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Abstract

The rapid development of modern information technology has significantly facilitated the generation, collec-

tion, transmission and storage of all kinds of data. With the so-called “big data” generated in an unprece-

dented rate, we are facing significant challenges in learning knowledge from it. Traditional machine learning

algorithms often suffer from the unmatched volume and complexity of such big data, however, sparsity has

been recently studied to tackle this challenge. With reasonable assumptions and effective utilization of

sparsity, we can learn models that are simpler, more efficient and robust to noise.

The goal of this dissertation is studying and exploiting sparsity to design learning algorithms to effectively

and efficiently solve various challenging and significant real-world machine learning tasks. I will integrate

and introduce my work from three different perspectives: sample complexity, computational complexity,

and noise reduction. Intuitively, these three aspects correspond to models that require less data to learn,

are more computationally efficient, and still perform well when the data is noisy. Specifically, this thesis is

integrated from the three aspects as follows:

First, I focus on the sample complexity of machine learning algorithms for an important machine learning

task, compressed sensing. I propose a novel algorithm based on nonconvex sparsity-inducing penalty, which

is the first work that utilizes such penalty. I also prove that our algorithm improves the best previous sample

complexity significantly by extensive theoretical derivation and numerical experiments.

Second, from the perspective of computational complexity, I study the expectation-maximization (EM)

algorithms in high dimensional scenarios. In contrast to the conventional regime, the maximization step

(M-step) in high dimensional scenario can be very computationally expensive or even not well defined. To

address this challenge, I propose an efficient algorithm based on novel semi-stochastic gradient descent with

variance reduction, which naturally incorporates the sparsity in model parameters, greatly economizes the

computational cost at each iteration and enjoys faster convergence rates simultaneously. We believe the

proposed unique semi-stochastic variance-reduced gradient is of general interest of nonconvex optimization

of bivariate structure.

Third, I look into the noise reduction problem and target on an important text mining task, event detection.
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To overcome the noise in the text data which hampers the detection of real events, I design an efficient

algorithm based on sparsity-inducing fused lasso framework. Experiment results on various datasets show

that our algorithm effectively smooths out noises and captures the real event, outperforming several state-

of-the-art methods consistently in noisy setting.

To sum up, this thesis focuses on the critical issues of machine learning in big data from the perspective

of sparsity in the data and model. Our proposed methods clearly show that utilizing sparsity is of great

importance for various significant machine learning tasks.
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Chapter 1

Introduction and Motivation

Datasets in this era grow at a rapid pace across various fields of engineering and science. For example, the

prosperity of online social media has led to overwhelming amount of text data; wireless sensor networks

are gathering physical and environmental data such as temperature, sound and voltage; biomedical data are

accumulating on computers and servers and facilitating the research of genomics and proteomics. Due to the

enormous scales and complexity of these datasets, how we can efficiently learn simple and useful knowledge

from them emerges as a critical challenge in this so-called “big data” era.

While such unprecedented massive amounts of data provide us with huge opportunities, conventional

machine learning algorithms also show their limitations. Generally speaking, the framework of a learning

algorithm is that it takes a certain training dataset as input and learns a desired objective through a

designed computation process. Correspondingly, there are three important aspects for evaluation of a

learning algorithm, in terms of the quantity and quality of the training dataset, and the complexity of the

computation process:

• Sample Complexity. Sample complexity measures the number of samples a machine learning al-

gorithm needs, so that the function returned by the algorithm is within an arbitrary small error of

the best possible function, with probability arbitrary close to 1. In other words, a better learning

algorithm in terms of sample complexity should need fewer examples to achieve a certain error bound

with high probabilities.

• Noise Reduction. The input data can always be disturbed by irregular fluctuations and perturbances

which is often referred to as noises. Noise reduction steps such as Gaussian smoothing and wavelet

smoothing are often adopted to overcome such undesirable noises and facilitate the learning process.

A robust learning algorithm should be able to address the noise challenge and still achieve desirable

performance in the noisy settings.

• Computational Complexity. Computational complexity concerns the computational resources a

learning algorithm needs to learn the desired target from the input dataset. In big data scenario, the
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computational complexity has particularly been a rising challenge due to the scale and complexity of

the data. Traditional methods may face prohibitive cost.

In order to better meet our needs in high dimensional and big data scenario, it’s crucial that we pro-

pose learning algorithms improved from all three aspects above, i.e., algorithms requiring less examples for

training, more robust to noise and more computationally efficient for learning.

To tackle such significant challenges in big data scenario, sparsity has been widely studied and used

as a workhorse. Despite the ubiquitous high dimensional and complex data, many real-world signals and

processes are concurrently sparse. For example, in speech recognition and image processing, the signals are

often sparse in frequency domain or under some other appropriate basis; in biomedical research, only a few

genes out of a huge number are of interest to a certain hereditary feature; in online social media, there are

vast amount of short text snippets with sparsity in vocabulary. In some scenarios, we also want our learned

models to be sparse, for lower computational cost and better interpretability. By exploring intrinsic sparsity

of the data or applying reasonable sparsity assumptions, this thesis aims at learning compact, efficient and

robust models that best fit the scale and dimensionality of this big data era.

This thesis attempts to exploit the sparsity in the data and model, and address the aforementioned three

challenges. Specifically, we target at three important tasks in machine learning and text mining, i.e., one-bit

compressed sensing, high dimensional expectation-maximization (EM) and event detection, and improve

previous best results in the aspects of sample complexity, computational complexity and noise reduction by

developing novel algorithms incorporating sparsity.

1.1 Lower Sample Complexity for Robust One-bit Compressed

Sensing

The first component of this thesis is an efficient and robust algorithm for one-bit compressed sensing which

improves the sample complexity significantly. Compressed sensing is the technique to recover a sparse signal

using a few linear measurements. As we know, Nyquist rate is usually required for measurements to exactly

recover the unknown signal [1]. However, when the signal is sparse, i.e., only a few entries are nonzero,

we can restore the unknown signal with much fewer measurements by sophisticated measurement matrices

and recovery algorithms. While conventional compressed sensing uses real-valued measurements, one-bit

compressed sensing utilizes only one-bit, i.e., the sign of the measurements. Therefore, one-bit compressed

sensing is often more robust to noise and non-linearity.

Sample complexity is one of the most important evaluation metrics for the problem of one-bit compressed

2



sensing, which is used to denote the number of measurements needed for an algorithm to obtain an estimator

of the signal with error bounded by constant ε. For example, the sample complexity of [2], a convex estimator

by linear programming, is O(s log2 d/ε5). Such sample complexity means that when the signal dimension

is d and at most s entries are nonzero, the algorithm needs O(s log2 d/ε5) one-bit measurements to find an

estimator with the estimation error bounded by ε. For the one-bit compressed sensing problem, it is crucial

that we improve the sample complexity of algorithms to accommodate the scale and complexity of the data

in high dimensional and big data scenarios. My proposed algorithm based on nonconvex penalty functions

improves the sample complexity of the recovery of strong signals significantly from previous best results

O(s log d/ε2) to O(s/ε2), which is especially important for the high dimensional regime.

1.2 Accelerated Stochastic Gradient Expectation-Maximization

Algorithm

The second contribution of this thesis focuses on the computational complexity. We propose an accelerated

EM algorithm based on stochastic gradient. EM algorithm is widely used as a popular algorithm for the

estimation of latent variable models. However, in high dimensional cases, the maximization step (M-step)

can be time consuming or even not well defined. Therefore, the more general gradient EM algorithms, where

the M-step is based on gradient ascent, have been attracting increasing research attention. However, these

algorithms can still be computationally prohibitive in big data scenarios, since they need to compute the

full gradient in each iteration.

To address this great challenge of computational complexity, we propose a novel algorithm based on a

unique semi-stochastic gradient, where we only need to compute the gradient over a mini-batch each time.

Our work is also the first method that brings variance reduction into the EM algorithm to overcome the

intrinsic variance of stochastic gradient. The specially designed semi-stochastic structure and variance re-

duction distinguish our work from all existing methods. Our algorithm is proved to reduce the computational

and concurrently outperform the state-of-the-art methods in terms of estimation error. Specifically, we show

that with an appropriate initialization, our estimator achieves a linear convergence with the statistical rate

of convergence matching the best previous result up to a logarithmic factor.
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1.3 Noise Reduction in Event Detection

The third part of this thesis is noise reduction in event detection from text data. With the overwhelming text

information, event detection has emerged as an important task that can significantly helps us understand

the large-scale text data, such as scientific literature and social media. However, this detection process is

often hampered by the heavy noise in the data. Therefore, noise reduction is always of great necessity for

more accurate event detection in both retrospective and online settings.

I propose a novel event detection based on the undiscovered temporal divergence of topic distributions

to tackle this challenge. I find that enforcing sparsity in this divergence greatly helps with the noise issue.

Sparsity-inducing longitudinal regularization is applied to such divergence to effectively combat the noise

and capture the real events. Our proposed algorithm can be smoothly adapted to both retrospective and

online settings, and is also scalable to work on social media like Twitter.

Organization: The rest of this thesis is organized as follows. In Chapter 2, I discuss the representative

related work. I present my work on one-bit compressed sensing in Chapter 3, high dimensional EM in

Chapter 4 and event detection from text data in Chapter 5 . Finally, Chapter 6 concludes the thesis and

discusses potential future work.

Notation: Let A = [Aij ] ∈ Rd×d be a matrix and v = (v1, . . . , vd)
> ∈ Rd be a vector. We define the

`q-norm (q ≥ 1) of v as ‖v‖q =
(∑d

j=1 |vj |q
)1/q

. Specifically, ‖v‖0 denotes the number of nonzero entries

of v, ‖v‖2 =
√∑d

j=1 v
2
j and ‖v‖∞ = maxj |vj |. For q ≥ 1, we define ‖A‖q as the operator norm of A.

Specifically, ‖A‖2 is the spectral norm. We let ‖A‖∞,∞ = maxi,j |Aij |. For an integer d > 1, we define

[d] = {1, . . . , d}. For an index set I ∈ [d] and vector v ∈ Rd, we use vI ∈ Rd to denote the vector where

[vI ]j = vj if j ∈ I, and [vI ]j = 0 otherwise. We use supp(v) to denote the index set of its nonzero entries,

and supp(v, s) to denote the index set of top s largest |vj |’s. C,C ′, C1, C2, . . . are used to denote some

absolute constants. The values of these constants may be different from case to case. Let ‖X‖ψq (q ≥ 1) be

the Orlicz norm of random variable X. λmax(A) and λmin(A) are used to denote the largest and smallest

eigenvalues of matrix A. We use B(r;β) to denote the ball centered at β with radius r.
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Chapter 2

Related Work

In this chapter, we discuss the related work in details. Specifically, we will review the existing literature

by the machine learning tasks we focus on separately: one-bit compressed sensing, high dimensional EM

algorithm and event detection.

2.1 One-bit Compressed Sensing

One-bit compressed sensing was first introduced in [3] where the authors minimized the `1 norm of a unit

vector which is consistent with the measurements, and further shown effective recovering sparse signals from

nonlinearly distorted measurements [4]. Suppose x∗ is the unknown signal vector, and {ui}ni=1 is a set of

measurement vectors. The sign of real-valued measurement is observed as follows:

yi = sign(〈ui,x∗〉), i = 1, 2, . . . , n

where yi is the binary one-bit measurement we use.

In general, there are two major tasks in one-bit compressed sensing: (1) approximate signal vector recov-

ery [5, 6, 7], which aims at finding an estimator x̂ with an estimation error ‖x̂−x∗‖2 small enough; and (2)

support recovery, which finds the support, i.e., positions of the nonzero entries [5, 8, 9].

For the first task, approximate signal vector recovery, it is worth noting that since only the sign of the

real-valued measurements are used, we cannot recover the magnitude of the signal, i.e., we always assume

that the signal x∗ is a unit vector with ‖x∗‖2 = 1, which further makes this problem nonconvex. A convex

formulation is proposed in [2], where `1 norm is put on the measurement vectors instead of signal vectors.

The sample complexity of this work is O(s log2 d/ε5), where ε is the guaranteed estimation error bound. [10]

also proposed a popular convex approach by maximizing the dot product of the one-bit measurements and

the real-valued measurements. Their sample complexity is O(s log d/ε4).

The best previous results in terms of sample complexity for approximate vector recovery is achieved in [7].

The authors proposed an efficient algorithm with close-form solution based on `1 regularization. Their
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sample complexity is O(s log d/ε2).

For the second task, support recovery, we have the current best sample complexity of O(s log d) in [9].

However, their result depends on specially designed measurement matrices based on the signals, thus not

universal. A universal method for support recovery is proposed in [5], which is based on two combinatorial

structures: union free families of sets and expanders. For their method, all signals can be recovered using a

single measurement matrix. The sample complexity is O(s2 log d).

Gaussian measurements are used in the majority of the cases for its generality, and recently one-bit

compressed sensing is also extended to non-Gaussian measurements [11]. The authors use sub-Gaussian

measurements to recover both exactly and approximately sparse signals that are not extremely sparse.

Other extensions have also been studied. For example, in [12] the sparse signals to be recovered can be with

unknown and time-variant sparsity levels and the measurements are noisy. [13] studied one-bit compressed

sensing on piece-wise smoothing signals.

Most of the previous studies only focus on one of the two major tasks. In contrast, my proposed algo-

rithm [14] is proved to improve the best previous sample complexity significantly and achieve exact support

recovery at the same time. At the core of my algorithm is nonconvex sparsity-inducing penalty function,

which has been studied and utilized in various fields of statistics [15, 16, 17, 18]. My work is the first ever

study to introduce such penalty functions into the problem of one-bit compressed sensing.

2.2 High Dimensional EM Algorithm

EM algorithm and its variants [19, 20] are widely used for the estimation of latent variable models and

studied for a long time [21, 22, 23, 24]. There has been a long history of convergence analysis for EM

algorithms [20, 25], however, only until recent research efforts [26, 27, 28] do we have rigorous understanding

on the statistical convergence guarantees of EM algorithms.

The first study of definite statistical rate of convergence was introduced in [26], where the authors showed

that with a suitable initialization, their algorithm can always converge to a reasonable local optima at a

linear rate. Nonetheless, their work is only for low dimensional regime. The conventional EM algorithm

as well as its gradient variants were extended to the high dimensional setting in [27], where the number of

parameters of the latent variable is comparable to or even larger than the number of data points. According

to their study, EM algorithms in the high dimensional regime must be carefully regularized by sparsity-

type assumptions. Specifically, they applied a truncation step (T-step) after the M-step at each iteration.

Another relevant study was introduced in [28], where the authors used a regularized estimator in M-step. It
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is worth noting that all of the methods mentioned above are deterministic requiring the computation of full

gradient at each iteration.

In order to avoid the prohibitive computational complexity in large-scale optimization [29, 30], stochastic

gradient methods are always a popular workaround. For such methods, we only need to compute a partial

gradient based on a stochastic mini-batch of data. However, the inherent variance is another challenge which

hampers the convergence rate of stochastic methods [31, 32]. Accordingly, variance reduction techniques

are studied to overcome this challenge. One of the most popular methods is the stochastic variance-reduced

gradient (SVRG) [33], which has been widely utilized for a lot of optimization problems [34, 35, 36], and

even for nonconvex problems [37, 38] for variance reduction.

Nonetheless, all the previous studies only tackle the univariate scenario, i.e, the optimization depends

on only one variable. In EM algorithm, the structure is bivariate, and whether variance reduction can be

applied to such structure is still remained to be seen. To the best of our knowledge, our work [39] is the first

algorithm that incorporates variance reduction into EM algorithms in the high dimensional regime.

It is worth noting that reasonable initialization is a necessary condition for the convergence and statistical

guarantees of high dimensional EM algorithms. Without a proper initialization, the estimator can be far

away from the true model parameter and statistical properties of the objective function may not apply.

Therefore, it is possible the estimation error accumulates instead of converges along the iterations. For

different latent variable models such as Gaussian mixture model and mixture or linear regression, there are

various spectral methods [40, 41] that helps with the initialization.

2.3 Event Detection with Noise Reduction

In a collection of documents, events are significant and novel stories. The discovery of such significant stories

that have not been aforementioned, known as event detection, is often of great importance in understanding

the data. For example, event detection on scientific literature can greatly help new researchers understand

how the research interests evolve over time [42]; event detection on Twitter has been a popular approach

to discover the bursty or trending topics and public interests [43], and even faster earthquake detection has

been proposed using such methods [44].

Existing studies on event detection can be generally classified into two categories:

• document-pivot methods.

• feature-pivot methods.
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Document-pivot methods focus on clustering the documents and analyze these clusters of documents to find

features for events. A representative method is used in the UMASS system [45] exploiting term frequency–

inverse document frequency (TF-IDF) weight vectors to represent the document features, and identifies a

new document as an event if it is different enough from all existing clusters. Otherwise, it is assigned to the

closest cluster and the cluster center is updated. This method has achieved best performances in several

topic detection and tracking (TDT) competitions. To make the UMASS system efficient enough for working

on social media scale like Twitter, [46] improved the scalability by locality-sensitive hashing (LSH).

Feature-pivot methods aims at detecting the statistical patterns of the corpus and get event features from

these patterns, which can be term frequency, term cooccurrences and distributions.

For example, in [47], the frequency of each term is modeled by a binomial distribution. The bursty features

are detected as a set of words when the parameters of these distributions change. They use a set of cooccuring

bursty features to feature a detected events. This idea is further extended to an event hierarchy construction

in [48], where the documents are clustered based on their bursty features into a hierarchical event structure.

In [49], Discrete Fourier Transform (DFT) is applied to extract the bursty features from term frequency.

Since frequency-domain techniques are involved, this method naturally distinguishes periodic and aperiodic

events well.

With the increasing popularity of user-generated data such as citizen journalism and social media, the

“noise” in data is also emerging as a significant challenge. For example, meaningless “babbles” [46] are

generated at a very high rate on Twitter. A straightfoward solution was proposed in [50], where the authors

simply used the hash tag #breakingnews to pick the valuable news posts out of the noises. The wavelet

signals generated from term frequency was first used in [51] to filter out the noises. Specifically, the authors

determine all the signals with the auto-correlation lower than a threshold as trivial. They then cluster the

terms based on cross-correlation of different wavelet signals. To group the similar Tweets which might be of

short length, the weight of proper nouns is boosted in TF-IDF weighting. The temporal and geographical

features of social media such as Twitter are also important for event detection. For example, [52] proposed

an event detection framework based on time and location-based topics.

As we have introduced, feature-pivot methods [43, 47, 48, 51] study the distribution of terms and detect

events by clustering these terms. By nature, these methods are closely related to topic models which aim to

extract hidden topics from text data and also characterize these topics by word clusters. Static topic models

such as probabilistic latent semantic analysis (PLSI) [53] and latent Dirichlet allocation (LDA) [54] have

gained great success, and time is also incorporated [55, 56, 57] to discover evolving topics in text corpus.

Specifically, an online variant of LDA with applications to event detection was proposed in [57]. The authors
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learn the model in an incremental fashion, where the model from last iteration passes its parameters to the

next iteration as priors. Then word distributions of models from two consecutive iterations are compared to

see if there is enough difference indicating an event. This model is further extended to a dynamic vocabulary

in [58].

Despite the increasing research attention on topic model-based methods on event detection, most of them

detect the events by exploiting the divergence of word distributions of topics. The topic distributions of

documents featuring the coverage of topics in the corpus, have not received research attention. Our work is

the first study that looks into topic distributions for the problem of event detection.

2.4 Sparsity

Sparsity is utilized in a wide variety of machine learning problems [18, 59, 60], which helps us learn more

compact and interpretable models with lower sample and computational complexity. As we have mentioned,

sparsity is ubiquitous especially in high dimensional scenarios. Therefore, it is often reasonable to apply

sparsity-inducing regularizers to enforce sparse structure in high-dimensional data or models. The most

commonly used techniques include `-0 regularization [61, 62, 63] and `-1 regularization [64, 65, 66].

In this thesis, we incorporate sparsity to our machine learning algorithms from different perspectives. We

look into different sparse-inducing regularization functions, and apply them to the output of our models. In

our work, we focus sparsity in both the original data and resulting model.

More specifically, in our work on one-bit compressed sensing, sparsity is in the signal we want to recover;

in our work on stochastic gradient EM algorithm, we want to enhance sparsity in the model parameters we

learn; in the event detection problem, we also enforce sparsity in the parameter we learn to better encode

the nature of real events. We can see that sparsity can really be exploited flexibly to match our needs in

different machine learning tasks.
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Chapter 3

Lower Sample Complexity for Robust
One-bit Compressed Sensing

In this chapter, I will present my work on one-bit compressed sensing [14]. I propose an efficient algorithm

with close-form solution, achieving a significantly improved sample complexity for vector recovery and exact

support recovery simultaneously.

3.1 Background

We first briefly describe the general framework of one-bit compressed sensing. We let x∗ is the unknown

signal vector, and ‖x∗‖0 ≤ s. {ui}ni=1 is a set of measurement vectors and the one-bit measurements are the

signs of real-valued measurements observed as follows:

yi = sign(〈ui,x∗〉), i = 1, 2, . . . , n.

Our goal is to recover x∗ from {(yi,ui)}ni=1. Note that in one-bit compressed sensing the norm of the signal

does not affect the measurements, thus we let ‖x∗‖2 = 1. We focus on the more realistic noisy setting,

where yi can be influenced by irrational perturbances. As described in [10], we assume yi can be treated as

independently drawn from a distribution with the following expectation

E(yi|ui) = θ
(
〈ui,x∗〉

)
, i = 1, 2, . . . , n

where θ(z) is the function modeling the expectation with value domain [−1, 1]. We define

E[θ(g)g] =: γ > 0, (3.1.1)

where g ∼ N(0, 1) is a standard Gaussian random variable, and γ measures the correlation between yi and

〈ui,x∗〉. When the noise is not significant, these two are well correlated, which means that γ will get a

higher value. When yi is equal to sign(〈ui,x∗〉), there is no noise and γ will get the maximal value
√

2/π.
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3.2 Nonconvex Penalty Functions

At the core of my framework is the nonconvex penalty functions. In this work, we also have these functions

as decomposable

Gλ,b(x) =

d∑
i=1

gλ,b(xi),

where Gλ,b(x) is the decomposable function on the signal vector and gλ,b(xi) is the component function on

the entries. λ and b are regularization parameters shaping the function.

There are a variety of nonconvex penalties that are decomposable. Representatives include the smoothly

clipped absolute deviation (SCAD) penalty [15] and minimax concave penalty (MCP) [16]. Specifically,

MCP is given by

gλ,b(t) =


λ|t| − t2

2b
, if |t| ≤ bλ,

bλ2

2
, if |t| > bλ,

(3.2.1)

where b > 0, λ > 0 are fixed regularization parameters. An important property of gλ,b(t) is that it can be

written as the sum of a `1 penalty part and a concave part hλ,b(t) : gλ,b(t) = λ|t|+ hλ,b(t).

Our work does not depend on specific form of gλ,b(t), such as MCP or SCAD. Generally, our work only

depends on the following conditions on gλ,b(t) and hλ,b(t):

C1. g′λ,b(t) = 0, for |t| ≥ ν ≥ 0.

C2. h′λ,b(t) is monotone, and for t′ > t, there is a constant ζ− ≥ 0 such that

−ζ−(t′ − t) ≤ h′λ,b(t′)− h′λ,b(t).

C3. hλ,b(0) = h′λ,b(0) = 0.

C4. |h′λ,b(t)| ≤ λ for any t.

The above conditions hold for a wide variety of nonconvex penalty functions. For example, it can be

proved that MCP and SCAD are valid choices. Specifically, ν = bλ and ζ− = 1/b for MCP. I use MCP as

the nonconvex penalty function in my algorithm, and g, G and h, H will be used to denote the component

and sum functions of MCP in (3.2.1) and its concave part for the rest of this thesis.
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3.3 One-bit Compressed Sensing with Nonconvex Penalty

We start with the framework of passive algorithm for one-bit compressed sensing [7], which is given by

argmin
‖x‖2≤1

− 1

n
x>Uy + τ‖x‖1 (3.3.1)

where U is the measurement matrix. Since the estimator should be reasonably consistent with the one-bit

measurements, we need to maximize the dot product of U>x and y, which is the first part in (3.3.1). The

second part is a `1 regularizer to enforce sparsity of the estimator.

Accordingly, our estimator x̂ is any local optimal solution to the following optimization problem

argmin
‖x‖2≤1

− 1

n

n∑
i=1

yi〈ui,x〉+ Gλ,b(x) +
τ

2
‖x‖22, (3.3.2)

where u1,u2, . . . ,un ∈ Rd are the rows of the known measurement matrix U ∈ Rn×d, and Gλ,b(·) is the

nonconvex penalty function. I use `2 regularizer here. I will later show why the penalty function and

regularizer are necessary.

I also propose a novel algorithm to efficiently compute the estimator as the local minima in (3.3.2). The

basic idea here is divide and conquer. We denote v = U>y/n ∈ Rd for simplicity.

To go over the details of the proposed algorithm, we start with the following lemma tackling the subproblem

of the optimization in (3.3.2).

Lemma 3.3.1. The solution to the following optimization problem

x̂ = argmin
x

1

2
(x− y)2 + gλ,b(|x|)

is given by

• if b > 1

x̂ =


S(y, λ)

1− 1/b
, if |y| ≤ bλ,

y, if |y| > bλ,

(3.3.3)

• if b ≤ 1

x̂ =


0, if |y| ≤

√
bλ,

y, if |y| >
√
bλ,

(3.3.4)
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where S(y, λ) is the soft-thresholding operator [67] defined for λ ≥ 0 by

S(y, λ) =


y − λ, if y > λ,

0, if |y| ≤ λ,

y + λ, if y < −λ.

Proof. For b > 1, please see [68]. For b ≤ 1, please refer to Section 3.7.

A similar version of Lemma 3.3.1 with τ > 0 can be derived easily.

Lemma 3.3.2. The solution to the following optimization problem

x̂ = argmin
x

1

2
(x− y)2 + gλ,b(|x|) +

τ

2
x2

is given by

• if b(1 + τ) > 1

x̂ =


S(y, λ)

1 + τ − 1/b
, if |y| ≤ bλ(1 + τ),

y

1 + τ
, if |y| > bλ(1 + τ).

(3.3.5)

• if b(1 + τ) ≤ 1

x̂ =


0, if |y| ≤

√
b(1 + τ)λ,

y

1 + τ
, if |y| >

√
b(1 + τ)λ.

(3.3.6)

Proof. Please see Section 3.7.

From Lemma 3.3.3 and 3.3.4, we can see that the decomposed subproblems in (3.3.2) have close-form

solutions.

Now we are in position to solve (3.3.2). For the sake of simplicity, we first consider the case where τ = 0

to illustrate our method. The τ > 0 case can be solved similarly, as we will show later.
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We consider the Lagrange function f(µ) of (3.3.2) given by

f(µ) = min
x
−x>v + Gλ,b(x) + µ(‖x‖22 − 1)

= min
x

2µ

(
1

2
‖x− v

2µ
‖22 +

Gλ,b(x)

2µ

)
− ‖v‖

2
2

4µ
− µ

= 2µ

(∑
i

min
xi

1

2

(
xi −

vi
2µ

)2

+ gλ/(2µ),2µb(|xi|)

)
− ‖v‖

2
2

4µ
− µ, (3.3.7)

where the last equation comes from the property of MCP.

We use µ∗ to denote the optimal solution to the dual problem.

According to Lemma 3.3.1, we divide the problem into two cases: (1) 2µb ≤ 1 and (2) 2µb > 1. For each

subproblem in (3.3.7), we can just determine the value of µ by dividing the feasible region of vi into intervals

where the optimal value of µ can be determined. The outlines of our algorithms for these two cases are

outlined in Algorithm 1 and 2 respectively.

I will only briefly introduce the algorithms in two cases, and the derivation and technical details of

Algorithm 1 and 2 can be found in Section 3.7.

• 2µb ≤ 1: In this case, the solution to (3.3.7) comes from (3.3.4). Therefore, we need to compare

the value of |vi/2µ| and λ
√
b/2µ according to Lemma 3.3.1, which is equivalent to comparing µ and

v2
i /2bλ

2, to decide the value of each term in the summation in (3.3.7). After sorting |vi| and dividing

the feasible region into intervals, we will compute f(µ) and find µ∗ within each interval, which has a

close form solution as in Line 5 to 11 of Algorithm 1 to get f(µ). Finally, among the optimal solutions

in each interval, we find µ∗1 that maximizes f(µ).

• 2µb > 1: In this case, the solution to (3.3.7) comes from (3.3.3). We do similar sorting and dividing

operation, yet within each interval, we need to solve a simple optimization as in Line 8, Algorithm 2.

Then we will find the final µ∗2 by comparing the values from each interval.

After finding the optimal values of µ from the above two cases, we compare the objective function values of

outputs of Algorithm 1 and 2 to get the final µ∗:

µ∗ = argmax
µ∈{µ∗1 ,µ∗2}

f(µ). (3.3.8)

The optimal primal solution is further given by

x̂ = argmin
x

1

2
‖x− v

2µ∗
‖22 +

Gλ,b(x)

2µ∗
.

14



By Lemma 3.3.1, we would finally get our estimator as follows:

• if 2µ∗b > 1

x̂i =


S(vi, λ)

2µ∗ − 1/b
, if |vi| ≤ 2µ∗λb,

vi
2µ∗

, if |vi| > 2µ∗λb.

• if 2µ∗b ≤ 1

x̂i =


0, if |vi| ≤

√
2µ∗bλ,

vi
2µ∗

, if |vi| >
√

2µ∗bλ.

For the case τ > 0, we have a similar Lagrange function f(µ′) with µ′ = µ+ τ/2. The optimization of f(µ′)

is in a similar manner.

Algorithm 1 Find maximizer of f(µ) when µ ≤ 1/2b

1: Input: λ, b,v
2: Output: µ∗

1

3: Initialize f = f(1/2b), µ∗
1 = 1/2b

4: v(1), v(2), ..., v(d) = Sort(|v1|, |v2|, ..., |vd|)
5: v(0) = 0, v(d+1) =∞
6: l = Find(v(l) ≤ 1/2b < v(l+1))
7: for i:=0 ... l do
8: if

√∑n
j=i v

2
(j)/2 ∈ (v2(i)/2bλ

2, v2(i+1)/2bλ
2] then

9: µ =
√∑d

j=i v
2
(j)/2

10: else
11: µ = v2(i+1)/2bλ

2

12: end if
13: if f(µ) > f and µ < 1/2b then
14: f = f(µ), µ∗

1 = µ
15: end if
16: end for

3.4 Theoretical Results

We will prove that under a reasonable assumption on the elements of the true signal x∗, our estimator

will have oracle property, i.e., identical to the oracle estimator, with high probability. This indicates exact

support recovery. We will also show the advantage of our method in terms of sample complexity.
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Algorithm 2 Find maximizer of f(µ) when µ > 1/2b

1: Input: λ, b,v
2: Output: µ∗

2

3: Initialize f = f(1/2b), µ∗
2 = 1/2b

4: v(1), v(2), ..., v(d) = Sort(|v1|, |v2|, ..., |vd|)
5: v(0) = 0, v(d+1) =∞
6: l = Find(v(l) ≤ 1/2b < v(l+1))
7: for i:=l ... n do
8: S1 =

∑n
j=i+1 v

2
(j)

9: S2 =
∑i
j=l (|v(j)| − λ)

2

10: J(µ) = S1
4µ

+ S2
2(2µ−1/b)

+ µ

11: if µi = argminµ J(µ) ∈ (|v(i)|/2bλ, |v(i+1)|/2bλ] then
12: µ = µi
13: else
14: µ = |v(i+1)|/2bλ
15: end if
16: if f(µ) > f and µ > 1/2b then
17: f = f(µ), µ∗

2 = µ
18: end if
19: end for

3.4.1 Oracle Property of Our Estimator

We will start with presenting the oracle property of the proposed estimator in (3.3.2). The definition of the

oracle estimator x̂O is given by

x̂O = argmin
supp(x)⊂S,‖x‖2≤1

LO(x), (3.4.1)

where LO(x) = −1/n
∑n
i=1 yi〈ui,x〉. We can see that for the oracle estimator, the support information is

known as prior knowledge. The oracle property for an estimator is indicating this estimator is identical to

the oracle estimator.

It is worth noting that support information is critical to the problem of one-bit compressed sensing. With

the support information, the recovery problem will be much easier. Therefore, oracle property is often a

strong criteria for estimators.

For the rest of this chapter, we use the following notations

Hλ,b(x) =

d∑
i=1

hλ,b(xi) = Gλ,b(x)− λ‖x‖1,

L(x) = LO(x) +
τ

2
‖x‖22 = − 1

n
y>Ux +

τ

2
‖x‖22,

L̃λ(x) = L(x) +Hλ,b(x) = − 1

n
y>Ux +

τ

2
‖x‖22 +Hλ,b(x). (3.4.2)

We have the following important property for the oracle estimator.
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Lemma 3.4.1. If τ ≤ ‖vS‖2 where v = −1/n
∑n
i=1 yiui and S is the support of x∗. The following

optimization problem

x̂ = argmin
supp(x)⊂S,‖x‖2≤1

− 1

n

n∑
i=1

yi〈ui,x〉+
τ

2
‖x‖22, (3.4.3)

has the same solution as the oracle estimator in (3.4.1).

Proof of Lemma 3.4.1. We will first give the following lemma which features the close-form solution for the

oracle estimator.

Lemma 3.4.2. The following optimization problem

x̂ = argmin
supp(x)⊂S,‖x‖2≤1

− 1

n

n∑
i=1

yi〈ui,x〉, (3.4.4)

has closed form solution, i.e.,

x̂j =

 vj/‖vS‖2, if j ∈ S,

0, otherwise.

where v = 1/n
∑n
i=1 yiui = 1/n ·U>y.

Proof. To solve the optimization problem in (3.4.4), it is sufficient to

argmin
‖z‖2≤1

−〈vS , z〉. (3.4.5)

The Lagrange function of (3.4.5) is

L(z, α) = −v>S z + α(‖z‖22 − 1).

Taking the gradient of L(z, α) with respect to z and setting it to zero, we obtain

−vS + 2αz = 0. (3.4.6)

Therefore, we have z = 1/(2α)vS . Substituting it back into (3.4.5), we obtain the dual problem as follows

argmin
α
− 1

4α
‖vS‖22 − α. (3.4.7)
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The optimal solution to the dual problem (3.4.7) is α∗ = ‖vS‖2/2. Substituting α∗ back into (3.4.6), and

solving for z, we obtain that ẑ = vS/‖vS‖2. This completes the proof.

Now we are ready to prove Lemma 3.4.1. The optimization problem in (3.4.3) is equivalent to

argmin
supp(x)⊂S,‖x‖2≤1

τ

2

∥∥∥∥x− 1

τ
v

∥∥∥∥2

2

+
1

2τ
‖v‖22. (3.4.8)

It is sufficient to solve the following reduced problem restricted on S

argmin
‖z‖2≤1

τ

2

∥∥∥∥z− 1

τ
vS

∥∥∥∥2

2

.

If 1/τ‖vS‖2 < 1, the optimal solution is ẑ = 1/τvs. If 1/τ‖vS‖2 ≥ 1, according to the proof of Lemma 3.4.2,

the optimal solution is ẑ = vS/‖vS‖2, and the corresponding optimal solution to (3.4.3) is

x̂j =

 vj/‖vS‖2, if j ∈ S,

0, otherwise.

It is identical to the solution of the oracle estimator. Therefore, when τ ≤ ‖vS‖2, the oracle estimator is

identical to the solution of (3.4.3). This completes the proof.

We will now investigate the oracle property of our estimator in the following theorem:

Theorem 3.4.3 (Oracle Property for Strong Signals). Assume that we have the nonconvex penalty

Gλ(x) =
∑d
i=1 gλ,b(xi) that satisfies conditions C1 and C2. If the true signal x∗ satisfies the magnitude

condition minj∈S |x∗j | ≥ ν+‖x̂O−x∗‖2, for our estimator x̂ with regularization parameter λ = C
√

log d/n+

|γ − τ | and ζ− < τ ≤ ‖vS‖2 as in Lemma 3.4.1, there will be x̂ = x̂O.

Proof of Theorem 3.4.3. We start with the following two lemmas:

Lemma 3.4.4. For loss function L(x′) defined in (3.4.2), we have

L̃λ(x′) ≥ L̃λ(x) + 〈∇L̃λ(x),x′ − x〉+
τ − ζ−

2
‖x′ − x‖22.

Proof of Lemma 3.4.4. From condition C2, we have

−ζ−(x′i − xi)
2 ≤ (h′λ,b(x

′)− h′λ,b(x))(x′i − xi),
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which yields

〈
∇(−Hλ,b(x′))−∇(−Hλ,b(x)),x′ − x

〉
≤ ζ−‖x′ − x‖22,

which is equivalent to

−Hλ,b(x′) ≤ −Hλ,b(x)−
〈
∇(−Hλ,b(x)),x′ − x

〉
+
ζ−
2
‖x′ − x‖22. (3.4.9)

For L(x), it is strongly convex with modulus τ , we have

L(x′) ≥ L(x) + 〈∇(L(x)),x′ − x
〉

+ τ‖x′ − x‖22. (3.4.10)

Subtracting (3.4.9) from (3.4.10), we obtain

L̃λ(x′) ≥ L̃λ(x) + 〈∇L̃λ(x),x′ − x〉+
τ − ζ−

2
‖x′ − x‖22. (3.4.11)

Lemma 3.4.5. With a probability at least 1− e/d, we have

∥∥∥∥ 1

n
U>y − γx∗

∥∥∥∥
∞
≤ C

√
log d

n
.

Proof of Lemma 3.4.5. Please refer to [7].

We now prove Theorem 3.4.3. We let Ẑ ∈ ∂‖x̂‖1, and x̂ satisfies the optimality condition

max
‖x′‖2≤1

〈x̂− x′,∇L̃λ(x̂) + λẐ〉 ≤ 0.

Now we want to show that there exists some ẐO ∈ ∂‖x̂O‖1 such that x̂O also satisfies the same optimality

condition, i.e.,

max
‖x′‖2≤1

〈x̂O − x′,∇L̃λ(x̂O) + λẐO〉 ≤ 0. (3.4.12)
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Since we have L̃λ(x) = L(x) +Hλ,b(x), therefore,

〈x̂O − x′,∇L̃λ(x̂O) + λẐO〉 =
∑
i∈S

(x̂O − x′)i · (∇L̃λ(x̂O) + λẐO)i︸ ︷︷ ︸
(1)

+
∑
i∈Sc

(x̂O − x′)i · (∇L̃λ(x̂O) + λẐO)i︸ ︷︷ ︸
(2)

,

(3.4.13)

where S is the support of true signal x∗. For the term (1) in (3.4.13), we first know ‖x̂O−x∗‖∞ ≤ ‖x̂O−x∗‖2

and by the assumption that mini∈S |x∗| ≥ ν + ‖x̂O − x∗‖2, there is

min
i∈S
|(x̂O)i| = min

i∈S
|(x̂O − x∗ + x∗)i| ≥ −max

i∈S
|(x̂O − x∗)i|+ min

i∈S
|x∗i |

≥ −‖x̂O − x∗‖2 + ν + ‖x̂O − x∗‖2 = ν.

Since Gλ,b(x) = Hλ,b(x) + λ‖x‖1, according to condition C1, (∇Hλ,b(x̂O) + λẐO)i = (∇Gλ,b(x̂O))i =

g′λ,b(x̂O)i = 0 for i ∈ S, therefore,

∑
i∈S

(x̂O − x′)i · (∇L̃λ(x̂O) + λẐO)i =
∑
i∈S

(x̂O − x′)i · (∇L(x̂O))i.

Note that by Lemma 3.4.1, x̂O satisfies the optimality condition

max
‖x′‖2≤1

∑
i∈S

(x̂O − x′)i · (∇L(x̂O))i ≤ 0,

so we can get

∑
i∈S

(x̂O − x′)i · (∇L̃λ(x̂O) + λẐO)i ≤ 0. (3.4.14)

For the term (2) in (3.4.13), we have for i ∈ Sc, by condition C3, (∇Hλ,b(x̂O))i = h′λ,b((x̂O)i) = 0, then we

have ∑
i∈Sc

(x̂O − x′)i · (∇L̃λ(x̂O) + λẐO)i =
∑
i∈Sc

(x̂O − x′)i · (∇L(x̂O) + λẐO)i.
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Since L(x) = −1/n · y>Ux + τ/2‖x‖22, we know that ∇L(x) = −1/nU>y + τx. We further have

‖∇L(x∗)‖∞ =

∥∥∥∥ 1

n
U>y − τx∗

∥∥∥∥
∞

=

∥∥∥∥ 1

n
U>y − τx∗ + γx∗ − γx∗

∥∥∥∥
∞

=

∥∥∥∥( 1

n
U>y − γx∗

)
+ (γx∗ − τx∗)

∥∥∥∥
∞

(3.4.15)

For the last term in (3.4.15), we have

∥∥∥∥( 1

n
U>y − γx∗

)
+ (γx∗ − τx∗)

∥∥∥∥
∞
≤
∥∥∥∥ 1

n
U>y − γx∗

∥∥∥∥
∞

+ ‖γx∗ − τx∗‖∞

≤
∥∥∥∥ 1

n
U>y − γx∗

∥∥∥∥
∞

+ |γ − τ |‖x∗‖2

≤ C
√

log d

n
+ |γ − τ |, (3.4.16)

where the last inequality holds with probability of at least 1− e/d according to Lemma 3.4.5.

Therefore, for i ∈ Sc, we have that

|(∇L(x̂O))i| = |(∇L(x∗))i|

≤ |∇L(x∗)|∞

≤ C
√

log d

n
+ |γ − τ | = λ. (3.4.17)

For i ∈ S, we have (x̂O)i = 0, so |ẐO| ≤ 1. We can just set (ẐO)i = −(∇L(x̂O))i/λ for i ∈ Sc, we will

have (∇L(x̂O) + λẐO)i = 0 and hence

∑
i∈Sc

(x̂O − x′)i · (∇L̃λ(x̂O) + λẐO)i = 0. (3.4.18)

Adding (3.4.18) and (3.4.19), and taking maximum over ‖x′‖2 ≤ 1, we obtain (3.4.12). We thus have

proved that the same optimality condition holds for x̂O. Now we are going to prove x̂O = x̂. In fact, by

Lemma 3.4.4 we have

L̃λ(x̂) ≥ L̃λ(x̂O) + 〈∇L̃λ(x̂O), x̂− x̂O〉+
τ − ζ−

2
‖x̂− x̂O‖22, (3.4.19)
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L̃λ(x̂O) ≥ L̃λ(x̂) + 〈∇L̃λ(x̂), x̂O − x̂〉+
τ − ζ−

2
‖x̂O − x̂‖22. (3.4.20)

By the convexity of `1 norm, we have

λ‖x̂‖1 ≥ λ‖x̂O‖1 + λ〈x̂− x̂O, ẐO〉, (3.4.21)

λ‖x̂O‖1 ≥ λ‖x̂‖1 + λ〈x̂O − x̂, Ẑ〉. (3.4.22)

We add (3.4.19) to (3.4.22) and obtain

0 ≥ 〈∇L̃λ(x̂) + λẐ, x̂O − x̂〉+ 〈∇L̃λ(x̂O) + λẐO, x̂− x̂O〉+ (τ − ζ−)‖x̂− x̂O‖22.

The first two terms are non-negative by optimality conditions of x̂ and x̂O, and we have τ − ζ− ≥ 0, hence

we have ‖x̂− x̂O‖22 = 0, which means x̂ = x̂O.

Remark 3.4.6. Theorem 3.4.3 indicates that our estimator is identical to oracle estimator under a mag-

nitude assumption, while requiring no oracle information a priori. This will lead to exact support recovery

directly. As we have mentioned, the oracle property is often a very strong criterion for estimators. For

example, even [7] has achieved the best previous results on sample complexity in the noisy setting, there is

still no guarantee of oracle property for their estimator.

Now we are in a position to analyze the error bound of oracle estimator, which is also the error bound

of our estimator for strong signals. We will also show that the magnitude assumption is actually a weak

assumption.

3.4.2 Sample Complexity of Our Estimator for Strong Signals

We now analyze the error bound of out method. Note that the error bound ε can be easily transformed into

sample complexity with fixed s and d. Therefore, the error bound analysis is equivalent to sample complexity

analysis.

We start with the following lemma characterizing the distance between true signal and the measurements.

Lemma 3.4.7. With a probability at least 1− 1/d, we have

∥∥∥∥U>S y

n
− γx∗S

∥∥∥∥
2

≤ C
√
s

n
, (3.4.23)
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where C is a universal constant and S is the support of x∗.

Proof of Lemma 3.4.7. We have E[uiyi] = γx∗ for i = 1, . . . , n. Consider the j-th element of 1/nU>S y−γx∗S ,

i.e.,

[
1

n
Uy − γx∗

]
j

=
1

n

n∑
i=1

uijyi − γx∗j ,

where U = [uij ]. Since uijyi is a sub-Gaussian random variable, according to Lemma 3.7.2, we have

‖uijyi − γxj‖ψ2 ≤ 2‖uijyi‖ψ2 .

Since uij is sub-Gaussian random variable, we assume that ‖uij‖ψ2 ≤ C where C > 0 is an absolute constant.

Since yi = {−1, 1}, we have ‖uijyi‖ψ2
≤ C. Thus, we have

‖uijyi − γxj‖ψ2
≤ C.

Let a = U>S y/n− γx∗S . According to Lemma 3.7.4, for any t > 0, we have

P
(

sup
u∈Ss

∣∣〈u,a〉∣∣ > t
)
≤ P

(
sup

u∈Nsε

1

1− ε
∣∣〈u,a〉∣∣ > t

)
≤
(

1 +
2

ε

)s
P
( 1

1− ε
∣∣〈u,a〉∣∣ > t

)
. (3.4.24)

Setting ε = 1/2 in the right hand side of (3.4.24), and invoking the Hoeffding’s inequality in Lemma 3.7.3,

we have

P
(

sup
u∈Ss

∣∣〈u,a〉∣∣ > t
)
≤ 5sP(

∣∣〈u,a〉∣∣ > 2t) (3.4.25)

≤ 5se · exp
(
− Cnt2

)
= e · exp

(
s log 5− Cnt2

)
. (3.4.26)

Setting t = C
√
s/n in the right hand side of (3.4.25), we have with a probability at least 1− exp(1− s) that

∥∥∥∥U>S y

n
− γx∗S

∥∥∥∥
2

≤ C
√
s

n
.

This completes the proof.
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Now we are ready to present the main theorem on the sample complexity for strong signals of our proposed

algorithm.

Theorem 3.4.8 (Sample Complexity for Strong Signals). Under the same conditions of Theorem 3.4.3,

we have with probability at least 1− 1/d that

‖x̂− x∗‖2 ≤
C

γ

√
s

n
,

where C is a universal constant.

Proof. According to Lemma 3.4.1 and Theorem 3.4.3, our estimator and the oracle estimator have the same

solution as (3.4.3). So it is sufficient to analyze (3.4.1). Since x̂O is the optimal solution to (3.4.1), we have

0 ≥
〈

U>S y

n
, (x̂O − x∗)S

〉
. (3.4.27)

The right hand side of (3.4.27) can be further lower bounded by

0 ≥
〈

U>S y

n
, (x̂O − x∗)S

〉
≥
〈

U>S y

n
− γx∗S , (x̂O − x∗)S

〉
+ 〈γx∗S , (x̂O − x∗)S〉

≥ −
∥∥∥∥U>S y

n
− γx∗S

∥∥∥∥
2

‖x̂O − x∗‖2 + γ
(
1− x̂>Ox∗

)
. (3.4.28)

Note that here we have used the fact that for i ∈ Sc,(x̂O)i = x∗i = 0. Since ‖x̂O − x∗‖22 = 2
(
1 − x̂>Ox∗

)
,

invoking (3.4.28), we can obtain that

‖x̂O − x∗‖22 ≤
2

γ

∥∥∥∥U>S y

n
− γx∗S

∥∥∥∥
2

‖x̂O − x∗‖2,

which yields

‖x̂O − x∗‖2 ≤
2

γ

∥∥∥∥U>S y

n
− γx∗S

∥∥∥∥
2

≤ C

γ

√
s

n
,

where the last inequality follows from Lemma 3.4.7 for some universal constant C. This completes the

proof.

Remark 3.4.9. From Theorem 3.4.8, we can see that the recovery error of our method for strong signals is

just O(
√
s/n). We let ε =

√
s/n to get a sample complexity of O(s/ε2). This is a significant improvement
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from previous best result O(s log d/ε2).

Further more, we have ‖x̂O − x∗‖2 ≤ C/γ
√
s/n with high probability. Therefore, we will only need

min
j∈S
|x∗j | ≥ ν + C/γ

√
s/n (3.4.29)

to get x̂ = x̂O with probability at least 1 − 1/d. This is a weak assumption, since one-bit measurements

can be acquired at very high rates. When n is very large, the right-hand side of (3.4.29) will converge to a

constant ν. Note that for the oracle estimator, the error bound is always of the order of O(
√
s/n), which

does not depend on the magnitude assumption. We only need the magnitude assumption to make x̂ = x̂O,

and thus enjoy the improved sample complexity.

3.4.3 Sample Complexity for General Signals

We now focus on the case of general signals, where the magnitude assumption does not hold necessarily. For

the sake of simplicity, we focus on our estimator in (3.3.2) with τ = 0, and for τ > 0 it works in a similar

way.

We start with the following lemma, which characterizes the curvature of the loss function in the ball

‖x‖2 ≤ 1.

Lemma 3.4.10. For any x where ‖x‖2 ≤ 1, we have

〈E[U>y],x∗ − x〉
γ

≥ 1

2
‖x∗ − x‖22.

Proof. We have

〈E[U>y],x∗ − x〉 = 〈γx∗,x∗ − x〉

= 〈γx∗ − γx + γx,x∗ − x〉

= γ‖x∗ − x‖22 + γ〈x,x∗ − x〉. (3.4.30)

On the other hand, we have

〈x,x∗ − x〉 = x>x∗ − ‖x‖22 ≥ x>x∗ − 1

2
− 1

2
‖x‖22

= x>x∗ − 1

2
‖x∗‖22 −

1

2
‖x‖22

= −1

2
‖x− x∗‖22. (3.4.31)

25



Substituting (3.4.31) into (3.4.30), we obtain

〈E[U>y],x∗ − x〉 ≥ γ

2
‖x− x∗‖22,

which completes the proof.

Theorem 3.4.11 (Sample Complexity for General Signals). Suppose the nonconvex penalty Gλ,b(x) =∑d
i=1 gλ,b(xi) satisfies conditions C2, C3 and C4. For any local optimal solution x̂ to (3.3.2) with τ = 0,

λ = C

√
log d

n
and ζ− <

γ

2
, we have with probability at least 1− 1/d that

‖x∗ − x̂‖2 ≤
2C

γ − 2ζ−

√
s1

n︸ ︷︷ ︸
S1:|x∗i |≥ν

+
6C
√
s2

γ − 2ζ−

√
log d

n︸ ︷︷ ︸
S2:0<|x∗i |<ν

, (3.4.32)

where C is a universal constant.

Proof. We denote the subgradient by Z ∈ ∂‖x‖1, Z∗ ∈ ∂‖x∗‖1 and Ẑ ∈ ∂‖x̂‖1. We know by the optimality

condition of x̂ that

max
‖x′‖≤1

〈x̂− x′,∇L̃λ(x̂ + λẐ)〉 ≤ 0.

According to Lemma 3.4.4 with τ = 0, we know that

L̃λ(x̂) ≥ L̃λ(x∗) + 〈∇L̃λ(x∗), x̂− x∗〉 − ζ−
2
‖x̂− x∗‖22, (3.4.33)

L̃λ(x∗) ≥ L̃λ(x̂) + 〈∇L̃λ(x̂),x∗ − x̂〉 − ζ−
2
‖x∗ − x̂‖22. (3.4.34)

By the convexity of `1 norm, we have

λ‖x̂‖1 ≥ λ‖x∗‖1 + λ〈x̂− x∗, Z∗〉, (3.4.35)

λ‖x∗‖1 ≥ λ‖x̂‖1 + λ〈x∗ − x̂, Ẑ〉. (3.4.36)

Adding up (3.4.33) to (3.4.36) yields

0 ≥ 〈∇L̃λ(x̂) + λẐ,x∗ − x̂〉+ 〈∇L̃λ(x∗) + λZ∗, x̂− x∗〉 − ζ−‖x̂− x∗‖22.

By the optimality condition of x̂, we know that

〈∇L̃λ(x̂) + λẐ,x∗ − x̂〉 ≥ 0.
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Therefore,

−ζ−‖x̂− x∗‖22 ≤ 〈∇L̃λ(x∗) + λZ∗,x∗ − x̂〉. (3.4.37)

According to Lemma 3.4.10, we have

γ

2
‖x∗ − x̂‖22 ≤ 〈E[U>y],x∗ − x̂〉 = 〈γx∗,x∗ − x̂〉. (3.4.38)

Adding (3.4.37) and (3.4.38), we get

(
γ

2
− ζ−

)
‖x∗ − x̂‖22 ≤

〈
γx∗ +∇L̃λ(x∗) + λZ∗,x∗ − x̂

〉
= 〈γx∗ +∇L(x∗) +∇Hλ,b(x∗) + λZ∗,x∗ − x̂〉

≤
d∑
i=1

|(γx∗ +∇L(x∗) +∇Hλ,b(x∗) + λZ∗)i| · |(x∗ − x̂)i|.

(3.4.39)

In the following, we will decompose the summation in (3.4.39) into three parts: i ∈ Sc, i ∈ S1 and i ∈ S2,

where S1 = {i ∈ S : |x∗i | ≥ ν} and S2 = {i ∈ S : |x∗i | < ν}.

For i ∈ Sc, by condition C3, we will have

(∇Hλ,b(x∗))i = h′λ,b(x
∗
i ) = h′λ,b(0) = 0,

and

(Hλ,b(x∗))i = hλ,b(x
∗
i ) = hλ,b(0) = 0.

We also have

max
i∈Sc
|(γx∗ +∇L(x∗))i| = max

i∈Sc

∣∣∣∣(γx∗ − 1

n
U>y

)
i

∣∣∣∣
≤
∥∥∥∥γx∗ − 1

n
U>y

∥∥∥∥
∞

≤ C
√

log d

n

= λ,

(3.4.40)

where the second inequality comes from Lemma 3.4.5. Hence, we have

max
i∈Sc
|(γx∗ +∇L(x∗) +∇Hλ,b(x∗))i| ≤ λ.
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Since Z∗ ∈ ∂‖x∗‖1, we will have λZi ∈ [−λ, λ]. That is, we can always find a Z∗ ∈ ∂‖x∗‖1 such that for any

i ∈ Sc,

|(γx∗ +∇L(x∗) +∇Hλ,b(x∗) + λZ∗)i| = 0.

Therefore, we will have

∑
i∈Sc
|(γx∗ +∇L(x∗) +∇Hλ,b(x∗) + λZ∗)i| · |(x∗ − x̂)i| = 0. (3.4.41)

For the second part in (3.4.39), we have |x∗i | ≥ ν for i ∈ S1 ⊂ S. By condition C1, we have

(∇Hλ,bλ(x∗) + λZ∗)i = g′λ,b(x
∗
i ) = 0,

which means that

∑
i∈S1

|(γx∗ +∇L(x∗) +∇Hλ,b(x∗) + λZ∗)i| · |(x∗ − x̂)i| =
∑
i∈S1

|(γx∗ +∇L(x∗))i| · |(x∗ − x̂)i|

=
∑
i∈S1

∣∣∣∣(γx∗ − 1

n
U>y

)
i

∣∣∣∣ · |(x∗ − x̂)i|

≤
∥∥∥∥(γx∗ − 1

n
U>y

)
S1

∥∥∥∥
2

· ‖(x∗ − x̂)S1
‖2, (3.4.42)

where the first inequality follows from Cauchy-Schwartz inequality. According to Lemma 3.4.7, we know

that

∥∥∥∥γx∗S1
− 1

n
U>S1

y

∥∥∥∥
2

≤ C
√
s1

n
. (3.4.43)

Therefore, substituting (3.4.43) into (3.4.42), we obtain

∑
i∈S1

|(γx∗ +∇L(x∗) +∇Hλ,b(x∗) + λZ∗)i| · |(x∗ − x̂)i| ≤ C
√
s1

n
‖x∗ − x̂‖2. (3.4.44)

For the third part in (3.4.39), we have |x∗i | < ν for i ∈ S2 ⊂ S. By Lemma 3.4.5, we have

max
i∈S2

∣∣∣∣(γx∗ − 1

n
U>y

)
i

∣∣∣∣ ≤ ∥∥∥∥γx∗ − 1

n
U>y

∥∥∥∥
∞
≤ C

√
log d

n
= λ.
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By regularity condition C4, we have

max
i∈S2

|(∇Hλ,b(x∗))i| = max
i∈S2

|h′λ,b(x∗i )| ≤ λ

We also have |Z∗i | ≤ 1 since Z∗ ∈ ∂‖x∗‖1, therefore, for any i ∈ S2,

|(γx∗ +∇L(x∗) +∇Hλ,b(x∗) + λZ∗)i| ≤ |(γx∗ +∇L(x∗))i|+ |(Hλ,b(x∗))i|+ |(λZ∗)i|

≤
∥∥∥∥γx∗ − 1

n
U>y

∥∥∥∥
∞

+ |(Hλ,b(x∗))i|+ λ|Z∗i |

≤ 3λ.

(3.4.45)

This yields that

∑
i∈S2

|(γx∗ +∇L(x∗) +∇Hλ,b(x∗) + λZ∗)i| · |(x∗ − x̂)i| ≤ 3λ
∑
i∈S2

|(x∗ − x̂)i|

≤ 3λ
√
s2‖x∗ − x̂‖2.

(3.4.46)

We sum (3.4.41), (3.4.44) and (3.4.46), substitute it into (3.4.39) and get

(
γ

2
− ζ−

)
‖x∗ − x̂‖22 ≤ C

√
s1

n
‖x∗ − x̂‖2 + 3λ

√
s2‖x∗ − x̂‖2, (3.4.47)

which is equivalent to

‖x∗ − x̂‖2 ≤
2C

γ − 2ζ−

√
s1

n
+

6
√
s2λ

γ − 2ζ−
.

That is

‖x∗ − x̂‖2 ≤
2C

γ − 2ζ−

√
s1

n
+

6C
√
s2

γ − 2ζ−

√
log d

n
.

Remark 3.4.12. Theorem 3.4.11 characterizes the sample complexity of the proposed estimator for general

signals where the magnitude assumption does not hold necessarily. We can see that for strong signals, we

have |x∗i | ≥ ν for all i ∈ S, thus s2 = 0. Then our recovery error is just O(
√
s/n), which is equivalent to a

sample complexity of O(s/ε2). This is also consistent to the results in Theorem 3.4.8.

In the worst case, |x∗i | < ν for all i ∈ S, thus s2 = s, and our recovery error is O(
√
s log d/n). This yields

the worst sample complexity of O(s log d/ε2). For more general case, the sample complexity is between

O(s log d/ε2) and O(s/ε2), which is also a significant improvement.
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3.5 Experiments

In this section, I will present the numerical experiments to backup my theory. I apply the proposed algorithm

to the recovery of both general and strong signals.

For each recovery task, we will tune C by cross validation and select λ according to Theorem 3.4.3 for

strong signals and Theorem 3.4.11 for general signals. For each parameter setting, we present the average

results of 100 trials of our method and four other methods:

• Passive: the passive algorithm proposed in [7], the best previous result on sample complexity.

• Convex: the convex programming approach proposed in [10].

• BIHT and BIHT-`2 proposed in [6]

3.5.1 Approximate Vector Recovery for General Signals

In this subsection, we will show our experimental results on general signals, i.e., no magnitude assumption

guaranteed. The support of the signal vector is uniformly randomly selected from the entries, and the entry

values are drawn from a standard normal distribution. The elements in the matrix U are also drawn from

standard normal distribution and are independent from the signal x∗. We choose the noisy setting in [10]

by flipping the signs of measurements with a probability of 0.1.

Figure 3.1(a) shows the recovery error against the dimensionality of signals d. We can see that our proposed

method outperforms all the other algorithms with a remarkable margin. As the dimensionality of signal d

goes up, the recovery error grows slowly, because the dependency on d is logarithmic by Theorem 3.4.11. We

can also see that in this noisy setting, the more vulnerable BIHT and BIHT-`2 consistently perform worse

than the other methods.

Figure 3.1(b) shows the recovery error against the number of measurements n. Our method consistent-

ly achieves the best performance. The passive algorithm also performs reasonably well, but our method

outperforms it in a wide range of n.

Figure 3.1(c) shows the recovery error against the sparsity of signals s. We can see that for all the

algorithms except BIHT, the error goes up quickly when s becomes larger. Our algorithm is still consistently

the best among all. Note that the dependency on s is not logarithmic, therefore, the error grows much faster

than the case of varying d. We choose number of measurements n = 3000 here, which is larger than the

signal dimension d. This is practical in one-bit compressed sensing, because the one-bit measurements can be

generated at very high rates. To sum up, our method can improve recovery accuracy in different parameter

settings even with noise.
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(a) s = 10, n = 1000.
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(b) s = 10, d = 1000.
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(c) d = 1000, n = 3000.

Figure 3.1: Recovery error for general signals

3.5.2 Approximate Vector Recovery for Strong Signals

Now we present results of our recovery algorithm for strong signals. We will first generate unit sparse signals

with random support, and set all nonzero entries to 1/
√
s. Noise is added in the same way with section 3.5.1.

Figure 3.2 shows the recovery error of strong signals. According to Theorem 3.4.8, our error rate does

not depend on dimensionality d, which is verified by the results. Our recovery error stays on the same level,

while the errors of all the other algorithms go up with increasing d. Note that the error of BIHT is much

higher than the other algorithms. For better illustration and scaling the behavior of the other methods, we

omit it in the figure here.
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Figure 3.2: Recovery error of strong signals against d when s = 10, n = 1000.

3.5.3 Support Recovery

We are now going to investigate the problem of support recovery. According to Theorem 3.4.3, our estimator

enjoys oracle property for strong signals. We generate the signals in the same way as section 3.5.2 and present

the F1 score of support recovery in different d and n settings. F1 score is defined as the harmonic mean of

precision and recall,

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F1 =

2 · Precision · Recall

Precision + Recall
.

where

TP =

d∑
i=1

1(x̂i 6= 0,x∗i 6= 0), FP =

d∑
i=1

1(x̂i 6= 0,x∗i = 0),

TN =

d∑
i=1

1(x̂i = 0,x∗i = 0), FN =

d∑
i=1

1(x̂i = 0,x∗i 6= 0).

Note that our method is different from best previous work on support recovery. We do not need to

construct specific measurement matrix as [5, 9], nor do we depend on dynamic range or adaption of the

measurement process as [8]. Therefore, their methods are not directly comparable with ours.

Figure 3.3(a) shows the F1 score against signal dimension d. We can see that as the assumption in

Theorem 3.4.3 is satisfied, our algorithm can achieve exact support recovery with very high probability. Our

method and BIHT-`2 outperform the other algorithms with notable margins. In addition, Theorem 3.4.3
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(a) s = 10, n = 1000.
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(b) s = 10, d = 1000.

Figure 3.3: F1 score for support recovery

indicates that the support recovery of our method does not depend on d, which is also validated by the

experiments. While for the other algorithms, the performance of the passive algorithm drops significantly

as d goes up; BIHT is not effective either, nor can it achieve a stable performance. Note that for the convex

optimization method, there is no `0 constraints on the signal. Therefore, most of the entries in the estimator

are nonzero, resulting in very low precision. This explains the observation that convex optimization method

always have a F1-score close to zero.

In Figure 3.3(b), we can find the F1 score against number of measurements n. For the same reason,

the convex optimization method still suffers very low F1 score close to 0. For the other four methods,

when there are not enough measurements, they perform poorly on support recovery. As the number of

measurements goes up, the passive algorithm is the fatest to boost the performance. However, the F1 score

will stop increasing around 0.7 in spite of the increase of measurements. For BIHT, the performance is less

stable, but F1 score will still converge around 0.7 with increasing measurements. Compared with the passive

algorithm, our algorithm needs a bit more measurements to converge in terms of F1 score. Moreover, when

n is larger than 500, our algorithm can achieve very good performance, almost recover the support with

probability 1. BIHT-`2 has a similar behavior as our algorithm with enough measurements, but our method

requires fewer measurements.

3.5.4 Oracle Property

We will further study the oracle property of our estimator. We plot the difference between proposed estimator

and the oracle estimator in (3.4.1). By Theorem 3.4.3, the two should be the same with high probability. In
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Figure 3.4: Difference between estimators and oracle estimators against n when s = 10, d = 1000.

Figure 3.4, we can see that when the number of measurements goes up, the difference between our estimator

and oracle estimator converges to zero very quickly. For BIHT and BIHT-`2, the differences are large; for the

passive algorithm, the difference is still discernable, and the support recovery is not satisfying; for the convex

optimization algorithm, although the norm of the difference is converging, it cannot recover the support.

Therefore, our estimator is the only one that enjoys oracle property.

3.6 Summary

We proposed a novel algorithm [14] for the problem of one-bit compressed sensing, which is able to achieve

both vector recovery and support recovery with strong theoretical guarantees. We introduce the nonconvex

sparsity-inducing penalty functions to this problem for the first time.

More specifically, our main contributions are summarized as follows:

• We propose to incorporate sparsity-inducing penalty functions into one-bit compressed sensing, and

derive an algorithm to efficiently solve the resulting problem. To the best of our knowledge, this is the

first work on one-bit compressed sensing that utilizes nonconvex penalty functions.

• We prove that our proposed method improves sample complexity from previous best resultsO(s log d/ε2)

to O(s/ε2) for strong signals. And for general signals, our algorithm attains a sample complexity be-

tween O(s log d/ε2) and O(s/ε2).

• We prove that our proposed method can achieve exact support recovery of the signal under mild

34



magnitude assumptions on the signal.

• We verify the effectiveness of our method by thorough numerical experiments.

Even we have not specifically focused on the computational complexity of the proposed algorithm, it is worth

noting that our algorithm only involves sorting and analytic form calculation. So it is still very efficient albeit

looking involved.

3.7 Proofs and Technical Details

We provide the detailed proofs of the theoretical results in Section 3.4.

3.7.1 Proof of Lemma 3.3.1

Proof. First, we can easily see that x̂ and y must not have opposite signs. If y = 0, obviously there is x̂ = 0.

Assume y > 0 and x̂ < 0, then it is easy to find that x′ = −x̂ has smaller objective function value, which

leads to contradiction.

In the case of b ≤ 1 and without the loss of generality we assume y > 0 and x ≥ 0. Then

1

2
(x− y)2 + gλ,b(|x|) =


1

2
(x− y)2 + λx− x2

2b
, if 0 ≤ x ≤ bλ,

1

2
(x− y)2 +

bλ2

2
, if x > bλ.

(3.7.1)

• When 0 ≤ x ≤ bλ,

1

2
(x− y)2 + gλ,b(|x|) =

1

2
(x− y)2 + λx− x2

2b
= −(

1

2b
− 1

2
)x2 + (λ− y)x+

1

2
y2. (3.7.2)

If b = 1, then we get

x̂ =


0, if 0 ≤ y ≤ λ,

bλ, if y > λ.

(3.7.3)

If 0 < b < 1, this is a quadratic objective function with negative quadratic term coefficient. So we can

just compare the function values of x = 0 and x = bλ to decide x̂. With some derivation, we have in this
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case

x̂ =


0, if 0 ≤ y ≤ (1 + b)λ

2
,

bλ, if y >
(1 + b)λ

2
.

(3.7.4)

• When x > bλ,

1

2
(x− y)2 + gλ,b(|x|) =

1

2
(x− y)2 +

bλ2

2
. (3.7.5)

We can easily get

x̂ =


bλ, if 0 ≤ y ≤ bλ,

y, if y > bλ.

(3.7.6)

To sum the two cases up by comparing the function values, we have

If b = 1,

x̂ =


0, if 0 ≤ y ≤ λ,

y, if y > λ.

(3.7.7)

If 0 < b < 1, we need to compare the function values of x = 0 and x = bλ when 0 ≤ y ≤ bλ, the function

values of x = 0 and x = y when bλ < y ≤ (1 + b)λ/2 and the function values of x = y and x = bλ when

y > (1 + b)λ/2. With some derivation, we have

x̂ =


0, if 0 ≤ y ≤

√
bλ,

y, if y >
√
bλ.

(3.7.8)

We can sum up the two cases of 0 < b < 1 and b = 1 and get when 0 < b ≤ 1,

x̂ =


0, if 0 ≤ y ≤

√
bλ,

y, if y >
√
bλ.

(3.7.9)

The above derivation can be directly applied to the case of y < 0, by symmetry we can get the final expression
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of x̂

x̂ =


0, if 0 ≤ |y| ≤

√
bλ,

y, if |y| >
√
bλ.

(3.7.10)

This completes the proof of Lemma 3.3.1.

3.7.2 Proof of Lemma 3.3.2

Proof. For Lemma 3.3.2, we have

1

2
(x− y)2 + gλ,b(|x|) +

τ

2
x2 =

1 + τ

2
x2 − xy +

y2

2
+ gλ,b(|x|)

=
1 + τ

2

(
x− y

1 + τ

)2

+ gλ,b(|x|) +
τy2

2(1 + τ)

=
1 + τ

2

[(
x− y

1 + τ

)2

+ g 2λ
1+τ ,

(1+τ)b
2

(|x|)
]

+
τy2

2(1 + τ)
. (3.7.11)

The last term of (3.7.11) does not depend on x, and the optimization of the first term can be directly

deduced from the proof of Lemma 3.3.1.

3.7.3 Derivation of Algorithm 1

In this case, for all i that |vi| > λ
√

2µb, we will have |vi| > 2µλb. We have

f(µ) = 2µ

{ ∑
i:|vi|≥λ

√
2µb

pλ/(2µ),2µb

( |vi|
2µ

)
+

∑
i:|vi|<λ

√
2µb

[
1

2

(
− vi

2µ

)2
]}
− ‖v‖

2
2

4µ
− µ

= 2µ

{ ∑
i:|vi|≥λ

√
2µb

1

2
(2µb)

(
λ

2µ

)2

+
∑

i:|vi|<λ
√

2µb

[
1

2

(
− vi

2µ

)2
]}
− ‖v‖

2
2

4µ
− µ

=
∑

i:|vi|≥λ
√

2µb

1

2
bλ2 +

∑
i:|vi|<λ

√
2µb

v2
i

4µ
− ‖v‖

2
2

4µ
− µ

=
∑

i:|vi|≥λ
√

2µb

(1

2
bλ2 − v2

i

4µ

)
− µ. (3.7.12)

To find the optimal dual solution µ∗, we would first sort |vi| in an ascending order, i.e., |v(1)| ≤ |v(2)| ≤

... ≤ |v(n)|. Since the feasible region of (0,∞), we would cut this into n + 1 intervals, (0, v2
(1)/2bλ

2],

(v2
(1)/2bλ

2, v2
(2)/2bλ

2], ... , (v2
(n)/2bλ

2,∞). We define v(0) = 0 and v(n+1) =∞ to cover the boundary cases.
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Within each interval (v2
(i)/2bλ

2, v2
(i+1)/2bλ

2], we have

f(µ) =
∑

i:|vi|≥λ
√

2µb

(1

2
bλ2 − v2

i

4µ

)
− µ =

n∑
j=i

(1

2
bλ2 −

v2
(j)

4µ

)
− µ

=
(n− i+ 1)bλ2

2
−
∑n
j=i v

2
(j)

4µ
− µ. (3.7.13)

The optimal value for µ should be
√∑n

j=i v
2
(j)/2 if there are no other constraints, however, here we have

µ ∈ (v2
(i)/2bλ

2, v2
(i+1)/2bλ

2]. Therefore, the optimal µ in this interval, µi, should be

µi =



√√√√ n∑
j=i

v2
(j)/2, if

√√√√ n∑
j=i

v2
(j)/2 ∈ (v2

(i)/2bλ
2, v2

(i+1)/2bλ
2],

v2
(i+1)/2bλ

2, if

√√√√ n∑
j=i

v2
(j)/2 /∈ (v2

(i)/2bλ
2, v2

(i+1)/2bλ
2].

After we have got all µi, i = 0, 1, ..., n, we will find the one that maximizes f(µ).

3.7.4 Derivation of Algorithm 2

In this case, following (3.3.7) and using Lemma 3.3.1 , we get

f(µ) = 2µ

{ ∑
i:|vi|≥2µλb

pλ/(2µ),2µb

( |vi|
2µ

)
+

∑
i:|vi|<2µλb

[
1

2

( S( vi2µ ,
λ
2µ )

1− 1/(2µb)
− vi

2µ

)2

+ pλ/(2µ),2µb

(∣∣∣∣ S( |vi|2µ ,
λ
2µ )

1− 1/(2µb)

∣∣∣∣)]}

− ‖v‖
2
2

4µ
− µ

= 2µ

{ ∑
i:|vi|≥2µλb

pλ/(2µ),2µb

( |vi|
2µ

)
+

∑
i:|vi|<2µλb

[
1

2

( S(vi, λ)

2µ− 1/b
− vi

2µ

)2

+ pλ/(2µ),2µb

(∣∣∣∣ S(vi, λ)

2µ− 1/b

∣∣∣∣)]}

− ‖v‖
2
2

4µ
− µ. (3.7.14)
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In this case, we will have λ < 2µλb. Therefore, we will need to consider the case where λ < |vi| < 2µλb

f(µ) = 2µ

{ ∑
i:|vi|≥2µλb

pλ/(2µ),2µb

( |vi|
2µ

)
+

∑
i:|vi|<2µλb

[
1

2

( S(vi, λ)

2µ− 1/b
− vi

2µ

)2

+ pλ/(2µ),2µb

(∣∣∣∣ S(vi, λ)

2µ− 1/b

∣∣∣∣)]}− ‖v‖224µ
− µ

= 2µ

{ ∑
i:|vi|≥2µλb

1

2
(2µb)

(
λ

2µ

)2

+
∑

i:|vi|≤λ

1

2

(
− vi

2µ

)2

+
∑

i:λ<|vi|<2µλb

[
1

2

( S(vi, λ)

2µ− 1/b
− vi

2µ

)2

+ pλ/(2µ),2µb

(∣∣∣∣ S(vi, λ)

2µ− 1/b

∣∣∣∣)]︸ ︷︷ ︸
(i)

}
− ‖v‖

2
2

4µ
− µ. (3.7.15)

Note that term (i) can be written as

1

2

(
S(vi, λ)

2µ− 1/b
− vi

2µ

)2

+ pλ/(2µ),2µb

(∣∣∣∣ S(vi, λ)

2µ− 1/b

∣∣∣∣)

=
1

2

(
sign(vi)(|vi| − λ)

2µ− 1/b
− sign(vi)|vi|

2µ

)2

+ pλ/(2µ),2µb

(
|vi| − λ

2µ− 1/b

)

=
1

2

(
(|vi| − λ)

2µ− 1/b
− |vi|

2µ

)2

+ pλ/(2µ),2µb

(
|vi| − λ

2µ− 1/b

)
. (3.7.16)

Since we have 2µλb > |vi|, then

|vi| − λ
2µ− 1/b

< bλ⇐ |vi| − λ < (2µ− 1/b)λb⇐ |vi| − λ < 2µλb− λ, (3.7.17)

which always hold in this case. Therefore, we have

pλ/(2µ),2µb

( |vi| − λ
|2µ− 1/b|

)
=

λ(|vi| − λ)

2µ(2µ− 1/b)
− (|vi| − λ)2

4µb(2µ− 1/b)2
. (3.7.18)

Substituting (3.7.18) into (3.7.16), we obtain

1

2

(
S(vi, λ)

2µ− 1/b
− vi

2µ

)2

+ pλ/(2µ),2µb

(∣∣∣∣ S(vi, λ)

2µ− 1/b

∣∣∣∣) =
1

2

(
(|vi| − λ)

2µ− 1/b
− |vi|

2µ

)2

+ pλ/(2µ),2µb

(
|vi| − λ

2µ− 1/b

)

=
1

2

(
(|vi| − λ)

2µ− 1/b
− |vi|

2µ

)2

+
λ(|vi| − λ)

2µ(2µ− 1/b)
− (|vi| − λ)2

4µb(2µ− 1/b)2
.

(3.7.19)
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We further expand (3.7.19) and combine like terms and obtain

1

2

(
S(vi, λ)

2µ− 1/b
− vi

2µ

)2

+ pλ/(2µ),2µb

(∣∣∣∣ S(vi, λ)

2µ− 1/b

∣∣∣∣)
=

(|vi| − λ)2

2(2µ− 1/b)2
− |vi|(|vi| − λ)

2µ(2µ− 1/b)
+

v2
i

8µ2
+

λ(|vi| − λ)

2µ(2µ− 1/b)
− (|vi| − λ)2

4µb(2µ− 1/b)2

=
(|vi| − λ)2

2(2µ− 1/b)2
− (|vi| − λ)2

4µb(2µ− 1/b)2
+

v2
i

8µ2
− (|vi| − λ)2

2µ(2µ− 1/b)

= − (|vi| − λ)2

4µ(2µ− 1/b)
+

v2
i

8µ2
. (3.7.20)

Substituting (3.7.20) into (3.7.15) we obtain

f(µ) = 2µ

{ ∑
i:|vi|≥2µλb

1

2
(2µb)

(
λ

2µ

)2

+
∑

i:|vi|<λ

1

2

(
− vi

2µ

)2

+
∑

i:λ<|vi|<2µλb

[
1

2

( S(vi, λ)

2µ− 1/b
− vi

2µ

)2

+ pλ/(2µ),2µb

(∣∣∣∣ S(vi, λ)

2µ− 1/b

∣∣∣∣)]}− ‖v‖224µ
− µ

= 2µ

{ ∑
i:|vi|≥2µλb

1

2
(2µb)

(
λ

2µ

)2

+
∑

i:|vi|<λ

1

2

(
− vi

2µ

)2

+
∑

i:λ<|vi|<2µλb

[
− (|vi| − λ)2

4µ(2µ− 1/b)
+

v2
i

8µ2

]}

− ‖v‖
2
2

4µ
− µ

=
∑

i:|vi|≥2µλb

1

2
bλ2 +

∑
i:|vi|<2µλb

v2
i

4µ
−

∑
i:λ<|vi|<2µλb

(|vi| − λ)2

2(2µ− 1/b)
− ‖v‖

2
2

4µ
− µ. (3.7.21)

To find the optimal µ in this case, we would still sort |vi| in an ascending order first, i.e., |v(1)| ≤ |v(2)| ≤

... ≤ |v(n)|. For a specific v and λ, we first assume that |v(l−1)| ≤ λ < |v(l)|. We can define v(0) = 0

and v(d+1) = ∞ to include the boundary cases. Since 2µb > 1, we only need to consider the intervals

(1/2µ, |v(l)|/2λb] and (|v(j)|/2λb, |v(j+1)|/2λb], j = l, ..., n. When µ ∈ (|v(j)|/2λb, |v(j+1)|/2λb], where j ≥ l,

we have

f(µ) =
∑

i:|vi|≥2µλb

1

2
bλ2 +

∑
i:|vi|<2µλb

v2
i

4µ
−

∑
i:λ<|vi|<2µλb

(|vi| − λ)2

2(2µ− 1/b)
− ‖v‖

2
2

4µ
− µ

=
∑

i:|vi|≥2µλb

(1

2
bλ2 − v2

i

4µ

)
−

∑
i:λ<|vi|<2µλb

(|vi| − λ)2

2(2µ− 1/b)
− µ

=

n∑
i=j+1

(1

2
bλ2 −

v2
(i)

4µ

)
−

j∑
i=l

(|v(i)| − λ)2

2(2µ− 1/b)
− µ. (3.7.22)
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We denote S1 =
∑n
i=j+1 v

2
(i) and S2 =

∑j
i=l (|v(i)| − λ)2, and (3.7.22) can be written as

f(µ) =
(n− j)bλ2

2
− S1

4µ
− S2

2(2µ− 1/b)
− µ. (3.7.23)

To maximize f(µ) in each interval, we need to minimize the following objective function within the interval

J(µ) =
S1

4µ
+

S2

2(2µ− 1/b)
+ µ, (3.7.24)

which can be easily solved by MATLAB.

3.7.5 Auxiliary Technical Lemmas

In this section, we lay out several definitions and auxiliary lemmas.

Definition 3.7.1. [69] A random variable X is called sub-Gaussian if there exists a positive constant K

such that P(|X| > t) ≤ exp(1− t2/K2) for all t > 0.

The sub-Gaussian norm of X, denoted by ‖X‖ψ2
, is defined as follows

‖X‖ψ2
= sup

p≥1
p−1/2(E|X|p)1/p.

Lemma 3.7.2. [69] For Z being sub-Gaussian or sub-exponential, it holds that ‖Z − EZ‖ψ2 ≤ 2 · ‖Z‖ψ2

or ‖Z − EZ‖ψ1
≤ 2 · ‖Z‖ψ1

correspondingly.

Lemma 3.7.3. [69] Let X1, . . . , Xn be independent centered sub-Gaussian random variables, and let K =

maxi ‖Xi‖ψ2
. Then for any a = [a1, . . . , an]> ∈ Rn and every t > 0, we have

P
(∣∣∣ n∑

i=1

aiXi

∣∣∣ ≥ t) ≤ exp

(
1− Ct2

K2‖a‖22

)
,

where C > 0 is an absolute constant.

Lemma 3.7.4. [69] Let Nd
ε be the ε-net of a sphere Sd−1, that for any u ∈ Sd−1, there exist a u1 ∈ Nd

ε

such that ‖u − u1‖2 ≤ ε. For any ε > 0, we have |Nd
ε | ≤ (1 + 2

ε )d. Moreover, for any vector a ∈ Rd, the

following inequality holds for ε ∈ (0, 1/2)

‖a‖2 = sup
u∈Sd
〈a,u〉 ≤ 1

1− ε
sup

u∈Ndε
|〈a,u〉|.
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Chapter 4

A Stochastic Gradient EM Algorithm
with Improved Computational
Complexity
In this chapter, I will introduce my research work on an efficient high dimensional expectation-maximization

(EM) algorithm [39]. It is a generic algorithm based on stochastic gradient descent and naturally incor-

porates the sparsity structure of the model parameters. Compared with the existing high dimensional

EM algorithms, our algorithm significantly reduces the computational complexity and achieves linear

convergence rate and the best error bounds up to a logarithmic factor for several common latent variable

models.

4.1 Introduction and Background

Expectation Maximization (EM) algorithm is an important method for the estimation of latent variable

models.

Let Y ∈ Y be an observed random variable and Z ∈ Z be a latent random variable. Let hβ(y) be the

probability density function of Y with the model parameterβ ∈ Rd. It is given by the marginalization of

joint distribution fβ(y, z), i.e.,

hβ(y) =

∫
Z
fβ(y, z) dz. (4.1.1)

Given the N observations {yi}Ni=1 of Y , the EM algorithm aims at maximizing the log-likelihood

`N (β) =

N∑
i=1

log hβ(yi). (4.1.2)

It is difficult to directly evaluate `N (β) due to the unobserved latent variable Z. Instead, we turn to focus

on the difference between `N (β) and `N (β′). Let pβ(z | y) be the conditional distribution of Z on the

observed variable Y = y, i.e.,

pβ(z | y) = fβ(y, z)/hβ(y). (4.1.3)

42



According to (4.1.1) and (4.1.2), we have

1

N

[
`N (β)− `N (β′)

]
=

1

N

N∑
i=1

log
[
hβ(yi)/hβ′(yi)

]
=

1

N

N∑
i=1

log

[∫
Z

fβ(yi, z)

hβ′(yi)
dz

]

=
1

N

N∑
i=1

log

[∫
Z
pβ′(z | yi) ·

fβ(yi, z)

fβ′(yi, z)
dz

]
≥ 1

N

N∑
i=1

∫
Z
pβ′(z | yi) · log

[
fβ(yi, z)

fβ′(yi, z)

]
dz, (4.1.4)

where the third equality comes from (4.1.3) and the inequality is obtained from Jensen’s inequality. On the

right-hand side of (4.1.4) we have

1

N

N∑
i=1

∫
Z
pβ′(z | yi) · log

[
fβ(yi, z)

fβ′(yi, z)

]
dz

=
1

N

N∑
i=1

∫
Z
pβ′(z | yi) · log fβ(yi, z) dz︸ ︷︷ ︸

Q̄N (β;β′)

− 1

N

N∑
i=1

∫
Z
pβ′(z | yi) · log fβ′(yi, z) dz. (4.1.5)

Note that the second term on the right-hand side of (4.1.5) does not depend on β. We define the first

term on the right-hand side of (4.1.5) to be Q̄N (β;β′). Correspondingly, we define its expectation to be

Q(β;β′). Given some fixed β′, we can maximize the lower bound function Q̄N (β;β′) over β to maximize

`N (β)− `N (β′).

For stochastic methods, we often divide the N samples into n mini-batches {Di}ni=1, and define function

{qi}ni=1 on these mini-batches,

qi(β;β′) =
1

|Di|
∑
j∈Di

∫
Z
pβ′(z|yj) · log fβ(yj , z) dz. (4.1.6)

When n = N , there are no mini-batches. We further define

Qn(β;β′) =
1

n

n∑
i=1

qi(β;β′).

Particularly, in the l-th iteration of EM algorithm, we evaluate Q̄N (β;β(l)) in the E-step, and perform

maximization of Q̄N (β;β(l)) on β in the M-step. For example, in standard gradient ascent implementation

of EM algorithm, the M-step is given by

β(l+1) = β(l) + η∇1Q̄N (β(l);β(l)),

where ∇1Q̄N (·; ·) denotes the gradient on the first variable and η is the learning rate.
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In the high dimensional regime, the dimensionality of the parameter d is comparable with or even larger

than N . Therefore, exact maximization of Q̄N (β;β(l)) is often intractable or even not well-defined. In

contrast, gradient EM algorithms are more general in this scenario.

It is found in [27] that sparsity has to be enforced and exploited for reliable performance of EM algorithms

in high dimensional scenarios. Otherwise, variance and errors will accumulate across all dimensions to

significantly perturb the results. Therefore, we assume β∗ ∈ Rd is sparse with ‖β‖0 ≤ s∗. In order to ensure

the sparsity of the estimator, we follow [27] to use a truncation step (i.e., T-step) following the M-step. For

better reference, we outline the gradient variant of their algorithm in Algorithm 3. To ensure the sparsity

Algorithm 3 High Dimensional Gradient EM Algorithm

1: Parameter: Sparsity Parameter s, Maximum Number of Iterations T , learning rate η
2: Initialization:

β(0) = Hs(βinit),
3: For t = 0 to T − 1
4: E-step:
5: Evaluate Q̄N

(
β;β(t)

)
with the dataset

6: M-step:
7: β(t+0.5) = β(t) + η∇1Q̄N (β(t);β(t)),
8: T-step:
9: β(t+1) = Hs(β(t+0.5))

10: End For
11: Output: β̂ = β(T )

of the output estimator and overcome the dimensionality issue, we use the hard thresholding operator [70],

Hs(v) = vsupp(v,s), which only keeps the largest s entries in magnitude of a vector v ∈ Rd. The sparsity

parameter s controls the sparsity level of the estimated parameter, and is critical to the estimation error

and convergence performance.

4.2 Stochastic Variance Reduced Gradient

One of the key challenges in high dimensional and big data scenario is that the evaluation and optimization of

Q̄N (β;β′) can be computationally prohibitive. We cannot afford the iterations of summations and gradient

evaluation on the whole enormous dataset. Therefore, stochastic gradient descent is widely adopted as a

workaround here to reduce the computational complexity.

However, while stochastic gradient method is popular for large scale and high dimensional optimization,

the intrinsic variance of the algorithm harms the convergence rate significantly [33, 71, 72]. In [33], the

authors proposed stochastic variance reduced gradient (SVRG), which is proved to be effective on convex

and smooth functions.
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Specifically, the main idea of SVRG is computing an average gradient on the dataset for one pass, and

using such average to overcome the variance of stochastic gradient. In particular, they let

µ̃ = ∇1Q̄N (β̃; β̃) =
1

N

N∑
i=1

qi(β̃; β̃),

where β̃ is a reasonable estimate of true model parameter β∗. Then their gradient ascent process is

β(t+1) = β(t) + η
(
∇1qi(β

(t);β(t))−∇1qi(β̃; β̃) + µ̃
)
,

where qi(·; ·) is a stochastic gradient based on a data point or a mini-batch.

However, even this framework has been applied to several optimization problems, its efficacy is still

remained to be seen for the problem of high dimensional EM due to the complexity, bivariate structure and

strong model dependency of this problem.

4.3 Semi-stochastic Gradient EM with Variance Reduction

In this section, we will present our proposed algorithm. We will start with two latent variable models, and

then describe our method.

4.3.1 Latent Variable Models

We now introduce two popular latent variable models we use to illustrate the efficacy of our proposed method,

sparse Gaussian Mixture Model.

Sparse Gaussian Mixture Model: The random variable Y ∈ Rd is given by

Y = Z · β∗ + V ,

where Z is a random variable with P(Z = 1) = P(Z = −1) = 1/2, and V ∼N(0,Σ) is a Gaussian random

vector, with Σ being the covariance matrix, V and Z are independent, and ‖β∗‖0 ≤ s∗. We assume Σ is

known for simplicity.

Sparse Mixture of Linear Regression: We assume that Y ∈ R and X ∈ Rd satisfy

Y = Z ·X>β∗ + V, (4.3.1)
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where X ∼ N(0, Id), V ∼ N(0, σ2) and Z is a Rademacher random variable. Here X, V and Z are

independent. In the high dimensional regime, we also assume β∗ ∈ Rd is sparse. We also assume that

σ here is known.

4.3.2 Semi-stochastic Variance Reduced Gradient EM

We have applied a semi-stochastic variance reduced gradient to high dimensional EM, which naturally

incorporates the sparsity structure in the model parameters. In this section, we introduce this proposed

gradient structure and the algorithm.

This semi-stochastic structure is specifically designed for the bivariate structure of the Q-function in

EM algorithms. Specifically, we propose two layers of iterations to update the estimator, and for each

outer iteration, we perform the E-step, i.e., evaluate Qn(·; ·) and compute the average gradient µ̃. S-

ince our algorithm is stochastic, we divide the N data points into n mini-batches. Without the loss

of generality, we assume N = nb and b is an integer denoting the mini-batch size. Therefore, given

qi(β;β′) = (1/b)
∑
j∈Di

∫
Z pβ′(z|yj) · log fβ(yj , z) dz, it is easy to verify that

Qn(β;β′) =
1

n

n∑
i=1

qi(β;β′) =
1

nb

n∑
i=1

∑
j∈Di

∫
Z
pβ′(z|yj) · log fβ(yj , z) dz

=
1

N

N∑
i=1

∫
Z
pβ′(z|yi) · log fβ(yi, z) dz = Q̄N (β;β′).

Therefore, the maximization of Q̄N (·; ·) is equivalent to the maximization of Qn(·; ·).

In the M-step, we have the inner iterations. We first determine the number of inner iterations, which is

randomly selected from [T ] uniformly. Specifically, we design a novel semi-stochastic gradient on mini-batches

to update the estimator, which is given by

v(t) = ∇1qi(β
(t); β̃)−∇1qi(β̃; β̃) + µ̃,

which fixes the second variable within each outer iteration for the sake of convergence guarantee. qi(·; ·) here

is a stochastic gradient based on a mini-batch given by (4.1.6). While the standard gradient implementation

of EM algorithm [27] uses ∇1Q̄N (β(t);β(t)) to update the parameter at each iteration, our newly designed

semi-stochastic gradient EM is proved to better reduce the variance and attain a lower computational

complexity.

After finishing all the inner iterations, we use the output from the last inner iteration as the updated

estimator of this outer iteration. Finally, we use the output from the last outer iteration as the final
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estimator. We have outlined our algorithm in Algorithm 4.

Algorithm 4 Accelerated Stochastic Variance Reduced Gradient EM Algorithm (VRGEM)

1: Parameter: Sparsity Parameter s, Maximum Number of Outer Iterations m, Number of Inner Iterations
T , learning rate η

2: Initialization:
β̃(0) = Hs(βinit),

3: For l = 0 to m− 1
4: E-step:

Evaluate Qn
(
β; β̃(l)

)
with the dataset

β̃ = β̃(l), µ̃ = ∇1Qn(β̃; β̃)

5: M-step:
β(0) = β̃
Randomly select jl uniformly from {0, . . . , T − 1}

6: For t = 0 to jl
Randomly select i from [n] uniformly

7: v(t) = ∇1qi
(
β(t); β̃

)
−∇1qi

(
β̃; β̃

)
+ µ̃,

8: β(t+0.5) = β(t) + ηv(t),
9: T-step: β(t+1) = Hs(β(t+0.5))

10: End For
11: β̃(l+1) = β(jl)

12: End For
13: Output: β̂ = β̃(m)

4.4 Main Theory

In this section, we show the main theory on the theoretical guarantee of our proposed Algorithm 4. We also

present the implications of our algorithm applied to two models described in Section 4.3.1. Specifically, we

first provide the theoretical guarantee of the estimation error bound, and then give the implications on two

latent variable models as examples. We also analyze the computational complexity and show the advantage

of the proposed method.

The estimation error of our estimator in the l-th iteration ‖β̃(s) − β∗‖2 can be decomposed into opti-

mization error and statistical error, which are given by

‖β̃(l) − β∗‖2︸ ︷︷ ︸
estimation error

≤ ‖β̃(l) − β̂‖2︸ ︷︷ ︸
optimization error

+ ‖β̂ − β∗‖2︸ ︷︷ ︸
statistical error

, (4.4.1)

where β̂ is our final estimator.

Suppose our algorithm can always converge to a reasonable local optima, then ‖β̃(l) − β̂‖2 denotes the

distance between the current estimator to the final estimator. This error reduces with the optimization
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iterations proceed. In fact, our proposed algorithm achieves a linear convergence rate, i.e.,

‖β̃(l) − β̂‖2 ≤ ρ‖β̃(l−1) − β̂‖2,

‖β̃(l) − β̂‖2 ≤ ρl‖β̃init − β̂‖2

which means that the optimization error decays geometrically.

The second part is the statistical error, which features the distance between our final estimator and the

true model parameter. This error largely depends on the latent variable model and the problem setting,

e.g. sparsity parameter s, model dimensionality d and number of samples N . Therefore, this error features

a statistical rate of convergence for the estimators. For example, the statistical rate of convergence for

Gaussian mixture model is O(s log d logN/N), which characterizes how their estimator convergences to the

true model parameter given s, d and N .

4.4.1 Technical Conditions

Before we layout our main theoretical results, we give some technical conditions for functions qi(·; ·) and

Qn(·; ·) which are necessary for our analysis. It is worth noting that these conditions are mild and hold for

most of the latent variable models. We will verify these conditions for the two models we use, GMM and

MLR.

Condition 4.4.1 (Smoothness). For any β,β1,β2 ∈ B(p‖β∗‖2;β∗), where p ∈ (0, 1) is a model-dependent

constant, for any i ∈ [n], qi(·; ·) in Algorithm 4 satisfies the smoothness condition with respect to the first

variable with parameter L:

∥∥∇1qi(β1;β)−∇1qi(β2;β)
∥∥

2
≤ L

∥∥β1 − β2

∥∥
2
.

Condition 4.4.1 says that the gradient of qi(·; ·) we use in each inner iteration is Lipschitz continuous

with respect to the first variable when the first and second variables are within the ball B(p‖β∗‖2;β∗). This

condition is widely used in high dimensional EM studies [26, 27, 28], and holds for a variety of latent variable

models.

Condition 4.4.2 (Concavity). For all β,β1,β2 ∈ B(p‖β∗‖2;β∗), where p ∈ (0, 1) is a model-dependent

constant, the function Qn(·; ·) in Algorithm 4 satisfies the strong concavity condition with parameter µ:

[
∇1Qn(β1;β)−∇1Qn(β2;β)

]>
(β1 − β2) ≤ −µ‖β2 − β1‖22.
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Condition 4.4.2 requires Qn(·; ·) to be strongly concave with respect to the first variable when the first

and second variables are within the ball B(p‖β∗‖2;β∗). We will show this is a reasonable requirement when

N = nb is large enough. Variants of this condition are widely used in previous work [26, 27].

Condition 4.4.3 (First-order stability). For the true model parameter β∗ and any β ∈ B(p‖β∗‖2;β∗), where

p ∈ (0, 1) is a model-dependent constant, Qn
(
·; ·
)

satisfies the first-order stability for parameter γ:

∥∥∇1Qn(β∗;β)−∇1Qn(β∗;β∗)
∥∥

2
≤ γ

∥∥β − β∗∥∥
2
.

Condition 4.4.3 requires that the gradient ∇1Qn(β∗; ·) is stable with regard to the second variable, with

the second variable within the ball B(p‖β∗‖2;β∗). There are actually various versions of this condition in

previous work [26, 28] on population version Q(·; ·) = E[Qn(·, ·)]. Here we impose the condition on the sample

Q-function, i.e., Qn(·, ·), because our proof technique directly analyzes the sample Q-function. Intuitively,

when the sample size N is sufficiently large, Qn(·; ·) and Q(·; ·) should be close. Therefore, this condition

should hold for Qn(·; ·) as well.

Definition 4.4.4. We let κ = L/µ be the condition number where L is the parameter in the smoothness

condition and µ is the parameter in the strong concavity condition.

As the Q-function is model-dependent, these technical conditions and the condition number also need to

be verified specifically for the latent variable models instead of generally. We will validate these conditions

along with the implications of our theory for specific models in later sections.

4.4.2 General Theory

In this section, we layout the general theory that characterize the performance of our proposed algorithm.

By “general”, we mean that the theory shown in this section is not model-dependent.

Following the convention of previous work on high dimensional EM algorithms [27, 28], we first present a

resampling variant of our proposed method. For such resampling version, we split the dataset into several

non-overlapping subsets, and use just one of them for each outer iteration. This is for the decoupling the

correlation of the data between consecutive outer iterations. The resampling version is only used here to fa-

cilitate the theoretical analysis, and in practice including the numerical experiments, we still use Algorithm 4.

We outline the resampling version in Algorithm 5.

With the technical conditions introduced in Section 4.4.1 holding, we have the following theorem featuring

the estimation error of our proposed estimator β̃(r) in Algorithm 5.
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Theorem 4.4.5. Suppose qi(·; ·) satisfies Conditions 4.4.1 and Qn(·; ·) satisfies Condition 4.4.2 4.4.3. We

also assume that
∥∥βinit − β∗

∥∥
2
≤ p

∥∥β∗∥∥
2
, where p ∈ (0, 1). If η ≤ µ/(8L2), and T and s are chosen such

that

ρ =
1

T (1− τ)
+

2αη
[
ηL2 + (2η + L/µ2)γ2

]
1− τ

< 1,

where τ = α(1− ηµ+ 2η2L2) and α = 1 +
√
s∗/
√
s− s∗, then the estimator β̃(r) from Algorithm 5 satisfies

E
∥∥β̃(r)−β∗

∥∥
2
≤ ρr/2

∥∥βinit − β∗
∥∥

2
+

√
2s̃αη(2η + L/µ2)

(1− τ)(1− ρ)

∥∥∇1Qn
(
β∗;β∗

)∥∥
∞, (4.4.2)

where s̃ = 2s+ s∗.

Proof. We provide the proof sketch here. To derive the linear convergence rate in optimization error, we

need to first characterize the relationship between estimation errors in consecutive outer iterations. Since

we have both the M-step and the T-step to update the estimator, we first have the following lemma for the

T-step in Algorithm 4.

Lemma 4.4.6. [34] Let β∗ ∈ Rd is a sparse vector with
∥∥β∗∥∥

0
≤ s∗. For any vector β ∈ Rd, we let

Ŝ = supp(β, s). We have

∥∥trunc
(
β, Ŝ

)
− β∗

∥∥2

2
≤
(

1 +
2
√
s∗√

s− s∗

)∥∥β − β∗∥∥2

2

Intuitively, the truncation step introduces extra estimation error. Lemma 4.4.6 indicates that this error

can be bounded by the error before truncation. When the truncation parameter s gets larger, we keep more

components of β and the error brought by truncation will reduce.

Now, we are ready to prove our main results. Our goal is to characterize the relationship between

‖β̃(s+1) − β∗‖2 and ‖β̃(s) − β∗‖2. We will first analyze the inner iterations, i.e., finding the relationship

between ‖β̃(t+1) − β∗‖2 and ‖β̃(t) − β∗‖2. Then, by telescoping sum, we can get the relation ship between

‖β̃(s+1) − β∗‖2 and ‖β̃(s) − β∗‖2.

We define v(t) = ∇1Qit
(
β(t); β̃

)
−∇1Qit

(
β̃; β̃

)
+µ̃, and S = supp(β∗) ∪ supp(β(t)) ∪ supp(β(t+1)). Obvi-

ously, we have |S| ≤ s̃ = 2s+s∗. For simplicity, we use∇S =
[
∇1

]
S , e.g., ∇SQn(β1;β2) =

[
∇1Qn(β1;β2)

]
S .

For each inner iteration, we have from Lemma 4.4.6

∥∥β(t+1) − β∗
∥∥2

2
≤
(

1 +
2
√
s∗√

s− s∗

)∥∥β(t) + ηv
(t)
S − β

∗∥∥2

2
.
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Note that Et
[
v

(t)
S
]

= ∇SQn
(
β(t); β̃

)
, and further we have

Et
∥∥β(t) + ηv

(t)
S − β

∗‖22 ≤
∥∥β(t) − β∗

∥∥2

2
+ 2η(β(t) − β∗)>∇SQn

(
β(t); β̃

)︸ ︷︷ ︸
I1

+ η2Et‖v(t)
S ‖

2
2︸ ︷︷ ︸

I2

. (4.4.3)

For I1, we have

I1 = 2η(β(t) − β∗)>∇SQn
(
β(t); β̃

)
= 2η(β(t) − β∗)>

[
∇SQn

(
β(t); β̃

)
−∇SQn

(
β∗; β̃

)]︸ ︷︷ ︸
I1,1

+ 2η(β(t) − β∗)>∇SQn(β∗; β̃)︸ ︷︷ ︸
I1,2

.

For the first term, we apply Lemma C.2 in [73]

I1,1 ≤ −
η

L

∥∥∇SQn(β(t); β̃
)
−∇SQn

(
β∗; β̃

)∥∥2

2
− ηµ

∥∥β(t) − β∗
∥∥2

2
, (4.4.4)

≤ −ηµ
2

L

∥∥β(t) − β∗
∥∥2

2
− ηµ

∥∥β(t) − β∗
∥∥2

2
, (4.4.5)

where the second inequality uses the concavity of Qn
(
·; β̃
)

For I1,2, we have

I1,2 = 2η(β(t) − β∗)>∇SQn(β∗; β̃)

≤ ηµ2

L

∥∥β(t) − β∗
∥∥2

2
+
ηL

µ2

∥∥∇SQn(β∗; β̃)
∥∥2

2

≤ ηµ2

L

∥∥β(t) − β∗
∥∥2

2
+

2ηL

µ2

∥∥∇SQn(β∗; β̃)−∇SQn(β∗;β∗)
∥∥2

2
+

2ηL

µ2

∥∥∇SQn(β∗;β∗)
∥∥2

2

≤ ηµ2

L

∥∥β(t) − β∗
∥∥2

2
+

2ηLγ2

µ2

∥∥β̃ − β∗∥∥2

2
+

2ηL

µ2

∥∥∇SQn(β∗;β∗)
∥∥2

2
, (4.4.6)

where the first inequality holds because 2a>b ≤ β‖a‖22 + ‖b‖22/β for any β > 0.

For I2, we have

I2 = η2Et‖∇SQit
(
β(t); β̃

)
−∇SQit

(
β̃; β̃

)
+∇SQn

(
β̃; β̃

)
‖22

≤ 2η2Et
∥∥∇SQit(β(t); β̃)−∇SQit(β∗; β̃)

∥∥2

2
+ 2η2Et

∥∥∇SQit(β̃; β̃)−∇SQit(β∗; β̃)−∇SQn(β̃; β̃)
∥∥2

2

≤ 2η2L2
∥∥β(t) − β∗

∥∥2

2
+ 2η2Et

∥∥∇SQit(β̃; β̃)−∇SQit(β∗; β̃)−∇SQn(β̃; β̃)
∥∥2

2︸ ︷︷ ︸
I2,1

, (4.4.7)

where the first inequality comes from ‖a+ b‖22 ≤ 2‖a‖22 + 2‖b‖22 and the second inequality comes from the
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smoothness of Qit(·; ·). For I2,1 in 4.4.7, we have

I2,1 = 2η2Et
∥∥∇SQit(β̃; β̃)−∇SQit(β∗; β̃)−∇SQn(β̃; β̃)

∥∥2

2

= 2η2Et
∥∥∇SQit(β̃; β̃)−∇SQit(β∗; β̃)

∥∥2

2
− 4η2∇SQn(β̃; β̃)>

[
∇SQn(β̃; β̃)−∇SQn(β∗; β̃)

]
+ 2η2

∥∥∇SQn(β̃; β̃)
∥∥2

2

≤ 2η2L2
∥∥β̃ − β∗∥∥2

2
+ 4η2∇SQn(β̃; β̃)>∇SQn(β∗; β̃)− 2η2

∥∥∇SQn(β̃; β̃)
∥∥2

2

≤ 2η2L2
∥∥β̃ − β∗∥∥2

2
+ 2η2

∥∥∇SQn(β∗; β̃)
∥∥2

2

≤ 2η2L2
∥∥β̃ − β∗∥∥2

2
+ 4η2

∥∥∇SQn(β∗; β̃)−∇SQn(β∗;β∗)
∥∥2

2
+ 4η2

∥∥∇SQn(β∗;β∗)
∥∥2

2

≤ 2η2L2
∥∥β̃ − β∗∥∥2

2
+ 4η2γ2

∥∥β̃ − β∗∥∥2

2
+ 4η2

∥∥∇SQn(β∗;β∗)
∥∥2

2
(4.4.8)

where the first inequality comes from the smoothness of Qit(·; ·); the second inequality holds because 2a>b ≤

‖a‖22 + ‖b‖22; the third inequality comes from ‖a + b‖22 ≤ 2‖a‖22 + 2‖b‖22, and last inequality uses the first

order stability of Qn(β∗; ·).

Combining (4.4.7) and (4.4.8), we get

I2 ≤ 2η2L2
∥∥β(t) − β∗

∥∥2

2
+ 2η2L2

∥∥β̃ − β∗∥∥2

2
+ 4η2γ2

∥∥β̃ − β∗∥∥2

2
+ 4η2

∥∥∇SQn(β∗;β∗)
∥∥2

2
(4.4.9)

We let α = 1 + 2
√
s∗/
√
s− s∗. Plugging (4.4.4), (4.4.6) and (4.4.9)into (4.4.3) and applying Lemma 4.4.6,

we obtain

Et
∥∥β(t+1) − β∗

∥∥2

2
≤ α(1− ηµ+ 2η2L2)

∥∥β(t) − β∗
∥∥2

2
+ 2αη

[
ηL2 + (2η + L/µ2)γ2

]∥∥β̃ − β∗∥∥2

2

+ 2αη(2η + L/µ2)
∥∥∇SQn(β∗;β∗)∥∥2

2
.

We will let τ = α(1 − ηµ + 2η2L2). By summing the above inequality over t = 0, 1, . . . , T − 1 and taking

expectation to all it’s, we have

E
∥∥β(T ) − β∗

∥∥2

2
−
∥∥β̃ − β∗∥∥2

2
≤ (τ − 1)

T−1∑
t=0

∥∥β(t) − β∗
∥∥2

2
+ 2Tαη

[
ηL2 + (2η + L/µ2)γ2

]∥∥β̃ − β∗∥∥2

2

+ 2Tαη(2η + L/µ2)
∥∥∇SQn(β∗;β∗)∥∥2

2
. (4.4.10)
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Note that β̃ = β̃l = β(0) and we uniformly choose jl from [T ] and let β̃(l+1) = β(jl), so we have

1

T

T−1∑
t=0

∥∥β(t) − β∗
∥∥2

2
= E

∥∥β̃(l+1) − β∗
∥∥2

2
.

Plugging in this into (4.4.10), we have

T (1− τ)E
∥∥β̃(l+1) − β∗

∥∥2

2
≤
[
1 + 2Tαη[ηL2 + (2η + L/µ2)γ2)]

]∥∥β̃(s) − β∗
∥∥2

2

+ 2Tαη(2η + L/µ2)
∥∥∇SQn(β∗;β∗)∥∥2

2
. (4.4.11)

Let

ρ =
1 + 2Tαη[ηL2 + (2η + L/µ2)γ2]

T (1− τ)
, and ζ =

2αη(2η + L/µ2)
∥∥∇SQn(β∗;β∗)∥∥2

2

1− τ
,

we obtain

E
∥∥β̃(l+1) − β∗

∥∥2

2
≤ ρ
∥∥β̃(l) − β∗

∥∥2

2
+ ζ,

which immediately yields

E
∥∥β̃(m) − β∗

∥∥2

2
≤ ρm

∥∥β̃(0) − β∗
∥∥2

2
+

(1− ρm)ζ

1− ρ
≤ ρm

∥∥β̃(0) − β∗
∥∥2

2
+

ζ

1− ρ
.

We take square root on both sides of the inequality and get

E
∥∥β̃(m) − β∗

∥∥
2
≤
√
E
∥∥β̃(m) − β∗

∥∥2

2
≤ ρm/2

∥∥β̃(0) − β∗
∥∥

2
+

√
ζ

1− ρ

= ρm/2
∥∥βinit − β∗

∥∥
2

+

√
2αη(2η + L/µ2)

(1− τ)(1− ρ)

∥∥∇SQn(β∗;β∗)∥∥2
.

(4.4.12)

Recall we have |S| ≤ s̃ = 2s + s∗. Therefore,
∥∥∇SQn(β∗;β∗)∥∥2

≤
√
s̃
∥∥∇1Qn

(
β∗;β∗

)∥∥
∞. Insert this

into (4.4.12) and we complete the proof of (4.4.2).

For the convergence coefficient ρ1/2, we have

ρ =
1 + 2Tαη[ηL2 + (2η + L/µ2)γ2]

T (1− τ)
=

1

T (1− τ)︸ ︷︷ ︸
ρ1

+
2αη

[
ηL2 + (2η + L/µ2)γ2

]
1− τ︸ ︷︷ ︸
ρ2

,
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where τ = α(1− ηµ+ 2η2L2). We need to confine

τ = α(1− ηµ+ 2η2L2) < 1,

and since ρ1 can be bounded sufficiently small by T , we need

ρ2 =
2αη

[
ηL2 + (2η + L/µ2)γ2

]
1− τ

< 1.

We insert η = µ/8L2 to obtain

τ = α(1− ηµ+ 2η2L2) = α

(
1− 3µ2

32L2

)
.

We let τ < 1, which means

α <
1

1− 3µ2/32L2
,

and further gives us

s >

[
4(32L2 − 3µ2)2

9µ4
+ 1

]
s∗. (4.4.13)

We can also obtain

ρ2 =
αµ2/32L2 + αµ2γ2/16L4 + αγ2/4Lµ

1− α(1− 3µ2/32L2)
,

which means we need

α

(
1− 5µ2

96L2
+
µ2γ2

12L4
+

γ2

3Lµ

)
< 1

to make ρ2 < 3/4. This further requires

− 5µ2

96L2
+
µ2γ2

12L4
+

γ2

3Lµ
< 0,
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which gives us

γ <

√
5µ3L2

8µ3 + 32L3
. (4.4.14)

This is our requirement on γ. Finally, we need

α <
1

1− 5µ2/96L2 + µ2γ2/12L4 + γ2/3Lµ
,

to guarantee ρ2 < 3/4. This requires

s >

[
4(1−K)2

K2
+ 1

]
s∗, (4.4.15)

where

K =
5µ2

96L2
− µ2γ2

12L4
− γ2

3Lµ
> 0.

We then let ρ1 < 1/8, which means

1

T [1− α(1− 3µ2/32L2)]
<

1

8
.

We further get

T >
8

1− α(1− 3µ2/32L2)
=

256κ2

3α− 32(α− 1)κ2
.

We make 32(α− 1)κ2 < 3 by choosing sufficiently large value for s, and get

T >
256κ2

3(α− 1)
.

Finally, combining (4.4.13), (4.4.15) and (4.4.14), we have the convergence coefficient ρ = ρ1 + ρ2 < 7/8,

with η = µ/8L2, and

γ <

√
5µ3L2

8µ3 + 32L3

s > max

[[
4(1−K)2

K2
+ 1

]
s∗,

[
4(32L2 − 3µ2)2

9µ4
+ 1

]
s∗

]
,
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where

K =
5µ2

96L2
− µ2γ2

12L4
− γ2

3Lµ
> 0.

Remark 4.4.7. As suggested in Theorem 4.4.5 that by choosing appropriate learning rate η, a sufficiently

large number of inner iterations T , and sparsity parameter s such that ρ < 1, we can achieve linear conver-

gence rate. Here we give an example to show that such ρ is achievable. If we choose step size η = µ/(8L2),

and truncation parameter s satisfies

s >

[
4(1−K)2

K2
+ 1

]
s∗,

where

K =
5µ2

96L2
− µ2γ2

12L4
− γ2

3Lµ
> 0.

Then, we can get

α <
1

1− 5µ2/96L2 + µ2γ2/12L4 + γ2/3Lµ
,

and the contraction parameter ρ in Theorem 4.4.5 can be simplified as

ρ ≤ 1

T (1− τ)
+

3

4
.

Therefore, if we choose T ≥ 256κ2/
(
3(α− 1)

)
, we can obtain ρ ≤ 7/8, ensuring the linear convergence rate

as in [27, 28].

Remark 4.4.8. The right hand side of (4.4.2) in Theorem 4.4.5 consists of two terms. The first term stands

for the optimization error and the second term is the statistical error.

The computational complexity of the optimization process can be formulated by the number of gradients

needed to be computed. This is also called the gradient complexity which has been studied in According to

Remark 4.4.7, our algorithm is able to ensure linear convergence. Therefore, for any specific error bound ε >

0, we actually need r ≥ 2 logρ−1 [‖βinit−β∗‖2/ε] iterations to let the optimization error ρr/2‖βinit−β∗‖2 ≤ ε,

which basically requires O
(

log(1/ε)
)

outer iterations.
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For each outer iteration, we need to compute T gradients of qi(·; ·), and one full gradient. The gradient of a

qi(·; ·) depends on b component functions in a mini-batch, and one full gradient takes N component functions.

Since we have T = O(κ2), which is suggested in Remark 4.4.7, the gradient complexity of our algorithm

would be O
(
(N + bκ2) · log(1/ε)

)
. Nevertheless, for the state-of-the-art gradient based high dimensional EM

algorithm [27], its gradient complexity is O
(
κN log(1/ε)

)
. As long as κ ≤ N/b, the gradient complexity of

our algorithm is less than that of [27].

The second term on the right-hand side of (4.4.2) stands for the upper bound of the statistical error,

which depends on specific models as we will introduce later.

Algorithm 5 Accelerated Stochastic Variance Reduced Gradient EM Algorithm With Resampling

1: Parameter: Sparsity Parameter s, Maximum Number of Outer Iterations m, Number of Inner Iterations
T , learning rate η

2: Initialization:
β̃(0) = Hs(βinit),
Split the Dataset into m Subsets of Size N/m

3: For l = 0 to m− 1
4: E-step:

Evaluate Qn
(
β; β̃(l)

)
with the (l + 1)-th Subset

β̃ = β̃(l), µ̃ = 1
n/m

∑n/m
i=1 ∇1qi(β̃; β̃)

5: M-step:
β(0) = β̃
Randomly select jl uniformly from {0, . . . , T − 1}

6: For t = 0 to jl
Randomly select i from [n] uniformly

7: v(t) = ∇1qi
(
β(t); β̃

)
−∇1qi

(
β̃; β̃

)
+ µ̃,

8: β(t+0.5) = β(t) + ηv(t),
9: T-step: β(t+1) = Hs(β(t+0.5))

10: End For
11: β̃(l+1) = β(jl)

12: End For
13: Output: β̂ = β̃(m)

4.4.3 Implications on Specific Models

In this section, we will apply our general theory to two representative sparse latent variable models, GMM

and MLR, described in Section 4.3.1. Specifically, for each model, we first verify the technical conditions,

then analyze the bound of statistical error, i.e., ‖Qn(β∗;β∗)‖∞, and finally propose a theorem to characterize

the optimization error and statistical error of our estimator. We will show that for both GMM and MLR,

our algorithm achieves linear convergence rate and optimal statistical rate of convergence up to a logarithmic

factor.
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4.4.3.1 Sparse Gaussian Mixture Model

Given the sparse GMM introduced in Section 4.3.1, we can obtain that

Qn(β;β′) = − 1

2N ′

N ′∑
i=1

ωβ(yi) · (yi − β′)>Σ−1(yi − β′) +
[
1− ωβ(yi)

]
· (yi − β′)>Σ−1(yi − β′), (4.4.16)

where ωβ(y) =
1

1 + exp
(
−2 · y>Σ−1β

) .
Since we use resampling and splitting the dataset into m subsets, we use N ′ = N/m to denote the size of

each subset. From (4.4.16), we have the following lemma verifying the technical conditions in Section 4.4.1

for GMM.

Lemma 4.4.9 (Conditions for GMM). Suppose we have {yi}Ni=1 as N i.i.d. realizations of Y ∈ Rd given

by Gaussian mixture model defined in Section 4.3.1, then Conditions 4.4.1 to 4.4.3 hold with

L =
1

λmin(Σ)
, µ =

1

λmax(Σ)
,

γ =
20

λmin(Σ)
· (ξ2 + ξ + 1 + ξ−2)e−ξ

2/64,

where ξ = ‖Σ−1/2β∗‖2 denotes the signal-to-noise ratio (SNR).

Proof of Lemma 4.4.9. Since we have Q-function for GMM given by (4.4.16), we can easily obtain

∇1Qn(β′;β) =
1

N ′

N ′∑
i=1

[
2 · ωβ(yi)− 1

]
·Σ−1yi −Σ−1β′.

Recall L defined in Condition 4.4.1, we know

∥∥∇1qi(β1;β)−∇1qi(β2;β)
∥∥

2
=
∥∥Σ−1(β2 − β1)

∥∥
2
≤ λmax(Σ−1)

∥∥β1 − β2

∥∥
2
,

to get that L = λmax(Σ−1), the largest eigenvalue of Σ−1.

Similarly, we have

[
∇1Qn(β1;β)−∇1Qn(β2;β)

]>
(β1 − β2) = (β2 − β1)>Σ−1(β1 − β2) ≤ −λmin(Σ−1)

∥∥β1 − β2

∥∥
2

to get µ = λmin(Σ−1) in Condition 4.4.2, where λmin(Σ−1) is the smallest eigenvalue of Σ−1. For the proof
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Condition 4.4.3, we provide the sketch here. The basic idea is using

‖∇1Qn(β;β1)−∇1Qn(β;β2)‖2

≤ ‖∇1Q(β;β1)−∇1Q(β;β2)‖2 + ‖[∇1Q(β;β1)−∇1Q(β;β2)]− [∇1Qn(β;β1)−∇1Qn(β;β2)]‖2,

where Q(·; ·) = E[Qn(·; ·)]. By dividing it into the expectation, i.e., population version and the difference

between the sample and population versions. For the first part, we use the features of Q(·; ·) to derive the

bound; for the second part, we bound the infinity norm of the difference vector.

Please see Section 4.7 for details.

After verifying the technical conditions, the following lemma featuring the statistical error of sparse GMM.

Specifically, we have extended the work in [27, 28] from identity covariance matrix to general positive definite

matrix.

Lemma 4.4.10 (Statistical Error for GMM). We have the following bound for Gaussian mixture model

‖∇1Qn(β∗;β∗)‖∞ ≤ C(‖Σ−1β∗‖∞ +
√
‖Σ−1‖∞,∞σ)

√
(log d+ log(2e/δ)) logN

N
(4.4.17)

holding with probability at least 1− δ, where C is an absolute constant.

Proof. Please see Section 4.7.

With the technical conditions in Section 4.4.1 verified and statistical error bounded for GMM, we have

the following corollary as the implication of our algorithm on GMM:

Corollary 4.4.11. Under the same conditions of Theorem 4.4.5 and suppose

∥∥βinit − β∗
∥∥

2
≤
√
λmin(Σ)/λmax(Σ)

4

∥∥β∗∥∥
2
.

Then with probability at least 1− 2e/d, the estimator β̂ = β̃(m) from Algorithm 5 satisfies

E
∥∥β̂ − β∗∥∥

2
≤ ρm/2

∥∥βinit − β∗
∥∥

2
+ Cλmin(Σ)κ3/2

(
‖Σ−1β∗‖∞ +

√
‖Σ−1‖∞,∞σ

)√s∗ log d · logN

N

(4.4.18)

where κ = L/µ is the condition number and C is an absolute constant.

Proof Sketch. We provide the proof sketch here. For sparse Gaussian mixture model, we have Condi-

tions 4.4.1 to 4.4.3 hold with parameters L = 1/λmin(Σ), µ = 1/λmax(Σ), and γ = 20(ξ2 + ξ + 1 +
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ξ−2)e−ξ
2/64/λmin(Σ), where ξ = ‖Σ−1/2β∗‖2 denotes the signal-to-noise ratio (SNR). Next, s̃ = 2s + s∗ is

of the same order as s∗.

For the term ‖∇1Qn(β∗;β∗)‖∞ in (4.4.2), we apply Lemma 4.4.10 and complete the proof. For the

technical details, please see Section 4.7.

Remark 4.4.12. From Lemma 4.4.9, we can see that the parameters in Condition 4.4.1 and 4.4.2 are

determined by covariance matrix Σ, which is reasonable because Σ actually denotes the variance of the

data. For Condition 4.4.3, we need to introduce the signal-to-noise ratio (SNR). The concept of SNR in

parameter estimation is also proposed in [26, 74]. Since we have extended the covariance matrix of noise from

identity matrix in previous work to any positive definite matrix, our SNR is also a little bit different from

their definition. Generally speaking, for GMM with lower SNR, the variance of the noise makes it harder or

even impossible for the algorithm to converge. Therefore, it is always reasonable to have a requirement for

the SNR of GMM to be large enough for reliable parameter estimation. Spectral method [40] can be used to

match the requirement on initialization for GMM, however, we find that random initialization also performs

reasonably well in practice as we will show later.

According to Remark 4.4.7, by choosing appropriate learning rate η, inner iterations T , and sparsity

parameter s, we can ensure linear convergence rate of our algorithm. Therefore, from Corollary 4.4.11,

we know that after O
(

log
(
N/(s∗ log d logN)

))
number of iterations, the output of our algorithm attains

O(
√
s∗ log d · logN/N) statistical error, which matches the best-known error bound [27, 28] for Gaussian

mixture model up to a logarithmic factor logN . Note that the extra logarithmic factor is due to the

resampling strategy in Algorithm 5.

4.4.3.2 Sparse Mixture of Linear Regression

For sparse MLR, we let N ′ = N/m be the size of a subset, y1, . . . , yN ′ and x1, . . . ,xN ′ be the N ′ realizations

of Y and X of mixture of linear regression defined in Section 4.3.1. We have the following Qn(·; ·) function

Qn(β′;β) =
1

n

n∑
i=1

qi(β
′;β) = − 1

2N ′

N ′∑
i=1

ωβ(xi, yi) ·
(
yi − 〈xi,β′〉

)2
+
[
1− ωβ(xi, yi)

]
·
(
yi + 〈xi,β′〉

)2
,

(4.4.19)

where ωβ(x, y) =
1

1 + exp
(
−2y · x>β/σ2

) .
(4.4.20)
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We further have

∇1Qn(β′;β) =
1

N ′

N ′∑
i=1

[[
2ωβ(xi, yi)− 1

]
yixi − xi · x>i · β′

]
.

Similar to our analysis for GMM, we first verify the technical conditions for MLR by the following lemma.

Lemma 4.4.13 (Conditions for MLR). For mixture of linear regression defined in Section 4.3.1, then

Conditions 4.4.1 to 4.4.2 hold with

L = 2λmax(Σ), µ = λmin(Σ)/2, γ = γ1λmax(Σ),

where γ1 ∈ (0, 1/3) is a constant.

Proof. For the sake of simplicity, we use

Σ̂N ′ =
1

N ′

N ′∑
i=1

xi · x>i , Σ̂i =
1

b

∑
j∈Di

xj · x>j

to denote the sample covariance matrix of {xi}N
′

i=1 and {xj}j∈Di .

With the Q-function on the sample given by (4.4.19), we can obtain

∥∥∇1qi(β1;β)−∇1qi(β2;β)
∥∥

2
=

∥∥∥∥1

b

∑
j∈Di

xj · x>j (β2 − β1)

∥∥∥∥
2

=
∥∥Σ̂i(β2 − β1)

∥∥
2

≤
∥∥(Σ̂i −Σ)(β2 − β1)

∥∥
2

+
∥∥Σ(β2 − β1)

∥∥
2

≤
[
C

√
d

b
+ λmax(Σ)

]∥∥β1 − β2

∥∥
2
,

where the last inequality holds with probability of at least 1−C/d, coming from Lemma C.1 in [75]. We let

b > C2d/λ2
max(Σ) to get L = 2λmax(Σ).
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For Condition 4.4.2, we have

[
∇1Qn(β1;β)−∇1Qn(β2;β)

]>
(β1 − β2) =

[
1

N ′

N ′∑
i=1

xi · x>i (β2 − β1)

]>
(β1 − β2)

= −(β1 − β2)>Σ̂>N ′(β1 − β2)

= −(β1 − β2)>Σ̂N ′(β1 − β2)

= −(β1 − β2)>(Σ̂N ′ −Σ)(β1 − β2)− (β1 − β2)>Σ(β1 − β2)

≤ ‖Σ̂N ′ −Σ‖2 · ‖β1 − β2‖22 − λmin(Σ)‖β1 − β2‖22

≤
[
C

√
d

N ′
− λmin(Σ)

]
‖β1 − β2‖22,

where the last inequality holds with probability of at least 1−C/d coming from Lemma C.1 in [73]. We can

get µ = λmin(Σ)/2 with N ′ > 4C2d/λ2
min(Σ).

For Condition 4.4.3, we provide the proof sketch here. Similar to GMM, we divide the difference vector on

sample into difference vector on population and the difference between sample and population. We provide

the technical details in Section 4.7.

The next lemma characterizes the statistical error of sparse MLR.

Lemma 4.4.14 (Statistical Error for MLR). We have the following bound for mixture of linear regression

‖∇1Qn(β∗;β∗)‖∞ ≤ C(‖Σ‖2 · ‖β∗‖2 +
√
‖Σ‖2σ)

√
(log d+ log(6/δ)) logN

N
, (4.4.21)

holding with probability at least 1− δ, where C is an absolute constant.

Proof. Please see Section 4.7.

With the verified technical conditions and bounded statistical error, the implication of our main theory

for mixture of linear regression is presented in the following corollary.

Corollary 4.4.15. Under the same conditions of Theorem 4.4.5 and suppose

∥∥βinit − β∗
∥∥

2
≤
√
λmin(Σ)/λmax(Σ)

32

∥∥β∗∥∥
2
.

Then with probability at least 1− 2e/d, the estimator β̂ = β̃(m) from Algorithm 5 satisfies

E
∥∥β̂ − β∗∥∥

2
≤ ρm/2

∥∥βinit − β∗
∥∥

2
+ Cκ3/2

(
‖β∗‖2 +

σ√
λmax(Σ)

)√
s∗ log d · logN

N
,
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where κ = L/µ is the condition number and C is an absolute constant.

Proof Sketch. For mixture of linear regression, we have Conditions 4.4.1 to 4.4.3 hold with parameters

L = 2λmax(Σ), µ = λmin(Σ)/2, and γ = γ1λmax(Σ) according to Lemma 4.4.13. We also show that s̃

and s∗ are of the same order in Remark 4.4.7. Next, for the term ‖∇1Qn(β∗;β∗)‖∞ in (4.4.2), we apply

Lemma 4.4.14. This completes the proof. For more technical details, please see Section 4.7.

Remark 4.4.16. According to Remark 4.4.7, our algorithm can achieve linear convergence rate with ap-

propriate learning rate η, inner iterations T , and sparsity parameter s. Thus Corollary 4.4.15 tells us

that after O
(

log
(
N/(s∗ log d logN)

))
number of outer iterations, the output of our algorithm achieves

O(
√
s∗ log d · logN/N) statistical error, which matches the best-known statistical error [28] for mixture

of linear regression up to a logarithmic factor from the resampling strategy. Specifically, the dependence

on ‖β∗‖2 is due to the fundamental limits of EM, which also appears in [26, 28]. There is also spectral

method [41] helping the initialization of MLR, but we use random initialization which also performs well in

our experiments.

4.5 Experiment Results

In this section, we present the results of numerical experiments to backup our theory. We use Gaussian mix-

ture model and mixture of linear regression for parameter estimation, and compare our proposed accelerated

stochastic gradient EM algorithm (VRGEM) with two state-of-the-art high dimensional EM algorithms as

baselines:

• (HDGEM) High Dimensional Gradient EM algorithm proposed in [27]: the gradient variant of high

dimensional EM method enforcing sparsity structure.

• (HDREM) High Dimensional Regularized EM algorithm proposed in [28]: the method based on de-

caying regularization.

It is worth noting that the truncation step in our algorithm is designed to enforce sparsity and combat

dimensionality. Therefore, our algorithm (VRGEM) is also able to work in the low-dimensional regime

naturally by removing the truncation step. However, given that high dimensional scenario is much more

challenging, we only compare our algorithm with high dimensional EM algorithms to validate its efficacy.
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4.5.1 Experimental Setup

For each latent variable model, we compare both (1) the optimization error ‖β̃(l) − β̂‖2 featuring the

convergence of the estimator to the local optima, and (2) the overall estimation error ‖β̃(l) − β∗‖2

featuring the overall estimation accuracy with regard to the true model parameter β∗. We also show the

convergence comparison in terms of training time.

All the comparisons are under two different parameter settings: s∗ = 5, d = 256, b = 100, N = 5000 and

s∗ = 10, d = 512, b = 200, N = 10000. For VRGEM, we choose m = 30, n = 50 and T = 50 across all

settings and models. Besides the comparison of different algorithms, we also verify our statistical rate of

convergence by plotting the statistical error ‖β̂ − β∗‖ against
√
s∗ log d/N . Specifically, we fix d = 512 and

show the plots of three cases s∗ = 5, s∗ = 10 and s∗ = 15 with varying N .

In each experiment setting, we run 100 trials and show the averaged results. The learning rate η is tuned

by grid search and s is chosen by cross validation. We use random initialization.

4.5.2 Gaussian Mixture Model

We test VRGEM on sparse Gaussian mixture models introduced in Section 4.3.1. For the sake of simplicity

and better matching the problem setting of the baseline methods, the covariance matrix Σ of V is chosen to

be a diagonal matrix with all elements being 1, except two randomly selected elements set to λmax(Σ) = 10,

and another two randomly selected elements set to λmin(Σ) = 0.1. For the true model parameter β∗, we

randomly choose s∗ out of d entries and assign random values to them. All the other entries are zeros. The

results are shown in Figure 4.1.

From Figure 4.1(a), we can see that for both parameter settings, all three algorithms have linear con-

vergence as Corollary 4.4.11 states. VRGEM clearly enjoys a faster convergence rate than the baselines.

Moreover, as shown in Figure 4.1(b), the performance on overall estimation error of our algorithm is com-

parable with HDGEM, which is far better than HDREM. In terms of time consumption, our algorithm also

enjoys a remarkable advantage over the baselines as shown in Figure 4.1(c) and 4.1(d).

4.5.3 Mixture of Linear Regression

Similar to the setting for GMM, we use the same covariance matrix Σ in Section 4.5.2 for X here. We also

use the same way of generating β∗. For V , we let σ = 1. We show the results in Figure 4.3.

From Figure 4.3(a), we can see that VRGEM achieves linear convergence which is consistent with Corol-

lary 4.4.15, and our algorithm significantly outperforms the baselines in terms of optimization error. In

terms of overall estimation error shown in Figure 4.3(b), VRGEM is as good as HDGEM and beats HDREM

64



Iteration Index
0 10 20 30

O
pt

im
iz

at
io

n 
E

rr
or

10-10

10-5

100

HDGEM
HDREM
VRGEM

(a)

Iteration Index
0 10 20 30

O
ve

ra
ll 

E
st

im
at

io
n 

E
rr

or

10-1

100
HDGEM
HDREM
VRGEM

(b)

Training Time (in Seconds)
0 2 4 6

O
pt

im
iz

at
io

n 
E

rr
or

10-10

10-5

100

HDGEM
HDREM
VRGEM

(c)

Training Time (in Seconds)
0 2 4 6

O
ve

ra
ll 

E
st

im
at

io
n 

E
rr

or
10-1

100
HDGEM
HDREM
VRGEM

(d)

Figure 4.1: Comparison of optimization error ‖β̃(l) − β̂‖2 and overall estimation error ‖β̃(l) − β∗‖2 for
GMM. s∗ = 5, d = 256, b = 100, N = 5000. (a) (b) errors against iterations, (c) (d) errors against training
time.

by a remarkable margin. Our algorithm also beats the baselines in time consumption for convergence as we

can see in Figure 4.3(c) 4.3(d). Overall, VRGEM achieves the best performance among all the methods.

4.5.4 Statistical Rate of Convergence

In this section, we look into statistical errors of the models. From Corollary 4.4.11 and 4.4.15, we know

that our estimator achieves the optimal statistical rate for GMM and MLR. Note that we do not have the

logarithmic factor here since we do not need the resampling process in the experiments. Therefore, for both

GMM and MLR, the statistical rate of convergence, i.e., order of statistical error of our estimator should be

O(
√
s∗ log d/N)

The statistical error results are shown in Figure 4.5. From Figure 4.5(a), we can clearly see that for GMM,

the statistical error of VRGEM shows a linear dependency on
√
s∗ log d/N across different settings of s∗,

verifying results in Corollary 4.4.11.
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Figure 4.2: Comparison of optimization error ‖β̃(l) − β̂‖2 and overall estimation error ‖β̃(l) − β∗‖2 for
GMM. s∗ = 10, d = 512, b = 200, N = 10000. (a) (b) errors against iteration, (c) (d) errors against
training time.

From Figure 4.5(b), we can see that for MLR, statistical error is also of order O(
√
s∗ log d/n), which

supports Corollary 4.4.15.

4.6 Summary

In this work, I propose an efficient semi-stochastic gradient EM algorithm with variance reduction [39]. By

incorporating a truncation step (T-step) after the M-step, our algorithm can naturally enforce sparsity in

the estimator and work in the challenging high dimensional regime. To the best of our knowledge, this is

the first work

We testify our algorithm to two popular latent variable models and thorough numerical experiments are

provided to backup our theory. In particular, we summarize our major contributions as follows:

• We propose a novel high dimensional EM algorithm by incorporating variance reduction into stochastic
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Figure 4.3: Comparison of optimization error ‖β̃(l) − β̂‖2 and overall estimation error ‖β̃(l) − β∗‖2 for
MLR. s∗ = 5, d = 256, b = 100, N = 5000. (a) (b) errors against iterations, (c) (d) errors against training
time.

gradient method for EM. Specifically, we design a novel semi-stochastic gradient tailored to the bivariate

structure of the Q-function in the EM algorithm. To the best of our knowledge, this is the first work

ever that brings variance reduction into stochastic gradient EM algorithm in the high dimensional

scenario.

• We prove that our proposed algorithm converges at a linear rate to the unknown model parameter and

achieves the best-known statistical rate of convergence with a mild condition on the initialization.

• We show that the proposed algorithm has an improved overall computational complexity over the

state-of-the-art algorithm. Specifically, to achieve an optimization error of ε, our algorithm needs

O
(
(N + bκ2) · log(1/ε)

)
gradient evaluation1, where N is the sample size, b is the mini batch size that

will be discussed later, and κ is the restricted condition number. In contrast, the gradient complexity

1Throughout this thesis, we consider the calculation of the gradient of the Q-function over a data point as a unit gradient
evaluation cost. And we use the gradient complexity, i.e., number of gradient evaluation units, to fairly compare different
algorithms.
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Figure 4.4: Comparison of optimization error ‖β̃(l) − β̂‖2 and overall estimation error ‖β̃(l) − β∗‖2 for
MLR. s∗ = 10, d = 512, b = 200, N = 10000. (a) (b) errors against iteration, (c) (d) errors against training
time.

of the state-of-the-art high dimensional EM algorithm [27] is O
(
κN log(1/ε)

)
. As long as κ ≤ N/b,

the overall gradient complexity of our algorithm is less than [27].

• Different from the proof technique used in existing work [26, 27, 28], which analyzes both the population

and sample versions of the Q-function, we directly analyze the sample version of the Q-function. Our

proof is much simpler and provides a good interface to analyze the semi-stochastic gradient.

4.7 Proofs and Technical Details

This section works as an auxiliary part, which contains the technical details for the lemmas in Section .

Specifically, we provide the detailed proof of Condition 4.4.3 in Lemma 4.4.9 and 4.4.13, and statistical

errors in Lemma 4.4.10 and 4.4.14.
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Figure 4.5: Statistical error ‖β̂−β∗‖2 of VRGEM against
√
s∗ log d/N with fixed d=512 and varying s∗

and N .

4.7.1 First-order Stability

In this section, we verify the first-order stability condition for GMM and MLR proposed in 4.4.9 and 4.4.13.

4.7.1.1 Proof of Lemma 4.4.9

Condition 4.4.1 and 4.4.2 have already been verified for GMM. The proof of Condition 4.4.3 is directly

inspired by [26]. In particular, we extend Lemma 3 in [26] and follow a homogeneous idea in the proof.

Proof. For Condition 4.4.3, we have

∥∥∇1Qn(β;β1)−∇1Qn(β;β2)
∥∥

2
=

∥∥∥∥ 1

N ′

N ′∑
i=1

[
2ωβ1

(yi)− 2ωβ2
(yi)

]
·Σ−1yi

∥∥∥∥
2

≤ γ
∥∥β1 − β2

∥∥
2
.

We have

∥∥∇1Qn(β;β1)−∇1Qn(β;β2)
∥∥

2

=

∥∥∥∥ 1

N ′

N ′∑
i=1

[
2ωβ(yi)− 2ωβ∗(yi)

]
·Σ−1yi

∥∥∥∥
2

≤
∥∥E[2(ωβ(Y )− ωβ∗(Y )

)
Σ−1Y

]∥∥
2︸ ︷︷ ︸

I1

+

∥∥∥∥ 2

N ′

N ′∑
i=1

[ωβ(yi)− ωβ∗(yi)]Σ−1yi − E
[(
ωβ(Y )− ωβ∗(Y )

)
Σ−1Y

]∥∥∥∥
2︸ ︷︷ ︸

I2

.

For term I1, our proof is similar to Lemma 3 under Corollary 1 in [26]. For u ∈ [0, 1], we define βu = β∗+u∆,
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where ∆ = β − β∗. Applying Taylor’s theorem and taking expectations, we have

E
[
(ωβ(Y )− ωβ∗(Y ))Σ−1Y

]
= 2

∫ 1

0

E
[

Σ−1Y (Σ−1Y )>

(exp(Y >Σ−1βu) + exp(−Y >Σ−1βu))2︸ ︷︷ ︸
Γu(Σ−1Y )

]
∆ du

= 2

∫ 1

0

E
[

(Σ−1/2)>(Σ−1/2Y )(Σ−1/2Y )>Σ−1/2

(exp((Σ−1/2Y )>Σ−1/2βu)) + exp(−(Σ−1/2Y )>Σ−1/2βu))2

]
∆u.

= 2

∫ 1

0

(Σ−1/2)>E
[

(Σ−1/2Y )(Σ−1/2Y )>

(exp((Σ−1/2Y )>Σ−1/2βu)) + exp(−(Σ−1/2Y )>Σ−1/2βu))2︸ ︷︷ ︸
Γu(Σ−1/2Y )

]
Σ−1/2∆ du

For each choice of u ∈ [0, 1], we can easily get that Γu(Σ−1/2Y ) = Γu(−Σ−1/2Y ). Note that the dis-

tribution of Σ−1/2Y is symmetric around zero, we know that E[Γu(Σ−1/2Y )] = E[Γu(Σ−1/2Y ′)], where

Y ′ ∼ N(β∗,Σ). We further have

∥∥E[(ωβ(Y )− ωβ∗(Y ))Σ−1Y
]∥∥

2
≤ 2 sup

u∈[0,1]

‖E(Γu(Σ−1/2Y ′))‖2‖Σ−1‖2‖∆‖2. (4.7.1)

Then we go on to bound ‖E(Γu(Σ−1/2Y ′))‖2 uniformly over u ∈ [0, 1]. Defining Ỹ = Σ−1/2Y ′, we have

Ỹ ∼ N(Σ−1/2β∗, Id). For any fixed value u, we let matrix R be an orthogonal matrix that RΣ−1/2βu =

‖Σ−1/2βu‖2e1, where e1 ∈ Rd denotes the first canonical basis vector. Define U = RỸ , and we get that

U ∼ N(RΣ−1/2β∗, Id). With this transformation and letting U1 be the first coordinate of U , the operator

norm of the matrix E[Γu(Ỹ )] is equal to that of

D = E
[

UU>(
exp

(
U>‖Σ−1/2βu‖2e1

)
+ exp

(
−U>‖Σ−1/2βu‖2e1

))2 ]
= E

[
UU>(

exp
(
U1‖Σ−1/2βu‖2

)
+ exp

(
− U1‖Σ−1/2βu‖2

))2 ].
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In order to bound the operator norm of D, we define

α1 := E
[

U2
1(

exp
(
U1‖Σ−1/2βu‖2

)
+ exp

(
− U1‖Σ−1/2βu‖2

))2 ],
α2 := E

[
U1(

exp
(
U1‖Σ−1/2βu‖2

)
+ exp

(
− U1‖Σ−1/2βu‖2

))2 ],
α3 := E

[
1(

exp
(
U1‖Σ−1/2βu‖2

)
+ exp

(
− U1‖Σ−1/2βu‖2

))2 ],
f := RΣ−1/2β∗,

g := [0, f2, f3, . . . , fd]
>.

We also let M be the matrix that is identical to Id except that the first diagonal element of M is zero. In

terms of these quantities, we can write D as

D = α1e1e
>
1 + α2(e1g

> + ge>1 ) + α3(gg> + M).

So we have that

‖D‖2 ≤ ‖D− α3M‖2 + ‖α3M‖2 ≤ ‖D− α3M‖F + α3‖M‖2 ≤ α1 + 2α2‖g‖2 + α3‖g‖22 + α3‖M‖2.

(4.7.2)

In order to bound α1, we have

α1 ≤ E
[

U2
1

exp(2U1‖Σ−1/2βu‖2)

]
.

We define the event E = {U1 ≤ ‖Σ−1/2β∗‖2/4}, we condition on it and its complement to obtain

α1 ≤ E
[

U2
1

exp(2U1‖Σ−1/2βu‖2)
|E
]
P(E) + E

[
U2

1

exp(2U1‖Σ−1/2βu‖2)
|Ec
]
. (4.7.3)

Note that for any µ > 0, the function f1(t) = t2/ exp(µt) achieves maxima at t = 2/µ for t ∈ [0,∞], and

f1(t) achieves maxima at t∗ for t ∈ [t∗,∞] and any t∗ > 2µ. Provided that ‖Σ−1/2β∗‖2 · ‖Σ−1/2βu‖2 ≥ 4

which means that ‖Σ−1/2β∗‖2/4 ≥ 2/‖Σ−1/2βu‖2, we then bound the two parts respectively

E
[

U2
1

exp(2U1‖Σ−1/2βu‖2)
|E
]
≤ 1

e2‖Σ−1/2βu‖22
, (4.7.4)

E
[

U2
1

exp(2U1‖Σ−1/2βu‖2)
|Ec
]
≤ ‖Σ−1/2β∗‖22

16 exp(‖Σ−1/2β∗‖2 · ‖Σ−1/2βu‖2/2)
. (4.7.5)
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Note that for U1 we have

E[U1] = (RΣ−1/2β∗)>e1 = (RΣ−1/2βu)>e1 + [RΣ−1/2(β∗ − βu)]>e1

≥ ‖Σ−1/2βu‖2 − ‖Σ−1/2(βu − β∗)‖.

Note that ‖βu − β∗‖2 ≤ ‖β − β∗‖2 ≤ 1
4

√
λmin(Σ)
λmax(Σ)‖β

∗‖2, and
√

1/λmax‖x‖2 ≤ ‖Σ−1/2x‖2 ≤
√

1/λmin‖x‖2,

we have

‖Σ−1/2(βu − β∗)‖2 ≤
√

1

λmin
‖βu − β∗‖2 ≤

1

4

√
1

λmax(Σ)
‖β∗‖2 ≤

1

4
‖Σ−1/2β∗‖2. (4.7.6)

We also have

‖Σ−1/2βu‖2 = ‖Σ−1/2β∗ −Σ−1/2(β∗ − βu)‖2 ≥ ‖Σ−1/2β∗‖2 − ‖Σ−1/2(βu − β∗)‖2 ≥
3

4
‖Σ−1/2β∗‖2,

(4.7.7)

where the last inequality comes from (4.7.6). Combining (4.7.6) and (4.7.7) we get

E[U1] ≥ 1

2
‖Σ−1/2β∗‖2.

Therefore, by standard Gaussian tail bounds we have

P[E ] ≤ exp

(
−‖Σ−1/2β∗‖22

32

)
(4.7.8)

Inserting (4.7.4), (4.7.5), (4.7.7) and (4.7.8) into (4.7.3), we obtain

α1 ≤
16

9e2‖Σ−1/2β∗‖22
exp

(
− ‖Σ

−1/2β∗‖22
32

)
+
‖Σ−1/2β∗‖22

16
exp

(
− 3‖Σ−1/2β∗‖22

8

)
≤
(

16

9e2‖Σ−1/2β∗‖22
+
‖Σ−1/2β∗‖22

16

)
exp

(
− ‖Σ

−1/2β∗‖22
32

)
, (4.7.9)

for any ‖Σ−1/2β‖22 ≥ 16/3.

Similarly, for α2 we have

α2 = E
[

U1(
exp

(
U1‖Σ−1/2βu‖2

)
+ exp

(
− U1‖Σ−1/2βu‖2

))2 ] (4.7.10)

≤
√

E[U2
1 ]
√
E[(exp(U1‖Σ−1/2βu‖2) + exp(−U1‖Σ−1/2βu‖2))−4]. (4.7.11)
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We know that E[U2
1 ] = E2[U1] + Var(U1) ≤ ‖Σ−1/2β∗‖22 + 1. For the second term, we let f2(t) = [exp(t) +

exp(−t)]−2. We have f2
2 (t) ≤ 1/16 for any t and f2

2 (t) ≤ exp(−4t∗), for t ∈ [t∗,∞]. Therefore, we condition

it on E and obtain

E[(exp(U1‖Σ−1/2βu‖2) + exp(−U1‖Σ−1/2βu‖2))−4]

= E[f(U1‖Σ−1/2βu‖2)]

≤ E[f(U1‖Σ−1/2βu‖2)|E ]P(E) + E[f(U1‖Σ−1/2βu‖2)|Ec]

≤ 1

16
P(E) + exp(−‖Σ−1/2βu‖2‖Σ−1/2β∗‖2)

≤ 1

16
exp

(
− ‖Σ

−1/2β∗‖22
32

)
+ exp(−3‖Σ−1/2β∗‖22

4
)

≤ 2 exp

(
− ‖Σ

−1/2β∗‖22
32

)
. (4.7.12)

Inserting (4.7.5) into (4.7.10) we get that

α2 ≤ 2(‖Σ−1/2β∗‖2 + 1) exp

(
− ‖Σ

−1/2β∗‖22
64

)
. (4.7.13)

For α3, we have

α3 = E
[

1(
exp

(
U1‖Σ−1/2βu‖2

)
+ exp

(
− U1‖Σ−1/2βu‖2

))2 ]
= E[f(U1‖Σ−1/2βu‖2)]

≤ E[f(U1‖Σ−1/2βu‖2)|E ]P(E) + E[f(U1‖Σ−1/2βu‖2)|Ec]

≤ 1

4
P(E) + exp

(
‖Σ−1/2βu‖2‖Σ−1/2β∗‖2/4

)
≤ 1

4
exp

(
− ‖Σ

−1/2β∗‖22
32

)
+ exp

(
− 3‖Σ−1/2β∗‖22

4

)
≤ 2 exp

(
− ‖Σ

−1/2β∗‖22
32

)
(4.7.14)

Inserting (4.7.9), (4.7.13) and (4.7.14) into (4.7.2), and using ξ = ‖Σ−1/2β∗‖2 to denote the signal-to-noise
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ratio, we get

‖D‖2 ≤ α1 + 2α2‖g‖2 + α3‖g‖22 + α3‖M‖2

≤ α1 + 2α2‖Σ−1/2β∗‖2 + α3‖Σ−1/2β∗‖22 + α3

≤
[

16

9e2ξ2
+

65ξ2

16
+ 2ξ + 2

]
e−ξ

2/64

≤ 5(ξ2 + ξ + 1 + ξ−2)e−ξ
2/64, (4.7.15)

provided that ξ2 ≥ 16/3. Combining (4.7.15) and (4.7.1), we have

I1 =
∥∥E[2(ωβ(Y )− ωβ∗(Y )

)
Σ−1Y

]∥∥
2
≤ 10λ−1

min(Σ) · (ξ2 + ξ + 1 + ξ−2)e−ξ
2/64‖β − β∗‖2, (4.7.16)

where ξ = ‖Σ−1/2β∗‖2 is the signal-to-noise ratio. We can see that as long as signal-to-noise ratio is

sufficiently large, the coefficient on the right-hand side of (4.7.16) before ‖β − β∗‖2 will be small enough.

For term (ii), we let φ = 2
N ′

∑N ′

i=1[ωβ(yi)− ωβ∗(yi)]Σ−1yi − E[2
(
ωβ(Y )− ωβ∗(Y )

)
Σ−1Y ]. We consider

φj , the j−th coordinate of φ, which is given by

φj =
2

N ′

N ′∑
i=1

[
[ωβ(yi)− ωβ∗(yi)][Σ−1yi]j − E

[(
ωβ(Y )− ωβ∗(Y )

)
[Σ−1Y ]j

]]
(4.7.17)

We know
{

[ωβ(yi)−ωβ∗(yi)][Σ−1yi]j −E
[
2
(
ωβ(Y )−ωβ∗(Y )

)
[Σ−1Y ]j

]}N ′
i=1

are independent copies of the

centered random variable given by

[
ωβ(Y )− ωβ∗(Y )

]
[Σ−1Y ]j − E

[(
ωβ(Y )− ωβ∗(Y )

)
[Σ−1Y ]j

]
.

Note that ωβ(Y ) and ωβ∗(Y ) are both between 0 and 1, we know |ωβ(Y )−ωβ∗(Y )| ∈ [0, 1]. Therefore, we

obtain

∥∥[ωβ(Y )− ωβ∗(Y )
]
[Σ−1Y ]j − E

[(
ωβ(Y )− ωβ∗(Y )

)
[Σ−1Y ]j

]∥∥
ψ2

≤ 2
∥∥[ωβ(Y )− ωβ∗(Y )

]
[Σ−1Y ]j

∥∥
ψ2

≤ 2‖[Σ−1Y ]j‖ψ2

= 2‖Z · [Σ−1β∗]j + [Σ−1V ]j‖ψ2 , (4.7.18)

where the first inequality comes from ‖X − EX‖ψ2 ≤ 2‖X‖ψ2 , and Z is a Rademacher random variable
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and [Σ−1V ]j ∼ N(0, [Σ−1]j,jσ
2). Since Z · [Σ−1β∗]j and [Σ−1V ]j are both sub-Gaussian variables with

‖Z · [Σ−1β∗]j‖ψ2
≤ |[Σ−1β∗]j | and ‖[Σ−1V ]j‖ψ2

≤
√

[Σ−1]j,jσ. By Lemma 5.9 (rotation invariance) in [69],

we have

‖Z · [Σ−1β∗]j + [Σ−1V ]j‖ψ2
≤
√
‖Z · [Σ−1β∗]j‖2ψ2

+ ‖[Σ−1V ]j‖2ψ2

≤
√
‖Σ−1β∗‖2∞ + [Σ−1]jjσ2

≤
√
‖Σ−1β∗‖2∞ + ‖Σ−1‖∞,∞σ2. (4.7.19)

Combining (4.7.17), (4.7.18) and (4.7.19), and by Lemma 5.5 and Proposition 5.10 in [69], we know that

there exists some constant C1 such that for any j ∈ [d] and all t > 0,

P(|φj | ≥ t) ≤ e · exp

(
− C1N

′t2

‖Σ−1β∗‖2∞ + ‖Σ−1‖∞,∞σ2

)
.

By applying the union bound, we obtain

P
(

sup
j∈[d]

|φj | ≥ t
)
≤ de · exp

(
− C1N

′t2

‖Σ−1β∗‖2∞ + ‖Σ−1‖∞,∞σ2

)
.

Setting the right-hand side to be δ, we have the following bound

∥∥∥∥ 2

N ′

N ′∑
i=1

[ωβ(yi)− ωβ∗(yi)]Σ−1yi − E
[(
ωβ(Y )− ωβ∗(Y )

)
Σ−1Y

]∥∥∥∥
∞

≤ C(‖Σ−1β∗‖∞ +
√
‖Σ−1‖∞,∞σ)

√
log d+ log(e/δ)

N ′
,

holds with probability at least 1− δ. For any a ∈ Rd, we know ‖a‖2 ≤
√
d‖a‖∞, which means

I2 ≤ C(‖Σ−1β∗‖∞ +
√
‖Σ−1‖∞,∞σ)

√
d(log d+ log(e/δ))

N ′
, (4.7.20)

where C is an absolute constant. We can see that I2 will be sufficiently small when N ′ is large enough.

Therefore, we can always make I2 ≤ I1. Combining (4.7.16) and (4.7.20), we have the following γ for

Gaussian mixture model

γ = 20λ−1
min(Σ) · (ξ2 + ξ + 1 + ξ−2)e−ξ

2/64,

where ξ = ‖Σ−1/2β∗‖2 denotes the signal-to-noise ratio.
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4.7.1.2 Proof of Lemma 4.4.13

We have already verified Condition 4.4.1 and 4.4.2 for MLR. This following proof of Condition 4.4.3 is

directly inspired by [26]. Specifically, we extend their Lemma 4 and 5 and follow a similar idea in the proof.

Proof. We have

∥∥∇1Qn(β∗;β)−∇1Qn(β∗;β∗)
∥∥

2

=

∥∥∥∥ 1

N ′

N ′∑
i=1

[2ωβ(xi, yi)− 2ωβ∗(xi, yi)]yixi

∥∥∥∥
2

≤ 2
∥∥E[(ωβ(X, Y )− ωβ∗(X, Y ))YX]

∥∥
2︸ ︷︷ ︸

(i)

+ 2

∥∥∥∥ 1

N ′

N ′∑
i=1

[ωβ(xi, yi)− ωβ∗(xi, yi)]yixi − E[(ωβ(X, Y )− ωβ∗(X, Y ))YX]

∥∥∥∥
2︸ ︷︷ ︸

(ii)

.

Now we bound the two terms above respectively.

For term (i), we let X ′ = Σ−1/2X, β′ = Σ1/2β and β∗′ = Σ1/2β∗. Note that we have ‖β′ − β∗′‖2 ≤

‖β∗′‖2/32 in the problem setting, and X ′ ∼ N(0, Id). From Lemma 4 in [26], we have the following bound

∥∥E[(ωβ(X, Y )− ωβ∗(X, Y ))YX]
∥∥

2
=
∥∥E[(ωβ′(X

′, Y )− ωβ∗′(X ′, Y ))YΣ1/2X ′]
∥∥

2

≤ λmax(Σ1/2)
∥∥E[(ωβ′(X

′, Y )− ωβ∗′(X ′, Y ))YX ′]
∥∥

2

≤
√
λmax(Σ)γ1‖β′ − β∗′‖2

=
√
λmax(Σ)γ1‖Σ1/2(β − β∗)‖2

≤ λmax(Σ)γ1‖β − β∗‖2, (4.7.21)

with a γ1 < 1/4.

For term (ii), our proof goes similar with the proof in Section 4.7.1.1. We let φ = 2
N ′

∑N ′

i=1[ωβ(xi, yi) −
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ωβ∗(xi, yi)]yixi − 2E[(ωβ(X, Y )− ωβ∗(X, Y ))YX] and consider the j-th coordinate

φj =
2

N ′

N ′∑
i=1

[ωβ(xi, yi)− ωβ∗(xi, yi)]yixij − 2E[(ωβ(X, Y )− ωβ∗(X, Y ))Y Xj ]

=
2

N ′

N ′∑
i=1

[[
ωβ(xi, yi)− ωβ∗(xi, yi)

]
yixij − E

[
(ωβ(X, Y )− ωβ∗(X, Y ))Y Xj

]]

Note that
{[
ωβ(xi, yi)− ωβ∗(xi, yi)

]
yixij −E

[
(ωβ(X, Y )− ωβ∗(X, Y ))Y Xj

]}N ′
i=1

are independent copies of

the centered random variable given by

[
ωβ(X, Y )− ωβ∗(X, Y )

]
Y Xj − E

[
(ωβ(X, Y )− ωβ∗(X, Y ))Y Xj

]
.

Note that both ωβ(X, Y ) and ωβ∗(X, Y ) are between 0 and 1, we know |ωβ(X, Y ) − ωβ∗(X, Y )| ∈ [0, 1].

We further obtain that
[
ωβ(X, Y )− ωβ∗(X, Y )

]
Y Xj − E

[
(ωβ(X, Y )− ωβ∗(X, Y ))Y Xj

]
is a centered sub-

exponential random variable with

∥∥[ωβ(X, Y )− ωβ∗(X, Y )
]
Y Xj − E

[
(ωβ(X, Y )− ωβ∗(X, Y ))Y Xj

]∥∥
ψ1

≤ 2
∥∥[ωβ(X, Y )− ωβ∗(X, Y )

]
Y Xj

∥∥
ψ1
≤ 2‖YXj‖ψ1 ≤ 2‖Y ‖ψ2 · ‖Xj‖ψ2

≤
√
‖Σ‖∞,∞(‖Σ‖2 · ‖β∗‖22 + σ2).

where the last inequality holds because Y is sub-Gaussian with ‖Y ‖ψ2
≤
√
‖Σ‖2 · ‖β∗‖22 + σ2, and Xj is

sub-Gaussian with ‖Xj‖ψ2
≤
√

Σj,j ≤
√
‖Σ‖∞,∞. By Proposition 5.16 in [69], we have

P(|φj | ≥ t) ≤ 2 exp

(
− C ′N ′t2

‖Σ‖∞,∞(‖Σ‖2 · ‖β∗‖22 + σ2)

)

for sufficient small t. By applying the union bound we have

P
(

sup
j∈[d]

|φj | ≥ t
)
≤ 2d exp

(
− C ′N ′t2

‖Σ‖∞,∞(‖Σ‖2 · ‖β∗‖22 + σ2)

)
.

Setting the right-hand side to be δ, we have the following bound for some absolute constant C

∥∥∥∥ 1

N ′

N ′∑
i=1

[
2 · ωβ∗(xi, yi)

]
yixi − 2E[ωβ∗(Y,X)YX]

∥∥∥∥
∞
≤ C(‖Σ‖2 · ‖β∗‖2 +

√
‖Σ‖2σ)

√
log d+ log(2/δ)

N ′

(4.7.22)
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holds with probability with at least 1−δ. We can see that I2 will be sufficiently small when N ′ is large enough.

Therefore, we can always make I2 ≤ I1/3 ≤ (λmax(Σ)γ1/3)‖β − β∗‖2. Combining (4.7.21) and (4.7.22), we

have the following γ for mixture of linear regression

γ = γ1λmax(Σ),

where γ1 ∈ (0, 1/3) is a constant.

4.7.2 Statistical Error

In this section, we provide the detailed proof of statistical errors for GMM and MLR.

4.7.2.1 Proof of Lemma 4.4.10

This proof is directly inspired by [28]. We extend their Lemma 4.4 and follow a homogeneous idea in the

proof.

Proof. In each outer iteration, we have N ′ = N/m samples. Note that β∗ is the true model parameter and

∇1Q(β∗;β∗) = 0. For Gaussian mixture model, we have

∥∥∇1Qn(β∗;β∗)
∥∥
∞

=
∥∥∇1Qn(β∗;β∗)−∇1Qn(β∗;β∗)

∥∥
∞

=

∥∥∥∥ 1

N ′

N ′∑
i=1

[
2 · ωβ∗(yi)− 1

]
·Σ−1yi −Σ−1β∗ −

[
E
[
(2 · ωβ∗(Y )− 1) ·Σ−1Y

]
−Σ−1β∗

]∥∥∥∥
∞

=

∥∥∥∥− 1

N ′

N ′∑
i=1

Σ−1yi + E[Σ−1Y ] +
1

N ′

N ′∑
i=1

[
2 · ωβ∗(yi)

]
·Σ−1yi − 2E[ωβ∗(Y )Σ−1Y ]

∥∥∥∥
∞

≤
∥∥∥∥ 1

N ′

N ′∑
i=1

Σ−1yi

∥∥∥∥
∞︸ ︷︷ ︸

(i)

+

∥∥∥∥ 1

N ′

N ′∑
i=1

[
2 · ωβ∗(yi)

]
·Σ−1yi − 2E[ωβ∗(Y )Σ−1Y ]

∥∥∥∥
∞︸ ︷︷ ︸

(ii)

,

where the last equality holds because E[Σ−1Y ] = Σ−1E[Y ] = 0.

For term (i), we let Θ = Σ−1Y , θi = Σ−1yi and φ = 1
N ′

∑N ′

i=1 Σ−1yi = 1
N ′

∑N ′

i=1 θi. Then φj ,the j−th

coordinate of φ, is given by

φj =
1

N ′

N ′∑
i=1

θi,j .
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Note that

Θ = Z ·Σ−1β∗ + Σ−1V ,

and {θi,j}N
′

i=1 are independent and identical copies from random variable given by

Z · [Σ−1β∗]j + [Σ−1V ]j ,

where Z is a Rademacher random variable and [Σ−1V ]j ∼ N(0, [Σ−1]j,jσ
2). Since Z ·[Σ−1β∗]j and [Σ−1V ]j

are both sub-Gaussian variables with ‖Z · [Σ−1β∗]j‖ψ2 ≤ |[Σ−1β∗]j | and ‖[Σ−1V ]j‖ψ2 ≤
√

[Σ−1]j,jσ. By

Lemma 5.9 (rotation invariance) in [69], we have

‖Z · [Σ−1β∗]j + [Σ−1V ]j‖ψ2
≤
√
‖Z · [Σ−1β∗]j‖2ψ2

+ ‖[Σ−1V ]j‖2ψ2

≤
√
‖Σ−1β∗‖2∞ + [Σ−1]jjσ2

≤
√
‖Σ−1β∗‖2∞ + ‖Σ−1‖∞,∞σ2. (4.7.23)

By Lemma 5.5 and Proposition 5.10 in [69], we know that there exists some constant C such that for any

j ∈ [d] and all t > 0,

P(|φj | ≥ t) ≤ e · exp

(
− CN ′t2

‖Σ−1β∗‖2∞ + ‖Σ−1‖∞,∞σ2

)
.

By applying the union bound, we obtain

P
(

sup
j∈[d]

|φj | ≥ t
)

= P
(∥∥∥∥ 1

N ′

N ′∑
i=1

Σ−1yi

∥∥∥∥
∞
≥ t
)
≤ de · exp

(
− CN ′t2

‖Σ−1β∗‖2∞ + ‖Σ−1‖∞,∞σ2

)
.

Setting the right-hand side to be δ/2, we have the following bound

∥∥∥∥ 1

N ′

N ′∑
i=1

Σ−1yi

∥∥∥∥
∞
≤ C1(‖Σ−1β∗‖∞ +

√
‖Σ−1‖∞,∞σ)

√
log d+ log(2e/δ)

N ′
, (4.7.24)

holds with probability at least 1− δ/2 where C1 is an absolute constant.

For term (ii), we now let θi =
[
ωβ∗(yi)

]
· Σ−1yi − E[ωβ∗(Y )Σ−1Y ], φ = 1

N ′

∑N ′

i=1

[
2 · ωβ∗(yi)

]
· Σ−1yi −
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2E[ωβ∗(Y )Σ−1Y ] = 2
N ′

∑N ′

i=1 θi, and consider the j−th coordinate φj

φj =
2

N ′

N ′∑
i=1

θi,j =
2

N ′

N ′∑
i=1

[
ωβ∗(yi)[Σ

−1yi]j − E
[
ωβ∗(Y )[Σ−1Y ]j

]]
.

We know that {θi,j}N
′

i=1 are independent copies of random variable ωβ∗(Y )[Σ−1Y ]j − E
[
ωβ∗(Y )[Σ−1Y ]j

]
.

Note that ωβ∗(Y ) ∈ [0, 1] and we have

P(|ωβ∗(Y )[Σ−1Y ]j | ≥ t) ≤ P(|[Σ−1Y ]j | ≥ t) ≤ exp(1− Ct2/‖Σ−1Y ‖2ψ2
),

for some absolutely constant C by Definition 5.7 and Example 5.8 in [69]. Thus by Lemma 5.5 in [69]

and (4.7.23) we know that ωβ∗(Y )[Σ−1Y ]j is sub-Gaussian with ‖ωβ∗(Y )[Σ−1Y ]j‖ψ2
≤ ‖[Σ−1Y ]j‖ψ2

≤√
‖Σ−1β∗‖2∞ + ‖Σ−1‖∞,∞σ2. Using Remark 5.18 in [69], we obtain

∥∥ωβ∗(Y )[Σ−1Y ]j − E
[
ωβ∗(Y )[Σ−1Y ]j

]∥∥
ψ2
≤ 2
∥∥ωβ∗(Y )[Σ−1Y ]j

∥∥
ψ2
≤ 2
√
‖Σ−1β∗‖2∞ + ‖Σ−1‖∞,∞σ2.

By Lemma 5.5 and Proposition 5.10 in [69], we have

P(|φj | ≥ t) = P
(∣∣∣∣ 2

N ′

N ′∑
i=1

[
ωβ∗(yi)[Σ

−1yi]j − E
(
ωβ∗(Y )[Σ−1Y ]j

)]∣∣∣∣ ≥ t)
≤ e · exp

(
− C ′N ′t2

‖Σ−1β∗‖2∞ + ‖Σ−1‖∞,∞σ2

)
,

where C ′ is an absolute constant. By applying the union bound, we obtain

P
(

sup
j∈[d]

|φj | ≥ t
)
≤ de · exp

(
− C ′N ′t2

‖Σ−1β∗‖2∞ + ‖Σ−1‖∞,∞σ2

)
.

Setting the right-hand side to be δ/2, we have the following bound

∥∥∥∥ 1

N ′

N ′∑
i=1

[
2 · ωβ∗(yi)

]
· Σ−1yi − 2E[ωβ∗(Y )Σ−1Y ]

∥∥∥∥
∞

≤ C2(‖Σ−1β∗‖∞ +
√
‖Σ−1‖∞,∞σ)

√
log d+ log(2e/δ)

N ′
(4.7.25)

holds with probability at least 1− δ/2, where C2 is an absolute constant.

Note that N ′ = N/m, and from Remark 4.4.12 we know m = O(logN). Therefore, we have N ′ =

O(N/ logN). Combining (4.7.24), (4.7.25) and N ′ = O(N/ logN), we can get Lemma 4.4.10.
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4.7.2.2 Proof of Lemma 4.4.14

This proof is directly inspired by [28]. Specifically, we extend their Lemma 4.9 and follow a similar idea in

the proof.

Proof. For our algorithm with resampling, we have N ′ = N/m samples in each outer iteration. For mixture

of linear regression, recall that

∇1Qn(β∗;β∗) =
1

N ′

N ′∑
i=1

[(
2ωβ∗(xi, yi)− 1

)
yixi − xi · x>i · β∗

]
.

We have

∥∥∇1Qn(β∗;β∗)
∥∥
∞

=
∥∥∇1Qn(β∗;β∗)−∇1Q(β∗;β∗)

∥∥
∞

=

∥∥∥∥ 1

N ′

N ′∑
i=1

[(
2ωβ∗(xi, yi)− 1

)
yixi − xi · x>i · β∗

]
−
[
E[(2 · ωβ∗(X, Y )− 1)YX]−Σβ∗

]∥∥∥∥
∞

=
∥∥− 1

N ′

N ′∑
i=1

xi · x>i · β∗ + Σβ∗ +
1

N ′

N ′∑
i=1

[
2ωβ∗(xi, yi)yixi

]
− 2E[ωβ∗(X, Y )YX]− 1

n

N ′∑
i=1

yixi
∥∥
∞

≤
∥∥∥∥ 1

N ′

N ′∑
i=1

yixi

∥∥∥∥
∞︸ ︷︷ ︸

I1

+

∥∥∥∥ 1

N ′

N ′∑
i=1

[
2 · ωβ∗(xi, yi)

]
yixi − 2E[ωβ∗(Y,X)YX]

∥∥∥∥
∞︸ ︷︷ ︸

I2

+

∥∥∥∥ 1

N ′

N ′∑
i=1

xi · x>i · β∗ −Σβ∗
∥∥∥∥
∞︸ ︷︷ ︸

I3

.

For term I1, we let φ = 1
N ′

∑N ′

i=1 yixi and consider the j−th coordinate

φj =
1

N ′

N ′∑
i=1

yixi,j .

We know {yixi,j}N
′

i=1 are independent copies of random variable (Z ·X>β∗+V )Xj , where Z is a Rademacher

random variable, X ∼ N(0,Σ), Xj ∼ N(0,Σj,j) and V ∼ N(0, σ2). By Lemma 5.9 in [69], Z ·X>β∗ + V

is a sub-Gaussian random variable with ‖Z ·X>β∗ + V ‖ψ2
≤
√
‖Σ‖2 · ‖β∗‖22 + σ2, and ‖Xj‖ψ2

≤
√

Σj,j .

Therefore, we obtain that (Z ·X>β∗ + V )Xj is sub-exponential random variable with

‖(Z ·X>β∗ + V )Xj‖ψ1 ≤
√

Σj,j(‖Σ‖2 · ‖β∗‖22 + σ2) ≤
√
‖Σ‖∞,∞(‖Σ‖2 · ‖β∗‖22 + σ2),
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by Definition 5.13 in [69]. Further by Proposition 5.16 in [69], we have

P(|φj | ≥ t) ≤ 2 exp

(
− CN ′t2

‖Σ‖∞,∞(‖Σ‖2 · ‖β∗‖22 + σ2)

)

for sufficient small t. By applying the union bound we have

P
(

sup
j∈[d]

|φj | ≥ t
)
≤ 2d exp

(
− CN ′t2

‖Σ‖∞,∞(‖Σ‖2 · ‖β∗‖22 + σ2)

)
.

Setting the right-hand side to be δ/3 and noting ‖Σ‖∞,∞ ≤ ‖Σ‖2, we have the following bound

∥∥∥∥ 1

N ′

N ′∑
i=1

yixi

∥∥∥∥
∞
≤ C1(‖Σ‖2 · ‖β∗‖2 +

√
‖Σ‖2σ)

√
log d+ log(6/δ)

N ′
(4.7.26)

holds with probability with at least 1− δ/3 for some absolute constant C1.

For term I2, we now let φ = 2
N ′

∑N ′

i=1[ωβ∗(xi, yi)]yixi,j − E[ωβ∗(Y,X)YX] and the j−th coordinate is

given by

φj =
2

N ′

N ′∑
i=1

[ωβ∗(xi, yi)]yixi,j − E[ωβ∗(Y,X)Y Xj ].

We know {ωβ∗(xi, yi)yixi,j−E[ωβ∗(Y,X)YX]}N ′i=1 are independent copies of random variable ωβ∗(X, Y )Y Xj−

E[ωβ∗(Y,X)Y Xj ], where ωβ∗(Y,X) ∈ [0, 1], and we further obtain that ωβ∗(X, Y )Y Xj−E[ωβ∗(Y,X)Y Xj ]

is a centered sub-exponential random variable with

‖ωβ∗(X, Y )Y Xj − E[ωβ∗(Y,X)Y Xj ]‖ψ1 ≤ 2‖ωβ∗(X, Y )Y Xj‖ψ1 ≤ 2‖Y Xj‖ψ1 ≤ 2‖Y ‖ψ2‖Xj‖ψ2

≤
√
‖Σ‖∞,∞(‖Σ‖22‖β∗‖22 + ‖Σ‖2).

By Proposition 5.16 in [69], we have

P(|φj | ≥ t) ≤ 2 exp

(
− C ′N ′t2

‖Σ‖∞,∞(‖Σ‖2 · ‖β∗‖22 + σ2)

)

for sufficient small t. By applying the union bound we have

P
(

sup
j∈[d]

|φj | ≥ t
)
≤ 2d exp

(
− C ′N ′t2

‖Σ‖∞,∞(‖Σ‖2 · ‖β∗‖22 + σ2)

)
.
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Setting the right-hand side to be δ/3, we have the following bound for some absolute constant C2

∥∥∥∥ 1

N ′

N ′∑
i=1

[
2 · ωβ∗(xi, yi)

]
yixi − 2E[ωβ∗(Y,X)YX]

∥∥∥∥
∞
≤ C2(‖Σ‖2 · ‖β∗‖2 +

√
‖Σ‖2σ)

√
log d+ log(6/δ)

N ′

(4.7.27)

holds with probability with at least 1− δ/3.

For term (iii), we now let φ = 1
N ′

∑N ′

i=1 xi · x>i · β∗ −Σβ∗ and the j−th coordinate is given by

φj =
1

N ′

N ′∑
i=1

xi,j · x>i β∗ − [Σβ∗]j .

Since {xi,j · x>i β∗ − [Σβ∗]j}N
′

i=1 are independent copies of random variable Xj ·X>β∗ − [Σβ∗]j , which we

know is a centered sub-exponential random variable with

‖Xj ·X>β∗ − [Σβ∗]j‖ψ1
≤ 2‖Xj ·X>β∗‖ψ1

≤ 2‖Xj‖ψ2
· ‖X>β∗‖ψ2

≤ 2
√

Σj,j
√
‖Σ‖2‖β∗‖2 ≤ 2‖Σ‖2 · ‖β∗‖2,

where the inequalities come from Remark 5.18, Definition 5.13 in [69] and the fact that ‖Σ‖2 ≥ ‖Σ‖∞,∞.

Therefore, for sufficiently small t we have

P(|φj | ≥ t) ≤ 2 exp

(
− C ′′N ′t2

‖Σ‖22‖β∗‖22

)
,

for some absolute constant C ′′. By applying the union bound we obtain

P
(

sup
j∈[d]

|φj | ≥ t
)
≤ 2d exp

(
− C ′′N ′t2

‖Σ‖22‖β∗‖22

)
.

Setting the right-hand side term to be δ/3 we have the following bound

∥∥∥∥ 1

N ′

N ′∑
i=1

xi · x>i · β∗ −Σβ∗
∥∥∥∥
∞
≤ C3‖Σ‖2 · ‖β∗‖2

√
log d+ log(6/δ)

N ′
(4.7.28)

holds with probability of at least 1− δ/3 for some absolute constant C3.

Note that N ′ = N/m, and from Remark 4.4.16 we know m = O(logN). Therefore, N ′ = O(N/ logN).

Combining (4.7.26), (4.7.27) and (4.7.28) together with N ′ = O(N/ logN), we get (4.4.21).
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Chapter 5

Event Detection with Noise
Reduction

In this chapter, we present our work in event detection, serving as the improvement focusing on the aspect of

noise reduction. Specifically, we pioneeringly utilize the topic distribution, of which the temporal divergence

can be a very good indicator of emerging events. We then propose a novel method, TopicDiver [76], to

address the event detection problem. Specifically, we apply sparsity-inducing longitudinal regularization

to overcome the noises effectively. The experimental results demonstrate that TopicDiver outperforms the

baseline models in the measures for accuracy across various settings.

5.1 Topic Distribution

The input of a typical topic model is the text corpus, and the output includes:

• Word distribution of topics p(w|z): given a topic z, its probability of generating a word w in vocabulary.

We have
∑|V |
i=1 p(w|z) = 1.

• Topic distribution of documents p(z|d): given a document d in corpus, the probability it’s about a

topic z. We have
∑K
k=1 p(zk|d) = 1.

For example, for a specific topic zk about computer industry, the words with the highest probability may be

P (“computer”|zk) = 0.05, P (“software”|zk) = 0.04 and P (“technology”|zk) = 0.02. If a specific document

d is about computer industry, then zk may be the most relevant topic with the highest P (zk|d).

Our proposed algorithm is based on the afore-neglected topic distribution of documents over time. In this

section, we will give two examples to demonstrate that utilizing this information for event detection is both

promising and challenging.

Motivating Example. On July 20, 2012, a mass shooting occurred in a theater in Aurora, Colorado1.

The topic model PLSI [53] is applied on our CNN dataset. The daily topic distribution corresponding to

mass shooting around the event date is exhibited in Figure 5.1(a). The topic distribution on a specific day is

1https://en.wikipedia.org/wiki/2012 Aurora shooting
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(a) Topic on Aurora Shooting
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(b) Topic on Libya Situations

Figure 5.1: Temporal Distribution for Two Topics

the average of the topic distributions of all documents on the day. The top words associated with this topic

include “Aurora”, “gunman”, “theater”, and “victim”. The peak in Figure 5.1(a) corresponds to the exact

date of the event. As the coverage of the event lingers a few days after the event date, this peak gradually

disappears as the coverage goes down. Therefore, the divergence of topic distributions between adjacent

time stamps may precisely indicate the occurrence of a new event.

Challenge. We highlight that capturing such temporal divergence of topic distributions is challenging. To

illustrate, Figure 5.1(b) depicts the daily distribution of the topic on the situation in Libya over time. The

thin blue line denotes the topic distribution of PLSI generated the same way as the mass shooting topic,

where numerous peaks can be observed. However, most of these peaks are not related to events that are

noteworthy. According to our manual annotation, only one event (the peak in the red curve in Figure 5.1(b),

generated by TopicDiver) corresponds to the topic of Libya’s situation. On most of the other “peaks” in the

figure, the divergence is caused by updates of status, follow-ups of events, or general discussions. Different

from the mass shooting topic that is about a single emergency, the Libya’s situation topic is broader with

multiple aspects that evolve over time. Therefore, the divergence of the Libya’s situation topic distributions

over adjacent time may be affected by other non-event factors. We refer to such non-event divergence as

noises since it hampers the detection of real events. Such noise is actually very common in the detection

of important events, as most of the significant events involve effects in multiple aspects, cause different

follow-ups that last a long time period.
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Our Contribution

We take the initiative towards exploiting the hitherto-undiscovered temporal divergence of topic distributions

for event detection. Intuitively, when an event takes place, there will be a lot of documents discussing it.

Therefore, the average topic distribution of the documents on the topic corresponding to the event will go up.

The more significant the event is, the larger this increase should be. Compared with the word distributions

of topics which are more complicated and affected by more factors, the topic distribution serves as a more

straightforward sign of the change in corpus themes. While quantifying the distance of word distributions

is always involved with complex measure such as KL-divergence, another advantage of topic distribution is

that the difference is much simpler and easier to use.

Specifically, our contributions in this work are summarized as follows:

• We pioneeringly study the topic distributions of documents and find that their temporal divergence is

a potentially useful indicator of real events.

• We propose longitudinal regularization for noise reduction in the divergence of topic distribution and

propose a novel event detection algorithm, TopicDiver.

• We show our proposed method can effectively overcome the noise challenge and outperform the state-

of-the-art methods consistently, especially at the detection of significant events.

5.2 Problem Formulation

In this section, we will formalize our event detection problem. The input for the event detection problem

is a time-stamped text stream, represented by a collection of documents over a set of time stamps. These

time stamps can be at any reasonable granularity based on the data. For example, if we want to analyze the

scientific literature in computer science over the past few decades, year should be an appropriate time unit

here; but if our data is Twitter stream generated at a very high rate, we might use hour as the time unit.

The time stamps are denoted by t1, t2, . . . , tT , and the collection of documents published on ti is denoted

by Ci = {di,1, di,2, . . . , di,Ni}, where di,l is the l-th document on this time stamp. The input collection is

denoted by D = {C1, . . . , CT }.

The output should be a set of detected events, where each event is denoted by one of the following two:

• A first story dt,k, the first document discussing the event in D.

• A set of words {w1, w2, . . . wM} that can describe the event.
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As we will show later, TopicDiver can be conveniently adapted into both settings. We have two settings

of event detection:

• Retrospective: we have the entire collection D available and want to detect events on all the time

stamps {t1, . . . , tT }.

• Online: we have the documents up to time ti, i.e. C1, . . . , Ci available when the detection time is ti.

From the above description, we can see that if the time granularity is fine enough, both settings are at

the document level, i.e. each Ci has only one document and we determine whether it is a new event right

on its published time.

5.3 Proposed Method

In this section, we will describe our proposed method, TopicDiver. We will start with PLSI, one of the most

popular topic models, and then build TopicDiver on top of it.

5.3.1 Probabilistic Latent Semantic Indexing (PLSI)

PLSI is a widely-used model analyzing the hidden topics of text corpus, featured by latent variables. Specif-

ically, given a co-occurrence of a word, document pair (w, d), the probability of the pair is modeled as the

mixture of K different topics:

P (w, d) = P (d)

K∑
k=1

P (w|zk)P (zk|d),

where each zk is a hidden topic, and P (w|zk), P (zk|d) are what we refer as word distribution of topic zk

and topic distribution of document d respectively.

While most existing methods look into the divergence of P (w|zk) at adjacent time stamps to detect

events, we use P (zk|d) over time. For example, when generating the curve in Figure 5.1(a) for retrospective

event detection, we first run PLSI on the whole corpus to generate P (zk|d) for all document d. For each

time stamp ti, we compute P (zk|ti) as the average of P (zk|di,l) and plot it against time. We then use the

criterion P (zk|ti) > µP (zk|ti−1) to easily check if there is an event on ti corresponding to topic zk, where µ

is a predefined threshold parameter.
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5.3.2 TopicDiver : A Longitudinal Regularized Mixture Model

We now describe TopicDiver as a two-step extension of PLSI, starting from a mixture model for text streams,

and then introducing a longitudinal regularization.

A Mixture Model for Text Streams

Recall that the input of the problem is a collection D. Since our method utilizes the topic distributions

over time, we concatenate all the documents published on the same time stamp to form a super document.

For example, documents in Ci will form a super document Si. Obviously, when the time granularity is fine

enough, the super documents Si are just the documents di. The vocabulary of Si is denoted by Vi, and the

vocabulary of the collection is V = ∪Ti=1Vi. We use f(w, d) to denote the count of a certain word w in a

certain document or super document d.

Given a collection of super documents S = {S1, S2, . . . , ST }, the log-likelihood of S is given by the mixture

model:

logP (S) =

T∑
i=1

logP (Si) =

T∑
i=1

|Vi|∑
j=1

f(wj , Si) logP (wj |ti), (5.3.1)

where P (wj |ti) is denoted as the mixture of K topics {z1, z2, . . . , zK},

P (wj |ti) =

K∑
k=1

P (wj |zk)P (zk|ti).

We use β to denote the matrix of word distributions of topics, i.e. βk,j = P (wj |zk) and θ to denote the

matrix of topic distributions over time, i.e. θi,k = P (zk|ti). The divergence of θ over time is the key of

TopicDiver.

Longitudinal Regularization

From [53], we know that the direct maximization of document likelihood in (5.3.1) is the process of PLSI

on superdocuments. However, PLSI deals with static vocabulary with no temporal information considered.

Moreover, directly using the topic distributions generated by a conventional topic model will bring much

noise for precise event detection, as we will show in the experiments in Section 5.5. Inspired by the idea of

fused lasso [77], we apply `-1 regularization on the successive differences of topic distributions. Formally,
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our framework is given by

(θ∗,β∗) = arg min
θ,β
−

T∑
i=1

|Vi|∑
j=1

f(wj , Si) log

K∑
k=1

θi,kβk,j

+λ

T∑
i=2

‖θi − θi−1‖1, (5.3.2)

subject to

K∑
k=1

θi,k = 1, i = 1, . . . , T.

where θi denotes the i-th row of θ.

From (5.3.2), we know that the regularization parameter λ is indicating the regularization strength. When

λ goes to infinity, we will allow no divergence and θi will be constant along the time; when λ is zero, our

framework will become conventional PLSI on the super documents.

To sum up, the key differences of TopicDiver and conventional PLSI are two-fold:

• We introduce the time variable and apply mixture model on time-stamped text streams instead of

documents.

• We add longitudinal regularization on topic distributions of adjacent time stamps.

5.4 Optimization Algorithm

Now we describe our algorithm to solve the optimization problem in (5.3.2). We discuss retrospective and

online settings respectively. In retrospective setting, the complete collection D is available, so the vocabulary

V is also known. We can directly set Vi = V and use a coordinate descent over β and θ. Note that for the

constraint, we introduce θ̃ and let

θi,k = eθ̃i,k/

K∑
k′=1

eθ̃i,k′ , i = 1, . . . , T, k = 1, . . . ,K.
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We use L to denote the objective function in (5.3.2). Then the gradient is given by:

∂L

∂θ̃i,k
= −

V∑
j=1

f(wj , Si)

[
eθ̃i,kβk,j∑K

k′=1 e
θ̃i,k′βk′,j

− eθ̃i,k∑K
k′=1 e

θ̃i,k′

]
+ λsign(θ̃i,k − θ̃i−1,k),

∂L

∂βk,j
= −

T∑
i=1

f(wj , Si)
eθ̃i,k∑K

k′=1 e
θ̃i,k′βk′,j

.

We update θ̃ and β as following:

θ̃(n+1) = θ̃(n) − γ1
∂L

∂θ̃
, β(n+1) = β(n) − γ2

∂L

∂β
. (5.4.1)

The algorithm stops when L converges.

In the online setting, the vocabulary evolves over time. Therefore, we need to fold in the new words

and documents in a streaming fashion. We use the method in [78] folding in new words and documents.

Specifically, we run a topic model on the first super document S1 to get β and θ1. After finishing detection

on ti−1, we do the following steps for detection on ti:

1. Fold in new documents. For each di,l in Ci we initialize all P (zk|di,l) randomly. We adopt the EM

algorithm to compute

P (zk|wj , di,l) =
P (wj |zk)P (zk|di,l)∑K

k′=1 P (wj |zk′)P (zk′ |di,l)
, (5.4.2)

P (di,l|zk) =

∑|Vi|
j=1 f(wj , di,l)P (zk|wj , di,l)∑Ni

l=1

∑|Vi|
j=1 f(wj , di,l)P (zk|w, di,l)

. (5.4.3)

2. Fold in new words. We use wnew to denote the new words in Vi that are not in V1, . . . , Vi−1, and

compute

P (zk|wnew, di,l) =
P (di,l|zk)P (zk|wnew)∑K

k′=1 P (di,l|zk′)P (zk′ |wnew)
, (5.4.4)

P (zk|wnew) =

∑Ni
l=1 f(wnew, di,l)P (zk|wnew, di,l)∑Ni

l=1 f(wnew, di,l)
. (5.4.5)

Then we will use (5.4.1) to do coordinate descent.

After we get β∗ and θ∗, we can use the divergence in θ∗i−1 and θ∗i . We will use the simple but effective
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rule θ∗i,k > µθ∗i−1,k to determine if there is enough divergence to indicate an event in topic k emerged on

ti, where µ is a predefined constant. When such divergence is detected, the top words associated with the

topic can be directly used to describe the event. After we get the description keywords for events from

the diverging topic, we then rank the documents on this bursty time stamp. The ranking function for a

document is defined as

r(d, ti, zk) = P (zk|d) · e−ηnd , (5.4.6)

where P (zk|d) denotes how relevant the document d is to the k-th topic, nd is the temporal order of d in

Ci, and η = 0.5 is the decaying rate penalizing later documents. After ranking all the documents, we set

a threshold value to identify all the first story documents. We show the outline of the online version of

TopicDiver algorithm in Algorithm 6.

Algorithm 6 TopicDiver : Online Event Detection from Text Streams

1: Input: the text corpus D with time stamps {t1, . . . , tT }, number of topics K, threshold parameter µ
2: Output: A set of detected events, each featured by a set of keywords and top document(s).
3: Initialize β and θ1 from topic model on S1, the set of detected event documents E ← ∅, the set of detected event

keyword sets W ← ∅
4: for i = 2 to T do
5: Concatenate all documents from D on ti to get Si.
6: for each document di,l do
7: Fold in di,l using (5.4.2) and (5.4.3)
8: end for
9: for each new word wnew do

10: Fold in wnew using (5.4.4) and (5.4.5)
11: end for
12: Gradient Descent using (5.4.1)
13: for each topic zk do
14: if θ∗i,k > µθ∗i−1,k then
15: Find top documents di,k related to zk by (5.4.6), and top terms wi,k by P (w|zk)
16: E = E ∪ {di,k}
17: W =W ∪ {wi,k}
18: end if
19: end for
20: end for
21: return E , W

5.5 Experiments

In this section, we evaluate TopicDiver on datasets from news articles and social media. For all the

quantitative evaluation metrics, we use first story documents as output. We also use keywords to qualitatively

illustrate the example events we have detected. We show that TopicDiver outperforms other state-of-the-art

methods, and is especially good at detecting significant events.
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5.5.1 Datasets

We use three datasets for our experiments, two from newswire and one from social media. We first testify

our algorithm on news datasets, which are standard TDT5 dataset and CNN TV transcripts before moving

to the social media dataset from Twitter.

TDT5 Dataset The standard TDT5 dataset is the benchmark dataset widely used in several TDT contests.

It consists of news articles from various news media in multiple languages. We will use only the English

part, containing 126 events labeled with first story in 221306 documents spanning 183 days from April to

September 2003, with a vocabulary size of 87790 after preprocessing. Each day is used as a time stamp.

CNN TV Transcripts We collect transcripts of several CNN TV shows from 2009 to 2012. Transcripts are

the on-screen text during programs, which are good description of the events covered by the program. We

manually label events with the transcripts of the first programs covering them. There are 33593 documents

and 50 events in total, with the vocabulary size 28670. The time stamp for this dataset is also day.

Twitter Dataset We collected 26 millions Tweets with over 180 million tokens from March 1st to 20th,

2016, using Apollo System 2. The total size of the dataset is 98.9GB. Since tweets are generated at a very

high rate, we use hour as our time stamp to match the pace. Even though hashtags and special characters

such as at signs would be potential indicators of the Tweet content [50], we remove all the hashtags and at

signs in the tweets to maintain the generality of our method. We also only select the tweets in English.

5.5.2 Evaluation Metrics

Due to the different natures of the datasets, we will now introduce the evaluation metrics for newswire and

Twitter data respectively.

Newswire Datasets. For the TDT5 dataset, we follow the official TDT evaluation plan [45] using

minimal normalized cost, which is the most popular metric for detection problems. For CNN data, we use

both minimal normalized cost and F1 score. We first introduce the basic measures:

• Precision: fraction of detected documents that are events.

• Recall: fraction of events that are detected.

• False Alarm (FA): fraction of non-event documents that are detected as events.

• Miss: fraction of events that are not detected.

• F1 = 2 · Precision ·Recall/(Precision+Recall).

2http://apollo3.cs.illinois.edu/
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Table 5.1: Retrospective event detection on news data. A smaller Cmin or a larger F1 is better.

TDT5 CNN
Method False Alarm Miss Cmin Precision Recall F1 False Alarm Miss Cmin

PLSI 0.026 0.468 0.595 0.041 0.740 0.078 0.026 0.260 0.386
TopicDiver 0.011 0.492 0.546 0.248 0.700 0.366 0.003 0.300 0.316

We now introduce minimal normalized cost. First, we define detection cost Cdet as

Cdet = Miss · Cmiss · Ptarget + FA · CFA · Pnon-target,

According to the official TDT evaluation plan [45], we set Cmiss = 1 as the cost of missing an event;

CFA = 0.1 as the cost of detecting a non-event document as an event, Ptarget = 0.02 and Pnon-target = 0.98

as the prior probability of an event document in the corpus. We can easily see that C1 = CFA · Pnon-target

and C2 = Cmiss · Ptarget are the costs of declaring all documents events and non-events respectively. The

normalized detection cost is defined as

Cnorm =
Cdet

min{C1, C2}
.

Finally, different parameter values will lead to different miss and false alarm values. In [45], the authors

do a parameter sweep on the threshold. In our case, λ is an important parameter controlling the strength

of regularization, and thus the number of events detected. Therefore, we use grid search to determine the

best value of λ minimizing Cnorm. The minimal normalized cost Cmin is the minimum of Cnorm.

Twitter Dataset. The evaluation metrics for Twitter dataset is different. Given the vast volume and

rapid generating rate of Twitter data, it is not practical either to label all the tweets or to choose an event

and find the first tweet mentioning it. We evaluate methods on the tweets detected instead of the whole

collection, which is the method used in many other works [43, 46, 51]. For evaluation on Twitter dataset,

we use precision, which is the fraction of selected tweets related to events (not necessarily the earliest), and

recall, which is now the number of unique events detected on a daily basis [51]. Since Twitter data is often

overwhelmed with noises potentially undermining the event detection, we will also use number of detections

to check if the model can generate both precise and concise results.
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Table 5.2: Online event detection on news data. A smaller Cmin or a larger F1 is better.

TDT5 CNN
Method False Alarm Miss Cmin Precision Recall F1 False Alarm Miss Cmin

UMASS 0.042 0.492 0.696 0.132 0.660 0.220 0.007 0.340 0.372
LSH 0.044 0.492 0.707 0.112 0.660 0.191 0.008 0.340 0.379

TopicDiver 0.037 0.524 0.703 0.165 0.700 0.267 0.005 0.300 0.326

Table 5.3: Labeled Events in 2012 CNN Transcripts

News Event Date Keywords
Death of Whitney Houston Feb 11, 2012 ‘Whitney’, ‘Houston’, ‘death’
Shooting of Trayvon Martin Feb 27, 2012 ‘Trayvon’, ‘Martin’, ‘Zimmerman’

Jerry Sandusky’s Trial Jun 12, 2012 ‘Sandusky’,‘child’, ‘scandal’
Aurora Shooting Jul 20, 2012 ‘Aurora’, ‘victims’, ‘gun’
London Olympics Jul 28, 2012 ‘Olympic’, ‘London’, ‘medal’
Hurricane Isaac Aug 21, 2012 ‘hurricane’, ‘storm’, ‘Louisiana’
Benghazi Attack Sept 11, 2012 ‘Benghazi’, ‘attack’, ‘arm’
Hurricane Sandy Oct 22, 2012 ‘flood’, ‘hurricane’, ‘storm’

Presidential Election Nov 6, 2012 ‘Obama’, ‘election’, ‘president’
Sandy Hook Shooting Dec 14, 2012 ‘shooting’, ‘connecticut’, ‘elementary’

Table 5.4: Labeled Events in TDT5 Dataset

News Event Date Keywords
London Marathon Apr 13, 2003 ‘London’, ‘marathon’, ‘competition’, ‘Radcliffe’

Bombing in Riyadh, Saudi Arabia May 12, 2003 ‘Riyadh’, ‘explosion’, ‘Arabia’, ’terrorist’
Hu Jintao meets Bush Jun 01, 2003 ‘president’,‘Bush’, ‘China’, ‘Korea’

U.S. Helicopter Crashed in Kosovo Jun 08, 2003 ‘helicopter’, ‘Kosovo’, ‘crash’
Two Britons among terror suspects Jul 04, 2003 ‘Abbasu’, ‘Begg’3, ‘Cuba’

2003 World Swimming Championship Jul 20, 2003 ‘swim’, ‘record’, ‘champion’, ‘Thorpe’
Wildfire in Portugal Aug 09, 2003 ‘Portugal’, ‘forest’, ‘fire’, ‘flame’

Wu Bangguo visits Manila Aug 30, 2003 ‘Chinese’, ‘Philippines’, ‘policy’
Earthquake in Japan Sept 26, 2003 ‘Hokaido’, ‘Japan’, ‘earthquake’

First Nigerian satellite in space Sept 27, 2003 ‘Nigerian’, ‘launch’, ‘satellite’

5.5.3 Experiment Design

We now introduce and verify the design of our experiment. We want to test and show the following aspects

through our experiments:

The effect of longitudinal regularization. First of all, recall that PLSI is a special case of TopicDiver

where λ = 0. Therefore, we want to compare TopicDiver and PLSI to demonstrate the effect of our

longitudinal regularization. Since PLSI is a static topic model and online variants are not directly related to

TopicDiver, we only compare TopicDiver and PLSI on retrospective event detection of newswire datasets

3Abbasu and Begg are people names.
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to see the effect of longitudinal regularization alone.

The efficacy of TopicDiver on newswire datasets. We want to testify the efficacy of TopicDiver on

newswire datasets. In newswire datasets, the documents are well-written news articles in formal language.

Note that the events labeled in CNN dataset are mostly significant ones with extensive coverage, and the

events in TDT5 dataset also include some less important ones with less and short coverage. Since the online

setting is more challenging and important in real application, we will only use this setting and show the

comparison between TopicDiver with the baselines including the UMASS system [45] which performed best

in several TDT competitions, and the improved algorithm based on LSH with variance reduction, proposed

in [46].

The efficacy of TopicDiver on social media. As we have mentioned earlier, social media is very

different from newswire data, with a rapid generating rate and a lot more informal language, meaningless

babbles and personal conversation. Due to the rapid pace and timeliness of social media, retrospective event

detection on Twitter is far less meaningful. Therefore, only online event detection is conducted on Twitter

data. Since the UMASS system is not designed to work on web scale, we replace it with IPLSI introduced

in [78]. By grid search, we set number of topics 80 for TopicDiver and IPLSI.

5.5.4 Experimental Results

We now show the experiment results to testify the efficacy of longitudinal regularization and TopicDiver.

To reduce the variance, all results shown are the mean values of ten runs of the systems. First of all, we look

into the comparison between TopicDiver and PLSI on retrospective event detection. From Table 5.1, we can

observe that PLSI suffers from the noises and TopicDiver improves precision by and false alarm, thus F1

and Cmin greatly. The advantage of TopicDiver is especially remarkable on CNN data, which is expected

because the events there are more important, and longitudinal regularization can effectively filter out noises

without hurting the more significant divergence points caused by real events. This further validates our idea

of adding longitudinal regularization on top of PLSI.

Secondly, we verify TopicDiver on online event detection from news data. From Table 5.2, we can see that

TopicDiver again has a remarkable advantage on CNN data. This is also a demonstration of the effect of the

longitudinal regularization. We are achieving comparable performance with the baselines on TDT5 data,

with better false alarm and a slightly higher miss. This is because that the events in TDT5 dataset contain

some minor ones with less coverage, and the divergence they cause can be smoothed out mistakenly by our

regularization. However, for the more important events, we are actually still better than the baselines.
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Table 5.5: Event detection on Twitter data. A larger precision or recall is better.

Method No. of Claimed Detections Precision Recall
IPLSI 752 0.331 45
LSH 188 0.601 37

TopicDiver 147 0.755 42

For qualitative evaluation, we list all the labeled and detected events throughout the year 2012 in the CNN

dataset, and ten of the detected events in the TDT5 dataset for comparison, in Table 5.3 and Table 5.4.

The dates are from the divergence points we have detected, and the keywords are from the top words of the

topic of which the temporal distribution is diverging. We can see that all the events in the CNN dataset are

important ones which will attract most of the coverage at the time of its emergence. In the contrary, the

events in the TDT5 data may be less significant.

Finally, we look at results on Twitter data. From Table 5.5, we observe that IPLSI claims far more events

than the other two. This is also expected, because IPLSI is designed as an online variant of PLSI, and it

suffers the similar problem with PLSI. With regularization to filter out the noise, TopicDiver has a great

advantage on precision over IPLSI with only minor loss on recall, and also outperforms LSH remarkably

both on precision and recall.

TopicDiver is also efficient in terms of complexity and runtime. For retrospective event detection, the

optimization problem of our framework can be easily delivered by a stochastic gradient descent, which is

much more efficient than EM algorithm of PLSA. In the online setting, since TopicDiver folds in new words

and documents incrementally, it’s also efficient compared to document based methods such as the UMASS

system. In our experiments, TopicDiver is comparably efficient with LSH method, faster than IPLSI, and

far more efficient than PLSI and the UMASS system.

5.5.5 Parameter Setting

As we have mentioned in previous sections, the most important parameters of TopicDiver is the regulariza-

tion parameter λ. Recall that λ in our method controls the regularization strength and thus the number of

detected events by our algorithm.

Intuitively, the larger λ is, the more regularization we put onto TopicDiver and the more rigorous we are

on the events we detect. In this way, we are more likely to detect significant events causing really large

changes in topic distributions. On the other hand, we expect more detections including some minor events

if λ is smaller. When λ = 0, our model will become the conventional PLSI model. Therefore, we can flexibly

choose the value of λ based on both our information needs and the data.

We show the number of detected events and the detection accuracy on CNN dataset in retrospective mode
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Table 5.6: Effect of Regularization Parameter λ

λ # Detections False Alarm Miss Cnorm

0 900 0.026 0.260 0.386
0.02 819 0.023 0.260 0.374
0.05 524 0.014 0.280 0.351
0.1 235 0.006 0.300 0.329
0.2 145 0.003 0.300 0.316
0.3 93 0.002 0.340 0.349
0.4 65 0.002 0.420 0.426
0.6 36 0.001 0.700 0.703

against the value of lambda in Table 5.6, with the best value in bold. We can see that the value of λ has

a large impact on the detection results, with larger λ causing higher miss and lower false alarm, and vice

versa. However, the optimal values may largely depend on the datasets. Therefore, we use grid search in

our experiments to determine the best parameter values.

5.6 Summary

In this chapter, I introduce my work on event detection. I look into the undiscovered temporal divergence of

topic distributions for event detection from time-stamped text streams. Since both true events and non-event

factors cause such divergence, and the latter is often dominant, real events are always very sparse in the

divergence. Such sparsity needs to be enforced by appropriate noise reduction, and direct event detection

without noise reduction can be extremely noisy and inaccurate.

I propose a framework that detects this temporal divergence and enhances its sparsity simultaneously by

regularization. The proposed framework is built on a PLSI-like topic mixture over time-stamped text data,

and inspired by the fused lasso, we add longitudinal regularization on the difference between adjacent topic

distributions. Such regularization is proved to effectively wipe the noise off the real events and boost the

detection accuracy.

The proposed framework is able to work well in both respective and online settings. Specifically for the

online setting, my algorithm folds in the new terms to an evolving vocabulary and folds in the new documents

in a streaming fashion. Extensive experiments on both newswire and Twitter datasets validate the efficacy

of the proposed algorithm.
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Chapter 6

Conclusion and Future Work

In this thesis, I present my research work on machine learning in big data. Specifically, I exploit sparsity to

address the three challenges: (1) sample complexity, (2) computational complexity and (3) noise reduction,

and propose algorithms that need less training examples, less computational resmyces to learn and are more

robust to noise.

Sample complexity is one of the most important issues of the problem of one-bit compressed sensing,

which focuses on the recovery of sparse signals with just a few linear measurements. I propose a novel and

efficient algorithm with close-form solution for universal measurement matrices. My framework is based on

nonconvex penalty functions, which are untouched for this problem in previous work. We also propose an

algorithm to solve the resulting optimization problem. My algorithm improves the best sample complexity

for vector recovery from O(s log d/ε2) to O(s/ε2) for signals with a mild magnitude condition, and achieves

exact support recovery at the same time even in noisy settings. This improvement is especially important for

high dimensional and big data scenarios. In my work, we show that the sparsity in signals can be effectively

utilized to improve sample complexity, i.e., reduce the number of training examples needed.

In terms of computational complexity, I study the EM algorithms in the high dimensional regime for sparse

latent variable models. It is proved that sparsity structure must be enhanced for desirable convergence for

high dimensional models, otherwise the noises and errors will accumulate across all dimensions and cause

unstable performance. In addition, exact maximization can be intractable due to the dimensionality and

gradient variants bring huge computational challenge. I present a novel semi-stochastic variance reduced

gradient method, which is the first work to introduce variance reduction to high dimensional EM algorithms.

Specifically, I propose a unique semi-stochastic gradient matching the bivariate structure of EM, and trun-

cation step is applied after gradient ascent to enforce sparsity. Such gradient is based on mini-batches to

reduce the computation complexity. My algorithm has a linear convergence towards the local optimal, and

also achieves minimax optimal statistical rate of convergence up to a logarithmic factor.

For noise reduction, I study event detection from text corpus as noise has been an increasingly significant

challenge for more accurate event detection. I have discovered that temporal divergence of topic distributions
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can be an important indicator for real events. To filter out the divergence caused by non-event factors,

longitudinal regularization is applied to enforce sparsity in such divergence. I also propose variants of my

algorithm to work in both retrospective and online settings. As the corresponding optimization problem in

my algorithm can be solved using simple stochastic gradient descent, my algorithm can work efficiently even

on the scale of social media such as Twitter.

Machine learning in big data is a broad research topic with a lot of applications in various fields, and

exploiting sparsity will continue to play an important part. The new algorithms developed in this thesis are

general and thus can be applied to many different applications in big data.

The work of this thesis can be further extended in multiple directions. First, the work on one-bit com-

pressed sensing can be further extended to relax or even clear out the magnitude assumption. Even this is

a mild assumption, extending my method to general sparse signals is still meaningful.

Another potential improvement for my proposed EM algorithm is generalizing the choice of sparsity

parameter. Currently in practice, this is done by cross validation. A more data-driven choice of this

parameter will be desirable. The data-splitting technique is used for decorrelation brings in the logarithmic

factor which can also be improved.

Since my proposed semi-stochastic variance-reduced gradient is general for any bivariate framework, we

can further apply it to other problems in machine learning of similar structure.

For event detection, since social media is getting increasingly important in this task, its features can

be exploited more to aid the content-based methods. Such features may include network structure and

communities, temporal and spatial information, and hashtags and keywords. It is worth noting that sparsity

also widely lies in these features and has great potential for event detection from these perspectives.
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