
 
   
 

 

 

 

ROLE OF SRC PHOSPHORYLATION OF FXR IN BILE ACID REGULATION 

 

 

 

BY 

 

DANIEL RYERSON 

 

 

DISSERTATION 

Submitted in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy in Molecular and Integrative Physiology 

in the Graduate College of the  
University of Illinois at Urbana-Champaign, 2017 

 
 
 
 
 
 

Urbana, Illinois 
 

Doctoral Committee: 
 
Professor Jongsook Kim Kemper, Chair 
Professor David Shapiro 
Associate Professor Lori Raetzman 
Assistant Professor Sayeepriyadarshini Anakk



ii 
 

Abstract 

 Bile acids are physiological detergents which aid in the absorption of dietary lipids and 

lipid soluble vitamins but also function as fed state signaling molecules.  Elevated bile acid 

levels in the liver can lead to cholestatic injury, primary biliary cirrhosis, fibrosis, and liver 

cancer; therefore, these levels must be tightly regulated.  The farnesoid X receptor (FXR) is the 

primary bile acid nuclear receptor and acts as the master regulator of bile acid homeostasis, 

preventing liver damage caused by bile acid accumulation. FXR does this by regulating the 

expression of many target genes in the gut and liver including the intestinal hormone fibroblast 

growth factor 19 (FGF19) and orphan nuclear receptor small heterodimer partner (SHP).   In 

response to elevated hepatic bile acid levels FXR, acting directly as well as through FGF19 and 

SHP, inhibits the synthesis of bile acids, downregulates bile acid importers, upregulates bile acid 

exporters along with genes involved in bile acid conjugation and detoxification.  These important 

roles of FXR are highlighted by the phenotypic effects observed in FXR knockout (FXR-/-) mice.  

FXR-/- mice display elevated bile acid pool size as well as elevated serum bile acid levels.  

Additionally, FXR-/- mice show signs of liver damage and develop spontaneous tumors as they 

age.  Understanding how FXR receives signals and translates them into transcriptional responses 

to mediate these diverse cellular effects will be important for the development of therapeutic 

agents to treat cholestatic liver disorders. 

 One mechanism through which FXR activity is regulated is signal-induced post-

translational modifications.  FXR has been shown to undergo multiple types of post-translational 

modifications including phosphorylation, methylation, acetylation and sumoylation in response 

to physiological and pathological signals.  These modifications affect FXR in many ways 

including modulating subcellular localization, stability, DNA binding, interaction with 
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transcriptional coregulators and affecting the expression of FXR target genes in a gene selective 

manner.  Mutation of a single amino acid, disrupting one of these post-translational 

modifications, has been shown to dramatically alter FXR function.  Interestingly, some of these 

post-translational modifications have been shown to be misregulated in models of disease, which 

highlights the importance of understanding the molecular mechanisms through which FXR is 

post-translationally modified.   

In this study a new post-translational modification of FXR was identified which 

profoundly impacts FXR transcriptional activity.  Unbiased mass spectrometry based proteomic 

analysis showed that tyrosine-67 of FXR is rapidly phosphorylated in liver hepatocytes in 

response to treatment with either natural bile acids or FGF19.  Biochemical analysis paired with 

bioinformatic tools identified Src as the kinase responsible for this post-translational 

modification.  Feeding mice a diet supplemented with the primary bile acid cholic acid (CA) led 

to interaction between FXR and Src as well as phosphorylation of FXR.  Further studies showed 

that Src interacts with the DNA binding domain of FXR specifically.  In vitro kinase assays 

utilizing purified Src protein coupled with studies utilizing siRNA knockdown of Src 

demonstrated that Src is both necessary and sufficient for FXR phosphorylation.  Adenoviral 

reconstitution of wild type and tyrosine-67 phosphorylation deficient mutant (Y67F) FXR in 

isolated primary mouse hepatocytes (PMH) showed that disruption of this phosphorylation site 

led to a decrease in FXR/RXR interaction and decreased expression of a subset of FXR target 

genes involved in bile acid regulation, particularly bile salt export pump (BSEP) and SHP.  

Disruption of this site in vivo also led to elevated bile acid levels, elevated liver enzyme levels, 

and increased macrophage infiltration; all signs of liver damage.  Additionally, when challenged 

in models simulating cholestasis, these signs of liver damage are dramatically elevated in mice 
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expressing Y67F-FXR.  These in vivo studies demonstrate that disruption of the FXR tyrosine-67 

site drastically impairs FXR’s ability to regulate its target genes, maintain bile acid homeostasis, 

and protect the liver from bile acid induced toxicity.   

In conclusion, this study identified a previously unknown phosphorylation site of FXR 

which is mediated by Src.  We further showed that this phosphorylation is critical for FXR 

function, maintenance of bile acid homeostasis, and protecting the liver against bile toxicity; 

with loss of this phosphorylation site leading to the development of liver damage in vivo.  The 

profound effects FXR tyrosine-67 phosphorylation has on FXR transcriptional activity and 

metabolic outcomes suggest that this site and the kinase leading to its phosphorylation may prove 

to be innovative targets for the treatment of hepatobiliary and cholestatic diseases.
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Chapter One 

Background and Significance 

1.1 FXR is a member of the nuclear receptor family 

 Nuclear receptors (NRs) are a family of ligand activated transcription factors which 

regulate expression of networks of target genes involved in diverse physiological functions 

(Nagy and Schwabe 2004, Mangelsdorf et al., 1995).  NRs can be divided into three subgroups 

based on their physiological ligands (Sonoda et al., 2008).  The first class of NRs contains the 

classic endocrine receptors which are characterized by their very high affinity to ligands.  This 

class includes the receptors for steroid hormones, thyroid hormone, and vitamins A and D and 

plays key roles in regulation of the endocrine system.  The second and third classes of NRs were 

identified through their sequence homology to the endocrine NRs but had no identified ligand.  

Receptors whose physiological ligands are not known are referred to as orphan NRs.  

Subsequently, many of the ligands for these orphan NRs have been identified and these are 

called adopted NRs.  The adopted NRs make up the second class of NRs and are characterized 

by their low affinity for their respective ligands.  This class includes receptors for dietary lipids 

and xenobiotics and plays important roles in regulating glucose and lipid homeostasis (Parks et 

al., 1999; Willy et al., 1995; Kliewer 2003; Lehmann et al., 1997; Kilewer et al 1997; Repa and 

Mangelsdorf 1999; Chiang 2002).  The third class of NRs contains the remaining orphan NRs 

whose ligands have not yet been identified. 

 FXR is an adopted NR that is highly expressed in the liver, intestine, kidney and adrenal 

glands with lower levels found in heart and adipose tissues (Forman et al., 1995, Lu et al., 2001, 

Zhang et al., 2002, Seol et al., 1995).  In humans, four functional isoforms of FXRα (FXRα1, 
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FXRα2, FXRα3, FXRα4) are encoded by a single gene.  FXRα3 and FXRα4 are also referred to 

as FXRβ1 and FXRβ2. The four different forms of FXR arise from the use of two separate 

promoter sequences and alternative splicing of exons 5 and 6 (Zhang et al., 2002; Huber et al., 

2002).  Most FXR target genes are regulated in an isoform independent manner.  The 

physiological importance of the different FXR isoforms has not been established. 

 Upon activation, NRs bind as monomers or dimers to specific DNA sequences called 

response elements and regulate gene transcription (Chiang 2002; Chawla et al., 2001).   FXR 

usually functions as a heterodimer with 9-cis-retinoid X receptor (RXR) when binding to its 

response element (Claudel et al., 2002).  The FXR response element (FXRE) generally consists 

of two copies of a six nucleotide sequence (AGGTCA) arranged in one of three orientations: as 

an inverted repeat separated by a single nucleotide (IR1), as a direct repeat separated by four 

nucleotides (DR4), or as an everted repeat separated by eight nucleotides (ER8); however FXR 

has also shown the ability to bind as a monomer to FXRE half sites (Claudel et al., 2002; 

Edwards et al., 2002; Kalaany et al., 2006; Zhang and Edwards 2008).   

 NR activation is often stimulated by the binding of agonists to the ligand binding domain.  

In the absence of ligand, NRs are associated with corepressor proteins and are inactive.  Upon 

binding of a ligand, NRs undergo a conformational change which leads to activation through 

several methods including release of corepressors, dimerization, nuclear translocation, and 

recruitment of coactivators (Repa and Mangelsdorf 2000; Sonoda et al., 2008).   

1.2 FXR in bile acid homeostasis 

FXR was originally named because of its affinity for farnesol metabolites, however 

recent work has shown that at physiological levels bile acids act as the major ligand for FXR 



3 
 

(Makishima et al., 1999; Zhang and Edwards 2008; Goodwin et al., 2000).  Several endogenous 

bile acids have been identified as agonists of FXR to varying levels.  The order of potency for 

FXR activation by the endogenous bile acids cholic acid (CA), chenodeoxycholic acid (CDCA) 

deoxycholic acid (DCA) and lithocholic acid (LCA) is CDCA > LCA = DCA > CA.  In addition 

to the endogenous FXR ligands several synthetic FXR agonists including GW4064, fexaramine, 

6-a-ethyl-chenodeoxycholic acid (ECDCA) and obeticholic acid (OCA)  have been developed 

both as investigative tools to examine FXR functions as well as potential pharmaceutical 

treatments (Goodwin et al., 2000; Ali et al., 2015; Fang et al., 2015).   

Bile acid synthesis is regulated through feedback inhibition of the enzyme cholesterol 7 

alpha-hydroxylase (CYP7A1), which catalyzes the rate limiting step in the conversion of 

cholesterol into bile acids.   This inhibition is mediated by FXR.  The mechanism of feedback 

regulation starts when bile acids reabsorbed in the ileum are transported through the 

enterohepatic circulation to the liver, the major site of bile acid synthesis.  The elevated bile 

levels in the liver activate FXR though ligand binding.  The activated FXR then heterodimerize 

with RXR and binds to FXREs on the promoter of its target gene small heterodimer partner 

(SHP), inducing expression.  SHP goes on to interact with the nuclear receptors liver receptor 

homolog-1 (LRH-1) and hepatocyte nuclear factor 4 α (HNF4α) which are required for CYP7A1 

expression.  SHP binding to LRH-1 and HNF4α inhibits their activity thereby inhibiting CYP7A1 

expression and bile acid synthesis (Russell 2003).  In addition to directly binding to the SHP 

promoter and inducing transcription of SHP in the liver, FXR also induces expression of the 

hormone fibroblast growth factor 19 (FGF19) in intestinal cells which binds to the FGFR4/β-

Klotho receptor on hepatocytes, activating kinase pathways to stabilize SHP and further 

inhibiting CYP7A1 expression (Inagaki et al., 2005; Miao et al., 2009). 
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Accumulation of bile acids in the liver can have toxic effects, which requires the liver to 

have a number of pathways to protect itself from bile acid accumulation.  In addition to 

downregulating the rate limiting enzyme in bile acid synthesis, FXR also regulates a number of 

genes involved in bile acid transport 

and detoxification.  FXR inhibits 

expression of sodium taurocholate 

cotransporting polypeptide (NTCP) 

which is involved in the transport of 

bile acids into the liver from intestinal 

cells (Kok  et al., 2003; Sinal et al., 

2000).  FXR also increases expression 

of transporters involved in the export of 

bile acids from the liver into the bile 

duct, such as bile salt export pump 

(BSEP), multidrug resistance-associated 

protein 2 (MRP2), and multidrug 

resistance P-glycoprotein 3 (MDR3) 

(Plass  et al., 2002; Ananthanarayanan 

et al, 2001; Kast et al., 2002; Trauner and Boyer 2003).  Furthermore, FXR increases the 

expression of genes responsible for the conjugation and detoxification of bile acids including 

sulfotransferase family 2A member 1 (SULT2A1), cytochrome P450 3A4 (CYP3A4), and UDP 

glucuronosyltransferase family 2 member B4 (UGT2B4) (Song et al., 2001; Barbier et al., 2003; 

Gnerre et al., 2004).  Taken all together, in response to elevated bile acid levels FXR inhibits bile 

Figure 1.1: FXR regulation of bile acid homeostasis. 
 
Adapted from Calkin and Tontonoz (2012) 
Transcriptional integration of metabolism by the 
nuclear sterol activated receptors LXR and FXR Nat Rev 
Mol Cell Biol 13(4):213-24. 



5 
 

acid synthesis and limits bile acid import into the liver while simultaneously increasing the 

conjugation, detoxification, and export of bile acids, thereby protecting the liver from toxic 

effects of increased bile acid levels as summarized in figure 1.1.  

1.3 FXR in lipid and glucose regulation 

In addition to its important role in the regulation of bile acid homeostasis, FXR has been 

shown to regulate genes involved in numerous other metabolic pathways.  Deletion of FXR in 

transgenic mice results in a number of deleterious effects including increases in plasma 

triglycerides, free fatty acids, LDL and HDL proteins, insulin insensitivity, glucose intolerance, 

reduced hepatic glycogen, and impaired liver regeneration (Sinal et al., 2000; Cariou et al., 2006; 

Cariou et al.,2005; Inagaki et al., 2006; Huang et al., 2006).  Consistent with these results, 

treatment of diabetic mice with FXR agonists has been shown to significantly improve insulin 

sensitivity and plasma glucose levels (Zhang et al., 2006).  Additionally administration of bile 

acids to human patients has been shown to have the desirable effect of decreasing plasma 

triglyceride and LDL levels (Bateson et al., 1978; Fiorucci et al., 2007).  Unfortunately FXR 

activation also produces the undesirable outcome of reducing HDL levels (Sinal et al., 2000).  

Recent work has begun to elucidate the molecular mechanisms through which FXR activation 

regulates lipid and glucose metabolism.  FXR activation induces the expression of phospholipid 

transfer protein (PLTP) which is involved in HDL remodeling (Urizar et al., 2000). Activation of 

FXR also reduces the expression of apoA-I, the major apolipoprotein of HDL (Claudel et al., 

2002).  Additionally FXR induces expression of lipoprotein lipase activator genes apoC-II and 

apoA-V while inhibiting expression of lipoprotein lipase inhibitor apoC-III (Kast et al., 2001; 

Prieur et al., 2003; Claudel et al., 2003).  FXR activation also increases fat oxidation by 

enhancing the expression of PPARα (Pineda Torra et al., 2003).  FXR activity modulates glucose 
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metabolism through the regulation of the gluconeogenic genes phosphoenolpyruvate 

carboxykinase (PEPCK), glucose 6-phosphatase (G6Pase), and fructose-1,6-bisphosphatase 

(FBP1) (Yamagata et al., 2004; De Fabiani et al., 2003).  FXR’s roles in lipid and glucose 

metabolism have led some to suggest that FXR may be a novel target for the treatment of 

metabolic diseases (Duran-Sandoval et al., 2005). 

1.4 Novel functions of FXR 

 Recent work has shown that FXR also plays key roles in many other physiological 

processes including autophagy, liver regeneration, inflammation, and regulation of cell 

proliferation and tumor suppression.  Autophagy is a cellular recycling system which is activated 

in low nutrient conditions.  When cells are deprived of nutrients cellular components are broken 

down to serve as energy sources.  In fasting conditions, the transcriptional activators cAMP 

response element-binding protein (CREB) and peroxisome proliferator-activated receptor-α 

(PPARα) upregulate the hepatic autophagy gene network.  CREB functions by recruiting the 

coactivator CREB regulated transcription coactivator 2 (CRTC2) to autophagy genes.  While, 

PPARα works by heterodimerizing with RXR to increase transcription of autophagy genes 

through a distinct but complimentary mechanism.  FXR has been shown to play a key role in 

regulating autophagy.  FXR acts as a fed state sensor, activating in response to the elevation of 

bile acid levels after ingestion of a meal.  Activation of FXR disrupts the interaction of CREB 

and CRTC2 and competes with PPARα for RXR binding, thereby inhibiting the expression of 

key autophagy genes, including those for autophagy-related protein 7 (Atg7), Unc51 like 

autophagy activating kinase 1 (Ulk1), transcription factor EB (TFEB), and microtubule-

associated protein 1A/1B-light chain 3 (LC-3) (Seok et al., 2014; Lee et al., 2014).   
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FXR deficiency strongly inhibits liver growth in response to damage either through 

partial hepatectomy or chemical induction of apoptosis through CCl4 treatment (Meng et al., 

2010).  Conversely, FXR overexpression promotes liver regeneration and stimulates liver repair 

after CCl4 treatment.  FXR’s stimulation of liver regeneration is due to its ability to activate 

forkhead box M1 (FOXM1b) which is a key cell cycle regulator.   

FXR activity has also been shown to help regulate inflammation.  Activation of FXR 

with synthetic ligands has been shown to attenuate inflammation in mice fed methionine and 

choline-deficient diets.  FXR has also been shown to interact with and regulate the expression of 

NFκB, a key regulator of inflammation (Gadaleta et al., 2011).  Additionally, FXR regulates the 

expression of orosomucoid-1 (AGP) acute-phase protein which is secreted into the plasma in 

response to liver inflammation.   

In addition to their metabolic phenotype, FXR-/- mice also spontaneously develop 

hepatocellular carcinoma (HCC) suggesting FXR acts as a tumor suppressor in normal tissue.  

Conversely, treatment of human HCC cells with FXR and RXR ligands inhibits growth and 

causes apoptosis.  The exact mechanisms for FXR tumor suppressing effects are not well defined 

although possible contributors include SHP mediated increased of apoptosis, repression of bile 

acid synthesis, and signal transducer and activator of transcription 3 (STAT3) inactivation 

through increased expression of suppressor of cytokine signaling 3 (SOCS3).  These observations 

describe the molecular mechanisms through which FXR modulates various physiological, 

homeostatic and metabolic pathways.  However in addition to understanding the molecular 

mechanisms of FXR’s physiological effects, it is important to understand how the activity of 

FXR is modulated. 
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Figure 1.2: Bile acid synthesis pathways. 
 
Adapted from Li T, Chiang JY. (2014) Bile acid signaling in 
metabolic disease and drug therapy Pharmacol Rev 66(4): 948-
83. 

1.5 Bile acid synthesis 

Bile acids are amphipathic molecules which play important roles in digestion and nutrient 

signaling.  Bile acids can be categorized into either primary or secondary bile acids based on 

where they are synthesized.  Primary bile acids are synthesized from cholesterol in the 

hepatocytes of the liver.  In humans, the primary bile acids are CA and CDCA while in mice an 

additional step converts CDCA into muricholic acid (MCA).  The primary bile acids are 

converted into the secondary bile acids by bacterial cells in the intestine. CA and CDCA are 

converted to DCA and LCA, respectively (Ridlon and Hylemon 2006; Ridlon et al., 2013).  

 There are two main pathways 

through which the bile acids 

are synthesized, which are 

summarized in figure 1.2.  

These pathways are the 

classical pathway, sometimes 

called the neutral pathway, and 

the alternative pathway, also 

known as the acidic pathway.  

In humans, the classical 

pathway accounts for more 

than 90% of total bile acid 

production and is considered 

the major bile acid 

biosynthetic pathway.  The classical pathway begins with the conversion of cholesterol to 7α-
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hydroxy-cholesterol by CYP7A1 (Myant and Mitropoulos, 1977).  This is the rate limiting step 

in this biosynthetic pathway and CYP7A1 expression is heavily regulated through multiple 

mechanisms which will be discussed later.  In humans, the classical pathway creates both CA 

and CDCA and the ratio of these is determined by the activity of another important biosynthetic 

enzyme, sterol 12α-hydroxylase (CYP8B1).  Higher levels of CYP8B1 activity push the pathway 

towards creation of CA while lower levels of CYP8B1 lead to more CDCA production.  A series 

of enzymatic reactions follow to produce the primary bile acids.  In humans, the alternative 

pathway is thought to account for less than 10% of total bile acid production under normal 

physiologic conditions.  The alternative pathway creates mainly CDCA and begins with the 

conversion of cholesterol to 27-hydroxy-cholesterol by sterol 27-hydroxylase (CYP27A1) in the 

inner membrane of the mitochondria.  While the conversion of cholesterol to 27-hydroxy-

cholesterol is the first step of this pathway, transport of cholesterol into the mitochondria is the 

rate limiting step for the alternative pathway (Pandak et al., 2002).  A series of enzymatic 

reactions follow to produce CDCA in humans or MCA in mice.  The alternate pathway is 

believed to be more active in individuals with cirrhotic liver disease (Gupta et al., 2001; Axelson 

and Sjovall 1990).   

1.6 Bile acid physiology  

After synthesis in the liver, bile acids are conjugated to glycine or taurine by bile acid 

coenzyme A:amino acid N-acyltransferase (BAAT) to decrease their hydrophobicity (Shonsey et 

al., 2005).  Bile acids can also be conjugated to sulfate or glucuronidated by sulfotransferase 2A1 

(SULT2A1) or the UDP glucuronosyltransferase family 2 proteins (UGT2B4 and UGT2B7), 

respectively, which decreases the toxicity and increases fecal excretion of bile acids.  After 

conjugation, bile acids are secreted into the bile ducts through transporters such as BSEP and 
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MRP2 and travel to the gallbladder where they are 

stored and concentrated (Boyer and Nathanson 1999).  

The hormone cholecystokinin, which is released when 

food enters the intestine, stimulates contraction of the 

gallbladder pushing the bile acids into the small 

intestine where they play a crucial role in solubilization 

and absorption of lipids and lipid soluble vitamins 

(Vlahcevic et al., 1996).  Bile acids travel through the 

small intestine and are reabsorbed in the terminal ileum 

through the apical sodium dependent transporter 

(ASBT).  The reabsorbed bile acids are then transported 

out of the intestinal cells and into the portal circulation 

via the heteromeric organic solute transporter α/β 

(OSTα/β) (Dawson et al., 2010).   Bile acids that escape 

this reabsorption are deconjugated by bacterial bile salt 

hydrolases found in the gut microbiota.  In the large intestine, bacterial 7α-hydroxylase converts 

CA and CDCA into the secondary bile acids DCA and LCA respectively.  These free bile acids 

can travel through plasma membranes without the need for transporters and are then passively 

reabsorbed by colonocytes of the large intestine or excreted in the feces.  Absorbed bile acids 

return to the liver through the portal circulation and are transported into the hepatocytes by the 

NTCP and organic anion transporting protein (OATP) transporters.  Here the bile acids are again 

secreted into the bile ducts and return to the gallbladder to be used when needed.  Bile acids will 

Figure 1.3: Bile acid circulation. 
 
Adapted from Chiang. (2009) Bile 
acids: regulation of synthesis J Lipid 
Res 50(10): 1955-66 
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repeat this process, summarized in figure 1.3, traveling through the enterohepatic circulation 

several times each day. 

1.7 Bile acid signaling 

In addition to their role in nutrient absorption, recent work has shown that bile acids also 

act as signaling molecules.  Bile acids have been shown to activate several nuclear receptors 

including FXR, Pregnane X Receptor (PXR), and Vitamin D Receptor (VDR).  As described 

above, FXR acts as the primary bile acid biosensor and major regulator of bile acid homeostasis.  

Activation of the other nuclear receptors, PXR and VDR, appears to function to protect cells 

from hydrophobic bile acids by inducing expression of genes such as cytochrome P450, family 3, 

subfamily A (CYP3A), which metabolize the bile acids into more hydrophilic metabolites (Xie et 

al., 2001; Makishima et al., 2002).   

Bile acids also activate membrane bile acid receptors including several G protein coupled 

receptors (GPCRs) such as TGR5 and sphingosine 1-phosphate receptor 2 (S1PR2) (Staudinger 

et al., 2001; Makishima 2002; Watanabe et al., 2006; Thomas et al., 2009). TGR5 was the first 

GPCR to be identified as activated by bile acids.  TGR5 is widely expressed in human tissues 

including the liver, gall bladder, kidneys, spleen, brown adipose tissue, and brain (Keitel and 

Haussinger 2012; Kawamata et al., 2003; Marutama et al., 2002; Maruyama et al., 2006; 

Vassileva et al., 2006).  In the liver, TGR5 is not abundantly expressed in hepatocytes but is 

localized in Kupffer cells, cholangiocytes, sinusoidal endothelial cells (SEC), and gall bladder 

smooth muscle cells (Keitel et al., 2007; Keitael et al., 2008; Keitel et al., 2009; Keitel et al., 

2010; Keitel and Haussinger 2011; Lavoie et al., 2010).  Activation of TGR5 has been shown to 

have many diverse functions.  TGR5 activation has been shown to inhibit the immune response 
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and cytokine release through inhibition of NFκB in macrophages and Kupffer cells (Keitel et al., 

2008; Pols et al., 2011; Wang et al., 2011).  Activation of TGR5 in SEC and biliary epithelial 

cells protects against bile acid induced apoptosis (Keitel and Haussinger 2011). TGR5 activation 

in the smooth muscle of the gall bladder leads to muscle relaxation and gallbladder filling 

through activation of protein kinase A (PKA) (Lavoie et al., 2010; Li et al., 2011).  TGR5 also 

plays important roles in regulating energy metabolism through activating iodothyronine 

deiodinase in brown adipocytes leading to increases in thyroid hormone (Watanabe et al., 2006) 

and increasing secretion of glucagon-like peptide from enteroendocrine cells (Thomas et al., 

2009). Activation of another GPCR, S1PR2, by conjugated bile acids activates the insulin 

signaling AKT and extracellular signal–regulated kinase (ERK) 1/2 pathways in hepatocytes 

(Studer et al., 2012).  S1PR2 also plays an important role in hepatic lipid regulation.  

Additionally S1PR2 is upregulated in cholangiocarcinoma (CCA), a cancer of the biliary tract 

that is associated with chronic cholestasis and elevated levels of conjugated primary bile acids.  

Excess stimulation of S1PR2 promotes cell proliferation, migration, and invasion in CCA cell 

lines all of which are inhibited through treatment with S1PR2 antagonists (Liu et al., 2014).    

Bile acids have also been shown to activate a number of other cellular signaling pathways 

including cyclic AMP synthesis, calcium mobilization, protein kinase C (PKC), c-jun N-terminal 

kinase (JNK), and epidermal growth factor (EGF) (Stravitz  et al., 1996; Gupta et al., 2001; Rao 

et al 2002; Kawamata et al., 2003; Dent et al 2005; Nguyen and Bouscarel 2008).  Through these 

pathways, bile acids have been linked to a wide variety of important biological functions ranging 

from lipid, lipoprotein, fatty acid, and bile acid synthesis to glucose metabolism and even 

regulation of intestinal bacterial growth. 
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1.8 FGF19 signaling 

In addition to directly activating signaling pathways, bile acids have been shown to 

regulate the expression of the endocrine hormone fibroblast growth factor 19 (FGF19).  FGF19, 

or its ortholog in mice fibroblast growth factor 15 (FGF15), is expressed in the small intestine, 

kidney, gallbladder, brain, skin, cartilage, retina, placenta and umbilical cord (Nishimura et al., 

1999; Xie et al., 1999).  When bile acid levels become elevated in the intestine, in response to a 

meal, they induce expression of FGF19 in the intestine which is then released into the portal 

circulation and binds to its receptors on the hepatocytes of the liver.  FGF19 binding requires a 

two component receptor consisting of fibroblast growth factor receptor 4 (FGFR4) and β-Klotho 

which are coexpressed in hepatocytes.  Upon FGF19 binding, FGFR4/β-Klotho activate multiple 

kinase pathways including the ERK and JNK kinase pathways which ultimately lead to 

decreased expression of CYP7A1 and inhibition of bile acid synthesis (Holt et al., 2003; Miao et 

al., 2009).  FGF19-/- and FGFR4-/- transgenic mice show elevated bile pool sizes and increased 

expression of CYP7A1 (Yu et al., 2000).  

In addition to its role in regulating bile 

acid synthesis, FGF19 signaling plays an 

important role in gallbladder filling. 

FGF19 also plays a key role in 

metabolism.  Mice overexpressing FGF19 

show many beneficial metabolic effects 

including decreased body weight, 

decreased fat mass, lower serum glucose 

Figure 1-4. FGF19 signaling. 
 
Adapted from Potthoff MJ, Kliewer SA, and 
Mangelsdorf DJ. (2012) Endocrine fibroblast growth 
factors 15/19 and 21: from feast to famine. Genes 
Dev. 15;26(4):312-24 
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and insulin levels, and improved glucose tolerance and insulin sensitivity (Tomlinson et al., 

2002).  These metabolic effects have been attributed to activation of the ERK pathway.  

Activation of ERK then increases protein synthesis through activation of the ribosomal protein 

s6 (S6) and eukaryotic translation initiation factor 4B (eIF4B).  ERK stimulation also increases 

glycogen synthesis through inhibition of glycogen synthase kinase (GSK).  FGF19 signaling also 

decreases gluconeogenesis through inhibition of CREB phosphorylation which inhibits the 

expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α).  

The roles of FGF19 signaling in metabolism are summarized in figure 1.4.  Due to these 

important roles in regulating metabolic homeostasis many studies have suggested FGF19 may be 

an interesting drug target for the treatment of enterohepatic metabolic diseases (Nies et al, 2016; 

Owen et al., 2015; Reue et al 2014; Zhang et al., 2015).  

1.9 Emerging role of gut microbiota in bile acid regulation 

Increasing evidence indicates that in addition to altering the composition of the bile acid 

pool through the generation of secondary bile acids in the intestines, the gut microbiota can also 

regulate bile acid synthesis in the liver (Sayin et al., 2013).  Utilizing mice bred in a germ-free 

environment, which lack normal gut microbiota, it was shown that microbiota depletion altered 

bile acid synthesis by decreasing intestinal expression of FGF15 in a FXR dependent manner.  

Additionally, changes in the gut microbiota though the use of antibiotics or probiotics have 

similarly been shown to cause changes in bile acid synthesis (Sayin et al., 2013; Degirolamo et 

al., 2014; Li et al., 2013).  Conversely, bile acid pool size and composition have been shown to 

play a role in regulating the make-up of the gut microbiome.  Bile acids have both direct 

antimicrobial effects and indirect effects through FXR-induced expression of antimicrobial 

peptides (Inagaki et al., 2006; Vavassori et al., 2009).  Consistent with these findings, rats fed a 
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diet rich in CA were shown to undergo significant alterations to the composition of the gut 

microbiome (Islam et al., 2011).  Additionally, studies have shown that transplantation of gut 

microbiota from obese mice to germ-free mice can lead to increased fat accumulation, while 

exposure to gut microbiota from lean mice prevents this (Ridaura et al., 2013).  Transplantation 

with gut bacteria from lean or obese mice also caused significant changes in bile pool 

composition as well as expression of FXR and its targets.  Taken together these findings have led 

some to suggest utilizing bile acids as a way to target the gut microbiome to treat obesity (Le 

Chatelier et al., 2013). 

1.10 Regulation of FXR through post-translational modifications 

Post-translational modifications are modifications made to proteins, usually through the 

addition of a functional group to the side chain of an amino acid, which can have a profound 

effect on the fate and function of a protein.  Recently a number of post-translational 

modifications of FXR have been shown to produce dramatic changes in FXR activity and several 

have been associated with significant phenotypic changes in vivo (mapped out in Figure 1.5). 

Several phosphorylation sites have been identified in FXR including serine-135, serine-154, and 

threonine-442 (Gineste et al., 2008; Frankenberg et al., 2008).  Phosphorylation at serine-135 and 

serine-154 by PKC increases FXR interaction with the coactivator PGC-1α resulting in greater 

transactivation activity of FXR (Gineste et al., 2008).  Phosphorylation of threonine-442 by 

PKCζ and subsequent interaction with familial intrahepatic cholestasis 1 (FIC1) increases both 

FXR transactivation activity and FXR localization to the nucleus, where it functions to modulate 

gene expression (Frankenberg et al., 2008).  Phosphorylation of FXR at serine-250 by AMP-

activated protein kinase (AMPK) decreases its ability to recruit transcriptional coactivators, such 

as steroid receptor coactivator-2 and nuclear receptor coactivator 6, decreasing expression of 
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FXR target genes (Lien et al., 2014).  Metformin, a well-known drug used for the treatment 

diabetes, is an activator of AMPK and has been shown to exacerbate liver injury in mouse 

models of cholestasis and patients with advanced liver cirrhosis (Miralles-Linares et al., 2012; 

Lien et al., 2014).  FXR has also been shown to be methylated at lysine-206 by SET domain 

containing lysine methyltransferase SETD7 (SET7/9) (Balasubramaniyan et al., 2012).  

Methylation of FXR at this site increases its transactivation of two well-known target genes, SHP 

and BSEP.  Additionally two acetylation sites of FXR have been identified at lysine-157 and 

lysine-217.  These sites are dynamically regulated by the acetylase P300 and the NAD-dependent 

deacetylase sirtuin-1 (SIRT1) (Kemper et al., 2009).  Acetylation at these sites has several effects 

including increasing stability of FXR, inhibiting heterodimerization with RXR, decreasing DNA 

binding and causing an overall decrease in the transactivation activity of FXR.  In obese mice 

FXR acetylation levels are highly elevated, likely due to low activity and levels of SIRT1, 

exacerbating dyslipidemia, hyperglycemia, and insulin insensitivity in these mice. (Kemper et 

al., 2009).  FXR has also been shown to be sumoylated at lysine-277 by protein inhibitor of 

activated STAT protein gamma (PIASγ).  Sumoylation of FXR leads to its interaction with 

NFκB and repression of pro-inflammatory genes (Kim et al.,2015).  An interesting interplay 

between acetylation and sumoylation of FXR occurs.  When FXR is hyperacetylated it is no 

longer able to interact with PIASγ leading to an inhibition of sumoylation.  Hyperacetylation of 

FXR is observed in obese mouse models.  This suggests that the inhibition of FXR sumoylation 

in obese conditions may play a role in the observed inflammatory signaling seen in obesity.  

Finally, FXR can be O-GlcNAcylated at serine-62 in response to high levels of glucose by O-

GlcNAc transferase.  O-GlcNAcylation leads to increased FXR protein stability, transcriptional 
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activity, and chromatin binding through SMRT inactivation.  This leads to an increase in FXR 

target gene expression. 

The misregulation of FXR post-translational modifications in disease states highlights the 

importance of understanding the molecular mechanisms through which FXR activity is 

regulated.  This level of understanding will give us the tools to identify novel pharmacological 

targets and possibly develop treatments for metabolic diseases.  Some post-translational 

modifications of FXR modulate its regulation of specific subsets of target genes.  This poses a 

uniquely attractive possibility of being able to activate beneficial FXR target genes, responsible 

for increased glucose tolerance, insulin sensitivity, and decreased plasma triglycerides and LDL, 

while not inducing undesirable FXR metabolic effects such as lowering of HDL.        

 

 

 

 

 

    

 

 

 

 

Figure 1-5. Map of post-translational modifications of FXR. 
Adapted from Kemper JK. (2011) Regulation of FXR transcriptional activity in health and 
disease: Emerging roles of FXR cofactors and post-translational modifications.  
Biochim Biophys Acta 1812(8):842-50. 
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Chapter Two 

Phosphorylation of FXR by Src and its role in bile acid regulation 

2.1 Abstract 

 FXR is the primary bile acid nuclear receptor that acts as the master regulator of bile acid 

homeostasis. Despite extensive studies on the physiological pathways FXR regulates, how FXR 

activity is modulated through post-translational modification is not fully understood.  Here we 

report a new post-translational modification of FXR.  Unbiased mass spectrometry based 

proteomic analysis identified tyrosine-67 as a novel phosphorylation site in FXR which is 

phosphorylated in response to treatment with either the endogenous bile acid CDCA or the post-

prandial signaling molecule FGF19.  Bioinformatic in silico analysis showed that this site is 

highly conserved across vertebrates and contains a phosphorylation motif for Src, a tyrosine 

kinase that is known to be regulated by FXR.  Biochemical analysis showed that treatment with 

CDCA or FGF19 led to Src activation and that in vivo feeding of a diet rich in the primary bile 

acid CA led to an increased interaction between FXR and Src, as well as phosphorylation of 

FXR.  It was also observed that in vitro Src interacts with the DNA binding domain of FXR and 

is both sufficient and necessary for FXR phosphorylation.  We showed that disruption of FXR 

phosphorylation impaired the ability of FXR to heterodimerize with RXR and to regulate the 

expression of its target genes SHP and BSEP.    

In conclusion, this study identifies a new post-translational modification of FXR at 

tyrosine-67 which profoundly regulates its ability to heterodimerize with RXR and 

transcriptionally regulate its target genes.  Further we show that Src is responsible for this 
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phosphorylation and describe the pathway through which endogenous bile acid signaling leads to 

dynamic phosphorylation of FXR.  Understanding how this post-translational modification is 

regulated and its effects on FXR activity may provide useful tools and therapeutic targets for 

understanding and treating cholestatic diseases. 

2.2 Introduction 

FXR is a bile acid activated NR that is highly expressed in liver, intestine, kidney and 

adrenal glands and is a key regulator of many important physiological processes.  The primary 

role of FXR is the maintenance of bile acid homeostasis (Makishima et al., 1999; Zhang and 

Edwards 2008; Goodwin et al., 2000).  In response to elevated bile acid levels FXR 

downregulates genes important for bile acid synthesis while upregulating genes important for 

bile acid conjugation, detoxification, and transport out of the liver (Russell 2003, 

Ananthanarayanan et al, 2001; Trauner and Boyer 2003; Song et al., 2001; Barbier et al., 2003; 

Gnerre et al., 2004).  FXR regulates these genes either through direct effects or through 

upregulation of SHP, an atypical nuclear receptor lacking a DBD.  SHP functions by binding to 

other NRs disrupting their activity and thereby inhibiting expression of target genes.  FXR’s role 

in maintaining bile acid homeostasis is to protect the liver from the toxic effects of high 

concentrations of bile acids.  The importance of FXR and SHP in maintaining bile acid 

homeostasis can be seen clearly in FXR/SHP double knockout mice which show dramatically 

elevated hepatic and serum bile acid levels as well as bile induced liver damage (Anakk et al., 

2011).  

In addition to responding to elevated bile acid levels, FXR activity has been shown to be 

regulated by several post-translational modifications.  FXR can be acetylated by the histone 

acetyl transferase P300 at lysine-157 and lysine-217.  Acetylation of FXR at these sites has been 
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shown to increase FXR’s stability while decreasing its ability to dimerize with RXR and bind 

DNA causing an overall decrease in FXR activity.  Under normal conditions the acetylation 

levels of FXR are tightly regulated by P300 and SIRT1.  In some pathological settings, such as 

obesity, FXR can be hyperacetylated which results in inhibition of its activity and deleterious 

metabolic outcomes (Kemper et al., 2009).  FXR can also be phosphorylated at serine-135, 

serine-154, and threonine-442.  PKC has been shown to phosphorylate FXR at serine-135 and 

serine-154 which increases its interaction with its coactivator PGC-1α and increase its 

transactivation activity (Gineste et al., 2008).  Phosphorylation of FXR at threonine-442 is 

mediated by PKCζ which leads to interaction with FIC1 and an increase in FXR’s translocation 

to the nucleus and FXR transactivation activity (Frankenberg et al., 2008).  Understanding how 

FXR’s activity is regulated by post-translational modifications and the signaling pathways that 

lead to these modifications can provide insight into the development of and possible treatments 

for many bile acid and metabolic diseases.  

Recent studies have linked FXR activity and the function of the tyrosine kinase Src.  Src 

is a non-receptor tyrosine kinase which plays important roles in cell differentiation, proliferation, 

and survival (Thomas and Brugge 1997).  Src is ubiquitously expressed in vertebrates with 

higher levels found in brain, osteoclasts, and platelets (Brown and Cooper 1996, Frame 2002, 

Levin et al., 2004).  Src is generally bound to endosomes, perinuclear membranes, secretory 

vesicles and the cytoplasmic side of the plasma membrane where it interacts with a variety of 

growth factor and integrin receptors (Brown and Cooper 1996, Thomas and Brugge 1997); 

however Src has also been detected in the nucleus (Zhao et al., 1992).  The Src protein from N to 

C terminus harbors: a N terminal myristoyl group, a unique domain, an SH3 domain, an SH2 

domain, an SH2-kinase linker, a protein tyrosine kinase domain, and a C terminal regulatory 
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segment (Brown and Cooper 1996, Thomas and Brugge 1997).  Myristoylation of Src facilitates 

its attachment to membranes and is required for its function (Brown and Cooper 1996).  The SH3 

domain is involved in protein-protein interactions and, along with the SH2 domain, plays an 

important role in the regulation of Src activity.   

Regulation of Src activity is tightly regulated through intramolecular interactions between 

the SH2 and SH3 domains and two regulatory phosphorylation sites, tyrosine-416 in the 

activation loop which activates Src and tyrosine-527 which inhibits Src activity. Under resting 

conditions over 90% of Src is phosphorylated at tyrosine-527 and is therefore inactive (Zheng et 

al., 2000).  The first step to activation is displacement of phosphotyrosine-527 from the SH2 

domain, which can occur in response to interaction with other proteins or ligands, and is called 

unlatching.  In the unlatched conformation of Src, the intramolecular forces holding Src in the 

repressed state are no longer stabilized (Harrison 2003).  This open structure of Src allows for 

dephosphorylation of tyrosine-527 through interaction with phosphatases like protein tyrosine 

phosphatase α (PTP α) and autophosphorylation of tyrosine-416 by another Src molecule (Brown 

and Cooper 1996).  Phosphorylation of tyrosine-416 stabilizes Src in its active state.  

Recent work has shown that treatment of intestinal cancer cells with the synthetic FXR 

ligand GW4064 prevented phosphorylation of Src at tyrosine-416 and therefore prevented Src 

from phosphorylating its downstream targets.  This FXR mediated inhibition of Src also lead to a 

decrease in cell proliferation and tumor growth.  Conversely, treatment with the FXR antagonist 

guggulsterone led to an increase in Src activity through phosphorylation of tyrosine-416 resulting 

in an increase in cell proliferation (Peng et al., 2012).  In this study we present evidence that 

FXR and Src interaction also occurs in the liver. However, while in the intestine FXR inhibits 
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Src activity, here we show that in the liver Src can phosphorylate FXR in response to bile acid 

signaling leading to FXR activation. 

2.3 Materials and Methods 

Reagents 

Antibodies for FXR (sc-13063, sc-1204) were purchased from Santa Cruz Biotech, Pan 

phospho-tyrosine antibodies (8954S, 9411S) and Src antibodies (2108S) were purchased from 

Cell Signaling. M2 antibody and M2 conjugated to agarose beads (A2220) were obtained from 

Sigma. 

Cell culture 

PMH and monkey kidney cells (COS-1) were maintained in M199 and DMEM media, 

respectively.  Media was supplemented with 100 U/ml penicillin G, streptomycin, and 10% fetal 

bovine serum. 

Primary mouse hepatocyte isolation 

C56BL/6J or B6.129X1(FVB)-Nr1h4tm1Gonz/J (FXR-/-) mice were placed in a sealed 

container with absorbent material containing isoflurane.  When mice have stopped breathing, but 

the heart is still beating, an incision was made in the abdomen exposing the liver.  The infusion 

needle was inserted into the hepatic portal vein and the inferior vena cava was cut.  Twenty-five 

ml of 37oC Perfusion buffer 1; 142 mM NaCl, 6.5 mM KCl, 10 mM Hepes, and 2.5 mM EGTA 

(pH 7.4); was perfused into the liver at a rate of 10 ml/min administered by a pump. This was 

followed by perfusion of 25 ml 37oC Perfusion buffer 2; 66.7 mM NaCl, 6.7 mM KCl, 100mM 

Hepes, 4.8 mM CaCl2 (pH 7.6), 0.016 g/ml BSA and 0.8 mg/ml collagenase.  Immediately 
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following the second perfusion, the liver was removed and placed in 10 ml Medium 199 

(Sigma).  The liver was then perforated using an 18 gauge needle and cells released were 

collected.  The liver was washed in 20 ml additional Medium 199 and the collected cells were 

filtered through a cell strainer (Falcon).  Cells were centrifuged for 5 min at 500 rpm and the 

supernatant was removed.  Cells were then resuspended in Medium 199 and layered on top of a 

mixture of 7 ml percoll (Sigma) and 8ml Medium 199.  Cells were then centrifuged for 5 min at 

1250 rpm and the supernatant was removed.  Cells were resuspended in Medium 199 

supplemented with 100 U/ml penicillin G, streptomycin and 10% fetal bovine serum and plated 

for experimentation. 

In vivo experiments 

C57BL/6J mice were purchased from Jackson laboratory.  All in vivo experiments were 

done using mice from 12-16 weeks of age.  Food was removed from the cages for 10 hours 

(7:00AM-5:00PM) after which mice were refed with either normal chow or chow supplemented 

with 0.5% cholic acid (Harlan Teklad) for 3 hours.  After refeeding mice were sacrificed and 

FXR immunoprecipitated from liver nuclear extracts was measured by western blot.  All animal 

use was approved by the Institutional Animal Care and Use and Biosafety Committees at the 

University of Illinois at Urbana-Champaign and was in accordance with National Institutes of 

Health guidelines.   

In cell phosphorylation assays 

PMH were grown in 6 well plates for phosphorylation assays.  Cells were infected with 

an adenoviral vector expressing flag tagged FXR.  Following infection cells were incubated 

overnight in serum free media containing 100 U/ml penicillin G-streptomycin then treated with 
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fed state signaling molecules at physiologically relevant doses; CDCA (50µM), GW4064 

(200nM), FGF19 (50ng/µl), or insulin (100nM) for 15 minutes.  Three minutes prior to the end 

of treatment cells were treated with 100 µM of the phosphatase inhibitor pervanadate.  Cells 

were then harvested and lysed in 500 µl RIPA buffer containing protease and phosphatase 

inhibitors.  After sonication and incubation on ice for 10 minutes cells were centrifuged and 

lysates were collected.  One µg of either control IgG or M2 antibody was added and cells were 

incubated for 30 minutes at 4oC.  Twenty-five µl of 25% protein G-sepharose slurry was added 

and incubated at 4oC for 3.5 hours.  Immunoprecipitates were washed three times with lysis 

buffer.  The levels of FXR tyrosine phosphorylation were measured by western blotting using 

anti-phosphotyrosine antibodies. 

GST pulldown assays 

Domain fragments of FXR (AF1, DBD, Hinge, and LBD) were cloned into the PGEX-

4T-1 vector and transfected into E. coli BL21 cells to express fusion Glutathione S-transferase 

(GST) FXR domain fragments.  GST-tagged domains were purified with glutathione sepharose 

beads.  One hundred ng of purified Src (Millipore, Inc) was allowed to interact with 1µg GST 

fusion domains for 3 hours at 4oC.  Complexes were then washed three times with Co-IP buffer; 

Hepes 20 mM, KCl 100 mM, glycerol 10%, EDTA 0.1 mM, NP40 0.05%.  Levels of Src in 

complex with FXR domain fragments were then measured via western blot.    

In vitro phosphorylation assays 

 COS-1 cells were infected with adenoviral vectors overexpressing flag-tagged FXR.  

FXR protein was purified through immunoprecipitation as described above.  Purified FXR was 
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incubated with Src protein (Millipore, Inc) at 30oC for 30 minutes.  Afterwards FXR 

phosphorylation levels were measured via western blot. 

RNA isolation 

PMH from C57BL/6J mice were plated in 6 well plates.  Cells were treated with vehicle, 

CDCA (50µM), or GW4064 (200nM) for 6 hours.  RNA was isolated in Trizol reagent (Qiagen) 

according to the manufactures instructions.  Relative gene expression levels were measured by  

qRTPCR analysis with SYBR Green (Roche).   

2.4 Results 

FXR is tyrosine phosphorylated in response to bile acid feeding. 

FXR is a key regulator of many metabolic processes throughout the body (Russell 2003; 

Fang et al., 2015; Kemper 2011) and its activity has been shown to be dramatically modulated by 

post-translational modifications (Gineste et al., 2008; Frankenberg et al., 2008 Kemper et al., 

2009; Kemper 2011). To better understand how FXR is post-translationally modified in response 

to bile acid signaling under physiological conditions, C57BL/6J mice were fed either normal 

chow or chow supplemented with 0.5% cholic acid for 3 hours.  FXR protein from the livers of 

these mice was then immunoprecipitated and phosphorylation levels were measured via western 

blotting.  Interestingly, it was found that FXR protein from mice fed a cholic acid rich diet 

showed high levels of tyrosine phosphorylation whereas mice fed normal chow showed minimal 

if any tyrosine phosphorylation (Figure 2.1).  No significant changes were seen in serine or 

threonine phosphorylation levels in response to cholic acid feeding.  These results suggest that 

not only is there a previously unidentified tyrosine phosphorylation site on FXR but that it is also 

regulated in response to bile acid signaling. 
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Treatment with bile acid or FGF19 increases FXR tyrosine phosphorylation. 

To further investigate what signaling leads to FXR tyrosine phosphorylation, PMHs 

isolated from FXR-/- mice were infected with adenoviral vectors expressing flag tagged FXR.  

These cells were then treated with bile acid or fed state signaling molecules.  FXR protein was 

immunoprecipitated and tyrosine phosphorylation levels were determined via western blot.  FXR 

from cells treated with the endogenous bile acid CDCA or the post-prandial hormone FGF19 

both showed dramatically increased tyrosine phosphorylation levels whereas cells treated with 

vehicle, the synthetic FXR ligand GW4064, or insulin did not exhibit FXR phosphorylation 

(Figure 2.2).  These data suggest that FXR is being phosphorylated specifically in response to 

bile acids and fed state bile acid signaling molecules.  

Tyrosine phosphorylation of FXR in response to bile acid treatment is transiently 

increased.    

Post-translational modifications are generally dynamically regulated allowing the target 

protein to modulate its activity in response to a stimulus and return to its basal state afterwards.  

Imbalance of this regulation can lead to pathological situations (Kemper et al., 2009).  To 

understand the regulation of FXR tyrosine phosphorylation, PMHs expressing flag tagged FXR 

were treated with CDCA or FGF19 at various time points.  FXR was then immunoprecipitated 

and phosphorylation levels were measured via western blot.  FXR tyrosine phosphorylation 

levels were dramatically increased as early as 5 minutes after treatment and peaked at 10 

minutes.  The phosphorylation levels dropped significantly after the 15 minute time point and 

were near basal levels by 30 minutes post treatment (Figure 2.3).  These data show that FXR 

tyrosine phosphorylation is occurring very rapidly and is being tightly regulated.   
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Src interacts with the DNA binding domain of FXR. 

To identify possible kinases that may phosphorylate FXR, the bioinformatic tools at 

Human Protein Reference Database (HPRD) were used.  HPRD recognized tyrosine 

phosphorylation site motifs of five kinases and one phosphatase (Table 2.1).  Of particular note, 

there were several Src kinase and Src family kinase motifs found on FXR.  Recent studies have 

indicated that FXR can modulate the activity of Src in intestinal cells (Peng et al., 2012).  To 

explore if FXR and Src could interact, separate domains of FXR tagged to GST were expressed 

in vitro (Figure 2.4A).  A GST pulldown assay was performed in which each domain of FXR 

was incubated with purified Src. We found the Src interacted specifically with the DNA binding 

domain (DBD) of FXR and no other domains (Figure 2.4B).  These data show that there is a 

strong interaction that takes place between FXR and Src in one specific domain of FXR. 

FXR interacts with the tyrosine kinase Src in vivo in response to cholic acid feeding. 

To examine if Src could be playing a role in FXR tyrosine phosphorylation in the liver, 

co-immunoprecipitation assays were carried out.  FXR from nuclear extracts of mice fed either 

normal chow or cholic acid supplemented chow was immunoprecipitated under non-denaturing 

conditions.  The levels of Src were then measured via western blot.  Src was found to interact 

with FXR in samples from mice fed a cholic acid supplemented diet but not in mice fed normal 

chow (Figure 2.5).  These data show that Src interacts with FXR in vivo in response to cholic 

acid feeding, the same conditions under which FXR is phosphorylated, suggesting that Src may 

play a role in the phosphorylation of FXR. 
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Src is activated by bile acid and FGF19 treatment. 

Several recent studies have examined the effect of bile acid signaling on Src activation in 

the intestine, however, the role of hepatic Src in bile acid signaling is poorly understood.   To 

explore the how CDCA and FGF19 treatment might affect Src activation in the liver, PMH from 

C57BL/6J mice were isolated and treated with CDCA or FGF19.  At various time points, Src 

activation was measured via western blot.  Both CDCA and FGF19 treatment lead to increases in 

Src tyrosine-416 phosphorylation at 5 minutes post treatment, with phosphorylation returning to 

basal levels at an hour post treatment (Figure 2.6).  These data are consistent with the timing of 

FXR phosphorylation showing that Src is active when FXR is being phosphorylated.  

Src is sufficient to phosphorylate FXR in vitro. 

To determine whether activated Src could phosphorylate FXR, COS-1 cells were infected 

with adenoviral vectors overexpressing flag-tagged FXR.  FXR protein was purified through 

immunoprecipitation and incubated with a constitutively active form of Src protein (Millipore, 

Inc).  Western blot analysis showed that FXR protein incubated with Src protein and ATP was 

tyrosine phosphorylated while controls without ATP or Src were not (Figure 2.7).  These data 

indicate that activated Src has the ability to phosphorylate FXR in vitro. 

Loss of Src impairs FXR tyrosine phosphorylation.  

To determine whether Src was required for FXR tyrosine phosphorylation in cells, PMH 

were isolated and transfected with either control siRNA or siRNA targeting Src.  These cells 

were then treated with CDCA (Figure 2.8A) or FGF19 (Figure 2.8B).  FXR protein and 

phosphorylation levels were determined via western blot.  The siSrc RNA was able to achieve a 

significant decrease in Src expression with between a 70% and 90% reduction in protein levels 
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observed.  This decreased expression was accompanied by a dramatic loss of FXR 

phosphorylation.  These data suggest that Src is required for FXR tyrosine phosphorylation in 

response to CDCA and FGF19 treatments.  

Identification of FXR tyrosine phosphorylation site. 

Identification of the site of FXR tyrosine phosphorylation site is key to understanding 

how this phosphorylation is regulated and the effects that phosphorylation has on FXR.  In order 

to identify the phosphorylation site, PMH from FXR-/- mice were isolated and infected with 

vectors expressing flag tagged FXR.  The cells were then treated with CDCA or FGF19 and the 

FXR protein was immunoprecipitated.  The purified FXR protein was then analyzed by tandem 

mass spectrometry to identify potential phosphorylation sites.  Through this analysis three 

potential tyrosine phosphorylation sites were identified; tyrosine-46, tyrosine-49, and tyrosine-67 

(Figure 2.9A).   The bioinformatics program NetPhos 3.1 was also used to screen for potential 

phosphorylation sites.  NetPhos 3.1 analyzed every tyrosine residue of FXR and gave each a 

prediction score based on the likelihood of the site being phosphorylated.  While tyrosine-46 and 

49 both received scores indicating possible phosphorylation, tyrosine-67 was by far the most 

highly predicted site (Table 2.2).  According to HPRD software these 3 tyrosine sites also 

contain Src and Src family kinase motifs (Table 2.1) further supporting the theory that they may 

be potential phosphorylation sites of FXR.  To examine which of these sites plays a role in FXR 

signal dependent phosphorylation, plasmid constructs were created mutating each of these sites.  

This constructs were then transfected into PMH which were treated with FGF19.  Western blot 

analysis showed that mutation of the tyrosine-67 phosphorylation site dramatically reduced FXR 

tyrosine phosphorylation while mutation of either tyrosine-46 or 49 lead to no observable change 

in phosphorylation (Figure 2.9B).  Additionally, sequence alignment shows that FXR tyrosine-67 
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is highly conserved between species (Table 2.3) suggesting that this site may be important for 

FXR function.  Taken together these data indicate that tyrosine-67 is the major phosphorylation 

site of FXR.   

Mutation of FXR tyrosine-67 leads to loss of transactivation activity. 

 Previous work has shown that phosphorylation of FXR can play a key role in its ability to 

regulate its target gene expression (Gineste et al., 2008).  To examine if tyrosine-67 is important 

for FXR transactivation activity, a luciferase reporter assay was done.  COS-1 cells were 

transfected with a reporter plasmid containing the luciferase gene driven by either a promoter 

containing the FXRE (Figure 2.10A) or by the endogenous SHP promoter (Figure 2.10B) along 

with an expression plasmid containing the FXR heterodimer partner RXR and varying 

concentrations of expression plasmids containing either wild type FXR or the phosphorylation 

deficient mutant Y67F-FXR. The cells were then treated with CDCA or FGF19, the signals 

shown to activate FXR tyrosine-67 phosphorylation.  Transfection of the wild type FXR plasmid 

was shown to increase the expression of luciferase in a dose dependent manner whereas cells 

transfected with the Y67F-FXR plasmid showed significantly lower levels of activation.  These 

data suggest that tyrosine-67 phosphorylation plays an important role in the ability of FXR to 

transactivate both its FXRE and the endogenous promoter of its well-known target SHP.      

Loss of tyrosine-67 phosphorylation impairs the interaction of FXR with its heterodimer 

partner RXR. 

 Heterodimerization with RXR is a key step in FXR activation (Claudel et al., 2002) and 

has been shown to be regulated by the post-translational state of FXR (Kemper et al., 2009).  To 

determine if tyrosine-67 phosphorylation plays a role in FXR/RXR interaction, co-
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immunoprecipitation experiments were done.  PMH cells from FXR-/- mice were infected with 

adenoviral vector expressing flag tagged wild type or Y67F-FXR and treated with CDCA.  RXR 

protein was immunoprecipitated and samples were immunoblotted to measure interaction with 

the flag tagged FXR.  Significantly less interaction was observed between RXR and Y67F-FXR 

than with wild type FXR (Figure 2.11A).  To ensure that this decreased interaction is caused by 

loss of phosphorylation and not a conformational change caused by the tyrosine to phenylalanine 

mutation, siRNA knockdown experiments were used to determine if decreased Src levels altered 

FXR/RXR interactions.  PMH cells from FXR-/- mice were infected with adenoviral vector 

expressing flag tagged wild type.  These cells were then transfected with either control siRNAs 

or siSrc.  These cells were then treated as above.  PMHs transfected with siSrc showed 

significantly less interaction between FXR and RXR than those transfected with control siRNAs 

(Figure 2.11B).  These data show that loss of FXR tyrosine-67 phosphorylation causes a 

dramatic decrease in FXR/RXR interaction, likely contributing to the loss of transactivation 

activity seen in previous experiments. 

Mutation of tyrosine-67 impairs the ability of FXR to regulate genes involved in bile acid 

homeostasis. 

 To determine if the previously seen decreases in heterodimerization and transactivation 

activity lead to changes in FXR target gene expression, PMH from FXR-/- mice were isolated and 

subsequently infected with adenoviral vectors expressing either wild type FXR or the 

phosphorylation deficient Y67F-FXR.  These cells were treated with CDCA or FGF19 for 6 

hours at which point RNA was isolated from the cells.  Expression of various FXR target genes 

was measured by qPCR.  Cells expressing Y67F-FXR showed decreases in expression of FXR 

target genes SHP and BSEP but not MRP2 or MDR1 (Figure 2.12).  These data suggest that loss 
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of FXR tyrosine-67 phosphorylation affects FXR target gene expression in a gene selective 

manner.   

2.5 Discussion 

In this work we identify a new phosphorylation site of FXR at tyrosine-67, demonstrate 

that bile acid and FGF19 signaling activate the kinase Src to produce this modification, and 

explore the mechanism through which phosphorylation of FXR regulates its activity by altering 

its ability to heterodimerize with RXR and transcriptionally regulate target genes.     

It is well known that bile acids can activate numerous signaling pathways including 

nuclear receptor and kinase signaling both through direct activation of target receptors and 

though upregulation of the peptide hormone FGF19 by FXR.  (Staudinger et al 2001, Makishima 

2002; Stravitz  et al., 1996; Gupta et al., 2001; Rao et al 2002; Kawamata et al., 2003; Dent et al 

2005).  However, what is not known is whether these signaling pathways in turn feedback to 

modulate FXR in the liver through post-translational modification.  Here we show that feeding 

mice a diet rich in CA leads to a significant increase in tyrosine phosphorylation of FXR in the 

liver.  To differentiate between the numerous pathways activated by CA feeding, PMH were 

isolated from C57BL/6J mice and treated directly with fed state signaling molecules.  We 

observed that treatment with either the natural FXR ligand CDCA or FGF19 both lead to 

dramatic increases in FXR tyrosine phosphorylation.  CDCA and FGF19 are known to activate 

distinct membrane receptors important for bile acid signaling, suggesting crosstalk between these 

receptors or convergence downstream of these membrane receptors may be important for FXR 

tyrosine phosphorylation.  Of note, a recent study (Li et al., 2014) identified protein-tyrosine 

phosphatase 2C (SHP-2) as a coordinator of bile acid and FGF19 signaling.  SHP-2 is a 

phosphatase that acts as a key downstream target of FGF19 signaling. Loss of SHP-2 impaired 
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both FGF19 downstream signaling as well as the ability of FXR to activate SHP expression in 

response to ligand binding.  Li et al., suggests a currently unidentified factor might mediate this 

interplay between SHP-2 and FXR.  As dephosphorization of Src at tyrosine-527 is a key step in 

its activation, it is possible that Src is this unidentified factor.  These factors make SHP-2 an 

interesting target for future studies looking at FXR tyrosine phosphorylation.  

A consequence of FXR phosphorylation identified in this study is an increase in 

FXR/RXR interaction.  This is consistent with other studies looking at post-translational 

modifications of FXR and other NRs which have similarly shown that these modifications can 

often lead to changes in the recruitment of binding partners and transcriptional cofactor 

complexes (DH Kim et al., 2015; Seok et al., 2013; Miao et al., 2009).  It is well known that 

FXR transactivation of many of its target genes requires dimerization with RXR. This provides a 

mechanism through which phosphorylation of FXR at tyrosine-67 could modulate the expression 

of its target genes.  Interestingly, recent studies have shown that FXR can also regulate target 

genes through transrepression, often acting without RXR binding.  FXR transrepression activity, 

while originally thought to be very rare, has been shown to be important for a large fraction of 

FXR target genes, notably FXR repression of autophagy and inflammatory genes (Lee et al., 

2012; Seok et al., 2014; Kim et al., 2015).  Future studies examining whether FXR tyrosine-67 

phosphorylation has an effect on the expression of these RXR independent target genes will be 

interesting. 

Previous work has suggested that crosstalk between FXR-mediated bile acid signaling 

and Src kinase signaling occurs in intestinal cells (Peng et a., 2012) although the exact 

mechanism for this crosstalk remains unclear.  Our data indicate that, in the liver, FXR can 

interact with Src directly through its DBD and that this interaction is increased in the presence of 
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bile acids.  These findings on the interactions between hepatic FXR and Src may provide insights 

for future studies into the possible mechanisms through which intestinal FXR regulates Src 

activity.  In addition to interacting with Src, our tandem mass spectrometry analysis identified 

multiple potential FXR phosphorylation sites, several containing Src phosphorylation motifs.  

While in the liver our results show that tyrosine-67 was the major site of phosphorylation, in 

different cellular contexts other sites may play a larger role.      

Recently there have been many studies exploring FGF19 as a potential target for treating 

metabolic diseases, including, hepatobiliary diseases and diabetes (Owen et al., 2015; 

Degirolamo et al., 2016; Kliewer and Mangelsdorf 2015).  While much is known about the 

beneficial effects and pathways activated by FGF19 signaling, nothing is known about how 

FGF19 signaling is terminated.  Understanding this mechanism will be important if FGF19 is to 

be used as a therapeutic drug, as chronic activation of FGF19 is associated with liver and 

intestinal tumorigenesis (Nicholes et al., 2002; Desnoyers et al., 2008).  Previous studies have 

shown that FXR helps to prime the liver for FGF19 signaling by increasing the expression of β-

Klotho, a key coreceptor necessary for FGF19 binding (Fu et al., 2016).  Future studies with this 

project will explore the possibility that after FGF19 signaling has been received by the liver, 

FXR is phosphorylated which then acts in a gene selective manner to decrease expression of 

FGF19 signaling genes, forming a negative feedback loop to maintain homeostasis.  

Understanding exactly how tyrosine-67 phosphorylation gene selectively regulates FXR target 

genes may provide potential therapeutic targets for this pathway and as well as other bile acid 

related diseases. 
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2.6 Tables and Figures 

Figure 2.1 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: FXR is tyrosine phosphorylated in response to bile acid feeding. C57BL/6J mice 
were fasted for 10 hours then refed with normal chow diet (ND) or a diet containing 0.5% cholic 
acid (CA) for 3 hours.  Nuclear extracts from the livers of these mice were prepared.  FXR 
protein was immunoprecipitated and then immunoblotted using antibodies specific for proteins 
phosphorylated at serine, threonine, or tyrosine residues.  This work was completed by Dong 
Hyun Kim with help from Daniel Ryerson. 
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Figure 2.2 

 

 

 

 

 

 

 

 

 

Figure 2.2: Treatment with bile acids or FGF19 increases FXR tyrosine phosphorylation. 
PMH cells isolated from FXR-/- mice were infected with an adenoviral vector expressing flag 
tagged FXR protein (f-FXR).  Cells were then treated with several signaling molecules important 
for bile acid and fed state signaling: CDCA (50 µM), FGF19 (50 ng/µl), GW4064 (200 nM), and 
Insulin (100 nM).  Cells were treated for 12 minutes followed by 3 minutes of treatment with the 
phosphatase inhibitor pervanadate.  Cells were lysed and FXR protein was immunoprecipitated 
using M2 antibody conjugated to agarose beads.  Tyrosine phosphorylation levels of FXR were 
determined through western blot analysis.  This work was completed by Daniel Ryerson with 
help from Dong Hyun Kim. 
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Figure 2.3 
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Figure 2.3: Tyrosine phosphorylation of FXR in response to treatment is transiently 
increased.  PMH cells isolated from FXR-/- mice were infected with adenoviral vector 
expressing flag tagged FXR protein (f-FXR).  Infected cells were then treated with A) CDCA (50 
µM) or B) FGF19 (50 ng/µl) for the indicated times.  Prior to lysing, cells were treated with the 
phosphatase inhibitor pervanadate for 3 minutes.  Cells were lysed and FXR protein was 
immunoprecipitated using M2 antibody conjugated to agarose beads.  Tyrosine phosphorylation 
levels of FXR were determined through western blot analysis.  This work was completed by 
Daniel Ryerson with help from Dong Hyun Kim. 
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Figure 2.4 

A) 
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Figure 2.4:  Src interacts with the DNA binding domain of FXR.  A) GST tagged domains of 
human FXR were expressed in BL21 cells.  AF1, DBD, Hinge, and LBD domains were purified 
with glutathione beads. B) Equal amounts of each purified FXR domain were incubated with 
purified Src.  Protein complexes were then precipitated in a GST pulldown assay.  Interaction of 
FXR and Src was measured through western blot using a Src antibody.  This work was 
completed by Daniel Ryerson.  
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Figure 2.5 

 

 

 

 

 

 

 

 

 

Figure 2.5:  FXR interacts with the tyrosine kinase Src in vivo in response to cholic acid 
feeding.  C57BL/6J mice were fasted for 10 hours then refed with normal chow diet (-CA) or a 
diet containing 0.5% cholic acid (+CA) for 3 hours.  Nuclear extracts from the livers of these 
mice were prepared.  FXR protein was immunoprecipitated under non-denaturing conditions and 
samples were immunoblotted using Src antibody. This work was completed by Dong Hyun Kim. 
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Figure 2.6 
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Figure 2.6:  Src is activated by bile acid and FGF19 treatment. PMH isolated from C57BL/6J 
were treated with A) CDCA (50 µM) or B) FGF19 (50 ng/µl) for the indicated times.  The cells 
were lysed and Src protein was immunoprecipitated.  Src activation was measured by tyrosine-
416 phosphorylation levels determined through western blot analysis.  This work was completed 
by Dong Hyun Kim with help from Daniel Ryerson. 
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Figure 2.7 

 

 

 

 

 

 

 

Figure 2.7:  Src is sufficient to phosphorylate FXR in vitro. Flag tagged FXR protein was 
immunoprecipitated from COS-1 cells following adenoviral infection. Purified FXR protein was 
then incubated with 10 ng purified Src for 30 minutes at 30oC and phosphorylation levels were 
measured via western blot.  This work was completed by Daniel Ryerson. 
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Figure 2.8 

A) 
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Figure 2.8:  Loss of Src impairs FXR tyrosine phosphorylation. PMH cells isolated from 
FXR-/- mice were infected with adenoviral vector expressing flag tagged FXR protein (f-FXR).  
Infected cells were then transfected with either control siRNAs or siSrc.  These cells were then 
treated with A) CDCA (50 µM) or B) FGF19 (50 ng/µl). FXR was then immunoprecipitated and 
tyrosine phosphorylation levels were measured via western blot.  This work was completed by 
Dong Hyun Kim with help from Daniel Ryerson. 
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Figure 2.9 

A) 

 

 

 

 

 

 

 

 

B) 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9:  Identification of FXR tyrosine phosphorylation site. A) PMH cells isolated from 
FXR-/- mice were infected with an adenoviral vector expressing flag tagged FXR protein (f-
FXR).  Infected cells were then treated with CDCA (50µM) or FGF19 (50ng/µl). FXR was then 
immunoprecipitated and phosphorylation sites were identified through tandem mass 
spectrometry.  B) Plasmids expressing phosphorylation deficient FXR mutants for the sites 
identified through tandem mass spectrometry were created.  PMH from FXR-/- mice were then 
transfected with these phosphorylation mutant plasmids and treated with FGF19.  FXR protein 
was immunoprecipitated and tyrosine phosphorylation levels were measured via western blot.  
This work was completed by Dong Hyun Kim with help from Daniel Ryerson. 
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Figure 2.10 
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Figure 2.10: Mutation of FXR Y67 leads to loss of transactivation activity.  COS-1 cells 
were cotransfected with increasing amounts of plasmid containing either wild type FXR or 
Y67F-FXR mutant, RXR, and a luciferase reporter plasmid driven by A) the FXR response 
element or B) the endogenous SHP promoter.  The cells were then treated with either CDCA (50 
µM) or FGF19 (50 ng/µl) for 6 hours.  After treatment luciferase levels were measured with 
Luciferase Assay System (Promega, Inc) according to the manufacturer’s directions. C) FXR 
levels were measured via western blot to show equal levels of expression between wild type and 
Y67F-FXR.  This work was completed by Dong Hyun Kim with help from Daniel Ryerson. 
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Figure 2.11 
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Figure 2.11:  Loss of tyrosine-67 phosphorylation impairs the interaction of FXR with its 
heterodimer partner RXR. PMH cells were isolated from FXR-/- mice. A) These cells were 
infected with adenoviral vector expressing flag tagged wild type or Y67F-FXR.  Infected cells 
were then treated with CDCA (50 µM).  After treatment, cells were lysed and RXR protein was 
immunoprecipitated under non-denaturing conditions. Samples were immunoblotted using M2 
antibody. B) Cells were infected with adenoviral vector expressing flag tagged wild type FXR.  
Infected cells were then transfected with either control siRNAs or siSrc.  These cells were then 
treated with CDCA (50 µM).  After treatment cells were lysed and RXR protein was 
immunoprecipitated under non-denaturing conditions. Samples were immunoblotted using M2 
antibody. This work was completed by Dong Hyun Kim with help from Daniel Ryerson. 
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Figure 2.12 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 2.12: Mutation of tyrosine-67 impairs the ability of FXR to regulate genes involved 
in bile acid homeostasis.  PMH from FXR-/- mice were isolated and subsequently infected with 
adenoviral vectors expressing either wild type FXR or the phosphorylation deficient Y67F-FXR.  
Cells were then treated CDCA (50 µm) or FGF19 (50 ng/ul) for 6 hours.  RNA from the treated 
cells was isolated and cDNA was made.  Expression of various FXR target genes was measured 
by qPCR analysis. Expression levels of FXR were measured via western blot.  This work was 
done by Dong Hyun Kim with help from Daniel Ryerson. 
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Table 2.1 

Position 
in 

query 
protein 

Sequence 
in 

query 
protein 

Corresponding motif 
described in the 

literature 
(phosphorylated 
residues in red) 

Features of motif described in the 
literature 

44 – 46 EPY [E/D]XpY SHP1 phosphatase substrate motif 

46 - 47 YS pY[A/G/S/T/E/D] Src kinase substrate motif 

49 - 50 YS pY[A/G/S/T/E/D] Src kinase substrate motif 

49 - 52 YSNV pYXX[L/I/V] JAK2 kinase substrate motif 

49 - 54 YSNVQF pYXXXX[F/Y] ALK kinase substrate motif 

65 - 70 SYYSNL [I/V/L/S]XpYXX[L/I] Src family kinase substrate motif 

66 - 67 YY [E/D/Y]pY TC-PTP phosphatase substrate motif 

67 - 68 YS pY[A/G/S/T/E/D] Src kinase substrate motif 

67 - 70 YSNL pYXX[L/I/V] JAK2 kinase substrate motif 

67 - 72 YSNLGF pYXXXX[F/Y] ALK kinase substrate motif 

78 - 81 EEWY [E/D]XXpY ALK kinase substrate motif 

79 - 81 EWY [E/D]XpY SHP1 phosphatase substrate motif 

81 - 82 YS pY[A/G/S/T/E/D] Src kinase substrate motif 

81 - 86 YSPGIY pYXXXX[F/Y] ALK kinase substrate motif 

86 - 87 YE pY[A/G/S/T/E/D] Src kinase substrate motif 

94 - 97 ETLY [E/D]XXpY ALK kinase substrate motif 

139 - 142 YNAL pYXX[L/I/V] JAK2 kinase substrate motif 

172 - 174 DMY [E/D]XpY SHP1 phosphatase substrate motif 

195 - 198 ECMY [E/D]XXpY ALK kinase substrate motif 

198 - 199 YT pY[A/G/S/T/E/D] Src kinase substrate motif 

198 - 201 YTGL pYXX[L/I/V] JAK2 kinase substrate motif 

262 - 264 DSY [E/D]XpY SHP1 phosphatase substrate motif 
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Table 2.1 (cont.) 

363 - 365 DEY [E/D]XpY SHP1 phosphatase substrate motif 

363 - 366 DEYI X[E/D]pYX EGFR kinase substrate motif 

363 - 366 DEYI X[E/D]pY[I/L/V] EGFR kinase substrate motif 

364 - 365 EY [E/D/Y]pY TC-PTP phosphatase substrate motif 

365 - 370 YITPMF pYXXXX[F/Y] ALK kinase substrate motif 

371 - 376 SFYKSI [I/V/L/S]XpYXX[L/I] Src family kinase substrate motif 

373 - 376 YKSI pYXX[L/I/V] JAK2 kinase substrate motif 

384 - 386 EEY [E/D]XpY SHP1 phosphatase substrate motif 

384 - 387 EEYA X[E/D]pYX EGFR kinase substrate motif 

385 - 386 EY [E/D/Y]pY TC-PTP phosphatase substrate motif 

386 - 387 YA pY[A/G/S/T/E/D] Src kinase substrate motif 

386 - 389 YALL pYXX[L/I/V] JAK2 kinase substrate motif 

398 - 401 DRQY [E/D]XXpY ALK kinase substrate motif 

 

Table 2.1: Analysis of phosphorylation site motifs found on FXR.  The amino acid sequence 
of FXR was input into the human protein reference database (Prasad et al., 2009) and analyzed 
for known tyrosine kinase motifs.  Analysis was completed by Daniel Ryerson.  
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Table 2.2 

Tyrosine Site Phosphorylation Prediction 

Position Sequence Score 

46 EVEPYSQYS 0.694 

49 PYSQYSNVQ 0.643 

66 SSSSYYSNL 0.893 

67 SSSYYSNLG 0.968 

73 NLGFYPQQP 0.028 

81 PEEWYSPGI 0.438 

86 SPGIYELRR 0.320 

97 AETLYQGET 0.727 

137 RASGYHYNA 0.830 

139 SGYHYNALT 0.114 

161 KNAVYKCKN 0.634 

174 VMDMYMRRK 0.606 

198 AECMYTGLL 0.196 

264 IMDSYNKQR 0.284 

365 ISDEYITPM 0.836 

373 MFSFYKSIG 0.397 

386 TQEEYALLT 0.673 

401 PDRQYIKDR 0.222 

 

 

Table 2.2: Analysis of predicted phosphorylation sites on FXR.  The amino acid sequence of 
FXR was input into the NetPhos 3.1 server (Blom et al., 1999) and analyzed for potential 
tyrosine phosphorylation sites.  The most highly predicted site of tyrosine phosphorylation is 
bolded.  Analysis was completed by Daniel Ryerson.  
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Table 2.3 

 

Table 2.3: Alignment of FXR tyrosine phosphorylation site across species. The amino acid 
sequence of FXR proteins from different species, obtained from NCBI database, was aligned 
using ClustalW2 alignment tool to determine sequence similarity to human FXR tyrosine-67.  
Analysis was completed by Daniel Ryerson. 

  



62 
 

2.7 References 

Anakk S, Watanabe M, Ochsner SA, McKenna NJ, Finegold MJ, Moore DD. (2011) 
Combined deletion of Fxr and Shp in mice induces Cyp17a1 and results in juvenile onset 
cholestasis. J Clin Invest. 121(1):86-95.  
 
Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. 
(2001) Human bile salt export pump promoter is transactivated by the farnesoid X 
receptor/bile acid receptor. J Biol Chem. 276(31):28857-65. 
 
Barbier O, Torra IP, Sirvent A, Claudel T, Blanquart C, Duran-Sandoval D, Kuipers F, 
Kosykh V, Fruchart JC, Staels B. (2003) FXR induces the UGT2B4 enzyme in 
hepatocytes: a potential mechanism of negative feedback control of FXR activity. 
Gastroenterology. 124(7):1926-40. 
 
Blom N, Gammeltoft S, Brunak S. (1999) Sequence and structure-based prediction of 
eukaryotic protein phosphorylation sites. J Mol Biol. 294(5):1351-62. 
 
Brown MT, Cooper JA. (1996) Regulation, substrates and functions of src. Biochim 
Biophys Acta. 1287:121–49.  
 
Degirolamo, C., Sabba, C. & Moschetta, A. (2016) Therapeutic potential of the endocrine 
fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 15,51-69.  

 
Desnoyers LR, Pai R, Ferrando RE, Hotzel K, Le T, Ross J, Carano R, D'Souza A, Qing 
J, Mohtashemi I, Ashkenazi A, French DM. (2008) Targeting FGF19 inhibits tumor 
growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma 
models. Oncogene 27,85-97  

 
Frame MC. (2002) Src in cancer: deregulation and consequences for cell behavior. 
Biochim. Biophys. Acta. 1602:114–130. 
 
Frankenberg T, Miloh T, Chen FY, Ananthanarayanan M, Sun AQ, Balasubramaniyan N, 
Arias I, Setchell KD, Suchy FJ, Shneider BL. (2008) The membrane protein ATPase 
class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid 
X receptor. Hepatology. 48(6):1896-905. 
 
Fu T, Kim YC, Byun S, Kim DH, Seok S, Suino-Powell K, Xu HE, Kemper B, Kemper 
JK. (2016) FXR Primes the Liver for Intestinal FGF15 Signaling by Transient Induction 
of β-Klotho. Mol Endocrinol. 30(1):92-103. 
 
Gineste R, Sirvent A, Paumelle R, Helleboid S, Aquilina A, Darteil R, Hum DW, 
Fruchart JC, Staels B. (2008) Phosphorylation of farnesoid X receptor by protein kinase 
C promotes its transcriptional activity. Mol Endocrinol. 22(11):2433-47. 
 



63 
 

Gnerre C, Blättler S, Kaufmann MR, Looser R, Meyer UA. (2004) Regulation of 
CYP3A4 by the bile acid receptor FXR: evidence for functional binding sites in the 
CYP3A4 gene. Pharmacogenetics. 14(10):635-45. 
 
Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, 
Wilson JG, Lewis MC, Roth ME, Maloney PR, Wilson TM, Kliewer SA. (2000) A 
regulatory cascade of the nuclear receptors FXR, SHP-1 and LRH-1 represses bile acid 
biosynthesis. Mol Cell. 6(3):517-26. 
 
Harrison SC. (2003) Variation on an Src-like theme. Cell. 112(6):737. 
 
Kemper JK. (2011) Regulation of FXR transcriptional activity in health and disease: 
Emerging roles of FXR cofactors and post-translational modifications. Biochim Biophys 
Acta. 1812(8):842-50 
 
Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D, Tsang S, Wu SY, 
Chiang CM, Veenstra TD. (2009) FXR acetylation is normally dynamically regulated by 
p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 
10(5):392-404. 
 
Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, 
Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, 
Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, 
Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, 
Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A. (2009) Human 
Protein Reference Database--2009 update. Nucleic Acids Res. D767-72.  

 
Kliewer SA, Mangelsdorf DJ. (2015) Bile Acids as Hormones: The FXR-FGF15/19 
Pathway. Dig. Dis. 33:327-331  

 
Kim DH, Xiao Z, Kwon S, Sun X, Ryerson D, Tkac D, Ma P, Wu SY, Chiang CM, Zhou 
E, Xu HE, Palvimo JJ, Chen LF, Kemper B, Kemper JK. (2015) A dysregulated 
acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity. EMBO J. 
34(2):184-99. 
 
Lee J, Seok S, Yu P, Kim K, Smith Z, Rivas-Astroza M, Zhong S, Kemper JK. (2012) 
Genomic analysis of hepatic farnesoid X receptor binding sites reveals altered binding in 
obesity and direct gene repression by farnesoid X receptor in mice. Hepatology. 
56(1):108-17.  
 
Levin VA. (2004) Basis and importance of Src as a target in cancer. Cancer Treat. Res. 
119:89–119. 
 
Li S, Hsu DD, Li B, Luo X, Alderson N, Qiao L, Ma L, Zhu HH, He Z, Suino-Powell K, 
Ji K, Li J, Shao J, Xu HE, Li T, Feng GS. (2014) Cytoplasmic tyrosine phosphatase Shp2 



64 
 

coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid 
synthesis. Cell Metab. 20(2):320-32. 

 
Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV Lustig KD, 
Mangelsdorf DJ, Shan B. (1999) Identification of a nuclear receptor for bile acids. 
Science. 284(5418):1362-5. 

 
Miao J, Xiao Z, Kanamaluru D, Min G, Yau PM, Veenstra TD, Ellis E, Strom S, Suino-
Powell K, Xu HE, Kemper JK. (2009) Bile acid signaling pathways increase stability of 
Small Heterodimer Partner (SHP) by inhibiting ubiquitin-proteasomal degradation. Genes 
Dev. 23(8):986-96. 
 
Nicholes K, Guillet S, Tomlinson E, Hillan K, Wright B, Frantz GD, Pham TA, Dillard-
Telm L, Tsai SP, Stephan JP, Stinson J, Stewart T, French DM. (2008) A mouse model of 
hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal 
muscle of transgenic mice. Am. J. Pathol. 160,2295-2307  

 
Owen BM, Mangelsdorf DJ, Kliewer SA. (2015) Tissue-specific actions of the metabolic 
hormones FGF15/19 and FGF21. Trends Endocrinol. Metab. 26,22-29 PMC4277911 

 
Peng Z, Raufman JO, Xie G. (2012) Src-mediated cross-talk between farnesoid X and 
epidermal growth factor receptors inhibits human intestinal cell proliferation and 
tumorigenesis. PLos One. 7(10):e48461. 
 
Russell DW. (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu 
Rev Biochem. 72:137-74. 

 
Seok S, Kanamaluru D, Xiao Z, Ryerson D, Choi SE, Suino-Powell K, Xu HE, Veenstra 
TD, Kemper JK. (2013) Bile acid signal-induced phosphorylation of small heterodimer 
partner by protein kinase Cζ is critical for epigenomic regulation of liver metabolic 
genes. J Biol Chem. 288(32):23252-63.  

 
Song CS, Echchgadda I, Baek BS, Ahn SC, Oh T, Roy AK, Chatterjee B. (2001) 
Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid 
X receptor. J Biol Chem. 276(45):42549-56. 
 
Thomas SM, Brugge JS. (1997) Cellular functions regulated by Src family kinases. Annu. 
Rev. Cell Dev. Biol. 13:513–609.  
Trauner M, Boyer JL. (2003) Bile salt transporters: molecular characterization, function, 
and regulation. Physiol Rev. 83(2):633-71. 
 
Zhang Y, Edwards PA. (2008) FXR signaling in metabolic disease. FEBS Lett. 
582(1):10-8. 
 



65 
 

Zhao Y, Sudol M, Hanafusa H, Krueger I. (1992) Increased tyrosine kinase activity of c-
Src during calcium-induced keratinocyte differentiation. Proc. Natl. Acad. Sci. USA. 
89:8298–8302.  
 
Zheng XM, Resnick RJ, Shalloway D. (2000) A phosphortyrosine displacement 
mechanism for activation of Src by PTPalpha. EMBO J. 19(5):964-78. 

 

 

  



66 
 

Chapter Three 

In vivo functional role of FXR phosphorylation in physiology and 
disease 

3.1 Abstract 

 FXR plays important roles in diverse physiological processes involved in multiple organ 

systems.  Loss of FXR in mouse models leads to several distinct deficiencies.  FXR-/- mice 

display elevated bile acid pool size as well as elevated serum bile acid levels.  They also show 

misregulation of many metabolic processes resulting in impaired glucose tolerance and insulin 

sensitivity, elevated cholesterol, LDL, HDL, and triglyceride levels. Additionally, FXR-/- mice 

show signs of liver damage and develop spontaneous tumors as they age.  The diverse roles FXR 

plays highlight the importance of studying the activity and regulation of FXR in whole animal 

settings.   In this study, we utilized adenoviral vectors to express wild type and tyrosine-67 site 

specific phosphorylation deficient mutant FXR proteins in the livers of C57BL/6J and FXR-/- 

mice.  This adenoviral mediated expression allowed us to examine the role that phosphorylation 

of hepatic FXR at tyrosine-67 has on the expression of FXR target genes as well as the effects on 

the physiological roles of FXR in the body.  We demonstrated that disruption of the tyrosine-67 

phosphorylation site led to a decrease in expression of FXR targets.  Additionally, bile acid 

levels as well as the levels of aspartate transaminase (AST), alanine transaminase (ALT), and 

bilirubin, three markers of liver damage, were elevated.  The livers of FXR-/- mice expressing 

Y67F-FXR showed increased levels of macrophage infiltration, another sign of liver damage.  

These effects were exacerbated when the mice were challenged in models of cholestasis.  

Overall, we have shown that disruption of FXR phosphorylation at tyrosine-67 drastically 
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impairs FXR’s ability to regulate bile acid responsive target genes and demonstrates the 

important physiological role FXR tyrosine-67 phosphorylation plays in bile acid homeostasis.   

3.2 Introduction 

  Cholestatic liver diseases are progressive and can lead to liver failure. Currently, there is 

not an effective treatment for most cholestatic liver diseases.  Cholestasis is defined as an 

impairment of bile secretion and flow. As a result of cholestasis, bile acids accumulate in the 

liver potentially causing fibrosis, inflammation, and cirrhosis.  Liver cirrhosis dramatically 

increases the risk of developing hepatocellular carcinoma (HCC) which accounts for 80% of all 

liver tumors and is now the second leading cause of cancer deaths worldwide (El-Serag and 

Rudolph 2007).  HCC is the fastest growing cause of cancer mortality in the United States.  Mice 

lacking the key regulator of bile acids, FXR, have been shown to spontaneously develop liver 

tumors including hepatocellular adenoma and carcinoma between 13-15 months of age (Young 

et al., 2007).  Conversely, increasing FXR expression has been shown to prevent tumor 

development (Degirolamo et al., 2015). Therefore, understanding the regulation of FXR in 

mouse models may help shed light on the development of HCC and possibly open new treatment 

avenues.  The exact mechanism through which FXR prevents tumor growth is still unknown 

although there are several proposed mechanisms.  FXR activity prevents accumulation of 

hydrophobic bile acids in the liver which at high levels can lead to cell damage.  FXR can also 

directly influence inflammatory signaling and apoptosis through its interactions with NFκB 

(Gadaleta et al., 2011).  Additionally, FXR has been shown to play important roles in regulating 

liver regeneration.  Irregular liver regeneration has been suggested to promote a tumor prone 

environment. 
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 In addition to their tumorigenic phenotype, disruption of FXR in vivo results in a host of 

deleterious metabolic effects. FXR-/- mice have increased bile acids pool size and increased 

serum bile acid levels (Kok et al., 2003).  FXR-/- mice also have an impaired lipid profile with 

elevated serum levels of cholesterol, HDL, LDL, and triglycerides (Sinal et al., 2000).  

Additionally, FXR-/- mice have impaired glucose tolerance and insulin sensitivity.  FXR regulates 

many physiological processes involving multiple organ systems, which highlights the importance 

of utilizing available mouse models and examining effects on FXR activity in vivo. 

 One tool that has proven very useful for studying the role of FXR in the liver has been 

adenoviral overexpression.  When using adenovirus to overexpress a protein, the gene of interest 

is cloned into a plasmid containing the adenoviral background.  This adenovirus can be injected 

directly into the tail vein of the mouse.  Upon tail vein injection the adenoviral vector quickly 

and efficiently selectively targets hepatic tissue leading to expression of the gene of interest, in 

our case FXR.  This allows isolation the role of FXR in the liver and investigation of how 

hepatic FXR affects the rest of the body.  In this study, we utilized adenoviral reconstitution of 

wild type or Y67F-FXR in FXR-/- mice.  Mutation of the site of a post-translational modification 

has proven a valuable tool when examining the role of the post-translational modification in vivo 

(Seok et al., 2013; Kim et al., 2015; Kim et al., 2016).   

A key factor when studying in vivo functions is the conditions utilized.  In our studies we 

utilized several models under different sets of conditions.  To explore normal physiological 

conditions we utilized mice fasted and refed either normal chow or a diet supplemented with 

0.5% CA briefly for 3-6 hours.  This model allowed for observation of the general effects of 

FXR tyrosine-67 phosphorylation.  However, major phenotypic changes are often not observable 

unless the models are challenged.  When exploring bile acid physiology one common method of 
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challenge is bile acid overload.  α-Naphthylisothiocyanate (ANIT) is a well characterized 

cholestatic agent which prevents normal bile flow, (Plaa and Priestly 1976) leading to hepatic 

bile acid overload.  Administration of ANIT allows for better analysis of bile acid regulation.  

Here, we investigated the role that phosphorylation of tyrosine-67 has on these models.   

3.3 Materials and Methods 

In vivo experiments  

FXR-/- mice were infected with adenoviral vectors expressing an empty vector, wild type 

flag-tagged FXR, or the flag-tagged Y67F mutant of FXR at an MOI leading to physiological 

levels of expression in the liver. Two weeks post infection, food was removed from the cages for 

10 hours (7:00AM-5:00PM) after which mice were refed with either normal chow or chow 

supplemented with 0.5% cholic acid (Harlan Teklad) for 3 hours.  After refeeding, mice were 

sacrificed and metabolic tissues were collected, snap frozen in liquid nitrogen, and stored at -

80oC for analysis.  FXR immunoprecipitated from liver nuclear extracts was measured by 

western blot.  All animal use was approved by the Institutional Animal Care and Use and 

Biosafety Committees at the University of Illinois at Urbana-Champaign and was in accordance 

with National Institutes of Health guidelines.   

In vivo cholestatic challenge experiments 

FXR-/- mice were infected with adenoviral vectors expressing an empty vector, wild type 

flag-tagged FXR, or flag-tagged Y67F mutant FXR at an MOI leading to physiological levels of 

expression in the liver.  Twelve days post infection mice were treated with ANIT (75mg/kg), a 

chemical which causes intrahepatic cholestasis.  Forty-eight hours post ANIT treatment mice 

were sacrificed and metabolic tissues were collected, snap frozen in liquid nitrogen, and stored at 
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-80oC for analysis.  FXR immunoprecipitated from liver nuclear extracts was measured by 

western blot.  All animal use was approved by the Institutional Animal Care and Use and 

Biosafety Committees at the University of Illinois at Urbana-Champaign and was in accordance 

with National Institutes of Health guidelines.   

RNA isolation 

A small portion of the liver from mice infected with empty vector or adenoviral vectors 

expressing wild type or Y67F-FXR for 2 weeks was collected.  RNA was isolated in Trizol 

reagent (Qiagen) according to the manufacturer’s instructions.  Relative gene expression levels 

were measured by qRTPCR analysis with SYBR Green (Roche). 

Measurement of bile acid levels 

A small portion (~100mg) of the liver from mice infected with adenoviral vectors 

overexpressing wild type or Y67F-FXR for 2 weeks was collected.  One mL of 100% ethanol 

was added to the liver fragment.  Fragment was then sonicated and stored at 55oC overnight.  

The sample was then centrifuged at 13000 rpm for 10 minutes.  The supernatant was analyzed 

with a bile acid measurement kit (Trinity Biotech, plc) according to the manufacturer’s 

directions. 

Measurements of ALT/AST levels 

Blood was collected from mice infected with adenoviral vectors expressing either wild 

type FXR or Y67F-FXR.  Heparin was added to the samples that were then centrifuged and the 

serum was analyzed with an ALT/AST/bilirubin measurement kit (Sigma) according to the 

manufacturer’s instructions.   
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Development of a site specific FXR phosphorylation antibody 

A commercial custom produced antibody specific for FXR phosphorylated at tyrosine-67 

was designed (Abmart).  A peptide containing a phosphorylated tyrosine with 8 amino acids 

upstream and downstream of tyrosine-67 was synthesized (PQISSSSYYSNLGFYPQ).  This 

peptide was then injected into rabbits.  The FXR phospho-Y67 antibody was then purified from 

the serum of these rabbits.  The purified antibody was reconstituted in PBS with 0.02% sodium 

azide.    

Analysis of site specific FXR phosphorylation antibody specificity 

 COS-1 cells were co-transfected with Src and either wild type FXR plasmid, or a FXR 

plasmid with a tyrosine phosphorylation deficient mutation at tyrosine-66 (Y66F), tyrosine-67 

(Y67F), or both tyrosine-66 and 67 (Y66/67F).  Cells were then treated with CDCA for 15 

minutes and FXR was immunoprecipitated.  The levels of FXR tyrosine-67 phosphorylation 

were measured by western blotting using the site specific antibody developed by Abmart. 

3.4 Results 

Mutation of tyrosine-67 impairs the ability of FXR to regulate genes involved in bile acid 

homeostasis in vivo. 

Our previous studies demonstrated that disruption of the FXR tyrosine-67 

phosphorylation site impaired the ability of FXR to regulate its target genes in PMH.  To explore 

the effect of FXR tyrosine-67 phosphorylation on target gene expression in vivo, FXR-/- mice 

were infected with adenoviral constructs expressing either empty vector, wild type FXR, or 

Y67F mutant FXR to endogenous levels and expression of FXR target genes was measured via 
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qPCR.  As expected, wild type FXR increased expression of FXR target genes, however Y67F-

FXR was unable to induce expression of several key genes in bile acid homeostasis, including 

SHP and BSEP (Figure 3.1). These data are consistent with that seen in cell culture models 

(Figure 2.12) and reinforce the conclusion that phosphorylation of FXR at tyrosine-67 plays an 

important role in FXR’s ability to regulate gene transcription 

Expression of Y67F-FXR is unable to rescue elevated levels of bile acids, AST, ALT and 

signs of liver damage observed in FXR-/- mice.    

 A key role of FXR is the maintenance of bile acid homeostasis.  To assess the effect of 

tyrosine-67 phosphorylation on physiological bile acid levels, FXR-/- mice were infected with 

either empty vector, wild type FXR, or Y67F-FXR.  Bile acids were then extracted from the 

liver, serum, and gallbladder and levels were measured.  Mice reconstituted with Y67F-FXR had 

significantly higher levels of bile acids both in the serum and gallbladder when compared to 

mice reconstituted with wild type FXR.  Hepatic bile acid levels appeared elevated, however 

levels did not reach statistically significant differences (Figure 3.2A).  Bile acid levels in mice 

expressing Y67F-FXR were often equal to, or in some cases above, those in mice infected with 

empty vector, suggesting an impairment of bile acid regulation.  H/E staining demonstrated that 

mice expressing Y67F-FXR also showed signs of fibrosis and liver damage similar to mice 

infected with the empty vector virus (Figure 3.2B).  These data show that mutation of FXR 

tyrosine-67 disrupts the ability of FXR to regulate the levels of bile acids in the body leading to 

liver damage, likely caused by the inability of Y67F-FXR to regulate gene transcription.  

Mice expressing Y67F-FXR show impaired ability to protect the liver from cholestatic 

challenge. 
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 While under physiological conditions loss of tyrosine-67 phosphorylation led to a small 

but significant increase in bile acid levels (Figure 3.2) to further understand the effects this 

phosphorylation site has in vivo, adenoviral constructs were used to express wild type or Y67F-

FXR in a mouse model of cholestasis.  FXR-/- mice were infected with either empty vector, wild 

type FXR, or Y67F mutant FXR.  Infected mice were then treated with ANIT for 48 hours to 

induce a cholestatic state.  After treatment, tissues important for bile acid regulation were 

collected and bile acid levels were measured.  During collection, several morphological changes 

were observed.  It was seen that the gallbladders of mice expressing empty vector or Y67F-FXR 

were significantly swollen and had a dark green color whereas those of mice expressing wild 

type FXR were significantly smaller and had a yellow color to them.  Additionally, serum 

collected from mice expressing empty vector and Y67F-FXR had a strong yellow tint to it 

(Figure 3.3A).  Mice infected with empty vector or Y67F-FXR both showed higher levels of bile 

acids in the serum, gallbladder, and liver tissues (Figure 3.3B).  Elevated hepatic bile acids levels 

are known to damage the liver.  Consistent with these results, mice infected with empty vector or 

Y67F-FXR both had elevated levels of liver enzymes AST, ALT, and bilirubin, increased levels 

of scarring, and increased macrophage infiltration; all signs of liver damage (Figure 3.3C and D).  

These studies show that Y67F-FXR is less able to maintain bile acid homeostasis and protect the 

liver from the damage associated with elevated bile acid levels, demonstrating the importance of 

this phosphorylation site in the proper function of FXR in vivo.   

To verify that partial reconstitution of FXR, only in the liver, does not have unknown 

consequences, the adenoviral empty vector, wild type, or Y67F-FXR constructs were 

overexpressed in C57BL/6J mice.  When challenged with ANIT these mice showed similar 

trends as the infected FXR-/- mice, although some effects were dampened by the presence of 
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endogenous FXR (Figure 3.4).  C57BL/6J mice infected with empty vector or Y67F-FXR 

showed significantly larger gallbladders, although the dark green color change observed in figure 

3.3A was not seen.  Bile acid levels in the serum, liver, and gallbladders were again elevated in 

C57BL/6J mice infected with control vector or Y67F-FXR, along with signs of liver damage 

observed in figure 3.3.  These data show that in both models of partial reconstitution and hepatic 

overexpression disruption of the FXR tyrosine-67 phosphorylation site impairs the ability of 

FXR to protect the liver from the effects of cholestasis. 

Measuring the specificity of the phosphorylated tyrosine-67 site-specific FXR antibody.  

To better study how phosphorylation at tyrosine-67 affects FXR activity, an antibody 

specific for FXR phosphorylated at tyrosine-67 was commissioned from Abmart.  To determine 

the specificity of the antibody, COS-1 cells were co-transfected with Src and either wild type 

FXR plasmid, or a FXR plasmid with a tyrosine phosphorylation deficient mutation at tyrosine 

66, tyrosine-67, or both tyrosine-66 and 67.  Cells were then treated with CDCA for 15 minutes 

and FXR was immunoprecipitated.  The levels of FXR tyrosine-67 phosphorylation were 

measured by western blotting using the site specific antibody developed by Abmart.  Cells 

cotransfected with Src and either wild type FXR or tyrosine-66 deficient FXR showed high 

levels of phosphorylation, whereas cells transfected with tyrosine-67 deficient or tyrosine-66 and 

67 deficient FXR showed no phosphorylation (Figure 3.5).  It is worth noting that the 

phosphorylation bands appeared at a higher molecular weight than FXR is normally seen.  This 

shift was observed with both site specific and pan phosphotyrosine antibodies.  This change in 

mobility is likely due to the addition of the phosphate group or some other post-translational 

modifications occurring in response to phosphorylation.  Nonetheless, the site specific antibody 

was show to specifically recognize phosphorylation at tyrosine-67 of FXR. 
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Measurement of FXR phosphorylation with the tyrosine-67 site specific phosphorylation 

antibody in vivo. 

 Utilizing this new tool, we wanted to visualize the effect of treatment with cholic acid or 

FGF19 on FXR tyrosine-67 phosphorylation levels in vivo.  To accomplish this, C57BL/6J mice 

were treated with signaling molecules previously shown to increase FXR phosphorylation (CA 

or FGF19) or control treatments.  Liver sections were prepared using a Vibratome (University of 

Illinois at Urbana-Champaign, Institute for Genomic Biology Tissue Processing Core).  FXR 

tyrosine-67 phosphorylation levels were then analyzed via immunohistochemistry or sections 

were stained using a macrophage infiltration kit (Millipore, Inc) according to the manufacturer’s 

instructions.  Significant increases in the levels of FXR tyrosine-67 phosphorylation were 

observed in samples treated with either CA or FGF19 (Figure 3.6).  This agrees with previous 

data showing that these signaling molecules lead to FXR tyrosine-67 phosphorylation in PMHs 

(Figure 2.2).  Going forward we hope to utilize this antibody to examine the levels of FXR 

tyrosine-67 in liver samples of human patients with different stages of liver disease.  These types 

of experiments will give insight into the role FXR phosphorylation plays in human disease. 

3.5 Discussion 

In this study, we demonstrated that disruption of the tyrosine-67 phosphorylation site in 

vivo led to a decrease in expression of FXR targets genes, increased levels of bile acids, and 

signs of liver damage including elevated macrophage infiltration, AST, ALT, and bilirubin levels 

when compared to mice expressing wild type FXR.  These effects were exacerbated when the 

mice were challenged in models of cholestasis.  Overall, we have shown that disruption of FXR 

phosphorylation at tyrosine-67 drastically impairs FXR’s ability to regulate bile acid responsive 
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target genes, which demonstrates the important physiological role FXR tyrosine-67 

phosphorylation plays in bile acid homeostasis.   

A key role of FXR in vivo is to protect the liver from bile acid toxicity.  FXR 

accomplishes this by inhibiting the synthesis of bile acids through SHP, downregulating bile acid 

importers, upregulating bile acid exporters, and upregulating genes involved in conjugation and 

detoxification of bile acids.  Loss of FXR leads to many deleterious effects including disruption 

of bile acid homeostasis, problems with lipid metabolism, and spontaneous tumor generation 

(Kok et al., 2003; Sinal et al., 2000; Young et al., 2007; and Degirolamo et al., 2015).  

Additionally, several recent studies have shown that certain mutations in the FXR gene are 

associated with human disease (Hu et al., 2016; Heni et al., 2013; Gomez-Ospina et al., 2016; 

and Nijmeijer et al., 2014).  These factors demonstrate that understanding how FXR is regulated, 

particularly in vivo where the complex multi-organ bile acid signaling pathways are intact, may 

be key to understanding the pathology of human disease.  

In this study, when the tyrosine-67 phosphorylation site of FXR was mutated, expression 

of key FXR target genes necessary for bile acid transport and synthesis were no longer regulated 

by FXR, with the greatest effect seen in the expression of BSEP.  This misregulation led to 

increased bile acid levels in mice expressing Y67F-FXR when compared to mice expressing wild 

type FXR.  With FXR’s ability to protect the liver impaired, the accumulation of bile acids 

caused increased scarring and signs of liver damage.  The effects seen in mice expressing Y67F-

FXR are exacerbated when they were challenged in a model of cholestasis.  When challenged, 

mice expressing Y67F-FXR showed not only elevated levels of bile acid and scarring, but also 

more severe signs of liver damage, including elevated liver enzyme levels along with 

macrophage infiltration when compared to mice expressing wild type FXR.  When challenged 
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with ANIT, significant morphological changes including swelling and darkening of the 

gallbladder as well as a yellowish tint to the serum in mice expressing Y67F-FXR were also 

observed.  These signs demonstrate that loss of FXR phosphorylation at tyrosine-67 dramatically 

impairs the ability of FXR to maintain homeostasis and protect the liver.  Interestingly, these 

findings are similar to results seen in human mutations of FXR.  In Gomez-Ospina et al., 2016, 

symptoms of four human patients born with mutations in the FXR gene were characterized.  

These patients showed elevated bile acid and liver enzyme levels along with other signs of liver 

damage.  Additionally, these patients displayed decreased expression of FXR target genes, most 

notably BSEP which was also downregulated in our studies.  Future studies exploring what 

connection FXR tyrosine-67 phosphorylation has with human FXR mutations will be required.   

Recently, several studies have come out demonstrating the important role post-

translational modifications and key amino acids play in the activities of FXR and other NRs in 

vivo.  Seok et al., 2013 showed that mutation of the SHP threonine-55 phosphorylation site 

resulted in decreased recruitment of histone deacetylase 1(HDAC1), euchromatic histone-lysine 

N-methyltransferase 2, and BRM, leading to significant changes to bile acid, lipid, and glucose 

metabolism in vivo.  Kim et al., 2016 demonstrated that loss of SHP sumoylation at lysine-68 led 

to impaired recruitment of the key SHP cofactors lysine specific demethylase 1, HDAC1 and 

mSin3a resulting in dramatic elevation of bile acid levels in vivo.  Kim et al., 2015 examined the 

interplay between acetylation at lysine-217 and sumoylation at lysine-277.  They found that 

sumoylation of FXR increases its interaction with NFκB while preventing heterodimerization 

with RXR.  Disruption of these sites led to changes in glucose and lipid levels along with 

inflammatory responses.  Lien et al., 2014 demonstrated that FXR is phosphorylated by AMPK 

at serine-250 with mutation of this site preventing FXR recruitment of transcriptional 
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coactivators to target genes.  Interestingly they also showed that metformin, an AMPK activator 

which is often used in the treatment of diabetes, increased liver damage in mouse models of 

cholestasis.  The current study shows that, consistent with results discussed in chapter two, 

disruption of the FXR tyrosine-67 phosphorylation site led to misregulation of FXR target gene 

expression in a gene specific manner.  FXR regulation of bile acid synthetic genes and certain 

bile acid transporters were significantly decreased with the mutant Y67F-FXR when compared to 

wild type FXR, while the regulation of other bile acid transporters or genes involved in lipid 

metabolism were changed.  This gene specific regulation may be due to differential cofactor 

complex recruitment by phosphorylated and unphosphorylated, FXR however the exact makeup 

of these cofactor complexes has not yet been identified.   

In this study we showed that Src mediates the phosphorylation of FXR at tyrosine-67 in 

the liver.  Several tyrosine kinase inhibitors which alter Src activity, including bosutinib, 

dasatinib, and ponatinib, have been used in the treatment of chronic myelogenous leukemia 

(Roskoski, 2015; Bauer et al., 2016).  However, unintended side effects have been found with 

these drugs. Consistent with our findings several studies have been published demonstrating that 

some patients taking these drugs have developed symptoms including elevated AST/ALT levels, 

liver injury, and in some cases acute liver failure (Bonvin et al., 2008; Doan et al., 2015; 

Shamroe and Comeau, 2013).  Future studies examining the effect pharmaceutical tyrosine 

kinase inhibitors have on FXR tyrosine-67 phosphorylation and how this relates to their 

hepatotoxic effects may be warranted.  

For this study we utilized a FXR phosphotyrosine-67 site specific antibody.  With this 

antibody, we were able to visualize the effects of bile acid and FGF19 signaling on the 

phosphorylation of FXR at tyrosine-67 in mouse livers.  This site specific antibody will serve as 
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a useful tool in future studies to explore the levels of FXR tyrosine-67 phosphorylation in mouse 

models as well as samples from human patients with liver disease. 

 In this study we utilized two main mouse models to explore the effect of FXR tyrosine-67 

phosphorylation on bile acid regulation in vivo.  The first model we utilized was FXR-/- mice in 

which no endogenous FXR is expressed with reconstituted expression of wildtype, or Y67F-FXR 

in the liver through adenoviral expression. Using adenoviral constructs to compare the 

expression of wild type and Y67F-FXR in FXR-/- mice allows us to examine the effects of these 

proteins at physiological levels, however adenoviral expression targets the liver so it does not 

achieve a full body reconstitution of FXR.  Therefore, systemic signaling effects of FXR from 

other tissues may not be seen in the FXR-/- mice.  To verify that partial reconstitution of FXR, 

only in the liver, does not have unknown consequences, a second model in which wild type or 

Y67F-FXR constructs were adenovirally overexpressed in C57BL/6J mice was utilized.  These 

mice have normal endogenous FXR expression and signaling preserved, but upon infection now 

also have wild type or Y67F-FXR overexpressed in the liver.  In both of these models, infected 

mice were challenged with ANIT for 48 hours to induce a cholestatic state.  Both models showed 

similar trends with mice expressing wildtype FXR showing lower levels of bile acids in serum, 

liver, and gallbladder, as well as decreased signs of liver damage while mice expressing Y67F-

FXR had levels near control empty vector mice.  In general FXR-/- mice showed slightly higher 

levels of the measured signs of liver damage compared to the C57BL/6J model, likely due to the 

lack of intestinal FXR signaling, but the change in levels were not very significant.  This 

suggests that the major role of FXR tyrosine-67 phosphorylation may be in the liver, although an 

intestinal specific reconstitution would be required to prove this.   
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3.6 Figures 

Figure 3.1 
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Figure 3.1:  Disruption of the FXR tyrosine-67 phosphorylation site decreases expression of 
FXR target genes in vivo. A) FXR -/- mice were infected with either empty adenoviral vector 
(GFP), or adenoviral vectors expressing wild type FXR or the phosphorylation deficient Y67F-
FXR.  Mice were then fed CA supplemented diet for 3 hours.  RNA was then isolated from the 
liver of these mice and cDNA was made.  Expression of various FXR target genes was measured 
by qPCR analysis.  B)  Expression levels of FXR were measured via western blot.  N=3. This 
work was done by Daniel Ryerson. 
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Figure 3.2 
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Figure 3.2:  Expression of Y67F-FXR is unable to rescue elevated levels of bile acids, AST, 
ALT and signs of liver damage observed in FXR-/- mice.   FXR-/- mice were infected with 
either empty vector, wild type FXR or Y67F-FXR for 12 days.  Mice were then fasted for 10 
hours and fed a diet supplemented with CA for 3 hours. A)  Bile acids were then extracted from 
several tissues as described in Methods and bile acids were measured with a bile acid kit (Trinity 
Biotech, plc) according to the manufacturer’s directions.  Gallbladder contents were measured 
directly with the kit.  B) Liver sections were stained with H&E.  N=3 This work was done by 
Daniel Ryerson with help from Dong Hyun Kim. 
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Figure 3.3 
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Figure 3.3 (cont.) 
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Figure 3.3: Mice expressing Y67F-FXR show impaired ability to protect the liver from 
cholestatic challenge.  FXR-/- mice were infected with either empty vector (GFP) wild type FXR 
or Y67F-FXR for 12 days.  These mice were then treated with ANIT for 2 days. A) Gallbladder 
and serum were collected and pictures were taken showing observable differences in size and 
color.  B) Bile acids levels were measured as described in Methods using a bile acid kit (Trinity 
Biotech, plc) according to manufacturer’s directions.  C) ALT/AST/Bilirubin levels were 
measured using a kit (Sigma, Corp.) according to the manufacturer’s instructions. D) 
Macrophage infiltration in the liver detected with a kit (Millipore, Inc).  This work was done by 
Dong Hyun Kim with help from Daniel Ryerson.  
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Figure 3.4 
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Figure 3.4 (cont.) 
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Figure 3.4: Wild type mice overexpressing expressing Y67F-FXR show impaired ability to 
protect the liver from cholestatic challenge.  C57BL6/J mice were infected with either empty 
vector (GFP), wild type FXR or Y67F-FXR for 12 days.  These mice were then treated with 
ANIT from 2 days. A) Gallbladder and serum were collected and pictures were taken showing 
observable differences in size and color.  B) Bile acid levels measured as described in Methods 
using a bile acid kit (Trinity Biotech, plc).  C) ALT/AST/Bilirubin levels measured using a kit 
(Sigma, Corp) according to the manufacturer’s instructions. D) Macrophage infiltration in the 
liver detected with a kit (Millipore, Inc).  This work was done by Dong Hyun Kim with help 
from Daniel Ryerson.
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Figure 3.5 
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Figure 3.5:  Measuring the specificity of the FXR tyrosine-67 site specific phosphorylation 
antibody.  COS-1 cells were co-transfected with Src and either an empty vector, a plasmid 
expressing wild type FXR, or a plasmid expressing a FXR mutant in which tyrosine-66, tyrosine-
67 or both tyrosine-66 and 67 have been mutated to a phenylalanine.  A) FXR was then 
immunoprecipitated and tyrosine-67 phosphorylation levels were measured via western blot with 
site specific phosphorylation antibody.  B) The membrane was then stripped and FXR levels 
were then measured via western blot.  This work was completed by Dong Hyun Kim with help 
from Daniel Ryerson. 
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Figure 3.6 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Measurement of FXR phosphorylation with tyrosine-67 site specific 
phosphorylation antibody in vivo. C57BL/6J mice were fed a diet supplemented with CA or 
treated with FGF19.  Liver sections were obtained from the University of Illinois at Urbana-
Champaign core facility Vibratome.  Tyrosine phosphorylation levels of FXR in liver sections 
were determined through immunohistochemistry utilizing a FXR tyrosine-67 phosphorylation 
antibody.  This work was completed by Sangwon Byun with help from Daniel Ryerson and 
Dong Hyun Kim. 
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Chapter Four 

Future Directions 

These studies have identified an exciting new post-translational modification of FXR, 

tyrosine-67 phosphorylation, which plays a critical role in FXR regulation of bile acid 

homeostasis and liver protection.  We have identified the site, the kinase, and the physiological 

signaling responsible for this phosphorylation.  Additionally, we have demonstrated that loss of 

FXR tyrosine-67 phosphorylation results in impaired bile acid homeostasis and liver damage in 

vivo.  Going forward there are several experiments that may be done to continue pushing this 

project forward.  

First, our lab has obtained a FXR-floxed mouse model generously provided by Dr. 

Sayeepriyadarshini Anakk from the Department of Molecular and Integrative Physiology at 

University of Illinois at Urbana-Champaign.  This model was originally generated by Johan 

Auwerx and Kristina Schoonjans at Ecole Polytechnique.  Utilizing this model, work is currently 

underway utilizing a coinjection of adenoviral associated virus (AAV) expressing thyroxine-

binding globulin (TBG) promoter driven Cre and AAV expressing TBG promoter driven 

wildtype or Y67F-FXR.  TBG is a liver specific promoter allowing AAV TBG driven Cre to 

induce a knockout of endogenous FXR only in the liver.  AAV TBG driven wildtype or Y67F-

FXR then allows liver specific reconstitution.  We will utilize this model to replicate our 

previous in vivo data.  This model will improve upon our current models as it does not have the 

confounding endogenous FXR expression in the liver that our overexpression model does, while 

still maintaining normal FXR function in the intestine and other tissues which the FXR-/- mice 

were lacking.  Additionally, utilizing AAV containing other tissue specific promotors it is 

possible to further explore the roles of FXR tyrosine-67 phosphorylation in many diverse tissues. 
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Our lab has recently obtained human liver samples from patients with a variety of 

hepatobiliary diseases including primary biliary cirrhosis, nonalcoholic steatohepatitis, and 

nonalcoholic fatty liver disease.  These samples obtained from the Liver Tissue Cell Procurement 

and Distribution System of NIH will be analyzed through immunohistochemistry for total FXR 

levels, FXR tyrosine-67 phosphorylation levels, total Src levels and phospho-Src.  These finding 

will allow us to better understand the roles FXR tyrosine-67 phosphorylation and Src signaling 

play in human disease progression.   

 Finally, several studies have shown that Src inhibitors can be used in vivo to treat a 

number of metabolic disorders.  In the future it will be interesting to utilize these inhibitors along 

with FXR tyrosine-67 mutants to determine if the beneficial effects seen are related to FXR 

tyrosine-67 phosphorylation by Src.    

In summary, these studies have identified a previously unknown type of post-translational 

modification of FXR, in tyrosine-67 phosphorylation.  Utilizing a combination of bioinformatic 

tools and biochemical assays, we identified likely kinase motifs on FXR and demonstrated that 

one of the predicted kinases, Src, can interact with FXR both in vitro and in vivo in response to 

bile acid signaling.  We have shown that Src is both necessary and sufficient to phosphorylate 

FXR.  We have also demonstrated that when the tyrosine-67 phosphorylation site is mutated 

FXR can no longer regulate a number of key target genes important for maintaining bile acid 

homeostasis.  This disruption of FXR regulation leads to observable physiological changes in 

vivo, demonstrated by increased levels of bile acids and liver enzymes, inflammation, and tissue 

damage of the liver.  We have shown that the tyrosine-67 phosphorylation site plays a major role 

in regulating FXR function and understanding how this modification occurs and how it regulates 

FXR may prove key to understanding and developing treatments for human liver diseases.   


