
 
 

 
 
 
 
 

INVESTIGATION OF THE ROLE OF CUZD1-STAT5 SIGNALING IN MAMMARY 
GLAND DEVELOPMENT AND BREAST CANCER 

 
 
 
 
 
 
 

BY 
 

JANELLE MAPES 
 
 
 
 
 
 
 

DISSERTATION 
 

Submitted in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy in Molecular and Integrative Physiology 

in the Graduate College of the  
University of Illinois at Urbana-Champaign, 2017 

 
 
 

Urbana, Illinois 
 
 
 
Doctoral Committee: 
  
 Professor Milan Bagchi, Chair 
 Professor Indrani Bagchi 
 Professor Benita Katzenellenbogen 
 Associate Professor Lori Raetzman 
 Assistant Professor Sayeepriyadarshini Anakk 



ii 
 

ABSTRACT 

 

In the mammary gland, genetic circuits controlled by the hormones, estrogen, progesterone and prolactin 

(PRL), act in concert with pathways regulated by the epidermal growth factor (EGF) family to control the 

growth and morphogenesis of this tissue during puberty, pregnancy and lactation.  However, the precise 

molecular mechanisms that integrate these signaling pathways are unclear.  In this study, we identified 

CUZD1 (CUB and zona pellucida-like domain containing protein- 1) as a novel mediator of PRL signaling 

in steroid hormone-primed mouse mammary gland and undertook an examination of its role in growth and 

differentiation of this tissue during pregnancy.  CUZD1 expression is markedly induced in steroid-primed 

mammary epithelial cells in response to PRL treatment. Cuzd1-null mice exhibited a striking impairment 

in ductal branching and alveolar development during pregnancy, resulting in a subsequent defect in 

lactation.  Interestingly, phosphorylation and activation of STAT5, a transcription factor that mediates PRL 

signaling, was absent in Cuzd1-null mammary tissue during pregnancy and lactation. We also noted that 

the expression of epiregulin (EREG), an EGF family growth factor regulated directly by STAT5, is 

suppressed in Cuzd1-null mammary gland. Protein interaction studies, using flag-tagged CUZD1 expressed 

in HC11 mouse mammary epithelial cells, revealed that CUZD1 associates with a multi-protein complex 

containing JAK1/JAK2 and STAT5. Elevated expression of CUZD1 in HC11 cells stimulated 

phosphorylation and nuclear translocation of STAT5. Chromatin immunoprecipitation experiments 

indicated that STAT5 and CUZD1 co-occupy the same regulatory region of the Ereg gene. Over-expression 

of CUZD1 in mammary epithelial HC11 cells induced tumorigenic characteristics, such as substrate 

independent growth and migration. Furthermore, HC11-Cuzd1 cells formed mammary tumors in vivo 

following orthotopic injection into nude and Balb/C mice. Mammary tumor cells derived from these 

animals showed elevated levels of phosphorylation and nuclear localization of STAT5 and consequent 

activation of the EGF signaling pathway. Blockade of JAK/STAT5 signaling through the use of a STAT5 

inhibitor markedly reduced the production of the EGF family growth factors and inhibited PRL-induced 

tumor cell proliferation in vitro. It also impaired the progression of CUZD1-driven mammary tumorigenesis 

in vivo.  Collectively, our findings suggest that CUZD1 plays an important role in mammary epithelial cell 

proliferation during mammary gland development and in tumorigenesis by facilitating JAK-STAT5 

signaling and subsequent production of growth factors, such as EREG. CUZD1, therefore, emerges as a 

critical mediator of PRL action that controls mammary alveolar development during pregnancy and 

lactation and cell proliferation during tumorigenesis. 

 

 

 



iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my family and friends 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

TABLE OF CONTENTS 

 

CHAPTER 1: Signaling Networks in Mammary Gland Development and Tumorigenesis .............. 1 

 

CHAPTER 2: CUZD1 is a Critical Mediator of the JAK/STAT5 Signaling Pathway that  

Controls Mammary Gland Development during Pregnancy .............................................................. 17 

 

CHAPTER 3: Aberrantly High Expression of the STAT5 Signaling Regulator CUZD1 in  

Mammary Epithelium Leads to Breast Tumorigenesis ...................................................................... 52 

 

APPENDIX A: CUZD1 in Mammary Gland Biology: Perspective and Future Studies ................... 79 

 

 

 

 

 

 

 

 

 



1 
 

 

 

 

 

 

CHAPTER 1 

 

 

Signaling Networks in Mammary Gland Development and Tumorigenesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 



2 
 

Mammary Gland Development 

 

The mammary gland is a unique organ in that its development is not completed in utero, but occurs during 

adulthood (Fig. 1.1). In the normal mammary gland, marked ductal and alveolar development occurs during 

puberty, pregnancy and lactation (1–3). From birth until puberty, the mammary gland consists of a 

rudimentary ductal tree within the fat pad. Ductal outgrowth during puberty is marked by the formation of 

terminal end buds (TEBs), structurally composed of cap cells that form the outer layer around body cells 

(Fig. 1.2) (4,5). TEBs are sites of high cell proliferation that fill up the fat pad with a tree-like structure 

through elongation and branching of the ducts. Adequate proliferation of the mammary epithelium is 

required for ductal outgrowth, branching and the formation of alveolar structures. During pregnancy, further 

ductal arborization and alveolar proliferation occur. Functional differentiation of the mammary gland into 

a milk-producing structure is accomplished near parturition, and lactation ensues shortly after parturition 

(Fig 1.2) (5). At the end of lactation, involution of the gland occurs with massive cell death and remodeling 

of the tissue, returning it to the simple ductal structure observed in the mature virgin. Circulating steroid 

hormones 17β-estradiol (E) and progesterone (P), the peptide hormone prolactin (PRL), and growth factors 

belonging to the epidermal growth factor (EGF) family orchestrate the development, maturation and 

regression of the mammary gland (Fig. 1.3) (3,6–8). 

 

Epidermal Growth Factor Signaling During Mammary Gland Development 

 

There are ten members of the EGF family of ligands; transforming growth factor-α (TGF-α), amphiregulin 

(AREG), epigen (EPGN), betacellulin (BTC), heparin-binding EGF (HB-EGF), epiregulin (EREG), and 

four subtypes of neuregulins (NRG1-4) (9,10). TGF-α, AREG, EPGN, BTC, HB-EGF, EREG, and NRG1 

are all expressed in the mammary gland at various stages of development (11). TGF-α, BTC, and HB-EGF 

are present in the mammary epithelium before puberty through mid-pregnancy. At puberty, AREG and 

EREG levels rise and remain high during early pregnancy. AREG is essential for terminal end bud 

proliferation and normal ductal outgrowth during puberty (12,13). During lactation, NRG1 is required for 

alveolar cell proliferation and differentiation (14). Members of the EGF family of ligands bind to specific 

receptors called ErbBs (Fig. 1.4) (15). There are four members of the ErbB family: ErbB1 (EGFR), ErbB2, 

ErbB3, and ErbB4 (10). The structure of ErbB receptors includes a transmembrane domain, a ligand binding 

domain in the extracellular region and a kinase domain in the cytoplasmic region. Upon ligand binding, 

these receptors form homo- or heterodimers, which leads to the activation of the kinase domain. 

Autophosphorylation of specific tyrosines in the tail region of each receptor triggers binding of signaling 

molecules within the cytoplasm, which in turn initiate downstream signaling events (16).  
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The differential heterodimerization of ErbB family members induced by binding of specific ligands can 

account for the varied effects of an activated receptor. The presence of specific ligands and increased 

activation of their cognate receptors can be identified in various stages of mammary gland growth and 

development. ErbB1 is strongly expressed in TEBs and adjacent stroma during ductal outgrowth following 

the onset of pubertal hormone expression (10). It is known that ErbB1 in the stroma is activated by AREG 

during ductal elongation, but the functional redundancy of the ErbB1 ligands results in varied 

developmental defects in their absence. ErbB1 expression is absolutely required for normal mammary 

development (17). ErbB2 in the epithelium plays a role in ductal elongation and branching, as well as 

cellular differentiation at parturition (18–20). ErbB3 is important for the morphology of TEBs and cell 

survival during mammary outgrowth (21,22). During pregnancy, ErbB4 in the mammary epithelium is 

required for adequate proliferation, functional differentiation of alveolar units and lactation (10,23,24). The 

mechanism by which ErbB4 influences alveolar differentiation of the mammary gland was previously 

unclear. Recent data published by Mapes et. al. indicate a novel role for CUZD1 in modulating the function 

of ErbB4 during alveologenesis (25).  In summary, ErbB signaling is crucial during mammary development, 

and the removal or disruption of this signaling can have deleterious effects.  

 

Prolactin Signaling Network During Mammary Gland Development 

 

Circulating levels of PRL are elevated during pregnancy, and the most well-known function of PRL is to 

control proliferation and differentiation of the mammary epithelium in preparation for lactation. The 

primary site of PRL secretion is the pituitary gland; however, the presence of extrapituitary PRL synthesis 

is well documented and has been confirmed in the brain, decidua, mammary gland and lymphocytes (26,27). 

PRL signals through the prolactin receptor (PRLR) and induces a signaling cascade through the Janus 

Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) pathway (Fig. 1.5) (1,28–32). 

Binding of PRL to PRLR induces phosphorylation of the receptor, followed by phosphorylation of JAKs. 

Phosphorylated JAKs recruit STATs, which are subsequently phosphorylated at critical tyrosine residues. 

Phosphorylated STATs then disassociate from the JAK/PRLR complex, dimerize and move to the nucleus 

where they act as transcription factors. Injection of PRL into mature virgin mice did not increase expression 

of Stat5, but induced phosphorylation of STAT5 in the mammary gland (33). There are two isoforms of 

STAT5, STAT5a and STAT5b. Although they share 95% similarity, STAT5a is the most prominent isoform 

active during mammary gland development (34).  PRL signaling through the JAK/STAT5 pathway during 

late pregnancy and lactation initiates and maintains expression of the milk protein genes Wap and β-casein 

(32,35,36). Expression of these genes is essential for terminal differentiation of the mammary epithelium 

into functional milk-producing alveoli.  
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The development of transgenic mice has given us great insight into the importance of the PRL signaling 

pathway in mammary gland development. Prl(-/-) mice display normal ductal extension and arborization of 

the mammary epithelium during puberty, but do not undergo alveologenesis; the mammary ducts end as 

blunt tubes (37). As these mice are lacking proper differentiation of the mammary epithelium, they are 

unable to lactate. Prlr(-/-) females are also infertile due to inadequate maintenance of the corpus luteum, and 

although Prlr(-/-) females supplemented with progesterone were able to maintain pregnancy, the mammary 

epithelium did not form the alveolar buds necessary for lactation (38). Jak1(-/-) mice die within 24h of birth 

due to a defect in lymphopoiesis and a failure to nurse (39). Jak2(-/-) mice also die at embryonic day 12.5 

because of disrupted erythropoiesis (40). Conditional Jak2(-/-) mice, created with the use of a mammary 

gland-specific MMTV-cre, exhibit defective proliferation and differentiation of the mammary epithelium 

during pregnancy and fail to lactate (41). There are two isoforms of STAT5 in the mammary gland, STAT5a 

and STAT5b, both of which are activated by the PRL signaling pathway (42). However, loss of STAT5a 

results in failed lactation due to a lack of alveologenesis with no compensation observed by STAT5b (Fig. 

1.6) (43). Collectively, these data clearly outline the importance of the PRL-STAT5a signaling pathway in 

the development and functional differentiation of the mammary gland. 

 

EGF Signaling and Breast Cancer     

 

The search for targeted approaches to treat breast cancer is not a recent undertaking; we have been 

examining tumors for estrogen receptor status to predict patient response to tamoxifen treatment for almost 

50 years (44,45). The ubiquitous use of the EGF signaling pathway by cancer cells has provoked the 

extensive study of this pathway and the development of many drugs targeting the ErbB receptors (46–48). 

Aberrant signaling through the EGF pathway has been established as a common factor in many human 

neoplasms, including those in the gastrointestinal tract, brain, lung, and breast (49). Overexpression of 

ErbB1, or the EGF ligands that signal through this receptor, results in spontaneous tumor development in 

mouse models and predicts large tumor size and reduced survival in breast cancer patients (48,50–52). 

Human trials relying only on overexpression of ErbB receptors as predictors for response to specific 

receptor inhibition have shown varied outcomes that are likely due to an autocrine signaling loop 

established by excessive EGF ligands or ErbB receptor mutations (53). A monoclonal antibody targeting 

HER2 (trastuzumab) has been in clinical use to treat patients with HER2-positive breast tumors since 1998, 

commonly in conjunction with chemotherapeutics (35,54–56). Treatment with ErbB inhibitors has also 

been shown to increase response to anti-estrogen treatment in hormone-resistant breast cancers (57,58). The 

role of ErbB4 in tumorigenesis is not as well defined, though recent studies indicate that overexpression of 

ErbB4 leads to tumor formation in mice (24). We provide evidence that the growth of tumors caused by 
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overexpression of CUZD1 is due to activated signaling through the EGF pathway via the upregulation of 

EGF ligands and activation of ErbB1 and ErbB4. These data propose CUZD1 as a potential drug target to 

decrease ErbB signaling in patients with breast tumors. 

 

PRL and Breast Cancer 

 

The association between the PRL signaling pathway and breast cancer has been well established in 

experimental models. Transgenic mice overexpressing rat PRL develop spontaneous mammary tumors 

within 11-15 months of age (59). PRL has also been shown to have growth stimulatory effects on mammary 

tumors induced by the carcinogen DMBA (60,61). Inversely, we can examine the effect of inhibition of 

PRL secretion by treatment with bromocriptine, which reduces serum PRL by inhibiting secretion by 

lactotrophs in the pituitary gland. Bromocriptine treatment reduced incidence of mammary tumorigenesis 

and fostered regression of existing tumors (62). Collectively, PRL plays an important role in promoting 

tumorigenesis as well as breast cancer progression. 

 

The effect of PRL in breast tumorigenesis was long believed to be a phenomenon present in rodent models 

only. This is largely due to the observation that inhibition of pituitary PRL secretion in humans through 

bromocriptine treatment did not affect mammary tumor growth (63). This may be the result of the 

observation that human mammary cells can make their own PRL, an occurrence not present in mice. During 

mammary tumorigenesis, this local secretion of PRL may compensate for the lack of pituitary PRL during 

bromocriptine treatment (26,64). Researchers are now finding that PRL plays similar roles in the rodent 

and human during breast tumorigenesis, establishing this signaling pathway as an important player in breast 

cancer (65).     

 

Integrated effects of PRL and EGF in mammary gland development and breast cancer 

 

Ample evidence exists to suggest a collaboration of PRL and ErbB-mediated signaling pathways during 

mammary gland development and breast tumorigenesis (66–68). Upon EGF administration, STAT5 is 

activated to a similar degree as seen with PRL treatment (69,70). Furthermore, active ErbB4 has been shown 

to phosphorylate STAT5 in the mammary epithelium. ErbB4-null mice exhibit disrupted alveologenesis 

and a dramatic reduction in the expression of Wap, a well-known downstream gene target of STAT5 (71). 

Further investigation revealed STAT5 is functionally inactive due to a loss of phosphorylation in the 

mammary epithelium of ErbB4-null mice. These signaling pathways induce STAT5 activation during mid-

lactation to control alveolar proliferation and differentiation as well as tumorigenesis. However, current 
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understanding is lacking as to how these two pathways are linked on a molecular level. Recent data from 

our lab positions CUZD1 as an integrator of PRL and ErbB signaling, establishing CUZD1 as a critical link 

between these two essential pathways in mammary gland biology (25). Furthermore, deletion of genes in 

this pathway that are essential for mammary gland development during pregnancy and lactation, including 

Prlr, Jak2, Stat5a, ErbB4, and Cuzd1, result in similar phenotypic defects (Fig. 1.7) (23,25,43,66,72). These 

data support the importance of these signaling molecules in mammary gland development and 

tumorigenesis. 

 

Identification of CUZD1 

 

Our laboratory identified CUB and zona pellucida-like domain-containing protein 1 (CUZD1) as a regulator 

of mammary epithelial cell proliferation, which led us to investigate the molecular pathways of CUZD1. 

We implemented in vitro and in vivo models to address this question. Our data indicate that CUZD1 

regulates the PRL signaling pathway, influencing STAT5 phosphorylation and downstream gene 

expression to induce proliferation and differentiation of the mammary epithelium during pregnancy and 

lactation. Abatement of epithelial proliferation in the Cuzd1(-/-) mammary gland raised a very interesting 

question: would the overexpression of Cuzd1 lead to an increase in proliferation and possible 

tumorigenesis? New data concerning the mechanism of action of CUZD1 in mammary epithelial cells 

allowed us to gain insight into how it is influencing tumorigenesis. Our results indicate that hyperactivation 

of STAT5 may be playing a role in Cuzd1-induced tumorigenesis. We used pimozide, a STAT5 

phosphorylation inhibitor, to impede the downstream effects of Cuzd1 overexpression and disrupt 

tumorigenesis.  

 

Gene ontology analysis of Cuzd1 associates it’s gene products with cell division, cell cycle, and cell 

proliferation (73). It is, however, not known how CUZD1 brings about these biological processes at a 

molecular level. Structurally, CUZD1 is composed of two tandem CUB domains, a ZP domain and a 

putative transmembrane domain (74,75). Presently, little information exits describing the function of these 

domains, but they are often found in proteins that regulate developmental processes (76,77). Studies 

illustrating the presence of CUZD1 in particular tissues have provided minimal functional analysis. We 

previously reported that CUZD1, also known as estrogen-regulated gene 1 (ERG1), is an estrogen-regulated 

gene in the rodent reproductive tract (74). Additionally, expression of Cuzd1 has been identified in the 

pancreas, epididymis, human ovarian cancer cells, and human embryonic stem cells (78–82).  In terms of 

functional studies, Leong et al. demonstrated the importance of CUZD1 in cell growth and proliferation of 

a human ovarian cancer cell line and proposed a potential role of CUZD1 in chemotherapeutic resistance 
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(82,83). Efforts have also been made to develop serum-based assays using CUZD1 as a biomarker for 

ovarian cancer and pancreatic cancer, however controversial reports support the need for additional studies 

(82,84–90). Our recent work fills a large gap in the body of knowledge surrounding CUZD1 by detailing 

the molecular signaling pathway of CUZD1-induced proliferation in mammary epithelial cells and in breast 

tumorigenesis. This mechanistic insight into the role of CUZD1 in normal and neoplastic breast tissue is a 

significant contribution to the body of literature describing this molecule. 
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FIGURES 
 

 
Figure 1.1. Progression and stages of mammary gland development. Changes in mammary gland 
morphology are shown via mammary gland whole mount staining. Original image © Copyright Jacqueline 
Veltmaat (91). 
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Figure 1.2. Organization of mammary epithelial cells during development. The ductal epithelium 
expands during puberty at sites of high proliferation called terminal end buds. Alveolar proliferation and 
differentiation occurs during lactation. Original image: © 2015. Published by The Company of Biologists 
Ltd (5). 
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Figure 1.3. Hormonal control of mammary gland development. Elevation of specific circulating 
hormones control proliferation and differentiation of the mammary gland. Original image modified (3). 
 

 
Figure 1.4. ErbB signaling. EGF family ligands bind to ErbB receptors. Original image modified (15). 
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Figure 1.5. PRL signaling. PRL binds to PRLR and initiates phosphorylation of JAK1/2 and STAT5. 
Phosphorylated STAT5 translocates to the nucleus to bring about gene expression changes that induce 
proliferation or differentiation of mammary epithelial cells. ErbB4 can also phosphorylate STAT5 to induce  
nuclear translocation. Original image modified (1). 
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Figure 1.6. Role of STAT5 in mammary gland development. STAT5 plays an essential role in mammary 
gland development, primarily during pregnancy and lactation. Early loss of STAT5 results in a lack of 
mammary epithelial proliferation at the start of pregnancy, whereas loss of STAT5 during pregnancy arrests 
differentiation. Original image modified (92). 
 
 
 
 
 

 
Figure 1.7. Comparison of mutant mammary glands. Mammary gland sections from Prlr(-/-), Jak2(-/-), 
Stat5a(-/-), ErbB4(-/-), and Cuzd1(-/-) are phenotypically similar. All mice are unable to undergo the terminal 
differentiation necessary for lactation. Original images modified (23,25,43,66,72). 
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ABSTRACT 

 

In the mammary gland, genetic circuits controlled by estrogen, progesterone, and prolactin act in concert 

with pathways regulated by members of the epidermal growth factor family to orchestrate growth and 

morphogenesis during puberty, pregnancy and lactation. However, the precise mechanisms underlying the 

crosstalk between the hormonal and growth factor pathways remain poorly understood. We have identified 

the CUB and zona pellucida-like domain-containing protein 1 (CUZD1), expressed in mammary ductal and 

alveolar epithelium, as a novel mediator of mammary gland proliferation and differentiation during 

pregnancy and lactation. Cuzd1-null mice exhibited a striking impairment in mammary ductal branching 

and alveolar development during pregnancy, resulting in a subsequent defect in lactation. Gene expression 

profiling of mammary epithelium revealed that CUZD1 regulates the expression of a subset of the EGF 

family growth factors, epiregulin, neuregulin-1, and epigen, which act in an autocrine fashion to activate 

ErbB1 and ErbB4 receptors. Proteomic studies further revealed that CUZD1 interacts with a complex 

containing JAK1/JAK2 and STAT5, downstream transducers of prolactin signaling in the mammary gland. 

In the absence of CUZD1, STAT5 phosphorylation in the mammary epithelium during alveologenesis was 

abolished. Conversely, elevated expression of Cuzd1 in mammary epithelial cells stimulated prolactin-

induced phosphorylation and nuclear translocation of STAT5. Chromatin immunoprecipitation confirmed 

co-occupancy of phosphorylated STAT5 and CUZD1 in the regulatory regions of epiregulin, a potential 

regulator of epithelial proliferation, and whey acidic protein, a marker of epithelial differentiation. 

Collectively, these findings suggest that CUZD1 plays a critical role in prolactin-induced JAK/STAT5 

signaling that controls the expression of key STAT5 target genes involved in mammary epithelial 

proliferation and differentiation during alveolar development.  

 

AUTHOR SUMMARY 

 

In the mammary gland, genetic circuits controlled by the hormones, estrogen, progesterone, and prolactin, 

act in concert with pathways regulated by members of the epidermal growth factor family to orchestrate 

growth and morphogenesis during puberty, pregnancy and lactation. We have identified CUZD1 as a novel 

mediator of prolactin signaling in the steroid hormone-primed mouse mammary gland during pregnancy 

and lactation. Cuzd1-null mice exhibited a striking impairment in ductal branching and alveolar 

development during pregnancy, resulting in a subsequent defect in lactation. Administration of prolactin 

failed to induce proliferation of the mammary epithelium in Cuzd1-null mice. Protein binding studies 

revealed that CUZD1 interacts with downstream transducers of prolactin signaling, JAK1/JAK2 and 

STAT5. Additionally, elevated expression of Cuzd1 in mammary epithelial cells stimulated 
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phosphorylation and nuclear translocation of STAT5. CUZD1, therefore, is a critical mediator of prolactin 

that controls mammary alveolar development.  

 

INTRODUCTION 

 

In the mammary gland, development of an extensive ductal network during puberty and formation of 

lobuloalveolar units during pregnancy are critical events required for lactation. These complex 

developmental processes are regulated by a variety of signaling cues, including the steroid hormones 17β-

estradiol (E) and progesterone (P), the peptide hormone prolactin (PRL), and the epidermal growth factor 

(EGF) family of growth factors (1). During pregnancy and lactation, E, P, and EGF family members act in 

concert with PRL to induce alveologenesis, a process in which ductal epithelial cells undergo extensive 

proliferation and secretory differentiation (2,3).             

Circulating levels of PRL rise during pregnancy and promote proliferation and differentiation of the 

mammary epithelium in preparation for lactation (4-7). The prolactin receptor (PRLR) is a trans-membrane 

protein belonging to the cytokine receptor superfamily (8). Binding of PRL to PRLR triggers signaling 

events through the JAK/STAT5 pathway (9,10). Janus tyrosine kinase 1 (JAK1) and janus tyrosine kinase 

2 (JAK2), associated with PRLR, are rapidly phosphorylated upon PRL binding. Signal transducer and 

activator of transcription 5 (STAT5), which is phosphorylated following JAK activation, undergoes 

dimerization and localizes to the nucleus (9,11-13). The tyrosine phosphorylation of STAT5 is essential for 

DNA binding and transcriptional regulation (10). Activated STAT5 binds directly to the GAS motif 

(TTCnnnGAA) at target genes to regulate their transcription and promote proliferation and/or 

differentiation of the mammary epithelium during distinct phases of mammary gland development (11). It 

was reported that PRL signaling through JAK2/STAT5 activates cyclin D1 transcription and nuclear 

accumulation in proliferating mammary epithelial cells (14). Furthermore, STAT5a has been shown to 

regulate transcription of other mitogenic factors, such as the EGF family member epiregulin (15,16). 

Terminal differentiation of the mammary gland is defined by the expression of milk protein genes in 

preparation for lactation. STAT5 controls the expression of several of these genes, including whey acidic 

protein (Wap) and β-casein (Csn2), to induce functional differentiation of the alveolar epithelial cells 

(11,12,17-20). These observations established that STAT5 signaling is essential for proliferation and 

differentiation of the mammary gland. 

     

Ample evidence exists to suggest integrated effects of PRL and EGF receptor (ErbB) mediated signaling 

pathways during mammary gland development. Binding of specific EGF ligands induces differential 

heterodimerization of ErbB family receptors to stimulate specific intracellular signaling pathways, thereby 
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accounting for the varied effects of an activated receptor. Upon EGF administration, STAT5 is activated to 

a similar degree as seen with PRL treatment (3,20). Furthermore, active ErbB4 was shown to induce 

phosphorylation of STAT5 in the mammary epithelium (21). ErbB4(-/-) mice exhibit disrupted 

alveologenesis and a dramatic reduction in the expression of Wap and further investigation revealed that 

STAT5 phosphorylation is lost (21). These findings pointed to a possible link between signaling via EGF 

family receptors and STAT5 activation to control alveolar proliferation and differentiation, although the 

precise molecular basis of this crosstalk remains unclear.  

 

This study reports that CUZD1 is a novel mediator of PRL and EGF signaling in mammary epithelial 

proliferation and differentiation during pregnancy. This protein, also known as ERG1, Itmap1, or UO-44, 

was originally identified in our laboratory as an E-regulated gene in the rodent uterine epithelium and later 

reported in other tissues (22-25). CUZD1 contains a zona-pellucida (ZP)-like domain and two tandem CUB 

(Complement subcomponent /C1s, Uegf, Bmp1) motifs (Fig. 2.9A). There is presently little information 

concerning the functional significance of these motifs, although their presence is often noted in molecules 

involved in developmental processes (26,27). The mouse Cuzd1 gene shares strong sequence identity with 

its human ortholog, indicating functional conservation across species (25). Using a Cuzd1(-/-) mouse model 

and a combination of in vivo and in vitro approaches, we investigated the molecular pathways that are 

controlled by Cuzd1 in the mammary gland and uncovered a novel mechanism linking CUZD1 to the PRL 

and EGF family growth factor signaling pathways that guide epithelial proliferation and differentiation in 

the mammary gland during pregnancy.  

 

RESULTS 

 

CUZD1 controls alveolar morphogenesis during pregnancy and lactation 

 

We examined the expression of CUZD1 in the mammary glands of Cuzd1(+/-) and Cuzd1(-/-) mice at different 

stages of development: pubertal (5 weeks), late pregnancy (D18) and early lactation (L2). 

Immunofluorescence (IF) analysis of CUZD1 revealed no detectable expression in mammary tissue of 

Cuzd1(-/-) mice during development (Fig. 2.1, b, d, and f). CUZD1 was detected in the developing ductal 

epithelium of Cuzd1(+/-) mice at puberty (Fig. 2.1, a). CUZD1 immunostaining was also observed in both 

cytoplasmic and nuclear compartments of the ductal and alveolar epithelial cells of Cuzd1(+/-) mammary 

glands during alveologenesis at late pregnancy (Fig. 2.1, c). Prominent nuclear staining was seen during 

lactation (Fig. 2.1, e), indicating that CUZD1 may play a critical role during mammary gland development, 

particularly during pregnancy and lactation. 
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To investigate the functional role of CUZD1 in mammary gland development, we created Cuzd1(-/-) mice in 

which this gene is deleted from the mouse germ line by homologous recombination using mouse embryonic 

stem cells (Fig. 2.9B). The efficiency of gene deletion was confirmed by PCR analysis of genomic DNA 

(Fig. 2.9C) and northern blot analysis of Cuzd1 mRNA expression (Fig. 2.9D). The Cuzd1(-/-) females were 

fertile and delivered normal size litters. However, the majority of pups from Cuzd1(-/-) dams died within 72 

h of parturition and it was observed that they had insufficient milk in their stomachs. Almost all pups 

survived and grew normally when they were transferred to a foster dam immediately after birth. These 

results indicated that the Cuzd1(-/-) dams fail to produce an adequate amount of milk.  

 

To further examine the phenotypic defects in the Cuzd1(-/-) mice, morphological analyses of whole mounts 

of mammary glands were performed at different stages of development. In comparison to their Cuzd1(+/-) 

littermates, the expansion of the epithelial tree in Cuzd1(-/-) mice was delayed at puberty (6-weeks old) (Fig. 

2.2A, a and b). However, smooth muscle actin (SMA) and E-cadherin staining of Cuzd1(-/-) mammary 

glands at puberty indicate that there are no structural abnormalities in the cap or body cells of the terminal 

end buds (Fig. 2.10A, a-d) (28-29). The extent of ductal branching was modestly reduced in adult mutant 

females at estrous stage (10-weeks old) (Fig. 2.2A, c and d). During early pregnancy, mammary glands of 

mutant mice exhibited a severe deficiency in tertiary branching (Fig. 2.2A, e and f) and impaired alveolar 

development during late pregnancy (Fig. 2.2A, g and h) and lactation (Fig. 2.2A, i and j). Histological 

analysis of lactating Cuzd1(-/-) mammary glands revealed sparsely distributed alveolar units with disrupted 

epithelial structure in comparison to their Cuzd1(+/-) littermates (Fig. 2.2B, a-d). Collectively, these results 

indicated that the impairment in alveolar differentiation in Cuzd1(-/-) females during pregnancy and lactation 

leads to the deficiency in milk production. 

 

Loss of Cuzd1 impairs the ErbB signaling pathway in the mammary epithelium 

 

The impaired alveolar development in Cuzd1(-/-) mammary glands raised the possibility that CUZD1 is 

involved in the control of epithelial cell proliferation. To test this possibility, we monitored the mammary 

epithelial proliferation in Cuzd1(-/-) mice and Cuzd1(+/-) littermates during puberty and lactation. We 

employed IHC analysis using an antibody against Ki67, a widely-used marker for cellular proliferation. As 

expected, extensive cell proliferation was observed in the mammary ductal epithelia of non-pregnant 

pubertal Cuzd1(+/-) mice (Fig. 2.3A, a). There was a significant reduction in the number of proliferating 

ductal epithelial cells in the mammary glands of pubertal Cuzd1(-/-) mice (Fig. 2.3A, b). The difference in 

Ki67 positive cells at puberty is quantified in Fig. 2.3A, c. When epithelial proliferation was assessed in 

the lactating mammary gland, we again observed a dramatic decline in epithelial proliferation in Cuzd1(-/-) 
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mice (Fig. 2.3A, d and e). During puberty and pregnancy, Cuzd1(-/-) females maintained normal serum levels 

of E, P and PRL (Fig. 2.10B), indicating that tissue intrinsic factors rather than systemic hormonal 

disruptions caused by the loss of Cuzd1 are responsible for this defect in mammary gland proliferation. 

These results demonstrated that Cuzd1 plays a critical role in regulating side-branching and alveolar 

morphogenesis in female mice during pregnancy and lactation, in part by influencing pathways involved in 

mammary epithelial proliferation. 

 

To identify the pathways downstream of CUZD1, a microarray analysis was performed to compare the gene 

expression profiles of mammary epithelial cells isolated from Cuzd1(-/-) mice and their Cuzd1(+/-) littermates 

on day 18 of pregnancy. This microarray identified 411 transcripts that were altered (>2-fold) in the Cuzd1(-

/-) epithelium compared to the Cuzd1(+/-) epithelium (GEO Accession GSE30939). Prominent among the 377 

down-regulated transcripts were the mRNAs encoding three members of the EGF family, neuregulin-1 

(Nrg1), epiregulin (Ereg) and epigen (Epgn). Interestingly, no significant alteration was detected in the 

expression levels of transcripts of several other EGF-family growth factors, such as amphiregulin (Areg), 

epidermal growth factor (Egf), heparin binding epidermal growth factor (Hbegf), neurgulin-2 (Nrg2), 

neuregulin-3 (Nrg3) and neuregulin-4 (Nrg4). Gene expression changes of EGF family ligands were 

confirmed using real-time RT-PCR and analyzed for statistical significance (Fig. 2.3B).  Furthermore, IHC 

analysis of EPGN and NRG1 at lactation day 2 showed a substantial decline in these EGF ligands in Cuzd1(-

/-) mice (Fig. 2.3C, b and d). These data indicate that the deletion of Cuzd1 results in reduced expression of 

a specific subset of EGF family ligands in the mammary epithelium during late pregnancy.  

 

Binding of EGF ligands to ErbB receptors results in their activation via auto-phosphorylation of critical 

tyrosine residues, which subsequently serve as docking sites for downstream signaling molecules (30). 

While EREG binds to both ErbB1 and ErbB4, EPGN acts primarily via ErbB1. NRG1 binds to ErbB3 as 

well as ErbB4. We therefore, examined whether the observed alterations in the expression levels of Nrg1, 

Ereg and Epgn in the mammary tissue affected the ErbB receptor-mediated signaling. Mammary gland 

sections obtained from mice during late pregnancy were subjected to IHC, using antibodies directed against 

specific phosphorylated tyrosine residues critical for activation of ErbB1 (Tyr 1068), ErbB2 (Tyr 877), and 

ErbB4 (Tyr 1056). Abundant activating phosphorylation of ErbB1, ErbB2, and ErbB4 was observed in 

mammary epithelia of Cuzd1(+/-) mice, consistent with the proliferative activity seen in this tissue (Fig. 2.3D, 

a, c, and e). In contrast, pErbB1 and pErbB4 were markedly reduced in the Cuzd1(-/-) epithelium (Fig. 2.3D, 

b and d). Interestingly, phosphorylation of ErbB2 was not affected in the Cuzd1(-/-) epithelium (Fig. 2.3D, 

f). No alteration was observed in the total protein levels of ErbB1, ErbB2, and ErbB4 in mammary epithelia 

of these mice (Fig. 2.3D, insets). Collectively, these results indicated that CUZD1 is necessary f produce 
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the EGF family ligands, NRG1, EREG, and EPGN, which then function through ErbB receptor-mediated 

signaling pathways to control epithelial proliferation in the mammary gland during alveolar development. 

 

Cuzd1 controls the proliferation of mammary epithelial cells by modulating the ErbB signaling 

pathway  

 

We used HC11 cells, a non-transformed mammary epithelial cell line derived from pregnant mice, to 

examine the cell autonomous role of Cuzd1 (31). A lentiviral expression vector harboring a full-length 

cDNA encoding Cuzd1 or LacZ (control) was integrated into HC11 cells to generate stable cell lines which 

express constitutively elevated levels of Cuzd1 (HC11-Cuzd1) or β-galactosidase (HC11-LacZ) (Fig. 2.11, 

a and b). When HC11-Cuzd1 cells were subjected to a BrdU incorporation assay, they exhibited 

significantly higher rates of proliferation compared to control HC11-LacZ cells (Fig. 2.4A). These data 

provided evidence that Cuzd1-dependent mechanisms indeed promote proliferation of mammary epithelial 

cells.  

 

We next investigated whether CUZD1 controls the proliferation of HC11 cells by regulating the expression 

of the EGF growth factors. First, we examined the effects of Cuzd1 overexpression on the expression of the 

EGF family members. Significantly higher levels of Epgn, Ereg and Nrg1 transcripts were detected in 

HC11-Cuzd1 cells as compared to the HC11-LacZ cells (Fig. 2.4B). Conversely, siRNA-mediated 

attenuation of Cuzd1 mRNA expression in HC11 cells led to a marked reduction in the levels of Nrg1, Ereg, 

and Epgn mRNAs without significantly altering the levels of mRNAs encoding other EGF family ligands 

(Fig. 2.4C). To determine which ErbB receptors play a role in CUZD1-induced cell proliferation, we 

performed a knock down of ErbB receptors 1-4 in HC11-Cuzd1 cells using gene-specific siRNAs (Fig. 

2.12). Knock down of ErbB1, ErbB3 and ErBb4 resulted in a decrease in HC11-Cuzd1 cell proliferation as 

measured by a BrdU incorporation assay (Fig. 2.4D). We next wanted to determine if the loss of Cuzd1, 

and therefore the loss of specific EGF family ligands, led to a reduction in mammary epithelial cell 

proliferation. Using siRNA, we knocked down Cuzd1 in HC11 mammary epithelial cells and supplemented 

with EPGN or NRG1 ligands.  EPGN and NRG1 were both able to partially rescue proliferation of HC11 

cells as compared to the ligand treated control (Fig. 2.4E). Altogether, these data strongly supported the 

concept that CUZD1 controls the production of specific EGF family growth factors, which act via ErbB1, 

ErbB3 and ErbB4 to induce mammary epithelial cell proliferation.  
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CUZD1-mediated STAT5 signaling is necessary for differentiation of the mammary gland 

 

To further elucidate the molecular mechanism of CUZD1, we attempted to identify the cellular factors that 

interact with it. To achieve this goal, we created HC11 cells stably over-expressing recombinant FLAG 

epitope-tagged CUZD1 (HC11-3xFLAG-Cuzd1 cells). Soluble extracts of these cells were subjected to co-

immunoprecipitation using a FLAG antibody. The immunoprecipitated proteins were recovered and 

submitted for mass spectrometry. The LC/MS identified peptide fragments corresponding to multiple 

potential interaction partners of CUZD1, including JAK1 and JAK2, protein arginine methyltransferase 5 

and phosphoribosyl pyrophosphate synthetase 1.  

 

Since JAK1/2 signaling and subsequent STAT5 phosphorylation is critical for mammary gland 

development, we focused on the interactions between JAK1, JAK2, and CUZD1. Co-immunoprecipitation 

of JAK1 and JAK2 from HC11 cell lysates was confirmed using an IP for endogenous CUZD1 and Western 

blot analysis (Fig. 2.5A). Interestingly, we also detected a signal for phosphorylated STAT5 in the HC11 

cell immunoprecipitates (Fig. 2.5A). The presence of this complex of proteins was also confirmed using 

Western blot in HC11-3xFLAG-Cuzd1 cells (Fig. 2.13A). Although STAT5 was not identified as an 

interacting partner of CUZD1 in our proteomic analysis of the immunoprecipitate, it is conceivable that 

CUZD1 interacts directly with JAK1/JAK2, which exist in a larger cytosolic complex with STAT5.  

 

In response to signaling by hormones, such as prolactin, activation of JAK1/2 leads to activation of the 

transcription factors STAT5a and STAT5b, which control mammary epithelial cell proliferation and 

differentiation during alveologenesis (7,32). Though both STAT5a and STAT5b are present in the 

mammary gland, STAT5a is the dominant form phosphorylated and localized to the nucleus during 

pregnancy and lactation (18,33). We examined the status of the activating STAT5 phosphorylation (Tyr 

694) in the mammary glands of Cuzd1(-/-) mice at day 18 of pregnancy by IHC analysis. Total STAT5 

protein levels were unchanged in Cuzd1(-/-) mice compared to Cuzd1(+/-) (Fig. 2.5B a and b). However, we 

observed a striking loss of STAT5 phosphorylation in the mammary epithelia of these mice, whereas 

abundant pSTAT5 was present in the mammary epithelium of Cuzd1(+/-) littermates (Fig. 2.5B, c and d, e 

and f). STAT5 is known to directly regulate the expression of Wap and Csn2, two milk proteins secreted 

by differentiated epithelial cells (8,19). We postulated that the loss of STAT5 phosphorylation impairs 

STAT5-dependent gene expression, leading to the observed deficiency in milk production in Cuzd1(-/-) 

females. To test this notion, we analyzed the gene expression levels of Wap and Csn2. The levels of Wap 

and Csn2 transcripts were indeed markedly reduced in the mammary glands of Cuzd1(-/-) females during 
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lactation (Fig. 2.5C). These results formed the basis of our hypothesis that CUZD1-mediated signaling 

through JAK/STAT5 controls mammary epithelial cell differentiation.  

 

To further understand the functional significance of the interaction of CUZD1 with the JAK/STAT5 

pathway, we examined phosphorylation and localization of STAT5 and expression of direct transcriptional 

targets of pSTAT5 in HC11-Cuzd1 cells in response to PRL treatment. In this experiment, the HC11-Cuzd1 

cells were treated with vehicle or PRL and STAT5 phosphorylation/localization was analyzed using 

immunocytochemistry. We observed that pSTAT5 immunostaining was dramatically enhanced in HC11-

Cuzd1 cells (Fig. 2.5D, c and d) relative to HC11-LacZ (Fig. 2.5D, a and b) cells upon PRL treatment and, 

as expected, it was localized predominantly in the nucleus. PRL treatment of HC11-Cuzd1 cells did not 

result in a marked alteration in total STAT5 levels (Fig. 2.5D, e and f). The enhanced STAT5 

phosphorylation observed in HC11-Cuzd1 cells as compared to HC11-LacZ cells was also confirmed via 

Western blotting (Fig. 2.13B). These data are consistent with the concept that CUZD1 promotes PRL 

signaling by enhancing STAT5 phosphorylation and activation.  

 

Loss of Cuzd1 impairs prolactin-induced lobuloalveologenesis  

 

To investigate the role of CUZD1 in the PRL signaling pathway in vivo, virgin, pubertal Cuzd1(-/-) and 

Cuzd1(+/+) (wild type) mice were treated with E, P and PRL for 3 consecutive days to stimulate proliferation 

and differentiation of the mammary epithelium. To examine the gross morphological changes in the 

mammary epithelium following this hormonal treatment, whole mounts of mammary glands were 

performed. Compared to the vehicle control, Cuzd1(+/+) mice treated with E, P and PRL exhibited initiation 

of alveolar development (Fig. 2.6A, a and c). Conversely, Cuzd1(-/-) mice displayed a markedly reduced 

response to E, P and PRL treatment compared to vehicle control (Fig. 2.6A, b and d). Interestingly, we 

observed an elevated CUZD1 expression and nuclear localization in the mammary epithelium of Cuzd1(+/+) 

mice treated with E, P and PRL compared to vehicle-treated controls (Fig. 2.6B, a and c). As expected, this 

induction was absent in Cuzd1(-/-) mice (Fig. 2.6B, b and d).  

 

We also observed a robust phosphorylation of STAT5 and its nuclear localization in mammary epithelia of 

mice treated with E, P and PRL, which was absent in Cuzd1(-/-) mice (Fig. 2.6C, a-d). Consistent with data 

obtained in cell lines, the expression of EREG, a direct target of STAT5, which is induced in wild-type 

mice upon treatment with E, P, and PRL, was absent in Cuzd1(-/-) mice (Fig. 2.6D, a and b). Overall, these 

data support the concept that CUZD1 is necessary for transduction of PRL signaling through the JAK/STAT 

pathway to induce mammary epithelial gene expression during hormone-induced alveologenesis. 
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CUZD1 and STAT5 co-occupy regulatory regions of target genes 

 

CUZD1 has no nuclear localization sequence or DNA binding domain, but we observed that it was 

translocated to the nucleus upon stimulation with serum. We hypothesized that CUZD1 could be moving 

into the nucleus in association with pSTAT5. To investigate this possibility, HC11-3xFLAG-Cuzd1 cells 

were treated with a PRL/FBS/EGF cocktail, FBS, or a vehicle control to induce nuclear translocation of 

pSTAT5. Dual immunostaining was then performed to examine the cellular locations of pSTAT5 and 

CUZD1. In cells treated with the vehicle control, pSTAT5 and CUZD1 remained largely cytoplasmic (Fig. 

2.7A, a, d, and g). Upon stimulation with FBS or PRL/FBS/EGF, pSTAT5 and CUZD1 were colocalized 

in the nucleus (Fig. 2.7A, b-c, e-f, and h-i). Previous studies reported that STAT5 binds directly to 

regulatory regions of Ereg and Wap genes to regulate their transcription (15,16). We observed that the 

expression of Ereg and Wap genes were up-regulated upon treatment with PRL, and their expression was 

further elevated in Cuzd1-overexpressing HC11 cells (Fig. 2.7B). Based on the protein structure of CUZD1 

(Fig. 2.9A), there is no indication that CUZD1 binds to DNA, but we wanted to determine if CUZD1 and 

STAT5 remained in a complex when STAT5 is bound to DNA. To investigate this, we performed a ChIP 

re-ChIP using a STAT5-specific antibody followed by precipitation with anti-FLAG (M2) resin. 

Enrichment of regulatory elements in specific GAS sequences of Ereg, Wap, and Csn2 indicated that 

CUZD1 remains bound to STAT5 in the nucleus when STAT5 is acting as a transcription factor (Fig. 2.7C). 

In single ChIP experiments, we confirmed STAT5 binding at in the Ereg, Wap, and Csn2 GAS sequences 

(Fig. 2.14) as well as enrichment of these regulatory elements when we immunoprecipitated the FLAG-

CUZD1 fusion protein (Fig. 2.14). The authenticity of this result was confirmed by the absence of 

enrichment of the Wap, Csn2 and Ereg GAS sites when a FLAG ChIP was performed in HC11-Cuzd1 cells 

in which CUZD1 is not flag-tagged (Fig. 2.14). Collectively, our results indicated that, upon PRL-induced 

activation, the CUZD1-STAT5 complex translocates to the nucleus and interacts with target genes to bring 

about changes in gene expression that critically promote mammary epithelial cell proliferation and 

differentiation (Fig. 2.8). 

 

DISCUSSION 

 

E, P and PRL act in concert with the EGF family growth factors to govern mammary gland development 

during pregnancy and lactation (3,13). In this study, we provide evidence that CUZD1 is a novel regulator 

of STAT5 signaling in the steroid-primed mammary epithelium. Loss of Cuzd1 expression in mammary 

epithelial cells prevented in vivo phosphorylation of STAT5, resulting in a severe impairment in mammary 
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epithelial proliferation and differentiation, which disrupts alveologenesis and prevents milk production 

during lactation. 

 

A molecular link between CUZD1 and STAT5 phosphorylation has emerged from our study. 

Immunoprecipitation of CUZD1 from mammary epithelial cells followed by mass spectrometric and 

Western blot analyses revealed that CUZD1 is physically associated with several proteins, including 

JAK1/JAK2 and STAT5. Importantly, increased CUZD1 expression augmented PRL-induced 

phosphorylation as well as nuclear translocation of STAT5. The precise nature of CUZD1’s association 

with the JAK1/JAK2/STAT5 complex and the mechanism by which it promotes STAT5 phosphorylation 

are presently unclear. It is conceivable that CUZD1 potentiates JAK/STAT signaling downstream of PRLR 

activation by acting as an adaptor protein that aids in the recruitment of STAT5 to the PRLR/JAK complex. 

It may also act in an accessory role in stabilizing/enhancing phosphorylation of STAT5 by JAKs. 

Precedence for this hypothesis is based on literature describing the roles of effector proteins that alter 

signaling through this complex [34]. For example, c-Src has been shown to propagate PRL initiated 

JAK/STAT signaling in normal mammary tissue (35). Additionally, caveolin-1 (Cav-1) has been shown to 

inhibit the STAT5 signaling pathway by competitively binding to the tyrosine kinase domain of JAK2, 

preventing interaction and subsequent activation of STAT5 (36). 

 

Female mice lacking Prlr, Jak2, and Stat5 are characterized by severe defects in mammary 

lobuloalveologenesis during pregnancy and lack of milk production during lactation (14,20,33,37-39). The 

Cuzd1(-/-) mice phenocopy the mammary defects observed in these mice during pregnancy and lactation, 

lending further support to the concept that CUZD1 is functionally linked to the components of the 

PRLR/JAK/STAT5 pathway during lobuloalveolar development and lactation. 

 

The CUZD1 protein is localized in both cytoplasmic and nuclear compartments of mammary epithelial 

cells. When the mammary epithelial cells are grown in the absence of serum, CUZD1 is predominantly 

localized in the cytoplasm. Stimulation of these cells with media containing serum triggers nuclear 

translocation of CUZD1. This result is also recapitulated by adding a combination of PRL, EGF and serum 

to these cells. Since CUZD1 lacks a nuclear localization motif or a DNA binding domain, we predicted that 

its translocation to the nucleus is dependent on association with a transcription factor. Indeed, our results 

are consistent with the view that CUZD1 translocates to the nucleus in association with pSTAT5. We further 

demonstrated that CUZD1 is recruited along with pSTAT5 to the regulatory regions of key target genes, 

such as Ereg and Wap. It is plausible that EREG contributes to CUZD1-mediated epithelial proliferation 
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and alveolar expansion during pregnancy and lactation, as Ereg is a direct transcriptional target of STAT5 

and has been implicated in promoting growth and survival of breast cancer cells [40-42]. 

 

Our study showed that CUZD1 controls the production of a subset of EGF family growth factors, EREG, 

NRG1, and EPGN, in mammary epithelium during pregnancy. Mice lacking Nrg1 display pronounced 

defects in mammary alveologenesis with condensed alveoli and impaired alveolar outgrowth during 

pregnancy (43,44). Development of mutant mouse models showed that ErbB1, ErbB2, and ErbB3 play 

important roles in mammary ductal growth and fat pad penetration (45-48). ErbB4(-/-) mammary glands 

exhibited severe defects in alveolar proliferation and differentiation during pregnancy and lactation (21). 

Cuzd1(-/-) mammary glands showed impaired activation of ErbB1 and ErbB4 during pregnancy and 

lactation. These results are in accord with the hypothesis that the CUZD1-regulated growth factors, NRG1, 

EREG and EPGN, act primarily through ErbB1 and ErbB4 to exert their effects mainly during alveolar 

development. Consistent with this concept, there is a remarkable similarity between the mammary gland 

phenotypes of ErbB4(-/-) and Cuzd1(-/-) females.  
 

In summary, our findings support a model in which CUZD1 is a downstream mediator of PRL that enhances 

the signaling pathway through STAT5 during proliferation and differentiation of the mammary epithelium 

(Fig. 2.8). CUZD1 impacts mammary epithelial proliferation and differentiation during pregnancy and 

lactation. It promotes production of a specific subset of the EGF-like ligands, NRG1, EREG and EPGN, 

which control alveolar development. These growth factors primarily function through ErbB1 and ErbB4 to 

regulate the proliferation and differentiation of mammary epithelial cells. Further analysis of the molecular 

mechanisms by which CUZD1 integrates the pathways regulated by STAT5 and the EGF family growth 

factors will improve our understanding of the molecular networks that underlie PRL regulation of normal 

mammary gland development. 

 

MATERIALS AND METHODS 

 

Animals  

 

Mice were maintained in the designated animal care facility at the University of Illinois, according to 

institutional guidelines for the care and use of laboratory animals. All experimental procedures involving 

mice were conducted in accordance with National Institutes of Health standards for the use and care of 

mice. The animal protocol describing these procedures was approved by the University of Illinois 
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Institutional Animal Care and Use Committee (IACUC). The IACUC approval number for this protocol is 

16026. This approval is valid until August 22, 2019. 

 

Gene targeting  

 

To generate the vector for homologous recombination, about 16-kb mouse genomic DNA containing eight 

exons of mouse Cuzd1 was sequenced and intron-exon boundaries were analyzed. A 4.0-kb BamH I-Kpn I 

fragment containing the 1st and 2nd exons and a 2.0-kb BamH I-EcoR I fragment containing part of 6th exon 

was cloned into Scrambler A and B site of pKO Scrambler NTKV-1901 targeting vector, respectively. 

Correct targeting resulted in deletion of gene sequence containing exons III-VI spanning the first and second 

CUB domains of CUZD1 protein and replaced with a neomycin resistance gene (NEO) (Fig. 2.9B). The 

construct was linearized and electroporated into embryonic stem (ES) cells. ES clones were selected by 

G418 and screened by Southern blot analysis employing a 335-bp 5’-end probe, a 390-bp 3’-end probe and 

a 450-bp internal probe respectively. The ES clone with appropriate homologous recombination was 

selected for blastocyst injection and chimaeras were generated with heterozygous ES cell lines. 

Heterozygous male mice were backcrossed to wildtype C57BL/6 female to generate the Cuzd1-null mice 

with pure genetic background. Progeny were genotyped by using PCR assay that identified both mutant 

and wild-type alleles and Southern blotting analysis with 5’-end probe (Fig. 2.9B).  

 

Cell line and Cell Culture 

 

HC11 cells were grown in RPMI-1640 supplemented with 5% (v/v) fetal bovine serum, 1x Penicillin-

Streptomycin, 10 ng/ml EGF and 5 µg/ml insulin. In certain experiments, 2% charcoal-stripped calf serum 

was used. 

 

Hormone Treatment 

 

HC11 cells were treated with 10nm E, 10µm P and/or 50µm PRL. Ovariectomized mice were treated with 

vehicle controls (oil or saline), 1ng E and 1mg P (subcutaneous) and/or 50µg/g bw of PRL (intraperitoneal). 
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Whole mount analysis of mammary gland morphology 

 

The inguinal mammary glands were dissected out, spread onto a glass slide and fixed in a 1:3 mixture of 

glacial acetic acid/100% ethanol. After hydration, slides were stained as described previously (50). 

Following mounting, images were captured using bright field dissecting microscope. 

 

Immunochemistry 

 

Paraffin-embedded mammary tissues were sectioned and subjected to IHC as described previously (49). 

Rabbit polyclonal antibodies against a peptide antigen containing amino acids SSPNYPKPHPEL of mouse 

CUZD1 were generated in our laboratory. IHC was performed on mammary tissue sections, using primary 

antibodies and bound primary antibodies were detected with either horseradish peroxidase (HRP)- or 

fluorescent label-conjugated secondary antibodies. Sections were counterstained with hematoxylin or dapi 

and mounted. 

 

Cells were fixed in a 3.7% formalin solution at room temperature for 15 min followed by washing with 

PBS. The cells were permeabilized by 0.25% Triton X-100 in PBS for 10 min, and nonspecific binding of 

antibodies was blocked with 5% donkey serum for 1 h at room temperature. Cells were incubated with 

primary antibodies overnight at 4°C. Labeling was visualized with fluorescent label-conjugated secondary 

antibodies and slides were mounted in Prolong GOLD and cured for 24 h before imaging. The images of 

immunohistochemical staining were captured by using a Leica DM2500 light microscope fitted with a 

Qimaging Retiga 2000R camera (Qimaging). Immunofluorescence imaging was performed on a Leica 700 

confocal microscope. These images were minimally processed on ADOBE Photoshop version 8. 

 

Isolation of mammary epithelial cells and DNA microarray analysis 

 

Pooled inguinal mammary glands from three mice (Cuzd1(+/-) or Cuzd1(-/-)) were minced into small pieces 

and incubated with DMEM: F12 containing 100 U/ml hyaluronidase and 1.5 mg/ml collagenase at 370C for 

2 h accompanied by shaking at 110 RPM. Following neutralization of enzyme activity with 5% FBS, the 

homogeneous cell mixture was centrifuged and the cell pellet was washed several times with PBS. Purified 

epithelial cells were frozen in liquid nitrogen and stored at –800C.  

 

Total RNA was prepared from these cells and hybridized to Affymetrix mouse arrays (GeneChipMouse 

Genome 430 2.0 array) containing probes that represented ~14,000 known genes. They were processed and 
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analyzed according to Affymetrix protocol. Although the microarray analysis was performed using pooled 

mammary glands, we further confirmed gene expression changes, using RNA samples isolated from 

independent batches of epithelial cells isolated from Cuzd1(+/-) or Cuzd1(-/-) glands and analyzing the 

expression of selected genes by real-time PCR followed by statistical analyses. As shown in Fig. 2.3B, 

several transcripts corresponding to the EGF family ligands were indeed differentially expressed in a 

manner similar to that predicted by the microarray analysis. The microarray data were deposited in the 

publicly available GEO database with GEO Accession GSE30939.  

 

Quantitative real-time PCR (qPCR) analysis  

 

For qPCR, total RNA was extracted from purified mammary epithelium or cultured HC11 cells using Trizol 

RNA purification kit, according to manufacturer’s instructions and subjected to qPCR using gene specific 

primers. Primer sequences are provided in Table 1. Relative mRNA levels were plotted after normalization 

to the loading control 36B4. The error bars represent the relative gene expression ± the standard error from 

three or more independent trials. Data were analyzed using a student’s t-test and * indicate p-values < 0.05. 

 

siRNA treatment  

 

HC11 cells were transfected with siRNA against Cuzd1 or control siRNA (non-targeting), using 

Lipofectamine-RNAimax reagent following manufacturer’s protocol. Briefly, lipofectamine was mixed 

with siRNA, and allowed to form siRNA-liposome complexes, which were then added to HC11 cells at 

60% confluency. After 24 h, the transfection was repeated again. Cells were harvested 48 h after the second 

transfection, total RNA was isolated and analyzed by qPCR using gene-specific primers.  

 

Immunoprecipitation  

 

HC11-3xFLAG-Cuzd1 cells were cultured with FBS, EGF and PRL for 6h, lysed and samples were 

precleared before immunoprecipitation (IP). The IP was done using anti-FLAG M2 or a mouse IgG control 

resin (according to manufacturer’s directions) and the captured proteins were eluted using 3xFLAG peptide. 

Samples were boiled in SDS buffer and analyzed by standard Western blotting.  
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Mass Spectrometry 

 

Directly following IP, protein samples were submitted to the Mass Spectrometry Laboratory at the 

University of Illinois at Urbana-Champaign. Liquid chromatography (LC)/mass spectrometry (MS) 

proteomic data were analyzed using Mascot (Matrix Science) and results were sorted by protein score. 

 

Chromatin Immunoprecipitation  

 

ChIP assays were performed using the EZ-ChIP kit (Millipore) according to the manufacturer's instructions 

with minor modifications. Anti-flag M2 affinity gel (Sigma, A2220) and anti-STAT5 antibody (Santa Cruz, 

sc-835) were used overnight at 40C to immunoprecipitate flag-CUZD1 and STAT5, respectively. Normal 

mouse IgG (Santa Cruz, sc-2027) immunoprecipitation served as a negative control. Protein/DNA 

complexes were eluted, crosslinks were reversed and purified DNA was analyzed for enrichment in 

sequences of interest using qPCR. 

 

Reagents 
 
pKO Scrambler NTKV-1901 targeting vector was purchased from Stratagene (La Jolla, CA). G418, 

carmine, formalin, hyaluronidase and 1.5 mg/ml collagenase, insulin, p3XFLAG-CMV-10 Expression 

Vector, progesterone and 17β-estradiol, mouse IgG-agarose, ANTI-FLAG M2 affinity resin, 3xFLAG 

peptide were purchased from Sigma-Aldrich (St. Louis, MO). JAK1, JAK2, EREG, Ki67, pErbB1 (Tyr 

1068), pErbB2 (Tyr 877), pErbB4 (Tyr 1056), pSTAT5 (Tyr694) antibodies were obtained from Santa Cruz 

Biotechnology (Dallas, TX). The NRG1 antibody was purchased from Thermo Scientific (Waltham, MA). 

Total STAT5, EPGN, ErbB1, ErbB2 and ErbB4 antibodies were acquired from Cell Signaling Technology 

(Beverley, MA). Horseradish peroxidase (HRP)–conjugated goat anti-mouse or goat anti-rabbit secondary 

antibodies, plenti6.3/V5 TOPO Trizol RNA purification kit, RPMI-1640, blasticidin, Prolong GOLD 

antifade reagent with 4′,6-diamidino-2-phenylindole, Cuzd1 siRNA and non-targeting siRNA and 

Lipofectamine-RNAimax were purchased from Life Technologies (Carlsbad, CA). Cyanine 3 or Dylight 

488-conjugated anti-mouse IgG or antirabbit IgG were obtained from The Jackson Laboratory (Bar Harbor, 

ME). Fetal bovine serum was purchased from Atlanta Biologicals (Atlanta, GA). Prolactin was acquired 

from the National Hormone and Peptide Program (Torrance, CA). 
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Table 1. Primer Sequences. 
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Gene 
symbol 

Gene accession  Forward primer Reverse primer 

Cuzd1 NM_008411 GCAGCAGGTGTGAAACTGAA GATTCAAACACAGGCACGAA 

Wap NM_011709 AACATTGGTCTTCCGAAAGC AGGGTTATCACTGGCACTGG 

Csn2 NM_009972 TCCTCTCTTGTCCTCCACTA TGTAGCATGATCCAAAGGTGA 

krt19 NM_008471 CTGCTGTCTGGCAATGAGAA CGAGGCACTCAAGGAAGAAC 

36B4 NM_007475.3 CATCACCACGAAAATCTCCA TTGTCAAACACCTGCTGGAT 

Epgn  NM_053087 CGAAGAAGCAGAGGTGATCC AATGGCTTGCTTCAGCTCAT 

Ereg NM_007950 CTACACTGGTCTGCGATGTGA TCCAGCGGTTATGATGAGAAAC 

Areg NM_009704 AGATGTCTTCAGGGAGTG GGTATTTGTGGTTCGTTATC 

Egf NM_010113 TTCTCACAAGGAAAGAGCATCTC GTCCTGTCCCGTTAAGGAAAAC 

Btc NM_007568  TGAAAACCCACTTCTCTCGGT TGCTGGAGGTAAAACAGGTCC 

Nrg1 NM_178591 TCAGCAAGTTAGGAAACGACAG ACATAAGGTCTTTCAGTTGAGGC 

Nrg2 NM_001167891 ACGGATTCTTCGGACAGAGAT CACAGGACACTTTGCTTAGGAT 

Nrg3 NM_001190187 TAGGCTCCGTCAAGGAGTACG GGGGACGTGGTAGAAGTGG 

Nrg4 NM_032002 CACGCTGCGAAGAGGTTTTTC CGCGATGGTAAGAGTGAGGA 

Hbegf NM_010415    AGATACCTGCAGGAGTTCCG GTCATAACCTCCTCTCCTGT 

Wap 
GAS 

 
CATCTCTTCCTGCCCATGAC TCGGGCATACATTGAAAAGG 

Csn2 
GAS 

 
GTCCTCTCACTTGGCTGGAG GTGGAGGACAAGAGAGGAGGT 

Ereg 
GAS 

 
GCGAATTGCATCCTGTGAGT ACCCCCTCACATTTTGGAGA 
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FIGURES 

 
Figure 2.1. Analysis of the spatio-temporal expression of CUZD1 in the mammary glands during 
development. Mammary sections were obtained from Cuzd1(+/-) and Cuzd1(-/-) mice at puberty (5 weeks, a 
and b), late pregnancy (Day 18, c and d) and lactation day 2 (L2, e and f) and subjected to 
immunofluorescence, using rabbit polyclonal antibodies against mouse CUZD1. Magnification 20x. 
(Courtesy of Quanxi Li and Athilakshmi Kannan) 
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Figure 2.2. Phenotypic analysis of Cuzd1(-/-) mice. A. Analysis of Cuzd1(-/-) mammary gland 
morphology. Whole mount analysis of no. 4 inguinal mammary glands of virgin Cuzd1(+/-) and Cuzd1(-/-) 
mice at 6 weeks of age (a and b) and 10 weeks of age (c and d), pregnancy day 6 (e and f), pregnancy day 
18 (g and h) and lactation day 2 (i and j). Magnification 4x. (Courtesy of Quanxi Li and Athilakshmi 
Kannan) B. Histological analysis of Cuzd1(-/-) mammary gland during lactation. Mammary gland 
sections of lactating (day 2) Cuzd1(+/-) (a and c) or Cuzd1(-/-) (b and d) mice were subjected to H&E analysis. 
Magnification 20x (a and b) and 40x (c and d). (Courtesy of Quanxi Li and Athilakshmi Kannan) 
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Figure 2.3. Developmental defects in Cuzd1(-/-) mammary glands are due to an impairment in EGF 
signaling. A. Analysis of mammary epithelial cell proliferation during development. Mammary gland 
sections of pubertal (6 weeks, a and b) and lactating (day 2, d and e) Cuzd1(+/-) or Cuzd1(-/-) mice were 
subjected to IHC analysis using an antibody against Ki67. Magnification 20x. The number of Ki67-positive 
cells during puberty in Cuzd1(-/-) mammary tissue (a) was estimated by ImageJ software and compared with 
those in Cuzd1(+/-) tissue (b). Data (c) expressed as average ± SEM of ≥3 biological replicates. (Courtesy of 
Quanxi Li and Athilakshmi Kannan)  
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(Figure 2.3 con’t.) B. Expression of EGF family ligands in the Cuzd1(-/-) mammary gland. Total RNA 
was isolated from purified mammary epithelial cells of Cuzd1(-/-) mice and Cuzd1(+/-) littermates at day 18 
of pregnancy. qPCR was performed to analyze expression levels of Epgn, Ereg, Egf, Hbegf, Areg, Btc, 
Nrg1, Nrg2, Nrg3 and Nrg4 mRNAs. Data are represented as relative gene expression ± SEM from ≥3 
biological replicates. (Courtesy of Quanxi Li) C. Expression of EPGN and NRG1 proteins. Mammary 
tissue sections obtained from Cuzd1(+/-) and Cuzd1(-/-) mice on lactation day 2 were subjected to IHC using 
antibodies specific for EPGN (a and b), NRG1 (c and d). Magnification 10x. (Courtesy of Lavanya 
Anandan) D. Activation of ErbB receptors in the Cuzd1(-/-) mammary gland. Mammary tissue sections 
obtained from Cuzd1(+/-) and Cuzd1(-/-) mice on day 18 of pregnancy were subjected to IHC using antibodies 
specific for pErbB1 (a and b), pErbB4 (c and d) and pErbB2 (e and f). Insets show total ErbB levels. 
Magnification 10x. (Courtesy of Lavanya Anandan) 
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Figure 2.4. Cuzd1 controls the expression of a subset of EGF family ligands in mammary epithelial 
cells. A. Cuzd1 overexpressing cells exhibit increased proliferation. HC11-Cuzd1 and HC11-LacZ cells 
were cultured under serum-free conditions for 48 h and 10% FBS was added along with BrdU 24 h prior to 
cell harvest. BrdU incorporation was measured using an ELISA-based assay. Data are expressed as 
Absorbance at 370nm ± SEM from ≥3 biological replicates. (Courtesy of Lavanya Anandan) 
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(Figure 2.4 con’t.) B. Expression of EGF family ligands in HC11-Cuzd1 and HC11-LacZ cells. HC11-
Cuzd1 and HC11-LacZ cells were cultured for 48 h. qPCR was performed to analyze relative expression 
levels of Epgn, Ereg, Egf, Hbegf, Areg, Btc, Nrg1, Nrg2, Nrg3 and Nrg4 mRNAs. Data are represented as 
relative gene expression ± SEM from ≥3 biological replicates. (Courtesy of Lavanya Anandan) C. 
Expression of EGF family ligands in Cuzd1-silenced HC11 cells. HC11 cells were transfected with 
siRNA (100nM) targeted against Cuzd1 or scrambled siRNA (control). Total RNA was prepared from 
HC11 cells 48 h after transfection and subjected to qPCR using gene-specific primers to assess the 
expression of Epgn, Ereg, Egf, Hbegf, Areg, Btc, Nrg1, Nrg2, Nrg3 and Nrg4 mRNAs. Data are represented 
as relative gene expression ± SEM from ≥3 biological replicates. D. Proliferation of HC11-Cuzd1 cells 
upon ErbB perturbation. HC11-Cuzd1 cells were transfected with siRNA (50nM) targeted against ErbB1, 
ErbB2, ErbB3, ErbB4 or non-targeting siRNA (control). 48 h post transfection, the siRNA transfection 
mixture was removed and replaced with fresh growth medium and BrdU was administered 24 h prior to 
cell harvest. BrdU incorporation was measured using an ELISA-based assay. Data are expressed as 
Absorbance at 370nm ± SEM from ≥3 biological replicates. (Courtesy of Lavanya Anandan) E. 
Proliferation of HC11 cells with Cuzd1 knockdown and ligand supplementation.  HC11 cells were 
transfected with siRNA (100nM) targeted against Cuzd1 or a non-targeting siRNA (control). 48h post-
transfection, HC11 cells were supplemented with EPGN, NRG1, or a vehicle control and BrdU was added. 
BrdU incorporation was measured after 24h using an ELISA-based BrdU assay and resulting color reaction 
was measured using a plate reader at 370nm. Data are expressed as average Absorbance at 370nm ± SEM 
from ≥3 biological replicates. 
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Figure 2.5. CUZD1-mediated STAT5 signaling is necessary for PRL-induced proliferation and 
differentiation of the mammary gland. A. CUZD1 associates with JAK1/2 and STAT5. HC11 cells 
were cultured for 48 h in serum-free media and then exposed to 10% FBS for 24 h. Cells were lysed and 
samples were immunoprecipitated with an IgG (control) or CUZD1 antibody. CUZD1 and the associated 
proteins were confirmed by Western blot analysis. Blots were probed with CUZD1, JAK1, JAK2 and 
pSTAT5 antibodies. B. Activation STAT5 in the Cuzd1(-/-) mammary gland. Mammary tissue sections 
obtained from Cuzd1(+/-) and Cuzd1(-/-) mice on day 18 of pregnancy were subjected to IHC using an antibody 
specific for pSTAT5 and total STAT5. Magnification 10x. C. Expression of milk protein genes in the 
Cuzd1(-/-) mammary gland. RNA was isolated from mammary glands of lactating day 2 mammary glands 
from Cuzd1(+/-) and Cuzd1(-/-) mice and analyzed using primers specific for Cuzd1, Wap, and Csn2. Data are 
represented as relative gene expression ± SEM from ≥3 biological replicates. D. Analysis of pSTAT5 in 
HC11-LacZ and HC11-Cuzd1 cells. HC11-LacZ and HC11-Cuzd1 cells were cultured for 48 h in serum-
free media and then exposed to a vehicle control (a, c, and e) or PRL (b, d, and f) for 24 h. Cells were fixed 
and subjected to ICC using an antibody specific for pSTAT5 (a, b, c, and d) or total STAT5 (e and f). 
Magnification 40x. 
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Figure 2.6. Cuzd1(-/-) mammary glands do not undergo alveologenesis in response to hormone 
treatment. A. Cuzd1(-/-) mammary gland morphology in response to hormonal treatment. Cuzd1(+/+) 
and Cuzd1(-/-) mice (n=5) were treated with a vehicle control (a and b) or E+P+PRL (c and d) for 3d. Whole 
mount analysis of no. 4 inguinal mammary glands of Cuzd1(+/+) and Cuzd1(-/-) mice after 3d of hormone 
treatment. Magnification 6.3x. B. Analysis of CUZD1 expression. Mammary tissue sections obtained from 
Cuzd1(+/+) (a and c) and Cuzd1(-/-) (b and d) mice were subjected to IHC using an antibody specific for 
CUZD1. C. Activation of STAT5. Mammary tissue sections obtained from Cuzd1(+/+) (a and c) and Cuzd1(-

/-) (b and d) mice were subjected to IHC using an antibody specific for pSTAT5. D. Analysis of EREG 
expression. Mammary tissue sections obtained from Cuzd1(+/+) (a) and Cuzd1(-/-) (b) mice were subjected 
to IHC using an antibody specific for EREG. Magnification 20x.  
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Figure 2.7. CUZD1 and STAT5 translocate to the nucleus and modulate target gene expression. A. 
CUZD1 translocates to the nucleus in response to culture serum. HC11-Cuzd1 cells were cultured for 
48 h in serum-free media and followed by media supplemented with FBS only or a cocktail of 
FBS/PRL/EGF for additional 24 h. Cells were subjected to ICC using an antibody specific for CUZD1 and 
pSTAT5. Magnification 40X.  
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(Figure 2.7 con’t) B. Transcription of STAT5 target genes is activated in response to PRL. HC11-
Cuzd1 cells were cultured for 48 h in serum-free media and treated with PRL for 24 h. Cells were subjected 
to qPCR to assess the relative levels of mRNA expression for STAT5 regulated-target genes, Ereg and 
Wap. Data are represented as relative gene expression ± SEM from ≥3 biological replicates. C. STAT5 
remains in a complex with CUZD1 when bound to DNA regulatory elements. HC11-3xFLAG-Cuzd1 
cells were cultured with FBS, EGF and PRL for 6h. Protein/DNA complexes were precipitated using an 
antibody for STAT5 followed by FLAG (anti-M2), and subjected to qPCR using primers to GAS motifs of 
Wap, Csn2, and Ereg promoters, respectively.  Data are represented as fold enrichment ± SEM from ≥3 
biological replicates. 
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Figure 2.8. Proposed mechanism of action of CUZD1 in the mammary gland epithelium.  
Binding of PRL to PRLR induces activation of JAK1/2. CUZD1 forms a complex with JAKs and 
potentiates activation of STAT5 downstream of PRLR. Activated STAT5 and CUZD1 translocate to the 
nucleus where STAT5 regulates transcription of target genes, such as Ereg and Wap. EREG acts in a 
paracrine and/or autocrine manner through ErbB1 and/or ErbB4 to induce mammary epithelial 
proliferation. The expression of WAP, a milk protein, marks the terminal differentiation of the mammary 
epithelium. (Image Courtesy of Jason Neff) 
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Figure 2.9. Targeting strategy for the Cuzd1 locus. A. Protein structure of CUZD1. CUZD1 contains 
two tandem CUB (Complement subcomponent /C1s, Uegf, Bmp1) motifs and a zona-pellucida (ZP)-like 
domain. (Courtesy of Quanxi Li) B. Map of Cuzd1 target. The genomic organization of the wild-type 
Cuzd1 allele is shown with black boxes representing exons and white boxes representing introns. In the 
targeting vector, the neomycin (NEO) resistance gene is included to provide clone selection. Homologous 
recombination results in replacement of exons III-VI by the NEO resistance gene. P1, P2, P3 represent the 
locations of primers used for genotyping PCR to identify wild-type or null genomic mutation. A subset of 
restriction enzyme sites is shown for relative orientation and targeting vector construction: B, BamHI; E, 
EcoRI; X, XhoI. (Courtesy of Quanxi Li) C. Genotyping of Cuzd1-null mice. Genotyping was performed 
by PCR using tail genomic DNA as template and P1 and P2 or P1 and P3 as primers. The 513 bp and 782 
bp DNA fragments arose from wild-type and mutant loci, respectively. (Courtesy of Quanxi Li) D. 
Measurement of Cuzd1 mRNA. Total RNA was isolated from pregnant (day 1) uteri of heterozygous 
Cuzd1(+/-) and homozygous Cuzd1(-/-) mice. The RNA was subjected to Northern blotting, using P32-labled 
probes specific for Cuzd1 and internal control gene, 36B4. (+/+), (+/-), and (-/-) represent genomic DNA 
of wild-type, heterozygous and homozygous mice, respectively. (Courtesy of Quanxi Li) 
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Figure 2.10. Phenotypic analysis of Cuzd1(-/-) mice. (A) Expression of SMA and E-cadherin in terminal 
end buds. Mammary tissue sections obtained from Cuzd1(+/-) and Cuzd1(-/-) mice were subjected to IHC 
using an antibody specific for SMA (a and b) and E-cadherin (c and d). (B) Hormone level measurements. 
Blood samples were collected from heterozygous Cuzd1(+/-) and homozygous Cuzd1(-/-) mice on day 18 of 
pregnancy. The measurements of E, P and PRL levels were performed as described in Experimental 
Procedures. Bars represent average values ± SEM from five animals of each genotype. (Courtesy of Quanxi 
Li) 

 
 
Figure 2.11. Overexpression of Cuzd1 in HC11-Cuzd1 cells.  HC11 cells were transduced with lentivirus 
harboring Cuzd1 or LacZ cDNA to create stable cells overexpressing Cuzd1 (HC11-Cuzd1) or LacZ (HC11-
LacZ), respectively.  HC11-LacZ and HC11-Cuzd1 cells were lysed and total protein extracts were 
analyzed using Western blot. Blots were probed with an antibody specific for CUZD1. Calnexin was used 
as a loading control (a). The density of the bands was quantified using ImageJ and are expressed as Band 
Intensity (b). 
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Figure 2.12. Confirmation of individual ErbB knockdown.  HC11-Cuzd1 cells were transfected with 
siRNA (50nM) targeted against ErbB1, ErbB2, ErbB3, ErbB4 or scrambled siRNA (control). Total RNA 
was isolated from these cells and subjected to real-time PCR using specific primers to validate ErbB 1-4 
mRNA expression.  Data are represented as relative gene expression ± SEM.  
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Figure 2.13. (A) Confirmation of CUZD1 protein complex in HC11-3xFLAG-Cuzd1 cells. HC11-
3xFLAG-Cuzd1 cells were cultured for 48 h in serum-free media and then treated with FBS/PRL/EGF for 
6 h. Cells were lysed and samples were immunoprecipitated with an IgG (control) or M2 (anti-FLAG) 
antibody. 3xFLAG-CUZD1 and the associated proteins were confirmed by Western blot analysis. Blots 
were probed with FLAG, JAK1, JAK2 and pSTAT5 antibodies. (B). Alteration in STAT5 
phosphorylation in Cuzd1 overexpressing cells. HC11-LacZ and HC11-Cuzd1 cells were lysed and total 
protein extracts were analyzed using Western blot. Blots were probed with antibodies specific to STAT5 
and pSTAT5. Calnexin was used as a loading control (a). The density of the bands was quantified using 
ImageJ and are expressed as Band Intensity (b). 
 
 

 
Figure 2.14. Confirmation ChIP with individual antibodies.  HC11-3xFLAG-Cuzd1 and HC11-Cuzd1 
cells were cultured with FBS/EGF/PRL for 6h.  Protein/DNA complexes were precipitated using an 
antibody for STAT5 or FLAG, and subjected to qPCR using primers specific to GAS motifs of Wap, Csn2, 
and Ereg promoters, respectively. Data are represented as relative gene expression ± SEM.  
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ABSTRACT 

 

The peptide hormone prolactin (PRL) and certain members of the epidermal growth factor (EGF) family 

play central roles in normal mammary gland development and physiology, and their dysregulation has been 

implicated in mammary tumorigenesis. Our recent studies revealed that the CUB and zona pellucida-like 

domain-containing protein 1 (CUZD1) is a critical factor for PRL-mediated activation of STAT5 in the 

mammary epithelium, controlling production of a subset of the EGF family growth factors and consequent 

activation of their receptors on mammary epithelial cells. Consistent with this finding, overexpression of 

CUZD1 in non-transformed mammary epithelial HC11 cells increased their proliferation and induced 

tumorigenic characteristics in these cells. When introduced orthotopically in mouse mammary glands, these 

cells formed adenocarcinomas in vivo. These tumors showed elevated levels of STAT5 phosphorylation 

and activation of the EGF signaling pathway. Blockade of STAT5 signaling by pimozide, a selective 

STAT5 inhibitor, markedly reduced the production of the EGF family growth factors and inhibited PRL-

induced tumor cell proliferation in vitro. It also impaired the progression of CUZD1-driven mammary 

tumorigenesis in vivo. Analysis of human MCF7 breast cancer cells indicated that CUZD1 controls the 

production of the same subset of the EGF family members in these cells. Treatment with pimozide, which 

blocks STAT5 activation in these cancer cells, inhibited their proliferation. Collectively, these findings 

indicated that dysregulation of CUZD1, a regulator of growth pathways controlled by PRL and STAT5, 

promotes mammary tumorigenesis. Blockade of STAT5 pathway downstream of CUZD1 offers a novel 

therapeutic strategy for certain types of breast tumors. 

 

INTRODUCTION 

 

The mammary gland is a dynamic organ in that it undergoes cycles of proliferation, differentiation and 

regression with every pregnancy (1,2). Tight control of the signaling pathways orchestrating each of these 

steps is essential for appropriate function of the mammary epithelium (3). Expansion of the ductal 

epithelium through branching and development of secretory alveoli occur during pregnancy as the 

mammary gland prepares for lactation (4). Terminal differentiation of the mammary gland observed at 

lactation is marked by the expression of milk protein genes and the production of milk by the alveolar 

epithelial cells (5). The peptide hormone prolactin (PRL) plays an integral role in regulating mammary 

gland development during pregnancy and lactation (6). Binding of PRL to the prolactin receptor (PRLR) 

activates a signaling cascade which includes members of the Janus Kinase (JAK) family and the Signal 

Transducer and Activator of Transcription 5 (STAT5) (7–13). STAT5, a transcription factor, is 

phosphorylated and activated by JAKs associated with PRLR (14–19). The changes in gene expression 
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brought about by STAT5 are essential for proliferation and differentiation of the mammary epithelium 

during pregnancy and lactation (17,20–24). In this way, PRL and STAT5 play critical roles in alveolar 

development and terminal differentiation of the mammary gland 

 

Active signaling through phosphorylated STAT5 is key to the proliferation of mammary epithelial cells 

during alveologenesis (23,25–27). Mitogenic genes under the control of STAT5 include Cyclin D1 and 

certain members of the epidermal growth factor (EGF) family, such as epiregulin (Ereg), which induce 

expansion of the mammary epithelium prior to alveolar differentiation (28–31).  The EGF family ligands 

signal through their cognate ErbB receptors to promote proliferation and differentiation of the mammary 

epithelium during various stages of mammary gland development (32,33). Communication between, and 

regulation of, the PRL/STAT5 and ErbB pathways are essential for alveologenesis in preparation for 

lactation.  

 

The PRLR signaling, which is critical for normal mammary gland development, is dysregulated in certain 

types of breast cancer (34). Aberrant PRL/STAT5 signaling induces excessive proliferation and thereby 

triggers unchecked growth, leading to mammary tumorigenesis(32,35–37). Genes regulated by 

PRL/STAT5 influence cell cycle progression, proliferation and differentiation in breast cancer cells (31,38). 

In an oncogene-induced tumor model (MMTV-PyVT), Prl-/- mice exhibit delayed tumor development and 

slower (30%) tumor progression when compared to control (39). In another study, local overexpression of 

PRL in the mouse mammary gland resulted in ubiquitous development of mammary carcinomas in aged 

mice and PRL-induced carcinomas displayed high levels of nuclear pSTAT5 (24,40). Transgenic mice 

expressing constitutively active STAT5 exhibit a hyperproliferative mammary epithelium, delayed 

involution and a predisposition to mammary tumor formation (41). Collectively, these studies demonstrated 

that aberrant PRL/STAT5 signaling contributes to breast cancer.  

 

Similarly, an increase in signaling through the EGF pathway has long been implicated in promoting the 

proliferation of mammary epithelial cells in breast cancer (32,42–44). Many drugs focused on inhibiting 

activation of ErbB receptors have been developed to target this pathway and treat breast cancer (45,46). 

Analysis of ErbB receptor expression and activation via phosphorylation in human breast tumors provides 

important prognostic information and predict responses to these targeted therapies (47). Therefore, it is 

conceivable that targeting a cellular factor that controls both the EGF and PRL signaling pathways would 

provide an effective and personalized treatment plan in breast cancer patients (48–50). 
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Our recent studies revealed that the CUB and zona pellucida-like domain-containing protein 1 (CUZD1) 

fits such a role (51). The Cuzd1-null mouse model provided evidence that CUZD1 is a key regulator of 

alveolar development and lactation. It is a mediator of PRL/STAT5 signaling in the mammary gland during 

puberty and pregnancy. CUZD1 controls STAT5 phosphorylation in mammary epithelial cells, and 

pSTAT5 performs the dual role of promoting proliferation and differentiation of the mammary epithelium. 

Notably, CUZD1-mediated STAT5 activation drives the expression of certain EGF family growth factors, 

such as EREG, which acts via the ErbB1 and ErbB4 receptors. In the absence of Cuzd1, therefore, 

proliferation of the mammary epithelium is dramatically reduced due to the loss of signaling via these 

receptors. These data led us to hypothesize that the opposite may also be true; increased Cuzd1 expression 

may lead to excessive proliferation of the mammary epithelium, leading to tumorigenesis. 

 

In this study, we tested the concept that overexpression of CUZD1 may drive constitutive activation of the 

STAT5 pathway and inappropriate stimulation of the EGF family growth factor pathways, leading to 

uncontrolled cell proliferation. We demonstrate that such dysregulation of CUZD1 and its downstream 

STAT5 and EGF receptor pathways indeed leads to breast carcinoma. Furthermore, we provide evidence 

that pimozide, a selective inhibitor of STAT5, is able to suppress CUZD1/STAT5-driven mammary 

epithelial proliferation and tumorigenesis, presenting it as a potential therapeutic drug target in breast 

cancers in which the STAT5 pathway plays a major role. 

 

RESULTS 

 

Overexpression of Cuzd1 leads to transformation of HC11 cells  

 

To test whether the overexpression of Cuzd1 promotes transformation of mammary epithelial cells, we 

employed HC11 cells, a non-transformed mammary epithelial cell line derived from pregnant mice. As 

described previously, a lentiviral expression vector harboring a full-length cDNA encoding Cuzd1 or β-

galactosidase (control) was integrated into HC11 cells to generate stable cell lines which constitutively 

express elevated levels of Cuzd1 (HC11-Cuzd1) or β-galactosidase (HC11-LacZ) (51). Western blot 

analysis indicated that HC11-Cuzd1 cells overexpress CUZD1 about two fold over the HC11-LacZ control 

cells (51). These cells also expressed prolactin receptor and low levels of estrogen receptor α and 

progesterone receptor. We then subjected these cells to a cell invasion assay using Boyden chambers as 

described in the Materials and Methods. The HC11-Cuzd1 cells exhibited enhanced motility and were able 

to migrate across a barrier while control HC11-LacZ cells failed to penetrate the membrane (Fig. 3.1, A). 

We then subjected these cells to a soft agar assay to assess their anchorage independent growth, a well-
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known marker of cell transformation (52). As shown in Fig. 3.1B, HC11-Cuzd1 cells formed large colonies 

when cultured in media containing soft agar, whereas the HC11-LacZ cells remained as single cells in the 

agar suspension. As a control, we used MCF7 breast cancer cells, which are known to form robust colonies 

on soft agar (Fig. 3.1, B).  These findings indicated that the overexpression of Cuzd1 in HC11 mammary 

epithelial cells altered their growth and migratory properties, two important hallmarks of pre-cancerous 

cells.  

 

Introduction of HC11-Cuzd1 cells into the mammary gland generates adenocarcinomas 

 

To further evaluate the tumorigenic properties of HC11-Cuzd1 cells in vivo, these cells were mixed with 

Matrigel and orthotopically injected into the mammary gland duct of nude mice through the nipple. Mice 

injected with HC11-LacZ cells served as a control for tumor growth. After a latency period of about six 

weeks, mice injected with HC11-Cuzd1 cells manifested palpable tumors, which continued to grow over 

18 weeks (Fig. 3.2, A). All of the mice injected with HC11-Cuzd1 cells had tumors ranging in size between 

200-250mm3, while mice injected with control HC11-Lacz cells did not form any detectable tumor (Fig. 

3.2, B). Tumor growth was measured weekly and tumor volume was calculated as described in Materials 

and Methods.  

 

We further examined this breast tumorigenesis process in immunologically intact BALB/c mice. HC11-

Cuzd1 or HC11-LacZ cells were introduced in mammary glands of these mice as described above. Again, 

all BALB/c mice injected with HC11-Cuzd1 cells developed mammary tumors while those receiving 

HC11-LacZ showed no tumor formation. Through dissection and enzymatic digestion of the mammary 

tumors established by injection of HC11-Cuzd1 cells in BALB/c mice, we isolated cells from these tumors 

(HC11-Cuzd Tum). These HC11-Cuzd1 Tum cells appeared to be phenotypically similar to HC11-Cuzd1 

cells. When HC11-Cuzd1 Tum cells were orthotopically injected into the 4th mammary gland pair in 

BALB/c mice, mammary tumors developed and grew rapidly to reach a volume of about 50mm3 at five 

weeks, 200-250mm3 at seven weeks, and eventually reaching a volume of almost 900mm3 at 9 weeks (Fig. 

3.2, C). These tumors grew larger more rapidly than those formed by HC11-Cuzd1 cells, which were less 

than 300mm3 at eighteen weeks. 

 

For histological analysis of mammary tumors, mice were sacrificed at eighteen weeks following injection 

of HC11 cells into nude mice and 9 weeks following injection of HC11-Cuzd1 cells into nude mice. The 

tumors and mammary glands from mice injected with HC11-Cuzd1 and HC11-LacZ cells, respectively, 

were removed and examined by H&E staining (Fig. 3.3, A-D). The mammary glands appeared normal (Fig. 
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3.3B). The tumors were verified by pathological examination as adenocarcinomas with lobular 

characteristics (Fig. 3.3, D). When the tumors were examined by immunohistochemical staining using a 

CUZD1-specific antibody, we observed a robust expression of CUZD1 in both cytoplasmic and nuclear 

compartments (Fig. 3.3, E). The retention of CUZD1 and pan-cytokeratin expression in the tumor indicated 

that the cells in the tumor mass were indeed derived from the original HC11-Cuzd1 epithelial cell line (Fig. 

3.3, E and F). These tumors also expressed a high level of PCNA, indicative of highly proliferative cells in 

the tumor tissue (Fig. 3.3, G). In one out of five animals with breast tumors, we noted liver and lung lesions 

consistent with metastasis of primary adenocarcinoma to other organs. These results established that 

overexpression of Cuzd1 produces a tumorigenic phenotype in HC11 mammary epithelial cells, which 

manifest in breast adenocarcinomas in vivo. 

 

Cuzd1-induced mammary tumorigenesis is mediated by the ErbB signaling pathway 

 

We have previously shown that Cuzd1 controls the phosphorylation and activation of STAT5, downstream 

production of a subset of EGF family ligands, and consequent phosphorylation of two key ErbB receptors, 

ErbB1 and ErbB4 (51). We therefore investigated, using IHC, the phosphorylation status of STAT5 in 

tumors from nude mice orthotopically injected with HC11-Cuzd1 cells. Ample STAT5 phosphorylation 

was detected along with total STAT5 in the tumor sections (Fig. 3.4, A and C).  We also assessed the 

expression levels of the EGF family ligands EREG, EPGN and NRG1, and the activation states of the ErbB 

receptors in Cuzd1-overexpressing breast tumors. The expression of high levels of EREG, EPGN and 

NRG1 proteins was evident in these tumors (Fig. 3.4, D, F, and G). Additionally, abundant active 

(phosphorylated) forms of ErbB1 and ErbB4 were present in the tumors (Fig. 3.4, H and J). However, 

activated (phosphorylated) ErbB2 was undetectable in the tumor sections (Fig. 3.4, I). These results are 

consistent with the hypothesis that CUZD1-driven breast tumorigenesis involves phosphorylation and 

activation of STAT5 and production downstream of a subset of EGF family growth factors and activation 

of ErbB1 and ErbB4 signaling, but is not dependent on ErbB2 activation.  

 

Activation of ErbB receptors is often accompanied by activation of downstream ERK and/or PI3K-AKT 

pathways. To assess ERK and AKT activation in Cuzd1-overexpressing tumors, sections of tumors were 

probed with antibodies specific for phosphorylated ERK1/2 or phosphorylated AKT1/2/3. Our results 

showed the presence of abundant pERK and an absence of pAKT, indicating that ERK signaling is indeed 

activated and it potentially regulates proliferation of the Cuzd1-driven breast tumor cells, but their 

proliferation is not dependent on the AKT pathway (Fig. 3.4, J and K).  
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Inhibition of STAT5 phosphorylation suppresses the proliferation of HC11-Cuzd1 cells in vitro  

 

Since CUZD1 activates the STAT5 signaling pathway to stimulate proliferation of the mammary 

epithelium, we hypothesized that by inhibiting STAT5, we could prevent cellular signaling downstream of 

CUZD1 and suppress tumorigenesis induced by constitutive Cuzd1 overexpression. To test this hypothesis, 

we treated HC11-Cuzd1 cells with PRL along with vehicle or pimozide, a selective inhibitor of STAT5 

phosphorylation. As shown by western blotting, pimozide treatment dramatically reduced the activating 

phosphorylation of STAT5 in these cells compared to the vehicle treatment (Fig. 3.5A). Total STAT5 

protein levels were unaffected by pimozide treatment (Fig. 3.5A). We further confirmed by 

immunocytochemistry that PRL-induced phosphorylation of STAT5 in HC11-Cuzd1 cells is attenuated by 

pimozide treatment (Fig. 3.5B). These data established that pimozide is an effective inhibitor of STAT5 

phosphorylation in HC11-Cuzd1 cells. 

 

We previously reported that loss of STAT5 phosphorylation in Cuzd1-null mammary epithelium is 

coincident with the lack of production of a subset of EGF family ligands in this tissue (51). Consistent with 

this finding, we report here that inhibition of STAT5 by pimozide reduced the expression of Ereg, Epgn 

and Nrg1 transcripts in HC11-Cuzd1 cells (Fig. 3.5C), confirming that inhibition of STATS signaling 

inhibits growth factor pathways critical for tumor cell proliferation. A BrdU incorporation assay was used 

to assess whether proliferation of HC11-Cuzd1 cells treated with PRL was indeed affected by pimozide. 

As shown in Fig. 3.5D, significant reduction in PRL-induced proliferation of HC11-Cuzd1 cells was 

observed following pimozide treatment. 

 

Pimozide treatment decreases the growth of Cuzd1-driven mammary tumors in vivo 

 

We next tested whether inhibition of STAT5 signaling by pimozide treatment suppressed Cuzd1-induced 

mammary tumor formation in vivo. We orthotopically injected HC11-Cuzd1 Tum cells into the fourth 

mammary gland pair of BALB/c mice and treated them with oral doses of pimozide or a vehicle control. 

At the end of five weeks of tumor growth, and pimozide or vehicle treatment, we observed a drastic 

reduction in tumor size in mice treated with pimozide compared to mice treated with vehicle control (Fig. 

3.6, A and B). Immunohistochemical analysis of STAT5 phosphorylation showed widespread STAT5 

phosphorylation in vehicle-treated mammary tumors, whereas markedly diminished pSTAT5 was observed 

in tumors of mice treated with pimozide (Fig. 3.7A, a, b, d, and e). Analysis of STAT5 staining indicated 

that pimozide did not affect total STAT5 protein levels (Fig. 3.7A, panels c and f).  
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Using immunohistochemistry, we also examined the levels of the EGF family growth factors EREG, EPGN, 

and NRG1 and monitored the activation of ErbB1 and ErbB4 in these tumors with or without pimozide 

treatment (Fig. 3.7, B). Our results showed that inhibition of STAT5 signaling by pimozide, and consequent 

regression of the mammary tumors, are associated with suppression of the EGF signaling pathway. This is 

due to a decrease in production of EREG, EPGN, and NRG1 and loss of activation via phosphorylation of 

ErbB1 and ErbB4 in these tumors (Fig. 3.7B, a-e and g-k, insets total ErbB1 and ErbB4). To determine if 

proliferation is reduced with pimozide treatment, we conducted IHC using a well-known marker of 

proliferation, Ki67. This staining indicates that tumor cell proliferation is dramatically reduced with 

pimozide treatment (Fig. 3.7B, f and l). Collectively, these data support our view that the inhibition of 

STAT5 signaling by pimozide, and resulting impairment in proliferation ErbB1 and ErbB4 signaling, 

mitigate CUZD1-induced tumorigenesis. 

 

CUZD1 pathway operates in a subset of human breast cancer cells 

 

The fact that Cuzd1 overexpression in mammary epithelial cells leads to breast tumorigenesis in mice raised 

the possibility that CUZD1 may play a role in human breast cancer. We, therefore, examined the expression 

of CUZD1 transcripts in several human breast cancer cell lines. As shown in Fig. 3.8A, CUZD1 transcripts 

are expressed in certain human breast cancer cell lines, including MCF7, but are undetectable in other breast 

cancer cell lines. Interestingly, the CUZD1 protein was mostly cytosolic in MCF7 cells when these cells 

were grown in serum-free media but it rapidly translocated to the nucleus upon treatment with serum (Fig. 

3.7, B).  

 

To examine the effects of CUZD1 protein on STAT5 and ErbB signaling pathways in MCF7 cells, we 

created a stable cell line in which CUZD1 is overexpressed (MCF7-Cuzd1). MCF7 cells overexpressing β-

galactosidase were used as a control (MCF7-LacZ). While STAT5 phosphorylation was evident in MCF7-

LacZ cells (Fig. 3.8C, a), the level of pSTAT5 increased in MCF7-Cuzd1 cells (Fig. 3.8C, c). Pimozide 

treatment strongly inhibited STAT5 phosphorylation in both MCF7-Cuzd1 and MCF7-LacZ cells (Fig. 

3.8C, b and d). We then tested whether CUZD1 expression in MCF7 cells is linked to the production of the 

EGF family growth factors by these cells. Elevated CUZD1 expression in MCF7-Cuzd1 cells led to 

increased expression of EREG, EPGN, and NRG1 transcripts compared to their levels in MCF7-LacZ cells 

(Fig. 3.8D). Finally, we performed a BrdU incorporation assay by growing MCF7-Cuzd1 cells in the 

presence or absence of pimozide. Our results showed that pimozide markedly inhibited the proliferation of 

MCF7-Cuzd1 in growth media containing serum (Fig. 3.8E). Collectively, these results indicated that 

CUZD1-mediated activation of STAT5 signaling and downstream activation of ErbB1 and ErbB4 pathways 
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are likely to play a critical role in controlling the proliferation of certain types of human breast cancer cells 

and the use of pimozide is highly effective in countering the growth of these cells.  

 

DISCUSSION 

 

It is well documented that, during pregnancy and lactation, PRL functions through PRLR in the mammary 

epithelium to activate a molecular signaling cascade involving phosphorylation of PRLR and JAKs. This 

is followed by recruitment of STAT5 to this protein complex and subsequent activation of STAT5 through 

phosphorylation by JAKs. Activated STAT5 then translocates to the nucleus to regulate target gene 

expression (53). Our recent studies identified CUZD1 as a key cellular protein that functions as an essential 

regulator of STAT5 activation downstream of PRL signaling during mammary epithelial proliferation and 

differentiation during pregnancy and lactation (51). CUZD1 interacts with a complex containing 

JAK1/JAK2 and STAT5 and plays an important role in the phosphorylation and nuclear translocation of 

STAT5. The integral role of CUZD1 in STAT5 phosphorylation became evident with the creation of the 

Cuzd1-null mice in which the activating STAT5 phosphorylation at Tyr 694 fails to occur in the mammary 

epithelium, leading to a defect in its proliferation and alveolar differentiation (51). It is also of interest that 

the Stat5-null and Cuzd1-null mice display remarkably similar defects in mammary alveologenesis  (25).  

 

With the backdrop of the findings that CUZD1 critically influences PRL/STAT5-dependent mammary 

epithelial proliferation and differentiation, we examined whether dysregulation of its normal function leads 

to mammary tumorigenesis. Our study revealed that overexpression of CUZD1 in non-transformed 

mammary epithelial HC11 cells leads to pre-cancerous transformation of these cells. Introduction of these 

transformed cells in a mammary gland milieu via orthotopic injection led to the development of breast 

adenocarcinomas. Interestingly, tumor cells isolated from these primary tumors displayed even more 

aggressive growth phenotype when transplanted to mammary glands of subsequent hosts. An important 

aspect of this tumorigenesis is the striking activation of STAT5 in the tumors, presumably due to 

constitutive overexpression of CUZD1. 

 

We previously demonstrated that CUZD1 is also a critical regulator of a subset of EGF family growth 

factors, EREG, EPGN, and NRG1, which act primarily through their tyrosine kinase receptors, ErbB1 and 

ErbB4, to exert effects mainly during alveolar development (54). The ErbB receptors are activated at all 

stages of mammary development and contribute to normal breast functions (32,44,54). However, a large 

body of evidence suggests that aberrant activation of the ErbB receptors plays a key role in giving rise to 

malignant phenotypes, including cell proliferation, differentiation, angiogenesis, and invasion and survival 
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(44,46,55). This raised the possibility that Cuzd1-mediated tumorigenesis may be driven through an 

overactive ErbB signaling network. Consistent with this prediction, the EGF family ligands EREG, EPGN, 

and NRG1 are robustly expressed and activated forms of their receptors ErbB1 and ErbB4 are prominently 

present in the Cuzd1-overexpressing cells and adenocarcinomas. Interestingly, ErbB2, the receptor 

associated with shortest overall survival rates for breast cancer and a primary target for developing 

therapeutics, is not active in these tumors. 

 

During normal mammary gland development, PRL acting via downstream STAT5 signaling, directs 

proliferation and extension of the ductal system. We and others have shown that the gene encoding EREG, 

which has been implicated in promoting growth and survival of breast cancer cells, is a direct transcriptional 

target of STAT5 (31). Constitutive expression of pSTAT5, and resulting stimulation in the production of a 

subset of EGF-like growth factors, may therefore contribute to tumorigenesis through persistent stimulation 

of mammary epithelial proliferation. Drugs, such as bromocriptine, inhibit transcription of pituitary PRL, 

but due to the local synthesis of PRL in the mammary gland driving tumor proliferation, therapeutic 

intervention needs to occur further downstream in the signaling pathway (56–58). Researchers have been 

targeting multiple steps along the PRL signaling pathway, from competitive PRLR antagonists to 

pharmacologic inhibition of PRL signal transducers (59). These data support a growing body of research 

emphasizing the need for clinical targets of PRL/STAT5 signaling in the treatment of breast cancer. 

Interruption of the PRL signaling pathway through inhibition of STAT5 could be an effective treatment for 

PRL/STAT5-driven tumors.  

 

Development of the Cuzd1-dependent breast cancer model in our laboratory presents a unique opportunity 

to study the effects of a STAT5-inhibitor in treating breast cancers expressing a constitutively high level of 

pSTAT5. In this study, we re-purposed a previously FDA approved antipsychotic drug, pimozide, which is 

used to treat mental disorders such as schizophrenia, psychosis and Tourette syndrome (60,61). In vitro 

studies demonstrated that pimozide reduces viability and proliferation of breast and non-small cell lung 

carcinoma cells and was comparably less cytotoxic to non-cancer cells (62,63). Although the mechanism 

of STAT5 inhibition by pimozide is yet to be elucidated, it selectively inhibits STAT5 phosphorylation and 

transcription of STAT5 target genes (64,65). In our study, inhibition of STAT5 phosphorylation through 

the use of pimozide reduced the production of the EGF family members Ereg, Epgn, and Nrg1, activation 

of ErbB1 and ErbB4 receptors, and resulted in the suppression of proliferation in Cuzd1-overexpressing 

cells. Most importantly, treatment of mice with pimozide was able to significantly inhibit breast 

tumorigenesis in vivo. Although this treatment did not prevent tumorigenesis, an increase in dosage 
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concentration/frequency or combination with other therapies may significantly increase the effectiveness 

of this drug.  

 

The Cuzd1 gene is highly conserved between the mouse and the human (66). The linkage between CUZD1 

and mammary tumorigenesis in the mouse raised the possibility that it might be involved in human breast 

cancers. Screening of a broad panel of breast cancer cell lines for CUZD1 expression using qPCR revealed 

that CUZD1 is undetectable in ERα-negative tumor cells, but present in ERα-positive tumor cells, including 

the well-characterized MCF7 cells. It is pertinent to mention here that Cuzd1 (formerly known as ERG1) 

was originally identified by our laboratory as an estrogen-regulated gene in the uterus and was later found 

to be induced in breast epithelium of ovariectomized mice in response to E (67). It is therefore possible that 

ERα regulates CUZD1 expression in certain human breast cancer cells. Previous studies reported that the 

PRLR and ERα act synergistically to exert their mitogenic effects on breast cancer cells (48). It would be 

important to study the mechanism of this cross-regulation.  

 

The expression of CUZD1 in several human breast cancer cell lines raised the possibility that dysregulation 

of CUZD1 may play a role in human breast tumorigenesis. We analyzed publicly available data on the 

cBioPortal for Cancer Genomics database to examine whether CUZD1 expression is altered in human breast 

cancer (68,69). Interestingly, data from tumors in Breast Invasive Carcinoma (The Cancer Genome Atlas, 

Provisional) indicate that CUZD1 is altered in 1% of patients (10 of 960). Although this represents a small 

portion of this study, it is worth noting that HER2, BRCA1, and BRCA2 were altered in 14%, 4%, and 5% 

of patients, respectively. All breast cancer samples that had alterations in CUZD1 displayed CUZD1 

amplification and were classified as stage IIA through IIIB. Classification of tumors based on co-occurrence 

of genes identified by gene expression profiles, as opposed to tumor stage, can provide the necessary 

information to predict treatment response and clinical outcome(70–72).  A subset of tumors with a CUZD1 

amplification also showed amplification of STAT5A, PRL, PRLR, and/or EGFR. There was significant co-

occurrence in alterations in CUZD1 and STAT5A (p=0.026) and CUZD1 and PRL (p=0.024). Additionally, 

breast cancer samples with alterations in this gene set also had increased EGFR phosphorylation at tyrosine 

1068 (p=0.0112). Collectively, these data indicated that not only is CUZD1 amplified in these breast cancer 

samples, the components of its signaling pathway are also amplified or increased. Although these data 

provide some insights regarding the relevance of CUZD1 amplification in human breast cancer, they do not 

provide a complete picture of the functional amplification of CUZD1 and STAT5A signaling since a large 

portion of these activities are conveyed through post-translational modifications on these factors. 

Nonetheless, based on our findings, CUZD1 has emerged as a novel target for designing effective treatments 

for certain types of breast cancers. 
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MATERIALS AND METHODS 

 

Animals  

 

Mice were maintained in the designated animal care facility at the University of Illinois, per institutional 

guidelines for the care and use of laboratory animals. All experimental procedures involving mice were 

conducted in accordance with National Institutes of Health standards for the use and care of mice. The 

animal protocol describing these procedures was approved by the University of Illinois Institutional Animal 

Care and Use Committee (IACUC). 

 

Cell Lines and Cell Culture 

 

The HC11 cell line is a non-transformed mammary epithelial cell line derived from pregnant BALB/c 

mice(73). These cells were grown in RPMI-1640 supplemented with 5% (v/v) fetal bovine serum, 5 µg/ml 

insulin and 10ng/ml EGF at 37°C and 5% CO2. HC11-LacZ, HC11-Cuzd1, MCF7-LacZ, and MCF7 -Cuzd1 

cell lines were developed as described in Mapes and Li et. al (51). To create the HC11-Cuzd1 Tum cell 

line, HC11-Cuzd1 cells were orthotopically injected into BALB/c mice and allowed to form tumors. Upon 

collection, tumors were minced into 1mm pieces using scissors and fragments were digested in HBSS with 

6g/L dispase and 0.5g/L collagenase at 37°C for 1 h with constant agitation. Enzymes were neutralized and 

the cell suspension was passed through a 100µm mesh, followed by two washes with HBSS. Cells were 

plated on collagen-treated plates in DMEM supplemented with 10% FBS, penicillin-streptomycin, and 

amphotericin B. After 48 h in culture, stable Cuzd1 overexpressing cells were selected using blasticidin for 

10 days. 

 

HC11 cells were treated with 50µm PRL followed by immunocytochemistry or RNA analysis. The STAT5 

inhibitor pimozide was used at 10µM (unless otherwise designated) along-side a vehicle control (DMSO) 

prior to immunocytochemistry, western blotting, proliferation assays, and RNA analysis. 

 

Boyden Chamber Cell Migration Assay 

 

Boyden-chambers (Millipore) were placed in 24-well dishes containing chemoattract media (RPMI 

containing 10% FBS). Serum-starved cells HC11-LacZ or –Cuzd1 cells (1 x 105 cells/well) were added to 

the upper compartment and allowed to incubate for 72 h at 37 °C. Cells that migrated across into the lower 

chamber of the membrane were quantified by CyQuant (Millipore) fluorometric assay per manufacturer’s 
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instructions. Mean values were taken from three individual chambers for each of the three biological 

replicates. 

 

Anchorage Independent Growth in Soft Agar 

 

HC11-Lacz or HC11-Cuzd1 cells (1 × 104) or MCF7 cells (control) were seeded in six-well plates with a 

bottom layer of 0.48% Bacto agar in DMEM and a top layer of 0.36% Bacto agar in DMEM. Fresh DMEM 

containing 10% FBS was added to the top layer of the soft agar. The culture medium was changed twice a 

week. After 16 days, colonies were stained with 0.005% crystal violet. Visible colonies (>0.5 mm in 

diameter) were counted from representative views from three biological replicates and the average number 

of colonies per well was determined. 

 

Cell proliferation using BrdU incorporation 

 

Cells were plated at a density of 5 x 103 cells/well in 96-well plates and cultured overnight in full growth 

medium. Following 48h of serum starvation, cells were treated with selected compounds in addition to 

vehicle or pimozide and allowed to grow for 18h. BrdU was added and incorporation was measured after 

2h using an ELISA-based BrdU assay. Resulting color reaction was measured using a plate reader at 370nm. 

The relative levels of BrdU incorporation from three independent measurements are shown (Mean ± SEM).  

 

Quantitative real-time PCR (qPCR) analysis  

 

For qPCR, total RNA was extracted from purified mammary epithelium or cultured HC11 cells using a 

Trizol RNA purification kit. Reverse transcription was performed using the cDNA synthesis kit 

(Stratagene) following manufacturer’s instructions. cDNA was amplified by quantitative real-time PCR 

analysis using gene-specific primers and SYBR-Green Supermix (Applied Biosciences). For a given 

sample, threshold cycle (Ct) and SD was calculated from individual Ct values from 3-4 replicates of a 

sample. Normalized mean Ct was computed as ΔCt by subtracting mean Ct of 36B4 from Ct of a target 

gene for control sample. ΔΔCt was then calculated as a difference in ΔCt values between control and 

experimental groups. Fold change in gene expression was then computed as 2-ΔΔCt. Relative mRNA levels 

were plotted after normalization to the loading control 36B4. The error bars represent the relative gene 

expression ± the standard error from three or more independent trials.  

 

 



65 
 

Orthotopic Intraductal Injection of Cells into the Mammary Gland  

 

HC11-Cuzd1 or HC11-Cuzd1 Tum cells (1 × 106) were suspended in Matrigel and orthotopically injected 

into the nipple of the fourth abdominal mammary gland of nude or BALB/c mice. Equal numbers of mice 

were orthotopically injected with HC11-LacZ cells during each tumor study.  Tumor length and width were 

measured using digital calipers and tumor volume was calculated (tumor volume=1/2(length × width2).  

 

Pimozide Treatment 

 

Female BALB/c mice were orally treated with 5mg/kg body weight pimozide or a vehicle control (DMSO), 

suspended in corn oil, once a day for three days prior to orthotopic injection. The treatment regimen of 

pimozide included three days of treatment followed by three days of rest, which cycled until the end of the 

five weeks. Tumor volume was measured throughout the course of the five-week treatment. The primary 

mammary tumors were harvested from sacrificed animals and fixed in 4% paraformaldehyde for subsequent 

H&E staining or immunohistochemistry. Individual tumor studies were terminated at the recommendation 

of the University of Illinois Division of Animal Resources veterinary staff due to high tumor burden.  

 

Immunostaining 

 

Paraffin-embedded mammary tissues were sectioned and subjected to IHC as described previously(74). 

Rabbit polyclonal antibodies against a peptide antigen containing amino acids SSPNYPKPHPEL of mouse 

CUZD1 were generated in our laboratory. IHC was performed on tissue sections using primary antibodies 

and bound primary antibodies were detected with either immunoperoxidase or immunofluorescence 

secondary antibodies. For immunoperoxidase staining, horseradish peroxidase (HRP)–conjugated goat 

anti-mouse or goat anti-rabbit secondary antibodies. Sections were counterstained with hematoxylin and 

mounted. For immunofluorescence staining, fluorescence-conjugated ant-mouse IgG or anti-rabbit IgG 

were used as secondary antibody and slides were mounted in Prolong GOLD and cured for 24 hours before 

imaging. 

 

For immunocytochemistry, cells were fixed in a 3% formalin solution at room temperature for 10 min 

followed by washing with PBS for 10 min. The cells were permeabilized with 0.25% Triton X-100 in PBS 

for 10 min, and nonspecific binding of antibodies was blocked with 10% donkey serum for 1 h at room 

temperature. Cells were incubated with primary antibodies overnight at 4°C. Fluorescence-conjugated ant 
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mouse IgG or anti-rabbit IgG were used as secondary antibody and slides were mounted in Prolong GOLD 

and cured for 24 hours before imaging. 

 

Image capture and processing of immunostaining 

 

Images of immunohistochemical staining were captured by using a Leica DM2500 light microscope fitted 

with a Qimaging Retiga 2000R camera (Qimaging) or a Leica 700 confocal microscope. These images were 

directly documented from the scope with minimal processing to adjust the tonal range and color balance in 

ADOBE Photoshop version 8. ImageJ was used to quantify immunofluorescence staining. 

 

Statistical analysis 

 

Statistical analysis was performed by the Student t-Test. Statistically significant differences (P<0.05) are 

indicated by *. 
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FIGURES 

 
 
Figure 3.1. Overexpression of Cuzd1 leads to enhanced motility and anchorage-independent growth 
of HC11 cells. A. Overexpression of Cuzd1 leads to enhanced motility of HC11 cells. Serum starved 
MDA-MB-231 cells (positive control), HC11-LacZ, or HC11-Cuzd1 cells were placed in Boyden chambers 
and allowed to migrate toward 10% FBS for 72 h. The number of invading cells was quantified using 
CyQuant fluorescence labeling and compared to corresponding cells unexposed to the serum 
chemoattractant. Data are represented as Relative Fluorescence ± SEM from ≥3 biological replicates 
(p=0.04) B. Overexpression of Cuzd1 promotes anchorage-independent growth in HC11 cells.  MCF7 
cells (positive control), HC11-Lacz, or HC11-Cuzd1 cells were plated in media containing soft agar. 
Colonies were allowed to form for 16 days and stained with crystal violet overnight. Visible colonies 
(>0.5mm) were counted using a dissecting microscope. Data are represented as Number of Colonies 
(>0.5mm) ± SEM from ≥3 biological replicates. Images above bar show representative colony sizes from 
each treatment group (p=0.0003).  
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Figure 3.2. Orthotopic injections of HC11-Cuzd1 cells form mammary tumors. A. External images 
of HC11-Cuzd1 cell tumors in nude mice. HC11-LacZ or HC11-Cuzd1 cells were injected orthotopically 
into the nipple of the 4th mammary gland of immunocompromised female nude mice. Mice were sacrificed 
18 weeks post injection and examined for tumor growth.  Top panels represent an exterior view of the 
animal and bottom panels show the mammary gland after dissection. B. Tracking growth of HC11-Cuzd1 
tumors in nude mice. Tumor volume was quantified weekly using digital calipers from time of injection 
(week 0) to time of sacrifice (week 18). Tumor volume=1/2(length × width2) ± SEM, n=5 in each group. 
C. Tracking growth of HC11-Cuzd1 Tum tumors in BALB/c mice. HC11-LacZ or HC11-Cuzd1 Tum 
cells were injected orthotopically into the nipple of the 4th mammary gland of female BALB/c mice. Tumor 
volume was quantified weekly using digital calipers from time of injection (week 0) to time of sacrifice 
(week 9). Tumor volume=1/2(length × width2) ± SEM, n=3 in each group. 
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Figure 3.3. HC11-Cuzd1 cells form adenocarcinomas in vivo. Mammary glands and tumors were 
collected from mice injected with HC11-LacZ and HC11-Cuzd1, respectively, 18 weeks post-injection. The 
specimens were fixed, embedded in paraffin, sectioned, and subjected to H&E staining and imaged at 5x 
(A and C) and 40x (B and D) magnification. IHC analysis was carried out with antibodies against CUZD1 
(E) (red), Pan-cytokeratin (F) (red), and PCNA (G) (red) and counterstained with hematoxylin (blue). 
Magnification, 40x. Data are representative images from n=5.  
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Figure 3.4. The ErbB1 and ErbB4 pathways are activated in HC11-Cuzd1 tumors in vivo. Tumors 
were collected 18 weeks post-injection, fixed, embedded in paraffin, sectioned, and subjected to IHC 
analysis was carried out with antibodies against pSTAT5 (A) (red), STAT5 (C) (green) EREG (D) (green), 
EPGN (F) (red), NRG1 (G) (red), pErbB1 (H) (red), pErbB2 (I) (red), pErbB4 (J) (red), pERK (K) (red), 
and pAKT (L) (red) and counterstained with hematoxylin (blue) or DAPI (blue). Control sections were 
stained in the absence of a primary antibody (B, E, and M). Magnification, 40x. Data are representative 
images from n=5.  
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Figure 3.5. Pimozide inhibits STAT5 phosphorylation and cell proliferation. A. Phosphorylation of 
STAT5 is reduced following treatment with pimozide.  HC11-Cuzd1 cells were plated, allowed to attach 
overnight and treated with PRL plus vehicle or pimozide at 5, 8 and 10uM for 3 h.  Cells were then lysed 
and subjected to Western blotting using an antibody specific for pSTAT5, STAT5, or Calnexin. Band 
intensity was quantified using ImageJ.  B.  Phosphorylation as well as nuclear localization of STAT5 is 
reduced following treatment with pimozide.  HC11-Cuzd1 cells were plated, allowed to attach overnight, 
and treated with vehicle (V) or pimozide (P) at 10uM for 3 h.  Cells were then fixed and subjected to ICC 
using an antibody specific for pSTAT5 (red) and counterstained with DAPI (blue). Data are representative 
images from ≥3 biological replicates. Nuclear pSTAT5 was quantified using ImageJ and expressed as 
Relative Fluorescence (RF) from ≥3 biological replicates. C. Treatment with pimozide leads to a 
reduction in expression of specific EGF ligands. HC11-Cuzd1 cells were plated, allowed to attach 
overnight, and treated with Vehicle or pimozide at 10uM for 24 h. RNA was isolated and subjected to qPCR 
using gene specific primers to assess expression of EREG, EPGN and NREG1. Data are represented as 
Relative Gene Expression ± SEM from ≥3 biological replicates. 
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(Figure 3.5 con’t.) D. Treatment with pimozide reduces cell proliferation.  HC11-Cuzd1 cells were 
plated, allowed to attach overnight and serum starved for 48 h.  Cells were then treated with growth media 
or PRL, with vehicle or pimozide for 18 h.  BrdU was added 2 h before fixation and cells were assayed for 
proliferation. Data are represented as Absorbance at 370nM ± SEM from ≥3 biological replicates. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.6. Pimozide treatment suppresses growth of HC11-Cuzd1-Tum cell tumors in vivo. A. Gross 
tumor size is reduced following Pimozide treatment. Representative images of tumors isolated from 
vehicle and pimozide treated mice. B. Growth of tumors is reduced in mice treated with Pimozide. 
Tumor volume in vehicle and Pimozide treated mice was measured over the course of five weeks using 
digital calipers. Tumor volume=1/2(length × width2) ± SEM, n=5. C. End tumor volume is decreased 
with pimozide treatment. Final tumor volume in vehicle and Pimozide treated mice was measured using 
digital calipers. Tumor volume=1/2(length × width2) ± SEM, n=5.  
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Figure 3.7. Pimozide treatment reduces STAT5 phosphorylation and blocks downstream ErbB 
signaling in vivo. A. STAT5 phosphorylation is decreased in the tumors of mice treated with pimozide. 
Tumors were collected, fixed, embedded in paraffin, sectioned, and subjected to IHC analysis with 
antibodies against pSTAT5 (a, b, d, and e) (red) or STAT5 (c and f) (green) and counterstained with DAPI 
(blue). Data are representative images from n=5. B. Signaling through the EGF pathway is altered in 
mice treated with pimozide. Tumors were collected, fixed, embedded in paraffin, sectioned, and subjected 
to IHC analysis with antibodies against EREG (a and g) (green), EPGN (b and h) (green), NRG1 (c and i) 
(green), pErbB1 (d and j) (green), ErbB1 (insets on d and j) (green), pErbB4 (e and k) (green), and ErbB4 
(insets on e and k) (green), Ki67 (f and l) (green), and counterstained with DAPI (blue). Data are 
representative images from n=5.  
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Figure 3.8. CUZD1 signaling in the human breast cancer MCF7 cells. A. MCF7 cells express high 
levels of Cuzd1 mRNA. Human cancer cell lines were cultured in growth medium and mRNA isolated 
from these cells was examined for Cuzd1 expression. Data are represented as Relative Gene Expression ± 
SEM from ≥3 biological replicates. B. CUZD1 localization is influenced by FBS. MCF7 cells were plated, 
allowed to attach overnight and serum starved for 48 h. Cells were treated with no serum (a) or FBS (b) for 
6 h. Following fixation, cells were subjected to IF with an antibody specific for CUZD1 (green) and 
counterstained with DAPI (blue). Data are representative images from ≥3 biological replicates. C. 
Phosphorylation of STAT5 is reduced following treatment with pimozide.  HC11-LacZ and HC11-
Cuzd1 cells were plated, allowed to attach overnight, and treated with a vehicle control (a and c) or a 
pimozide at 10uM (b and d) for 3 h.  Cells were then fixed and subjected to ICC using an antibody specific 
for pSTAT5 (red) and counterstained with DAPI (blue). Data are representative images from ≥3 biological 
replicates.  D. Specific EGF family ligands are up-regulated in MCF7 cells that overexpress CUZD1. 
RNA was isolated from MCF7-Cuzd1 cells and subjected to qPCR using gene specific primers to assess 
expression of EREG, EPGN, and NRG1. Data are represented as Relative Gene Expression ± SEM from 
≥3 biological replicates. E. Treatment with pimozide reduces cell proliferation.  MCF7-Cuzd1 cells 
were plated, allowed to attach overnight and serum starved for 48 h.  Cells were then treated with growth 
media, with vehicle or pimozide for 18 h.  BrdU was added 2 h before fixation and cells were assayed for 
proliferation. Data are represented as Absorbance at 370nM ± SEM from ≥3 biological replicates. 
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In the studies described in Chapters 2 and 3, we have examined the role of CUZD1 in mammary epithelial 

cells during mammary gland development and tumorigenesis. We have shown that CUZD1 induces 

proliferation by promoting activation of STAT5 and the EGF family signaling pathway. Using a knockout 

mouse model, we demonstrated the importance of CUZD1 in the mammary epithelium during pregnancy 

and lactation. Mice lacking CUZD1 exhibit impaired STAT5 activation, fail to undergo alveologenesis, and 

are unable to lactate. A critical component of the phenotype of Cuzd1-null mice is a severe reduction in 

proliferation of the mammary epithelium, likely due to a loss of a subset of the EGF family ligands. This 

impairment in cell proliferation in the absence of CUZD1 prompted us to investigate its role in mammary 

tumorigenesis. In fact, overexpression of Cuzd1 resulted in excessive mammary epithelial proliferation and 

generation of tumor in vivo. Analysis of CUZD1-overexpressing tumors revealed that STAT5, ErbB1, and 

ErbB4 signaling pathways are activated, and potentially play a role in the proliferation of these tumors. 

Collectively, CUZD1 emerged as a critical mediator of STAT5 and EGF family signaling during mammary 

gland development and tumorigenesis. In this final section, we will discuss some of the unresolved 

questions regarding the mechanism of CUZD1 and ongoing work. 

 

Regulation of Cuzd1 Expression in Mammary Gland: Evidence for a Role of Estrogen  

 

Although our studies revealed the signal transduction pathways regulated by CUZD1, the mechanisms that 

regulate Cuzd1 gene expression during mammary gland development remain unresolved. CUZD1 was 

initially discovered as an E-regulated gene in the rodent reproductive tract (1). We also investigated 

regulation of CUZD1 by E in mouse mammary epithelium and in human breast cancer cells. Treatment of 

ovariectomized mice with E led to up regulation of Cuzd1 transcripts in the uterus and mammary gland 

(Fig. A.1A). Protein expression of CUZD1 is also up regulated in the mammary epithelium following 

treatment with E (Fig. A.1B). In human breast cancer cells, we observed a correlation between CUZD1 

expression and ER-positive status, which led us to further investigate E regulation of CUZD1 in MCF7 

cells. In MCF7 cells, CUZD1 is up regulated following treatment with E and CUZD1 expression peaks at 

10 h (Fig. A.2A). To determine if this up regulation is mediated by ER, we treated cells with ICI, a selective 

ER inhibitor. Indeed, treatment with ICI prevented E-induced up regulation of CUZD1 in MCF7 cells (Fig. 

A.2B). Finally, analysis of the CUZD1 gene 10kb upstream of the transcription start site revealed multiple 

potential ER binding sites. ChIP analysis using an antibody directed against ERα revealed enrichment of a 

ERα binding site at a region 7kb upstream of the transcriptional start site of the CUZD1 gene (Fig. A.3). 

These data strongly suggest that Cuzd1 expression is induced by ERα, although further functional analysis 

is necessary to determine the mechanism of this regulation. 
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Molecular Interactions Within the CUZD1-STAT5 Complex  

 

Our studies have identified CUZD1 as a component of a cellular multi-protein complex containing JAK1/2 

and STAT5. The exact molecular interactions within this complex, however, remain poorly understood. 

We have hypothesized that CUZD1 may act as a scaffolding protein that interacts with JAKs and STAT5 

to stabilize the complex to facilitate STAT5 phosphorylation. Interestingly, CUZD1 can translocate to the 

nucleus in response to growth factor stimulation and co-localizes with STAT5. However, we have not yet 

determined whether CUZD1 interacts directly with STAT5. We have performed preliminary mutagenesis 

studies to determine the functional domains of CUZD1 important for its nuclear localization, although 

specific amino acid sequences essential for this function are yet to be identified. Analysis of the effect of 

point mutations within the CUB and ZP protein motifs of CUZD1 on its interaction with STAT5 would 

offer further insight into its physical relationship between STAT5 as well as the mechanism of its nuclear 

translocation. The results of these experiments would shed much needed light on the specific details of the 

STAT5-CUZD1 interaction. 

 

Additional Interacting Protein Partners of CUZD1 

 

Mass spectrometry of proteins co-immunoprecipitated with CUZD1 from mammary epithelial cell lysates 

indicated that there are dozens of interacting partners of CUZD1, providing multiple potential avenues to 

investigate its mechanism of action. One interesting candidate from this list is PRMT5, an arginine 

methyltransferase that is known to modify histones post-translationally and remodel chromatin. The co-

immunoprecipitation of FLAG-CUZD1 and PRMT5 was confirmed in MCF7 cells overexpressing FLAG-

CUZD1, but the biological significance of this interaction has not been investigated. (Fig. A.4). Microarray 

analysis of Cuzd1-/- versus Cuzd1+/- mammary epithelium identified many genes that are differentially 

regulated in the absence of CUZD1. Association of PRMT5 with a nuclear CUZD1- STAT5 complex could 

be vital for this differential transcriptional regulation. Interestingly, PRMT5 has been shown to interact 

with JAK1, JAK2, and EGFR, in addition to regulating genes involved in cancer cell proliferation  (2–4). 

The ErbB signaling pathways that are potentially altered by the interactions between CUZD1 and PRMT5 

could, therefore, be an interesting topic of future exploration. 

 

How are EGF Family Ligands Regulated by CUZD1? 

 

An interesting aspect of CUZD1’s control of the ErbB signaling pathway is its regulation of a specific 

subset of the EGF family ligands: Ereg, Epgn, and Nrg1. Although CUZD1 is essential for the proliferation 
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of the mammary epithelium during pregnancy and lactation, it does not control the expression of the EGF 

family member amphiregulin, which directs ductal elongation and branching that occur during the pubertal 

phase of mammary gland development (5). The specificity of regulation of a subset of the EGF family 

ligands by CUZD1 could be rooted in the unique expression pattern of CUZD1 during development, with 

the highest expression and nuclear localization of CUZD1 occurring during pregnancy and lactation. 

Additionally, this specificity may be due to the interaction of CUZD1 with other protein partner(s). It is 

conceivable that CUZD1 can interact with multiple transcription factors or chromatin modulators that 

differentially target and regulate the genes encoding the EGF family growth factors at precise time points 

during mammary gland development. Further characterization of the protein complexes containing CUZD1 

will provide a more detailed understanding of its regulation of the EGF family ligands. 

 

In summary, our work to date has uncovered the molecular pathways of CUZD1 action in mammary 

epithelial cells during normal development and tumorigenesis. The identification of these mechanisms 

opens up further studies that would provide a more comprehensive understanding of CUZD1’s regulatory 

role in cell proliferation and differentiation.  
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FIGURES 
 

   
Figure A.1.  E regulation of Cuzd1 expression in the mammary gland. A. mRNA expression of Cuzd1 
following E treatment. Ovariectomized mice were treated with Vehicle (V) or estradiol (E) at 40 ug/kg 
body weight (E). After 24 h, total RNAs were isolated from uteri (UT) and purified mammary epithelial 
cells (MG) and subjected to real-time PCR using gene-specific primers for Cuzd1 or 36B4 (control). Data 
are expressed as Relative Gene Expression ± SEM from three independent experiments. (Courtesy of 
Quanxi Li) B. Localization of Cuzd1 and ERα in mammary glands in response to E administration. 
Paraffin-embedded sections from mammary glands of adult intact mice following 5 days of treatment of 
vehicle collected at estrous stage of ovarian cycle (a and c) or estrogen (b and d) were subjected to 
immunohistochemical analysis using an antibody specific for Cuzd1 (a-b) or ERα (c-d). Magnification, 
20X. (Courtesy of Quanxi Li and Athi Kannan) 
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Figure A.2. Estrogen regulation of CUZD1 in MCF7 breast cancer cells. A. CUZD1 is upregulated 
following treatment with E. MCF7 cells grown in E-free culture medium were treated with E (10-8M) for 
indicated times. Cells were harvested at various time points, total RNA was isolated from these cells, and 
subjected to real-time PCR analysis using gene-specific primers to assess the expression the expression of 
pS2 (positive control) and CUZD1. (Courtesy of Lavanya Anandan) B. CUZD1 upregulation via E is 
blocked by ICI. MCF-7 cells were treated with E in the absence or presence of ICI 182,780 (10-6 M) for 
24 h. Total RNA was isolated and subjected to real-time PCR analysis using gene-specific primers to assess 
the expression the expression of pS2 (positive control) and CUZD1. (Courtesy of Lavanya Anandan) 
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Figure A.3. Transcriptional regulation of CUZD1 by ERα. Using Chromatin Immunoprecipitation, we 
identified enrichment in a partial ERα binding site 7kb upstream of the CUZD1 transcriptional start site. 
MCF7 cells were serum starved for 48h and then treated with E for 1h. Cells were fixed, lysed, and 
protein/DNA complexes were isolated with an antibody specific to ERα. pS2 was used as a positive control.  
 
 
 
 
 
 
 

 
Figure A.4. PRMT5 co-immunoprecipitates with FLAG-CUZD1. MCF7 cells overexpressing FLAG-
CUZD1 were treated with a cocktail of FBS/EGF/PRL for 6h, fixed, and lysed. Immunoprecipitation was 
carried out with an antibody specific for FLAG. A Western blot was run using these lysates and the 
membrane was probed with an antibody specific for PRMT5, 
 
 
 
 


