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Abstract

Medical errors are the third leading cause of death in the U.S., after heart disease and cancer, caus-

ing at least 250,000 deaths every year [1]. These errors are often caused by slips and lapses, which

include, but are not limited to delayed diagnosis, delayed or ineffective therapeutic interventions, and

unintended deviation from the best practice guidelines. These situations may occur more often in acute

care settings, where the staff are overloaded, under stress, and must make quick decisions based on

the best available evidence. An integrated clinical guidance system can reduce such medical errors by

helping medical staff track and assess patient state more accurately and adapt the care plan according

to the best practice guidelines.

However, a main prerequisite for developing a guideline system is to create computer interpretable

representations of the clinical knowledge. The main focus of this thesis is to develop executable clin-

ical models for acute care. We propose an organ-centric pathophysiology-based modeling paradigm,

in which we translate the medical text into executable interactive disease and organ state machines.

We formally verify the correctness and safety of the developed models. Afterward, we integrate the

models into a best practice guidance system. We study the cardiac arrest and sepsis case studies to

demonstrate the applicability of proposed modeling paradigm. We validate the clinical correctness and

usefulness of our model-driven cardiac arrest guidance system in an ACLS training class. We have also

conducted a preliminary clinical simulation of our model-driven sepsis screening system.
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Chapter 1

Introduction

According to ”To Err is Human,” a report by the Institute of Medicine (IoM), medical errors are the

eighth leading cause of death among Americans causing close to 100,000 deaths every year [2]. Ac-

cording to the most recent study that comes nearly two decades after this IoM report, medical errors has

become the third leading cause of death in the U.S., after heart disease and cancer, and annual number

of deaths has increased to 250,000 [1]. These preventable errors are often caused by slips and lapses,

which include, but are not limited to delayed diagnosis, delayed or ineffective therapeutic interventions,

and unintended deviation from the best practice guidelines. These situations may occur more often in

acute care settings, where the staff are overloaded, under stress, and must make quick decisions based

on the best available evidence.

One of the main contributing factors to slips and lapses in clinical environments is the lack of in-

tegrated and comprehensive information. According to a study from a Canadian group performed in

2008, the care of critically ill patients generates a median of 1348 individual data points/day and that

this quantity has increased 26% over five years [3]. Medical staff must mentally correlate the individual

data points they observe from standalone devices. This is an error-prone process due to the limitations

of human memory and realtime processing capability. Another contributing factor may be inadequate

alarm configuration policies and practices. As reported by ECRI, which is a non-profit health agency,

alarm hazards are the first item in the list of top 10 health technology hazards that put patients in

hospitals at risk [4].
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An integrated clinical guidance system can reduce such medical errors by helping medical staff

track and assess patient state more accurately and adapt the care plan according to the best practice

guidelines. However, a main prerequisite for developing a guideline system is creating computer in-

terpretable representations of the clinical knowledge contained in best practice guidelines. In other

words, creation of such systems requires considerable amount of modeling activity such as deciding

what patient data is relevant and identifying the concepts and relationships among them that relate to

guideline generations [5]. The main focus of this thesis is on developing executable clinical models

for acute care.

Such clinical models have been and continue to be studied extensively in medical community. How-

ever, the common format used to represent and communicate clinical knowledge, including such mod-

els, is English (text and graphics). Therefore, utilizing these models when providing clinical care can

be as challenging as using a map while driving. Turning maps to GPS based navigation tools has rev-

olutionized driving. Translating pathophysiological models, based in medical best practice text, into

executable models can have a similar effect on the use of computer guidance systems in medicine.

We propose an organ-centric pathophysiology-based modeling paradigm, where we translate the

medical text into executable interactive disease and organ state machines. This is possible because

disease and organ states are already discretized by the medical community, for example, different stages

of cancer, diabetes, heart diseases, etc. We model the patient state and different disease stages according

to pathophysiology of organ systems, which describes how each of the organ functions are affected by

the disease. Furthermore, the diagnosis and treatment are organized for each stage. The developed

models can then be integrated in a guidance system and derive its execution. Next, we look at a simple

illustrative example before discussing the details of our modeling paradigm.

1.1 Illustrative Example

Cardiac arrest is initially the devastating cessation of cardiac activity, which is caused by the loss of

heart’s electrical and muscular pumping function. The cardiovascular organ system is the main organ

affected by this disease. We model the disease according to the pathophysiology of organ systems,

which describes how each of the organ functions are affected by the disease. In cardiac arrest, the
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Figure 1.1: Organ-Centric Pathophysiology-Based Model of Cardiac Arrest

heart rhythm may change and include abnormal or irregular heart rhythms or waveforms (arrhythmias).

Furthermore, insufficient blood circulation in the lungs impedes the CO2 and O2 exchange resulting

in CO2 accumulation in the blood, which may be reflected by elevated blood acidity level indicated by

decrease in blood pH level. The abnormal pH is revealed in arterial blood gas (ABG) test. These are

two examples of pathophysiological changes in cardiovascular organ system caused by cardiac arrest.

To model cardiac arrest, we encode the arrhythmia and blood gas imbalance processes among others,

using finite state machine formalism. In each of these state machines we codify different stages/types of

heart rhythm irregularity or imbalance in arterial blood gas levels according to existing medical knowl-

edge. For example, pulseless electrical activity, a heart rhythm observed on the electrocardiogram that

should be producing a pulse, but is not, is a state in the arrhythmia state machine. Similarly, severe

metabolic acidosis, a very low blood pH , is a state in blood gas imbalance state machine. When new

blood pressure, heart rate, and EKG readings are received and a blood pH value from a recent ABG

test is entered by the nurse, the arrhythmia and blood gas imbalance state machines will transition to
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the appropriate states. Let us assume the current readings indicate a very low blood pressure and blood

pH , no meaningful heart rate reading and an EKG rhythm that is not a flat line but does not produce

a pulse. Therefore, the arrhythmia machine transitions to pulseless electrical activity state and blood

gas imbalance transitions to severe metabolic acidosis. Figure 1.1 shows the state machines modeling

these two pathophysiological processes. Note that we only present a simplified version of cardiac arrest

model to illustrate the concept; more details of the proposed modeling paradigm is presented in Chapter

2 and the more elaborate cardiac arrest model is presented in Chapter 3. In the next section, we discuss

the technical challenges we have identified for developing executable clinical models for acute care.

1.2 Technical Challenges

As mentioned above, the primary contribution of this thesis is development of executable models of

a class of acute care best practice algorithms and the supporting disease models. Therefore, we first

present the major modeling challenges and our proposed solution(s) to address each.

1.2.1 Modeling Challenges

Challenge 1.a: Medical knowledge representation must be in a machine-processable form. The

medical knowledge must translate from text format to a structure appropriate for the logical applica-

tion of that knowledge by a computer guidance system. The developed clinical model(s) should be

executable or must provide a means for automatic execution to facilitate the design of best practice

guidance systems.

Proposed Solution: We translate medical knowledge to executable models using an organ-based

pathophysiological paradigm. We use finite state machine formalism to develop the models. The

models are executable and can directly be used to derive the execution of a best practice guidance

system. The details of model semantics is presented in Section 2.2.

Challenge 1.b: The developed models must encode the relevant clinical information. The model

needs to encode the medical information or knowledge relevant to the disease under study. For exam-

ple, a physician often is interested not only diagnosis itself but also the process of diagnosis and the

clinical data required to make a diagnosis. However, the encoded information must be adequate but not
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excessive such that it creates a mental overload.

Proposed Solution: In Section 2.2, we propose an organ-centric pathophysiology-based modeling

paradigm. We model the changes in patient state according to the pathophysiology of affected or-

gan systems. Different diseases may impair one or more of the physiological functions performed by

different organ systems. Pathophysiology describes the process of such changes in physiological mea-

surements and organ states throughout disease progress. Multiple pathophysiological processes must

often be tracked for each disease. Each pathophysiological state encodes the subset of relevant clini-

cal data required for monitoring the patients state/ assessing patient’s response to a treatment for that

specific state.

Challenge 1.c: The clinical models must be easily understood and validated.

Proposed Solution: Physicians are taught body organ systems and structural relationships within the

body. In addition, the pathophysiological description of disease processes is how medical knowledge is

commonly known by the physicians [6, 7]. Therefore, the developed models would be at the same ab-

straction level that medical knowledge and reasoning are known to physicians. This can make clinical

validation easier and more effective. To check if our model correctly encodes the medical knowledge,

physicians may directly look at the organ models and cross reference with the requirements. In ad-

dition, summarizing the patient data in the form of pathophysiological states leads to easier cognitive

management in realtime. This can also address the first contributing factor to slips and lapses, that is

the lack of integrated and comprehensive patient information.

Challenge 1.d: The modeling paradigm must be applicable to different diseases in acute care.

The medical knowledge representation and modeling methodology must be able to model different

diseases in acute care. To truly evaluate the applicability of a modeling paradigm, different diseases or

acute care scenarios must be studied.

Proposed Solution: We partially address this challenge by applying the proposed modeling to two

case-studies. In Chapter 3, we present cardiac arrest case study and in Chapter 4, we discuss mod-

eling sepsis, which is a life-threatening organ dysfunction caused by a dis-regulated host response to

infection.

Challenge 1.e: The clinical models must have the correct level of abstraction, concurrency

and complexity. Some clinical information, although relevant, may not be needed in the same details

5



as others. On the other hand, the model may need to represent dynamic clinical information and track

concurrent state changes. Furthermore, while encoding the relevant information the model must remain

manageable.

Proposed Solution: In Section 2.3, we present a set of modeling guidelines to specifically address

these challenges. We discuss identifying the concurrent pathophysiological processes to be encoded

in the model. We then provide some guidelines on defining the states and transitions for each process

as well as the interaction between different processes. We demonstrate how following the guidelines

can lead to more modular representation, which allows some of the model components to be studied,

analyzed and validated independently of the others.

1.2.2 Additional Design Challenges

Challenge 2: The translation of medical texts into executable models must be clinically correct.

Clinical guidance systems can greatly affect patient safety, and therefore, it is critical to validate their

correctness. However, translating from the usual text approach for communicating knowledge to an

executable structure appropriate for computer processing can be complex. This makes it difficult to

ensure the correctness of the encoded medical knowledge in the models.

Proposed Solution: This is addressed by clinical simulation to be validated by physicians. In

Section 2.7 we discuss the generic approach we have taken for validating the models. More specific

details on validation of the integrated organ-centric pathophysiology-based cardiac arrest models are

presented in Section 3.4. We use Yakindu Statechart Tool (SCT) [8], to develop organ and guideline

models. This is a tool that provides an integrated modeling environment and allows simulation of the

developed model. We have integrated the developed models with an existing guidance system interface,

developed by our group. This allows us to simulate different clinical scenarios and validate the dynamic

behavior of the developed models.

Challenge 3: The desired behaviors must always hold, not just in the limited clinical simula-

tion. In addition to validating the clinical correctness of the developed models using simulation, it is

critical to formally verify the correctness of the models.

Proposed Solution: In Sections 2.5 and 3.2, we address this problem by translating the Yakindu

models to UPPAAL [9] for verification. We specify the set of clinical and system properties in linear
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temporal or computation tree logic. We then use the UPPAAL model checking tool to verify the

satisfaction of the specified properties against the models. Currently the translation is done manually

and the correctness of translation is a challenge to be addressed in the future.

Challenge 4: Physician’s deviation from best practice guidelines must be tracked and recorded.

At times patient states presented by our system may differ from physician understanding and they may

deviate from the best practice guidelines suggested by our system. A source of this inconsistency,

should it occur, is that most guidelines are for average population and there may be information used

by the physician to make a determination but not available to our system.

Proposed Solution: For each pathophysiological state machine we develop a physician belief state

machine, with same static structure. The physician model has the same pathophysiological states;

however, the transition between the states are enabled according to physician’s response to the patient

state suggested by the model. Therefore, the two pathophysiological processes have different active

states at run-time, when the physician deviates. We have added a logging interface to the models that

allows the deviation instances to be logged. Finally, we propose the divergence-convergence protocol to

allow some degree of flexibility, while reducing the unintended deviation from best practice guidelines.

When the physician diverges from the system suggestions, the model still keeps track of the patient

state according to the best practice guidelines and the corresponding alerts are generated if the patient

state deteriorates. However, if the patient state improves the model converges with the physician’s

decision. We present our physician model in Section 2.4.1.

Challenge 5: The developed models must be integrated into the guidance system and derive its

execution.

Proposed Solution: In Section 2.6, we propose a model-driven approach to integrate the developed

models with a guidance system, developed by our group. The models interact with the guidance system

interface using our handwritten communication code. The developed pathophysiological models then

derive the execution of guidance system. This allows us to design alert systems that are integrated with

patient’s pathophysiological states. This is further discussed in the next design challenge.

Challenge 6: An alarm management approach is required to reduce slips and lapse caused

by inadequate alarm configuration and practices. The critically-ill patients’ measurements will be

out of range for most the time and alarms designed based on only single out-of-range measurements
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can result in alarm fatigue and increase the possibility of medical errors. An alarm approach that is

comprehensive and integrated with patient (pathophysiological) state is critical to address this issue.

Additionally, the effectiveness and safety of any proposed alarm management system must be evalu-

ated.

Proposed Solution: In Section 2.4.2, a best practice-defined alert system is proposed, which uses

the concept of actionable alert. An alert is only generated when a new monitoring and/or treatment

action must be performed by medical staff. This often occurs when disease and/or organ state is transi-

tioning towards or has transitioned to a worse stage as defined by the medical best practice guidelines.

Furthermore, the alerts contain some contextual information which is the pathophysiological state of

the involved organ systems. This is different from normal medical alerts that signal the physiological

signals being out of a predefined range; such alerts are not closely coupled with best practice guidelines

and may be less useful or even distracting.

To evaluate the effectiveness of our alert system, we have conducted a preliminary clinical validation

of cardiac arrest guidance system in a Carle ACLS training class. In Section 3.4, we present the

information gathered and discuss some of the lessons learned. There is also a 2-part study protocol

with Carle hospital in place. These studies will assess how much improvement our cardiac arrest

guidance system can make in terms of adherence to ACLS workflow, compared to traditional approach

of memorizing workflows and, using paper and pencil for recording resuscitation events.

The primary contribution and focus of this thesis is addressing the above modeling and design chal-

lenges. However, our research also contributes to the following:

Best practice guided runtime device configuration: Medical systems need to inherently be run-

time configurable. In acute care environments, the patient condition can change rapidly and as a result

of such changes, new devices may be plugged in or an existing device may be removed from clinical

configuration. Such dynamic configuration is not seen in other monitoring systems. The safety and

efficacy of patient care in a dynamic clinical environment depend on continuously safe use of medi-

cal monitoring and therapeutic devices. In Chapter 6, we propose a device configuration management

approach that uses the organ-centric pathophysiology-based disease model and patient state representa-

tion. We show that a subset of best practice device configuration safety requirements can be described

as a device constraint which must be satisfied for specific organ states.
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Safety analysis of medical device plug-n-play (MD PnP) systems: MD PnP is a recent NIH

(National Institute of Health) sponsored investigation on design of safe integrated medical systems

[10]. One goal of this program is adoption of medical device interoperability to significantly mitigate

preventable medical errors by developing the technological foundation to design the next generation

medical systems. In Chapter 5, we provide guidelines to assist users to safely use an MD PnP system

consisting of a commercial platform not designed for safety critical applications. The MD PnP system

is said to be safe for an intended medical application, if none of the MD PnP components can become

a causal factor of the known safety hazards when the medical devices are functioning according to

their specifications. We propose a safety analysis procedure based on extended fault trees to determine

whether any of the MD PnP components can become a causal factor of the known safety hazards for

the intended medical scenario. We analyze the MD PnP safety for several clinical scenarios.

1.3 Related Work

The preventable medical errors are often caused by slips and lapses, which include, but are not

limited to delayed diagnosis, delayed or ineffective therapeutic interventions, and unintended deviation

from the best practice guidelines. Due to factors such as selective attention1, time pressure in acute

care, and mental overload, medical staff might overlook some of the critical changes in the patient state

and this may result in delayed diagnosis and treatment. Updating and displaying the set of monitoring

and treatment guidelines as the patient state changes may alleviate this problem.

Many of current medical monitoring devices and systems provide single (physiological) measurement-

alerts and thus little contextual information to medical staff. Some research has been done on exploiting

the relations between measurements and the development of smart alarms [12], [13]. However, we be-

lieve that an integrated computerized system is necessary to help medical staff keep track of critical

changes in patient state and perform treatments in a timely manner. In [14], the authors discusses

a task-driven guidance systems to reduce preventable medical errors in cardiac arrest resuscitation.

1Selective attention is simply the act of focusing on a particular object for a period of time, while simultaneously ignoring

irrelevant information that is also occurring [11]. For example, in a cardiac arrest case, physician can be focused on stimu-

lating the heart by administering medications such as epinephrine, while overlooking the fact that the patient is developing

renal insufficiency that can be exacerbated if the same heart stimulating drugs are administered with the same dosage.
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Treatment validation and workflow adaptation for changing patient state are studied in [15] and [16].

The authors in [17] and [18] provide a comparison study of several different computer-interpretable

guideline (CIG) models, including PRODIGY [19], EON [20], GLIF [21], GUIDE , PROforma [22]

and Asbru [23]. Each approach focuses on addressing a particular modeling challenge. The comparison

was made according to different dimensions that capture the structure of each model. One of the main

dimensions of comparison is representation and organization of guidelines. Most of these models

encode the guidelines as plans of decision and actions tasks and organized into task networks and

provide nesting mechanisms to simplify top-level plans and support the reuse of of sub-guidelines.

Another dimension is the decision model and criteria expression language. Some use switch constructs

or mutually exclusive expressions in preconditions. In some models argumentation rules are used

to express preferences for/against alternatives candidates of non-deterministic decisions (where more

than one alternative is considered appropriate). Decision trees and influence diagrams are also used

to represent non-deterministic choices to help identifying the alternative most likely to reach the goal.

Medical concepts are often modeled using classification hierarchies, definition of abstract terms and

concepts, and relationship between the concepts that convey medical knowledge. Concepts are often

defined through mapping to terminology systems.

The comparison dimension, which is of special interest to our work in this thesis is patient informa-

tion model. Often in these works, the main focus is on representation and modeling of guidelines rather

than the patient state. PRODIGY, EON, GLIF use a specific modeling component, called Scenario or

patient state components to facilitates a patient’s automatic entry into an appropriate plan. Other mod-

els use expressions of patient states and decision criteria or as preconditions affecting the control flow.

A presence criteria is modeled by giving explicit definitions of terms to be checked and determining a

method for looking for the terms in the local EMR. Plan selection is based on satisfying a precondition

defined in terms of patient state but it can be further improved by matching the effect of plan to target

state.

The patient information model in these guidelines systems, focuses on representing the patient data

and mapping it to the corresponding items in hospital EMR. This can limit the definition of patients

state to the terms used in the local EMR. The representation methodologies often organize relevant

information in a single structure. Some, such as PROforma, GUIDE and Asbru, do not put any con-
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straints on the definition of complex objects; others define a specific set of patient data structures and

complex objects. PRODIGY and EON use virtual medical record (VMR) abstraction to identify the

subset of patient data, from medical records, which is required for decision support applications. These

abstractions include diagnosis, test result, medication authorization, procedure, etc. An object-oriented

VMR would ease the process of developing guidelines. The criteria and patient states are defined in

guidelines by referencing the VMR rather than specific EMR data item.

GLIF structures the patient data according to HL7 reference information model (RIM) [24], [25].

Having a patient information model consistent with HL7-RMI could facilitates mapping guidelines

terms to EMRs and interoperability. HL7 Reference Information Model (RIM) is a key component of

the HL7 family of standards. It serves as the source from which all other HL7 information models

receive its meaning. RIM outlines the logical form of the data and allows establishing the semantic

interoperability among different domains in healthcare. It is ”an abstract model which defines the

grammar of a language for information in healthcare”. The ”entities” are related to each other through

”roles” and their participations in ”acts”. The model allows the formation of networks of logically

or structurally related ”acts”. Through these networks, composition, reason, order fulfillment can be

expressed. The HL7-RIM does not define disease processes, which is among the ultimate subject of

health information.

However, mapping guidelines data items to EMRs can still be defined by a system, even if the

representation of patient state does not come from the classes and abstracts supported by EMRs, which

is mostly based on HL7-RIM. Our organ-centric models may create monitoring and treatment guideline

data items, which do not correspond to any specific items in EMRs. However, the subset that has

corresponding data items can be mapped. We have integrated the organ-centric pathophysiological

models and best practice guidelines models into a guidance system. Our team has started developing

an HL7 module for the guidance system that defines the mapping of monitoring and guideline terms

codified by our models.

Some of these approaches, specifically the ones using the concept of scenarios, organize the guide-

lines as a collection if clinical contexts, which are (partial) characterization of patient state. The other

approaches support a similar functionality by using expressions that refer to patient states in decision

criteria or preconditions to affect the guideline control flow. Some argue the latter approach allows
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guideline modeling to remain task-based, rather than state-based. However, clinical scenarios are in-

tuitive and domain expert find them useful. We believe that our pathophysiology-based patient model

belongs to the group of state-based approaches. Physicians are taught body organ systems and struc-

tural relationships within the body. Moreover, the pathophysiological description of disease processes

is how medical knowledge is commonly known by the physicians [6, 7]. Therefore, the developed

models would be at the same abstraction level that medical knowledge and reasoning are known to

physicians. This can make clinical validation easier and more effective. Physicians may directly look

at the organ models and cross reference with the requirements. However, we still can support the use

of patient-state based decision criteria and preconditions.

A great body of work in this domain has been focused on rule-based systems and expert systems

developed using artificial intelligence. These systems are designed to provide medical diagnosis and

treatment suggestions by codifying experts’ knowledge, reasoning using the rules and deducing new

knowledge [26]. Several inference and decision making methodologies have been developed, such as

rule-based reasoning [27], fuzzy logic [28] and probabilistic network [29]. Approaches based on ma-

chine learning aim to excerpt common patterns from empirical medical data and make decisions based

on the learned behaviors [30]. In [31], a modular representation is proposed, where each guideline is

modeled as a Medical Logic Module (MLM) that makes a single decision. This approach focuses on

simple independent guidelines. However, most clinical problems are complicated and involve many

dynamic decision-making steps; therefore, straightforward attempts to chain together larger sets of

rules encounter major difficulties [32]. Furthermore, the medical knowledge are often represented as a

set of production rules. Any potential dependency between the rule can not represented and a plan of

monitoring or treatment actions unfolding over time can not be represented with individual rules.

Our computational approach codifies patient information into executable organ automata.The main

reason behind developing organ-centric disease models is that medical literature and training represent

disease as a set of abnormal organ states. There have been similar works on organization of patient in-

formation. The authors in [33] propose a framework of open-source services dynamically configurable

to transform EHR data into standards-conforming, comparable information suitable for large-scale

analyses, inferencing, and integration of disparate health data. In [34] a new application system is pro-

posed to store and categorize patient information according to body system view. However, the focus
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of these works have been on static information structures and not monitoring rapidly changing patient

state. We focus on developing executable disease models that can be directly used to derive the best

practice assist system.

In [35], the authors propose a method for medical knowledge representation based on causal asso-

ciational network. Different observations of the patient is associated with pathophysiological states

describing the progress of the disease under study. The relationship ship between different pathophys-

iological states are represented using the notion of cause and effect. The links between the states are

annotated with a likelihood number indicating the strength of causation. It should be noted that the

states are not mutually exclusive. The proposed approach, in fact, models the disease as a belief net-

work that is used to analyze the possible causes of an already confirmed diagnosis. At the start, the set

of confirmed pathophysiological states representing the patient current disease are identified. Then they

determine the most likely starting states, from which most likely pathways are generated that traverse

through the greatest number of confirmed states. The generated pathways represent the most likely

explanations of the disease processes. The physician then uses these pathways to classify the disease

based on its mechanism and the severity and the degree of progression. A treatment plan can be asso-

ciated with each diagnosis class. In our proposed approach, we dynamically track the state of different

pathophysiological processes. Furthermore, we take a more modular approach and model the parallel

pathophysiological processes using concurrent state machines. Our executable models are then used to

monitor the patient and concurrent changes occurring as a result of the disease. Maintaining a large be-

lief network can become challenging. Furthermore, developing the model for a more complex disease

involving a larger number of pathophysiological states can be non-trivial. Even making modification to

the same disease model may require propagating the changes throughout the whole model. The modu-

larity becomes critical when the model needs to be modified, validated or formally verified. Moreover,

in our approach some of the pathophysiological processes can be re-used in different disease.

Another body of work has been focused on formally defining medical processes. The documents

describing different medical protocols used to administer healthcare, may be incomplete and include

terms are either poorly defined or used inconsistently throughout the document. Moreover, important

details, specifically the ones related to handling exceptional cases, might be missing. The use of such

defective processes for providing health care services can contribute to medical errors that ultimately
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affect patient safety. The authors in [36, 37] focus on tackling this problem by proposing an approach

to formally define medical processes. The authors use Little-JIL process definition language to specify

different recommended sequence of actions to perform a specific clinical task. The precisely defined

model of medical processes, can then be used for rigorous analysis.

Little-JIL originally developed to define processes that coordinates the activities of multiple agents

[38]. The main component of the language is the coordination specification, which has a graphical

representation but also its syntax and semantic are precisely defined. The central abstraction in the

language is the step and facilities for specifying iteration and concurrency is included in the language.

We believe the authors use a task-based modeling approach, similar to the guidelines model discussed

above. The analysis of formally-defined human-intensive medical processes is further discussed in

[39, 40]. The paper describes using finite state verification to find defects in the process definition or

the medical processes itself. This is achieved by determining if the specified properties are always

satisfied on all possible execution paths through the process definition; but it is assumed that all agents

involved in the process perform their tasks without error. The authors have built tools to automatically

translate Little-JIL process definition to the input representation of verification tools such as SPIN [41].

Each property is represented as a finite-state automaton that describes the acceptable or unacceptable

sequence of selected events in the process being analyzed. Human-intensive medical processes, such

as blood transfusion and chemotherapy, are used to demonstrate the value of the proposed approach.

Several errors, including possible deadlock, was discovered in these processes.

In [42] the use of other static analysis technologies, such as Failure Modes & Effects Analysis

(FMEA) [43], and Fault Tree Analysis (FTA) [44, 45] for medical process improvement is discussed.

The authors apply FMEA to formally defined processes to evaluate the impact of individual step failures

on the whole process. This technique can demonstrate the propagation of a single failure and the

ultimate effect which often indicate a safety hazard directly and explicitly violating patient safety. FTA

analysis can also be used to study all the failure modes leading to a specific safety hazard. In addition to

static process analysis, the authors also discuss the simulation technique that uses the dynamic process

execution state, specifications of the behaviors and capabilities of agents, and a resource model .The

technique is used to study a different range of problems, such as effect of resource (i.e. the doctors,

nurses, and beds) allocation on the length of patient stay.
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The formal process models proposed in [39] is also used in [46] for online deviation detection in

medical processes. The main goal in this work is to reduce medical errors by encouraging confor-

mance with best practice guidelines and recommended processes. The authors adopt the definition of

medical errors from the IOM report [2] and focus on ”error of planning”, which is the use of wrong

plan to achieve a goal (vs. error of execution, which is the failure of a planned task to be performed as

intended). Examples of planning errors are omitting a required task or performing a task that should

not have been done. In the proposed approach, process execution is tracked and the sequence of per-

formed steps is continually compared with all the valid and recommended sequence of steps to detect

deviations. After the detection phase trace selection is used to hypothesize the locations of potential

errors. A set of chosen traces are likely candidates the process performer had intended to carry out

and are more similar to the deviant. The difference between each selected trace and the deviant then

can be used to pinpoint the location of the potential error in the sequence of performed steps in the

corresponding medical process. It should be noted that delayed deviant detection might occur. A pre-

liminary analysis is presented but, as discussed by the authors, this issue needs to be investigated for

more complex and realistic medical processes. The scalability and applicability of this approach need

to be also studied for more realistic scenarios then the one described and used in this paper. The steps

need to be logged manually by the human operators until the technology for automatic recognition

and recording of different steps of a medical process as they are accomplished. Similarly, in our pro-

posed physician model we also assume the physician response to the system-suggested guidelines to

be manually entered into the system. However, the (monitoring and treatment) steps in our model are

more coarse grained compared to the steps described in these human-intensive processes model. This

reduces the number of interactions required between the system and medical staff.

In [47], the authors present a conceptual architecture and the necessary system components for

aiding the effective execution of human-intensive medical processes. [48] further describes how the

formally-defined and previously analyzed processes can be used to create context-based checklists to

improve the outcomes in human-intensive healthcare systems. In addition to a process model, the

proposed Smart Checklist Generator also uses a the events generated by a process execution monitor.

The checklist is continuously updated as the health care personnel go through the different steps of

the process. Some examples of events of interest are the completion of a subtask, occurrence of an
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exception during the process execution or receipt of a patient data sent by medical devices or entered

manually. A visualization is provided for different aspects of the current execution of the process.

This includes the tasks that have been successfully performed, the current tasks being executed and

the possible future steps. Each of these items in the smart checklist can be annotated with necessary

and important information, such as needed artifacts, the performers responsible for finishing the task

and possible exception that can occur when performing the task. We also believe the use of context

information to dynamically adapt the checklist can improve the efficiency these checks. Moreover, it

can alleviate the problems caused by long, complex and generic checklists.

The focus of this body of work is on human-intensive clinical protocols used for providing different

healthcare services. The proposed medical process modeling approach is mostly used for offline static

analysis of medical processes. Only preliminary work on the realtime use of formally defined med-

ical processes to derive the execution of guidance systems has been proposed. Real-time constraints

are a critical aspect of any medical system. However, Little-JIL provides little and primitive support

for timing constructs. This makes the specification and analysis of both hard and soft real-time con-

straints challenging. Furthermore, maintaining and updating process models for more complex clinical

protocols can be challenging and a more modular representation may be beneficial. Finally, medical

knowledge representation regarding patient state is not discussed in these works. However, we can use

and benefit from the proposed approach if we decide to further focus on the coordination aspect of

the human-intensive processes used to deliver treatments from best practice guidelines. This includes

management of interaction of health care providers with each other and with the patient.

The clinical guidance systems must integrate clinical data form different sources, mainly medical

devices. Therefore, interoperability of medical devices is critical for designing the system [49]. The

recent investigation sponsored by National Institute of Health (NIH) on safe medical system reconfig-

uration and interoperability, Medical Device Plug-and-Play (MD PnP) [10], focuses on developing the

technological foundation to design the next generation medical systems. The Integrated Clinical En-

vironment (ICE) standard is one such development, which is described in ASTM 2761-09(2013) [50].

This standard describes the logical elements of an MD PnP system but does not specify implementation

details. The MD PnP system supports a range of safe medical system reconfigurations. The medical

devices are plugged in as needed, information from different sources are integrated, and medical ac-
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tions are coordinated to provide an integrated clinical environment. To facilitate the development of

medical device interoperability, the MD PnP program has developed an open source implementation

of the Integrated Clinical Environment and made it freely available on SourceForge [51]. The platform

consists of software device adapters for medical devices (including anesthesia machines, ventilators,

and patient monitors), Object Management Group (OMG) Data Distribution Service for Real-Time

systems (DDS) standard middle-ware, and demonstration applications.

The necessity of proper infrastructures and the principles of medical platforms have also been dis-

cussed in [52, 53]. Advanced monitoring systems, such as the proposed assist system in this thesis,

can benefit from the technological foundations such as MD PnP framework and built upon it. There

are several works, which have also studied medical device interoperability to improve patient safety. In

[54], the authors discuss a low complexity coordination architecture for networked supervisory medi-

cal systems. In [55, 56], a coordination framework is introduced to facilitates integration of different

medical devices, and provide a model-based app programming environment for easy assembling of a

new medical application . In [57] the authors report their experience with a prototype plug-and-play

synchronized medical system including an x-ray and a ventilator. An interoperable medical system in-

cluding a patient controlled analgesia (PCA) pump is the focus in [58, 59]. While these works focused

on a static configuration, our focus has been on a more generic scheme to ensure patient safety in the

more dynamic configuration of acute care.
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Chapter 2

Organ-Centric Pathophysiology-Based

Modeling Paradigm

A main prerequisite for developing a guideline system is creating computer interpretable representa-

tions of he clinical knowledge contained in best practice guidelines. In other words, creation of such

systems requires considerable amount of modeling activity such as deciding what patient data is rele-

vant and identifying the concept and relationships among concepts that relate to guideline generations

[5]. The main focus of this thesis is on developing executable clinical models for acute care.

We propose an organ-centric pathophysiology-based modeling paradigm, where we translate the

medical text into executable interactive disease and organ models. We model the patient state and

different disease stages according to pathophysiology of organ systems, which describes how each of

the organ functions are affected by the disease. As mentioned before, such clinical models are studied

extensively in medical community. However, the common format used to represent and communicate

clinical knowledge, including such models, is English (text and graphics). Therefore, utilizing these

models when providing clinical care can be as challenging as using a map while driving. Turning

maps to GPS based navigation tools has revolutionized driving. Translating pathophysiological models,

based in medical best practice text, into executable models can have a similar effect on the use of

computer guidance systems in medicine.

However, there are several challenges for developing executable clinical models that must be ad-
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dressed. In the rest of this chapter, we first discuss these modeling challenges in Section 2.1. Next, we

describe how we address each challenge by proposing an organ-centric pathophysiology-based model-

ing paradigm and introducing a set of modeling guidelines in Sections 2.2 and 2.3, respectively. The

next step is applying the guidelines to construct he organ-centric pathophysiological models. However,

the description of this step is postponed to Chapters 3 and 4, when we discuss our two cases studies

in more detail. We believe the model construction procedure can be described by case studies more

clearly and effectively. We discuss the general approach we have taken to formally verify the model’s

safety properties in Section 2.5. We present a model driven approach for integrating the models into a

guidance system in Section 2.6. Finally, the clinical validation of the models are discussed in Section

2.7.

2.1 Modeling Challenges

In Chapter 1, we presented a list of the modeling challenges we have identified in this thesis. In this

section, we present these challenges in greater details. We refer to ith modeling challenge as MCH
i

:

MCH
1

: Medical knowledge representation must be in a machine-processable form. The med-

ical knowledge must be translated from text format to a structure appropriate for the logical applica-

tion of that knowledge by a computer guidance system. The developed clinical model(s) should be

executable or must provide a means for automatic execution to facilitate the design of best practice

guidance systems.

MCH
2

: The developed models must encode the relevant clinical information. The model needs

to encode the medical information or knowledge relevant to the disease under study. For example,

a physician often is interested in not only diagnosis itself but also the process of diagnosis and the

clinical data required to make a diagnosis. However, the encoded information must be adequate but not

excessive such that it create a mental overload.

MCH
3

: The medical knowledge representation and other encoded clinical knowledge must

be easily understood and validated. Physicians can play a critical role in development and validation

of executable clinical models. Therefore, models must encode the relevant medical knowledge at the

same abstraction level that medical knowledge and reasoning are known to medical domain experts.
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MCH
4

: The modeling paradigm must be applicable to different diseases in acute care. The

medical knowledge representation and modeling methodology must be able to model different diseases

in acute care. Initially, we have used the cardiac arrest case study when developing our model. How-

ever, to evaluate the applicability of our proposed modeling paradigm, different diseases or acute care

scenarios must be considered.

MCH
5

: The correct level of abstraction must be chosen for each model. Some clinical in-

formation, although relevant, may not be needed in the same details as others. Therefore, to develop

efficient and effective models, we must identify the correct level of abstraction for different modeling

components.

MCH
6

: The model must have the correct level of concurrency. The model may need to repre-

sent dynamic clinical information and may be used to track different aspects of patient state that may

change simultaneously. Therefore, the model must be designed in a such way that it would be able to

concurrently track all the critical changes.

MCH
7

: The model complexity must be managed. While encoding all the relevant information,

the model must remain manageable. This is critical since development and modification of highly com-

plex models can be error-prone. Furthermore, the formal verification task may grow more challenging

as the model complexity increases. This becomes specifically useful when modeling complex diseases

involving high number of pathophysiological processes.

In the next section, we present our organ-centric pathophysiology-based paradigm and specify the

subset of modeling challenges addressed by the proposed paradigm. We address the remaining ones by

introducing a set of modeling guidelines, later in the chapter.

2.2 Modeling Paradigm

We propose an organ-centric pathophysiology-based modeling paradigm, where patient state is mod-

eled according to pathophysiology of affected organ systems. This is possible because disease and

organ states are already discretized by the medical community; for example, different stages of cancer,

diabetes, heart diseases, etc. Furthermore, the diagnosis and treatment are organized for each stage.

Different diseases may impair one or more of the physiological functions performed by different
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organ systems. Pathophysiology describes the process of such changes in physiological measurements

and organ states throughout the disease progress. Multiple pathophysiological processes must often be

tracked for each disease. Therefore, an executable organ-centric pathophysiology-based model would

encode the key clinical information relevant to the disease under study. This partially addresses the

modeling challenge MCH
2

. However, additional considerations are required when designing the

specific modeling components to address this challenge more efficiently. We further discuss this when

presenting our modeling guidelines in Section 2.3. The following summarizes the main reasons behind

developing our models according to this paradigm:

• Physicians are taught body organ systems and structural relationships within the body. Moreover,

the pathophysiological description of disease processes is how medical knowledge is commonly

known by the physicians [6, 7]. The developed models would be at the same abstraction level that

medical knowledge and reasoning are known to physicians. They may directly look at the or-

gan models and cross reference with the requirements. Consequently, choosing an organ-centric

pathophysiology-based paradigm to represent patient and disease state can make clinical valida-

tion easier and more effective. In other words, the proposed modeling paradigm can address the

challenge MCH
3

.

• Multiple organ systems may be affected by a disease and the interaction among different organ

systems, and monitoring and therapeutic actions make the dynamics very difficult for physicians

to follow. Therefore, computational methods that collect, organize, and process patient informa-

tion according to organ-based pathophysiological models and presents them in a timely manner

can serve physicians in the best way possible.

• Physicians often describe monitoring and therapeutic requirements for different organ states.

For example, ACLS algorithm indicates that shock must be considered when shockable rhythm

is confirmed. This is a treatment guideline for arrhythmia, which is an insufficiency of car-

diovascular organ system. Therefore, the proposed modeling paradigm could also facilitate the

design of any clinical guidance system that encodes the best practice monitoring and treatment

guidelines.
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To develop our models, we use finite state machine formalism. We model a disease according to

the pathophysiology of involved organ systems, which describes how each of the organ functions are

affected by the disease. Each state machine, which is a labeled transition system, models one such

process. The nodes represent different pathophysiological states. The state variables may include

physiological measurements and lab values. The definition of each state and the condition enabling

transitions between the states are extracted from medical literature and clinical best practice guidelines.

These models have formal semantics and are executable. Therefore, they can be used to track disease

progress, organ state deteriorations, and organ state improvements, etc. This addresses the challenge

MCH
1

. We use an open-source tool, called Yakindu, for developing and simulating he state machines

and integrating them into a guidance system. The details on model integration are discussed in Section

2.6.

We presented a brief description of cardiac arrest in Section 1.1. This disease mainly affects the

cardiovascular organ system. The heart rhythm may change and include abnormal or irregular heart

rhythms or waveforms (arrhythmias). Furthermore, The insufficient blood circulation in the lungs

impedes the CO2 and O2 exchange resulting in CO2 accumulation in the blood, which may be related

to a rise in blood acidity level indicated by decrease in blood pH level. The abnormal pH is revealed in

arterial blood gas (ABG) test. These are two examples of pathophysiological changes in cardiovascular

organ system caused by the disease.

A simplified cardiac arrest model was presented in Figure 1.1. We have developed the arrhythmia

and blood gas imbalance automata among others. In each of these automata we codify different stages/-

types of heart rhythm irregularity or imbalance in arterial blood gas levels according to existing medical

knowledge. Fo example, pulseless electrical activity, a heart rhythm observed on the electrocardiogram

that should be producing a pulse, but is not, is a state in the arrhythmia automata. Similarly, severe

metabolic acidosis, a very low blood pH , is a state in blood gas imbalance automata. When new blood

pressure, heart rate, and EKG readings are received by our best practice system and blood pH value

from a recent ABG test is entered by the nurse, the arrhythmia and blood gas imbalance automata will

transition to the appropriate states. Let us assume the current readings indicate a very low blood pres-

sure and blood pH , no meaningful heart rate reading and an EKG rhythm that is not a flat line but does

not produce a pulse. Therefore, the arrhythmia machine transitions to pulseless electrical activity state
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G1:$All$the$relevant$pathophysiological$processes$for$the$disease$under$study$
must$be$modeled.

G2:"The"information"that"is"important,"but"not"needed"in"the"same"detail"as"
others,"must"be"aggregated.

G3:"The"affected"physiological"functions"that"need"to"be"tracked"simultaneously"
must"be"modeled"by"concurrent$state$machines.

G4:"The"states"defined"for"each"pathophysiological"state"machine"must"clinically"
sound"and"actionable

G5:"The"correct"and"optimal$number$of$transitions$must"be"identified"by"
considering"the"underlying"medical"knowledge"

G6:"The"interaction between"the"pathophysiological"state"machines"must"be"
minimized"and"for"the"necessary"interactions"the"interface"must"be"well<defined.

Figure 2.1: The List of Modeling Guidelines

and blood gas imbalance transitions to severe metabolic acidosis. We present a more detailed cardiac

arrest model after presenting our modeling guidelines.

The use of organ-centric pathophysiology-based paradigm and finite state machine formalism to de-

velop our models, only addresses MCH
1

and partially addresses MCH
2

and MCH
3

. In the next

section we introduce a set of modeling guidelines to further address MCH
2

and MCH
3

and chal-

lenges MCH
5

- MCH
7

. We partially address the final remaining challenge MCH
4

, that is applica-

bility of the proposed modeling paradigm to different diseases in acute care, by applying the paradigm

and guidelines to construct the sepsis model. In comparison to cardiac arrest, this is a more complex

case study an involves more pathophysiological processes.

2.3 Modeling Guidelines

In this section we present the modeling guidelines we have developed to specifically address the

challenges MCH
5

- MCH
7

. We describe each guideline and explain the challenges it addresses.

23



Figure 2.1 shows the list of these guideline. Note that there is a many-to-many relationship between the

identified modeling challenges and proposed guidelines. An illustrative summary of this relationship is

provided at the end of this section. The modeling guidelines are as follows; we refer to ith guideline

as G
i

:

G
1

: All the relevant pathophysiological processes for the disease under study must be modeled.

As mentioned in the previous section, each disease can cause several abnormalities and insufficiencies

in different organ systems. For example, in cardiac arrest, the main affected organ is the cardiovascular

system. The effect mainly includes abnormal heart rhythm and blood acidity and gas levels. However,

other organs might also be affected by cardiac arrest. For example, while medical staff focus on treating

arrhythmia and injecting various drugs, such as epinephrine, patient may develop renal insufficiency.

If the medical staff do not notice the new condition and continue giving the same drugs with the same

dosage, patient’s kidney may become severely insufficient or even fail. Therefore, we must include

all the organ and insufficiency category models relevant to the disease under study. In other words, a

pathophysiological process becomes relevant if the corresponding physiological function is affected by

the disease and/or affects the treatment plan.

The relevant pathophysiological processes would be used to track the disease progress, patient’s

response to treatments or adapt the treatment plans. For cardiac arrest, in addition to arrhythmia and

blood gas imbalance state machines, our model also includes a renal insufficiency state machine to

demonstrate the multi-organ interactions. Note that identifying these pathophysiological processes is

guided by existing medical knowledge and best practice text. This guideline further addresses MCH
2

,

that is identifying the relevant clinical information to be encoded in the model. The next few guidelines

help us determine what information to encode in each pathophysiological process and how to model

them using finite state formalism.

G
2

: The information that is important, but not needed in the same detail as others, must

be aggregated. This is also determined by pathophysiology of the disease under study. Different

pathophysiological functions of the main affected organ system(s) are often monitored individually

and in great detail. In addition, more measurements are used to assess each of these pathophysiological

functions, compared to the other organs. The choice of clinical measurements to encode in each patho-

physiological state machine is derived from the best practice guidelines for the disease in cooperation
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with the physicians.

For example, in the case of cardiac arrest, most guidelines focus on cardiovascular system as the

main affected organ. Therefore, more detailed information regarding cardiovascular abnormalities such

as arrhythmia, blood gas imbalance and etc. may be codified in the model. On the other hand, the

medical information regarding the pathophysiology of kidney organ system are aggregated as degree

of renal insufficiency. This guideline aims at addressing MCH
5

, that is choosing the correct level of

abstractions for each model component.

G
3

: The affected physiological functions that need to be tracked simultaneously must be mod-

eled by separate finite state machines. If the modeling guideline G
2

, has been already applied, fol-

lowing this one becomes straightforward. Previously we have specified different (aggregated) patho-

physiological processes that need to be tracked. These processes are often occur simultaneously in

patient’s body. To keep track of all these states and prevent any critical changes from being overlooked,

we model each process using a separate state machine.

Figure 2.2 shows the concurrent states machines developed for each of our case studies. Each ma-

chine encodes and tracks one of the simultaneous insufficiencies caused by the corresponding disease.

Th details on sepsis model will be provided in Chapter 4. This guideline addresses MCH
6

, that is

determining the correct level of concurrency for the model.

The next three guidelines are introduced to address the modeling challenge MCH
7

, that is manag-

ing the model complexity.

G
4

: The states defined for each pathophysiological state machine must clinically sound and

actionable. The previous guideline has helped us identify the concurrent state machines that needs to

be developed. The next step is to define the states for each pathophysiological state machine. Each

state is defined by correlating relevant physiological measurements and clinical data. The choice of

state variables are guided by medical literature and/or given by our physician collaborators. 1

However, defining a large number of states for each machine can make the model very complex and

unmanageable. Moreover, not all the changes in physiological measurements are relevant or useful

for a given disease. Providing too much information and too many alerts to medical staff may create

1There are measurements, which physicians often look at as a group and interpret together to have a better assessment of

patient state.
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Figure 2.2: Concurrent Pathophysiological State Machines for Cardiac Arrest and Sepsis Models

confusion and increase their mental overload, which is what our system aims to prevent in the first

place. Therefore, we have used the notion of actionable states. We define a new state when there is a

need for a new monitoring or therapeutic plan. The actionable states can be extracted from best practice

or the clinical requirements specified by physician.

Figure 2.3 shows a simplified respiratory insufficiency state machine demonstrating how this guide-

line can be applied. The states in this machine represent different degrees of respiratory insufficiency

and critical change in patient’s respiratory state that require an action from medical staff. For exam-

ple, the setting for ventilation therapy must be adapted when patient transitions to a new state. The

transitions indicating organ state improvement are not displayed for better readability.
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Figure 2.3: Actionable States in Respiratory Insufficiency State Machine

In addition to MCH
7

, this guideline also helps further address the modeling challenges MCH
3

and

MCH
4

. The pathophysiological models with smaller number of states can be more easily understood

and validated. Furthermore, the notion of actionable state helps with identifying the relevant changes

in patient state that needs to be encoded in the model.

G
5

: The correct and optimal number of transitions must be identified by considering the

underlying medical knowledge. Similar to the definition of states in each machine, defining a large

number of transitions can make the model complex and less understandable. Moreover, the process of

model development becomes more error prone. The key in identifying the correct and optimal number

of transitions is considering the medical knowledge underlying our models.

The required transitions can be extracted from the pathophysiological process being modeled by the

state machine. Development and resolution of organ failure may take some time. Therefore, when

continuous physiological variables are used to define different insufficiency states, we may not need

to create an edge between every insufficiency states. The transitions are only defined to represent the

progress of insufficiency. The exception may be the initial state; since we do not know the patient state

when we start, we can define a transition between the initial state and every other insufficiency states.

This can remove any potential latency in patient state tracking associated with the model stabilization.

If we do not have the transition edges from the initial state, when the system starts the models might

need a few cycles to stabilize and reflect the current patient state. However, when discrete measurement,

such as EKG rhythm, are used to define different states we may require to define transition between all

insufficiency states. Figure 2.4 shows renal insufficiency and arrhythmia state machine. The transitions
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A Need for Sepsis Definitions for the Public
and for Health Care Practitioners
Despite its worldwide importance,6,7 public awareness of sepsis is
poor.29 Furthermore, the various manifestations of sepsis make di-
agnosis difficult, even for experienced clinicians. Thus, the public
needs an understandable definition of sepsis, whereas health care
practitioners require improved clinical prompts and diagnostic ap-
proaches to facilitate earlier identification and an accurate quanti-
fication of the burden of sepsis.

Results/Recommendations
Definition of Sepsis
Sepsis is defined as life-threatening organ dysfunction caused by a
dysregulated host response to infection (Box 3). This new defini-
tion emphasizes the primacy of the nonhomeostatic host response
to infection, the potential lethality that is considerably in excess of
a straightforward infection, and the need for urgent recognition. As
described later, even a modest degree of organ dysfunction when
infection is first suspected is associated with an in-hospital mortal-
ity in excess of 10%. Recognition of this condition thus merits a
prompt and appropriate response.

Nonspecific SIRS criteria such as pyrexia or neutrophilia will con-
tinue to aid in the general diagnosis of infection. These findings
complement features of specific infections (eg, rash, lung consoli-
dation, dysuria, peritonitis) that focus attention toward the likely ana-
tomical source and infecting organism. However, SIRS may simply
reflect an appropriate host response that is frequently adaptive. Sep-
sis involves organ dysfunction, indicating a pathobiology more com-
plex than infection plus an accompanying inflammatory response
alone. The task force emphasis on life-threatening organ dysfunc-

tion is consistent with the view that cellular defects underlie physi-
ologic and biochemical abnormalities within specific organ sys-
tems. Under this terminology, “severe sepsis” becomes superfluous.
Sepsis should generally warrant greater levels of monitoring and in-
tervention, including possible admission to critical care or high-
dependency facilities.

Clinical Criteria to Identify Patients With Sepsis
The task force recognized that no current clinical measures reflect
the concept of a dysregulated host response. However, as noted
by the 2001 task force, many bedside examination findings and
routine laboratory test results are indicative of inflammation or
organ dysfunction.10 The task force therefore evaluated which
clinical criteria best identified infected patients most likely to
have sepsis. This objective was achieved by interrogating large
data sets of hospitalized patients with presumed infection,
assessing agreement among existing scores of inflammation
(SIRS)9 or organ dysfunction (eg, SOFA,27,28 Logistic Organ
Dysfunction System30) (construct validity), and delineating their
correlation with subsequent outcomes (predictive validity). In
addition, multivariable regression was used to explore the perfor-
mance of 21 bedside and laboratory criteria proposed by the 2001
task force.10

Full details are found in the accompanying article by Seymour
et al.12 In brief, electronic health record data of 1.3 million encoun-
ters at 12 community and academic hospitals within the Univer-
sity of Pittsburgh Medical Center health system in southwestern
Pennsylvania were studied. There were 148 907 patients with
suspected infection, identified as those who had body fluids
sampled for culture and received antibiotics. Two outcomes—
hospital mortality and mortality, ICU stay of 3 days or longer, or
both—were used to assess predictive validity both overall and
across deciles of baseline risk as determined by age, sex, and
comorbidity. For infected patients both inside and outside of the

Table 1. Sequential [Sepsis-Related] Organ Failure Assessment Scorea

System

Score

0 1 2 3 4
Respiration

PaO2/FIO2, mm Hg
(kPa)

≥400 (53.3) <400 (53.3) <300 (40) <200 (26.7) with
respiratory support

<100 (13.3) with
respiratory support

Coagulation

Platelets, ×103/μL ≥150 <150 <100 <50 <20

Liver

Bilirubin, mg/dL
(μmol/L)

<1.2 (20) 1.2-1.9 (20-32) 2.0-5.9 (33-101) 6.0-11.9 (102-204) >12.0 (204)

Cardiovascular MAP ≥70 mm Hg MAP <70 mm Hg Dopamine <5 or
dobutamine (any dose)b

Dopamine 5.1-15
or epinephrine ≤0.1
or norepinephrine ≤0.1b

Dopamine >15 or
epinephrine >0.1
or norepinephrine >0.1b

Central nervous system

Glasgow Coma Scale
scorec

15 13-14 10-12 6-9 <6

Renal

Creatinine, mg/dL
(μmol/L)

<1.2 (110) 1.2-1.9 (110-170) 2.0-3.4 (171-299) 3.5-4.9 (300-440) >5.0 (440)

Urine output, mL/d <500 <200

Abbreviations: FIO2, fraction of inspired oxygen; MAP, mean arterial pressure;
PaO2, partial pressure of oxygen.
a Adapted from Vincent et al.27

b Catecholamine doses are given as μg/kg/min for at least 1 hour.
c Glasgow Coma Scale scores range from 3-15; higher score indicates better

neurological function.

Clinical Review & Education Special Communication Consensus Definitions for Sepsis and Septic Shock

804 JAMA February 23, 2016 Volume 315, Number 8 (Reprinted) jama.com

Copyright 2016 American Medical Association. All rights reserved.

Downloaded From: http://jamanetwork.com/pdfaccess.ashx?url=/data/journals/jama/935012/ on 01/11/2017

Vincent, J-L., et al. "The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure." Intensive care medicine 22.7 (1996): 707-710. 

SOFA(Table

Normal(Renal(
Function

Sinus&

VTach&

(EKG$Rhythm$==#Sinus)#AND&&
(50#bpm#<=##HR$<=#120bpm)#AND&&
(90mmHg#<=#BP$<=#180mmHg)#

(EKG$Rhythm$==#PEA)#AND#(BP$<=#20mmHg)#

(EKG$Rhythm$==#VTach)#AND&&
(HR$>=#120bpm)#AND#(BP$<=#90mmHg)#

(EKG$Rhythm$==#Sinus)#AND&&
(50#bpm#<=#HR$<=#120bpm)#AND&&
(90mmHg#<=#BP$<=#180mmHg)#

PEA&

(EKG$Rhythm$==#PEA)#AND&&
(BP$<=#20mmHg)#

(EKG$Rhythm$==#VTach)#AND&&
(HR$>=#120bpm)#AND&&
(BP$<=#90mmHg)#

(b)
Figure 2.4: Pathophysiological State Machines with (a) Continuous State Variables and (b) Discrete and

Continuous State Variables

are defined following this guideline. In Renal machine the transitions are only defined to represent the

progress of insufficiency, with the exception of initial state.

Transitions are annotated with guards expressing the physiological condition that indicates the des-

tination insufficiency state and only that state. The definition of states in each pathophysiological

processes may not be mutually exclusive, according to guidelines they are extracted from. This oc-

curs when a different set of physiological measurements are used to define these states. However, to

make the model behavior deterministic we ensure that the guards on all outgoing transitions from the

corresponding state are mutually exclusive. 2.4

This improve model understandability and makes clinical validation more efficient and therefore

helps address the modeling challenge MCH
3

. Figure 2.4 shows the mutually exclusive outgoing
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Figure 2.5: Interaction Diagram for Sepsis Model

transitions we have defines for each renal insufficiency state. Note that the definition of states, which

are extracted from SOFA 2 table, are not explicitly mutual exclusive [60]. The transitions indicating

renal organ state improvement are not displayed for better readability.

G
5

: The interaction between pathophysiological state machines must be minimized and for

necessary interactions the interface must be well-defined. Any potential interaction between differ-

ent state machines can be encoded in a central disease state machine. Figure 2.5 shows the interaction

diagram for the sepsis model. The interaction with best practice guideline and physician models will

be discussed later.

We try to minimize any communication or dependency between the pathophysiological machines.

This improves the model modularity. The complexity of validation and verification may be reduced

since most of pathophysiological state machines can be validated and verified independently of the oth-

ers. Lower interaction complexity also results in models that can be more easily understood. Therefore,

in addition to MCH
7

, this guideline partially addresses the modeling challenge MCH
3

as well.

In this section, we discussed a set of modeling guidelines and the challenges addressed by each

one. As mentioned above, some of the challenges may be addressed by multiple guidelines. In Figure

2Sequential Organ Failure Assessment
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Figure 2.6: Summary of Modeling Challenges and Guidelines

2.6, we show this many-to-many relationship between the identified modeling challenges and proposed

modeling guidelines.

2.4 Additional Model Components

In addition to the modeling challenges, we presented additional design challenges in Chapter 1. In

this section we specifically focus on the following:

• Challenge 4: Physicians deviation from best practice guidelines must be tracked and recorded

• Challenge 6: An alarm management approach is required to reduce slips and lapse caused

by inadequate alarm configuration and practices

The role of human in the medical system can be more critical compared to most of other cyber-

physical human systems (CPHS). Moreover, the complexity and uncertainty of medicine sometimes

makes definitive decisions difficult. Therefore, it is critical to account for the human (specifically,

physician) as an important aspect of the system. In Section 2.4.1, we propose a compositional model

and a protocol to record and track physician response to the information provided by our model (sys-
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tem). In Section 2.4.2, as part of our guideline model, we present an alarm approach, which is integrated

with pathophysiological states.

Pseudocode 1 Convergence-Divergence Protocol

1 input 1: OrganAutomata OA = (OA1, OA2, . . . , OAn)

2 input 2: PhysicianAutomata PA = (PA1, PA2, . . . , PAn)

3 input 3: PatientState S = (S1, S2, . . . , Sn), input 4: PhysicianBelief B = (B1, B2, . . . , Bn)

4 input 5: BestPracticeGuidelines G, input 6,7: Short Timer Tshort, Long Timer Tlong

5 UPDATE();

6 if S 6= B

7 Send 1st Divergence Alert

8 DeviationCounter ++

9 Wait for Tshort

10 PrevS = S; PrevB = B

11 UPDATE();

12 if (PrevS == S && PrevB == B)

13 Send 2st Divergence Alert

14 DeviationCounter ++

15 else Gotoline9;

16 end if;

17 Wait for Tlong

18 PrevS = S; PrevB = B

19 UPDATE();

20 if (PrevS == S && PrevB == B)

21 Send Final Divergence

22 DeviationCounter ++ Alert

23 else Gotoline9;

24 end if;

25 else DeviationCounter = 0

26 Display G0 ✓ G for the current patient state

27 S = (S1, S2, . . . , Sn)

28 end if

29 UPDATE() {

30 for i = 1 to n

31 Si = CurrentState(OAi)

32 Bi = CurrentState(PAi)

33 end for

34 S = (S1, S2, . . . , Sn)

35 B = (B1, B2, . . . , Bn) }
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Figure 2.7: Arrhythmia State Machine and its Corresponding Physician Belief Machine

2.4.1 Physician Model

At times patient states presented by our system may differ from physician understanding and they

may deviate from the best practice guidelines suggested by our system. A source of this inconsistency,

should it occur, is that there may be information used by the physician to make a determination but not

available to our system, or the inconsistency can be the result of unintended deviation. The physician

my override the best practice guidelines at anytime. However, any deviations from the best practice

guidelines should be tracked and recorded for offline analysis.

Physician Belief State Machine: We propose a compositional model to handle and track the physi-

cian interaction with the system. For each patient state suggested by our model, the response from the

physician regarding the new patient state is received and processed by a physician belief state machine.

For each pathophysiological state machine, we develop a physician belief state machine with exactly

same pathophysiological states. However, the transitions between the states are enabled according to

physician response.

Therefore, the two pathophysiological state machines may have different active states at runtime,
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which indicates physician’s intended or unintended deviation. If the physician does not approve the

pathophysiological state suggested by the model, the physician state machine does not transition to

the suggested state. Moreover, at each time physician may decide to transition (jump) to a new state

independent of the states suggested by our models. Figure 2.7 shows the arrhythmia state machine and

its corresponding physician belief machine.

This compositional approach results in more modular model, in which the organ and physician

models can be validated and verified independently. As was shown in Figure 2.5, there is no interaction

between a pathophysiological state machine and its corresponding physician machine. Furthermore,

physician belief state machines for different pathophysiological processes do not interact either.

We have also added a logging interface to our model that can be used for keeping record of de-

viations, when the models are integrated into the guidance system. Such records may be used for

additional review (can be specifically useful for residents). According to [61], failure to debrief after

code is one of common errors made in cardiac arrest care and the logging feature can help alleviate this

situation. Furthermore, the logs can also be analyzed by the developers to improve the precision of the

proposed models.

Convergence-Divergence Protocol: The compositional model allows us to track and record the

physician belief on the current states. To allow some degree of flexibility, while reducing the unintended

deviation from best practice guidelines we propose the divergence-convergence protocol. When there

is a discrepancy between a pathophysiological state machine and its corresponding physician state

machine an initial alert is generated to reduce any unintended deviation. If patient state continues to

deteriorate or remains the same, two additional alerts are generated by the system. Note that all the

timer-related values are configurable. After discussion with our physician collaborators, we designed

the last alert to be triggered by a longer timer. When we transition to a new pathophysiological state

and the best practice and physician diagnoses are still inconsistent, the timer routine restarts. However,

if the patient state improves the model (by design) converges with the physician’s belief The protocol

steps are presented in Pseudocode 1.
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2.4.2 Guideline Model

The guideline model encodes best practice monitoring and treatment guidelines. As mentioned

previously, physicians often specify these guidelines for different pathophysiological and disease states.

Therefore, our proposed modeling paradigm can efficiently encode them.

In most of current clinical guideline models and system, different elements of the patient state in-

formation are often used to express preconditions, therapy goals, etc. At each point in time, our model

represent the patient state as a set of pathophysiological states (and an aggregated disease state). This

representation resemble a patient scenario that can be used to determine the entry point to the guide-

lines. For example, when patient enters acute lung injury state, the ventilation therapy workflow must

be executed. However, different patient state items may also be used to check preconditions or goals

at different states of the chosen workflow. For example patient’s blood pressure may be monitored to

evaluate the effectiveness of fluid resuscitation.

Alarm Management: In this section we also focus on addressing the challenge of alarm man-

agement. Our main goal is to reduce slips and lapse caused by inadequate alarm configuration and

practices. Such an alarm management must be incorporated into best practice monitoring guidelines

for the disease under study.

Most current medical systems raise alerts based on single measurements, which creates considerable

false positive alerts. Identifying the relation between measurements and structuring them according to

organ pathophysiology adds a layer of intelligence to patient state representation.

We use the notion of actionable alerts, which follows the same line of reasoning as actionable states,

which was describe in Section 2.3. In fact, by encoding the alerts on patient state changes in already

defines actionable states we ensure that they are comprehensive and integrated with pathophysiological

sates. These alerts may also be issued on patient’s response to treatments or best practice treatment

option for the current pathophysiological states.

The alerts on development or resolution of organ insufficiency states are encoded in individual patho-

physiological states. These alerts only depend on the information from the corresponding pathophysio-

logical process. There are no interaction between different pathophysiological processes and therefore

these alerts can be encoded independent of each other. For example, the alert indicating patient has
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developed moderate renal insufficiency is encoded in the renal state machine.

However, the alerts on progress of the disease under study is encode in the disease state machine.

These alerts require information from several pathophysiological processes. This aggregated infor-

mation is encoded in the disease states and the disease state machine is the best place to encode this

category of alerts. For example, the alert indicating a septic patient has deteriorated to septic shock is

encoded in the sepsis state machine.

Best practice guidelines regarding best practice-recommended monitoring extent and frequency may

also be encoded similarly. In states with higher degree of insufficiency, the medical staff may require to

monitor more frequently or monitor more relevant measurements. Since these monitoring requirements

are often categorized according to organ insufficiency and disease progress stage, the corresponding

guideline can be encoded in the corresponding pathophysiological and disease states. Each alert mes-

sage has the following items:

• The new disease/pathophysiological state (and the corresponding process).

• Patient state change type: improvement or deterioration.

• The current value of relevant measurements.

• The normal range for each of the above measurements.

• Recommended treatment and monitoring actions.

Note that the treatment actions recommended in these alert messages are presented in abstract; more

detailed treatment alerts will be discussed later. Examples of alert messages will be presented in Chap-

ters 3 and 4.

2.5 Model Verification

As mentioned in Chapter 1, the desired model behaviors must always hold, not just in the limited

clinical simulation. We address this challenge by performing model checking and formally verifying

the safety and system properties.
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To formally verify the correctness of the models, we use UPPAAL model checker tool. Currently,

the translation from Yakindu to UPPAAL is done manually. The correctness of the translation is a

challenge that also needs to be addressed but is outside the scope of this paper. However, the UPPAAL

model-checker is also based on the theory of timed automata and this make the translation process less

complex. In [62] automatic translation of Yakindu models to UPPAAL is discussed. However, in this

paper the translation is done manually until such research works mature.

As mentioned before, we use an open source tool, called Yakindu, to develop the models. The tool

provides an integrated modeling environment and development based on the concept of statecharts.

To make the translation to UPPAAL less complex, we avoided using composite states, supported by

statecharts, in the Yakindu models. UPPAAL model checker tool does not support composite states.

Therefore, using them in our organ models would make the task of translation to UPPAAL more com-

plex and possibly error-prone. Another reason for avoiding composite states is to maintain the model

simplicity for clinical validation by physicians. Understanding complex computer science concepts,

such as composite states, would be a non-trivial tasks for the physicians. Our goal is to keeps the mod-

els as simple and intuitive as possible. Note that we use the orthogonal regions supported in statecharts

to represent a set of concurrent organ models, which we develop to track concurrent changes in the

patient state. In UPPAAL, a system is also modeled as a network of communicating state machines.

This makes the task of translation to UPPAAL and formal verification more straightforward.

The Yakindu models may include state and transition actions. Since UPPAAL only supports transi-

tion actions, we also translated any necessary state action to a transition action. In Yakindu, the state

actions include entry, exit and timer based actions. The entry action should be performed once when

entering the state. We translated this to an action assigned to all the incoming transitions to the cor-

responding state. The exit action, which must be executed when existing the state, was translated to

actions on all the outgoing transitions. For the timer-based state actions, we created a self-transition

and used the timer as transition guard. Figure 3.6 shows the Yakindu arrhythmia model and its corre-

sponding UPPAAL model, constructed manually. The four states are mapped to four locations, each

representing an arrhythmia state. The entry state actions are translated to updates on all the incoming

transitions to the corresponding states.

As explained previously, and also illustrated in Figure 2.5, there is no direct interaction among dif-
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Figure 2.8: Model-Driven Design for Clinical Guidance System

ferent pathophysiological state machines or physician belief state machines. Furthermore, a pathophys-

iological state machine does not interact with its corresponding physician belief state machine either.

This improves verification modularity and therefore we can verify most of the developed models sep-

arately. All the interaction are encapsulated in the disease and guideline models and their correctness

and safety properties must be verified as part of verification of these modeling components.

After constructing the UPPAAL models, (a subset of identified) clinical requirements must be for-

malized as (timed) computation tree logic, CTL, formulas and verified using UPPAAL model checker.

The exact formula depends on the disease under study. We present the set of verified propertied for our

cardiac arrest model in Chapter 3.

2.6 Model Integration

As discussed earlier, developing efficient and accurate clinical models is the first step in design

of guidance systems. As the next step, the models must be integrated into the guidance to derive
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its execution. The models interact with the guidance system using our handwritten communication

code.The model integration also provides a more user-friendly environment for simulation of different

clinical scenarios. This would allow physicians to validate the correctness and usefulness of developed

models more efficiently.

Figure 2.8 shows the approach we have followed to integrate the developed models with an existing

guidance system. It also summarizes the steps involved in the construction, verification and integra-

tion of the clinical models. At the first step, we translated the generic medical knowledge into a set

of communicating finite state machines. We used our proposed organ-centric paradigm, in which we

model patient state as a network of pathophysiological and disease state machines. We also used the

finite state machine formalism to develop a best practice guideline model that encodes all the moni-

toring and treatment guidelines. A compositional approach was also proposed to handle and track the

physician interaction with the system. We use the open source tool, Yakindu, to develop the models.

The tool provides an integrated modeling environment and development based on the concept of stat-

echarts. The tool also allows simulation of the developed model to validate its dynamic behavior [8].

Next, the finalized Yakindu models were manually translated to UPPAAL for exhaustive verification of

clinical and system requirements. The clinical requirements are formalized as computation tree logic
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formulas and along side the system requirements are verified using UPPAAL. Note that any necessary

modification to UPPAAL model are reflected back to the Yakindu Model.

Now, at this step we integrate the verified models with an existing guidance system interface, us-

ing some handwritten communication code. The Java code can be generated automatically from the

Yakindu model and integrated with the existing system using some hand-written glue code. However,

the tool also allows direct interaction between the Yakindu model and existing Java code. Therefore,

for visualization purposes we have integrated our cardiac arrest and sepsis model with an existing

guidance systems, previously developed by our research group. The models interact with the existing

system using our handwritten communication code. The patient data entered into the guidance system

is communicated to our models through the communication (glue) code. This allows use simulate dif-

ferent clinical scenarios. The generated monitoring and treatment guidelines by the models are sent to

the guidance system to be displayed for medical staff. The physician response to the generated guide-

lines are also recorded by the system and communicated back to our model 3.Figure 2.9 shows the

communication flow between the models and guidance system.

2.7 Clinical Validation

Through simulation of our model-driven guidance system, we validate clinical correctness and use-

fulness of the models. A set of clinical requirements have been drafted in collaboration with physicians.

In the process of developing our organ-centric pathophysiological organ models, we have gone through

multiple iterations of design, validation and close discussion with our ICU physician collaborators. The

executable organ models allow us to simulate the disease under study. The clinical simulation provides

an environment for dynamic validation of the models. Physicians can also directly look at these organ

models and cross reference with the specified clinical requirements. Note that, the developed mod-

els are at same level of abstraction the medical knowledge and reasoning are known to physician. At

our proposed level of abstraction, physicians with minimal IT background can easily understand the

models and review the design. If directly implemented in procedural style using a high level language

such as Java, organ-centric patient state representation could not be easily validated by physicians. We
3In our sepsis guidance system, we have added Approve and Hold buttons to our guideline alert messages. The physician

response is recorded by tracking which button is clicked for each guideline item.
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then apply the necessary changes, as suggested by physician(s), and re-validate the refined model. The

following are a subset of clinical requirements validated for the developed organ models:

• CR1: All the pathophysiological processes relevant to the disease under study are modeled.

• CR2: All the insufficiency states, recognized by medical textbooks, are modeled for each patho-

physiological process.

• CR3: The correct and only necessary subset of physiological measurements are used to define

the states in each automaton.

• CR4: The definition of insufficiency states are correct.

• CR5: Any changes in the physiological measurements will result in transition(s) to the correct

insufficiency state(s).

We have shown our developed models and simulation of cardiac arrest scenario to our physician

collaborators for clinical validation. More details are presented in the next chapter. Note that each

pathophysiological process and its corresponding physician belief state machine has the exact same

states. The transitions are simply enabled by the physician input. The correctness of the physician

models are formally verified using UPPAAL.

Next, we describe how the modeling guidelines, presented in Section 2.3, can be applied to construct

the cardiac arrest and sepsis models. We provide more details on formal verification, integration and

validation of the constructed models. In Chapter 3, we also discuss the preliminary clinical validation

we have conducted of our model-driven guidance system at a Carle ACLS training class.

2.8 Research Publications

The following is our published research paper on organ-centric modeling paradigm and integration

of the models into a best practice guidance system:

• M. Rahmaniheris, P. Wu, L. Sha, and R. B., Berlin, ”An Organ-Centric Best Practice Assist Sys-

tem for Acute Care”, IEEE 29th International Symposium on Computer-Based Medical Systems

(CBMS 2016) [63]
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We are in the process of preparing the following paper, on the proposed model-driven guidance

system design and evaluation. This paper will be submitted to IEEE Real-Time Systems Symposium

(RTSS) 2017:

• M. Rahmaniheris, Y. Jiang, P. Wu, and L. Sha, Design and Evaluation of Model-Driven Guid-

ance Systems for Acute Care”
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Chapter 3

Cardiac Arrest Case Study

We first briefly describe the cardiovascular organ system and its pathophysiology. This is by no mean

a thorough description. The cardiovascular system consists of the heart and blood vessel. The main

responsibility of this organ system is to support blood circulation to provide nutrients, oxygen, etc.

to different parts of the human body. Another task performed by this organ system is to support the

CO2 and O2 exchanges in the lungs that stabilize blood PH , which is the measure of acidity of the

blood. We can categorize the different pathophysiological states of the cardiovascular organ system

into four main insufficiencies. The first category represent the conditions, in which the blood flow is

blocked or partially blocked. This can be the result of different cardiovascular disease such as blood

clot, hardening and narrowing of the artery, peripheral artery disorder or circulatory shock. The second

category represents the abnormalities in heart rhythm, which leads to significant drop of cardiac out-

put and impairs blood circulation. The insufficient blood circulation in the lungs to perform the CO2

and O2 exchange results in CO2 accumulation in the blood and causes a rise in blood PH level. This

plays an important role in our case study on cardiac arrest. Abnormal blood gas levels and dysregulated

blood pressure are the third and fourth categories. Table 5.1 shows a subset of cardiovascular states rel-

evant to the intelligent management of devices. We have verified this abstract model of cardiovascular

insufficiency states with the physician, who collaborates closely with our research group.

Cardiac arrest is the sudden loss of heart function, which is caused by the loss of the heart’s electrical

and muscular pumping function. Following cardiac resuscitation efforts, the heart rhythm may change
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and include abnormal or irregular heart rhythms or waveforms (arrhythmias). The heart may beat

chaotically during resuscitation, which leads to significant drop of cardiac output and impairs blood

circulation. The insufficient blood circulation in the lungs impedes the CO2 and O2 exchange resulting

in CO2 accumulation in the blood, which may be related to a decrease in blood pH level.

Cardiac arrest can lead to death within minutes. The guideline provided by American Heart As-

sociation (AHA) to reverse the cardiac arrest includes cardiopulmonary resuscitation (CPR), using the

defibrillator device to shock the heart by delivering a therapeutic dose of electrical energy to the heart,

and administration of intravenous drugs such as epinephrine [64], [65]. Epinephrine is a vessel con-

strictor that stimulates the heart and increases the arterial blood pressure.

The patient’s blood pressure, heart rate, blood O2 saturation must be monitored continuously. An

electrocardiography machine, EKG machine, must be attached to the patient to monitor the heart’s

electrical activity and rhythm. However, the defibrillator may only be used if a shockable rhythm is

present. Pulseless ventricular tachycardia and ventricular fibrillation are considered shockable. If the

EKG machine indicates pulseless electrical activity or asystole, which is flat line, shocking a patient’s

heart will be ineffective and is commonly contraindicated. If the rhythm is not shockable, epinephrine

is often administered through intravenous access.

A patient in cardiac arrest may develop acidosis which is indicated when blood gas analysis is per-

formed during resuscitation. In this cardiovascular state blood acidity level is abnormally high, indi-

cated by low value of blood pH . This is caused by poor tissue perfusion and blood oxygenation during

cardiac arrest. On the other hand, acidosis if severe may be one of the potential adverse conditions un-

der which epinephrine may be less effective. At times, it is recommended to correct the severe acidosis

by improving the CO2 and O2 exchange and by administering to the patient a base medication, sodium

bicarbonate. There are times when such therapy may improve the effectiveness of epinephrine.

In addition to the cardiovascular organ system, as resuscitation efforts continue, it may be found that

the lung (pulmonary) and kidney (renal) organ systems are also affected. In this paper we demonstrate

a subset of possible interactions between the cardiac and kidney organ systems in our computational

model. Moderate or severe renal insufficiency can affect the treatment plan for a the cardiac arrest

patient. For a patient with kidney insufficiency, there may be times when other medications may be

preferred in place of epinephrine due to some reports of epinephrine toxicity in the face of kidney dys-
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Figure 3.1: The Relevant Pathophysiological Processes for Cardiac Arrest

function. Other vasoactive medications to consider may include dobutamine and levophed depending

on patient condition [66]. In case of severe renal insufficiency, where the patient shows signs of hy-

perkalemia 1, it may also be recommended to use calcium chloride infusion through the intravenous to

treat the effects of a very high potassium level on the heart.

In the following sections we discuss how the organ-centric pathophysiology-based cardiac arrest

model can be constructed by applying the modeling guidelines presented in Section 2.3.

3.1 Model Construction

We start by applying our first modeling guideline, G
1

. Cardiac arrest causes several abnormalities

mainly in cardiovascular organ system. These include abnormal heart rhythm and imbalance in arterial

blood gas levels, including blood acidity level. According to this guideline, a pathophysiological pro-

cess becomes relevant if the corresponding physiological function is affected by the disease or affect the

treatment. Therefore, blood gas imbalance and arrhythmia are relevant pathophysiological processes

that must be tracked when monitoring and treating a cardiac arrest patient. In addition to the cardio-

vascular organ system, as describe above, it may be found that the kidney (renal) organ system is also

affected. On the other hand, moderate or severe renal insufficiency can affect the treatment can affect

1High level of potassium in blood
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(a) Best Practice

(b) Physician Belief

Figure 3.2: Arrhythmia State Machines
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(a) Best Practice

(b) Physician Belief

Figure 3.3: Blood Gas Imbalance State Machines

the choice of vasoactive agent to reverse cardiac arrest. Therefore, renal insufficiency process becomes

relevant to cardiac arrest, because not only the kidney organ system may be affected by the disease but

also the renal insufficiency state can affect its treatment plan. We also had a series of discussions with
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our ICU physician collaboratives to confirm the identified pathophysiological processes for our cardiac

arrest model.

Next, we follow G
2

and identify the information that is important, but not need to be encoded in

the same details as others in our cardiac arrest model. As explained above, kidney is not the main

affected organ system and only the severity of renal insufficiency, if any, must be known to safely and

effectively adapt the treatment plan. Therefore, the medical information regarding the pathophysiology

of kidney organ system are aggregated as degree of renal insufficiency. On the other hand, more derails

are needed regarding the cardiovascular system. For example, we encode arrhythmia and blood gas

imbalance separately in our cardiac arrest model. It is not simply sufficient to represent all the changes

in the cardiovascular organ system by an aggregated degree of insufficiency.

At this stage, we must determine the concurrency level of our cardiac arrest model. According

to G
3

, the affected physiological functions that need to be tracked simultaneously must be modeled

by separate finite state machines. If G
2

has already been applied, following this guideline becomes

straightforward. Previously, we specified the different (aggregated) pathophysiological states need to

be tracked for a cardiac arrest patient. To keep track of all these states and prevent any critical changes

from being overlooked we model each process using a separate state machine. Therefore, we need to

develop three state machines for the cardiac arrest model: arrhythmia,blood gas imbalance (BGI), and

renal insufficiency. Figure 3.1 shows our proposed hierarchical model for the cardiac arrest.

Now, must define the states for each of the identified pathophysiological state machines. There are

measurements, which physicians often interpret together to have a better assessment. In the arrhythmia

state machine each state is defined by correlating EKG rhythm with blood pressure and heart rate.

To assess the degree of renal insufficiency creatinine, BUN and potassium are looked at as a group.

We use these three measurement as the state variables for the renal insufficiency state machine. The

measurements in ABG test, PaO2, PaCO2 and pH , are used to define different blood gas imbalance

states.

However, defining a large number of states can make the model very complex and unmanageable.

In guideline G
4

, we introduced the notions of actionable states. Not all the changes in physiological

measurements are relevant or useful for a given disease. Providing too much information and too

many alerts to the medical staff may create confusion and increase their mental overload. We define
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a new state when there is a need for new monitoring and therapeutic plan. The actionable states can

be extracted from the requirements that specify the organ states, which trigger an action from the

medical staff. For example, to adapt the cardiac arrest treatment plan, we only require to know if the

patient has developed any renal insufficiency, and whether it is moderate or severe. Therefore, we

can identify three actionable states for the kidney state machine: Normal Renal Function, Moderate

Renal Insufficiency and Severe Renal Insufficiency. Fo the other tw state machines the actionable alerts

can be directly extracted for best practice guidelines. In ACLS algorithm, which is the workflow

provided by American Heart Association to reveres cardiac arrest, four arrhythmia states are identified:

V entricular Tachycardia, V entricular F ibrillation, Asystole and PEA. Therefore, we define

five actionable states, including these four arrhythmia states and an additional state representing sinus

rhythm. However, we decided not to define a separate state for Asystole, since it can be easily detected

and has the same treatment plan as PEA. Lastly, we have identified three main arterial blood gas

abnormalities from medical literature: metabolic acidosis, hypercapnia, and respiratory acidosis. We

define three actionable states corresponding to these identified abnormalities and an additional state to

represent normal blood gas levels.

After defining the states, we must identify the correct and optimal number of transitions by consid-

ering the underlying medical knowledge. According to guideline G
5

, when continuous physiological

variables are used to define different states, the transitions are only defined to represent the progress of

insufficiency. This case applies to blood gas imbalance (BGI), and renal insufficiency state machines.

We only define an edge between the states that represent gradual deterioration and improvement. Note

that, since we have only three actionable states in the renal state machine and we define a transition

from the initial state to all the others, the application of this guidelines cannot be explicitly observed

from the final constructed model. In the arrhythmia state machine, we require to define transition be-

tween all insufficiency states since a discrete measurement, that is KG rhythm, is used as state variable.

Figures 3.2(a)), 3.3(a), and 3.4(a)) show the final constructed state machines resulted from applica-

tion of the modeling guidelines. Figures 3.2(b)), 3.3(b), and 3.4(b)) show the corresponding physician

models for each pathophysiological process. They are constructed following the approach described in

Section 2.4.1. All the models have been developed using Yakindu.

Note that the last guideline, G
6

, has been partially followed since we do not define any interaction
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(a) Best Practice

(b) Physician Belief

Figure 3.4: Renal Insufficiency State Machines

between the three pathophysiological state machines. We codify any dependency and indirect interac-

tion between them in a central guideline model.

3.1.1 Cardiac Arrest Guideline Model

Thee guideline model for cardiac arrest has been also developed using finite state machine formal-

ism. The monitoring and treatment guidelines are categorized according to patient pathophysiological

states. We define the patient state S as a tuple (S1, S2, . . . , Sn), in which Si is the current state in

ith pathophysiological process and n is the total number of these processes developed for the disease

under study. In cardiac arrest model, n = 3 and S = (V Tach, Metabolic Acidosis, Moderate Renal
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Insufficiency) can be an example of patient aggregated state.

The guideline model for the cardiac arrest scenario codifies the ACLS2 algorithm provided by Amer-

ican Heart Association (AHA) and other well-established guidelines recommended by our physician

collaborators. We model the cardiac arrest guidelines using a single state machine. Note that, the

guideline model may also include several state machines, which can be executed concurrently or their

execution can be synchronized using another top-level guideline manager. We provide more details

when discussing sepsis case study in Chapter 4. Figure 3.5 show the ACLS algorithm.

The cardiac arrest guideline state machine periodically communicates with all the organ models

to get their current states and determine the current patient state. As mentioned before, the encoded

guidelines are categorized to patient state defined as explained above. Therefore, when the patient

states changes, the best practice model determines the subset of guidelines for the current patient state.

The guideline state machine codifies any potential interaction between different modeling components.

In the above example, treatment plan for V Tach may need to be adapted because the patient has

developed renal insufficiency. The guideline state machine contains all the required information to

encode interactions or other dependency relations such as the one just described. The following are

examples of encoded cardiac arrest guidelines:

• All medical staff must consider shock when V Tach or V Fib rhythm is confirmed.

• All medical staff must avoid shock when PEA or Asystole rhythm is confirmed

• The physician must consider vasoactive agents such as epinephrine to correct arrhythmia.

• Epinephrine may not be effective for a cardiac arrest patient with low blood pH level. It may be

recommended to consider Bicarbonate to treat the high level of acidity.

• For a cardiac arrest patient with renal insufficiency, it may be recommended to adjust fluid re-

suscitation parameters and substitute epinephrine with other vasoactive agents such as levophed,

which are less harmful to kidney.

In Section 3.3, we explain how the constructed pathophysiological and guideline models are used

2Advanced Cardiac Life Support
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Figure 3.5: ACLS Guidelines for Cardiac Arrest Resuscitation

to derive the execution of our cardiac arrest guidance system. However, the clinical correctness of the

models must be validated and formally verified before they can be integrated into the guidance system.

3.2 Formal Verification

We use the UPPAAL model checker tool to verify a set of formalized safety properties. We followed

the approach explained in Section 2.5, and manually translated all the models to UPPAAL. Figure

3.6(b) shows the arrhythmia UPPAAL model, as an example. The arrhythmia Yakindu model is also
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(a) Yakindu Model

(b) UPPAAL Model

Figure 3.6: Arrhythmia Yakindu and UPPAAL Models
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Property Formula

P1 A[] Not Deadlock

P2 E <> ArrhythmiaBP.V entricularF ibrillation

P3 A <> ((Rhythm == V FIB && BP  20) =) ArrhythmiaBP.V entricularF ibrillation)

P4 A <> (ArrhythmiaBP.V entricularF ibrillation =) (Rhythm == V FIB && BP  20))

P5 E <> BGI BestPractice.MetabolicAcidosis

P6 A <> BGI BestPractice.MetabolicAcidosis =) (pH < PH LOW THRESHOLD)

P7 A[] BGI Physician.MetabolicAcidosis =) Physician BGI State == METABOLIC ACIDOSIS

P8 A <> (BGI BestPractice.MetabolicAcidosis && BGI Physician.NormalBloodGasLevels) =)

(MetabolicAcidosis DeviationCounter > 0)

Table 3.1: List of Verified Cardiac Arrest Safety Properties

shown in Figure 3.6(a) to better illustrate the correspondence between the tow models. A subset of

validated clinical requirements and several system requirements are formalized as (timed) computation

tree logic, CTL, formulas. A subset of verified properties are shown in Table 3.1. The absence of

deadlock in the model is formalized as P1 and P2 is an example of reachability properties. The safety

properties P3 and P4 are examples of formalized state and transition definition correctness properties

for arrhythmia model. The property P7 ensures the correctness of physician model and P8 is a safety

property of the divergence-convergence protocol.

3.3 Cardiac Arrest Guidance System

To further demonstrate how the models can be used to design clinical systems, we have integrated

our models in a cardiac arrest guidance system following the approach presented in Section 2.6 and

illustrated in Figure 2.8. The integration is done using formally verified Yakindu models. The Java

code can be generated automatically from the Yakindu model and integrated with the existing system

interface using some hand-written glue code. However, the tool also allows direct interaction between

the Yakindu model and existing Java code. Therefore, for visualization purposes we have integrated our

cardiac arrest model with an existing guidance systems, previously developed by our research group.

All the physiological measurements and relevant lab values can be entered through the guidance

system user interface. We have defined a set of events in Yakindu to emulate the physician’s response

to the system’s suggestions; the state machines respond to the activation of these signals (which occurs
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Figure 3.7: Signals Simulating Interaction with Attending Physician

when one clicks on the corresponding signal). A screen shot showing a subset of such signals is shown

in Figure 3.7. The threshold values may also be changed in the Yakindu model at both configuration

time and during model simulation. If the new patient state is not confirmed or a different organ state

is entered by the physician, the convergence-divergence protocol, as explained in Section 2.4.1, is

executed. However, if the new patient state is confirmed, the new guidelines are sent to the system to

be displayed for medical staff.

Figure 3.8(a) shows a snapshot of our simulation run including the organ models (Statechart im-

plementation) and the graphical display. The snapshot shows a point in the simulation, in which the

patient’s blood pH value indicates metabolic acidosis. However, the physician does not approve the

pathophysiological state suggested by the system. Therefore, Blood Gas Imbalance state machine and

its corresponding physician state machine have different runtime states. As shown in Figure 3.8(b), the

deviation from best practice guided acidosis diagnosis is logged by the system. Note that when blood

pH goes above the threshold, BGI state machine automatically transitions to Normal Blood Gas Levels

state and converges with the physician diagnosis. This case is not shown. When physician approves

the pathophysiological states suggested by the system, the subset of best practice guidelines applicable

to the current patient state are placed on the guidance system display. Figure 3.9 shows a simulation

snapshot, in which PEA rhythm, metabolic acidosis and renal insufficiency states have been approved

by physician. As another example, we simulated the case in which there is an inconsistency between

correlated measurements. In the previous scenario, where the EKG rhythm indicates ventricular tachy-
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cardia, the heart rate and blood pressure values are consistent. On the other hand, Figure 3.10 shows the

alert message generated by the system when blood pressure is, according to best practice monitoring

guidelines, inconsistent with the PEA (pulseless electrical activity) rhythm. The inconsistent measure-

ment is shown on a red background on the graphic display. For more information on our cardiac arrest

developed model and guidance system refer to [67]. The readers can also run their own simulation

for the encoded scenarios by accessing the required files [67]. Moreover, a video showing our system

simulation for additional scenarios can be accessed here [68].

3.4 Clinical Validation

Physicians play the main role in validating the clinical correctness of our models. We also depend

on them to assess the usefulness of the guidance system in terms of improving patient state assessment

and adherence to the best practice guidelines.

3.4.1 Correctness

We demonstrated our system simulation to a team of ICU medical staff at Carle hospital [69] to

ensure clinical correctness of the encoded guidelines such as the ones presented above. The following

are a subset of clinical requirements for the cardiac arrest, which are instantiations of the generic

requirements presented in Section 2.7.

• CR1: All the pathophysiological processes relevant to cardiac arrest are modeled.

• CR2: All the relevant abnormal rhythms are modeled in the Arrhythmia machine.

• CR3: EKG rhythm, HR and BP are the correct and necessary physiological measurements to

define different arrhythmia states.

• CR4: The definition of arrhythmia, BGI and renal insufficiency states are correct.

• CR5: Any changes in blood pH and/or PaCO2 will result in transition to the correct BGI state.
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Physician Automata

Best Practice Automata
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Normal Blood Gas Levels
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(a) Simulation Snapshot

(b) Log Snapshot

Figure 3.8: Inconsistent Physician and Best Practice Blood Gas Imbalance Automata
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Figure 3.9: Best Practice Guidelines Generated by our System

Figure 3.10: EKG Rhythm and Blood Pressure Inconsistency Alert
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Figure 3.11: Medical SimMan 3G Manikin in Carle ACLS Training Class

3.4.2 Usefulness

One of challenges encountered in developing any guideline model or designing clinical guidance

system is to determine relevant medical knowledge to be encoded in the model. Furthermore, iden-

tifying what guideline items and at which time to be presented to clinical staff is critical. These are

deciding factors for usability of the system in actual clinical environment or for the purpose of train-

ing nurses or residents. We conducted a preliminary evaluation of our cardiac arrest guidance system

in a ACLS training class with 18 medical personnel consisting of physicians and nurses from Carle

Foundation Hospital.

Note that there are two versions of cardiac arrest guidance system. The version presented in this

thesis is designed based on organ-centric pathophysiology-based model can be simulated and evalu-

ated before code generation. The first version was developed using traditional procedural style ap-

proaches. There is also a 2-part study protocol in place in collaboration with Carle hospital ICU

department.These studies will evaluate our cardiac arrest guidance system in terms of usability, record-

ing accuracy and improvement in adherence to ACLS workflow; and compare them with the traditional

approach of memorizing workflows and using paper and pencil for recording.

Using our model-driven cardiac arrest guidance4 system, we conducted two sets of simulations on

the medical SimMan 3G Manikin 3, which is used for training purpose (Figure 3.11). One set of simula-

3http://www.laerdal.com/us/SimMan3G
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Metric Explanation
Mental'Demand How'much'mental'or'perceptual'activity'was'required

Physical'Demand How'much'physical'activity'was'required?

Temporal'Demand How'hurried'or'rushed'was'the'pace'of'the'task?

Performance How'successful'were'you'in'performing'the'task?'
(Lower'score'means'better'performance)

Effort How'hard'did'you'have'to'work'to'accomplish'the'task?

Frustration How'insecure,'discouraged,'irritated,'and'stressed,'did'you'feel'
during'the'task?

Figure 3.12: NASA Task Load Index Metrics

tions was done with our guidance system and one without the system. Each set includes three different

cardiac arrest scenarios. In each simulation, a medical team consists of four to eight members follow

ACLS algorithm to resuscitate a cardiac arrest patient , whose state dynamically changes according to

the scenario. The resuscitation process includes managing patient’s airway and breathing, diagnosing

the rhythm, performing CPR, shock therapy and administration of constrictive medication.

After the medical team finished the two scenarios, they evaluated their workload using the six metrics

in NASA Task Load Index (NASA-TLX) questionnaire. The metrics and their descriptions is shown

in Figure 3.12. NASA-TLX [70] is a commonly used subjective assessment tool that rates perceived

workload in order to evaluate users performance. It has been used in various domains, including avia-

tion and healthcare. The physicians and nurses gave a score from 1 to 20 for each metric, and the lower

score means the lower demand, better performance, and less effort and frustration.

Figure 3.13 shows the average score for each of the six metrics from the 18 physicians and nurses.

Our system greatly reduces the mental demand and temporal demand, because the relevant clinical

information which is critical to assessment of patient is provided by the system. This makes easier for

medical staff to track patient’s state and response to treatments in realtime. Moreover, the medical staff

believed the guidance system help them with their performance. In addition, the effort and frustration

levels are also low, which suggests that the displayed information is critical and easy for medical staff

to comprehend.

We also ask them to rate the usefulness of different guideline items provided by the system, using

a similar 20-point scoring system. A higher score means a more useful guideline item. The following

are the list of specific guideline items included in this evaluation:
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Figure 3.13: NASA TLX Evaluation Results from 18 Clinicians

1. Alerts on inconsistencies between the diagnosed rhythm and the physiological measurements

(Ex: VT rhythm and heart rate = 80 bpm)

2. Alerts on out-of-range drug dosage (Ex: Order 5.0 mg of EPI)

3. Alerts on total drug injection count (Ex: Inject EPI more than 3 times )

4. Alerts on checking ETCO2 when getting close to the end of 2 minutes of CPR

5. Alerts on treatment contraindications (Ex1:Alert on low pH, when EPI is ordered, Ex2: Alert on

Non-shockable rhythm when Shock is ordered)

6. Alerts on treatment guidelines when patient condition changes (Ex1: Consider injecting Bicar-

bonate, when pH is below 7.2, Ex2: Shock when the rhythm is VT or VF)

Table 3.2 shows the average score for each guideline item according to the rating from 11 clinicians.

All average scores are above 17, which indicates that the clinical users in the ACLS training class

found these guideline items very useful. We have conducted this evaluation to specifically address the

second part of design Challenges 6, that is assessing the effectiveness and safety of any proposed alarm
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Guideline Item Avergae Usefulness Score

Measurement Inconsistency Alert 17.2

Out-of-Range Drug Dosage Alert 17.9

Total Drug Injection Count Alert 18.1

ETCO2 Check Alert 18.3

Treatment Contraindications Alert 17.7

Treatment Guidelines Alert 17.3

Table 3.2: Guideline Usefulness Evaluation Results from 11 Clinicians

management. The first part of this challenge describes the necessity of an alarm management approach

to reduce slips and lapse caused by inadequate alarm configuration and practices.

Another goal was evaluating the usefulness of our communication model. According to [5], two

styles of communication are often followed in clinical guidance systems: consulting model vs. cri-

tiquing model. In a consulting model the system actively provides monitoring and treatment guide-

lines. However, in a critiquing model physician already has a plan in place, possibly with a set of goals

expressed in terms of patient state. The system only generates alerts or provide other guideline items

when the physician is deviating from the plan or moving further away from the goal.

Our model-driven guidance system follows a combination of these two communication models. We

believe, in some instances clinical staff prefer the second model; we have verified this to some degree in

our evaluation. The challenge is how to determine when to use each communication model. We found

out that one determining factor is the level of experience of the clinical user. We use this information

and applied it to our sepsis guidance system. Three guidance levels are defined in our system: high

for inexperience users, medium for users with some degree of experience such as residents, and low for

the most experienced users. The guideline items are flagged with a level as well. The clinical user can

choose a guidance level and only the guideline items corresponding to chosen level will be displayed.

The other factors can be disease and the procedure. For example, in our evaluation of cardiac arrest

guidance system, we found out that for some procedures such as CPR, drug administration, or shock

therapy the clinical users prefer a critiquing communication model. They do not want to be bothered

with message such as ”The rhythm is VTach; Consider Shock”; however, if for any reason they are

61



about to shock a patient with PEA rhythm, they find an alert to help them avoid mistakingly shocking

the patient useful. On the other hand, in the case of sepsis screening and management some clinical

staff ay need some handling during the care process and therefore, prefer a consulting communication

model. However, we should note that these findings are only based on our preliminary evaluation

and further studying of different case studies required to draw a more thorough and clear specific

conclusions.

The overall lesson learned is that only adequate but not excessive guideline data for making informed

decision must be presented to clinical users. Generating excessive number of warnings for minor

problems must be avoided. Providing more focused patient-specific information and flagging abnormal

things which otherwise would have been overlooked are steps into right direction. Providing excessive

information prevents the clinical staff form processing and synthesizing information intelligently and

rapidly. This is specifically important for intensive care units, since they can be considered the classic

example of information overload.

We also demonstrated our system simulation to a team of ICU medical staff at Carle hospital [69]

to ensure clinical correctness of the encoded guidelines such as the ones presented above. They also

found several aspects of our system specifically helpful, including the following:

• Organizing the available measurements and relevant clinical data according to an organ-centric

structure. For example, our kidney state machine uses BUN, creatinine, and potassium to define

different states of renal insufficiency. In addition to displaying individual measurements, our

system also informs the physician of the severity of renal insufficiency, determined according

to best practice monitoring guidelines [66]. Codifying a layer of intelligence on top of raw

measurements allows our system to provide more relevant contextual information about patient’s

condition (in terms of current state of different organ systems). Our physician collaborators find

the structured contextual information, provided by the system, very useful.

• Informing the medical staff of any additional complications the cardiac arrest patient may de-

velop. For example, generating alerts when acidosis or renal insufficiency is suspected, while

epinephrine is being administered, can be very useful. Note that the best practice assist sys-

tem determines such insufficiency states according to the best practice guidelines encoded in our
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models. Medical staff can use this information to adjust the treatment plan and adhere to the best

practice guidelines.

• Raising an alert when there is an inconsistency between correlated measurements. Previously,

we presented an example, in which the system generates an alert message informing the medical

staff of an inconsistency between an EKG waveform indicating PEA and a blood pressure value

of greater than 20mmHg.

At the end of this section we include a direct quote from our ICU physician collaborator:

Healthcare providers are burdened at the patient’s bedside by a wealth of information, of-

ten from separate and disparate sources. The physician in particular must review, digest,

assimilate and apply increasing amounts of information in an ever-shortening time frame,

and identify which specific best practice guidelines should be used. Cardiac arrest is the

obvious example where multiple monitors, sensors, rhythms, lab values characterize the

patient care situation. Order must be brought to this enlarging problem as medical science

progresses. The organ based automata approach to software design within an assistant hi-

erarchy is a logical solution. Such a systematic structure mirrors how health care providers

learn and understand human disease. The development of these architectures will provide

medicine, especially acute care at the bedside, the computational interface that is needed.

3.5 Research Publications

The proposed system integration approach, and the result of our preliminary clinical evaluation of

cardiac arrest guidance system in the ACLS training class has led to the following submission:

• M. Rahmaniheris, Y. Jiang, P. Wu, and L. Sha, Design and Evaluation of Model-Driven Guid-

ance Systems for Acute Care” to be submitted to IEEE Real-Time Systems Symposium (RTSS)

2017
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Chapter 4

Sepsis Case Study

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to in-

fection [71]. Early identification of sepsis helps increase the chance of timely interventions to treat the

cause of infection and manage sepsis. This improves the effectiveness of evidenced based therapies

and can greatly improve the survival rate. However, if it is not detected in early stages, the patient can

develop septic shock, which is defined as a subset of sepsis in which particularly profound circulatory

abnormalities are associated with a greater risk of mortality than with sepsis alone. Figure 4.1 illus-

trates the clinical criteria used for sepsis screening. This is according to the most recent definition of

sepsis [71]. According to surviving sepsis campaign [72], there are three main steps in the process of

diagnosis and treatment:

• Step 1: Screening and Management of Infection. This step focuses on management of patients

identified as having infection by obtaining blood and other cultures as indicated, and administer-

ing tailored antibiotics as appropriate.

• Step 2: Screening for Organ Dysfunction and Management of Sepsis. If organ dysfunction

identified, sepsis workflow items, such as lactate measurement and fluid resuscitation, must be

initiated.

• Step 3: Identification and Management of Initial Hypotension. In addition to fluid resuscita-

tion, vasopressors must be administered to reach and maintain a normal mean arterial pressure.
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Figure 4.1: Clinical Criteria for Sepsis Screening

In the next section, we present the organ-centric pathophysiology-based sepsis model. We follow

the guidelines presented in Section 2.3 to construct the models.

4.1 Model Construction

We start by applying our first modeling guideline, G
1

. According to this guideline, a pathophysio-

logical process becomes relevant if the corresponding physiological function is affected by the disease

or affect the treatment. Figure 4.1 shows the main organ systems and physiological functions that may

be affected by sepsis. For example, mean arterial pressure (MAP) and coagulation insufficiencies are

examples of cardiovascular abnormalities. Therefore MAP dysregulation and coagulation insufficien-

cies are relevant pathophysiological processes that must be tracked when monitoring and treating a

cardiac arrest patient. The others are identified in a similar way. Figure 4.2 shows the complete list of

sepsis pathophysiological processes.

Next, we follow G
2

and identify the information that is important, but not need to be encoded in

the same details as others in our sepsis model. As demonstrated in Figure 4.1, more cardiovascular
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Figure 4.2: Sepsis Pathophysiological State Machines

functions are affected and they all must be tracked for sepsis management. In other words, it is not

simply sufficient to represent all these changes by an aggregated degree of insufficiency. On the other

hand, clinical information regarding some other organs, such as respiratory and kidney systems, are

aggregated as the degree of insufficiency.

At this stage, we must determine the concurrency level of our sepsis model. According to G
3

, the

affected physiological functions that need to be tracked simultaneously must be modeled by separate

finite state machines. If G
2

has already been applied, following this guideline becomes straightforward.

Previously, we specified the different (aggregated) pathophysiological states need to be tracked for a

septic patient. To keep track of all these states and prevent any critical changes from being overlooked

we model each process using a separate state machine. These state machines are show in Figure 4.2,

which demonstrate the result of applying the modeling guidelines G
1

- G
3

.

Now, must define the states for each of the identified pathophysiological state machines. As shown

in 4.1, sequential organ failure assessment (SOFA) score is used to represent how and to what degree

each organ function is affected [60]. The scores are calculated based on the current values of the
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Figure 4.3: Sequential Organ Failure Assessment
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Figure 4.4: Respiratory Insufficiency State Machine

corresponding SOFA variable(s).

However, defining a large number of states can make the model very complex and unmanageable.

In guideline G
4

, we introduced the notions of actionable states. Not all the changes in physiological
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measurements are relevant or useful for a given disease. We define a new state when there is a need for

new monitoring and therapeutic plan. The actionable states for sepsis can be directly extracted from the

SOFA table shown in Figure 4.3. The minimum SOFA score is 0, which indicate the normal function.

The maximum score is 4 indicating severe insufficiency in the corresponding organ function. Therefore,

for the pathophysiological state machines that use SOFA score as the their state variables, we define

five states, one for each SOFA score. Figure 4.4 shows respiratory insufficiency state machine, as an

example.

After defining the states, we must identify the correct and optimal number of transitions by consid-

ering the underlying medical knowledge. According to guideline G
5

, when continuous physiological

variables, such as SOFA scores, are used to define different states, the transitions are only defined to

represent the progress of insufficiency. We only define an edge between the states that represent gradual

deterioration and improvement. Figure 4.4 shows this guidelines is applied to respiratory insufficiency

state machine. As mentioned before, the initial state is the exception, since patient state is not know at

the start.
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Following the last guideline, G
6

, we do not define any interaction between different pathophysio-

logical state machines. We codify the potential interactions a sepsis disease model, as shown in Figure

4.5. The sepsis state machine codifies the different stages of sepsis, starting with potential infection.

The information from different pathophysiological processes are aggregated in this machine. Figure

4.6 shows the interaction diagram for the sepsis model. We try to minimize any communication or

dependency between the pathophysiological machines. This improves the model modularity. The com-

plexity of validation and verification may be reduced since most of pathophysiological state machines

can be validated and verified independently of the others.

4.1.1 Sepsis Guideline Model

The guideline model must encode the relevant clinical data, that is best practice monitoring and

treatment guidelines organized for different pathophysiological and disease states. We use the notion

of actionable alerts, which follows the same line of reasoning as actionable states, which was describe

in Section 2.3. In fact, by encoding the alerts on patient state changes in already defines actionable

states we ensure that they are comprehensive and integrated with pathophysiological sates. These
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alerts may also be issued on patient’s response to treatments or best practice treatment option for the

current pathophysiological states.

The alerts on development or resolution of organ insufficiency states are encoded in individual patho-

physiological states. These alerts only depend on the information from the corresponding pathophysio-

logical process. There are no interaction between different pathophysiological processes and therefore

these alerts can be encoded independent of each other. For example, the alert indicating patient has

developed moderate renal insufficiency is encoded in the renal state machine.

However, the alerts on progress of the sepsis is encode in the state state machine. These alerts require

information from several pathophysiological processes. This aggregated information is encoded in

sepsis state machine, which is the best place to encode this category of alerts. The alert indicating a

septic patient has deteriorated to septic shock is an example alert from this category. The alert messages,

in general, has the following main items:

• The new sepsis/pathophysiological state (and the corresponding process).

• pathophysiological state change type: improvement or deterioration.

• The current value of relevant measurements.

• The normal range for each of the above measurements.

• Recommended treatment and monitoring actions.

Figure 4.7 shows the alert message when sepsis is detected. The information presented in an alert

message is added and displayed permanently in a history table on the system’s user interface.

Figure 4.7: Respiratory Insufficiency Alert Message
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Figure 4.8: Sepsis Guidance System Integration and Data Flow

4.2 Model Integration

We have developed the initial version of our model-based sepsis guidance system (we only have

one version vs. the two versions of cardiac arrest guidance systems). Figure 4.8 shows the system

integration process as well the data flow between the sepsis models and the guidance. As described

in Section 2.6, we use the modeling tool Yakindu and we have developed a communication interface

that allows the sepsis Yakindu models to communicate with the guidance system Java code. The model

integration also provides a more user-friendly environment for simulation of different clinical scenarios.

This would allow physicians to validate the correctness of developed models more efficiently.

All the physiological measurements and relevant lab values can be entered through the guidance

system user interface and then communicated to sepsis models using our hand-written communication

code. The pathophysiological and sepsis state machines are updated when new clinical data becomes

available, to represent patient current state. A new set of alert messages may be generated as a result of

updated patient organ and disease state. Alerts generated by the model are sent to the guidance system

to be displayed foe medical staff. Figure 4.9 shows a snapshot of sepsis guidance system simulation

displaying an alert message indicating the deterioration of respiratory insufficiency state.
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Figure 4.9: Sepsis Guidance System Simulation

4.3 Remaining Challenges

Identifying at-risk patients as early as possible while maintaining a reasonable monitoring cost, is

critical for effective sepsis screening and management. Performing frequent monitoring of all patients

suspected of sepsis is not feasible and cost-effective. Therefore, it is critical to identify the patients at a

higher risk of sepsis and perform more extensive and frequent monitoring only for this class of patients.

As part of our future work, we plan on developing a risk driven sepsis model encoding dynamic

Bayesian analysis in different pathophysiological states. Using the calculated risk values at each state,

we can then adapt the extent and frequency of monitoring accordingly. In states with higher degree

of insufficiency, the medical staff may require to monitor more frequently and/or monitor more rele-

vant measurements. These guidelines may be then encoded in the corresponding pathophysiological

state. If integrated in the guidance system, such a model can provide risk driven sepsis screening and

management.
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4.4 Research Publications

Following is the published research paper on our initial findings on the use of state-based Bayesian

networks to improve the efficiency of high-risk patient identification:

• Jiang, Yu, Lui Sha, Maryam Rahmaniheris, Binhua Wan, Mohammad Hosseini, Pengliu Tan,

and Richard B. Berlin Jr. ”Sepsis Patient Detection and Monitor Based on Auto-BN” Journal of

medical systems 40, no. 4 (2016): 1-10. [73]
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Chapter 5

MD PnP: Device Configuration Safety

5.1 Organ-Centric Device Configuration Management

Medical systems need to inherently be run-time configurable. In acute care environments, the patient

condition can change rapidly and this may result in a dynamic clinical environment. The safety and

efficacy of patient care in such dynamic environment depend on continuously safe use of medical

monitoring and therapeutic devices. For instance, SpO2 readings (saturation of peripheral oxygen)

in a patient with circulatory shock are faulty and must be disregarded. Moreover, attaching the blood

pressure cuff and oximeter on the same upper limb causes faulty SpO2 readings when the cuff is

inflated. This is necessary since the use of faulty measurements prevents correct assessment of patient

condition and endangers patient safety. Another example is a patient with acute lung injury, who

requires a ventilator as part of her/his therapeutic intervention.

The examples mentioned above, represent changes in cardiovascular and pulmonary organ states.

Insufficinecy Category Organ Insufficinecy States

Disturbed Blood Flow Limb Ischemia, Cardiac Ischemia

Blood Pressure Dysregulation Hypertension, Hypotension, Excessive & Maladaptive Fluctuation

Blood Gas Imbalance Alkalosis, Acidosis, Hypercapnia, Hypocapnia, Hypoxemia

Cardiac Arrhythmia Pulseless Ventricular Tachycardia (Pulseless V-Tach), Ventricular Fibrillation (V-Fib),

Pulseless Electrical Activity (PEA), Asystole

Table 5.1: The Cardiovascular Organ Insufficiency States
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As a result of such changes in the organ states, new devices may be plugged in or an existing device

may be removed from clinical configuration. In fact, different organ states require different monitor-

ing and therapeutic device configurations. Medicine is organized according to human organ systems.

Each organ system performs a certain task in the body. Different diseases, can impair one or more of

the physiological functions performed by the organ system. The pathophysiology of an organ system

would describe how each of the functions are affected by different diseases. For example, the circula-

tory shock is a cardiovascular disease, which impairs the blood flow in the limbs. Impairment of the

blood flow in the limbs is considered a cardiovascular insufficiency state while circulatory shock is a

disease causing the insufficiency. Understanding the pathophysiology of an organ system is key to ef-

ficient management of monitoring and therapeutic medical devices. We propose a device configuration

management approach that apply the proposed organ-centric disease patient model to systematically

structure device configuration rules. Moreover, it is necessary to trigger the correct configuration re-

quirements as the acute care environment changes. We have also developed the UPPAAL model of the

organ-centric device configuration management system and verified a set of safety properties against

the model.

We use the cardiac arrest case study to explain our approach. The cardiovascular system consists of

the heart and blood vessels. The main responsibility of this organ system is to support blood circulation

to provide nutrients, oxygen, etc. to different parts of the human body. Another task performed by this

organ system is to support the CO2 and O2 exchanges in the lungs that stabilize blood PH , which is

the measure of acidity of the blood. We can categorize the different pathophysiological states of the

cardiovascular organ system into four main insufficiencies. The first category represent the conditions,

in which the blood flow is blocked or partially blocked. This can be the result of different cardiovas-

cular disease such as blood clot, hardening and narrowing of the artery, peripheral artery disorder or

circulatory shock. The second category represents the abnormalities in heart rhythm, which leads to

significant drop of cardiac output and impairs blood circulation. The insufficient blood circulation in

the lungs to perform the CO2 and O2 exchange results in CO2 accumulation in the blood and causes

a rise in blood PH level. This plays an important role in our case study on cardiac arrest. Abnormal

blood gas levels and dysregulated blood pressure are the third and fourth categories. Table 5.1 shows a

subset of cardiovascular states relevant to the intelligent management of devices. We have verified this
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abstract model of cardiovascular insufficiency states with the physician, who collaborates closely with

our research group.

5.2 Monitoring and Therapeutic Configuration Safety

In this section, we consider a subset of device configuration safety constraints, commonly enforced

in cardiac arrest scenario by medical staff. First, we describe the rules as they are taught and used

clinically.

Conditional use of measurements and monitoring devices We describe two example rules of this

type used in cardiac arrest scenario. For a patient with circulatory shock:

• R
1

: Oximeter and blood pressure cuff must not be used.

• R
2

: Central venous catheter must be used to measure blood pressure and oxygenation.

Inter-Device Interference Such interferences can be either direct or indirect. To illustrate the use of

patient states, we focus on the indirect interferences that involves human physiology:

• R
3

: When the oximeter and blood pressure cuff are attached to the same upper limb the SpO2

readings, saturation of peripheral oxygen, must be discarded when the cuff is inflated.

Conditional use of therapeutic devices and intravenous medications Misuse of treatment devices

and inappropriate administration of medications can lead to an unsafe state. For instance, for a cardiac

arrest patient:

• R
4

: Defibrillator must not be used for non-shockable rhythms.

• R
5

: Epinephrine must be given to a patient with non-shockable rhythm.

• R
6

: Epinephrine is not effective for a cardiac arrest patient with low blood pH level. Bicarbonate

must be given to the patient for Epinephrine to be effective.
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Name Physiology Monitor Type Current Reading

BP Blood Pressure Blood Pressure Cuff 80 mmHg

SpO2 Peripheral Oxygen Saturation Oximeter 95%

Pulse Pulse Rate Oximeter 100 bpm

HR-EKG Heart Rate EKG Machine 95 bpm

CO2 Exhaled Carbon Dioxide Capnometer 50%

CVP Central Venous Pressure Central Venous Catheter 80 mmHg

ScvO2 Central Venous Oxygen Saturation Central Venous Catheter 80%

Heart-Rhythm Heart Rhythm EKG Machine Ventricular Tachycardia

pH Arterial Blood Acidity Arterial Blood Gas Test 7.2

Table 5.2: Measurement Model and Example Instantiations

• R
7

: For the acidosis patient, calcium chloride (CaCl2) should not be administered in the same

infusion or venous point as sodium bicarbonate (NaHCO3). Due to a chemical interaction,

calcium will combine with sodium bicarbonate to form an insoluble precipitate [74].

It is important to note that the issue of potential side effects and adverse interaction of medications is

quite complex and outside the scope of this paper [75]. In this paper, we only consider a subset of safety

requirements concerning medications, which ICU physicians ask our system to monitor at runtime.

The minimum optimal set of actuators and measurements for a given patient state The example

rules for cardiac arrest state are:

• R
8

: The optimal therapeutic configuration includes ventilator, infusion pump, and defibrillator.

• R
9

: The optimal set of physiological measurements include blood pressure, blood oxygenation,

exhaled CO2 and heart electrical activity.

5.3 Modeling Device Configuration Safety

Now, we illustrate how these device and medication safety requirements can be organized more effi-

ciently by the introduction of explicit organ states. Each requirement in the previous section describes a

device or medication constraint which must be satisfied for a specific patient pathophysiological state.

77



Name Monitor Type Availability Monitoring Status Body Part Measurement List

BPCuff Blood Pressure Cuff Available In Use Left Upper Limb {BP}

Oximeter Pulse Oximetery Available In Use Right Upper Limb {SpO2, Pulse}

cvCatheter Central Venous Catheter Available Not In Use Subclavian Vein {ScvO2, CVP}

EKG EKG Machine Available In Use Chest {Heart Rhythm}

ABG-Test Arterial Blood Gas Test Not Available Not In Use - {pH, paCO2, paO2}

Table 5.3: Monitoring Device Model and Example Instantiations
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Figure 5.1: Arrhythmia State Machine Focused on Cardiac Arrest Scenario

The patient state can be represented by a combination of organ states. We call the first element of each

requirement ”organ state predicate” and the second element ”configuration predicate”.

In this paper, we assume each device configuration for a common patient state is standardized based

on generally accepted medical principles. A configuration for a given patient state is the combination
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Figure 5.2: Ischemia State Machine

of monitoring and therapeutic configurations. The monitoring configuration refers to the set of all

commonly used monitoring devices and their corresponding attributes. The therapeutic configuration

represents the set of medical actuators and IV (intravenous) medications for a given patient state. We

use a unified model for medical devices, physiological measurements, and IV medications. Each of the

specific fields or attributes of the elements in the model are accessed and used to describe and evaluate

the safety constraints. For instance, the monitoring device model includes the body part where the

device is attached to, and the monitoring status indicating whether the measurements generated by the

device are being used. Tables 5.2 and 5.3 show examples of measurement and monitoring device model

instantiations. Actuator and medication model instantiations are not presented due to space limitation;

however, most of the chosen attributes for these models are self-describing.

Each of the main categories of organ state insufficiencies is realized in an individual state machine.

Figures 5.1, 5.2, and 5.3 show the state machines of cardiac arrhythmia, ischemia, and blood gas

imbalance (BGI) categories, respectively. Each machine is a labeled transition system. The nodes in

each machine represent different organ states in the corresponding category. The gray circles represent

the states, in which the configuration safety is re-evaluated. The clinical events, such as a new diagnosis,
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Figure 5.3: Gas Imbalance State Machine

change of a device status or administration of a new medication, trigger the transition to these states.

The transition between the states are labeled with guards and actions. A guard is a boolean expres-

sion, and the transition labeled with a guard can be enabled when the guard evaluates to true. The

action must be performed when the transition is enabled. The transition links may also be labeled with

communication actions. In state machine language, c? and c! represent the send and receipt actions on

the communication channel c, respectively. For example, in our system, the transition between different

organ states happens according to the physician diagnosis. For example, when the patient is diagnosed

with acidosis, the physician interface machine communicates this information by sending New BGI

Diagnosis! to Gas Imbalance state machine. The receipt of this diagnosis information is indicated

by the outgoing edges from Normal state in figure 5.3, which are labeled with New BGI Diagnosis?

communication action.

As mentioned above, the device configuration safety requirements often depend on the organ insuf-

ficiency states rather than diseases. Therefore, the detailed disease information can be encapsulated.

For example, when physician diagnoses the patient with circulatory shock, the disease is abstracted

away in the ischemia state model and is hidden from the rest of organ insufficiency machines. This is
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done by defining Get-New-Diagnosis(Ischemia) function. This function checks the value of Ischemia-

Diagnosis set by the physician. If the diagnosis refers to any of the diseases causing limb ischemia,

such as circulatory shock, it returns Limb Ischemia. The information regarding the relation between

diseases and organ insufficiencies must come from the physician. We only encode the information

given by the physician.

5.3.1 Encoding Safety Checks in Organ Insufficiency Machines

At each point during system operation, only a subset of configuration safety requirements must be

monitored. These are the requirements, which are encoded in the state(s) representing the current

patient condition. For example, for a cardiac arrest patient with asystole rhythm and low blood pH ,

cardiac dysrhythmia and blood gas imbalance state machines would be in Asystole and Acidosis states,

respectively. The requirements R
4

, R
5

, R
6

, R
8

, and R
9

must be encoded in Asystole state and R
7

must be encoded in Acidosis state. These requirement would be the only requirements to monitor for

the given patient condition.

The requirement R
6

contains two different patient states. Since cardiac arrest is the primary con-

dition we encode this requirement in the corresponding states in arrhythmia machine. However, we

must add an interaction point between arrhythmia and BGI machines at the appropriate states. This is

explained in the next subsection.

Now, we take a closer look at the requirements we need to encode in different organ states for the

cardiac arrest scenario. Let’s consider the patient condition in R
1

and R
2

that describes a disease,

in which the blood flow to peripherals are disturbed. As mentioned above, this is a cardiovascular

insufficiency state known as limb ischemia. This state interferes with the correct operation of blood

pressure cuff and oximeter, which depends on non-disturbed blood flow in the upper limbs. Therefore,

we encode the requirements on correct operation of blood pressure cuff and pulse oximetery in Limb

Ischemia state in Ischemia state machine. This is encoded by adding two functions Check-Oximeter-

Precondition() and Check-BPCuff-Precondition() to the action item of the transition to Limb Ischemia

state.

For cardiovascular conditions, blood pressure and oxygenation must be monitored continuously

since they are basic indicators of cardiovascular functions in the body. Therefore, when patient state
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indicates limb ischemia monitoring devices other than oximeter and blood pressure cuff, such as central

venous catheter, must be used to measure blood pressure and oxygen saturation. This is encoded by

defining the third function checking the availability of Check-Availability(cvCatheter). These functions

would also be used to re-evaluate R
1

and R
2

when any event relevant to these requirements happen.

The blood flow can also be disturbed by a medical device. The blood pressure cuff disturbs the

blood flow on the upper limb when the cuff is inflated. Therefore, according to R
3

, if the oximeter

is attached to the same upper limb as the cuff is attached, the organ state precondition for validity of

blood oxygenation, measured by the oximeter, is violated. These are encoded in Right Upper Limb

Ischemia and Left Upper Limb Ischemia states in Ischemia state machine. We define Check-Oximeter-

Precondition() function to check for any potential interference. This is the only case, in which we

transition to a new organ state without any signal from physician. When blood pressure cuff is in use

and we are in Normal state we transition to one of Upper Limb Ischemia states depending on the body

part, to which the cuff is attached.

The requirement R
4

�R
6

is encoded in PEA and Asystole states and is checked using Check-

Defibrillator-Precondition() function. In our model, the requirement R
7

is encoded in Acidosis state

in BGI machine. Although this requirement is related to a chemical reaction of two medication inde-

pendent of patient state, in our cardiac arrest scenario we choose to encode it in a state, where one or

both of these medications are potentially used as part of treating the corresponding organ insufficiency.

This follows our unified model while ensuring the safety requirement is encoded properly. We define

function Check-NaHCO3-CaCl2-Interference() to check this requirements whenever needed.

We define Check-Measurement-Configuration() and Check-Actuator-Configuration() functions to

check R
8

and R
9

. These requirements must be encoded in all of the four cardiac arrest states: Asystole,

PEA, Pulseless VTach, and VFib. For the actuators, we only require their availability. The actuating sta-

tus is adapted dynamically according to organ states. The rules describing the required measurements

do not specify a monitoring device.The two functions added to the action element of the transitions

from Normal state to any of these four states. When we are in one of these states, these requirements

would be re-evaluated when there is a change in device configuration.
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5.3.2 Modeling the Interactive Safety Requirements

The next logical step is to identify and model any dependencies or interactions between these set

of requirements. Note that the there is a common element in the configuration constrain of R
5

and

R
6

, which is the medication epinephrine. According to AHA, ”high-dose epinephrine may improve

coronary perfusion and increase vascular resistance to promote initial return of spontaneous circulation

during CPR” [76]. However, epinephrine can also lead to transient respiratory acidosis and decrease in

blood pH level [77]. In a patient with already low blood pH , this effect can be exacerbated.

To model such interactive or potentially conflicting requirements in state machine language, we add

a synchronization point to the involved states. In this case, the interaction between R
5

and R
6

, as

described above, is encoded in non-shockable cardiac arrest state which include PEA and Asystole.

Therefore, we add a synchronization point to PEA and Asystole states. When a new diagnosis for

BGI is received, which indicated acidosis, this requirements is re-evaluated by calling the function

Check-Epinephrine-Precondition().

Defining these synchronization points results in a well-defined interface between different organ

state machines and limits the their interactions to these predefined points. However, we should note

that there might be other type of dependency relations between medical rules, which may require a

different choice of modeling. This is a topic of future work.

Having the organ insufficiency state machines for the cardiac arrest case with encoded safety re-

quirements in the relevant states, configuration safety can be validated as the environment and patient

condition changes. The definition of safety check functions described above are shown in pseudocodes

2, 3, 4 and 5. The global variable R
i

-Violated indicates whether the corresponding requirement is

violated or not. The definition of some of the simpler functions are not shown due to space limitations.

5.4 Formal Verification of Device Configuration Safety Model

We follow the approach explained in section 5.3 to encode the rules and safety evaluation algorithm

in each organ state automaton. The only difference is that the organ state automaton immediately

transition back from the violation states after updating the appropriate V iolation variables. This is

to ensure that the automata are in the states, which can synchronously receive the configuration and
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Pseudocode 2 Check-Required-Measurements(Diagnosis)

1

2 Boolean Oxygen�Available = FALSE;

3 Boolean BP �Available = FALSE;

4 Boolean Heart�Rhythm�Available = FALSE;

5 R9 �Violated = FALSE;

6

7 IF Diagnosis 2 Arrhythmia THEN

8 IF (9 monitor m where ((m.Availability == Available) AND (m.MonitoringStatus == InUse) AND (SpO2 2

m.MeasurementList OR ScvO2 2 m.MeasurementList))) THEN

9 Oxygen�Available = TRUE;

10 END IF;

11 IF (9 monitor m where ((m.Availability == Available) AND (m.MonitoringStatus == InUse) AND (BP 2

m.MeasurementList OR CV P 2 m.MeasurementList))) THEN

12 BP �Available = TRUE;

13 END IF;

14 IF (9 monitor m where ((m.Availability == Available) AND (m.MonitoringStatus == InUse) AND (

Heart�Rhythm 2 m.MeasurementList)))THEN

15 Heart�Rhythm�Available = TRUE;

16 END IF;

17 IF ((Oxygen�Available == TRUE) AND (BP �Available == TRUE) AND

18 (Heart�Rhythm�Available == TRUE)) THEN

19 R9 �Violated = FALSE;

20 END IF;

21 END IF;

patient state change signals and immediately evaluate the current enforced rules and elect the new set

of rules to be enforced.

As mentioned in the previous section, the transition between different organ states are enabled by the

physician’s diagnosis. Figures 5.6 show the physician automata which is responsible for sending the

Diagnosed? and Resolved? synchronization signals for different organ states automata. We show the

oximeter and blood pressure cuff automata, as examples of device automata, in figure 5.7. Notice, we

have defined broadcast synchronization channels, whose senders are the devices. This ensures that any

change in device configuration is communicated synchronously to other organ state automata. Similar

channels are defined in the infusion pump automaton for different intravenous medications.
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Pseudocode 3 Check-Oximeter-Precondition()

1

2 R3 �Violated = FALSE;

3 IF Oximeter.BodyPart == BPCuff.BodyPart THEN

4 R3 �Violated = TRUE;

5 END IF;

6 IF (Get�New �Diagnosis(Ischemia) == LimbIschemia) THEN

7 R3 �Violated = TRUE;

8 END IF;

9 IF ((Get�New �Diagnosis(Ischemia) == RightUpperLimbIschemia) AND (Oximeter.BodyPart ==

RightUpperLimb)) THEN

10 R3 �Violated = TRUE;

11 END IF;

12 IF ((Get�New �Diagnosis(Ischemia) == LeftUpperLimbIschemia) AND (Oximeter.BodyPart ==

LeftUpperLimb)) THEN

13 R3 �Violated = TRUE;

14 END IF;

Pseudocode 4 Check-Epinephrine-Precondition()

1 R5 �Violated = FALSE;

2 R6 �Violated = FALSE;

3 IF ((Get�New �Diagnosis(BGI) == Normal) AND (Epi.AdministerationStatus == NotAdminstered)) THEN

4 R5 �Violated = TRUE;

5 END IF;

6 IF ((Get�New �Diagnosis(BGI) == Acidosis) AND (Epi.AdministerationStatus == Adminstered)) THEN

7 R6 �Violated = TRUE;

8 END IF;

Pseudocode 5 Check-NaHCO3-CaCl2-Interference()

1 R7 �Violated = FALSE;

2 IF ((NaHCO3.AdministerationStatus == Adminstered) AND (CaCl2.AdministerationStatus == Adminstered)

AND (NaHCO3.InfusionPump == CaCl2.InfusionPump)) THEN

3 R7 �Violated = TRUE;

4 END IF;

The ischemia model is presented in figures 5.2. Notice Rules 1-3 are encoded in limb ischemia

state. The ischemia automata communicates with other organ states including cardiac dysrhythmia
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Figure 5.4: Ischemia Automaton

using ischemiaDiagnosed and ischemiaResolved channels. The interface between the ischemia

state and other organ states are well-defined and is limited to only ischemia diagnosis and resolution

signals. Special cases of upper limb ischemia caused by blood pressure cuff is also modeled in ischemia

automata.

The cardiac dysrhythmia automaton is shown in 5.5. The Rules 4, 6 are encoded in the non-

shockable cardiac arrest state and Rule 5 is encoded in shockable cardiac arrest state. Rules 8, 9

are encoded in all cardiac arrest states. When the automaton transitions to a different state the enforced

set of rules are updated automatically since the rules are encoded in each state. For example, when

the non-shockable cardiac arrest state is entered the rule preventing the activation of defibrillator is

added automatically since Rule 4 is encoded in this state. When an organ state encoded in a different

automaton is diagnosed or resolved the corresponding signal is communicated to cardiac dysrhythmia

automaton which triggers the re-evaluation of the currently enforced rules. For example in any of the

cardiac arrest states, receiving limbIscemiaResolved? results in re-evaluation of Rules 9.a, 9.b and

checking the availability of oximeter and blood pressure cuff. The changes in device configuration are

communicated synchronously as well using the corresponding broadcast channels. Rules 7 is encoded

in the acidosis state in the blood gas imbalance automaton (not shown due to space limitation). Next,

we describe several examples of properties verified by UPPAAL tool.

5.4.1 Properties

We verified the absence of deadlock and reachability of all the states in the model. In addition, a set

of properties, indicating that any violation of the defined safety rules are always detected, has been also
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Figure 5.5: Cardiac Dysrhythmia Automaton
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(not cvCatheter.inUse and limbIschemia) �� > ischemiaSafetyViolated

(oximeter.inUse and limbIschemia) �� > ischemiaSafetyViolated

(bpCuff.inUse and limbIschemia) �� > ischemiaSafetyViolated

(bpCuff.inUse and oximeter.inUse and (oximeter.bodyPart == bpCuff.bodyPart)) �� > oximeterPreconditionViolated

Table 5.4: Examples of Verified Safety Properties

Figure 5.6: Physician Automaton

verified. A set of example properties are presented in table 5.4. The properties are of the form leads to

or in other words response properties written as ↵ �� > � in UPPAAL tool. This properties are read

as whenever ↵ is satisfied, then eventually � will be satisfied [78]. As can be seen from table 5.4, the

proposed rule structure and evaluation algorithm ensure that violation of any of the defined safety rules

are always detected.

We should also note that in [79], we proposed a well-defined interface between different organ au-

tomata and limited the their interactions to a set of predefined points. However, this can decrease the

modularity of our organ-based modeling approach; if there is the need for a modification of an organ

model, all the other organ models, which have any interaction with the modified model, must be modi-

fied as well. Therefore, in [80], we move to a more modular approach by developing a central manager

and encapsulating the interaction between different organ automata within the central manager. The

models presented in this chapters are developed according to the modular approach.
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Figure 5.7: Pulse Oximeter and Blood Pressure Cuff Automata
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Chapter 6

MD PnP: A Framework for the Safe

Analysis

One goal of the Medical Device Plug-and-Play (MD PnP) program is the adoption of medical device

interoperability to significantly mitigate preventable medical errors by developing the technological

foundation to design the next generation medical systems. The ”Patient-Centric Integrated Clinical En-

vironment” (ICE) standard is one such development, which is described in ASTM 2761-09(2013) [50].

This standard describes the logical elements of an MD PnP system but does not specify implementation

details.

A MD PnP system supports a range of safe medical system configurations, where medical devices

are ”plugged in” as needed, information from different sources are integrated, and medical actions

are coordinated to provide an integrated clinical environment. An ICE typically consists of an ICE

supervisor, an ICE network controller, ICE device interface and etc. The MD PnP system described

in this report follows a similar structure and therefore MD PnP and ICE may be used interchangeably

when describing different components of an integrated medical system.

To facilitate the development of medical device interoperability, the MD PnP program has developed

an open source implementation of the Integrated Clinical Environment and made it freely available on

SourceForge [51]. The platform consists of software device adapters for medical devices (including

anesthesia machines, ventilators, and patient monitors), Object Management Group (OMG) Data Dis-
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tribution Service (DDS) for Real-Time systems standard middle-ware, and demonstration applications.

The choice of the MD PnP platform, namely, the computers, OS, and network, is up to the user. There

are no approved platforms by any agency that support plug and play. This is because plug and play

could generate new configurations not considered during the approval process. Unverified new con-

figurations of platform may or may not work, hence, the need for assurance of life cycle attributes.

Furthermore, all existing commercial platforms include a disclaimer indicating that these platforms are

not designed to be used for safety critical systems and applications.

This document provides guidelines to assist users to safely use an MD PnP system consisting of a

commercial platform not designed for safety critical applications. The MD PnP system is said to be safe

for an intended medical application, if none of the MD PnP components can become a causal factor of

the known safety hazards when the medical devices are functioning according to their specifications.

In the next section, we present an overview of the MD PnP system components and the safety

requirements for each component. Before discussing safety analysis, a brief introduction on fault trees

is provided in Section 6.2. In Section 6.3, we present the safety analysis procedure used in this report;

two different approaches to ensure open-loop safety1 of the MD PnP system are introduced in this

section. Next, we study the safety of six clinical scenarios including airway laser surgery, laparoscopic

cholecystectomy and four clinical scenarios provided by the MD PnP program (Section 6.4). The

examples are used to illustrate the four steps in our safety analysis procedure. Finally, after studying

the examples, we discuss a generic version of our safety analysis approach in Section 6.5.

6.1 The MD PnP System Overview

In this section, we first look at the overall architecture of the MD PnP medical system and the

associated safety requirements.

6.1.1 Overall System Architecture

As shown in Figure 6.1, the MD PnP system consists of four parts: 1) medical device 2) MD PnP

device adapter, which allows the medical device to interface with the MD PnP system 3) MD PnP

1The definition of open-loop safety is presented in Section 6.3.
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Figure 6.1: MD PnP System Overview

clinical application and 4) the MD PnP middleware that supports the communication and interoperabil-

ity of medical devices 2. In this report, we refer to the combination of computing platform (OS and

microprocessor) and the MD PnP middleware as the MD PnP platform.

Note that the medical devices do not communicate directly with each other. In an ideal world, there

would be well accepted standards on syntax and semantic for device communication. Currently legacy

devices from different manufacture may provide different communication paradigm. The MD PnP

middleware provides a uniform format to clinical application designers for interacting with medical

devices. We assume all the MD PnP devices use the same interface description language (IDL) [84].

The middleware then translates the uniform format to specific device data and metadata format. In this

way, the complexity of heterogeneous devices will be hidden from the applications and encapsulated

by the MD PnP middleware.

The translation and mapping of setting from medical devices to clinical applications must be verified

to be correct for the intended clinical use. In the following, we shall assume that developers have done

so correctly.

The MD PnP middleware runs on top of commercial computing and communication equipment,

which are not designed for safety critical applications. Hence, we need to consider their failure modes

and the safety impacts on the intended medical applications.

2Interoperability refers to the ability to seamlessly connect individual devices from different vendors into integrated

medical systems [49].
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6.1.2 Safety Requirements

MD PnP systems, using dependable commercial platforms with sufficiently long mean time to fail-

ure, can be used safely, provided that 1) the MD PnP system will only be used as an advisory system

and its output does not directly control any safety critical medical devices 2) the outputs will only be

used to activate non-safety critical devices. Non-safety critical devices refer to the devices that their

operation cannot endanger patient safety, assuming the device functions according to its specification.

A safety-critical device is life-sustaining and can directly affect patient safety. Dependable platforms

with sufficiently long mean time to failure ensure high availability and improve the system usability.

However, the notion of safety criticality for a medical device can only be considered in the context of

the intended clinical use. Therefore a device may be considered a safety critical device in one clinical

procedure but non-safety critical in another. For example, the x-ray device in [57] is an example of

non-safety critical device; the inability of the device to take an x-ray image does not endanger the

patient, assuming the device functions as specified. On the other hand, if the x-ray image is used

in an emergency surgery to determine the exact surgical site, the x-ray device may be considered a

safety-critical device. Another example is a ventilator connected to a patient under anesthesia. If a

ventilator remains off for too long, brain damage may occur. Therefore, the ventilator is considered a

safety-critical device in this scenario since incorrect setting of this device can endanger patient safety.

In this report we focus on the MD PnP safety, which is a system property. However, the global

MD PnP safety itself depends on the operational safety of individual devices constituting the system.

Operational safety of medical devices is the union of local operational safety: when the device is

used alone it will not become a causal factor of a safety hazard fault tree, and interaction safety: the

interaction of two or more medical devices will not become a causal factor of a safety hazard in the

fault tree.

As an example let us consider the airway laser surgical scenario. The main devices of the MD PnP

system for this scenario include an oxygen controller and a surgical laser. To ensure local safety of the

oxygen controller the device must not be puased for too long that it causes brain hypoxia. However,

to ensure the safe interaction of the two devices in the context of airway laser surgery, where the laser

is applied to the oxygen pathway, the oxygen controller must be puased when the laser is activated
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to prevent fire. Interaction safety may create additional challenges, which must be addressed when

analyzing the safety of MD PnP systems.

In the next section, we discuss the requirements for the four main elements of the MD PnP systems,

when the system output is used to directly control safety critical devices.

Medical Device Requirements

There are two categories of safety requirements regarding medical devices. One category focuses on

design safety and the other involves operational safety.

Medical Device Design Safety: The concept of safety in medical device design has been broadened

from the simple, basic safety considerations to include essential performance matters [85]. As noted by

the recent editions of IEC 60601-13, safety standard for medical electrical equipment, many of medical

devices are life-sustaining or critical for correct diagnosis. A device which does not perform properly

can present an unacceptable risk, and hence endanger patient safety. For example, a defibrillator that

will not discharge may be considered unsafe. Similarly, incorrect diagnosis resulting from a monitoring

device malfunction can lead to unsafe or ineffective treatment.

According to this standard, ”basic safety provides protection against direct physical hazards when

medical electrical equipment is used under normal or other reasonably foreseeable conditions, (e.g. me-

chanical strength, leakage current and fire safety)” while, ”essential performance requirements limit or

establish critical parameters such as the frequency response of a diagnostic electrocardiograph and the

output energy of a cardiac defibrillator”, which presents an unreasonable risk should this performance

fail.

Within the scope of this study we assume medical devices function as specified and satisfy their

safety and essential performance requirements. To ensure safety of the MD PnP system when medical

devices are malfunctioning is a topic to be addressed in the future.

Medical Device Operational Safety: In addition to design safety, there is another aspect to medical

device safety, which is how to ensure operational safety of medical devices during the patient care

process. The operational safety constraints of medical devices are context dependent and may change

3The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all

national electrotechnical committees. IEC 60601-1 is the parent safety standard for medical electrical equipment.
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dynamically during the patient care process. The context refers to the information on the patient state,

status of all medical devices in the system, clinical procedure, etc. As explained in Section 6.1.2,

operational safety of medical devices is the union of local operational safety and device interaction

safety. In this report, we focus on operational safety of medical devices when analyzing the global

safety of the MD PnP systems.

Although we assume that the medical device design is safe and it satisfies the basic safety and

essential performance requirements, for a device to be operating as part of the MD PnP system, it must

also meet the following requirements:

• The device must provide the capability to be controlled and monitored.

• The device must be equipped with local display that shows the current device operational status

such as ventilation mode, infusion rate, medication dosage, etc. The device must also display

what component is controlling the device (ex: MD PnP through remote configuration panel, or

human operator through local control buttons). In other words, the locus of control must be clear.

The local display is specifically critical for manual execution of fail-safe steps for each device. In

addition, explicit notice for overwrite by human operator must be put on the device local display.

MD PnP Device Adapter Requirements

As described in the ICE standard, a legacy medical device must be equipped with an adapter to allow

the device to interface with the MD PnP middleware, so that the device can be under supervisory

control. The existing medical/ health device communication standards, such as ISO/IEEE 11073 [86],

[87], although necessary for designing medical device interfaces, are not sufficient when developing

ICE applications to control and coordinate devices.

We assume a crash failure semantic for this component, i.e. it can only fail by crashing. The

correctness of MD PnP device adapter must be verified to ensure that control or monitoring values

communicating through the adapter would not be altered. We discuss the case, in which the adapter

crashes, in later sections.

Since medical device adapters play a critical role in safe use of MD PnP systems, we are required

to discuss the dependability or reliability of this component, which describes its ability to function as
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specified under stated conditions for a specified period of time. The device adapter reliability affects the

open-loop safe solution that can be used for the MD PnP system. We discuss the details of open-loop

safety in Section 6.3. We consider two classes of reliability for the device adapters:

Highly Reliable: the device adapter must satisfy an appropriate meantime to failure (MTTF) require-

ment to ensure safety of an intended medical application:

• MTTF � NHighly Reliable ⇥Operation Window

where Operation Window denotes the maximum operation time for the intended clinical use and

NHighly Reliable represents the dependability requirement, which can also be adjusted for each clinical

procedure. For example, under the commonly used exponential reliability model4, NHighly Reliable =

1, 000, 000 implies one failure per million operations on average. This number should be sufficiently

high for the intended medical procedure, so that the benefit significantly outweighs the risk. Our design

for qualified safety critical components assumes that their probability of failure during the window of

operation is virtually zero.

Reliable: the device adapter must satisfy the following meantime to failure (MTTF) requirement:

• NReliablel ⇥Operation Window  MTTF < NHighly Reliable ⇥Operation Window

where a lower number, perhaps, NReliable = 10, 000, is acceptable. In medical domain, the system re-

liability requirements depend on the intended clinical use. This is unlike the avionic domain, in which

fixed reliability values are often recommended by FAA.

MD PnP Platform Requirements

We call the combination of a computational platform and the MD PnP middleware the MD PnP plat-

form. We consider the following requirements:

4
R(t) ⇠ Exp( �1

MTTF/Operation Window
)
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Data Transformation Correctness: MD PnP middleware logic must be verified. For example, the

syntax and semantic translation and mapping of settings of devices from different vendors must be

verified to be clinically correct before usage. In the following, we shall assume that designers have

done so correctly.

Data Integrity: This requirement ensures that the data and supervisory commands going through

the MD PnP platform, before being delivered to medical devices, would not be corrupted in a way that

cannot be detected.

It is the MD PnP system developer’s responsibility to validate these requirements. However, com-

mercial computational platforms and networks are not designed for safety critical applications. Hence,

we assume that they may crash at any instant. We will use the crash failure semantic for the MD PnP

platform in the safety analysis in the rest of this report.

It is quite common that commercial platform vendors issue software or firmware upgrades; designers

should not install upgrades without re-verifying the failure mode assumptions. For example, upgrades

can create backward compatibility issues and unintended bugs not considered in the initially assumed

failure modes for platform or MD PnP software. In cases the upgrades are applied and the assumptions

on failure semantic do not hold anymore, the safety analysis must be re-examined.

MD PnP Application Requirements

When the MD PnP system in used to directly control safety critical medical devices, it will be the

developer’s responsibility to ensure that the failure of the MD PnP system cannot be a causal factor of

safety hazards. We consider the following safety requirements:

Computational Correctness: For each MD PnP clinical application, the specification must be vali-

dated and the implementation correctness must be verified. For example, if the application implements

a safety interlock or computes closed loop control values, the specification of the intended capabilities,

fundamental use and desired outputs must be validated and the correctness of safety interlock or control

logic implementation must be verified.

Data Integrity: This requirement ensures that the MD PnP application does not perform unspecified

transformation or change measurements and status information received from medical devices in a way

that cannot be detected.
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Symbol Description
MD#PnP#Supervisor*is#
Unable#to#Coordinate#

Devices#
State Representation

MD#PnP#Pla(orm##
Crashes#

Event Representation

Table 6.1: Common Symbols in Extended Fault Tree

In rest of this report we will assume that developers have correctly verified these requirements.

However, the MD PnP platform and/or network may crash and cause the MD PnP application to crash

as well. Assuming that the computational correctness and data integrity requirements have been verified

by the developers, we only consider crash failure semantic for this MD PnP component.

Finally, an error-free safety analysis is seldom an easy task. The MD PnP program cannot be re-

sponsible for the correctness of safety analysis performed by designers. In the next section, we present

the general safety analysis procedure followed in this report. Before explaining the different steps of

safety analysis, however, we present a brief introduction on extended fault tree analysis.

6.2 Introduction to Fault Tree Analysis

To make this report self-contained, we review the main components of a fault tree in this section.

Fault tree analysis is a commonly used method to ensure no undesired event in the system can com-

promise the system-wide safety. We also use Fault Tree analysis to demonstrate the behavior of the

system, which leads to the hazardous and unsafe situations. Safety cannot be modeled by fault trees,

which are simply representations of causal chains. Therefore, we use extended fault tree (EFT), which

is the combination of classic fault trees and state/event semantics [88].

6.2.1 Extended Fault Tree Analysis

The main goal in extended fault tree analysis is adding the capability of expressing state depen-

dencies or temporal order of events. This is necessary to describe a system’s behavior and analyze

its reliability and safety-related issues. In the extended fault tree, there are two type of nodes, state

node and event node. Table 6.1 shows the common symbols of an event and a node of the fault tree

representation. States describe conditions that last over a period of time whereas events are sudden
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Gate Name Symbol Description

AND
Laser&

Remains&On& Ven-lator&is&
Turned&On&

AND!

Surgical&Fire&

If a certain event happens while the system is in a given state, then

immediately after the output event happens.

AND AND!

Ven'lator-
is-Off-

Ven'lator-
Remains-Off-

MD-PnP-Supervisor-
is-Unable-to-

Control-Devices-

This gate has generalization semantic.

History AND History(AND(

…(

Medical(Staff((
Become(Insensi9ve(to(Alarm(

False(
Posi9ve(

False(
Posi9ve(

False(
Posi9ve(

The output event occurs immediately after the last of its input events

has occurred, provided that all other input events have occurred be-

fore. The input events can occur at any order.

OR

Device&State&
Changes&

OR!

Pa2ent&State&
Changes&

Device&Configura2on&
Must&be&Updated&

Occurrence of any of the input events causes the output event to

occur.

OR
MD#PnP#Supervisor**

is#Unable#to#
Coordinate#Devices#

MD#PnP#System**
is#Unable#to#Create#a#Safe#
Therapeu:c#Configura:on#

MD#PnP#Device*
Adapter*Has#
Crashed##

OR! This gate has generalization semantic: The output state can be re-

garded as a collective alias for the input states.

UPON

Alarm&Fa(gue&&

UPON&

Medical&Staff&&
Become&Insensi(ve&&

to&Alarm&

Upon is a converting gate; it models the passage from an event to a

state, which has the meaning of referring to the state after the event

has happened for the first time. The input is an event and output is a

state.

On Entering

Pump%is%Not%
Stopped%on%Time%

On%Entering%

MD%PnP%System'is%Unable%
to%Stop%the%Pump%%

On Entering is a converting gate; it models the passage from a state

to an event, which has the meaning of referring to the point in time

where the state is entered. The input is a state and output is an event.

Table 6.2: Gates Commonly Used in Extended Fault Tree

phenomena, including state transitions. In EFT, round rectangles represent states and solid bars denote

events. Directed edges with bold arrowheads mark the causal edges. Table 6.2 depicts the gates and

notations used in fault tree analysis in this report. More details about extended fault tree can be found

in [45], [44], and [88].
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Symbol Semantic

Highly''
Reliable'

Component(
Component Satisfies Safety-Critical Requirements

Non-Causal Directed Edge

Table 6.3: Symbols for Newly-Introduced Extended Fault Tree Components

6.2.2 Context-Aware Extended Fault Tree Analysis

We introduce two additional elements to extended fault tree to provide more contextual information.

The first one is the Highly Reliable Component. This elements represent a component in the system

that meets the reliability requirement as described in Section 6.1.2: its meantime to failure must be

much longer than the operational window so that the probability of failure is deemed to be sufficiently

low for the intended clinical use. The next element is a Non-Causal Directed Edge, which represent

the cases in which system component may crash but its failure is not a causal factor of safety hazard.

Including such components in fault tree analysis provides additional information on system behavior.

Without the new elements, absence of faulty states or events of a component in tree can mean either it

does not contribute to safety hazard, or the designer has missed considering the component in safety

analysis. Including highly reliable components and/or non-causal edges in the tree can provide more

details on the system design and the approaches taken by the designer to trim the tree or break the paths

to tree root. Introducing these elements also helps with evaluating the comprehensiveness of fault tree.

Table 6.3 presents the symbols used for the new components and their semantic.

6.3 Safety Analysis of the MD PnP Systems

In this document, we illustrate how to determine whether the planned MD PnP system usage is a

causal factor in the known safety hazards of a medical scenario. Should the MD PnP usage be a causal

factor of safety hazards, we provide guidelines to transform the configuration so that it is no longer a

causal factor. To ensure safe use of the MD PnP system, we follow a 4-step safety analysis procedure:

• S1: Enumerate the safety hazards of the medical scenario and draw the extended fault trees for
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MD#PnP#Pla3orm#
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OR#

OR#
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#Crashes#

Network#
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MD#PnP#Supervisory#Loop#
Becomes#Open#

##

Subtree'C.1:'MD#PnP#Supervisory#Loop#

Figure 6.2: Fault Sub-Tree for MD PnP Supervisory Loop Crash

each hazard.

• S2: Identify whether any MD PnP component is a causal factor of the hazards.

• S3: Recommend a fail-safe solution if any MD PnP component is a causal factor of those hazards.

(without a fail-safe solution users may choose not to use the MD PnP system if the risks are not

outweighed by the benefits)

• S4: Redraw the extended fault tree for any possible fail-safe solution to ensure that the MD PnP

platform/network failure path to the root is removed.

The first and fourth step involve drawing fault trees for enumerated safety hazards of each clinical

scenario. In some cases, the trees can get complex, which makes them less readable. To prevent this

problem, we take a modular approach, in which we introduce sub-trees that can be re-used in several

fault tree analyses. When drawing the trees for different clinical scenarios we only show the root of

subtrees used and their number in a green bubble for the readers to refer back for more details. The

first subtree we present is shown in Figure 6.2 which represents the series of events leading to the MD

PnP supervisory loop crash. In the third step of safety analysis, we provide guidelines and open-loop

safe solutions to transform the system configuration so that no MD PnP component is a causal factor.

Open Loop Safety: During normal operation, medical devices are monitored and coordinated by the

supervisor. If either the supervisor or the communication network fails, the supervisory control loop is
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Figure 6.3: Automated Open-Loop Safe MD PnP System Overview

said to be open. By open loop safety, we mean that even if the supervisory loop opens, the MD PnP

system still cannot be a causal factor of a safety hazard. Note that there are long-term and near-term

open-loop safe solutions:

• The long-term solution requires device makers to support simple timed safety actions. Otherwise,

the MD PnP device adapter must provide such capability. In this case, the device adapter must

be highly reliable, for the open-loop safety solution to work. We call this approach Automated

Open-Loop Safety (see Section 6.3.1).

• The near-term solution for existing medical devices is to use a component which includes a

recording device and a watchdog timer to remind users to perform the timed safety actions. In

this case the medical device adapters must only be reliable; however this added component must

be highly reliable. The device adapter cannot be trusted to move the medical device into a safe

state when the supervisory loop fails. Hence, open loop safety protocols are designed to reliably

pass the control back to the medical staff. We call this approach Integrated Human Machine

(IHM) Open-Loop Safety (see Section 6.3.2).

6.3.1 Automated Open-Loop Safety

As shown in Figure 6.3, the automated open-loop safe MD PnP system consists of the following

components:
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Figure 6.4: IHM Open-Loop Safe MD PnP System Overview

Automated Open-loop safe supervisor: This supervisory logic is added to the application layer

and runs on top of the MD PnP platform. The commands received from the MD PnP supervisor go

through the open-loop safe supervisor before being sent to the medical devices. The commands are

decomposed into a sequence of timed actions, which ensure that the devices move to a safe state by

taking these actions when the supervisory loop is open. At any point during the communication of

these messages, the supervisory loop can become open due to network failure or crash of the MD PnP

platform. Note that this will not causes any safety hazards since no commands will be sent unless the

corresponding timed safety command has been sent successfully. This protocol is any-step safe.

Highly reliable medical device adapters: This component ensures the timed safety commands5

are executed by the device when the MD PnP supervisory loop is open. It is assumed that the MD PnP

device adapter is highly reliable; otherwise, automated open-loop safety cannot be guaranteed.

6.3.2 IHM Open-Loop Safety

As shown in Figure 6.4, the automated open-loop safe MD PnP system consists of the following

components:

Medical Failover Manager (MFM): This component must be highly reliable. It shall be a simple

and verifiably reliable storage and display device that stores and displays the commands sent by the MD

5A timed safety command is a command to execute a safety action at the expiration of a timer set by the application, e.g.,

resume ventilation in 30 seconds. An example is in Page 108.
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PnP supervisor. Similar to avionic systems, the capability of having a record of what the system has

been doing will have great safety and legal values. In addition, the MFM has a configurable watchdog

timer that will issue an alarm, should the MD PnP supervisor stop sending heartbeats to the MFM. Once

the alarm is sounded, medical staff can check the MFM and know what the most recent command is,

which may or may not be executed, and the recent history. This allows medical staff to take safety

actions in an informed way. The MFM component consists of 1) a highly reliable storage and display

device, 2) a watch dog timer and alarm, 3) an interface with the MD PnP system. If the supervisor fails

to deliver heart beats to the timer, an alarm will sound indicating that the MD PnP supervisory loop is

open.

Integrated Human Machine (IHM) open-loop safety supervisor: In addition to the highly reliable

MFM, the near term solution includes a supervisory component, which is responsible for executing the

open-loop safety protocol steps. In this approach, we use timed alarms to ask medical staff to move the

system into a safe state, since we assume device adapters are not highly reliable and therefore cannot

be trusted to move the medical devices to safe states. The protocol includes the following steps:

• At each step, the IHM open-loop safety supervisor first sends the command (received from the

MD PnP supervisor) to the MFM and waits for an acknowledgment before sending the command

to the medical device. This way, when the MD PnP system crashes and the alarm sounds by

MFM, medical staff know the command history and the most recent command that the supervisor

attempted to execute, greatly facilitating the medical staff’s take over task. For commands that

will put the device into a transient safe state, the command should be annotated with the open loop

safe action that a staff should perform manually. For example, the ”pause” command sent to the

MFM is annotated as pause at time t, (to be followed by ”resume” command at t+30sec).

• After receiving an acknowledgment from the MFM, the IHM open-loop safety supervisor sends

the command to the medical device and waits for an acknowledge from the device. If an ac-

knowledgment is not received in time, an alarm will sound to let medical staff know that the

device is not responding.

Figure 6.5(a) shows the sub-tree for automated open-loop supervisory loop crash and Figure 6.5(b)

shows the sub-tree for IHM open-loop supervisory loop crash.
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Figure 6.5: Subtrees for Supervisory Loop Crash

We recommend the record keeping in general. An accurate record of what the MD PnP supervisor

has done will be invaluable for post operation analysis, especially settling disputes, if any. To this end,

MFM’s record system should be protected from tampering by unauthorized users.

In the next section, we illustrate how to use each open-loop safety approach to ensure that no MD

PnP component is a causal factor of known safety hazards in the context of several clinical scenarios.

6.4 MD PnP Clinical Scenarios

In this section, we study six clinical scenarios and demonstrate the process of safety analysis of

the MD PnP system using extended fault trees in each case. For more details on these scenarios refer

to [89], [90] and [91]. We assume for each scenario, the clinical application specifies what kind of

response it expects form each medical device. In other words, the device composition must be definitive

for each application.

6.4.1 Laparoscopic Cholecystectomy

A 32-year-old woman had a laparoscopic cholecystectomy (gall bladder removal) performed under

general anesthesia. At the surgeon’s request, a plain film x-ray was shot during a cholangiogram [bile

duct x-ray]. The anesthesiologist stopped the ventilator for the film. The x-ray technician was unable
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to remove the film because of its position beneath the table. The anesthesiologist attempted to help her,

but found it difficult because the gears on the table had jammed. Finally, the x-ray was removed, and

the surgical procedure resumed. At some point, the anesthesiologist glanced at the EKG and noticed

severe bradycardia. He realized he had never restarted the ventilator. The ventilator is typically stopped

for 20 to 60 seconds to prevent motion-induced blurring of the image. This patient ultimately expired.

[92].

There are two approaches to prevent the motion-induced blur in the x-ray. If we use the MD PnP

system to pause the ventilator, then the MD PnP system becomes safety critical and we will illustrate

how to ensure open-loop safety. An alternative, in which the MD PnP system does not need to be safety

critical [57], is suggested.

The supervisor uses information from the ventilator to decide when to trigger the x-ray. The syn-

chronization algorithm defines exactly how this decision is made according to respiratory cycle as a

function of pressure over time. The pressure increases until the end of inspiration (at time T after start

of breath), at which point it drops off quickly through expiration. There is usually a pause between the

end of exhalation and the start of the next breath. For this case study, we want to support taking an

x-ray when the lung was not moving significantly. This occurs when the patient is relatively still at the

peak of inspiration or between the end of expiration and the start of the next breath. An exposure is

possible if the time the patient is still exceeds the time needed for the exposure plus the latency between

triggering the x-ray and the actual exposure.

Under this approach, the MD PnP system is not safety critical because it does not send stop com-

mands to the ventilator, which is a safety-critical device. We recommend this approach whenever it is

applicable. However, should pausing the ventilator be needed and users want to use the the MD PnP

system to manage the pause directly, then the MD PnP system becomes safety critical. Since the MD

PnP supervisor sends commands directly to the safety critical ventilator, this case shall be subject to

the 4-step safety analysis process. The first step is to determine the safety hazard(s) in this scenario and

perform the fault tree analysis (S1).

Following the modular approach, we first present the subtree for the MD PnP therapeutic configu-

ration, subtree 3.1, in Figure 6.6(a). Next, we use this subtree to represent the series of fault events

and states regarding the main elements of the MD PnP system, which can contribute to brain damage
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Figure 6.6: Extended Fault Tree Analysis of Brain Damage in the MD PnP System

in Figure 6.6(b).

In theory, the supervisor can send an atomic command pause and then resume at time t, which

will be safe if the approved ventilator can execute atomic transactions. This is the preferred method.

However, currently ventilators can only execute simple commands such as turn on and turn off. Hence,

users may use pause command followed by a resume command later at time t. In this case, crash of

the MD PnP platform or the network opens up a path to the root of tree and leads to brain damage.

Moreover, any error in the MD PnP supervisory logic, which is responsible for coordinating the x-ray

and ventilator devices can lead to an unsafe ventilator configuration; this should be mitigated. The

dotted red lines on the extended fault tree indicates these paths (step S2).

To break such paths to the root and ensure system safety despite the failure of these components,

an open-loop safe approach is needed (step S3). Next, we present the automated and IHM open-loop

safety solutions for this clinical scenario.
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Figure 6.7: Sequence Diagram for Automated Open-Loop Safe for Safe Ventilator Configuration

Automated Open-loop Safe Coordination of X-ray and Ventilator

In this section we present the automated open-loop safe approach to prevent crash of the MD PnP

supervisory loop to cause brain damage in the laparoscopic cholecystectomy scenario (step S3). When

the MD PnP supervisor intends to send a command to turn off the ventilator for a period of time,

a sequence of timed actions are sequentially sent by the open-loop safe supervisor. In this case, a

command to resume the ventilator at time t is sent before sending the command to turn off the ventilator.

The open loop safe protocol ensures that the timed safety command is received by the device before

sending the ”turn off” command. The ”turn off” command puts the ventilator in a transient safe state,

because if the ventilator remains off for too long, patient’s blood oxygen level can drop below the safe

threshold and brain damage may happen.

The commands for timed actions are sent over the network and received by the open-loop safety de-

vice adapter, since existing ventilators do not support timer based actions. When the ”resume ventilator

at time t” command is sent to the MD PnP device adapter, if the ventilator has timer capability then

the device adapter, which must be highly reliable, sets the device timer; otherwise, a timer is created

and set by the adapter, which triggers the automatic resumption of ventilator upon expiration. After

setting the timer (through either of the two approaches), an acknowledgment is sent to the open-loop
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Figure 6.8: Brain Damage Extended Fault Tree for Automated Open-Loop Safe MD PnP System

safe supervisor. At this point, when it is assured that a timer to resume the ventilator is set, the com-

mand to turn off the ventilation is sent. Figure 6.7 shows the sequence of messages exchanged among

the different components of the open-loop safe MD PnP system. The timer value in this example is

only a nominal value; in general, the timer value for different actions can be updated as more recent

information on patient state and status of medical devices become available.

At any point during the communication of these messages, the supervisory loop can become open

due to network failure or crash of the MD PnP platform. This will not causes a hazard since the

command to turn off the ventilator will not be sent unless the resume timer has been set successfully.

This protocol is any-step safe. If the ventilator device does not have a timer feature, the open-loop
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safe protocol depends on the MD PnP device adapter to set up the timer and perform the timed safety

action. In this case it is assumed that the MD PnP device adapters are highly reliable and meet the

safety-critical requirements; otherwise, open-loop safety cannot be guaranteed. We recognize that such

highly reliable adapters will not be available in the near term, hence an alternative ”medical staff in the

loop” safety solution is provided in the next section.

For the last step of our safety analysis procedure, we redraw the extended fault tree that can lead

to brain damage. Figure 6.8(b) shows the updated fault tree, which includes the unsafe therapeutic

configuration subtree for automated open-loop safe system, Subtree 3.2. This subtree, shown in Figure

6.8(a), indicates that the automated open loop safe supervisor may fail. However, the open loop safe

protocol is any-step safe by definition; the open-loop safe supervisor always ensures that the MD PnP

device has received the timed safety action before moving to a transient safe state. Moreover, the device

adapter is highly reliable. Therefore, if the supervisory loop becomes open the adapter will move the

device into a safe state. Assuming the initial configuration is safe, failure of supervisory loop at any

step of the handshaking protocol will not result in an unsafe configuration. The safe ventilator operation

is added as depicted by AND gate in Figure 6.8(b)), which results in removal of all paths to the root.

IHM Open-loop Safe Coordination of X-ray and Ventilator

Timed safety commands executed by highly reliable medical device adapters to enable automated open

loop safety protocols is a preferred long term solution. However, highly reliable adapters may not be

on the market in the near future. A simple near term solution is to include a MFM in the MD PnP

system. Instead of depending on device adapters to move the system into an open-loop safe state, we

only require one highly reliable component, the MFM to remind medical staff to move the system into

an open loop safe state. With a highly reliable MFM, all the medical device adapters are only required

to be reliable. The MD PnP supervisor should follow the IHM protocol for sending commands to

the ventilator. The communication between ventilator and MD PnP supervisor in the laparoscopic

cholecystectomy scenario includes the following steps:

• The MD PnP supervisor sends pause and then resume at time t command to the MFM and

waits for an acknowledgment; if one is not received, an alarm sounded by the supervisor.
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• If an acknowledgment is received, the MD PnP supervisor then sends pause ventilator to the

device and waits for an acknowledgment; if one is not received, an alarm is sounded by the

supervisor.

• Before pause time reaches limit, the MD PnP supervisor may send resume ventilator command

to the MFM and waits for an acknowledgment; if one is not received, an alarm is sounded by the

supervisor.

• If an acknowledgment is received, the MD PnP supervisor sends resume ventilator command

to the device and waits for an acknowledgment; if one is not received, an alarm is sounded by

the supervisor.

• If the MFM stops receiving heartbeats from the MD PnP supervisor, an alarm sounds to warn

medical staff that the MD PnP supervisory loop has failed. The last command that supervisor

attempts to execute and recent command history are displayed. To further facilitate the failure

handling by medical staff, whenever the supervisor issues a command that puts the patient in a

transient safe state, it should annotate the command with a timed safety action. For example,

annotate the pause ventilator command with the note: pause at time t, to be resumed by (t +

30sec)

Figures 6.9(a) and 6.9(b) show the sequence of messages exchanged among the different components

of the automated open-loop safe MD PnP system in the normal and crash operation modes, receptively.

At the last step of our safety analysis procedure, we redraw the extended fault tree for brain damage.

First we present the necessary subtrees to re-draw the brain damage fault tree for IHM open-loop

safe MD PnP system. Figure 6.10(a) shows the MD PnP therapeutic configuration subtree when only

reliable device adapters are assumed, Subtree 4.1. The subtree for unsafe device configuration in the

IHM open-loop safe MD PnP system, Subtree 4.2, is shown in Figure 6.10(b). Having these two, we

present the brain damage fault tree for the IHM open-loop safe MD PnP system in Figure 6.11. The

highly reliable MFM in Subtree 4.2 and the AND gate on top of MD PnP and IHM open-loop safe

subbranches (depicted by dashed blue rectangles in Figure 6.11) results in removal of all paths to the

root.
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Figure 6.9: IHM Open-Loop Safe Sequence Diagram for Ventilator Configuration

6.4.2 Airway Laser Surgery

In this section we look at a slightly more complicated scenario of airway laser surgery. The airway-

laser operation is performed on the patient’s airway using a surgical laser when the patient is under
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anesthesia and breathing with the help of an endotracheal tube carrying air with a high concentration

of oxygen. Before the surgical phase starts, 100% FiO2 supplied by a ventilator is recommended

so that the surgery phase could be 1 to 5 minutes6. To prevent surgical fire, oxygen flow must be first

blocked before the laser is in use. If the oxygen flow is blocked for too long, the patient’s blood-oxygen

saturation can drop below the safe threshold and brain damage can occur.

To prevent surgical fire or brain damage hazards, the MD PnP supervisor should synchronize the

laser and O2 supply to ventilator. This process is performed through a series of communications be-

tween the supervisor and the medical devices. We use extended fault tree analysis to demonstrate the

behavior of the MD PnP supervisory system and determine whether there is a chain of events leading

to a hazardous situation. The fault tree analysis for brain damage is the same as the previous clinical

scenario; therefore, we focus on surgical fire hazard. This involves interaction of two medical devices:

surgical laser and ventilator. Figure 6.12 shows the extended fault tree for surgical fire. Similar to

brain damage, failure of the MD PnP components or communication network can lead to surgical fire.

The failure of the MD PnP supervisory loop prevents the correct commands received by the ventilator

6www.mc.vanderbilt.edu/documents/1anesthesiology/files/srna/Laser%20Surgery%20of%20the%20Airway.ppt
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Figure 6.12: Extended Fault Tree for Surgical Fire

and surgical laser devices on time. The dotted red line shows an example of a path from an MD PnP

component to the root of tree.

Automated Open-Loop Safe Approach for Airway Laser Surgical Scenario

In the airway laser surgical scenario, the MD PnP supervisor coordinates the airway laser and ventilator

(oxygen supply) devices to prevent brain damage or surgical fire. However, as can be seen in the fault

trees when there is a network or MD PnP supervisor failure and the supervisory loop becomes open,

the patient’s safety can be violated.

To prevent safety hazards when the supervisory loop becomes open, it is recommended to augment

the MD PnP system with an open-loop safety protocol. One simple version is presented in the previous

section for the laparoscopic cholecystectomy scenario. The same protocol can be used here; however,

in this case there are two devices whose actions must be coordinated by the MD PnP supervisor. The

open-loop safe supervisor ensures safety by sequentially sending timed action commands to the devices.

Figure 6.13 shows the sequence of communications among open-loop safety components, the MD

PnP components and medical devices.

At the last step of our safety analysis procedure, we redraw the extended fault tree for surgical fire

(Figure 6.14). The therapeutic configuration subtree for automated open-loop safe system, Subtree 3.2,
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is used to re-draw the fault tree. As presented on Subtree 3.2 in Figure 6.8(a), the automated open

loop safe supervisor may fail. However, the open loop safe protocol is any-step safe by definition; the

open-loop safe supervisor always ensures that the MD PnP device has received the timed safety action

before moving to a transient safe state. Moreover, the device adapters are assumed to be highly reliable.

Therefore, if the supervisory loop becomes open the adapter will move the device into a safe state. In

conclusion, assuming the initial configuration is safe, failure of the supervisory loop at any step of the

handshaking protocol will not result in an unsafe ventilator configuration. Finally, the addition of the

AND gate on top of MD PnP and open-loop safe subbranches (depicted by dashed blue rectangles in

Figure 6.14) results in removal of all paths to the root.

IHM Open-Loop Safe Approach for Airway Laser Surgical Scenario

As explained in the previous clinical example, timed safety commands executed by highly reliable

medical device adapters to enable automated open loop safety protocols is a preferred long term solu-

tion. However, a simple near term solution is to have a highly reliable MFM. The MD PnP supervisor

should follow the IHM protocol for sending commands to the ventilator and laser devices. The com-

munication between the MD PnP supervisor and the medical devices in airway laser surgical scenario

includes the following steps:

• The MD PnP supervisor sends a pause command annotated with ”to be resumed at time t” to

the MFM and waits for an acknowledgment; if one is not received, an alarm is sounded by the

supervisor.

• If an acknowledgment is received, the MD PnP supervisor then sends pause ventilator com-

mand and waits for an acknowledgment; if one is not received, an alarm is sounded by the

supervisor.

• After waiting for T seconds to ensure that the oxygen in patient’s airway is cleared, the MD PnP

supervisor sends turn on laser command to the MFM and waits for an acknowledgment; if one

is not received, an alarm is sounded by the supervisor.

• If an acknowledgment is received, the MD PnP supervisor sends turn on laser command to
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the device and waits for an acknowledgment; if one is not received, an alarm is sounded by the

supervisor to let medical staff know that the laser is not responding.

• When pause time limit reaches, the MD PnP supervisor sends turn off laser command first

to the MFM and then to the laser after an acknowledgment is received from the MFM. Next,

the supervisor waits for an acknowledgment; if one is not received, an alarm is sounded by the

supervisor.

• If an acknowledgment from laser is received, the MD PnP supervisor sends resume ventilator

command first to the MFM, and then to the ventilator after an acknowledgment is received from

the MFM. Next, the supervisor waits for an acknowledgment from the ventilator; if one is not

received, an alarm is sounded by the supervisor to let medical staff know that the ventilator is not

responding.

• During the operation, whenever the MFM stops receiving heartbeats from the MD PnP supervi-

sor, an alarm is sounded by the MFM to indicate that the MD PnP supervisory loop is open. In

addition, the list of recent commands is displayed.

Figures 6.15(a) and 6.15(b) show the sequence of messages exchanged among the different compo-

nents of the IHM open-loop safe MD PnP system in the normal and crash operation modes, receptively.

At the last step of our safety analysis procedure, we redraw the extended fault tree for surgical fire

(step S4). Figure 6.10(a) shows the MD PnP therapeutic configuration subtree when device adapters

are only assumed to be reliable (Subtree 4.1). The subtree for unsafe device configuration in the

IHM open-loop safe MD PnP system (Subtree 4.2) is shown in Figure 6.10(b). Figure 6.16 shows

the updated surgical fire tree that includes these subtrees. The addition of highly reliable MFM in

Subtree 4.2 and the AND gate on top of MD PnP and IHM open-loop safe subbranches (depicted by

dashed blue rectangles in Figure 6.16) results in removal of all paths to the root.

6.4.3 Patient Controlled Analgesia

The main adverse event in the patient controlled analgesia case is morphine overdose. This safety

hazard is shown under Unsafe Therapeutic Configuration ! Unsafe Medication Administration !
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Figure 6.15: IHM Open-Loop Safe Sequence Diagram for Airway-Laser Surgery
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Incorrect Bolus Dosage in Figure 6.25. The extended fault trees in this section show how this sub

branch is populated in the PCA case study.

The MD PnP system in this case includes a smart alarm application and a close loop control for

PCA pump. Failure of the smart alarm application to detect respiratory distress (Figure 6.17) or failure

of closed loop control to stop the pump on time (Figure 6.18) will lead to overdose. An open loop

safe solution is required to prevent these hazards when the supervisory loop is open. A simple version

can be setting a timer to stop the PCA pump when the supervisor or network crashes, before sending

the command to start the PCA pump. The timer value can be updated as the new physiological data

on patient state becomes available. The idea is similar to the previous cases; the open-loop supervisor

sends a sequence of timed actions to the PCA device starting with an action to ensure the PCA is moved

to a safe state when the MD PnP supervisor crashes or the network becomes unavailable. This approach

will break the paths, shown in Figures 6.17 and 6.18(a), to the root.

Figure 6.18(b) presents the case, in which the MD PnP closed-loop control application fails before

receiving an acknowledgment from the PCA device. To break this path to the root we recommend

the use of MFM that records the intent to deliver a dosage before actually sending the corresponding

command to the PCA device. If this action is not taken and the MD PnP system crashes after delivering

a dosage and before receiving the acknowledgment from the device, there would be no record of the

dosage administration, which will potentially lead to an overdose. Making a record of intention to

deliver a dosage can break this path to the root. In this case, even if the MD PnP supervisor crashes

after sending the command to the PCA and before receiving an acknowledgment from the device, the

intention to deliver a dosage is already recorded by the MFM.Therefore, when the MD PnP supervisor

restarts it can access this recorded information and avoid sending the commend to deliver another

dosage.

Note that fault trees include Subtree 4.1 representing unsafe therapeutic configuration, and Subtree 1

representing unsafe monitoring configuration in the MD PnP system. We presented Subtree 4.1 when

discussing brain damage and fire fault trees in the first two clinical examples; Subtree1 is introduced

later in the report when studying the MD PnP derived alarms.
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6.4.4 Prepare Intensive Care Unit to Receive Post-OP Cardiac Patient

The MD PnP supervisor reads the settings and status of medical devices used in the operating room,

when preparing an intensive care unit (ICU) for receiving post-op patients. This information includes

the medication and infusion rate for all IV pumps, the setting of mechanical ventilation, the number

of invasive pressure channels being monitored, etc. A simple handshaking process is recommended to

ensure that complete list of devices and corresponding setting is received by the MD PnP supervisor

in the intensive care unit. In the next step, all ICU medical devices are preset to OR settings by the

MD PnP supervisory application. The clinician confirms all automatic device settings and enters the

clinical data that cannot be retrieved automatically.

The MD PnP middleware must have a communication component to handle remotely accessing

medical devices connected to clinical network. Devices such as ventilator have different modes of

operation and settings. The translation and mapping of setting from one device to another are performed

by the interoperability component of the MD PnP middleware and must be verified as clinically correct.

We assume all medical devices use the same interface description language. The MD PnP middle-

ware can then provide a uniform format to clinical application designers for interacting with medical

devices. The middleware translates the uniform format to a specific device setting format. Therefore,

the complexity of heterogeneous devices will be hidden from the applications and encapsulated by the

MD PnP middleware. As explained above, we assume that the correctness of the MD PnP interoper-

ability logic is verified. Figure 6.19 shows the overall architecture of the MD PnP framework for the

clinical scenario involving preparation of ICU to receive post operation patients. The device configu-

ration setting must be verified by human before being applied to the devices in ICU and therefore no

device is directly manipulated by the MD PnP components. Therefore, there is no causal path from the

MD PnP components to potential safety hazards in this clinical scenario.

6.4.5 Home to Hospital

The data coming from telehealth (TH) monitoring devices, used at home, may be unreliable or in-

accurate. Inaccurate physiological measurements from these devices may be used in addition to more

accurate data from hospital devices to monitor patient state. However, this may result in unintentional
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Figure 6.19: The MD PnP System for Preparing ICU to Receive Post-OP Cardiac Patient

inaccuracy in patient state assessment. Properly managing the heterogeneity of medical sensors’ relia-

bility can alleviate this problem. One approach is exporting the information regarding the reliability of

different medical sensors to the application layer. Considering the accuracy of different medical sensor

readings when making decisions about patient state can increase the safety and effectiveness of the

patient monitoring process.

The MD PnP interoperability program recommends a unified model for medical sensors and phys-

iological measurements, which is defined as an abstraction of device and measurement information

relevant to the safety and effectiveness of patient care, including the accuracy of measurements. One

such model is shown in Table 6.4. Most of the chosen attributes for our measurement model are self-

describing. Some sensor devices generate more than one physiological measurement with different

accuracies. Therefore, accuracy information must be included for each pair of device and physiolog-

ical measurement. We show examples of the measurement model instantiation; the values stored in

the model instants are only nominal values. The fields can be populated as the information becomes

available.
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Physiology Monitor Type Device ID Patient ID Accuracy Current Reading

Blood Pressure Blood Pressure Cuff BP-ICU211 1236780 90% 80 mmHg

SpO2 Oximeter BP-Cuff-ICU211 1236780 97% 95%

Pulse Rate Oximeter Oximeter-ICU211 1234568 95% 100 bpm

Heart Rate EKG-TH EKG-1232211 1232211 95% 95 bpm

Heart Rhythm EKG EKG-ICU211 1236780 98% Sinus

ScvO2 Central Venous Catheter CVC-ICU211 1236780 99% 80%

CVP Central Venous Catheter CVC-ICU211 1236780 99% 80 mmHg

Table 6.4: Unified Device and Measurement Models

6.4.6 IV Sedation for a GI Procedure

The MD PnP framework aims at improving the safety and effectiveness of patient care by integrating

multiple devices for additional intelligence. For this clinical scenario, there are four major components

involved in creating a safer clinical environment with inter-operable medical devices. We look at each

component and analyze whether they can contribute to any of the known potential safety hazards.

Virtual display

The goal here is to have one integrated main display, which receives the clinical data from different

monitoring devices. For this scenario, SpO2, ETCO2 (end-tidal CO2), readings from a depth of

anesthesia monitor, respiratory rate and blood pressure can be displayed remotely on a central monitor.

However, the crash failure detection is simple and straightforward for a display. If the virtual display

crashes remote monitoring would not be possible; however, the clinical data are still displayed on

individual monitoring devices. Therefore, as long as it is verified that the virtual display will not alter

any value it receives from monitoring devices, this component will not cause any safety hazards.

Derived alarms

The main safety hazards for an MD PnP derived alarm system are 1) false negative alarms 2) false

positive alarms and 3) overlooked true positive alarms, which are the final result of false positive alarms.

Figures 6.20(a), 6.20(b), and 6.21 show the extended fault trees for alarm hazards. We name these three
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Figure 6.20: False Alarm Subtrees for MD PnP Derived Alarms

Subtree 1.1, Subtree 1.2, and Subtree 1.3, respectively. Using these subtrees, we draw the extended

fault tree for unsafe monitoring configuration in the MD PnP system (Figure 6.22).

To prevent failure of the MD PnP components from contributing to alarm safety hazards, some

precaution must be taken. The generic solution is to use MFM and take the IHM based approach, in

which:

• The MD PnP supervisor queries each device periodically.

• If a device fails to respond for n consecutive cycles, the supervisor sounds an alarm to notify

medical staff that device X has failed to communicate

• The MD PnP supervisor sends periodic heart beats to the highly reliable MFM.

• If the MFM fails to receive heartbeat from the MD PnP supervisor, then MFM sounds a local

alarm indicating that the supervisor has failed to respond and displays the recent commands.
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Figure 6.23: Extended Fault Tree Analysis for the MD PnP Virtual Front Panel

• Medical staff must enable all the local alarms in individual devices and restart the MD PnP

supervisor and go through all the safety checks.

Virtual front panel/ remote configuration

The extended fault tree for this component is shown in Figure 6.23. The root of this tree is unsafe

device configuration, which is remotely generated by this MD PnP component. This may include

incorrect setting of therapeutic devices such as ventilator, unsafe IV medication dosage, or incorrect

cutoff threshold values for monitoring devices. Therefore, it is critical to detect crash of the MD PnP

supervisory loop, using methods such as IHM protocol along with MFM. When crash of MD PnP

components is detected by MFM, a local alarm must be sounded to get the attention of medical staff.

The alarm would indicate that the remote front panel has crashed and the devices must be locally set
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by medical staff.

Autonomous control

The autonomous control component is responsible for implementing safety interlocks and physiolog-

ical closed loop controls. Verifying the logical correctness of this component is critical. The safety

interlock can prevent unsafe interaction between devices and treatment actions. One example is the

safety interlock between an oxygen controller and surgical laser in the airway laser surgical scenario.

Absence of such interlocks can directly endanger patient safety. In the case of closed loop control,

settings of therapeutic devices and IV medication are automatically controlled based on the current

readings from medical sensors. Therefore, incorrect control values can lead to unsafe therapeutic con-

figuration.

The execution of safety interlock and closed loop control steps can be interrupted when MD PnP

platform crashes and as shown in Figure 6.24 may lead to unsafe device operation. The near term

generic solution is to use the IHM open loop safety approach. Each step of the interlock protocol must

have a timed acknowledgment or an alarm will be raised by the MD PnP supervisor, which is in turn

monitored by the highly reliable MFM. However, it shall be user’s responsibility to verify the interlock

protocol together with IHM open loop safety approach, because currently there is no known general

proof that the generic open-loop safety protocol will be compatible with all possible interlock logics.

6.5 A Generic Approach for Safety Analysis of the MD PnP Systems

In this section we look at the steps of a safety analysis procedure for the generic MD PnP system. We

have looked at examples of potential safety hazards in clinical environments caused by incorrect and

unsafe medical device configuration. Figure 6.25 presents a general categorization of such potential

safety hazards. We consider three main sources of safety hazards: 1) unsafe monitoring configuration,

2) unsafe therapeutic configuration, and 3) unsafe interaction between monitoring and therapeutic con-

figurations. We have populated a subset of branches to demonstrate the general hierarchy. The brain

damage hazard explained in the previous section is an example of a hazard caused by an unsafe thera-

peutic configuration, specifically incorrect ventilator device setting. An example of interaction hazard
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is the surgical fire hazard that is caused by unsafe interaction of two therapeutic devices: ventilator and

surgical laser.

Step1: For each clinical scenario, enumerate the potential safety hazards and study the unsafe con-

figuration causing each hazard. As described in the previous section, use the extended fault tree to

demonstrate the system behavior leading to hazardous situations. Figure 6.26 shows a generic ex-

tended fault tree for the MD PnP system with reliable device adapters. The tree includes Subtree 4.1,

which was presented in Figure 6.10(a).

Step 2: Determine if there is a causal chain from the MD PnP components in the system to any

unsafe configuration causing the safety hazard. The root of this tree, indicated by Unsafe Device

Configuration, encompasses different safety hazards caused by unsafe device configuration. For each

clinical scenario, detailed information about specific device configuration and safety hazards substitutes

for this term in the generic tree. As presented in the example scenarios, there are potential paths from

the MD PnP components to unsafe configuration which ultimately results in a safety hazard. Note

that this is true for clinical scenarios, in which the medical devices are directly manipulated by the

MD PnP components. For example, in airway laser surgical scenario the MD PnP supervisor controls

and coordinates the actions to turn on, turn off and change the settings of ventilator (oxygen supply)

and surgical laser. Therefore, failure of any MD PnP component potentially leads to an unsafe device

configuration and ultimately surgical fire or brain damage.

For clinical cases in which the medical devices are directly manipulated by the MD PnP components,

we use an open-loop safe approach to prevent the failure of the MD PnP components from contributing

to potential safety hazards. We discussed two different approaches: Automated Open-Loop Safety and

IHM Open-Loop Safety.

Step 3 & 4 for Automated Open-Loop Safe Approach: Recommend an automated open-loop

safe solution and redraw the extended fault tree for each safety hazard. In the automated protocol,

we require highly reliable device adapters. A set of commands, including timed safety actions, are

sequentially sent to medical devices. At each step, we wait for an acknowledgment from the device

before sending the subsequent commands. When sending a command to move a device into a state,

which is only temporarily safe, first a safety timed action is sent to the device. This action will be taken

by the device if the MD PnP supervisory loop becomes open, and will move the device to a safe state
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after the specified time elapses. For example, in the laparoscopic cholecystectomy scenario, a timed

safety action, indicating that the ventilator must be resumed after a specific time period, is sent to the

ventilator. When the device acknowledges that the timer to resume the ventilator is set up, the MD

PnP supervisor sends the command to turn off the ventilator. Note that moving the ventilator to the

off state is only temporarily safe; therefore, the open loop safe protocol takes the safety precautions

before sending the corresponding command. Refer to Figures 6.7 and 6.13 for of message sequence

communicated between different components of the automated open-loop safe MD PnP system. This

approach ensures that the failure of the supervisory loop at any step during the communication will not

leave the system in an unsafe configuration, given the initial device configuration is safe. The main

components of the automated open-loop safe MD PnP system is shown in Figure 6.3.

At the last step of safety analysis procedure, we redraw the extended fault tree for each safety hazard.

The therapeutic configuration subtree for automated open-loop safe system, Subtree 3.2, was presented

in Figure 6.8(a). Figures 6.27(a), 6.27(b), and 6.27(c) show the extended fault trees for alarm hazards.

We name these three Subtree 2.1, Subtree 2.2, and Subtree 2.3, respectively. Using these subtrees,

we draw Subtree 2 for unsafe monitoring configuration in the automated open-loop safe MD PnP

system (Figure 6.28). Putting together the monitoring and therapeutic subtrees, we have the general

extended fault tree fort automated open-loop safe MD PnP system in Figure 6.29. As presented in

Subtree 3.2 and Subtree 2, the automated open loop safe supervisor may fail. However, the open loop

safe protocol is any-step safe; the open-loop safe supervisor always ensures that the MD PnP device has

received the timed safety action before moving to a transient safe state. Moreover, the device adapters

are assumed to be highly reliable devices. Therefore, if the supervisory loop becomes open, the adapter

will move the device into a safe state. In conclusion, assuming the initial configuration is safe, failure

of the supervisory loop at any step of the handshaking protocol will not result in unsafe ventilator

configuration. Finally, the addition of AND gate on top of MD PnP and open-loop safe subbranches

(depicted by dashed blue rectangles in Figure 6.29) results in removal of all paths to the root.

Step 3 & 4 for IHM Open-Loop Safe Approach: Recommend an integrated human-machine open-

loop safe solution and redraw the extended fault tree for each safety hazard. The main components of

an IHM-based open-loop safe MD PnP system are shown in figure 6.4. The MFM must be highly

reliable, and should have its own power supply and a built-in alarm. The interface between timer and
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Figure 6.30: Extended Fault Tree Analysis of IHM Open-loop Safe MD PnP System

the MD PnP supervisor should be wired; USB port is one example. The medical device adapters, in this

design, only need to be cleared as reliable. Figures 6.9(a) and 6.15(a) show the sequence of messages

communicated between the different components of IHM open-loop safe MD PnP system for the first

two clinical examples.

At the last step, we redraw the fault tree for each safety hazard considering the IHM open-loop

safety approach in place. The subtrees for MD PnP system with reliable device adapters (Subtree 4.1)

and IHM open-loop safe system (Subtree 4.2) have been presented in Figures 6.10(a) and 6.10(b),

respectively. Figure 6.30 shows the general extended fault tree for the IHM open-loop safe MD PnP

system, drawn using these subtrees. The addition of highly reliable MFM and the AND gate on top

of MD PnP and IHM open-loop safe subbranches (depicted by dashed blue rectangles in Figure 6.30)

results in removal of all paths to the root.
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6.6 Summary

As noted on the Medical Device Plug-and-Play (MD PnP) program’s website, adoption of medical

device interoperability opens the door to significantly mitigate the preventable medical errors. The

goal of this program is to develop the technological foundation to design the next generation medical

systems. In an MD PnP system, medical devices are plugged in as needed, information from different

sources are fused, and medical actions are coordinated by providing an integrated clinical environment

(ICE).

On the other hand, the MD PnP middleware and applications run on top of commercial comput-

ing and communication platforms. There are no approved platforms by any agency that support plug

and play. This is because plug and play could generate new configurations not considered during the

approval process. Furthermore, all existing commercial platforms include a disclaimer indicating that

these platforms are not designed to be used for safety critical systems and applications. Therefore, we

need to consider its failure modes and the safety impacts on intended medical applications.

This document provides the guidelines to assist users to safely use the MD PnP system, which

typically consists of a commercial platform not designed for safety critical applications. We have

illustrated how to determine if the planned MD PnP system usage is a causal factor in the known safety

hazards of a medical procedure. We used extended fault tree for safety analysis of MD PnP systems.

The need for safety engineering expertise and domain knowledge is known as a limiting factor in the

use of fault tree analysis. Ensuring comprehensiveness of fault trees is a challenging task. In complex

systems, it is possible to miss some system behavior, which can contribute to the safety hazards not

presented in the analysis but exists in real world systems. Thus, for safety critical MD PnP system, the

extended fault tree analysis should be approved.

Should the MD PnP usage be a causal factor of safety hazards, we provided guidelines to transform

the configuration so that it is no longer a causal factor. We discussed long term and near term solutions:

• The long solution requires device makers to support simple timed safety actions.

• The near term solutions for existing medical devices is to use a Medical Failover Manager (MFM)

to remind users to perform the timed safety actions.
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When the MD PnP system’s output are used to manipulate safety critical medical devices, we recom-

mend using MFM and following the IHM handshaking protocol, even when the MD PnP sends safety

critical medical devices commands, which are first reviewed and approved by medical staff. Keeping

an accurate record for what the MD PnP supervisor has done will be invaluable for post operation

analysis, especially settling disputes if any. Hence, MFM’s record system should be protected from

tampering by unauthorized users.

6.7 Research Publications

The chapter is being prepared for submission to Journal of Medical Systems:

• M. Rahmaniheris, L. Sha, and Sandy Weininger ”A Framework for the Safe Use of MD PnP

Systems”

The following is an earlier publication of our research on safety of MD PnP systems, which are

developed using commercial computation and communication equipments:

• C. Kim, M. Sun, M. Rahmaniheris and L. Sha, ”How to Reliably Integrate Medical Devices

Over Wireless Network”, 9th Annual IEEE Communications Society Conference on Sensor,

Mesh and Ad Hoc Communications and Networks (SECON), 2012 [93]
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Chapter 7

Discussion & Future Work

In this thesis, we have proposed an organ-centric pathophysiology-based modeling paradigm, where

we translate the medical text into executable interactive disease and organ automata. This is possible

because disease and organ states are already discretized by the medical community, for example, dif-

ferent stages of cancer, diabetes, heart diseases, etc. We model the patient state and different disease

stages according to pathophysiology of organ systems, which describes how each of the organ functions

are affected by the disease. Furthermore, the diagnosis and treatment are organized for each stage. We

studied two applications: cardiac arrest and sepsis. The developed models are then integrated into a

model-driven best practice guidance system. We have conducted a preliminary clinical evaluation in an

ACLS training class at Carle hospital, to validate the clinical correctness and usefulness of the cardiac

arrest models and our model-driven resuscitation guidance system.

Many of our major clinical requirements originate from an important subset of IOM recommenda-

tions [2, 94]. According to the feedbacks from domain experts, we believe that the proposed system

can reduce preventable medical errors by addressing one of the important recommendations by this in-

stitute: ”avoid reliance on memory and vigilance” (p.170 [2]). Furthermore, we believe our system can

help with adherence to best practice monitoring and treatment plans. This specifically addresses one of

the common errors made in resuscitation of cardiac arrest, failure to anticipate the next step [61].

The proposed medical knowledge representation and modeling methodology must be able to model

different diseases in acute care. Initially, we have used the cardiac arrest case study when developing
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our model. However, to evaluate the applicability of our proposed modeling paradigm, different dis-

eases or acute care scenarios must be considered. A more complex case study such as sepsis, which is

a life-threatening organ dysfunction caused by a regulated host response to infection, can be extremely

useful in evaluating the applicability of modeling paradigm. It should be noted that we are collaborating

with Carle hospital ICU on the development of a best practice sepsis guidance system.

Despite all the capabilities and potentials of our proposed modeling paradigm, there are several

important limitations that deserve consideration. They may seem to be out of our scope; nonetheless,

we believe discussing these issues may provide the reader with a more clear understanding of scope

and focus of this thesis. Furthermore, we plan on addressing some of the issues as part of our future

work.

7.1 Model’s Level of Fidelity

The models in stateflow and UPPAAL are very abstract and do not cover all physiological dynamics

of the organ function, we need to consider how they can track the organ state with sufficient fidelity.

Following that, we must explain how we determine ”What is sufficient fidelity?”. Furthermore, if some

organs are modeled with more detail and others with cumulative/aggregate state models, one might

wonder how this multi-scale modeling does not lose the necessary fidelity and how it allows us to focus

on the primary organs.

The models developed according to our current approach, are used to improve compliance with best

practice. To reach this goal, the model must remind the medical staff of the best practice monitoring

and treatment guidelines needs to be performed as the patient state changes. Therefore, we define

the model level of fidelity as the degree to which the model can help encode and track the critical

changes in physiological functions of different organ systems that physician needs to know so he/she

can follow best practice monitoring and treatment guidelines. We determine the sufficient fidelity,

based on physician’s input and best practice literature for each case study. To ensure the sufficient

fidelity of the model, when constructing the models we apply a set of development guidelines, such as

the following:

• If the physician only wants to know about the degree of renal insufficiency, we aggregate the

140



information regarding the kidney pathophysiology as degree of insufficiency

• Different concurrent machines are used to track simultaneous changes

• Actionable states allows us to encode the critical changes that require medical staff to perform a

new action

We then validate the sufficient fidelity of the models through clinical simulation, which allows our

physician collaborators to validates the clinical (fidelity) requirements against the simulated models.

7.2 Variability and Uncertainty

An important challenge in the domain of clinical modeling is accounting for variability of pathophys-

iological processes (and observed signals in terms of rates/thresholds) both within the same patient (at

different times of the day, under medication, etc.) and across the patient population. Such variability

must be expressed (in terms of the signals, thresholds and distributions of rates) and the models must

be calibrated to capture pathophysiological states with some confidence. This is not an easy question,

however, we need to discuss how variability, and uncertainty in general, can be handled throughout the

model.

The current approach only partially addresses this challenge by allowing the user to configure the

cutoff thresholds in the beginning. However, additional information are most likely required to account

for the variability among different patients as well the same patient in different contexts. Furthermore,

the information required to determine these values might not be available at configuration time.

We believe this issue can be addressed effectively by developing parametric models. The variability

mostly affects the definition of transitions between different pathophysiological states. The fixed state

transition guards can be substituted with functions of patient-specific parameters, to cover the variabil-

ity across the patient population, or more fine-grained patient state parameters, to cover the variability

for the same patient. The parameters may include age, gender, existing chronic diseases, medications,

treatment history for the past n hours, etc. At the beginning, the system can ask the attending physician

to enter the values for these parameters; throughout the care process they can be updated as new patient

information becomes available.
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The choice of parameters and function definitions (how each of these parameters affect the transition

guards) are clinical knowledge. The model can encode them, only if such knowledge exist. They can

be extracted from best practice or provided by physicians. Additionally, calibration, that is systematic

adjustment of parameter choices and transition function definitions, can be performed offline with

the help of our physician collaborators. However, note that the goal of our models is not improving

the fidelity of pathophysiological process or calibrating them. We just encode the available medical

knowledge.

7.3 Hysteresis in the Model

The current models detect changes in pathophysiological states when the corresponding state vari-

ables cross some predefined thresholds. However, this may result in hysteresis, that is the lagging of an

effect (change in physiological measurements) behind its cause (organ insufficiency), in the model.

Note that predictive models is out of our scope; therefore, we limit ourselves to quantifying the delay

distribution from the state change to the observed signal crossing a threshold, for the case studies. Using

the available time kinetics of different pathophysiological processes, we can calculate the time elapsed

from onset of the insufficiency (when measurement crosses the baseline), to the time the corresponding

measurement crosses the predefined threshold in our model.

As an example we use creatinine kinetics in renal insufficiency [95]. Let G be the generation rate

of creatinine; C, the serum creatinine concentration; V , the volume of distribution of creatinine ; and

K, creatinine clearance. Note that K is different for each patient and for the same patient, it decreases

rapidly, as the degree of renal insufficiency grows. The creatinine level can be computed at time t using

the following formula:

C(t) = G/K + [C(0)�G/K] ⇤ e�Kt/V

The time required for serum creatinine to increase from C(0) to C(t) can be described by the fol-

lowing formula:

t = �V/K ⇤ ln[(C(t)�G/K)/(C(0)�G/K)]

When renal function is normal K 2 [0.87 � 1.39 dL/min]. When renal insufficiency develops K

can drop to 0.5 dL/min and for severe renal insufficiency can drop below 0.15 dl/min. G 2 [0.4�2.0
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dL/min] but can decrease when renal insufficiency develops.

Using the above formula we can, for example, estimate the time delay from the point moderate

renal insufficiency has developed (creatinine = 3.8mg/dL) until the threshold in our renal model is

crossed (creatinine = 5.0 mg/dL); K is set to 0.15 dL/min; G to 1.5 dL/min, and V to 400 dL:

t = �400/0.15 ⇤ ln[(5.0� 10.0)/(3.8� 10.0)] ' 530 minutes ' 8 hours

7.4 Early Identification of At-Risk Patients

As mentioned above, predictive models are out of scope of this thesis. However, we also believe that

developing probabilist organ-centric models can be extremely useful for early identification of at-risk

patients. A great example of such use cases is sepsis. Every hour of delay in treatment of septic patients

reduces the survival rate by 8% [96]. By adjusting the extent and frequency of monitoring for at-risk

patients sepsis can be detected and managed as early as possible. Since frequent monitoring for every

patient is not feasible and cost effective, the identification of at-risk patients can reduce the cost of care

as well.

We believe using the combination of dynamic Bayesian networks and state machines to represent and

track patient state can greatly improve the effectiveness of sepsis screening and management process.

Bayesian Network (BN) is a probabilistic graphical model that represents a set of random variables and

their conditional dependencies via a directed acyclic graph [97]. Dynamic BN (DBN) is a Bayesian

network, which relates variables to each other over adjacent time steps [98]. Several techniques based

on BN and DBN have been proposed for screening and management of sepsis [99], [100], [101]. How-

ever, they often categorize the patients into septic and non-septic categories. No further information on

patient state or monitoring guidelines are provided for the latter category. Furthermore, the networks

developed and used in these techniques may become complex and unmanageable as more clinical cri-

teria for sepsis screening is added to improve the prediction performance.

Using state-based Bayesian analysis, we can develop modular Bayesian networks and encode differ-

ent sub-networks in different pathophysiological states. We then calculate the risk of a patient moving

toward an insufficiency state. Combining the risk-based analysis with rate calculation (how fast the

patient is deteriorating) the model can provide useful information regarding patient state before the
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thresholds are actually crossed. The guidelines on extent and frequency of monitoring can also be

encoded in the states. In this way, the screening and monitoring frequency and extent can be auto-

matically adjusted as the patient state changes. For conditional probability distribution initialization

existing epidemiological data may be used [102].

7.5 Medical System Safety

One of the potential benefits of our approach that can be exploited in the future is linking local

medical device (ICE) system [50] to the developed pathophysiology-based models and have settings/-

monitor values automatically communicated. Note that we may still require the human in the loop but

integrating our executable models with ICE system allows automating getting and sending medical de-

vice interface data. As shown in Figure 7.1, the model-driven guidance system can interface with ICE

supervisor. Note that the suspected patient state(s) and the corresponding guidelines are displayed for

the attending physician; they can confirm the patient state(s) suggested by the system or choose a dif-

ferent diagnosis. If confirmed, the subset of corresponding best practice guidelines involving medical

devices, can be translated to device settings and sent out to the ICE supervisor.

In this thesis, we assume that the medial best practice guidelines would produce the best clinical out-

come and our work assist medical staff to avoid unintended deviations from these guidelines. However,

as noted by Dr. Sandy Weininger,

Assuring the safety of automated medical systems requires addressing many level of gover-

nance and control, such as the practice of medicine, disease states and physiology, device

states and responses. Linking all of these together (in some kind of mixed mode simulation)

will be necessary in the future to assess the system performance as they are too complex to

validate in vivo.

Our modeling approach can be incorporated in such mixed-mode simulation, encoding and tracking

the disease and pathophysiological state information according to best practice guidelines as well as

physician belief at each state. These are indeed serious challenges that should be addressed in the

future.
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Figure 7.1: Model Integration into Local Medical Device (”ICE”) System

7.6 User Acceptance

Medicine is complex and physician often needs to make decisions under subjective uncertainty.

Trust can greatly affect the reliance on the guidance provided by our system. Trust in automation,

or system-generated guidelines in our case, develops according to the information available [103].

Providing information on model’s confidence in its generated guidance could foster acceptance/trust.

As part of our future work, we will compute context-aware probability and risk values for different

pathophysiological states encoded in the model, using state-based Bayesian analysis. Furthermore, we

will identify the minimum required clinical data that must be available for each guideline item. The

system can then update its confidence in the corresponding guideline item as additional clinical data

becomes available, since new data may provide further evidence supporting the generated guidance.

Another way in which, trust can be further derived is from an understanding of the underlying

mechanisms or observation of the system behavior [104]. We must provide an intuitive representation

of not only the state of patient, but also the guidance process state (current and last n states). We can also

display the process of generating the guideline items by revealing intermediate states/results in a way
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that can be easily understood by medical staff. In other words, we supplement the displayed guidance

with ”What the Machine is Thinking?”. Similar to flight control systems, we can also display the safe

and effective next treatment actions and the corresponding parameters (treatment safety envelope).

The chosen actions by medical staff can be overlaid on the safety envelope, for visual representation of

potential deviations.

146



Bibliography

[1] Martin A Makary and Michael Daniel. Medical error the third leading cause of death in the us.
Bmj, 353:i2139, 2016.

[2] Linda T. Kohn, Janet M. Corrigan, and Molla S. Donaldson. To err is human, building a safer
health system, 1999.

[3] Orit Manor-Shulman, Joseph Beyene, Helena Frndova, and Christopher S Parshuram. Quanti-
fying the volume of documented clinical information in critical illness. Journal of critical care,
23(2):245–250, 2008.

[4] https://www.ecri.org/press/Pages/ECRI-Institute-Announces-Top-10-Health-Technology-
Hazards-for-2015.aspx.

[5] Mark A Musen, Blackford Middleton, and Robert A Greenes. Clinical decision-support systems.
In Biomedical informatics, pages 643–674. Springer, 2014.

[6] Una Geary and Una Kennedy. Clinical decision-making in emergency medicine. Emergencias,
22:56–60, 2010.

[7] Haiyan Gao, Ann McDonnell, David A Harrison, Tracey Moore, Sheila Adam, Kathleen Daly,
Lisa Esmonde, David R Goldhill, Gareth J Parry, Arash Rashidian, et al. Systematic review and
evaluation of physiological track and trigger warning systems for identifying at-risk patients on
the ward. Intensive care medicine, 33(4):667–679, 2007.

[8] http://statecharts.org/.

[9] Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on uppaal. In Formal methods
for the design of real-time systems, pages 200–236. Springer, 2004.

[10] http://www.mdpnp.org.

[11] http://study.com/academy/lesson/selective-attention-definition-examples-quiz.html.

[12] Michael Imhoff and Silvia Kuhls. Alarm algorithms in critical care monitoring. Anesthesia &
Analgesia, 102(5):1525–1537, 2006.

[13] Michael Imhoff, Silvia Kuhls, Ursula Gather, and Roland Fried. Smart alarms from medical
devices in the or and icu. Best Practice & Research Clinical Anaesthesiology, 23(1):39–50,
2009.

147



[14] Andrew Y-Z Ou, Yu Jiang, Po-Liang Wu, Lui Sha, and Richard B Berlin. Preventable medical
errors driven modeling of medical best practice guidance systems. Journal of medical systems,
41(1):9, 2017.

[15] Po-Liang Wu, Dhashrath Raguraman, Lui Sha, Richard B Berlin, and Julian M Goldman. A
treatment validation protocol for cyber-physical-human medical systems. In Software Engi-
neering and Advanced Applications (SEAA), 2014 40th EUROMICRO Conference on, pages
183–190. IEEE, 2014.

[16] Po-Liang Wu, Lui Sha, Richard B Berlin, and Julian M Goldman. Safe workflow adaptation and
validation protocol for medical cyber-physical systems. In Software Engineering and Advanced
Applications (SEAA), 2015 41st Euromicro Conference on, pages 464–471. IEEE, 2015.

[17] Mor Peleg, Samson Tu, Jonathan Bury, Paolo Ciccarese, John Fox, Robert A Greenes, Richard
Hall, Peter D Johnson, Neill Jones, Anand Kumar, et al. Comparing computer-interpretable
guideline models: a case-study approach. Journal of the American Medical Informatics Associ-
ation, 10(1):52–68, 2003.

[18] Paul A De Clercq, Johannes A Blom, Hendrikus HM Korsten, and Arie Hasman. Approaches for
creating computer-interpretable guidelines that facilitate decision support. Artificial intelligence
in medicine, 31(1):1–27, 2004.

[19] Ian N Purves. Prodigy: implementing clinical guidance using computers. Br J Gen Pract,
48(434):1552–1553, 1998.

[20] Samson W Tu, Mark A Musen, et al. Modeling data and knowledge in the eon guideline archi-
tecture. Studies in health technology and informatics, (1):280–284, 2001.

[21] Mor Peleg, Aziz A Boxwala, Omolola Ogunyemi, Qing Zeng, Samson Tu, Ronilda Lacson,
Elmer Bernstam, Nachman Ash, Peter Mork, Lucila Ohno-Machado, et al. Glif3: the evolu-
tion of a guideline representation format. In Proceedings of the AMIA Symposium, page 645.
American Medical Informatics Association, 2000.

[22] John Fox, Nicky Johns, Colin Lyons, Ali Rahmanzadeh, Richard Thomson, and Peter Wilson.
Proforma: a general technology for clinical decision support systems. Computer methods and
programs in biomedicine, 54(1):59–67, 1997.

[23] Silvia Miksch, Yuval Shahar, and Peter Johnson. Asbru: a task-specific, intention-based, and
time-oriented language for representing skeletal plans. In Proceedings of the 7th Workshop on
Knowledge Engineering: Methods & Languages (KEML-97), pages 9–19. Milton Keynes, UK,
The Open University, Milton Keynes, UK, 1997.

[24] Hl7 rim: an incoherent standard. http://www.hl7.org/implement/standards/rim.cfm.

[25] Charles N MEAD Gunther SCHADOW. The hl7 reference information model under scrutiny.
In Ubiquity: technologies for better health in aging societies: proceedings of MIE2006, volume
124, page 151. IOS Press, 2006.

[26] Donna L Hudson. Medical expert systems. Wiley Encyclopedia of Biomedical Engineering,
2006.

148



[27] Shusaku Tsumoto and Hiroshi Tanaka. Automated discovery of medical expert system rules
from clinical databases based on rough sets. In KDD, pages 63–69, 1996.

[28] Donna L Hudson and Maurice E Cohen. Fuzzy logic in medical expert systems. Engineering in
Medicine and Biology Magazine, IEEE, 13(5):693–698, 1994.

[29] Steen Andreassen, Finn V Jensen, and Kristian G Olesen. Medical expert systems based on
causal probabilistic networks. International journal of bio-medical computing, 28(1):1–30,
1991.

[30] Igor Kononenko. Machine learning for medical diagnosis: history, state of the art and perspec-
tive. Artificial Intelligence in medicine, 23(1):89–109, 2001.

[31] George Hripcsak, Peter Ludemann, T Allan Pryor, Ove B Wigertz, and Paul D Clayton. Ratio-
nale for the arden syntax. Computers and Biomedical Research, 27(4):291–324, 1994.

[32] Peter Szolovits, Ramesh S Patil, and William B Schwartz. Artificial intelligence in medical
diagnosis. Annals of internal medicine, 108(1):80–87, 1988.

[33] Susan Rea, Jyotishman Pathak, Guergana Savova, Thomas A Oniki, Les Westberg, Calvin E
Beebe, Cui Tao, Craig G Parker, Peter J Haug, Stanley M Huff, et al. Building a robust, scalable
and standards-driven infrastructure for secondary use of ehr data: the sharpn project. Journal of
biomedical informatics, 45(4):763–771, 2012.

[34] Lisa Kelly, Bonnie Smith, Mark Davenport, and Bradley Scott. Presenting patient information
by body system, December 10 2012. US Patent App. 13/709,478.

[35] Sholom M Weiss, Casimir A Kulikowski, Saul Amarel, and Aran Safir. A model-based method
for computer-aided medical decision-making. Artificial intelligence, 11(1-2):145–172, 1978.

[36] Leon J Osterweil, George S Avrunin, Bin Chen, Lori A Clarke, Rachel Cobleigh, Elizabeth A
Henneman, and Philip L Henneman. Engineering medical processes to improve their safety.
In Situational Method Engineering: Fundamentals and Experiences, pages 267–282. Springer,
2007.

[37] Lori A Clarke, George S Avrunin, and Leon J Osterweil. Using software engineering technology
to improve the quality of medical processes. In Companion of the 30th international conference
on Software engineering, pages 889–898. ACM, 2008.

[38] Aaron G Cass, AS Lerner, Eric K McCall, Leon J Osterweil, Stanley M Sutton, and Alexander
Wise. Little-jil/juliette: a process definition language and interpreter. In Software Engineering,
2000. Proceedings of the 2000 International Conference on, pages 754–757. IEEE, 2000.

[39] Stefan Christov, Bin Chen, George S Avrunin, Lori A Clarke, Leon J Osterweil, David Brown,
Lucinda Cassells, Wilson Mertens, et al. Formally defining medical processes. Methods of
Information in Medicine, 47(5):392, 2008.

[40] Bin Chen, George S Avrunin, Elizabeth A Henneman, Lori A Clarke, Leon J Osterweil, and
Philip L Henneman. Analyzing medical processes. In Proceedings of the 30th international
conference on Software engineering, pages 623–632. ACM, 2008.

149



[41] Gerard Holzmann. Spin model checker, the: primer and reference manual. Addison-Wesley
Professional, 2003.

[42] George S Avrunin, Lori A Clarke, Leon J Osterweil, Stefan C Christov, Bin Chen, Elizabeth A
Henneman, Philip L Henneman, Lucinda Cassells, and Wilson Mertens. Experience modeling
and analyzing medical processes: Umass/baystate medical safety project overview. In Proceed-
ings of the 1st ACM international health informatics symposium, pages 316–325. ACM, 2010.

[43] Donald J Reifer. Software failure modes and effects analysis. IEEE Transactions on reliability,
28(3):247–249, 1979.

[44] Thomas DeLong. Fault Tree Manual, 1970. Master’s Thesis, Texas A&M University.

[45] W. S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie. Fault Tree Analysis, Methods, and
Applications:A Review. IEEE Transactions on Reliability, R-34:194–203, 1985.

[46] Stefan C Christov, George S Avrunin, and Lori A Clarke. Considerations for online deviation
detection in medical processes. In Software Engineering in Health Care (SEHC), 2013 5th
International Workshop on, pages 50–56. IEEE, 2013.

[47] George S Avrunin, Lori A Clarke, Leon J Osterweil, Julian M Goldman, and Tracy Rausch.
Smart checklists for human-intensive medical systems. In Dependable Systems and Networks
Workshops (DSN-W), 2012 IEEE/IFIP 42nd International Conference on, pages 1–6. IEEE,
2012.

[48] Stefan C Christov, Heather M Conboy, Nancy Famigletti, George S Avrunin, Lori A Clarke,
and Leon J Osterweil. Smart checklists to improve healthcare outcomes. In Proceedings of the
International Workshop on Software Engineering in Healthcare Systems, pages 54–57. ACM,
2016.

[49] http://www.mdpnp.org/uploads/Oct12 MD PnP White Paper.pdf.

[50] ASTM F2761-09: Essential safety requirements for equipment comprising the patient-centric
integrated clinical environment (ICE) Part 1: General requirements and conceptual model, 2009.

[51] http://sourceforge.net/projects/mdpnp/.

[52] Insup Lee, George J. Pappas, Rance Cleavland, John Hatcliff, Bruce H. Krogh, Peter Lee, Harvey
Rubin, and Lui Sha. High-Confidence Medical Device Software and Systems. IEEE Computer,
39:33–38, April 2006.

[53] John Hatcliff, Andrew King, Insup Lee, Alasdair MacDonald, Anura Fernando, Michael Robkin,
Eugene Vasserman, Sandy Weininger, and Julian M Goldman. Rationale and architecture prin-
ciples for medical application platforms. In Cyber-Physical Systems (ICCPS), 2012 IEEE/ACM
Third International Conference on, pages 3–12. IEEE, 2012.

[54] Po-Liang Wu, Woochul Kang, Abdullah Al-Nayeem, Lui Sha, Richard B Berlin Jr, and Julian M
Goldman. A low complexity coordination architecture for networked supervisory medical sys-
tems. In Proceedings of the ACM/IEEE 4th International Conference on Cyber-Physical Sys-
tems, pages 89–98. ACM, 2013.

150



[55] Andrew King, Sam Procter, Dan Andresen, John Hatcliff, Steve Warren, William Spees, Raoul
Jetley, Paul Jones, and Sandy Weininger. An Open Test Bed for Medical Device Integration and
Coordination. In Proceedings of the 2009 International Conference on Software Engineering
(ICSE), pages 141–151, 2009.

[56] Andrew King, Dave Arney, Insup Lee, Oleg Sokolsky, John Hatcliff, and Sam Procter. Proto-
typing Closed Loop Physiologic Control with the Medical Device Coordination Framework. In
Proceedings of the 2010 ICSE Workshop on Software Engineering in Health Care, pages 1–11.
ACM Special Interest Group on Software Engineering, 2010.

[57] David Arney, Julian M. Goldman, Susan F. Whitehead, and Insup Lee. Synchronizing an X-
ray and Anesthesia Machine Ventilator: A Medical Device Interoperability Case Study. In
Proceedings of International Conference on Biomedical Electronics and Devices, pages 52–60,
2009.

[58] David Arney, Sebastian Fischmeister, Julian M. Goldman, Insup Lee, and Robert Trausmuth.
Plug-and-Play for Medical Devices: Experiences from a Case Study. Biomedical Instrumenta-
tion & Technology, 43(4):313–317, 2009.

[59] David Arney, Miroslav Pajic, Julian M. Goldman, Insup Lee, Rahul Mangharam, and Oleg
Sokolsky. Toward patient safety in closed-loop medical device systems. In Proceedings of the 1st
ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS ’10, pages 139–148,
New York, NY, USA, 2010. ACM.

[60] J-L Vincent, Rui Moreno, Jukka Takala, Sheila Willatts, Arnaldo De Mendonça, Hajo Bruining,
CK Reinhart, PeterM Suter, and LG Thijs. The sofa (sepsis-related organ failure assessment)
score to describe organ dysfunction/failure. Intensive care medicine, 22(7):707–710, 1996.

[61] Nancy Strzyzewski. Common errors made in resuscitation of respiratory and cardiac arrest.
Plastic Surgical Nursing, 26(1):10–14, 2006.

[62] C. Guo, S. Ren, Y. Jiang, P. L. Wu, L. Sha, and R. B. Berlin. Transforming medical best practice
guidelines to executable and verifiable statechart models. In 2016 ACM/IEEE 7th International
Conference on Cyber-Physical Systems (ICCPS), pages 1–10, April 2016.

[63] Maryam Rahmaniheris, PoLiang Wu, Lui Sha, and Richard R Berlin. An organ-centric best
practice assist system for acute care. In Computer-Based Medical Systems (CBMS), 2016 IEEE
29th International Symposium on, pages 100–105. IEEE, 2016.

[64] http://www.heart.org/HEARTORG/.

[65] www.heart.org/acls.

[66] Arif Khwaja. Kdigo clinical practice guidelines for acute kidney injury. The Nephron journals,
120(4), 2012.

[67] https://uofi.box.com/s/45lsgunlfbw626avzgytk3d91cwz8w8y.

[68] https://uofi.box.com/s/r238jjypoyhnz03nveh87lxrekvhy9xw.

[69] http://carle.org.

151



[70] Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load index): Results of
empirical and theoretical research. Advances in psychology, 52:139–183, 1988.

[71] Mervyn Singer, Clifford S Deutschman, Christopher Warren Seymour, Manu Shankar-Hari, Djil-
lali Annane, Michael Bauer, Rinaldo Bellomo, Gordon R Bernard, Jean-Daniel Chiche, Craig M
Coopersmith, et al. The third international consensus definitions for sepsis and septic shock
(sepsis-3). Jama, 315(8):801–810, 2016.

[72] Andrew Rhodes, Laura E Evans, Waleed Alhazzani, Mitchell M Levy, Massimo Antonelli, Ri-
card Ferrer, Anand Kumar, Jonathan E Sevransky, Charles L Sprung, Mark E Nunnally, et al.
Surviving sepsis campaign: International guidelines for management of sepsis and septic shock:
2016. Intensive care medicine, 43(3):304–377, 2017.

[73] Yu Jiang, Lui Sha, Maryam Rahmaniheris, Binhua Wan, Mohammad Hosseini, Pengliu Tan, and
Richard B Berlin Jr. Sepsis patient detection and monitor based on auto-bn. Journal of medical
systems, 40(4):1–10, 2016.

[74] David Gallimore. Understanding the drugs used during cardiac arrest response. Nurs Times,
102(23):24–6, 2006.

[75] David S Wishart, Craig Knox, An Chi Guo, Dean Cheng, Savita Shrivastava, Dan Tzur, Bijaya
Gautam, and Murtaza Hassanali. Drugbank: a knowledgebase for drugs, drug actions and drug
targets. Nucleic acids research, 36(suppl 1):D901–D906, 2008.

[76] European Resuscitation Council et al. Part 6: advanced cardiovascular life support. section 6:
pharmacology ii: agents to optimize cardiac output and blood pressure. european resuscitation
council. Resuscitation, 46(1-3):155, 2000.

[77] MG Vermette and SF Perry. Effects of prolonged epinephrine infusion on blood respiratory and
acid-base states in the rainbow trout: Alpha and beta effects. Fish physiology and biochemistry,
4(4):189–202, 1988.

[78] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Lectures
on Concurrency and Petri Nets, pages 87–124. Springer, 2004.

[79] Maryam Rahmaniheris, Lui Sha, Richard B. Berlin, and Julian M. Goldman. Towards a cyber-
medical model for device configuration safety in acute care. In Healthcare Innovation Confer-
ence (HIC), 2014 IEEE, pages 118–124, Oct 2014.

[80] Maryam Rahmaniheris, PoLiang Wu, Lui Sha, Richard B. Berlin, and Julian M. Goldman. An
organ-centric best practice assist system for acute care. Submitted to Journal of Translational
Engineering in Health and Medicine, 2015.

[81] Maryam Rahmaniheris, Lui Sha, Richard B Berlin, and Julian M Goldman. Towards a cyber-
medical model for device configuration safety in acute care. In Healthcare Innovation Confer-
ence (HIC), 2014 IEEE, pages 118–124. IEEE, 2014.

[82] Maryam Rahmaniheris, Woochul Kang, Lue-Jane Lee, Lui Sha, Richard B Berlin, and Julian M
Goldman. Modeling and architecture design of an mdpnp acute care monitoring system. In
Computer-Based Medical Systems (CBMS), 2013 IEEE 26th International Symposium on, pages
514–515. IEEE, 2013.

152



[83] Woochul Kang, PoLiang Wu, Maryam Rahmaniheris, Lui Sha, Richard B Berlin, and Julian M
Goldman. Towards organ-centric compositional development of safe networked supervisory
medical systems. In Computer-Based Medical Systems (CBMS), 2013 IEEE 26th International
Symposium on, pages 143–148. IEEE, 2013.

[84] Richard Snodgrass. The interface description language: definition and use. Computer Science
Press, Inc., 1989.

[85] International Electrotechnical Commission et al. International standard iec 601-1-2 medical
electrical equipment part 1: General requirements for safety 2. Collateral standard: Electro-
magnetic compatibility-requirements and tests, 1993.

[86] Iso/ieee11073 point-of-care medical device communication standard. 1st ed., 2006. Available at
www.ieee1073.org.

[87] Iso/ieee11073personal health devices standard (x73-phd). 1st ed., 2009. IEEE Standards Asso-
ciation webpage. Available at http://standards.ieee.org/.

[88] Bernhard Kaiser, Catharina Gramlich, and Marc Frster. State/Event Fault Trees- A Safety
Analysis Model for Software-Controlled Systems. Reliability Engineering & System Safety,
92(11):1521 – 1537, 2007.

[89] http://mdpnp.org/MD PnP Program Clinical S.html.

[90] http://www.mdpnp.org/uploads/ASTM F2761-09 ICE Annex B Clinical Scenarios.pdf.

[91] http://www.mdpnp.org/uploads/Capitol Hill NSF CPS MD PnP 9July09.pdf.

[92] Ann S Lofsky. Turn your alarms on. APSF Newsletter: The Official Journal of the Anesthesia
Patient Safety Foundation, 19(4):43, 2005.

[93] Cheolgi Kim, Mu Sun, Maryam Rahmaniheris, and Lui Sha. How to reliably integrate medical
devices over wireless. In Sensor, Mesh and Ad Hoc Communications and Networks (SECON),
2012 9th Annual IEEE Communications Society Conference on, pages 85–87. IEEE, 2012.

[94] Crossing the quality chasm: A new health system for the 21st century, 2001.

[95] Sushrut S Waikar and Joseph V Bonventre. Creatinine kinetics and the definition of acute kidney
injury. Journal of the American Society of Nephrology, 20(3):672–679, 2009.

[96] Anand Kumar, Daniel Roberts, Kenneth E Wood, Bruce Light, Joseph E Parrillo, Satendra
Sharma, Robert Suppes, Daniel Feinstein, Sergio Zanotti, Leo Taiberg, et al. Duration of hy-
potension before initiation of effective antimicrobial therapy is the critical determinant of sur-
vival in human septic shock. Critical care medicine, 34(6):1589–1596, 2006.

[97] Finn V Jensen. An introduction to Bayesian networks, volume 210. UCL press London, 1996.

[98] Paul Dagum, Adam Galper, and Eric Horvitz. Dynamic network models for forecasting. In
Proceedings of the eighth international conference on uncertainty in artificial intelligence, pages
41–48. Morgan Kaufmann Publishers Inc., 1992.

153



[99] Senthil K Nachimuthu and Peter J Haug. Early detection of sepsis in the emergency department
using dynamic bayesian networks. In AMIA Annual Symposium Proceedings, volume 2012,
page 653. American Medical Informatics Association, 2012.

[100] Eren Gultepe, Hien Nguyen, Timothy Albertson, and Ilias Tagkopoulos. A bayesian network for
early diagnosis of sepsis patients: a basis for a clinical decision support system. In Computa-
tional Advances in Bio and Medical Sciences (ICCABS), 2012 IEEE 2nd International Confer-
ence on, pages 1–5. IEEE, 2012.

[101] Laura J Moore, Stephen L Jones, Laura A Kreiner, Bruce McKinley, Joseph F Sucher, S Rob
Todd, Krista L Turner, Alicia Valdivia, and Frederick A Moore. Validation of a screening tool for
the early identification of sepsis. Journal of Trauma and Acute Care Surgery, 66(6):1539–1547,
2009.

[102] Andrew Lever and Iain Mackenzie. Sepsis: definition, epidemiology, and diagnosis. British
Medical Journal, 7625:879, 2007.

[103] John D Lee and Katrina A See. Trust in automation: Designing for appropriate reliance. Human
Factors: The Journal of the Human Factors and Ergonomics Society, 46(1):50–80, 2004.

[104] Kasey A Ackerman, Donald A Talleur, Ronald S Carbonari, Enric Xargay, Benjamin D Seefeldt,
Alex Kirlik, Naira Hovakimyan, and Anna C Trujillo. Automation situation awareness display
for a flight envelope protection system. Journal of Guidance, Control, and Dynamics, 2017.

154


