

shutter gas is normally open (V2) (Figure 4.1c). Gas is emitted from the three-way valve 

common ports so that N2 backpressure rapidly vents to atmosphere when switching between ion 

source ON (Figure 4.1b) and OFF states (Figure 4.1c). Valve modulation and timing is controlled 

with a home-built electronic circuit (Figure 4.2). Direct measurement of gas flow impinging on a 

microphone shows a valve latency of 16.6 ± 2.9 ms and a 10.5 ± 2.7 ms for switching the shutter 

gas to the OFF and ON states, respectively, and 494.2 ± 4.6 ms desorption for 500 ms IT (Figure 

4.3). In a typical sDESI-MSI experiment, valve latency is ~3% of IT.  
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Analyte Depletion Rate and Sensitivity  

DESI-MS and sDESI-MS extracted ion chromatograms (XIC) were used to estimate the rates of 

analyte depletion for R6G (100 pg), DPPC (10 ng), DPPG (20 ng), AMP (20 ng), BK (200 µg) or 

BBE (200 µg) deposited on polytetrafluoroethylene (PTFE) Omni Slides (Prosolia, Inc.). Five 

XICs were acquired per analyte when the sDESI-MS source was stationary (static mode) and 

then averaged to generate decay curves. The exponential regression constant reflects the rate of 

sample depletion from the surface.  

Sensitivity was characterized by rastering the ionization source across deposited spots of various 

analytes in seven evenly distributed rows. The source was continuously moved to investigate 

sensitivity independent of desorption rates at the spray impact site, maintain good reproducibility 

without internal standards,40 and simulate imaging conditions. A custom MATLAB (Mathworks, 

Natick, Massachusetts, USA) script was used to integrate analyte signal intensity across each 

spot. Differences in sensitivity (i.e. slope of calibration curves) were tested for significance using 

analysis of covariance (ANCOVA; R software environment).  

Latent Fingermark Imaging  

Sebum-enhanced fingermark impressions on glass microscope slides were produced from a male 

donor using previously reported methods41 and analyzed immediately (optical images of 

fingerprints were manually distorted to protect donor privacy). Briefly, after thorough hand-

washing, the finger was rubbed against the side of the nose and then pressed against a glass slide. 

Selected regions of the fingermarks were imaged using either CHCl3:CH3OH (1:1; 2 µL/min) or 

CH3OH:H2O (9:1; 1 µL/min) with pixel widths of 150 µm, 75 µm, or 25 µm (emitter voltage = -

5 kV; capillary temperature = 275 oC; IT = 500 ms; resolution setting = 100,000; m/z range = 100 

– 400). At the smallest pixel width of 25 µm, a 1 mm2 area is analyzed in approximately one 
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hour; sDESI does not affect image acquisition time. Optical images of fingerprints on regular 

office paper were acquired using a flatbed scanner (Epson  Perfection  2400 Photo). The 

fingerprints were deposited on paper using an inkless fingerprint pad (Lee Products Company, 

Bloomington, MN).  

We designed a software package (C# programming language) to process and visualize MSI 

data. Thermo Fisher Scientific RAW data files are converted to the mzXML file format using 

ProteoWizard.42 The software loads the mzXML files into memory without data reduction or 

binning of m/z values, and then generates chemical images using false colors to represent signal 

intensities (Figure 4.4). The software package also provides the capability to average spectra 

within user-drawn regions of interest (ROI), subtract spectra between ROIs, export spectra as 

comma-separated value text, and perform hyperspectral visualization43 with m/z binning as 

described by Xiong et. al.44  

Spatial Resolution 

The spatial resolution of DESI-MSI and sDESI-MSI were compared using patterns of R6G dots 

on photographic paper (Epson, Long Beach, CA). The patterns were generated from a red 

Sharpie marker (Sanford Corp., Oak Brook, IL) and an unpolished stainless steel mesh template 

(Small Parts Inc., Miramar, FL). The R6G patterned surfaces were fabricated by pressing the SS 

mesh on top of the photographic paper immediately after it was drawn on with Sharpie, which 

produces an array of R6G dots (~100 µm diameter) spaced by ~500 µm. Then, a second array 

was superimposed on the first, generating a R6G dots with variable spacing. Optical images of 

the R6G dots were acquired using an EVOS fl Inverted Fluorescence Microscope (Advanced 

Microscopy Group, Life Technologies, Thermo Fisher Scientific). Pattern dimensions were 

estimated from the fluorescence images using ImageJ (http://imagej.nih.gov/ij/). 
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Simulations of Desorption and the “Washing Effect”  

Simulations estimating the relative impact of the desorption/ionization and washing (W) 

efficiencies on sensitivity, decay rate, and spatial resolution, were performed using the finite 

difference method45 (implemented in MATLAB). For simplicity, the model estimates a circular 

spray profile at the surface (Figure 4.5), instantaneous analyte dissolution and immediate thin 

film formation upon spray impact. The rate of desorption is modeled as a two-dimensional 

Gaussian distribution that accounts for concentric regions of high (H; 100 µm diameter) and low 

(L; 500 µm diameter) ionization efficiency within the spray profile at the surface.46 The model 

for desorption is combined with a cosine-distributed “washing effect” parameter to describe 

analyte movement on the surface relative to the center of the spray profile ( ; Figure 4.5). The 

magnitudes of the washing and desorption/ionization efficiencies were modified by adjusting 

their corresponding rate constants (washing: RW; desorption/ionization: RL + RH). At each time 

step Δ  (10 ms), the amount of analyte ( ) at a given input pixel ( ) changes due to low 

efficiency desorption from the outer spray plume, high efficiency desorption/ionization from the 

inner spray plume, washing from  to neighboring pixels (Wout), and washing from neighboring 

pixels to  (Win). I for a given pixel is updated for the next time step by the following 

relationship: 

Δ Δ  

where Wout, is distributed to neighboring pixels at position i ( ) based on the magnitude of their 

projections on the radial vector	 . The fraction of analyte redistributed to pixel i is: 

	 	 	 	 	 	 	 	
〈 , 〉

∑ 〈 , 〉〈 , 〉
,  
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where, 〈 , 〉 denotes an inner product. After each Δt, the center of the spray profile at the 

surface was moved a distance equal to the xy-translation stage velocity × Δt = 1.3 µm. At the end 

of each row of the output image, the spray profile is moved to the beginning of the next row, 

simulating the fly-back motion of a xy-translation stage used for DESI-MSI. Simulations of 

sDESI-MSI were performed identically but the input analyte distribution was only updated 

during IT.  Source code for simulations is provided in Appendix A. 

Results and Discussion 

The impact of synchronization on sensitivity was evaluated by comparing the DESI and sDESI 

calibration curves for R6G spots on Omni Slides. The calibration curves were acquired at various 

velocities of the xy-translation stage (100 μm/s, 50 μm/s, 25 μm/s, and 0 μm/s) to simulate MSI 

conditions. Our results show that synchronization of DESI with IT improved sensitivity by 

factors of 1.77 ± 0.13, 2.02 ± 0.15, 2.96 ± 0.43, and 3.51 ± 0.55, respectively. Further 

experiments showed that the magnitudes of these improvements in sensitivity depend on various 

experimental conditions such as the composition of the microdroplet spray, the sample surface, 

and the nature of the analyte (Figure 4.6 and Table 4.1).38,39 The sensitivity improvement with 

slower raster speeds is particularly important for MSI, as it suggests that synchronization will 

largely benefit images acquired at high spatial resolution.  

The depletion rate was estimated by recording the intensity of specific lipid signals from 

BBE samples as function of time, and then calculating the decay constant from exponential 

regression curves (Figure 4.7). With synchronization, signals for [36:1 PS – H]- (m/z 788.536), 

[40:6 PS – H]- (m/z 834.520), [38:4 PI – H]- (m/z 885.541), and [42:2 sulfatide (ST) – H]- (m/z 

888.614) decayed slower by an average factor of 5.90 ± 0.71 (Figure 4.7b – 4.7e), which is in 

agreement with a desorption period of ~0.2t for sDESI. The decay curves also show that the 
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DESI and sDESI variances are relatively similar (Figure 4.6), indicating that synchronization 

does not significantly degrade reproducibility between technical replicates.  

After performing DESI and sDESI MSI of R6G spots on photographic paper, optical images 

showed higher amounts of residual R6G when desorption/ionization was synchronized with IT 

(Figure 4.8a,b and 4.9), which agrees with the trends observed for the DESI and sDESI decay 

rates (Figure 4.7). In addition, the MS images and XICs of the R6G spots on photographic paper 

show baseline-resolution for sDESI (Figure 4.8a), while the DESI XICs contain valleys between 

spots with intensities as high as ~20-25% (Figure 4.8b). By considering two spots as resolved 

when the valley intensity is less than 10%, these results demonstrate that synchronization 

improves spatial resolution by a factor of ~4. Although the microdroplet spray profiles at the 

surface of water-sensitive paper have relatively similar dimensions, sDESI deposits less liquid on 

the surface, as indicated by the lower intensity of the blue color (Figure 4.8c). As a result, the 

R6G spots rapidly dissolve and diffuse within the liquid pool, degrading spatial resolution via the 

“washing effect”. 

To demonstrate the utility of sDESI-MSI, we performed high-resolution imaging of low-

abundance chemical compounds in latent fingermarks, which are typically located on smooth 

surfaces such as glass at crime scenes. Using a step size of 150 µm and microdroplet spray 

composition of CHCl3:CH3OH (1:1), endogenous FAs with ion abundance less than 5% relative 

intensity, such as [24:0 FA – H]- (m/z 367.390) and [26:0 FA – H]- (m/z 395.424) produce distinct 

ridge patterns with and without synchronization (Figures 4.10 and 4.11; see Table 4.2 for the 

identification of other endogenous FAs). However, chemical images of these FAs in fingermarks 

were only observed at step sizes of 75 µm (CHCl3:CH3OH (1:1)) and 25 µm (CH3OH:H2O (9:1)) 

with sDESI-MSI (Figure 4.10). These results show that sDESI-MSI is a sensitive method for 
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mapping the spatial distribution of low-abundance chemicals in fingermarks, which has potential 

applications in forensics. 

To gain preliminary insights about the mechanisms of sDESI, we simulated analyte motion 

as a function of parameters that describe desorption (RH, RL; the magnitude is the combined 

effect of RH and RL) and the "washing effect" (RW; Figure 4.12). Using fluorescent images of the 

R6G spots (Figure 4.8) as input distributions for the simulations, the magnitude of the desorption 

parameter had a proportional relationship to the analyte signal intensity while the washing 

parameter was inversely proportional. In addition, the simulated ratio of the signal intensities for 

sDESI and DESI is always greater than unity, supporting the experimental observation that 

synchronization improves sensitivity (Figure 4.12a and 4.13).  

Simulated XICs for sDESI-MSI contain peaks that do not broaden or distort at high 

magnitudes of RW (Figure 4.12b). This result is reflected in the higher spatial resolution obtained 

for simulated sDESI-MS images compared to a continuous microdroplet spray (RW = 1 and RH = 

0.01,RL = 0.005; Figure 4.12c). Interestingly, when the magnitudes of both RW and RH, RL were 

increased, the model only generated MS images for sDESI-MSI (RW = 1 and RH = 0.025,RL = 

0.01; Figure 4.12c), replicating the results shown in Figure 4.10. It appears, for a continuous 

microdroplet spray, analytes are washed away by the outer region of the spray profile before they 

can interact with the central region of higher ionization efficiency (Figure 4.5). When the 

magnitude of RW was reduced to 0.1, the spatial resolution is relatively similar for DESI and 

sDESI MS images, which is agrees with experimental MS images of lipids embedded in the 

extracellular matrix of rat brain tissue sections (Figure 4.14). Since RW is related to the 

magnitude of the analyte-surface interaction, synchronization produces the greatest 

improvements for analytes that have a weak interaction with the surface. The simulations also 
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suggest that synchronization of desorption/ionization with IT improves sensitivity and spatial 

resolution by reducing the time that the “washing effect” is operating during each MS scan.  

Conclusions 

In this report we describe the development and characterization of a DESI-MS imaging source 

that synchronizes desorption/ionization with the ion accumulation period (IT) of an LTQ-

Orbitrap XL mass spectrometer. Our results show that synchronization improves sensitivity, 

increases spatial resolution, and reduces the amount of sample consumed per MS scan by factors 

as high as ~4-6. These improvements were necessary to obtain informative, high-resolution MS 

images (step sizes ≤75 μm) of low-intensity fatty acids in latent fingermarks on glass, 

highlighting the utility of sDESI for mapping the spatial distribution of weakly-bound analytes 

on smooth surfaces. MSI simulations support that the benefits of sDESI are the result of 

depositing a lower volume of solvent on the surface per MS scan, thereby minimizing the 

redistribution and spreading of analytes on the surface ("washing effect"). Overall sDESI 

expands the range of analytes, surfaces, and experimental conditions accessible to DESI-MSI. 
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Figure 4.2. Circuit diagram of LTQ-Orbitrap XL MALDI to transistor-transistor logic (TTL) 
converter. Valve modulation and timing is controlled by the TTL signals which are synchronized 
with ion accumulation. The optoelectronic coupler isolates instrument electronics and removes 
noise from the input signal. The valves are powered with 120 V AC that is switched ON and OFF 
with a solid-state relay. 
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Figure 4.3. Characterization of V2 latency (bottom panel shows zoomed-in view of 5.3 – 6.0 s). 
A microphone was placed in close proximity to the shutter gas outlet to record ON and OFF 
times of the N2 gas relative to an input trigger generated from a data acquisition board. Gas 
impinging on the microphone diaphragm causes large amplitude noise while the valve is open. 
Initial capacitance charging in the microphone electronic circuit caused a rise in baseline voltage 
unrelated to valve performance. 
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Figure 4.4. Screen capture of in-house developed MSI analysis software. Image displayed is 
DESI MSI of a coronal mouse brain section acquired with 3 µL/min of 1:1 CHCl3:CH3OH, 180 
psi N2, 150 µm pixel width. 
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Figure 4.9. Mass spectrometry and optical images of R6G spots deposited on photographic 
paper using 1:1 CHCl3:CH3OH spray solvent and a resolution setting of 60,000. The optical 
images were acquired after DESI and sDESI analysis. In contrast to Figure 4, these images were 
acquired with a scan rate 50% faster but with the same pixel width. The faster scanning appears 
to more severely smear DESI-MSI. 
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Figure 4.11. (a) DESI and (b) sDESI mass spectra using a pixel width of 150 µm. (c) DESI and 
(d) sDESI mass spectra using a pixel width of 75 µm. Mass spectra represent an average across 
one row of the corresponding images shown in Figure 4.10a. 
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Figure 4.13. Example decay curves for simulated DESI and sDESI with the plume held at a 
single position. sDESI/DESI corresponds to the ratio of integrated intensity over the two minute 
simulation time. 
  



104 
 

[36:1P
S

 - H
] -

(m
/z 788.537)

[40:6 P
S

 - H
] -

(m
/z 834.520)

sDESI-MSIDESI-MSI

500 µm  
Figure 4.14. DESI and sDESI MS images of rat brain (25 µm sampling period; 1:1 
CHCl3:CH3OH spray solvent at a flow rate of 3 µL/min). Sagittal tissue sections of unstripped 
rat brain (Pel-Freez, Rogers, AR, USA) were cut without embedding media using a Leica 
CM3050 S cryostat microtome. 
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Table 4.1. Ratio of sDESI/DESI sensitivity to Rhodamine 6G 
(R6G) for various solvent and surface compositions. For all 
experiments, R6G was desorbed using a raster velocity of 100 
µm/s, mass resolution setting of 100,000, and an ion 
accumulation time of 500 ms. Asterisks (*) represent 
statistically significant differences determined by ANCOVA (p 
< 0.05). 

Solvent Surface sDESI/DESI 

1:1 CHCl3:CH3OH 

Omni-Slide 

1.77 ± 0.13* 

CH3OH 0.953 ± 0.071 

1:1 CH3OH:H2O 1.130 ± 0.069* 

1:1 CHCl3:CH3OH 

Paper 1.25 ± 0.19 

Dollar Bill 2.01 ± 0.18* 

Stainless Steel 1.73 ± 0.51* 

TLC Plate 1.14 ± 0.18 

Glass 1.40 ± 0.33 
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Table 4.2. Some of the fatty 
acids (FA) identified in 
latent fingermarks. 

FA 
[M - H]- 

(Da) 

14:0 227.202 

15:0 241.217 

16:1 253.217 

16:0 255.232 

17:0 269.248 

18:1 281.248 

18:0 283.264 

21:4 317.250 

22:0 339.326 

24:0 367.357 

25:0 381.373 

26:0 395.424 
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CHAPTER 5 

MICROMS: A PYTHON PLATFORM FOR IMAGE-GUIDED MASS SPECTROMETRY PROFILING 
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Introduction 

Image-guided mass spectrometry (MS) provides a link between the spatial dimensions in a 

digital image and the physical location of a sample within a microprobe system. MS imaging 

(MSI) is a subset of image guided chemical sampling that frequently utilizes regularly spaced 

acquisition positions overlaid on an optical scan to recreate the spatial distribution of analytes 

within a sample. However, traditional MSI is low throughput and less sensitive than targeted 

profiling when the target objects (e.g. biological cells and bacterial colonies) are widely 

dispersed or smaller than the microprobe size. In the past decades, single cell analysis with MS 

has attracted great interest due to its sensitivity and ability to handle volume-limited samples.1-6 
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Many classes of biomolecules within individual cells are detectible with a variety of MS probes, 

facilitating new discoveries of single cell heterogeneity and a better understanding of the 

relationship between chemical contents and cellular functions. When MSI is applied to tissue 

sections,7-10 the resolution to differentiate neighboring cells requires sampling each cell multiple 

times, effectively splitting available analytes among pixels. Due to difficulties in sample 

preparation and stringent instrument requirements, MSI at or below single cell resolution is far 

from routine in most laboratories. In the case of dispersed cells,11,12 traditional MS imaging is not 

an optimal approach as most of the measurement time is spent characterizing the space between 

the cells. The limitations of MSI for high throughput analysis of single cells have led to the 

development of new methods to locate or deposit cells.  

 Recently, high throughput approaches to single cell MS have driven analyses of 

dissociated single cells which are either chemically labeled13 or coordinate registered. MS 

profiling of adhered cells provides advantages in data fusion by simplifying data processing and 

allowing sequential analysis of the same cell. Microarrays for mass spectrometry14-16 (MAMS) 

have demonstrated such capabilities by combining Raman microspectroscopy with MS.17 As an 

alternative to MAMS, cells may be randomly seeded on a substrate, greatly relaxing fabrication 

requirements at the expense of a necessarily gentle sample extraction. Ong et al. presented such 

an approach, by locating single cells on an indium tin oxide (ITO)-coated glass slide based on 

their position in a whole-slide fluorescence microscopy image.18 A challenge with this initial 

report was the complex scheme for generating custom geometry files, which required manual 

interaction through several disjointed pieces of software. To facilitate broader adoption of 

optically-guided single cell profiling, we sought to streamline the process of directing MS 

acquisition with whole-slide microscopy images. As reported by Jansson et al., the first iteration 



113 
 

utilized a point-based similarity registration scheme, which improved target localization 

accuracy over the previously reported piece-wise linear transform.19 User interaction was also 

simplified, allowing fluid interaction with microscope images through a graphical user interface 

(GUI). All functions required to begin acquiring single cell mass spectra on a Bruker 

ultrafleXtreme instrument were contained in the single piece of software. 

Here we present the first version of microMS to support microscopy-guided MS for a 

variety of image files and mass spectrometers. The software architecture permits new 

microprobe instruments to be supported with minor modifications to the source code. Virtually 

any spatially restricted sampling probe capable of precisely recording and moving to a given 

location can perform such profiling.  

First, the unique features of microMS are described along with the necessary 

modifications to expand device support for both commercial and customized instruments. We 

then illustrate an example of using microMS on three MS systems for off-line, targeted profiling 

of single cells from the mammalian nervous system.  

Materials and Methods 

Software  

microMS is written in python v3.5. In addition to base components, microMS requires the 

matplotlib, PyQt5, numpy, scipy, openslide, skimage, pyserial packages. Installation instructions, 

usage details and most recent source code may be found at 

http://neuroproteomics.scs.illinois.edu/microMS.htm. 

The program structure is modeled in Figure 5.1. The main GUI class is composed of two 

widgets in the GUICanvas package for displaying a microscope image or population-level 

statistics as a histogram. Each widget interacts with a microMSModel object, which represents a 
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single microscopy experiment (as a blobList and slideWrapper) and mass spectrometer (as a 

coordinateMapper).  

Targets in microMS are represented as objects called “blobs”, to generalize a biological 

cell as any object formed by a group of high intensity pixels. In Figure 5.2, there are three blobs; 

each with a unique Cartesian (x, y) location on the image, a corresponding effective radius, and 

circularity. The circularity is a ratio of the blob area to its perimeter squared, scaled between 0 

and 1, with 1 being a perfect circle, i.e. blobs 1 and 3 are single cells whereas blob 2 is not. A 

collection of blobs is stored in a blobList object, which also implements methods to query and 

filter a population of targets. 

A slideWrapper provides an object for interacting with a set of microscopy images 

representing brightfield and multiple fluorescence channel images. The current field of view is 

maintained to simplify controller interaction with the image. The ImageUtilities package also 

contains modules for cell finding, patterning target positions, and optimizing travel paths. 

Object models for MS instruments are contained in the coordinateMappers package, as 

shown in the model in Figure 5.1. The coordinateMapper is an abstract base class providing an 

interface which the GUI software utilizes to interact with different instrument systems. The core 

functionality of the mapper is to align pixel positions with physical coordinates and provide a 

means to translate target positions on an image to instrument-specific directions. The design of 

the software architecture simplifies the addition of new instruments. Integration of ambient 

ionization methods, including the single-probe20,21 or nanoDESI22 are enticing candidates as they 

have demonstrated single cell sensitivities in imaging and profiling applications. Currently, four 

concrete implementations are supplied in the CoordianteMappers package: a Bruker 

UltrafleXtreme, a Bruker SolariX, the AB Sciex oMALDI sample stage attached to a custom 
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hybrid MALDI/C60
+-SIMS, and a lab-built 3-axis liquid microjunction probe. Details about the 

implementations will be discussed in the next section. Demonstrations for the addition of new 

instruments to microMS may be found in the user manual packaged with the source code and in 

Appendix B. 

Chemicals 

All chemicals were purchased from Sigma Aldrich (St. Louis, MO) and used without further 

purification.  

Single Cell Dissociation 

Two, 2-2.5 month old male Sprague Dawley outbred rats (Rattus norvegicus) (www.envigo.com) 

were housed on a 12-h light cycle and fed ad libitum. Animal euthanasia was performed in 

accordance with the appropriate institutional animal care guidelines (the Illinois Institutional 

Animal Care and Use Committee), and in full compliance with federal guidelines for the humane 

care and treatment of animals. Dissected cerebellum and suprachiasmatic nucleus (SCN) tissues 

were incubated in a solution of 1% Hoechst 33342 in oxygenated modified Gey’s balanced salt 

solution (mGBSS) for 30 minutes at 37°C. The mGBSS solution was removed and the tissues 

were incubated in an oxygenated solution of 6 units of papain, 1 mM L-cysteine, and 0.5 mM 

ethylenediaminetetraacetic acid for 80 minutes at 37°C. Tissue was then mechanically 

dissociated in mGBSS with 0.04% paraformaldehyde. A solution of 80% glycerol in mGBSS 

was added to a final concentration of 40% glycerol. The cell suspension was then transferred 

onto ITO-coated glass slides (Delta Technologies, Loveland, CO) with at least 12 fiducial marks 

etched by a diamond-tipped pen. 
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Microscopy Imaging  

Brightfield and fluorescence images were acquired on a Zeiss Axio Imager M2 (Zeiss, Jena, 

Germany) equipped with an Ab cam Icc5 camera, X-CITE Series 120 Q mercury lamp (Lumen 

Dynamics, Mississauga, Canada), and a HAL 100 halogen illuminator (Zeiss, Jena, Germany). 

The 31000v2 DAPI filter set was used for fluorescence excitation. The images were acquired in 

mosaic mode with a 10x objective and 13% overlap. Images were processed and exported as tiff 

files using ZEN software version 2 blue edition (Zeiss, Jena, Germany).  

Sample Preparation 

Slides were coated with 50 mg/mL 2,5-dihydroxybenzoic acid (DHB) dissolved in 1:1 (v/v) LC-

grade ethanol:water with 0.1% trifluoroacetic acid with an automatic sprayer described 

previously.19,23 The matrix solution was supplied at 10 mL/hr and nebulized with N2 gas at 50 psi 

over 100 passes. Samples were affixed to a rotating plate with the nebulizer positioned 1.5 cm 

above the samples, resulting in a MALDI matrix thickness of ~0.1-0.2 mg/cm2. 

Instrument Parameters 

Single cell analysis was performed on three instruments. The UltrafleXtreme mass spectrometer 

(Bruker Daltonics, Billerica, MA) was set with a mass window of m/z 400-3000. The “Ultra” 

(~100 µm footprint) laser setting was used with 300 laser shots at 1000 Hz for each cell to 

generate a MALDI-TOF mass spectrum at each cell. The second instrument is a 7 T SolariX FT-

ICR mass spectrometer (Bruker Daltonics, Billerica, MA), operated with a mass window of m/z 

150-3000, yielding a 4 Mword time-domain transient. Spectra were calibrated to the 

phosphatidylcholine headgroup at m/z 184.07332. Adsorption mode was used to effectively 

double the mass resolving power. Each MALDI spectrum was acquired with 20 laser shots at 

1000 Hz and 60% laser energy. The laser setting produced a ~100 µm footprint. The last 
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instrument is a custom hybrid MALDI/C60
+ Q-TOF mass spectrometer, described in detail 

elsewhere.11 The C60
+ ion beam was utilized for secondary ion mass spectrometry (SIMS), with 

the mass analyzer operated in positive mode with a mass range of m/z 60-850. Correctly parsing 

the spectra requires additional instrument modifications and data analysis routines, described 

elsewhere.24 

Results and Discussion 

Instrument support in microMS  

Bruker instruments are discussed first as their MALDI sample stages and coordinate mappers are 

similar. The commonality is exploited by the brukerMapper abstract base class, which is a 

derived class of coordinateMapper. BrukerMapper implements methods for reading and writing 

xeo geometry files, which are required in Bruker software for automatic acquisition. The 

brukerMapper class also defines an intermediate coordinate system between physical, motor 

coordinates and the fractional distances used in xeo files. The classes derived from 

brukerMapper require a limited set of concrete method implementations to be fully functional as 

many features are supported in the bases class. The simplest case is ultraflexMapper, for the 

Bruker ultrafleXtreme instrument, which defines the required methods to parse user input.  

The solarixMapper class for a Bruker SolariX instrument is similar to the 

ultraflexMapper class with three minor modifications: 1) the xeo files are limited to 400 

positions, 2) an xlsx Excel file is also required for automatic acquisition, and 3) input coordinates 

are read directly from the system clipboard. The flexImagingSolarix object extends 

solarixMapper and overrides the saved file format for import in flexImaging software. These two 

instruments provide examples of supporting microscopy-guided MS on Bruker MALDI sources. 
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Instruments from other vendors inherit directly from the coordinateMapper. One example 

is the oMALDIMapper for interfacing with an AB Sciex oMALDI server. With this instrument, 

the sample positions are encoded in ptn pattern files which contain an x,y coordinate relative to 

the starting position with calibrated motor steps. Hence, in comparison to brukerMapper, 

oMALDIMapper transforms motor coordinates to ptn coordinates instead of fractional distances.  

To further simplify correlation of mass spectra to image coordinates, a corresponding text file is 

also exported with pixel positions of each target. As a final consideration, the sample stage was 

found to have significant motor slop upon changing direction. The motor slop is corrected before 

exporting the ptn file to ensure accurate targeting.  

In the preceding examples, microscopy images are correlated with physical positions on a 

mass spectrometer sample stage to generate instrument-specific target coordinates. This off-line 

workflow is ideal for instruments lacking support for external control of the sample stage, as is 

usually the case. To demonstrate capabilities with on-line analysis and instrument control, 

additional interfaces were developed for controlling Zaber linear actuators. The zaberMapper 

class contains a simple implementation of the abstract base class coordinateMapper. It also has 

an instance variable connectedInstrument, which is used by microMS to interact with the sample 

stage. Another abstract base class, connectedInstrument specifies the method signatures 

necessary for a connected instrument. The concrete implementation provided is a system with 

three linear actuator stages, zaber3axis. This module inherits from zaberInterface, containing 

serial wrappers to simplify interaction with each stage, and implements the connectedInstrument 

interface. In addition to reading the current, physical position for coordinate registration, the user 

directs stage movement on the optical image or with key strokes.  

  



119 
 

microMS Functionalities 

General features of microMS include locating targets, filtering the target population, patterning 

each target, and coordinating the image with the physical location of a mass spectrometer stage. 

Only the last step is instrument specific. Users should refer to the User Guide in Appendix B for 

a comprehensive illustration of these functionalities.  

 (a) Locating targets. Targets may be specified on the microscope image either by manually 

selecting locations or by performing automatic blob finding. In the former approach, targets are 

added via holding the “shift” key and left mouse clicking on the center of the feature of interest. 

This generates a blob of default radius and circularity of 1. A custom radius is specified by 

clicking and dragging from the circumference to the center of the feature. 

In automatic blob finding, the search takes place over the entire image area unless a 

region of interest (ROI) is specified. ROIs are defined by clicking and dragging a rectangular 

area or drawing the region a vertex at a time. The blob finding algorithm thresholds the specified 

image color and then groups together pixels above that threshold, as shown in Figure 5.2B. Each 

group is then evaluated for its size and circularity. Putative blobs falling outside the user-

specified parameters are discarded. Several features are available to assist with selection of 

suitable blob finding parameters. Different blob finding parameters are interactively tested on the 

current image field of view. Additionally, microMS reports pixel intensities, object size and 

circularity of positions selected with a middle mouse button click. Judicious selection of these 

parameters will find most cells while excluding imaging and background artifacts. 

After the targets are located, their properties are stored as lists within microMS. Up to ten 

separate target lists are maintained and each list is displayed as a different color. New target sets 
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generated by filtering or patterning are automatically stored in an empty list with the original 

target set left intact. 

(b) Filtering targets. Frequently, it is beneficial to filter the target list, either to refine putative 

blobs or to stratify targets based on morphology. Basic filtering methods provided by microMS 

are selected through the menu bar which include ROI filtering and distance filtering. Within a 

specific ROI, the blobs can be selectively removed or exclusively retained in a new target list. 

ROI filtering is especially useful for removing targets which are near fiducials or potentially 

contaminated by substrate background. Distance filtering helps to ensure each MS target position 

will correspond to a unique object (e.g. a single cell). An appropriate value for distance filtering 

is chosen based on the microprobe size, target accuracy, and the desired number of samples per 

blob. For example, a 100 µm diameter probe on a system with 50 µm target accuracy would 

require distance filtering of at least 100 µm to minimize the chance of sampling a nearby blob. 

During distance filtering, any target with a neighbor closer than the specified value is removed 

from the blob list.  

In addition to common filtering functions, microMS supports interactive examination of 

population-level statistics through the histogram window to partition the target list (Figure 5.3). 

Metrics include blob size, circularity, nearest neighbor distance, and fluorescence intensity. Note 

that there is some redundancy between histogram filtering and blob finding. The overlap permits 

the selection of lenient blob finding parameters to exhaustively identify all putative cells which 

are then refined to the final target set. Such a scheme allows distance filtering to identify all 

possible contaminating objects and sub-classification based on size. 

High and low pass filters of the targets may be defined on the histogram window. Targets 

falling within a filter range are dynamically displayed on the microscope image in the 
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corresponding color (Figure 5.3B-C). Selecting a blob in the microscope image highlights its 

value on the histogram to assist with defining filter limits. High and low pass filters define new 

target lists that may be further refined by additional histogram operations. This function allows 

operations such as filtering a population based on size followed by selection of targets with a 

particular fluorescent stain. More routinely, the histogram provides a simple method to identify 

and remove artifacts from blob finding. Figure 5.3C shows an example of isolating unresolved 

cells, which helps ensure data quality. 

(c) Patterning targets. By default, microMS generates one acquisition target per blob. Single 

target sampling is sufficient when the microprobe size is similar to or larger than the target 

object. However, when the object is larger than the probe, a single acquisition is insufficient to 

robustly sample heterogeneous objects. Alternatively, MSI of each blob can be acquired at each 

target location. To address advanced sampling requirements, microMS provides three sample 

patterning schemes, shown in Figure 5.4.  

The first option is a rectangular packed array of points centered on the target (Figure 

5.4A). Users select a raster spacing and number of layers to define the overall size of the image. 

Alternatively, the size is dynamically adjusted to the target radius to ensure complete sampling 

of heterogeneously sized populations. The resulting data is directly interpretable as an MS image 

with common MSI software. 

Similar to rectangular packing is the hexagonal close packing pattern (Figure 5.4B). With 

a circular desorption probe, the hexagonal packing provides denser sampling of the target. Users 

define the target separation, number of layers, and specify dynamic layering. While hexagonally 

packed data are more difficult to reconstruct into an image, averaging the spectra yields a 

representative spectrum for the blob. 
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Finally, the circular pattern generates targets around the circumference of each blob 

(Figure 5.4C). In some cases, analyzing the center of a blob produces low sensitivity due to the 

morphology of the target or the biological nature of the samples. Instead, targets are placed 

immediately outside of a blob to acquire representative spectra. For circular patterning, the user 

defines a minimum target-to-target distance, maximum number of targets, and offset from the 

circumference. The actual number of targets around a blob is determined by the blob size and the 

specified offset while maintaining the target-to-target distance above the minimum limit. Targets 

are then equally spaced around the blob. Averaging the resulting data provides a characteristic 

spectrum of the area directly surrounding each blob.  

(d) Coordinate transformation to instrument systems. Once all targets are determined, the pixel 

positions must be translated into the physical coordinates of a mass spectrometer or similar 

platform. Image correlation in microMS is accomplished through a point-based similarity 

registration. In point-based registration, the target localization error scales inversely with the 

square root of the number of fiducial points. As such, while microMS supports arbitrary numbers 

of fiducials, at least 12 fiducials are recommended for robust coordinate training. Similarity 

transformations do not correct for shearing of images, so the field of view must remain normal to 

the sample surface during image acquisition and MS analysis. 

Generally, a fiducial is located in the microscope image and the instrument system with 

the assistance of an integrated video camera. When the microprobe is positioned over the center 

of a fiducial mark, the same location is selected on the image in microMS with a right mouse 

click. This opens a popup window requesting the physical x, y position. A default x, y position is 

displayed in the popup which directly reads the stage position, pastes text from the computer 

clipboard, or predicts the closest location, depending on the selected instrument. 
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Fiducials are displayed on the microscope image as blue circles with labels corresponding 

to the nearest set position on the instrument, as shown in the schematic of Figure 5.5. A few 

feedback features are included to help the user assess the quality of the current registration. If 

applicable, labels display set points of the instrument coordinate system. The labels shown in 

Figure 5.5B correspond to a Bruker MTP slide II adapter. For some instruments, a set of 

preprogrammed positions are displayed, showing the predicted location of those points on the 

microscope image. A large deviation, typically due to an inaccurate input will be detected by a 

discrepancy in the expected and displayed label. Finally, the fiducial with the worst fiducial 

localization error is highlighted in red, indicating that specific position assignment should be 

reconsidered. Correcting the problematic fiducial will cause the next worst fiducial to be 

highlighted. Once the same fiducial stays highlighted, the registration is close to optimal. 

Adjusting the worst fiducial is good practice to produce accurate targets. 

With a full set of fiducials, the target positions may be saved in instrument-specific 

format for offline analysis. Alternatively, microMS can communicate directly with an instrument 

to instruct it to move and perform an analysis. Due to limited vendor support, direct instrument 

control is demonstrated on a lab-built stage.  

The current microMS distribution supports the Bruker ultrafleXtreme, Bruker solariX, 

AB Sciex oMALDI server, and a lab-built liquid microjunction extraction stage. For the 

supported MS systems, the user registers fiducials and saves instrument positions without 

modifications. Furthermore, microMS has ample room for customization due to the abstract base 

class construction of the CoordinateMappers package. The general framework remains 

unchanged, but there are opportunities to tune each function to a specific application. Examples 
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include the ability to directly read fiducial positions from an instrument, grab the contents of the 

computer clipboard, and perform stage movement slop correction.  

Accuracy of point based similarity registration. A vital metric for optically guided profiling is 

the target localization error. An accurate transformation between optical image and physical 

location ensures that each sample corresponds to the position of interest. microMS allows 

training sets of arbitrary sizes. Including more fiducials reduces target localization error, 

effectively distributing uncertainty of a given fiducial over the entire transformation. Several 

factors influence accuracy including the precision of stage movement, fiducial localization 

accuracy (in both image and physical coordinate systems), number of fiducials, whole-slide 

image stitching, and proper sample positioning during image and MS acquisition. Users should 

carefully consider these factors to establish adequate probe size and distance cutoffs prior to data 

acquisition.  

To assess the accuracy of an MS system with microMS, an image based method was 

developed to link the requested and actual target positions, as shown in Figure 5.6. The target 

localization error is defined as the Euclidean distance between a requested position and the 

actual, transformed position during coordinate registration and is synonymous with accuracy. To 

assess this value, a thin layer of DHB matrix was coated on an ITO glass slide to act as a tracer 

for the probe position. A standard sample was prepared with 16-24 fiducials along the exterior of 

a target. An additional set of fiducials were included within this region to mimic the location of 

samples in a profiling experiment. The interior marks were not used for coordinate registration, 

but rather to assist with overlaying the pre- and post-analysis images. Several target locations 

were manually placed around each interior fiducial. Dividing the targets between multiple trials 

is useful for designing experiments to test the effect of possible confounding variables. 
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Next, fiducial training was performed with the MS system and the set of targets was 

desorbed with sufficient time to noticeably remove the DHB matrix. After desorption, the target 

area was optically imaged again to reveal the actual position of sampling events. Desorption 

locations and sizes are marked as blobs in microMS and saved for further analysis. To overlay 

the two images, subsets of the pre- and post-desorption image were cropped and roughly 

positioned prior to intensity-based registration with custom scripts in MATLAB (R2015b). The 

resulting transformation was used to map the target pixel positions onto the post-extraction 

image. The distance between the requested and actual desorption positions is a direct 

measurement of the target localization error. With this method, the target localization of the 

Bruker ultrafleXtreme was found to be 38.3 ± 3.9 µm (mean ± S.E.M, n = 71, Figure 5.6) over 

an area of approximately half a microscope slide, an error of about one part per thousand. As 

previously mentioned, the probe radius should be as large as the target localization error and the 

distance filter applied should be larger than the sum of this error and the probe radius. 

In experiments to assess the effect of various confounding factors on target accuracy, 

desorption was repeated multiple times with the same sample and slide image. Different laser 

spot sizes, users, target locations and fiducial training sets were examined. The only significant 

factor found was the fiducial training set (Figure 5.6D).  Overall accuracy is not dependent on 

the target location (Figure 5.6E), laser spot size or user (data not shown). Within an experiment, 

the accuracy is fairly constant, independent of the user or location on the sample. However, 

repeating an experiment with the same sample could produce significantly different accuracy. 

This result confirms the profound effect of quality fiducial training sets on the target accuracy. 

Extreme care is required when training fiducials to ensure the image target locations correspond 

to the expected mass spectra. 
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A demonstration: Sequential analysis of the same target  

For single cell profiling experiments, the physical location of a cell on the slide effectively 

isolates it from neighbors and prevents mixing, which greatly simplifies data fusion. microMS 

provides a utility for performing sequential analysis of the same target on different instruments 

with ease. Using the optical image as a map to record each target address, the image position can 

be transformed into any supported instrument coordinate system. A careful selection of the order 

of experiments facilitates the repeated analysis of a sample to provide complementary chemical 

information. 

Figure 5.7 shows two examples of sequential single cell profiling using MS instruments 

with different capabilities. In panel A, dispersed, rat cerebellum cells were initially profiled with 

a Bruker ultrafleXtreme to rapidly assess the lipid content with moderate resolution and mass 

accuracy. From the initial mass spectral dataset, cells without significant lipid signals are 

discarded from further consideration as they likely represent artifacts from optical imaging or 

sample preparation such as dust particles. The resulting population is then selected for follow-up, 

high resolution, high mass accuracy analysis with a Bruker solariX FT-ICR. Due to the increased 

sample acquisition time, exhaustive analysis of large populations is cost-prohibitive. Performing 

a preliminary filtering maximizes the efficiency of subsequent data analysis, without consuming 

the entire cellular content. 

While the overall lipid profiles are similar, there are some discrepancies between lipid 

ratios of the two methods. This could represent changes in the sample layers that each technique 

is analyzing. Nonetheless, the advantage of single cell FT-ICR is immediately apparent with the 

ppm mass accuracy and over an order of magnitude higher mass resolution, shown in each inset 

for putative [PC(32:0)+H]+. Once the MALDI-TOF has identified cells with abundant lipid 
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signal, they are filtered to locate individuals requiring exact mass measurement for elemental 

composition analysis. Such a workflow facilitates exhaustive cell population analysis while 

efficiently utilizing the FT-ICR as needed. 

As a second example, Figure 5.7B displays a C60
+-SIMS mass spectrum and the 

corresponding MALDI-TOF mass spectrum of a single cell derived from the rat suprachiasmatic 

nucleus. Here, the low sample consumption of SIMS was leveraged by follow-up MALDI-TOF 

to provide more, complementary information than would be possible with either technique alone. 

In the low mass range, peaks corresponding to phosphatidylcholine headgroup and a cholesterol 

fragment are apparent in the SIMS spectrum at m/z 184.09 and 369.31 respectively. MALDI-

TOF demonstrates better sensitivity to intact lipids and detects lipid dimers and peptides. 

Comparing the identity of lipids over the same range, SIMS appears to favor sodiated adducts 

([PC(32:0)+Na]+ and [PC(34:1)+Na]+ at m/z 756.47 and 782.55 respectively) more than the 

protonated forms seen in MALDI-TOF ([PC(32:0)+H]+ and [PC(34:1)+H]+ at m/z 734.54 and 

760.55 respectively). These relative intensities likely reflect the different ionization processes 

occurring in each instrument. Together, a wide mass range is covered to provide a more 

complete profile of the sample.  

These examples may represent the first demonstration of multiple MS platforms 

measuring the same individual cells with high throughput. In each example, the ability to 

repeatedly analyze the same cell was leveraged to acquire complementary information from 

multiple instruments. Such an experiment would be difficult to perform at high throughput 

without linking the target locations by the optical image of each sample. With microMS, 

sequential analysis is facile, enabling each cell to be exhaustively characterized by multiple 

techniques. 
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Conclusions and Future Directions 

microMS is the first generation of an open source python package for robust image analysis and 

coordinate registration, which are essential for optically-guided MS profiling. microMS provides 

a rich feature set for image analysis suited for optically-guided MS profiling. Targets may be 

automatically located, filtered, stratified and patterned prior to MS analysis. These functions 

provide access to single cell profiling with multichannel fluorescence image analysis. The unique 

aspect of microMS is how mass spectrometers are represented for MS profiling. The 

implementation of specific MS systems through an abstract base class and software architecture 

provides a straightforward means for adapting microMS to arbitrary microprobe instruments. 

While this simplifies connecting microMS to new systems, it also facilitates sequential analysis 

of the same target by uniquely addressing each cell coordinate. We believe the rich feature set 

and ease of extending microMS to a variety of mass spectrometers and other instruments will 

facilitate the growth of single cell profiling. 
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CHAPTER 6 

SINGLE CELL PEPTIDE HETEROGENEITY OF RAT ISLETS OF LANGERHANS 
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Introduction 

The heterogeneity and variability of individual cells is critical for the survival and propagation of 

life. Cellular heterogeneity is thought to be necessary for higher-level systems, suggesting that 

“variation is function”, where nuanced variation across single cells provides a means of graded 

response.1 Greater phenotypic heterogeneity is also vital; for example, the cellular heterogeneity 

of islets of Langerhans, which are composed of four major cell types. Each type of endocrine cell 

is functionally interconnected, yet chemically distinct, providing plastic responses of an 

organism to fluctuating environments. Cellular heterogeneity facilitates the endocrine functions 

of islets of Langerhans that are essential for glucose homeostatis.2,3  
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Due to the importance of islets of Langerhans in normal and pathological glucose 

utilization, the cellular heterogeneity and variability of this microorgan are well studied using 

approaches such as immunohistochemical profiling,4-7 single cell transcriptomics analysis,1,8,9 

and metabolomic and proteomic profiling.10,11 Mass spectrometry (MS) has become an important 

tool for the investigation of peptide content in organelles, cells, and tissues, such as the endocrine 

pancreas. MS has been efficiently used to probe the secretome, metabolome, peptidome, and 

proteome of whole islets.12-16 MS investigations of the peptide content of islets have revealed 

unknown cell-to-cell signaling molecules and indicated novel prohormone processing. However, 

most prior studies utilized individual or pooled islets, consisting of thousands of cells. Hence, 

these ensemble measurements conceal the biological variability and functional heterogeneity of 

individual cells. Matrix-assisted laser desorption/ionization (MALDI) MS is uniquely suitable 

for the detection and characterization of peptides in small samples, including single cells, due to 

its high sensitivity and low sample consumption. Beginning with the MALDI MS analysis of 

single neurons from Lymnaea stagnalis and Aplysia californica more than 20 years ago,17,18 the 

technique has evolved into a powerful tool for measuring peptide content in minute samples such 

as cells and even individual organelles.19-24  

Microscopy-guided, single cell MALDI MS greatly increases sample throughput, 

facilitating the measurement of peptide and metabolite content for thousands of cells.10,11 Such 

rapid analysis of cell populations is key to successfully assessing cellular heterogeneity. The 

technique is amenable to peptide detection from virtually any type of cell. Non-targeted, label-

free analysis of large populations coupled with multivariate statistical analysis allows detection 

of rare cellular phenotypes and enables the study of differential peptide expression in cellular 

subtypes. Here, using microscopy-guided, single cell MALDI MS we examined the cellular 
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heterogeneity of islets of Langerhans located in the dorsal and ventral regions of the rat pancreas. 

By classifying each spectrum based on canonical and cell-specific peptide expression, the 

cellular composition of individual islets was directly measured and the proportion of α-, β-, γ-, 

and δ-cells was found to differ between the pancreatic regions. Furthermore, the dataset revealed 

novel prohormone processing products as well as their location-specific abundance.  

Methods 

Chemicals 

Collagenase P (from Clostridium histolyticum) used in the enzymatic isolation of islets of 

Langerhans was purchased from Roche Diagnostics (Indianapolis, IN). Mass spectrometer 

calibration was performed using a Peptide Calibration Standard Kit II (angiotensin II, 

angiotensin I, substance P, bombesin, ACTH clip 1–17, ACTH clip 18–39, somatostatin 28, 

bradykinin fragment 1–7, renin substrate tetradecapeptide porcine with added bovine insulin) 

obtained from Bruker Daltonics (Billerica, MA). All other chemicals were purchased from 

Sigma-Aldrich (St. Louis, MO). 

Isolation of Islets of Langerhans and Single Cell Preparation 

Male, four-month old Sprague-Dawley rats from Harlan Laboratories (Indianapolis, IN) were 

euthanized by decapitation. The vertebrate animal use protocol was approved by the Institutional 

Animal Care and Use Committee at the University of Illinois at Urbana–Champaign. Islet 

isolation was performed as described elsewhere,52 with minor modifications. Modified Gey’s 

balanced salt solution (mGBSS) was prepared, containing 1.5 mM CaCl2, 4.9 mM KCl, 0.2 mM 

KH2PO4, 11 mM MgCl2, 0.3 mM MgSO4, 138 mM NaCl, 27.7 mM NaHCO3, 0.8 mM NaH2PO4, 

and 25 mM HEPES dissolved in Milli-Q water (Millipore, Billerica, MA), with the pH adjusted 

to 7.2 using NaOH in Milli-Q water. For islet isolation, the mGBSS was supplemented to a final 
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concentration of 5 mM d-glucose and 1% (w/v) bovine serum albumin (buffer 1). Each pancreas 

was injected through the bile duct with 2 mL of 1.4 mg/mL collagenase P solution dissolved in 

buffer 1. Next, the ventral and dorsal regions were surgically dissected following morphological 

landmarks along the lower duodenum as described elsewhere.5 The two resulting tissues were 

placed in separate glass vials, each containing 1 mL of the collagenase P solution. The pancreatic 

tissues were incubated in a recirculating water bath for 20–30 min at 37 °C to digest exocrine 

tissue while leaving islets primarily intact. The resulting suspension was washed twice with 

buffer 1 and centrifuged for 3 min at 300 × g. The resulting pellet was resuspended in 10 mL 

buffer 1 and islets were manually isolated with a micropipette under visual control using an 

inverted microscope. 

To stabilize the cells and label their nuclei for fluorescent targeting, each islet was 

transferred to 20 µL of a staining and cell stabilization solution consisting of 40% (v/v) glycerol 

in buffer 1 with 0.1 mg/mL Hoechst 33342.53 Islets were incubated for 2 h at 15 °C before 

trituration of individual islets into single cells onto indium tin oxide (ITO)-coated glass 

microscopy slides (Delta Technologies, Loveland, CO). Studies of intact islets were performed 

as above but without trituration. To decrease bias, single cell dispersions from individual islets 

were randomly placed onto subdivided areas of the slides, such that each slide contained cells 

from at least two different animals. These efforts ensured that significant differences in 

abundance were not due to batch effects between slides. 

For the LC–MS experiments, about 100 islets were collected and transferred to an 

Eppendorf tube containing 200 µL acidified methanol (90% MeOH, 9% formic acid (FA), 1% 

H2O) for peptide extraction, sonicated for 5 min, and incubated on ice for 1 h. The sample was 

centrifuged for 20 min (20 000 × g, 4 °C), the supernatant was then dried down in a Savant 
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SpeedVac vacuum concentrator (Thermo Scientific, Waltham, MA) and reconstituted in 50 µL 

5% MeOH, 0.1% FA. Sample clean-up was performed with a C18 spin-column (Thermo 

Scientific) pre-equilibrated with 5% MeOH, 0.1% FA. After sample loading and analyte 

retention, the column was washed twice with 1 mL 5% MeOH, 0.1% FA. The retained peptides 

were eluted twice using 50 µL 70% MeOH, 0.1% FA. The final sample used for LC–MS 

analysis was prepared by lyophilizing the eluent and reconstituting it in 10 µL 5% MeOH, 0.1% 

FA. 

Optical Imaging for Registration of Fiducial Marks and Single Cell Locations 

To create a system of spatial coordinates, a set of fiducial marks were made on conductive ITO 

slides. Cross marks were made prior to single cell suspension deposition with a diamond pen on 

10–15 locations spread across each slide. Glycerol-stabilized cells or individual islets were 

deposited onto the slides. After overnight incubation in a minimal volume of glycerol-containing 

solution at ambient conditions, the slides were quickly rinsed with 150 mM ammonium acetate, 

pH 10, and dried with a gentle stream of nitrogen gas.54 Cells and fiducial markers were located 

using a Nanozoomer digital slide-scanner system (Hamamatsu, Middlesex, NJ). Silver paint 

applied with a marking pen surrounding the dispersed cells was targeted for autofocusing to 

acquire fluorescent and bright-field images of the suspension area. The images were processed 

and analyzed to determine the relative coordinates of cells, islets, and fiducial markers. 

Single Cell MALDI MS Profiling 

To provide a higher throughput and more reproducible coating than via a typical airbrush, an 

automatic sprayer system was developed using low-cost electric motors and linear actuators to 

coat up to four slides simultaneously (Figure 6.1). Pumping matrix solution through a fused silica 

capillary inserted into a stainless steel tube, similar to prototype desorption electrospray 
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ionization sources, generated the nebulizing spray. The slides were affixed to a rotating plate 

with the nebulizer oscillating radially over them. By rapidly rotating the samples and performing 

numerous oscillating passes, uncertainty in sprayer position was averaged and an even MALDI 

matrix coating was achieved. A solution of 50 mg/mL 2,5-dihydroxybenzoic acid (DHB) in an 

acetone/H2O mixture, 1/1 (v/v) with 0.05% trifluoroacetic acid (TFA), delivered at 0.5 mL/min, 

was used in sample preparation for MALDI MS. For single cell profiling, the nebulizer was 

placed 1 cm above the surface and oscillated over the samples 25 times with a nitrogen gas 

pressure of 50 psi, resulting in a DHB coating of ~0.2 mg/cm2. Intact islets required a thicker, 

dryer coating, with the sprayer operated at a 7 cm distance from the sample with nebulizing gas 

pressure at 100 psi and 100 passes. 

A point-based similarity registration algorithm55 was utilized to align the relative 

coordinates of cells, islets, and fiducial points on the ITO slides with the stage positions of a 

Bruker ultrafleXtreme MALDI-TOF/TOF mass spectrometer (Bruker Daltonics). Scored 

crosshairs, acting as fiducial markers on the slides, were located in the bright-field image and in 

the ultrafleXtreme camera system. Python scripts written in-house were utilized to mark fiducial 

locations and input corresponding stage locations to the registration model (Figure 6.2). 

Implementing a simple threshold and group algorithm, the same software was then used to find 

cells in the fluorescent and bright-field images (Figure 6.3), allowing selective recognition of the 

biological structure by user-defined levels of fluorescence signal intensity, cell size, and cell 

circularity. Pixel positions in the microscopy image were transformed to fractional distances, 

which are required to generate custom geometry files with the registration parameters. In 

addition to saving information on the registration points and cell-finding parameters, the 

software generated a custom geometry file for direct import to the flexControl software (Bruker 
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Daltonics) that operated the MALDI MS automatic acquisition. Spectra were acquired with a 

Bruker ultrafleXtreme MALDI-TOF/TOF mass spectrometer equipped with a frequency tripled 

Nd-YAG solid state laser. The mass scan window was set to m/z 400–6000 and the laser set to 

the “Ultra” footprint setting at an ~100-µm footprint diameter. The Bruker ultrafleXtreme 

AutoXecute feature was utilized with the custom geometry file as previously reported.24 Each 

spectrum represents the summed signals acquired during 1000 laser shots fired at 1000 Hz. From 

the 48 dispersed islets analyzed, approximately 32,000 spots were profiled based on fluorescence 

microscopy identification of the locations of single cells. A 100-µm distance filter removed half 

of the spectra to ensure each profile corresponded to a single cell (Figure 6.4). The dataset was 

then imported into ClinProTools software (Bruker Daltonics) with a 16-fold data reduction to 

perform null spectra exclusion, baseline subtraction, and total ion current normalization. Initial 

examination of the principal component analysis (PCA) loading plots suggested the major 

contributors to sample variance were classical biochemical markers for each cell type (glucagon, 

insulin, somatostatin, and PP). The mass accuracy for peptides observed with MALDI MS are 

listed in Table 6.1. To simplify comparison with previous histological reports, the intensities of 

somatostatin, glucagon, PP, and insulin were exported from ClinProTools for further analysis in 

MATLAB (Mathworks, Natick, MA). After parsing the xml files, empty spectra were excluded 

by removing samples with peptide intensities of less than 3.5 times the median value of each 

peptide. Cell phenotyping was performed by k-means clustering using a cosine distance, and then 

further validated with the same threshold based on the median intensity. To visualize the classes 

on a single plot, the dimension of the data was reduced with PCA as shown in Figure 6.6. The 

cell counts from each cluster were then matched to their corresponding cellular populations, 

shown in Table 6.2. 
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Next, the inter-anatomical differences between pancreatic islet and cellular subtypes were 

evaluated. Mass spectra were classified based on their peptide content and the dorsal and ventral 

islet-derived cells were considered as two separate classes in the ClinProTools analyses. The 50 

most intense signals between m/z 1000–6000 were evaluated for statistically significant 

differences for each of the four cell types. The dataset was tested for univariate normality with 

the Anderson–Darling test, which showed the data not to be normally distributed. Hence, 

statistical tests of differences were performed with the Wilcoxon test applying the Benjamini–

Hochberg procedure for false discovery rate correction, with p < 0.05 considered to be 

statistically significant. 

Improved Precision and Throughput of Microscopy-guided Single Cell MALDI MS  

To facilitate the accurate targeting of small (<10 µm) features located at distances of more than 1 

cm, as well as to enable high throughput MALDI MS profiling, multiple enhancements have 

been made over our previous efforts. After samples were deposited on ITO glass slides, cell 

finding and registration were performed via a custom Python graphical user interface, 

automating many manual steps from the original protocol (see “Details of the Python Script for 

Cell Finding and Generating Custom XEO Geometry Files” section below, Figure 6.3, and 

Chapter 5). The geometric transformation for generating mass spectral spatial coordinates 

developed in our laboratory was replaced with a probabilistic transformation using a point-based 

similarity algorithm. Point-based registration is more robust in preventing fiducial localization 

errors and decreases the target localization error by fourfold. When Gaussian noise, N(µ = 0 µm, 

σ = 100 µm) was added to the fiducial coordinates, simulating fiducial localization uncertainty, 

the target localization error decreased from 164 ± 72 µm to 38 ± 15 µm (Figure 6.2), with the 

similarity transformation compared with the geometric transformation. Fluorescence images of 
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cell suspensions deposited on ITO glass slides were acquired with a histological slide scanner, 

operating in batch mode with automatic image stitching. Finally, a custom MALDI matrix 

application system was designed to generate more consistent matrix coatings compared to 

manual artistic airbrush application (Figure 6.1); four slides can be coated simultaneously in less 

than 10 min.  

MALDI MSI of regions surrounding individual cells suggests that analyte spreading is 

restricted to the first 50 µm, at which point the signal intensity drops to 10% of its peak value 

(Figure 6.4). The analyte spreading metric required a minimum 100 µm cell-to-cell distance to 

obtain single cell MALDI MS profiling data. Overall, we increased the robustness of the small 

cell localization process, and decreased the sample preparation time prior to MALDI MS 

acquisition from >2 h per sample to 45 min per sample. 

MALDI MSI  

MSI was performed on sections of rat pancreas. The tissue was fast frozen after dissection and 

sectioned in 5-µm thick slices without chemical fixation at −25 °C using a Leica CM 3050 S 

cryostat (Leica Microsystems, Bannockburn, IL). Pancreas sections were deposited on ITO-

coated glass slides at room temperature (23–25 °C). Specimens for MSI were spray coated with 

5 mg/mL 2-(4-hydroxyphenylazo) benzoic acid in a methanol/H2O mixture (20/80 v/v) 

containing 0.1% FA and 0.01% TFA with an artist’s airbrush. MSI was performed with an 

utrafleXtreme MALDI-TOF/TOF mass spectrometer operating in reflector mode at positive 

polarity. The laser beam was set to “ultra”, corresponding to an ~100 µm footprint. The mass 

spectra were acquired in 25- or 50-µm-spaced arrays, with some expected oversampling. The MS 

calibration standards were deposited onto slide locations nearby the tissue sections. The peptide 

ions, and in some cases known endogenous ions, such as several of the most common lipids, as 
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well as MALDI matrix ions, were used in the post-processing step for data recalibration. MSI 

data acquisition and processing was performed with flexControl, flexImaging, and ClinProTools 

software (all Bruker Daltonics). 

NanoLC–Fourier Transform (FT)-Ion Cyclotron Resonance (ICR) MS 

Peptide identification was performed via an FT-ICR mass spectrometer (LTQ-FT Ultra, Thermo 

Scientific) coupled with a nanoLC system (Eksigent 1D Plus, Eksigent, Dublin, CA). Peptide 

extract (2 µL) from islets was mixed with 8 µL of loading solvent (5% acetonitrile (ACN), 0.2% 

FA), injected onto a peptide trap column (150 µm inner diameter (i.d.) × 2 cm length, 5 µm 

Magic AQ particles, 100 Å pore size, New Objective, Inc., Woburn, MA ) and desalted with the 

loading solvent. The column was flushed with loading solvent. The trap column was then placed 

in line with the analytical column (PicoFrit column, 75 µm i.d. × 15 cm length, 5 µm Magic AQ 

particles, 100 Å pore size, New Objective). Mixtures of ACN/water with 0.2% FA were used as 

chromatographic solvents A (5/95 v/v) and B (95/5 v/v). The analytes were separated with a flow 

rate of 300 nL/min over a gradient with a solvent A and B mixture as follows: 0–10 min, 0–20% 

solvent B; 10–65 min, 20–55% solvent B. For MS acquisition, the mass scan window was set to 

m/z 300–2000, data-dependent precursor selection was restricted to the top five most intense 

ions, dynamic exclusion was enabled with a repeat count of 2, and an exclusion duration of 180s.  

Peptide Sequencing  

Native Thermo LC–MS data in raw file format were processed with PEAKS 7 (Bioinformatics 

Solutions Inc., ON, Canada) for peptide sequencing. The data were searched against a 

UniprotKB/SwissProt rat database of canonical sequences (June 2015 release, Rattus norvegicus, 

7923 entries). The parent mass error tolerance was set to 50 ppm, the fragment mass error 

tolerance was set to 0.01 Da. Enzymatic digestion was set to “none”. Acetylation (N-term and 
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K), amidation, oxidation (M), Pyro-glu (E and Q), half of a disulfide bridge, and phosphorylation 

were allowed as variable modifications. The filtering conditions used (peptide −10 log P ≥ 15, 

protein −10 log P ≥ 20, proteins unique peptide ≥ 0) resulted in a false discovery rate of 1.5% for 

peptide spectrum matches. 

Bioinformatic Analysis  

Probabilities for processing of dibasic sites in the pancreatic prohormone (PAHO_RAT) were 

calculated using the NeuroPred tool (available online at http://neuroproteomics.scs.illinois.edu), 

with mammalian as the selected model option. 

Ab initio calculations of PP, PP(1–24), and PP(27–36) folding were performed using the PEP-

FOLD tool (available online at http://mobyle.rpbs.univ-paris-diderot.fr), with the sequence for 

full-length PP obtained from Uniprot KB (PAHO_RAT). 

Results and Discussion 

Intra- and Inter-islet Cellular Heterogeneity 

High-throughput single cell MALDI MS profiling was used for phenotyping cells from islets of 

Langerhans to uncover the chemical cellular heterogeneity of islets in anatomically and 

developmentally distinct parts of the pancreas. Isolated from 48 individual islets (6 dorsal and 6 

ventral islets each from a total of 4 animals), cells were deposited on ITO-coated glass slides and 

examined with single cell MALDI MS. Single cell dispersions of individual islets were deposited 

on separated areas of the ITO slides to keep track of the source islet. Acquired mass spectra were 

classified and counted. Each successful measurement revealed the presence of chemically 

distinct hormone profiles in individual cells (Figures 6.5 and 6.6). A number of peptides 

characteristic for islet cell types, including glucagon (α-cells), insulin (β-cells), PP (γ-cells), and 

somatostatin-14 (δ-cells) were observed (Figure 6.5). The cellular composition of individual 
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islets from the same pancreatic lobe were similar. In contrast, significant differences were found 

between cell populations of the islets of the dorsal and ventral pancreas. Our findings show that 

α-cells are more abundant in dorsal pancreas islets and γ-cells are more prevalent in ventral 

pancreas islets (Figure 6.6, Table 6.2, and Figure 6.7). A χ2-test for independence on the 

contingency table showed significant differences between islet cell populations in the two 

regions (nDtot = 1768, nVtot = 1738, p < 0.00001, n = 24 dorsal islets, n = 24 ventral islets). 

Importantly, these findings are in agreement with previously published histological reports 

focused only on major biomarkers due to the use of affinity probes.4-7 Here, our non-targeted and 

multiplex analytical technology generated a dataset to test for differential processing of islet 

prohormones between anatomical regions of the rat pancreas.  

Discovery of Endogenous Pancreatic Prohormone-Originated Peptides and their Different 

Abundances in γ-Cells of Dorsal and Ventral Islets  

A statistically significant increase in pancreatic prohormone-related peptide signal intensities 

was observed in γ-cells from ventral islets when compared to dorsal islets collected from four 

animals (Figures 6.8 and 6.9). These include PP(1–24) +34%, PP(27–36) +32%, PP(1–16) +7%, 

and PP(18–36) +44%. In addition, correlation plots of signal intensities for PP against signal 

intensities for the other peptide products within single γ-cells indicate heterogeneity of the 

chemical content in cells from the ventral lobe, whereas cells from the dorsal lobe appear more 

clustered together (Figure 6.10). Parent ion m/z values of peptides detected with single cell 

MALDI MS were matched to m/z values of pancreatic prohormone peptides identified with LC–

MS sequencing (Tables 6.1 and 6.3). We hypothesize that the peptides are formed by 

endogenous, enzymatic cleavage of the pancreatic prohormone at the dibasic or monobasic sites 

of full-length PP (Figures 6.8 and 6.9). This hypothesis is supported by MALDI mass 
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spectrometry imaging (MSI) of fast-frozen pancreas sections from which we detected molecular 

signals corresponding to the PP(27–36) peptide, concomitant with full-length PP (Figure 6.11), 

adding confidence to the notion that PP(27-36) is synthesized endogenously. Interestingly, the 

relative signal intensity of the pancreatic prohormone C-terminal peptide (aa69–98) was 25% 

higher in cells of the ventral pancreas islets compared to those from the dorsal pancreas. No 

significant differences in the relative intensities of full-length PP were found in the same cellular 

populations. 

Although the internal dibasic site of PP has been recognized as a possible processing 

site,47 the resulting products have only been reported in CA-77 cells transfected with full-length 

pancreatic prohormone,26 and have not been described in previous studies using MS.12-16 

Bioinformatic analysis of the pancreatic prohormone using the NeuroPred tool48 predicts that the 

dibasic RR site in the PP sequence is a potential processing site with a probability of 0.53 ± 0.10 

and a 95% confidence interval (CI). The probability for processing at the C-terminal site 

resulting in full-length PP is 0.91 ± 0.04 (95% CI). This modeling suggests that the prohormone 

convertase processing of full-length PP at its dibasic site may form PP(27–36). 

Molecular modeling using the PEP-FOLD tool49 indicates that PP(1–24) and PP(27–36) 

retain the α-helix secondary structure.40,41,49 Hence, the dibasic cleavage does not disrupt the 

shape of the C-terminus of PP. The region has an exact match to the C-terminal of the TRPRY-

NH2 motif, suggesting that PP(27–36) may possess some affinity to NPY receptors. Other 

fragments of NPY, which exhibit the C-terminal motif TRPRY-NH2, display some bioactivity 

and binding affinity to NPY receptors, albeit more weakly than the full-length peptide.38-45 

Previous studies of N-terminal truncation of PP demonstrated the binding affinity of PP(27–36) 

to be 3 orders of magnitude weaker than PP. In functional assays, the maximum inhibition of 
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cAMP accumulation of PP(27–36) was 50% of the full-length PP with an EC50 of 3.5 µM for 

PP(27–36) compared to 0.09 nM of PP.36,37 This suggests that PP(27–36) acts as a partial agonist 

to the Y4 receptor. The studies discussed above utilized simplified models that cannot be used to 

uncover all of the spatiotemporal activities in which PP(27–36) may participate in vivo. 

We observed that the C-terminal peptide of pancreatic prohormone, as well as PP(1–24), 

PP(27–36), PP(1–18), and PP(20–36), displayed higher signal intensities in ventral islet-derived 

γ-cells. This finding, in conjunction with equal signal intensities of full-length PP, could be 

explained by heterogeneous expression or regulation of prohormone convertases for the 

shortened PP products, whereas the convertases yielding full-length PP remained the same in 

each set of islets. MALDI MSI and LC–MS also detected products of PP at its monobasic site, 

resulting in the formation of PP(1–16) and PP(18–36). Processing of the pancreatic prohormone 

at a single arginyl residue has previously been reported to occur,50 however, the exact processing 

pathway remains unclear. Our findings indicate these peptides are generated endogenously from 

the pancreatic prohormone and display a specific, heterogeneous distribution. Though the 

peptides display weaker binding affinity and less efficacy to G protein-coupled receptors 

compared to full-length PP, these molecules may operate within the feedback mechanism of Y4 

receptors as partial agonists. It has been reported that the pancreatic prohormone is less amenable 

to processing with prohormone convertases than other NPY-family peptides.26 Although less 

common, prohormone processing may be tissue-specific, such that the final peptide products 

vary between anatomical regions, in agreement with our findings.26-35 

Other Neuropeptides in Islets of Langerhans  

WE-14 peptide (m/z 1677.8) from the chromogranin A prohormone was detected with LC–

tandem MS analysis of extracts of homogenized islets of Langerhans (Table 6.3); however, due 
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to homogenization, its cellular origin was uncertain. Further leveraging detection of rare 

phenotypes, single cell MALDI MS analysis of cellular populations obtained by islet dissociation 

revealed that WE-14 is selectively localized to δ-cells. WE-14 was accounted for among the top 

50 most-intense analyte signals in δ-cells, but in no other cell types. Furthermore, WE-14 had a 

similar abundance between dorsal- and ventral-derived islet cells (2.50 ± 0.64, nDδ = 16; 3.2 ± 

2.7, nVδ = 15; p = 0.94, n.s.). Rat islets of Langerhans have a complex spherical microarchitecture 

consisting of a core occupied by β-cells, with the other secretory cell types lining the periphery 

of the islet.6 A previous peptidomic study using MS revealed the presence of WE-14 in analyte 

extracts of homogenized islets of Langerhans,15 and an immunohistochemical study localized 

WE-14 to the outer edge of rat islets of Langerhans where δ-cells are located.25 The results 

presented here are in good agreement with these previous findings but provide additional 

important details, including the localization of WE-14 in δ-cells within the islets of Langerhans. 

By isolating the rare δ-cells from the thousands of neighboring endocrine cells, their peptidome 

could be selectively investigated. Other neuropeptides were also detected in analyte extracts 

from islets of Langerhans using LC–MS, including aa513–532 (N- and C-terminal dibasic site 

processing) from the secretogranin-1 prohormone, and secretoneurin from the secretogranin-2 

prohormone (Table 6.3). These peptides were not observed in our single cell data obtained with 

MALDI MS, which may reflect differences in analyte extraction due to sample preparation, 

ionization efficiency, and/or their lower abundance.  

Conclusions 

Determining the mechanisms involved in modulating the synthesis and processing of 

endogenous peptides, and regulation mediated through ligand–receptor interactions, is integral to 

understanding normal physiology as well as diseased states. From pancreatic islets, we have 
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detected cell type-specific expression of known peptide hormones displaying anatomical 

heterogeneity. Peptides resulting from the processing of PP were detected endogenously and 

found to be enriched in γ-cells from ventral islets. Furthermore, we located the neuropeptide 

WE-14 with high abundance in δ-cells. The physiological roles and mechanisms of action of 

both PP and WE-14 are less understood compared to many other peptide hormones such as 

insulin. The detection of such molecules and determination of their specific localization are 

initial steps towards determining signaling mechanisms and physiological effects. A more 

complete understanding of pancreatic cell-to-cell signaling hormones may help reveal the 

mechanisms of metabolic diseases, in particular, the development of type 2 diabetes mellitus — a 

disease affecting a growing number of individuals worldwide.  

MALDI MS of individual islet cells allowed detection and colocalization of previously 

unreported peptides with well-studied pancreatic hormones. The non-targeted, single cell 

MALDI MS profiling facilitated measurements of the peptide content of rare cells (γ-cells in 

dorsal islets) and tests for significant differences in abundance for the same cell type derived 

from a more abundant source of cells (γ-cells in ventral islets). The method is label-free and 

capable of detecting hundreds of compounds in thousands of cells within an hour, enabling 

experiments that would not be feasible with traditional flow cytometry. Moreover, the sampling 

procedure for comparative analysis of endocrine cells is suitable for many other types of 

peptidergic system studies. Examples include investigating temporal changes of tissue 

microarchitecture and pathological or drug-induced changes in peptide production.  
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Figure 6.10. MALDI MS signal intensity of PP plotted against the signal intensities of PP(1–24), 
PP(27–36), PP(1–16), PP(18–36), and the C-terminal peptide from the pancreatic prohormone 
within single γ-cells (nDγ = 79 cells, nVγ = 418 cells) from ventral and dorsal islets are compared. 
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Table 6.1. Canonical and processed PP-peptides from islets of Langerhans detected with 

MALDI MS.  

Peptide PTM 
Elemental 
composition* 

Monoisotopic 
mass* (Da) 

Observed 
mass (Da) 

Mass error 
(ppm) 

Insulin 1 (a+b chain) 
3 internal 
disulfides C259H388N65O75S6 5800.687 5799.906 134.6 

Insulin 2 (a+b chain) 
3 internal 
disulfides C256H383N64O76S7 5793.612 5792.84 133.3 

Glucagon C153H226N43O49S 3481.624 3481.472 43.66 

Somatostatin-14 
1 internal 
disulfide  C76H105N18O19S2 1637.724 1637.704 12.21 

PP 
C-terminal 
amidation C195H299N58O57S 4397.2 4397.172 6.368 

PP C-peptide 
1 internal 
disulfide C128H216N37O42S3 3037.491 3037.415 25.02 

PP(27-36) 
C-terminal 
amidation C59H95N18O15 1295.722 1295.71 9.261 

PP(1-24) C124H183N32O41S 2808.294 2808.231 22.43 

PP(1-16) C81H116N19O27S 1818.801 1818.76 22.54 

PP(18-36) 
C-terminal 
amidation C108H174N35O30 2441.317 2441.257 24.58 

*Masses are given as [M+H]+ 
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Table 6.2. Population fractions of cell types for dorsal (n = 24) and ventral (n = 24) rat 
pancreatic islets of Langerhans measured with MALDI MS analysis of single cell populations. 

 Cell type Dorsal Ventral 

α 0.43 0.081 

β 0.51 0.67 
γ 0.045 0.24 
δ 0.0090 0.0086 
ncells 1768 1738 
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CHAPTER 7 

SINGLE CELL PROFILING USING IONIC LIQUID MATRIX-ENHANCED SECONDARY ION  
MASS SPECTROMETRY FOR NEURONAL CELL TYPE DIFFERENTIATION 
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Introduction 

Single cell heterogeneity appears in seemingly homogeneous cell populations, even when 

derived from identical genetic blueprints. Adjacent cells within tissues have distinct identities 

and chemical contents; probing these differences aids in our understanding of the interplay 

between chemistry, cell activity, and function in complex tissues. As a single cell divides and 

differentiates into distinct subpopulations or into a malignant tumor, fluctuations in chemical 

composition and changes in cellular state manifest as diverging cell lineages, confounded with 

decisions related to cell fate from environmental cues.1 Cell populations appear only as 

homogeneous as our ability to detect differences in their chemical composition. Newly 
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developed techniques measure heterogeneity in genetic materials, proteins, peptides, lipids, and 

metabolites.2-11 Recent successes in single cell studies help address confounding questions in cell 

biology and shape the next generation of drug discovery and development efforts.1,12 Even so, 

there remains a need for single cell techniques that are capable of simultaneously detecting many 

classes of biological molecules in populations of cells.13 The search for rare cells, which for 

decades was akin to finding a needle in a haystack, has become tractable with the emergence of 

high-throughput and sensitive measurement techniques.  

Typical mammalian cells contain a few picoliters of volume, with analyte concentrations 

ranging from picomolar to millimolar. Thus, a successful single cell analytical technique should 

provide a low absolute detection limit, a high dynamic range, and multiplexed coverage of 

analyte classes.5 Mass spectrometry (MS) has become a versatile and robust method for 

performing volume-limited biological measurements. Mass spectrometry imaging (MSI) is at the 

forefront of MS-based, label-free platforms for analyzing single cells,6,14-18 demonstrating 

cellular and subcellular spatial resolution19-21 and untargeted detection of biological molecules.5,8 

If cellular analytes are efficiently desorbed and ionized, the gas phase ions can be further 

interrogated with hybrid MS instrumentation for structural fragmentation,22,23 ion sizes and 

shapes,23-26 secondary structures,27,28 and thermodynamic properties.29,30  

Secondary ion mass spectrometry (SIMS) and matrix-assisted laser desorption/ionization 

(MALDI) are two common MS ionization microprobes that are suitable for spatially-resolved 

surface analysis of single cells.31-34 MALDI uses focused laser light to desorb and ionize sample 

analytes incorporated into a suitable matrix. In contrast, SIMS utilizes a beam of accelerated 

primary ions or larger clusters that bombards the sample surface to sputter and generate 
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secondary ions in the gas phase for mass-to-charge (m/z) analysis. Since the primary ion beam 

can be tightly focused, SIMS can achieve subcellular spatial resolution.31 

Previous SIMS imaging investigations have established sample preparation methods that 

improve the limits of detection and molecular coverage of biological samples, including metal 

assisted35-37 and ionic liquid (IL) matrix-enhanced SIMS.38-40 Many IL mixtures have unique 

physical and chemical properties that can be optimized for SIMS- and MALDI-based 

detection.40,41 

Recently, we demonstrated the capability of a high-throughput, microscopy-guided 

MALDI MS profiling method to classify dissociated rat pituitary cells, including rare cells, as 

well as elucidate the cellular heterogeneity of rat islets of Langerhans.32,33 The approach 

circumvents the need for MS raster imaging42,43 of a large region of interest, which is time 

consuming and often splits cell signals over multiple pixels. However, most single cell SIMS 

studies also utilize raster imaging22,34,35,44-50 to fully leverage the subcellular spatial resolution of 

the method and localize analytes within single cells, albeit at low throughput and reduced 

sensitivity.  

Establishing optically-guided single cell SIMS profiling should facilitate lipidomics and 

metabolomics studies on large populations of cells. Here we report a combination of matrix-

enhanced SIMS (ME-SIMS) and multivariate statistical analysis to profile single cells from the 

Aplysia californica central nervous system, the rat dorsal root ganglion (DRG), and the rat 

cerebellum. These neuronal cell types were chosen because they represent well-characterized 

large (>75 µm in diameter), medium (10–50 µm), and small (5–10 µm) cells, respectively. The 

A. californica samples included large neurons with well-studied metabolite and lipid 

contents,22,35,42,46,49 and are therefore suitable for our method validation experiments. The DRG 
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contains the cell bodies of sensory neurons actively participating in neuropathic pain.51 DRGs are 

traditionally classified based their on size,52 electrophysiological properties,53 and peptide 

content.54 Cellular heterogeneity within the DRG was previously shown to affect opioid peptide 

sensitivity55 and produce differential responses to neuropathic pain.56 The cerebellar cells are 

critical to cognitive function and motor control,57 and were chosen as small cell targets for this 

study.  

Here we performed ME-SIMS utilizing three different IL matrixes to determine their 

ability to enhance the sputtering/ionization efficiency and chemical signals for single cell SIMS 

profiling. In addition, ME-SIMS tandem MS was performed to identify and characterize 

metabolites, including lipids, from single cells. Data sets acquired from populations of DRG and 

cerebellar cells were classified by t-distributed stochastic neighbor embedding (t-SNE). Each 

cellular population was further sub-divided by the same method, revealing their heterogeneity 

based on lipid content. 

Methods 

Chemicals 

All chemicals were purchased from Sigma Aldrich (St. Louis, MO) and used without further 

purification. 

Matrix Preparation 

Three IL matrix solutions were evaluated. The first, MI-CHCA, was prepared by dissolving 250 

mg of α-cyano-4-hydroxycinnamic acid (CHCA; > 98% purity) in 10 mL LC-grade methanol, 

followed by an addition of 105 µL of 1-methylimidazole (MI; Reagent Plus, 99%), with 10 mL 

of LC-grade acetonitrile added to the total volume of 20 mL. The second, TRIP-CHCA, was 

similarly prepared using 252 µL of tripropylamine (TRIP; > 98% purity). The third, Mix-CHCA, 
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was prepared by mixing equal volumes of the MI-CHCA and TRIP-CHCA solutions. DHB 

matrix was prepared by dissolving DHB (99% purity) to 50 mg/mL in 1:1 (v/v) LC-grade 

ethanol:water and 0.1% trifluoroacetic acid solvent.   

Sample Preparation 

Aplysia californica. Two Aplysia californica (100–250 g body weight ) were purchased from the 

National Resource for Aplysia (Rosenstiel School of Marine and Atmospheric Science 

University of Miami, FL). The mollusks were kept in aerated, circulated, filtered and chilled to 

20 °C sea water prepared from Instant Ocean Sea Salt (Instant Ocean, Aquarium Systems Inc., 

Mentor, OH) dissolved in purified water. Animals were anesthetized by injection of isotonic 

MgCl2 (~30% to 50% of body weight) into the body cavity. Central nervous system ganglia were 

dissected and placed in artificial sea water (ASW) containing 460 mM NaCl, 10 mM KCl, 10 

mM CaCl2, 22 mM MgCl2, 26 mM MgSO4 and 10 mM HEPES in Milli-Q water (Millipore, 

Billerica, MA), with the pH adjusted to 7.8 using 1 M NaOH in Milli-Q water. Ganglia were 

treated with enzyme solution consisting of 1% (wt/vol) protease type IX (Sigma Aldrich, St. 

Louis, MO) in ASW supplemented with 100 units/mL penicillin G, 100 µg/mL streptomycin, 

and 100 µg/mL gentamicin for 45 min at 34.4 °C. The connective tissue surrounding neurons and 

neuropil was surgically removed and multiple individual neurons mechanically isolated. Cells 

were deposited on indium-titanium oxide (ITO)-coated glass slides, 70–100 ohms, 25 × 75 × 1.1 

mm (Delta Technologies, Loveland, CO), which were washed with Milli-Q water and ethanol 

before use. ITO-coated glass slides were placed in ASW and cells were allowed to adhere for 30 

min. Next, ASW was replaced with a 33% glycerol 67% ASW (v/v) solution that was decanted 

after a 5 min incubation. Cells were left to dry overnight. 
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Rattus norvegicus. Seven 2.5–3 month old male Sprague-Dawley outbred rats (Rattus 

norvegicus) (www.envigo.com) were housed on a 12-h light cycle and fed ad libitum. Animal 

euthanasia was performed in accordance with the appropriate institutional animal care guidelines 

(the Illinois Institutional Animal Care and Use Committee), and in full compliance with federal 

guidelines for the humane care and treatment of animals. The studies were planned in accordance 

with the ARRIVE guidelines.58 

Rats were killed by quick decapitation using a sharp guillotine. Rat trunks were placed on 

ice, where all surgical procedures were performed. Dorsal root ganglia (DRG) were surgically 

isolated during the ~10-min dissection procedure and placed into ~5 mL of cold Modified Gey’s 

balanced salt solution (mGBSS) containing 1.5 mM CaCl2, 4.9 mM KCl, 0.2 mM KH2PO4, 11 

mM MgCl2, 0.3 mM MgSO4, 138 mM NaCl, 27.7 mM NaHCO3, 0.8 mM NaH2PO4, and 25 mM 

HEPES dissolved in Milli-Q water, with the pH adjusted to 7.2 using 1 M NaOH in Milli-Q 

water.  

To remove the surrounding connective tissue and isolate individual neurons, the DRG 

were incubated in 2.5% collagenase in oxygenated mGBSS for 25 min. All steps in the protocol 

were carried out at 37 °C, and oxygenated mGBSS was used in all cases. The DRG were then 

washed with 1% bovine serum albumin (BSA) in mGBSS for 7 min. The BSA solution was 

replaced with mGBSS and the DRG were incubated for an additional 20 min. Next, the DRG 

were treated with 0.65% trypsin in mGBSS for 20 min, followed by a 1% BSA solution wash for 

7 min. The BSA solution was replaced with mGBSS containing Hoechst 33342 nuclear stain 

(Thermo Fisher Scientific, Waltham, MA) (1 mg/mL Hoechst 33342 stock solution, stored at 14 

°C, diluted 1:500 in mGBSS) in which the DRG were incubated for 10 min. The Hoechst nuclear 

stain solution was then replaced with mGBSS and the DRG were mechanically dissociated by 
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trituration. Cells were stabilized using a 40% glycerol, 60% mGBSS (v/v) mixture and after 5–10 

min, plated on ITO-coated glass slides. The samples were then stored in the dark overnight to 

allow the cells to adhere onto the glass surface. On the next day, excess glycerol-containing 

media was removed from the preparations. At this stage, the cells were either subjected to 

immediate SIMS or MALDI analysis, or left to adhere to the ITO-coated glass surface in a 

nitrogen-purged dry box for 24 h before the MS measurements. Before analysis, the sample 

slides were rinsed with 2 mL of 150 mM ammonium acetate buffer (pH 10). This step helped 

remove the excess glycerol and did not induce observable damage to the cells.32,33,59 

Instrumentation 

The single cell profiling experiments were performed on two instruments. The first, a customized 

hybrid MALDI/C60-SIMS Q-TOF mass spectrometer, described in detail elsewhere,46 was 

operated in positive ion mode for all SIMS measurements. Negative ion mode on the custom 

instrument did not provide sufficient ion current during single cell experiments. The 40-μm 

diameter, 20 kV C60
+ ion beam (Ionoptika, Ltd., Hampshire, UK) was operated in continuous 

mode with 500 pA sample current to yield an ion dose of 2.5 × 1014 ions/cm2. Positive secondary 

ions were collected from m/z 60–850 using a Q1 bias of 5%, 5%, 20%, 35% and 35% at m/z 100, 

180, 300, 500 and 700, respectively. The signal accumulation time was set to 2 s. The time-bins-

to-sum was set to 10. Tandem MS spectra were collected in product-ion mode with the argon 

collision gas and collision-induced dissociation energy set at 35 eV. The C60-SIMS instrument 

required minor hardware modifications to utilize the previously-reported cell finding 

software32,33 for single cell measurements. 

Several modifications were made to the cell coordinate registration protocol and 

hardware of the previously-reported C60 SIMS instrument.46 For the registration protocol, three 
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types of coordinate systems were utilized to interface with the instrument and optical images. 

The first system was in pixel coordinates in the microscopy image such that each dispersed cell 

had a unique (X, Y) pixel location. The second coordinate system was the stepper motor location 

(Xmotor, Ymotor) of the instrument x,y-translation stage. When the ITO-coated glass slide was 

loaded into the instrument stage, the fiducial markers were used to calculate the transformation 

from (X, Y) to (Xmotor, Ymotor) for each cell. These steps were identical to the previously reported 

coordinate registration protocol.32,33 Unfortunately, the oMALDI Server software (AB Sciex, 

Framingham, MA) does not accept motor coordinates as direct inputs. The “Search Pattern” 

feature directed the stage to dwell at a series of points relative to a pre-set origin dictated by a 

separate coordinate system, which we refer to as the “Pattern” (PTN) coordinate system. One 

PTN unit is equivalent to 0.5 mm. The origin was set at the point Xmotor, Ymotor = (8,000, 17,600) 

which was equal to XPTN, YPTN = (5, 5) in the PTN coordinate system. Through two coordinate 

transformations, each cell from the optical image was mapped to a PTN coordinate readable by 

oMALDI Server. Cells were then analyzed with the 20kV C60
+ ion beam as the stage traveled 

through the locations in the "Search Pattern" inputs. 

An Arduino Atmega 2560 board (https://www.arduino.cc/) was programmed by the 

Arduino Software, v1.6.9, to do the described tasks (Figure 7.1A). Since each stepper motor was 

tracked by a linear encoder, its signals from the quadrature channels A/B were tapped out and 

connected to two interrupt pins on the Arduino board, which provide fast response times. A 4x 

decoding method was used to determine when the stage was moving (i.e., changes in signals of 

either encoder) and when the stage stopped (i.e., no changes in both encoders). As the data 

acquisition on the mass spectrometer was initiated by Analyst (AB Sciex), a 5 V signal from the 

mass spectrometer control board was received by interrupt pin 19 on the Arduino board to 



 

184 
 

activate stage monitoring and synchronize the start times of the stage and mass spectrometer. 

When the stage stopped at a cell, the Arduino board would delay for 3 s and then send a 5 V 

signal through pin 13 to a relay controlling the C60
+ beam, initiating desorption for 1 s (see 

Figure 7.1B). Longer beam “On” times cause damage on the sample surface and generate more 

chemical noise. The beam “Off” delays ensured no contamination occurred between cells of 

interest and surrounding neighbors. Data from the Arduino, including clock time, elapsed time, 

encoder position and ion beam status, were recorded with the PLX-DAQ add-on for Excel 2010 

(https://www.parallax.com/downloads/plx-daq). 

Single cell SIMS profiling was accomplished by registering the x,y translation stage of 

the oMALDI server (AB Sciex, Framingham, MA) with whole-slide, bright-field, and 

fluorescence images. Cells deposited onto indium-titanium oxide (ITO)-coated glass slides were 

placed into a custom sample holder that can accommodate slides as large as 40 × 25 mm2 (about 

one-half of a standard microscope slide). Several mechanically-etched fiducial markers 

facilitated point-based similarity registration to map cell locations back to their stage 

coordinates. Because of the limitations with the SIMS instrument control, mass spectral data 

were continuously acquired as the stage moved. Because the sample stage repeatedly travels and 

stops at cell locations, it is critical to synchronize its movements with the primary C60
+ ion beam 

activity and record when a cell is reached. The ion beam should only be “On” when the cell 

location is reached, and "Off" during sample stage movement, to ensure that only targeted cells 

are bombarded with primary ions. The dwell time of the translation stage was set to 6 s per cell. 

For each cell, the C60
+ ion beam was signaled to turn on for 1 s after a 3 s delay. The 1 s 

sputtering time was found to be optimal, as shorter times yielded inadequate signals whereas 

longer beam exposure caused IL matrix depletion and complication of the mass spectra with 
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additional background ion signals. The acquisition rate on the mass spectrometer was set to 2 s to 

improve the likelihood that the entire analyte sputtering event was captured in a single scan. In 

~20% of scans, the analyte sputtering event was split between two acquisition windows, 

resulting in a separation of low mass and high mass ions between two mass spectra (see Figure 

7.1C).  

The second instrument used was a Bruker ultrafleXtreme MALDI TOF/TOF mass 

spectrometer with a frequency tripled Nd:YAG solid state laser. Single cell MALDI MS analysis 

was performed as previously reported.32,33 The molecular mass scan window was set to m/z 

400−8000 and the laser was operated in the “Ultra” mode, producing a ∼100-μm diameter 

footprint. The ultrafleXtreme AutoXecute feature (Bruker Daltonics, Billerica, MA) was utilized 

with the custom geometry file as previously reported.33 Each spectrum represents the summed 

signals acquired during 1,000 laser shots fired at 1 kHz. 

Optical Imaging and Determination of Pixel Coordinates for Individual Cells 

Each dispersed cell population on an ITO-coated glass slide was imaged using an Axio Imager 

M2 (Carl Zeiss, Oberkochen, Germany) in fluorescence and bright-field modes. An X-CITE 120 

mercury lamp (Lumen Dynamics, Mississauga, Canada) and a 31000v2 DAPI filter set (Chroma 

Technology, Irvine, CA) were employed for fluorescence imaging. Because the ITO glass slides 

are transparent and conductive, they are compatible for both MALDI-MS and SIMS single cell 

profiling experiments. A 10× objective was used to obtain a mosaic image of the targeted surface 

with 13% overlap between neighboring images. Images were taken using an AxioCam 503 Mono 

camera (Carl Zeiss) with a resolution of 1936 × 1460 pixels. All mosaic optical images were 

stitched with a minimum overlap of 5% and maximum shift of 10%. The stitched image was 

loaded into microMS32 for either manual or automatic cell finding. The fiducial marks were used 
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to register the image coordinates to the x,y translation stage coordinate of the mass 

spectrometers. On the basis of the registration, the cell coordinates were saved in either a pattern 

coordinate file-format readable by the oMALDI server for SIMS experiments or a custom 

geometry file for the MALDI-MS FlexControl software for mass spectral acquisition. 

Matrix Application 

ITO-coated glass slides were affixed onto a rotating plate for automatic matrix application, as 

described elsewhere.32 Spraying conditions were optimized for each MS system. The distance 

between the spray tip and the rotating plate was 5 cm for SIMS and 2 cm for MALDI MS, with a 

nitrogen gas pressure of 50 psi. The solution flow rate was set to 30 mL/h for SIMS and 10 mL/h 

for MALDI MS, resulting in a matrix coating of 6 mg/cm2 and 15 mg/cm2, respectively. DHB 

matrix was also employed for MALDI MS for comparison with the IL matrixes. The same 

spraying conditions were used for DHB as in IL MALDI-MS. 

Multivariate Statistical Analysis 

Data analysis was performed with custom scripts written in MATLAB (R2015b). MALDI MS 

data were read directly with the readbrukermaldi function (https://github.com/AlexHenderson/ 

readbrukermaldi), resampled to 10,000 m/z values in the range m/z 500–1000, background 

corrected, smoothed, and normalized by standardizing the area under each spectrum to the 

median of the data set. SIMS data was first converted from the native wiff format into mzXML 

with msconvert60 for import into MATLAB. The cell coordinates, diameters, and the 

corresponding log file from the instrument microcontroller were also utilized to parse continuous 

SIMS acquisition files. As the Arduino monitors when an acquisition begins, the start time for 

mass spectral acquisition and stage movement were synchronized. In MATLAB, the x,y 

translational stage stop events were recorded and used to delineate mass spectra corresponding to 
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target cell positions. Stage dwell events shorter than 3 s or longer than 7 s were discarded as 

noise in the stage or encoders. As the ion beam is only “On” for 1 s within the 6 s dwell time, the 

spectrum with the highest intensity phosphocholine head group (m/z 184.07) and PC(34:1) (m/z 

760.56) signal was selected as the single cell spectrum. Dwell events of single cell signals that 

occurred in two adjacent acquisition windows were discarded as “split cells”. Finally, all mass 

spectra acquired from DRG and cerebellar cells were filtered for an intensity of the m/z 184.07 

signal greater than 250 counts. 

Statistical significance was established with a Wilcoxon rank sum test as intensity 

distributions were non-normal by a Kolmogrov-Smirnov test. Initial mass spectral data 

visualization was performed with principal component analysis (PCA) to evaluate the effects of 

different ionic liquid formulations. Unsupervised cell classification for DRG and cerebellum 

samples was performed with t-SNE61 to reduce and group the data in two dimensions, followed 

by k-means clustering with a Euclidean distance metric. The number of clusters was determined 

by the mean silhouette value as a function of k. 

For PCA, each cell spectrum was considered as an independent sample with the different 

m/z channels as the measured variables. The intensities of each m/z value for each cell produced 

a two dimensional matrix which was decomposed to score and loading values with the built-in 

pca function in MALTAB. Principal component (PC) scores for 1 and 2 were displayed on a 

scatter plot to assess data grouping based on ionic liquid formulation. The loading plot of PC1 

was also displayed to determine the cause of data spread in PC1 axis. In this plot, negative 

loading for a specific m/z indicates the specie is present in high abundance in cells found in the 

negative PC1 range and similar for positive values. Based on this interpretation and the 

assistance of average spectra, it was determined negative PC scores correspond largely to cells 
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with high chemical noise while positive values contained biologically relevant lipid and 

phosphocholine signals. 

Results and Discussion 

IL Matrix Enables Detection of Lipids in Single Cell SIMS Profiling Experiments 

SIMS ionization allows the characterization of small molecules with high spatial resolution. 

Although SIMS does not require a matrix,31 analysis of small-volume samples and low-

concentration analytes can benefit from such treatments.36,38,39,62 A. californica pedal ganglia 

neurons (~75 µm or larger in diameter) were used to validate cell targeting and examine the 

effects of the IL-matrix coating. Several room temperature ILs have been reported to enhance 

lipid, cholesterol, and peptide signals in SIMS measurements.38-40 The enhancements are 

somewhat predictable, as ILs used in ME-SIMS are typically mixtures of an organic base and a 

traditional MALDI matrix, such as CHCA, acting as an acid.  

Unlike ME-SIMS with a traditional MALDI matrix, the components of ILs are positively 

and negatively charged species that favorably assist proton transfer to, or capture from, analytes 

while preventing matrix crystallization. A total of 47 pedal neurons from two A. californica were 

examined with SIMS, producing one mass spectrum per cell. The averaged mass spectrum 

acquired with native conditions is shown in the left two panels of Figure 7.2A. The same sample 

was then coated with the MI-CHCA matrix and the same 47 cells were profiled to assess the 

effect of the IL matrix in SIMS analysis. The averaged mass spectrum acquired with the MI-

CHCA coating is shown on the right side of Figure 7.2A. In both cases, the characteristic signals 

from α-tocopherol were detected at m/z 430.35 for the intact molecular ion as well as m/z 165.05 

and m/z 205 for the fragments.22,35,49 However, many lipids were detected in the m/z 600–850 

mass range exclusively in the presence of MI-CHCA. Although the relative intensity of vitamin 
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E (m/z 430.35) was not significantly different after IL application (p = 0.73), the relative 

intensity of the phosphocholine head group (m/z 184.07) increased significantly, by two-fold (p 

<0.005) (Figure 7.2B). Finally, signals corresponding to fragments, sodiated and potassiated 

adducts of known glycerophospholipids (m/z 709.5, m/z 782.5, and m/z 808.6), and 

diacylglycerophosphocholines (m/z 746.5 and m/z 768.5) increased significantly (Figure 7.3), 

consistent with previously published SIMS imaging data.49 Profiling of metabolites in the A. 

californica neurons demonstrates the utility of an IL matrix for SIMS analysis of individual cells.  

IL Matrix Optimization for SIMS Analysis of DRGs 

While the profiling of pedal ganglion neurons demonstrates the capabilities of MI-CHCA for 

SIMS single cell lipid detection, other matrix compositions were investigated to improve the 

figures of merit. 

Matrix Composition 

A matrix capable of proton transfer will likely assist in the ionization of lipid compounds during 

SIMS ionization.38 Furthermore, for single cell profiling experiments it is imperative that the 

matrix uniformly covers the sample. Uniform coverage partially depends on interactions between 

the IL and substrate surface. Micrographs of an ITO-coated glass slide spray-coated with the MI-

CHCA matrix (Figure 7.4A) show the matrix deposition non-uniformity when MI-CHCA 

solution was sprayed coated on a clean ITO glass slide. Similar to many imidazolium-based ILs, 

the high surface tension of MI-CHCA may lead to generation of non-uniform “puddles” on the 

surface.41 Poor matrix coverage introduces experimental cell-to-cell variability and redistributes 

analytes and background contaminants from uncoated regions of the substrate. Therefore, while 

MI-CHCA is a suitable matrix for general-purpose SIMS analyses, single cell SIMS 

measurements require improvements in matrix properties. Advantages of using IL matrixes 
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include the flexibility to tailor their physical properties by modifying IL components, or by 

utilizing different matrix mixtures. 

Previous studies on IL structures suggest that increasing the alkyl chain lengths produces 

ILs with lower surface tensions, leading to more uniform sample coverage.41 As such, the TRIP-

CHCA matrix was considered, as well as an equal-volume mixture of MI-CHCA and TRIP-

CHCA, referred to here as Mix-CHCA. Both TRIP-CHCA and Mix-CHCA showed more 

uniform sample coverage with the same coating conditions (see Figure 7.4A). Although previous 

reports demonstrated that MI-CHCA provides higher signal enhancement for SIMS than TRIP-

CHCA,38,39 the uniformity of the matrix coating was not considered in those studies; rather, the 

matrix and analyte solutions were mixed and spotted on the substrate.38,39  

The three IL matrixes—MI-CHCA, TRIP-CHCA, Mix-CHCA—were evaluated for lipid 

analysis of rat DRG cells. The DRG contains a variety of physiologically important lipids, 

making it a viable model for method development in the study of biologically significant lipid 

contents.63,64 Lipids have been shown to influence the activities of DRG neurons, and changes in 

lipid metabolism have been implicated in chronic neuropathic and inflammatory pain.64-67 For 

these comparisons between IL matrixes, glycerol-stabilized DRG cell samples were washed with 

ammonium acetate buffer and stored in a nitrogen-purged dry box for 24 h before IL matrix 

application and MS analysis.  

The observed lipid profiles obtained from the same animal using the three different IL 

matrixes, and using Mix-CHCA across different animals, were compared. At least 300 DRG 

cells in each sample were profiled in each set of measurements. To prevent measurement bias 

from inadequate lipid signals occurring due to: (a) systematic errors in cell coordinate 

registration; (b) random motor slop; (c) IL matrix application quality; or (d) inadequate 
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ionization enhancement provided by the investigated matrix,38,39 single cell spectra with an m/z 

184.07 (phosphocholine head group) signal intensity of less than 250 counts were removed from 

subsequent analyses. The fraction of removed cells provides a measure of matrix quality, 

assuming systematic errors did not vary significantly among different batches. As shown in 

Figure 7.4B, TRIP-CHCA had the highest fraction of removed mass spectra, likely reflecting 

lower repeatability of analyte extraction or matrix enhancement with this IL matrix. The fraction 

of removed single cell mass spectra using Mix-CHCA was lower than even MI-CHCA when 

comparing samples from the same animal. 

Figure 7.5A shows the principal component analysis (PCA) score and loading plots of the 

filtered data sets. The data acquired using the three IL matrixes are well separated (no overlap of 

the 95% confidence ellipses), whereas the three data sets obtained using three animals and Mix-

CHCA overlap significantly. The score plots suggest that the matrix-related differences in data 

sets are larger than day-to-day and animal-to-animal variability. Mass spectra of individual cells 

investigated with MI-CHCA and characterized by negative PC1 scores generally had lower lipid 

signals and strong chemical noise in the m/z 200–400 range, as shown by the averaged mass 

spectra and the loading plot of PC1 (Figure 7.5A). The use of Mix-CHCA improved the number 

of cells with abundant lipid signals while reducing chemical noise. The relative signal intensities 

and number of analytes observed with Mix-CHCA are comparable to that of MI-CHCA, and 

better than TRIP-CHCA (see Figure 7.5B), suggesting that the presence of TRIP in the mixture 

does not adversely affect lipid signal intensities. Taking into account the uniform sample 

coverage and matrix enhancement, Mix-CHCA was chosen for further single-cell profiling with 

ME-SIMS. 
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Sample Preparation 

Previous single cell studies suggested that cells analyzed shortly after isolation and sample 

preparation produce higher analyte signal intensities than those with prolonged storage, as 

sample degradation significantly reduces endogenous analyte concentrations.35 In agreement 

with these findings, Figure 7.6 shows that sample storage profoundly impaired data quality. DRG 

cell samples prepared and analyzed on the same day produced lipid signals three-fold more 

intense than signals acquired from similar samples that were stored for one day in a dry nitrogen 

atmosphere prior to IL matrix application. The improved sensitivity allows the detection of many 

minor lipid species. Most lipids detected in the m/z 600–850 range are phosphatidylcholines 

(PCs), as confirmed by tandem MS (Figure 7.7 and Table 7.1). A number of the observed PCs 

exhibit alkyl chains possessing between 30 and 36 carbons. The alkyl chains have at least two 

unsaturated forms as well as the fully saturated form (inset in Figure 7.6B). The improved 

sensitivity from analysis of fresh biological samples is in agreement with prior MALDI-MSI data 

from rat brain tissue.68  

ME-SIMS Single Cell Profiling Provides Complementary Data to MALDI MS 

From individual DRG cells, PC(34:1) at m/z 760.56 and PC(32:0) at m/z 734.54 displayed the 

highest relative intensity, with m/z 760.56 as the base peak with SIMS. To verify that the single 

cell SIMS measurements produce semi-quantitative information on endogenous lipid levels 

similar to MALDI MS, DRG cell profiling was also conducted with the Bruker ultrafleXtreme 

MALDI TOF/TOF mass spectrometer. A comparative analysis of freshly prepared samples 

coated with either DHB or MI-CHCA matrix was conducted. The Mix-CHCA matrix performed 

poorly for MALDI MS (lower total ion counts with a strong bias toward low-mass matrix peaks; 

data not shown) although the lipid distributions obtained with Mix-CHCA are consistent with 



 

193 
 

those obtained with MI-CHCA and DHB (see Figure 7.8 and Figure 7.9). The analyte signal 

profiles in the averaged mass spectra in the m/z 500–850 region agree qualitatively. 

Quantitatively, the m/z 760.56 peak was typically the base peak in either analysis but the relative 

intensity of m/z 734.54 increased in the ME-SIMS experiments. Whereas SIMS investigates only 

the top few molecular layers of a sample, the inherent analyte extraction from sample volumes 

that occurs during MALDI matrix application leads to acquisition of mass spectra representative 

of the whole-cell content. Therefore, SIMS mass spectra likely possess signals more specific for 

the surface of cell membranes, producing the observed difference in lipid intensity ratios 

between the two approaches (Figure 7.9B). However, since the relative abundance of the two PC 

lipids is not significantly different between MALDI MS using DHB and MI-CHCA (Figure 7.9), 

the choice of the IL matrix in MALDI MS measurements may not lead to a change in the relative 

sensitivity during lipid detection. 

The mass spectral peaks at m/z 478.3, 496.3, 522.3, and 550.3 (data not shown) are likely 

fragments of glycerophospholipids. This conclusion is made based on similarity in their m/z 

values to those of reported molecules and the presence of a peak at m/z 184.07 in the tandem MS 

product ion mass spectra of PC(32:0) at m/z 734.54 and PC(34:1) at m/z 760.56, and other lipids 

(Figure 7.7). Therefore, variations in the degree of analyte fragmentation between SIMS and 

MALDI MS may also account for the offset in detected ratios of intact lipids (Figure 7.9B). In 

summary, the relative lipid composition observed with SIMS appears to reflect endogenous cell 

content and provides complementary chemical information to MALDI MS. 



 

194 
 

Single Cell Profiling with SIMS Enables Differentiation of Cell Types with Similar Lipid 

Compositions 

As discussed in the previous section, the relative PC lipid ratio from single cell ME-SIMS 

profiling appears to be an intrinsic property of a given cellular origin, at least for the cell types 

assayed here. However, incorporating more intact lipids into a multivariate dimension reduction, 

such as t-SNE, may improve identification of additional subpopulations based on variations in 

minor lipid species. To determine the capability of SIMS to distinguish single cells with similar 

lipid profiles, cell populations from the DRG and cerebellum were individually profiled. For 

each cell type, two technical replicates were performed with a total of 548 DRG cells and 995 

cerebellum cells. The same threshold limit of 250 counts for m/z 184.07 was applied as before. 

The set of lipid compounds detected from cerebellum neurons is similar to DRG cells, and the 

two most dominant PC lipids, PC(32:0) and PC(34:1), are the same in both cell types. The mass 

spectra acquired from DRG and cerebellar cells have a number of signals within the m/z 700–850 

range, corresponding to intact lipids. The spectra were normalized to intensities of the PC(34:1) 

m/z 760.56 signal. 

The resulting data set was analyzed with t-SNE to provide a visual representation of the 

sample heterogeneity. Figure 7.10A shows the separation of DRG and cerebellum neurons 

determined by t-SNE. These cells from different origins are well-separated, with minimal 

overlap between the corresponding data sets, depicted by 95% confidence ellipses. The identity 

of the base peaks is distinct between the two averaged mass spectra acquired from each cell type. 

For DRGs, the unsaturated PC(34:1) at m/z 760.56 is the most intense signal, whereas for 

cerebellum neurons, the saturated PC(32:0) is the most intense peak. The high intensities of 

PC(32:0) and PC(34:1) signals may reflect the specific roles of these compounds in membrane 
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integrity and fluidity. The cerebellar cell membranes, with relatively more PC(32:0), are 

expected to be less rigid than the membranes of larger DRG cells in which unsaturated PC(34:1) 

produces the strongest signal. This simple test illustrates the facile differentiation of nervous 

system cell types corresponding to their origin, based on lipid profiles. 

Multivariate Statistical Analysis Reveals Subpopulations of DRG and Cerebellar Cells 

Figure 7.11A shows the two clusters obtained from k-means clustering of the t-SNE 

distributions. k-means classifies spectra according to their distance on the t-SNE plot and groups 

them into a specified number of clusters. Qualitatively, the two clusters differ based on the 

relative intensities of PC(34:1) and PC(32:0) signals, as well as the relative abundance of minor 

lipids such as PC(36:1) at m/z 788.60, PC(38:5) at m/z 808.60, and PC(40:5) at m/z 836.60. One 

can argue that the difference observed here arose due to experimental factors such as target 

accuracy and cell finding errors. However, the average spectra contain similar signal to noise 

ratios (S/N) (see Figure 7.11B), indicating the cells from each subpopulation were analyzed with 

similar target accuracy. Additionally, if target accuracy was poor, the mass spectra would be 

expected to cluster based on cell diameters, since larger cells could tolerate higher uncertainty in 

target positioning. Therefore, our data suggest the presence of at least two chemically distinct 

DRG cell populations. As seen in Figure 7.11B, in the first subpopulation (red), the relative 

signal intensities of other lipids to PC(34:1) are higher than in the second population (blue). The 

two cell clusters appear to distribute similarly along the cell size axis (Figure 7.11C). A previous 

study suggested that an increase in the relative lipid content due to peripheral inflammation 

occurs mainly in small-diameter DRG cells, but not in larger-diameter cells.64 Thus, the method 

described here can be instrumental in further characterization of such changes on a single cell 

level within these populations.64 6060 



 

196 
 

A similar multivariate analysis was performed on the cerebellar cell data set (Figure 

7.12). Here, k-means clustering was optimal with four subpopulations. Unlike the outcome of the 

DRG data set analysis, the clusters are more distinct in the t-SNE space (Figure 7.12A). 

Qualitatively, the most intense PC(32:0) signal changed noticeably between clusters, increasing 

in clockwise order from the green to red cluster in the t-SNE space. The intensity of the saturated 

PC(34:0) at m/z 762.56 also followed the same trend (Figure 7.12B). Taking into account cell 

diameter and the size of the primary ion beam footprint, it is unlikely that some cells were 

partially sampled and passed the quality threshold (Figure 7.12C). However, the S/N for the 

yellow cluster is lower than the other clusters, primarily in the region outlined in Figure 7.13, 

suggesting that the cells in this cluster with high values of Int(734.54)/Int(760.56) may be 

"nearly-missed" cells rather than a separate subpopulation. The population and subpopulation 

classifications for the DRG and cerebellum cells were repeated with another pair of animals. 

This set of data was obtained one month after the first set to ensure that the conclusions were not 

biased by instrument and animal variations. 

Furthermore, since instrument parameters were optimized for each experiment, the 

difference in the chemical noise profile for each data set may induce non-biological separation 

among animals. Hence, we did not combine the two data sets in the same analysis. Nevertheless, 

in the second data set, a total of 324 DRG cells and 1,249 cerebellum cells were subjected to t-

SNE analysis and k-means clustering. The results are consistent with the data presented above 

for the first data set, and shown in Figures 7-14-7.16. However, for the cerebellum, the presence 

of only two cellular subpopulations in the second data set was observed. The values of 

Int(734.54)/Int(760.56) for the first two populations shown in Figure 7.12 are identical to the two 

populations shown in Figure 7.16 (i.e., 1.3 and 2.0), suggesting that these two populations are 
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biologically relevant. It would be of great interest to correlate these subpopulations to known 

cerebellum cellular subtypes through the means of other techniques such as 

immunohistochemistry. 

Conclusions 

We describe a high-throughput method for single cell analysis using IL-assisted SIMS with a 20 

kV C60
+ primary ion beam. The IL matrix, composed of 50:50 (v/v) MI-CHCA and TRIP-

CHCA, provided uniform coating coverage and robust enhancement of a number of lipid signals 

that were otherwise undetectable. Cells from three different model systems were studied: the A. 

californica central nervous system, and the rat DRG and cerebellum. For each cell type, 

characteristic metabolites (e.g., α-tocopherol) and lipids (e.g., PCs) were observed. While 

PC(34:1) was the most abundant lipid in a majority of the studied DRG cells, there were a few 

cells with more abundant saturated PC(32:0) than unsaturated PC(34:1). These cells also showed 

an increase in absolute intensities of lipid signals. Therefore, at least two subpopulations (types) 

of DRG cells can be classified using the approaches presented here. Analysis of the lipid profiles 

of cells isolated from the rat cerebellum revealed similar lipid compositions as those found in 

DRG cells. However, PC(32:0) was more frequently observed as the base lipid peak—a 

characteristic molecular signature to differentiate these two cell types from each other. Further 

classification of cerebellar cells based on lipid profiles revealed at least two cellular 

subpopulations. 

Our method provides a unique approach to differentiate cell types and subtypes by 

utilizing lipid ratios as biomarkers, and is applicable to different classes of neuronal cells. 

Optically-guided ME-SIMS can profile up to 2,000 cells in one experiment at the rate of ~600 

cells/h. These figures of merit are limited by three factors: (a) the size of the sample holder/slide, 
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(b) the control of the ion beam state and its synchronization to mass spectral acquisition, and (c) 

the ionization efficiency of the primary ion beam. The maximum number of cells assayed per 

experiment is proportional to the sample area but is also limited by the degradation of IL matrix 

inside the vacuum chamber, typically occurring after 3–4 h of analysis. A higher energy ion 

beam would improve ionization efficiency and decrease the acquisition time per cell. Together 

with better communication and synchronization between the ion beam, sample stage, and mass 

analyzer, an acquisition rate as fast as 1 Hz can be achieved. The availability of subcellular 

resolution with SIMS will aid in the discovery of compartment-specific cellular markers. A 

combination of SIMS and MALDI MS profiling with other non-MS based techniques, including 

microscopy and spectroscopy, will allow simultaneous and multidimensional characterization of 

various analyte classes in the same sample, yielding unique and complementary information for 

each cell. 
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Table 7.1. Tentative assignments of lipids observed in SIMS single cell profiling of DRG. 

Species [M+H]+ (Da) Observed 

PC(40:5) 836.54 836.60 

PC(38:1) 816.64 816.60 

PC(38:5) 808.60 808.60 

PC(38:6) 806.56 806.54 

PC(36:1) 788.61 788.60 

PC(36:2) 786.64 786.60 

PC(36:3) 784.58 784.56 

PC(36:4) 782.56 782.56 

PC(35:1) 774.60 774.58 

PC(35:2) 772.58 772.56 

PC(34:0) 762.60 762.60 

PC(34:1) 760.59 760.56 

PC(34:2) 758.56 758.56 

PC(33:0) 748.58 748.60 

PC(33:1)/PC(O-34:1) 746.56 746.60 

PC(32:0) 734.57 734.54 

PC(32:1) 732.55 732.50 

PC(26:0)/PC(O-28:0) 650.47 650.40 

SM(18:0) 731.60 731.60 

PC(31:0) 720.55 720.50 

PC(30:0) 706.53 706.50 

PC(32:0) Frag 478.32 478.30 

LysoPC(16:0)/PC(16:0) 496.33 496.40 

PC(34:1) Frag/LysoPE(20:3) 504.40 504.30 

PC(O-18:1)/PC(18:0)/LysoPC(18:1) 522.34 522.30 

PC(O-20:1)/PC(19:1)/ 550.35 550.30 
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CHAPTER 8 

MALDI-MS GUIDED LIQUID MICROJUNCTION EXTRACTION FOR CE-MS  

ANALYSIS OF SINGLE MURINE PANCREATIC ISLET CELLS 
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Introduction 

Assessing heterogeneity in single cells from biological tissues continues to be a challenging task 

in the field of physiology.1-4 Frequently, bulk homogenates mask unique features of individual 

cells by averaging the population content.5 While a biological organ or tissue needs many types 

of distinct cells to function properly, a malfunction can manifest from subpopulations as small as 
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a single cell.6,7 Furthermore, even cells indistinguishable by histology or fluorescent labeling 

may possess unique intracellular chemistry.8-10 Detecting and understanding the heterogeneity 

between different cells will lead to innovative treatments and biomedical diagnostics.  

An important example of single cell heterogeneity exists in pancreatic islets of 

Langerhans. The cellular composition of islets are traditionally categorized by the main peptide 

hormones they release into the endocrine duct, typically detected by immunohistochemistry.11 

Recently, further stratification of cell subtypes became possible with the advent of new analytical 

technologies. Flow cytometry and transcriptomics of insulin-secreting β cells identified up to 

four different subtypes in humans.12 Using optically-guided MALDI-MS, differential peptide 

processing was detected in gamma cells derived from dorsal and ventral regions of the rat 

pancreas.13 The development of new methods has revealed the inadequacies of purely 

histological classifications of islet cells.  

Mass spectrometry is among the most popular analytical method for non-targeted single 

cell analysis.4 The recent development of single cell MS analysis was made possible due to 

advances in sensitivity, mass resolution, and sample throughput of mass analyzers. Specifically, 

the analysis of dispersed cells enables high throughput MS analysis.14 MALDI-MS is well suited 

for single cell analysis of a wide range of biological molecules, including for investigating the 

lipidome and peptidome.15 The analysis is label-free and consumes a fraction of surface 

analytes.16 By locating cells with optical microscopy, the analysis can proceed at acquisition 

rates of approximately 1 Hz.17 Most peptides have sufficiently high molecular mass that MALDI 

matrix interference is minimal, but many metabolites are obscured, limiting investigations of 

metabolites and peptides from the same cell. Another pertinent method for single cell analysis is 

capillary electrophoresis (CE)-MS, which can quantitatively identify metabolites at sensitivity 
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relevant to individual cells.18-20 Sample preparation for CE-MS typically requires the extraction 

of an entire cell, which has been isolated manually, or through microfluidics.21 In contrast to 

MALDI-MS, CE-MS has relatively low throughput, limited to a few cells an hour, which 

eliminates the possibility of an exhaustive cell-by-cell analysis of even modestly sized 

populations.  

Coupling preliminary classification of cells with MALDI-MS to CE-MS could facilitate 

targeting of rare and representative cells from a large population. The preselection would allow 

CE-MS to efficiently analyze large populations by selecting the most informative individuals. 

Previous attempts to combine MALDI-MS and CE-MS have utilized microfluidic22,23 or 

hydrodynamic24,25 interfaces. Although the same sample was analyzed with both instruments, the 

methods had relatively low throughput and required excessive manual sample handling. It is 

critical that the interface method collects small sample volumes with high collection efficiency to 

reveal chemical heterogeneity from large populations of cells.  

Here, we present a semi-automated, microscopy-guided liquid microjunction probe for 

extraction of single cells targeted by their MALDI-MS profiles. While MALDI-MS is not 

required for performing liquid extraction, it can complement the microscopy information by 

providing label-free classification of large populations. The probe has three axes of linear 

freedom controlled with lab-built graphical user interface to perform microscopy guided cell 

targeting. The software is an extension of previous microscopy-guided work with MALDI-MS13 

and secondary ion MS.26 Each extraction takes 1 minute per cell and can locate targets with an 

accuracy of 42.8 ± 2.3 µm over an area of ~ 12 cm2 (approximately 2/3 of a standard microscope 

slide). The probe extracts all visible MALDI matrix in an elliptical area with a major diameter of 
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422 ± 21 µm and minor diameter of 335 ± 27 µm. Radiography of a standard peptide 

demonstrates removal of 90.6 ± 0.6% of surface compounds.  

The methodology allows selective extraction based on peptide content and enables 

investigations of specific cell types. Here, small molecules of single cell extracts from individual 

rat pancreatic α cells were profiled using CE-MS. By interfacing two powerful analytical tools 

for small-volume samples, the combined data from CE-MS and MALDI-MS successfully 

classified and analyzed 6 α and 5 β cells. Each cell was identified as a standard histological class 

by the detection of glucagon and insulin, respectively, by MALDI-MS. Small molecules detected 

with CE-MS include 18 proteinogenic amino acids as well as dopamine. While the presence of 

required enzymes for dopamine synthesis has implicated the endogenous presence of dopamine 

in β cells,27,28 it has not been directly detected at the single cell level in both α and β cells. Based 

on the cell-to-cell distance, liquid microjunction extraction accuracy, and removal efficiency, we 

conclude the extracts are representative of single cell contents and are suitable for CE-MS with a 

variety of sample systems.  

Materials and Methods 

Chemicals 

All chemicals were purchased from Sigma Aldrich (St. Louis, MO) and used without further 

purification. 

Isolation of Islet of Langerhans and Single Cell Preparation 

A four-month old, male Sprague-Dawley outbred rat (Rattus norvegicus) was housed on a 12-h 

light cycle and fed ad libitum. Animal euthanasia was performed in accordance with the 

appropriate institutional animal care guidelines (the Illinois Institutional Animal Care and Use 

Committee), and in full compliance with federal guidelines for the humane care and treatment of 
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animals. Islets of Langerhans were manually isolated from digested pancreas as previously 

reported.13 Briefly, pancreata are injected through the bile duct with 2 mL of 1.4 mg/mL 

collagenase P in modified Gey’s balanced salt solution (mGBSS) supplemented with 5 mM 

glucose and 1% (w/v) bovine serum albumin (BSA). mGBSS contains 1.5 mM CaCl2, 4.9 mM 

KCl, 0.2 mM KH2PO4, 11 mM MgCl2, 0.3 mM MgSO4, 138 mM NaCl, 27.7 mM NaHCO3, 

0.8 mM NaH2PO4, and 25 mM HEPES dissolved in Milli-Q water (Millipore, Billerica, MA), 

with the pH adjusted to 7.2. The pancreas was then surgically dissected and placed into 8 mL of 

collagenase P solution. Solutions were incubated in a recirculating water bath for 20-30 minutes 

at 37 °C to dissociate bulk tissue. Excess collagenase P was washed from the resulting tissue 

with mGBSS containing glucose and BSA, and centrifuged for 3 minutes at 300g. The resulting 

tissue pellet was dispersed into mGBSS and islets were manually isolated with a micropipette. 

Single islets were incubated in 20 µL of mGBSS with glucose and BSA supplemented further 

with 0.1 mg/mL Hoechst 33342 and 40% (v/v) glycerol to stain cell nuclei and stabilize their 

metabolite content.29 After 30 minutes, single cells were dissociated onto clean ITO-coated glass 

slides by gentle trituration in the staining solution and allowed to adhere to the slide overnight. 

Prior to imaging, excess glycerol was aspirated and the surface was rinsed with 150 mM 

ammonium acetate (pH 10). 

Optically-Guided Single Cell Profiling 

The first step in the experimental workflow outlined in Scheme 8.1 is to locate cells by optical 

microscopy. ITO-coated glass slides were prepared for optically-guided single cell profiling by 

marking the perimeter of dissociated cells with ~20 fiducial marks. Each mark consisted of an 

etched ‘x’ which remained visible through MALDI-MS and liquid microjunction extraction. The 

locations of fiducials and cells were determined by whole-slide brightfield and fluorescence 
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microscopy on an Axio Imager M2 (Carl Zeiss, Jena, Germany). Images were acquired with a 

10× objective and tiled to cover the entire region of interest. Florescence imaging of Hoechst 

33342 utilized an X-CITE 120 mercury lamp (Lumen Dynamics, Mississauga, Canada) and a 

31000v2 DAPI filter set. 

Whole slide images were utilized for optically-guided single cell profiling using lab-built 

software which has been modified to control the liquid microjunction extraction system. The 

pixel locations of each fiducial are correlated to their physical position in the mass spectrometer. 

A point-based similarity registration is then utilized to map cell locations on the image to their 

corresponding physical location. 

After optical imaging, samples were coated with MALDI matrix using an artistic airbrush 

to apply 50 mg/mL 2,5-dihydroxybenzoic acid (DHB) in a 1:1 (v/v) ethanol:water with 0.1% 

trifluoroacetic acid (TFA) nebulized with 40 psi nitrogen. Coating thickness was assessed 

optically during matrix application with typical thicknesses of 0.2-0.4 mg/cm2. Samples were 

stored at room temperature in a nitrogen dry box until analyzed. 

MALDI-MS 

Pancreatic cell populations were rapidly profiled with MALDI-MS to stratify the population into 

traditional histological classes. Specifically, α and β cells were identified based on the detection 

of glucagon (monoisotopic m/z 3481.6) or insulin-1 C peptide (m/z 3259.8). To prevent 

contamination from adjacent cells during follow-up extraction, all cell coordinates were first 

passed through a 300 µm distance filter. From a single islet dispersed on an ITO-coated glass 

slide, approximately 200-400 pancreatic cells satisfied the collection criteria. 

Mass spectra were acquired on a Bruker ultrafleXtreme MALDI TOF/TOF mass 

spectrometer with a frequency tripled Nd:YAG solid state laser. Each cell was profiled with 
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1000 shots using a 1 kHz laser repetition rate with the “Ultra” spot size (~100 µm). The resulting 

spectra were read into MATLAB 8.6.0 with the readbrukermaldi function 

(https://github.com/AlexHenderson/readbrukermaldi). Mass windows corresponding to the 

peptide hormones of interest were extracted and intensities were plotted as shown in Figure 8.1. 

Cells were classified based on their spectral profiles as α or β using signal intensities at m/z 

3483.9 and 3259.8 as classifiers. For each mass channel, a threshold value was manually 

determined to identify cell types with high confidence. Due to stringent filter values, 

approximately 100 cells were successfully classified by this approach for each islet. Classified 

cells were then examined to ensure no adjacent cells would contaminate the extraction. 

Liquid Microjunction Extraction Probe System 

As shown in Figure 8.2, the liquid microjunction extraction system consists of a lab-built, 

concentric capillary probe coupled to a 3-axis linear actuator positioning system. The single-cell 

collection setup was designed to transfer cell metabolites from an ITO-coated glass slide into a 

0.2 µL microcentrifuge tube. The basic operating principle is similar to a liquid microjunction 

surface sampling probe except the solution is aspirated by vacuum pressure instead of an 

electrospray. The diameters of the probe capillaries were selected to be larger than the diameter 

of individual pancreatic cells to ensure complete extraction, prevent clogging and accommodate 

the stage accuracy. The sizes of the inner and outer capillaries were 100 m/170 m and 250 

m/350 m (Polymicro Technologies/Molex), and the diameter of pancreatic cells is ~10-15 

m.30 Sample carryover may result in the detection of unwanted metabolites, therefore, ~5 mm 

of polyimide coating is thermally removed at the end of each capillary.31 Following each 

extraction, the probe was immersed in extraction solution to thoroughly wash out the interior.  
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The extraction solution consisted of 1:1 methanol:water with 0.5% acetic acid (v/v) which was 

previously shown to facilitate metabolite extraction and detection with the CE-MS.32 As shown 

in Figure 8.3, a small meniscus forms at the probe tip during operation. Eight collections can be 

performed sequentially without interruption, currently limited by the vacuum chamber capacity. 

Extraction liquid is delivered at 1.5 L/min with a PHD 2000 syringe pump (Harvard Apparatus, 

Holliston, MA) and aspirated with 7-10 mmHg of vacuum, supplied with a diaphragm 

vacuum/pressure pump (Cole-Parmer, Vernon Hills, IL). The liquid microjunction is positioned 

with three linear stages (Zaber Technologies, Vancouver, British Colombia) controlled with in-

house written software. First, the user moves the x,y-translation stage away from the cell 

deposition and lowers the probe to the surface. The software records the z-axis position at the 

slide surface to enable automatic extraction. The probe position is monitored in real-time with a 

digital video camera (Sony DFW-X700). Next, coordinates from the whole-slide image and 

linear actuator positions are correlated with a point-based similarity registration based on more 

than 18 etched fiducial marks. Once all fiducials have been located on the sample surface, cell 

positions are loaded into the software. Clicking on a cell position on the image moves the x,y-

translation stage into position for extraction. The user initiates semi-automatic extractions by 

moving over target cells and signaling the software with a key press. During extraction, the 

probe is lowered to the slide for 60s and then retracted. Alternatively, a population of cells may 

be sequentially extracted and pooled into a single collection vial. Following either collection 

scheme, the probe is returned to the home position and submerged into a reservoir of extraction 

solution for 90s to rinse the probe exterior and flush the inner capillary. The cell content at each 

coordinate travels from the MALDI target, through the inner capillary and into the 

microcentrifuge tube contained in the vacuum chamber. Inside the vacuum chamber, the 
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microcentrifuge tubes are covered with a thin strip of parafilmM to prevent carryover when 

moving between collection vials. The inner capillary is retracted from the current collection tube, 

the tube carousel is indexed to the next position and the inner capillary is placed into the next 

collection tube without breaking vacuum. Individual samples were dried using Mi-Vac sample 

concentrator (SP Scientific, Warminster, PA) and stored at -20C prior to CE-MS analysis.  

Characterization of Probe Removal Efficiency 

Tritiated (3H) angiotensin was utilized to determine the extraction profile and removal efficiency 

of the extraction probe. All radioactivity experiments were performed in accordance with Illinois 

Radiation Protection Act under the University of Illinois at Urbana-Champaign Type A Broad 

Scope Radioactive Materials License issued by the Illinois Emergency Management Agency 

(IEMA). To quantify the extraction efficiency, five spots of ~1 L of 1,000 pCi 3H-angiotensin 

were deposited onto the surface of an ITO-coated glass slide and allowed to dry for 24 hr at room 

temperature (~ 22C). Liquid microjunction extraction of the radioactive material was performed 

as described above with minor adjustments to minimize the possibility of radioactive 

contamination of the equipment. A movable stereomicroscope (Leica Wild M3Z) was mounted 

to monitor the extraction location and the position of the probe in the z-direction was adjusted 

manually. To replicate single cell extraction conditions, each 3H-angiotensin spot was extracted 

for 60 sec. The pre- and post-extraction radioactivity was monitored with a Storage Phosphor 

Screen (BAS-IP TR 2025 E Tritium Screen) exposed for 6h. Developing the screen with a 

phosphorimager (Molecular Dynamics Phosphorimager SI) allowed for relative quantitation of 

the removal. Image processing was performed with custom MATLAB scripts. The fraction of 

material removed was determined by the background-corrected, normalized intensity at each 
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pixel before and after extraction. The removal efficiency was estimated by fitting the 2 

dimensional distribution to a general Gaussian function, as described in Table 8.1. 

Determination of Target Localization Error 

To ensure each extraction is from the expected cell, it is imperative to determine the target 

localization error. Extraction locations were tracked by the removal of MALDI matrix from a 

MALDI target. Image registration of fiducial markers allowed the correlation of requested target 

points and realized extraction positions. 

A glass slide was etched with 18 fiducial marks for point-based registration, similar to typical 

cell extractions. An additional six etched marks were placed within these fiducials to assist with 

image registration as they remain visible after MALDI matrix application and extraction. Eight 

target locations were manually placed around each of the six, interior etched marks in pairs to 

assess the effect of repeated registrations. The slide was then coated with DHB and placed into 

the liquid extraction stage as before. Two users each performed two sets of extractions with 

twelve targets spread over the six etched marks. This design of experiment allowed evaluation of 

the user, registration, and location on the target localization error. Each target was extracted for 5 

s and the probe was washed for 60 s after each set of twelve extractions. 

Following extraction, the sample was imaged again to locate target etched marks and 

extraction locations. Extraction centers and diameters were manually annotated. A custom 

MATLAB script was utilized to assess the target localization error of each extraction. Regions 

surrounding each etched mark were cropped from the whole slide image. Several locations on 

each mark were utilized to overlay the pre- and post-extraction images. Target locations on the 

pre-extraction image were then mapped to the post-extraction image with the same coordinate 

transformation. The pixel distance between the target and actual positions were scaled to 
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microns. A three-way linear ANOVA was utilized to assess the effect of each confounding 

variable. 

CE-MS Analysis 

Each cell was resuspended in 1 μL 1% formic acid in water. CE-MS was performed as reported 

previously using a micrOTOF mass spectrometer (Bruker Daltonics, Billerica, MA).32 All 

analyses were performed in positive ion mode using a separation capillary length of 70.7 cm, a 

separation potential of 17 kV, and a sample and standard injection volume of ~ 15 nL. Extracted 

ion electropherograms were exported using custom scripts in Bruker DataAnalysis version 4.4. 

Compounds were identified from the electropherograms by matching the migration order and m/z 

values with standards. In MATLAB, each extracted ion electropherogram was baseline 

subtracted and smoothed with a 7-point moving average filter. Migration times were aligned to 

an arbitrary sample (α1) using a linear regression between migration times of a set of amino 

acids found in each sample (i.e. glycine, alanine, threonine, leucine/isoleucine, histidine, 

phenylalanine; Figure 8.4). To confirm the presence of dopamine, a standard mix of 10 μM 

glycine, alanine, threonine, leucine, histidine, and phenylalanine in 1% formic acid in water was 

analyzed with a 68 cm capillary at 10 kV with and without the addition of 10 μM dopamine. The 

resulting electropherograms were migration time-corrected and compared to the cell samples. 

Results and Discussion 

Extraction Accuracy, Area and Efficiency 

As described above, MALDI-matrix was utilized as a tracer to monitor the extraction position to 

assess the target localization error of the liquid microjunction system (Figure 8.5). While the 

operator and target location did not significantly influence the target localization error (p = 0.15 

and 0.06 respectively), there was a significant effect on the registration trial (p = 0.004). This 
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highlights the importance of accurate determination of fiducial locations as the largest influence 

on target localization error. The overall target localization error was determined as 42.8 ± 2.3 µm 

(± SEM, n = 48; range 3.9 to 88.5 µm), which is well within the average extraction radius of 

206.3 ± 1.7 µm determined from removal of DHB from the surface. Therefore, it is assumed that 

each extraction contained the target cell and a cell-to-cell distance filter larger than 250 µm is 

sufficient to ensure each extraction is free from contamination of neighboring cells. 

The same experiment provided a high resolution, qualitative assessment of the extraction 

area. Figure 8.6 shows a montage of the extracted area. Generally, the footprint was found to be 

circular, though some irregularities are present, likely due to imperfect construction of the probe 

or the presence of glass shards from the fiducials. An average radius of 206.3±1.7 µm was found 

from manual measurement of each extraction spot. 

The removal efficiency was investigated quantitatively with 3H-angiotensin spotted onto 

an ITO-coated glass slide. Fitting the radiographic images to a two-dimensional, general 

Gaussian function (Figures 8.7 and 8.8) estimates a removal efficiency of 90.6 ± 0.6% (Table 

8.1). The extraction footprint was found to be elliptical with major diameter of 422 ± 21 µm and 

minor diameter of 335 ± 27 µm, in agreement with optical measurements of DHB removal. 

Profiles of Small Molecules 

CE-MS complements MALDI-MS analyses by identifying small molecules from a single-cell. 

We present example extracted ion electropherograms with corresponding MALDI mass spectra 

in Figure 8.9. The complete collection of electropherograms is in Figure 8.10. 

Detected compounds include a majority of the proteinogenic amino acids, precursor 

molecules, and endocrine signaling molecules. No obvious differences were found between α 

and β cells, though a more quantitative analysis could identify subtle heterogeneity between each 
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population. An interesting observation was the presence of dopamine in all α and β cells (Figures 

8.11 and 8.12). Endogenous dopamine has been detected in single islets via an ELISA assay,28 

but not in single cells. β cells are known to have the required enzymes for synthesis, metabolism, 

and storage of dopamine, such as tyrosine hydroxylase33 and vesicular monoamine transporter 

type 2,34 thus it is generally accepted that dopamine is produced in β cells.27 Dopamine within α 

cells is less studied, and whether dopamine is endogenous to α cells has not yet been 

investigated. We report the first direct detection of dopamine in single α and β cells, illustrating 

the unique capabilities of such small-scale analyses. 

Conclusions 

We present a method to couple high throughput single cell profiling with MALDI-MS with CE-

MS metabolomics. The approach leverages the low sample consumption of MALDI-MS to 

enable follow-up analysis by CE-MS. Combining MALDI-MS and CE-MS resulted in 

identification of cell types by peptide profile, detection of most amino acids and the signaling 

molecule dopamine, a difficult task for either technique alone. The approach demonstrates 

sequential analysis of single cells adhered to a surface. While CE-MS provides insight for small 

molecules and metabolites, MALDI-MS supplies a label-free classification method at high 

throughput to highlight individual cells requiring further examination.  
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Table 8.1. Summary of fitting values for determining the fraction of 3H-angiotensin removed. 
The fraction removed was modeled as a general, two-dimensional Gaussian distribution centered 
on each sub-image. The model equation is 

, exp μ 	2 μ μ μ  

Where A is the fraction removed at the center, e.g. (x,y) = (µx, µy) and (µx, µy) is the center of the 
distribution. The variables a,b,c are further defined as 

cos
2

sin
2

 

sin 2
4

sin 2
4

 

sin
2

cos
2

 

Where ,  are the standard deviation of the distribution and  is the rotation in radians. With 
the constraints that ∈ 0,2 , μ , μ ∈ , , , ∈ 0, , ∈ 0,2  where s is the 
subregion size, 500 µm. Reported values represent the 95% confidence intervals for each 
parameter.  

Spot A µx (µm) µy (µm) θ (radians) σx (µm) σy (µm) 

1 0.889 ± 0.079 15 ± 10 18.9 ± 7.9 1.51 ± 0.25 88.4 ± 7.9 114 ± 10 

2 0.91 ± 0.14 24 ± 15 9 ± 13 5.08 ± 0.72 77 ± 13 91 ± 15 

3 0.908 ± 0.094 4 ± 12 35 ± 11 5.68 ± 0.90 115 ± 12 106 ± 11 

4 0.904 ± 0.099 0 ± 12 16.5 ± 9.0 3.04 ± 0.24 112 ± 12 82.2 ± 9.0 

5 0.92 ± 0.13 20 ± 13 24.1 ± 8.9 0.09 ± 0.24 96 ± 13 64.9 ± 8.9 
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CHAPTER 9 

OPTICALLY-GUIDED MALDI-MS PROFILING OF MICROBIAL COLONIES FOR HIGH-
THROUGHPUT ENGINEERING OF MULTI-STEP ENZYMATIC REACTIONS 
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Introduction 

With the current, incomplete understanding of complicated biological systems, it remains 

indispensable to screen recombinant variant libraries in biological research and engineering.1-3 

Traditional screening methods are either limited to photometrically-active molecules and labeled 

surrogates, or require chromatographic separation in low throughput1. Mass spectrometry (MS) 

offers label-free analysis of target molecules with high specificity, and matrix-assisted laser 

desorption/ionization (MALDI)-MS is particularly well suited for rapid inspection of a large 
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number of samples due to its simple sample preparation, high salt tolerance, and wide coverage 

of diverse biomolecules.4,5 For rapid profiling of enzymatic reactions, MALDI mass 

spectrometry imaging (MSI) has been increasingly applied.6-11 However, MALDI-MSI screening 

utilizes fixed raster steps for sampling, which requires high-density deposition of reaction 

components in a regular array to increase throughput9-11. Such protocols generate technical 

challenges in co-localizing multiple enzymes, which may explain the limited reports of MSI-

based screening of multi-step biochemical reactions. On the other hand, multi-step biosynthesis 

is vital for production of many important molecules including fuels, fine chemicals, and 

pharmaceuticals.1 In particular, natural products (NPs) synthesized via secondary metabolism 

often contain complex chemical modifications installed by a number of enzymes. Research on 

NPs advances fundamental biochemistry and provides a valuable source for medicines.12,13 NP 

analogs are widely applied in mechanistic studies focusing on mode-of-action, substrate 

tolerance, and structure-activity relationships14. NP variants are also engineered to develop 

compounds with improved medicinal properties14. To engineer a multi-step reaction such as NP 

biosynthesis, modified intermediates must be accepted at each step of the catalytic sequence to 

obtain a final product. Engineering an individual step in isolation ignores possible downstream 

effects. Therefore, current MSI screening platforms primarily designed for single-step enzymatic 

reactions may be ill-suited for engineering entire multi-step pathways. 

In this work, we sought to apply optically-guided MALDI-MS to engineer multi-step 

enzymatic reactions via high-throughput, direct profiling of microbial colonies. Using microbial 

cells as reaction vessels, a set of enzymes can be encoded as a biosynthetic pathway on a DNA 

vector. Routine molecular biology enables mutagenesis, delivery, and expression of multiple 

enzymes encapsulated in a single cell. In addition, cell growth and metabolism in colonies 
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facilitates analyte accumulation, which may help to eliminate the current requirement of analyte 

immobilization/capture for MSI screening. MALDI-MSI has been utilized to study spatial 

heterogeneity of microbial metabolism in biofilms15-17 or multi-species co-cultures.18-20 Such 

analyses have yet been applied to screen libraries of microbial colonies, which are randomly 

distributed and widely spaced on agar media when prepared using standard techniques. MSI of 

such sparse objects is inefficient as most acquisitions occur on the space between colonies due to 

the fixed raster steps for sampling.21 Additionally, as beneficial mutations are generally rare, a 

large number of mutants are often created and screened to isolate desirable variants. Advanced 

liquid handling systems may be applied to deposit colonies into defined patterns for MSI 

screening,9-11 but are costly and time-consuming. Instead, we developed an approach which 

utilizes microscopy images and simple machine vision to program MALDI-MS acquisition for 

rapid “colony picking” (Figure 9.1). The approach of optically-guided MS profiling for bacterial 

colonies is an extension of methodology developed for single-cell MS analysis22-24.  

Engineering multi-step enzymatic pathways may modify the structures and/or quantities 

of products. Such changes can be reflected in mass spectra, such as mass shifts in non-

isomerization reactions, or differences in relative ion intensities of congeners due to altered 

enzymatic specificities. The mass spectra resulting from microbial screening produce a large, 

information-rich data set, which requires computational tools to extract, interpret and visualize 

the most relevant signals to aid mutant recovery. The diverse molecular profiles can be surveyed 

with targeted, multivariate clustering if the molecular weight information of desired products is 

available. Alternatively, non-targeted clustering can group colonies exhibiting similar spectra 

without a priori knowledge for discovery efforts. For researchers with limited MS experience, it 

is highly desirable to visualize screening data in a manner similar to classical, colorimetric 



 

263 
 

assays. Given the wide application of multi-step enzymatic reactions, data analysis pipelines 

tailored for diverse engineering objectives are needed. 

As a proof-of-concept, we applied optically-guided MALDI-MS to study and modify 

catalytic specificity of multi-step NP biosynthesis. With the designed workflow, we 

characterized the substrate tolerance of a five-enzyme pathway which synthesizes the antibiotic 

plantazolicin (1) from a precursor peptide. We then applied MALDI-MS screening in directed 

protein evolution to alter congener compositions of rhamnolipids (RLs) synthesized by a two-

enzyme pathway. Custom sampling and analysis algorithms were developed for each system, 

with the former focusing on structural variations of analogues and the latter on relative 

abundances of target congeners. We demonstrated successful application of optically guided 

MALDI-MS profiling in both examples, resulting in the discovery of new compounds and 

isolation of enzymes with desirable chemical selectivity. 

Materials and Methods 

Strains, media and cultivation conditions 

Zymo 5α Z-competent E. coli (Zymo Research, Irvine, CA) and NEB 10β Electrocompetent E. 

coli (New England Biolabs, Ipswich, MA) were used for general plasmid amplification and 

library construction, respectively. E. coli BL21 (DE3) (Cell Media Facility, UIUC, Urbana) was 

used as a host for expression of multiple enzymes. For plasmid construction, E. coli strains were 

cultured at 37°C and 250 r.p.m. in Luria broth (LB) liquid media (Fisher Scientific, Pittsburgh, 

PA), or at 37°C on LB plates solidified with 1.5% (w/v) agar. For plasmid maintenance using 

antibiotic selection, LB was supplemented with 100 μg mL-1 ampicillin and/or 50 μg mL-1 

kanamycin. For inducible protein expression, BL21 (DE3) cells were cultured at 30°C instead of 

37°C, and isopropyl β-D-1-thiogalactopyranoside (IPTG) was supplemented at a final 
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concentration of 1 mM. M9 minimal media supplemented with BME vitamin mix (Sigma-

aldrich, cat. #B6891), trace mineral solution (ATCC, cat. #MD-TMS) and 2 g l-1 acetate was 

used for PZN production. All chemicals were purchased through Sigma-Aldrich or Fisher 

Scientific unless noted otherwise. 

DNA and strain construction 

The list of primers used can be found in Table 9.1. All enzymes used for recombinant DNA 

cloning, including Q5 PCR polymerase, restriction digestion enzymes, were from New England 

Biolabs unless otherwise noted. Plasmid assembly was performed using Gibson Assembly 

Cloning Kit (New England Biolabs) or T4 ligase following the manufacturer’s instructions. 

QIAprep Spin Plasmid Mini-prep Kits (Qiagen, Valencia, CA) were utilized to isolate plasmid 

DNA from E. coli. PCR, digestion and ligation products were purified by QIAquick PCR 

Purification and Gel Extraction Kits (Qiagen). Error-prone PCR was performed using 

GeneMorph II Random Mutagenesis Kits (Agilent Technologies, Santa Clara, CA). The genomic 

DNA of Pseudomonas aeruginosa PAO1c was a kind gift from Prof. Joshua D Shrout at 

University of Notre Dame. 

For PZN production, the partial operon containing the biosynthetic genes essential for 

PZN production (ptnC, ptnD, ptnB, ptnE and ptnL) were PCR-amplified in two pieces from a 

fosmid bearing the complete PZN pathway25 with primer pairs NP5/NP6 and NP7/NP8. PCR 

products and the vector pRSFDuet-1 linearized by NdeI and MfeI at the multiple cloning site II 

(MCSII) were assembled into pRSFDuet-T7-ptnJCDBEL(II), so that expression of the partial 

operon was under control of a T7 promoter. We have previously discovered N-terminal fusion of 

the maltose-binding protein (MBP) was necessary for efficient production of the precursor 

peptide,25 so pET28a-MBP-bamA was used for precursor expression in trans on a separate 
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plasmid. The kanamycin resistance gene in pRSFDuet-T7-ptnJCDBEL(II) was replaced by the 

ampicillin resistance gene to allow co-selection with pET28a-MBP-bamA. For site-saturation 

mutagenesis, the NNK degenerative codons at I34 or I35 positions were introduced in primers 

NP127 and NP128, respectively. The plasmid libraries assembled using two PCR products 

amplified from pET28a-MBP-bamA using primer pair #1 (NP119/NP124) and primer pair #2 

(NP125/NP127 or NP125/NP128). Gibson assembly products were used to transform NEB 10β 

cells on agar media to obtain >104 independent transformants for each library. Plasmid DNA was 

isolated and used to transform BL21(DE3) harboring pRSFDuet-T7-pntJCDBEL for strain 

library creation.  

For mono-rhamnolipid production, the rhlB gene was PCR-amplified using the primer 

pair NP21/NP22 from P. aeruginosa PAO1c genomic DNA. The PCR product was digested 

using EcoRI and HindIII, and ligated into MCSI of pRSFDuet-1 treated with the same set of 

enzymes to create pRSFDuet-T7-rhlB(I). The WT rhlA gene was PCR amplified using the 

primer pair NP23/NP24 from P. aeruginosa PAO1c genomic DNA, digested using MfeI/KpnI, 

and ligated into MCSII of pRSFDuet-T7-rhlB(I). The resulting plasmid, pRSFDuet-T7-rhlB(I)-

T7-rhlA(II), was used to transform BL21 (DE3) to create the ‘wild-type’ production strain. To 

introduce random mutagenesis to rhlA, error-prone PCR was performed at an average mutation 

rate of ~1.8 bp kb-1 (or 1.6 bp per the 888 bp rhlA gene) with the following PCR conditions: 800 

ng of pRSFDuet-T7-rhlB(I)-T7-rhlA(II) (WT or mutants) as a template, NP23/NP24 as primers, 

and 30 PCR cycles. The PCR product was digested using MfeI and KpnI before being ligated 

into pRSFDuet-T7-rhlB(I) treated with the same set of enzymes. Ligation products were used to 

transform electrocompetent NEB 10β cells, obtaining >105 independent transformants for each 
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strain library on agar media. Plasmid DNA was isolated and transformed into BL21 (DE3) cells 

for strain library construction. 

Microscopy-guided MALDI-MS with microMS 

To prepare colonies for MALDI-MS profiling, plasmid DNA libraries were used to transform 

BL21 (DE3) cells, which were spread on DuraporeTM PVDF membrane filters (0.22 µm pore 

size, 90 mm diameter, EMD Millipore, Kankakee, IL, cat. #GVWP08050) to allow growth using 

non-inducing LB agar media. After cultivation at 30°C for 16~20 h, the filters were transferred 

to induction plates containing 1 mM IPTG (M9+acetate media for PZN, and LB media for 

rhamnolipid) for incubation at 30°C for 24 h. To transfer biomass onto MALDI targets, a colony-

bearing filter was placed onto a clean, stainless steel substrate with colonies facing upwards. An 

indium-tin oxide (ITO)-coated glass slide (Delta Technologies, Loveland, CO) was delicately 

placed on the filter with ITO coating facing the colonies. Colony patterns were imprinted onto 

the ITO slide by gently applying ~3.5 N force by hand for 10 s.  

High-throughput MALDI-MS screening of E. coli colonies was performed using lab-built 

image analysis software, microMS (available at 

http://neuroproteomics.scs.illinois.edu/microMS.htm) following previously reported single-cell 

profiling workflows22-24 with modifications. Specifically, ITO-coated glass slides were etched 

with more than 16 fiducials surrounding the imprint region. Auto-fluorescence of E. coli colonies 

in the DAPI channel was used to aid colony finding. Whole-slide bright-field and fluorescence 

images were acquired on a Ziess Axio Imager M2 (Zeiss, Jena, Germany) using an Ab cam Icc5 

camera, a HAL 100 halogen illuminator (Zeiss), and an X-CITE Series 120 Q mercury lamp 

(Lumen Dynamics, Mississauga, Canada). The 31000v2 DAPI filter set was used for auto-

fluorescence excitation. The images were acquired as tiled mosaics using the 10x objective and 
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10% overlap. Images were processed and exported at 1/8 magnification as tiff files using ZEN 

software version 2 blue edition (Zeiss). The whole-slide tiff images were loaded into microMS, 

which performed automatic colony finding, target patterning around each colony, and correlation 

with the Bruker ultrafleXtreme MALDI-ToF/ToF mass spectrometer (Bruker Daltonics, 

Billerica, MA). Coordinate registration and correlation is performed by locating the etched 

fiducials in the mass spectrometer and recording their locations in microMS. The procedure is 

found to be accurate within ~20 µm when at least 16 fiducials are included in the training set. 

Target patterning positioned at most 10 targets around each colony, offset from the 

circumference by 25 pixels (110 µm), with a minimum shot-to-shot spacing of 10 pixels (44 

µm). The custom geometry file was then ready to load into the mass spectrometer for automated 

acquisition. 

Before spectra acquisition, the sample slide was coated with MALDI matrix using an 

artist’s airbrush with a 0.2 mm nozzle (Paasche Airbrush Company, Chicago, IL). Several 

parameters were optimized to ensure even deposition of matrix on the imprinted colonies. The 

N2 pressure was set at 40 psi and the imprint glass slides were spray coated at a distance of 30–

35 cm with 50 mg mL-1 2,5-dihydroxybenzoic acid (DHB) (Sigma-Aldrich) dissolved in 

methanol:H2O (1:1, v/v). After spraying 2 mL of the DHB solution with the airbrush, the sample 

was dried for 1 min to avoid over-wetting and analyte delocalization. A total of 10 mL of DHB 

solution was applied in 10 min per target plate. 

Measurements were performed using a frequency tripled Nd:YAG solid state laser 

(λ=355 nm). The laser footprint was set to “Ultra” at a ∼100 μm diameter. Mass spectrometer 

calibration was performed using Peptide Calibration Standard Kit II (Bruker Daltonics). Data 

acquisition was run in positive reflection mode with pulsed ion extraction and a mass range of 
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440-700 Da for the detection of rhamnolipids and 905-2005 Da for PZN variants. Colony 

imprints were analyzed following the custom geometry file with 500 laser shots fired at 2000 Hz. 

Resulting spectra were analyzed as detailed below. 

Multivariate data analysis 

Spectra were read directly into MATLAB 2015b with the readbrukermaldi function 

(github.com/AlexHenderson/readbrukermaldi) and manually recalibrated with a third order 

polynomial to correct for mass shifts between analyses. Spectra were resampled with bin widths 

of 0.025 Da for RL and 0.5 Da for PZN. 

For PZN, untargeted t-SNE26 was performed utilizing each, binned m/z value to evaluate 

population heterogeneity and variance in sample processing. It was determined that mutations 

resulted in mass shifts from the fully processed form of PZN while other clusters were due to 

experimental factors, including polymer contamination. Next, targeted t-SNE was performed to 

locate colonies expressing each point mutation. The maximum intensity of each monoisotopic 

amino acid substitution was extracted from every spectrum with a tolerance of ±0.25 Da. The 

reduced dataset was examined with t-SNE to cluster similar spectra. Apparent groups were 

examined manually to assign spectra to specific substitutions. Spectra without peptide signal 

were combined into the “N/A” cluster. These correspond to background, imaging artifacts, and 

spectra acquired on non-circular colonies. Additional filtering of putative colonies at the stage of 

optical image analysis could reduce the abundance of the N/A cluster. Next, the spectral 

classifications were mapped onto the optical image, leveraging the pixel positions encoded into 

the filename of each spectrum. To facilitate mutant recovery, the most common cluster is shown 

over the optical image, excluding the N/A cluster. 
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For RL, a targeted analysis was performed to visualize the relative abundance of 5b. The 

intensities of protonated, sodiated, and potassiated monoisotopic masses of 5a, 5b, 5c, and 5d 

were extracted with a tolerance of ±0.2 Da. Spectra were filtered to remove colonies within 200 

µm of each other and total intensity of RL less than 500 (arbitrary counts). The intensities of 

each RL were summed for spectra surrounding each colony. To visualize the molecular content 

of mutants on the target, the total RL intensity and relative content of 5b were mapped onto the 

optical image of the colonies. The log base 10 of total abundance of RLs determined the size of 

each data point overlaid on the whole slide image. The relative abundance of 5b dictated the 

color of each point. Such a visualization allows rapid assessment of desirable mutants in terms of 

total expression and relative abundance of 5b. 

In situ high-resolution and tandem MS analysis for PZN analogs 

In situ measurement of accurate masses of peptides was conducted on colony imprints using a 7T 

solariX Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer (Bruker 

Daltonics) equipped with a dual ESI/MALDI source and a Smartbeam II laser. Mass calibrations 

were performed externally using DHB and Peptide Calibration Standard Kit II (Bruker 

Daltonics). An m/z range of 150-3000 was acquired at 4 Mword. Data was analyzed in Data 

Analysis version 4.0 software (Bruker Daltonics). In situ tandem MS was conducted on the 

colony imprints using the MALDI ToF/ToF LIFT mode of the mass spectrometer under manual 

control. Tandem mass spectra were smoothed, baseline-corrected and analyzed in FlexAnalysis 3 

(Bruker Daltonics).  

Relative quantification of RL congeners using LC-MS/MS with MRM mode 

To compare direct MALDI-MS profiling results with LC-MS or MALDI-MS quantification of 

RL congeners following organic solvent extraction, a filter bearing ~100 colonies with the WT 
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mono-RL pathway subsequent to IPTG induction as described above was extracted using 500 µl 

of chloroform:ethanol (2:1, v/v) solution. The filter and cell debris were separated from 

supernatant using centrifugation (5 min, 10,000 r.p.m., 4°C), and the lower organic phase was 

dried under vacuum in a rotary flash evaporator (MiVac, GeneVac, UK). The samples were 

reconstituted in 50 µL of acetonitrile:H2O (1:9, v/v) solution containing 2 mM ammonium 

acetate. For MALDI-MS analyses, 1 µl of the reconstituted extracts was mixed with 1 µl of DHB 

solution (50 mg mL-1 in acetonitrile:H2O (1:1, v/v)) and spotted onto a MTP 384 polished steel 

target (Bruker Daltonics). MALDI spectra were acquired in positive reflection mode as described 

above. LC-MS quantification was performed as detailed below. The same extraction and 

quantification procedure was also used to analyze the colonies of mutant strains subsequent to 

plasmid retransformation. 

To characterize the ratios of RL congeners in liquid fermentation products, single 

colonies were obtained by streaking glycerol frozen stocks of the WT and mutant RL-producing 

strains on agar plates. Three colonies for each strain were inoculated into 3 mL of LB+Kan 

media. Following cultivation at 30°C and 250 r.p.m. for 16 h, 60 µl of cell cultures was added to 

3 mL of fresh LB media to continue growth until cell densities reached OD600=0.4~0.8. IPTG 

was added to a final concentration of 1 mM, and induction was performed at 30°C and 250 r.p.m. 

for 24 h. Culture supernatants were obtained via centrifugation for cell separation (10 min, 4,000 

r.p.m., 20°C), and were filtered through 0.22 µm-pore-size cellulose acetate membrane 

centrifuge tube filters (Sigma) before LC-MS analyses as detailed below. 

A multiple reaction monitoring (MRM) assay was performed in negative-ion mode using 

an ultrahigh performance liquid chromatography–triple quadrupole–electrospray ionization mass 

spectrometry (UHPLC-QqQ-ESI MS) system (Bruker Daltonics) consisting of an Advance 
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UHPLC module and an EVOQ Elite triple quadrupole-mass spectrometer. A Kinetex 1.7 μm 

C18 150 × 2.1 mm internal diameter column (Phenomenex, Torrance, Calif., USA) was used for 

LC analyte separation. Mobile phase A was H2O containing of 4 mM ammonium acetate and 

mobile phase B was acetonitrile. The gradient program was conducted as follows: 0-2 min, 5% 

B; 2-2.1 min, 5-50% B; 2.1-8 min, 50-90% B; 8-15 min, 90% B; 15-15.1 min, 90-5% B; 15.1-17 

min, 5% B. Total run time was 17 min. The injection volume was 2 μL. The EVOQ source 

parameters were as follows: HESI, spray voltage (-) 4500 V; cone temperature, 250 °C; cone gas 

flow, 25; heated probe temperature, 450 °C; probe gas flow, 45; nebulizer gas flow, 65; exhaust 

gas, Off. Monitored MRM transitions for Rha-C8-C10 (and Rha-C10-C8) were 475→305, 

475→169; Rha-C10-C10 were 503→333, 503→169; Rha-C10-C12 (and Rha-C12-C10) were 

531→333, 531→169 and Rha-C12-12 were 559→395, 559→169. The m/z 169 product intensity 

was utilized as a quantitation transition while the other transitions provided confirmation of RL 

identities. EVOQ MRM chromatograms were analyzed using Data Review 8.2 (Bruker 

Daltonics). The peak area of quantitation transition of a specific RL congener was used to 

calculate its fraction relative to the sum of all RL peak areas. 

Results and Discussion 

Workflow development 

We devised a workflow for high-throughput MALDI-based characterization of bacterial colonies 

consisting of strain library creation, optically-guided MALDI-MS profiling, and data 

analysis/visualization. Recombinant variants of a multi-enzymatic pathway are constructed as 

plasmid DNA libraries, which are used to transform a production host such as E. coli (Figure 

9.1A). The transformants are plated on a filter membrane,27 allowing facile manipulation of 

many colonies simultaneously, such as exchanging culture media or imprinting onto MALDI 
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targets. Microbial cells are initially cultivated on non-inducing agar media to obtain individual 

colonies and transferred onto induction plates to initiate enzyme expression and target molecule 

production. Each clonal population contains a single variant of the multi-step pathway. For 

analysis, colonies are imprinted on conductive, indium tin oxide (ITO)-coated glass slides 

(Figure 9.1B). The use of transparent MALDI targets allows acquisition of optical images prior 

to matrix application to determine the relative coordinates of microbial colonies and fiducial 

markers (Figure 9.1C). MALDI matrix is then applied using an artistic airbrush. Lab-built 

software, microMS, was developed in Python to generate MALDI laser coordinates for 

automatic colony profiling (Figure 9.1C). Laser shots are patterned around the peripheries of 

imprinted colonies for optimal sensitivity, as described below. Resulting mass spectra are 

processed using multivariant statistical analysis, and high-dimensional data sets are visualized 

over the optical images to aid mutant recovery (Figure 9.1D). 

Substrate Libraries of a Peptidic NP 

Ribosomally synthesized and post-translationally modified peptides (RiPPs) form a major class 

of natural products that are ubiquitous in currently sequenced genomes.28,29 As the product is 

synthesized from a ribosomally synthesized peptide, combinatorial variants can be generated by 

mutagenesis of the precursor gene.30,31 Plantazolicin (PZN, 1) is a member of a RiPP subclass 

termed linear azol(in)e-containing peptides. During biosynthesis of this subclass, a trimeric 

heterocycle synthetase (BCD) converts select Cys, Ser, and Thr residues in the C-terminal (core) 

region of the precursor peptide to thiazole, oxazole, and methyloxazol(in)e moieties, 

respectively. 1 is naturally produced by Bacillus velezensis FZB4232 and exhibits remarkable 

antibacterial selectivity against Bacillus anthracis,33 the causative agent of anthrax. We 

previously achieved heterologous production of 1 in E. coli using a fosmid bearing the 



 

273 
 

corresponding biosynthetic gene cluster.25 Analogs of 1 were also created by site-directed 

mutagenesis of the precursor peptide gene (bamA), followed by a medium-throughput screening 

involving liquid cultivation and methanol extraction before MS analyses.25 For successful 

synthesis of an analog of 1, a mutant precursor peptide must be accepted as a substrate by 

multiple steps of the biosynthetic pathways, including cyclodehydration, dehydrogenation, leader 

peptidolysis, N-terminal demethylation, and export. 

To apply optically-guided MALDI-MS screening to E. coli colonies producing 1 analogs, 

we targeted two non-cyclized positions, I34 and I35 (Scheme 9.1, red), where mutations are 

relatively tolerated by the biosynthesis machinery.25 Site-saturation mutagenesis was performed 

using degenerate codon (NNK)-containing primers. Polyclonal plasmid DNA was transformed 

into competent E. coli cells harboring a refactored version of the PZN cluster, where native 

Bacillus promoters were replaced with a strong T7 promoter to enhance production. IPTG was 

used to induce production of 1 on M9 medium containing acetate as the sole carbon source.  

For I34 and I35 libraries, 352 and 393 colonies were screened, respectively, achieving 

>99.9% probability of full coverage on the NNK libraries.34 Following the analysis workflow, 

we first performed unsupervised clustering of the resulting 2389 and 1623 MALDI mass spectra 

for the I34 and I35 libraries, respectively. We manually examined each spectral class for 

tentative PZN peaks, and found all the base peaks (Figure 9.2) consistent with single-residual-

mutation analogues with ‘wild-type-like’ modifications: nine azole rings, one azoline ring, leader 

peptidolysis N-terminal to Arg28, and N-terminal demethylation (Scheme 9.1). 

We observed 12 and 9 variant classes of 1for the I34 (Figure 9.3A) and I35 (Figure 9.2) libraries, 

respectively, from MALDI-ToF MS data alone. High-resolution MS analysis further revealed 

both K and Q substitutions at I34, but only Q at I35 (Figure 9.2). Colonies belonging to each 
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class were inoculated in liquid cultures for plasmid isolation and DNA sequencing. Each colony 

sequenced presented mutations consistent with predicted and observed mass shifts in base peaks 

assuming full maturation (Figure 9.2). In this study, all previously isolated PZN analogs with 

single residue mutations at I34 or I35 were detected as well as previously unreported variants 

(Figure 9.2).25 Select analogs with sufficient residual analyte were subjected to in situ ion 

identification with tandem MS (Figure 9.4-7). The tandem mass spectra suggested “wild-type-

like” modifications (Scheme 9.1) for examined base peaks (Figure 9.4-7). Detection of 

unreported PZN analogs in this study reflects the improved methodology. First, PZN variant 

production was increased through pathway refactoring and growth medium optimization, 

enabling observation of variants that were not detected before due to insufficient amount. Also, 

enhanced production allowed detection of 1 analogs directly from single colonies, eliminating 

laborious liquid cultivation and extraction steps that were necessary previously.25 This 

improvement was leveraged by optically-guided MALDI-MS to substantially increase analysis 

throughput, allowing more comprehensive codons (NNK vs NNC) for mutagenesis while 

retaining high probabilities of full library coverage.  

In addition to spectral classes containing base peaks matching predicted m/z values of 

PZN analogs, classes exhibiting low signal to noise or chemical background were also observed 

(Figure 9.3). This spectral class likely resulted from (1) mutations that are not tolerated by the 

biosynthetic machinery or lead to analog production below our detection limit, (2) the UAG stop 

codon contained in the degenerate NNK codon, (3) artifacts during optical image acquisition 

such as dust, and (4) problems targeting irregularly shaped colony imprints (Figure 9.8, I34M). 

The first two possibilities were not further studied given the consistency between current and 

previous results.25 The latter two can be alleviated through more vigilant colony finding and 
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target patterning. In particular, we found the best sensitivity was obtained when directing 

MALDI laser to the peripheries of imprinted biomass (Figure 9.8). Direct sampling on the 

imprinted biomass often yielded mass spectra with low signal to noise (Figure 9.8, I34M and 

I34R), possibly due to insufficient matrix-to-analyte mixing,  poor laser focus, or inefficient ion 

transfer from the elevated sample heights.  

Enzyme libraries in biosynthesis of 4 

Next, we sought to engineer enzyme specificity in a two-step biochemical pathway for 

rhamnolipid (RL) synthesis (Scheme 9.2). Initially discovered from Pseudomonas aeruginosa,35 

RLs are a class of biosurfactants extensively studied for potential applications in enhanced oil 

recovery, biodegradation and bioremediation36,37. To form mono-rhamnolipids (mono-RLs, 5), 

RhlB (rhamnosyltransferase 1 chain B) catalyzes condensation of 3 and 4. Different variants of 3 

are synthesized by RhlA (rhamnosyltransferase 1 chain A) using 2 of varying chain lengths and 

degrees of unsaturation,38 contributing to the structural diversity of RL lipid moieties in nature.39 

The most abundant RL species produced by P. aeruginosa and other bacteria consist of β-

hydroxydecanoyl-β-hydroxydecanoate (C10-C10) as the fatty acyl moiety, which is attributed to 

the role of RhlA as a “molecular ruler” with high preference towards β-hydroxydecanoyl-ACP 

(2, n=9) in vitro.38 Different fatty acyl chain lengths affect the physiochemical and biological 

properties of RLs,35,40 so it is desirable to produce RLs with custom congener compositions for 

specific applications. Previous screening assays relied on the link between antimicrobial activity 

and RL mixture composition and suffered from low chemical specificity.40 Here we sought to 

directly measure relative abundances of different RL congeners using MALDI-MS in high 

throughput. 
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We first explored the possibility to measure relative abundance of 5 mixtures produced 

from recombinant E. coli colonies using optically-guided MALDI-MS screening. Heterologous 

production of 5 in E. coli was achieved by co-expression of the wild-type rhlA and rhlB genes of 

P. aeruginosa as previously reported (denoted as WT).41 Following the screening workflow 

(Figure 9.1), eight peaks in the MALDI mass spectra were tentatively assigned as Na+ and K+ 

adduct ions of 5a-d based on mass matching (Figure 9.9A) and comparison of tandem MS results 

with previous reports15,16 (Figure 9.9B). Compared with LC-MS/MS quantification using 

multiple reaction monitoring (MRM) after organic solvent extraction, we found that optically-

guided MALDI-MS screening provided a good estimate on the fraction of 5b relative to total 

mono-RL amount produced from single colonies (Figure 9.9), when ion intensities of 5a-d peaks 

in MALDI mass spectra were utilized to calculate relative abundances of RL congeners (see SI 

for details). For the percentiles of 5a, 5c and 5d, however, significant differences were observed 

in quantification between MALDI-MS screening of colonies and LC-MS analysis of extracts 

(Figure 9.10). Such discrepancies may result from two sources—congeners may exhibit different 

ionization efficiency between MALDI-MS and LC-MS (Figure 9.10) or the relative congener 

transfer efficiency during imprinting differs from solvent extraction. To confirm phenotypes of 

mutant strains identified with MALDI-screening, liquid cultivation was performed followed by 

LC-MS/MS without solvent extraction to quantify RL congener abundance. 

We then applied directed protein evolution to RhlA to engineer relative abundances of 

5a-d in mono-RL production. Random mutations were introduced in the WT rhlA gene using 

error-prone PCR. The PCR product was inserted into a plasmid harboring a WT rhlB gene, and 

the resulting DNA library was used to transform E. coli cells. Following the MALDI-MS 

screening workflow (Figure 9.1), the resulting data sets were visualized by overlaying the optical 
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image with a bubble chart to provide a rapid assessment of the variance in relative abundance 

and total production of RL molecules (Figure 9.11). Each circle has a radius determined by the 

log-base 10 intensity of the sum of all RL peaks. The color is determined by the relative 

abundance of 5b. Compared with the WT strain (Figure 9.11A), the strain library in the first 

round of mutagenesis (denoted as R1) exhibited increased diversity in terms of both total 

intensities of RL ions and relative percentiles of 5b (Figure 9.11B). These results agree with the 

description of rhlA as the ‘molecular ruler’ of RL lipid moiety synthesis.38 From R1, variant 

strains producing 5b at larger fractions relative to WT were recovered with the visual aid of 

bubble charts (large, red cycles). After plasmid isolation and retransformation into a fresh strain 

background, two mutant strains (R1#6 and R1#15) were confirmed to produce significantly 

larger proportions of 5b than WT in liquid cultures (Figure 9.12). R1#6 and R1#15 each harbors 

a single amino acid mutation of V10I and A64V, respectively.  

The mutated rhlA gene from the R1#6 strain was subjected to another round of 

mutagenesis to further increase relative abundance of 5b. However, the majority of recovered 

strains from the second round of screening (R2) were found to contain no additional mutations 

relative to the parent R1#6. After retransformation, one mutant strain (R2#71) was isolated 

bearing a single amino acid mutation (L269I) that reduced proportions of 5c and 5d in liquid 

cultures compared with WT, but failed to further enhance the relative abundance of 5b relative to 

R1#6 (Figure 9.12). Further investigation is needed to elucidate the mechanisms on why selected 

mutations confer observed phenotypes. 

Conclusions 

We have developed an integrated workflow for sample preparation, automatic MALDI-MS 

acquisition, and data processing and visualization for high-throughput screening of multi-step 
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enzymatic reactions in bacterial colonies. MS provides a label-free, highly sensitive platform for 

monitoring products, reactants, and byproducts with high specificity. Incorporating machine 

vision and automatic target patterning greatly improves MS acquisition efficiency over 

traditional MSI assays, especially for randomly distributed colonies. The resulting datasets may 

be subjected to multivariate clustering or reduced into univariate plots to quickly assess and 

select mutants with desirable phenotypes. Optically-guided MALDI-MS was successfully 

applied to screen substrate and enzyme libraries directly from recombinant E. coli colonies 

prepared by standard microbiology methods. The workflow should be applicable to a wide range 

of multi-step enzyme reactions and facilitate high-throughput screening in microbial systems. 

Currently, it takes ~1 h to acquire a whole-slide microscopy image of a 25 mm × 75 mm ITO-

coated glass target, on which ~1000 colonies can be screened with a MS sampling rate of 1~2.5 s 

(2,000~10,000 MALDI laser shots) per colony. The upper limit of colony numbers per slide is 

due to the manual step for mutant recovery, as it becomes more challenging for a human 

researcher to locate a specific strain with higher colony density. Robotic recovery of mutant 

colonies may help to overcome this limitation. Further improvement may also be achieved 

through faster acquisition of optical images, automatic imprinting/matrix coating to enhance 

sample uniformity, and derivatization of analytes with poor native MALDI-MS sensitivity.  
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Table 9.1. DNA sequences in this study. 

Primers 

NP5 T7-PZN-2 For tataagaaggagatatacatgtgaaaattcactacatgggag 

NP6 T7-PZN-2 Rev tcgcgtggccggccgatatctcacgtataccttttgttttttataatcc 

NP7 PZN-2-mid For gatgtgaattcttctccgag 

NP8 PZN-2-mid Rev ctcggagaagaattcacatc 

NP119 ptnA-I34 Rev tgtggtacaggtacagcgtg 

NP124 pET28-Mid For2 catcctgcgatgcagatccggaacataatggtg 

NP125 pET28-Mid Rev2 ctgcatcgcaggatgctgc 

NP127 ptnA-I34-NNK For cacgctgtacctgtaccacannkatctctagttcatctacgttttaagcgg 

NP128 ptnA-I35-NNK For cacgctgtacctgtaccacaatcnnktctagttcatctacgttttaagcgg 

RL021 pRSF-MCSI-RhlB For atcaccacagccaggatccgaattcgatgcacgccatcctcatc 

RL022 MCSI-RhlB Rev ttaagcattatgcggccgcaagctttcaggacgcagccttcag 

RL023 MCSII-RhlA For atatacatatggcagatctcaattggatgcggcgcgaaagtctg 

RL024 MCSII-RhlA Rev tttaccagactcgagggtacctcaggcgtagccgatggc 
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APPENDIX A 

SELECTED SOURCE CODE 
 

Notes and Acknowledgements 

The following are a collection of source code used throughout the preceding chapters and for 

other projects which did not appear in this dissertation but could be useful in the future. The 

organization follows the presentation through the dissertation where possible.  Code is heavily 

commented but additional notes will appear when necessary along with a brief introduction on 

the motivation. Source code has been formatted to ease reading and may not run by simply 

copying and pasting from the document due to line numbers and indenting. 

Simulation of Analyte Movement During DESI-MSI  

Motivation, Overview and Extensions 

During the development of synchronized DESI MSI, a question that was commonly posed is 

what effect the synchronization had on spatial resolution of the resulting image.  A complication 

to the question is that the effect of fundamental properties of an analyte system on imaging 

resolution had not been developed in a systematic way.  While fluid simulations of droplets 

impacting a thin layer were performed and extrapolated for the desorption process of DESI, 

simulations of analyte movement on a surface had not been performed.  As an initial attempt to 

understand the DESI imaging process, we developed a simplified model considering only 

desorption and washing (redistribution) under the movement of a circular DESI spray.  The 

details of the model may be found in Chapter 4, here is the complete source code for the 

simulation. 
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While image convolution to assess aperture effects is well developed for optical systems, 

DESI is fundamentally different due to the spray interactions with the analyte of interest.  In 

addition to acquiring an average intensity from the spray plume, analytes must dissolve into the 

thin liquid film which develops during the DESI process.  Within the film, compounds of interest 

are removed by desorption (some amount forms gas phase ions which are ultimately detected) 

while those remaining on the surface may redistribute.  The influence of the nebulizing gas 

accelerates this process, causing rivulets of solvent and delocalization, especially when probing 

smooth surfaces.  Due to the resemblance of cleaning a surface with a pressure washer, this 

phenomenon has been named the “washing effect”.   

As it pertains to MSI, the washing effect can cause smearing to the leading edge of the 

plume or redistribution to the next row.  The choice of a sampling period (pixel size) must be 

considered against the longer period of time for both washing and desorption of material.  In 

contrast to MALDI MSI, oversampling with DESI is frequently unsuccessful as analytes may be 

removed from the outer ridges of the desorption area before they enter the area with high 

ionization efficiency. As such, there appears to be a minimum pixel size for a given sample and 

set of operating parameters, below which no image is produced.  The minimum size is larger 

than would be expected based on sensitivity and pixel size, and appears to be governed largely 

by the washing effect.  Synchronizing desorption with ion injection appeared to improve the 

situation by preventing analyte delocalization when the mass analyzer was not actively collecting 

ions.  To better understand the mechanisms behind apparent improvements in resolution, the 

washing and desorbing efficiencies were adjusted with both continuous and synchronized DESI 

sources.   
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The simulation code is written in MATLAB.  The main method is batchRun, which 

performs several simulations with altered parameters in each set.  Following the completion of 

each MSI simulation, the image distributions and a video of the simulation are saved.  At the 

start of batchRun, Initialize is run to set all imaging parameters and read in the input image.  The 

actual simulation is performed by MSIsimulation, which steps through an entire MSI run, 

iteratively updating the analyte distribution and recording a simulated output. MSIsimulation 

utilizes the helper functions cosDistribution and UpdateIntensities.  cosDistribution generates a 

cosine distributed probability function which forms the washing efficiency distribution.  

UpdateIntensities performs a single time step of analyte desorption and migration on the input 

image. 

The simulation was successful in determining how washing and desorption affected 

output image intensity and as a phenomenological model, captured many experimental results. 

Improvements could be made on the formulation of the model, to define unitless parameters as 

physical, measureable properties of the analytes and surface.  The spray profile could also be 

refined into an ellipse, which would more closely mimic actual DESI sprays.  The washing 

produces an artifact which moves analyte to the corners more than should be expected, causing 

slight deviations from circular symmetry. Implementing a similar model in a hexagonal basis set 

would eliminate some of the issues with rectangular pixels. 
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batchRun.m 
01 %refresh workspace 
02 close all 
03 clear 
04  
05 %the base filename for all output 
06 start = 'pulImg100_'; 
07  
08 %load image and simulation parameters 
09 Initialize; 
10  
11 %experiment 1, pulsed with specified efficiencies 
12 continuous = false; 
13 spotEff = .005; 
14 ionEff = .01; 
15 washingEff = 1; 
16  
17 %perform simulation to populate msi, alter inputImg, and figure movie (F) 
18 MSIsimulation; 
19  
20 %save output images 
21 save([start '005_01_1_p.mat'], 'msi'); 
22 save([start '005_01_1_pPost.mat'], 'inputImg'); 
23  
24 %save figure movie 
25 wo = VideoWriter([start '005_01_1_p.avi']); 
26 wo.FrameRate = 10; 
27 open(wo); 
28 writeVideo(wo,F); 
29 close(wo) 
30  
31 %experiment 2, continuous with efficiencies from above 
32 continuous = true; 
33  
34 %perform simulation to populate msi, alter inputImg, and figure movie (F) 
35 MSIsimulation; 
36  
37 %save output images 
38 save([start '005_01_1_c.mat'], 'msi'); 
39 save([start '005_01_1_cPost.mat'], 'inputImg'); 
40  
41 %save figure movie 
42 wo = VideoWriter([start '005_01_1_c.avi']); 
43 wo.FrameRate = 10; 
44 open(wo); 
45 writeVideo(wo,F); 
46 close(wo) 
47  
48 %etc... 
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Initialize.m 
01 %all units in µm, s, and fractional 
02  
03 %sizes 
04 spotD = 250; %spot diameter 
05 spotSTD = 125; %spot stdev/dropoff 
06 ionD = 25; %ionization diameter 
07 ionSTD = 25; %ionization dropoff 
08 T = 20; %sampling period/pixel size 
09  
10 %depletion efficiencies 
11 %.1 .5 good for slick 
12 %.01 .05 for tissue 
13 %high wash 5.625 low 0.01 
14 spotEff = .01;%removal from spot 
15 ionEff = .05;%removal from ionization area, not accounting spot 
16 washingEff = .01;%washing effect movement 
17  
18 %times 
19 deltaT = 0.1; %simulation time step 
20 MST = 2.2; %scan length (excluding ion injection) 
21 IT = 0.1; %ion injection time 
22  
23 %read image, convert to grayscale 
24 % test = 256-transpose(double(rgb2gray(imread('swirl.jpg', 'JPEG')))); 
25 % imgDPI = 9600; 
26 % test = 256-transpose(double(imread('iso-rag.jpg', 'JPEG'))); 
27 % imgDPI = 478; 
28 % test = 256-transpose(double(rgb2gray(imread('AF-TT-4x6.jpg', 'JPEG')))); 
29 % imgDPI = 1200; 
30 test = double((imread('pulsedInput.png'))); 
31  
32 %find some derived values 
33 % pixelSize = 25400/imgDPI; 
34 pixelSize = 1000/460; 
35  
36 %how quickly to move the plume (µm/s) for the given pixel size and scan                
time 
37 scanRate = T/(MST+IT); 
38 %direction of neighboring pixels 
39 directions = [ 1 0; 1 1; 0 1; -1 0; -1 -1; 0 -1; 1 -1; -1 1]; 
40 %unit vectors of each direction.   
41 dirUnit = [ 1 0; 1/sqrt(2) 1/sqrt(2); 0 1; -1 0; -1/sqrt(2)  

-1/sqrt(2); 0 -1; 1/sqrt(2) -1/sqrt(2); -1/sqrt(2) 1/sqrt(2)]; 
42  
43 continuous = true;%if spray is continuous or not 
44  
45 %how to distribute analytes in the center most pixel 
46 centerUnit = [1 1 1 1 1 1 1 1]; 
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MSIsimulation.m 
001 %generate masks of intensities, 50% larger than spotD for washing 
002  
003 %spot is the combined effect of desorption and ionization 
004 %Gaussian of specified size 
005 spot = fspecial('gaussian', round(spotD/pixelSize*2),  

round(spotSTD/pixelSize)); 
006 %normalize and scale by efficiency 
007 spot = spot/max(spot(:))*spotEff; 
008  
009 %ionization leads to signal output along with desorption 
010 ion = fspecial('gaussian', round(spotD/pixelSize*2),  

round(ionSTD/pixelSize)); 
011 ion = ion / max(ion(:))*ionEff; 
012 %include ionization with desorption (spot) 
013 spot=spot+ion; 
014  
015 %washing mask with cosine distribution 
016 wash = cosDistribution(round(spotD/pixelSize*2), 

round(4*ionSTD/pixelSize))*washingEff; 
017  
018 %dot products of each neighbor for washing 
019 dots = zeros(size(spot,1),size(spot,2),8); 
020  
021 %washing shouldn't change through iterations, just the position which is 
022 %taken care of in update 
023  
024 %middle position 
025 middle = ceil(size(spot)/2); 
026 %make radial vectors for each spot in mask 
027 %shift row and column numbers to place middle at 0 
028 rr = (1:size(spot,1))-middle(1); 
029 rc = (1:size(spot,2))-middle(2); 
030  
031 %populate dots with the dot product of radial vector with unit 
032 for ii = 1:8 
033     [x,y] = meshgrid(rc*dirUnit(ii,2),rr*dirUnit(ii,1)); 
034     dots(:,:,ii) = x+y; 
035 end 
036  
037 %set middle of mask to the centerUnit 
038 dots(middle(1),middle(2),:) = centerUnit; 
039  
040 %normalize dot products, temp is the sum 
041 tempDots = zeros(size(dots)); 
042 %remove negative values (would indicate movement into pixel) 
043 dots(dots<0)= 0; 
044 %should be a repmat here 
045 tempDots(:,:,1) = sum(dots,3); 
046 for ii = 2 :8 
047     tempDots(:,:,ii) = tempDots(:,:,ii-1); 
048 end 
049 dots = dots./tempDots; 
050  
051 current = [1 1]; %current/start position in top left 
052 currentT = 0; %current time 
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053 %output intensity image 
054 msi = zeros(round(size(inputImg)*pixelSize/T)); 
055  
056 %add border to input image to facilitate masking edges 
057 inputImg = zeros(size(test) + ceil(size(spot)/2)); 
058 %copy over test to prevent repeated reading 
059 inputImg(1:size(test,1),1:size(test,2)) = test; 
060  
061 %clear F movie from previous runs 
062 clear F; 
063 %index counter 
064 ii =1; 
065 %handle to output image 
066 h = figure('units','normalized','outerposition',[0 0 1 1]); 
067 %start timer to track elapsed time 
068 tic 
069 %while the current probe position is within the vertical bounds of the  

image 
070 while current(2) < size(inputImg,2)*pixelSize 
071  %while probe in horizontal bounds 
072     while current(1) < size(inputImg,1)*pixelSize 
073     %  convert current (µm) to pixel position 
074        pix = ceil(current/pixelSize); 
075     %  convert current to pixel of output image 
076        outPix = ceil(current/T); 
077     %  check if in bounds 
078        if(pix(1)+size(ion,1)-1 < size(inputImg,1) &&... 
079    pix(2)+size(ion,2)-1 < size(inputImg,2)) 
080         %  if in IT, add to output pixel 
081            if(mod(currentT,(MST+IT)) < IT) 
082      %add intensity to output 
083               msi(outPix(1),outPix(2)) =  msi(outPix(1),outPix(2)) + ...  

%previous intens 
084       %analyte intens, scaled by ionization 
085                   sum(sum(inputImg(pix(1):pix(1)+size(ion,1)-1, 

pix(2):pix(2)+size(ion,2)-1) .* ion))... 
086                   %times deltaT 
087       *deltaT; 
088      %update intensities on input 
089               UpdateIntensities; 
090      %For non-continuous DESI, this is skipped 
091            elseif(continuous) 
092               UpdateIntensities; 
093            end 
094        end 
095  
096     %move probe position in x direction 
097        current(1) = current(1) + scanRate*deltaT; 
098     %update time 
099        currentT = currentT + deltaT; 
100     end 
101  %probe has run over the x bounds 
102  %reset x to start 
103     current(1) = 1; 
104  %step y by T 
105     current(2) = current(2) + T; 
106  %display percent completed after each row 
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107     current(2)/(size(inputImg,2)*pixelSize)*100 
108  %make currentT the next scan of the instrument to ensure first column 

is the start of a scan 
109     currentT = ceil(currentT/2.3)*2.3; 
110  %update figure every 10th iteration 
111     if mod(ii,10) == 0 
112     subplot(1,2,1); 
113     %show input 
114     imshow(transpose(imresize(inputImg,size(msi)*2)), [0 256]); 
115     subplot(1,2,2); 
116     %show output 
117     imshow(transpose(imresize(mat2gray(msi),size(msi)*2,'bicubic'))); 
118     %record frame 
119     F(ii/10) = getframe(h); 
120     end 
121  %update iteration counter 
122     ii = ii+1; 
123  %report elapsed time 
124  toc 
125 end 
126  
 

 

 

cosDistribution.m 
01 function [ dist ] = cosDistribution( SIZE, radius) 
02 %Generates a cosine distribution mask of given SIZE with  
03 %radius = the zero crossing of cosine 
04  %initialize mask 
05     dist = zeros(SIZE); 
06      
07  %calculate radius from center 
08     r = (1:SIZE)-SIZE/2; 
09     [x,y] = meshgrid(r,r); 
10      
11  %fill distribution with cosine of radius 
12     dist = cos(sqrt(x.^2+y.^2)/(radius*2)*pi); 
13  %remove values outside of radius 
14     dist(sqrt(x.^2+y.^2) > radius) = 0; 
15 end 
16  
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UpdateIntensities.m 
01 %%washing 
02 %sub image of size of mask 
03 Img = inputImg(pix(1):pix(1)+size(spot,1)-1,pix(2):pix(2)+size(spot,2)-1); 
04 %washing effect (image scaled by washing distribution) 
05 %this is the total amount of analyte REMOVED from a given pixel 
06 temp = wash.*Img; 
07 %elements which will lose more than the initial value are set to initial  

value 
08 temp(temp > Img/deltaT) = Img(temp>Img/deltaT)/deltaT; 
09 %change in intensity by change in time (d in / d t). negate as intensity  

is leaving 
10 dindt = -temp; 
11  
12 %copy temp to match dots size 
13 temps = zeros(size(spot,1),size(spot,2),8); 
14 %should be a repmat 
15 temps(:,:,1) = temp; 
16 for j = 2:8 
17    temps(:,:,j) = temps(:,:,j-1); 
18 end 
19  
20 %account for direction of washing  
21 temps = temps.*dots; 
22  
23 %distribute temps to each neighbor as an offset of dindt 
24 % 1 0 
25 dindt(2:end,:) = dindt(2:end,:) + temps(1:end-1,:,1); 
26 % 1 1 
27 dindt(2:end,2:end) = dindt(2:end,2:end) + temps(1:end-1,1:end-1,2); 
28 % 0 1 
29 dindt(:,2:end) = dindt(:,2:end) + temps(:,1:end-1,3); 
30 % -1 0 
31 dindt(1:end-1,:) = dindt(1:end-1,:) + temps(2:end,:,4); 
32 % -1 -1 
33 dindt(1:end-1,1:end-1) = dindt(1:end-1,1:end-1) + temps(2:end,2:end,5); 
34 % 0 -1 
35 dindt(:,1:end-1) = dindt(:,1:end-1) + temps(:,2:end,6); 
36 % 1 -1 
37 dindt(2:end,1:end-1) = dindt(2:end,1:end-1) + temps(1:end-1,2:end,7); 
38 % -1 1 
39 dindt(1:end-1,2:end) = dindt(1:end-1,2:end) + temps(2:end,1:end-1,8); 
40  
41 %depletion 
42 % exponential decay based on spot 
43 dindt =dindt -spot.*inputImg(pix(1):pix(1)+size(spot,1)-1,... 
44        pix(2):pix(2)+size(spot,2)-1); 
45  
46 %update input image by dindt * dt 
47 tempInput = ... 
48    inputImg(pix(1):pix(1)+size(spot,1)-1,pix(2):pix(2)+size(spot,2)-1)... 
49    + dindt *deltaT; 
50  
51 %set negative values to 0 
52 tempInput(tempInput<0) = 0; 
53  
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54 %copy back into input image 
55 inputImg(pix(1):pix(1)+size(spot,1)-1,pix(2):pix(2)+size(spot,2)-1) =  
tempInput; 
  



 

308 
 

Monitoring DESI-MSI During Acquisition  

Motivation, Overview and Extensions 

DESI MSI was performed on a Thermo LTQ Orbitrap XL which produced proprietary .raw files.  

In most offline analysis, these were converted to mzXML files for subsequent analysis.  The file 

structure consisted of a series of files, one per row of MS image, containing a chromatogram 

with uniform sampling.  During acquisition, the sample stage would scan at a constant rate to 

produce a given pixel width.  After each row, the file would be saved and the next row started 

with a new file. 

Particularly for high resolution images, acquisition can take several hours and common 

output consisted of just monitoring the current spectrum or loading a previous row and 

attempting to glean the image quality from that.  What was missing was a lightweight program 

capable of monitoring image quality during acquisition so that changes or loss of intensity could 

be addressed immediately. This led to the development of ImageMonitor, which was a small 

GUI executable which ran during MSI acquisition, shown in Figure A.1.  The target m/z value 

and data directory were provided along with optional scaling factors for minimum and maximum 

intensities.  When the update checkbox was enabled, the software would be triggered upon the 

generation of a new file in the target directory.  This caused the raw file to be directly read and 

the displayed image updated. Of note, all previous rows stayed in memory as simply the intensity 

of the requested m/z value so the executable did not consume much memory. Since only one file 

was read upon update, disk usage was also minimized. Changing the m/z value would force the 

entire data set to be read again from disk. As the underlying code to generate the image was from 

the same library as the offline analysis code, the output displayed by the monitor would be 

similar to the expected output. While this particular implementation is not generally applicable to 
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different instrument systems, for MSI instruments which produce images a row at a time, a 

similar algorithm could be useful in monitoring image acquisition. 

ImageMonitor is written in C#. The main method in Program.cs simply creates a new 

form and runs it.  The From1 is the main GUI window, designed in Visual Studio.  The 

automatically generated From1.Designer.cs is included for completeness.  The main logic is 

contained in Form1.cs.  The only dependency of Form1.cs is DoubleImage, which was part of an 

MSI library.  DoubleImage models an intensity matrix with double precision. 
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Program.cs 
01 using System; 
02 using System.Collections.Generic; 
03 using System.Linq; 
04 using System.Threading.Tasks; 
05 using System.Windows.Forms; 
06  
07 namespace ImageMonitor 
08 { 
09     static class Program 
10     { 
11         /// <summary> 
12         /// The main entry point for the application. 
13         /// </summary> 
14         [STAThread] 
15         static void Main() 
16         { 
17             Application.EnableVisualStyles(); 
18             Application.SetCompatibleTextRenderingDefault(false); 
19             Application.Run(new Form1()); 
20         } 
21     } 
22 } 
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Form1.Designer.cs 
001 using System.Windows.Forms; 
002 namespace ImageMonitor 
003 { 
004     partial class Form1 
005     { 
006         /// <summary> 
007         /// Required designer variable. 
008         /// </summary> 
009         private System.ComponentModel.IContainer components = null; 
010  
011         /// <summary> 
012         /// Clean up any resources being used. 
013         /// </summary> 
014         /// <param name="disposing">true if managed resources should be  

disposed; otherwise, false.</param> 
015         protected override void Dispose(bool disposing) 
016         { 
017             if (disposing && (components != null)) 
018             { 
019                 components.Dispose(); 
020             } 
021             base.Dispose(disposing); 
022         } 
023  
024         #region Windows Form Designer generated code 
025  
026         /// <summary> 
027         /// Required method for Designer support - do not modify 
028         /// the contents of this method with the code editor. 
029         /// </summary> 
030         private void InitializeComponent() 
031         { 
032             this.btDirectory = new System.Windows.Forms.Button(); 
033             this.lblMonitoring = new System.Windows.Forms.Label(); 
034             this.tbMass = new System.Windows.Forms.TextBox(); 
035             this.pbImage = new System.Windows.Forms.PictureBox(); 
036             this.lblMass = new System.Windows.Forms.Label(); 
037             this.tbDirectory = new System.Windows.Forms.TextBox(); 
038             this.lblMin = new System.Windows.Forms.Label(); 
039             this.tbMin = new System.Windows.Forms.TextBox(); 
040             this.lblMax = new System.Windows.Forms.Label(); 
041             this.tbMax = new System.Windows.Forms.TextBox(); 
042             this.cbUpdate = new System.Windows.Forms.CheckBox(); 
043              
((System.ComponentModel.ISupportInitialize)(this.pbImage)).BeginInit(); 
044             this.SuspendLayout(); 
045             //  
046             // btDirectory 
047             //  
048             this.btDirectory.Location = new System.Drawing.Point(658, 9); 
049             this.btDirectory.Name = "btDirectory"; 
050             this.btDirectory.Size = new System.Drawing.Size(60, 35); 
051             this.btDirectory.TabIndex = 0; 
052             this.btDirectory.Text = "Choose Folder"; 
053             this.btDirectory.UseVisualStyleBackColor = true; 
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054             this.btDirectory.Click += new  
System.EventHandler(this.btDirectory_Click); 

055             //  
056             // lblMonitoring 
057             //  
058             this.lblMonitoring.AutoSize = true; 
059             this.lblMonitoring.Location = new System.Drawing.Point(519,  

9); 
060             this.lblMonitoring.Name = "lblMonitoring"; 
061             this.lblMonitoring.Size = new System.Drawing.Size(62, 13); 
062             this.lblMonitoring.TabIndex = 1; 
063             this.lblMonitoring.Text = "Monitoring: "; 
064             //  
065             // tbMass 
066             //  
067             this.tbMass.Location = new System.Drawing.Point(18, 26); 
068             this.tbMass.Name = "tbMass"; 
069             this.tbMass.Size = new System.Drawing.Size(100, 20); 
070             this.tbMass.TabIndex = 2; 
071             this.tbMass.KeyUp += new  

System.Windows.Forms.KeyEventHandler(this.tbMass_TextChanged); 
072             //  
073             // pbImage 
074             //  
075             this.pbImage.BackColor = System.Drawing.Color.Black; 
076             this.pbImage.Location = new System.Drawing.Point(18, 52); 
077             this.pbImage.Name = "pbImage"; 
078             this.pbImage.Size = new System.Drawing.Size(700, 650); 
079             this.pbImage.TabIndex = 3; 
080             this.pbImage.TabStop = false; 
081             //  
082             // lblMass 
083             //  
084             this.lblMass.AutoSize = true; 
085             this.lblMass.Location = new System.Drawing.Point(51, 9); 
086             this.lblMass.Name = "lblMass"; 
087             this.lblMass.Size = new System.Drawing.Size(32, 13); 
088             this.lblMass.TabIndex = 1; 
089             this.lblMass.Text = "Mass"; 
090             //  
091             // tbDirectory 
092             //  
093             this.tbDirectory.Location = new System.Drawing.Point(441,26); 
094             this.tbDirectory.Name = "tbDirectory"; 
095             this.tbDirectory.Size = new System.Drawing.Size(211, 20); 
096             this.tbDirectory.TabIndex = 2; 
097             this.tbDirectory.TextChanged += new  

System.EventHandler(this.tbDirectory_TextChanged); 
098             this.tbDirectory.KeyUp += new  

System.Windows.Forms.KeyEventHandler(this.tbMass_TextChanged); 
099             //  
100             // lblMin 
101             //  
102             this.lblMin.AutoSize = true; 
103             this.lblMin.Location = new System.Drawing.Point(141, 9); 
104             this.lblMin.Name = "lblMin"; 
105             this.lblMin.Size = new System.Drawing.Size(66, 13); 
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106             this.lblMin.TabIndex = 1; 
107             this.lblMin.Text = "Min Intensity"; 
108             //  
109             // tbMin 
110             //  
111             this.tbMin.Location = new System.Drawing.Point(133, 26); 
112             this.tbMin.Name = "tbMin"; 
113             this.tbMin.Size = new System.Drawing.Size(83, 20); 
114             this.tbMin.TabIndex = 2; 
115             this.tbMin.TextChanged += new  

System.EventHandler(this.tbMin_TextChanged); 
116             this.tbMin.KeyUp += new  

System.Windows.Forms.KeyEventHandler(this.tbMass_TextChanged); 
117             //  
118             // lblMax 
119             //  
120             this.lblMax.AutoSize = true; 
121             this.lblMax.Location = new System.Drawing.Point(246, 9); 
122             this.lblMax.Name = "lblMax"; 
123             this.lblMax.Size = new System.Drawing.Size(69, 13); 
124             this.lblMax.TabIndex = 1; 
125             this.lblMax.Text = "Max Intensity"; 
126             //  
127             // tbMax 
128             //  
129             this.tbMax.Location = new System.Drawing.Point(239, 26); 
130             this.tbMax.Name = "tbMax"; 
131             this.tbMax.Size = new System.Drawing.Size(83, 20); 
132             this.tbMax.TabIndex = 2; 
133             this.tbMax.TextChanged += new  

System.EventHandler(this.tbMax_TextChanged); 
134             this.tbMax.KeyUp += new  

System.Windows.Forms.KeyEventHandler(this.tbMass_TextChanged); 
135             //  
136             // cbUpdate 
137             //  
138             this.cbUpdate.AutoSize = true; 
139             this.cbUpdate.Location = new System.Drawing.Point(346, 19); 
140             this.cbUpdate.Name = "cbUpdate"; 
141             this.cbUpdate.Size = new System.Drawing.Size(67, 17); 
142             this.cbUpdate.TabIndex = 4; 
143             this.cbUpdate.Text = "Update?"; 
144             this.cbUpdate.UseVisualStyleBackColor = true; 
145             this.cbUpdate.CheckedChanged += new  

System.EventHandler(this.cbUpdate_CheckedChanged); 
146             //  
147             // Form1 
148             //  
149             this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F); 
150             this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font; 
151             this.ClientSize = new System.Drawing.Size(734, 712); 
152             this.Controls.Add(this.cbUpdate); 
153             this.Controls.Add(this.pbImage); 
154             this.Controls.Add(this.tbDirectory); 
155             this.Controls.Add(this.tbMax); 
156             this.Controls.Add(this.lblMax); 
157             this.Controls.Add(this.tbMin); 
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158             this.Controls.Add(this.lblMin); 
159             this.Controls.Add(this.tbMass); 
160             this.Controls.Add(this.lblMass); 
161             this.Controls.Add(this.lblMonitoring); 
162             this.Controls.Add(this.btDirectory); 
163             this.Name = "Form1"; 
164             this.Text = "MSI Monitor"; 
165     ((System.ComponentModel.ISupportInitialize)(this.pbImage)).EndInit(); 
166             this.ResumeLayout(false); 
167             this.PerformLayout(); 
168  
169         } 
170  
171         #endregion 
172  
173         private System.Windows.Forms.Button btDirectory; 
174         private System.Windows.Forms.Label lblMonitoring; 
175         private System.Windows.Forms.TextBox tbMass; 
176         private System.Windows.Forms.PictureBox pbImage; 
177         private Label lblMass; 
178         private TextBox tbDirectory; 
179         private Label lblMin; 
180         private TextBox tbMin; 
181         private Label lblMax; 
182         private TextBox tbMax; 
183         private CheckBox cbUpdate; 
184     } 
185 }  
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Form1.cs 
001 using System; 
002 using System.Collections.Generic; 
003 using System.ComponentModel; 
004 using System.Data; 
005 using System.Drawing; 
006 using System.IO; 
007 using System.Linq; 
008 using System.Text; 
009 using System.Threading.Tasks; 
010 using System.Windows.Forms; 
011 using MassSpecLibrary; 
012 using ThermoRawFileReaderDLL.FinniganFileIO; 
013 using System.Runtime.CompilerServices; 
014  
015 namespace ImageMonitor 
016 { 
017     public partial class Form1 : Form 
018     { 
019   //trigger to detect file creation 
020         private FileSystemWatcher watcher = new FileSystemWatcher(); 
021   //image data 
022         private List<List<double>> image; 
023   //target m/z value 
024         private double? mzValue; 
025   //path to monitor 
026         private String path; 
027   //list of files already analyzed 
028         private List<String> processed = new List<String>(); 
029   //out variable for file information 
030         private FinniganFileReaderBaseClass.udtScanHeaderInfoType header; 
031   //raw file with data 
032         private XRawFileIO rawFile; 
033   //m/z tolerance 
034         private double tolerance = 0.05; 
035   //min and max scaling 
036         private double? min; 
037         private double? max; 
038   //lock for multithreading 
039         private object thisLock = new object(); 
040  
041   //constructor 
042         public Form1() 
043         { 
044             InitializeComponent(); 
045    //add a function for when the file system changes 
046             watcher.Created += watcher_Changed; 
047    //only consider raw files 
048             watcher.Filter = "*.raw"; 
049         } 
050  
051         private void watcher_Changed(object sender,FileSystemEventArgs e) 
052         { 
053    //reset the image when a new file is created 
054             RefreshImage(reset: false); 
055         } 
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056  
057   //handle changes in mass values 
058         private void tbMass_TextChanged(object sender, KeyEventArgs e) 
059         { 
060             double temp; 
061  
062    //parse value 
063             if (Double.TryParse(tbMass.Text, out temp) == true) 
064                 mzValue = temp; 
065             else 
066                 mzValue = null; 
067    //refresh image 
068             RefreshImage(reset: true); 
069         } 
070  
071   //handle clicking on the browse directory button 
072         private void btDirectory_Click(object sender, EventArgs e) 
073         { 
074    //popup a new folder browser 
075             FolderBrowserDialog diag = new FolderBrowserDialog(); 
076             if (diag.ShowDialog() == DialogResult.OK) 
077             { 
078     //get directory, set watcher path and text box 
079                 tbDirectory.Text = watcher.Path = path =  

diag.SelectedPath; 
080     //enable watcher to respond 
081                 watcher.EnableRaisingEvents = true; 
082     //refresh image 
083                 RefreshImage(reset: true); 
084             } 
085         } 
086  
087         [MethodImpl(MethodImplOptions.Synchronized)] 
088         private void RefreshImage(bool reset) 
089         { 
090    //set image to blank if no m/z value is specified, the  

directory doesn't exist, or the update box is unchecked 
091             if (mzValue.HasValue == false || !Directory.Exists(path) ||  

cbUpdate.Checked == false) 
092             { 
093                 pbImage.Image = null; 
094                 return; 
095             } 
096  
097    //if reset is passed in (when the entire image needs to be  

reset) 
098             if (reset == true) 
099             { 
100     //initialize new image 
101                 image = new List<List<double>>(); 
102     //initialize new list of processed raw files (none  

are processed) 
103                 processed = new List<String>(); 
104             } 
105  
106    //get target m/z value 
107             double mz = mzValue.Value; 
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108  
109    //create list of all files 
110             var files = Directory.EnumerateFiles(path, "*.raw") 
111     //not in processed list 
112                 .Except(processed) 
113     //ordered by creation time 
114                 .OrderBy(f => File.GetCreationTime(f)) 
115                 .ToList(); 
116  
117    //if fewer than 2 files, keep blank image 
118             if (files.Count < 2) 
119             { 
120                 pbImage.Image = null; 
121                 return; 
122             } 
123  
124             //don't include last file, it will usually be actively  

written 
125             files.RemoveAt(files.Count - 1); 
126  
127    //initialize variables which will be passed by ref or out  

in COM methods 
128             rawFile = new XRawFileIO(); 
129             double[] mzs, intens; 
130             int scans, numPeaks; 
131    //flag to check if m/z is in range 
132             bool checkmz = false; 
133  
134    //for each file 
135             foreach (String file in files) 
136             { 
137    //try to open 
138                 if (rawFile.OpenRawFile(file) == true) 
139                 { 
140     //get number of scans 
141                     scans = rawFile.GetNumScans(); 
142     //initialize new row in image 
143                     image.Add(new List<double>(scans)); 
144  
145     //for each scan (pixel) in row (note 1 based  

indexing) 
146                     for (int i = 1; i <= scans; i++) 
147                     { 
148      //read in header 
149                         rawFile.GetScanInfo(i, out header); 
150      //get number of peaks 
151                         numPeaks = header.NumPeaks; 
152      //initialize m/z and intensity arrays 
153                         mzs = new double[numPeaks]; 
154                         intens = new double[numPeaks]; 
155  
156      //read in scan data to arrays 
157                         rawFile.GetScanData(i, ref mzs, ref intens, ref  

header); 
158  
159      //have not previously checked if m/z in range 
160                         if (checkmz == false) 
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161                         { 
162      //check value 
163                             checkmz = true; 
164                             if( mzs[0] > mz || mzs[mzs.Length - 1] < mz) 
165                             { 
166       //make image blank if outside  

of range 
167                                 pbImage.Image = null; 
168                                 return; 
169                             } 
170                         } 
171  
172      //iterate through each m/z 
173                         double maxInt = 0; 
174                         for (int j = 0; j < mzs.Length; j++) 
175      //record max intensity for m/zs in range  
176                             if (mzs[j] >= mz - tolerance &&  

mzs[j] <= mz + tolerance) 
177                                 maxInt = intens[j] > maxInt ? intens[j] :  

maxInt; 
178  
179      //add in pixel intensity 
180                         image.Last().Add(maxInt); 
181                     } 
182     //add to the processed list 
183                     processed.Add(file); 
184                 } 
185    //close file at end 
186                 rawFile.CloseRawFile(); 
187             } 
188  
189    //create new double image of current image data 
190             DoubleImage dblImg = new DoubleImage(image); 
191  
192    //set min and max values 
193             if (min.HasValue == true) 
194                 dblImg.SetMin(min.Value); 
195  
196             if (max.HasValue == true) 
197                 dblImg.SetMax(max.Value); 
198  
199    //draw image 
200             pbImage.Image = dblImg 
201                 .DrawBitmap(pbImage.Width, pbImage.Height, 
202                 DoubleImage.Coloring.Rainbow, 
203           System.Drawing.Drawing2D.InterpolationMode.HighQualityBicubic); 
204         } 
205  
206   //handle changes in directory text box 
207         private void tbDirectory_TextChanged(object sender, EventArgs e) 
208         { 
209             if(Directory.Exists(tbDirectory.Text) == true) 
210             { 
211     //set new watcher path and trigger new events 
212                 watcher.Path = path = tbDirectory.Text; 
213                 watcher.EnableRaisingEvents = true; 
214     //refresh image 
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215                 RefreshImage(reset: true); 
216             } 
217         } 
218  
219   //handle min text box changes 
220         private void tbMin_TextChanged(object sender, EventArgs e) 
221         { 
222    //try to parse value 
223             double temp; 
224             if (Double.TryParse(tbMin.Text, out temp) == true) 
225             { 
226    //refresh image if changed 
227                 min = temp; 
228                 RefreshImage(reset: true); 
229             } 
230             else 
231                 min = null; 
232         } 
233  
234   //handle max text box changes 
235         private void tbMax_TextChanged(object sender, EventArgs e) 
236         { 
237    //try to parse value 
238             double temp; 
239             if (Double.TryParse(tbMax.Text, out temp) == true) 
240             { 
241     //refresh image if needed 
242                 max = temp; 
243                 RefreshImage(reset: true); 
244             } 
245             else 
246                 max = null; 
247         } 
248  
249   //handle interactions with check box 
250         private void cbUpdate_CheckedChanged(object sender, EventArgs e) 
251         { 
252    //force reset (will be blank if box is unchecked) 
253             RefreshImage(reset: true); 
254         } 
255     } 
256 } 
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DoubleImage.cs 
001 using System; 
002 using System.Collections.Generic; 
003 using System.Linq; 
004 using System.Text; 
005 using System.Threading.Tasks; 
006  
007 using System.Drawing; 
008 using System.Drawing.Drawing2D; 
009 using System.Drawing.Imaging; 
010 using System.IO; 
011  
012  
013 namespace MassSpecLibrary 
014 { 
015     /// <summary> 
016     /// A 2D array representing an image, but has double precision. 
017     /// </summary> 
018     public class DoubleImage 
019     { 
020         /// <summary> 
021         /// Gets the image values. 
022         /// </summary> 
023         /// <value> 
024         /// The image array with double values. 
025         /// </value> 
026         public double[,] Image {get; private set;} 
027  
028         public double min = Double.MaxValue, max = Double.MinValue; 
029         private int intensMax = 255, intensMin = 0, width, height; 
030  
031         /// <summary> 
032         /// An enum of the possible color values. 
033         /// </summary> 
034         public enum Coloring { 
035             /// <summary> 
036             /// The rainbow color map 
037             /// </summary> 
038             Rainbow, 
039             /// <summary> 
040             /// The green color map 
041             /// </summary> 
042             Green, 
043             /// <summary> 
044             /// The greyscale color map 
045             /// </summary> 
046             Greyscale , 
047  
048             WhiteAndBlack 
049         } 
050  
051         public DoubleImage(List<List<double>> image) 
052         { 
053             width = image.Min(row => row.Count); 
054             height = image.Count; 
055  
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056             max = image.AsParallel().Max(row => row.Max()); 
057             min = image.AsParallel().Min(row => row.Min()); 
058  
059             Image = new double[height, width]; 
060  
061             for (int i = 0; i < height; i++) 
062                 for (int j = 0; j < width; j++) 
063                     Image[i, j] = image[i][j]; 
064         } 
065  
066         /// <summary> 
067         /// Initializes a new instance of the <see cref="DoubleImage"/>  

class.  Simply allocates the array space of specified size. 
068         /// </summary> 
069         /// <param name="rows">The number of rows to allocate.</param> 
070         /// <param name="cols">The number of columns to allocate.</param> 
071         public DoubleImage(int rows, int cols) 
072         { 
073             Image = new double[rows, cols]; 
074             width = cols; 
075             height = rows; 
076         } 
077  
078         /// <summary> 
079         /// Adds the specified value to [row,col]. Has minimal error  

checking and updates the value of min and max. 
080         /// </summary> 
081         /// <param name="row">The row to add to.</param> 
082         /// <param name="col">The column to add to.</param> 
083         /// <param name="val">The value to add to [row,col].</param> 
084         public void Add(int row, int col, double val) 
085         { 
086             if (row >= 0 && row < Rows() && col >= 0 && col < Cols()) 
087             { 
088                 Image[row, col] = val; 
089                 max = max < val ? val : max; 
090                 min = min > val ? val : min; 
091             } 
092         } 
093  
094         /// <summary> 
095         /// Subtracts the values of one double image from the instance,  

ie this - other.  Returns if dimensions do not match. 
096         /// </summary> 
097         /// <param name="other">The other double image.</param> 
098         public void Subtract(DoubleImage other){ 
099             if(other.Rows() != Rows() || other.Cols() != Cols()) 
100                 return; 
101             for (int i = 0; i < Rows(); i++) 
102                 for (int j = 0; j < Cols(); j++) 
103                     Image[i, j] -= other.Image[i, j]; 
104         } 
105  
106         /// <summary> 
107         /// Draws the bitmap of the internal data in black and white with  

no scaling. 
108         /// </summary> 
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109         /// <returns>A bitmap of the data in black and white with no  
scaling.</returns> 

110         public Bitmap DrawBitmap() 
111         { 
112             int rows = Image.GetLength(0), cols = Image.GetLength(1); 
113             Bitmap result = new Bitmap(cols, rows); // this is  

transposed for the bitmap 
114  
115             if (max == min) 
116                 return result; //this would cause an error, just return a  

blank image 
117  
118             //populate bitmap image scaled by min and max 
119  
120             for (int i = 0; i < rows; i++) 
121             { 
122                 for (int j = 0; j < cols; j++) 
123                 { 
124                     //scale intensities linearly from min to max, if min  

== max intens is 0 
125                     //int intens = max == min ? 0 : (int)((intensMax –  

intensMin) / (max - min) * (image[i, j])) + intensMin; 
126                     int intens = max == min ? 0 : (int)((255) / (max –  

min) * (Image[i, j])); 
127                     //rescale between min and max intensity, < min is 0 >  

max = 255 
128                     intens = intensMax == intensMin ? 0 :  

(int)((double)255 / (intensMax-intensMin) * 
(intens -intensMin)) ; 

129                     intens = intens < 0 ? 0 : (intens > 255 ? 255 :  
intens); 

130                     result.SetPixel(j, i, Color.FromArgb(intens, intens,  
intens)); 

131                 } 
132             } 
133             return result; 
134         } 
135  
136         /// <summary> 
137         /// Draws the unscaled bitmap with specified color. 
138         /// </summary> 
139         /// <param name="color">The colormap to use for drawing.</param> 
140         /// <returns>A colored bitmap with no resizing</returns> 
141         public Bitmap DrawBitmap(Coloring color) 
142         { 
143             Bitmap result = DrawBitmap(); 
144  
145             Graphics g = Graphics.FromImage(result); 
146  
147             ImageAttributes attr = new ImageAttributes(); 
148             if(color == Coloring.Rainbow) 
149                 attr.SetRemapTable(RecolorPallette.RainbowMap); 
150             if (color == Coloring.Green) 
151                 attr.SetRemapTable(RecolorPallette.GreenMap); 
152             if (color == Coloring.WhiteAndBlack) 
153                 attr.SetRemapTable(RecolorPallette.WhiteAndBlackMap); 
154             g.DrawImage(result, new Rectangle(0, 0, result.Width,  
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result.Height), 0, 0, result.Width, result.Height, 
GraphicsUnit.Pixel, attr); 

155  
156             return result; 
157         } 
158  
159         /// <summary> 
160         /// Draws the scaled bitmap with specified interpolation and  

coloring.  Width and height are the allowable maximums, the  
resulting bitmap will fit in this area maintaining the 
aspect ratio. 

161         /// </summary> 
162         /// <param name="width">The desired maximum width.</param> 
163         /// <param name="height">The desired maximum height.</param> 
164         /// <param name="color">The colormap to use.</param> 
165         /// <param name="interp">The interpolation mode.</param> 
166         /// <returns>Scaled, colored, interpolated bitmap.</returns> 
167         public Bitmap DrawBitmap(int width, int height, Coloring color,  

InterpolationMode interp) 
168         { 
169             int mag = Magnification(width, height); 
170             Bitmap temp = DrawBitmap(); 
171             Bitmap result = new Bitmap(this.width * mag, this.height *  

mag); 
172             //resize 
173  
174             Graphics g = Graphics.FromImage(result); 
175             g.InterpolationMode = interp; 
176  
177             g.DrawImage(temp, 0, 0, result.Width, result.Height); 
178  
179             ImageAttributes attr = new ImageAttributes(); 
180             if (color == Coloring.Rainbow) 
181                 attr.SetRemapTable(RecolorPallette.RainbowMap); 
182             if (color == Coloring.Green) 
183                 attr.SetRemapTable(RecolorPallette.GreenMap); 
184             if (color == Coloring.WhiteAndBlack) 
185                 attr.SetRemapTable(RecolorPallette.WhiteAndBlackMap); 
186             g.DrawImage(result, new Rectangle(0, 0, result.Width,  

result.Height), 0, 0, result.Width, 
result.Height, GraphicsUnit.Pixel, attr); 

187  
188             return result; 
189         } 
190  
191         public Bitmap DrawBitmap(int magnification, Coloring color,  

InterpolationMode interp) 
192         { 
193             Bitmap temp = DrawBitmap(); 
194             Bitmap result = new Bitmap(this.width * magnification,  

this.height * magnification); 
195             //resize 
196  
197             Graphics g = Graphics.FromImage(result); 
198             g.InterpolationMode = interp; 
199  
200             g.DrawImage(temp, 0, 0, result.Width, result.Height); 
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201  
202             ImageAttributes attr = new ImageAttributes(); 
203             if (color == Coloring.Rainbow) 
204                 attr.SetRemapTable(RecolorPallette.RainbowMap); 
205             if (color == Coloring.Green) 
206                 attr.SetRemapTable(RecolorPallette.GreenMap); 
207             if (color == Coloring.WhiteAndBlack) 
208                 attr.SetRemapTable(RecolorPallette.WhiteAndBlackMap); 
209             g.DrawImage(result, new Rectangle(0, 0, result.Width,  

result.Height), 0, 0, result.Width, 
result.Height, GraphicsUnit.Pixel, attr); 

210  
211             return result; 
212         } 
213  
214         /// <summary> 
215         /// Draws the bitmap with a colored ROI. 
216         /// </summary> 
217         /// <param name="coloring">The coloring of the image to  

use.</param> 
218         /// <param name="inROI">The locations that are in the ROI.  True  

implies the pixel is in the ROI.</param> 
219         /// <param name="ROIColor">Color of the ROI.</param> 
220         /// <returns>A bitmap with the ROI colored in</returns> 
221         public Bitmap DrawBitmap(Coloring coloring, bool[,] inROI, Color  

ROIColor) 
222         { 
223             //start with normal bitmap 
224             Bitmap result = DrawBitmap(coloring); 
225             //recolor points in list 
226             for (int i = 0; i < inROI.GetLength(0); i++) 
227                 for (int j = 0; j < inROI.GetLength(1); j++) 
228                     if (inROI[i, j] == true) 
229                         result.SetPixel(j, i, ROIColor); //transpose for  

image! 
230             return result; 
231         } 
232  
233         /// <summary> 
234         /// Draws the bitmap at the desired scale, specified color, with  

ROI colored in. 
235         /// </summary> 
236         /// <param name="width">The desired maximum width.</param> 
237         /// <param name="height">The desired maximum height.</param> 
238         /// <param name="color">The colormap to use.</param> 
239         /// <param name="interp">The interpolation mode.</param> 
240         /// <param name="inROI">The locations that are in the ROI.  True  

implies the pixel is in the ROI.</param> 
241         /// <param name="ROIColor">Color of the ROI.</param> 
242         /// <returns>Bitmap that is rescaled, colored and has ROI  

colored.</returns> 
243         public Bitmap DrawBitmap(int width, int height, Coloring color,  

InterpolationMode interp, bool[,] inROI, 
Color ROIColor) 

244         { 
245             //start with normal bitmap, resized as needed 
246             Bitmap result = DrawBitmap(width, height, color, interp); 
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247             int mag = Magnification(width, height); 
248             Graphics g = Graphics.FromImage(result); 
249             Brush b = new SolidBrush(ROIColor); 
250  
251             //draw in rectangular pixels  
252             for (int i = 0; i < inROI.GetLength(0); i++) 
253                 for (int j = 0; j < inROI.GetLength(1); j++) 
254                     if (inROI[i, j] == true) 
255                         g.FillRectangle(b, j * mag -mag/2, i * mag –  

mag/2,mag, mag); //transpose for image! 
256              
257  
258             //return 
259             return result; 
260         } 
261  
262         public Bitmap DrawBitmap(int width, int height, Coloring color,  

InterpolationMode interp, 
List<List<Point>> ROI, Color ROIColor) 

263         { 
264             //start with normal bitmap, resized as needed 
265             Bitmap result = DrawBitmap(width, height, color, interp); 
266             int mag = Magnification(width, height); 
267             Graphics g = Graphics.FromImage(result); 
268             Brush b = new SolidBrush(ROIColor); 
269             SolidBrush sb = new SolidBrush(Color.White); 
270  
271             for (int i = 0; i < ROI.Count; i++) 
272             { 
273                 float? x = null, y = null; //hold the maxes 
274                 foreach (Point p in ROI[i]) 
275                 { 
276                     x = x > p.X ? x : p.X; 
277                     y = y > p.Y ? y : p.Y; 
278                     g.FillRectangle(b, p.Y * mag - mag / 2, p.X * mag –  

mag / 2, mag, mag); 
279                 } 
280                 g.DrawString(i.ToString(), new Font("Arial", 6), sb, new  

PointF(y.Value * mag - mag / 2, 
x.Value * mag - mag / 2)); 

281             } 
282  
283              
284  
285             //return 
286             return result; 
287         } 
288  
289  
290  
291         /// <summary> 
292         /// Determines the magnification to the target width and height  

that maintains the aspect ratio and integer pixel values 
293         /// </summary> 
294         /// <param name="targetWidth">Target width.</param> 
295         /// <param name="targetHeight">Target height.</param> 
296         /// <returns>The scaling magnification as an integer.</returns> 
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297         public int Magnification(int targetWidth, int targetHeight) 
298         { 
299             return (targetWidth / width < targetHeight / height ?  

targetWidth / width : targetHeight / height); 
300         } 
301  
302         /// <summary> 
303         /// Get the number of rows of the image. 
304         /// </summary> 
305         /// <returns>The number of rows.</returns> 
306         public int Rows() 
307         { 
308             return Image.GetLength(0); 
309         } 
310  
311         /// <summary> 
312         /// Get the number of columns of the image. 
313         /// </summary> 
314         /// <returns>The number of columns of the image.</returns> 
315         public int Cols() 
316         { 
317             return Image.GetLength(1); 
318         } 
319  
320         /// <summary> 
321         /// Sets the intensity maximum of the resulting bitmap.  Checks  

the supplied value is greater than the minimum and 
less than 255.  

322         /// </summary> 
323         /// <param name="val">The new intensity maximum.</param> 
324         public void SetIntMax(int val) 
325         { 
326             //max should be between min and 255 
327             intensMax = val < intensMin ? intensMin : (val > 255 ? 255 :  

val); 
328         } 
329  
330         /// <summary> 
331         /// Sets the intensity minimum of the resulting bitmap. Checks  

the supplied value is less than the maximum and greater 
than 0. 

332         /// </summary> 
333         /// <param name="val">The new intensity minimum.</param> 
334         public void SetIntMin(int val) 
335         { 
336             //min should be between 0 and max 
337             intensMin = val < 0 ? 0 : (val > intensMax ? intensMax :  

val); 
338         } 
339  
340         public void SetMin(double val) 
341         { 
342             min = val; 
343         } 
344  
345         public void SetMax(double val) 
346         { 
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347             max = val; 
348         } 
349  
350         /// <summary> 
351         /// Determines the difference between two double images.   

Intensities are scaled between 0 and 1, and the square 
difference is calculated.  Min and max are set to 0 and 1. 

352         /// </summary> 
353         /// <param name="other">The other DoubleImage to subtract with.   

Assumes the instances are the same size.</param> 
354         /// <returns>A new double image with values equal to the square  

difference between pixels in the input images.</returns> 
355         public DoubleImage ScaledSquareDiff(DoubleImage other) 
356         { 
357             DoubleImage result = new DoubleImage(Rows(), Cols()); 
358             for (int i = 0; i < Rows(); i++) 
359             { 
360                 for (int j = 0; j < Cols(); j++) 
361                 { 
362                     result.Image[i,j] = Math.Pow((Image[i, j] - min) /  

(max - min) - (other.Image[i, j] - other.min) / 
(other.max - other.min), 2); 

363                 } 
364             } 
365             result.min = 0; 
366             result.max = 1; 
367             return result; 
368         } 
369  
370         /// <summary> 
371         /// Saves the double image as an ascii tab delineated file. 
372         /// </summary> 
373         /// <param name="filename">The filename to save to.</param> 
374         public void Save(String filename) 
375         { 
376             StreamWriter writer = new StreamWriter(filename); 
377             for (int i = 0; i < Rows(); i++) 
378             { 
379                 for (int j = 0; j < Cols(); j++) 
380                 { 
381                     writer.Write(Image[i, j] + "\t"); 
382                 } 
383                 writer.WriteLine(); 
384             } 
385             writer.Close(); 
386         } 
387  
388         public static void SaveScale(string file, int pixelheight,  

Coloring color) 
389         { 
390             DoubleImage di = new DoubleImage(pixelheight, 256); 
391             for (int i = 0; i < 256; i++) 
392                 for (int j = 0; j < pixelheight; j++) 
393                     di.Image[j,i] = i; 
394             di.SetMin(0); 
395             di.SetMax(255); 
396             di.DrawBitmap(color).Save(file); 
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397         } 
398     } 
399 }  
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microMS 

Motivation, Overview and Extensions 

After the initial demonstration of single cell profiling with MALDI MS using 

fluorescence imaging to locate cells, it was clear that a more user friendly option was necessary 

to promote widespread adoption. The first reported workflow required significant manual effort 

on the user and could result in inaccurate target localization due to handling of tiled images, a 

coordinate registration which was vulnerable to small errors, and utilizing fixed fiducial marks 

generated prior to microscopy. While these issues were addressed by microMS, a continuing 

goal was to make optically-guided single cell profiling approachable to novice users on a variety 

of instruments.  The result is a feature rich GUI which displays each step of the process and 

provides ample feedback to ensure quality data results.  On the back end, the implementation of 

coordinate mappers as an abstract base class greatly simplifies the addition of new instruments; 

only a handful of functions need implementation before the image analysis features are available 

to new systems.  Decoupling target positions from instrument positions also has the advantage of 

simplifying repeated analysis of the same targets on different instruments. 

The complete source code, written in Python, is presented here, though updates may be 

found at http://neuroproteomics.scs.illinois.edu/microMS.htm.  Also note the full user manual is 

found in Appendix B with examples of usage and implementing new coordinate mappers.  A 

further discussion of microMS can be found in Chapter 5, which also shows the project 

organization in Figure 5.1.  Briefly, the main method in microMS.py creates a new 

microMSQTwindow object and starts the main thread.  microMSQTwindow contains the 

widgets slideCanvas and histCanvas, which allow interactions with a microscope image and 

population level statistics of found blobs.  microMSQTwindow also has code for the menu bar, 
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handles interactions between widgets, and spawns popup option windows.  Each GUI component 

interacts with the controller, microMSModel which models a single imaging experiment, 

complete with an image, collection of targets and a coordinate mapper.  As such, it contains 

instance variables of many classes in ImageUtilities (handling image interactions and blob 

methods) and CoordinateMappers (which model a physical instrument).  The source code is 

presented as the main method, followed by the packages GUICanvases, ImageUtilities, and 

CoordinateMappers in that order.  Each source file is heavily documented including descriptions 

of each class. 
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microMS.py  
 
01 #! /usr/bin/env python3 
02 # -*- coding: utf-8 -*- 
03  
04 import sys 
05 import ctypes 
06 from PyQt5 import QtGui, QtCore, QtWidgets 
07  
08 from GUICanvases.microMSQTWindow import MicroMSQTWindow 
09  
10 def main():  
11     ''' 
12     main method that begins execution of the QApplication 
13     ''' 
14     qApp = QtWidgets.QApplication(sys.argv)  
15  
16     #set up icon 
17     if sys.platform == 'win32': 
18         myappid = 'uiuc.sweedlerlab.microms.v1' 
19         ctypes.windll.shell32 

.SetCurrentProcessExplicitAppUserModelID(myappid) 
20     qApp.setWindowIcon(QtGui.QIcon(r'GUICanvases/Icon/icon_sm.png')) 
21      
22     #start application 
23     aw = MicroMSQTWindow() 
24     aw.setWindowTitle("MicroMS") 
25     aw.show() 
26     sys.exit(qApp.exec_()) 
27      
28 if __name__ == '__main__': 
29     main() 
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GUICanvases/__init__.py  
01 ''' 
02 The GUICanvases package contains classes for display and user interaction 
03 GUIConstants.py:     a collection of constant variables for display 
04 histCanvas.py:   a widget for displaying and interacting with  

population level metrics 
05 microMSModel.py: controller class for a single experiment 
06 microMSQTWindow.py:  main GUI window 
07 mplCanvas.py:    an abstract class extending figure canvas for  

displaying matplotlib figures 
08 popup.py:        a collection of small, custom windows for user IO to  

set parameters with blob finding, histogram display,  
09     and intermediate maps 
10 slideCanvas.py   a widget to display and interact with a slideWrapper  

object. 
11     Contains most of the programming logic 
12 ''' 
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GUICanvases/GUIConstants.py 
001  
002 ###colors and sizes of GUI components in slideCanvas 
003 #default and boarder color of the slide image 
004 IMAGE_BACKGROUND        =   'black' 
005 #color of temporary or test blob find 
006 TEMP_BLOB_FIND          =   'turquoise' 
007 #predicted locations from the current mapper 
008 PREDICTED_POINTS        =   'yellow' 
009 #color of circle and text of highest FLE  
010 FIDUCIAL_WORST          =   'red' 
011 #color of the rest of the fiducial circles and text 
012 FIDUCIAL                =   'blue' 
013 #background label of fiducial marks 
014 FIDUCIAL_LABEL_BKGRD    =   'white' 
015 #ROI boundary  
016 ROI                     =   'yellow' 
017 #ROI minimum distance  
018 ROI_DIST                =   10 #pixels 
019 #colors of blob list 
020 MULTI_BLOB              =   ['lime', 'salmon', 'skyBlue', 'orangeRed',  
021                              'plum', 'hotPink', 'aqua', 'yellow',  
022                              'olive', 'green'] 
023 #text display of grouped targets from expanding blobs 
024 EXPANDED_TEXT          =   'purple' 
025 #default blob radius in pixels 
026 DEFAULT_RADIUS          =   8 
027 #default fiducial radius in pixels 
028 FIDUCIAL_RADIUS         =   100 
029 #maximum number of blobs to draw when limit is selected 
030 DRAW_LIMIT              =   150 
031 #maximum number of blobs to check prior to deselecting TSP optimization 
032 TSP_LIMIT               =   1000 
033  
034  
035 ###colors of GUI components in histCanvas 
036 #colors of  bars in histogram for red, green, blue, size, circularity,  

and distance 
037 BAR_COLORS              =   ['red', 'green', 'blue', 'gray', 'gray',  

'gray'] 
038 #color of bars and blobs with values less than the cutoff 
039 LOW_BAR                 =   'cyan' 
040 #color of bars and blobs with values greater than the cutoff 
041 HIGH_BAR                =   'hotpink' 
042 #color of bars and blobs with values in a single bar 
043 SINGLE_BAR              =   'darkorange' 
044 #color of line to indicate a single blob position 
045 SINGLE_BLOB             =   'red' 
046  
047 ###constants for blob shapes 
048 DEFAULT_BLOB_RADIUS     =   DEFAULT_RADIUS 
049 DEFAULT_PATTERN_RADIUS  =   DEFAULT_RADIUS 
050  
051 ###standard test files for the debug load 
052 #directory to check for prior to trying to load 
053 DEBUG_DIR               =   r'T:\Cerebellum One Left Stitched _' 
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054 #image file 
055 DEBUG_IMG_FILE          =   r'T:\Cerebellum One Left Stitched  

_\Cerebellum One Left Stitched __c1.tif' 
056 #blob find file 
057 DEBUG_BLOB_FIND         =   r'T:\Cerebellum One Left Stitched  

_\sol_find.txt' 
058 #registration file 
059 DEBUG_REG_FILE          =   r'T:\Cerebellum One Left Stitched  

_\sol.msreg' 
060  
061 ###help message text 
062 IMAGE_HOTKEYS           =   ("w,s,a,d\t\tMove\n" 
063         "W,S,A,D\tMove Farther\n" 
064         "q,e\t\tZoom out/in\n" 
065         "r\t\tReset view\n" 
066         "t\t\tSwitch views\n" 
067         "b\t\tTest blob find\n" 
068         "B\t\tSwitch to threshold view\n" 
069         "m\t\tMirror x axis\n" 
070         "p\t\tToggle predicted location\n" 
071         "o\t\tToggle drawn shapes\n" 
072         "O\t\tToggle drawing all blob lists\n" 
073         "Ctrl + C\tClear all found blobs\n" 
074         "C\t\tClear current blob list\n" 
075         "c\t\tClear ROI\n\n" 
076         "#\t\tToggle channel\n" 
077         "Ctrl+#\t\tSet channel\n" 
078         "Alt+#\t\tSet manual blob list\n\n" 
079         "LMB\t\tMove to center\n" 
080         "LMB+Shift\tAdd/remove points\n" 
081         "LMB+Ctrl\tDraw ROI\n" 
082         "MMB\t\tGet pixel values\n" 
083         "RMB\t\tAdd slide coordinate\n" 
084         "RMB+Shift\tRemove slide coordinate\n" 
085         "Scroll\t\tZoom in/out" 
086         ) 
087  
088 INSTRUMENT_HOTKEYS      =   ("i,k,j,l\t\tMove\n" 
089         "Ctrl + I,K,J,L\tMove Far\n" 
090         "I,K,J,L\t\tMove Farther\n" 
091         "+,-\t\tMove probe up/down\n" 
092         "V\t\tSet probe position\n" 
093         "v\t\tToggle probe position\n" 
094         "h\t\tHome stage\n" 
095         "H\t\tFinal position\n" 
096         "x\t\tSingle analysis\n\n" 
097         "LMB+Alt\tMove to spot\n" 
098         "RMB\t\tAdd coordinate\n" 
099         "RMB+Shift\tRemove coordinate\n" 
100         ) 
101  
102 HISTOGRAM_HOTKEYS       =   ("LMB\t\tSet lower threshold\n" 
103         "LMB+Shift\tSet lower cutoff\n" 
104         "MMB\t\tSet single bar\n" 
105         "RMB\t\tSet upper threshold\n" 
106         "RMB+Shift\tSet upper cutoff\n" 
107         "Scroll\t\tZoom in/out")   
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GUICanvases/histCanvas.py 
001 from __future__ import unicode_literals 
002  
003 import numpy as np 
004 from PyQt5 import QtGui, QtCore, QtWidgets 
005 from copy import copy 
006  
007 from GUICanvases.mplCanvas import MplCanvas 
008 from GUICanvases import GUIConstants 
009  
010 from ImageUtilities.blobFinder import blobFinder 
011 from ImageUtilities.blobList import blobList 
012  
013 class HistCanvas(MplCanvas): 
014     ''' 
015     HistCanvas is an implementation of MplCanvas that interacts  

with a slideCanvas  
016     to display population level information on a collection  

of blob objects. 
017     Most of the control logic is contained here as the view is  

simply a bar chart 
018     ''' 
019     def __init__(self, master, model, *args, **kwargs): 
020         ''' 
021         Initialize and connect listeners 
022         master: the master widget, a microMSQT 
023         slideCanvas: the connected slideCanvas to interact with 
024         ''' 
025         MplCanvas.__init__(self, *args, **kwargs) 
026         self.draw() 
027         #start by showing the blob areas 
028         self.populationMetric = 3 
029         self.populationValues = None 
030         self.blobSet = None 
031         #the image of the collection from slideWrapper to analyze 
032         self.imgInd = 1 
033         #toggle to move the slide position to the first single blob 
034         self.moveSlide = False 
035          
036         #listeners for mouse interaction 
037         self.mpl_connect('button_release_event', self.mouseUp) 
038         self.mpl_connect('scroll_event', self.mouseZoom) 
039                                        
040         self.master = master 
041         self.model = model 
042      
043         #offset from blob radius to consider when extracting fluorescence 
044         self.offset = 0 
045  
046         #x axis limits for zooming 
047         self.xlo = None 
048         self.xhi = None 
049  
050         #toggle to indicate if the maximum or average intensity should be  

displayed 
051         self.reduceMax = False 
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052  
053         #a list of the currently available metrics 
054         self.metrics = ['Red', 'Green', 'Blue', 'Size', 'Circularity',  

'Distance'] 
055  
056         #initialize display variables 
057         self.resetVariables() 
058  
059     def resetVariables(self, resetZoom = True, resetBlobs = False): 
060         ''' 
061         reset variables related to splitting the population and display 
062         resetZoom: reset the zoom on the x axis 
063         resetBlobs: reset the list of blobs currently investigated 
064         ''' 
065         #lowIntens and lowLimit hold thresholds for low values of the  

population 
066         #low blobs have I such that lowLimit < I < lowIntens 
067         self.lowIntens = None 
068         self.lowLimit = None 
069         #high blobs have I such that highIntens < I < highLimit 
070         self.highIntens = None 
071         self.highLimit = None 
072         #single bar is a value bin in the histogram 
073         self.singleBar = None 
074         #single blob contains the index of a single blob to show the  

position of in the histogram 
075         self.singleBlob = None 
076  
077         if resetZoom: 
078             #zoom level on the x axis 
079             self.zoomLvl = 0 
080             #center of the x axis 
081             self.xcent = None         
082  
083         if resetBlobs: 
084             #the color channel or morphology 
085             self.populationMetric = 3 
086             #set of population values 
087             self.populationValues = None 
088             #the actual blob list 
089             self.blobSet = None 
090  
091     def removeBlob(self, index): 
092         #return immediately if globalBlbs is not set 
093         if self.populationValues is None or self.populationValues.size <  

index: 
094             return 
095  
096         self.populationValues = np.delete(self.populationValues, index) 
097         self._calculateHist(resetVars = False) 
098  
099     def _calculateHist(self, resetVars = True): 
100         #return immediately if globalBlbs is not set 
101         if self.populationValues is None: 
102             self.update_figure() 
103             return 
104  
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105         #metric >= 3 -> look at morphology 
106         if self.populationMetric >= 3: 
107             self.counts, self.bins, patches =  

self.axes.hist(self.populationValues, bins = 100)  
108  
109         #metric == [0, 1, 2] -> look at intensities of [r, g, b] channel  

of image at imgInd 
110         else: 
111             self.counts, self.bins, patches =  

self.axes.hist(self.populationValues, bins=100, 
range=(0,255)) 

112  
113         self.bins = self.bins[1:] 
114  
115         #reset limits and redraw 
116         if resetVars == True: 
117             self.resetVariables()   
118         self.update_figure() 
119  
120  
121  
122     def calculateHist(self): 
123         ''' 
124         calculate the population values with either the current set of  

blobs from the model 
125         this can require some calculation time to complete due to  

repeated disk reads on the image 
126         ''' 
127         #set a new set of global blbs 
128         self.blobSet = self.model.blobCollection[self.model.currentBlobs] 
129  
130         #return immediately if globalBlbs is not set 
131         if self.blobSet is None or len(self.blobSet.blobs) == 0: 
132             self.populationValues = None 
133             self._calculateHist() 
134             return 
135  
136         #metric == 3 -> look at the area (= pi * r^2) 
137         if self.populationMetric == 3: 
138             self.populationValues = np.array([x.radius*x.radius*3.14 for  

x in self.blobSet.blobs]) 
139  
140         #metric == 4 -> look at circularity 
141         elif self.populationMetric == 4: 
142             self.populationValues = np.array([x.circularity for x in  

self.blobSet.blobs]) 
143              
144         #metric == 5 -> look at minimum distance between samples 
145         elif self.populationMetric == 5: 
146             self.populationValues =  

np.array(self.blobSet.minimumDistances()) 
147              
148         #metric == [0, 1, 2] -> look at intensities of [r, g, b] channel  

of image at imgInd 
149         else: 
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150             self.populationValues =  
np.array(self.model.slide.getFluorInt(self.blob
Set.blobs, self.populationMetric, self.imgInd, 
self.offset, self.reduceMax)) 

151              
152         self._calculateHist() 
153      
154     def mouseUp(self,event): 
155         ''' 
156         handles click events by updating the high and low limits 
157         event: mpl mouse click event 
158         ''' 
159         #click out of bounds 
160         if event.xdata is None or event.ydata is None or  

self.populationValues is None: 
161             return 
162  
163         #LMB to set low values 
164         if event.button == 1: 
165             #shift LMB to set the lower limit 
166             if QtWidgets.QApplication.keyboardModifiers() ==  

QtCore.Qt.ShiftModifier: 
167                 self.lowLimit = event.xdata 
168             #LMB to set a lower threshold 
169             else: 
170                 self.lowIntens = event.xdata 
171             #display a message if a lower threshold is set 
172             if self.lowIntens is not None:     
173                 if self.lowLimit is not None: 
174                     self.master.statusBar().showMessage( 

str(sum((self.populationValues < 
self.lowIntens) & (self.populationValues > 
self.lowLimit)))  

175                           + ' below {:.1f} and above  
{:.1f}'.format(self.lowIntens, self.lowLimit)) 

176                 else: 
177                     self.master.reportFromModel( 

str(sum(self.populationValues < 
self.lowIntens))  

178                           + ' below {:.1f}'.format(self.lowIntens)) 
179          
180         #MMB to select a single bin 
181         if event.button == 2: 
182             self.singleBar = event.xdata 
183             self.master.reportFromModel('Clicked on {:.1f}' 

.format(event.xdata)) 
184             self.moveSlide = True 
185          
186         #RMB to set high values 
187         if event.button == 3: 
188             #shift RMB to set the higher limit 
189             if QtWidgets.QApplication.keyboardModifiers() ==  

QtCore.Qt.ShiftModifier: 
190                 self.highLimit = event.xdata 
191  
192             #RMB to set the higher threshold 
193             else: 
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194                 self.highIntens = event.xdata 
195  
196             #display message if a higher threshold is set 
197             if self.highIntens is not None:     
198                 if self.highLimit is not None: 
199                     self.master.statusBar().showMessage( 

str(sum((self.populationValues > 
self.highIntens) & (self.populationValues < 
self.highLimit))) 

200                                      + ' above {:.1f} and below {:.1f}' 
.format(self.highIntens, 
self.highLimit)) 

201                 else: 
202                     self.master.statusBar().showMessage( 

str(sum(self.populationValues > 
self.highIntens))  

203                         + ' above {:.1f}'.format(self.highIntens)) 
204          
205         #redraw figure     
206         self.update_figure() 
207  
208     def mouseZoom(self,event): 
209         ''' 
210         handle mouse scrolling by zooming in and out 
211         event: mpl mouse scroll event 
212         ''' 
213         if self.populationValues is not None and event.xdata is not None: 
214  
215             if event.button == 'up': 
216                 self.zoomLvl += 1#zoom in 
217             else: 
218                 self.zoomLvl -= 1#zoom out 
219  
220             self.zoomLvl = 0 if self.zoomLvl < 0 else  

(10 if self.zoomLvl > 10 else self.zoomLvl) 
221             self.xcent = int(event.xdata) 
222  
223             #redraw the zoom lvl 
224             self.redraw_zoom() 
225                 
226     def setBlobNum(self, target): 
227         ''' 
228         automatically sets a high and low threshold to select  
229         approximately the same number of blobs in each condition 
230         target: the target number of blobs to find 
231         ''' 
232         #return when values not set 
233         if self.populationValues is None: 
234             return 
235         #subdivide the population by a larger factor 
236         counts, bins= np.histogram(self.populationValues, bins = 2560) 
237  
238         #find lower cutoff, binary search 
239         left = 0 
240         right = len(counts) 
241         c = 0 
242         lowlimit = 0 if self.lowLimit is None else  
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np.argmin(np.abs(bins – self.lowLimit)) 
243         while left < right and c < 20: 
244             ind = (left + right) // 2 
245             tempCount = sum(counts[lowlimit:ind]) 
246             if tempCount < target: 
247                 left = ind +1 
248             elif tempCount > target: 
249                 right = ind -1 
250             else: 
251                 break 
252             c += 1 
253         self.lowIntens = bins[ind+1] 
254         tclow =   sum(counts[lowlimit:ind])       
255          
256         #find upper cutoff, binary search 
257         left = 0 
258         right = len(counts) 
259         c = 0 
260         highlimit = len(counts)-1 if self.highLimit is None  

else np.argmin(np.abs(bins - self.highLimit)) 
261         while left < right and c < 20: 
262             ind = (left + right) // 2 
263             tempCount = sum(counts[ind:highlimit]) 
264             if tempCount < target: 
265                 right = ind -1 
266             elif tempCount > target: 
267                 left = ind +1 
268             else: 
269                 break 
270             c += 1 
271         self.highIntens = bins[ind-1] 
272         tchigh = sum(counts[ind:highlimit]) 
273         self.update_figure() 
274          
275         self.master.reportFromModel('Found ' + str(tclow) + ' below and '  

+ str(tchigh) + ' above') 
276          
277     def clearFilt(self): 
278         ''' 
279         Clear the current set of filter parameters and redraw figure 
280         ''' 
281         self.resetVariables(False) 
282         self.update_figure(); 
283  
284     def savePopulationValues(self, filename): 
285         ''' 
286         saves the population values of the currently displayed histogram 
287         filename: text file to save 
288         ''' 
289         if self.populationValues is None or len(self.populationValues) == 
0: 
290             return 'Nothing to save' 
291         output = open(filename, 'w') 
292         output.write('Blob\t{}\n' 

.format(self.metrics[self.populationMetric])) 
293         for i,b in enumerate(self.model.blobCollection[ 

self.model.currentBlobs].blobs): 
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294             output.write('0_x_{0:.0f}y_{1:.0f}\t{2}\n'.format(b.X, b.Y,  
295                 self.populationValues[i])) 
296         return 'Saved histogram values' 
297  
298     def saveHistImage(self, filename): 
299         ''' 
300         Saves the current histogram image 
301         filename: image file to write 
302         ''' 
303         self.fig.savefig(filename) 
304  
305     def getFilteredBlobs(self): 
306         ''' 
307         Get the set of blobs which pass the current filters 
308         returns list of blobLists with the filters already set 
309         ''' 
310         result = [] 
311         #low intensity 
312         if self.lowIntens is not None: 
313             if self.lowLimit is not None: 
314                 tempbool = (self.populationValues < self.lowIntens) &  
315        (self.populationValues >  

self.lowLimit) 
316             else: 
317                 tempbool = self.populationValues < self.lowIntens 
318  
319             lowblbs = [self.blobSet.blobs[i] for i in  

np.where(tempbool)[0]] 
320             result.append(self.blobSet.partialDeepCopy(lowblbs)) 
321             result[-1].filters 

.append(self._getFilterDescription(self.lowLimit,  
self.lowIntens)) 

322                  
323         #high intensity 
324         if self.highIntens is not None: 
325             if self.highLimit is not None: 
326                 tempbool = (self.populationValues >  self.highIntens) &  
327       (self.populationValues < self.highLimit) 
328             else: 
329                 tempbool = self.populationValues >  self.highIntens 
330                  
331             highblbs = [self.blobSet.blobs[i] for i in  

np.where(tempbool)[0]] 
332             result.append(self.blobSet.partialDeepCopy(highblbs)) 
333             result[-1].filters 

.append(self._getFilterDescription(self.highIntens,  
self.highLimit)) 

334  
335         return result 
336  
337     def _getFilterDescription(self, lowVal, highVal): 
338         ''' 
339         returns a succinct string description of the current filter set 
340         lowVal: low value, part of # < channel < # 
341         highVal: high value, other part of # < channel < # 
342         ''' 
343         result = '' 
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344         if lowVal is None and highVal is None: 
345             return None 
346  
347         channel = 'c{}[{}]'.format(self.imgInd,  

self.metrics[self.populationMetric]) 
348  
349         if lowVal is not None: 
350             result += "{:.1f}<".format(lowVal) 
351         result += channel 
352         if highVal is not None: 
353             result += "<{:.1f}".format(highVal) 
354         result += ';' 
355  
356         result += 'max' if self.reduceMax else 'mean' 
357         result += ';offset={}'.format(self.offset) 
358  
359         return result 
360  
361     def redraw_zoom(self): 
362         ''' 
363         redraw the widget after a zoom change,  

does not update the underlying graph 
364         ''' 
365         #find range of the x axis scaled by zoom 
366         rng = (self.xhi - self.xlo) / 2**(self.zoomLvl+1) 
367         #determine center position 
368         if self.xcent is None: 
369             self.xcent = (self.xhi - self.xlo) / 2 
370         #find high and low positions, center +/- range 
371         (low, high) = (self.xcent - rng, self.xcent + rng) 
372         #keep low and high bounded by the min and max 
373         (low, high) = (self.xlo if low < self.xlo else low,  
374       self.xhi if high > self.xhi else high) 
375         #if no zoom, autoscale 
376         if self.zoomLvl == 0:  
377             self.axes.autoscale(True, 'both') 
378         else:#autoscale y but use high and low for x 
379             self.axes.set_xlim([low,high])  
380             self.axes.autoscale(True, 'y')             
381  
382         self.draw() 
383  
384     def update_figure(self): 
385         ''' 
386         redraw the figure by recalculating the graph and recoloring 
387         The blob subsets are passed back to the model 
388         ''' 
389         if self.populationValues is None: 
390             self.axes.cla() 
391         else: 
392             #draw bar chart of entire population 
393             self.axes.bar(self.bins, self.counts,  

width = self.bins[0] – self.bins[1],  
394                           color = GUIConstants 

.BAR_COLORS[self.populationMetric]) 
395             self.axes.hold(True) 
396             blbSubset = [] 
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397             blbColors = [] 
398             #handle low intens 
399             if self.lowIntens is not None: 
400                 if self.lowLimit is not None: 
401                     #tempbool is the bins that pass the filter 
402                     tempbool = (self.bins < self.lowIntens) &  

(self.bins > self.lowLimit) 
403                     #tempbool2 is the blobs that pass the filter 
404                     tempbool2= (self.populationValues < self.lowIntens) &  
405       (self.populationValues > self.lowLimit) 
406                 else: 
407                     tempbool = self.bins < self.lowIntens 
408                     tempbool2 = self.populationValues < self.lowIntens 
409                 #draw the low threshold bars 
410                 self.axes.bar(self.bins[tempbool], self.counts[tempbool],  
411                               width = self.bins[0]-self.bins[1],  

    color = GUIConstants.LOW_BAR) 
412                 #add the low threshold blobs to the blob subset  

to pass to slideCanvas 
413                 if np.any(tempbool2): 
414                     blbSubset.append(copy(self.blobSet)) 
415                     blbSubset[-1].blobs = [self.blobSet.blobs[i] for i in  

np.where(tempbool2)[0]] 
416                     blbSubset[-1].description = 'low' 
417                     blbSubset[-1].threshCutoff = int(self.lowIntens) 
418                     blbColors.append(GUIConstants.LOW_BAR) 
419                  
420             #handle high intens 
421             if self.highIntens is not None: 
422                 if self.highLimit is not None: 
423                     tempbool = (self.bins >  self.highIntens) &  

(self.bins < self.highLimit) 
424                     tempbool2=(self.populationValues > self.highIntens) &  
425       (self.populationValues < self.highLimit) 
426                 else: 
427                     tempbool = self.bins >  self.highIntens 
428                     tempbool2 = self.populationValues >  self.highIntens 
429                 #draw the high threshold bars 
430                 self.axes.bar(self.bins[tempbool], self.counts[tempbool],  
431                               width = self.bins[0]-self.bins[1],  

    color = GUIConstants.HIGH_BAR) 
432                 #add the high threshold blobs to the blob subset  

to pass to slideCanvas 
433                 if np.any(tempbool2): 
434                     blbSubset.append(copy(self.blobSet)) 
435                     blbSubset[-1].blobs = [self.blobSet.blobs[i] for i in  

np.where(tempbool2)[0]] 
436                     blbSubset[-1].color = GUIConstants.HIGH_BAR 
437                     blbSubset[-1].description = 'high' 
438                     blbSubset[-1].threshCutoff = int(self.highIntens) 
439                     blbColors.append(GUIConstants.HIGH_BAR) 
440  
441             #handle single bar selected 
442             if self.singleBar is not None: 
443                 temp = self.bins - self.singleBar 
444                 ind = int(np.sum(temp < 0)) 
445                 ind = 0 if ind < 0 else len(self.bins)-1 if  
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ind >= len(self.bins) else ind 
446                 #draw the single bar 
447                 self.axes.bar(self.bins[ind], self.counts[ind],  
448                               width = self.bins[0]-self.bins[1],  

    color = GUIConstants.SINGLE_BAR) 
449                 #add the single bar blobs to the subset for slideCanvas 
450                 tempbool = (self.populationValues < self.bins[ind]) 
451                 if ind == len(self.bins) -1: 
452                     tempbool = self.populationValues >= self.bins[ind-1] 
453                 elif ind != 0: 
454                     tempbool = tempbool & (self.populationValues  

>= self.bins[ind-1]) 
455                 if np.any(tempbool): 
456                     blbSubset.append(copy(self.blobSet)) 
457                     blbSubset[-1].blobs = [self.blobSet.blobs[i] for i in  

np.where(tempbool)[0]] 
458                     blbSubset[-1].description = 'single' 
459                     blbSubset[-1].threshCutoff = int(self.bins[ind]) 
460                     if self.moveSlide == True: 
461                         firstBlob = blbSubset[-1].blobs[0] 
462                         self.model.slide.pos = [firstBlob.X, firstBlob.Y] 
463                         self.moveSlide = False 
464                     blbColors.append(GUIConstants.SINGLE_BAR) 
465  
466  
467             #draw lines displaying the values used for filtering 
468             #a single blob to highlight 
469             if self.singleBlob is not None: 
470                 if self.singleBlob >= 0 and  

self.singleBlob < len(self.populationValues): 
471                     self.axes.vlines( 

self.populationValues[self.singleBlob], 0,  
472                           self.axes.get_ylim()[1],  

colors = GUIConstants.SINGLE_BLOB) 
473             #draw limits 
474             if self.lowLimit is not None: 
475                 self.axes.vlines(self.lowLimit, 0,  

self.axes.get_ylim()[1],  
476       colors = GUIConstants.LOW_BAR,  

linestyles='dashed') 
477             if self.highLimit is not None: 
478                 self.axes.vlines(self.highLimit, 0,  

self.axes.get_ylim()[1],  
479       colors = GUIConstants.HIGH_BAR,  

linestyles='dashed') 
480              
481             #draw thresholds 
482             if self.lowIntens is not None: 
483                 self.axes.vlines(self.lowIntens, 0,  

self.axes.get_ylim()[1],  
484       colors = GUIConstants.LOW_BAR,  

linestyles='dashdot') 
485             if self.highIntens is not None: 
486                 self.axes.vlines(self.highIntens, 0,  

self.axes.get_ylim()[1],  
487     colors = GUIConstants.HIGH_BAR,  

linestyles='dashdot') 
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488  
489             #tell slide canvas about the new subset 
490             self.master.report_blbsubset((blbSubset, blbColors)) 
491  
492         self.axes.hold(False) 
493         #update the axes labels and x axis limits 
494         self.axes.set_ylabel('Count') 
495         if self.populationMetric == 3: 
496             self.axes.set_xlabel('Size') 
497             self.xlo, self.xhi = self.axes.get_xlim() 
498         elif self.populationMetric == 4: 
499             self.axes.set_xlabel('Circularity') 
500             self.xlo, self.xhi = self.axes.get_xlim() 
501         elif self.populationMetric == 5: 
502             self.axes.set_xlabel('Distance') 
503             self.xlo, self.xhi = self.axes.get_xlim() 
504  
505         #colors are labeled as intensity and limited to 0,255  
506         else: 
507             self.xlo, self.xhi = 0,255 
508             self.axes.set_xlabel('Intensity') 
509  
510         self.redraw_zoom() 
511         
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GUICanvases/microMSModel.py  
001 from PIL import ImageDraw, ImageFont 
002 import matplotlib as mpl 
003 from matplotlib.path import Path 
004 from matplotlib.collections import PatchCollection 
005 import matplotlib.pyplot as plt 
006 import os 
007 import random 
008 from scipy.spatial.distance import pdist 
009 import numpy as np 
010 from copy import deepcopy, copy 
011  
012 from GUICanvases import GUIConstants 
013  
014 from ImageUtilities import slideWrapper 
015 from ImageUtilities import blobFinder 
016 from ImageUtilities import blob 
017 from ImageUtilities import TSPutil 
018 from ImageUtilities.enumModule import Direction, StepSize 
019 from ImageUtilities import blobList 
020  
021 from CoordinateMappers import supportedCoordSystems 
022  
023 class MicroMSModel(object): 
024     ''' 
025     The model of a microMS experiment consisting of  
026   a slide, blob finder, and blobs 
027     Performs several vital functions for interacting  
028   with each object and maintains a list of blobs 
029     ''' 
030     def __init__(self, GUI): 
031         ''' 
032         Initialize a new model setup.  Slide starts as None. 
033         The coordinateMapper is set as the first mapper  

of the supported mappers. 
034         Also calls self.resetVariables to clear other instance variables. 
035         GUI: the supporting GUI 
036         ''' 
037         self.slide = None 
038         self.coordinateMapper = supportedCoordSystems.supportedMappers[0] 
039         self.GUI = GUI 
040         self.resetVariables() 
041  
042     def setupMicroMS(self, filename): 
043         ''' 
044         Loads an image and sets up a new session 
045         filename: the image to load 
046         ''' 
047         self.slide = slideWrapper.SlideWrapper(filename) 
048         self.resetVariables() 
049  
050     def resetVariables(self): 
051         ''' 
052         Clears and initializes all instance variables 
053         ''' 
054         self.blobCollection = [blobList.blobList(self.slide) for i in  
    range(10)] 
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055  
056         self.setCurrentBlobs(0) 
057         self.tempBlobs = None 
058         self.histogramBlobs = None 
059         self.histColors = None 
060         self.coordinateMapper.clearPoints() 
061         self.mirrorImage = False 
062         self.showPatches = True 
063         self.drawAllBlobs = False 
064         self.showPrediction = False 
065         self.showThreshold = False 
066  
067     def setCoordinateMapper(self, newMapper): 
068         ''' 
069         Sets a new coordinate mapper and clears its points 
070         newMapper: the new instance of coordinateMapper to use 
071         ''' 
072         self.coordinateMapper = newMapper 
073         self.coordinateMapper.clearPoints() 
074  
075     def saveEntirePlot(self, fileName): 
076         ''' 
077         saves the entire slide image at the current zoom level 
078         fileName: the file to write to 
079         *NOTE: this can take a while to run and generate  

large files at max zoom 
080         ''' 
081         #save the current size and position 
082         size, pos = self.slide.size, self.slide.pos 
083         #match size to whole slide, position at center 
084         self.slide.size, self.slide.pos = \ 
085             (self.slide.dimensions[0]//2**self.slide.lvl,  
086              self.slide.dimensions[1]//2**self.slide.lvl), \ 
087             (self.slide.dimensions[0]//2, self.slide.dimensions[1]//2) 
088          
089         #get whole image 
090         wholeImg = self.slide.getImg() 
091         draw = ImageDraw.Draw(wholeImg) 
092          
093         #markup image 
094         linWid = 1 if 6-self.slide.lvl < 1 else 6-self.slide.lvl 
095         tfont = ImageFont.truetype("arial.ttf",linWid+6) 
096         #for each blob list 
097         for ii in range(len(self.blobCollection)): 
098             if self.blobCollection[ii].length() > 0: 
099                     drawnlbls = set() 
100                     drawlbl = self.blobCollection[ii].blobs[0].group  

is not None       
101                     #for each blob       
102                     for i,gb in enumerate(self.blobCollection[ii].blobs): 
103                         p = self.slide.getLocalPoint((gb.X,gb.Y)) 
104                         rad = gb.radius/2**self.slide.lvl 
105                         #draw blob outline 
106                         draw.ellipse((p[0]-rad, p[1]-rad,  
107       p[0]+rad, p[1]+rad),  
108       outline=GUIConstants.MULTI_BLOB[ii]) 
109                         #draw label if group exists 
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110                         if drawlbl and gb.group not in drawnlbls: 
111                             draw.text((p[0]+10/2**self.slide.lvl, 
112        p[1]-10/2**self.slide.lvl) 
113        str(gb.group), 
114                                             font=tfont,  
       fill=GUIConstants.EXPANDED_TEXT) 
115                             drawnlbls.add(gb.group) 
116          
117         #save image 
118         wholeImg.save(fileName) 
119  
120         #restore size and position 
121         self.slide.size, self.slide.pos = size, pos  
122  
123     def saveCurrentBlobFinding(self, filename): 
124         ''' 
125         Save the current blob finder and currently selected blob list 
126         filename: file to save to 
127         ''' 
128         #slide not set up 
129         if self.slide is None: 
130             return "No slide loaded" 
131         #current list is empty 
132         if self.blobCollection[self.currentBlobs].length() == 0: 
133             return "List {} contains no blobs!" 
134     .format(self.currentBlobs +1)  

#plus one for GUI display 
135         #save blobs 
136         self.blobCollection[self.currentBlobs].saveBlobs(filename) 
137         return "Saved blob information of list {}" 
138    .format(self.currentBlobs+1) 
139  
140     def saveHistogramBlobs(self, filename): 
141         ''' 
142         Save up to 3 files for different histogram filters 
143         filename: the filename to save 
144         ''' 
145         #slide not set up 
146         if self.slide is None: 
147             return "No slide loaded" 
148         #no histogram blobs to save 
149         if self.histogramBlobs is None or len(self.histogramBlobs) == 0: 
150             return "No histogram divisions provided" 
151         #save different divisions 
152         f, ex = os.path.splitext(filename) 
153         for blbs in self.histogramBlobs: 
154             if blbs.length() > 0: 
155                 blbs.saveBlobs('{}_{}_{}{}' 
156      .format(f, blbs.description,  

blbs.threshCutoff, ex)) 
157         return "Saved histogram divisions with base name {}" 
158    .format(os.path.split(f)[1]) 
159  
160     def saveAllBlobs(self, filename): 
161         ''' 
162         Save each list of blobs in its own list 
163         filename: a full filename with extension.   
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    The list number will be added as such: 
164             dir/test.txt -> dir/test_1.txt 
165         ''' 
166         #slide not set up 
167         if self.slide is None: 
168             return "No slide loaded" 
169         f, ex = os.path.splitext(filename) 
170         #save each blob list 
171         for i, blbs in enumerate(self.blobCollection): 
172             if blbs.length() > 0: 
173                 blbs.saveBlobs('{}_{}{}'.format(f, i, ex)) 
174  
175         return "Saved blobs with base name '{}'" 
176    .format(os.path.split(f)[1]) 
177  
178     def saveCoordinateMapper(self, filename): 
179         ''' 
180         Save the current coordinate mapper 
181         filename: file to save to 
182         ''' 
183         #no fiducials trained 
184         if len(self.coordinateMapper.pixelPoints) < 1: 
185             return "No coordinates to save" 
186  
187         self.coordinateMapper.saveRegistration(filename) 
188         return "Saved coordinate mapper" 
189  
190     def saveInstrumentPositions(self,filename, tspOpt, maxPoints = None): 
191         ''' 
192         save positions of blobs in instrument coordinate system 
193         fileName: file to save to 
194         tspOpt: bool indicating whether or not  
195    to perform traveling salesman optimization 
196         maxPoints: maximum number of blobs to save.   

Default (None) saves all 
197         ''' 
198         #check if the file can be saved 
199         if len(self.coordinateMapper.physPoints) < 2: 
200             return "Not enough training points to save instrument file" 
201  
202         if self.blobCollection[self.currentBlobs].length() == 0: 
203             return "No blobs to save" 
204  
205         #get current blob list 
206         blobs = self.blobCollection[self.currentBlobs].blobs 
207         #if maxPoints is valid 
208         if maxPoints is not None and maxPoints > 0 and  
209      maxPoints < self.currentBlobLength(): 
210             #obtain a random sample of blobs 
211             blobs = random.sample(blobs,maxPoints) 
212                           
213         #if tspOpt is requested        
214         if tspOpt == True: 
215             #reorder visit order 
216             soln = TSPutil.TSPRoute(blob.blob.getXYList(blobs)) 
217             blobs = [blobs[i] for i in soln] 
218  
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219         #save list of blobs 
220         self.coordinateMapper.saveInstrumentFile(filename,  
221                                                  blobs) 
222         return "Saved instrument file of list {}" 
223     .format(self.currentBlobs +1 ) 
224  
225     def saveInstrumentRegistrationPositions(self, filename): 
226         ''' 
227         Save fiducial locations in the instrument coordinate system 
228         ''' 
229         if len(self.coordinateMapper.physPoints) < 2: 
230             return "Not enough training points to save fiducial  

locations" 
231         self.coordinateMapper.saveInstrumentRegFile(filename) 
232         return "Saved instrument registration positions" 
233  
234     def loadCoordinateMapper(self,filename): 
235         ''' 
236         load a prior registration file 
237         changes the current mapper to the one specified in the file 
238         filename: file to load 
239         returns a status display string, and the index of the new mapper 
240         ''' 
241         #get old index 
242         old = supportedCoordSystems.supportedMappers 
243      .index(self.coordinateMapper) 
244         #get first line in file 
245         reader = open(filename,'r') 
246         line = reader.readline().strip() 
247         reader.close() 
248         #see if that is a name of a coordinatemapper 
249         try: 
250             i = supportedCoordSystems.supportedNames.index(line) 
251         except: 
252             return 'Unsupported instrument: {}'.format(line), old 
253  
254         #See if mapper has changed to warn the user 
255         result = 'Loaded {} registration'.format(line) 
256         if i != old: 
257             result = 'Warning, changing instrument to {}'.format(line) 
258             self.coordinateMapper =  

supportedCoordSystems.supportedMappers[i] 
259         self.coordinateMapper.loadRegistration(filename) 
260         return result, i 
261  
262     def loadBlobFinding(self, filename): 
263         ''' 
264         Loads the blobs in the provided filename to  
265    the current list of blobs and sets  
266    the blobfinder to the previous values 
267         filename: file to load 
268         ''' 
269         self.blobCollection[self.currentBlobs].loadBlobs(filename) 
270         return "Finished loading blob positions into list {}" 
271      .format(self.currentBlobs+1) 
272  
273     def loadInstrumentPositions(self, filename): 
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274         ''' 
275         Load an instrument position file to the current blob list. 
276         Will not have proper radius, but should retain the groups. 
277         filename: file to load 
278         ''' 
279         self.blobCollection[self.currentBlobs].blobs = \ 
280             self.coordinateMapper.loadInstrumentFile(filename) 
281         self.blobCollection[self.currentBlobs].generateGroupLabels() 
282         return "Finished loading instrument file into list {}" 
283      .format(self.currentBlobs+1) 
284  
285     def currentBlobLength(self): 
286         ''' 
287         Gets the length of the current blob list 
288         ''' 
289         return self.blobCollection[self.currentBlobs].length() 
290  
291     def currentInstrumentExtension(self): 
292         ''' 
293         Gets the instrument extension of the current coordinate mapper 
294         ''' 
295         return self.coordinateMapper.instrumentExtension 
296  
297     def runGlobalBlobFind(self): 
298         ''' 
299         Performs global blob finding on the current slide  
300    and sets to current blob list 
301         ''' 
302         if self.slide is None: 
303             return "No slide was open" 
304         return self.blobCollection[self.currentBlobs].blobSlide() + 
305     " in list {}".format(self.currentBlobs+1) 
306  
307     def updateCurrentBlobs(self, newBlobs): 
308         if not isinstance(newBlobs, blobList.blobList): 
309             raise ValueError('New blobs must be a blobList') 
310          
311         #find first unused blob index 
312         for i in range(len(self.blobCollection)): 
313             if self.blobCollection[i].length() == 0: 
314                 #add new blobs 
315                 self.blobCollection[i] = newBlobs 
316                 self.setCurrentBlobs(i) 
317                 return 
318  
319     def distanceFilter(self, distance): 
320         ''' 
321         filters the global blob list to remove blobs  
322    which are closer than 'distance' pixels 
323         the prior list is stored in previous current index 
324         distance: distance threshold 
325         ''' 
326         if self.currentBlobLength() == 0: 
327             return "No blobs to filter" 
328          
329         self.updateCurrentBlobs( 
330    self.blobCollection[self.currentBlobs] 
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331     .distanceFilter(distance, verbose = True)) 
332  
333         return "Finished distance filter in list {}" 
334     .format(self.currentBlobs+1) 
335  
336     def roiFilter(self): 
337   ''' 
338   filters the blob list to remove blobs outside the current ROI 
339   ''' 
340         if self.currentBlobLength() == 0: 
341             return "No blobs to filter" 
342         if len(self.blobCollection[self.currentBlobs].ROI) < 3: 
343             return "No ROI selected" 
344         startLen = self.currentBlobLength() 
345         self.updateCurrentBlobs( 
346    self.blobCollection[self.currentBlobs] 
347     .roiFilter()) 
348         endLen = self.currentBlobLength() 
349         return "{} blobs removed, {} remain in list {}" 
350    .format(startLen - endLen, endLen, self.currentBlobs+1) 
351  
352     def roiFilterInverse(self): 
353   ''' 
354   filters the blob list to remove blobs inside the current ROI 
355   ''' 
356         if self.currentBlobLength() == 0: 
357             return "No blobs to filter" 
358         if len(self.blobCollection[self.currentBlobs].ROI) < 3: 
359             return "No ROI selected" 
360         startLen = self.currentBlobLength() 
361         self.updateCurrentBlobs( 
362    self.blobCollection[self.currentBlobs] 
363     .roiFilterInverse()) 
364         endLen = self.currentBlobLength() 
365         return "{} blobs removed, {} remain in list {}" 
366    .format(startLen - endLen, endLen, self.currentBlobs+1) 
367  
368  
369     def hexPackBlobs(self, separation, layers, dynamicLayering = False): 
370         ''' 
371         expands each blob into hexagonally closest packed positions 
372         sep: minimum separation between points 
373         layers: number of layers to generate 
374         dynamicLayering: adjust the number of layers with the blob radius 
375         ''' 
376         self.updateCurrentBlobs(self.blobCollection[self.currentBlobs]\ 
377             .hexagonallyClosePackPoints(separation,  
378        layers,  
379        dynamicLayering = dynamicLayering)) 
380  
381      
382     def rectPackBlobs(self, separation, layers, dynamicLayering = False): 
383         ''' 
384         expands each blob into rectangularly packed positions 
385         sep: minimum separation between points 
386         layers: number of layers to generate 
387         dynamicLayering: adjust the number of layers with the blob radius 
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388         ''' 
389         self.updateCurrentBlobs(self.blobCollection[self.currentBlobs]\ 
390             .rectangularlyPackPoints(separation,  
391       layers,  
392       dynamicLayering = dynamicLayering)) 
393          
394     def circularPackBlobs(self, separation, maxShots, offset): 
395         ''' 
396         expands each blob into circularly packed  

positions around the blob 
397         sep: minimum separation between spots 
398         shots: maximum number of spots to place around each blob 
399         offset: offset from the current circumference,  
400         offset > 0 places spots outside the current blob 
401         ''' 
402         self.updateCurrentBlobs(self.blobCollection[self.currentBlobs]\ 
403             .circularPackPoints(separation, maxShots,  

offset, minSpots = 4)) 
404  
405     def analyzeAll(self): 
406         ''' 
407         if the current mapper is connected to an instrument,  
408   triggers analysis of all blobs currently found 
409         ''' 
410         #get all pixel points and translate to motor coords 
411         if self.currentBlobLength() == 0: 
412            return "No targets currently selected" 
413         if len(self.coordinateMapper.physPoints) <= 2: 
414            return "Not enough training points" 
415         if self.coordinateMapper.connectedInstrument is None or \ 
416             self.coordinateMapper.connectedInstrument.connected == False: 
417            return "No connected instrument" 
418  
419         targets = list(map(lambda b:  

self.coordinateMapper.translate((b.X, b.Y)),  
420                           self.blobCollection[self.currentBlobs].blobs)) 
421  
422         #send to connected instrument 
423         self.coordinateMapper.connectedInstrument.collectAll(targets) 
424  
425         return "Finished collection" 
426  
427     def setBlobSubset(self, blobSubset): 
428         ''' 
429         Sets the histogram blobs supplied by a histcanvas 
430         blobSubset: an odd object, tuple of lists,  
431    first is a blobList, second a list of colors 
432         ''' 
433         self.histogramBlobs = blobSubset[0] 
434         self.histColors = blobSubset[1] 
435  
436     def reportSlideStep(self, direction, stepSize): 
437         ''' 
438         Moves the slide in the specified direction,  
439    taking into account mirroring 
440         direction: a slideWrapper.direction in the observed direction 
441         stepSize: enum dictating if the step size 
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442         ''' 
443         if self.slide is not None: 
444             if self.mirrorImage: 
445                 if direction == Direction.left: 
446                     self.slide.step(Direction.right, stepSize) 
447                 elif direction == Direction.right: 
448                     self.slide.step(Direction.left, stepSize) 
449                 else: 
450                     self.slide.step(direction, stepSize) 
451  
452             self.slide.step(direction, stepSize) 
453  
454     def testBlobFind(self): 
455         ''' 
456         Performs a test blob find on the current position 
457         Sets the zoom level to the maximum  
458    value to match test blob finding 
459         ''' 
460         self.slide.lvl = 0 
461         if self.slide is not None: 
462             self.tempBlobs = self.blobCollection[self.currentBlobs] 
463          .blobFinder.blobImg() 
464  
465     def setCurrentBlobs(self, ind): 
466         ''' 
467         Sets the current blob index to the specified value 
468         ind: integer value of list to show 
469         ''' 
470         self.currentBlobs = ind 
471         if self.GUI is not None: 
472             self.GUI.setTitle(self.currentBlobs) 
473  
474     def reportSize(self, newSize): 
475         ''' 
476         Sets the size of the slidewrapper to the specified value. 
477         Sets the max number of pixels to 600 but keeps the aspect ratio 
478         newSize = (width, height) 
479         ''' 
480         w,h = newSize 
481         factor = 600/max(w,h) 
482         w, h = int(w*factor), int(h*factor) 
483         self.slide.size = [w, h] 
484  
485     def getCurrentImage(self): 
486         ''' 
487         gets the image to display, accounting for showing thresholds 
488         ''' 
489         #show the threshold image produced by blobfinder helper method 
490         if self.showThreshold: 
491             im, num = blobFinder 
492     .blobFinder._blbThresh(self.slide.getImg(), 
493     self.blobCollection[self.currentBlobs].blobFinder.colorChannel, 
494     self.blobCollection[self.currentBlobs].blobFinder.threshold) 
495             return im                                   
496         #else, use current image view      
497         else: 
498             return self.slide.getImg() 
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499  
500     def getPatches(self, limitDraw): 
501         ''' 
502         Gets the patches of all blobs, registration  

marks and predicted points. 
503         limitDraw: boolean toggle to limit the number of blobs to draw 
504         ''' 
505         ptches = [] 
506         #nothing requested or nothing to show 
507         if self.showPatches == False or self.slide is None: 
508             return PatchCollection(ptches) 
509  
510         #temp blobs from blob finding test.  Only drawn once  
511         if self.tempBlobs is not None: 
512             ptches = [plt.Circle((blb.X, blb.Y), 
513                                   blb.radius, 
514                                   color = GUIConstants.TEMP_BLOB_FIND, 
515                                   linewidth = 1, 
516                                   fill = False) 
517                        for blb in self.tempBlobs] 
518             #reset temp blobs 
519             self.tempBlobs = None 
520             #return patches, if none to show match_original 
     needs to be false 
521             return PatchCollection(ptches,  

match_original=(len(ptches) != 0)) 
522          
523         #draw predicted points from coordinate mapper 
524         lineWid = 1 if 6-self.slide.lvl < 1 else 6-self.slide.lvl    
525         if self.showPrediction and  

len(self.coordinateMapper.physPoints) >= 2: 
526             points, inds = self.slide 
527      .getPointsInBounds( 
528      self.coordinateMapper.predictedPoints()) 
529             ptches.extend( 
530                     [plt.Circle(p,  
     GUIConstants.FIDUCIAL_RADIUS/2**self.slide.lvl, 
531                                 color = GUIConstants.PREDICTED_POINTS, 
532                                 linewidth = lineWid, 
533                                 fill = False) 
534                      for p in points] 
535                 ) 
536  
537         #draw fiducial locations, showing the worst  

FLE in a different color 
538         worstI = -1 
539         if len(self.coordinateMapper.physPoints) > 2: 
540             worstI = self.coordinateMapper.highestDeviation() 
541         points, inds = self.slide 
542     .getPointsInBounds(self.coordinateMapper.pixelPoints) 
543         for i,p in enumerate(points): 
544             if inds[i] == worstI: 
545                 ptches.append( 
546                     plt.Circle(p,  

GUIConstants.FIDUCIAL_RADIUS/2**self.slide.lvl, 
547                           color = GUIConstants.FIDUCIAL_WORST, 
548                           linewidth = lineWid, 
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549                                fill=False) 
550                     ) 
551             else: 
552                 ptches.append( 
553                     plt.Circle(p,  

GUIConstants.FIDUCIAL_RADIUS/2**self.slide.lvl, 
554                           color = GUIConstants.FIDUCIAL, 
555                           linewidth = lineWid, 
556                           fill=False) 
557                     ) 
558  
559         #draw region of interest 
560         ptches.extend(self.getROIPatches()) 
561  
562         #draw histogram blobs 
563         if self.histogramBlobs is not None and  
564     len(self.histogramBlobs) != 0: 
565             for i, blbs in enumerate(self.histogramBlobs): 
566                 ptches.extend(blbs.getPatches(limitDraw,  
567         self.slide,  
568         self.histColors[i])) 
569  
570         #draw blobs 
571         else: 
572             #draw all blob lists with their own color 
573             if self.drawAllBlobs == True: 
574                 for j, blobs in enumerate(self.blobCollection): 
575                     ptches.extend(blobs.getPatches(limitDraw,  
576         self.slide,  
577         GUIConstants.MULTI_BLOB[j])) 
578  
579             #show only the current blob list 
580             else: 
581                 ptches.extend( 
582      self.blobCollection[self.currentBlobs] 
583       .getPatches(limitDraw, self.slide, 
584                             GUIConstants.MULTI_BLOB[self.currentBlobs])) 
585  
586         #return list of patches as a patch collection,  

if none match_original must be false 
587         return PatchCollection(ptches, match_original=(len(ptches) != 0)) 
588  
589     def getROIPatches(self, newPoint = None, append = False): 
590         ptches = [] 
591         tROI = self.blobCollection[self.currentBlobs] 
592     .getROI(newPoint,  
593     GUIConstants.ROI_DIST *2**self.slide.lvl,  
594     append) 
595  
596         if len(tROI) > 1: 
597             verts = [] 
598             for roi in tROI: 
599                 verts.append(self.slide.getLocalPoint(roi)) 
600             verts.append(self.slide.getLocalPoint(tROI[0])) 
601             ptches.append( 
602     mpl.patches.PathPatch(Path(verts, None), 
603        color = GUIConstants.ROI, 
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604        fill = False)) 
605  
606         return ptches 
607  
608     def reportROI(self, point, append = False): 
609         ''' 
610         Handles ROI additions and removals based on position 
611         point: the point in global coordinates 
612         ''' 
613         self.blobCollection[self.currentBlobs].ROI = \ 
614             self.blobCollection[self.currentBlobs] 
615     .getROI(point,  
616        GUIConstants.ROI_DIST *2**self.slide.lvl, 
617        append) 
618  
619     def drawLabels(self, axes): 
620         ''' 
621         draw text labels on the supplied axis.   

Assume the axis is displaying the 
622         slide image and blobs of the current state of everything. 
623         ''' 
624         if self.slide is None or self.showPatches == False: 
625             return 
626  
627         #fiducial labels 
628         lineWid = 1 if 6-self.slide.lvl < 1 else 6-self.slide.lvl    
629         #draw fiducial labels, showing the worst FLE in a different color 
630         worstI = -1 
631         if len(self.coordinateMapper.physPoints) > 2: 
632             worstI = self.coordinateMapper.highestDeviation() 
633         points, inds = self.slide.getPointsInBounds( 
634       self.coordinateMapper.pixelPoints) 
635         for i,p in enumerate(points): 
636             if inds[i] == worstI: 
637                 col = GUIConstants.FIDUCIAL_WORST 
638             else: 
639                 col = GUIConstants.FIDUCIAL 
640             axes.text(p[0] +  

GUIConstants.FIDUCIAL_RADIUS/2**self.slide.lvl, 
641                       p[1] –  

GUIConstants.FIDUCIAL_RADIUS/2**self.slide.lvl, 
642                     self.coordinateMapper.predictLabel( 
643         self.coordinateMapper.physPoints[inds[i]]), 
644                         fontsize = lineWid + 6, 
645                         fontweight='bold', 
646                         color = col, 
647                        bbox=dict( 

facecolor=GUIConstants.FIDUCIAL_LABEL_BKGRD)) 
648         #show group labels 
649         #hist blobs have no text 
650         if self.histogramBlobs is not None and  
651     len(self.histogramBlobs) != 0: 
652             pass 
653         #normal blobs can have group labels 
654         else: 
655             pass 
656             #show group names of all lists 
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657             if self.drawAllBlobs == True: 
658                 for blobs in self.blobCollection: 
659                     self._drawBlobLabels(axes, blobs, lineWid) 
660  
661             #show only the current list 
662             else: 
663                 self._drawBlobLabels(axes,  
664       self.blobCollection[self.currentBlobs],  
665       lineWid) 
666  
667     def _drawBlobLabels(self, axes, blobs, lineWid): 
668         ''' 
669         Helper method to draw blob labels onto the provided axis 
670         axes: matplotlib axes to draw text to 
671         blobs: blobList with labels to draw 
672         lineWid: the linewidth to use for drawing  
673         ''' 
674         #get grouplabels from blobs 
675         labels = list(blobs.groupLabels.keys()) 
676         pos = list(blobs.groupLabels.values()) 
677         if len(labels) != 0: 
678             points, inds = self.slide.getPointsInBounds(pos) 
679             for i,p in enumerate(points): 
680                 #add offset from normal position 
681              axes.text(p[0]+ 

GUIConstants.DEFAULT_RADIUS/2**self.slide.lvl, 
682                         p[1]- 
    GUIConstants.DEFAULT_RADIUS/2**self.slide.lvl, 
683                     labels[inds[i]], 
684                     fontsize=lineWid+6,  
685                     color=GUIConstants.EXPANDED_TEXT) 
686  
687     def reportInfoRequest(self, localPoint): 
688         ''' 
689         Handles a request for image/blob  

information at the supplied local point 
690         localPoint: (x,y) tuple of the query point  

    in the local coordinate space 
691             of the slide image 
692         returns a string description of the point 
693         ''' 
694         #nothing to query against 
695         if self.slide is None: 
696             return "No slide loaded" 
697  
698         point = self.slide.getGlobalPoint(localPoint) 
699         #if the histogram canvas is shown, highlight that blob's location 
700         if self.GUI is not None and self.GUI.showHist: 
701             #find blob if user clicked in bounds 
702             if self.blobCollection[self.currentBlobs] is not None and \ 
703                 self.blobCollection[self.currentBlobs].length() > 0: 
704  
705                 points, inds = self.slide 
706      .getPointsInBounds( 
707      blob.blob.getXYList( 
708      self.blobCollection[self.currentBlobs].blobs)) 
709                 found = False 
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710                 for i,p in enumerate(points): 
711                     #see if click point is within radius 
712                     if (localPoint[0]-p[0])**2 +  

    (localPoint[1] - p[1])**2 <= \ 
713                         (self.blobCollection[self.currentBlobs] 
714      .blobs[inds[i]].radius/2**self.slide.lvl)**2: 
715                             self.GUI.histCanvas.singleBlob = inds[i] 
716                             found = True 
717                             break 
718                 #if not found, set to None 
719                 if not found: 
720                     self.GUI.histCanvas.singleBlob = None 
721  
722         #get pixel color and alpha (discarded) 
723         try: 
724             r,g,b,a = self.slide.getImg().getpixel(localPoint) 
725         except IndexError: 
726             r,g,b = 0,0,0 
727  
728         #get the size and circ of an area > thresh if on blb view 
729         if self.showThreshold: 
730             area,circ = self.blobCollection[self.currentBlobs] 
731      .blobFinder.getBlobCharacteristics(localPoint) 
732             return "x = %d, y = %d r,g,b = %d, 

%d,%d\tArea = %d\tCirc = %.2f" 
733     %(point[0], point[1], r, g, b, area, circ) 
734         #show rgb and x,y location 
735         else: 
736             return "x = %d, y = %d r,g,b = %d,%d,%d" 
737       %(point[0], point[1], r, g, b) 
738  
739     def reportFiducialRequest(self, localPoint,  

removePoint, extras = None): 
740         ''' 
741         handles a fiducial request. 
742         localpoint: (x,y) tuple in the image coordinate system 
743         removePoint: boolean toggle.  If true,  

the closest fiducial is removed 
744         extras: a debugging object to bypass GUI display.  

Must define text and ok 
745         ''' 
746         #no slide to register against 
747         if self.slide is None: 
748             return "No slide loaded" 
749  
750         globalPos = self.slide.getGlobalPoint(localPoint) 
751  
752         #shift RMB to remove closest fiducial 
753         if removePoint: 
754             if len(self.coordinateMapper.physPoints) == 0: 
755                 return "No points to remove" 
756             self.coordinateMapper.removeClosest(globalPos) 
757             return "Removed fiducial" 
758  
759         #get physical location from user 
760         else: 
761             #mapper returns predicted location 
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762             predicted = self.coordinateMapper.predictName(globalPos) 
763  
764             #prompt user 
765             if self.GUI is None and extras is None: 
766                 return "No input provided" 
767             if extras is not None:#make this check first for debugging 
768                 text = extras.text 
769                 ok = extras.ok 
770             elif self.GUI is not None: 
771                 text, ok = self.GUI.requestFiducialInput(predicted) 
772                  
773             if ok: 
774                 #validate entry 
775                 if self.coordinateMapper.isValidEntry(text): 
776                     #add position to mapper 
777                     self.coordinateMapper 
778      .addPoints(globalPos,  
779       self.coordinateMapper.extractPoint(text)) 
780                     return "%s added at %d,%d"  

% (text, globalPos[0], globalPos[1]) 
781                 else: 
782                     return "Invalid entry: {}".format(text) 
783  
784     def reportBlobRequest(self, localPoint, radius): 
785         ''' 
786         Tries to add the blob to the current blob list.   
787         If overlap with current blob, remove that point 
788         localPoint: (x,y) tuple in the image coordinate space 
789         radius: the radius of the new blob to be added 
790         ''' 
791         #no slide to add blobs onto 
792         if self.slide is None: 
793             return "No slide loaded" 
794          
795         globalPnt = self.slide.getGlobalPoint(localPoint) 
796         added, removeInd = self.blobCollection[self.currentBlobs] 
797       .blobRequest(globalPnt, radius) 
798         if added == True: 
799             if self.GUI is not None and self.GUI.showHist: 
800                 self.GUI.toggleHistWindow() 
801             return "Adding blob at {}, {}" 

.format(globalPnt[0], globalPnt[1]) 
802         else: 
803             if self.GUI is not None and self.GUI.showHist: 
804                 self.GUI.histCanvas.removeBlob(removeInd) 
805             return "Removed blob at {}, {}" 

.format(globalPnt[0], globalPnt[1]) 
806  
807     def requestInstrumentMove(self, localPoint): 
808         ''' 
809         Handles requests for moving the connected instrument 
810         localPoint: (x,y) tuple in the current image coordinate system 
811         returns a string summarizing the effect of the action 
812         ''' 
813         #no slide is set up 
814         if self.slide is None: 
815             return "No slide loaded" 
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816  
817         #the connected instrument isn't initialized or present 
818         if self.coordinateMapper.connectedInstrument is None or \ 
819             not self.coordinateMapper.connectedInstrument.connected: 
820             return "Instrument not connected" 
821  
822         #perform actual movement 
823         pixelPnt = self.slide.getGlobalPoint(localPoint) 
824         if len(self.coordinateMapper.physPoints) >= 2: 
825             motorPnt = self.coordinateMapper.translate(pixelPnt) 
826             self.coordinateMapper 
827     .connectedInstrument 
828     .moveToPositionXY(motorPnt) 
829             return "Moving to {:.0f}, {:.0f}" 

.format(motorPnt[0], motorPnt[1]) 
830         #not enough registration points 
831         else: 
832             return "Not enough training points" 
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GUICanvases/microMSWindow.py 
0001 from __future__ import unicode_literals 
0002 import os 
0003 from PyQt5 import QtGui, QtCore, QtWidgets 
0004  
0005 from CoordinateMappers import supportedCoordSystems 
0006 from CoordinateMappers import connectedInstrument 
0007  
0008 from ImageUtilities.slideWrapper import SlideWrapper 
0009 from ImageUtilities.enumModule import Direction, StepSize 
0010  
0011 from GUICanvases.histCanvas import HistCanvas 
0012 from GUICanvases.slideCanvas import SlideCanvas 
0013 from GUICanvases.popup import blbPopupWindow, 
   gridPopupWindow, histPopupWindow 
0014 from GUICanvases.microMSModel import MicroMSModel 
0015 from GUICanvases import GUIConstants 
0016  
0017 class MicroMSQTWindow(QtWidgets.QMainWindow): 
0018     ''' 
0019     A QT implementation of the MicroMS window. 
0020     Interacts with the MicroMSModel, a SlideCanvas and a HistCanvas 
0021     Mainly handles the menu, key presses, and coordinating canvases 
0022     ''' 
0023     def __init__(self): 
0024         ''' 
0025         initialize a new microMSQT window,  
0026    setting up the layout and some instance variables 
0027         ''' 
0028         QtWidgets.QMainWindow.__init__(self) 
0029         self.setAttribute(QtCore.Qt.WA_DeleteOnClose) 
0030         self.main_widget = QtWidgets.QWidget(self) 
0031         self.fileName = None 
0032  
0033         #model with slide and blob data 
0034         self.model = MicroMSModel(self) 
0035  
0036         self.layout = QtWidgets.QHBoxLayout(self.main_widget) 
0037  
0038         #new slide canvas for displaying the image  
0039    #and handling mouse interactions. 
0040         self.slideCanvas = SlideCanvas(self,  
0041         self.model,  
0042         self.main_widget,  
0043         width=6, height=6, dpi=100) 
0044         self.layout.addWidget(self.slideCanvas, stretch = 1)    
0045          
0046         #histogram canvas for showing and interacting  
0047    #with population level measurements 
0048         self.histCanvas = HistCanvas(master=self,  
0049        model=self.model,  
0050        width=6, height=6, dpi=100) 
0051         self.layout.addWidget(self.histCanvas, stretch = 1) 
0052         self.histCanvas.hide() 
0053          
0054         self.showHist = False 
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0055  
0056          
0057         self.main_widget.setFocus() 
0058         self.setCentralWidget(self.main_widget) 
0059  
0060    #dictionary of popup windows to keep handle of each 
0061         self.popups = { 
0062             'imageHelp'     :   self.createMessageBox( 
0063       GUIConstants.IMAGE_HOTKEYS,  
0064         'Image Help'), 
0065             'instHelp'      :   self.createMessageBox( 
0066       GUIConstants.INSTRUMENT_HOTKEYS, 
0067         'Instrument Help'), 
0068             'histHelp'      :   self.createMessageBox( 
0069       GUIConstants.HISTOGRAM_HOTKEYS,  
0070         'Histogram Help'), 
0071             'blobFind'      :   blbPopupWindow(self), 
0072             'grid'          :   gridPopupWindow(self), 
0073             'histOpts'      :   histPopupWindow(self.histCanvas, self) 
0074             } 
0075          
0076         self.setupMenu() 
0077  
0078     def setupMenu(self): 
0079         ''' 
0080         setup the menubar and connect instance functions 
0081         ''' 
0082         #file menu 
0083         self.file_menu = QtWidgets.QMenu('&File', self) 
0084          
0085         #open button 
0086         openFile = QtWidgets.QAction(QtGui.QIcon('open.png'),  
0087          'Open', self) 
0088         openFile.setShortcut('Ctrl+O') 
0089         openFile.setStatusTip('Open new File') 
0090         openFile.triggered.connect(self.fileOpen) 
0091         self.file_menu.addAction(openFile) 
0092          
0093         #decimation submenu 
0094         decSub = QtWidgets.QMenu('Decimate...',self) 
0095         self.file_menu.addMenu(decSub) 
0096         decSub.addAction('Single Image', self.decimateImageSingle) 
0097         decSub.addAction('Image Group', self.decimateImageGroup) 
0098         decSub.addAction('Directory', self.decimateDirectory) 
0099          
0100         #instrument selection 
0101         instSub = QtWidgets.QMenu('&Instrument...', self) 
0102         self.file_menu.addMenu(instSub) 
0103         self.instruments = QtWidgets.QActionGroup(self, exclusive=True) 
0104         self.instruments.triggered.connect(self.mapperChanged) 
0105         #populate with all instruments currently supported 
0106         for s in supportedCoordSystems.supportedNames: 
0107             a = self.instruments.addAction(QtWidgets.QAction(s,  
0108         instSub, checkable=True)) 
0109             instSub.addAction(a) 
0110         self.instruments.actions()[0].setChecked(True) 
0111          
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0112         #save submenu 
0113         saveSub = QtWidgets.QMenu('&Save...',self) 
0114         self.file_menu.addMenu(saveSub) 
0115          
0116  
0117         saveSub.addAction('&Instrument Positions',  
0118        self.saveInstrumentPositions) 
0119         saveSub.addAction('&Fiducial Positions',  
0120        self.saveFiducialPositions) 
0121  
0122         saveSub.addSeparator() 
0123  
0124         saveSub.addAction('&Registration', self.saveReg) 
0125         saveSub.addAction('&Current Blobs', self.saveCurrentFind) 
0126         saveSub.addAction('&Histogram Divisions',  
      self.saveHistogramBlobs) 
0127         saveSub.addAction('All Lists of Blobs', self.saveAllBlobs) 
0128  
0129         saveSub.addSeparator() 
0130          
0131         saveSub.addAction('&Image', self.saveImg, 
0132                           QtCore.Qt.CTRL + QtCore.Qt.Key_S) 
0133         saveSub.addAction('&Whole Image', self.saveWholeImg) 
0134  
0135         saveSub.addSeparator() 
0136         saveSub.addAction('Histogram Image',self.histSaveImage) 
0137         saveSub.addAction('Histogram Values',self.histSaveValues) 
0138          
0139         #load submenu 
0140         loadSub = QtWidgets.QMenu('&Load...',self) 
0141         self.file_menu.addMenu(loadSub) 
0142          
0143         loadSub.addAction('&Registration', self.loadReg) 
0144         loadSub.addAction('&Found Blobs', self.loadBlobFind) 
0145         loadSub.addAction('&Instrument Positions',  
0146        self.loadInstrumentPositions) 
0147          
0148         #quit button 
0149         self.file_menu.addAction('&Quit', self.fileQuit, 
0150                                  QtCore.Qt.CTRL + QtCore.Qt.Key_Q) 
0151         self.menuBar().addMenu(self.file_menu) 
0152  
0153         #tools menu 
0154         self.tools_menu = QtWidgets.QMenu('&Tools',self) 
0155  
0156         #blob find 
0157         self.tools_menu.addAction('&Blob Find', self.globalBlob) 
0158         #blob options 
0159         self.tools_menu.addAction('&Blob Options',self.blbPopup, 
0160                                   QtCore.Qt.CTRL + QtCore.Qt.Key_B) 
0161         #limit drawn blobs toggle 
0162         self.limitDraw = QtWidgets.QAction('Limit Drawn Blobs',  
0163        self.tools_menu, checkable=True) 
0164         self.limitDraw.setChecked(True) 
0165         self.tools_menu.addAction(self.limitDraw) 
0166         self.tools_menu.addSeparator() 
0167         #Histogram options 
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0168         self.tools_menu.addAction( 
'Histogram Window',self.toggleHistWindow, 

0169                           QtCore.Qt.CTRL + QtCore.Qt.Key_H) 
0170         self.tools_menu.addAction('Histogram Options',self.histOptions) 
0171         self.tools_menu.addAction('Pick Extremes',self.histSelect) 
0172         self.tools_menu.addAction('Apply Filter',self.histFilter, 
0173                                   QtCore.Qt.CTRL + QtCore.Qt.Key_A) 
0174         #blob position options 
0175         self.tools_menu.addSeparator() 
0176         self.tools_menu.addAction('Distance Filter',self.distanceFilter) 
0177         self.tools_menu.addAction('ROI Filter Retain',self.roiFilter) 
0178         self.tools_menu.addAction('ROI Filter Remove', 
0179          self.roiFilterInverse) 
0180         self.tools_menu.addSeparator() 
0181         self.tools_menu.addAction('Rectangular Pack', self.rectPack) 
0182         self.tools_menu.addAction('Hexagonal Pack', self.hexPack) 
0183         self.tools_menu.addAction('Circular Pack', self.circPack) 
0184  
0185         #instrument settings 
0186         self.tools_menu.addSeparator() 
0187         self.tools_menu.addAction('Instrument Setting',self.gridPopup, 
0188                                   QtCore.Qt.CTRL + QtCore.Qt.Key_G) 
0189         self.menuBar().addSeparator() 
0190         self.menuBar().addMenu(self.tools_menu) 
0191  
0192         #device submenu 
0193         self.inst_menu = QtWidgets.QMenu('Device', self) 
0194         self.inst_menu.addAction('Establish Connection',  
0195       self.initializeInstrument) 
0196         self.inst_menu.addAction('Set Dwell Time', self.setDwell) 
0197         self.inst_menu.addAction('Set Wash Time', self.setWash) 
0198         self.inst_menu.addAction('Analyze All', self.analyzeAll) 
0199  
0200         self.menuBar().addSeparator() 
0201         self.menuBar().addMenu(self.inst_menu) 
0202         self.inst_menu.setEnabled(self.model.coordinateMapper 
0203        .isConnectedToInstrument) 
0204  
0205         #help menu 
0206         self.help_menu = QtWidgets.QMenu('&Help', self) 
0207         self.menuBar().addSeparator() 
0208         self.menuBar().addMenu(self.help_menu) 
0209         self.help_menu.addAction('&Image Hotkeys', self.imgHotkeyMsg) 
0210         self.help_menu.addAction('&Instrument Hotkeys',  

self.instHotkeyMsg) 
0211         self.help_menu.addAction('&Histogram Hotkeys',  

self.histHotkeyMsg) 
0212  
0213     ###most of the following functions are simple  
0214     #popups to parse input and pass to canvases 
0215     def fileOpen(self, extras=None): 
0216         ''' 
0217         open and setup a slide.  only ndpi and tif are supported 
0218         ''' 
0219         if extras is None or not hasattr(extras, 'fileName'): 
0220             fileName = QtWidgets.QFileDialog.getOpenFileName( 
0221                 self, 'Open File', 
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0222                 filter='Slide Scans (*.ndpi *.tif)')[0]   
0223  
0224         else: 
0225             fileName = extras.fileName 
0226  
0227         if fileName: 
0228             self.setupCanvas(fileName) 
0229  
0230     def decimateImageGroup(self, extras = None): 
0231         ''' 
0232         decimate a tif file (to speed up zooming out) and open the file 
0233         ''' 
0234         if extras is None or not hasattr(extras, 'fileName'): 
0235             fileName = QtWidgets.QFileDialog.getOpenFileName( 
0236                 self, 'Open File to Decimate', 
0237                 filter='Slide Scans (*.tif)') [0] 
0238  
0239         else: 
0240             fileName = extras.fileName 
0241  
0242         if fileName: 
0243             SlideWrapper.generateDecimatedImgs(fileName) 
0244             #open file once done 
0245             self.setupCanvas(fileName) 
0246             self.raise_() 
0247             self.activateWindow() 
0248  
0249     def decimateImageSingle(self, extras = None): 
0250         ''' 
0251         decimate a single file and open the image group 
0252         ''' 
0253         if extras is None or not hasattr(extras, 'fileName'): 
0254             fileName = QtWidgets.QFileDialog.getOpenFileName( 
0255                 self, 'Open File to Decimate', 
0256                 filter='Slide Scans (*.tif)')[0]  
0257  
0258         else: 
0259             fileName = extras.fileName 
0260  
0261         if fileName: 
0262             (path, file) = os.path.split(fileName) 
0263             SlideWrapper.generateDecimatedImage(path, file) 
0264             #open file once done 
0265             self.setupCanvas(fileName) 
0266             self.raise_() 
0267             self.activateWindow() 
0268  
0269     def decimateDirectory(self, extras = None): 
0270         ''' 
0271         decimate a tif file (to speed up zooming out) and open the file 
0272         ''' 
0273         if extras is None or not hasattr(extras, 'directory'): 
0274             directory = QtWidgets.QFileDialog 
0275        .getExistingDirectory(self,  
0276         'Open Directory to Decimate') 
0277  
0278         else: 
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0279             directory = extras.directory 
0280  
0281         if directory: 
0282             SlideWrapper.decimateDirectory(directory) 
0283             self.raise_() 
0284             self.activateWindow() 
0285  
0286     def setupCanvas(self, fileName): 
0287         ''' 
0288         opens the file specified by filename and  
0289    sets up some instance variables 
0290         ''' 
0291         self.model.setupMicroMS(fileName) 
0292         self.statusBar().showMessage("Opened {}".format(fileName)) 
0293         self.directory = os.path.dirname(fileName) 
0294         self.fileName = os.path.splitext(os.path.basename(fileName))[0] 
0295         self.setTitle(self.model.currentBlobs) 
0296         self.showHist = False 
0297         self.histCanvas.resetVariables(True, True) 
0298         self.histCanvas.hide() 
0299         self.model.reportSize((float(self.slideCanvas.size().width()), 
0300                                float(self.slideCanvas.size().height()))) 
0301         self.model.slide.resetView() 
0302         self.slideCanvas.draw() 
0303  
0304     def setTitle(self, blobList): 
0305         if self.fileName is not None: 
0306             self.setWindowTitle('MicroMS: {}    (List #{})' 
0307        .format(self.fileName, blobList+1)) 
0308         else: 
0309             self.setWindowTitle('MicroMS') 
0310  
0311  
0312     def mapperChanged(self, action): 
0313         ''' 
0314         action triggered by the mapper  

changing in the instrument submenu 
0315         Changes the mapper of imagecanvas to the selected one  
0316    and updates the device menu and canvas 
0317         ''' 
0318         i = supportedCoordSystems.supportedNames.index(action.text()) 
0319         self.model.setCoordinateMapper(supportedCoordSystems 
0320         .supportedMappers[i]) 
0321         self.inst_menu.setEnabled(self.model.coordinateMapper 
0322        .isConnectedToInstrument) 
0323         self.slideCanvas.draw() 
0324          
0325     def saveImg(self, extras = None): 
0326         ''' 
0327         save the image of the image canvas to the selected location 
0328         ''' 
0329         if self.model.slide is None: 
0330             self.statusBar().showMessage("No image to save") 
0331             return 
0332         if extras is None or not hasattr(extras, 'fileName'): 
0333             fileName = QtWidgets.QFileDialog 
0334         .getSaveFileName(self, 
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0335         "Select save file", 
0336         self.directory, 
0337         filter='*.png') 
0338             f = os.path.splitext(fileName[0])[0] 
0339             ex = os.path.splitext(fileName[1])[1] 
0340             fileName = f+ex 
0341  
0342         else: 
0343             fileName = extras.fileName 
0344  
0345         if fileName: 
0346             self.slideCanvas.savePlt(fileName) 
0347              
0348     def saveWholeImg(self, extras = None): 
0349         ''' 
0350         saves the entire image at the selected zoom  
0351    to the selected location 
0352         Can produce large images!! 
0353         ''' 
0354         if extras is None or not hasattr(extras, 'fileName'): 
0355             fileName = QtWidgets.QFileDialog.getSaveFileName(self, 
0356                                                      "Select save file", 
0357                                                      self.directory, 
0358                                                      filter='*.png') 
0359             f = os.path.splitext(fileName[0])[0] 
0360             ex = os.path.splitext(fileName[1])[1] 
0361             fileName = f+ex 
0362  
0363         else: 
0364             fileName = extras.fileName 
0365  
0366         if fileName: 
0367             self.model.saveEntirePlot(fileName) 
0368             if extras is None or not hasattr(extras, 'fileName'): 
0369                 msg = QtWidgets.QMessageBox(self) 
0370                 msg.setText("Finished saving") 
0371                 msg.setWindowTitle("") 
0372                 msg.exec_() 
0373              
0374     def saveAll(self, extras = None): 
0375         ''' 
0376         saves files necessary for replicating the blob finding: 
0377         -Blob finding file with pixel locations of  
0378    spots and find parameters 
0379         -Registration file with pixel to physical locations of fiducials 
0380         ''' 
0381         if extras is None or not hasattr(extras, 'text'): 
0382             text, ok = QtWidgets.QInputDialog 
0383        .getText(self,'Save All',  
0384           'Enter base filename:') 
0385  
0386         else: 
0387             text = extras.text 
0388             ok = extras.ok 
0389  
0390         if ok: 
0391             self.statusBar().showMessage( 
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0392                 self.model.saveCurrentBlobFinding( 
0393      os.path.join(self.directory, text+".txt")) 
0394             ) 
0395             self.statusBar().showMessage( 
0396                 self.model.saveCoordinateMapper( 
0397      os.path.join(self.directory, text+".msreg")) 
0398             ) 
0399  
0400     def saveReg(self, extras = None): 
0401         ''' 
0402         save just the msreg file 
0403         ''' 
0404         if extras is None or not hasattr(extras, 'fileName'): 
0405             fileName = QtWidgets.QFileDialog.getSaveFileName(self, 
0406                                                      "Select save file", 
0407                                                      self.directory, 
0408                                                      filter='*.msreg') 
0409             f = os.path.splitext(fileName[0])[0] 
0410             ex = os.path.splitext(fileName[1])[1] 
0411             fileName = f+ex 
0412  
0413         else: 
0414             fileName = extras.fileName 
0415  
0416         if fileName: 
0417             self.statusBar().showMessage( 
0418                 self.model.saveCoordinateMapper(fileName) 
0419             ) 
0420      
0421     def saveCurrentFind(self, extras = None): 
0422         ''' 
0423         save blob finding of the current blob list 
0424         ''' 
0425         if extras is None or not hasattr(extras, 'fileName'): 
0426             fileName = QtWidgets.QFileDialog.getSaveFileName(self, 
0427                                                      "Select save file", 
0428                                                      self.directory, 
0429                                                      filter='*.txt') 
0430             f = os.path.splitext(fileName[0])[0] 
0431             ex = os.path.splitext(fileName[1])[1] 
0432             fileName = f+ex 
0433         else: 
0434             fileName = extras.fileName 
0435  
0436         if fileName: 
0437             self.statusBar().showMessage( 
0438                 self.model.saveCurrentBlobFinding(fileName) 
0439             )        
0440  
0441     def saveHistogramBlobs(self, extras = None): 
0442         ''' 
0443         save blob finding of all histogram filters 
0444         ''' 
0445         if extras is None or not hasattr(extras, 'fileName'): 
0446             fileName = QtWidgets.QFileDialog.getSaveFileName(self, 
0447                                                      "Select save file", 
0448                                                      self.directory, 
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0449                                                      filter='*.txt') 
0450             f = os.path.splitext(fileName[0])[0] 
0451             ex = os.path.splitext(fileName[1])[1] 
0452             fileName = f+ex 
0453         else: 
0454             fileName = extras.fileName 
0455  
0456         if fileName: 
0457             self.statusBar().showMessage( 
0458                 self.model.saveHistogramBlobs(fileName) 
0459             )        
0460  
0461     def saveAllBlobs(self, extras = None): 
0462         ''' 
0463         save blob finding of all blob lists 
0464         ''' 
0465         if extras is None or not hasattr(extras, 'fileName'): 
0466             fileName = QtWidgets.QFileDialog.getSaveFileName(self, 
0467                                                      "Select save file", 
0468                                                      self.directory, 
0469                                                      filter='*.txt') 
0470             f = os.path.splitext(fileName[0])[0] 
0471             ex = os.path.splitext(fileName[1])[1] 
0472             fileName = f+ex 
0473         else: 
0474             fileName = extras.fileName 
0475  
0476         if fileName: 
0477             self.statusBar().showMessage( 
0478                 self.model.saveAllBlobs(fileName) 
0479             )    
0480          
0481     def saveInstrumentPositions(self, extras = None): 
0482         ''' 
0483         save instrument-specific file for sample positions 
0484         ''' 
0485         if extras is None or not hasattr(extras, 'fileName'): 
0486             fileName = QtWidgets 
0487      .QFileDialog.getSaveFileName(self, 
0488        "Select save file", 
0489        self.directory, 
0490        filter='*' +  
0491        self.model 
0492        .currentInstrumentExtension()) 
0493             f = os.path.splitext(fileName[0])[0] 
0494             ex = os.path.splitext(fileName[1])[1] 
0495             fileName = f+ex 
0496         else: 
0497             fileName = extras.fileName 
0498  
0499         if fileName: 
0500             if extras is None or not hasattr(extras, 'fileName'): 
0501                 text,ok = QtWidgets 
0502      .QInputDialog.getText(self, "Input Required",   
0503      "Input max number of spots  or OK for all " +  
0504       str(self.model.currentBlobLength()) ) 
0505                                  
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0506                 if ok and not text == '': 
0507                     maxnum = int(float(text)) 
0508                 elif ok: 
0509                     maxnum = self.model.currentBlobLength() 
0510                 else: 
0511                     return 
0512  
0513                 maxnum = min(self.model.currentBlobLength(), maxnum) 
0514  
0515                 reply = QtWidgets 
0516      .QMessageBox 
0517      .question(self, 'Run optimization?', 
0518         '''Perform TSP optimization? 
0519       Not recommended for over {} targets 
0520       Currently have {}'''.format( 
0521         GUIConstants.TSP_LIMIT, maxnum), 
0522         buttons = QtWidgets.QMessageBox.No |  
0523        QtWidgets.QMessageBox.Yes, 
0524         defaultButton = QtWidgets.QMessageBox.Yes  
0525        if maxnum < GUIConstants.TSP_LIMIT  
0526        else QtWidgets.QMessageBox.No) 
0527                 tsp = reply == QtWidgets.QMessageBox.Yes 
0528             else: 
0529                 maxnum = extras.maxnum 
0530                 tsp = extras.tsp 
0531             self.statusBar().showMessage( 
0532                 self.model.saveInstrumentPositions( 
0533                     fileName, 
0534                     tsp, 
0535                     maxnum) 
0536             ) 
0537  
0538             self.raise_() 
0539             self.activateWindow() 
0540                   
0541     def saveFiducialPositions(self, extras = None): 
0542         ''' 
0543         save instrument specific file  
0544    for fiducial locations to check registration 
0545         ''' 
0546         if extras is None or not hasattr(extras, 'fileName'): 
0547             fileName = QtWidgets.QFileDialog.getSaveFileName(self, 
0548                             "Select save file", 
0549                             self.directory, 
0550                             filter='*' +  
0551         self.model.currentInstrumentExtension()) 
0552             f = os.path.splitext(fileName[0])[0] 
0553             ex = os.path.splitext(fileName[1])[1] 
0554             fileName = f+ex 
0555         else: 
0556             fileName = extras.fileName 
0557  
0558         if fileName: 
0559             self.statusBar().showMessage( 
0560                 self.model.saveInstrumentRegistrationPositions(fileName)     
0561             ) 
0562  
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0563     def loadReg(self, extras = None): 
0564         ''' 
0565         load a registration file 
0566         sets the instrument and loads pixel and  
0567    physical positions of fiducials 
0568         ''' 
0569         if extras is None or not hasattr(extras, 'fileName'): 
0570             fileName = QtWidgets.QFileDialog.getOpenFileName( 
0571                 self, 'Open File', 
0572                 self.directory, 
0573                 filter='*.msreg')[0]   
0574         else: 
0575             fileName = extras.fileName 
0576  
0577         if fileName: 
0578             message, index = self.model.loadCoordinateMapper(fileName) 
0579             self.statusBar().showMessage( 
0580                 message 
0581             ) 
0582              
0583             self.inst_menu.setEnabled( 
0584     self.model.coordinateMapper.isConnectedToInstrument) 
0585             self.instruments.actions()[index].setChecked(True) 
0586             self.slideCanvas.draw()    
0587              
0588     def loadBlobFind(self, extras = None):         
0589         ''' 
0590         load sample positions and blob finding parameters 
0591         ''' 
0592         if extras is None or not hasattr(extras, 'fileName'): 
0593             fileName = QtWidgets.QFileDialog.getOpenFileName( 
0594                 self, 'Open File', 
0595                 self.directory, 
0596                 filter='*.txt')[0]   
0597         else: 
0598             fileName = extras.fileName 
0599  
0600         if fileName: 
0601             self.statusBar().showMessage( 
0602                 self.model.loadBlobFinding(fileName) 
0603             ) 
0604             self.slideCanvas.draw()    
0605  
0606             if self.showHist == True: 
0607                 self.toggleHistWindow() 
0608                  
0609     def loadInstrumentPositions(self, extras = None):         
0610         ''' 
0611         loads samples from an instrument file to display pixel positions 
0612         ''' 
0613         if extras is None or not hasattr(extras, 'fileName'): 
0614             fileName = QtWidgets.QFileDialog.getOpenFileName( 
0615                 self, 'Open File', 
0616                 self.directory, 
0617                 filter='*' + self.model.currentInstrumentExtension())[0]   
0618         else: 
0619             fileName = extras.fileName 
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0620  
0621         if fileName: 
0622             self.statusBar().showMessage( 
0623                 self.model.loadInstrumentPositions(fileName) 
0624                 ) 
0625             self.slideCanvas.draw() 
0626  
0627             if self.showHist == True: 
0628                 self.toggleHistWindow() 
0629              
0630     def fileQuit(self): 
0631         ''' 
0632         quit through the file -> quit button 
0633         ''' 
0634         self.close() 
0635          
0636     def closeEvent(self, ce): 
0637         ''' 
0638         print the filename of the image that  
was displayed prior to closing 
0639         ''' 
0640         if self.model.coordinateMapper 
0641     .isConnectedToInstrument == True  and\ 
0642             self.model.coordinateMapper 
0643     .connectedInstrument.connected == True: 
0644             self.model.coordinateMapper.connectedInstrument.homeAll() 
0645         if self.fileName is not None: 
0646             print("Exiting from file {}".format(self.fileName)) 
0647          
0648     def globalBlob(self, extras = None): 
0649         ''' 
0650         blob find over the entire slide area or ROI 
0651         ''' 
0652         self.statusBar().showMessage('Starting blob finding') 
0653         self.statusBar().showMessage( 
0654             self.model.runGlobalBlobFind()     
0655         ) 
0656         self.saveAll(extras) 
0657         self.slideCanvas.draw() 
0658          
0659         if self.showHist == True: 
0660             self.toggleHistWindow() 
0661          
0662     def blbPopup(self): 
0663         ''' 
0664         popup the blob finding parameters 
0665         ''' 
0666         blbFind = self.model 
0667     .blobCollection[self.model.currentBlobs].blobFinder 
0668         if blbFind is not None: 
0669             self.popups['blobFind'].loadParams(blbFind) 
0670             self.popups['blobFind'].show() 
0671             self.popups['blobFind'].activateWindow() 
0672  
0673     def toggleHistWindow(self):    
0674         ''' 
0675         toggles the display of the histogram canvas  
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0676    and initializes the instance 
0677         ''' 
0678         self.showHist = not self.showHist 
0679         if self.showHist: 
0680             #reset histogram to default values 
0681             self.histCanvas.resetVariables(resetBlobs=True) 
0682             self.histCanvas.show() 
0683             self.histCanvas.calculateHist() 
0684         else: 
0685             self.histCanvas.hide() 
0686             self.histCanvas.clearFilt() 
0687             if self.popups['histOpts'].isVisible(): 
0688                 self.popups['histOpts'].hide() 
0689              
0690     def histOptions(self): 
0691         ''' 
0692         pops up a window to adjust histogram canvas display 
0693         also resets the sample positions (globalBlbs) 
0694         ''' 
0695         if self.showHist: 
0696             self.popups['histOpts'].loadParams(self.histCanvas) 
0697             self.popups['histOpts'].show() 
0698             self.popups['histOpts'].activateWindow() 
0699                  
0700     def histSelect(self, extras =  None): 
0701         ''' 
0702         select the top and bottom X blobs from the histogram 
0703         ''' 
0704         if extras is None or not hasattr(extras, 'text'): 
0705             text,ok = QtWidgets 
0706      .QInputDialog.getText(self,  
0707       "Input Required",   
0708       "Input number of highest and \ 
0709       lowest value blobs to find") 
0710         else: 
0711             text = extras.text 
0712             ok = extras.ok 
0713         if ok and not text == '': 
0714             self.histCanvas.setBlobNum(int(text)) 
0715  
0716     def histSaveImage(self, extras = None): 
0717         ''' 
0718         Saves the current figure image as a png 
0719         extras: optional extra parameters to bypass GUI input 
0720         ''' 
0721         if self.showHist == False: 
0722             return 
0723  
0724         if extras is None or not hasattr(extras, 'fileName'): 
0725             fileName = QtWidgets.QFileDialog.getSaveFileName(self, 
0726                             "Select image file to save", 
0727                             self.directory, 
0728                             filter='*.png') 
0729             f = os.path.splitext(fileName[0])[0] 
0730             ex = os.path.splitext(fileName[1])[1] 
0731             fileName = f+ex 
0732         else: 
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0733             fileName = extras.fileName 
0734  
0735         if fileName: 
0736             self.statusBar().showMessage( 
0737                 self.histCanvas.saveHistImage(fileName)    
0738             ) 
0739  
0740     def histSaveValues(self, extras = None): 
0741         ''' 
0742         Saves all the blob locations and values of  
0743    the current histogram metric 
0744         extras: optional data to bypass GUI display 
0745         ''' 
0746         if self.showHist == False: 
0747             return 
0748         if extras is None or not hasattr(extras, 'fileName'): 
0749             fileName = QtWidgets.QFileDialog.getSaveFileName(self, 
0750                             "Select save file", 
0751                             self.directory, 
0752                             filter='*.txt') 
0753             f = os.path.splitext(fileName[0])[0] 
0754             ex = os.path.splitext(fileName[1])[1] 
0755             fileName = f+ex 
0756         else: 
0757             fileName = extras.fileName 
0758  
0759         if fileName: 
0760             self.statusBar().showMessage( 
0761                 self.histCanvas.savePopulationValues(fileName)    
0762             ) 
0763  
0764     def histFilter(self): 
0765         ''' 
0766         applies the filter to the histogram,  
0767    updating the blob find positions to  

those matching the filter 
0768         the filter is also recorded for writing the blob find file 
0769         ''' 
0770         filt = self.histCanvas.getFilteredBlobs() 
0771         if len(filt) == 0: 
0772             self.statusBar().showMessage('Invalid histogram filter') 
0773         else: 
0774             for blbs in filt: 
0775                 self.model.updateCurrentBlobs(blbs) 
0776             self.statusBar().showMessage('Applied {} filter' 
0777         .format(len(filt))) 
0778             self.histCanvas.calculateHist() 
0779             self.slideCanvas.draw() 
0780  
0781     def distanceFilter(self, extras = None): 
0782         ''' 
0783         Performs distance filter of the  

 sample positions and updates histogram display 
0784         ''' 
0785         if extras is None or not hasattr(extras, 'text'): 
0786             text,ok = QtWidgets.QInputDialog 
0787       .getText(self, "Input Required",   
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0788        "Input distance filter in pixels") 
0789         else: 
0790             text = extras.text 
0791             ok = extras.ok 
0792  
0793         if ok and not text == '': 
0794             self.statusBar().showMessage('Starting distance filter') 
0795             self.statusBar().showMessage( 
0796                 self.model.distanceFilter(int(text)) 
0797             ) 
0798             if self.showHist: 
0799                 self.histCanvas.calculateHist() 
0800             self.slideCanvas.draw() 
0801             self.raise_() 
0802             self.activateWindow() 
0803  
0804     def roiFilter(self): 
0805         ''' 
0806         Performs filtering of blobs falling within the ROI 
0807         ''' 
0808         self.statusBar().showMessage( 
0809             self.model.roiFilter() 
0810             ) 
0811         if self.showHist: 
0812             self.histCanvas.calculateHist() 
0813         self.slideCanvas.draw() 
0814  
0815     def roiFilterInverse(self): 
0816         ''' 
0817         Performs filtering of blobs falling within the ROI 
0818         ''' 
0819         self.statusBar().showMessage( 
0820             self.model.roiFilterInverse() 
0821             ) 
0822         if self.showHist: 
0823             self.histCanvas.calculateHist() 
0824         self.slideCanvas.draw() 
0825  
0826     def rectPack(self, extras = None): 
0827         ''' 
0828         expand each spot into a rectangularly packed grid 
0829         Get the separation and number of layers from the user 
0830         ''' 
0831         if self.model.currentBlobLength() > 0: 
0832              
0833             if extras is None or not hasattr(extras, 'sep'): 
0834                 text,ok = QtWidgets.QInputDialog 
0835       .getText(self,  
0836        "Input Required",   
0837        "Input separation in pixels" ) 
0838                 if ok:  
0839                     sep = int(text) 
0840                 else: 
0841                     sep = 50 
0842                  
0843                 text,ok = QtWidgets.QInputDialog 
0844        .getText(self,  
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0845         "Input Required",   
0846         "Input number of layers" ) 
0847                 if ok:  
0848                     layers = int(text) 
0849                 else: 
0850                     layers = 1 
0851  
0852                 dynamicLayering = QtWidgets.QMessageBox 
0853       .question(self, 'Input Required',  
0854         'Adjust layering to blob size?', 
0855         QtWidgets.QMessageBox.Yes,  
0856         QtWidgets.QMessageBox.No) 
0857  
0858                 if dynamicLayering == QtWidgets.QMessageBox.Yes: 
0859                     dynamicLayering = True 
0860                 else: 
0861                     dynamicLayering = False 
0862  
0863             else: 
0864                 sep = extras.sep 
0865                 layers = extras.layers 
0866                 dynamicLayering = extras.dynamicLayering 
0867  
0868             self.model.rectPackBlobs(sep, layers, dynamicLayering) 
0869             self.slideCanvas.draw() 
0870             if self.showHist: 
0871                 self.toggleHistWindow() 
0872  
0873     def hexPack(self, extras = None): 
0874         ''' 
0875         expand each spot into a hexagonally closed packed grid 
0876         Get the separation and number of layers from the user 
0877         ''' 
0878         if self.model.currentBlobLength() > 0: 
0879             if extras is None or not hasattr(extras, 'sep'): 
0880                 text,ok = QtWidgets.QInputDialog 
0881        .getText(self, "Input Required",   
0882        "Input separation in pixels" ) 
0883                 if ok:  
0884                     sep = int(text) 
0885                 else: 
0886                     sep = 50 
0887                  
0888                 text,ok = QtWidgets.QInputDialog 
0889        .getText(self, "Input Required",   
0890        "Input number of layers" ) 
0891                 if ok:  
0892                     layers = int(text) 
0893                 else: 
0894                     layers = 1 
0895  
0896                 dynamicLayering = QtWidgets.QMessageBox 
0897        .question(self, 'Input Required',  
0898         'Adjust layering to blob size?', 
0899          QtWidgets.QMessageBox.Yes,  
0900          QtWidgets.QMessageBox.No) 
0901  
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0902                 if dynamicLayering == QtWidgets.QMessageBox.Yes: 
0903                     dynamicLayering = True 
0904                 else: 
0905                     dynamicLayering = False 
0906  
0907             else: 
0908                 sep = extras.sep 
0909                 layers = extras.layers 
0910                 dynamicLayering = extras.dynamicLayering 
0911  
0912             self.model.hexPackBlobs(sep, layers, dynamicLayering) 
0913             self.slideCanvas.draw() 
0914             if self.showHist: 
0915                 self.toggleHistWindow() 
0916  
0917     def circPack(self, extras = None): 
0918         ''' 
0919         expand each spot into circularly spaced positions  
0920    around the spot circumference 
0921         get separation, max number of spots and offset from user 
0922         ''' 
0923         if self.model.currentBlobLength() > 0: 
0924             if extras is None or not hasattr(extras, 'sep'): 
0925                 text,ok = QtWidgets.QInputDialog 
0926       .getText(self, "Input Required",   
0927       "Input minimum separation in pixels" ) 
0928                 if ok:  
0929                     sep = int(text) 
0930                 else: 
0931                     sep = 50 
0932                  
0933                 text,ok = QtWidgets.QInputDialog 
0934        .getText(self, "Input Required",   
0935         "Input max number of spots" ) 
0936                 if ok:  
0937                     shots = int(text) 
0938                 else: 
0939                     shots = 10 
0940                                  
0941                 text,ok = QtWidgets.QInputDialog 
0942        .getText(self, "Input Required",   
0943         "Input offset in pixels" ) 
0944                 if ok:  
0945                     offset = int(text) 
0946                 else: 
0947                     offset = 10 
0948  
0949             else: 
0950                 sep = extras.sep 
0951                 shots = extras.shots 
0952                 offset = extras.offset 
0953  
0954             self.model.circularPackBlobs(sep, shots, offset) 
0955             self.slideCanvas.draw() 
0956             if self.showHist: 
0957                 self.toggleHistWindow() 
0958          
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0959     def gridPopup(self): 
0960         ''' 
0961         popup a window to edit the  

 intermediate map of the mapper instance 
0962         ''' 
0963         self.popups['grid'].loadParams(self.model) 
0964         self.popups['grid'].show() 
0965         self.popups['grid'].activateWindow() 
0966          
0967     def initializeInstrument(self, extras = None): 
0968         ''' 
0969         Initialize instrument on the user specified COM port 
0970         ''' 
0971         if extras is None or not hasattr(extras, 'text'): 
0972             text,ok = QtWidgets.QInputDialog 
0973      .getText(self, "Enter COM Port",   
0974        "Connections at {}" 
0975        .format( 
0976        self.model.coordinateMapper 
0977        .connectedInstrument.findPorts()) 
0978         )     
0979         else: 
0980             text = extras.text 
0981             ok = extras.ok         
0982                                                                          
0983         if ok:  
0984             try: 
0985                 self.model.coordinateMapper 
0986      .connectedInstrument.initialize(text) 
0987                 self.statusBar().showMessage( 
0988       'Connected to {}'.format(text)) 
0989             except: 
0990                 self.statusBar().showMessage( 
0991       'Error connecting to {}'.format(text)) 
0992  
0993     def setDwell(self, extras = None): 
0994         ''' 
0995         Set the dwell time for analysis with a connected instrument 
0996         ''' 
0997         if extras is None or not hasattr(extras, 'text'): 
0998             text,ok = QtWidgets.QInputDialog 
0999        .getText(self, "Input Required",   
1000           "Set dwell time (s)" 
1001           )    
1002         else: 
1003             text = extras.text 
1004             ok = extras.ok     
1005  
1006         if ok: 
1007             try: 
1008                 self.model.coordinateMapper 
1009      .connectedInstrument.dwellTime = float(text) 
1010             except: 
1011                 self.statusBar().showMessage('Input error')     
1012  
1013     def setWash(self, extras = None): 
1014         ''' 
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1015         Set the dwell time for analysis with a connected instrument 
1016         ''' 
1017         if extras is None or not hasattr(extras, 'text'): 
1018             text,ok = QtWidgets.QInputDialog 
1019      .getText(self, "Input Required",   
1020        "Set wash time (s), -1 for continuous" 
1021          )    
1022         else: 
1023             text = extras.text 
1024             ok = extras.ok     
1025  
1026         if ok: 
1027             try: 
1028                 self.model.coordinateMapper 
1029       .connectedInstrument 
1030       .postAcqusitionWait = float(text) 
1031             except: 
1032                 self.statusBar().showMessage('Input error')     
1033      
1034     def analyzeAll(self): 
1035         ''' 
1036         analyze all positions of the specified samples,  
1037    acquire for time specified by dwell time 
1038         ''' 
1039         self.statusBar().showMessage( 
1040             self.model.analyzeAll() 
1041             )  
1042  
1043     def report_blbsubset(self, blbSubset): 
1044         self.model.setBlobSubset(blbSubset) 
1045         self.slideCanvas.draw() 
1046          
1047     def createMessageBox(self, message, title): 
1048         msg = QtWidgets.QMessageBox(self) 
1049         msg.setWindowIcon(self.windowIcon()) 
1050         msg.setText(message) 
1051         msg.setWindowTitle(title) 
1052         msg.setStandardButtons(QtWidgets.QMessageBox.Ok) 
1053         msg.setModal(False) 
1054         return msg 
1055      
1056     ''' 
1057     These are popup messages with the  
1058   hotkeys defined in the included canvases 
1059     ''' 
1060     def imgHotkeyMsg(self): 
1061         self.popups['imageHelp'].show() 
1062         self.popups['imageHelp'].activateWindow() 
1063  
1064     def instHotkeyMsg(self): 
1065         self.popups['instHelp'].show() 
1066         self.popups['instHelp'].activateWindow() 
1067          
1068     def histHotkeyMsg(self): 
1069         self.popups['histHelp'].show() 
1070         self.popups['histHelp'].activateWindow() 
1071                  
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1072     def keyPressEvent(self, event): 
1073         ''' 
1074         key press event handler 
1075         ''' 
1076         if self.model.slide is not None: 
1077             shift = event.modifiers() & QtCore.Qt.ShiftModifier 
1078             #move with wsad 
1079             if shift and event.modifiers() &  
    QtCore.Qt.ControlModifier and\ 
1080                 event.modifiers() & QtCore.Qt.AltModifier: 
1081                 stepSize = StepSize.giant 
1082             elif shift and event.modifiers() &  
    QtCore.Qt.ControlModifier: 
1083                 stepSize = StepSize.medium 
1084             elif shift: 
1085                 stepSize = StepSize.large 
1086             else: 
1087                 stepSize = StepSize.small 
1088             if event.key() == QtCore.Qt.Key_A: 
1089                 self.model.reportSlideStep(Direction.left, stepSize) 
1090             elif event.key() == QtCore.Qt.Key_D: 
1091                 self.model.reportSlideStep(Direction.right, stepSize) 
1092             elif event.key() == QtCore.Qt.Key_W: 
1093                 self.model.reportSlideStep(Direction.up, stepSize) 
1094             elif event.key() == QtCore.Qt.Key_S: 
1095                 self.model.reportSlideStep(Direction.down, stepSize) 
1096      
1097             #zoom in and out 
1098             elif event.key() == QtCore.Qt.Key_Q: 
1099                 self.model.slide.zoomOut() 
1100             elif event.key() == QtCore.Qt.Key_E: 
1101                 self.model.slide.zoomIn() 
1102  
1103             #reset view to top left corner 
1104             elif event.key() == QtCore.Qt.Key_R: 
1105                 self.model.slide.resetView() 
1106  
1107             #toggle display of target blob locations 
1108             elif event.key() == QtCore.Qt.Key_O: 
1109                 if shift: 
1110                     self.model.drawAllBlobs =  

not self.model.drawAllBlobs 
1111                 else: 
1112                     self.model.showPatches= not self.model.showPatches 
1113      
1114             #cycle between image channels with t or z 
1115             elif event.key() == QtCore.Qt.Key_T or  
1116      event.key() == QtCore.Qt.Key_Z: 
1117                 self.model.slide.switchType() 
1118                  
1119             #toggle display of predicted locations from mapper 
1120             elif event.key() == QtCore.Qt.Key_P:    
1121                 self.model.showPrediction =  

not self.model.showPrediction 
1122              
1123             #toggle left/right mirror 
1124             elif event.key() == QtCore.Qt.Key_M:                    
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1125                 self.model.mirrorImage = not self.model.mirrorImage           
1126                  
1127             elif event.key() == QtCore.Qt.Key_B: 
1128                 #toggle threshold view 
1129                 if shift: 
1130                     self.model.showThreshold =  

not self.model.showThreshold 
1131                 #perform blob finding on max zoom image 
1132                 else: 
1133                     self.model.testBlobFind()     
1134  
1135             elif event.key() == QtCore.Qt.Key_C: 
1136                 #clears all target positions 
1137                 if event.modifiers() & QtCore.Qt.ShiftModifier and \ 
1138                     event.modifiers() & QtCore.Qt.ControlModifier: 
1139                     self.model.resetVariables() 
1140                     self.histCanvas.resetVariables(True, True) 
1141                     if self.showHist == True: 
1142                         self.histCanvas.calculateHist() 
1143                 #clears current target positions 
1144                 elif event.modifiers() & QtCore.Qt.ShiftModifier: 
1145                     self.model 
1146       .blobCollection[self.model.currentBlobs] 
1147       .blobs = [] 
1148                     self.histCanvas.resetVariables(True, True) 
1149                     if self.showHist == True: 
1150                         self.histCanvas.calculateHist() 
1151                 #clears filters and ROI positions 
1152                 else: 
1153                     self.model 
1154      .blobCollection[self.model.currentBlobs] 
1155      .ROI = [] 
1156                     self.histCanvas.clearFilt() 
1157                  
1158             keys = [QtCore.Qt.Key_1, QtCore.Qt.Key_2, QtCore.Qt.Key_3,  
1159                     QtCore.Qt.Key_4, QtCore.Qt.Key_5, QtCore.Qt.Key_6,  
1160                     QtCore.Qt.Key_7, QtCore.Qt.Key_8, QtCore.Qt.Key_9, 
1161                     QtCore.Qt.Key_0] 
1162                  
1163             #for each numeric key     
1164             for i,k in enumerate(keys): 
1165                 if event.key() == k: 
1166                     #set global blobs to the multiblob specified 
1167                     if event.modifiers() & QtCore.Qt.AltModifier: 
1168                         self.model.setCurrentBlobs(i) 
1169                         self.statusBar() 
1170      .showMessage( 
1171       'Picking blobs into list #{},  
1172       contains {} blobs' 
1173       .format(i+1,  
1174        self.model.currentBlobLength())) 
1175                         if self.showHist: 
1176                             self.histCanvas.calculateHist() 
1177                     #switch to image channel i 
1178                     elif event.modifiers() & QtCore.Qt.ControlModifier: 
1179                         self.model.slide.switchToChannel(i) 
1180  



 

384 
 

1181                     #toggle image channel on and off 
1182                     else: 
1183                         self.model.slide.toggleChannel(i) 
1184                     break 
1185             mapper = self.model.coordinateMapper     
1186             if mapper.isConnectedToInstrument == True and \ 
1187                 mapper.connectedInstrument.connected == True: 
1188  
1189                 #move instrument position with ikjl 
1190                 if event.key() == QtCore.Qt.Key_I: 
1191                     mapper.connectedInstrument.move( 
1192                         Direction.up, 
1193                         stepSize) 
1194                 elif event.key() == QtCore.Qt.Key_K: 
1195                     mapper.connectedInstrument.move( 
1196                         Direction.down, 
1197                         stepSize) 
1198                 elif event.key() == QtCore.Qt.Key_J: 
1199                     mapper.connectedInstrument.move( 
1200                         Direction.left, 
1201                         stepSize) 
1202                 elif event.key() == QtCore.Qt.Key_L: 
1203                     mapper.connectedInstrument.move( 
1204                         Direction.right, 
1205                         stepSize) 
1206  
1207                 elif event.key() == QtCore.Qt.Key_V: 
1208                     #set probe position 
1209                     if shift: 
1210                         mapper.connectedInstrument.setProbePosition() 
1211  
1212                     #toggle probe position 
1213                     else: 
1214                         mapper.connectedInstrument.toggleProbe() 
1215  
1216                 #perform single collection 
1217                 elif event.key() == QtCore.Qt.Key_X: 
1218                     mapper.connectedInstrument.collect() 
1219  
1220                 #move probe up and down 
1221                 elif event.key() == QtCore.Qt.Key_Equal: 
1222                     mapper.connectedInstrument.moveProbe( 
1223                         Direction.up, 
1224                         stepSize) 
1225                 elif event.key() == QtCore.Qt.Key_Minus: 
1226                     mapper.connectedInstrument.moveProbe( 
1227                         Direction.down, 
1228                         stepSize) 
1229                 elif event.key() == QtCore.Qt.Key_Plus: 
1230                     mapper.connectedInstrument.moveProbe( 
1231                         Direction.up, 
1232                         stepSize) 
1233                 elif event.key() == QtCore.Qt.Key_Underscore: 
1234                     mapper.connectedInstrument.moveProbe( 
1235                         Direction.down, 
1236                         stepSize) 
1237  
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1238                 #home all positions 
1239                 elif event.key() == QtCore.Qt.Key_H: 
1240                     if event.modifiers() & QtCore.Qt.ShiftModifier: 
1241                         mapper.connectedInstrument.finalPosition() 
1242                     else: 
1243                         mapper.connectedInstrument.homeAll() 
1244  
1245                 elif event.key() == QtCore.Qt.Key_F and \ 
1246                     event.modifiers() & QtCore.Qt.ControlModifier: 
1247                     x,y = mapper.connectedInstrument.getPositionXY() 
1248                     z = mapper.connectedInstrument.getProbePosition() 
1249                     self.statusBar() 
1250       .showMessage( 
1251        'Stage at ({}, {}); probe at {}' 
1252         .format(x,y,z)) 
1253  
1254             self.slideCanvas.draw() 
1255         else: 
1256             #debug autoload 
1257             if event.key() == QtCore.Qt.Key_D and  
1258     event.modifiers() & QtCore.Qt.ControlModifier: 
1259                 self.debugLoad() 
1260          
1261     def debugLoad(self): 
1262         ''' 
1263         a debugging function that automatically  
1264    sets up an example image and data set 
1265         ''' 
1266         #check if debug data exists 
1267         if os.path.isdir(GUIConstants.DEBUG_DIR): 
1268             #image filename 
1269             fileName = GUIConstants.DEBUG_IMG_FILE 
1270             self.setupCanvas(fileName) 
1271             #preset position and zoom level 
1272             self.model.slide.pos = [30500, 30000] 
1273             self.model.slide.lvl = 0 
1274          
1275             #the blob finding file 
1276             self.model.loadBlobFinding(GUIConstants.DEBUG_BLOB_FIND) 
1277             #the registration file 
1278             self.model.loadCoordinateMapper(GUIConstants.DEBUG_REG_FILE) 
1279             self.slideCanvas.draw() 
1280  
1281     def reportFromModel(self, message = "",  
1282        redrawSlide = False,  
1283        redrawHist = False): 
1284         ''' 
1285         Method for the model to interact with the GUI and windows. 
1286         Displays the supplied message and redraws selected canvases 
1287         message: String message to display 
1288         redrawSlide: boolean to dictate if slideCanavas should redraw 
1289         redrawHist: boolean to dictate if histCanavas should be redrawn 
1290         ''' 
1291         self.statusBar().showMessage(message) 
1292         if redrawSlide: 
1293             self.slideCanvas.draw() 
1294         if redrawHist and self.showHist: 



 

386 
 

1295             self.histCanvas.update_figure() 
1296  
1297     def requestFiducialInput(self, defaultStr): 
1298         ''' 
1299         Method for microMSModel to receive input from the user 
1300         defaultStr: the string to initially display to the user 
1301         ''' 
1302         return QtWidgets.QInputDialog 
1303      .getText(self,'Coordinate Dialog',  
1304         'Enter plate coordinate:', 
1305         text=defaultStr) 
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GUICanvases/mplCanvas.py 
01 from __future__ import unicode_literals 
02  
03 from PyQt5 import QtGui, QtWidgets 
04 from matplotlib.figure import Figure 
05 from matplotlib.backends.backend_qt5agg import  
06    FigureCanvasQTAgg as FigureCanvas 
07  
08 class MplCanvas(FigureCanvas): 
09     """Ultimately, this is a QWidget  
10   (as well as a FigureCanvasAgg, etc.).""" 
11     def __init__(self, parent=None, width=5, height=4, dpi=100): 
12         self.fig = Figure(figsize=(width, height),  
13       dpi=dpi,tight_layout=True) 
14          
15         self.axes = self.fig.add_subplot(111) 
16         # We want the axes cleared every time plot() is called 
17         self.axes.hold(False) 
18  
19         self.compute_initial_figure() 
20  
21         FigureCanvas.__init__(self, self.fig) 
22         self.setParent(parent) 
23  
24         FigureCanvas.setSizePolicy(self, 
25                                    QtWidgets.QSizePolicy.Expanding, 
26                                    QtWidgets.QSizePolicy.Expanding) 
27         FigureCanvas.updateGeometry(self) 
28  
29     def compute_initial_figure(self): 
30         pass 
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GUICanvases/popup.py 
001  
002 """ 
003 a collection of small, custom popup windows used by microMSQT 
004 """ 
005  
006 from PyQt5 import QtWidgets 
007  
008 class blbPopupWindow(QtWidgets.QDialog): 
009     ''' 
010     Window for setting blob finding parameters 
011     ''' 
012     def __init__(self, parent=None): 
013         ''' 
014         setup GUI and populate with current values 
015         blobFinder: the blob finding object 
016         parent: the parent, calling widget, a MicroMSQTWindow 
017         ''' 
018         super(blbPopupWindow,self).__init__(parent) 
019  
020         self.master = parent         
021          
022         self.setWindowTitle("Blob Find Entry")         
023          
024         #user input widgets 
025         self.minText = QtWidgets.QLineEdit(self) 
026         self.maxText = QtWidgets.QLineEdit(self) 
027         self.minCirText = QtWidgets.QLineEdit(self) 
028         self.maxCirText = QtWidgets.QLineEdit(self) 
029         self.intens = QtWidgets.QLineEdit(self) 
030         self.imgInd = QtWidgets.QLineEdit(self) 
031         self.channel = QtWidgets.QComboBox(self) 
032         self.channel.addItem("Red") 
033         self.channel.addItem("Green") 
034         self.channel.addItem("Blue") 
035  
036         #add to vbox layout with labels 
037         vbox = QtWidgets.QVBoxLayout() 
038         vbox.addWidget(QtWidgets.QLabel("Minimum Size",self)) 
039         vbox.addWidget(self.minText) 
040         vbox.addWidget(QtWidgets.QLabel("Maximum Size",self))  
041         vbox.addWidget(self.maxText) 
042         vbox.addWidget(QtWidgets.QLabel("Minimum Circularity",self)) 
043         vbox.addWidget(self.minCirText) 
044         vbox.addWidget(QtWidgets.QLabel("Maximum Circularity",self))  
045         vbox.addWidget(self.maxCirText) 
046         vbox.addWidget(QtWidgets.QLabel("Threshold",self))  
047         vbox.addWidget(self.intens) 
048         vbox.addWidget(QtWidgets.QLabel("Image Channel",self))  
049         vbox.addWidget(self.imgInd) 
050         vbox.addWidget(QtWidgets.QLabel("Color",self))  
051         vbox.addWidget(self.channel) 
052         self.setButton = QtWidgets.QPushButton("Set Parameters",self) 
053         self.setButton.clicked.connect(self.setParams) 
054         vbox.addWidget(self.setButton) 
055          
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056         self.setLayout(vbox) 
057          
058     def loadParams(self, blbFinder): 
059         self.blobFinder = blbFinder 
060         self.minText.setText( str(blbFinder.minSize)) 
061         self.maxText.setText('' if blbFinder.maxSize is None  
062         else str(blbFinder.maxSize)) 
063         self.minCirText.setText( str(blbFinder.minCircularity)) 
064         self.maxCirText.setText('' if blbFinder.maxCircularity is None  
065                                 else str(blbFinder.maxCircularity)) 
066         self.intens.setText(str(blbFinder.threshold)) 
067         self.imgInd.setText(str(blbFinder.imageIndex+1)) 
068         self.channel.setCurrentIndex(blbFinder.colorChannel) 
069  
070  
071     def setParams(self): 
072         ''' 
073         sets the parameters for blob finding  
074    based on the current GUI values 
075         Calls on the slideCanvas to perform  
076    blob finding on the current image 
077         ''' 
078         try: 
079             self.blobFinder.minSize = int(self.minText.text()) 
080         except: 
081             self.minText.setText(str(self.blobFinder.minSize)) 
082  
083         try:     
084             self.blobFinder.maxSize = None if self.maxText.text() is ''  
085         else int(self.maxText.text()) 
086         except: 
087             self.maxText.setText('' if self.blobFinder.maxSize is None  
088        else str(self.blobFinder.maxSize)) 
089  
090         try: 
091             self.blobFinder.minCircularity =  

float(self.minCirText.text()) 
092         except: 
093             self.minCirText.setText( str(self.blobFinder.minCircularity)) 
094  
095         try: 
096             self.blobFinder.maxCircularity = None  
097        if self.maxCirText.text() is ''  
098        else float(self.maxCirText.text()) 
099         except: 
100             self.maxCirText.setText('' if self.blobFinder.maxCircularity  
101         is None  
102                                 else str(self.blobFinder.maxCircularity)) 
103  
104         try: 
105             self.blobFinder.threshold = int(self.intens.text()) 
106         except: 
107             self.intens.setText(str(self.blobFinder.threshold)) 
108  
109         try: 
110             self.blobFinder.imageIndex = int(self.imgInd.text())-1 
111         except: 
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112             self.imgInd.setText(str(self.blobFinder.imageIndex+1)) 
113  
114         self.blobFinder.colorChannel = int(self.channel.currentIndex()) 
115         #blob find 
116         if self.master is not None: 
117             self.master.model.testBlobFind() 
118             self.master.slideCanvas.draw() 
119  
120 class gridPopupWindow(QtWidgets.QDialog): 
121     ''' 
122     displays a table with the current intermediate  
123   map of the mapper for the user to edit 
124     ''' 
125     def __init__(self, parent = None): 
126         ''' 
127         populate the GUI with previous points 
128         previousPoints: list of triples of the set  
129    coordinate and its x and y physical position 
130         parent: the microMSQT window calling the popup 
131         ''' 
132         super(gridPopupWindow,self).__init__(parent) 
133          
134         self.setWindowTitle("Stage Locations") 
135         vbox = QtWidgets.QVBoxLayout() 
136         self.table = QtWidgets.QTableWidget(self) 
137         vbox.addWidget(self.table) 
138         self.setLayout(vbox) 
139          
140     def loadParams(self, model): 
141  
142         self.model = model 
143         previousPoints = model.coordinateMapper.getIntermediateMap() 
144          
145         self.table.setRowCount(len(previousPoints)) 
146         self.table.setColumnCount(3) 
147         self.table.setHorizontalHeaderLabels(["Coord","X","Y"]) 
148         self.table.update() 
149         for i,m in enumerate(previousPoints): 
150             for j,el in enumerate(m): 
151                 self.table.setItem(i,j, 
152      QtWidgets.QTableWidgetItem(str(el))) 
153  
154     def closeEvent(self,evnt): 
155         ''' 
156         parse the information in the table and return  
157    it to the current mapper 
158         ''' 
159         result = [] 
160         for i in range(self.table.rowCount()): 
161             coord = self.table.item(i,0).text() 
162             x = self.table.item(i,1).text() 
163             y = self.table.item(i,2).text() 
164             result.append((coord, x, y)) 
165  
166         self.model.coordinateMapper.setIntermediateMap(result) 
167         #close 
168         self.hide() 
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169  
170 class histPopupWindow(QtWidgets.QDialog): 
171     ''' 
172     a popup window to adjust histogram options  
173   such as display image and metric 
174     ''' 
175     def __init__(self, histCanvas, parent=None): 
176         ''' 
177         setup GUI and initialize it with the current settings 
178         histCanvas: a histCanvas widget contained within parent 
179         parent: a microMSQT window 
180         ''' 
181         super(histPopupWindow,self).__init__(parent) 
182  
183         self.hist = histCanvas 
184         self.master = parent         
185          
186         self.setWindowTitle("Histogram Options")         
187          
188         #generate user io widgets 
189         self.imgInd = QtWidgets.QLineEdit(self) 
190         self.channel = QtWidgets.QComboBox(self) 
191         for m in self.hist.metrics: 
192             self.channel.addItem(m) 
193  
194         self.offset = QtWidgets.QLineEdit(self) 
195         self.max = QtWidgets.QRadioButton(self) 
196         self.max.setText('Max Intensity') 
197         self.mean = QtWidgets.QRadioButton(self) 
198         self.mean.setText('Average Intensity') 
199  
200         #add to vbox layout with labels 
201         vbox = QtWidgets.QVBoxLayout() 
202         vbox.addWidget(QtWidgets.QLabel("Image Channel",self))  
203         vbox.addWidget(self.imgInd) 
204         vbox.addWidget(QtWidgets.QLabel("Color or Morphology",self))  
205         vbox.addWidget(self.channel) 
206         vbox.addWidget(QtWidgets.QLabel("Offset (pixels)",self))  
207         vbox.addWidget(self.offset) 
208         vbox.addWidget(self.max) 
209         vbox.addWidget(self.mean) 
210  
211         btn = QtWidgets.QPushButton("Set Parameters",self) 
212         btn.clicked.connect(self.setParams) 
213         vbox.addWidget(btn) 
214          
215         self.setLayout(vbox) 
216          
217          
218     def loadParams(self, histCanvas): 
219  
220         self.hist = histCanvas      
221          
222         #generate user io widgets 
223         self.imgInd.setText(str(self.hist.imgInd+1)) 
224  
225         self.channel.setCurrentIndex(self.hist.populationMetric) 
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226         self.offset.setText(str(self.hist.offset)) 
227         self.mean.setChecked(not self.hist.reduceMax) 
228         self.max.setChecked(self.hist.reduceMax) 
229  
230     def setParams(self): 
231         ''' 
232         trigger to set the new histogram  
233    parameters and redraw the histogram 
234         ''' 
235         try: 
236             self.hist.imgInd = int(self.imgInd.text())-1 
237         except: 
238             self.imgInd.setText(str(self.hist.imgInd+1)) 
239              
240         try: 
241             self.hist.offset = int(self.offset.text()) 
242         except:  
243             self.offset.setText(str(self.hist.offset)) 
244  
245         self.hist.populationMetric = int(self.channel.currentIndex()) 
246  
247         if self.master is not None and  
248     self.master.model.slide is not None: 
249             self.master.model.slide.switchToChannel(self.hist.imgInd) 
250  
251         self.hist.reduceMax = self.max.isChecked() 
252         self.hist.calculateHist() 
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GUICanvases/slideCanvas.py 
001 from __future__ import unicode_literals 
002  
003 from PyQt5 import QtCore, QtWidgets, QtGui 
004 from PyQt5.QtCore import Qt 
005 from PyQt5.QtGui import QCursor 
006  
007 import numpy as np 
008 import random 
009 import os 
010  
011 import matplotlib.pyplot as plt 
012 from matplotlib.collections import PatchCollection 
013 from PIL import ImageDraw, ImageFont, Image 
014  
015 from GUICanvases.mplCanvas import MplCanvas 
016 from GUICanvases import GUIConstants 
017 from ImageUtilities import blobFinder 
018 from ImageUtilities import TSPutil 
019 from ImageUtilities import blob 
020  
021 from CoordinateMappers import supportedCoordSystems 
022 from CoordinateMappers import connectedInstrument 
023  
024 class SlideCanvas(MplCanvas): 
025     ''' 
026     A QWidget for displaying and interfacing slide images 
027     This also has quite a bit of control code 
028     ''' 
029     def __init__(self, master, model, *args, **kwargs): 
030         ''' 
031         initialize a new instance of a slide canvas 
032         sets up several instance variables and default display settings 
033         model: the microMSModel shared with the window GUI 
034         ''' 
035         MplCanvas.__init__(self, *args, **kwargs) 
036  
037         #modify display defaults 
038         self.axes.xaxis.set_visible(False) 
039         self.axes.yaxis.set_visible(False) 
040         self.axes.set_axis_bgcolor(GUIConstants.IMAGE_BACKGROUND) 
041         self.setCursor(QCursor(Qt.CrossCursor)) 
042  
043         #temporary image for drawing rectangles, circles, etc quickly 
044         self.tempIm = None 
045          
046         #variables related to mouse actions 
047         self.mDown = False          #mouse pressed for drawing a ROI 
048         self.startP = None          #starting position of a mouse drag 
049         self.endP = None            #end position of a mouse drag 
050         self.mDownCirc = False      #mouse down for drawing a global blob 
051         self.mMoveCirc = False      #mouse moved drawing a global blob 
052         self.mMoveROI = False       #mouse moved ROI with control alt 
053  
054         self.model = model 
055         self.master = master 
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056  
057         #connect mouse events 
058         self.mpl_connect('button_release_event', self.mouseUp) 
059         self.mpl_connect('button_press_event', self.mouseDown) 
060         self.mpl_connect('motion_notify_event', self.mouseMove) 
061         self.mpl_connect('scroll_event', self.mouseZoom) 
062  
063     def compute_initial_figure(self): 
064         ''' 
065         Draw the initial image shown before anything is loaded. 
066         Shows a high res version of the icon image 
067         ''' 
068         tdir,f = os.path.split(__file__) 
069         icon = Image.open(os.path.join(tdir, 'Icon', 'icon.png')) 
070         self.axes.imshow(icon) 
071  
072     def draw(self): 
073         ''' 
074         redraw canvas with markups using current settings 
075         ''' 
076         if self.mMoveROI == True: 
077             return#redrawROI handles redraws here 
078         if self.model.slide is not None: 
079             #reset size as needed 
080             self.model.reportSize((float(self.size().width()),  
081       float(self.size().height()))) 
082  
083             #get base image from slideWrapper and show 
084             self.tempIm = self.model.getCurrentImage() 
085             self.axes.imshow(self.tempIm) 
086  
087             #add on the blobs, predicted coordinates, and fiducial set 
088             self.axes.add_collection(self.model 
089        .getPatches( 
090        self.master.limitDraw.isChecked())) 
091             #the text labels can't be patches,  
092    #have to pass in the axes object to draw 
093             self.model.drawLabels(self.axes) 
094                          
095         #mirror left/right as needed 
096         if self.model.mirrorImage: 
097             self.axes.invert_xaxis() 
098         super().draw() 
099              
100     def mouseUp(self,event, extras = None): 
101         ''' 
102         handles mouse events when the user releases 
103         event: an mpl mouse event 
104         ''' 
105         if event.xdata is None or event.ydata is None: 
106             return 
107  
108         if self.model.slide is None: 
109             return 
110  
111         if extras is not None and hasattr(extras, 'modifiers'): 
112             modifiers = extras.modifiers 
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113         else: 
114             modifiers = QtWidgets.QApplication.keyboardModifiers() 
115  
116         #left mouse button click without dragging  
117         #generally handles image movement  
118   #and interaction with target locations 
119         if(event.button == 1 and not self.mDown): 
120             #remove or add global blob with shift click 
121             if modifiers == QtCore.Qt.ShiftModifier: 
122  
123                 #check if global blbs exists,  
124     #if any points are within click 
125                 globalPnt = self.model.slide 
126      .getGlobalPoint((event.xdata, event.ydata)) 
127                  
128                 #if shift click and drag, add blob with specified radius 
129                 if self.mDownCirc and self.mMoveCirc: 
130                     rad = np.sqrt((globalPnt[0]-self.startPC[0])**2  
131       + (globalPnt[1]-self.startPC[1])**2) 
132                     #minimum size of default radius pixels 
133                     rad = GUIConstants.DEFAULT_RADIUS if \ 
134                         rad < GUIConstants.DEFAULT_RADIUS else rad  
135  
136                 #just a shift click 
137                 else: 
138                     rad = GUIConstants.DEFAULT_RADIUS 
139  
140                 #reset manual drawing flags 
141                 self.mDownCirc = False 
142                 self.mMoveCirc = False 
143  
144                 self.master.reportFromModel( 
145                     self.model.reportBlobRequest( 
146        (event.xdata, event.ydata),  
147        radius = rad) 
148                    ) 
149  
150             #control + alt + LMB to add ROI point 
151             elif modifiers & QtCore.Qt.AltModifier and \ 
152                 modifiers & QtCore.Qt.ControlModifier: 
153                 self.model.reportROI(self.model.slide.getGlobalPoint( 
154                                     (event.xdata, event.ydata))) 
155  
156             #control + shift + LMB to append ROI point 
157             elif modifiers & QtCore.Qt.ShiftModifier and \ 
158                 modifiers & QtCore.Qt.ControlModifier: 
159                 self.model.reportROI(self.model.slide.getGlobalPoint( 
160                                     (event.xdata, event.ydata)), 
161                                      append = True) 
162  
163             #alt + LMB to move connected instrument to specified position 
164             elif modifiers == QtCore.Qt.AltModifier: 
165                 self.master.reportFromModel( 
166                     self.model.requestInstrumentMove((event.xdata,  
167           event.ydata)) 
168                     ) 
169  
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170             #plain LMB moves the image center to the mouse position 
171             else: 
172                 self.model.slide.moveCenter((event.xdata, event.ydata)) 
173  
174         #right button to interact with fiducial registration 
175         elif(event.button == 3): 
176             self.master.reportFromModel( 
177                 self.model.reportFiducialRequest( 
178     (event.xdata, event.ydata), 
179      removePoint = modifiers == QtCore.Qt.ShiftModifier, 
180       extras = extras) 
181                 ) 
182  
183         #middle mouse button to get information on mouse position 
184         elif(event.button == 2): 
185             self.master.reportFromModel( 
186                 self.model.reportInfoRequest((event.xdata, event.ydata)), 
187                 redrawHist = self.master.showHist 
188                 ) 
189  
190         #mouse was dragged to draw an ROI 
191         if(self.mDown): 
192             #convert two point to a 4point rectangle 
193             p1 = self.model.slide.getGlobalPoint((event.xdata,  

event.ydata)) 
194             p2 = self.model.slide.getGlobalPoint(self.ROI) 
195             xlow, ylow = min(p1[0], p2[0]), min(p1[1], p2[1]) 
196             xhigh, yhigh = max(p1[0], p2[0]), max(p1[1], p2[1]) 
197             self.model.blobCollection[self.model.currentBlobs] 
198       .ROI = [  (xlow, ylow), 
199           (xlow, yhigh), 
200           (xhigh, yhigh), 
201           (xhigh, ylow)] 
202  
203             self.mDown = False                                                        
204         self.draw() 
205          
206     def mouseDown(self, event, extras = None): 
207         ''' 
208         mouseDown sets variables for drawing ROIs  
209    or target positions with variable radii 
210         event: an mpl mouse down event 
211         ''' 
212         if event.xdata is None or event.ydata is None: 
213             return 
214          
215         if self.model.slide is None: 
216             return 
217  
218         if extras is not None and hasattr(extras, 'modifiers'): 
219             modifiers = extras.modifiers 
220         else: 
221             modifiers = QtWidgets.QApplication.keyboardModifiers() 
222  
223         #ROI drawing 
224         if event.button == 1 and \ 
225             modifiers == QtCore.Qt.ControlModifier: 
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226             self.mDown = True 
227             self.ROI = (event.xdata, event.ydata) 
228  
229         #target drawing 
230         elif event.button == 1 and \ 
231             modifiers == QtCore.Qt.ShiftModifier: 
232             self.mDownCirc = True 
233             self.startPC = self.model.slide 
234      .getGlobalPoint((event.xdata, event.ydata)) 
235      
236     def mouseMove(self,event, extras = None): 
237         ''' 
238         mouse moves redraw ROI or blob positions as appropriate 
239         event: an mpl mouse move event 
240         ''' 
241         if event.xdata is None or event.ydata is None: 
242             return 
243  
244         if self.model.slide is None: 
245             return 
246  
247         #ROI movement 
248  
249         if extras is not None and hasattr(extras, 'modifiers'): 
250             modifiers = extras.modifiers 
251         else: 
252             modifiers = QtWidgets.QApplication.keyboardModifiers() 
253  
254         if self.mDown == True: 
255             self.redrawRect((event.xdata, event.ydata)) 
256  
257         elif modifiers & QtCore.Qt.AltModifier and \ 
258                 modifiers & QtCore.Qt.ControlModifier: 
259             self.redrawROI((event.xdata, event.ydata)) 
260             self.mMoveROI = True 
261  
262         elif modifiers & QtCore.Qt.ShiftModifier and \ 
263                 modifiers & QtCore.Qt.ControlModifier: 
264             self.redrawROI((event.xdata, event.ydata), append = True) 
265             self.mMoveROI = True 
266  
267         elif self.mMoveROI == True: 
268             self.mMoveROI = False 
269             self.draw() 
270  
271  
272         #target drawing 
273         elif self.mDownCirc == True: 
274             self.redrawCirc((event.xdata, event.ydata)) 
275             self.mMoveCirc = True 
276  
277     def mouseZoom(self,event): 
278         ''' 
279         handle scroll wheel movement, which zooms the slide in and out 
280         event: an mpl mouse wheel event 
281         ''' 
282         if event.xdata is None or event.ydata is None: 
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283             return 
284          
285         if self.model.slide is None: 
286             return 
287  
288         #zoom in or out 
289         if event.button == 'up': 
290             self.model.slide.zoomIn() 
291             self.model.slide.moveCenter((event.xdata, event.ydata)) 
292         else: 
293             self.model.slide.zoomOut() 
294  
295         #reset temporary blobs and update 
296         self.draw() 
297  
298     def redrawROI(self, pnt, append = False): 
299         ''' 
300         helper method to draw ROI polygon during mouse movement 
301         pnt: the current point in local (image) coordinates 
302         ''' 
303         if self.tempIm is not None: 
304             self.axes.imshow(self.tempIm) 
305             roi = self.model.getROIPatches( 
306     self.model.slide.getGlobalPoint(pnt),  
307         append) 
308             self.axes.add_collection(PatchCollection(roi,  
309      match_original=(len(roi) != 0))) 
310             if self.model.mirrorImage: 
311                 self.axes.invert_xaxis() 
312             super().draw()  
313  
314     def redrawRect(self, pnt): 
315         ''' 
316         helper method to draw the yellow ROI  
317    rectangle during mouse movement 
318         pnt: the current point in local (image) coordinates 
319         ''' 
320         if self.tempIm is not None: 
321             tempStartP = self.ROI 
322             self.axes.imshow(self.tempIm) 
323             lowerL = ((min(tempStartP[0], pnt[0]),  
324                               min(tempStartP[1], pnt[1]))) 
325             x = abs(tempStartP[0]- pnt[0])    
326             y = abs(tempStartP[1]- pnt[1])                                
327             r = plt.Rectangle(lowerL, x, y,  
328         color=GUIConstants.ROI,  
329         fill=False) 
330             self.axes.add_patch(r)         
331             if self.model.mirrorImage: 
332                 self.axes.invert_xaxis() 
333             super().draw()  
334          
335     def redrawCirc(self, pnt): 
336         ''' 
337         helper method to draw the green circle for manually added blobs 
338         pnt: the current mouse position in local (image) coordinates 
339         ''' 
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340         if self.tempIm is not None: 
341             tempStartP = self.model.slide.getLocalPoint(self.startPC) 
342             self.axes.imshow(self.tempIm) 
343             rad = np.sqrt((tempStartP[0]-pnt[0])**2 +  
344        (tempStartP[1]-pnt[1])**2) 
345                    
346             c = plt.Circle(pnt, rad, 
347       color=GUIConstants.MULTI_BLOB[self.model.currentBlobs],  
348        linewidth=1, 
349        fill=False) 
350             self.axes.add_patch(c)   
351             if self.model.mirrorImage: 
352                 self.axes.invert_xaxis() 
353             super().draw()         
354       
355     def savePlt(self, fileName): 
356         ''' 
357         saves the current figure 
358         fileName: the file to write to 
359         ''' 
360         self.fig.savefig(fileName)  
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ImageUtilities/__init__.py 
01 ''' 
02 The ImageUtilities package contains the classes required  
03  to display and analyze microscope images 
04 blob.py:            object model of the blob objects found with 
05      blobFinder and some helpful methods 
06 blobList.py:        a collection of blobs 
07 blobFinder.py:      performs blob finding with a simple  
08      threshold and group algorithm 
09 enumModule.py:  a collection of enums for movement 
10 slideWrapper.py:    wraps and extends the openslide functions  
11      to handle ndpi and tif images 
12 TSPutil.py:         implements traveling salesperson optimization  
13      of a collection of tuples 
14 ''' 
  



 

401 
 

ImageUtilities/blob.py 
01 from GUICanvases import GUIConstants 
02 import matplotlib as mpl 
03  
04 class blob(object): 
05     """ 
06     Representation of a target point 
07     """ 
08     def __init__(self, x = float(0), y = float(0),  
09                  radius = float(GUIConstants.DEFAULT_BLOB_RADIUS),  
10                  circularity = float(1), group = None): 
11         ''' 
12         Initialize a new blob with the specified position,  
13     shape and group 
14         x: x coordinate, default 0.0 
15         y: y coordinate, default 0.0 
16         radius: effective radius of the blob,  
17     default to value specified in GUIConstants 
18         circularity: 0 < circ < 1, default value is 1 (perfect circle) 
19         ''' 
20         self.X = x 
21         self.Y = y 
22         self.radius = float(radius) 
23         #keep circularity in bounds 
24         self.circularity = 1 if circularity > 1 else \ 
25             (0 if circularity < 0 else circularity) 
26         self.group = group 
27  
28     @staticmethod 
29     def getXYList(blobs): 
30         ''' 
31         Method to convert a list of blobs to their x,y coordinates 
32         blobs: list of blobs 
33         returns a list of (x,y) tuples of each blob in order 
34         ''' 
35         if blobs is None: 
36             return None 
37         return list(map(lambda b: (b.X, b.Y), blobs)) 
38  
39     @staticmethod 
40     def blobFromSplitString(instrings): 
41         ''' 
42         Tries to parse all information from  
43    a split string to make a new blob 
44         instrings: list of strings, produced from  
45    splitting a blob.toString() 
46         returns a new blob with the indicated x,y,r and circularity 
47         ''' 
48         result = blob() 
49  
50         if instrings is None: 
51             return result 
52          
53         if (len(instrings) == 3 or len(instrings) == 4): 
54             result.X = float(instrings[0]) 
55             result.Y = float(instrings[1]) 
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56             result.radius = float(instrings[2]) 
57         if len(instrings) == 4: 
58             result.circularity = float(instrings[3]) 
59              
60         return result   
61  
62     def toString(self): 
63         ''' 
64         Generates a tab delimited string with the x, y,  
65    radius and circularity of the blob 
66         ''' 
67         return "{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}" 
68     .format(self.X, self.Y,  
69         self.radius, self.circularity) 
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ImageUtilities/blobFinder.py 
001 import skimage 
002 from skimage import measure 
003 import numpy as np 
004 from itertools import product 
005 import time 
006 import scipy 
007  
008 from ImageUtilities.blob import blob 
009  
010 import matplotlib 
011 import matplotlib.pyplot as plt 
012  
013 class blobFinder(object): 
014     ''' 
015     performs blob finding on a slidewrapper object 
016     ''' 
017     def __init__(self, slide, minSize = 50, maxSize = None, 
018                  minCircularity = 0.6, maxCircularity = None, 
019                  colorChannel = 2, threshold = 75, imageIndex = 1): 
020         ''' 
021         set up the slidewrapper 
022         slide: slidewrapper to interact with 
023         minSize: minimum blob size in pixels 
024         maxSize: maximum blob size in pixels, None for no maximum 
025         minCircularity: minimum blob circularity 
026         maxCircularity: maximum blob circularity, None for no max 
027         colorChannel: [0, 1, 2] -> [R, G, B] channel to select 
028         threshold: maximum pixel intensity to consider a blob 
029         imageIndex: index of multi-slide object to consider 
030         ''' 
031         self.slide = slide 
032         self.minSize = minSize 
033         self.maxSize = maxCircularity 
034         self.minCircularity = minCircularity 
035         self.maxCircularity = maxCircularity 
036         self.colorChannel = colorChannel 
037         self.threshold = threshold 
038         self.imageIndex = imageIndex 
039  
040     def copyParameters(self, other): 
041         ''' 
042         Copies blob finding parameters from another blobFinder instance 
043         other: blobFinder object to copy parameters from 
044         ''' 
045         self.minSize = other.minSize 
046         self.maxSize = other.maxSize 
047         self.minCircularity = other.minCircularity 
048         self.maxCircularity = other.maxCircularity 
049         self.colorChannel = other.colorChannel 
050         self.threshold = other.threshold 
051         self.imageIndex = other.imageIndex 
052  
053  
054     def getParameters(self): 
055         ''' 
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056         get the set of parameters as a dictionary 
057         returns a dictionary of string -> value   
058    pairs of all parameters for blob finding 
059         ''' 
060         return { 
061                 'minSize' : self.minSize, 
062                 'maxSize' : self.maxSize, 
063                 'minCir' : self.minCircularity, 
064                 'maxCir' : self.maxCircularity, 
065                 'channel' : self.colorChannel, 
066                 'thresh' : self.threshold, 
067                 'ImageInd' : self.imageIndex} 
068  
069     def setParameterFromSplitString(self, toks): 
070         ''' 
071         Sets the parameters dictated in the toks list.   
072    String must match from getParameters 
073         toks: list of strings generated from string.split 
074         ''' 
075         if toks is None or len(toks) < 2: 
076             return 
077  
078         if toks[0] == 'minSize': 
079             if toks[1] == 'None\n': 
080                 raise(ValueError('None type not acceptable for minSize')) 
081             self.minSize = int(toks[1]) 
082  
083         elif toks[0] == 'maxSize': 
084             if toks[1] == 'None\n': 
085                 self.maxSize = None 
086             else: 
087                 self.maxSize = int(toks[1]) 
088  
089         elif toks[0] == 'minCir': 
090             if toks[1] == 'None\n': 
091                 raise(ValueError('None type not acceptable for minCirc')) 
092             self.minCircularity = float(toks[1]) 
093  
094         elif toks[0] == 'maxCir': 
095             if toks[1] == 'None\n': 
096                 self.maxCircularity = None 
097             else: 
098                 self.maxCircularity = float(toks[1]) 
099  
100         elif toks[0] == 'channel': 
101             if toks[1] == 'None\n': 
102                 raise(ValueError('None type not acceptable for channel')) 
103             self.colorChannel = int(toks[1]) 
104  
105         elif toks[0] == 'thresh': 
106             if toks[1] == 'None\n': 
107                 raise(ValueError('None type not acceptable for thresh')) 
108             self.threshold = int(toks[1]) 
109  
110         elif toks[0] == 'ImageInd': 
111             if toks[1] == 'None\n': 
112                 raise(ValueError('None type not accepted for ImageInd')) 
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113             self.imageIndex = int(toks[1]) 
114  
115          
116     def getBlobCharacteristics(self, pnt): 
117         ''' 
118         Gets the area and circularity for a  
119    blob containing the supplied point 
120         Returns 0,0 if no blob containing point 
121         pnt: (x,y) of the requested point 
122         ''' 
123         #get current image 
124         img = self.slide.getImg() 
125         #threshold image 
126         lbl, num = blobFinder._blbThresh(img,  
127      self.colorChannel, self.threshold) 
128         slices = scipy.ndimage.find_objects(lbl) 
129         area, circ = 0,0 
130         #for each blob in region 
131         for i in range(num): 
132             s = slices[i] 
133             dx, dy = s[:2] 
134             #check if point is within the bounds of the blob 
135             if dx.start < pnt[1] and dx.stop > pnt[1] and \ 
136                 dy.start < pnt[0] and dy.stop > pnt[0]: 
137                 #convert blob to boolean image 
138                 region = lbl[dx.start-1:dx.stop+1, dy.start-1:dy.stop+1] 
139                 region = region == i+1 
140                 #get area and circularity 
141                 area = np.sum(region) 
142                 perim = skimage.measure.perimeter(region) 
143                 if perim == 0: 
144                     circ = 1 
145                 else: 
146                     circ = min(4*np.pi * area / perim**2, 1) 
147                 #scale area by zoom level 
148                 #these get  less accurate with higher zoom level 
149                 area = area * 2**(2*self.slide.lvl) 
150                 break 
151         return area, circ 
152          
153     @staticmethod 
154     def _blbHelp(img, sizes, channel = 2, threshold = 200, 
155                  circs = (0.7,None), xShift=0, yShift = 0): 
156         ''' 
157         helper function to perform blob finding on the image 
158         returns a list of blobs 
159         img: the image to blob find 
160         sizes: (min, max) size to consider max == None means no max size 
161         channel: r,g,b channel to threshold 
162         threshold: minimum pixel intensity to count as blob 
163         circs: (min, max) circularity to consider  

max == None means no max 
164         xShift: amount to add to x coordinate  
165    to shift into global coordinate 
166         yShift: amount to add to y coordinate  
167    to shift into global coordinate 
168         ''' 
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169         #blob find 
170         lbl, num = blobFinder._blbThresh(img, channel, threshold) 
171         slices = scipy.ndimage.find_objects(lbl) 
172         result = [] 
173         #for each blob 
174         for i in range(num): 
175             #convert to boolean image 
176             s = slices[i] 
177             dx, dy = s[:2] 
178             region = lbl[dx.start-1:dx.stop+1, dy.start-1:dy.stop+1] 
179             region = region == i+1 
180             #area is total number of true pixels 
181             area = np.sum(region) 
182             #if passes size threshold 
183             if area > sizes[0] and (sizes[1] is None or area < sizes[1]): 
184                 #calculate circularity = 4 pi area / perimeter^2 
185                 perim = skimage.measure.perimeter(region) 
186                 circ = 4*np.pi * area / perim**2 
187                 #if passes circularity threshold 
188                 if circ > circs[0] and  
189       (circs[1] is None or circ < circs[1]): 
190                     #determine center of mass, ignoring intensity 
191                     (x,y) = scipy.ndimage 
192       .measurements.center_of_mass(region) 
193                     #calculate radius assuming circle 
194                     r = np.sqrt(area/np.pi) 
195                     #add to result, note x,y transpose! 
196                     result.append(blob(y=x+dx.start-1+yShift,  
197                                        x = y+dy.start-1+xShift,  
198                                        radius = r,  
199                                        circularity = circ)) 
200         return result 
201      
202     @staticmethod 
203     def _blbThresh(img, channel = 2, threshold = 200): 
204         ''' 
205         helper function to threshold and group image 
206         returns the label and total number of objects from ndimage.label 
207         img: image to consider 
208         channel: r,g,b channel to threshold 
209         threshold: min intensity cutoff 
210         ''' 
211         img = np.array(img.split()[channel]) 
212         thresh = img > threshold  
213         return scipy.ndimage.label(thresh)   
214      
215     def blobImg(self): 
216         ''' 
217         perform blob finding on the current  
218    position of slideWrapper at max zoom 
219         returns a list of blobs in image 
220         ''' 
221         inputImg = self.slide.getMaxZoomImage(imgInd = self.imageIndex) 
222         return blobFinder._blbHelp(inputImg,  
223       (self.minSize, self.maxSize),  
224        self.colorChannel,  
225        self.threshold,  
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226        (self.minCircularity,  
227           self.maxCircularity)) 
228          
229     def blobSlide(self, subSize = 8192, ROI = None): 
230         ''' 
231         perform blob finding on the entire image bounded by ROI  
232         only reads a subregion of the image at once,  
233    which causes an initial grouping of blobs 
234         returns a list of blobs in image 
235         subSize: size in pixels of one side of the  
236    subregion to iterate over 
237             larger values may use up lots of RAM 
238         ROI: a list of points for ROI polygon.   
239    Only used to determine bounding box. 
240         ''' 
241         #the amount of overlap between regions,  
242   #would matter with larger objects but is currently ignored 
243         overlap = 0 
244  
245         #if ROI is none, get max size and (0,0) 
246         if ROI is None or len(ROI) < 2: 
247             botR = self.slide.getSize() 
248             topL = (0,0) 
249             ROI = [topL, botR] 
250         else: 
251             topL = (min(map(lambda x: x[0], ROI)), 
252                     min(map(lambda x: x[1], ROI))) 
253             botR = (max(map(lambda x: x[0], ROI)), 
254                     max(map(lambda x: x[1], ROI))) 
255  
256         #set of x and y values of the center of each sub image 
257         xs = np.arange(topL[0] + subSize//2,  
258      botR[0]+subSize//2, subSize-overlap) 
259         ys = np.arange(topL[1] + subSize//2,  
260      botR[1]+subSize//2, subSize-overlap) 
261          
262         #Cartesian product of xs and ys 
263         centers = product(xs,ys) 
264  
265         #initialize time, blob list, and iterator count 
266         start = time.time() 
267         total = len(xs) * len(ys) 
268         print("starting %d images" % total) 
269         blbs = [] 
270         i = 1 
271  
272         #for each subregion 
273         for cent in centers: 
274             #get max zoom image 
275             inputImg = self.slide 
276      .getMaxZoomImage((int(cent[0]),int(cent[1])),  
277           (subSize,subSize), 
278           imgInd = self.imageIndex) 
279             #blob find 
280             blb = blobFinder._blbHelp(inputImg,  
281        (self.minSize, self.maxSize),  
282        self.colorChannel, self.threshold,  
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283                                     (self.minCircularity,  
284        self.maxCircularity), 
285                                     cent[0]-subSize/2, cent[1]-subSize/2) 
286             blbs.extend(blb) 
287             #print out expected time remaining, not super accurate 
288             if i % 10 == 0 or i == 1: 
289                 print("finished %d of %d subareas, %d seconds left"  
290     % (i, total, (time.time()-start)/ i * (total-i))) 
291             i = i+1 
292              
293         print("took {:.3f} minutes".format((time.time() - start)/60)) 
294          
295         return blbs   
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ImageUtilities/blobList.py 
001 import numpy as np 
002 import scipy 
003 from scipy.spatial.distance import pdist 
004 import matplotlib.pyplot as plt 
005 from matplotlib.path import Path 
006 from copy import deepcopy 
007 import ast 
008  
009 from GUICanvases import GUIConstants 
010  
011 from ImageUtilities import blob 
012 from ImageUtilities import blobFinder 
013  
014 class blobList(object): 
015     """ 
016     A collection of blob objects. 
017     Underlying data is the list self.blobs and supplies several 
018     utilities for filtering, drawing and expanding blobs. 
019     Each bloblist also contains its own blobfinder and filters 
020     """ 
021  
022     def __init__(self, slide = None): 
023         self.blobs = [] 
024         self.blobFinder = blobFinder.blobFinder(slide) 
025         self.filters = [] 
026         self.description = None 
027         self.threshCutoff = None 
028         self.ROI = [] 
029         self.groupLabels = dict() 
030         ##Add any new instance vars to deepcopy! 
031  
032     def append(self, blb): 
033         if isinstance(blb, blob.blob): 
034             self.blobs.append(blb) 
035  
036     def length(self): 
037         return len(self.blobs) 
038  
039     def __copy__(self): 
040         cls = self.__class__ 
041         result = cls.__new__(cls) 
042         result.__dict__.update(self.__dict__) 
043         return result 
044  
045     def __deepcopy__(self, memo): 
046         cls = self.__class__ 
047         result = cls.__new__(cls) 
048         memo[id(self)] = result 
049  
050         result.blobs = deepcopy(self.blobs) 
051         result.filters = deepcopy(self.filters) 
052         result.description = deepcopy(self.description) 
053         result.ROI = deepcopy(self.ROI) 
054         result.threshCutoff = self.threshCutoff 
055         result.groupLabels = deepcopy(self.groupLabels) 
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056  
057         result.blobFinder = blobFinder.blobFinder(self.blobFinder.slide) 
058         result.blobFinder.copyParameters(self.blobFinder) 
059  
060         return result 
061  
062     def partialDeepCopy(self, newBlobs): 
063         cls = self.__class__ 
064         result = cls.__new__(cls) 
065  
066         result.blobs = newBlobs 
067         result.generateGroupLabels() 
068         result.filters = deepcopy(self.filters) 
069         result.description = deepcopy(self.description) 
070         result.ROI = deepcopy(self.ROI) 
071         result.threshCutoff = self.threshCutoff 
072  
073         result.blobFinder = blobFinder.blobFinder(self.blobFinder.slide) 
074         result.blobFinder.copyParameters(self.blobFinder) 
075  
076         return result 
077  
078  
079     def saveBlobs(self, filename): 
080         ''' 
081         save the current blob coordinates in pixels  
082    and the set of blob find parameters 
083         and histogram filters applied to generate the set 
084         fileName: file to save to 
085         ''' 
086         if len(self.blobs) == 0: 
087             return 
088         output = open(filename,'w') 
089         #save blob finding parameters 
090         for key, val in self.blobFinder.getParameters().items(): 
091             output.write("{}\t{}\n".format(key,val)) 
092         #save ROI 
093         output.write('ROI: {}\n'.format(self.ROI)) 
094         #save histogram filters  
095         if len(self.filters) != 0: 
096             output.write("->{}->\n".format('->'.join(self.filters))) 
097         else: 
098             output.write("->\n") 
099         #blb parameter header 
100         output.write("x\ty\tr\tc\n")     
101         #save blobs 
102         for b in self.blobs: 
103             output.write("{}\n".format(b.toString())) 
104              
105         output.close() 
106  
107     def loadBlobs(self, filename): 
108         ''' 
109         Loads the blobs and sets the blob finding  
110    parameters from a filename 
111         filename: the txt file to read in.  Formatted from saveBlobs 
112         ''' 
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113         reader = open(filename,'r') 
114         lines = reader.readlines() 
115         self.blobs = [] 
116         for l in lines: 
117             toks = l.split('\t') 
118             if len(toks) == 2: 
119                 #set blob finder parameters 
120                 self.blobFinder.setParameterFromSplitString(toks) 
121             elif toks[0] != 'x' and len(toks) > 2: 
122                 #add new blob 
123                 self.blobs.append(blob.blob.blobFromSplitString(toks))     
124             else: 
125                 #get filters 
126                 toks = l.split('->') 
127                 if len(toks) > 1: 
128                     self.filters = toks[1:-1] 
129                 elif l[0:3] == 'ROI': 
130                     self.ROI = ast.literal_eval(l[5:]) 
131  
132         self.generateGroupLabels() 
133  
134     def blobRequest(self, globalPoint, radius): 
135         ''' 
136         Tries to add the blob to the current blob list.   
137         If overlap with current blob, remove that point 
138         globalPoint: (x,y) tuple in the image coordinate space 
139         radius: the radius of the new blob to be added 
140         returns true if a blob was added, false if one was removed 
141         ''' 
142         for i,b in enumerate(self.blobs): 
143             if (globalPoint[0]-b.X)**2 + (globalPoint[1]-b.Y)**2 <= \ 
144                 b.radius**2: 
145                 self.blobs.pop(i) 
146                 return False, i 
147  
148         self.blobs.append(blob.blob(globalPoint[0],  
149       globalPoint[1], radius)) 
150         return True, -1 
151  
152  
153     def blobSlide(self): 
154         if len(self.ROI) < 3: 
155             self.blobs = self.blobFinder.blobSlide() 
156             return "Finished blob finding on whole slide, found {} blobs" 
157      .format(len(self.blobs)) 
158         else: 
159             self.blobs = self.blobFinder.blobSlide(ROI = self.ROI) 
160             if len(self.blobs) != 0: 
161                 roi = Path(self.ROI) 
162                 points = np.array([ (b.X,b.Y) for b in self.blobs]) 
163                 self.blobs = [self.blobs[i]  
164       for i in np.where( 
165        roi.contains_points(points))[0]] 
166             return "Finished blob finding in ROI, found {} blobs" 
167       .format(len(self.blobs)) 
168  
169     def getROI(self, point, distCutoff, append = False): 
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170         ''' 
171         Performs checks and additions to interacting with an ROI.  
172    Does not alter ROI 
173         point: global point to check 
174         returns a new list of tuples of the ROI 
175         ''' 
176         result = self.ROI.copy() 
177         if point is not None and len(self.ROI) > 2 and append == False: 
178             #find distances between point and ROI 
179             dists = pdist([point] + result)[:len(result)] 
180             #remove first point with dist <= ROI_DIST 
181             for i,d in enumerate(dists): 
182                 if d < distCutoff: 
183                     result.pop(i) 
184                     return result 
185  
186             #add between the two closest dists 
187             dists = np.append(dists, dists[0]) 
188             dist2 = [] 
189             for i in range(len(dists) -1): 
190                 dist2.append(dists[i] + dists[i+1]) 
191             #quick, no check for intersection 
192             #result.insert(np.argmin(dist2)+1, point) 
193  
194             #slower, checks for overlapping,  
195    #returns the shortest distance without overlap 
196             pos = np.argsort(dist2) 
197             for p in pos: 
198                 #check first leg of path 
199                 segment = Path([result[p], point]) 
200                 testSeg = Path(result[p+1:] + result[:p],  
201      [Path.MOVETO] + [Path.LINETO]*(len(result)-2)) 
202                 if testSeg.intersects_path(segment): 
203                     continue 
204  
205                 #check second leg of path 
206                 if p+1 == len(result): 
207                     segment = Path([point, result[0]]) 
208                     testSeg = Path(result[1:],  
209      [Path.MOVETO] + [Path.LINETO]*(len(result)-2)) 
210                     if testSeg.intersects_path(segment): 
211                         continue 
212                 else: 
213                     segment = Path([point, result[p+1]]) 
214                     testSeg = Path(result[p+2:] + result[:p+1],  
215      [Path.MOVETO] + [Path.LINETO]*(len(result)-2)) 
216                     if testSeg.intersects_path(segment): 
217                         continue 
218  
219                 #passed, return: 
220                 result.insert(p+1, point) 
221                 return result 
222  
223         elif point is not None: 
224             result.append(point) 
225              
226         return result 
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227  
228     def roiFilter(self): 
229         if len(self.ROI) < 3: 
230             return deepcopy(self) 
231         roi = Path(self.ROI) 
232         points = np.array([ (b.X,b.Y) for b in self.blobs]) 
233         if points.size == 0: 
234             return self.partialDeepCopy([]) 
235         result = self.partialDeepCopy([self.blobs[i]  
236        for i in np.where( 
237         roi.contains_points(points))[0]]) 
238         return result 
239  
240     def roiFilterInverse(self): 
241         if len(self.ROI) < 3: 
242             return deepcopy(self) 
243         roi = Path(self.ROI) 
244         points = np.array([ (b.X,b.Y) for b in self.blobs]) 
245         if points.size == 0: 
246             return self.partialDeepCopy([]) 
247         result = self.partialDeepCopy( 
248    [self.blobs[i]  
249     for i in np.where( 
250      np.logical_not(roi.contains_points(points)))[0]]) 
251         return result 
252  
253     def distanceFilter(self, dist, subblocks = None, verbose = False): 
254         ''' 
255         Filter blob positions based on a set separation distance. 
256         Implemented by dividing the area into different subregions. 
257         Blobs are binned into at least one region,  
258    then all pairwise distances 
259         are compared to the distance cutoff. 
260         Returns list of bool with result[i] == true  
261    if i has a neighbor too close (< dist away) 
262  
263         blobs: list of blobs 
264         dist: the distance cutoff 
265         subblocks: specify the number of sublocks to divide the area. 
266             Divides the x and y into subblocks sections 
267             = None allows the function to dynamically  
268     determine number of subblocks  
269         verbose: set if output message is printed to console 
270         ''' 
271         if self.blobs is None or len(self.blobs) == 0: 
272             return 
273         #initialize result and determine subblocks 
274         result = [False] * len(self.blobs) 
275         if subblocks is None: 
276             subblocks = int(np.ceil(np.sqrt(len(self.blobs)/100))) 
277             subblocks = min(subblocks, 5) 
278  
279         subLocs = self._groupBlobs(dist, subblocks) 
280  
281         #perform distance filtering on each sub block 
282         for i in range(subblocks+1): 
283             for j in range(subblocks+1): 
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284                 #number of points in sub region 
285                 n = len(subLocs[i][j]) 
286                 #np array of points 
287                 locs = np.zeros((n,2)) 
288                 #populate locs 
289                 for ii,v in enumerate(subLocs[i][j]): 
290                     locs[ii,0] = self.blobs[v].X 
291                     locs[ii,1] = self.blobs[v].Y 
292                 #distance filter the sub region list 
293                 #tooClose[i] == true if too close to a neighbor 
294                 tooClose = blobList._distFilter(locs, dist) 
295                 #set result, index is the subLocs[x][y]  
296     #and the kth point in that subregion list 
297                 for k in np.where(tooClose)[0]: 
298                     result[subLocs[i][j][k]] = True 
299  
300         #determine number of blobs passing filter 
301         count = np.sum(result) 
302         #report to console 
303         if verbose: print("Done! {} blobs within {} pixels, {} remaining" 
304      .format(count, dist, len(result) - count)) 
305          
306         newList = self.partialDeepCopy([self.blobs[i]  
307       for i in np.where(~np.array(result))[0]]) 
308         newList.filters.append("distance > {}".format(dist)) 
309         return newList 
310  
311      
312     @staticmethod     
313     def _distFilter(locs, dist): 
314         ''' 
315         A helper function for performing distance  
316    filtering of a np matrix. 
317         Returns a list of bool with result[i] == true  
318    if too close to another point 
319         locs: np array of points[n][2] 
320         dist: the distance cutoff 
321         ''' 
322         #number of points 
323         n = len(locs) 
324         #map between square form of row i, column j,  
325   #and the row vector from pdist 
326         q = lambda i,j,n: int(n*j - j*(j+1)/2+i-1-j) 
327         #initialize result 
328         result = [False] * n 
329         #calculate Euclidean distance 
330         dists = pdist(locs) 
331         #for each x,y pair 
332         for i in range(1,n): 
333             for j in range(i): 
334                 #if distance between i and j is less than distance 
335                 if dists[q(i,j,n)] < dist: 
336                     #both blobs fail, ie result = true 
337                     result[i] = True 
338                     result[j] = True 
339         return result 
340  
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341     def minimumDistances(self, subblocks = None, overlap = 250): 
342         ''' 
343         Calculate the minimum distance between each blob. 
344         Similar algorithm to distFilter, but records the min distance 
345         returns a list of floats with the minimum distance  
346    between each point 
347         blobs: list of blobs 
348         subblocks: number of subdivisions of x and y dimension 
349             = None to dynamically choose number of subblocks 
350         overlap: the amount of overlap in pixels between subregions,  
351    in a sense defines the maximum, reliable distance reported 
352         ''' 
353  
354         if self.blobs is None or self.length() == 0: 
355             return None 
356          
357         #initialize result 
358         result = [float("inf")] * len(self.blobs) 
359         #determine subblocks size 
360         if subblocks is None: 
361             subblocks = int(np.ceil(np.sqrt(len(self.blobs)/100))) 
362             subblocks = min(subblocks, 5) 
363  
364         subLocs = self._groupBlobs(overlap, subblocks) 
365  
366         #for each sub region list 
367         for i in range(subblocks+1): 
368             for j in range(subblocks+1): 
369                 #number of points 
370                 n = len(subLocs[i][j]) 
371                 #initialize temporary list of points 
372                 locs = np.zeros((n,2)) 
373                 #add points into locs 
374                 for ii,v in enumerate(subLocs[i][j]): 
375                     locs[ii,0] = self.blobs[v].X 
376                     locs[ii,1] = self.blobs[v].Y 
377                 #calculate distances 
378                 dists = blobList._minDists(locs) 
379                 #record minimum of the distances and previous value 
380                 for k, d in enumerate(dists): 
381                     result[subLocs[i][j][k]] =  
382       min(result[subLocs[i][j][k]], d) 
383          
384         temp = np.array(result) 
385         maxVal = max(temp[temp != float("inf")]) 
386         maxVal = max(maxVal, overlap) 
387         for i, r in enumerate(result): 
388             if r == float("inf"): 
389                 result[i] = maxVal 
390         return result 
391      
392     @staticmethod 
393     def _minDists(locs): 
394         ''' 
395         A helper function to calculate the closest  
396    neighbor of each blob 
397         returns a list of floats with result[i]  
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398    indicating there exists another neighbor 
399             that distance away. 
400         locs: an np array of the x,y coordinates 
401         ''' 
402         #get number of points 
403         n = len(locs) 
404         #lambda function to convert index in square and row form 
405         q = lambda i,j,n: int(n*j - j*(j+1)/2+i-1-j) 
406         #initialize result 
407         result = [float("inf")] * n 
408         #calculate Euclidean distance between each point 
409         dists = pdist(locs) 
410         #for each x,y pair 
411         for i in range(1,n): 
412             for j in range(i): 
413                 #record the minimum of the current distance  
414     #and the previous value 
415                 result[i] = min(result[i], dists[q(i,j,n)]) 
416                 result[j] = min(result[j], dists[q(i,j,n)]) 
417         return result 
418  
419     def _groupBlobs(self, overlap, subblocks): 
420         ''' 
421         A helper function for grouping blobs into subregions  
422    defined by the number of subblocks 
423         return a 2d list of indices split by the blob x and y coordinates 
424         overlap: amount of overlap for adding duplicate blobs 
425         subblocks: number of subdivisions in x and y 
426         ''' 
427         #find min and max limits of x and y 
428         lowX = min(map(lambda x : x.X, self.blobs)) 
429         highX = max(map(lambda x : x.X, self.blobs)) 
430         lowY = min(map(lambda x : x.Y, self.blobs)) 
431         highY = max(map(lambda x : x.Y, self.blobs)) 
432  
433         #find subblock size of x and y 
434         subX =  (highX - lowX)/ subblocks 
435         subY = (highY - lowY)/subblocks 
436  
437         #initialize a 2d array of empty lists to hold each point 
438         result = [[[] for x in range(subblocks+1)]  
439       for y in range(subblocks+1)] 
440          
441         #place indices of points into subLocs list 
442         for i,v in enumerate(self.blobs): 
443             #get divisor and remainder 
444             (xd, xm) = (0,0) if subX == 0 else divmod(v.X-lowX, subX) 
445             (yd, ym) = (0,0) if subY == 0 else divmod(v.Y-lowY, subY) 
446             xd, yd = int(xd), int(yd) 
447             #put into 'normal block' 
448             result[xd][yd].append(i) 
449             #place into overlap region 
450             #in the top left corner 
451             if (xm <=2*overlap and ym <= 2*overlap) and  
452      (xd-1 >=0 and yd -1 >=0): 
453                 result[xd-1][yd-1].append(i)  
454             #in the left margin 
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455             if xm <= 2*overlap and xd-1 >= 0: 
456                 result[xd-1][yd].append(i) 
457             #in the top margin 
458             if ym <= 2*overlap and yd -1 >= 0: 
459                 result[xd][yd-1].append(i) 
460  
461         return result 
462  
463     def circularPackPoints(self, spacing, maxSpots, offset, minSpots = 4,  
464                            r=GUIConstants.DEFAULT_PATTERN_RADIUS, c = 1): 
465         ''' 
466         Expands each blob into several points surrounding the blob. 
467         blobs: list of blobs to expand 
468         spacing: minimum spacing between points 
469         maxSpots: max number of spots to expand for each blob 
470         offset: offset of circumference to space blobs 
471         minSpots: minimum number of spots for each blob.   
472    Ignores spacing with min spots 
473         r: radius of new blobs 
474         c: circumference of new blobs 
475         returns a list of blobs of the expanded positions 
476         ''' 
477         #check maxspots to ensure less than min 
478         maxSpots = minSpots if maxSpots < minSpots else maxSpots 
479         #calculate min and max r: 
480         maxR = maxSpots*spacing/(2* np.pi)-offset 
481         #angles and unit vectors of max spots 
482         thetas = np.linspace(0,2*np.pi,maxSpots,False) 
483         maxUnits = np.vstack((np.cos(thetas),np.sin(thetas))) 
484          
485         minR = minSpots*spacing/(2*np.pi)-offset 
486         #angles and unit vectors at min number of spots 
487         thetas = np.linspace(0,2*np.pi,minSpots,False) 
488         minUnits = np.vstack((np.cos(thetas),np.sin(thetas))) 
489          
490                  
491         result = [] 
492         ind = 0 
493         for blb in self.blobs: 
494             #check radius for min, max or between 
495             if(blb.radius > maxR): 
496                 unitvec =  maxUnits 
497             elif(blb.radius < minR): 
498                 unitvec = minUnits 
499           #between min and max, use max spots while retaining the spacing 
500             else: 
501                 spots = np.floor(2*np.pi*(blb.radius + offset)/spacing) 
502                 thetas = np.linspace(0,2*np.pi,spots,False) 
503                 unitvec = np.vstack((np.cos(thetas),np.sin(thetas))) 
504              
505             #expand each blob into a new x,y positions         
506             targetSpots = unitvec*(blb.radius + offset) + \ 
507                 np.matlib.repmat(np.array((blb.X, blb.Y)) 
508                                  ,unitvec.shape[1],1).T 
509             #add targets to result 
510             for e in targetSpots.T: 
511                 result.append(blob.blob(x = e[0],y = e[1],  
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512      radius = r, circularity = c, group = ind)) 
513             #increment group number for next blob 
514             ind += 1 
515                     
516         result = self.partialDeepCopy(result)      
517         result.generateGroupLabels() 
518         return result 
519      
520     def rectangularlyPackPoints(self, spacing, numLayers,  
521                                r = GUIConstants.DEFAULT_PATTERN_RADIUS,  
522            c = 1, 
523                                dynamicLayering = False): 
524         ''' 
525         Expands each blob into a grid of points,  
526    with regular rectangular spacing 
527         blobs: list of blob objects to expand 
528         spacing: spacing between new blobs 
529         numLayers: number of layers around each blob.  
530    1 generates a grid of 3x3 with the  
531             initial blob in the center.  This can be adjusted for radius 
532         r: radius to set new blobs to 
533         c: circularity of new blobs 
534         dynamicLayering: set to True to account for  
535    blob size in making pattern positions 
536         ''' 
537        #marcher is a list of directions to move to for generating spacing 
538         #this starts at the right, moves down, left,  
539   #up, right, down, to spiral around the blob 
540         #additional layers are generated by  
541   #applying the marcher multiple times 
542         marcher = np.array([[0  ,  1], 
543                             [-1.   ,  0.   ], 
544                             [-1.   ,  0.   ], 
545                             [0.   ,  -1.   ], 
546                             [0.   ,  -1.   ], 
547                             [ 1.   ,  0.   ], 
548                             [ 1.   ,  0.   ], 
549                             [0  ,  1]]) 
550         #use one mask each time 
551         if dynamicLayering == False: 
552             #start at center 
553             mask = np.array([[0,0]]) 
554             for n in range(numLayers): 
555                 #move to the right by n spaces 
556                 current = np.array([[n+1.,0]]) 
557                 for i in range(8): 
558                     #add the marcher n times 
559                     direction = marcher[i,:] 
560                     for j in range(n+1): 
561                         current += direction 
562                         mask = np.append(mask,current,axis=0) 
563             #scale unit mask by spacing 
564             mask *= spacing 
565          
566         result = [] 
567         ind = 0 
568         for blb in self.blobs: 
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569             #use new mask each blob,  
570    #with number of layers being size dependent 
571             if dynamicLayering == True: 
572                 mask = np.array([[0,0]]) 
573                 #only change from above is the blb.radius/spacing 
574                 for n in range(numLayers +  
575       int(np.ceil(blb.radius / spacing))): 
576                     current = np.array([[n+1.,0]]) 
577                     for i in range(8): 
578                         direction = marcher[i,:] 
579                         for j in range(n+1): 
580                             current += direction 
581                             mask = np.append(mask,current,axis=0) 
582                      
583                 mask *= spacing 
584             #expand blb by mask 
585             for b in map(lambda x: blob.blob(x = x[0],  
586          y = x[1], radius = r,  
587          circularity=c,  
588          group=ind),  
589                          list(mask+(blb.X, blb.Y)) 
590                          ): 
591                 #add each point to result 
592                 result.append(b) 
593             ind += 1 
594  
595         result = self.partialDeepCopy(result) 
596         result.generateGroupLabels() 
597         return result 
598      
599     def hexagonallyClosePackPoints(self, spacing, numLayers,  
600                                  r = GUIConstants.DEFAULT_PATTERN_RADIUS,  
601        c = 1, 
602                                  dynamicLayering = False): 
603         ''' 
604         Expands each blob into a grid of points,  
605    with hexagonal close packed spacing 
606         blobs: list of blob objects to expand 
607         spacing: spacing between new blobs 
608         numLayers: number of layers around each blob.  
609    1 generates a grid of 7 with the  
610             initial blob in the center.  This can be adjusted for radius 
611         r: radius to set new blobs to 
612         c: circularity of new blobs 
613         dynamicLayering: set to True to account for blob size  
614    in making pattern positions 
615         ''' 
616         #this may save some computation time to precompute 
617         sqrt3ov2 = np.sqrt(3)/2 
618         #list of directions to march along to generate a layer 
619         marcher = np.array([[-0.5  ,  sqrt3ov2], 
620                             [-1.   ,  0.   ], 
621                             [-0.5  , -sqrt3ov2], 
622                             [ 0.5  , -sqrt3ov2], 
623                             [ 1.   ,  0.   ], 
624                             [ 0.5  ,  sqrt3ov2]]) 
625         #use one mask each time 
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626         if dynamicLayering == False: 
627             #start at center 
628             mask = np.array([[0,0]]) 
629             for n in range(numLayers): 
630                 current = np.array([[n+1.,0]]) 
631                 for i in range(6): 
632                     direction = marcher[i,:] 
633                     for j in range(n+1): 
634                         current += direction 
635                         mask = np.append(mask,current,axis=0) 
636                      
637             mask *= spacing 
638          
639          
640         #strip off radius 
641         result = [] 
642         ind = 0 
643         for blb in self.blobs: 
644             #use new mask each blob,  
645    #with number of layers being size dependent 
646             if dynamicLayering == True: 
647                 mask = np.array([[0,0]]) 
648                 #change number of layers by blb radius 
649                 for n in range(numLayers + 
650      int(np.ceil(blb.radius / spacing))): 
651                     current = np.array([[n+1.,0]]) 
652                     for i in range(6): 
653                         direction = marcher[i,:] 
654                         for j in range(n+1): 
655                             current += direction 
656                             mask = np.append(mask,current,axis=0) 
657                      
658                 mask *= spacing 
659             #expand blb into points based on mask 
660             for b in map(lambda x: blob.blob(x = x[0], y = x[1],  
661         radius = r, circularity=c,  
662         group=ind),  
663                          list(mask+(blb.X, blb.Y)) 
664                          ): 
665                 result.append(b) 
666             ind += 1 
667          
668         result = self.partialDeepCopy(result) 
669         result.generateGroupLabels() 
670         return result 
671  
672     def generateGroupLabels(self): 
673         ''' 
674         Populates groupLabels, a dict of NAME -> (x,y)  
675    for each group member. 
676         (x,y) is the top right corner (max X, min Y)  
677    in global coordinates 
678         ''' 
679  
680         self.groupLabels = dict() 
681         for b in self.blobs: 
682             if b.group is not None: 



 

421 
 

683                 #add in current blob 
684                 if b.group not in self.groupLabels: 
685                     self.groupLabels[b.group] = (b.X, b.Y) 
686                 else: 
687                     #update tuple 
688                     p = self.groupLabels[b.group] 
689                     self.groupLabels[b.group] =  
690        (max(b.X, p[0]), min(b.Y, p[1])) 
691  
692  
693     def getPatches(self, limitDraw, slideWrapper, blobColor): 
694  
695         todraw = slideWrapper.getBlobsInBounds(self.blobs) 
696  
697         if limitDraw and len(todraw) > GUIConstants.DRAW_LIMIT: 
698  
699             todraw = [todraw[i]  
700     for i in range(0, len(todraw),  
701        len(todraw)//GUIConstants.DRAW_LIMIT)] 
702  
703         return list(map(lambda el: plt.Circle((el[0],el[1]), el[2], 
704                                              color = blobColor, 
705                                              linewidth = 1, 
706                                              fill = False), todraw)) 
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ImageUtilities/enumModule.py 
01 from enum import Enum, unique 
02  
03 @unique       
04 class Direction(Enum): 
05     ''' 
06     Enum class to encode directions for slide stepping 
07     ''' 
08     left = 1 
09     right = 2 
10     up = 3 
11     down = 4 
12  
13 @unique       
14 class StepSize(Enum): 
15     ''' 
16     Enum class to encode sizes for slide stepping 
17     ''' 
18     small = 1 
19     medium = 2 
20     large = 3 
21     giant = 4
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ImageUtilities/slideWrapper.py 
001 import openslide 
002 from PIL import Image, TiffImagePlugin 
003 import PIL.ImageOps 
004 import numpy as np 
005 import numpy.matlib 
006 import os 
007 import fnmatch 
008 import matplotlib as mpl 
009 from matplotlib.path import Path 
010  
011 from ImageUtilities.enumModule import Direction, StepSize 
012 from ImageUtilities import blob 
013  
014 class SlideWrapper(object): 
015     ''' 
016     Class to encapsulate interactions with microscopy experiments. 
017     Wraps the openslide package to support multiple  
018   channels/images and zoom levels. 
019     Keeps track of current view window so movement  
020   is called by step functions. 
021     ''' 
022     def __init__(self, fileName, size = [1024,1024], startLvl = 0): 
023         ''' 
024         Create a new slideWrapper instance with the fileName experiment 
025         Automatically looks for multiple images.   
026   Ndpi image pairs should end in Brightfield or Triple.   
027   Single Ndpi images are also supported.  Tif images 
028         should end in c#.tif (e.g. c1.tif) to be grouped together.   
029   The tif image set doesn't need to be consecutive.  
030   Single Tif images are also supported 
031         fileName: a tif or ndpi image  
032         size: The width and height of the image to load 
033         startLvl: the starting zoom level.  0 <= startLvl,  
034    with 0 being the max zoom 
035         ''' 
036          
037         (p,f) = os.path.split(fileName) 
038         (f,ex) = os.path.splitext(f) 
039          
040         self.slides = [] 
041         self.filetype = ex 
042              
043         #nanozoomer, ends in triple or brightfield 
044         if ex == '.ndpi': 
045             #brightfield image selected 
046             if "Brightfield" == f[-11:]: 
047                 self.slides.append([openslide.open_slide(fileName)]) 
048                 if os.path.exists(os.path.join(p,f[:-11]+'Triple'+ex)): 
049                     self.slides.append([openslide.open_slide( 
050       os.path.join(p,f[:-11]+'Triple'+ex))]) 
051                  
052             #fluorescence image selected 
053             elif "Triple" == f[-6:]: 
054                 if os.path.exists(os.path.join(p, 
055        f[:-6]+'Brightfield'+ex)): 
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056                     self.slides.append([openslide.open_slide( 
057      os.path.join(p,f[:-6]+'Brightfield'+ex))]) 
058                 self.slides.append([openslide.open_slide(fileName)]) 
059                  
060             #single image selected 
061             else: 
062                 self.slides.append([openslide.open_slide(fileName)]) 
063          
064         #zeiss, ends in c#.tif         
065         elif ex == '.tif': 
066             #iterate through each number, 1-9 
067             if "c" == f[-2] and f[-1].isdigit(): 
068                 for i in range(1,9): 
069                     if os.path.exists(os.path.join( 

p,f[:-1]+str(i) + ex)): 
070                         self.slides.append( 
071       [openslide.open_slide( 
072       os.path.join(p,f[:-1]+str(i) + ex))]) 
073                         if os.path.exists(os.path.join(p, 
074        '64x' + f[:-1]+str(i) + ex)): 
075                             self.slides[-1].append(openslide.open_slide( 
076         os.path.join(p, 
077         '8x' + f[:-1]+str(i) + ex))) 
078                             self.slides[-1].append(openslide.open_slide( 
079        os.path.join(p, 
080         '64x' + f[:-1]+str(i) + ex))) 
081                     else: 
082                         self.slides.append(None) 
083             #single image 
084             else: 
085                 self.slides.append([openslide.open_slide( 
086       os.path.join(p,f + ex))]) 
087                 #load decimated images if they exist 
088                 if os.path.exists(os.path.join(p,'64x' + f + ex)): 
089                     self.slides[-1].append(openslide.open_slide( 
090       os.path.join(p,'8x' + f + ex))) 
091                     self.slides[-1].append(openslide.open_slide( 
092        os.path.join(p,'64x' + f + ex))) 
093             #remove end until not empty 
094             while self.slides[-1] is None: 
095                 self.slides.pop() 
096                  
097         else: 
098             raise ValueError("Only tif and ndpi currently supported") 
099  
100         ind = 0 
101         #get first non-blank channel 
102         while self.slides[ind] is None: 
103             ind += 1         
104          
105         #initialize variables 
106         self.level_count = self.slides[ind][0].level_count    
107         self.dimensions = self.slides[ind][0].dimensions        
108          
109         self.displaySlides = [True]*len(self.slides) 
110         self.brightInd = ind #index of brightfield image,  
111   #determines how channels are merged 



 

425 
 

112         self.size = size 
113         self.lvl = startLvl 
114         self.lvl = 0 if self.lvl < 0 else self.lvl 
115         limit = self.level_count-1+2 
116         if len(self.slides[ind]) > 2: 
117             limit += 6 
118         self.lvl = limit if self.lvl > limit else self.lvl 
119         self.pos = [size[0]*2**(self.lvl-1), size[1]*2**(self.lvl-1)] 
120          
121     def getImg(self): 
122         ''' 
123         Reads the slide image from disk at the current position,  
124    zoom, and channels 
125  
126         ''' 
127         fluorImg = None 
128         brightImg = None 
129         for i,display in enumerate(self.displaySlides): 
130             #read in brightfield and fluorescence images 
131             if display == True: 
132                 #only one image is designated as brightfield 
133                 if i == self.brightInd: 
134                     brightImg = self._getImg(i) 
135                 #fluorescence images are merged by summing the  
136     #intensity in each channel. this can lead to overflow  
137     #in images that are not 'pure' R,G,B 
138                 else:                     
139                     if fluorImg is None: 
140                         fluorImg = self._getImg(i) 
141                     else: 
142                         imgs = [] 
143                         splitOld = fluorImg.split() 
144                         splitNew = self._getImg(i).split() 
145                         for j in range(4):#skip alpha 
146                             if np.max(splitOld[j]) < np.max(splitNew[j]): 
147                                 imgs.append(splitNew[j]) 
148                             else: 
149                                 imgs.append(splitOld[j]) 
150                         fluorImg = Image.merge('RGBA', imgs) 
151  
152         #merge bright and fluorescence image, or return one of them 
153         if brightImg is None and fluorImg is None: 
154             slideImg = Image.new("RGB",self.size,"black") 
155         elif brightImg is not None and fluorImg is None: 
156             slideImg = brightImg 
157         elif fluorImg is not None and brightImg is None: 
158             slideImg = fluorImg 
159         else: 
160             slideImg =Image.blend(brightImg, fluorImg,0.5) 
161          
162         return slideImg 
163  
164     def _getImg(self, imageInd): 
165         ''' 
166         Helper method to read in an image from a single channel.   
167    Uses instance position and zoom 
168         imageInd: the image index to read 



 

426 
 

169         ''' 
170         #have to convert the position to keep self.pos at the center 
171         #read_region take the top left point 
172         tempPos = list(map(lambda x, y: int(x-y*2**(self.lvl-1)),  
173                    self.pos, self.size)) 
174         #if zoom level is in bounds for openslide 
175         if self.lvl < self.level_count: 
176             if self.slides[imageInd] is None: 
177                 return None 
178             return self.slides[imageInd][0].read_region(tempPos,  
179           self.lvl,  
180           self.size) 
181         #decimate image to desired zoom level 
182         else:          
183             #read in larger area and resize down to desired size 
184             if self.lvl - self.level_count < 2: 
185                 tempPos = list(map(lambda x, y: int(x-y*2**(self.lvl-1)),  
186                    self.pos, self.size)) 
187                 tempSize = list(map(lambda x:  
188       int(x*2**(self.lvl-self.level_count+1)),  
189         self.size)) 
190                 return self.slides[imageInd][0].read_region(tempPos,  
191         self.level_count-1, tempSize) 
192          .resize(self.size) 
193                  
194             #same as above, but with 8x decimated image 
195             elif self.lvl - self.level_count < 5 and  
196      len(self.slides[imageInd]) > 1: 
197                 tempPos[0] //= 8 
198                 tempPos[1] //= 8 
199                 tempSize = list(map(lambda x:  
200         int(x*2**(self.lvl-3)),  
201         self.size)) 
202                 return self.slides[imageInd][1] 
203      .read_region(tempPos, 0, tempSize) 
204      .resize(self.size) 
205              
206             #same as above, but with 64x decimated image 
207             elif  len(self.slides[imageInd]) > 2 and  
208      self.lvl-self.level_count < 8:  
209                 tempPos[0] //= 64 
210                 tempPos[1] //= 64 
211                 tempSize = list(map(lambda x:  
212         int(x*2**(self.lvl-6)), 
213         self.size)) 
214                 return self.slides[imageInd][2] 
215       .read_region(tempPos, 0, tempSize) 
216       .resize(self.size) 
217  
218             #zoom is outside of bounds for this channel 
219             else: 
220                 return None 
221      
222     def getMaxZoomImages(self, baseDir, positions,  
223       size = None, prefix = '',  
224       invert = False, imgInd = 1): 
225         ''' 
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226         Saves images of each position provided. 
227         baseDir: Directory to save all images 
228         positions: list of tuples with x,y positions of blobs 
229         size: size of images to save in pixels 
230         prefix: prefix of images to save 
231         invert: toggle color inversion.  Can be useful for printing 
232         imgInd: the image index to use 
233         ''' 
234         if size is None: 
235             size = self.size 
236         for p in positions:  
237             imgInd = min(len(self.slides), imgInd) 
238             tempPos = list(map(lambda x, y: int(x-y/2), p, size)) 
239             if invert: 
240                 fp = os.path.join(baseDir, "{}{}_{}_inv.png" 
241        .format(prefix,p[0], p[1])) 
242                 img = self.slides[imgInd][0] 
243        .read_region(tempPos, 0, size) 
244                 img = Image.merge('RGB', img.split()[0:3]) 
245                 PIL.ImageOps.invert(img).save(fp) 
246             else: 
247                 fp = os.path.join(baseDir, "{}{}_{}.png" 
248       .format(prefix,p[0], p[1])) 
249                 self.slides[imgInd][0] 
250       .read_region(tempPos, 0, size).save(fp) 
251      
252     def getMaxZoomImage(self, position = None, size = None, imgInd = 1): 
253         ''' 
254         Get the image at the maximum zoom level.  Used in blob finding 
255         position: tuple of x,y position of image center.   
256    None to use self.position 
257         size: tuple of width and height, None for self.size 
258         imgInd: the image index to read 
259         ''' 
260         imgInd = min(len(self.slides)-1, imgInd) 
261         if position is None: 
262             position = self.pos 
263         if size is None: 
264             size = self.size 
265         tempPos = list(map(lambda x, y: int(x-y/2),  
266                             position, size)) 
267         return (self.slides[imgInd][0]).read_region(tempPos, 0, size) 
268          
269     def step(self, direction, stepSize): 
270         ''' 
271         Step the position in the designated direction. 
272         direction: a slideWrapper.Direction enum 
273         stepSize: enum of step size. large = image size,  
274    medium 1/2, small 1/10 that size 
275         ''' 
276         if stepSize == StepSize.large: 
277             factor = 1 
278         elif stepSize == StepSize.medium: 
279             factor = 2 
280         else: 
281             factor = 10 
282         dirMap = { 
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283             Direction.left : [-1,0],  
284             Direction.right : [1,0],    
285             Direction.up : [0,-1], 
286             Direction.down : [0,1],    
287         } 
288         self._movePos(factor, dirMap[direction]) 
289      
290     def _movePos(self, factor, direction): 
291         ''' 
292         Helper method to perform position movement. 
293         factor: division factor to step size 
294         direction: an x,y list of the step to perform 
295         ''' 
296         #have to scale position movement by the current zoom level 
297         self.pos[0] += direction[0] * self.size[0]//factor*2**self.lvl 
298         self.pos[1] += direction[1] * self.size[1]//factor*2**self.lvl 
299          
300     def _zoom(self, amt): 
301         ''' 
302         Zoom helper method to bound self.lvl properly 
303         amt: integer change in zoom level.  <0 is zooming in 
304         ''' 
305         self.lvl += amt 
306         #keep >= 0 
307         self.lvl = 0 if self.lvl < 0 else self.lvl 
308         #limit sets the amount of software decimation to use.   
309   #2 doesn't cause too much lag on GUI 
310         limit = self.level_count-1+2 
311         ind = 0 
312         while self.slides[ind] is None: 
313             ind += 1      
314         #if the images have 8 and 64x decimations available,  
315   #extra zoom levels are possible 
316         if len(self.slides[ind]) > 2: 
317             limit += 6 
318         self.lvl = limit if self.lvl > limit else self.lvl 
319      
320     def zoomIn(self): 
321         ''' 
322         Zoom the image in one step (2x smaller pixels) 
323         ''' 
324         self._zoom(-1) 
325      
326     def zoomOut(self): 
327         ''' 
328         Zoom the image out one step (2x larger pixels) 
329         ''' 
330         self._zoom(1) 
331          
332     def resetView(self): 
333         ''' 
334         Reset the position and zoom level 
335         Useful for debugging if the position gets far out of bounds 
336         ''' 
337         self.lvl = 0 
338         self.pos = [self.size[0]/2, self.size[1]/2] 
339          
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340     def switchType(self): 
341         ''' 
342         Cycle through image channels available,  
343    moving +1 from first true 
344         ''' 
345         ind = 0 
346         for i in range(len(self.slides)): 
347             if self.displaySlides[i] == True: 
348                 ind = i+1 
349                 break 
350         ind %= len(self.slides) 
351              
352         self.switchToChannel(ind) 
353          
354     def switchToChannel(self, ind): 
355         ''' 
356         Turn the target image channel on and the rest off     
357         ind: image channel to activate.   
358    Performs index out of bounds checks 
359         ''' 
360         self.displaySlides = [False]*len(self.slides) 
361         if ind < len(self.slides): 
362             ind = 0 if ind < 0 else ind 
363             self.displaySlides[ind] = True 
364          
365     def toggleChannel(self,ind): 
366         ''' 
367         Toggle the supplied image channel on or off 
368         ind: the image channel to toggle 
369         ''' 
370         ind = 0 if ind < 0 else ind 
371         if ind < len(self.slides): 
372             self.displaySlides[ind] = not self.displaySlides[ind] 
373          
374     def setBrightfield(self,ind): 
375         ''' 
376         Set the index of the brightfield image. 
377         If the supplied index is the current brightfield index,  
378    turns off the brightfield 
379         ind: the image channel to set as brightfield 
380         ''' 
381         if ind == self.brightInd: 
382             self.brightInd = -1 
383         else: 
384             self.brightInd = ind 
385          
386     def moveCenter(self, imgPos): 
387         ''' 
388         Move self.pos to the supplied image position, in pixels. 
389         imgPos: the x,y pixel position to move to 
390         ''' 
391         #have to modify by the current zoom level  
392         self.pos[0] += int((imgPos[0]-self.size[0]/2)*2**self.lvl) 
393         self.pos[1] += int((imgPos[1]-self.size[1]/2)*2**self.lvl) 
394          
395     def getGlobalPoint(self, point): 
396         """ 
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397         Convert the local point in the image view to  
398    a slide global point 
399         point: the local pixel position as tuple 
400         returns the same point, relative to the top left  
401    of the image at max zoom 
402         """ 
403         result = [0,0]            
404         result[0] = self.pos[0]  
405     + round((point[0]-self.size[0]/2)*2**self.lvl) 
406         result[1] = self.pos[1]  
407     + round((point[1]-self.size[1]/2)*2**self.lvl) 
408         return (result[0], result[1]) 
409          
410     def getLocalPoint(self, point): 
411         """ 
412         Convert the global point in slide to  

position in the current image 
413         point: the global pixel point 
414         returns the pixel position in the current image view 
415         """ 
416         return [round((point[0] - self.pos[0]) 
417      /2**self.lvl + self.size[0]/2), 
418             round((point[1] - self.pos[1]) 
419      /2**self.lvl + self.size[1]/2)] 
420    
421     def getPointsInBounds(self, points): 
422         """ 
423         Test the supplied global points to see if they land  
424    in the current image. 
425         points: list of global slide pixel positions  
426         returns the points in bounds translated into local  
427    image coordinate system and the indices of those  
428    points in the input list 
429         """ 
430         #get bounds of image in global coordinate 
431         xlow, ylow = self.getGlobalPoint((0,0)) 
432         xhigh, yhigh = self.getGlobalPoint(self.size) 
433         zero = (xlow,ylow) 
434         result = [] 
435         indices = [] 
436         #for each point 
437         for i, p in enumerate(points): 
438             #if in bounds 
439             if p[0] >= xlow and p[0] <= xhigh and  
440      p[1] >= ylow and p[1] <=yhigh: 
441                 #add local point and the index of that point 
442                 result.append(((p[0]-zero[0])/2**self.lvl,  
443         (p[1]-zero[1])/2**self.lvl)) 
444                 indices.append(i) 
445         return result, indices 
446  
447     def getBlobsInBounds(self, blobs): 
448         """ 
449         Test the supplied global points to see if they land  
450    in the current image. 
451         blobs: a list of blobs in global coordinates 
452         returns a list of (x,y,r) translated into local image  
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453    coordinate system with radius scaled to zoom level 
454         """ 
455         if len(blobs) == 0: 
456             return [] 
457         #get bounds of image in global coordinate 
458         xlow, ylow = self.getGlobalPoint((0,0)) 
459         xhigh, yhigh = self.getGlobalPoint(self.size) 
460  
461         return [((b.X-xlow)/2**self.lvl,  
462                 (b.Y-ylow)/2**self.lvl,  
463                 b.radius/2**self.lvl) 
464                 for b in blobs 
465                 if b.X > xlow and b.X < xhigh and\ 
466                     b.Y > ylow and b.Y < yhigh] 
467  
468  
469     def getSize(self): 
470         ''' 
471         Returns the dimensions of the slide image 
472         ''' 
473         return self.dimensions 
474           
475     def getFluorInt(self, blobs, channel, imageInd,  
476      offset = 0, reduceMax = False): 
477         ''' 
478         Determines the intensity of pixels around each blob 
479         blobs: list of blob objects to analyze 
480         channel: the R,G,B channel to analyze (0, 1, 2) 
481         imageInd: the image channel to analyze 
482         offset: adjusts the blob radius to consider  
483    smaller or larger regions 
484         reduceMax: toggle between returning the average (False)  
485    or max (True) intensity 
486         ''' 
487         result = [] 
488         #use the max or mean intensity 
489         if reduceMax: 
490             reduction = lambda x: np.max(np.array(x.split()[channel])) 
491         else: 
492             reduction = lambda x: np.mean(np.array(x.split()[channel])) 
493         for i,b in enumerate(blobs): 
494             #note that this considers the square circumscribing the blob 
495             img = self.getMaxZoomImage((int(b.X),int(b.Y)),  
496                                      (int(b.radius+offset)*2, 
497         int(b.radius+offset)*2),  
498                                      imgInd=imageInd) 
499             #calc summed intens in area 
500             result.append(reduction(img)) 
501             #report every 100 blobs 
502             if (i+1)%100 == 0: 
503                 print(str(i+1) + ' blobs read') 
504         return result 
505     
506     @staticmethod                 
507     def decimateImg(img, factor): 
508         ''' 
509         Static utility to decimate the image provided 
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510         img: a openslide instance 
511         factor: integer factor to reduce size by 
512         returns a PIL.Image of img at the reduced size 
513         ''' 
514         result = Image.new('RGB', tuple(map(lambda x:  
515         x//factor,img.dimensions))) 
516         import time 
517         start = time.time() 
518  
519         #determines how large of a region to read in at once,   
520   #works in strips of image 
521         loadFac = 64       
522            
523         #read in horizontal strips, this seems to be moderately faster   
524         for i in range(result.size[1]//loadFac): 
525             result.paste(img.read_region((0,i*factor*loadFac), 
526      0,(result.size[0]*factor,factor*loadFac)) 
527      .resize((result.size[0],loadFac)), 
528      0,i*loadFac,result.size[0],(i+1)*loadFac)) 
529             if i!= 0 and i % 10 == 0 or i == 1: 
530                 print("finished %d of %d subareas, %d seconds left" % 
531                       (i, result.size[1]//loadFac,  
532                         (time.time()-start)/i *  
533        (result.size[1]//loadFac-i))) 
534          
535         #copy remainder 
536         if result.size[1] % loadFac != 0: 
537             result.paste( 
538     img.read_region( 
539      (0,result.size[1]//loadFac*loadFac*factor),  
540      0,  
541      (result.size[0]*factor,  
542       result.size[1] % loadFac*factor)) 
543      .resize((result.size[0], result.size[1]%loadFac)),  
544       (0,result.size[1]//loadFac*loadFac,  
545        .size[0], result.size[1])) 
546  
547         return result 
548  
549     @staticmethod 
550     def generateDecimatedImage(path, baseFile): 
551         ''' 
552         Saves 8x and 64x image of the single file 
553         path: path containing image file.  New images written here 
554         baseFile: base file name with extension,  
555    8x and 64x will be prepended onto base name 
556         ''' 
557         TiffImagePlugin.WRITE_LIBTIFF = True 
558         SlideWrapper.decimateImg( 
559    openslide.open_slide( 
560     os.path.join(path,baseFile)),8) 
561   .save(os.path.join(path,'8x' + baseFile),  
562    compression='tiff_lzw') 
563         SlideWrapper.decimateImg( 
564    openslide.open_slide( 
565     os.path.join(path,'8x' + baseFile)),8) 
566   .save(os.path.join(path,'64x' + baseFile),  
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567    compression='tiff_lzw')         
568         TiffImagePlugin.WRITE_LIBTIFF = False 
569  
570     @staticmethod 
571     def generateDecimatedImgs(filename): 
572         ''' 
573         Saves 8x and 64x images of given image in filename as  
574    8xFILENAME and 64xFILENAME 
575         filename: Full path to tif image 
576         ''' 
577          
578         (p,f) = os.path.split(filename) 
579         (f,ex) = os.path.splitext(f) 
580         #zeiss, ends in c#.tif         
581         if ex == '.tif': 
582             #filename has c# form, decimate each 
583             if "c" == f[-2] and f[-1].isdigit(): 
584                 totimgs = 0 
585                 for i in range(1,9): 
586                     if os.path.exists(os.path.join( 

p,f[:-1]+str(i) + ex)): 
587                         totimgs += 1 
588                 for i in range(1,9): 
589                     if os.path.exists(os.path.join( 

p,f[:-1]+str(i) + ex)): 
590                         print("starting channel {} of {}" 
591         .format(i, totimgs)) 
592                         SlideWrapper.generateDecimatedImage(p,  
593          f[:-1]+str(i) + ex)     
594             #filename is a single tif image 
595             else: 
596                 SlideWrapper.generateDecimatedImage(p,f + ex)     
597  
598     @staticmethod 
599     def decimateDirectory(dirName): 
600         #get all dirs in parent dir 
601         for subd in [os.path.join(dirName,o)  
602    for o in os.listdir(dirName)  
603     if os.path.isdir(os.path.join(dirName,o))]: 
604             targetFiles = [os.path.join(subd, o)  
605     for o in os.listdir(subd)  
606      if fnmatch.fnmatch(o, '*.tif')] 
607             for fname in targetFiles: 
608                 (path, file) = os.path.split(fname) 
609                 if (not os.path.exists(os.path.join(path, '8x' + file))  
610      or not os.path.exists( 
611       os.path.join(path, '64x' + file))) \ 
612                     and file[0:2] != '8x' and file[0:3] != '64x': 
613                     print(fname) 
614                     SlideWrapper.generateDecimatedImage(path, file) 
615         print('Finished!')  
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ImageUtilities/TSPutil.py 
001 from scipy.spatial.distance import pdist 
002 import numpy as np 
003 import time 
004 import random 
005  
006 def TSPRoute(inlist, optT1 = 30, optT2 = 60): 
007     ''' 
008     optimizes the traversal order of a list of points 
009     should be close to optimal after completing all iterations 
010     returns a list of indices to visit in optimized order 
011     inlist: a list of the positions 
012     optT1: max optimization time for the initial,  
013   nearest neighbor optimization in seconds 
014     optT2: max optimization time for the 2-opt in seconds 
015     ''' 
016  
017     if inlist is None or len(inlist) == 0: 
018         return None 
019  
020     dat = np.array([]) 
021      
022     #strip off just the x and y values 
023     for l in inlist: 
024         dat = np.append(dat,[l[0], l[1]]) 
025      
026     dat = np.reshape(dat,(np.size(dat)//2,2)) 
027     #calculate pair-wise distances 
028     dists = pdist(dat) 
029     #map the i,j values of a square form matrix  
030  #to the flat form returned by pdist 
031     def sqr(i,j,n=dat.shape[0]): 
032         if i < j: 
033             return int(n*i-(i+1)*i/2 + (j-i-1)) 
034         return int(n*j-(j+1)*j/2 + (i-j-1)) 
035          
036     #nearest neighbor traversal 
037     bestDist = float("inf") 
038     inds = list(range(dat.shape[0])) 
039  
040     #randomize starting index 
041     random.seed(0)#for testing purposes 
042     random.shuffle(inds) 
043  
044     iterat = 0 
045     start_time = time.time(); 
046     #while not timed out 
047     while time.time()-start_time < optT1 and iterat < dat.shape[0]: 
048         #the current solution start point 
049         soln = [inds.pop()] 
050         #current iteration 
051         iterat += 1 
052         #remaining points to visit in this iteration 
053         remaining = [i for i in range(0,dat.shape[0])] 
054         remaining.pop(soln[0]) 
055              
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056         #for each point 
057         for count in range(1,dat.shape[0]): 
058             #visit next closest neighbor 
059             nextI = np.argmin(list(map(lambda i:  
060        dists[sqr(i,soln[-1])],  
061        remaining))) 
062             #add to solution and remove from remaining 
063             soln.append(remaining.pop(nextI)) 
064              
065         #calculate the total traversed distance 
066         dist = sum(map(lambda i: dists[sqr(soln[i],soln[i+1])], 
067          range(dat.shape[0]-1))) 
068         #if better than previous nearest neighbor traversal 
069         if dist<bestDist: 
070             #update best path and print update 
071             bestDist = dist 
072             bestSoln = soln[:] 
073             print("{0} iterations of nearest neighbor in {1:.1f} seconds" 
074      .format(iterat, time.time()-start_time))   
075      
076     print("{} iterations of nearest neighbor".format(iterat)) 
077     soln=bestSoln 
078  
079     #add a blank node to end, won't move from the end 
080     #allows the start position to move around 
081     soln.append(len(soln)) 
082     dists = np.append(dists, np.zeros(len(soln))) 
083          
084     start_time = time.time(); 
085     iterat=0 
086      
087     #2-opt 
088     #while not timing out and still optimizing 
089     while time.time()-start_time < optT2: 
090         iterat += 1 
091         #keep track of if a switch in the path was made 
092         pathChanged = False 
093         #for each point 
094         for i in range(1,dat.shape[0]): 
095             #for each point between i and end 
096             for j in range(i+1,dat.shape[0]-1): 
097                 #check if switching i-1 -> i to i-1 -> j is improvement 
098                 if dists[sqr(soln[i-1],soln[i])]  
099      + dists[sqr(soln[j],soln[j+1])] > \ 
100                     dists[sqr(soln[i],soln[j+1])]  
101       + dists[sqr(soln[j],soln[i-1])]: 
102                     #reverse the order of points visited 
103                     soln[i:j+1] = reversed(soln[i:j+1]) 
104                     pathChanged = True 
105                     break #go to next i 
106         if pathChanged == False: 
107             break #stop if no switches were made over each for loop 
108         if iterat % 5 == 0: 
109             print("{0} iterations of TSP in {1:.1f} seconds" 
110     .format(iterat, time.time()-start_time))   
111     print("{0} iterations of TSP in {1:.1f} seconds" 
112   .format(iterat, time.time()-start_time))   
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113  
114     del soln[-1] #remove last, dummy point 
115     print("TSP optimization finished!") 
116     return soln 
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CoordinateMappers/__init__.py 
01 '''  
02 Package with all coordinate system mappers and connected instruments 
03 brukerMapper.py:      An abstract base class implementing coordinateMapper  
04                         specific for bruker type instruments using their  
05                         fractional distance. 
06 connectedInstrument.py: An abstract base class specifying functions  
07                         required for interacting with a connected  
08                         instrument 
09 coordinateMapper.py:    An abstract base class with some standard  
10                         methods for mapping pixel positions to physical  
11                         locations in an instrument. 
12 flexImagingSolarix.py:  An extension of solarixMapper which generates  
13                         files suitable for acquisition with flexImaging. 
14 oMaldiMapper.py:        Implementation of coordinate mapper for  
15                         acquisition with the AB Sciex oMaldi server.   
16                         Contains methods for slop correction 
17 solarixMapper.py:       Implementation of brukerMapper for the solarix  
18                         FT-ICR  that generates xeo and xls files  
19                         for autoacquisition 
20 supportedCoordSystems.py: A collection of coordinatemappers.  Only  
21                         mappers included here will be accessible  
22                         to the GUI 
23 ultraflexMapper.py:     An implementation of brukerMapper for the  
24                         ultraflextreme tof/tof that generates xeo  
25                         files for autoexecute 
26 zaber3axis.py           Concrete implementation of a connected instrument  
27                         for an XYZ stage for liquid microjunction  
28                         extraction. 
29 zaberInterface.py:      An abstract base class with methods for  
30                         interacting with zaber linear actuators. 
31 zaberMapper.py:         An implementation of coordinateMapper with a  
32                         connected zaber3axis used for the liquid  
33                         microjunction extraction. 
34 ''' 
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CoordinateMappers/brukerMapper.py 
001 from CoordinateMappers import coordinateMapper 
002 from GUICanvases import GUIConstants 
003 from ImageUtilities import blob 
004 import abc 
005 import numpy as np 
006 import itertools 
007  
008 class brukerMapper(coordinateMapper.CoordinateMapper,  
009                     metaclass=abc.ABCMeta): 
010     """ 
011     A generic bruker mapper with constants for the slide II adaptor  
012         and xeo headers. all physical points are stored as motor  
013         coordinates so if a user enters C5 that has to be converted.   
014         Upon saving, the motor coordinates are finally converted  
015         in one step. 
016     """ 
017  
018     ''' 
019     also need to define: 
020     self.motorCoordinateFilename: filename for intermediate  
021         mapping positions.  Should be unique 
022     ''' 
023  
024     def __init__(self): 
025         super().__init__() 
026         self.MTPMapY = { 
027             'C':0.478261, 
028             'D':0.391304, 
029             'E':0.304348, 
030             'F':0.217391, 
031             'G':0.130435, 
032             'J':-0.130435, 
033             'K':-0.217391, 
034             'L':-0.304348, 
035             'M':-0.391304, 
036             'N':-0.478261, 
037         } 
038          
039         self.MTPMapX = { 
040             '5':-0.652174, 
041             '6':-0.565217, 
042             '7':-0.478261, 
043             '8':-0.391304, 
044             '9':-0.304348, 
045             '10':-0.217391, 
046             '11':-0.130435, 
047             '12':-0.043478, 
048             '13':0.043478, 
049             '14':0.130435, 
050             '15':0.217391, 
051             '16':0.304348, 
052             '17':0.391304, 
053             '18':0.478261, 
054             '19':0.565217, 
055             '20':0.652174, 
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056         } 
057          
058         self.header = ('<!-- $Revision: 1.5 $-->\n' 
059 '<PlateType>\n' 
060 '\t<GlobalParameters PlateTypeName="MTP Slide Adapter II"  

ProbeType="MTP"\n' 
061 '\t                  RowsNumber="100" ChipNumber="1" ChipsInRow="1"\n' 
062 '\t                  X_ChipOffsetSize="0" Y_ChipOffsetSize="0"\n' 
063 '\t                  HasDirectLabels="false" HasColRowLabels="true"\n' 
064 '\t                  HasNearNeighbourCalibrants="false"\n' 
065 '\t                  ProbeDiameterX="103.5" SampleDiameter="2"\n' 
066 '\t                  SamplePixelRadius="5" ZoomFactor="1"\n' 
067 '\t                  FirstCalibrant="TPX1" SecondCalibrant="TPX2"  

ThirdCalibrant="TPX3"\n' 
068 '\t                  />\n' 
069 '\t<MappingParameters mox="56.239998" moy="42.635009"' 
070     ' sinphi="0.0" cosphi="1.0" ' 
071 'alpha="51.750000" beta="51.750000" tansigma="0.0"/>\n') 
072           
073         self.footer = """\t</PlateSpots> 
074         <AutoTeachSpots> 
075             <PlateSpot PositionIndex="0" PositionName="TPX1"  
076                 UnitCoord_X="-0.729469" UnitCoord_Y="0.550725"/> 
077             <PlateSpot PositionIndex="1" PositionName="TPX2"  
078                 UnitCoord_X="0.729469" UnitCoord_Y="0.550725"/> 
079             <PlateSpot PositionIndex="2" PositionName="TPX3"  
080                 UnitCoord_X="0.729469" UnitCoord_Y="0.057971"/> 
081             <PlateSpot PositionIndex="3" PositionName="TPX4"  
082                 UnitCoord_X="-0.729469" UnitCoord_Y="0.057971"/> 
083             <PlateSpot PositionIndex="4" PositionName="TPY1"  
084                 UnitCoord_X="-0.729469" UnitCoord_Y="-0.057971"/> 
085             <PlateSpot PositionIndex="5" PositionName="TPY2"  
086                 UnitCoord_X="0.729469" UnitCoord_Y="-0.057971"/> 
087             <PlateSpot PositionIndex="6" PositionName="TPY3"  
088                 UnitCoord_X="-0.729469" UnitCoord_Y="-0.550725"/> 
089             <PlateSpot PositionIndex="7" PositionName="TPY4"  
090                 UnitCoord_X="0.729469" UnitCoord_Y="-0.550725"/> 
091         </AutoTeachSpots> 
092     </PlateType>"""         
093  
094         #list of all MTP points, used for drawing predicted points 
095         self.allPoints = list(itertools.product(self.MTPMapX.values(),  
096                                 self.MTPMapY.values())) 
097         #a tuple of (R,s,t) for PBSR of motor coordinates to MTP  
098         self.motor2MTP = None 
099         #list of motor training coordinates 
100         self.motor = [] 
101         #list of mtp training points 
102         self.mtp = [] 
103          
104         #load the stored training coordinates 
105         self.loadStagePoints() 
106  
107     @abc.abstractmethod 
108     def loadStagePoints(self): 
109         ''' 
110         read in or hard code the map from motor coordinates  
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111             to MTP points. should populate the self.motor2MTP = (R,s,t) 
112         ''' 
113  
114     @abc.abstractmethod 
115     def isValidMotorCoord(self, inStr): 
116         ''' 
117         tests if the user-entered string is a valid motor coordinate 
118         inStr: the string to test if it follows motor coordinate format 
119         returns true if inStr can be successfully  
120             parsed by extractMotorPoint 
121         ''' 
122  
123     def isValidEntry(self, inStr): 
124         ''' 
125         Test if the string is a valid entry for a physical coordinate.   
126         Can be a motor coordinate or MTP string 
127         inStr: string to test 
128         returns true if inStr can be successfully parsed by extractPoint 
129         ''' 
130         if inStr is None or len(inStr) < 2: 
131             return False  
132         return self.isValidMTP(inStr) or self.isValidMotorCoord(inStr) 
133  
134     def isValidMTP(self, inStr): 
135         ''' 
136         Test if the provided string is a valid MTP named coordinate 
137         inStr: String to test 
138         returns true if the point is encoded 
139         ''' 
140         if inStr is None or len(inStr) < 2: 
141             return False  
142         Y = inStr[0].upper() 
143         X = inStr[1:] 
144         return X in self.MTPMapX and Y in self.MTPMapY 
145  
146     def extractPoint(self, inStr): 
147         ''' 
148         Extract motor coordinate of the supplied point. 
149         inStr: string to parse 
150         returns the motor coordinate or None if the string is not valid 
151         ''' 
152         if self.isValidMTP(inStr): 
153             return self.extractMTPPoint(inStr) 
154         elif self.isValidMotorCoord(inStr): 
155             return self.extractMotorPoint(inStr) 
156         else: 
157             return None 
158  
159     def extractMTPPoint(self, inStr, needMTP = False): 
160         ''' 
161         From a provided, named MTP point, returns the motor position. 
162         inStr: the named position to try and parse 
163         needMTP: optional toggle to get the fractional distance  
164             instead of translating to a motor coordinate 
165         returns an (x,y) tuple of motor coordinate,  
166             fractional distance (needMTP == True) 
167             or None if instr is invalid 
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168         ''' 
169         if inStr is None or len(inStr) < 2: 
170             return None 
171         Y = inStr[0].upper() 
172         X = inStr[1:] 
173      
174         if X in self.MTPMapX and Y in self.MTPMapY: 
175             if needMTP: 
176                 return (self.MTPMapX[X], self.MTPMapY[Y]) 
177             else: 
178                 return self.MTPtoMotor((self.MTPMapX[X],  
179                                         self.MTPMapY[Y])) 
180         else: 
181             return None 
182          
183     @abc.abstractmethod 
184     def extractMotorPoint(self, inStr): 
185         ''' 
186         given a user-entered motor coordinate,  
187             parse out the x and y coordinates 
188         inStr format could change between instruments  
189             if copy/paste is supported 
190         ''' 
191  
192     def predictName(self, pixelPoint): 
193         ''' 
194         predict the name of a given pixel position 
195         By default returns the named mtp coordinate 
196         ''' 
197         if len(self.physPoints) < 2: 
198             return '' 
199  
200         #convert pixel to motor 
201         motor = self.translate(pixelPoint) 
202         return self.predictLabel(motor) 
203  
204     def mtpLabel(self, mtpCoord): 
205         ''' 
206         From a given mtpCoordinate, returns the named position  
207             on an mtp slide II adapter 
208         mtpCoord: (x,y) tuple in fractional distance coordinates 
209         ''' 
210         X,Y = mtpCoord 
211  
212         #return MTP coordinate 
213         Ymin, Ykey = abs(Y-next(iter(self.MTPMapY.values()))), \ 
214             next(iter(self.MTPMapY.keys())) 
215         Xmin, Xkey = abs(X-next(iter(self.MTPMapX.values()))), \ 
216             next(iter(self.MTPMapX.keys())) 
217         for key, val in self.MTPMapY.items(): 
218             if abs(Y-val) < Ymin: 
219                 Ymin, Ykey = abs(Y-val), key 
220         for key, val in self.MTPMapX.items(): 
221             if abs(X-val) < Xmin: 
222                 Xmin, Xkey = abs(X-val), key 
223         return Ykey+Xkey 
224  
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225     def predictLabel(self, physPoint): 
226         ''' 
227         Predicts the label of a registration mark  
228             based on the physical position 
229         physPoint: (x,y) in motor coordinate system 
230         returns the named, mtp point 
231         ''' 
232         #motor to MTP 
233         return self.mtpLabel(self.motorToMTP(physPoint)) 
234  
235     def predictedPoints(self): 
236         ''' 
237         Gets all the predicted points of the named, mtp positions 
238         ''' 
239         if len(self.physPoints) < 2: 
240             return [] 
241         result = [] 
242         for p in self.allPoints: 
243             result.append(self.invert(self.MTPtoMotor(p))) 
244  
245         return result 
246  
247     def motorToMTP(self, motorCoord): 
248         ''' 
249         Performs translation of the motor coordinate  
250             system to fractional distance 
251         with the self.motor2MTP map. 
252         motorCoord: (x,y) tuple the motor coordinate 
253         returns the (xy) tuple in fractional distance 
254         ''' 
255         (R,s,t) = self.motor2MTP 
256         mtp = s * R * np.matrix([[motorCoord[0]],[motorCoord[1]]]) + t 
257         return (mtp[0,0], mtp[1,0]) 
258  
259     def MTPtoMotor(self, MTPcoord): 
260         ''' 
261         Translates the fractional distance to a motor coordinate. 
262         MTPcoord: (x,y) tuple a fractional distance 
263         returns the (x,y) tuple in motor coordinate 
264         ''' 
265         (R,s,t) = self.motor2MTP 
266         motor = np.linalg.inv(R)*\ 
267             (np.matrix([[MTPcoord[0]],[MTPcoord[1]]]) - t)/s 
268         return (motor[0,0], motor[1,0]) 
269      
270     def writeXEO(self, filename, blobs): 
271         ''' 
272         write an xeo file of the provided list of  
273             blobs with appropriate header 
274         and format to use as a Bruker geometry file. 
275         filename: the xeo file to save 
276         blobs: list of blobs to save 
277         ''' 
278         if blobs is None or len(blobs) == 0: 
279             return 
280         output = open(filename, 'w') 
281  
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282         output.write(self.header) 
283         output.write(' <PlateSpots PositionNumber="{}">\n' 

.format(len(blobs))) 
284          
285         for i,p in enumerate(blobs): 
286             trans = self.motorToMTP(self.translate((p.X, p.Y))) 
287             if p.group is None: 
288                 output.write('  <PlateSpot PositionIndex="{0}" \ 
289                                     PositionName="x_{1:.0f}y_{2:.0f}" \ 
290                                     UnitCoord_X="{3:.6f}" \ 
291                                     UnitCoord_Y="{4:.6f}"/>\n'.format( 
292                                     i, p.X, p.Y, trans[0], trans[1])) 
293             else: 
294                 output.write('  <PlateSpot PositionIndex="{0}" \ 
295                             PositionName="s_{5:.0f}x_{1:.0f}y_{2:.0f}" \ 
296                             UnitCoord_X="{3:.6f}" \ 
297                             UnitCoord_Y="{4:.6f}"/>\n'.format( 
298                             i, p.X, p.Y, trans[0], trans[1], p.group)) 
299                      
300               
301         output.write(self.footer) 
302         output.close() 
303  
304     def loadXEO(self,filename): 
305         ''' 
306         From the provided xeo, parse a list of target positions 
307         filename: xeo file to parse 
308         ''' 
309         infile = open(filename, 'r') 
310         lines = infile.readlines() 
311         result = [] 
312         #ignore header and footer 
313         for l in lines[13:-12]: 
314             toks = l.split('"') 
315             pos = toks[3].split('_') 
316             #parse pixel position and group 
317             if len(pos) == 4: 
318                 offset = 1 
319                 x = int(pos[1+offset][:-1]) 
320                 y = int(pos[2+offset]) 
321                 s = int(pos[1][:-1]) 
322                 result.append(blob.blob(x=x, y=y, group =  s)) 
323             else: 
324                 offset= 0 
325                 x = int(pos[1+offset][:-1]) 
326                 y = int(pos[2+offset]) 
327                 result.append(blob.blob(x = x, y = y)) 
328              
329         return result 
330  
331      
332     def getIntermediateMap(self): 
333         ''' 
334         populates the intermediate map using the list of  
335             motor and mtp points 
336         ''' 
337         result = [] 
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338         for i in range(len(self.motor)): 
339             result.append( (self.mtpLabel(self.mtp[i]),  
340                             self.motor[i][0], self.motor[i][1])) 
341  
342         return result 
343  
344      
345     def loadStagePoints(self): 
346         ''' 
347         loads in the intermediate map at self.motorCoordFilename 
348         ''' 
349         #read in data file 
350         reader = open(self.motorCoordFilename, 'r') 
351         for l in reader.readlines(): 
352             toks = l.split('\t') 
353             self.mtp.append(self.extractMTPPoint(toks[0],  
354                             needMTP=True)); 
355             self.motor.append((int(toks[1]), int(toks[2]))) 
356  
357         #update map 
358         self._updateMotor2MTP() 
359         
360     def setIntermediateMap(self, points): 
361         ''' 
362         From the list of points, generate a new intermediate map 
363         points: list of (name, x, y) training points 
364         ''' 
365         #parse returned points 
366         self.motor = [] 
367         self.mtp = [] 
368         writer = open(self.motorCoordFilename, 'w') 
369         for t in points: 
370             self.mtp.append(self.extractMTPPoint(t[0],  
371                             needMTP=True)); 
372             self.motor.append((int(t[1]), int(t[2]))) 
373             #save new file 
374             writer.write("{}\t{}\t{}\n".format(t[0], t[1], t[2])) 
375  
376         writer.close() 
377         #update motor coordinate 
378         self._updateMotor2MTP() 
379      
380     def _updateMotor2MTP(self): 
381         ''' 
382         helper method to perform point based similarity registration 
383         from the motor coordinate system to the fractional distance 
384         ''' 
385         self.motor2MTP = self._PBSR(self.motor, self.mtp, False) 
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CoordinateMappers/connectedInstrument.py 
01 import abc 
02  
03 class ConnectedInstrument(object, metaclass=abc.ABCMeta): 
04     """ 
05     A abstract base class of a connected instrument which 
06     specifies the most basic set of functions to support for microMS 
07     to interface with the instrument 
08     """ 
09     def __init__(self): 
10         ''' 
11         Create a new connected instrument, with some important constants 
12         ''' 
13         self.dwellTime = 1#seconds 
14         self.postAcqusitionWait = 0#seconds 
15         self.connected = False#has a connection been established 
16         super().__init__() 
17  
18     @abc.abstractmethod 
19     def getPositionXY(self): 
20         ''' 
21         Returns the current XY position of the connected instrument 
22         returns a tuple of (x,y) 
23         ''' 
24  
25     @abc.abstractmethod 
26     def moveToPositionXY(self, xypos): 
27         ''' 
28         Move the stage to the specified (x,y) coordinate. 
29         xypos: (x,y) tuple in the instrument coordinate space 
30         ''' 
31      
32     @abc.abstractmethod 
33     def move(self, direction, stepSize): 
34         ''' 
35         Move the stage in the specified direction.   
36             The direction the stage moves should match  
37             the probe movement. 
38         direction: a enumModule.Direction enum 
39         stepSize: enumModule.StepSize specifying  
40             if the step should be large 
41         ''' 
42      
43     @abc.abstractmethod 
44     def moveProbe(self, direction, stepSize): 
45         ''' 
46         Move the probe in the specified direction.   
47             This may not be general  but is necessary  
48             for 3-axis collection 
49         direction: a enumModule.Direction enum 
50         stepSize: enumModule.StepSize specifying  
51             if the step should be large 
52         ''' 
53  
54     @abc.abstractmethod 
55     def setProbePosition(self): 
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56         ''' 
57         Signal the instrument that the probe  
58             is in the optimized position 
59         ''' 
60  
61     @abc.abstractmethod 
62     def getProbePosition(self): 
63         ''' 
64         Get the current position of the probe 
65             for queries on probe position 
66         ''' 
67  
68     @abc.abstractmethod 
69     def collect(self): 
70         ''' 
71         Perform a single collection at the current position  
72             for self.dwellTime (in seconds) 
73         ''' 
74      
75     @abc.abstractmethod 
76     def collectAll(self, positions): 
77         ''' 
78         Perform sequential collections at each point specified. 
79         After collection, the probe should return  
80             to self.finalPosition() for self.postAcqusitionWait seconds.  
81             if postAcqusitionWait == -1 stay at finalPosition. 
82         positions: list of (x,y) tuples 
83         ''' 
84          
85     @abc.abstractmethod 
86     def initialize(self, portname): 
87         ''' 
88         Begin connection with an instrument. 
89         portname: port to connect two 
90         ''' 
91  
92     @abc.abstractmethod 
93     def finalPosition(self): 
94         ''' 
95         Move the probe to the final "resting" position 
96         ''' 
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CoordinateMappers/coordinateMapper.py 
001 import abc 
002 import numpy as np 
003  
004 from ImageUtilities import blob 
005  
006 class CoordinateMapper(object, metaclass=abc.ABCMeta): 
007     """ 
008     An abstract interface of a coordinate mapper object. 
009     Used to translate between coordinate systems for each  
010         supported instrument 
011     """ 
012  
013     def __init__(self): 
014         self.physPoints = [] 
015         self.pixelPoints = [] 
016         self.update = False 
017  
018         self.isConnectedToInstrument = False 
019         self.connectedInstrument = None 
020         self.reflectCoordinates = False 
021  
022         ''' 
023         also need to define the strings 
024         self.instrumentExtension: extension of file used by instrument  
025             for target positions 
026         self.instrumentName: Name of instrument for display and logic.   
027             Should be unique 
028  
029         finally supportedCoordSystems needs to be updated with  
030             the import and supportedMappers 
031         ''' 
032  
033     @abc.abstractmethod 
034     def isValidEntry(self, inStr): 
035         ''' 
036         checks if the user-entered coordinate is valid 
037         inStr: the user entry 
038         returns a bool, true if the entry was valid 
039         ''' 
040  
041     @abc.abstractmethod 
042     def extractPoint(self, inStr): 
043         ''' 
044         converts the entered point to a physical coordinate 
045         in simplest case can just parse the input,  
046             could require other conversions 
047         inStr: user entry, should be validated prior to passing in 
048         returns a tuple in physical coordinates 
049         ''' 
050      
051     @abc.abstractmethod 
052     def predictName(self, pixelPoint): 
053         ''' 
054         used to predict the user entry, is frequently overwritten when 
055             setting a registration point. Can be a "named" coordinate  
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056             to match instrumentation or just the predicted  
057             physical coordinate 
058         pixelPoint: a tuple of the x,y pixel position 
059         returns a string with the predicted input 
060         ''' 
061      
062     @abc.abstractmethod 
063     def predictLabel(self, physPoint): 
064         ''' 
065         given a physical position of a registration point,  
066             the label to draw on the image 
067         can be a 'named' coordinate or a short position 
068         ''' 
069  
070     @abc.abstractmethod 
071     def predictedPoints(self): 
072         ''' 
073         returns a list of pixel points of predicted 'named' positions 
074         used to show the predicted grid if the instrument has preset  
075             positions 
076         Returns [] if not implemented or not enough training points set 
077         ''' 
078          
079     @abc.abstractmethod 
080     def loadInstrumentFile(self, filename): 
081         ''' 
082         read in an instrument file produced by saveInstrumentFile 
083         filename: the name of the instrument file 
084         should return a list of blobs used in blob finding,  
085         radius and circularity can be hard coded as  
086             GUIConstants.DEFAULT_BLOB_RADIUS and 1 for display purposes 
087         ''' 
088  
089     @abc.abstractmethod 
090     def saveInstrumentFile(self, filename, blobs): 
091         ''' 
092         write the file used by the instrument to profile each position 
093         typically requires special formatting.  It is also possible to  
094         write meta data in a separate file to simplify loading later 
095         filename: output file name 
096         blobs: list of blobs 
097         ''' 
098      
099     def saveInstrumentRegFile(self, filename): 
100         ''' 
101         Similar to saveInstrumentFile, but saves the positions of the  
102         pixelPoints used for registration 
103         ''' 
104         regBlobs = [blob.blob(p[0], p[1]) for p in self.pixelPoints] 
105         self.saveInstrumentFile(filename, regBlobs) 
106  
107     @abc.abstractmethod 
108     def getIntermediateMap(self): 
109         ''' 
110         return the coordinates needed to construct the intermediate map,  
111             where necessary the intermediate map is used to convert from  
112             physical positions to a coordinate system used by the  
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113             instrument.  These are typically set points on the instrument  
114             which could change. 
115         the output should be a list of tuples which are used to  
116             populate a table in the GUI. 
117         Subclasses should save and load these points as needed,  
118             preferably to a txt file with the class name 
119         ''' 
120  
121     @abc.abstractmethod 
122     def setIntermediateMap(self, points): 
123         ''' 
124         Update the intermediate map based on the points supplied.   
125             The user will likely update some of the points so format  
126             should be similar to the structure returned by  
127             getIntermediateMap 
128         points: a list of tuples 
129         ''' 
130      
131     def PBSR(self): 
132         ''' 
133         calculates R, t and s for point based registration from  
134             pixels (x) to physical positions (y) 
135         ''' 
136         (self.R, self.s, self.t) = self._PBSR(self.pixelPoints,  
137                                                 self.physPoints,  
138                                                 self.reflectCoordinates) 
139  
140     def translate(self, pixelPoint): 
141         ''' 
142         Translate a provided pixel point to physical coordinate 
143         pixelPoint: a x,y tuple in pixel space 
144         ''' 
145         return self._translate(pixelPoint, self.reflectCoordinates) 
146          
147     def invert(self, physPoint): 
148         ''' 
149         Translate a provided physical point to pixel coordinate 
150         physPoint: a x,y tuple in physical space 
151         ''' 
152         return self._invert(physPoint, self.reflectCoordinates) 
153  
154     def addPoints(self, pixelPoint, physPoint): 
155         ''' 
156         Adds the provided x,y tuples to the appropriate lists 
157         Does some type checking and signals the need for a pbsr update 
158         pixelPoint: (x,y) tuple in global pixel space 
159         physPoint: (x,y) tuple of physical coordinate 
160         ''' 
161         #check if tuples of list two 
162         if isinstance(pixelPoint, tuple) and \ 
163                 isinstance(physPoint, tuple) and \ 
164                 len(pixelPoint) == 2 and \ 
165                 len(physPoint) == 2: 
166  
167             self.physPoints.append(physPoint) 
168             self.pixelPoints.append(pixelPoint) 
169             self.update = True 
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170  
171     def clearPoints(self): 
172         ''' 
173         Resets all physical and pixel points 
174         ''' 
175         self.physPoints = [] 
176         self.pixelPoints = [] 
177         self.update = True 
178  
179     def _translate(self, pixelPoint, reflected): 
180         ''' 
181         a helper method of translate that has the extra variable  
182             for reflection 
183         pixelPoint: (x,y) tuple in global pixel space 
184         reflected: boolean to signal if the two coordinate  
185             spaces are reflected 
186         returns an (x,y) tuple in physical space 
187         ''' 
188         #can't perform transformation 
189         if len(self.physPoints) < 2: 
190             raise KeyError('Not enough training points') 
191              
192         #update if needed 
193         if self.update == True: 
194             self.PBSR() 
195             self.update = False 
196  
197         #if reflecting, negate the y axis 
198         if reflected:     
199             result = self.s *  
200                     self.R *  
201                     np.matrix([[pixelPoint[0]],[-pixelPoint[1]]])  
202                     + self.t 
203         else: 
204             result = self.s *  
205                     self.R *  
206                     np.matrix([[pixelPoint[0]],[pixelPoint[1]]])  
207                     + self.t 
208          
209         return (result[0,0], result[1,0]) 
210  
211     def _invert(self, physPoint, reflected): 
212         ''' 
213         helper method for inverting a physical point to a pixel position 
214         physPoint: (x,y) coordinate of physical position 
215         reflected: boolean toggle to indicate if the coordinate  
216             spaces are reflections 
217         return (x,y) in pixel positions 
218         ''' 
219         #not enough training points 
220         if len(self.physPoints) < 2: 
221             raise KeyError('Not enough training points') 
222              
223         #update transformation as needed 
224         if self.update == True: 
225             self.PBSR() 
226             self.update = False 
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227              
228         #calculate inverse transformation 
229         result = np.linalg.inv(self.R)*\ 
230             (np.matrix([[physPoint[0]],[physPoint[1]]]) - self.t)/self.s 
231          
232         #negate y axis if reflected 
233         if reflected: 
234             return (result[0,0], -result[1,0]) 
235         else: 
236             return (result[0,0], result[1,0]) 
237                  
238     def _PBSR(self, X, Y, reflected = False): 
239         ''' 
240         calculate R, t and s for point based registration from  
241         pixel (x) to  physical (y) 
242         X: list of tuples of pixel coordinates 
243         Y: list of tuples of physical coordinates 
244         reflected: boolean switch to indicate if the coordinates  
245             are related by a reflection 
246         returns (R, s, t) 
247         y ~ s*R*x+t 
248         ''' 
249         flip = -1 if reflected else 1         
250          
251         xbar = [0,0] 
252         ybar = [0,0] 
253         n = len(X) 
254         for i in range(n): 
255             xbar[0] += X[i][0] 
256             xbar[1] += flip*X[i][1] 
257             ybar[0] += Y[i][0] 
258             ybar[1] += Y[i][1] 
259         xbar[0] /= n 
260         xbar[1] /= n 
261         ybar[0] /= n 
262         ybar[1] /= n 
263          
264         xtilde = list(map(lambda x:  
265                         (x[0]-xbar[0], (flip*x[1])-xbar[1]), X)) 
266         ytilde = list(map(lambda x: (x[0]-ybar[0], x[1]-ybar[1]), Y)) 
267  
268         H = np.matrix('0 0; 0 0') 
269          
270         for s,p in zip(xtilde, ytilde): 
271             H = H + np.outer(s,p) 
272              
273         U,s,V = np.linalg.svd(H) 
274       
275         R = np.dot( 
276                 np.dot(V,  
277                        np.matrix([[1,0], 
278                                 [0,np.linalg.det(np.dot(V,U))]])), 
279                 np.transpose(U)) 
280                  
281         sTop = 0 
282         sBot = 0 
283         for s,p in zip(xtilde, ytilde): 
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284             sTop += np.dot(np.dot(R,s), p) 
285             sBot += np.dot(s,s) 
286         s = sTop/sBot 
287         s = s[0,0] 
288  
289         if s < 0: 
290             s = -s 
291             R = -R 
292          
293         sbar = np.matrix([[xbar[0]],[xbar[1]]]) 
294         pbar = np.matrix([[ybar[0]],[ybar[1]]]) 
295         t = pbar-s*R*sbar  
296         return (R,s,t) 
297                  
298     def removeClosest(self, pixelPoint): 
299         ''' 
300         remove the closest fiducial pair to the provided pixel point 
301         pixelPoint: (x,y) tuple to remove 
302         ''' 
303         closestI = 0 
304         if self.pixelPoints: 
305             #start with distance to fist point 
306             closestDist = (self.pixelPoints[0][0]-pixelPoint[0])**2 
307                             +(self.pixelPoints[0][1]-pixelPoint[1])**2 
308             for i,p in enumerate(self.pixelPoints): 
309                 #update if p is closer 
310                 if (p[0]-pixelPoint[0])**2 
311                         +(p[1]-pixelPoint[1])**2 < closestDist: 
312                     closestDist = (p[0]-pixelPoint[0])**2 
313                                   +(p[1]-pixelPoint[1])**2 
314                     closestI = i 
315             #remove points and signal the need to update 
316             self.pixelPoints.pop(closestI) 
317             self.physPoints.pop(closestI) 
318             self.update = True 
319  
320              
321     def highestDeviation(self): 
322         ''' 
323         returns the index of pixelPoints with the highest deviation 
324         in target registration error 
325         ''' 
326         if len(self.physPoints) < 2: 
327             raise KeyError('Not enough training points') 
328              
329         #update as needed 
330         if self.update == True: 
331             self.PBSR() 
332             self.update = False 
333              
334         #get all predicted pixel positions 
335         predPixPoints = list(map(lambda x: self.invert(x),  
336                                             self.physPoints)) 
337         dists = [] 
338         #calculate deviations (dist squared) 
339         for i in range(len(predPixPoints)): 
340             dists.append((self.pixelPoints[i][0]  
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341                             - predPixPoints[i][0])**2   
342                         +(self.pixelPoints[i][1]  
343                             - predPixPoints[i][1])**2) 
344         #return max deviation 
345         return np.argmax(dists) 
346           
347     def loadRegistration(self, filename): 
348         ''' 
349         load the msreg file by populating the physical and pixel lists 
350         filename: the msreg file to load 
351         ''' 
352         #clear list 
353         self.physPoints = [] 
354         self.pixelPoints = [] 
355          
356         infile = open(filename, 'r') 
357          
358         #toss lines until hitting 'image x' 
359         l = infile.readline() 
360         while 'image x' not in l: 
361             l = infile.readline() 
362  
363         #then get next 
364         l = infile.readline() 
365  
366         #read while lines are not none 
367         while l: 
368             #parse out the points 
369             toks = l.rstrip().split('\t') 
370             self.pixelPoints.append((int(float(toks[0])),  
371                                     int(float(toks[1])))) 
372             self.physPoints.append((float(toks[2]), float(toks[3]))) 
373             l = infile.readline() 
374         #update pbsr if possible 
375         if len(self.physPoints) > 2: 
376             self.PBSR() 
377  
378     def saveRegistration(self, filename): 
379         ''' 
380         save the registration file 
381         filename: the msreg file to write 
382         ''' 
383         #update if needed and enough points 
384         if self.update == True and len(self.physPoints) > 2: 
385             self.PBSR() 
386             self.update = False 
387         output = open(filename, 'w') 
388         output.write(self.instrumentName + '\n') 
389         #write the registration transformation 
390         if len(self.physPoints) > 2: 
391             output.write("S:{}\nR:{}\nT:{}\n" 
392                         .format(self.s, self.R, self.t)) 
393         #write the coordinates 
394         output.write("image x\timage y\tphysical coordinate\n") 
395         for i,s in enumerate(self.pixelPoints): 
396             output.write("{}\t{}\t{}\t{}\n".format(s[0], s[1],  
397                          self.physPoints[i][0],self.physPoints[i][1])) 
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398                           
399         output.close() 
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CoordinateMappers/flexImagingSolarix.py 
01 from CoordinateMappers.solarixMapper import solarixMapper 
02 from ImageUtilities.blob import blob 
03 import os 
04  
05 class flexImagingSolarix(solarixMapper): 
06     ''' 
07     This is another implementation for the solarix which uses 
08     flexImaging to perform profiling, instead of autoexecute. 
09     Most functions are directly inherited from the solarix mapper 
10     ''' 
11  
12     def __init__(self): 
13         ''' 
14         Create a new solarix mapper 
15         Only overwriting is the instrument extension and name 
16         ''' 
17         super().__init__() 
18         self.instrumentExtension = '.txt' 
19         self.instrumentName = 'flexImagingSolarix' 
20  
21     def saveInstrumentFile(self, filename, blobs): 
22         ''' 
23         Save the instrument file of the provided list of blobs 
24         filename: the file to write to 
25         blobs: list of blob targets to save 
26         file format is a space delineated x, y, name, region 
27         ''' 
28         if blobs is None or len(blobs) == 0: 
29             return 
30         output = open(filename, 'w') 
31         output.write('# X-pos Y-pos spot-name region\n') 
32         #write out the fiducial locations for registration 
33         for i in range(len(self.physPoints)): 
34             phys = self.physPoints[i] 
35             pix = self.pixelPoints[i] 
36             output.write('{0:.0f} {1:.0f} fiducial{2} 01\n' 
37                             .format(phys[0], -phys[1], i)) 
38  
39         for b in blobs: 
40             phys = self.translate((b.X, b.Y)) 
41             if b.group is not None: 
42                 output.write('{0:.0f} {1:.0f} s{4}_x{2:.0f}_y{3:.0f} 01\n' 
43                             .format(phys[0], -phys[1], b.X, b.Y, b.group)) 
44             else: 
45                 output.write('{0:.0f} {1:.0f} x{2:.0f}_y{3:.0f} 01\n' 
46                             .format(phys[0], -phys[1], b.X, b.Y)) 
47  
48         output.close() 
49  
50     def saveInstrumentRegFile(self, filename): 
51         if self.pixelPoints is None or len(self.pixelPoints) == 0: 
52             return 
53         output = open(filename, 'w') 
54         output.write('# X-pos Y-pos spot-name region\n') 
55  
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56         for p in self.pixelPoints: 
57             phys = self.translate((p[0], p[1])) 
58             output.write('{0:.0f} {1:.0f} x{2:.0f}_y{3:.0f} 01\n' 
59                             .format(phys[0], -phys[1], p[0], p[1])) 
60  
61  
62     def loadInstrumentFile(self, filename): 
63         ''' 
64         Loads target locations from a target file 
65         filename: the file to read 
66         returns a list of blobs 
67         ''' 
68         input = open(filename, 'r') 
69         result = [] 
70         for l in input.readlines()[1:]: 
71             toks = l.split(' ') 
72             toks = toks[2].split('_') 
73             if len(toks) == 3: 
74                 result.append(blob(int(toks[1][1:]), int(toks[2][1:]),  
75                                     group = int(toks[0][1:]))) 
76             elif len(toks) == 2: 
77                 result.append(blob(int(toks[0][1:]), int(toks[1][1:]))) 
78         return result 
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CoordinateMappers/oMaldiMapper.py 
001 from CoordinateMappers import coordinateMapper 
002 import os 
003 import numpy as np 
004 import itertools 
005  
006 from ImageUtilities import blob 
007  
008 class oMaldiMapper(coordinateMapper.CoordinateMapper): 
009     ''' 
010     coordinate mapper of an ab sciex oMaldi server. 
011     Tries to account for slide slop in generation of instrument files 
012     ''' 
013  
014     def __init__(self): 
015         ''' 
016         creates a new oMaldiMapper and sets some constant values 
017         ''' 
018         super().__init__() 
019  
020         self.instrumentExtension = '.ptn' 
021         self.instrumentName = 'oMALDI' 
022         self.reflectCoordinates = True 
023  
024         #these are rough estimates, but shouldn't be used  
025             #beyond predicting labels 
026         self.SIMSMapY = { 
027             0:30400, 
028             10:27200, 
029             20:24000, 
030             30:20800, 
031             40:17600, 
032             50:14400, 
033             60:11200, 
034             70:8000, 
035             80:4800, 
036             90:1600 
037         } 
038          
039         self.SIMSMapX = { 
040             10:30400, 
041             9:27200, 
042             8:24000, 
043             7:20800, 
044             6:17600, 
045             5:14400, 
046             4:11200, 
047             3:8000, 
048             2:4800, 
049             1:1600 
050         } 
051          
052         self.allPoints = list(itertools.product(self.SIMSMapX.values(),  
053                                                 self.SIMSMapY.values())) 
054  
055     def isValidEntry(self, inStr): 
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056         ''' 
057         Tests if the string is a valid motor entry. 
058         Sample entry is two ints separated by a space 
059         inStr: string to test 
060         returns true if the string can be successfully parsed 
061         ''' 
062         if " " in inStr: 
063             toks = inStr.split(" ") 
064             try: 
065                 int(toks[0]) 
066                 int(toks[1]) 
067                 return True 
068             except: 
069                 return False 
070         else: 
071             return False 
072  
073     def extractPoint(self, inStr): 
074         ''' 
075         Extracts a motor coordinate from the provided string. 
076         inStr: the string to parse 
077         returns an (x,y) tuple in physical coordinate space 
078         ''' 
079         if not self.isValidEntry(inStr): 
080             return None 
081         toks = inStr.split(" ") 
082         return( (int(toks[0]), int(toks[1])) ) 
083  
084     def predictName(self, pixelPoint): 
085         ''' 
086         Predicts the motor coordinate from a pixel position. 
087         pixelPoint: (x,y) tuple 
088         returns a blank string 
089         ''' 
090         return "" 
091  
092     def predictLabel(self, physicalPoint): 
093         ''' 
094         Predict the label of a physical point. 
095         physicalPoint: (x,y) tuple of the position to predict 
096         returns a string of the position of a standard 100 spot plate 
097         ''' 
098         Y = physicalPoint[1] 
099         X = physicalPoint[0] 
100         Ymin, Ykey = abs(Y-next(iter(self.SIMSMapY.values()))), \ 
101             next(iter(self.SIMSMapY.keys())) 
102         Xmin, Xkey = abs(X-next(iter(self.SIMSMapX.values()))), \ 
103             next(iter(self.SIMSMapX.keys())) 
104         #find closest position 
105         for key, val in self.SIMSMapY.items(): 
106             if abs(Y-val) < Ymin: 
107                 Ymin, Ykey = abs(Y-val), key 
108         for key, val in self.SIMSMapX.items(): 
109             if abs(X-val) < Xmin: 
110                 Xmin, Xkey = abs(X-val), key 
111         return Ykey+Xkey 
112  
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113     def predictedPoints(self): 
114         ''' 
115         Returns a list of predicted points of the standard 100 spot plate 
116         ''' 
117         if len(self.physPoints) < 2: 
118             return [] 
119         result = [] 
120         for p in self.allPoints: 
121             result.append(self.invert(p)) 
122         return result 
123  
124     def loadInstrumentFile(self, filename): 
125         ''' 
126         Loads all the targets associated with a given instrument file. 
127         filename: the ptn file to load.  Actually gets information  
128             from a partner text file. 
129         returns a list of blobs of the target locations 
130         ''' 
131         result = [] 
132         if os.path.exists(filename[0:-4] + '.txt'): 
133             reader = open(filename[0:-4] + '.txt', 'r') 
134             for l in reader.readlines(): 
135                 toks = l.split('\t') 
136                 if len(toks) == 3: 
137                     result.append(blob.blob(float(toks[0]),  
138                                             float(toks[1]),  
139                                             group = int(toks[2]))) 
140                 else: 
141                     result.append(blob.blob(float(toks[0]),  
142                                             float(toks[1]))) 
143         else: 
144             print('{} containing pixel positions not found!' 
145                     .format(filename[0:-4] + '.txt')) 
146         return result 
147  
148     def saveInstrumentFile(self, filename, blobs):   
149         ''' 
150         Save the list of blobs to the provided filename 
151         filename: the base ptn filename to save 
152         blobs: list of blobs to save 
153         ''' 
154         if blobs is None or len(blobs) == 0: 
155             return 
156         slop = 0.1 
157         #assuming start at spot 43: 
158         scale = 0.0031249999999999984; 
159         rot = np.matrix([[ -1.000e+00,   2.77555756e-16], 
160         [  2.22044605e-16,  -1.000e+00]]); 
161         transl = np.matrix([[ 30.], 
162         [-50.]]); 
163  
164         points = [];                 
165                  
166         output = open(filename[0:-4] + '.txt', 'w') 
167         for b in blobs: 
168             trans = self.translate((b.X,b.Y)) 
169             result = scale  
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170                     * rot  
171                     * np.matrix([[trans[0]],[-trans[1]]])  
172                     + transl 
173             points.append((result[0,0], result[1,0])) 
174             if b.group is not None: 
175                 output.write('{0:.0f}\t{1:.0f}\t{2}\n' 
176                             .format(b.X, b.Y, b.group)) 
177             else: 
178                 output.write('{0:.0f}\t{1:.0f}\n'.format(b.X, b.Y)) 
179         output.close() 
180  
181         points = self.SlopCorrection(points, slop, slop)         
182          
183         output = open(filename, 'w') 
184         for p in points: 
185             output.write('{0:.3f}\t{1:.3f}\n'.format(p[0], p[1])) 
186         output.close() 
187          
188     def SlopCorrection(self, points, xcorr, ycorr): 
189         ''' 
190         Attempts to correct for linear actuator motor slop in the stage. 
191         As the stage changes direction from positive to negative  
192             direction in either axis, a constant value is added or  
193             subtracted to make the stage move a little further or less  
194             depending on slop in drive screw. 
195         Assume start at spot 43, apply when changing directions 
196             pattern value at start is 5,5 coming in direction of 6,4 
197         points: list of points to visit 
198         xcorr: x slop correction value 
199         ycorr: y slop correction value 
200         returns a new list of points with slop correction 
201         ''' 
202         path = [] 
203         output = [] 
204         #path contains the last "two points visited" in x and y 
205         #to determine what kind of slope correction, if any, to apply 
206         path.append((6,4)) 
207         path.append((5,5)) 
208         xslop = 0 
209         yslop = 0 
210         for p in points: 
211             path.append(p) 
212             #update xslop 
213             # +- 
214             if path[0][0] < path[1][0] and path[1][0] > path[2][0]: 
215                 xslop -= xcorr 
216             #-+ 
217             elif path[0][0] > path[1][0] and path[1][0] < path[2][0]: 
218                 xslop += xcorr 
219             #no change, forward point           
220             elif path[1][0] == path[2][0]: 
221                 path[1] = (path[0][0], path[1][1]) 
222             #update yslop 
223             # +- 
224             if path[0][1] < path[1][1] and path[1][1] > path[2][1]: 
225                 yslop -= ycorr 
226             #-+ 
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227             elif path[0][1] > path[1][1] and path[1][1] < path[2][1]: 
228                 yslop += ycorr 
229             #no change, forward point           
230             elif path[1][1] == path[2][1]: 
231                 path[1] = (path[1][0], path[0][1]) 
232              
233             output.append((p[0]+xslop,p[1]+yslop)) 
234             path.pop(0) 
235         return output 
236      
237     def getIntermediateMap(self): 
238         ''' 
239         The intermediate map is hard coded  
240         ''' 
241         return [('Not in use', 0, 0)] 
242  
243     def setIntermediateMap(self, points): 
244         ''' 
245         This is unused 
246         ''' 
247         pass 
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CoordinateMappers/solarixMapper.py 

001 from CoordinateMappers import brukerMapper 
002 import xlsxwriter 
003 from PyQt5 import QtCore, QtGui, QtWidgets 
004 import os 
005  
006 class solarixMapper(brukerMapper.brukerMapper): 
007     """ 
008     coordinate mapper for the solarix 
009     noticeable changes include encoding of motor coordinates,  
010     requirement of xls for auto acquisition, and limiting number of blobs 
011     """ 
012  
013     def __init__(self): 
014         ''' 
015         initialize a new solarix mapper with some specified constants 
016         ''' 
017         d, f = os.path.split(__file__) 
018         self.motorCoordFilename = os.path.join(d,  
019                                             'solarixMapperCoords.txt') 
020         self.instrumentExtension = '.xeo' 
021         self.instrumentName = 'solariX' 
022         super().__init__() 
023         self.reflectCoordinates = True 
024  
025     def isValidMotorCoord(self,instr): 
026         ''' 
027         Checks if the supplied string is a valid motor coordinate. 
028         Solarix motor coordinates are delimited by a '/' 
029         instr: the string to test 
030         returns true if the string can be successfully parsed 
031         ''' 
032         if instr is None: 
033             return False 
034         if "/" in instr: 
035             toks = instr.split("/") 
036             try: 
037                 int(toks[0]) 
038                 int(toks[1]) 
039                 return True 
040             except: 
041                 return False 
042         else: 
043             return False 
044  
045     def extractMotorPoint(self,inStr): 
046         ''' 
047         Parse the suppled string to generate a motor point 
048         inStr: the string to parse 
049         returns an (x,y) tuple of the motor coordinate 
050         ''' 
051         if not self.isValidMotorCoord(inStr): 
052             return None 
053         toks = inStr.split("/") 
054         return( (int(toks[0]), int(toks[1])) ) 
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055  
056     def loadInstrumentFile(self, filename): 
057         ''' 
058         Load target locations of a given XEO 
059         filename: the file to load 
060         returns a list of blobs of the targets in the file 
061         ''' 
062         return self.loadXEO(filename) 
063  
064     def saveInstrumentFile(self, filename, blobs): 
065         ''' 
066         saves an instrument file of the provided list of blobs 
067         filename: the file to write to 
068             if more than 900 points, uses filename as a base name 
069         blobs: list of target positions 
070         ''' 
071         if blobs is None or len(blobs) == 0: 
072             return 
073         maxPoints = 400 
074         if len(blobs) > maxPoints: 
075             fn = filename[:-4] 
076             for i in range(len(blobs) // maxPoints): 
077                 self.writeXEO(fn + '_' + str(i) + '.xeo',  
078                                 blobs[i*maxPoints:(i+1)*maxPoints]) 
079                 self.writeAutoXlsx(fn + '_' + str(i) + '.xlsx',  
080                                 blobs[i*maxPoints:(i+1)*maxPoints]) 
081             #get the remainder 
082             self.writeXEO(fn + '_' + str(len(blobs)//maxPoints) + '.xeo',  
083                             blobs[-(len(blobs) % maxPoints):]) 
084             self.writeAutoXlsx(fn + '_' + str(len(blobs)//maxPoints)  
085                                         + '.xlsx',  
086                                 blobs[-(len(blobs) % maxPoints):]) 
087              
088         else:#write a single xeo 
089             self.writeXEO(filename,blobs) 
090             filename = filename[:-3] + 'xlsx' 
091             self.writeAutoXlsx(filename, blobs) 
092  
093     def writeAutoXlsx(self, filename, blobs): 
094         ''' 
095         Write the xlsx file required for autoexecute 
096         filename: the xlsx name 
097         blobs: list of blobs to save 
098         ''' 
099         workbook =  xlsxwriter.Workbook(filename) 
100         ws = workbook.add_worksheet() 
101          
102         header = ['Spot Number', 'Chip Number', 'Data Directory',  
103                     'Data File Name', 'Method Name', 'Sample Name',  
104                     'Comment'] 
105         for i,h in enumerate(header): 
106             ws.write(0, i, h) 
107              
108         for i,p in enumerate(blobs): 
109             ws.write(i+1, 0, "x_{0:.0f}y_{1:.0f}".format(p.X, p.Y)) 
110             ws.write(i+1, 1, "0") 
111             ws.write(i+1, 5, "x_{0:.0f}y_{1:.0f}".format(p.X, p.Y)) 
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112              
113         workbook.close() 
114  
115     def predictName(self, pixelPoint): 
116         ''' 
117         predict the motor coordinate or name from the pixel point 
118         Tries to read the coordinate from the clipboard of a QT GUI 
119         pixelPoint: (x,y) tuple of global pixel space 
120         returns the predicted string 
121         ''' 
122         clipboard = QtWidgets.QApplication.clipboard() 
123         if clipboard is not None and \ 
124             clipboard.text() is not None and \ 
125             clipboard.text() != '': 
126             return clipboard.text() 
127         return super().predictName(pixelPoint) 
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CoordinateMappers/supportedCoordSystems.py 
01 ''' 
02 Contains all the supported coordinate systems and a list of  
03 instances of each type. 
04 ''' 
05  
06 ###add new import here 
07 from CoordinateMappers import ultraflexMapper 
08 from CoordinateMappers import solarixMapper 
09 from CoordinateMappers import oMaldiMapper 
10 from CoordinateMappers import zaberMapper 
11 from CoordinateMappers import flexImagingSolarix 
12  
13 ###add new mapper instance here 
14 supportedMappers = [ultraflexMapper.ultraflexMapper(), 
15                     solarixMapper.solarixMapper(), 
16                     flexImagingSolarix.flexImagingSolarix(), 
17                     oMaldiMapper.oMaldiMapper(), 
18                     zaberMapper.zaberMapper()] 
19  
20  
21 #check for defined names here 
22 supportedNames = list(map(lambda x: x.instrumentName, supportedMappers)) 
23 list(map(lambda x: x.instrumentExtension, supportedMappers))  
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CoordinateMappers/ultraflexMapper.py 
01 from CoordinateMappers import brukerMapper 
02 import os 
03  
04 class ultraflexMapper(brukerMapper.brukerMapper): 
05     """ 
06     coordinate mapper for the ultrafleXtreme 
07     """ 
08      
09     def __init__(self): 
10        ''' 
11        set up a new ultraflex mapper and set some constants 
12        ''' 
13        #the intermediate map coordinates 
14        d, f = os.path.split(__file__) 
15        self.motorCoordFilename = os.path.join(d,  
16                                             'ultraflexMapperCoords.txt') 
17        self.instrumentExtension = '.xeo' 
18        self.instrumentName = 'ultrafleXtreme' 
19        super().__init__() 
20        self.reflectCoordinates = True 
21  
22          
23     def isValidMotorCoord(self, instr): 
24         ''' 
25         Test if the supplied string is a valid coordinate.   
26         Valid strings are separated by a space and contain two ints 
27         instr: string to test 
28         returns true if the string is able to be parsed 
29         ''' 
30         if instr is None: 
31             return False 
32         if " " in instr: 
33             toks = instr.split(" ") 
34             try: 
35                 int(toks[0]) 
36                 int(toks[1]) 
37                 return True 
38             except: 
39                 return False 
40         else: 
41             return False 
42  
43     def extractMotorPoint(self,inStr): 
44         ''' 
45         Parses the string to generate a motor coordinate 
46         inStr: the string to parse 
47         returns an (x,y) tuple if the string successfully parses 
48         ''' 
49         if not self.isValidMotorCoord(inStr): 
50             return None 
51         toks = inStr.split(" ") 
52         return( (int(toks[0]), int(toks[1])) ) 
53  
54     def loadInstrumentFile(self, filename): 
55         ''' 
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56         Loads an xeo file and returns a list of blobs. 
57         filename: the xeo file to read 
58         returns a list of blobs representing the target coordinates 
59         ''' 
60         return self.loadXEO(filename) 
61  
62     def saveInstrumentFile(self, filename, blobs): 
63         ''' 
64         Save the provided list of blobs as an xeo file 
65         filename: the file to write to 
66         blobs: list of target blobs 
67         ''' 
68         self.writeXEO(filename, blobs)  
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CoordinateMappers/zaber3axis.py 
001 from CoordinateMappers import zaberInterface 
002 from CoordinateMappers import connectedInstrument 
003 from ImageUtilities.enumModule import Direction, StepSize 
004 import time 
005  
006 class Zaber3Axis(zaberInterface.ZaberInterface,  
007                  connectedInstrument.ConnectedInstrument): 
008     ''' 
009     A connected zaber linear stage with XYZ axes. 
010     Note the multiple inheritance 
011     ''' 
012  
013     def __init__(self): 
014         ''' 
015         Setup, but not connect the stage 
016         Initializes a few constants that may need changing  
017             and some instance variables 
018         ''' 
019         super().__init__() 
020         self.xdev = 2 
021         self.ydev = 1 
022         self.zdev = 3 
023  
024         self.smallStep = 500 #microsteps 
025  
026         self.smallZstep = 50 #microsteps 
027          
028         self.mediumFactor = 10 
029         self.largeFactor = 100 
030         self.giantFactor = 1000 
031  
032         #the position of the z axis when the probe is at the surface 
033         self.bottomPosition = 0; 
034         #true if the probe is at the surface, else false 
035         self.atBottom = False 
036  
037          
038     def initialize(self, portName, timeout = None): 
039         ''' 
040         Attempt to connect to the specified port and initialize stage 
041         portName: the port to connect to 
042         timeout: how long to listen to the port, None for blocking calls 
043         ''' 
044         try: 
045             self._openPort(portName,timeout) 
046         except: 
047             self.connected = False 
048             return 
049         #set the connection to true 
050         self.connected = True 
051         #renumber to make sure all ids are unique and as expected 
052         self.renumber() 
053         #clear replies from renumber 
054         self.checkReplies(3) 
055         #home all stages 
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056         self.homeAll() 
057         #move xyz to 100,000 to engage each stage 
058         self.moveToPositionXY((1, 1)) 
059         self._send(self.zdev, self.COMMANDS['MOVE_ABS'], 1) 
060         self._receive() 
061  
062     def homeAll(self): 
063         ''' 
064         home all stages and clear replies. 
065         Homes the z axis first to help protect the probe 
066         ''' 
067         if not self.connected: 
068             return 
069         self.home(3) 
070         self._receive() 
071         self.home(2) 
072         self.home(1) 
073         self._receive() 
074         self._receive() 
075         self.atBottom = False 
076  
077     def checkReplies(self, numreads): 
078         ''' 
079         Performs multiple receive calls and checks for rejections 
080         numreads: the number of reads to perform 
081         returns true if no errors or rejections occurred 
082         ''' 
083         if not self.connected: 
084             return 
085         result = True 
086         for i in range(numreads): 
087             (device, command, data) = self._receive() 
088             if command == 255: 
089                 print('Rejected command') 
090                 result = False 
091  
092         return result 
093  
094     def getPositionXY(self): 
095         ''' 
096         get the current x,y position 
097         returns (x,y) in stage coordinates 
098         ''' 
099         if not self.connected: 
100             return None 
101         x = self.getPosition(self.xdev) 
102         y = self.getPosition(self.ydev) 
103         return (x,y) 
104      
105     def moveToPositionXY(self,  xypos): 
106         ''' 
107         Move the stage to the specified xy position.  A blocking call. 
108         Will also retract the probe if it is at the sample surface. 
109         xypos: (x,y) tuple to move to 
110         ''' 
111         if not self.connected: 
112             return 
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113         if self.atBottom: 
114             self.toggleProbe() 
115         x,y = xypos 
116         self._send(self.xdev, self.COMMANDS['MOVE_ABS'], x) 
117         self._send(self.ydev, self.COMMANDS['MOVE_ABS'], y) 
118         self._receive() 
119         self._receive() 
120  
121     def move(self, direction, stepSize): 
122         ''' 
123         performs a relative move in the specified direction 
124         direction: a enumModule.Direction enum 
125         stepSize: enumModule.StepSize specifying the step 
126         ''' 
127         #if not connected, do nothing 
128         if not self.connected: 
129             return 
130         #retract probe if it's at the surface 
131         if self.atBottom: 
132             self.toggleProbe() 
133  
134         #calculate the steps to perform 
135         step = self.smallStep 
136         if stepSize == StepSize.large: 
137             step *= self.largeFactor 
138         elif stepSize == StepSize.medium: 
139             step *= self.mediumFactor 
140  
141         #change device for each direction 
142         if direction == Direction.left or \ 
143             direction == Direction.right: 
144             dev = self.xdev 
145         elif direction == Direction.down or \ 
146             direction == Direction.up: 
147             dev = self.ydev 
148         else: 
149             raise ValueError('Invalid direction') 
150         #this is inverted relative to the stage,  
151         #but correct relative to the probe 
152         #retract for these directions 
153         if direction == Direction.down or \ 
154             direction == Direction.right: 
155             step = -1 * step 
156  
157         #blocking call 
158         self._send(dev, self.COMMANDS['MOVE_REL'], step) 
159         self._receive() 
160  
161     def _collect(self, position): 
162         ''' 
163         Perform a single collection at the specified position 
164         position: (x,y) of stage coordinate to sample 
165         ''' 
166         #do nothing if not connected 
167         if not self.connected: 
168             return 
169  
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170         #move the probe into place (is blocking) 
171         self.moveToPositionXY(position) 
172         #collect at the current position 
173         self.collect(finish = False) 
174  
175     def collect(self, finish = True): 
176         ''' 
177         Collect at the current position for self.dwellTime 
178   finish: call self.finishCollection at end of collection 
179         ''' 
180         #do nothing if not connected 
181         if not self.connected: 
182             return 
183         #if probe is not at the bottom 
184         if not self.atBottom: 
185             self.toggleProbe()#lower, otherwise do nothing 
186         #wait for dwellTime 
187         time.sleep(self.dwellTime) 
188         self.toggleProbe()#raise 
189         if finish == True: 
190             self.finishCollection(forceHome = False) 
191  
192     def collectAll(self, positions): 
193         ''' 
194         Collect from each position specified 
195         positions: a list of (x,y) coordinates in motor positions 
196         ''' 
197         #do nothing if not connected 
198         if not self.connected or self.bottomPosition == 0: 
199             return 
200         #start by homing all 
201         self.homeAll() 
202         #collected from each position 
203         for i, p in enumerate(positions): 
204             print("Collecting from sample {}".format(i+1)) 
205             self._collect(p) 
206         print("Finished collection") 
207         self.finishCollection(forceHome = True) 
208  
209     def finishCollection(self, forceHome): 
210         #if self.postAcqusitionWait is not 0,  
211         #have to move to final position 
212         if self.postAcqusitionWait != 0: 
213             self.finalPosition() 
214             if self.postAcqusitionWait != -1: 
215                 time.sleep(self.postAcqusitionWait) 
216                 self.homeAll() 
217         elif forceHome == True: 
218             #finish homing all 
219             self.homeAll() 
220  
221     def moveProbe(self, direction, stepSize): 
222         ''' 
223         Move the probe relative to the current position 
224         direction: a valid connectedInstrument.Direction 
225         stepSize: enum for step size 
226         ''' 
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227         #do nothing without a connection 
228         if not self.connected: 
229             return 
230         #find step size 
231         step = self.smallZstep 
232         if stepSize == StepSize.medium: 
233             step *= self.mediumFactor 
234         elif stepSize == StepSize.large: 
235             step *= self.largeFactor 
236         elif stepSize == StepSize.giant: 
237             step *= self.giantFactor 
238         if direction == Direction.up: 
239             step = -step 
240         self._send(self.zdev, self.COMMANDS['MOVE_REL'], step) 
241         self._receive() 
242         #regardless of position, the probe is no longer at the bottom 
243         self.atBottom = False 
244  
245     def setProbePosition(self): 
246         ''' 
247         set the probe position as at the surface 
248         ''' 
249         if not self.connected: 
250             return 
251         #store the current position 
252         self.bottomPosition = self.getPosition(self.zdev) 
253         #probe is now at the bottom 
254         self.atBottom = True 
255         #automatically retract 
256         self.toggleProbe() 
257  
258     def getProbePosition(self): 
259         if not self.connected: 
260             return None 
261         return self.getPosition(self.zdev) 
262  
263     def toggleProbe(self): 
264         ''' 
265         toggle the current probe position.   
266             If at bottom, raise, else lower 
267         ''' 
268         if self.bottomPosition == 0 or not self.connected: 
269             return 
270         if self.atBottom: 
271             pos = self.bottomPosition  
272                     - self.smallZstep * self.largeFactor*5 
273             pos = 0 if pos < 0 else pos 
274         else: 
275             pos = self.bottomPosition 
276  
277         self._send(self.zdev, self.COMMANDS['MOVE_ABS'], pos) 
278         self._receive() 
279         self.atBottom = not self.atBottom 
280          
281     def finalPosition(self): 
282         ''' 
283         Move the probe to the washing position,  
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284             which is 10000 above the slide position 
285         ''' 
286         if self.bottomPosition == 0 or not self.connected: 
287             return 
288         self.homeAll() 
289         pos = self.bottomPosition - 10000#NOTE CONSTANT VALUE 
290          
291         self._send(self.zdev, self.COMMANDS['MOVE_ABS'], pos) 
292         self._receive() 
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CoordinateMappers/zaberInterface.py 
001 import serial, struct, abc 
002   
003 class ZaberInterface(object, metaclass=abc.ABCMeta): 
004     ''' 
005     An abstract base class for interacting with zaber linear stages 
006     Encodes methods for basic IO with a stage 
007     ''' 
008     def __init__(self): 
009         #the serial object to talk to 
010         self.stage = None 
011          
012         #standard commands, more at 
013         #http://www.zaber.com/wiki/Manuals/ 
014                 #Binary_Protocol_Manual#Quick_Command_Reference 
015         self.COMMANDS = { 
016             'HOME'      :   1, 
017             'RENUMBER'  :   2, 
018             'MOVE_ABS'  :   20, 
019             'MOVE_REL'  :   21, 
020             'CUR_POS'   :   60 
021             } 
022         super().__init__() 
023  
024     ''' 
025     home and renumber don't receive 
026     as they don't know the number of connected devices 
027     ''' 
028     def home(self, device = 0): 
029         ''' 
030         home the specified device or all 
031         device: the device to home 
032         ''' 
033         self._send(device, self.COMMANDS['HOME']) 
034  
035     def renumber(self): 
036         ''' 
037         renumber all devices 
038         ''' 
039         self._send(0, self.COMMANDS['RENUMBER']) 
040  
041     def getPosition(self, device): 
042         ''' 
043         provides the current location of the requested device 
044         device: the device to query 
045         ''' 
046         self._send(device, self.COMMANDS['CUR_POS']) 
047         (deviceOut, command, data) = self._receive() 
048         #sometimes the receives can get misaligned 
049         if device == deviceOut: 
050             return data 
051         else: 
052             return -1 
053          
054     def _openPort(self, portName, timeout=None): 
055         ''' 
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056         begin communication with a serial stage 
057         portName: the name of the port to communicate with 
058         timeout: the time to wait for a reply.   
059             Set to None for blocking calls 
060         ''' 
061         try: 
062             self.stage = serial.Serial(portName, 9600, 8,  
063                                         'N', 1, timeout=timeout)  
064         except Exception as ext: 
065             print(ext) 
066             print("Error initializing {}!".format(portName)) 
067             raise ValueError("stage not initialized!") 
068  
069     def _send(self, device, command, data=0): 
070         ''' 
071         send a packet using the specified device number,  
072             command number, and data 
073         The data argument is optional and defaults to zero 
074         device: the id of the connected device 
075         command: a command, using the dictionary in init 
076         data: the optional data to send as well 
077         ''' 
078         if self.stage == None: 
079             raise ValueError("stage not initialized!") 
080         data = int(data) 
081         packet = struct.pack('<BBl', device, command, data) 
082         self.stage.write(packet) 
083   
084     def _receive(self): 
085         ''' 
086         reads the serial port 
087         there must be 6 bytes to receive (no error checking) 
088         returns the (device, command, data) 
089         ''' 
090         if self.stage == None: 
091             raise ValueError("stage not initialized!") 
092         r = [0,0,0,0,0,0] 
093         for i in range (6): 
094             r[i] = ord(self.stage.read(1)) 
095  
096         data =  (256.0**3.0*r[5])  
097                 + (256.0**2.0*r[4])  
098                 + (256.0*r[3])  
099                 + (r[2]) 
100         if r[5] > 127: 
101             data -= 256.0**4 
102  
103         device = r[0] 
104         command = r[1] 
105  
106         return (device, command, data) 
107  
108     def findPorts(self): 
109         ''' 
110         Query each COM port for a possible connection. 
111         Will work for windows only 
112         ''' 
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113         result = [] 
114         for i in range(256): 
115             try: 
116                 name = 'COM{}'.format(i) 
117                 s = serial.Serial(name) 
118                 result.append(name) 
119                 s.close() 
120             except serial.SerialException: 
121                 pass 
122         return result  
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CoordinateMappers/zaberMapper.py 
001 from CoordinateMappers import coordinateMapper 
002 from CoordinateMappers import zaber3axis 
003  
004 from ImageUtilities import blob 
005  
006 class zaberMapper(coordinateMapper.CoordinateMapper): 
007     ''' 
008     A coordinate mapper of the zaber XYZ stage. 
009     Has a connected instrument, but otherwise the coordinate 
010     mapping is fairly simple. 
011     ''' 
012  
013     def __init__(self): 
014         ''' 
015         Set up a new instance of zaberMapper 
016         ''' 
017         super().__init__() 
018         #note there is a connected instrument 
019         self.isConnectedToInstrument = True 
020         self.instrumentExtension = '.txt' 
021         self.instrumentName = 'Zaber LMJ' 
022         self.reflectCoordinates = False 
023         #set up the instrument as a 3axis zaber stage 
024         self.connectedInstrument = zaber3axis.Zaber3Axis() 
025  
026     def isValidEntry(self, inStr): 
027         ''' 
028         Validate the possible coordinate 
029         inStr: the string to test, expects two floats separated  
030             by a space 
031         returns true if extract point will successfully parse 
032         ''' 
033         if " " in inStr: 
034             toks = inStr.split(" ") 
035             try: 
036                 float(toks[0]) 
037                 float(toks[1]) 
038                 return True 
039             except: 
040                 return False 
041         else: 
042             return False 
043  
044     def extractPoint(self, inStr): 
045         ''' 
046         Parse the physical coordinate from the provided string 
047         inStr: the input string 
048         returns an (x,y) tuple of the physical coordinate,  
049             or None if string is not valid 
050         ''' 
051         if not self.isValidEntry(inStr): 
052             return None 
053         toks = inStr.split(" ") 
054         return( (float(toks[0]), float(toks[1])) ) 
055  
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056     def predictName(self, pixelPoint): 
057         ''' 
058         Predicts the physical location from the pixel position. 
059         When the instrument is connected, reads in the  
060             actual physical point 
061         pixelPoint: (x,y) tuple in global coordinate space 
062         ''' 
063         #read position if instrument is initialized 
064         if self.connectedInstrument.connected: 
065             xy = self.connectedInstrument.getPositionXY() 
066             return '{} {}'.format(xy[0], xy[1]) 
067         #else return blank string 
068         return '' 
069  
070     def predictLabel(self, physPoint): 
071         ''' 
072         Predict the label of a registration point based on  
073             the physical location. Since there are no set, named points  
074             for the stage this always returns a blank string 
075         physPoint: (x,y) tuple in physical coordinate space 
076         ''' 
077         return '' 
078      
079     def predictedPoints(self): 
080         ''' 
081         Returns a list of predicted, set points in the pixel  
082             coordinate space. In this particular implementation,  
083             only returns the current position of the probe when the  
084             instrument is connected and enough training points  
085             are provided. 
086         ''' 
087         if len(self.physPoints) < 2 or  
088             not self.connectedInstrument.connected: 
089             return [] 
090         else: 
091             phys = self.connectedInstrument.getPositionXY() 
092             return [self.invert(phys)] 
093  
094     def loadInstrumentFile(self, filename): 
095         ''' 
096         Loads a zaberMapper instrument file and returns a list of blobs 
097         with the target locations. 
098         filename: the file to load 
099         returns a list of blob objects 
100         ''' 
101         result = [] 
102         reader = open(filename, 'r') 
103  
104         for l in reader.readlines(): 
105             toks = l.split('\t') 
106             if len(toks) == 3: 
107                 #group is encoded 
108                 result.append(blob.blob(float(toks[0]), float(toks[1]),  
109                                         group = int(toks[2]))) 
110             else: 
111                 #no group 
112                 result.append(blob.blob(float(toks[0]), float(toks[1]))) 
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113  
114         return result 
115  
116     def saveInstrumentFile(self, filename, blobs): 
117         ''' 
118         Save the list of target locations as an instrument file 
119         filename: the file to save 
120         blobs: the list of target blob locations 
121         ''' 
122         if blobs is None or len(blobs) == 0: 
123             return 
124         output = open(filename, 'w') 
125         for p in blobs: 
126             if p.group is not None: 
127                 output.write('{0:.0f}\t{1:.0f}\t{2}\n' 
128                                 .format(p.X, p.Y, p.group)) 
129             else: 
130                 output.write('{0:.0f}\t{1:.0f}\n'.format(p.X, p.Y)) 
131         output.close() 
132      
133     def getIntermediateMap(self): 
134         ''' 
135         This is ignored as no intermediate map is required 
136         ''' 
137         return [('Not in use', 0, 0)] 
138  
139     def setIntermediateMap(self, points): 
140         ''' 
141         This is ignored as no intermediate map is required 
142         ''' 
143         pass   
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Single Cell Profiling on the C60 SIMS  

Motivation, Overview and Extensions 

The lab-built, hybrid C60 SIMS/MALDI mass spectrometer is a prototype instrument for 

performing SIMS analysis on biological samples. Utilizing the cluster ion beam facilitates 

desorption/ionization of intact molecules < 1000 Da.  With the Q-Star mass analyzer, tandem MS 

could provide structural information on unknown constituents. Single cell profiling with SIMS 

would complement the established MALDI-MS analysis by providing spectral information on 

low-mass compounds with minimal sample damage.  However, several limitations in 

instrumentation prevented direct application of existing workflows for optically-guided MS.  

Spectra could not be acquired at specific, discrete locations and stored into separate data files.  

Instead, a “chromatogram” was acquired during the entire experiment. To parse the continuous 

stream of spectra, the time and location of the sample stage had to be monitored.  This was 

accomplished with an Arduino microcontroller which output time and position to a separate 

computer.  The board could further regulate the primary ion beam by detecting stage motion and 

modulating the gate voltage accordingly.  The file containing stage information was utilized 

along with the mass spectra to analyze spectra from single cells.  This section presents the 

Arduino and Matlab code for performing these experiments. The Matlab scripts should be run in 

order of ConvertAllWifftoMZ, LoadData, DataCleanup, RemoveSplits. Afterwards, the data 

variable will contain m/z and intensity values suitable for a variety of multivariate analyses. Five 

helper functions for LoadData are also included. Additional details may be found in Chapter 7. 

Clearly improvements in usability are possible, but would require finer control of the mass 

analyzer or sample stage including hardware modifications, which were avoided. 
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SIMS_linear_encoder_tracker.ino  
001 //keep track of current count of steps 
002 volatile long countAB = 0; 
003 volatile long countCD = 0; 
004 //previous value of count 
005 volatile long countABp = 0; 
006 volatile long countCDp = 0; 
007 //additional variables for times 
008 volatile unsigned long timep, time, etime, times, lastMoveTime; 
009 //the current state of each encoder 
010 boolean A, B, C, D; 
011 //state of MS and if acquisition has started 
012 boolean I, started;  
013 //State of encoders and their previous values 
014 byte stateAB, stateABp, indexAB, stateCD, stateCDp, indexCD; 
015 //convert state to a step movement 
016 volatile int QEM[16]={0,-1,0,1,1,0,-1,0,0,1,0,-1,-1,0,1,0}; 
017 //control when the bean is turned on and off 
018 long beamStart = 30; //microseconds 
019 long beamStop = 40; //microseconds 
020  
021 void setup() 
022 { 
023   //start serial communication at 9600 baud 
024   Serial.begin(9600); 
025   //signal recording computer 
026   Serial.println("CLEARDATA"); 
027   //header of output file 
028   Serial.println("LABEL,Time,t,AB,CD,C60status"); 
029   pinMode(19,INPUT);//Mass spec state 
030   //handle change in instrument state 
031   attachInterrupt(4,Trigger,CHANGE); 
032   I = digitalRead(19); 
033   //check if instrument is already reading 
034   if ((I==HIGH))  
035     started = 1; 
036   else 
037     started = 0; 
038   //initialize input pins for encoder and handle changes 
039   pinMode(2, INPUT);//Channel A of encoder 1 blue 
040   pinMode(3, INPUT);//Channel B of encoder 1 black 
041   pinMode(21, INPUT);//Channel A of encoder 2 purple 
042   pinMode(20, INPUT);//Channel B of encoder 2 green 
043   attachInterrupt(0,ABchange,CHANGE); 
044   attachInterrupt(1,ABchange,CHANGE); 
045   attachInterrupt(2,CDchange,CHANGE); 
046   attachInterrupt(3,CDchange,CHANGE); 
047    
048   pinMode(13,OUTPUT);//LED PIN and beam control 
049   digitalWrite(13,HIGH);//send 5V to Relay, beam OFF 
050   timep = micros(); //set initial time 
051   lastMoveTime = micros(); 
052   //read the initial value of A,B,C,D encoders 
053   A = digitalRead(2);//Y axis 
054   B = digitalRead(3); 
055   C = digitalRead(21);//X axis 
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056   D = digitalRead(20); 
057   //set initial state value 
058   if ((A==HIGH)&&(B==HIGH)) stateABp = 0; 
059   if ((A==HIGH)&&(B==LOW)) stateABp = 1; 
060   if ((A==LOW)&&(B==LOW)) stateABp = 2; 
061   if ((A==LOW)&&(B=HIGH)) stateABp = 3; 
062  
063   if ((C==HIGH)&&(D==HIGH)) stateCDp = 0; 
064   if ((C==HIGH)&&(D==LOW)) stateCDp = 1; 
065   if ((C==LOW)&&(D==LOW)) stateCDp = 2; 
066   if ((C==LOW)&&(D=HIGH)) stateCDp = 3; 
067   } 
068  
069 //main control loop 
070 void loop() 
071 { 
072   I = digitalRead(19); 
073   //only perform checks if MS is acquiring 
074   if ((I==HIGH)) 
075   { 
076       //current time 
077       time = micros(); 
078       //elapsed time 
079       etime =  time - timep; 
080       //update if > 100 microseconds elapsed 
081       if (etime > 1) //0.1s 
082         { 
083           //print time delay (time - start time) 
084           Serial.print("DATA,TIME,"); 
085           Serial.print(time-times); 
086           Serial.print(","); 
087           //print counts of encoders 
088           Serial.print(countAB); 
089           Serial.print(","); 
090           Serial.print(countCD); 
091           Serial.print(","); 
092           //print if the stage is moving 
093           Serial.println((countAB == countABp) &&  
094                             (countCD == countCDp) ?  
095                             "stopped" : "moving"); 
096           //record time of previous update 
097           timep = time; 
098          
099           //if the stage is stopped (no change from previous values) 
100           if ((countAB == countABp) && (countCD == countCDp)) 
101             { 
102               //determine how long since last movement 
103               long tempTime = micros() - lastMoveTime; 
104               //if within the beam start and stop times, turn on beam 
105               if (tempTime > beamStart && tempTime < beamStop) 
106                   digitalWrite(13, LOW); 
107               else 
108                   digitalWrite(13, HIGH); 
109             } 
110           //beam off while moving      
111           else  
112             { 
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113               digitalWrite(13, HIGH); 
114               //update last move time 
115               lastMoveTime = micros(); 
116             } 
117           //record previous counts 
118           countABp = countAB; 
119           countCDp = countCD; 
120          
121         } 
122      
123   } 
124 } 
125  
126 //handle state change on the MS status 
127 void Trigger () 
128 { 
129   I = digitalRead(19); 
130   //if analysis has not started 
131   if ((started==0)&&(I==HIGH)) 
132   { 
133     //record start time and initialize counts 
134     times = micros(); 
135     started=1; 
136     countAB=0; 
137     countCD=0; 
138     noInterrupts (); 
139   } 
140 } 
141  
142 //handle Y encoder change 
143 void ABchange() 
144 { 
145   A = digitalRead(2); 
146   B = digitalRead(3); 
147   //determine state value 
148   if ((A==HIGH)&&(B==HIGH)) stateAB = 0; 
149   if ((A==HIGH)&&(B==LOW)) stateAB = 1; 
150   if ((A==LOW)&&(B==LOW)) stateAB = 2; 
151   if ((A==LOW)&&(B==HIGH)) stateAB = 3; 
152   indexAB = 4*stateAB + stateABp; 
153   byte oldSREG = SREG;   // remember if interrupts are on or off 
154   noInterrupts (); 
155   //update count based on state 
156   countAB = countAB + QEM[indexAB]; 
157   SREG = oldSREG;    // turn interrupts back on, if they were on  
158   //record previous state 
159   stateABp = stateAB; 
160 }  
161  
162 void CDchange() 
163 { 
164   C = digitalRead(21); 
165   D = digitalRead(20); 
166   //determine state value 
167   if ((C==HIGH)&&(D==HIGH)) stateCD = 0; 
168   if ((C==HIGH)&&(D==LOW)) stateCD = 1; 
169   if ((C==LOW)&&(D==LOW)) stateCD = 2; 
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170   if ((C==LOW)&&(D==HIGH)) stateCD = 3; 
171   indexCD = 4*stateCD + stateCDp; 
172   byte oldSREG = SREG;   // remember if interrupts are on or off 
173   noInterrupts (); 
174   //update count based on state 
175   countCD = countCD + QEM[indexCD]; 
176   SREG = oldSREG;    // turn interrupts back on, if they were on  
177   //record previous state 
178   stateCDp = stateCD; 
179 } 
  



 

485 
 

ConvertAllWifftoMZ.m   
01 function [] = ConvertAllWifftoMZ(dirpath, ptrn) 
02     %%Generates mzXML files for each wiff in dirpath 
03     %dirpath: string of full path to directory containing files 
04     %ptrn: string for regex matching to export just a subset 
05      
06     t = cd(dirpath); 
07  
08     files = dir([ptrn '*.wiff']); 
09      
10     for i = 1:length(files) 
11         filename = files(i).name; 
12         %only convert if the mzXML does not exist.  Assumes -Sample 1 is 
13         %appended to the file 
14         if exist([filename(1:end-5) '-Sample 1.mzXML'],'file') ~= 2 
15             %call msconvert from proteowizard. also must add binary 
16             %to path variable in windows! 
17             system(['msconvert ' filename ' --mzXML']) 
18         end 
19     end 
20     cd(t); 
21 end 
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LoadData.m   
001 clear 
002  
003 %name of directory containing wiffs (and therefore mzxmls) 
004 wiffLocation = 'wiff'; 
005 %name of directory containing positions (xlsx files) 
006 posLocation = 'arduino'; 
007 %the dwell time on the stage 
008 dwellTime = 6; %seconds 
009 %mz range to resample to 
010 mzrange = [100 850]; 
011 %number of mz values for binning 
012 resampleN = 10000; 
013  
014 parentDirs = {'../../SIMS/20160524_DRG_TRIPCHCA/',... 
015         %list additional dirs, relative to current path 
016     }; 
017 mzxmls = {'slide15b-Sample 1.mzXML',... 
018         %list additional files here, relative to parentDirs 
019     }; 
020 %directory with cell locations (cell find files from microMS) 
021 locDir = '../../SIMS/20160524_mixCHCA/images'; 
022 %specific cell find files relative to locDir 
023 celllocs = {'slide15b/slide15bcells.txt',... 
024         %list additional files here 
025     }; 
026      
027 for i = 1:length(mzxmls) 
028     %should be -sample, get first token 
029     %will break if '-' is in file name 
030     t = strsplit(mzxmls{i}, '-'); 
031     %record name and directory 
032     data(i).name = t{1}; 
033     data(i).dirname = parentDirs{i}; 
034      
035     %read location file. the 8 is for header lines and is 9 in current 
036     %version of microMS 
037     t = dlmread(fullfile(locDir, celllocs{i}), '\t', 8,0); 
038      
039     %read in arduino-generated file 
040     t = xlsread(fullfile(parentDirs{i}, posLocation,  
041             [data(i).name '.xlsx'])); 
042      
043     %correct time for overflow on long experiments 
044     if sum(diff(t(:,2)) < 0) == 1 
045         ind = find(diff(t(:,2)) < 0)+1; 
046         t(ind:end,2) = t(ind:end,2) + t(ind-1,2); 
047     elseif sum(diff(t(:,2)) < 0) > 1 
048         error('too many overflows!') 
049     end 
050      
051     %correct for slight time shift between wall time and arduino time 
052     lm = fitlm(t(:,2), t(:,1)*24*60*60, 'linear'); 
053     startT = t(1,2); 
054     t(:,2) = predict(lm, t(:,2)); 
055     t(:,2) = t(:,2) - t(1,2)+startT/1e6; 
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056      
057     %record corrected time and x/y positions 
058     data(i).pos = t(:,2:4); 
059      
060     %determine when stopping occurred with helper function 
061     data(i).stops = detectStopping(data(i).pos(:,2:3)); 
062      
063     %parse stop times from stops and dwell times 
064     [data(i).stepStart, data(i).stepEnd] = ... 
065         parseStopTimes(data(i).stops, data(i).pos(:,1), dwellTime); 
066          
067     %read in mzxml 
068     t = mzxmlread(fullfile(parentDirs{i}, wiffLocation,mzxmls{i}), ... 
069         'Verbose', false); 
070  
071     %parse time from string in retentionTime 
072     data(i).MStime = cellfun(@(a) str2double(a(3:end-1)), ... 
073         {t.scan(:).retentionTime}); 
074      
075     %get 184 and 760 intensity 
076     cur184 = arrayfun(@(a) extractIntens(184.09, a.peaks.mz), t.scan); 
077     cur760 = arrayfun(@(a) extractIntens(760.6, a.peaks.mz), t.scan); 
078      
079     %determine which scans contain MS for a single cell using findInd 
080     data(i).MSscans = arrayfun(@(a,b) ... 
081         findInd(a, b, data(i).MStime, cur184), ... 
082         data(i).stepStart, data(i).stepEnd); 
083     data(i).MSscans760 = arrayfun(@(a,b) ... 
084         findInd(a, b, data(i).MStime, cur760), ... 
085         data(i).stepStart, data(i).stepEnd); 
086  
087     %report number of 'missing' scans before removing 
088     sum(data(i).MSscans == 0) 
089     data(i).MSscans = data(i).MSscans(data(i).MSscans ~= 0); 
090      
091     %resample just the scans containing data as separate temp variables 
092     data(i).mzs = linspace(mzrange(1), mzrange(2), resampleN); 
093     t3 = arrayfun(@(a) ... 
094         parseAndResample(a.peaks.mz, resampleN, mzrange), ... 
095         t.scan(data(i).MSscans), 'UniformOutput', false); 
096     t2 = arrayfun(@(a) ... 
097         parseAndResample(a.peaks.mz, resampleN, mzrange), ... 
098         t.scan(data(i).MSscans760), 'UniformOutput', false); 
099      
100     %record intensity matrices for 184 and 760 
101     data(i).intens = vertcat(t3{:}); 
102     data(i).intens760 = vertcat(t2{:}); 
103     data(i).sumIntens = (data(i).intens + data(i).intens760); 
104      
105 end   
106 %clear temp variables before saving 
107 clear i t posLocation wiffLocation mzxmls tic t2 t3 t4 t5 ans 
108 save loadedData184_760 
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detectStopping.m   
1 function [ stopped ] = detectStopping( positions ) 
2     %takes a nx2 matrix of x,y positions 
3     %returns true if there was a stop 
4     %output(1) is always false 
5     dists = diff(positions); 
6     stopped = [dists(:,1) == 0 & dists(:,2) == 0;0]; 
7 end 
 

parseStopTimes.m   
01 function [ startTimes, endTimes ] = ... 
02     parseStopTimes( stopped, time, dwellTime ) 
03     %takes the boolean array stopped, the time in seconds,  
04     %and nominal dwell time and determines the start and end times 
05     %of analysis 
06      
07     %good way to find when state changes in boolean array 
08     steps = [0; diff(stopped)]; 
09     startTimes = time(steps==1); 
10     endTimes = time(steps==-1); 
11      
12     %remove first stop if < first start (stage stopped at beginning) 
13     if startTimes(1) > endTimes(1) 
14         endTimes(1) = []; 
15     end 
16      
17     %remove points larger than end times, for stage stopping at end 
18     if length(startTimes) > length(endTimes) 
19         startTimes(length(endTimes):end) = []; 
20     end 
21      
22     %remove stops < 1/2 dwell or > dwell + 1 
23     durations = endTimes - startTimes; 
24      
25     startTimes(durations < dwellTime / 2 | ... 
26                 durations > dwellTime +1) = []; 
27     endTimes(durations < dwellTime / 2 | ... 
28                 durations > dwellTime +1) = []; 
29      
30 end 
 

extractIntens.m   
01 function [ intens ] = extractIntens( mzval, input ) 
02     %given a target mzval and input from readmzxml, return intensity  
03     %closest to mzval.  A helper function for vectorizing processing 
04      
05     %separate intercalated data 
06     intens = input(2:2:end); 
07     mzs = input(1:2:end); 
08      
09     %find closest mz value and return intens 
10     [~, ind] = min(abs(mzval - mzs)); 
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11     intens = intens(ind); 
12 end 
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findInd.m   
01 function [ ind ] = findInd( start, stop, times, tic) 
02     %helper function for vectorizing processing 
03     %given a start and stop time along with time array and  
04     %tic of the ion of interest, returns which index had max intens 
05  
06     %find difference between start and time 
07     dif = times-start; 
08      
09     %if no times are after start time, return 0 
10     if isempty(min(dif(dif >= 0))) 
11         ind = 0; 
12     else 
13         %find start index, smallest dif > 0 
14         indStart = find(dif == min(dif(dif >= 0))); 
15         %same thing for stop index 
16         dif = times - stop; 
17         if isempty(max(dif(dif <= 0))) 
18             ind = 0; 
19         else 
20             indEnd = find(dif == max(dif(dif <= 0))); 
21             %find max index between start and end 
22             [~, ind] = max(tic(indStart:indEnd)); 
23             %offset by indstart so it matches the whole time series 
24             ind = ind + indStart - 1;    
25         end 
26     end 
27  
28 end 
29  
 

parseAndResample.m   
01 function [ intens, mzsout ] = parseAndResample( inputmz, N, mzrange ) 
02     %helper function for resampling data from readmzxml 
03     %given input data, number of mz values, and mz range 
04     %returns the resampled intensity and output mz values 
05      
06     %separate mz and intens from intercalated data 
07     mzs = inputmz(1:2:end); 
08     intens = inputmz(2:2:end); 
09  
10     %calculate linearly spaced mz values in range 
11     mzsout = linspace(mzrange(1), mzrange(2), N); 
12     %determine bin size 
13     bin = (mzsout(2) - mzsout(1))/2; 
14      
15     %calculate intensity as sum intensity within bin width 
16     intens = arrayfun(@(a) ... 
17         sum(intens(mzs < a + bin & mzs > a - bin)),... 
18         mzsout); 
19  
20 end   
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DataCleanup.m   
01 clear 
02 load loadedData184_760 
03  
04 %remove end position which corresponds to the stage moving back to start 
05 for i = 1:length(data) 
06     data(i).stepStart(end) = [];  
07     data(i).stepEnd(end) = []; 
08     data(i).MSscans(end) = []; 
09     data(i).MSscans760(end) = []; 
10     data(i).intens(end,:) = []; 
11     data(i).intens760(end,:) = []; 
12     data(i).sumIntens(end,:) = []; 
13 end 
14  
15 %any additional modifications go here. When two cells are too close 
16 %the stage doesn't move enough to count as a separate event 
17 i = 1; 
18 data(i).celllocs(59:60,:) = []; 
19 data(i).celllocs(74:75,:) = []; 
20 data(i).celllocs(321,:) = []; 
21  
22 %this code can be uncommented and run with F9 to find discrepancies 
23 %between the MS and movement. 
24  
25 % i = 9; len = 15; 
26 % figure 
27 % for j = 15:5:400 
28 %     subplot(2,1,1) 
29 %     plot(data(i).celllocs(j:j+len,1), data(i).celllocs(j:j+len,2),'o-') 
30 %     for k = j:j+len 
31 %         text(data(i).celllocs(k,1), data(i).celllocs(k,2), num2str(k)); 
32 %     end 
33 %     tt = data(i).pos(:,1) > data(i).stepStart(j) & ... 
34 %        data(i).pos(:,1) < data(i).stepEnd(j); 
35 %     for k = j+1:j+len 
36 %         tt = tt | (data(i).pos(:,1) > data(i).stepStart(k) & ... 
37 %        data(i).pos(:,1) < data(i).stepEnd(k)); 
38 %     end 
39 %     subplot(2,1,2) 
40 %         plot(data(i).pos(tt,3), -data(i).pos(tt,2), 'o-') 
41 %     title(num2str(j)) 
42 %     pause 
43 % end 
44  
45 %this is for data quality 
46 %remove first 10 cells 
47 for i = 1:length(data) 
48    data(i).stepStart(1:10) = [];  
49    data(i).stepEnd(1:10) = []; 
50    data(i).MSscans(1:10) = []; 
51    data(i).MSscans760(1:10) = []; 
52    data(i).intens(1:10,:) = []; 
53    data(i).intens760(1:10,:) = []; 
54    data(i).sumIntens(1:10,:) = []; 
55    data(i).celllocs(1:10,:) = []; 
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56 end 
57  
58  
59 %remove low signal (m/z 184 < 250) 
60 for i = 1:length(data) 
61    [~, ind184] = min(abs(data(i).mzs - 184.07)); 
62    toremove = max(data(i).intens(:,ind184-1:ind184+1), [], 2) < 250;  
63    sum(toremove)/length(toremove) 
64    mz184stats(i).startCells = length(data(i).stepStart); 
65    mz184stats(i).removedCells = toremove; 
66    mz184stats(i).celllocs = data(i).celllocs; 
67    data(i).stepStart(toremove) = [];  
68    data(i).stepEnd(toremove) = []; 
69    data(i).MSscans(toremove) = []; 
70    data(i).MSscans760(toremove) = []; 
71    data(i).intens(toremove,:) = []; 
72    data(i).intens760(toremove,:) = []; 
73    data(i).sumIntens(toremove,:) = [];   
74    data(i).celllocs(toremove,:) = []; 
75    mz184stats(i).remainCells = length(data(i).stepStart); 
76 end 
77  
78 save cleanDataLow184 
 

RemoveSplits.m   
01 clear 
02 load cleanData 
03  
04 %remove data where the 184 and 760 intensity  
05 %do not occur in the same scan 
06 for i = 1:length(data) 
07     toRemove = data(i).MSscans ~= data(i).MSscans760; 
08     disp(sum(toRemove)/length(data(i).stepStart)); 
09     data(i).stepStart(toRemove) = []; 
10     data(i).stepEnd(toRemove) = []; 
11     data(i).MSscans(toRemove) = []; 
12     data(i).MSscans760(toRemove) = []; 
13     data(i).intens(toRemove,:) = []; 
14     data(i).intens760(toRemove,:) = []; 
15     data(i).sumIntens(toRemove,:) = []; 
16     data(i).celllocs(toRemove,:) = []; 
17 end 
18  
19 save cleanNoSplitData 
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Determination of Removal Efficiency from Radiographic Images 

Motivation, Overview and Extensions  

For characterization of the liquid microjunction extraction probe (Chapter 8), one parameter 

which had to be determined was the removal efficiency from a MALDI target plate.  The 

experimental details are described more fully in Chapter 8, but for the discussion here the output 

data consisted of two images, before and after extraction, where the intensity at each pixel 

corresponded to the radiographic intensity at the position. To estimate the removal efficiency, the 

normalized intensity was compared between each image to determine the spatial distribution of 

the fraction removed during extraction. Since the resulting distribution contained random noise, 

the removal efficiency was estimated by fitting the distribution to a general, 2-dimensional 

Gaussian function. Details on the fitting equation are found in Chapter 8.  The code below 

utilizes hard coded values which could be adapted for future analyses.  The output is a series of 

images as seen in Figure 8.8 and the fitting parameters, reported in Table 8.1. 
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RemovalFit.m 
001 close all 
002 %input images 
003 pre=imread('1.tif','tiff'); 
004 post=imread('2.tif','tiff'); 
005  
006 %cropping points 
007 x1=15; 
008 x2=425; 
009 y1=30; 
010 y2=100; 
011  
012 %crop and convert to double arrays for fitting 
013 pre=double(pre(y1:y2,x1:x2)); 
014 post=double(post(y1:y2,x1:x2)); 
015  
016 %the approximate centers of the extraction points, from data cursor 
017 approxCents = [46 26 
018     132 26 
019     214 26 
020     292 26 
021     379 26 
022     ]; 
023      
024 %center of background region, not on a spot 
025 bkgrd = [80 50]; 
026 %size of subregion to examine 
027 window = 10; 
028  
029 %center of region, on a spot but not extracted 
030 offEx = [33 40]; 
031 %account for transpose with matlab images 
032 x = offEx(2); 
033 y = offEx(1); 
034 %crop out off-spot image 
035 preOff = pre(x-window:x+window,y-window:y+window); 
036 postOff = post(x-window:x+window,y-window:y+window); 
037  
038 %normalize images to mean in offExtraction area 
039 %to account for exposure differences 
040 pre = pre/mean(preOff(:)); 
041 post = post/mean(postOff(:)); 
042  
043 %repeat extraction with background area 
044 x = bkgrd(2); 
045 y = bkgrd(1); 
046 preBack = pre(x-window:x+window,y-window:y+window); 
047 postBack = post(x-window:x+window,y-window:y+window); 
048  
049 %temporary image for estimated intensities 
050 temp = zeros(size(preBack)); 
051  
052 %functions for fitting 
053 aval = @(theta, sigx, sigy) ... 
054     cos(theta)^2/(2*sigx^2) + sin(theta)^2/(2*sigy^2); 
055 bval = @(theta, sigx, sigy)... 
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056     -sin(2*theta)/(4*sigx^2) + sin(2*theta)/(4*sigy^2); 
057 cval = @(theta, sigx, sigy)... 
058     sin(theta)^2/(2*sigx^2) + cos(theta)^2/(2*sigy^2); 
059      
060 %gaussian 2d functions 
061 gaus2d = @(A, mux, muy, theta, sigx, sigy, x, y)... 
062     A*exp(-(aval(theta, sigx, sigy) .* (x-mux).^2 ... 
063                 -2*bval(theta, sigx, sigy) .* (x-mux) .* (y-muy)... 
064                 +cval(theta, sigx, sigy) .*(y-muy).^2)); 
065  
066 %open new figure, initialize fits (fts) 
067 figure; 
068 fts = []; 
069  
070 %keep x,y coordinates as they are reused 
071 [xs, ys] = meshgrid(-window:window,-window:window); 
072 xs = xs(:); 
073 ys = ys(:); 
074  
075 %for each extraction 
076 for i = 1:size(approxCents,1) 
077     %cut out region around center 
078     %transpose the centers 
079     x = approxCents(i,2); 
080     y = approxCents(i,1); 
081     %subtract background intensity 
082     preImg = pre(x-window:x+window,y-window:y+window) ... 
083                 - mean(preBack(:)); 
084     postImg = post(x-window:x+window,y-window:y+window) ... 
085                 - mean(postBack(:)); 
086     %show previous image 
087     subplot(5,5, 5*(i-1)+1); 
088     imshow(mat2gray(preImg, [0 1.5])); 
089     %show post image 
090     subplot(5,5, 5*(i-1)+2); 
091     imshow(mat2gray(postImg, [0 1.5])); 
092      
093     %show removal distribution (1-post/pre) 
094     subplot(5,5, 5*(i-1)+3);     
095     diff = 1-(postImg)./(preImg); 
096     %absolute is to make the residuals match here 
097     imshow(mat2gray(abs(diff), [0 1])); 
098      
099     %determine fit, A is in [0, 2], x,y in [+/- window], theta 0,2pi,  
100     %sigma in 0,window size 
101     fts{i} = fit([xs ys], diff(:), gaus2d,... 
102         'StartPoint', [.6, 0, 0, pi, 5, 5], ... 
103         'Lower', [0, -window, -window, 0, 0, 0],... 
104         'Upper', [2, window, window, 2*pi, window, window]); 
105          
106     %plot estimated extraction profile 
107     subplot(5,5,5*(i-1)+4); 
108     temp(:) = fts{i}([xs, ys]); 
109     imshow(mat2gray(temp, [0 1])); 
110      
111     %show absolute residuals 
112     subplot(5,5,5*(i-1)+5); 
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113     imshow(mat2gray(abs(diff-temp), [0 1])); 
114 end; 
115  
116 %draw titles on just the first row 
117 titles = {'Before', 'After', 'Fraction Removed', 'Fit', 'Residuals'}; 
118 for i = 1:5 
119    subplot(5,5,i) 
120    title(titles{i}); 
121 end 
122 colormap hot 
123  
124 %display fit information in console 
125 for i = 1:5 
126     fts{i} 
127 end 
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Migration Time Alignment for CE MS  

Motivation, Overview and Extensions  

A challenge in any separation is the comparison of migration times between runs.  For CE, 

numerous variables are difficult to control due to sample or environmental variation, leading to 

variance in migration times.  In the simplest case, as assumed here, the change is a linear 

relationship between samples.  To correct and align migration times, all that is required is the 

determination of migration time for several compounds found in each sample, followed by 

mapping the two migration times onto each other by linear regression. 

First, extract ion electropherograms are exported from Bruker DataAnalysis using the 

method replicated below for each m/z value of interest. The resulting text files are then read into 

Matlab with the provided extractEIE function for analysis.  While code is present for attempting 

to normalize to the migration time “standard” peaks, the data was not utilized in a quantitative 

way.  A clear improvement would be the direct analysis of raw electropherogram data instead of 

exporting the intermediate values. Addition of internal standards could facilitate more 

quantitative multivariate analysis. 
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Export EIC Method 
01 Option Explicit  
02  
03 'Remove previous analyses 
04 Analysis.Chromatograms.Clear 
05 Analysis.Compounds.Clear  
06     
07 Dim i  
08    
09 'initialize array with m/z values from bigList 
10 Dim vaMyArray   
11 vaMyArray = Array(155.0344,179.1446,175.1195,203.223571,146.165722, 
12     89.107873,112.087472,131.129671,189.135151,161.129,104.1075, 
13     241.1301,114.0660,133.097703,90.0543,147.112,123.0558,136.06232, 
14     146.1181,104.0712,156.0773,138.091889,138.0919,132.1009,162.113019, 
15     152.057235,139.050753,170.081719,154.0868,137.0594,136.0841, 
16     177.1028,191.118438,168.102454,170.0817,209.092618,219.149738, 
17     204.1236,184.0974,76.0399,132.0768,161.092618,244.092,242.125315, 
18     268.1046,239.1066,325.043696,90.0543,130.086804,138.055,291.13046, 
19     104.071154,295.129398,104.071154,90.055504,118.0858,120.0661, 
20     106.0504,132.102454,132.1009,223.075255,124.039854,132.102454, 
21     120.066069,133.0646,205.0977,150.058876,147.076968,176.103517, 
22     148.060984,247.140631,166.086804,235.108268,268.10458,182.0817, 
23     100.039854,139.050753,137.046336,116.071154,196.097369,198.0766, 
24     104.071154,122.027576,134.045334,118.0862,144.102,306.145382, 
25     132.066069,255.085834,208.0971,279.08034,221.0926,235.108268, 
26     269.088596,142.026922,348.070913,324.05968,184.073872,86.060589, 
27     364.0653,233.129003,265.112308,126.022491,245.077363,192.102454, 
28     243.098098,162.0889,178.0868,134.060589,279.08034,206.081719, 
29     192.0665,220.118,308.091634,330.060348,249.145048,164.038141, 
30     130.050419,190.0499,244.0928) 
31   
32 Dim nArraySize   
33 nArraySize = UBound(vaMyArray)  - LBound(vaMyArray)   
34 ReDim vaEICDefinitions(nArraySize)   
35    
36 'add new EIC definition for each m/z value 
37 For i = LBound(vaMyArray) To UBound(vaMyArray)    
38     Call AddEICDefinition(i, CStr(vaMyArray(i)))   
39 Next    
40    
41 'add all definitions to the current EICs and smooth 
42 Analysis.Chromatograms.AddChromatograms(vaEICDefinitions)   
43 Analysis.Chromatograms.Smooth 
44    
45 Form.close   
46  
47 'helper function for defining an EIC   
48 Sub AddEICDefinition(i, sRange)   
49     Dim EIC    
50     Set EIC = CreateObject("DataAnalysis.EICChromatogramDefinition")     
51     EIC.MSFilter.Type = daMSFilterMS     
52     EIC.ScanMode = daScanModeFullScan     
53     EIC.Polarity = daPositive     
54     EIC.WidthLeft = "0.005"    
55     EIC.WidthRight = "0.005"   
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56     EIC.Range = sRange   
57    
58     Set vaEICDefinitions(i) = EIC   
59 End Sub  
60  
61 'save each chromatogram as a separate txt file 
62 dim chrom   
63 For i = LBound(vaMyArray) To UBound(vaMyArray)     
64     set chrom = Analysis.Chromatograms(i - LBound(vaMyArray)+1) 
65     chrom.Export "D:\Data\" +CStr(vaMyArray(i))+".txt", daXY  
66 Next 
67   
68 Form.close 
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extractEIE.m 
01 function [masses, migrationTime, intensities] = extractEIE(dirname) 
02     %from a directory of text files, extracts the masses, migrationTime 
03     %and intensities for each EIE 
04      
05     %get all files in directory 
06     filenames = dir(dirname); 
07     %remove directories from filenames 
08     filenames = filenames([filenames(:).isdir] == false); 
09  
10     %read in first file to determine sizes of migration times and masses 
11     data = dlmread(fullfile(dirname, filenames(1).name)); 
12  
13     %initialize variable sizes 
14     migrationTime = data(:,1);%seconds 
15     masses = zeros(1, length(filenames)); 
16     intensities = zeros(length(migrationTime), length(masses)); 
17  
18     %for each text file 
19     for i = 1:length(filenames) 
20         %read file 
21         data = dlmread(fullfile(dirname, filenames(i).name)); 
22         %record mass from file name and intensities 
23         masses(i) = str2double(filenames(i).name(1:end-4)); 
24         intensities(:,i) = data(:,2); 
25     end 
26 end 
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ceAlignAndAnalyze.m 
001 clear; close all; clc; 
002  
003 %directories for sample sets 
004 sampleDirs = { 
005     '../../Tube 2' 
006     '../../Tube 5' 
007     };%add more here 
008  
009 %since reading the raw data is slow, try to read the mat file  
010 if ~exist('dataraw.mat', 'file') 
011  
012     %for each directory 
013     for i = 1:length(sampleDirs) 
014        %read in text files 
015        [mass, time, intens] = ExtractEIE(sampleDirs{i});  
016        %record name 
017        [~,name,~] = fileparts(sampleDirs{i}); 
018          
019        %perform average smoothing 
020        windowSize = 7; 
021        intens = filter(ones(1,windowSize)/windowSize, 1, intens); 
022        %background adjust 
023        intens = msbackadj(time, intens); 
024  
025        %record all values 
026        data(i).mass = mass; 
027        data(i).rt = time; 
028        data(i).intens = intens; 
029        data(i).name = name; 
030     end 
031     %save for next run 
032     save dataraw data 
033      
034 else 
035     load dataraw 
036 end 
037  
038 %read in name/mz values from big list 
039 [num, txt] = xlsread('../../Big List.xlsx', 1, '', 'basic'); 
040 mzs = num(:,2); 
041 names = txt(2:end,2); 
042  
043 %specify mz values to use for alignment 
044 mzAlign = [120.0661 132.1025 156.0773 166.0868 76.0399 90.0543]; 
045 nameAlign = {'Threonine', 'Leucine', 'Histidine', ... 
046             'Phenylalanine', 'Glycine', 'Alanine'}; 
047  
048 mass = data(1).mass; 
049  
050 %determine alignment times and areas 
051 for i = 1:length(data) 
052    %migration times to use for calibration 
053    data(i).calTimes = zeros(size(mzAlign')); 
054    %total peak area of each MT standard 
055    data(i).calPA = 0; 
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056    intens = data(i).intens; 
057    time = data(i).rt; 
058    name = data(i).name; 
059    %for each peak in MT standard 
060     for ii = 1:length(mzAlign) 
061         %find nearest mass 
062         %if one, use the intensity 
063         if(sum(abs(mass-mzAlign(ii)) < 0.001) == 1) 
064             inten = intens(:, abs(mass-mzAlign(ii)) < 0.001); 
065         %else for more, use the average intensity 
066         else 
067             inten = mean(intens(:, abs(mass-mzAlign(ii)) < 0.001),2); 
068         end 
069         %find peak in EIE 
070         [pks, locs, w, p] = findpeaks(inten, time, ... 
071                                 %find one peak 
072                                 'NPeaks', 1, 'MinPeakDistance', ... 
073                             time(end)-time(2));%find largest peak     
074         %record time 
075         data(i).calTimes(ii) = locs; 
076         %calculate peak area for norm 
077         data(i).calPA = data(i).calPA + ... 
078             trapz(time(abs(time-locs)<w),inten(abs(time-locs)<w));  
079     end 
080 end 
081  
082 %determine corrected migration times  
083 %first is used as standard 
084 data(1).corrRT = data(1).rt; 
085 %for all others 
086 for i = 2:length(data) 
087     %fit to first sample 
088     fit2one = fit(data(i).calTimes, data(1).calTimes, 'poly1'); 
089     %calculate corrected time 
090     data(i).corrRT = fit2one(data(i).rt); 
091 end 
092  
093 %draw each m/z value, pausing between 
094 figure; 
095 for j = 1:length(mass) 
096     for i = 1:length(data) 
097        subplot(5,4,i); hold on; 
098        plot(data(i).corrRT, data(i).intens(:,j)) 
099        title(data(i).name) 
100        xlim([0 2000]) 
101     end 
102     set(gcf, 'Name', num2str(mass(j))) 
103     pause 
104 end
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APPENDIX B 

MICROMS USER MANUAL 
 

Notes and Acknowledgements 

The following is a detailed description of the operation of microMS for performing microscopy-

guided mass spectrometry profiling.   First, the capabilities are explained and demonstrated to 

enable novice users to quickly begin performing experiments. The second half of the guide 

details how to add support for new instrumentation through modifying the source code, which is 

found in Appendix A.  

microMS is a feature-rich GUI for performing basic image analysis and correlation of image 

positions into physical coordinate spaces.  The overall goal of this package is to image and locate 

a field of cells or other objects dispersed across a microscope slide, allow subpopulations to be 

selected based on flexible and user defined criteria, convert the cell / object locations to a 

platform dependent set of positions to be used for follow-up assays such as selected cell 

collections or mass spectrometry profiling. While developed for single cell analysis by mass 

spectrometry, with few modifications, the underlying code is versatile enough for a variety of 

targets, image modalities, and follow-up analytical systems.  microMS aims to simplify cell 

finding, improve coordinate registration, and provide an interface suitable for novice users.  

Several additional features are added to expand the repertoire of profiling experiments.  For more 

advanced users, the addition of new, off-line instrument platforms and even direct instrument 

control are possible.  This guide will introduce the most common usage of microMS, detail 

additional features, and provide a starting point for adding new instrument coordinate systems. 

The operation and use of this code has been described in Chapter 5, including an application for 
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high throughput single cell profiling via MALDI (Chapter 6), SIMS (Chapter 7), and follow-up 

CE-MS analysis (Chapter 8). 

Installation and Startup Instructions 

Refer to http://neuroproteomics.scs.illinois.edu/microMS.htm for the most recent instructions for 

installation and startup. 

Windows Installation and Execution 

Most dependencies of microMS are included in standard distribution packages of python 3.  We 

have had success using anaconda which also includes an IDE 

(https://www.continuum.io/downloads). A python 3.X  (X >= 5) version is required to be 

installed.  After installation, pyserial and openslide require separate installations.  Pyserial is 

installed by opening Windows PowerShell and entering pip install pyserial. This 

should automatically install the most recent version.  Openslide requires additional binaries, 

located here: http://openslide.org/download/ under Windows Binaries.  Download and extract the 

folders, placing them in your documents or program files.  The contained bin folder also must be 

added to the operating system path (e.g. C:\Program Files\Openslide\bin\): 

http://www.howtogeek.com/118594/how-to-edit-your-system-path-for-easy-command-line-

access/ Once added correctly, the openslide python wrapper is simply installed by entering pip 

install openslide-python in PowerShell. 

With these dependencies installed, microMS is installed by downloading and extracting the ZIP 

file.  The main script is run with python microMS.py in a command prompt in the script 

directory or by double clicking the microMS.bat file which runs the above command and waits 

for a key press. 
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Linux Installation and Execution 

With an installation of python 3, the required packages are installed in the terminal with pip3 

install <package>. Openslide is installed with: 

apt-get install python-openslide 
pip3 install openslide-python 
 
After unzipping the microMS file, the main method is run with either python microMS.py 

or ./microMS.py after executable permission is granted (i.e. chmod +x microMS.py). 

Adding the microMS directory to the PATH variable will allow execution from any directory. 

Image File Types 

microMS utilizes openslide to read sections of whole slide images.  Any openslide-supported 

format should be a suitable input, though only Hamamatsu ndpi and bigTiff images have been 

thoroughly tested and are accepted by default.  For multichannel images, ndpi files should end 

with ‘Brightfield’ (for channel 1, brightfield) and ‘Triple’ (for channel 2, RGB fluorescence).  

Tiff images should not start with ‘8x’ or ‘64x’.  Multichannel tiff images should be indicated 

with the suffix ‘c#.tif’ where ‘#’ is a digit between 1 and 9.  By default, tiff images can only be 

zoomed out by 4x.  Tiff images may be decimated to 8x and 64x, generating the files ‘8x<image 

name>’ and ‘64x<image name>’ with <image name> being the original file name.	

Opening an Image 

On startup, the main GUI window is displayed with the program icon: 
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images cotained in sub-directories of the  selected directory be decimated as shown 

schematically below: 
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With the mouse, the scroll wheel is used to zoom in (wheel up) and out (wheel down).  When 

zooming in, the center of the frame also moves to keep the mouse location in the same position. 

Left clicking a position moves that spot to the center of the frame: 

 

The key R will reset the field of view to the top left corner at full zoom.  This operation is useful 

if the field of view moves too far from the sample area.  Moving around an image data set should 

be smooth, but due to the size of images, some lag between input and display may occur. Also 

note that images are read from disk (not stored into memory/RAM). This design choice was 

made to allow microMS to run on a variety of systems without requiring large amounts of 

memory.  However, reading images on a network drive or external hard drive (USB 2) is very 

slow!  
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Switching Image Channels 

Displaying different image channels is controlled through the numeric keys and is cycled with 

the T or Z key.  Each image is enumerated based on its name.  For ndpi files, “Brightfield” is 

number 1 and “Triple” is number 2. With multichannel tiff images, the number in “c#.tif” is 

parsed and assigned to the corresponding image number.  Pressing the number of an image will 

toggle that corresponding channel on and off.  The combination of Crtl + ‘image number’ will 

turn all channels off except for the selected channel.  It is possible to turn off all image channels, 

which will display a black background. 
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Up to 9 different channels may be utilized in one experiment, but only one color (red, green or 

blue) is taken from each fluorescent channel during image overlay.  The color channel with the 

highest intensity is utilized as the “color” for that channel.  The brightfield image must be 

channel one.  Since each image is read from disk, displaying more channels will slow the 

response time proportionally. 

Blobs 

All points of interest in microMS are represented as objects called blobs.  Each blob consists of 

an x and y coordinate, in pixels, an effective radius and the object’s circularity.  The blob area 

(used to determine size and circularity) is taken as the number of pixels above the fluorescence 

threshold.  A blob’s effective radius is then  and it’s circularity is 	 ∈ 0,1 .  Due 

to the calculation of perimeter with pixels, the circularity is generally larger than would be 

expected for a non-pixelated object.  The x and y position is the center of mass for the Boolean 

image of pixels above the specified threshold.  Note that this does not account for the intensity of 

the underlying image.  When blobs are added manually, the resulting circularity is always 1.  

Blobs may optionally have a group assigned to them as part of packing routines explained below. 

Collections of blobs are stored in lists.  Up to 10 different blob lists can be utilized in one image 

set.  Each list is treated as an independent set of targets and by default only one list is displayed 

at a time.  Lists spawn new child lists during packing and filtering procedures.  Generally, the 

first empty list (in increasing order) will be filled with automatically generated target sets.  

Loading found cells or instrument positions will populate the currently selected list, possibly 

overwriting its contents. 
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Displaying target collections 

Each list of blobs is designated with a unique color.  The currently selected list is displayed and 

is changed by the combination of Alt  + ‘the list number’.  By default, only the currently selected 

list will be displayed.  All subsequent discussions regarding changes to the blob list will only 

affect the current list.  It is occasionally useful to see multiple lists simultaneously.  Drawing all 

blob lists is toggled with Shift + O.  Blobs which overlap will show a blended color, though 

generally it is difficult to see which combination is overlaid. 
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Manual addition of targets 

New blobs are added to the current list with a left mouse button click with Shift held.  The 

default, minimum radius of a manually added blob is 10 pixels.  Larger blobs can also be added 

by performing a left click and drag.  The circumference is set when the mouse button is 

depressed and the center upon its release.  During the dragging, all other features will disappear 

and the resulting blob will be dynamically drawn.  Blobs are removed by holding Shift and left 

mouse click anywhere inside of them.  Releasing a custom drawn blob inside of an existing blob 

will remove the existing blob without drawing the custom blob. 
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Size, threshold and channel should be integers, circularity can be floating point.  Maximum size 

and circularity may be left blank to indicate there is no upper boundary to these values.  Any 

invalid inputs will be reverted to the last valid input on clicking “Set Parameters”.  In addition to 

setting the cell finding parameters, “Set Parameters” performs an initial cell finding of the 

current position at the maximum zoom level.  If the current field of view is zoomed out, it will be 

automatically set to the max zoom level.  Any found objects will be highlighted with a turquoise 

circle.  Performing any other action will clear these found blobs.  Test blob finding can also be 

performed by pressing B. 

Pixel Information and Threshold View 

An easy way to determine suitable blob finding parameters, or identify why some blobs are 

excluded, is by examining the Pixel Information and utilizing Threshold View.  At any time, 

clicking the middle mouse button will display information about the current pixel. This includes 

the pixel position relative to the maximum zoom image and the RGB values of the displayed 

image.  The RGB values help establish a suitable threshold for positive pixels. Shift + B toggles 

the threshold view for the current image set.  The current threshold and color channel are utilized 

to visualize blobs that pass the threshold.  The background is displayed in a dark blue color.  

Pixels passing the threshold are then grouped and displayed as a unique color.  Changing the 

blob parameters updates the threshold view and shows the currently found cells.  Additionally, 

while in threshold view, performing a middle mouse button click on a blob will also provide its 

area and circularity in the status bar.  This quickly provides feedback on why some blobs are 

ignored and help with selecting blob finding parameters. 
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As seen above, at a threshold of 75, the selected blob is not included in found blobs because its 

circularity is below the set point of 0.6.  Increasing the threshold removes the right feature of the 

blob and its circularity increases to 0.83, hence passing the circularity threshold.   

Regions of Interest 

Once blob finding parameters are chosen, automatic blob finding is performed by selecting the 

Blob Find option under the Tools menu.  By default, this will perform blob finding on the entire 

slide.  Note that this operation can take several minutes for large areas.  Upon completion, the 

user is prompted for a base filename which is used to write a <BASE>.txt cell finding file and 

<BASE>.msreg file in the image file directory.  These will be described in further detail below.  

All found blobs will be stored in the current cell finding list.  By default, only a random set of 

150 blobs will be drawn in a field of view.  This significantly speeds up drawing speed when 
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overlapping edges and its vertices are removed by clicking on or near them.  Alternatively, 

vertices can be added in order, by holding Ctrl and Shift. This simplifies drawing complex 

shapes, but is more difficult to modify.  Finally, ROIs are cleared by pressing the C key. 
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ROI filtering can also be performed at any time after blob finding.  Simply draw an ROI for the 

area to keep blobs, and select either ROI Filter Retain or ROI Filter Remove under the Tools 
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recent ROI.  However, after automatic cell finding the current blobs are saved which will include 

the ROI.  Next, the arrow symbol “->” is used to list the “filters” used during the generation of 

the blob list. Entries include distance filtering and histogram filtering.  These are not used in the 

software logic but provide a limited record of parameters used for generating a list of blobs.  

Finally, the x,y coordinate, radius and circularity of each blob are recorded.  

There are three options for saving the blob lists: (1) The Save Current Blobs option under the 

File menu, (2) Histogram Divisions, and (3) All lists of blobs.  The first option will launch a save 

file dialog, allowing the user to specify the filename to save the current blob list.  This is useful if 

only the last step of filtering and processing is needed or if only one list was utilized.  The 

second option, histogram divisions, will be covered in more detail later, but this option saves the 

low and high intensity populations as separate files with encoded filenames.  When the user 

selects a file, it is used as a base file name with additional information added to the end.  Note 

that because no actual filtering was performed, the final divisions are not included in the filters 

list.  Finally, the last option, saving all lists of blobs, provides a quick way to export all blob lists.  

Again, the user-specified file is utilized as a base file name and each list number is saved as 

<BASE>_<LIST NUMBER>.txt in the specified directory.  The list number is again zero based 

so that the first list is saved as <BASE>_0.txt. 

Previously generated blob list files can be loaded back into microMS.  This restores the blob 

finder parameters from the file, the ROI, the filter list and the collection of blobs.  To open a blob 

file, select the Load/Found Blobs under the File menu.  The contained blobs will be used to 

populate the currently selected blob list, overwriting any existing information. 
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Filtering and Stratifying Blobs 

After all blobs have been found or manually selected, it is frequently useful to begin segregating 

different classes and remove uninteresting blobs.  In addition to refining the ROI as mentioned 

above, microMS provides filtering based on size, circularity, pairwise distance, and fluorescence 

channels.  All of these metrics can be examined and filtered by interacting with the population 

level histogram.  Additionally, pairwise distance filtering is applied by selecting the Distance 

Filter under the Tools menu. 

Introduction to the histogram 

The histogram interface of microMS provides an interactive method for examining population-

level statistics of the blob list.  Details of each population metric are described in more detail 

below.  This section will discuss how to set, interact with and utilize the histogram. 

Once a list of blobs is generated, the histogram is activated by selecting the Histogram Window 

option under the Tools menu or Ctrl + H. Changing blob lists, opening a new blob list, or 

performing blob finding will have the histogram be recalculated.  Opening a new image, 

manually adding a blob, or performing blob patterning will close the histogram window. By 

default, the distribution of sizes of the current blob list will be shown when the histogram is 

initially opened.   
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examining the blob region.  Finally, the intensity to display may correspond to the maximum or 

mean intensity within the blob region.  To improve speed of analysis, the intensity corresponds 

to the entire circumscribed square for each blob.  As such, neighbors at the “corners” of each 

region may skew results.  Furthermore, the mean intensity has a dependence on the size of 

circular objects. 

At any time, the values displayed in the histogram and the histrogram image may be saved by 

selecting Save/ Histogram Image or Save/Histogram Values option under the File menu.  The 

image is a png of the current figure with all markup described below.  Values are tab deliniated 

text files with the name (x,y coordinates) and corresponding metric value for each blob.   

The histogram and slide image interact with each other to assist with picking values for filtering 

the population.  A middle mouse button (MMB) click selects a single blob in the image or bar in 

the histogram.  When a blob is MMB-selected, its population metric (e.g. size) is shown on the 

histogram as a red, vertical line.  This is helpful to assess where in the histogram certain blobs 

are located.  MMB clicking a bar on the histogram shows just the blobs falling in that range of 

values.  The bar and blob are both colored orange.  Additionally, the image view is centered on 

the first blob falling in that range.  Showing a single bar is helpful to see what blobs look like 

which fall in a specific bin in the histogram.  To clear this, and any histogram filters, press C. 



 

528 
 

 

Examining single blobs and bars are useful for determining threshold values, but cannot be used 

as filters.  Two independent filters are provided to partition the blob populations.  Nominally 

they correspond to high and low pass filters, but they can overlap and function similarly.  The 

low pass filter is activated with the left mouse button, high pass with the right mouse button.  

These set a high or low pass threshold for the histogram and cause the image to redraw, showing 

the blob locations satisfying the filter.  The threshold values are shown as vertical lines and bins 

of the histogram within range are colored to match the corresponding blobs.  The value selected 

and the number of blobs within range are also displayed on the status bar.  High and low limits 

are applied for the low and high pass filters, respectively, by performing a Shift+ Left or Right 

Mouse Click at the desired location. 
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Filters can also be generated automatically, which is useful for examining a set number of 

extreme members within a population.  In the example above, there appear to be two 

populations. The following steps illustrate how the largest and smallest cells (250 cells for each 
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category) within the population centered on 100 pixels are selected.  First, select high and low 

limits with Shift clicking (LMB = left mouse button, RMB = right mouse button). 

 

Note this step does not set any filters, only defines limits.  The extremes within these limits (or 

the entire population, if no limits are set) are found by selecting the Pick Extremes option under 

the Tools menu.  This launches a popup box requesting the number of blobs to try and find for 

each filter; in this example, ‘250’ should be entered.  Next, microMS attempts to find the 

histogram divisions that provide approximately the requested number of cells in the high and low 

range of the population.  The actual numbers in each filter are displayed in the status bar. 
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of blobs very close together indicate a high seeding density.  By selecting high pass filters, 

microMS will report the number of blobs passing the filter in the status bar and display their 

locations. 

Fluorescence intensity 

While the previous metrics provided sample quality checks, fluorescence intensity helps generate 

orthogonal “labeling” of blobs even before mass spectral acquisition.  Additionally, examining 

the same fluorescence channel as used for blob finding helps remove dim blobs from 

consideration.  Generating the intensity histograms will be slower than morphology due to the 

required image analysis steps.      

Blob patterning 

Once blobs have been found and filtered, it is occasionally useful to further pattern target 

positions, either to acquire an “image” of the area surrounding each blob or to more effectively 

sample blobs much larger than the probe size. Three different packing patterns are available for 

performing blob patterning: circular, rectangular, and hexagonally close packed. Each pattern is 

accessed through the Tools menu and prompts the user for additional packing parameters.  The 

resulting patterns are stored in a new blob list which consists of x,y points, a single radius, 

circularity of 1, and a group number which uniquely ties each pattern to a parent blob.  Note that 

generated patterns may cause overlap of target positions. 

Rectangular packing generates even x,y spacing in a grid of target positions, effectively allowing 

the generation of mass spectral images over each blob.  Rectangular packing requires three 

parameters: spot to spot distance, number of layers, and whether to perform dynamic layering.  

The spacing dictates the pitch, or pixel size, of the resulting image.  The number of layers 

corresponds to the number of horizontal/vertical pixels from the center to generate.  A value of 0 
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results in a single target per blob, 1 results in 9 targets, 3 in 25 targets, etc.  Due to the way the 

patterns are generated, acquisition proceeds by spiraling out from the center position.  With static 

layering, all resulting patterns will be the same size, regardless of blob shape.  If dynamic 

layering is chosen, the number of layers will be adjusted for each blob to ensure that the entire 

area is covered in targets.  In this case, the input number of layers controls the extra layers to 

include during patterning. 

 

The same set of parameters is required for hexagonal and rectangular packing, except instead of 

having constant x,y spacing, targets are positioned in a hexagonally close packed arrangement to 

maximize the number of acquisitions per area.  Resulting data can provide mass spectral images, 

but most analysis software assumes rectangular packing. 
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Finally, circular packing allows the analysis of the circumference of blobs.  This allows an 

efficient sampling of compounds which migrate from blob locations or are only found around the 

exterior of blobs.  Unlike the previous packing, circular packing requires the minimum 

separation, maximum number of targets per blob and an offset from the circumference.  There is 

also a minimum number of targets which is set to 4 by default and must be adjusted in the source 

code. 
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In circular packing, the number of targets is always dynamically adjusted based on the blob 

radius plus the user supplied offset; negative values of offset place targets in the blob interior.  

Very large blobs will have the maximum number of targets placed evenly around their 

circumference.  Smaller blobs will have fewer targets, but will maintain the minimum separation 

between targets.  Very small blobs will have the minimum 4 targets, regardless of the resulting 

target separation.  This strategy provides several replicates per blob, but prevents repetitive 

acquisition for larger blobs. 

Instrument correlation 

Once all targets are found, filtered and patterned, the blob information needs to be translated to 

instrument input.  MicroMS provides an interface for performing instrument integration either 

offline or with direct instrument control. Full instrument control requires significant extensions 

of the connected Instrument interface and will differ dramatically between instruments.  As such, 

this section will only cover aspects applicable to all instruments. 

Point-based similarity registration and fiducials 

At its core, microMS utilizes a point-based similarity registration to map a set of fiducials 

between physical space and an image coordinate system.  The target locations in physical space 

are then inferred from their locations in the image using a linear coordinate transformation.  The 

specific registration accounts for translation, rotation and scaling.  Some limited support is 

available for reflections, but no corrections are made for skewed perspectives. 

Accurately analyzing target locations depends on the precision of the sample stage, the 

microprobe size, correct stitching of optical images, and accurate estimations of the fiducial 

locations.  The location of fiducials has drastic effects on accuracy and therefore requires care.  

We have successfully utilized etched fiducial markers in the shape of an X.  Location of the 
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intersection of the two lines can be performed accurately and is less susceptible to distortion 

between image systems, particularly after MALDI matrix application.  Other options include 

placement of dyes/paints, selective laser ablation, or beads.  Generally, smaller fiducials are 

located with higher precision, but they must be large enough to locate on the instrument camera 

system.  Ideally, the fiducials would fluoresce in the same wavelength as the blobs, otherwise 

multiple image channels must accurately overlay. 

No assumptions are made regarding the instrument besides the basic requirements that fiducial 

locations must be found and recorded, and the instrument must be directed to arbitrary target 

locations.  Frequently, several intermediate steps are required to accomplish these goals, even in 

the simplest cases.  Each instrument has its own coordinateMapper which defines instrument-

specific functions for interacting with microMS.  Some instruments have multiple 

coordinateMappers if different instrument control software is targeted (e.g. the solariX targets 

positions through autoexecute or flexImaging functions).  The current instrument is displayed 

and changed under the Instrument option under the File menu.   

Instrument settings and intermediate coordinates 

Occasionally instruments utilize more than one coordinate system for physical locations.  For 

example, Bruker MALDI instruments provide direct output of the 2D linear stage positions.  

However, the coordinates used to direct motion during automatic acquisition are scaled fractions 

of the entire sample plate.  In this case, microMS must utilize an additional coordinate 

transformation to map between the intermediate, motor position and the final, fractional distance 

position.  To adjust or calibrate these positions, microMS provides a simple interface displaying 

set coordinates: 
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each pairwise distance between targets, effectively consuming RAM on the order of the number 

of points squared.  Clicking “No” orders the points from top to bottom, left to right, and 

generally causes the stage to move about twice as far as the optimized path. 

Sample positions can also be loaded from instrument files.  Targets will retain their x,y position 

and group number, but will lose their size and circularity measurements.  As such, if these values 

are important they should be loaded from a found cell file. 
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Advanced topics 

The above should be sufficient for most users.  However, the real power of microMS comes from 

the design choice to make instruments an abstract base class, greatly simplifying the work 

required to support new and diverse instruments.  microMS also offers more advanced operations 

including direct instrument control.  

Customizing GUI Settings 

Several settings for the GUI are set in the file GUICanvases/GUIConstants.py.  This file is fully 

commented with brief descriptions.  The top section defines several colors for blob lists, 

predicted points, and fiducials.  Of note, MULTI_BLOB contains the colors for all blob lists, in 

order from List 1 to 10.  The ROI_DIST is the minimum distance between two vertices before 

the current vertex is removed.  Lowering the value will allow drawing more complex shapes, but 

make deleting points more difficult.  Next, some constant values are provided for the default 

blob radius and default fiducial radius.  The default blob and fiducial values were chosen for a 

particular application which may not be suitable for all purposes.  Setting the 

DEFAULT_RADIUS to the probe size simplifies detection of targets too close together.  Fiducial 

radius should be approximately the size of a given fiducial mark to help assess if the fiducial was 

placed in the correct position in the image.  Next, the DRAW_LIMIT and TSP_LIMIT define 

limits on the maximum number of blobs for computationally expensive operations.  More 

powerful computers can increase these values as needed, or if higher performance is required 

they may be decreased.  DRAW_LIMIT defines the maximum number of blobs to draw from 

each list.  This is overridden in the menu bar option.  TSP_LIMIT defines how long a blob list 

to consider for TSP optimization be default.  Again, this can be bypassed in the GUI when 

saving instrument positions, but this acts as a simple guard to consuming too much memory. 
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The next section lists colors utilized in drawing the population level histogram.  These are all 

aesthetic changes and do not affect function of the histogram.  The constants for blob shapes 

allows further customization of the default blob size, for either manually drawn targets or 

automatically generated patterns of targets. 

Next, several files and directories are defined for performing standard debugging loads.  These 

assist in opening a “standard” image data set for testing new features or replicating bugs.  Once 

all files are defined, the debug data set is opened by pressing Ctrl + D.  This is only operational 

when microMS first opens and if all files exist on the current machine. 

Supporting new instruments 

The goal is that a user with moderate python experience will be able to support new instruments 

in the future while maintaining the image analysis functionality of microMS.  Hopefully, this 

section will act as a template for generating offline instrument coordinate mappers with arbitrary 

systems.  The details are not important for a general reader, but should help guide more advanced 

users to support their own instruments.  This section will demonstrate how to support two new 

instruments, a hypothetical Generic XYsampler and equally-absurd Bruker flexArmstrong. 

microMS coordinate mapper organization and requirements 

The main GUI of microMS interacts with coordinate mappers through the 

supportedCoordSystems.py module.  This initializes new instances of each supported mapper 

and generates their names for display.  Each member in supportedMappers must inherit from the 

abstract base class defined in coordinateMapper.py.  This module defines all necessary functions 

to fully leverage microMS and implements some basic functions.  CoordinateMappers may also 

have an instance of connectedInstrument.py (another abstract base class) to interface with 
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instruments.  However, implementing direct control will not be covered here as it is specific for 

each instrument. 

Due to the shared characteristics between Bruker MALDI mass spectrometers, another abstract 

base class is included with microMS, brukerMapper.py.  This contains implementations for 

many of the functions specified in coordinateMapper and defines a smaller set of functions 

required for off-line analysis with Bruker instruments. 

Implementing coordinateMapper for the Generic XYsampler 

coordinateMapper.py contains the required methods and information on how to implement them.  

To reemphasize, inheriting classes must: 

 Define self.instrumentExtension and self.instrumentName 

 Implement isValidEntry, extractPoint, predictName, predictLabel, predictedPoints, 

loadInstrumentFile, saveInstrumentFile, getIntermediateMap and 

setIntermeidateMap. 

 Add an import and initialize an instance in supportedCoordSystems. 

Note that any methods not overridden will cause an error immediately upon running microMS. 

The Generic XYsampler is a fictional, new mass analyzer with some interesting requirements: 

 Motor positions are read from the instrument, and are of the form 

<Xcoordinate>_<Ycoordinate> as floating point numbers.  When moving down in the 

image, the Y coordinate increases. 

 There are 25 set points in a 5x5 grid at motor positions 0..100..400 labeled A-Y from 

left to right, top to bottom. 
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Direct instrument control 

This section describes the organization of code and operation of microMS when used for direct 

instrument control.  As the only supported instrument is a lab-built xyz stage prototype, it is 

highly unlikely to be useful to general readers, but can assist with attempts to integrate another 

instrument. 

Code Organization 

Instrument control with microMS is performed through a coordinateMapper with an instance of a 

connectedInstrument. ConnectedInstrument is another abstract base class that defines a set of 

required methods for interacting with connected instruments, such as moving, getting a position, 

and collecting from positions.  The implemented instrument is a Zaber xyz stage used for liquid 

extraction.  microMS interacts with the zaberMapper implementation of the coordinateMapper.  

This is a fairly simple coordinateMapper as there is no intermediate map or predicted labels.  The 

novel aspects are a connectedInstrument, discussed more below, and directly reading the stage 

position for predicting the name of a fiducial.  The predicted name is then directly read as a 

fiducial location.  Predicted points are also generated from the current stage position. 

The connectedInstrument of zaberMapper is a zaber3axis object, which inherits from 

connectedInstrument and zaberInterface.  The zaberInterface is another abstract base class which 

has a number of wrapper methods and a dictionary of commands to simplify communication 

with Zaber linear stages.  zaber3axis implements communication with the stage including device 

renumbering, stage initialization, movement and collection.  The main GUI interacts with the 

connectedInstrument of a coordinateMapper, when the instrument is not None and 

instrument.connected is true. 
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calls to zaber3axis are blocking so the GUI will appear to freeze while the stage is actively 

moving.   

The stage is moved with the following hotkeys: 

 i, j, k, l moves the stage up, left, down, right a small amount, respectively. 

 Shift and i, j, k, l moves the position 100 times farther than the small step. 

 Shift and Ctrl with i, j, k, l moves the stage 10 times farther than a small step. 

 + moves the probe up, or sets a focus  

 - moves the probe down.  Shift and Ctrl function similar to i, j, k, l.  Additionally, 

Shift+Ctrl+Alt causes the probe to take a giant step, equal to 1000 times a small step. 

Once a fiducial is located on the stage and image, its position is trained by pressing the right 

mouse button on the image location.  The current stage position is read as a predicted point 

which is directly used in training.  As before, Shift + RMB removes the closest fiducial and the 

worst fiducial is shown in red. 

With at least 2 fiducials, the stage is moved to a position on the image by pressing Alt+LMB.  

Pressing P to toggle predicted points will cause the current stage position to be read during GUI 

redraws and displays the probe location as a yellow circle.  Note that this function causes lag 

during stage interactions as each movement triggers a redraw and additional stage 

communication.  Alternatively, pressing Ctrl+F will display the stage x,y and z position in motor 

coordinates in the status bar. 

To perform a collection or measurements, the probe position must be set.  With the probe in the 

correct position, press Shift + V to set the position.  This also causes the probe to retract.  After 

the position is set, the probe is moved in and out of acquisition position by pressing V.  To 
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collect at an arbitrary location, press X.  This moves the probe into position and collects for the 

amount set in Set Dwell Time in the Device menu.  If the wash time (in Set Wash Time) is not 0, 

the probe will then move into its final position for the specified amount of time.  After washing, 

all stages are homed.  Setting Wash Time to -1 causes the probe to stay in its final position until 

the user homes the stages.  If wash time is 0, the probe will simply retract, staying in the same 

x,y location.  Pressing H causes all stages to home, Shift + H moves the probe to the final 

position and stays there.   

The final available function is to collect all, in Analyze All.  This causes the stage to first home, 

then visit each target blob location for the dwell time.  After visiting all blobs, the stage will 

either home, move to final position, or move to final position for “wash time” and then home if 

wash time is 0, -1 or a positive value respectively. 

 

 

 




