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ABSTRACT 

 

Application of systems concepts to better understand physiological and metabolic 

changes in dairy cows during the transition into lactation could enhance our understanding about 

the role of nutrients in helping to meet the animal’s requirements for optimal production and 

health. Four different analyses focused on the liver were conducted to analyze metabolic disorder 

or thermal stress. The first three analyses dealt with supplementation of methionine to prevent 

clinical ketosis development in high-genetic merit dairy cows. Four groups of cows were formed 

retrospectively based on clinical health evaluated at 1 week postpartum: cows that remained 

healthy (OVE), cows that developed ketosis (K), and healthy cows supplemented with one of 

two commercial methionine products [Smartamine M (SM), and MetaSmart (MS)]. The liver 

tissue samples (n = 6/group) were harvested at -10 d before calving, and were used for 

metabolomics (GC-MS, LC-MS; Metabolon Inc.) and transcriptomics (44K-whole-transcriptome 

microarray; Agilent) analyses. Therefore, the main goals of the analyses were to 1) uncover 

metabolome and transcriptome patterns in the prepartum liver that were unique to those cows 

that became ketotic postpartum, and to 2) uncover unique patterns affected by supplemental 

methionine. The data were analyzed using the MIXED procedure of SAS. The metabolomics 

analysis (p ≤ 0.10) resulted in 13, 16, 26, 36, 13 and 43 biochemical compounds out of 313 

identified for the comparisons K vs. OVE, SM vs. OVE, MS vs. OVE, SM vs. MS, K vs. SM 

and K vs. MS, respectively. The transcriptomics analysis (p ≤ 0.05 and fold change (FC) ≥ |1.5|) 

resulted in 3,065, 710, 786, 601, 1,021 and 771 number of differentially expressed genes (DEG) 

for the respective comparisons. The functional analysis of the data was performed using dynamic 

impact approach (DIA). The network reconstruction and data integration was performed with 
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Ingenuity Pathway Analysis (IPA). In the first analysis of K vs. OVE, the results indicated 

inhibition of several carbohydrate- and lipid-related metabolic pathways, while activation of 

‘Selenoamino acid metabolism’, ‘Ribosome’, and ‘Replication and repair’ was predominant. In 

the second analysis of SM vs. OVE, ‘Nitrogen metabolism’, ‘Glycosaminoglycan biocynthesis-

chondroitin sulfate’, ‘Synthesis and degradation of ketone bodies’ and ‘Selenoamino acid 

metabolism’ were induced while the ‘Cyanoamino acid metabolism’, ‘Taurine and hypotaruine 

metabolism’ and ‘Inositol phosphate metabolism’ were inhibited. The analysis of MS vs. OVE 

revealed activation of ‘Riboflavin metabolism’, ‘Bile secretion’ and ‘Vitamin digestion and 

absorption’, while inhibition of ‘Base excision repair’, ‘Cyanoamino acid metabolism’, and ‘One 

carbon pool’. The analysis of SM vs. MS indicated activation of ‘Intestinal immune network for 

IgA production’, ‘Antigen processing and presentation’, and ‘Riboflavin metabolism’, while the 

inhibition ‘Glycosaminoglycan degradation’, ‘Other glycan degradation’ and ‘Bile secretion’. In 

the third analysis of K vs. SM, among the top 10 affected pathways, most were inhibited. 

Examples include ‘Cynoamino acid metabolism’, ‘Fructose and Mannose metabolism’, ‘Erb 

signaling’ and ‘Pentose phosphate pathway’. In contrast, the analysis of K vs. MS revealed an 

induction of ‘Nitrogen metabolism’ among the top 10 pathways, while pathways such as 

‘Riboflavin metabolism’, ‘Pentose phosphate pathway’ and other carbohydrate and glycan 

biosynthesis related pathways were inhibited. The fourth analysis dealt with the effect of thermal 

stress on the liver transcriptome as it is related to health and productivity. During this study, we 

used gene network analysis on transcriptome data to uncover transcription regulators and their 

target genes in the liver tissue harvested at -30, +3, and +35 d relative to parturition during spring 

(SP, n = 6) and summer (SU, n = 6). Statistical analysis (FDR ≤ 0.10) of data from SU vs. SP 

revealed a total of 618, 1,030 and 894 DEG at -30, +3 and +35 d, respectively. IPA was used for 
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gene network reconstructions. A total of 6, 7 and 7 transcription regulators were identified at -30, 

+3 and +35 d, respectively during SU vs. SP. The evaluation of these results suggests that 

calving during SU vs. SP is associated with the molecular phenotypes of the liver. 
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CHAPTER # 1  

Literature review 

  

The Transition Period in Dairy Cows 

 

“May you live in interesting times”.  

An ancient Chinese proverb (Drackley, 1999). 

The transition period also known as the periparturient period in dairy cows ranges from 3 

weeks prepartum to 3 weeks postpartum (Grummer, 1995, Drackley, 1999). During this period, 

cows undergo important physiological, metabolic and nutritional changes. It is also critical 

because cows become vulnerable to several metabolic disorders and infectious diseases 

(Simianer et al., 1991, Drackley and Cardoso, 2014). This period requires more attention than the 

usual time period to prepare cows for early lactation and to prevent the metabolic disorders, 

reproductive complicacies and subsequent fertility issues (Drackley and Cardoso, 2014). It has 

been well recognized that amount of dry matter intake (DMI) decreases as calving approaches 

leading to physiological variations (Grant and Albright, 1995). The demand for nutrients uptake 

by fetus, placenta and mammary glands is increased especially during the last wk before calving. 

This demand is met partly by voluntary feed intake and partly by metabolic adaptations.  

These metabolic adaptations include increased fatty acid mobilization, muscle 

degradation and hepatic gluconeogenesis, and decreased glucose utilization by peripheral tissues 

(Bell, 1995). The lactation phase starts immediately after parturition, where nutrient demands for 

milk synthesis exceed the available nutrients resulting in metabolic level changes. These altered 
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metabolic adaptations lead to negative energy balance (NEB) and related metabolic disorders 

which as a result affect the overall hepatic gene expression patterns in dairy cows (McCarthy et 

al., 2010). During this period, the nutritional demands of amino acids for milk protein synthesis 

and immune functions are also greatly affected (Bell, 1995, Goff, 2008). The following section 

describes about the energy and protein balance conditions.  

 

Negative energy and protein balance 

During the transition period, a marked decrease in DMI usually limits the consumption of 

dietary energy intakes and in turn affects the energy balance equilibrium (Bertics et al., 1992). 

During the period of early lactation, an increased amount of nutrient requirements over nutrient 

availability may lead to several physiological disorders such as NEB, fatty liver and ketosis due 

to increased lipid infiltration or ketone bodies synthesis. These physiological disorders are 

associated with the onset of lactation and lead to imbalanced immune system in periparturient 

dairy cows (Bertics et al., 1992). The NEB usually lasts until the milk yield starts to decline (7-

10 wk postpartum) and the energy from the DMI becomes sufficient to meet the nutritional 

requirements (Roche and Berry, 2006). During first few weeks of  lactation, dairy cows rely on 

fats and amino acids mobilization from adipose tissue and muscles for energy and protein 

requirements (Drackley, 1999). The amino acid requirements are seen in terms of degradable and 

bypass proteins to support body functions, stabilizing metabolism of carbohydrate and lipids. 

These serves as precursors for gluconeogenesis, tissue protein synthesis and other metabolic 

reactions. The net amount of amino acids requirement is increased during the transition period to 

overcome the increased demand of gluconeogenesis and energy synthesis leading to negative 

protein balance (Van Saun and Sniffen, 2014). If cows are not provided with the optimal protein 
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requirements then the resulting situation may lead to metabolic disorders and NEB. As microbial 

protein provides very small amount of amino acids supply to the total absorbed proteins. So the 

gap between supply and demands needs to be bridged through both transition and lactation 

periods in the form of amino acid supplementations e.g., rumen-protected amino acids (Dalbach 

et al., 2011, Osorio et al., 2013).  

 

Metabolic disorders 

Metabolic disorders that result from energy balance disequilibria reflect failures to adapt 

the shortage of available nutrients that are vital for maintaining the health of dairy cows. The 

examples of such metabolic disorders include milk fever, ketosis, lipidosis, metritis, displaced 

abomasum, poor fertility and poor production. Among these, ketosis jeopardizes the dairy health 

postpartum due to excessive production of ketone bodies leading to several health and 

productivity related issues such as decreased milk production, and delayed onset of reproductive 

cycle (Ospina et al., 2013, Zhang et al., 2015). As our main focus is to uncover the effects of 

methionine supplementation during the close-up dry period (from -21 d to calving) to prevent 

ketosis development postpartum in dairy cows, so the following discussion mainly revolves 

around the causes of ketosis development and its preventive measures.  

 

Ketosis  

 

Ketosis is a major metabolic disorder that can affect the productivity and cost of dairy 

farms. It is associated with NEB, hepatic lipid accumulation, elevated level of ketone bodies and 
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lower blood glucose concentration. Dairy cows become highly susceptible to developing ketosis 

during early lactation (Loor et al., 2007). It is characterized by marked increases in circulating 

ketone bodies and primarily occurs within the first few weeks of lactation. It may result due to 

severe NEB, where free fatty acids in the form of non-esterified fatty acids (NEFA) are released 

from adipose tissue and start entering into the liver to meet up the energy requirements. These 

NEFA are usually esterified in the liver and are exported as triglycerides within very low density 

lipoproteins (VLDL) to extra hepatic tissues such as mammary glands. At this point, when the 

rate of  NEFA oxidation is increased  as compared to its rate of secretion, then this process leads 

to higher synthesis of ketone bodies (Morrow, 1976). There are three main types of ketone 

bodies that are generated during this process. These include acetone, acetoacetate and beta 

hydroxybutyrate (BHBA). Among these, increased synthesis of BHBA plays a key role in 

ketosis development, whereas acetoacetate is broken down into acetone, which is a volatile 

compound and is vaporized (Herdt, 2000). The ketone bodies accumulate in the blood when their 

concentration exceeds their utilization as an energy source (Adewuyi et al., 2005). However, the 

presence of ketone bodies is normally expected in fresh cows due to NEFA mobilization 

postpartum where a portion of NEFA is converted into ketone bodies in normal circumstances 

(Duffield, 2000). However, an excessive amount of ketone bodies above the threshold levels 

leads to ketosis development.  

Ketosis is also associated with lipidosis or fatty liver. The condition when the hepatic 

uptake of lipid infiltration exceeds over its oxidation and secretion is called lipidosis (Loor et al., 

2007). This may also be caused by a decreased synthesis of apo-lipoproteins at the time of 

parturition leading to severe inflammation response (Bertoni et al., 2004). Dairy cows become 
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more susceptible to other pathologies when the amount of hepatic lipid accumulation is increased 

in the liver. During this time, the recovery period usually becomes prolonged (Herdt, 1988).   

 

Ketosis measurement 

Ketosis can be measured by several different methods including blood, urine and milk. 

Most research studies are based on blood BHBA concentration, which is considered as the “gold 

standard” in ketosis testing due to its stability in blood as compared to acetone and acetoacetate 

(Oetzel, 2004). Defining an exact level at which ketones are too high has been something of an 

enigma. Ketosis is a threshold disease, meaning, cows will only be affected after a certain level 

of threshold has been reached. Most sources use 1000 to 1400 µmol/L of BHBA as a threshold 

(Duffield, 2000).   

 

General types of Ketosis 

Ketosis has been classified into different types based on perceived risk factors, etiology, 

pathophysiology or clinical symptoms. Currently used classification scheme divides ketosis into 

two main types (type I and II) based on the physiology and time of occurrence (Holtenius and 

Holtenius, 1996, Herdt, 2000).   

Type I Ketosis 

 During this type, the gluconeogenesis mechanism is fully involved in utilization of 

available glucose precursors. However, the required need for glucose synthesis is relatively 

insufficient due to the lower supply of available glucose precursors in the diet (e.g., propionate, 
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and amino acids). This type of ketosis is characterized when cows have reached a high level of 

milk production during 3 to 6 weeks of postpartum and are still in NEB. It is not further 

associated with fatty liver infiltration. Type I condition can be prevented by feeding cows with 

starch rich diet. Therefore, it is not as dangerous as the following type II (Goff, 2006).   

Type II Ketosis 

 Type II Ketosis usually occurs during the first few weeks of lactation and is related to 

fatty liver infiltration or lipidosis (Herdt, 2000). It is similar to type I, but in more aggravated 

condition. It is characterized by low level of blood glucose, elevated levels of NEFA and ketone 

bodies concentrations. This type is accompanied with various other risk factors such as retained 

placenta, metritis, displaced abomasum, adipose sensitivity (increased lipolytic response to a 

given stimulus) and insulin resistance. The treatment duration is usually prolonged as compared 

to type I (Herdt, 2000).  It has been reported as the most common type in the United States dairy 

farms (Loor et al., 2006).  

 

Clinical types of Ketosis 

Ketosis is also classified based on subclinical and clinical symptoms (Baird, 1982). A 

brief description about these types is provided in the following sections. 

Subclinical Ketosis 

 Subclinical ketosis is characterized by greater than normal ketone bodies (BHBA) level 

(1000-1200/1400 µmol/L) in blood or milk circulation with no adverse effects observed during 

early lactation (Oetzel, 2004, Duffield et al., 2009). It is a threshold disease. The elevated level 
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of BHBA concentration above 1400 μmol/L (14.4 mg/dL) is used as a cut of point for its 

diagnosis (Oetzel, 2004). Subclinical ketosis is associated with lower milk production, poor 

reproductive performance and increased rate of periparturient diseases development (Duffield, 

2000, Raboisson et al., 2014). It is a critical disorder and needs to be detected in earlier stages, as 

if it remains undetected, then it may leads to similar effects as caused by clinical ketosis (Baird, 

1982).  

Clinical Ketosis 

 Clinical ketosis is characterized by higher concentration of circulating BHBA (2000-2500 

µmol/L) as compared to subclinical ketosis. It is further associated with other physiological 

symptoms such as inappentence (reduced DMI), lower blood pH, hypoglycemia, 

hyperketonemia, and reduction in body weight and body condition score (Baird, 1982). Reduced 

DMI is often accompanied by lower milk production and increased susceptibility to infectious 

diseases (Gerloff, 2000). It has been estimated that approximately 50% of high producing dairy 

cows experience a case of subclinical ketosis and nearly 6% of the subclinical cases proceed to 

clinical during early lactation (Grohn et al., 1989, Geishauser et al., 1998). 

 

Ketosis treatment 

Treatment of ketosis involves increased glucose supply to meet energy and lactation 

demands. The incidence of ketosis can be minimized by supplementing the diet with extra 

nutritional requirements and proper dairy management according to the National Research 

Council (NRC) recommended guidelines (Baird, 1982, NRC, 2001b, a). The following literature 
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describes the dietary supplementation with essential amino acids such as methionine and choline 

during the close-up dry period (3 wk prepartum).  

 

Amino Acid Supplementation 

 

During the onset of lactation, essential amino acids such as methionine and lysine are 

required to maintain DMI, milk yield, milk protein concentrations and healthy immune system 

(Soder and Holden, 1999, St-Pierre and Sylvester, 2005). These amino acids have been 

considered as limiting factors for lactating dairy cows during early- and mid-lactation (Schwab et 

al., 1992, Schwab et al., 2003). Methionine supplementation in this regard has been the subject 

of various studies (Smith et al., 2005, Nikkhah et al., 2013, Osorio et al., 2013). As discussed 

earlier, the NEB prepartum is associated with extensive mobilization of fatty acids from adipose 

tissue, causing marked elevation of circulating NEFA in the blood and subsequently triglycerides 

(TG) accumulation in the liver. The excess amount of TG impairs the liver from its normal 

functioning leading to lipid infiltration or fatty liver and consequently compromising the immune 

response. The ultimate goal of this stage is to increase the rate of oxidation and the evacuation of 

TG from the liver through VLDL secretion process. The VLDL secretion is relatively slow 

process and requires sufficient amount of additives to work properly. In this regard, methionine 

and choline have been tested as an effective additive to increase the hepatic VLDL secretion 

during early lactation (Grummer, 2008). In rats, it has been shown that choline deficiency causes 

TG accumulation in the liver (Tinoco et al., 1965, Juggi and Prathap, 1979). In several other 

studies it has been reported that both methionine and choline serve as a methyl donor and 

enhance the process of hepatic VLDL secretion (Auboiron et al., 1994, Grummer, 2008, 
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Martinov et al., 2010). Methionine deficiency may also interfere with the process of choline 

synthesis as demonstrated by Ardalan et al. (2009). If both supplementations, provided in an 

adequate amount, may help to improve the milk yield and protein contents (Sales et al., 2010).  

However, there is a limited amount of data available to support the role of methionine 

supplementation to increase the milk yield during the transition period. The above mentioned and 

other related studies were mostly focused on achieving the 3:1 ratio of Lysine to Methionine in 

metabolizable protein (MP) as estimated by National Research Council (NRC, 2001a). Only 

fewer related studies have reported the clinical significance of methionine supplementation, for 

example (Osorio et al., 2013). A recent work by Osorio et al. (2014) further highlighted the role 

of different genes that were affected by methionine supplementation. Soder and Holden (1999) 

reported that methionine supplementation may also improve the immune response especially 

during early lactation to avoid farmer costly diseases such as mastitis. It has been shown that 

rumen protected methionine supplementation is helpful in heat stressed periparturient dairy cows 

especially during early lactation to increase the productivity (Nikkhah et al., 2013).   

 

Heat Stress in Dairy Cows 

 

Environmental factors affect animal heath by means of complex interactions between 

them. These factors include heat stress, ambient temperature, cold stress, solar radiation, wind 

speed and humidity, and have direct or indirect role on animal’s health and productivity (Collier 

et al., 1982a). Consequently, these factors also impact the production of livestock worldwide at a 

large scale (Nienaber et al., 1999). Many of these interacting factors are difficult to measure, as 
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these appear only as a seasonal effect in a disease incidence. We have reviewed the phenomena 

of heat stress with respect to liver tissue in transition dairy cows. 

Heat stress during the transition period adversely affects the health, performance, 

productivity, and immune response in dairy cows (do Amaral et al., 2009, do Amaral et al., 

2011). It alters the overall pattern of hepatic gene expression that further results in several 

metabolic and physiological disorders (Tao et al., 2012, Shahzad et al., 2015). The increased 

environmental temperature, humidity index and rectal temperature beyond the critical threshold 

level lead to reduced DMI (Fuquay, 1981, West, 2003). The notable feature caused by heat stress 

in transition dairy cows is that despite the reduced DMI, fats are not mobilized from the adipose 

tissue. Consequently, the NEFA level remains lower during the heat stress (Shwartz et al., 2009). 

However, the pattern of endocrine hormones is changed (Collier et al., 1982b). As a result, the 

lower feed intake leads to reduced rumination, decreased nutrient absorption and increased 

energy level maintenance requirements. This whole process results in the net decrease in energy 

level of the animal leading to NEB.  

The NEB during early lactation is further associated with increased risk of metabolic 

disorders and health related complications as discussed earlier. It has been reported that heat 

stress results in an incredible loss of both dairy and beef industries. The example include a loss 

of around one billion dollars in dairy industry when a heat wave struck in California in 2006 

(Collier and Zimbelman, 2007). The proper management strategies in the form of proper 

temperature maintenance and environmental cooling may help to cope with these circumstances 

(Collier et al., 1982b). In normal circumstances of heat stress, feed supplementation through 

rumen protected methionine has also provided a significant measure in improving the milk yield 

and dairy health (Nikkhah et al., 2013).  
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Bioinformatics Analysis  

 

“A mind of the caliber of mine cannot derive its nutriment from cows”. 

GEORGE BERNARD SHAW, The Star, Apr. 5, 1890. 

Bioinformatics and systems biology are key areas to handle and analyze the vast majority 

of data that are being generated through ‘omics’ technologies (Shahzad and Loor, 2012). 

Bioinformatics provides tools and expertise while systems biology helps in data manipulation 

and integration. In general, bioinformatics analyses are conducted using newly generated or even 

previously available datasets and their related information to come up with a proof of established 

knowledge and novel conclusions. The analyses are usually conducted by developing novel 

software tools or pipelines. Some of the existing software packages include but are not limited to 

R Bioconductor packages and SAS for statistical evaluations, and Ingenuity Pathway Analysis 

(IPA, QIAGEN Redwood City) and Dynamic Impact Approach (Bionaz et al., 2012) for post 

statistical analysis. Examples of the online available databases containing biological data and 

analysis pipeline tools include but are not limited to the KEGG database (Kanehisa, 2002) and 

DAVID bioinformatics resource (Huang et al., 2007).  

In the current literature, we have considered the bioinformatics analysis for the following 

two main areas of research such as transcriptomics and metabolomics for the review purpose. 

We have used transcriptomics data generated through Agilent bovine microarrays platform and 

metabolomics data generated through GC-MS and LC-MS techniques.  
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1. Transcriptomics Research  

Today’s research is mainly focused on systematic approaches rather than reductionist 

approaches. Systematic approaches make use of the big datasets generated through high 

throughput omics techniques to come up with novel observations. We have utilized this approach 

to analyze the data obtained from dairy cows fed with moderate energy diet and supplemented 

with commercial products of methionine such as Smartamine M (SM) and MeteSmart (MS). 

Some of the cows that developed ketosis postpartum were taken into consideration to explore the 

mechanisms associated with the disease development as compared with the healthy and 

supplemented group of cows. Literature search shows that relatively fewer studies have been 

performed underlying the mechanism of ketosis development using omics techniques. Loor et 

al., (2007)  conducted a study using microarrays dataset to identify the etiology of ketosis 

development in the liver of transition dairy cows under different feeding conditions. The overall 

objective of the study was to test the hypothesis of ketosis development in transition dairy cows 

fed with restricted (∼80% of energy requirement) and ad libitum (∼140% of energy requirement) 

diets prepartum and consequently to evaluate the role of diets on hepatic metabolism by means 

of differential gene expression within the two groups. During the study, it was found that feeding 

different diets resulted in differential gene expression with the two groups. It was identified that 

genes involved in oxidative phosphorylation, protein ubiquitination, ubiquinone biosynthesis, 

cholesterol metabolism, growth hormone signaling and proton transport were down regulated. 

Whereas the genes associated with cytokines signaling, fatty acid uptake/transport and fatty acid 

oxidation were upregulated. There are numerous other studies dealing with the role ketosis 

development in the liver of transition dairy cows suggesting the etiology of the disease and its 

treatment mechanisms (McCarthy et al., 1968, Waterman and Schultz, 1972, Osorio et al., 2013).  
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2. Metabolomics Research 

Metabolomics analyses are conducted to better understand the metabolic adaptations 

occurring in an organism due to several reasons such as diet, treatment, animal physiology, and 

environmental factors (Berge et al., 2011, Bujak et al., 2014, Wu et al., 2014). It has been shown 

that metabolomics is well suited for detection of different response variables and metabolic 

alterations (Beckonert et al., 2007). These analyses are usually conducted using nuclear magnetic 

resonance (NMR) and mass spectrometry coupled with liquid or gas chromatography. These 

types of analyses along with transcriptome profiling are helpful in understating the biological 

mechanisms under pathophysiological conditions. 

NMR spectrometry is a quantitative technique that provides a detailed information on 

solution-state molecular structures, based on atom-centered nuclear interactions and properties 

(Liu et al., 1996, Beckonert et al., 2007). It has been extensively used for multivariate metabolic 

profiling of cells, tissues and biological fluids since 1970s (Brown et al., 1977, Nicholson et al., 

1983, Nicholson et al., 1984). Several NMR based studies have been published dealing with the 

underlying mechanisms involved in ketosis development (Klein et al., 2012, Sun et al., 2014, 

Tetens et al., 2015).  

In mass spectrometry, a neutral protein sample is ionized usually through electron 

bombarding procedure. The ionized molecules are then separated based on a mass to charge ratio 

(m/z). Then corresponding results are displayed on a mass spectrum, which represent the 

characteristics of either the molecular mass of molecules and/or structure of proteins or peptides 

(Fenn et al., 1989, Horgan and Kenny, 2011). The mass spectrometry is often coupled with other 

chromatographic techniques such as Gas chromatography (GC-MS) or Liquid chromatography 

(LC-MS). Both techniques work on a similar principle except the physical state of the matter 
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(Pitt, 2009). The GC-MS technique involves the separation of metabolites or biochemical 

compounds using a gas chromatograph. The LC-MS technique involves the separation of 

metabolites or biochemical compounds in liquid phase (usually mixed with water) by 

chromatography before they are introduced into the ion source (e.g., electron). The results are 

then interpreted though analytics and statistical methods.  

There are couple of mass spectrometry studies that were performed in transition cows 

with developed ketosis postpartum (Zhang et al., 2013, Li et al., 2014). Among these, Li et al., 

(2014) reported plasma metabolic profiling using LC-MS technique. The study highlighted 13 

potential metabolic biomarkers that are responsible for plasma ketosis. These include glycocholic 

acid, tetradecenoic acid, and palmitoleic acid (fatty acid metabolism), arginine, valine, glycine, 

lysine, and leucine/isoleucine (amino acid metabolism), nicotine, tryptophan, aminobutyric acid, 

creatinine, and undecanoic acid (other metabolisms). In another study, Zhang et al. (2013) 

reported novel biomarkers by means of GC-MS technique from two main types of ketosis such 

as clinical and subclinical. These biomarkers were identified in carbohydrates, fatty acids, amino 

acids, sitosterol and vitamin E isomers. In our current study, we have obtained the results using 

both GC/LC-MS technique. Our finding are reported in the following chapters.   

 

Summary 

 

Dairy cows are confronted with a large array of physiological and nutritional challenges 

during the transition period. Failure to meet these challenges often lead to overall production 

related complicacies and metabolic disorders such as ketosis, and fatty liver. In addition to these 
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challenges, environmental factors also influence the productivity of dairy cows during the 

transition period. The studies about methionine supplementation in periparturient dairy cows 

show that methionine is not only required at cellular and tissue levels but also for treating the 

heat stress, metabolic disorders and to cope with optimal levels of protein requirements 

especially after calving. Diagnosis of metabolic related disorders such as ketosis using omics 

techniques promises to unravel the complex biological mechanisms associated with the onset of 

the disease. Integrating the results from more than one omics techniques will also help us to 

identify the interrelated biological mechanisms and their interactions.   

Several informatics methodologies have been adopted to improve the health and 

productivity of dairy cows during transition and lactation phases. These methodologies rely 

heavily on statistical and bioinformatics approaches to deal with datasets obtained from various 

high throughput omics techniques including metabolomics and transcriptomics.  
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CHAPTER # 2  

 

Integrating metabolomics and transcriptomics of liver to study 

susceptibility to ketosis in response to prepartal nutritional management 

 

Abstract 

 

Postpartal ketosis is associated with body fat mobilization postpartum. Sub-clinical and 

clinical ketosis arise more frequently in cows that are overfed energy during the entire dry period 

or during the close-up (i.e. last 21 d prior to parturition). Metabolomics (GC-MS, LC-MS; 

Metabolon Inc.) and transcriptomics (44 K-whole-transcriptome microarray; Agilent) analyses 

were performed in liver tissue harvested at -10 d relative to parturition from cows that were 

healthy (H) on 7 d postpartum or were diagnosed with clinical ketosis (K). Cows in K consumed 

a higher-energy diet (OVE) from -21 d to calving. Cows in H consumed OVE (n = 8) or a high-

straw lower-energy diet (CON; n = 8) from -21 d to calving. Out of 313 biochemical compounds 

identified, statistical analysis (p ≤ 0.10) of metabolomics data for K vs. CON, OVE vs. CON, 

and K vs. OVE revealed 34, 33 and 25 affected compounds, respectively. The top-five affected 

and up-regulated biochemical compounds in K vs. CON were taurocholate, adenine, 

hypotaurine, gamma-glutamylcysteine, and taurochenodeoxycholate. In OVE vs. CON cysteine, 

methylphosphate, cysteinylglycine, and taurocholate were up-regulated and gamma-

glutamylthreonine was down-regulated. In K vs. OVE the top-five affected compounds were all 

down-regulated: xylitol, 1-palmitoylglycerophosphoglycerol, leucylaspartate, sphinganine, and 

glycylvaline. Bioinformatics analysis revealed that primary bile acid production through cysteine 

and taurine precursors, and oxidative stress-like activities were affected in both K and OVE vs. 



22 
 

CON groups. In contrast, in K vs. OVE ketone body production was up-regulated and cell 

signaling pathways were inhibited. Bioinformatics analysis of 2,908 differentially expressed 

genes (DEG, p ≤ 0.05) using the Dynamic Impact Approach (DIA) revealed that the top-five 

impacted pathways in K vs. OVE were ‘hedgehog signaling’, ‘glycosphingolipid biosynthesis - 

globo series’, ‘renin-angiotensin system’, and ‘other glycan degradation’ all of which were 

inhibited. The ‘circadian rhythm’ pathway was among the most-induced pathways. Furthermore, 

there was marked inhibition in K vs. OVE of pathways associated with cellular growth, 

communication, signal transduction, fatty acid biosynthesis, and immune related responses. 

These results suggest that prepartal diet alters the hepatic metabolome and transcriptome. Liver 

from cows developing ketosis postpartum appears to exhibit unique alterations in the 

transcriptome and metabolome. 

 

JAM Conference:  

K. Shahzad, J. S. Osorio, D. N. Luchini and J. J. Loor. 2014 Journal of Dairy Science, 97(E-

Suppl. 1): 713. 
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Introduction 

 

Ketosis is a metabolic disease often seen in high producing dairy cows during early 

lactation (Baird, 1982). It arises more frequently in cows that are fed high-energy diet during the 

entire dry period or during the close-up dry period (i.e. last 21 d prior to parturition). It is 

characterized by partial anorexia, depression and body fat mobilization (Morrow et al., 1979). 

Nutritional management during this period may affect susceptibility of cows to several metabolic 

disorders and infectious diseases (Forslund et al., 2010). Dairy cows are highly susceptible to 

developing metabolic disorders such as ketosis (Loor et al., 2007) and become more susceptible 

to infectious diseases such as mastitis and metritis (Forslund et al., 2010). Ketosis can affect the 

productivity and cost of dairy forms in term of decreased milk production and animals curing 

(Berge and Vertenten, 2014). It is associated with negative energy balance (NEB), hepatic lipid 

accumulation, and increased blood ketones while blood glucose concentration is decreased 

(Drackley, 1999). The prepartal plane of nutrition is highly correlated with body fat mobilization 

around parturition (Khan et al., 2015). High-energy protein diet without or with low protein 

supplementation may cause fatty liver or other metabolic disorders as compared to high energy 

high protein or low energy low protein dietary planes of nutrition (Bell et al., 2000). The 

improper plane of nutrition can lead to animal stress and provoked immune response during early 

phases of lactation (Ingvartsen, 2006, Shahzad et al., 2014).  

Metabolic adaptations during early lactation lead to fatty acid mobilization because of 

NEB. These fatty acids in the form of non-esterified fatty acids (NEFA) either enter into the liver 

tissue or directed towards the mammary glands. The higher concentrations of NEFA in the liver 

give rise to higher synthesis of acetyl-CoA through beta-oxidation or triglycerides (TG) synthesis 
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through esterification reactions. Due to the decreased amount of available oxaloacetate resulting 

from lower glucose concentration, the acetyl CoA cannot enter into the TCA cycle and results 

into marked elevation of ketone bodies such as β-hydroxybutyrate (BHBA), acetyl acetate, and 

acetone (Grummer and Carroll, 1991, Li et al., 2014a). On the other hand, when the 

concentration of TG exceeds its extra hepatic export through very low-density lipoprotein 

(VLDL), lipid infiltration occurs in the liver leading to fatty liver disease (Loor et al., 2006). At 

this point the ability of liver to oxidize NEFA and export them as TG is reduced due to the 

severe NEB (Morrow, 1976). During this process, ketone bodies are produced as a result of 

partial oxidation of NEFA. There are three main types of ketone bodies such as BHBA, acetone, 

and acetoacetate (Grummer and Carroll, 1991, Li et al., 2014a). Among these, BHBA plays a 

key role in the development of ketosis, whereas acetoacetate is broken down into acetone, which 

is a volatile compound (Herdt, 2000). The ketone bodies start accumulating in the blood when 

their concentration exceeds their utilization (Adewuyi et al., 2005). However, the presence of 

ketone bodies is normally expected in fresh dairy cows because of NEFA mobilization 

postpartum where a portion of NEFA is converted into ketone bodies (Duffield, 2000). The 

excessive amount of ketone bodies production at this stage leads to the metabolic disorder 

commonly known as ketosis.  

Ketosis is also associated with fatty liver or lipidosis. The condition, when the hepatic 

uptake of NEFA exceeds over oxidation and secretion, is called lipidosis (Loor et al., 2007). It 

might also be caused by reduced synthesis of apo-lipoproteins during severe inflammation at the 

time of calving (Bertoni et al., 2004). When the amount of hepatic lipid accumulation is 

increased, dairy cows become more susceptible to other pathologies and at the same time when 

the treatment is functional, the recovery period is prolonged (Herdt, 1988).   
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Transcriptomics and metabolomics have been widely used in dairy research to explore 

the molecular mechanisms and biological behaviors using computational methods (Loor et al., 

2007, Loor et al., 2013, Zhang et al., 2013). Transcriptomic techniques help to unravel 

differentially expressed genes (DEG), genetic variants, point mutations and noncoding RNAs 

from a list of whole genome array by means of unbiased statistical applications. On the other 

hand, metabolomics techniques help to understand the role of different biomarkers involved in 

particular etiology from a list of identified metabolites (Horgan and Kenny, 2011, Zhao et al., 

2014). The methodologies involved in metabolomics research include nuclear magnetic 

resonance (NMR), and mass spectrometry coupled with liquid chromatography (LC-MS) or gas 

chromatography (GC-MS) (Li et al., 2014b). These techniques have been employed at different 

scales in dairy research (Coffey, 2007, Wang et al., 2012, Ferreira et al., 2013), however, the 

integration techniques have not been reported yet. We have taken this strategy into consideration 

and used them together to explore the transcriptional and biochemical level alterations to unravel 

the etiology of ketosis development.   

In the current study, we have explored the metabolic pathways involved in ketosis 

development by means of transcriptomics and metabolomics. We have used the dynamic impact 

approach (DIA) (Bionaz et al., 2012) and Ingenuity pathway analysis tools (IPA, QIAGEN 

Redwood City, www.qiagen.com/ingenuity) in this regard. The objective of the study was to use 

both metabolites and DEG in hepatic tissue extracted prepartum at -10 d and retrospectively 

explore the mechanisms associated with ketosis development postpartum in cows fed moderate 

energy diet during the close-up dry period. The present work provides necessary information that 

may help to provide ketosis diagnosis prepartum and improve the health and milk production 

during early lactation. 

http://www.qiagen.com/ingenuity
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Materials and Methods 

 

Experimental design and dietary treatments 

 The procedure for this protocol (#09214) was approved by The Institutional Animal Care 

and Use Committee (IACUC) of the University of Illinois (Urbana). The experiment was 

conducted as a randomized complete block design as explained elsewhere (Osorio et al., 2013). 

All cows received the same far-off diet (1.24 Mcal/kg of DM; 14.3% CP) from −50 to −22 d 

before expected calving, a close-up (moderate energy) diet (1.54 Mcal/kg of DM; 15.0% CP) 

from −21 d to calving, and fresh cow lactation diet from calving (1.75 Mcal/kg of DM; 17.5% 

CP) through 30 days in milk (DIM). Supplements of methionine were top-dressed from −21 to 

30 DIM. The other factors such as animal husbandry, sampling of ingredients, total mixed ration 

(TMR), body weight (BW), body condition score (BCS), milk weights, sampling for milk 

composition, and housing of cows pre- and postpartum have been reported elsewhere (Osorio et 

al., 2013) and are not included in this this study. For the current study, we have selected a subset 

of 24 cows which were evaluated at +7 d postpartum such as healthy cows fed moderate energy 

diet (OVE, n=6), OVE cows with developed ketosis (K, n=6), OVE plus supplemented with 

either Smartamine M (SM, n=6), or MetaSmart (MS, n=6). For this chapter, we have focused on 

K and OVE groups. The experimental design of the study is shown in the Figure 2.1.  

 

Liver biopsies and RNA extraction 

Liver tissue samples were collected via puncture biopsy (Dann et al., 2006) from cows 

under local anesthesia at approximately 0730 hour once prepartum on d −10 (±3 d), and then 



27 
 

postpartum on +7 and +21 d. The samples were stored in liquid nitrogen immediately and then at 

-80°C until RNA extraction. We used liver samples from –10 d prepartum for the ketosis 

etiology. Total RNA was extracted from the samples using established protocol in our 

laboratory. Briefly, liver tissue sample was weighed (~55 mg on average) and straightway put 

inside a 2 ml centrifuge tube (Corning Inc. ®, Cat. No. 430052, Corning, NY, USA) with 1 ml of 

Qiazol reagent to proceed with RNA extraction. This extraction procedure also utilizes 

chloroform (Ambion® Cat. No. 9720, Austin, TX, USA), which removes DNA. Any residual 

genomic DNA was removed from RNA with DNase enzyme using miRNeasy Mini Kit columns 

(Qiagen, Hilden, Germany). The RNA concentration was measured using a Nano-Drop ND-1000 

spectrophotometer (Nano-Drop Technologies, Wilmington, DE, USA). The purity of RNA 

(A260/A280) for all samples was above 2.0. The quality of RNA was evaluated using the 

Agilent Bioanalyzer system (Agilent 2100 Bioanalyzer, Agilent Technologies, Santa Clara, CA, 

USA). The average RNA integrity number (RIN) for all samples that were used for the 

subsequent analysis were around 6.9.  

 

Blood profiling 

A large metabolic blood profiling including 33 biomarkers was performed in plasma 

collected at -12, -3 and +3 d relative to parturition. The raw results were recorded and were 

further used for statistical analysis. For ketosis evaluation, ketosticks were used in the urine to 

measure BHBA concentrations. The ketotic cows were identified based on the presence of large 

amounts of blood NEFA and ketone bodies in the urine at a certain time point. The results are 

included here in the study for further discussion along with transcriptomics and metabolomics 

datasets.  
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Metabolomics 

 Metabolomic analysis was performed by Metabolon Company (Metabolon Inc. NC). The 

liver tissue samples were prepared according to the sample preparation guidelines. Briefly, the 

500 milligram of the liver tissue per sample was weighed, packed in dry ice, and then shipped to 

the company. The analysis was performed using mass spectrometry coupled with gas 

chromatography (GC-MS) and liquid chromatography (LC-MS). Total 313 biochemical 

compounds (metabolites) were identified by the assay.  

 

Transcriptomics 

For transcriptomics analysis, we used ~44 K bovine (v2) gene expression Agilent 

microarray platform. The microarrays experiment was performed according to our laboratory’s 

established protocol and the instructions provided by Agilent technologies.  Four groups of cows 

were used, which are OVE, K, SM and MS. The complete microarray hybridization design is 

given in the Figure 2.2. The detailed description of the microarrays experiment is provided 

elsewhere (Shahzad et al., 2015). Briefly, the RNA with 200 nanograms (ng) per sample was 

used for cDNA synthesis. The cDNA was reverse transcribed to cRNA and was further used for 

cy3 or cy5 fluorescent dye according to the manufacturer’s instructions. Purification of the 

labeled cRNA product was performed with RNeasy mini spin columns (Qiagen, cat# 74104), and 

it was subsequently eluted in 30 μL of DNase-RNase-free water. The eluted cRNA concentration 

was measured using NanoDrop ND-1000 (Thermo Fisher Scientific Inc., Waltham, MA) to 

confirm the manufacturer’s recommended criteria for yield and specific activity of at least 0.825 

μg and ≥ 6 respectively. The labelled cRNA was fragmented using 10X blocking Agent and 25X 
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fragmentation buffer and then the reaction was stopped using 2X GEx hybridization buffer. The 

samples were loaded onto the Agilent bovine microarray’s slides and were hybridized in a 

rotating hybridization oven at 65°C for 17 hours. After that, slides were washed and scanned 

using a GenePix 4000B scanner (Axon Instruments Inc., Sunnyvale, CA) and GenePix Pro v.6.1 

software. The scanned images were then edited using the bovine gal file. Resulting spots with 

substandard features were flagged as bad and were excluded from the subsequent analysis. The 

results were saved in GPR files and were further processed using Perl scripts before statistical 

analysis.  

 

Statistical analysis 

For metabolic profiling parameters, a normal distribution was assessed using the 

procedure UNIVARIATE of SAS (SAS Institute Inc., Cary, NC). A MIXED model procedure 

with a spatial power as a covariance structure was used. The model included time, status, and 

time x status as fixed effects, with cows as random variable. Means between treatments and time 

point were separated using the PDIFF. Data were deemed to be significant if overall time x status 

interaction was p ≤ 0.05. Single point comparisons were determined to be significantly different 

if p ≤ 0.05.  

For metabolomics analysis, total 313 biochemical compounds were used for statistical 

analysis. The data was normalized in terms of raw area counts. Each biochemical compound 

from the raw value was rescaled to set the median value equal to 1. The missing values were 

imputed with the minimum value. Following the log transformation and imputation of missing 

values, if any, with the minimum observed value for each compound, we used a mixed procedure 
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of SAS to identify the biochemical compounds that differed significantly between the 

experimental groups. Significantly affected biochemical compounds with p ≤ 0.10 were selected 

for further analysis.  

For microarray’s statistical analysis, data from 12 arrays (24 samples) were used. The 

oligo IDs with bad flags (-100) were removed before normalization. The data was log 

transformed and then corrected across dye and array effects using loess normalization and array 

centering method. After normalization, a mixed procedure of SAS was used. The statistical 

model included dietary treatments as a fixed effect. The raw p-values were adjusted for the 

number of genes tested using Benjamini and Hochberg’s false discovery rate (FDR; Benjamini 

and Hochberg, 1995) to account for multiple comparisons. However, we could not find enough 

differentially expressed genes (DEG) with corrected p-values. So, we used a p ≤ 0.05 and fold 

change (FC) ≥ |1.5| criteria for evaluation purpose. For the current chapter’s discussion, we used 

K vs. OVE comparison for both metabolome and transcriptome.  

 

Pathways analysis 

 For metabolomics analysis, the biochemical compounds were annotated with their 

corresponding sub-pathways. The results were further furnished with FC- and p-values resulting 

from SAS analysis. For functional analysis of the microarray data, a dynamic impact approach 

(DIA) was used to unravel the Kyoto Encyclopedia of Genes and Genome (KEGG) pathways. A 

list of DEG along with their Oligo IDs, Entrez gene IDs, p-values and FC was used as an input 

for DIA. We obtained a total of 3,065 DEG (2,091 up and 974 down regulated) with a p ≤ 0.05 

and FC ≥ |1.5| for K vs. OVE comparison. A minimum of 30% annotated genes on the 
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microarray versus the whole genome were selected for the analysis consideration as explained 

elsewhere (Bionaz et al., 2012). The DIA was run on the selected DEG to obtain the impact and 

flux values of the KEGG categories, sub-categories and their respective pathways. The impact 

values reflect the overall perturbation and the flux values reflect the overall direction of a 

pathway. This strategy allows evaluation of transcriptome profiles in a more holistic fashion 

across different pairwise comparisons. 

 

Network analysis and data integration 

The network analyses for both metabolomics and transcriptomics were performed using 

IPA software. The Metabolon’s biochemical compounds were annotated with PubChem 

identifiers (https://pubchem.ncbi.nlm.nih.gov/). For metabolomics network constructions, a list 

of significantly (13, p ≤ 0.10) affected biochemical compounds was used along with their FC 

values. For transcriptomic network reconstructions, a list of DEG with a p ≤ 0.05 and FC ≥ |1.5| 

was uploaded to run the core analysis. From the analysis results, we selected upstream 

transcription regulators and their downstream target genes for network reconstructions. The data 

integration was performed with transcription regulators and biochemical compounds.   

 

Results and Discussion 

 

Relatively fewer studies have been conducted underlying the mechanism of ketosis 

development in dairy cows during transition period by using omics techniques. One of the 

studies dealing with ketosis development during transition period was conducted by our group 

https://pubchem.ncbi.nlm.nih.gov/
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using microarrays dataset to identify the molecular events of ketosis progression in the liver of 

dairy cows (Loor et al., 2007). During the study, it was identified that the genes involved in 

oxidative phosphorylation, protein ubiquitination, ubiquinone biosynthesis, cholesterol 

metabolism, growth hormone signaling and proton transport were down regulated. In contrast, 

the genes associated with cytokines signaling, fatty acid uptake/transport and fatty acid oxidation 

were up regulated. Furthermore, this study explains the relationship of metabolic pathways and 

gene networks under NEB, and unravels the mechanisms of lower protein synthesis and altered 

immune response as a result of low and high energy feed intakes. The study highlights the 

mechanism of ketosis development in terms of two types of dietary feeds with different energy 

sources such as ∼80% of energy requirements (restricted energy) and ∼140% of energy 

requirements (ad libitum). There are other studies highlighting the mechanisms of ketosis 

development in the liver of transition cows, suggesting the significance of nutritional 

management to prevent ketogenesis. One of important technique is to supplement the diet with 

limiting amino acids to cope with lower protein synthesis (McCarthy et al., 1968, Waterman and 

Schultz, 1972, Osorio et al., 2013). It is considered that decreased concentration of plasma amino 

acids and lower protein synthesis is also one of the main cause behind the ketogenesis. The 

accelerated demand of limiting amino acids for gluconeogenesis, milk production and energy 

synthesis is also met through muscle protein degradation (Bell et al., 2000, Kuhla et al., 2016). 

Mass spectrometry has been used in several studies to explore the process of ketosis 

development in transition dairy cows (Zhang et al., 2013, Li et al., 2014a). In one of the study, 

Zhang et al., (2013) reported a set of novel biomarkers from clinical, subclinical and control 

groups of cows using plasma metabolomic profiling by GC-MS technique. These biomarkers 

were from carbohydrates, fatty acids, amino acids, sitosterol, vitamin E isomers, and many 
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others. The study reveals that these metabolites respond differentially under different forms of 

ketotic stages. By identifying the metabolic pattern of each stage, it will help to identify and 

prevent the progression of ketosis development. On the other hand, Li et al., (2014a) reported 13 

potential plasma biomarkers by LC-MS technique to identify the progression of ketosis 

development in dairy cows. In the study, two groups of cows, clinical ketosis and control were 

chosen based on the plasma glucose and BHBA concentrations. The identified biomarkers were 

related to Fat metabolism: glycocholic acid, tetradecanoic acid, and palmitoleic acid; Amino acid 

metabolism: arginine, valine, glycine, lysine, and leucine/isoleucine; and Other metabolisms: 

nicotine, tryptophan, aminobutyric acid, creatinine, and undecanoic acid. Among these, clinical 

group showed a significant uprise response towards fat related metabolites such as glycocholic, 

tetradecanoic acid and palmitoleic acid, and amino acids related metabolites such as valine, and 

glycine. However, the other metabolites showed a declining response. These results indicated an 

increased response of fatty acids and amino acids metabolism to promote the gluconeogenesis 

due to the decreased level of blood glucose. An increased level of bile production was also 

observed in clinical group of cows.  

In our study, we have combined transcriptomic analysis with GC-MS/LC-MS to reveal 

the changes occurring at genes, metabolic, and pathways level. This integration will help to 

diagnose the progression of ketosis development before parturition. It will also help ketosis 

prevention during early stages of lactation in dairy cows. The results from our experiments are 

discussed in the following sections. 
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Overall experimental design 

The overall experimental design for the groups OVE and K is shown in the Figures 2.1. 

The figure shows the plane of nutrition from far-off (-50 d) to early lactation (+7 d) along with 

tissue extraction (-10 d) and calving time points (0 d). However, the Figure 2.2 shows the overall 

microarrays design with the two (OVE and K) highlighted conditions. The two colored 

hybridization plan is shown with two different colors red and green.       

 

Expression patterns of transcriptome, metabolome and blood biomarkers 

We observed a large number of DEG (3,065) with FC ≥ |1.5| and p-value ≤ 0.05 cut off 

criteria.  Among these 2,091 DEG were up regulated and 974 DEG were down regulated. By 

reducing the p ≤ 0.01 and doubling the FC ≥ |3| criteria, we obtained a total of 121 DEG, of 

which 22 were up regulated (Table 2.1) and 99 were down regulated (Table 2.2).  It was found 

that the up regulated DEG were mostly linked with innate immune responses, DNA replication, 

and protein synthesis, whereas the down regulated DEG were linked with the cell signaling, and 

cell cycle. Overall, a mixed response of both up and down regulated DEG was observed within 

the metabolism and immune system. For metabolomics results, we used a p ≤ 0.10 to enlist the 

significantly affected biochemical compounds along with their sub-pathways as shown in the 

Table 2.3. The selection criteria resulted into a total of 15 biochemical compounds, of which 

three were up regulated and the remaining were down regulated. The table shows the FC values 

to represent the overall trend of the pathways for each of the biochemical compound.  

The results from 33 blood biomarkers are shown in the Table 2.4. From these results, we 

did not find enough significant differences (p ≤ 0.05) between the two states such as K and OVE 
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before parturition. However, there were significant differences within the time factor. 

Noticeably, the NEFA and BHBA values were different at all the three time points. We also did 

not find enough significant results between status and time point interactions except BHBA and 

creatinine. The results indicate that both BHBA and creatinine concentration has significant 

differences at 3 d in K vs. OVE group. Both biomarkers were found increased in the ketotic 

group. Creatinine has been considered as one of the biomarker along with urea to determine the 

kidney functions in the ketotic cows (Tyler et al., 1994).  

 

Summary of the KEGG pathways 

For the KEGG summary results, we focused on five main categories and their 

subcategories as shown in the Figure 2.3. The first two categories such as ‘Metabolism’ and 

‘Genetic Information Processing’ were overall induced, while the remaining three categories 

such as ‘Environmental Information Processing’, ‘Cellular Processes’ and ‘Organismal systems’ 

were moderately inhibited. The KEGG pathways linked with these categories and subcategories 

were further classified into two main groups such as ‘metabolic’ (Figure 2.4) and non-metabolic 

(Figure 2.5) pathways.  

 

Networks of transcription regulators and biochemical compounds 

The network analysis for both DEG and biochemical compounds was conducted using 

IPA software. For DEG, we used upstream analysis results to identify the transcription 

regulators. The transcription regulators are involved in regulation of several other genes by 

modulating the interaction with nucleosomes, transcription factors and histones. The analysis 
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identified 8 up regulated (Figure 2.6: A-D) and 7 down regulated (Figure 2.7: A-B) transcription 

regulators. The up regulated transcription regulators include HMGB1 (high mobility group box 

1), HOXA13 (homeobox protein Hox-A13), SREBF2 (sterol regulatory element binding 

transcription factor 2), MECOM (MDS1 and EVI1 complex locus protein EVI1), NKX2-1 (NK2 

homeobox 1), SATB1 (special AT-rich sequence binding protein 1), HIF1A (hypoxia-inducible 

factor 1-alpha), and NFE2L2 (nuclear factor erythroid 2-like 2). Among these, HMGB1, STAB1 

and NEF2L2 are involved in immune response, injury and inflammation. The HOXA13, and 

MECOM are involved in gene regulation, cell development, differentiation and proliferation. 

The HIF-1 plays an important role in cellular response to systemic oxygen levels, glucose and 

iron metabolism, SREBPF2 controls cholesterol homeostasis by regulating transcription of 

sterol-regulated genes and NKX2-1 also known as ‘thyroid specific enhancer binding protein’ is 

involved in regulation of genes that are involved in thyroid, lung, and diencephalon. The down 

regulated transcription regulators include CSHL1 (chorionic somatomammotropin hormone-like 

1), NCOA2 (nuclear receptor coactivator 2), HDAC5 (histone deacetylase 5), GLI3 (Zinc finger 

protein GLI3), SKIL (SKI-Like proto-oncogene), SPIB (Spi-B transcription factor) and SNAI1 

(Snail family zinc finger 1). These are involved in growth control (CSHL1), transcriptional 

activity and cell signaling (GLI3, SNAI1), transcriptional regulation, cell cycle progression, 

growth and differentiation (HDAC5, SKIL, SPIB) and nuclear hormone receptors including 

steroid, thyroid, retinoid, and vitamin D receptors (NCOA2). The function of these genes were 

retrieved from the NCBI gene database.  

The networks of biochemical compounds are shown in the Figure 2.8. From the 15 

biochemical compounds we have shown here the networks of two compounds, glucose-6-

phosphate and glycochenodeoxycholate under the carbohydrate metabolism (Figure 2.8A). The 
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same compounds along with D-erythro-C16-ceramide are shown under the cellular functions 

(Figure 2.8B). For data integration, we have combined the results from transcriptomics and 

metabolomics to find out the interconnecting links between the two datasets. The Figure 2.9 

shows the data integration using transcription regulators and biochemical compounds. In the 

figure, the transcription regulators are linked with the other potential downstream target genes 

and biochemical compounds by direct and indirect interactions. The results from both 

approaches along with blood profiling are discussed along with their KEGG pathways in the 

following sections.  

 

Metabolic pathways 

 The results from our top 20 most impacted metabolic pathways (Figure 2.4) including 

some of those from the remaining pathways (not shown) are discussed in the following 

subsections.   

Carbohydrate Metabolism. The metabolism of ‘Glycolysis / Gluconeogenesis’, ‘Pentose 

phosphate pathway’, and ‘Inositol phosphate metabolism’ were inhibited indicating a reduced 

synthesis and utilization of glucose (Figure 2.4). Similarly, the results from metabolomics study, 

such as ‘xylitol’, ‘ribulose’ and ‘glucose-6-phosphate (G6P)’ as shown in the Table 2.3 also 

support the inhibition of these pathways. Among these biochemical compounds, xylitol acts as a 

precursor for xylulose 5-phosphate, and hence serves as an intermediate in the pentose phosphate 

pathways (Dupriez and Rousseau, 1997). Interestingly, xylitol can reduce ketone production in 

dairy cattle potentially though its ability to stimulate energy production via glucose-dependent 

pathway and its stimulation of insulin release which both act to suppress ketogenesis in the liver 



38 
 

(Sakai et al., 1996, Toyoda et al., 2008). Xylitol enters into the gluconeogenesis system via 

pentose phosphate pathway to synthesize glucose and as a result it stimulate insulin secretion to 

provide antiketotic effects (Mäkinen, 2000). The inhibition of xylitol and related pathways may 

indicate a gradual increase in ketogenesis as indicated by other studies (Zhang et al., 2013, Sun 

et al., 2014).  The other carbohydrate metabolic pathways such as ‘Glyoxylate and dicarboxylate 

metabolism’, ‘Propanoate metabolism’, ‘Pyruvate metabolism’, ‘TCA cycle’, and ‘Butanoate 

metabolism’ (not shown here) were overall induced prepartum in the ketotic group. These results 

may indicate a shift of energy source from carbohydrate towards fatty acids and amino acids in 

the ketotic group as compared to the healthy group.  

Lipid Metabolism. Among the lipid metabolic pathways, ‘Fatty acid biosynthesis’, ‘Biosynthesis 

of unsaturated fatty acids’, and ‘Fatty acid metabolism’ were inhibited. The inhibition of these 

pathways suggest fatty acid synthesis feedback mechanism in the ketotic group. Surprisingly, the 

expression of SREBF2 gene transcription regulator was found to be upregulated (Figure 2.6A), 

which has a major role in regulation of sterol biosynthesis (Piantoni et al., 2010). This gene was 

earlier found to be down regulated in the ketotic group of cows postpartum (Loor et al., 2007). 

As a response ‘Steroid biosynthesis’, ‘Steroid hormone biosynthesis’ and ‘Sphingolipid 

metabolism’ were induced in K vs. OVE group. The induction of ‘Synthesis and degradation of 

ketone bodies’ pathway indicates the ketone bodies production in the liver even before 

parturition due to high energy diet as shown in the earlier study (Wu et al., 2014). The induction 

of ‘Primary bile acid synthesis’ was also supported by metabolomics results partially in the form 

of glycochenodeoxycholate as shown in the Figure 2.8A. The bilirubin was also significantly 

altered at different time points as shown in the Table 2.4. The elevated level of bilirubin has been 

reported in the ketotic cows (Steen et al., 1997), which, if not cleared properly, may result in 
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poor performance in productivity and pronounced immune response (Bertoni et al., 2008). Liver 

is the main site of bile acid production, which in turn helps to reduce the excessive cholesterol 

level (Hofmann, 1999). The concentration of bile acid in liver and peripheral blood can be an 

influenced by many factors such as production activity, transport across membranes, secretion, 

secondary bile acid production by luminal bacteria, enterohepatic recirculation, liver glycine- or 

taurine-conjugation, and fecal elimination. It was found that CYP7B1 gene was among the up 

regulated genes that might be involved in the conversion of cholesterol to bile acid (Chiang, 

1998). This gene is under the influence of SREBF2 transcription regulator (Figure 2.6A).    

Amino Acid Metabolism. We found amino acid related several metabolic pathways that were 

induced in the ketotic group. In addition to the pathways that are listed in the Figure 2.4, Other 

induced pathways include ‘Cysteine and methionine metabolism’, ‘Arginine and proline 

metabolism’, ‘Lysine degradation’, ‘Tryptophan metabolism’, and ‘Alanine, aspartate and 

glutamate metabolism’ (results not shown). The higher rate of metabolism in these pathways 

suggest that K vs OVE group has more consumption and utilization of amino acids during 

transition period. For example, increased metabolic rate of cysteine and methionine indicate a 

shift of balancing the methionine supply as a limiting amino acid. Methionine plays an important 

role in fatty acid catabolic reactions to avoid its accumulation in the liver tissue and lowering the 

cholesterol level in the body (Sun et al., 2016). These results were also supported by 

metabolomics profiling such as ‘butyrylglycine’ and ‘1-methylimidazoleacetate’ (Table 2.3). The 

down regulation of dipeptides such as ‘glycylvaline’, ‘leucylaspartate’, ‘tyrosylglycine’ and 

‘glycylisoleucine’ may indicate an increased degradation of amino acids in a ‘Valine, leucine and 

isoleucine degradation’ pathway. These results were in accordance with the metabolic profiling 
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of plasma in dairy cows where an induction of ‘Valine, leucine and isoleucine degradation’ was 

observed (Zhang et al., 2013).  

Glycan Biosynthesis and Metabolism. Glycans are carbohydrate molecules that are either linked 

with lipids to form glycolipids or proteins to form glycoproteins. These are mainly involved in 

cellular signaling pathways (Shahzad et al., 2014). In the ketotic group, we found that ‘Other 

glycan degradation’, ‘Glycosylphosphatidylinositol(GPI)-anchor biosynthesis’, 

‘Glycosaminoglycan degradation’, and ‘O-Glycan biosynthesis’ were inhibited, whereas the 

‘Glycosphingolipid biosynthesis - ganglio series’ and ‘N-Glycan biosynthesis’ were most 

importantly induced. The intricate roles of the inhibited pathways are associated with cellular 

signaling and communication, and extracellular matrix (ECM) interactions along with growth 

factors (Ernst et al., 1995, Wopereis et al., 2006). However, the induced pathways are involved 

in handling of misfolded proteins due to stress response in the endoplasmic reticulum (ER) and 

cellular growth (Ruddock and Molinari, 2006, Lingwood, 2011).  

Metabolism of Cofactors and Vitamins. The cofactors and vitamins play an important role in 

different metabolic functions. Except the two pathways ‘Riboflavin metabolism’, and ‘One 

carbon pool by folate’, (Figure 2.4) all of the other cofactors and vitamins pathways were 

induced in K vs. OVE. Riboflavin is part of Flavin mononucleotide (FMN) and Flavin adenine 

dinucleotide (FAD) cofactors and plays a critical role in fatty acid metabolism, citrate cycle and 

electron transport chain (Powers, 2003). One carbon metabolic pathway is centered around 

folate, which is required for different functions such as de novo synthesis of purines and 

thymidylate and remethylation of homocysteine to methionine (Stover, 2009). The deficiency of 

these vitamins may lead to reduced or complete shutdown of energy related pathways in the liver 

and ultimately leading to metabolic disorders such as ketosis.   
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Non-metabolic pathways 

 We have categorized non-metabolic pathways as shown in Figure 2.5 separately from the 

metabolic pathways to uncover the etiology of ketosis development under this category. This will 

help us to enhance our understanding of the metabolic disorder beyond the well-established role 

of metabolic pathways.   

Protein Synthesis. We discovered ‘Ribosome’ among the top 20 most impacted KEGG 

pathways (Figure 2.5). ‘Ribosome’ along with other pathways such as ‘Ribosome biogenesis in 

eukaryotes’, ‘RNA transport’ and ‘mRNA surveillance pathway’ is involved in protein synthesis 

and turn over reactions. Similarly, several pathways related to folding, sorting and degradation 

were induced. These include ‘Protein processing in endoplasmic reticulum’, ‘RNA degradation’, 

‘Protein export’, ‘Ubiquitin mediated proteolysis’, and ‘Proteasome’. The overall greater protein 

turnover may be involved in acute phase response protein such as haptoglobin and serum 

amyloid A (SAA) (Osorio et al., 2014). These proteins are characterized by increased 

inflammatory responses.  It has also been shown that genes involved in endoplasmic reticulum 

(ER) stress induced unfolded protein response are expressed in the liver of cows during transition 

period (Gessner et al., 2014, Winkler et al., 2015). The expression of these protein responses in 

prepartum cows may reflect an onset of inflammatory responses before calving. These conditions 

further give rise to metabolic disorders during early lactation.  

DNA Replication. The pathways related to DNA replication such as ‘Nucleotide excision repair’, 

‘Base excision repair’ and ‘DNA replication’ were induced (Figure 2.5). The induction of these 

pathways may suggest liver regeneration and cell proliferation. Similar mechanisms of cellular 

proliferation were indicated by other studies (Loor et al., 2007, McCarthy et al., 2010). As an 

example, we found MECOM (MDS1 and EVI1 complex locus, Figure 2.6A) transcription 
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regulator in our network. The upregulation of MECOM is involved in regulation of cellular 

proliferation (SKIL) (Kim et al., 2016), metabolism and bile acid synthesis related genes 

(ACACA, ACAA2) (Nakamura et al., 2014). 

Cellular Functions. We found several genes, biochemical compounds and pathways involved in 

different cellular functions. Most of the signaling pathways such as ‘mTOR signaling pathway’, 

‘ErbB signaling pathway’, ‘VEGF signaling pathway’, ‘Phosphatidylinositol signaling system’, 

‘MAPK signaling pathway’, ‘Calcium signaling pathway’, ‘Hedgehog signaling pathway’, 

‘Notch signaling pathway’, ‘Wnt signaling pathway’, and ‘Jak-STAT signaling pathway’ were 

inhibited in K vs. OVE group except ‘TGF-beta signaling pathway’ which was found as an 

induced pathway. The inhibition of these pathways may indicate a poor response of cell to cell 

communication and regulation mechanisms among the hepatic cells. These signaling pathways 

were more likely involved in regulating cell metabolism (mTOR, Phosphatidylinositol, Calcium, 

Notch)  (Kuhla et al., 2009, Laplante and Sabatini, 2009, Arai et al., 2010), growth, proliferation 

and survival (mTOR, ErbB, MAP Kinase, Hedgehog, Wnt)  (Varjosalo and Taipale, 2008, Hynes 

and MacDonald, 2009), differentiation, apoptosis, and cell motility (ErbB, MAP Kinase, 

Phosphatidylinositol, Notch, Wnt)  (MacDonald et al., 2009, Guruharsha et al., 2012) , vascular 

development (VEGF) (Zhang et al., 2014), and immune response (Jak-STAT, MAP Kinase) 

(Shuai and Liu, 2003, Arthur and Ley, 2013). These pathways are in accordance with network 

analysis of transcription regulators.  TGF-beta signaling along with its downstream genes such as 

SMAD1, TGIF1, and BAMBI  was an indication of cell proliferation and apoptosis regulation 

(Heldin et al., 1997) in the hepatic cells of cows developing ketosis postpartum.  

The other signaling pathways such as ‘GnRH signaling pathway’, and ‘Insulin signaling 

pathway’ from endocrine system were also found to be inhibited indicating mechanisms of 
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reduced reproductive functionality (Aguilar-Rojas and Huerta-Reyes, 2009) and insulin 

resistance (Pires and Grummer, 2008) respectively. The Figure 2.8B highlights the role of three 

important biochemical compounds such as glycochenodeoxycholate, D-erythro-C16 ceramide 

and glucose-6-phosphate that are involved in cellular functions and their maintenance. The 

induction of glycochenodeoxycholate shows depolarization of mitochondria leading to 

hepatocyte apoptosis (Lemasters et al., 1998, Higuchi et al., 2001). This process indicates lower 

rate of energy synthesis that leads to mitochondrial apoptosis, liver dysfunction and NEB. The 

downregulation of D-erythro-C16 ceramide indicates reduced functioning of adherens junctions 

and tight junctions. These junctions play an important role in cell to cell adhesions in epithelial 

cells (Yap et al., 1997). Ceramides are important cell signaling lipid molecules that serve in 

different cellular processes such as apoptosis, cell signaling, growth, differentiation and 

proliferation (Wang et al., 2009, Kjellberg et al., 2015). These results indicate a shutdown of 

several signaling molecules in the liver of ketotic cows. 

Immune System. Understanding the immune system is essential to uncover the metabolic 

changes occurring inside the liver of dairy cows. The liver plays an essential role during stressful 

phases of the transition period, where this organ undergoes through metabolic, inflammatory, 

and immune responses. One of the study published by our group shows several biomarkers 

including those involved in inflammation such as albumin, ceruloplasmin, SAA, haptoglobin and 

interleukin 6 (IL-6) during transition period (Osorio et al., 2014). The study compares the OVE 

group with two other groups supplemented with methionine (Smartamine M and MetaSmart). 

The OVE group of cows showed a greater response of positive acute phase proteins such as 

haptoglobin and SAA while lower response of negative acute phase protein such as albumin. 

These acute phase proteins are mainly synthesized in the liver and provide a measure of 
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inflammation around calving (Jain et al., 2011). In our results, Table 2.4 shows no significant 

responses for haptoglobin and albumin (p > 0.05). However, the time effect shows a significant 

response for these biomarkers (p < 0.05). From our transcriptome analysis, ‘Antigen processing 

and presentation’ and ‘Complement and coagulation cascades’ (results not shown) were the most 

induced pathways within immune response in K vs. OVE group. Among the up regulated 

transcription regulators, we found HIF1A, HMGB1 and NFE2L2 (Figure 2.6: A, C-D) that were 

linked with several downstream immune related genes. HIF1A (Hypoxia Inducible Factor 1 

Alpha) is mainly involved in regulation of cell metabolism, stress and innate immune response 

(Nizet and Johnson, 2009). The protein expression of HMGB1 (High Mobility Group Box 1) can 

act as a cytokine to respond against cellular injury, infection and inflammation reactions (Lotze 

and Tracey, 2005). The third gene NFE2L2 (Nuclear Factor, Erythroid 2 Like 2) is an important 

regulator of inflammatory responses (Figarska et al., 2014). The blood profiling data (Table 2.4) 

along with transcription regulators suggest an onset of inflammatory response well ahead of 

calving. The inflammatory response around this time may also be under the cellular injuries 

leading to the compromised liver functions, NEB and increased ketone bodies production during 

early days of lactation. The compromised immune response might be an indication of direct 

effect of ketone bodies on the immune system (Gregory et al., 1993).  

 

Integration of metabolome and transcriptome profiling 

The methodologies involved in metabolomics research include nuclear magnetic 

resonance (NMR), and mass spectrometry coupled with either liquid chromatography (LC-MS) 

or gas chromatography (GC-MS) (Li et al., 2014b).  These techniques have been employed at 

different levels in dairy research (Humer et al., 2016, Dervishi et al., 2017), however, the 
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integration methods have been applied at a very limited scale (Ferreira et al., 2013). For 

example, a network reconstruction in mammary gland tissue (Wang et al., 2012) is one of the 

example where metabolic data from publically available databases (NCBI, KEGG and Uniprot) 

was used for integration purpose. However, the integration of transcriptomics and metabolomics 

datasets in dairy research has not been reported yet. The integration of data with the help of 

suitable bioinformatics tools may enhance our understanding at cellular and molecular levels that 

render cows more susceptible to ketosis development. The figure 2.9 shows an example of data 

integration using transcription regulators and biochemical compounds. In the figure transcription 

regulators are linked with the other potential downstream genes by direct and/or indirect means. 

From the network it can be inferred that the transcription regulators and biochemical compounds 

are linked with downstream genes and metabolites that are involved in cell growth, proliferation, 

apoptosis, immune response, insulin signaling and metabolism.  

 

Conclusion 

 

Predisposition to early-postpartal ketosis in cows overfed moderate energy prepartum is 

associated with alterations in transcriptome- and metabolome-wide metabolic and non-metabolic 

pathways. Ketosis is a critical metabolic disorder that arises during early days of lactation due to 

improper nutritional management. By taking necessary precautions during the close up dry 

period, the rate of this metabolic disorder can be abridged in high producing dairy cows. Our 

results of transcriptomics, metabolomics, and blood profiling highlight several causative agents 

at transcriptome, metabolome and blood profiling levels that can potentially be involved in 

ketosis development postpartum. We have highlighted several metabolic and non-metabolic 
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pathways that were affected in ketotic group of cows as compared with healthy group of cows. 

Transcriptome analysis revealed many transcription regulators and their role in regulation of 

several pathways. On the other hand, metabolomics analysis also provided the information of 

significantly affected biomarkers that might predict the metabolic level disorders leading to the 

etiology of ketosis development. Integration analysis of transcription regulators and biochemical 

compounds summarizes the phenomena of ketosis development along with potential pathways 

level variations. From this study, we have uncovered the proof of established knowledge along 

with novel observations. These observations along with novel biomarkers might help to predict 

ketogenesis during close up dry period, which might help us to diagnose and overcome the 

metabolic disorders well ahead of time.   
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Figures and Tables 

 

Table 2.1: A list of differentially expressed gene with p ≤ 0.01 and fold change (FC) ≥ 3. The 

table shows the gene symbols, their descriptions and respective FC values.  

Symbol Description K vs. OVE 

CCL2 chemokine (C-C motif) ligand 2 5.12 

CLCA2 chloride channel accessory 2 5.09 

CACNA1D calcium channel, voltage-dependent 4.51 

ADARB2 adenosine deaminase, RNA-specific 4.51 

KRT9 keratin 9  4.45 

KIFC2 kinesin family member C2 4.34 

MARK1 MAP/microtubule affinity-regulating kinase 1 4.22 

POLE2 polymerase (DNA directed), epsilon 2 (p59 subunit) 4.19 

SLC22A2 

solute carrier family 22 (organic cation transporter), 

member 2 4.06 

GPR63 G protein-coupled receptor 63 3.98 

ANO3 anoctamin 3 3.88 

XK X-linked Kx blood group (McLeod syndrome) 3.83 

DUSP4 dual specificity phosphatase 4 3.73 

SPATA7 spermatogenesis associated 7 3.64 

ZC3H4 zinc finger CCCH-type containing 4 3.59 

SYCE3 synaptonemal complex central element protein 3 3.57 

MYRIP myosin VIIA and Rab interacting protein 3.40 

LOC787081 PREDICTED: UPF0632 protein A 3.36 

CNR1 cannabinoid receptor 1 (brain) 3.21 

SPATA17 spermatogenesis associated 17 3.20 

PCBP3 poly(rC) binding protein 3 (PCBP3) 3.09 

ADAM32 ADAM metallopeptidase domain 32 3.08 
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Table 2.2: A list of differentially expressed genes with p ≤ 0.01 and fold change ≤ -3. 

Symbol Description K vs. OVE 

FBP2 fructose-1,6-bisphosphatase 2 -8.60 

DOCK3 dedicator of cytokinesis 3 -8.12 

FAM131A family with sequence similarity 131, member A -6.91 

LOC528412 multidrug resistance-associated protein 4 -6.80 

COBRA1 cofactor of BRCA1 -6.24 

CPXM2 carboxypeptidase X (M14 family), member 2 -6.13 

UNC13D unc-13 homolog D (C. elegans) -5.18 

FBP2 fructose-1,6-bisphosphatase 2 -5.14 

LOC780781 keratin associated protein -5.11 

BTBD10 BTB (POZ) domain containing 10 -5.09 

BAD BCL2-associated agonist of cell death -5.08 

NEU4 sialidase 4 -5.08 

SS18 synovial sarcoma translocation, chromosome 18 -4.82 

TAPBPL TAP binding protein-like  -4.80 

KIAA0922 KIAA0922 ortholog  -4.77 

APOBR apolipoprotein B receptor -4.68 

PROK2 prokineticin 2 -4.64 

WDR6 WD repeat domain 6 -4.60 

EVC2 Ellis van Creveld syndrome 2 -4.58 

SYN3 synapsin III -4.50 

GLCCI1 glucocorticoid induced transcript 1 -4.50 

DLGAP5 discs, large (Drosophila) homolog-associated protein 5 -4.47 

CIB2 calcium and integrin binding family member 2 -4.47 

TBC1D19 TBC1 domain family, member 19 -4.41 

ARNT aryl hydrocarbon receptor nuclear translocator -4.40 

ACPT acid phosphatase, testicular -4.40 

MAPK3 mitogen-activated protein kinase 3 -4.39 

TUBG1 tubulin, gamma 1 -4.39 

NCOA2 nuclear receptor coactivator 2 -4.29 

REN renin -4.25 

DST dystonin, transcript variant 1 -4.23 

PTK2 PTK2 protein tyrosine kinase 2 -4.21 

HCN1 hyperpolarization activated cyclic nucleotide-gated potassium channel 1 -4.20 

DEFB1 defensin, beta 1 -4.16 

TTF2 transcription termination factor, RNA polymerase II -4.13 

NPB neuropeptide B -4.13 
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Table 2.2 (Cont.)  

RAB27A RAB27A, member RAS oncogene family -4.09 

ZYG11A zyg-11 homolog A (C. elegans) -4.08 

MAP3K4 mitogen-activated protein kinase kinase kinase 4 -4.06 

TPGS1 chromosome 7 open reading frame, human C19orf20 -4.04 

C1QTNF3 C1q and tumor necrosis factor related protein 3 -4.00 

TOE1 target of EGR1, member 1 (nuclear) -3.98 

ADARB2 adenosine deaminase, RNA-specific, B2 -3.97 

TRIM65 tripartite motif containing 65 -3.94 

LOC505465 inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase 

complex-associated protein -3.92 

SLC25A39 solute carrier family 25, member 39 -3.90 

AP2A1 adaptor-related protein complex 2, alpha 1 subunit -3.86 

RP1 retinitis pigmentosa 1 (autosomal dominant) -3.81 

C1QTNF5 C1q and tumor necrosis factor related protein 5 -3.79 

PMM1 phosphomannomutase 1 -3.76 

MYO6 myosin VI -3.76 

ABCB7 ATP-binding cassette, sub-family B (MDR/TAP), member 7 -3.75 

DUSP15 dual specificity phosphatase 15 -3.75 

FIGF c-fos induced growth factor (vascular endothelial growth factor D) -3.74 

NAT1 N-acetyltransferase 1 (arylamine N-acetyltransferase) -3.72 

CLDN8 claudin 8 -3.69 

KDM2B cDNA clone -3.67 

CENPE centromere protein E -3.64 

TBX5 T-box 5 -3.64 

CBX2 chromobox homolog 2 -3.63 

LOC788554 olfactory receptor 8B3 -3.62 

CA5B carbonic anhydrase 5B, mitochondrial -3.61 

DCST2 DC-STAMP domain containing 2 -3.57 

FGF13 fibroblast growth factor 13 -3.57 

PLLP plasmolipin -3.57 

PIGT phosphatidylinositol glycan anchor biosynthesis, class T -3.55 

ZBTB32 zinc finger and BTB domain containing 32 -3.54 

LOC788703 olfactory receptor, family 52, subfamily J, member 3-like -3.54 

PITPNM1 phosphatidylinositol transfer protein, membrane-associated 1 -3.53 

LOC789869 Zinc finger and BTB domain-containing protein 8 -3.50 

MAP3K8 mitogen-activated protein kinase kinase kinase 8B-like -3.48 

PLOD3 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 -3.48 

HPS3 Hermansky-Pudlak syndrome 3 -3.47 

PYGO2 pygopus homolog 2 -3.46 

STK11IP serine/threonine kinase 11 interacting protein -3.46 



50 
 

Table 2.2 (Cont.) 

NCOA3 nuclear receptor coactivator 3 -3.44 

ZNF565 zinc finger protein 565 -3.40 

ARHGAP22 Rho GTPase activating protein 22 -3.39 

ACRV1 acrosomal vesicle protein 1  -3.37 

HDAC5 histone deacetylase 5 -3.36 

SLC2A1 solute carrier family 2 (facilitated glucose transporter), member 1 -3.35 

ADORA2B adenosine A2b receptor -3.34 

FAM214B KIAA1539 ortholog  -3.33 

GTPBP4 GTP binding protein 4 -3.32 

EML3 echinoderm microtubule associated protein like 3 -3.31 

OR5AS1 olfactory receptor, family 5, subfamily AS, member 1 -3.27 

TKTL1 transketolase-like 1 -3.26 

NCAN neurocan -3.22 

PDE4DIP phosphodiesterase 4D interacting protein -3.20 

DEFB7 defensin beta 7 -3.16 

ACP5 acid phosphatase 5, tartrate resistant -3.13 

AGFG2 ArfGAP with FG repeats 2 -3.12 

RALGAPA1 ral GTPase-activating protein subunit alpha-1 -3.11 

MAP1S microtubule-associated protein 1S -3.10 

KLHL30 kelch-like family member 30 -3.09 

TBC1D5 TBC1 domain family, member 5 -3.08 

ABHD16A abhydrolase domain containing 16A -3.07 

ADM adrenomedullin -3.04 

RAE1 RAE1 RNA export 1 homolog (S. pombe) -3.01 
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Table 2.3: A list of significantly affected biochemical compounds along with their sub-pathways 

with p ≤ 0.10 and respective fold change (FC) values. The FC < -1.0 indicates the down 

regulation, whereas FC ≥ 1.0 indicates up regulation of the biochemical compounds. 

 

 

 

 

 

 

 

 

 

  

p -value FC

glycylvaline Dipeptide 0.01 -1.41

leucylaspartate Dipeptide 0.01 -1.46

tyrosylglycine Dipeptide 0.03 -1.30

glycylisoleucine Dipeptide 0.03 -1.49

xylitol Pentose Metabolism 0.04 -1.34

1-palmitoylglycerophosphoglycerol* Lysolipid 0.06 -1.37

glycochenodeoxycholate Primary Bile Acid Metabolism 0.06 2.32

glucose-6-phosphate (G6P) Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 0.07 -1.24

1-methylimidazoleacetate Histidine Metabolism 0.07 1.62

N-palmitoyl-D-erythro-sphingosine Sphingolipid Metabolism 0.07 -1.24

1-nonadecanoylglycerophosphocholine(19:0)* Lysolipid 0.08 -3.79

3-dehydrocarnitine* Carnitine Metabolism 0.08 -1.15

ribulose Pentose Metabolism 0.09 -1.29

butyrylglycine Fatty Acid Metabolism (also BCAA Metabolism) 0.09 1.34

tetradecanedioate Fatty Acid, Dicarboxylate 0.09 -1.40

K vs. OVE
Sub PathwayBiochemical Name

Legends

p -value p  < 0.05 0.05 ≤ p  < 0.1

FC FC < -1.0 FC ≥ 1.0
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Table 2.4: Metabolic profiling of blood biomarkers. The table shows 33 metabolites their estimates, standard error means (SEM) and 

p-values for each status (OVE, and K), time point (-12, -3, and +3) and their interaction (status x time).        

 

Metabolites OVE K -12 -3 3 -12 -3 3 -12 -3 3 Status Time 

Status 

X Time

Glucose 3.69 3.80 4.01
a

3.66
b

3.56
b

3.95 3.55 3.57 4.08 3.76 3.55 0.17 0.49 0.00 0.65

Cholesterol 2.35 2.51 2.85
a

2.32
b

2.11
b

2.84 2.18 2.01 2.85 2.45 2.21 0.21 0.49 0.00 0.55

Urea 4.99 4.71 5.16 4.84 4.55 5.54 5.12 4.30 4.78 4.56 4.79 0.43 0.51 0.15 0.09

Calcium 2.38 2.42 2.51
a

2.43
a

2.25
b

2.52 2.45 2.17 2.51 2.41 2.33 0.08 0.55 0.00 0.22

Phosphorus 2.20 2.06 2.09 2.14 2.16 2.16 2.23 2.21 2.02 2.05 2.11 0.15 0.23 0.87 0.95

Magnesium 0.89 0.87 0.91 0.89 0.85 0.91 0.90 0.87 0.92 0.87 0.83 0.05 0.66 0.30 0.82

Sodium 146.72 146.79 145.35
a

148.19
b

146.72
a

145.40 148.37 146.39 145.31 148.01 147.06 0.94 0.92 0.00 0.75

Potassium 4.66 4.44 4.65
a

4.69
a

4.33
b

4.81 4.76 4.43 4.49 4.62 4.23 0.13 0.07 0.00 0.66

Chloride 105.79 106.56 106.17
a

107.87
a

104.5
b

105.95 107.40 104.03 106.38 108.33 104.98 1.07 0.35 0.00 0.95

Zinc 11.62 10.17 13.25
a

10.17
b

9.267
b

13.46 11.23 10.16 13.03 9.10 8.37 1.27 0.06 0.01 0.77

Ceruloplasmin 2.61 2.48 2.42 2.47 2.75 2.50 2.29 3.05 2.34 2.66 2.45 0.26 0.55 0.25 0.07

Total protein 72.87 72.47 74.34
a

70.79
b

72.89
a

75.76 70.69 72.16 72.92 70.88 73.61 1.74 0.82 0.02 0.22

Albumin 36.08 36 36.95
a

35.63
b

35.54
b

37.17 35.54 35.52 36.73 35.72 35.55 0.52 0.88 0.00 0.70

Globulin 36.64 36.28 37.42
a

34.63
b

37.35
a

38.64 34.65 36.63 36.19 34.60 38.06 1.81 0.86 0.02 0.23

GOT 76.40 74.69 58.81
a

63.48
a

104.33
b

62.08 64.42 102.70 55.55 62.55 105.97 12.55 0.86 0.00 0.89

GGT 21.75 21.31 21.96 20.51 22.13 23.59 20.07 21.59 20.32 20.94 22.67 40.70 0.81 0.34 0.19

Bilirubin 4.25 4.63 1.37
a

4.34
b

7.60
c

1.49 4.17 7.07 1.25 4.51 8.12 1.81 0.82 0.00 0.89

Alkaline phosphatase 26.51 28.86 26.03
a

26.26
a

30.77
b

24.64 24.42 30.47 27.42 28.10 31.06 2.98 0.54 0.01 0.63

Haptoglobin 0.67 0.77 0.44
a

- 1.00
b

0.40 - 0.94 0.49 - 1.05 0.18 0.53 0.00 0.94

NEFA 0.72 0.77 0.37
a

0.78
b

1.09
c

0.41 0.77 0.98 0.33 0.79 1.20 0.14 0.69 0.00 0.40

BHBA 0.75 0.91 0.50
a

0.84
b

1.16
c

0.52
a

0.83
b

0.91
b

0.48
a

0.86
b

1.41
c

0.17 0.36 0.00 0.02

p -value

SEM

Status X Time

Status Time OVE K
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a-c Values with different superscript letters in rows are different (p < 0.05) 

  

Table 2.4 (Cont.)

Creatinine 101.84 105.17 100.76 104.19 105.56 101.13 104.03 100.36 100.39
a

104.35
a

110.75
b

3.05 0.16 0.18 0.03

Paraoxonase 57.03 56.30 68.46
a

55.77
b

45.77
c

64.82 58.80 47.48 72.10 52.75 44.06 7.03 0.91 0.00 0.42

ROMt 12.01 13.10 12.02
a

11.78
a

13.87
b

11.79 11.04 13.22 12.26 12.51 14.52 1.05 0.20 0.04 0.83

SHp 145.79 159.33 138.51 148.09 171.08 116 168.29 153.08 161.02 127.89 189.09 29.82 0.58 0.36 0.13

NOX 41.78 42.45 39.87
a

51.55
b

34.94
a

39.26 52.50 33.59 40.48 50.59 36.28 4.19 0.88 0.00 0.63

NO2 9.60 9.13 11.72
a

8.53
b

7.84
b

11.97 9.36 7.47 11.48 7.71 8.21 1.43 0.74 0.00 0.48

NO3 31.72 32.75 28.07
a

41.54
b

27.10
a

27.14 41.91 26.12 29.00 41.17 28.07 3.81 0.80 0.00 0.81

Myeloperoxidase 471.23 499.45 408.96
a

484.64
b

562.44
c

392.98 484.42 536.30 424.93 484.85 588.58 43.79 0.43 0.00 0.73

ORAC 11438 11737 12006 11267 11490 12033 11219 11063 11980 11315 11916 647.38 0.69 0.16 0.38

Retinol 24.23 20.46 31.42
a

20.91
b

14.71
c

32.72 22.50 17.46 30.11 19.31 11.97 3.92 0.33 0.00 0.84

Tocopherol 2.33 2.53 2.58 2.73 1.97 2.78 2.42 1.78 2.38 3.03 2.16 0.39 0.53 0.06 0.28

Beta-Carotene 0.10 0.10 0.12
a

0.10
a

0.08
b

0.12 0.10 0.08 0.12 0.11 0.08 0.02 0.85 0.01 0.66
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Figure 2.1:  Experimental design for the current study: The tissue biopsies were taken at -10 d 

relative to parturition.  
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Legends 

 

Figure 2.2: The microarray’s hybridization design is shown here. A two colored channel (red 

and green) hybridization plan was used. The cows were fed with moderate energy diet, remain 

health (OVE), and with developed Ketosis (K) postpartum are encircled with red color.   
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Figure 2.3: Summary of the Kyoto Encyclopedia of Genes and Genomes (KEGG) categories 

and subcategories resulting from analysis by Dynamic Impact Approach (DIA).  The transition 

dairy cows with developed ketosis and healthy group (K vs. OVE) were fed moderate energy diet 

(1.54 Mcal/Kg) prepartum (-21 d to parturition). The impact values are represented by blue bars 

ranging from 0 to 50. The flux values are represented by colors ranging from green (inhibited, -

25 to 0) to red (activated, 1 to 25).  

Category

1. Metabolism

0.1 Metabolic Pathways

1.1 Carbohydrate Metabolism

1.2 Energy Metabolism

1.3 Lipid Metabolism

1.4 Nucleotide Metabolism

1.5 Amino Acid Metabolism

1.6 Metabolism of Other Amino Acids

1.7 Glycan Biosynthesis and Metabolism

1.8 Metabolism of Cofactors and Vitamins

1.9 Metabolism of Terpenoids and Polyketides

1.10 Biosynthesis of Other Secondary Metabolites

1.11 Xenobiotics Biodegradation and Metabolism

2. Genetic Information Processing

2.1 Transcription

2.2 Translation

2.3 Folding, Sorting and Degradation

2.4 Replication and Repair

3. Environmental Information Processing

3.1 Membrane transport

3.2 Signal Transduction

3.3 Signaling Molecules and Interaction

4. Cellular Processes

4.1 Transport and Catabolism

4.2 Cell Motility

4.3 Cell Growth and Death

4.4 Cell Communication

5. Organismal Systems

5.1 Immune System

5.2 Endocrine System

5.3 Circulatory System

5.4 Digestive System

5.5 Excretory System

5.6 Nervous System

5.7 Sensory System

5.8 Development

5.9 Environmental Adaptation

K vs. OVE

Legends

Flux = -25 -12.5 0 12.5 25 Impact = 0 6.25 12.5 25 50
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Figure 2.4: The top 20 most impacted metabolic Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways ranked by overall impact values. The impact and flux columns are shown on 

the right hand side of the figure. The impact values are represented by blue bars ranging from 0 

to 50. The flux values are represented by colors ranging from green (inhibited, -25 to 0) to red 

(activated, 1 to 25).  

 

 

 

     

  

Sub category Metabolic Pathways

1.8 Metabolism of Cofactors and Vitamins Riboflavin metabolism

1.10 Biosynthesis of Other Secondary Metabolites Caffeine metabolism

1.7 Glycan Biosynthesis and Metabolism Other glycan degradation

1.3 Lipid Metabolism Fatty acid biosynthesis

1.1 Carbohydrate Metabolism Pentose phosphate pathway

1.7 Glycan Biosynthesis and Metabolism Glycosylphosphatidylinositol(GPI)-anchor biosynthesis

1.6 Metabolism of Other Amino Acids Selenoamino acid metabolism

1.1 Carbohydrate Metabolism Inositol phosphate metabolism

1.1 Carbohydrate Metabolism Glyoxylate and dicarboxylate metabolism

1.7 Glycan Biosynthesis and Metabolism Glycosaminoglycan degradation

1.7 Glycan Biosynthesis and Metabolism Glycosphingolipid biosynthesis - ganglio series

1.1 Carbohydrate Metabolism Fructose and mannose metabolism

1.3 Lipid Metabolism Steroid biosynthesis

1.3 Lipid Metabolism Sphingolipid metabolism

1.1 Carbohydrate Metabolism Propanoate metabolism

1.1 Carbohydrate Metabolism Ascorbate and aldarate metabolism

1.3 Lipid Metabolism Biosynthesis of unsaturated fatty acids

1.6 Metabolism of Other Amino Acids Cyanoamino acid metabolism

1.8 Metabolism of Cofactors and Vitamins One carbon pool by folate

1.2 Energy Metabolism Nitrogen metabolism

K vs. OVE

Legends

Flux = -25 -12.5 0 12.5 25 Impact = 0 6.25 12.5 25 50
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Figure 2.5: The top 20 most impacted non-metabolic Kyoto Encyclopedia of Genes and 

Genomes (KEGG) Pathways ranked by overall impact values in K vs. OVE. The impact and flux 

columns are shown on the right hand side of the figure. The impact values are represented by 

blue bars ranging from 0 to 50. The flux values are represented by colors ranging from green 

(inhibited, -25 to 0) to red (activated, 1 to 25).  

 

 

  

Sub category Non-metabolic Pathways

5.7 Sensory System Taste transduction

5.6 Nervous System Long-term potentiation

5.2 Endocrine System Renin-angiotensin system

5.2 Endocrine System GnRH signaling pathway

2.2 Translation Ribosome

3.2 Signal Transduction mTOR signaling pathway

5.4 Digestive System Salivary secretion

5.4 Digestive System Bile secretion

5.7 Sensory System Phototransduction

3.2 Signal Transduction ErbB signaling pathway

5.9 Environmental Adaptation Circadian rhythm - mammal

5.3 Circulatory System Vascular smooth muscle contraction

2.4 Replication and Repair Nucleotide excision repair

5.4 Digestive System Gastric acid secretion

5.2 Endocrine System Insulin signaling pathway

4.4 Cell Communication Gap junction

5.8 Development Dorso-ventral axis formation

4.4 Cell Communication Adherens junction

4.3 Cell Growth and Death Oocyte meiosis

5.6 Nervous System Glutamatergic synapse

K vs. OVE

Legends

Flux = -25 -12.5 0 12.5 25 Impact = 0 6.25 12.5 25 50
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Figure 2.6: Representation of upstream analysis (A-D). The eight (8) molecules in the center are 

shown as up regulated transcription regulators (red), while the molecules in the periphery are the 

target genes from our differentially expressed gene (DEG) list. 

 

A 

B 
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Figure 2.6 (Cont.): Representation of upstream analysis (A-D). The eight (8) molecules in the 

center are shown as up regulated transcription regulators (red), while the molecules in the 

periphery are the target genes from our differentially expressed gene (DEG) list.  

C 

D 
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Figure 2.7: Representation of upstream analysis (A-B). The eight (7) molecules in the center are 

shown as down regulated transcription regulators (green), while the molecules in the periphery 

are the target genes from our differentially expressed gene (DEG) list.  
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A: Carbohydrate Metabolisms 

 

B: Cellular Functions 

 

Figure 2.8: Representation of Biochemical compounds in the form of metabolic (A: 

carbohydrate and lipid metabolism) and non-metabolic (B: cellular functions) networks in K vs. 

OVE.  
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Figure 2.9: Integration of transcriptomic and metabolomics datasets.  The network shows the 

interaction between transcription regulators and biochemical compounds in K vs. OVE group.   
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CHAPTER # 3 

 

Hepatic metabolomics and transcriptomics in prepartal dairy cows 

supplemented with Smartamine M and MetaSmart during the transition 

period. 

 

Abstract 

 

Supplementation with Smartamine M (SM) and MetaSmart (MS) during the transition 

period improves postpartal dry matter intake, milk production, and blood neutrophil immune 

function. In the current study we used metabolomics and transcriptomics to provide a more 

holistic view of the adaptations induced on the liver by dry period nutrition. Liver from cows fed 

a control high-energy diet without (OVE) or with SM or MS were used. Metabolomics was 

performed via LC-MS and GC-MS (Metabolon Inc.) and transcriptomics using a whole-

transcriptome bovine microarray (Agilent). From a total of 313 biochemical compounds 

identified, metabolomics analysis (P ≤ 0.10) revealed a total of 20, 21, and 48 compounds 

affected by SM vs. OVE, MS vs. OVE, and SM vs. MS, respectively. Comparing profiles in SM 

vs. OVE revealed that compounds up-regulated belong to the pentose, sterol, inositol, and purine 

metabolism pathways, while down-regulated compounds belong to secondary bile acid, arginine 

and proline, purine and pyrimidine, and eicosanoid metabolism pathways. In MS vs. OVE, the 

compounds up-regulated belong to primary bile acid, pyrimidine, and lysolipid metabolism, 

while compounds down-regulated were linked with glycolysis, gluconeogenesis, urea cycle, 

sphingolipid, and pyruvate metabolism. Liver of MS vs. OVE cows had lower hydroxybutyrate 
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and lactate concentration. The transcriptomic analysis of these groups resulted in 922 (SM vs. 

OVE), 1,573 (MS vs. OVE) and 1,033 (SM vs. MS) differentially expressed genes (DEG, P 

≤0.05). Bioinformatics analysis using the Dynamic Impact Approach (DIA) that SM vs. OVE 

resulted in a marked impact and activation of ‘fatty acid biosynthesis, cyanoamino acid 

metabolism’, ‘O-glycan biosynthesis, and ‘glycosaminoglycan biosynthesis’. In MS vs. OVE, 

however, among the top-5 most-impacted pathway there was marked inhibition of 

‘phenylalanine, tyrosine, and tryptophan biosynthesis’ and ‘phenylalanine’ metabolism. 

‘Cyanoamino acid metabolism’ and ‘taurine and hypotaurine’ metabolism were highly-impacted 

and activated pathways in MS vs. OVE. Unique responses in SM vs. MS included a marked 

activation of ‘fatty acid biosynthesis, ‘glycosphingolipid metabolism, ‘valine, leucine, and 

isoleucine biosynthesis’, and ‘sulfur metabolism’. Preliminary data interpretation suggests MS 

and SM induce distinct changes on the metabolome and transcriptome phenotype of the prepartal 

liver. The functional relevance of such changes remains to be determined. 

 

 

JAM Conference: 

K. Shahzad, J. S. Osorio, D. N. Luchini and J. J. Loor. 2014 Journal of Dairy Science, 97(E-

Suppl. 1):1157  
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Introduction 

 

In dairy cows, protein nutrition is utilized in two dependent ways. First, the protein 

contents of dairy ration (dietary proteins) become the main source of nitrogen (N) for microbial 

protein synthesis in the rumen. Second, this microbial protein becomes the source of amino acids 

for various biological functions such as maintenance, growth, reproduction and above all milk 

protein synthesis (Lee et al., 2015). Rumen also serve as a medium for microbial protein 

synthesis from protein free diet (Virtanen, 1966), and help to increase milk protein synthesis 

(Hao et al., 2017).  However, inadequate supply of essential amino acids may be a limiting factor 

to maintain a high milk protein or overall milk production in modern dairy cows (NRC, 2001). 

Several studies have been conducted to identify the limiting amino acids in high producing dairy 

cows during transition period. It was found that methionine, lysine and histidine are limiting 

amino acids during early phase of lactation (Broderic.Ga et al., 1974, Vanhatalo et al., 1999, 

Phillips et al., 2003). Studies has shown that rumen-protected methionine and lysine 

supplementation plays an important role to increase milk protein and production in high 

producing dairy cows (Socha et al., 2005).  

Methionine is the first limiting amino acid identified during early lactation in dairy cows. 

In this scenario, rumen-protected methionine in the form of Smartamine M (SM) and MetaSmart 

(MS) is being considered as one of the beneficial supplementation in modern dairy ration to 

increase the overall milk yield and animal performance in periparturient dairy cows (Rulquin et 

al., 2006, Ordway et al., 2009, Osorio et al., 2013). Methionine supplementation, in addition to 

balance the 3:1 ratio of lysine to methionine, also plays a vital role in maintaining the hepatic 

metabolic functions during the negative energy balance (NEB). It has been reported that 
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methionine in the liver of transition dairy cows acts as a lipotropic agent by stimulating very 

low-density lipoprotein (VLDL) synthesis and consequently increase the hepatic transport of 

triacylglycerides (TG) (Martinov et al., 2010). Methionine supplementation has also been shown 

to induce the synthesis of glutathione by providing the cysteine source (Martinov et al., 2010).  

In our current study, the dairy cows were overfed with moderate energy diet without any 

supplementation (OVE) and with methionine supplementation in the form of SM and MS to 

different groups of cows (Adisseo Inc.). We hypothesize that supplementing the moderate energy 

diet with SM and MS would help to improve the dry matter intake (DMI), milk yield and milk 

protein concentration as shown in (Osorio et al., 2013). In addition to these expectations, the 

current study is aimed to provide a holistic view of hepatic metabolomics and transcriptomics 

data integration using recent bioinformatics and systems biology approaches. The objective of 

the study was to utilize the metabolomics and transcriptomics data along with Bioinformatics 

techniques to uncover response of long-term rumen-protected methionine supplementation in 

terms of preparing the liver for the onset of lactation. 

 

Materials and Methods 

 

Experimental design and dietary treatments 

 The procedure for this protocol (#09214) was approved by The Institutional Animal Care 

and Use Committee (IACUC) of the University of Illinois (Urbana). The experiment was 

conducted as a randomized complete block design as explained elsewhere (Osorio et al., 2013). 

For this study, we selected a subset of 18 cow that were divided into three main groups such as 
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cows that were overfed moderate energy diet (OVE, n=6), OVE plus supplemented with 

Smartamine M (SM, n=6), and OVE plus supplemented with MetaSmart (MS, n=6). All cows 

received the same far-off diet (1.24 Mcal/kg of DM; 14.3% CP) from −50 to −22 d before 

expected calving, a close-up diet (1.54 Mcal/kg of DM; 15.0% CP) from −21 d to calving, and 

fresh cow lactation diet from calving (1.75 Mcal/kg of DM; 17.5% CP) through 30 days in milk 

(DIM). Supplements of methionine were top-dressed from −21 to 30 DIM. The experimental 

design of the current study is shown in the Figure 3.1.  

 

Liver biopsies and RNA extraction 

Liver tissue samples were collected via puncture biopsies (Dann et al., 2006) from cows 

under local anesthesia at approximately 0730 hour once prepartum on d −10 (±3 d), and then 

postpartum on d 7 and 21. The tissue samples were stored in liquid nitrogen immediately and 

then at 80°C until further RNA extraction, microarrays and metabolomics analysis. We used liver 

samples from –10 d prepartum for our metabolome and transcriptome experiment. Total RNA 

was extracted from the liver samples using established protocol in our laboratory. Briefly, liver 

tissue sample was weighed (~55 milligrams on average) and straightway put inside a 2 ml 

centrifuge tube (Corning Inc. ®, Cat. No. 430052, Corning, NY, USA), with 1 ml of Qiazol 

reagent to proceed with RNA extraction. This extraction procedure also utilizes chloroform 

(Ambion® Cat. No. 9720, Austin, TX, USA), which removes residual DNA. Any residual 

genomic DNA was removed from RNA with DNase enzyme using miRNeasy Mini Kit columns 

(Qiagen, Hilden, Germany). RNA concentration was measured using a Nano-Drop ND-1000 

spectrophotometer (Nano-Drop Technologies, Wilmington, DE, USA). The purity of RNA 

(A260/A280) for all samples was above 2.0. The quality of RNA was evaluated using the 
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Agilent Bioanalyzer system (Agilent 2100 Bioanalyzer, Agilent Technologies, Santa Clara, CA, 

USA). The average RNA integrity number (RIN) for all samples was around 6.9.  

 

Metabolomics 

 Metabolomics analysis was performed by Metabolon Company (Metabolon Inc. NC). 

The liver tissue samples were prepared according to the sample preparation guidelines. Briefly, 

the 500 milligram (mg) of the liver tissue per sample was weighed, packed in dry ice and then 

shipped to the company. The metabolomics analysis was performed using mass spectrometry 

coupled with gas chromatography (GC-MS) and liquid chromatography (LC-MS). Three groups 

were used for the current study, which are OVE, SM and MS. Each group has 313 total identified 

biochemical compounds for the analysis purpose.  

 

Transcriptomics  

For transcriptome analysis, we used ~44 K bovine (v2) gene expression Agilent 

microarray platform. The microarrays experiment was performed according to our laboratory’s 

established protocol and the instructions provided by Agilent technologies. The complete 

microarrays hybridization design is shown in the Figure 3.2. For the current study, we used 

OVE, SM and MS groups for the respective pairwise comparisons. The detailed description of 

the microarrays experiment is provided elsewhere (Shahzad et al., 2015). Briefly, the RNA with 

200 nanograms (ng) per sample was used for cDNA synthesis. The cDNA was reverse 

transcribed to cRNA and then used for cy3 or cy5 fluorescent dye labeling according to the 

manufacturer’s instructions. Purification of the labeled cRNA was performed with RNeasy mini 
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spin columns (Qiagen, cat# 74104), and it was subsequently eluted in 30 μL of DNase-RNase-

free water. The eluted cRNA concentration was measured using NanoDrop ND-1000 (Thermo 

Fisher Scientific Inc., Waltham, MA) to confirm the manufacturer’s recommended criteria for 

yield and specific activity of at least 0.825 μg and ≥ 6 respectively. The labelled cRNA was 

fragmented using 10X blocking Agent and 25X fragmentation buffer and then the reaction was 

stopped using 2X GEx hybridization buffer. The samples were loaded onto the Agilent bovine 

microarray’s slides and were hybridized in a rotating hybridization oven at 65°C for 17 hours. 

After that slides were washed and scanned using a GenePix 4000B scanner (Axon Instruments 

Inc., Sunnyvale, CA) and GenePix Pro v.6.1 software. Resulting spots with substandard features 

were flagged and excluded from the subsequent analysis. 

 

Statistical Analysis 

From metabolomics data, total 313 biochemical compounds were used for statistical 

analysis. The data was normalized in terms of raw area counts. Each biochemical compound 

from the raw values was rescaled to set the median value equal to 1. The missing values were 

imputed with the minimum value. Following the log transformation and imputation of missing 

values, with the minimum observed value for each compound, we used a mixed procedure of 

SAS (SAS Institute Inc., Cary, NC) to identify the biochemical compounds that affected 

significantly between the experimental groups. The biochemical compounds with p ≤ 0.10 were 

short listed for subsequent analysis.  

For microarray’s statistical analysis, data from 12 arrays (24 samples) was used. The 

oligo IDs with bad flags (-100) were removed before normalization. The data was log 
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transformed and then corrected across dye and array effects using loess normalization and array 

centering method. After normalization, a mixed procedure of SAS was used. The statistical 

model included dietary treatments as a fixed effect. The raw p values were adjusted for the 

number of genes tested using Benjamini and Hochberg’s false discovery rate (FDR; Benjamini 

and Hochberg, 1995) to account for multiple comparisons. However, there were not enough 

differentially expressed genes (DEG) using corrected p values, so we used raw p ≤ 0.05 and fold 

change (FC) ≥ |1.5| for the evaluation purpose. For this study we selected three main 

comparisons which are SM vs. OVE, MS vs. OVE and SM vs. MS. 

 

Pathways analysis  

 For metabolomics analysis, each biochemical compound was annotated with its 

corresponding sub-pathway. The results were further furnished with p- and fold change (FC) 

values resulting from SAS analysis. Post statistical analysis of the transcriptomics data was 

conducted using the Dynamic Impact Approach (DIA) (Bionaz et al., 2012) to identify the most 

impacted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways within different 

groups. With a p ≤ 0.05 and FC ≥ |1.5|, we obtained 710, 786 and 601 DEG for SM vs. OVE, MS 

vs. OVE and SM vs. MS comparisons respectively. The DIA was run on the DEG to obtain the 

KEGG categories, sub-categories and their respective pathways. As an input, we provided a list 

of DEG consisting of Oligo IDs, Entrez gene IDs, p values and FC values for each comparison. 

For the analysis purpose, a minimum of 30% annotated genes on the microarray versus the whole 

genome were selected as described elsewhere (Bionaz et al., 2012). This gives us the results of 

each comparison in two distinct columns. The first column contains the impact values (overall 

perturbation) represented in blue colored horizontal bars, whereas the second column contains 
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the flux (direction of the impact) values represented in colors ranging from green (inhibited) to 

red (induced).  

 

Network analysis and data integration 

The network analysis for both metabolomics and transcriptomics data was conducted 

using Ingenuity Pathway Analysis (IPA) software. The metabolomics data consisting of 

biochemical compounds was annotated with PubChem identifiers 

(https://pubchem.ncbi.nlm.nih.gov/). For network constructions, a list of 13, 18 and 26 

significantly affected (p ≤ 0.10) biochemical compounds for SM vs. OVE, MS vs. OVE and SM 

vs. MS respectively was used along with their FC values. For transcriptomics network 

reconstruction, a list of DEG with a p ≤ 0.05 and FC ≥ |1.5| was uploaded to run the core 

analysis. From the analysis results, we used upstream transcription regulators and their 

downstream target genes. The data integration was performed using transcription regulators and 

biochemical compounds with the help of ‘Path Explorer’ tool in IPA. The connections with both 

direct and indirect links were considered for the analysis.  

 

Results and Discussion 

 

Expression patterns of metabolome and transcriptome datasets 

https://pubchem.ncbi.nlm.nih.gov/
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Both groups have different expression patterns based on the available biochemical 

compounds and the number of DEG. The expression patterns for both datasets are described in 

the following sections.  

Metabolomics. The Figure 3.3 shows the overall expression pattern for metabolomics dataset. 

Here we have highlighted the number of significantly affected metabolites with p ≤ 0.05, 

between 0.05 and 0.10, and p ≤ 0.10 using different color scales. The figure shows that there 

were more number of biochemical compounds that appeared in SM vs. MS ( p ≤ 0.10) as 

compared to other comparisons. The results indicated 16, 26 and 36 compounds in SM vs. OVE, 

MS vs. OVE and SM vs. MS. However, these compounds were further annotated with PubChem 

identifiers for IPA analysis. The total numbers were reduced to 13, 18 and 26 respectively for 

each comparisons due to unavailability of complete annotation of these compounds in the 

PubChem identifier database.   

Transcriptomics. For transcriptomics analysis, we selected p ≤ 0.05 and FC ≥ |1.5| criteria. 

Using this criteria, we obtained 710, 786, and 601 number of DEG for SM vs. OVE, MS vs. 

OVE and SM vs. MS as shown in the Figure 3.4. The figure shows up- and down-regulation 

patterns of the DEG across all the comparisons. To provide an overview of the most affected 

DEG across the three comparisons, we have provided three tables (Tables 3.1-3.3) with p ≤ 0.01 

and FC ≥ |3.0|. The tables enlist gene symbols, their descriptions and FC values.  

 

Metabolomics pathways 

For the discussion purpose, we selected biochemical compounds with their p ≤ 0. 05 as 

cut off. Using this cut off, we obtained 5, 16 and 17 compounds for SM vs. OVE, MS vs. OVE 
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and SM vs. MS respectively as shown in the Figures 3.5 and 3.6.  In SM vs. OVE, it was 

observed that gamma-glutamylglycine and inosine biochemical compounds were up regulated, 

while the compounds related to dipeptide (leucylaspartate and glycylisoleucine) and secondary 

bile acid metabolism (glycodeoxycholate) were down regulated (SM vs. OVE, Figure 3.5). 

Inosine is involved in activation of liver enzymes glycogen phosphorylase (Camara-Artigas et 

al., 1997).   

A more pronounced effect was observed in cows supplemented with MS as compared 

with OVE, where the compounds related to lysolipids, pentose metabolism, energy metabolism 

and secondary bile acid metabolism were up regulated and dipeptides, gluconeogenesis and 

pyruvate metabolism were down regulated (MS vs. OVE, Figure 3.5). These results indicate a 

shift of energy source from carbohydrate to lipid molecules.    

On the other hand, while comparing SM group with MS (Figure 3.6), we found that 

compounds related to gluconeogenesis, amino sugar, and fatty acids were activated in SM group, 

whereas the compounds related to primary and secondary bile acids, tryptophan metabolism, 

urea cycle, purine metabolism, and lysolipids were activated in MS group.   

  

Summary of KEGG pathways 

The Dynamic Impact Approach (DIA) was used for functional enrichment analysis of the 

DEG. It provides results in the form of KEGG categories, sub-categories and pathways. We have 

included categories, and sub-categories under this section, as these results summarize the overall 

expression pattern of the DEG. The Figure 3.7 includes five main categories, which are 

‘Metabolism’, ‘Genetic Information Processing’, ‘Environmental Information Processing’, 
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‘Cellular Processes’ and ‘Organismal Systems’.  The summary results indicate the overall trend 

of the pathways under a particular comparison.  

 

KEGG pathways analysis  

For KEGG pathways analysis, we selected top 10 pathways (Figure 3.8) from each 

comparison for the discussion purpose.  

SM vs. OVE. Under this comparison, we observed that ‘Energy metabolism’, ‘Lipid 

Metabolism’ and related pathways were induced as compared to ‘Metabolism of other Amino 

Acids’, ‘Carbohydrate’ and related pathways. These include ‘Cyanoamino acid metabolism’, 

‘Taurine and hupotaurine metabolism’, ‘Glycoshphingolipid synthesis – ganglio series’, ‘Inositol 

phosphate metabolism’, and ‘Arachidonic acid metabolism’ that were deactivated in cows 

supplemented with SM group compared to OVE. Among these, taurine and hypotaurine are 

nonprotein sulfur-containing amino acids, and are considered as antioxidants (Aruoma et al., 

1988). They become active under liver injury and act as hepatoprotective molecules (Acharya 

and Lau-Cam, 2010). Glycosphingolipids are types of glycolipids that are made up of ceramide 

backbone which is covalently attached to a glycan moiety (D'Angelo et al., 2013). The 

glycoshphingolipids (ganglio series) play an important role in membrane-protein modulation and 

cell–cell communication during cellular development processes. The inhibition of these 

pathways suggest normal functioning of the liver. In contrast, ‘Nitrogen metabolism’, and 

‘Synthesis and degradation of ketone bodies’ were among the activated pathways. In cows fed 

with moderate energy diet with methionine supplementation, the nitrogen metabolism was 

induced overall for energy synthesis. It is used in two different ways. First, it is absorbed in the 
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form of ammonia, and then converted into urea by the liver. Second, it is utilized as glucose 

precursor for gluconeogenesis (Reynolds, 1992). The importance of this pathway is also shown 

during feed restriction in high yielding dairy cows. The restricted energy diet lead to poor 

nitrogen utilization and insufficient amino acid uptake (Eriksson, 2010). It has been reported that 

ketone bodies inhibit protein degradation and glucose synthesis and utilization in tissues 

(Holtenius and Holtenius, 1996). The activation of ‘synthesis and degradation of ketone bodies’ 

suggests a mechanism of energy shift from glucose and amino acids to fatty acids utilization for 

energy requirements. This mechanism is also supported by our metabolomics results, as we 

found several metabolites from carbohydrate and amino acid metabolisms that were down 

regulated. 

MS vs. OVE. MetaSmart supplementation induced ‘Digestive secretion’, ‘Cell Growth and 

Death’ and related pathways. Whereas, ‘Replication and Repair’, ‘Metabolism of Other Amino 

Acids’, and related pathways were inhibited in MS vs. OVE. Among the activated pathways, 

‘Riboflavin metabolism’, ‘Bile Secretion’, ‘Salivary secretion’, and ‘Vitamin digestion and 

secretion’ are included. The riboflavin (vitamin B2) and other vitamin digestion related pathways 

are essential for many metabolic functions such as fatty acid metabolism, amino acid 

metabolism, citrate cycle, and electron transport chain (Powers et al., 2012). The riboflavin 

deficiency may lead to metabolic disorders, immune dysfunction and abnormal development 

(Thakur et al., 2016). The bile secretion of both primary bile acids and secondary bile acids was 

stimulated due to MS supplementation as indicated by metabolomics results (Figure 3.5). Among 

the inhibited KEGG pathways, ‘Base excision repair’, ‘Cyanoamino acid metabolism’, and ‘One 

carbon pool by folate’ are included. The ‘base excision repair’ pathway was inhibited in cows 

supplemented with MS, in spite of the activation of cell growth related pathways. However, the 



83 
 

‘Nucleotide excision repair’ (results not shown) was activated in the same group. The one carbon 

pool constitutes folate and methionine metabolisms (Locasale, 2013). This pathway provides an 

important source of methyl donor for DNA methylation. The interruption in this pathway may 

lead to abnormal cell progression and growth (Xu and Chen, 2009). The inhibition of this 

pathway in our results may also suggest a source of methyl donor that might be through 

methionine metabolism due to the availability of sufficient methionine source MS 

supplementation.  

 SM vs. MS. When comparing the two sources of methionine supplementations, we found that 

pathways related to ‘Immune system’, ‘Development’, ‘Metabolism of Cofactor and vitamins’, 

‘Signal Transduction’, ‘Signaling molecules and interaction’ were induced in SM group, whereas 

the pathways related to ‘Glycan biosynthesis and metabolism’, and ‘Digestive System’ (Bile 

secretion) were induced in MS group. Among the immune system, ‘Intestinal immune network 

for IgA production’ and ‘Antigen processing and presentation’ were activated. The first pathway 

is helpful in maintaining host immunity by producing IgA from B cells against foreign pathogens 

(Ko and Chang, 2015). The later pathway involves T-cell activation for antigen recognition, 

ubiquitylation and ultimately degradation of external pathogens (Vyas et al., 2008). Among the 

pathways induced in MS group, bile secretion is of prior importance in our study which has 

already been discussed earlier.  

 

Networks of biochemical compounds and transcription regulators 

The network analysis of biochemical compounds is shown in Figures 3.9-3.11 and of 

transcription regulators is shown in Figure 3.12. We found most of the biochemical compounds 
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associated with cellular functions in SM vs. OVE. These include uracil, inosine, and 5’-CMP 

(Cytidine 5’-monophosphate), which are involved in replication, proliferation and growth 

processes (Figure 3.9). The elevated level of uracil is associated with damaged cells as shown in 

human plasma cells, and serves as a milk biomarker in lactating dairy cows (Bi et al., 2000, 

Melzer et al., 2013). The activation of inosine is involved in nucleic acid synthesis, gene 

expression, signaling and ultimately lead to cell proliferation and differentiation (Dzidic et al., 

2006).  The 5’-CMP along with other nucleic acid metabolites has been identified as a by-

product in milk samples of dairy cows (Tiemeyer et al., 1984). It has also been shown to be 

involved in DNA synthesis in the bovine mammary gland (Sheffield, 1987). The up regulation of 

5’-CMP in the liver is involved in DNA synthesis and hence indicate cellular proliferation 

mechanism. The network analysis revealed 6 transcription regulators, of which 5 (BCOR, 

GMNN, USF1, ID3 and KLF5) were up regulated while one (PPRC1) was down regulated 

(Figure 3.12A). Among these, KLF5 (Kruppel-like factor 5) is involved in both promoting and 

suppressing cellular proliferation. In bovine adipose tissue, it has been shown as a potent 

regulator of lipogenic/adipogenic transcription activity (Schmitt et al., 2011).    

In MS vs. OVE, we have found the involvement of the biochemical compounds in 

carbohydrates, lipids, and several cellular related functions. In carbohydrate and lipid 

metabolism, we discovered chenodeoxycholic acid and NADH as up regulated ones (Figure 

3.10A). Chenodeoxycholic acid is synthesized from cholesterol and is a part of primary bile acid 

(Russell, 2003). It is usually conjugated with either glycine or taurine (Tsai et al., 2011). The bile 

acids usually facilitate lipid digestion by making micelles in the liver. The lactic acid and 

phosphoenolpyruvate were down regulated in our analysis. The Figure 3.10A shows that 

deactivation of these compounds is involved in activation of ‘release of glycerol’ molecule. This 
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mechanism suggests the synthesis of glucose from glycerol as a substrate instead of lactic acid or 

phosphoenolpyruvate. These compounds in addition to indican and nicotinamide-beta-riboside 

were also involved in cellular functions (Figure 3.10B). Their main functions include activation 

and suppression of proliferation and apoptosis. The network analysis of DEG, revealed three 

transcription regulators (Figure 3.12B). These include TBX5, EPAS1 and FOXC2, all of which 

were downregulated. The down regulation of these genes along with other transcriptomics and 

metabolomics results suggest an inhibition of replication, repair and growth related mechanisms.  

 The comparison of SM vs. MS shows upregulation of arachidonic acid, linoleic acid, 

docosahexaenoic acid and phosphoenolpyruvate and downregulation of NADH and arginine in 

the carbohydrate and lipid metabolism (Figure 3.11A). The biochemical compounds linoleic 

acid, arachidonic acid, docosahexaenoic acid and guanosine were up regulated, while arginine, 

chenodeoxycholic acid, glycolic acid, indican and taurochenodeoxycholate were down regulated 

within cellular function category (Figure 3.11B). The arachidonic acid, linoleic acid, and 

docosahexaenoic acid are considered as essential fatty acids, and are important in growth, 

development and several other cellular functions. In rodents, it has been shown that sufficient 

supply of arachidonic acid and docosahexaenoic acid prevents hepatic steatosis (Le et al., 2012). 

Guanosine is involved in activation of cellular functions such as proliferation and inhibition of 

necrosis, apoptosis and cell death as shown in the figure. We have found four transcription 

regulators (GLI2, FOXJ1, KDM5B and SMAD4) among the DEG in SM vs. MS (Figure 3.12C). 

All of these transcription regulators were up regulated. Among these, GLI2 (Glioblastoma 2) is 

involved in regulation of hedgehog signaling (Ochoa et al., 2010), whereas SMAD4 is involved 

in wnt signaling and posttranslational modifications (Wilkinson et al., 2008).    
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Integration of metabolome and transcriptome datasets 

 The data integration of transcription regulators and biochemical compounds indicates 

direct and indirect links between genes and metabolites. Figure 3.13 (A-C) shows the networks 

of biochemical compounds (filled in colors, red=up regulated and green=down regulated) and the 

DEG (encircled, red=up regulated and green=down regulated). The compounds and genes that 

are not colored are the predicted ones and serves as the main connecting links between them. The 

data integration summarizes the results from the networks of metabolome and transcriptome. 

 

Conclusion 

 

Supplementation of rumen-protected methionine elicits modest but distinct alterations in 

the liver at both transcriptome and metabolome levels. Some of these unique alterations might 

have averted the detrimental effects of energy overfeeding prepartum on susceptibility to ketosis. 

Compared with healthy OVE cows, SM supplementation has important effects on regulating 

liver regeneration and metabolism, environmental stimuli, synthesis and degradation of ketone 

bodies, and nitrogen metabolism. Supplementation with MS has important effects on gene 

expression, glucose and lipid synthesis, and primary and secondary bile acids metabolism.  The 

results from DIA and IPA core analysis highlighted the role of several pathways and metabolites 

that are involved in carbohydrate metabolism, lipid metabolism, cell signaling, growth, and 

proliferation. The networks underscore the linkages among different metabolites and their 

downstream functions that are closely related with carbohydrate, lipid, and cellular functions. 

Integration analysis of transcription regulators and metabolites revealed alterations in protein 

synthesis, apoptosis, cell growth, cell proliferation, glucose metabolism and lipid metabolism.   
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Figures and Tables 

 

Table 3.1: A list of differentially expressed genes with p ≤ 0.01 and fold change (FC) ≥ |3| in 

SM vs. OVE group. The table is sorted descending order based on the FC values.   

Symbol Description SM vs. OVE 

GBP6 guanylate binding protein family, member 6 17.58 

LOC100126815 MHC class I-like family A1 6.72 

ULBP3 UL16 binding protein 3 6.06 

ANO3 anoctamin 3 5.35 

STK32C Serine/threonine-protein kinase 32C 5.21 

SKP2 S-phase kinase-associated protein 2 (p45) 5.06 

LOC522938 Uncharacterized protein 4.72 

CXCL9 chemokine (C-X-C motif) ligand 9 4.65 

PNMA2 paraneoplastic antigen MA2 4.59 

ADARB2 adenosine deaminase, RNA-specific, B2 4.53 

CACNA1G calcium channel, voltage-dependent, T type, alpha 1G subunit 4.45 

ABL1 c-abl oncogene 1, non-receptor tyrosine kinase 4.33 

NEB Nebulin - Oryctolagus cuniculus 4.25 

NTS Neurotensin 4.21 

GPX3 glutathione peroxidase 3 (plasma) 4.11 

PARD3B par-3 partitioning defective 3 homolog B  4.09 

PABPC5 poly(A) binding protein, cytoplasmic 5 3.94 

SGOL2 shugoshin-like 2 (S. pombe)  3.83 

FBXW7 F-box and WD repeat domain containing 7 3.81 

GMEB1 glucocorticoid modulatory element binding protein 1 3.74 

LCORL ligand dependent nuclear receptor corepressor-like 3.72 
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Table 3.1 (Cont.) 

IRX4 iroquois homeobox 4 3.68 

LOC507049 T-cell receptor beta chain V region 3.67 

DDIT4L DNA-damage-inducible transcript 4-like  3.61 

CNTNAP2 contactin associated protein-like 2 3.54 

ULBP27 UL16-binding protein 27 3.50 

CATSPER4 cation channel, sperm associated 4 3.50 

LOC509124 olfactory receptor 9G4 3.40 

KIR3DL1 killer cell immunoglobulin-like receptor, three domains, long cytoplasmic 

tail, 1  

3.34 

EDN2 endothelin 2 3.16 

SLC22A2 solute carrier family 22 (organic cation transporter) 3.09 

GPX3 glutathione peroxidase 3 (plasma)  3.07 

IZUMO1 izumo sperm-egg fusion 1 3.01 

DAGLA diacylglycerol lipase, alpha  -3.01 

NCAPD3 non-SMC condensin II complex, subunit D3 -3.01 

LOC789869 Zinc finger and BTB domain-containing protein 8 -3.13 

ADAR adenosine deaminase, RNA-specific -3.16 

SBSN suprabasin  -3.21 

LOC783655 olfactory receptor 5AC1-like -3.22 

HYAL3 hyaluronidase 3 mRNA -3.23 

PDZRN3 PDZ domain containing ring finger 3 -3.27 

DYRK3 dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 3 -3.31 

ENTPD6 ectonucleoside triphosphate diphosphohydrolase 6 (putative) -3.36 

KLHL12 kelch-like 12 (Drosophila)  -3.38 

TGM3 transglutaminase 3 (E polypeptide, protein-glutamine-gamma-

glutamyltransferase)  

-3.43 

DDX54 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 -3.49 
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Table 3.1 (Cont.) 

GGT7 gamma-glutamyltransferase 7 -3.51 

SEMA4A sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) 

and short cytoplasmic domain, (semaphorin) 4A 

-3.51 

OR5AS1 olfactory receptor, family 5, subfamily AS, member 1 -3.68 

SOX7 SRY (sex determining region Y)-box 7 -3.68 

LOC505465 inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase 

complex-associated protein 

-3.70 

VSTM5 V-set and transmembrane domain containing 5 -3.77 

TINAG tubulointerstitial nephritis antigen -3.79 

SLC26A3 solute carrier family 26, member 3 -3.84 

LOC526294 olfactory receptor-like protein DTMT -3.89 

TMPRSS13 transmembrane protease, serine 13 -3.89 

RBM14 RNA binding motif protein 14 -4.14 

HIST1H2AA histone cluster 1, H2aa -4.16 

HOXC11 homeobox C11 -4.18 

FAM20B family with sequence similarity 20, member B -4.22 

MRPL42 mitochondrial ribosomal protein L42 (MRPL42), nuclear gene encoding 

mitochondrial protein 

-4.40 

C29H11orf84 chromosome 29 open reading frame, human C11orf84 -4.48 

CCDC36 coiled-coil domain containing 36 -4.65 

RGS3 regulator of G-protein signaling 3 -4.68 

ALK Tyrosine-protein kinase receptor  -4.72 

SHCBP1L SHC SH2-domain binding protein 1-like -5.10 
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Table 3.2: A list of differentially expressed genes with p ≤ 0.01 and fold change (FC) ≥ |3| in 

MS vs. OVE group. The table is sorted in descending order based on the FC values.   

Symbol Description MS vs. OVE 

CCNE2 cyclin E2  6.55 

NCKAP5L NCK-associated protein 5-like  5.58 

KIT 

v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene 

homolog  4.91 

PBK PDZ binding kinase  4.67 

PAG2 pregnancy-associated glycoprotein 2  4.64 

OR1K1 olfactory receptor, family 1, subfamily K, member 1 4.28 

ADCY2 adenylate cyclase 2  4.22 

ADCY7 adenylate cyclase 7  4.16 

ACE3 Uncharacterized protein 3.78 

POLR3G polymerase (RNA) III (DNA directed) polypeptide G (32kD)  3.76 

MAGED4B melanoma antigen family D, 4B  3.71 

GPR133 G protein-coupled receptor 133  3.69 

GPX8 glutathione peroxidase 8  3.65 

HMMR hyaluronan-mediated motility receptor (RHAMM)  3.42 

LRAT lecithin retinol acyltransferase (phosphatidylcholine--retinol 

O-acyltransferase)  

3.39 

GLRA3 glycine receptor, alpha 3 3.29 

LOC541022 Uncharacterized protein 3.28 

KRT25 keratin 25  3.27 

STXBP5L syntaxin binding protein 5-like  3.23 

LOC617417 Uncharacterized protein 3.20 

GLIPR2 GLI pathogenesis-related 2  3.17 

BUB1B budding uninhibited by benzimidazoles 1 homolog beta  3.09 

LOC100848433 uncharacterized LOC100848433 3.03 

IL23R interleukin 23 receptor  3.02 

MAML3 mastermind-like 3  -3.07 

RAB20 RAB20, member RAS oncogene family  -3.11 

RHBDD2 rhomboid domain containing 2  -3.19 

NRXN1 neurexin 1  -3.21 

CCDC116 coiled-coil domain containing 116  -3.26 

ZBED2 zinc finger, BED-type containing 2 -3.42 

LOC789869 Zinc finger and BTB domain-containing protein 8B-like -3.46 

GTPBP4 GTP binding protein 4  -3.56 

GON4L gon-4-like  -3.64 

ZNF446 zinc finger protein 446 -3.67 
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Table 3.2 (Cont.) 

LOC515619 olfactory receptor Olr149 -3.73 

LHFPL5 lipoma HMGIC fusion partner-like 5  -3.73 

MYOF myoferlin  -3.77 

TRIM67 tripartite motif containing 67  -3.79 

EVX1 even-skipped homeobox 1  -3.97 

ZNF35 zinc finger protein 35  -4.08 

RGS17 regulator of G-protein signaling 17  -4.27 

ZBTB32 zinc finger and BTB domain containing 32  -4.31 

ALK Tyrosine-protein kinase receptor -4.38 

CSRNP1 cysteine-serine-rich nuclear protein 1  -4.40 

TMEM246 transmembrane protein 246  -4.49 

SLC39A4 solute carrier family 39 (zinc transporter), member 4  -4.74 

PARP4 poly (ADP-ribose) polymerase family, member 4 -4.77 

FAM102B family with sequence similarity 102, member B  -4.89 

KLK6 kallikrein-related peptidase 6  -5.00 

NCAM1 neural cell adhesion molecule 1  -5.06 

ABL2 v-abl Abelson murine leukemia viral oncogene homolog 2  -5.07 

MAU2 MAU2 chromatid cohesion factor homolog  -5.45 

FAM116B family with sequence similarity 116, member B -5.48 

LOC528412 multidrug resistance-associated protein  -5.54 
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Table 3.3: A list of differentially expressed genes with p ≤ 0.01 and fold change (FC) ≥ |3| in 

SM vs. MS group. The table is sorted in descending order based on the FC values.   

Symbol Description SM vs. MS 

ACTL6A actin-like 6A 4.56 

CATSPER4 cation channel, sperm associated 4 4.56 

EVX1 even-skipped homeobox 1 4.51 

CACNA1G calcium channel, voltage-dependent, T type, alpha 1G subunit  4.45 

TFAP2C transcription factor AP-2 gamma (activating enhancer binding 

protein 2 gamma) 

4.36 

HAVCR2 hepatitis A virus cellular receptor 2 4.32 

SKP2 S-phase kinase-associated protein 2 (p45) 4.31 

CSRNP1 cysteine-serine-rich nuclear protein 1  4.13 

RNF112 ring finger protein 112 4.13 

AADAC arylacetamide deacetylase (esterase) 4.08 

IRX4 iroquois homeobox 4  4.07 

CYTIP cytohesin 1 interacting protein 4.05 

STK32C Rep: Serine/threonine-protein kinase 32C 4.05 

UVRAG UV radiation resistance associated gene 3.90 

RANBP17 RAN binding protein 17 3.87 

NTS neurotensin 3.86 

ZNF446 zinc finger protein 446 3.79 

SLC8A1 solute carrier family 8 (sodium/calcium exchanger), member 1 3.76 

NOTCH2 notch 2 3.63 

AARS alanyl-tRNA synthetase 3.61 

SATB2 SATB homeobox 2 3.54 

IFITM5 interferon induced transmembrane protein 5 3.52 

ZBTB32 zinc finger and BTB domain containing 32 3.51 

TNNT3 Troponin T, fast skeletal muscle 3.50 

MLKL mixed lineage kinase domain-like 3.49 

CORT cortistatin 3.48 

CLCN6 chloride channel 6 3.47 

GPM6A glycoprotein M6A 3.46 

CD86 CD86 molecule 3.46 

NLGN2 neuroligin 2 3.40 

WDR52 WD repeat domain 52 3.39 

AKAP10 A kinase (PRKA) anchor protein 10, nuclear gene encoding 

mitochondrial protein 

3.33 

GIT2 G protein-coupled receptor kinase interacting ArfGAP 2 3.31 
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Table 3.3 (Cont.) 

KIR3DL1 killer cell immunoglobulin-like receptor, three domains, long 

cytoplasmic tail, 1 

3.31 

ADM adrenomedullin 3.26 

LOC509124 olfactory receptor 9G4 3.26 

NEB Rep: Nebulin - Oryctolagus cuniculus 3.26 

EIF5A2 eukaryotic translation initiation factor 5A2 3.18 

KDM5B lysine (K)-specific demethylase 5B 3.17 

TNFAIP8L3 tumor necrosis factor, alpha-induced protein 8-like 3 -3.02 

FTSJD1 FtsJ methyltransferase domain containing 1 -3.13 

GLIPR1L1 GLI pathogenesis-related 1 like 1 -3.27 

KIF18A kinesin family member 18A -3.28 

DBX1 developing brain homeobox 1 -3.42 

ITGB4 integrin, beta 4 -3.42 

R3HDM2 R3H domain containing 2 -3.44 

NCKAP5L NCK-associated protein 5-like -3.46 

FAM83H family with sequence similarity 83, member H -3.46 

ICA1 islet cell autoantigen 1, 69kDa -3.48 

RGS3 regulator of G-protein signaling 3 -3.51 

VSTM5 V-set and transmembrane domain containing 5 -3.51 

PPP1R42 protein phosphatase 1, regulatory subunit 42 -3.55 

LAMB2 laminin, beta 2 (laminin S) -3.55 

INTU inturned planar cell polarity effector homolog (Drosophila)  -3.63 

CEP112 coiled-coil domain containing 46  -3.67 

LOC751563 prolactin-related protein 12 -3.72 

PLEKHA8 pleckstrin homology domain containing, family A 

(phosphoinositide binding specific) member 8 

-3.76 

ANKS3 ankyrin repeat and sterile alpha motif domain containing 3 -3.81 

ECT2 epithelial cell transforming sequence 2 oncogene -3.83 

ZMAT1 zinc finger, matrin-type 1 -3.83 

MRPL42 mitochondrial ribosomal protein L42, nuclear gene encoding 

mitochondrial protein 

-3.89 

HYAL3 hyaluronidase 3 mRNA, partial cds. -4.03 

WDR69 WD repeat domain 69 -4.04 

PSPH phosphoserine phosphatase -4.10 

ZSWIM4 zinc finger, SWIM-type containing 4 -4.12 

GLIPR2 GLI pathogenesis-related 2 -4.16 

ZNF619 zinc finger protein 619 -4.59 

LSP1 lymphocyte-specific protein 1 -4.72 

PBK PDZ binding kinase -5.39 
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Table 3.3 (Cont.) 

DDX54 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 -5.62 

CDKN3 cyclin-dependent kinase inhibitor 3 -5.65 

H2B Histone H2B type 1 -5.96 
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Figure 3.1:  Experimental design. The tissue biopsies were taken at -10 d relative to parturition 

across the three groups: overfed with moderate energy diet (OVE), OVE plus Smartamine M 

(SM) and OVE plus MetaSmart (MS) supplements.  
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Legends 

 

 

Figure 3.2: The complete microarray’s hybridization design is shown in the figure. A two color 

(red and green) hybridization plan was used. The Overfed with moderate energy diet (OVE), 

Smartamine M (SM) and MetaSmart (MS) groups encircled with red are used in the current 

chapter. 
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Figure 3.3: No. of significantly affected metabolites with p ≤ 0.05, between 0.05 to 0.10 and 

total p ≤ 0.10 for the respective comparisons.    
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Figure 3.4:  No. of differentially expressed genes (DEG) with p ≤ 0.05 and FC ≥ |1.5| are shown 

by vertical bars across the three comparisons SM vs. OVE, MS vs. OVE and SM vs. MS. The y-

axis represents the number of DEG, whereas x-axis represents the comparisons.  
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Figure 3.5: Significantly affected biochemical compounds with p < 0.05 are shown for overfed 

cows with moderate energy diet (OVE), Smartamine M (SM) and MetaSmart (MS) comparisons. 

The column represented with FC (fold change) indicates up- and down-regulation, while the 

column represented with p-value indicates the respective significant values. 

  

p -value FC

leucylaspartate Dipeptide 0.01 0.67

glycodeoxycholate Secondary Bile Acid Metabolism 0.01 0.60

gamma-glutamylglycine Gamma-glutamyl Amino Acid 0.02 1.28

glycylisoleucine Dipeptide 0.03 0.67

inosine Purine Metabolism, (Hypo)Xanthine/Inosine containing 0.04 1.26

glycylisoleucine Dipeptide 0.00 0.54

glycerate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 0.01 0.76

leucylaspartate Dipeptide 0.01 0.69

phosphoenolpyruvate (PEP) Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 0.01 0.68

2-linoleoylglycerophosphocholine* Lysolipid 0.01 1.47

tyrosylglycine Dipeptide 0.02 0.75

xylonate Pentose Metabolism 0.02 1.65

chenodeoxycholate Primary Bile Acid Metabolism 0.02 1.41

cyclic adenosine diphosphate-ribose Purine Metabolism, Adenine containing 0.03 1.53

pro-hydroxy-pro Urea cycle; Arginine and Proline Metabolism 0.03 0.80

N-palmitoyl-D-erythro-sphingosine Sphingolipid Metabolism 0.03 0.77

3-phosphoglycerate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 0.03 0.77

glycylleucine Dipeptide 0.04 0.78

nicotinamide riboside* Nicotinate and Nicotinamide Metabolism 0.04 1.19

ribitol Pentose Metabolism 0.04 1.41

taurolithocholate Secondary Bile Acid Metabolism 0.04 1.36

Sub PathwayBiochemical Name

MS vs. OVE

SM vs. OVE

Legends

p -value

FC FC<-1.0 FC ≥ 1.0

p  < 0.05
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Figure 3.6: Significantly affected biochemical compounds with a p < 0.05 are shown for 

Smartamine M (SM) and MetaSmart (MS) comparison. The column represented with FC (fold 

change) indicates up and down regulation, while the column represented with p-value indicates 

the respective significant values. 

 

 

  

p -value FC

taurolithocholate Secondary Bile Acid Metabolism 0.00 0.62

xanthosine Purine Metabolism, (Hypo)Xanthine/Inosine containing 0.01 0.81

3-indoxyl sulfate Tryptophan Metabolism 0.01 0.77

chenodeoxycholate Primary Bile Acid Metabolism 0.01 0.68

glycerate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 0.02 1.26

N-acetylglucosamine Aminosugar Metabolism 0.02 1.61

gamma-glutamylglycine Gamma-glutamyl Amino Acid 0.02 1.29

arginine Urea cycle; Arginine and Proline Metabolism 0.02 0.74

stearidonate (18:4n3) Polyunsaturated Fatty Acid (n3 and n6) 0.02 3.56

xylitol Pentose Metabolism 0.03 0.74

13-HODE + 9-HODE Fatty Acid, Monohydroxy 0.03 1.53

cyclic adenosine diphosphate-ribose Purine Metabolism, Adenine containing 0.04 0.67

17,18-DiHETE Eicosanoid 0.04 0.78

1-dihomo-linoleoylglycerophosphocholine (20:2n6)* Lysolipid 0.04 0.47

10-heptadecenoate (17:1n7) Long Chain Fatty Acid 0.05 1.77

docosahexaenoate (DHA; 22:6n3) Polyunsaturated Fatty Acid (n3 and n6) 0.05 1.43

2-linoleoylglycerophosphoethanolamine* Lysolipid 0.05 0.64

SM vs. MS
Sub PathwayBiochemical Name

Legends

p -value

FC FC<-1.0 FC ≥ 1.0

p  < 0.05
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Figure 3.7: Summary of KEGG categories and subcategories for each comparison SM vs. OVE, 

MS vs OVE and SM vs. MS. The first column with blue colored horizontal bars under each 

comparison represents the impact values, whereas the second column represents the direction of 

the impact (flux) ranging from colors green (-25 to 0) to red (1 to +25). 

Category

1. Metabolism

0.1 Metabolic Pathways

1.1 Carbohydrate Metabolism

1.2 Energy Metabolism

1.3 Lipid Metabolism

1.4 Nucleotide Metabolism

1.5 Amino Acid Metabolism

1.6 Metabolism of Other Amino Acids

1.7 Glycan Biosynthesis and Metabolism

1.8 Metabolism of Cofactors and Vitamins

1.9 Metabolism of Terpenoids and Polyketides

1.10 Biosynthesis of Other Secondary Metabolites

1.11 Xenobiotics Biodegradation and Metabolism

2. Genetic Information Processing

2.1 Transcription

2.2 Translation

2.3 Folding, Sorting and Degradation

2.4 Replication and Repair

3. Environmental Information Processing

3.1 Membrane transport

3.2 Signal Transduction

3.3 Signaling Molecules and Interaction

4. Cellular Processes

4.1 Transport and Catabolism

4.2 Cell Motility

4.3 Cell Growth and Death

4.4 Cell Communication

5. Organismal Systems

5.1 Immune System

5.2 Endocrine System

5.3 Circulatory System

5.4 Digestive System

5.5 Excretory System

5.6 Nervous System

5.7 Sensory System

5.8 Development

5.9 Environmental Adaptation

SM vs. OVE MS vs. OVE SM vs. MS

Legends

Flux = -25 -12.5 0 12.5 25 Impact = 0 6.25 12.5 25 50
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Figure 3.8:   The top 10 most impacted KEGG pathways along with their respective sub-

categories are shown for the three comparisons SM vs. OVE, MS vs. OVE and SM vs. MS. The 

first column for each comparison represents the impact values, whereas the second column 

represents the direction of the impact (flux). 

Impact Flux

1.6 Metabolism of Other Amino Acids Cyanoamino acid metabolism

1.6 Metabolism of Other Amino Acids Taurine and hypotaurine metabolism

1.2 Energy Metabolism Nitrogen metabolism

1.7 Glycan Biosynthesis and Metabolism Glycosphingolipid biosynthesis - ganglio series

1.7 Glycan Biosynthesis and Metabolism Glycosaminoglycan biosynthesis - chondroitin sulfate

1.1 Carbohydrate Metabolism Inositol phosphate metabolism

1.3 Lipid Metabolism Synthesis and degradation of ketone bodies

1.10 Biosynthesis of Other Secondary Metabolites Caffeine metabolism

1.3 Lipid Metabolism Arachidonic acid metabolism

1.6 Metabolism of Other Amino Acids Selenoamino acid metabolism

Impact Flux

1.8 Metabolism of Cofactors and Vitamins Riboflavin metabolism

2.4 Replication and Repair Base excision repair

5.4 Digestive System Bile secretion

5.4 Digestive System Salivary secretion

1.6 Metabolism of Other Amino Acids Cyanoamino acid metabolism

5.4 Digestive System Vitamin digestion and absorption

1.8 Metabolism of Cofactors and Vitamins One carbon pool by folate

4.1 Transport and Catabolism Regulation of autophagy

4.3 Cell Growth and Death Oocyte meiosis

5.7 Sensory System Taste transduction

Impact Flux

1.7 Glycan Biosynthesis and Metabolism Glycosaminoglycan degradation

5.1 Immune System Intestinal immune network for IgA production

5.8 Development Dorso-ventral axis formation

5.1 Immune System Antigen processing and presentation

1.8 Metabolism of Cofactors and Vitamins Riboflavin metabolism

3.2 Signal Transduction Notch signaling pathway

3.3 Signaling Molecules and Interaction Cell adhesion molecules (CAMs)

3.2 Signal Transduction Calcium signaling pathway

5.4 Digestive System Bile secretion

1.7 Glycan Biosynthesis and Metabolism Other glycan degradation

Sub Category Pathways
SM vs. OVE

MS vs. OVE

SM vs. MS

Legends

Flux = -25 -12.5 0 12.5 25 Impact = 0 6.25 12.5 25 50
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Figure 3.9:  SM vs. OVE: The network of biochemical compounds and their cellular functions. 

The red color indicates the up regulation of the biochemical compounds.  

  



104 
 

 

A). Carbohydrate and Lipid Metabolism 

 

 

B). Cellular Functions 

 

Figure 3.10: MS vs. OVE: (A) Carbohydrate and Lipid Metabolism, (B) Cellular Functions. 
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A). Carbohydrate and Lipid Metabolism 

 

B). Cellular Functions 

Figure 3.11: SM vs. MS: (A) Carbohydrate and Lipid Metabolism (B) Cellular Functions. 
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Figure 3.12: Transcription regulator networks: (A). SM vs. OVE, (B). MS vs. OVE, (C). SM vs. 

MS.  

A B 

C 



107 
 

    

    

 

 

 

 

 

 

 

Figure 3.13: Data integration of transcription regulators and biochemical compounds: (A). SM 

vs. OVE, (B). MS vs. OVE, (C). SM vs. MS. 

A B 

C 
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CHAPTER # 4 

 

A comparative analysis of metabolomics and transcriptomics from 

prepartal liver of cows developing ketosis postpartum and healthy cows 

supplemented with Smartamine M and MetaSmart during the transition 

period 

 

Abstract 

 

Cows overfed energy during the dry period are most-susceptible to developing ketosis 

postpartum. Supplementation with Smartamine M (SM) and MetaSmart (MS) during the 

transition period improves postpartal dry matter intake and resulted in fewer cases of clinical 

ketosis postpartum. Metabolomics (GC-MS, LC-MS; Metabolon Inc.) and transcriptomics (44K-

whole-transcriptome microarray; Agilent) analyses were performed in liver tissue harvested at -

10 d relative to parturition from cows that were healthy on 7 d postpartum or were diagnosed 

with clinical ketosis (K, n = 8). From -21 d to calving all cows consumed a higher-energy diet 

without (developed K) or with SM (n = 8) and MS (n = 8) (clinically healthy). From 313 

identified biochemical compounds, metabolomics analysis (P ≤ 0.10) revealed 34 or 33 affected 

in the comparison of K vs. SM or K vs. MS. Comparing profiles in K vs. SM revealed 13 

compounds up-regulated and 21 down-regulated. Among the up-regulated compounds most 

belong to bile acid, fatty acid, branched-chain amino acid, and arginine and proline metabolism. 

Among the down-regulated compounds, there were several lysolipids and di-carboxylic acids 

along with components of pentose, purine, and sphingolipid metabolism. Citrate was markedly 
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lower in liver of K vs. SM. In the comparison of K vs. MS, 7 compounds were up-regulated and 

26 were down-regulated. The up-regulated compounds are intermediates of 

glycolysis/gluconeogenesis/pyruvate, histidine, glycine/serine/threonine, and fatty acid 

metabolism. Among down-regulated compounds 7 were lysolipids but also citrate, squalene, 

several pentoses, and purines were affected. Analysis of transcriptomics data resulted in 834 or 

1,261 differentially expressed genes (DEG, P ≤ 0.05) in K vs. SM or K vs. MS. Bioinformatics 

analysis using the Dynamic Impact Approach (DIA) revealed a strong activation in K vs. MS of 

Notch, Hedgehog, and TGF-beta signaling pathways along with ‘steroid biogenesis’. In contrast, 

‘synthesis and degradation of ketone bodies’ was markedly inhibited. The pathway response in K 

vs. SM was less pronounced in part due to the fewer number of DEG. For example, the 

Hedgehog signaling pathway was highly-impacted but moderately activated; whereas, the ‘renin-

angiotensin system’ was the most-impacted and markedly inhibited. Preliminary data analysis 

suggests that supplemental MS and SM elicit distinct metabolomics and transcriptomics 

responses in liver before calving. Cows developing K post-partum also had a distinct molecular 

phenotype compared with those supplemented with methionine. The functional relevance of 

these differences remains to be determined. 

 

JAM Reference:  

K. Shahzad, J. S. Osorio, D. N. Luchini and J. J. Loor. 2014 Journal of Dairy Science, 97(E-

Suppl. 1): 713. 
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Introduction  

  

Ketosis, a metabolic disorder during early lactation, if not taken into consideration before 

calving, may lead to metabolism related complicacies and huge financial loss in dairy industry. 

This metabolic disorder may lead to liver dysfunction, reduced immunity, and decreased 

reproductive performance (Li et al., 2012, Shin et al., 2015). Proper nutritional managements 

during the dry period may help cows to prevent the spread of metabolic disorders (Gerloff, 

2000). A substantial research has been conducted in this regard to avoid ketosis development 

postpartum in periparturient dairy cows (Grummer, 1995, Drackley, 1999, Loor et al., 2007a). 

Supplementing diet with limiting amino acids such as lysine (Lys) or methionine (Met) to fine-

tune the Lys : Met ratio or rumen-protected choline have been proved as a powerful tool to avoid 

ketosis development in high producing dairy cows (Lima et al., 2012, Osorio et al., 2013, 

Jacometo et al., 2017).    

A common objective of the previous studies dealing with methionine supplementation 

was to obtain the optimal level of methionine in the metabolizable protein (MP) (Armentano et 

al., 1997, Rulquin and Delaby, 1997) and to alleviate the burden of non-esterified fatty acids 

(NEFA) in the liver (Martinov et al., 2010), and consequently to increase the milk yield and dry 

matter intake (DMI). In this perspective, Addisseo Company (Adisseo Inc. Antony, France) has 

developed commercial forms of methionine supplementations, such as Smartamine M (SM) and 

MetaSmart (MS). These commercial products have been employed by several studies e.g., 

(Ordway et al., 2009, Chen et al., 2011) and have an overall positive impact on dairy cow’s 

health and performance. The metabolic profiling in cows fed with moderate energy diet without 

any supplementation and supplemented with SM and MS diets have been reported by (Osorio et 
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al., 2013) which indicates that methionine supplementation plays an important role in increasing 

the DMI and increased milk protein synthesis. In addition to this study, a detailed analysis of 

blood and tissue biomarkers revealed glutathione synthesis, reduction in proinflammatory 

signaling, increased very low-density lipoprotein (VLDL) secretion, and improved immune 

response (Osorio et al., 2014b). Gene expression profiling of targeted genes using quantitative 

PCR highlights the improvement in glutathione metabolism, inflammation, oxidative stress and 

epigenetics (Osorio et al., 2014a). In the study, it was also found that cows fed with high-energy 

diet during the dry period become more susceptible to ketosis. However, supplementation with 

SM and MS during the dry period improves postpartal health, increased DMI and fewer cases of 

clinical ketosis in dairy cows.  

There is a still limited information available at omics level, linking the biological 

phenomena to the etiology of ketosis development. In the current study, we selected dairy 

different groups of cows fed with moderate energy diet and supplemented with SM and MS to 

provide sufficient amount of methionine in the MP. We took liver tissue biopsies at -10 d before 

calving and performed the comparative analysis of transcriptome and metabolome using 

microarray and mass spectrometry coupled with gas chromatography (GC-MS) or liquid 

chromatography (LC-MS) to unravel the underlying mechanism involved in the ketogenic 

process.  

The objective of the study was to evaluate hepatic metabolome and transcriptome profiles 

in healthy cows supplemented with SM or MS versus cows fed with unsupplemented moderate-

energy diet that developed ketosis (K) postpartum. We have used the microarray and 

metabolome profiling techniques and bioinformatics techniques to unravel the complex 

mechanism involved in ketosis development using retrospective approach. 
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Materials and Methods 

 

Experimental design and dietary treatments 

 The Institutional Animal Care and Use Committee (IACUC) of the University of Illinois 

(Urbana) approved the procedure for this protocol (#09214). The experiment was conducted as a 

randomized complete block design as explained elsewhere (Osorio et al., 2013). All cows 

received the same far-off diet (1.24 Mcal/kg of DM; 14.3% CP) from −50 to −21 d before 

expected calving, a close-up diet (1.54 Mcal/kg of DM; 15.0% CP) from −21 d to calving, and 

fresh cow lactation diet from calving (1.75 Mcal/kg of DM; 17.5% CP) through 30 days in milk 

(DIM). Supplements of methionine were top-dressed from −21 to 30 DIM. For this study, we 

selected a subset of 18 cows, which are cows fed with moderate energy diet and developed 

ketosis (K, n=6), the cows that were fed moderate energy diet and supplemented with 

Smartamine M (SM, n=6), or MetaSmart (MS, n=6).  The experimental design is shown in the 

Figure 4.1.  

 

Liver biopsies and RNA extraction 

Liver tissue samples were collected via puncture biopsy (Dann et al., 2006) from cows 

under local anesthesia at approximately 0730 hour once prepartum on d −10 (±3 d), and then 

postpartum on d 7 and 21. Tissue samples were stored in liquid nitrogen immediately and then at 

-80 C until RNA extraction. We used liver samples from –10 d prepartum for the current 

metabolome and transcriptome analysis. Total RNA was extracted from the liver samples using 

established protocol in our laboratory. Briefly, liver tissue sample was weighed (~55 milligram 
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on average) and straightway put inside a 2 ml centrifuge tube (Corning Inc. ®, Cat. No. 430052, 

Corning, NY, USA), with 1 ml of Qiazol reagent to proceed with RNA extraction. This 

extraction procedure also utilizes chloroform (Ambion® Cat. No. 9720, Austin, TX, USA), 

which removes residual DNA. Any residual genomic DNA was removed from RNA with DNase 

using miRNeasy Mini Kit columns (Qiagen, Hilden, Germany). RNA concentration was 

measured using a Nano-Drop ND-1000 spectrophotometer (Nano-Drop Technologies, 

Wilmington, DE, USA). The purity of RNA (A260/A280) for all samples was above 2.0. The 

quality of RNA was evaluated using the Agilent Bioanalyzer system (Agilent 2100 Bioanalyzer, 

Agilent Technologies, Santa Clara, CA, USA). The average RNA integrity number (RIN) value 

for all samples was around 6.9.  

 

Metabolomics 

 Metabolon Company (Metabolon Inc. NC) performed Metabolomics analysis. The liver 

tissue samples were prepared according to the sample preparation guidelines. Briefly, the 500 

milligram (mg) of the liver tissue per sample was weighed, packed in dry ice and then shipped to 

the company. The metabolomics analysis was performed using GC-MS and LC-MS. A total of 

313 biochemical compounds (metabolites) were identified in this analysis. For the current study, 

we used SM, MS and K groups for the respective comparisons.  

 

Transcriptomics  

For transcriptomics analysis, we used ~44 K bovine (v2) gene expression Agilent 

microarray platform. The microarrays experiment was performed according to our laboratory’s 
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established protocol and the instructions provided by Agilent technologies.  The experiment was 

performed using four groups, which are OVE, K, SM and MS. The complete microarrays 

hybridization design is given in the Figure 4.2, but for the current study, we used SM, MS and K 

groups to evaluate supplementation and postpartal dairy health. The detailed description of the 

microarray experiment is provided in the above chapters 2-3 and elsewhere (Shahzad et al., 

2015).  

 

Statistical analysis 

For metabolomics analysis, a total of 313 biochemical compounds were used for 

statistical analysis. The data was normalized in terms of raw area counts. Each biochemical 

compound from the raw values was rescaled to set the median value equal to 1.0. The missing 

values were imputed with the minimum value. Following the log transformation and imputation 

of missing values with the minimum observed value for each compound, we used a mixed 

procedure of SAS (SAS Institute Inc., Cary, NC) to identify the biochemical compounds that 

differed significantly between the experimental groups. A list of significantly affected 

biochemical compounds with p ≤ 0.10 was selected for evaluation purpose.  

For microarray’s statistical analysis, a data from 12 arrays (24 samples) was used. The 

oligo IDs with bad flags (-100) were removed before normalization. The data was log 

transformed and then corrected across dye and array effects using loess normalization and array 

centering method. After normalization, a mixed procedure of SAS was used. The statistical 

model included dietary treatments as a fixed effect. The raw p-values were adjusted for the 

number of genes tested using Benjamini and Hochberg’s false discovery rate (FDR; Benjamini 
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and Hochberg, 1995) to account for multiple comparisons. However, there were not enough 

differentially expressed genes (DEG) under this criteria, so we used a p ≤ 0.05 and fold change 

(FC) ≥ |1.5| cut offs for the evaluation purpose.   

 

Pathways analysis 

For metabolomics analysis, each biochemical compound was annotated with its 

corresponding sub pathway. The results are further furnished with p- and fold change (FC) 

values resulting from SAS analysis. We obtained a total of 1,021 (K vs. SM) and 771 (K vs. MS) 

DEG with a p ≤ 0.05 and FC ≥ |1.5|. For transcriptome analysis, a dynamic impact approach 

(DIA) tool was used to unravel the Kyoto Encyclopedia of Genes and Genome (KEGG) 

pathways. A list of DEG along with their Oligo IDs, Entrez gene IDs, p values and FC values 

was used as an input. For the analysis, a minimum of 30% annotated genes in the microarray 

versus the whole genome were selected as described elsewhere (Bionaz et al., 2012). The DIA 

was run on the selected DEG to obtain the impact and flux values for each KEGG categories, 

sub-categories and their respective pathways. The impact values reflect the overall perturbation, 

while the flux values reflect the overall direction of a pathway, thus allowing us to evaluate 

transcriptome profiles in a more holistic fashion. 

 

Network analysis and data integration 

The network analyses of both metabolome and transcriptome datasets were conducted 

using IPA software. The data from the Metabolon’s biochemical compounds was annotated with 

PubChem identifiers provided online (https://pubchem.ncbi.nlm.nih.gov/). For metabolomics 
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network reconstructions, a list of 13 (K vs. SM) and 43 (K vs. MS) significantly affected 

biochemical compounds (p ≤ 0.10) was used along with their FC values. For transcriptomic 

network reconstructions, a list of DEG with a p ≤ 0.05 and FC ≥ |1.5| was used to upload into the 

IPA to run the core analysis. We used upstream transcription regulators and their downstream 

target genes from the IPA core analysis results. The data integration was performed using 

transcription regulators and biochemical compounds using both direct and indirect pathways 

using ‘Path Explorer’ tool in IPA.  The results were exported in the form of publishable qualities.  

  

Results and Discussion  

 

There are relatively fewer studies conducted dealing with the role of ketosis development 

in the liver of transition dairy cows, suggesting the mechanism of nutritional management using 

amino acid supplementations (McCarthy et al., 1968, Waterman and Schultz, 1972, Osorio et al., 

2013). These studies were aimed in treating ketosis by means of dietary treatments in the form of 

rumen protected methionine or choline supplementation. Supplemental rumen-protected 

methionine elicits modest but distinct response in the liver at both transcriptome and metabolome 

levels (Vailati-Riboni et al., 2017). Some of these unique alterations might help avert the 

detrimental effects of energy overfeeding prepartum, such as to avoid ketosis susceptibility 

postpartum.  

 

Expression patterns of metabolomics and transcriptomics datasets 
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 From metabolomics analysis of K vs. SM, we obtained a total of 13 out of 313 

biochemical compounds with p ≤ 0.10. The Figure 4.3 shows the overall patterns of the 

metabolites with respect to different p-values. Among these, 7 were up regulated while the 6 

were down regulated.  In K vs. MS, we found 43 biochemical compounds with p ≤ 0.10 (full 

results are not shown). Out of these, 5 were up regulated, while the 38 compounds were down 

regulated. In Figure 4.4, we have provided a list of the biochemical compounds and their sub-

pathways along with their respective p ≤ 0.05 and fold change values.   

   Within transcriptome analysis (Figure 4.5), we obtained more of DEG (1,021) in K vs. 

SM comparison as compared with K vs. MS (771). However, in both cases, the number of up 

regulated DEG were lower than the down regulated DEG as shown in the figure. For both DIA 

and IPA analysis, we used p ≤ 0.05 and FC ≥ |1.5|. A lists of DEG with p ≤ 0.01 and FC ≥ |3.0| is 

provided in the Tables 4.1 and 4.2. These tables provide the overall expression pattern in terms 

of gene symbols, their descriptions and the respective fold change values.   

 

Summary of KEGG pathways 

 The Figure 4.6 shows the summary of KEGG pathways in terms of categories and 

subcategories. The results illustrate an overall inhibition pattern of pathways in ketotic group 

compared with both SM and MS supplemental groups. The carbohydrate metabolism was shown 

as the most affected sub-category in both comparisons. However, the energy metabolism was 

induced moderately in K vs. MS group. It can also be seen that the pathways under the genetic 

information processing were slightly induced as compared to the other categories. These results 

display an overall trend of cellular growth, proliferation and apoptosis mechanisms.  
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   Pathways and networks analyses  

 The metabolomics and transcriptomics analysis results as pathways and networks 

levels are discussed in the following sections.   

K vs. SM. Among the metabolomics results (Figure 4.4), fatty acid metabolism (butyrylglycine), 

primary bile acid (glycochenodeoxycholate) and urea cycle (N-delta-acetylornithine) were 

activated in the ketotic group. Whereas, the lysolipids, fatty acid-dicarboxylate, TCA cycle and 

purine metabolism were overall inhibited. From the DIA analysis of KEGG pathways, we found 

9 out 10 pathways that were deactivated (Figure 4.7). These pathways belong to subcategories 

such as carbohydrate metabolism, metabolism of other amino acids, excretory system, glycan 

biosynthesis and metabolism, development, and signal transduction. The activated pathway 

includes ‘glycosphingolipid biosynthesis- ganglio series’.  

The network analysis of biochemical compounds revealed the functional enrichment of 

adenosine and citric acid in carbohydrate and lipid metabolism (Figure 4.8A). On the other hand, 

along with these compounds, guanosine, hypoxanthine and glycochenodeoxycholate showed 

their involvement in cellular functions as shown in the Figure 4.8B. The network analysis 

revealed five transcription regulators of which two (PAX7 and NFYB) were up regulated and 

three (ARNT, FOSL2 and HDAC5) were down regulated (Figure 4.10A). These transcription 

regulators were involved in cell proliferation, differentiation and developmental processes (Dey 

et al., 2011, Fan et al., 2014).  

The previous work from our group has shown that transcription of genes encoding 

enzymes of fatty acid synthesis, including acetyl-CoA carboxylase, fatty acid desaturase, and 

stearoyl-CoA desaturase, is suppressed during ketosis (Loor et al., 2007b). In the current study, 
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the metabolic results indicate an increased demand for short-chain acyl-CoA dehydrogenase 

butyrylglycine in ketotic group compared with SM group. Together, these results suggest that 

fatty acid metabolism in the K group was shifted to mitochondrial fatty acid oxidation which 

feeds acetyl-CoA into ketogenesis. The other carbohydrate related metabolites and pathways 

were also down regulated in the ketotic group. These include citrate, ‘Fructose and mannose 

metabolism’, and ‘Pentose phosphate pathway’ (Zhang et al., 2013, White, 2015). The primary 

bile acids, such as glycochenodeoxycholate was increased in K vs. SM suggesting NADPH 

oxidase-dependent hepatocyte shrinkage through ceramide (Becker et al., 2007). This process 

further impairs the bile formation in the liver (Keitel et al., 2008).  

   The metabolism of other amino acids such as cyanoamino acid, taurine and hypotaurine 

was inhibited in the ketotic group. In contrast, it is activation in SM group plays an important 

role in dairy health. The taurine is synthesized from the methionine or cysteine or hypotaurine in 

the liver and is involved in several processes such as osmoregulation, calcium utilization, and 

most importantly bile acid conjugation (Brand et al., 1998).  

K vs. MS.  In this group, all of the biochemical compounds were down regulated except the two 

metabolites (1-methylimidazoleacetate and 4-imidazoleacetate) that belong to histidine 

metabolism. The compounds that were down regulated belong to pentose metabolism, purine 

metabolism, tryptophan metabolism, lysolipids, fatty acids, nicotinate and nicotinamide 

metabolism, and sphingolipid metabolism as shown in the Figure 4.4. The DIA analysis of 

KEGG pathways revealed inhibition of all of the top ten pathways except the ‘Nitrogen 

metabolism’. The inhibited pathways belong to the sub-categories such as carbohydrate 

metabolism, metabolism of cofactors and vitamins, glycan biosynthesis and metabolism, and 

development.  
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     The network analysis of the biochemical compounds revealed NAD+, NADH and 

phosphoenolpyruvate association with carbohydrate metabolism (Figure 4.9A). On the other 

hand, NAD+, NADH, along with nicotinamide-beta-riboside, indicant, and alpha-

hydroxyglytarate were involved in cellular functions (Figure 4.9B). The networks analysis 

revealed three transcription regulators from which one was up regulated (EPAS1), and the other 

two were down regulated (EHF and LEF1) in the ketotic group of cows (Figure 4.10B).  

  Pentose metabolism, which draws carbons from the pentose phosphate pathway, showed 

a difference between the ketosis and supplemental groups. For instance, the pentose sugars 

ribose and ribulose were significantly elevated in the MS group compared to animals that 

experienced ketosis. Similarly, pentose alcohol xylitol and ribitol were decreased in K vs. MS 

comparison. The DIA results indicate the inhibition of ‘Riboflavin metabolism’ (Figure 4.7). The 

decreased ribitol level may be associated with riboflavin deficiency (Lankinen et al., 2011). 

Additionally, it has been indicated that ribitol via pentose phosphate pathway is used for energy 

synthesis by entering into glycolysis (Zhang et al., 2013). Interestingly, xylitol can reduce ketone 

production in dairy cattle potentially through its ability to stimulate energy production via 

glucose-dependent pathway and its stimulation of insulin release, both act to suppress 

ketogenesis in the liver (Sakai et al., 1996, Mizutani et al., 2003, Toyoda et al., 2008). A 

hypothesis stemming from the prior literature and the distinct increase of xylitol following the 

SM and MS treatments is that internal xylitol produced under methionine supplementation limits 

liver ketone production.  

 The nitrogen metabolism was the only pathway among the top ten pathways in the ketotic 

group that was activated. It is characterized into main categories based on the nitrogen source: 

nitrogen from microbial protein, and nitrogenous compounds and has an important role in blood 
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and milk in the form of blood urea nitrogen (BUN) and milk urea nitrogen (MUN) (Bahrami-

Yekdangi et al., 2014). In a study of human cancer patients, it was reported that the ketogenic 

diet has no significant impact on nitrogen metabolism (Fearon et al., 1988). However, in our 

results, the activation of this pathway may suggest a greater nitrogen utilization in the ketotic 

group of cows as compared with MS supplemented group.  

     

Integration of metabolome and transcriptome datasets 

 The data integration using biochemical compounds and transcription regulators unraveled 

the connecting links between these molecules. Figure 4.11 shows the integration between the 

biochemical compounds and transcription regulators. In K vs. SM (Figure 4.11A), the data 

integration shows the immune related molecules such as MHC class I and NFkB complexes that 

were linked with FOSLA2 and PAX7 transcription regulators. In several studies, it has been 

reported that immune system is usually compromised during the ketosis leading to several other 

health related disorders, and production losses (Osorio et al., 2013, Sordillo, 2016). In K vs. MS 

(Figure 4.11B), all of the shown biochemical compounds were down regulated except 

phosphoenolpyruvate. Among the transcription regulators, EPAS1 (Endothelial PAS domain-

containing protein 1) was up regulated. This gene is also known as hypoxia-inducible factor and 

is activated under low oxygen conditions (Schonenberger and Kovacs, 2015). The overall study 

shows that supplementing SM or MS when lysine is adequate, helps to improve the health of 

dairy cows postpartum and ultimately increase the voluntary DMI and milk production. This also 

helps to maintain the efficiency of metabolic and non-metabolic pathways in the liver. 
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Conclusion 

 

The genome-wide metabolomics and transcriptomics profiling study was conducted to 

determine the metabolic and genetic level changes occurring in the liver of transition cows and to 

examine the role of SM or MS in treating the metabolic disorders. The comparison of liver 

profiles from cows representing various rations, supplements, and ketosis groups revealed 

several key metabolic and genomic level differences. The increase of the pentose alcohol xylitol 

in the MS and SM groups relative to the ketotic group was interesting because xylitol is a useful 

as ketotic therapeutic agent due to its ability to stimulate insulin secretion and to reduce 

circulating fatty acids. However, it is not clear that endogenously produced xylitol has similar 

effects or it achieves levels high enough to mimic the effects of exogenous xylitol. The ketotic 

group showed more pronounced inhibition of KEGG related pathways and metabolites as 

compared with SM and MS supplemental groups. The network analysis using both metabolomics 

and transcriptomics datasets revealed distinct features of ketogenesis in the ketotic group. 

Altogether, these results showed that both SM and MS affected the metabolic functions of the 

liver. Both SM and MS appeared to have a definitive impact on liver functions that were distinct 

from the liver phenotypes displayed during ketosis development. This retrospective study may 

help to diagnose and prevent the ketosis development at pre-calving stages.  
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Figures and Tables 

Table 4.1: A list of differentially expressed genes with p ≤ 0.01 and fold change (FC) ≥ |3| in K 

vs. SM group. The table is ranked based on the FC values.   

Symbol Description K vs. SM 

CHRDL1 chordin-like 1 8.82 

PI3 peptidase inhibitor 3, skin-derived (SKALP) 7.63 

CCDC77 coiled-coil domain containing 77 6.30 

CCDC42B coiled-coil domain containing 42B 6.20 

OR10K1 olfactory receptor, family 10, subfamily K, member 1 5.20 

LOC526294 olfactory receptor-like protein DTMT 4.99 

LAMA1 laminin, alpha 1 4.92 

C25H7orf43 chromosome 7 open reading frame 43 4.88 

PBK PDZ binding kinase 4.80 

PLCG2 phospholipase C, gamma 2 4.63 

EPHB1 EPH receptor B1 4.56 

MGC138914 uncharacterized LOC512219 4.26 

PSPH phosphoserine phosphatase 4.24 

PYROXD1 pyridine nucleotide-disulphide oxidoreductase domain 1 4.19 

VSTM5 V-set and transmembrane domain containing 5 4.17 

LPL lipoprotein lipase 4.04 

ATXN3 ataxin 3 4.04 

KIF18A kinesin family member 18A 3.82 

DPY19L3 dpy-19-like 3 3.78 

KRT9 keratin 9 3.72 

SLC22A16 solute carrier family 22 (organic cation/carnitine transporter), 

member 16 

3.71 

ACACB acetyl-CoA carboxylase beta 3.65 

GRM7 glutamate receptor, metabotropic 7 3.39 

WDR69 WD repeat domain 69 3.38 

PRL prolactin 3.34 

RGS3 regulator of G-protein signaling 3 3.29 

PLOD2 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 3.24 

CACNA1D calcium channel, voltage-dependent, L type, alpha 1D subunit 3.23 

CCDC70 coiled-coil domain containing 70 3.22 

KRT5 keratin 5 3.18 

LOC100848685 caspase-10 3.11 

CNR1 cannabinoid receptor 1 (brain) 3.03 

LOC615101 melanoma-associated antigen B17-like -3.01 
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Table 4.1 (Cont.) 

GYG1 glycogenin 1 -3.02 

ADH1C alcohol dehydrogenase 1C (class I), gamma polypeptide -3.04 

RAE1 ribonucleic acid export 1 -3.12 

ZNF527 zinc finger protein 527 -3.14 

VWC2L von Willebrand factor C domain containing protein 2-like -3.14 

CD99L2 CD99 molecule-like 2 -3.16 

ZNF384 zinc finger protein 384 -3.23 

STK11IP serine/threonine kinase 11 interacting protein -3.27 

CREBL2 cAMP responsive element binding protein-like 2 -3.30 

RALGDS ral guanine nucleotide dissociation stimulator -3.30 

GPX3 glutathione peroxidase 3 (plasma) -3.31 

LOC524074 regulatory factor X, 6 -3.31 

DCST2 DC-STAMP domain containing 2 -3.34 

HCN1 hyperpolarization activated cyclic nucleotide-gated potassium 

channel 1 

-3.34 

HPCAL1 hippocalcin-like 1 -3.35 

LOC100850459 phosphodiesterase 7A -3.35 

SATB2 SATB homeobox 2 -3.37 

CORT cortistatin -3.37 

LOC522938 Uncharacterized protein -3.39 

HSH2D hematopoietic SH2 domain containing -3.42 

MED12 mediator complex subunit 12 -3.47 

SLC48A1 solute carrier family 48 (heme transporter), member 1 -3.48 

CENPE centromere protein E -3.48 

ABHD16A abhydrolase domain containing 16A -3.48 

HDAC5 histone deacetylase 5 -3.48 

GALC galactosylceramidase -3.50 

BTNL9 butyrophilin-like 9 -3.51 

FLOT1 flotillin 1 -3.51 

PLLP plasmolipin -3.53 

DUSP15 dual specificity phosphatase 15 -3.55 

PYGO2 pygopus family PHD finger 2 -3.62 

CDCA8 cell division cycle associated 8 -3.66 

RIPK3 receptor-interacting serine-threonine kinase 3 -3.67 

LOC509124 olfactory receptor 9G4 -3.67 

STK32C Serine/threonine-protein kinase 32C -3.69 

DDX3Y DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked -3.78 

BAD BCL2-associated agonist of cell death -3.81 

PLOD3 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 -3.83 
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Table 4.1 (Cont.) 

STON1 stonin 1 -3.84 

KIAA0922 KIAA0922 ortholog -3.84 

CIB2 calcium and integrin binding family member 2 -3.86 

IRAK3 interleukin-1 receptor-associated kinase 3 -3.89 

PRELP prolargin precursor -3.89 

C1QTNF3 C1q and tumor necrosis factor related protein 3 -3.94 

IRX4 iroquois homeobox 4 -3.94 

DLGAP5 discs, large (Drosophila) homolog-associated protein 5 -3.97 

MAPK3 mitogen-activated protein kinase 3 -4.01 

TUBD1 tubulin, delta 1 -4.02 

HOXA5 homeobox A5 -4.05 

LOC100335205 T-cell receptor gamma chain C region C10.5 -4.09 

PROK2 prokineticin 2 -4.09 

DST dystonin, transcript variant 1 -4.25 

RAPGEF4 Rap guanine nucleotide exchange factor (GEF) 4 -4.38 

ADORA2B adenosine A2b receptor -4.42 

WDR6 WD repeat domain 6 -4.52 

PMM1 phosphomannomutase 1 -4.53 

NCOA3 nuclear receptor coactivator 3 -4.53 

SLC25A39 solute carrier family 25, member 39 -4.76 

RALGAPA2 akt substrate AS250 -4.77 

MYOZ2 myozenin 2 -4.89 

NSG1 neuron specific gene family member 1 -4.91 

LOC517722 olfactory receptor 2T27 -4.97 

EML3 echinoderm microtubule associated protein like 3 -5.06 

FAM214B KIAA1539 ortholog  -5.10 

ABL1 c-abl oncogene 1, non-receptor tyrosine kinase -5.16 

GPX3 glutathione peroxidase 3 (plasma) -5.20 

ABHD1 abhydrolase domain containing 1 -5.29 

KIF27 kinesin family member 27 -5.63 

NCOA2 nuclear receptor coactivator 2 -5.77 

COBRA1 cofactor of BRCA1 -5.93 

FBP2 fructose-1,6-bisphosphatase 2 -6.28 

CPXM2 carboxypeptidase X (M14 family), member 2 -7.75 

GPX3 glutathione peroxidase 3 (plasma) -8.63 
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Table 4.2: A list of differentially expressed genes with p ≤ 0.01 and fold change (FC) ≥ |3| in K 

vs. MS group. The table is ranked based on the FC values.   

Symbol Description K vs. MS 

LOC100847724 WAP four-disulfide core domain protein 18-like 11.32 

ZNF35 zinc finger protein 35 6.35 

CCDC77 coiled-coil domain containing 77 6.07 

FAM102B family with sequence similarity 102, member B 5.48 

PI3 peptidase inhibitor 3, skin-derived (SKALP) 5.43 

CSRNP1 cysteine-serine-rich nuclear protein 1 5.05 

BOLA-N MHC class I antigen 5.04 

NLGN2 neuroligin 2 4.67 

MSL1 male-specific lethal 1 homolog 4.22 

CCDC42B coiled-coil domain containing 42B 4.11 

CLCA2 chloride channel accessory 2 4.08 

KRT5 keratin 5 3.98 

BOLA MHC class I heavy chain 3.81 

CACNA1D calcium channel, voltage-dependent, L type, alpha 1D subunit 3.58 

JSP.1 MHC Class I JSP.1 3.57 

PCBP3 poly(rC) binding protein 3 3.56 

MAML3 mastermind-like 3 (Drosophila) 3.55 

EIF2C1 eukaryotic translation initiation factor 2C, 1 3.45 

PARP4 poly (ADP-ribose) polymerase family, member 4 3.39 

EPHB1 EPH receptor B1 3.38 

GIT2 G protein-coupled receptor kinase interacting ArfGAP 2 3.34 

LOC526294 olfactory receptor-like protein DTMT  3.30 

KRT9 keratin 9 3.18 

SPATA17 spermatogenesis associated 17 3.09 

LOC100848685 caspase-10 3.08 

XPNPEP2 X-prolyl aminopeptidase (aminopeptidase P) 2, membrane-bound -3.01 

ADH1C alcohol dehydrogenase 1C (class I), gamma polypeptide -3.02 

CD99L2 CD99 molecule-like 2 -3.03 

RIPK3 receptor-interacting serine-threonine kinase 3 -3.04 

ABL1 c-abl oncogene 1, non-receptor tyrosine kinase -3.05 

TMTC2 transmembrane and tetratricopeptide repeat containing 2 -3.11 

MTMR14 myotubularin related protein 14 -3.14 

TMEM206 transmembrane protein 206 -3.20 

MBTPS1 membrane-bound transcription factor peptidase, site 1 -3.20 

ITGB4 integrin, beta 4 -3.23 
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Table 4.2 (Cont.) 

PDE4DIP phosphodiesterase 4D interacting protein -3.26 

ZNF565 zinc finger protein 565 -3.34 

RAE1 ribonucleic acid export 1 -3.34 

STK11IP serine/threonine kinase 11 interacting protein -3.35 

ADCY7 adenylate cyclase 7 -3.43 

ACVR1C activin A receptor, type IC -3.49 

LOC541022 Uncharacterized protein -3.52 

SOGA1 suppressor of glucose, autophagy associated 1 -3.55 

CHAF1B chromatin assembly factor 1, subunit B (p60) -3.57 

ANKS3 ankyrin repeat and sterile alpha motif domain containing 3 -3.58 

IL23R interleukin 23 receptor -3.73 

C8H9orf43 chromosome 8 open reading frame, human C9orf43 -3.75 

LOC512548 antileukoproteinase -3.76 

HDAC5 histone deacetylase 5 -3.81 

NABP2 oligonucleotide/oligosaccharide-binding fold containing 2B -3.84 

MAP3K4 mitogen-activated protein kinase kinase kinase 4 -3.87 

BAD BCL2-associated agonist of cell death -3.91 

DST dystonin, transcript variant 1 -3.92 

RALGDS ral guanine nucleotide dissociation stimulator -3.97 

BIN1 bridging integrator 1 -4.00 

MTMR9 myotubularin related protein 9 -4.02 

KRT80 keratin 80 -4.05 

FAM214B KIAA1539 ortholog -4.05 

ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 -4.06 

XIAP X-linked inhibitor of apoptosis -4.11 

ACTL6A actin-like 6A -4.31 

KIAA1009 KIAA1009 ortholog -4.33 

SLC25A39 solute carrier family 25, member 39 -4.35 

DUSP15 dual specificity phosphatase 15 -4.37 

NCKAP5L NCK-associated protein 5-like -4.38 

IRAK3 interleukin-1 receptor-associated kinase 3 -4.38 

NCAN neurocan -4.39 

CEP112 coiled-coil domain containing 46 -4.41 

PYGO2 pygopus family PHD finger 2 -4.42 

DDX3Y DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked -4.42 

MAPK3 mitogen-activated protein kinase 3 -4.45 

TPGS1 tubulin polyglutamylase complex subunit 1 -4.56 

MEIS2 Meis homeobox 2 -4.67 

ABHD16A abhydrolase domain containing 16A -4.68 

CIB2 calcium and integrin binding family member 2 -4.69 
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Table 4.2 (Cont.) 

EML3 echinoderm microtubule associated protein like 3 -4.79 

KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog -4.94 

ANXA11 annexin A11 -5.32 

COBRA1 cofactor of BRCA1 -5.39 

FBP2 fructose-1,6-bisphosphatase 2 -5.56 

PIGT phosphatidylinositol glycan anchor biosynthesis, class T -7.42 

FBP2 fructose-1,6-bisphosphatase 2 -9.11 
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Figure 4.1:  Experimental Design. The tissue biopsies were taken at -10 d relative to parturition. 

The cows were fed with moderate energy diet and developed Ketosis (K), supplemented with 

Smartamine M (SM) and MetaSmart (MS), and remain healthy postpartum.   
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Legends 

 

 

Figure 4.2: The complete microarray’s hybridization design is shown in the figure. A two color 

(red and green) hybridization plan was used. Ketotic (K), Smartamine M (SM) and MetaSmart 

(MS) groups encircled with red are used in the current study. 
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Figure 4.3: No. of significantly affected biochemical compounds with p ≤ 0.05, between 0.05 to 

0.10, and p ≤ 0.10 for the two comparisons K vs. SM and K vs. MS.   
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Figure 4.4: Significantly affected metabolites with p ≤ 0.05 are shown for each comparison K 

vs. SM and K vs. MS. The first column for each comparison represents the p-values, while the 

second column represents the fold change (FC) values. 

  

p -value FC

butyrylglycine Fatty Acid Metabolism (also BCAA Metabolism) 0.002 1.77

glycochenodeoxycholate Primary Bile Acid Metabolism 0.015 3.09

1-palmitoylglycerophosphoglycerol* Lysolipid 0.019 -1.48

N-delta-acetylornithine* Urea cycle; Arginine and Proline Metabolism 0.032 1.34

2-hydroxyglutarate Fatty Acid, Dicarboxylate 0.037 -1.49

citrate TCA Cycle 0.039 -1.68

guanosine Purine Metabolism, Guanine containing 0.045 -1.20

xylitol Pentose Metabolism 0.001 -1.70

xanthosine Purine Metabolism, (Hypo)Xanthine/Inosine containing 0.003 -1.27

ribitol Pentose Metabolism 0.010 -1.55

1-methylimidazoleacetate Histidine Metabolism 0.011 2.02

ribulose Pentose Metabolism 0.012 -1.47

3-indoxyl sulfate Tryptophan Metabolism 0.013 -1.28

ribose Pentose Metabolism 0.014 -1.40

2-linoleoylglycerophosphoethanolamine* Lysolipid 0.015 -1.78

2-arachidonoylglycerophosphoinositol* Lysolipid 0.017 -1.54

2-hydroxyglutarate Fatty Acid, Dicarboxylate 0.020 -1.57

1-oleoylglycerophosphoethanolamine Lysolipid 0.025 -1.83

nicotinamide riboside* Nicotinate and Nicotinamide Metabolism 0.026 -1.20

1-margaroylglycerophosphoethanolamine* Lysolipid 0.031 -2.35

1-linoleoylglycerophosphoethanolamine* Lysolipid 0.032 -1.63

2-oleoylglycerophosphoethanolamine* Lysolipid 0.037 -1.74

xylonate Pentose Metabolism 0.041 -1.55

1-palmitoylplasmenylethanolamine* Lysolipid 0.045 -2.25

4-imidazoleacetate Histidine Metabolism 0.045 1.86

sphinganine Sphingolipid Metabolism 0.046 -1.37

K vs. MS

Sub PathwayBiochemical Name
K vs. SM

Legends

p -value

FC FC<-1.0 FC ≥ 1.0

p  < 0.05
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Figure 4.5:  No. of differentially expressed genes (DEG) with p ≤ 0.05 and fold change (FC) ≥ 

|1.5| are shown by vertical bars. The y-axis represents the number of DEG, whereas x-axis 

represents the comparisons K vs. SM and K vs. MS.  
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Figure 4.6: DIA KEGG summary encompassing the five main categories for each comparison K 

vs. SM and K vs. MS. The first column under each comparison represents the impact values, 

whereas the second column represents the direction of the impact (flux). 

Category

1. Metabolism

0.1 Metabolic Pathways

1.1 Carbohydrate Metabolism

1.2 Energy Metabolism

1.3 Lipid Metabolism

1.4 Nucleotide Metabolism

1.5 Amino Acid Metabolism

1.6 Metabolism of Other Amino Acids

1.7 Glycan Biosynthesis and Metabolism

1.8 Metabolism of Cofactors and Vitamins

1.9 Metabolism of Terpenoids and Polyketides

1.10 Biosynthesis of Other Secondary Metabolites

1.11 Xenobiotics Biodegradation and Metabolism

2. Genetic Information Processing

2.1 Transcription

2.2 Translation

2.3 Folding, Sorting and Degradation

2.4 Replication and Repair

3. Environmental Information Processing

3.1 Membrane transport

3.2 Signal Transduction

3.3 Signaling Molecules and Interaction

4. Cellular Processes

4.1 Transport and Catabolism

4.2 Cell Motility

4.3 Cell Growth and Death

4.4 Cell Communication

5. Organismal Systems

5.1 Immune System

5.2 Endocrine System

5.3 Circulatory System

5.4 Digestive System

5.5 Excretory System

5.6 Nervous System

5.7 Sensory System

5.8 Development

5.9 Environmental Adaptation

K vs. MSK vs. SM

Legends

Flux = -25 -12.5 0 12.5 25 Impact = 0 6.25 12.5 25 50
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Figure 4.7:  The KEGG pathways along with their respective sub-categories are shown for K vs. 

SM and K vs. MS. The first column of each comparison represents the impact values (blue bars), 

whereas the second column (ranging from green to red) represents the direction of the impact 

(flux). 

 

 

 

 

Impact Flux

1.6 Metabolism of Other Amino Acids Cyanoamino acid metabolism

1.1 Carbohydrate Metabolism Fructose and mannose metabolism

5.5 Excretory System Aldosterone-regulated sodium reabsorption

1.7 Glycan Biosynthesis and Metabolism Other glycan degradation

1.7 Glycan Biosynthesis and Metabolism Glycosphingolipid biosynthesis - globo series

1.6 Metabolism of Other Amino Acids Taurine and hypotaurine metabolism

5.8 Development Dorso-ventral axis formation

3.2 Signal Transduction ErbB signaling pathway

1.1 Carbohydrate Metabolism Pentose phosphate pathway

1.7 Glycan Biosynthesis and Metabolism Glycosphingolipid biosynthesis - ganglio series

Impact Flux

1.1 Carbohydrate Metabolism Fructose and mannose metabolism

1.8 Metabolism of Cofactors and Vitamins Riboflavin metabolism

1.1 Carbohydrate Metabolism Pentose phosphate pathway

1.7 Glycan Biosynthesis and Metabolism Glycosylphosphatidylinositol(GPI)-anchor biosynthesis

1.1 Carbohydrate Metabolism Galactose metabolism

5.8 Development Dorso-ventral axis formation

1.2 Energy Metabolism Nitrogen metabolism

1.7 Glycan Biosynthesis and Metabolism Glycosphingolipid biosynthesis - ganglio series

1.1 Carbohydrate Metabolism Glycolysis / Gluconeogenesis

1.7 Glycan Biosynthesis and Metabolism Other glycan degradation

Pathways
K vs. SM

K vs. MS

Sub Category

Legends

Flux = -25 -12.5 0 12.5 25 Impact = 0 6.25 12.5 25 50



139 
 

 

A). Carbohydrate and Lipid Metabolism 

 

B). Cellular Functions 

Figure 4.8: K vs. SM: (A) Carbohydrate and Lipid Metabolism (B) Cellular Functions. 
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A). Carbohydrate and Lipid Metabolism 

 

B). Cellular Functions 

Figure 4.9: K vs. MS: (A) Carbohydrate and Lipid Metabolism (B) Cellular Functions. 
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Figure 4.10: Transcription Regulators: (A) K vs. SM, (B) K vs. MS. 

 

  

A B 
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Figure 4.11: Data integration of transcription regulators and biochemical compounds of (A) K 

vs. SM, (B) K vs. MS. 

  

A B 
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CHAPTER # 5 

 

Analysis of transcription regulator gene networks in peripartal bovine 

liver during summer and spring seasons 

 

Abstract 

 

Thermal stress (TS) affects the health and productivity of dairy cows. We used gene 

network analysis on transcriptome data to uncover transcription regulators (TR) and their target 

genes during TS. Twelve multiparous Holstein dairy cows were used to harvest liver tissues at -

30, 3, and 35 d relative to parturition during the spring (SP: March 28-April 30, n = 6) and 

summer (SU: June 15-July 02, n = 6). Mean temperature-humidity indexes for SP (day/night: 

below 72) and SU (day: 79.5±2.9, night: 70.1±4.7) were recorded. Transcriptomics was 

conducted using the 44-Agilent bovine microarrays. Statistical analysis with FDR ≤ 0.10 resulted 

in 618, 1,030 and 894 differentially expressed genes during SU vs. SP at -30, 3 and 35 d, 

respectively. Ingenuity pathway analysis (IPA) was used for gene network reconstructions. 

Among molecular and cellular functions, the IPA analysis identified cell death, survival, cellular 

growth and development as the most enriched functions. Carbohydrate metabolism was the most 

enriched at -30 and 3 d, while nucleic acid metabolism and cellular development were the most 

enriched at 3 and 35 d. A total of 6, 7 and 7 TR were identified at -30, 3 and 35 d. The IPA 

analysis uncovered HNF4A, MYC, and NCOA1 (-30, 3 and 35 d), STAT3, and RELA (-30 and 

35 d), BCL6 (3 and 35 d), KAT2B (-30 d), and GATA2 (3 d) as key TR. Comparing SU vs. SP 

at -30d uncovered HNF4A and MYC (both triggered by RELA) as key TR. Both are linked with 

several downstream up-regulated target genes involved in oxidation of xenobiotic compounds 
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(CYP3A4), tryptophan catabolism (ACMSD1), arginine catabolism (ARG1), apoptosis 

regulation, and ER Calcium homeostasis (CFLAR, TMBIM6). In contrast, the down-regulated 

target genes were involved in cellular proliferation, anti-apoptotic activities, immune related 

disorders (CDKN1, LGALS1, TSPO), and liver disease (SERPINA1, FTH1). At 3 d, both 

HNF4A and MYC were down-regulated. Up-regulation of BCL6 was directly linked with the IL-

6 dependent immune-response and cell growth. In contrast, BCL6 was associated with down-

regulation of IL7R, IL13R1 and CXCL10-dependent immune responses. During lactation at 35 

d, the up-regulation of RELA was associated with target genes involved in the activation of anti-

inflammatory responses (CCL3, B2M), extracellular matrix breakdown (MMP1), regulation of 

cell cycle (MYC, PTEN, CASP8) and gluconeogenesis (PCK1). Preliminary evaluation of these 

results suggests that calving during the summer vs. spring is associated with the molecular 

phenotype of the liver.  

 

JAM Conference: 

2014. K. Shahzad, H. Akbar, L. Basiricò, P. Morera, U. Bernabucci and J. J. Loor. Journal of 

Dairy Science, 97(E-Suppl. 1):1399. 
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Introduction 

 

Heat stress during the hot season adversely affects dairy health and productivity through 

length of photoperiod, month of parturition and by means of various physiological, behavioral, 

and metabolic level alterations (do Amaral et al., 2009, Bernabucci et al., 2010). The 

environmental factors influence the overall expression of hepatic genes that lead to metabolic 

and physiological adaptations in the body especially during the transition period. During this 

period, liver plays an essential role in regulating the homeostasis and preventing animals to 

suffer from adverse consequences (Febbraio, 2001).  

It has been reported that the intensity of heat stress negatively influence the milk 

production during both dry period and early lactation (do Amaral et al., 2009, do Amaral et al., 

2011). The overall feed intake is reduced leading to weight loss, dysfunction of immune system 

and decreased milk production (Rhoads et al., 2010). Despite the reduced feed intake in the heat 

stressed cows, it has been shown that fats are not mobilized from the adipose tissue due to the 

inactive lipolytic stimuli and altered homeorhesis (Baumgard and Rhoads, 2013). As a response, 

the level of non-esterified fatty acids (NEFA) is not increased during the heat stress (Shwartz et 

al., 2009), rather the pattern of endocrines is changed (Collier et al., 1982). In heat stressed cows, 

it has been revealed that metabolic pathways such as gluconeogenesis and cholesterol synthesis 

are inhibited, whereas the level of NEFA, and beta hydroxybutyrate (BHBA) is increased leading 

to lipid infiltration in the hepatic tissue  (Basiricò et al., 2010). At this level, the immune system 

is also compromised due to abnormal inflammatory responses as indicated by do Amaral et al. 

(2011). The heat shock proteins have been shown to play a major role in eliciting the immune 

response under the increased heat stress conditions (Campisi et al., 2003). In this regard, the 
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neutrophils are the first line of defense that fight against external microbes (Kampen et al., 

2004). The proper dairy management strategies could help to prevent the heat stress response in 

dairy cows. In the past, several studies have been focused on highlighting the role of heat stress 

and the causative physiological factors (do Amaral et al., 2009, Bernabucci et al., 2010, Rhoads 

et al., 2010), however, none of these have addressed the role of hepatic metabolic pathways in 

terms of network visualizations. In our first study using the same dataset (Shahzad et al., 2015), 

we have focused on analyzing the metabolic and non-metabolic pathways  using dynamic impact 

approach (DIA) (Bionaz et al., 2012).  

The current study is focused on analyzing the role of differentially expressed genes 

(DEG) by means of network constructions. Furthermore, we focused on the transcription 

regulators to draw the biological networks. The objective of the study was to conduct a network 

analysis of transcription regulators of DEG at different time points (-30, 3 and 35 d) in transition 

cows as a mean to uncover additional mechanisms involved in regulating the hepatic response 

during calving seasons.  

 

Materials and Methods 

 

Experimental design and liver biopsies  

Twelve (12) Holstein multiparous dairy cows were enrolled in the study. The cows were 

assigned into two groups based on calving season: Spring (SP, March-April, n = 6) and summer 

(SU, June-July, n = 6). All of these cows were housed in a free stall cubicle barn and were 

provided with cooling-ventilation system and concrete roofing. Mean temperature-humidity 
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indices for SP (day/night, below 72) and SU (day, 79.5 ± 2.9; night, 70.1 ± 4.7) were recorded. 

There were no clinical health problems observed in cows at the time of calving, and none of the 

cows received any treatment for metabolic disorders. The biopsies were performed under local 

anesthesia. Liver tissue was harvested at -30 (±2), 3, and 35 d relative to parturition and 

immediately saved in liquid nitrogen for short term. The tissue samples were stored at -80oC 

until RNA extraction and microarrays analysis.   

    

RNA extraction and microarrays  

The total RNA was extracted from the liver tissue using QIAzol Lysis reagent (Qiagen, 

Chatsworth, CA, USA) by following our standard laboratory protocols. During the procedure, 

the homogenate was separated into aqueous and organic phases by centrifugation. The RNA was 

precipitated from the aqueous phase by adding isopropanol. The isolated RNA was aliquoted in 

DNase-free water, quantified using NanoDrop ND-1000 (Thermo Fisher Scientific Inc., 

Waltham, MA) and then stored at −80°C until further experiment. The extracted RNA was 

processed for quality control using the Agilent Bioanalyzer (Agilent Technologies Inc., Santa 

Clara, CA). Based on RIN > 6.5, the total RNA was processed for microarray analysis. The 

whole procedure of microarray is already published by our group and available at (Shahzad et 

al., 2015).  

Briefly, the microarrays experiment was conducted using the 44K-Agilent bovine (V2) 

gene expression microarray chips (Agilent Technologies Inc.; cat# G2519F-023647). A total of 

200 ng of RNA per sample was used to generate first-strand cDNA, which was subsequently 

reverse transcribed to cRNA using a low-input quick amp labeling kit (Agilent Technologies 
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Inc.; cat# 5190–2306). The resulting cRNA was labeled with either Cy3 or Cy5 fluorescent dye. 

Purification of the labeled cRNA product was performed with RNeasy mini spin columns 

(Qiagen, cat# 74104), and it was subsequently eluted in 30 μL of DNase-RNase-free water. The 

eluted labeled cRNA was quantified in a NanoDrop to confirm the manufacturer’s recommended 

criteria for yield and specific activity of at least 0.825 μg and ≥6. The labeled cRNA was 

fragmented and then hybridized to the microarray slide. During this step, 825 ng of Cy3 and Cy5 

labeled cRNA samples were combined; mixed with 11 μL of 10X Blocking Agent (Agilent 

Technologies Inc.; cat# 5188–5281), 2.2 μL of 25× Fragmentation Buffer (Agilent Technologies 

Inc.; cat# 5185–5974), and nuclease-free water (to a final volume of 55 μL); and then fragmented 

at 60°C for 30 seconds. The reaction was then stopped by adding 55 μL of 2×GEx Hybridization 

Buffer (Agilent Technologies Inc.; cat# 5190–0403), and then samples were loaded onto the 

slides. The samples were hybridized in a rotating hybridization oven at 65°C for 17 hours. The 

slides were washed according to the given instructions and scanned using a GenePix 4000B 

scanner (Axon Instruments Inc., Sunnyvale, CA) and GenePix Pro v.6.1 software. Resulting 

spots with substandard features were flagged and then excluded from the subsequent analysis. 

 

Statistical analysis  

Statistical analysis of microarray data was performed using the SAS (SAS Institute Inc., 

Cary, NC). Data from a total of 18 microarrays were adjusted for dye and array effects using 

lowess normalization and array centering method. A MIXED procedure of SAS with repeated 

measures was used to the normalized log2-transformed adjusted ratios. The model included the 

fixed effects of time (−30, 3, and 35 d), season (SP and SU), and interaction of time × season. 

Cows were considered as uncorrelated random effect. The raw p-values against multiple 
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comparisons were adjusted using Benjamini and Hochberg’s false discovery rate (FDR) method 

(Benjamini and Hochberg, 1995). Differences in transcript profiles were considered significant at 

an FDR-adjusted p-value ≤ 0.10 for the gene network analysis. 

 

Gene network analysis  

Ingenuity Pathways Analysis (IPA) software was used for gene network analysis. A list 

of DEG along with corrected p values and fold change values was uploaded into the software. A 

core analysis tool was run under the IPA utility. From the core analysis, we used upstream 

analysis results for transcription regulators and their network reconstructions.  The results were 

retrieved and are discussed below.  

 

Results and Discussion 

 

Gene expression pattern 

For the current study, we used three time points (-30, 3, and 35 d) from SU vs. SP 

comparison. An FDR ≤ 0.10 and p ≤ 0.10 were used as cut offs for the analysis purpose. We 

obtained 618 (384 up and 234 down), 1,030 (483 up and 547 down) and 894 (364 up and 530 

down) DEG at -30, 3, and 35 d of SU vs. SP, respectively as shown by vertical bars in the Figure 

5.1. The large number of expression pattern underscores the marked effects of seasonal calving 

at different time points. Tables 5.1-5.3 show the overall expression patterns of DEG with p ≤ 

0.01 and FC ≥ 4.0 to provide an overall picture of the summer calving effects compared with 

spring calving. In our previous work, we have shown that the DEG expressed in SU vs. SP are 



153 
 

the most importantly related with carbohydrates, lipids and amino acids metabolism under the 

metabolic category, and with stress response and immune system under the non-metabolic 

category (Shahzad et al., 2015). In another review, it was highlighted that heat stress adversely 

impacts the reproductive performance by affecting oocyte maturation and embryonic 

developmental processes in cattle and buffalo (Dash et al., 2016). It has also been associated with 

reduced dry matter intake (DMI) and decreased milk production (Brown et al., 2016). The 

research indicates a greater impact of temperature variations above the animal’s thermo-neutral 

zone over the hepatic gene expression.  

 

Transcription regulators 

 The upstream analysis of transcription regulators identified 6 (5 up and 1 down), 7 (2 up 

and 5 down) and 7 (2 up and 5 down) DEGs at d -30, 3 and 35 during SU vs. SP as shown in the 

Table 5.4. We observed that most of the transcription regulators were down regulated postpartum 

as compared to prepartum in SU vs. SP.  

 

Day -30.  

During SU vs. SP, we found five transcription regulators (STAT3, MYC, HNF4A, 

KAT2B, and RELA) that were up regulated, and one (NCOA1) that was down regulated (Table 

5.4). Among the up regulated transcription regulators, HNF4A and MYC (both triggered by 

RELA) appeared to be key transcription regulators. These two transcription regulators were 

linked with several downstream target genes that were involved in oxidation of xenobiotic 

compounds (CYP3A4) (Tirona et al., 2003), tryptophan catabolism (ACMSD1) (Huo et al., 
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2015), arginine catabolism (ARG1) (Wang et al., 2011), apoptosis regulation, and ER Calcium 

homeostasis (CFLAR, TMBIM6)  (Xu et al., 2008). The results indicate that amino acids 

metabolism was more induced in the cows calved during the summer season.    

The networks of RELA and MYC are shown in Figure 5.2.  Their down regulated target 

genes were involved in cellular proliferation, anti-apoptotic activities, immune related disorders 

(CDKN1, LGALS1, TSPO) (Holtan et al., 2009, Liu et al., 2009, Green et al., 2014), and liver 

disease (SERPINA1, FTH1) (Rebl et al., 2012). The NCOA1 (Nuclear receptor coactivator 1) 

was down regulated in our results. The main role of this gene is to facilitate the assembly of basal 

transcription factors and steroid hormone regulation (Chen et al., 2010, Walsh et al., 2012). The 

dysregulation of this gene indicates abnormal hormonal control in the hepatic tissue.      

 

Day +3.  

After calving, we found two transcription regulators (BCL6, and PLAGL1) that were up 

regulated, and five transcription regulators (MYC, NCOA1, STAT1, HNF4A, and ZEB1) that 

were down regulated during summer calving as compared with spring calving.  The upregulation 

of BCL6 was directly linked with the IL-6-dependent immune-response and cell growth (Choi et 

al., 2013). In contrast, BCL6 was associated with down regulation of IL7R, IL13R1 and 

CXCL10-dependent immune responses (Figure 5.3). This process indicates an activation of IL-6 

dependent immunity and antigen processing and presentation response, while deactivation of 

other immune related reactions (e.g., IL2, TLL1, and IL7R) as shown in Table 5.2 (Karnowski et 

al., 2012). On the other hand, HNF4A and MYC were down regulated. The down-regulation of 

these genes indicate lower rate of cell proliferation and differentiation after calving. 
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Day +35.  

After 35 days of calving, we found a different response in gene expression as shown in 

the Tables 5.3 and 5.4. The upstream analysis uncovered seven transcription regulators, of which 

two were up regulated (MYC and RELA), and five were down regulated (TFAM, FUBP1, 

KAT2B, HNF4A and ZNF274). The networks of RELA and MYC are shown in the Figure 5.4. 

The upregulation of RELA is associated with target genes involved in activation of anti-

inflammatory response and antigen processing and presentation (CCL3, B2M) (Lim et al., 2007, 

Boulaire et al., 2009), extracellular matrix breakdown (MMP1) (Mishra et al., 2010), regulation 

of cell cycle (MYC, PTEN, CASP8) (Haupt et al., 2003, Hoffman and Liebermann, 2008) and 

reduced gluconeogenesis (PCK1, and KAT2B) (Ravnskjaer et al., 2013, Zhang et al., 2015). The 

data also indicate a more pronounced effect of immune response as specified by CCL3, IL27, 

and IFI30 genes shown in Table 5.3. The RELA gene dependent CCL3 activation is also 

indicated in the Figure 5.4, which in turn was induced by MYC gene. It has been shown that 

IL27 is involved in an innate immune response and is a strong inducer of cytokines and 

chemokines (Guzzo et al., 2010).   

These findings indicate that carbohydrate metabolism was enriched at -30 and 3 d, while 

nucleic acid metabolism, immune response and cellular development were enriched at 3 and 35 d 

in SU vs. SP calving groups.  

 

Conclusion 

 

Gene network analysis highlighted several upstream transcription regulators and their 

target genes that were affected during summer (SU) and spring (SP) calving seasons. Among 
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these, cellular replenishment, carbohydrate metabolism, and immune system were the most 

enriched and activated pathways in SU vs. SP calving groups at different time points during the 

transition into lactation. The upstream analysis identified 6, 7, and 7 transcription regulators at -

30, +3, and +35 d relative to parturition. The analysis uncovered HNF4A, and MYC (-30, 3, and 

35 d), KAT2B and RELA (-30 and 35 d), and BCL6 (3 d) as key transcription regulators. 

HNF4A was appeared as the highly interconnected transcription regulator at all the three time 

points among the other transcription regulators. The network analysis identified cell death, 

survival, cellular growth and developmental processes as the most-enriched cellular and 

molecular functions. Carbohydrate metabolism was enriched at -30 and 3 d, while nucleic acid 

metabolism, immune response and cellular development process were enriched at 3 and 35 d. 

The evaluation of the results suggest that the molecular phenotype of the liver differs between 

the two calving groups. The functional relevance of the gene networks and their changes merit 

more detailed mechanistic studies.    
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Tables and Figures 

 

Table 5.1: A list of differentially expressed genes with p ≤ 0.01 and fold change ≥ |4.0| at -30 d 

during SU vs. SP. 

Symbol Description SU vs. SP(-30 d) 

PRC1 protein regulator of cytokinesis 1 -13.28 

NEU4 sialidase 4  -11.37 

CD34 CD34 molecule -9.93 

GANC glucosidase -8.09 

WDR66 WD repeat domain 66 -7.98 

DEFB119 defensin, beta 119  -6.20 

PPP1R42 protein phosphatase 1 -5.89 

ZIC2 Zic family member 2 -5.59 

HSDL1 hydroxysteroid dehydrogenase like 1 -5.51 

ZNF839 zinc finger protein 839  -4.80 

LOC781910 olfactory receptor Olr1353 -4.72 

PTGIS prostaglandin I2 (prostacyclin) synthase -4.53 

MAGEB10 melanoma antigen family B 4.11 

IMP5 signal peptide peptidase like 2C  4.22 

RIMS2 regulating synaptic membrane exocytosis 2   4.28 

MAGEE2 melanoma antigen family E 4.56 

CCDC170 coiled-coil domain containing 170  4.62 

GNG13 guanine nucleotide binding protein (G protein) 4.64 

IL22 interleukin 22 4.72 

BARHL1 BarH-like homeobox 1 4.77 

PAG2 pregnancy-associated glycoprotein 2 4.79 

HSD3B1 hydroxy-delta-5-steroid dehydrogenase 4.83 

LGI1 leucine-rich 4.89 

GLP1R Uncharacterized protein  5.63 

CCDC60 coiled-coil domain containing 60  5.73 

OR51Q1 olfactory receptor 6.18 

PPP1R27 protein phosphatase 1 6.91 

LPAR3 lysophosphatidic acid receptor 3 7.02 

EPHX4 epoxide hydrolase 4 7.54 

ZNF280B zinc finger protein 280B 10.15 
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Table 5.2: A list of differentially expressed genes with p ≤ 0.01 and fold change ≥ |4.0| at +3 d 

during SU vs. SP. 

Symbol Description SU vs. SP (+3 d) 

PVRL1 poliovirus receptor-related 1 -19.16 

LRRC49 leucine rich repeat containing 49 -14.43 

OR2D3 olfactory receptor -14.25 

GAB3 GRB2-associated binding protein 3 -13.04 

CHAT choline O-acetyltransferase  -12.79 

DYDC2 DPY30 domain containing 2 -9.70 

CHAMP1 chromosome alignment maintaining phosphoprotein 1 -8.95 

RAB3C RAB3C -8.78 

ZNF280B zinc finger protein 280B -8.10 

ADCYAP1R1 adenylate cyclase activating polypeptide 1 (pituitary) receptor 

type I  

-7.40 

SHANK3 SH3 and multiple ankyrin repeat domains 3 -7.19 

TARSL2 threonyl-tRNA synthetase-like 2 -6.97 

NKX2-1 NK2 homeobox 1 -6.95 

B3GALNT1  beta-1,3-N-acetylgalactosaminyltransferase 1 -6.84 

LOC781146 lysozyme -6.61 

NCCRP1 non-specific cytotoxic cell receptor protein 1 homolog -6.59 

MEX3D mex-3 RNA binding family member D -6.49 

AP2A1 adaptor-related protein complex 2 -6.49 

LOC100850628 olfactory receptor 51L1 -6.34 

RIMS2 regulating synaptic membrane exocytosis 2   -6.24 

SPIC Spi-C transcription factor (Spi-1/PU.1 related) -6.22 

MTMR12 myotubularin related protein 12  -6.11 

IL2 interleukin 2 -6.09 

HMMR hyaluronan-mediated motility receptor (RHAMM) -6.06 

PCSK2 proprotein convertase subtilisin/kexin type 2 -6.05 

SCN3A sodium channel -5.98 

LPCAT1 lysophosphatidylcholine acyltransferase 1 -5.92 

INPP5K inositol polyphosphate-5-phosphatase K  -5.81 

RBL2 retinoblastoma-like 2 (p130) -5.80 

FARS2 phenylalanyl-tRNA synthetase 2 -5.72 

CDH23 cadherin-related 23 -5.71 

OVCH2 ovochymase 2 -5.68 

HSD3B1 hydroxy-delta-5-steroid dehydrogenase -5.60 

LHCGR luteinizing hormone receptor isoform 2 mRNA -5.60 
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Table 5.2 (Cont.) 

COG2 component of oligomeric golgi complex 2 -5.58 

TLL1 tolloid-like 1 -5.57 

IL7R interleukin 7 receptor -5.52 

ZPBP2 zona pellucida binding protein 2 -5.48 

ADAMTS4 ADAM metallopeptidase with thrombospondin type 1 motif -5.39 

NUMA1 nuclear mitotic apparatus protein 1 -5.37 

XPR1 xenotropic and polytropic retrovirus receptor 1 -5.33 

GPC5 glypican 5 -5.19 

LOC789367 olfactory receptor 10C1 -5.14 

TOP3B topoisomerase (DNA) III beta -5.02 

LOC782792 putative olfactory receptor 5AK3 -4.95 

POU1F1 Bovine growth-hormone factor 1 (bGHF-1) mRNA -4.93 

SIGLEC14 sialic acid-binding Ig-like lectin 1 -4.70 

GCNT2 glucosaminyl (N-acetyl) transferase 2 -4.64 

CRISP1 cysteine-rich secretory protein 1 -4.59 

SLC44A4 solute carrier family 44 -4.55 

LOC618816 olfactory receptor 6C2 -4.46 

WIPF2 WAS/WASL interacting protein family -4.45 

DCLK1 doublecortin-like kinase 1 -4.43 

CEP152 centrosomal protein 152kDa  -4.41 

TMPRSS5 transmembrane protease -4.40 

LOC751811 AV618187 ovary fetus cDNA clone E1OV015H10 5' -4.38 

BAI3 brain-specific angiogenesis inhibitor 3  -4.32 

ATP13A5 ATPase type 13A5  -4.28 

UGT2B15 Uncharacterized protein  -4.27 

HTR1D 5-hydroxytryptamine (serotonin) receptor 1D -4.26 

NUDT18 nudix (nucleoside diphosphate linked moiety X)-type motif 18  -4.20 

LEPR leptin receptor -4.16 

GATA2 GATA binding protein 2 -4.14 

ACP2 acid phosphatase 2 -4.10 

CXCL10 chemokine (C-X-C motif) ligand 10 -4.08 

NTS neurotensin -4.06 

GNAO1 guanine nucleotide binding protein (G protein) -4.05 

ABI3BP target of Nesh-SH3   -4.04 

MORN3 MORN repeat containing 3 -4.03 

LOC100336669 guanylate-binding protein 4 -4.03 

ACADM acyl-CoA dehydrogenase 4.06 

NFIL3 nuclear factor, interleukin 3 regulated 4.10 

SNW1 SNW domain containing 1 4.15 

PAG7 pregnancy-associated glycoprotein 7 4.25 
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Table 5.2 (Cont.) 

DGUOK deoxyguanosine kinase 4.28 

LOC617119 olfactory receptor 8B3 4.44 

PPIF peptidylprolyl isomerase F 4.49 

MIS18A MIS18 kinetochore protein homolog A 4.89 

ZNF236 zinc finger protein 236  5.34 

PLAGL1 pleiomorphic adenoma gene-like 1 5.72 

PCDHB11 protocadherin beta 11 6.10 

ADAM1B a disintegrin and metallopeptidase domain 1b 7.84 

SNCA synuclein alpha 10.63 
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Table 5.3: A list of differentially expressed genes with p ≤ 0.01 and fold change ≥ |4.0| at +35 d 

during SU vs. SP. 

Symbol Description SU vs. SP (+35 d) 

CHAMP1 chromosome alignment maintaining phosphoprotein 1 -20.00 

DBR1 debranching RNA lariats 1 -10.86 

PNMAL1 PNMA-like 1 -10.13 

H4 histone H4 -9.78 

LOC617119 olfactory receptor 8B3 -8.05 

PAG7 pregnancy-associated glycoprotein 7 -7.52 

LOC789612 uncharacterized LOC789612 -7.51 

PCSK2 proprotein convertase subtilisin/kexin type 2 -6.86 

DSC3 desmocollin 3 -6.77 

LAMC2  laminin subunit gamma 2 -6.59 

SUMF1 sulfatase modifying factor 1 -6.50 

CACNA1E calcium channel, voltage-dependent, R type, alpha 1E subunit -6.41 

ACTG1 actin gamma 1 -6.15 

PGPEP1L pyroglutamyl-peptidase I-like  -5.84 

B3GALNT1  beta-1,3-N-acetylgalactosaminyltransferase 1 -5.78 

TLX1 T-cell leukemia homeobox 1 -5.69 

ABCA2 ATP binding cassette subfamily A member 2 -5.59 

LOC100140839 vesicle transport protein SFT2A -5.55 

C13H20orf26 chromosome 13 open reading frame -5.47 

LRRTM4 leucine rich repeat transmembrane neuronal 4 -5.09 

A2ML1 alpha-2-macroglobulin-like 1 -4.79 

LOC617079 ATP-binding cassette transporter C4-like -4.70 

CXCL2 chemokine (C-X-C motif) ligand 2 -4.64 

JPH1 junctophilin 1 -4.09 

DEFB123 defensin beta 123 -4.03 

MAB21L3 mab-21-like 3 (C. elegans) 4.00 

ZIC2 Zic family member 2 4.05 

IFI30  interferon, gamma-inducible protein 30 4.13 

IL27 interleukin 27 4.13 

CNKSR2 connector enhancer of kinase suppressor of Ras 2 4.25 

TOP2A topoisomerase (DNA) II alpha 4.38 

CA12 carbonic anhydrase XII  4.47 

LOC505451 olfactory receptor, family 1, subfamily J, member 2-like 4.47 

NTS neurotensin 4.48 

NXPH3 neurexophilin 3 4.73 



162 
 

Table 5.3 (Cont.) 

COLEC12 collectin sub-family member 12 4.95 

UNCX UNC homeobox 5.04 

PAG1 phosphoprotein membrane anchor with glycosphingolipid 

microdomains 1 

5.16 

MYH8 myosin, heavy chain 8, skeletal muscle, perinatal 5.18 

ASPG asparaginase homolog  5.42 

NOD1 nucleotide-binding oligomerization domain containing 1 5.42 

LOC614175 uncharacterized LOC614175 5.65 

CA7 carbonic anhydrase VII 5.71 

TMEM247 transmembrane protein 247 5.71 

CHST4 carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 4 5.92 

MEX3D mex-3 RNA binding family member D 6.11 

WHSC1 Wolf-Hirschhorn syndrome candidate 1  6.28 

LOC787249 olfactory receptor 1J4 6.48 

LAMC2 laminin subunit gamma 2 6.48 

LOC516467 olfactory receptor 4F3/4F16/4F29 6.50 

LPAR2 lysophosphatidic acid receptor 2 6.55 

LOC525599 butyrophilin family member 7.38 

LOC788592 serine/threonine-protein phosphatase 4 regulatory subunit 3B-

like 

8.18 

KCTD13 potassium channel tetramerisation domain containing 13 8.75 

EGFLAM EGF-like 8.84 

VIL1 villin 1 9.19 

LOC519492 olfactory receptor 10T2 9.23 

CD34 CD34 molecule 9.97 

ST14 suppression of tumorigenicity 14 (colon carcinoma) 11.16 

CCL3 chemokine (C-C motif) ligand 3 11.77 

HTR4 5-hydroxytryptamine (serotonin) receptor 4 12.02 

TMEM54 transmembrane protein 54 12.03 

NTN4 netrin 4 13.38 

DES desmin 22.24 

LOC784254 carbonic anhydrase 1 175.06 
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Table 5.4: Upstream transcription regulators, their fold change values and target genes predicted 

by IPA software. 

 

 

Upstream Regulator Fold Change Total No. Target molecules in dataset

NCOA1 -1.187 8 C3,CDKN1A,FGF2,HSD3B2,KDR,MYC,NCOA2,PRLR

RELA 1.148 13 B2M,BIRC3,CCL3,CDKN1A,CYP3A4,DGCR6,FGF2,HNF4A,IL2,MMP1,MYC,RELA,SMAD4

KAT2B 1.377 4 B2M,CDKN1A,KAT2B,PRLR

HNF4A 1.514 62

ACP2,ACSS3,ACVR1,ADSS,ALDH1A1,AMBP,ANAPC15,BAD,BAZ1B,BCS1L,BNIP1,C11orf58,C

1orf109,C3,CD46,CDC23,CDKN1A,CLTA,CROT,CWC15,CYP3A4,DNPH1,ECD,FTSJ1,FURIN,GI

N1,GPX1,GSS,GYS2,HMGB1,HMGB2,HNF4A,HNRNPA0,KIF22,MBL2,MINA,MRPL2,MYC,ND

UFV1,NME1,NONO,PEF1,PHPT1,PKM,POLR1B,PRDX5,PRLR,PUS3,RAB3C,RBM39,RBM42,RU

VBL2,SELRC1,SERPINA1,SLC38A4,SMAD4,TMBIM6,TMEM101,TUBB4A,UGT2A3,VTN,YIF1A

MYC 2.201 33

ACTA1,ARG1,ATP13A2,CDKN1A,CFLAR,Clu,CLUH,COX5B,CSDE1,DCTPP1,DNPH1,FTH1,GDI

2,HLA-

A,HSPD1,KDR,LGALS1,MINA,MYC,NCL,NME1,ODC1,PKM,POLR1B,PPP1R15A,RUVBL2,SER

PINA1,SLC3A2,TIMP1,TSPO,USP54,VIM,ZIC2

STAT3 2.34 20
ARG1,C5,CD46,CDKN1A,CFLAR,CTLA4,CYP26A1,FGF2,HNF4A,IL22,IL6R,KAT2B,KDR,MYC,

NKX2-1,RALGDS,STAT3,TIMP1,TNFSF10,VIM

MYC -2.999 49

ACTA1,ACTN1,ARG1,ASNS,ATP13A2,BCL6,C1QBP,CASP8,CDK4,CDKN1A,CFLAR,CLUH,CO

X5B,COX6B1,CPT1A,CSDE1,CXCL10,DBI,DCTPP1,DNPH1,FTH1,GDI2,GOT1,HAMP,HSPD1,K

DR,MGST3,MIF,MINA,MYC,NBN,NME1,ODC1,PAICS,PCK1,PDK1,POLR1B,PPP1R15A,PRDX

4,PTEN,RPL27,RPS12,RUVBL2,SERPINA1,SLC3A2,TIMP1,TSPO,UGT1A6,USP54

NCOA1 -2.111 9 C3,CDKN1A,FGF2,HSD3B2,KDR,MYC,NCOA2,PCK1,PRLR

STAT1 -1.953 16
ARG1,BAD,C3,CASP8,CCL3,CDKN1A,CFB,CXCL10,FGF2,GBP1,IL2,LY6E,MYC,Rnf213,STAT1,

TNFSF10

HNF4A -1.713 112

ACLY,ACOX2,ACP2,ACSL1,ACSS3,ACTN1,ACVR1,ADH6,ADSS,ALDH1A1,ALDH8A1,AMBP,

ANAPC15,ARHGEF19,BAD,BAZ1B,BCL6,BCS1L,BNIP1,C11orf52,C11orf58,C11orf71,C1orf109,C

3,CCDC47,CD46,CDC23,CDK12,CDKN1A,COX7A2,COX7C,CPT1A,CRYZ,CYP3A4,DBT,DDX1

0,DNPH1,ECD,F11,FTSJ1,GIN1,GOT1,GPX1,GSS,GYS2,HMGB2,HNF4A,HNRNPA0,IFI30,IMMT

,KIF22,LAPTM4A,LMAN2L,LYPLA2,MBL2,MGST3,MINA,MRPL2,MRPL24,MRPS21,MUT,MYC

,NARS2,NME1,NONO,NUDT2,NUDT5,PCK1,PDZK1,PEF1,PGM1,PLAA,POLR1B,PRCC,PRDX5

,PRLR,PRPS1,PSMB7,PSME3,PUS3,RAB3C,RABAC1,RBM39,RBM42,REPIN1,RIOK3,RNF113A,

RNF5,RSL24D1,RTFDC1,RUVBL2,SELRC1,SERPINA1,SLC17A2,SLC25A1,SLC38A4,SMAD4,S

NW1,SSSCA1,STK19,STYXL1,SUCLG1,TFPT,THRAP3,TMEM101,TMEM115,TMEM208,TP53R

K,UBL7,UGT1A6,UGT2A3,YIF1A

ZEB1 -1.571 5 ESRP1,ESRP2,IL2,LAMC2,RBL2

BCL6 2.213 12 BCL6,CCL3,CDKN1A,CXCL10,FGF2,FTH1,IL13RA1,IL6R,IL7R,MCM3AP,MYC,PTEN

PLAGL1 5.717 3 ADCYAP1R1, CDKN1A,PTEN

TFAM -1.856 3 ACADM, ACADS, ACOX1

FUBP1 -1.738 2 CCNH, MYC

KAT2B -1.565 4 B2M, HLA-B,KATB, PRLR

HNF4A -1.465 97

ACLY,ACOX2,ACP2,ACSL1,ACTN1,ACVR1,AHSG,ALDH1A1,ALDH8A1,AMBP,ARHGEF19,BA

D,BAZ1B,BCL6,BCS1L,BNIP1,C11orf52,C11orf58,C1orf109,C3,CCDC47,CD46,CDK12,CLTA,CO

Q10B,COX7C,CPT1A,CROT,CRYZ,CWC15,CYP3A4,DBT,ECD,F11,FURIN,GOT1,HMGB1,HMG

B2,HNF4A,IFI30,IMMT,LAMTOR2,LARP4,LMAN2L,MBL2,MGST3,MINA,MRPL2,MRPL24,MRP

S21,MUT,MYC,NARS2,NDUFV1,NME1,NONO,NUDT5,PALMD,PCK1,PDZK1,PEF1,PHPT1,PK

M,PLAA,POLR1B,PRCC,PRDX5,PRLR,PRMT7,PSMB7,PUS3,RBM42,RIOK3,RNF113A,RSL24D1

,RTFDC1,RUVBL2,SEC11A,SERPINA1,SLC25A1,SLC38A4,SMAD4,SNW1,STK19,STYXL1,TFP

T,THRAP3,TMBIM6,TMEM101,TMEM208,TP53RK,UBL7,UGT1A6,UGT2A3,UQCC1,VTN,YIF1A

ZNF274 -1.377 1 HAMP

RELA 1.503 13 B2M,CASP8,CCL3,CFB,CYP3A4,DGCR6,HNF4A,MMP1,MYC,PCK1,PTEN,RELA,SMAD4

MYC 2.681 49

ACTA1,ACTB,ACTN1,ADK,ARG1,ASNS,ASS1,BCL6,CASP8,CD48,CDK4,Clu,COX5B,CPT1A,C

SDE1,FTH1,GDI2,GOT1,HAMP,HLA-

A,HNRNPA1L2,HSPD1,KDR,LGALS1,MGST3,MIF,MINA,MYC,NBN,NME1,ODC1,PAICS,PCK1

,PDK1,PKM,POLR1B,PPP1R15A,PRDX4,PTEN,ROCK2,RPL27,RUVBL2,SERPINA1,TIMP1,TSP

O,UGT1A6,USP54,VIM,ZIC2

SU vs. SP Day -30

SU vs. SP  Day 3

SU vs. SP Day 35
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Figure 5.1: Differentially expressed genes (DEG) in SU vs. SP comparison are shown for each 

time point (-35, 3 and 30 d) relative to parturition. The X-axis represents the days relative to 

parturition, while the Y-axis represents the DEG that were up or down regulated at each time 

point. 
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Figure 5.2: Transcription regulator network of RELA and MYC genes and their targets at -30 d 

during the SU vs. SP.   
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Figure 5.3: Transcription regulator network of BCL6 and MYC genes and their targets at 3 d 

during the SU vs. SP. 
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Figure 5.4: Transcription regulator network of RELA and MYC genes and their targets at 35 d 

during the SU vs. SP.  



168 
 

References 

 

Basiricò, L., P. Morera, N. Lacetera, B. Ronchi, A. Nardone, and U. Bernabuccim. 2010. Down-

regulation of hepatic ApoB100 expression during hot season in transition dairy cows. 

Livestock Science 137(1-3):49–57. 

Baumgard, L. H. and R. P. Rhoads. 2013. Effects of Heat Stress on Postabsorptive Metabolism 

and Energetics. Annual Review of Animal Biosciences, Vol 1 1:311-337. 

Benjamini, Y. and Y. Hochberg. 1995. Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B 

(Methodological) 57(1):289-300. 

Bernabucci, U., N. Lacetera, L. H. Baumgard, R. P. Rhoads, B. Ronchi, and A. Nardone. 2010. 

Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal : 

An International Journal of Animal Bioscience 4(7):1167-1183. 

Bionaz, M., K. Periasamy, S. L. Rodriguez-Zas, W. L. Hurley, and J. J. Loor. 2012. A Novel 

Dynamic Impact Approach (DIA) for Functional Analysis of Time-Course Omics 

Studies: Validation Using the Bovine Mammary Transcriptome. PLoS One 7(3):e32455. 

Boulaire, J., Y. Zhao, and S. Wang. 2009. Gene expression profiling to define host response to 

baculoviral transduction in the brain. Journal of Neurochemistry 109(5):1203-1214. 

Brown, B. M., J. W. Stallings, J. S. Clay, and M. L. Rhoads. 2016. Periconceptional Heat Stress 

of Holstein Dams Is Associated with Differences in Daughter Milk Production during 

Their First Lactation. PLoS One 11(2):e0148234. 

Campisi, J., T. H. Leem, and M. Fleshner. 2003. Stress-induced extracellular Hsp72 is a 

functionally significant danger signal to the immune system. Cell Stress & Chaperones 

8(3):272-286. 

Chen, X., Z. Liu, and J. Xu. 2010. The cooperative function of nuclear receptor coactivator 1 

(NCOA1) and NCOA3 in placental development and embryo survival. Molecular 

Endocrinology 24(10):1917-1934. 

Choi, Y. S., D. Eto, J. A. Yang, C. Lao, and S. Crotty. 2013. Cutting edge: STAT1 is required for 

IL-6-mediated Bcl6 induction for early follicular helper cell differentiation. The Journal 

of Immunology 190(7):3049-3053. 

Collier, R. J., S. G. Doelger, H. H. Head, W. W. Thatcher, and C. J. Wilcox. 1982. Effects of 

heat stress during pregnancy on maternal hormone concentrations, calf birth weight and 

postpartum milk yield of Holstein cows. Journal of Animal Science 54(2):309-319. 

Dash, S., A. K. Chakravarty, A. Singh, A. Upadhyay, M. Singh, and S. Yousuf. 2016. Effect of 

heat stress on reproductive performances of dairy cattle and buffaloes: A review. 

Veterinary World 9(3):235-244. 

do Amaral, B. C., E. E. Connor, S. Tao, J. Hayen, J. Bubolz, and G. E. Dahl. 2009. Heat-stress 

abatement during the dry period: does cooling improve transition into lactation? Journal 

of Dairy Science 92(12):5988-5999. 

do Amaral, B. C., E. E. Connor, S. Tao, M. J. Hayen, J. W. Bubolz, and G. E. Dahl. 2011. Heat 

stress abatement during the dry period influences metabolic gene expression and 

improves immune status in the transition period of dairy cows. Journal of Dairy Science 

94(1):86-96. 

Febbraio, M. A. 2001. Alterations in energy metabolism during exercise and heat stress. Sports 

Medicine 31(1):47-59. 



169 
 

Green, D. R., L. Galluzzi, and G. Kroemer. 2014. Cell biology. Metabolic control of cell death. 

Science 345(6203):1250256. 

Guzzo, C., N. F. Che Mat, and K. Gee. 2010. Interleukin-27 induces a STAT1/3- and NF-

kappaB-dependent proinflammatory cytokine profile in human monocytes. The Journal 

of Biological Chemistry 285(32):24404-24411. 

Haupt, S., M. Berger, Z. Goldberg, and Y. Haupt. 2003. Apoptosis - the p53 network. Journal of 

Cell Science 116(Pt 20):4077-4085. 

Hoffman, B. and D. A. Liebermann. 2008. Apoptotic signaling by c-MYC. Oncogene 

27(50):6462-6472. 

Holtan, S. G., D. J. Creedon, P. Haluska, and S. N. Markovic. 2009. Cancer and pregnancy: 

parallels in growth, invasion, and immune modulation and implications for cancer 

therapeutic agents. Mayo Clinic Proceedings 84(11):985-1000. 

Huo, L., I. Davis, F. Liu, B. Andi, S. Esaki, H. Iwaki, Y. Hasegawa, A. M. Orville, and A. Liu. 

2015. Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action. Nat 

Commun 6:5935. 

Kampen, A. H., T. Tollersrud, S. Larsen, J. A. Roth, D. E. Frank, and A. Lund. 2004. 

Repeatability of flow cytometric and classical measurement of phagocytosis and 

respiratory burst in bovine polymorphonuclear leukocytes. Veterinary Immunology and 

Immunopathology 97(1-2):105-114. 

Karnowski, A., S. Chevrier, G. T. Belz, A. Mount, D. Emslie, K. D'Costa, D. M. Tarlinton, A. 

Kallies, and L. M. Corcoran. 2012. B and T cells collaborate in antiviral responses via IL-

6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. The Journal of 

Experimental Medicine 209(11):2049-2064. 

Lim, C. A., F. Yao, J. J. Wong, J. George, H. Xu, K. P. Chiu, W. K. Sung, L. Lipovich, V. B. 

Vega, J. Chen, A. Shahab, X. D. Zhao, M. Hibberd, C. L. Wei, B. Lim, H. H. Ng, Y. 

Ruan, and K. C. Chin. 2007. Genome-wide mapping of RELA(p65) binding identifies 

E2F1 as a transcriptional activator recruited by NF-kappaB upon TLR4 activation. 

Molecular Cell 27(4):622-635. 

Liu, J., M. Deng, C. A. Lancto, M. S. Abrahamsen, M. S. Rutherford, and S. Enomoto. 2009. 

Biphasic modulation of apoptotic pathways in Cryptosporidium parvum-infected human 

intestinal epithelial cells. Infection and Immunity 77(2):837-849. 

Mishra, B., K. Kizaki, K. Koshi, K. Ushizawa, T. Takahashi, M. Hosoe, T. Sato, A. Ito, and K. 

Hashizume. 2010. Expression of extracellular matrix metalloproteinase inducer 

(EMMPRIN) and its related extracellular matrix degrading enzymes in the endometrium 

during estrous cycle and early gestation in cattle. Reproductive Biology and 

Endocrinology 8:60. 

Ravnskjaer, K., M. F. Hogan, D. Lackey, L. Tora, S. Y. Dent, J. Olefsky, and M. Montminy. 

2013. Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated 

epigenetic effects. Journal of Clinical Investigation 123(10):4318-4328. 

Rebl, A., M. Verleih, T. Korytar, C. Kuhn, K. Wimmers, B. Kollner, and T. Goldammer. 2012. 

Identification of differentially expressed protective genes in liver of two rainbow trout 

strains. Veterinary Immunology and Immunopathology 145(1-2):305-315. 

Rhoads, M. L., J. W. Kim, R. J. Collier, B. A. Crooker, Y. R. Boisclair, L. H. Baumgard, and R. 

P. Rhoads. 2010. Effects of heat stress and nutrition on lactating Holstein cows: II. 

Aspects of hepatic growth hormone responsiveness. Journal of Dairy Science 93(1):170-

179. 



170 
 

Shahzad, K., H. Akbar, M. Vailati-Riboni, L. Basirico, P. Morera, S. L. Rodriguez-Zas, A. 

Nardone, U. Bernabucci, and J. J. Loor. 2015. The effect of calving in the summer on the 

hepatic transcriptome of Holstein cows during the peripartal period. Journal of Dairy 

Science 98(8):5401-5413. 

Shwartz, G., M. L. Rhoads, M. J. VanBaale, R. P. Rhoads, and L. H. Baumgard. 2009. Effects of 

a supplemental yeast culture on heat-stressed lactating Holstein cows. Journal of Dairy 

Science 92(3):935-942. 

Tirona, R. G., W. Lee, B. F. Leake, L. B. Lan, C. B. Cline, V. Lamba, F. Parviz, S. A. Duncan, 

Y. Inoue, F. J. Gonzalez, E. G. Schuetz, and R. B. Kim. 2003. The orphan nuclear 

receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of 

CYP3A4. Nature Medicine 9(2):220-224. 

Walsh, C. A., L. Qin, J. C. Tien, L. S. Young, and J. Xu. 2012. The function of steroid receptor 

coactivator-1 in normal tissues and cancer. Int J Biol Sci 8(4):470-485. 

Wang, R., C. P. Dillon, L. Z. Shi, S. Milasta, R. Carter, D. Finkelstein, L. L. McCormick, P. 

Fitzgerald, H. Chi, J. Munger, and D. R. Green. 2011. The transcription factor Myc 

controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871-

882. 

Xu, C., W. Xu, A. E. Palmer, and J. C. Reed. 2008. BI-1 regulates endoplasmic reticulum Ca2+ 

homeostasis downstream of Bcl-2 family proteins. The Journal of Biological Chemistry 

283(17):11477-11484. 

Zhang, Q., S. L. Koser, B. J. Bequette, and S. S. Donkin. 2015. Effect of propionate on mRNA 

expression of key genes for gluconeogenesis in liver of dairy cattle. Journal of Dairy 

Science 98(12):8698-8709. 

 

 

 

 

 

  



171 
 

CHAPTER # 6 

 

Summary and conclusions 

 

The overall focus of the study is to evaluate the hepatic gene expression under different 

physiological conditions by means of transcriptomics and metabolomics data using 

bioinformatics and systems biology approaches. Application of systems concepts to better 

understand physiologic and metabolic changes in dairy cows during the transition into lactation 

could enhance our understanding of the role of nutrients in helping meet the animal’s 

requirements for optimal production and improved health. The transition period is marked by 

increased hormonal changes that lead to decreased dry matter intake, and increased energy 

demands for hepatic gluconeogenesis, fatty acid mobilization, and muscle degradation. These 

conditions may give rise to several metabolic disorders such as fatty liver, milk fever, mastitis, 

metritis and ketosis. Ketosis is one of the main metabolic disorders that arise from increased 

level of non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHBA) concentration. It is 

characterized into two different types clinical and sub-clinical based on the BHBA threshold 

levels in the blood. It has been shown that supplementation of methionine to maintain 3:1 ratio of 

lysine to methionine during the dry period may help to prevent ketosis development during early 

lactation. The onset of lactation is a critical step in regaining health of dairy cows postpartum. In 

the current research, four different studies were conducted to investigate the effects of 

methionine supplementation and the response of heat stress on the health of transition dairy cows 

using metabolomics and transcriptomics profiling techniques. The first three analyses dealt with 

supplementation of methionine to prevent clinical ketosis in high-genetic merit dairy cows. Four 

groups of cows were formed retrospectively based on clinical health evaluated at 1 week 
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postpartum: cows that remained healthy (OVE), cows that developed ketosis (K), and healthy 

cows supplemented with one of two commercial methionine products [Smartamine M (SM), or 

MetaSmart (MS)]. The analyses were performed in liver tissue harvested at -10 d relative to 

parturition from cows that were healthy on +7 d postpartum or were diagnosed with ketosis. 

 The first study deals with the comparison of the two groups of cows fed with moderate 

energy diet during the close-up dry period (-21 d to calving), and remained healthy (OVE, n=6) 

or developed ketosis (K, n=6) postpartum. ‘Omics’ and bioinformatics tools were used to 

identify the unique signatures characterizing the liver of cows with postpartal ketosis relative to 

healthy cows. The data was analyzed by MIXED procedure of SAS for both metabolomics and 

transcriptomics experiments. The metabolomics analysis resulted in 15 biochemical compounds 

(p ≤ 0.10) out of 313 identified in the liver tissue, while the transcriptomics analysis resulted in 

3,065 (2,091 up and 974 down) differentially expressed genes (DEG, p ≤ 0.05 and FC ≥ |1.5|) 

from 44 K Agilent bovine microarray for K vs. OVE. The functional analysis was performed 

using the Dynamic Impact Approach (DIA) and Ingenuity Pathway Analysis (IPA). The data 

revealed the involvement of several important pathways and biochemical compounds in the 

ketogenic process. In the ketotic group of cows compared with healthy group, we found the 

inhibition of several carbohydrate and lipid metabolism related pathways such as ‘Glycolysis / 

Gluconeogenesis’, ‘Pentose phosphate pathway’, Fatty acid biosynthesis’, and ‘Biosynthesis of 

unsaturated fatty acids’. However, the pathways related to amino acid metabolism were induced 

such as ‘Glycine, serine and threonine metabolism’ and ‘Histidine metabolism’. The integration 

of metabolomics and transcriptomics results revealed the involvement of several non-metabolic 

pathways such as cell growth, proliferation, apoptosis, immune response, and insulin signaling.  
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The second study deals with the comparisons among different groups of cows fed 

moderate energy diet (OVE, n=6) and supplemented with Smartamine M (SM, n=6) and 

MetaSmart (MS, n=6) during the close up dry period. Supplements of methionine were top-

dressed over the total mixed ration at a rate of 0.19 or 0.07% (DM) of feed for MS or SM. The 

liver tissue samples were used for metabolomics and transcriptomics analyses. The 

metabolomics study was conducted via LC-MS and GC-MS (Metabolon Inc.) and 

transcriptomics study was conducted using a whole-transcriptome bovine microarray (Agilent). 

From a total of 313 biochemical compounds identified, metabolomics analysis revealed 16, 26, 

and 36 compounds (p ≤ 0.10) affected in SM vs. OVE, MS vs. OVE, and SM vs. MS, 

respectively. Comparing profiles in SM vs. OVE revealed that compounds up regulated belong 

to the gamma-glutamyl amino acid, purine metabolism, pentose, and sterol related pathways, 

while down regulated compounds belong to secondary bile acid, dipeptides, TCA cycle and 

eicosanoid metabolic pathways. In MS vs. OVE, the compounds up regulated belong to primary 

and secondary bile acid, purine metabolism, and lysolipids, while compounds down regulated 

were linked with glycolysis, gluconeogenesis, urea cycle, sphingolipid, and pyruvate 

metabolism. The transcriptome analysis of these groups resulted in 710 (SM vs. OVE), 786 (MS 

vs. OVE) and 601 (SM vs. MS) DEG (p ≤ 0.05 and FC ≥ |1.5|). Bioinformatics analysis using the 

DIA revealed that SM vs. OVE resulted in a marked impact and activation of ‘Nitrogen 

metabolism’, ‘Glycosaminoglycan biocynthesis-chondroitin sulfate’, ‘Synthesis and degradation 

of ketone bodies’ and ‘Selenoamino acid metabolism’. In MS vs. OVE, however, among the top-

10 most-impacted pathways there was a marked inhibition of ‘Base excision repair’, 

‘Cyanoamino acid metabolism’, ‘One carbon pool by folate’ and related pathways, whereas the 

‘Riboflavin metabolism’, and ‘Vitamin digestion and absorption’ were activated. Unique 
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responses in SM vs. MS included a marked activation of ‘Intestinal immune network for IgA 

production’, ‘Antigen processing and presentation’, and ‘Notch signaling pathway’. The data 

interpretation suggests that MS and SM induce distinct changes on the metabolome and 

transcriptome phenotype of the prepartal liver.  

The third study involves the comparison among the cows that developed ketosis (K, n=6) 

and the ones supplemented with SM (n=6) and MS (n=6), and remained healthy on +7 d 

postpartum. From a total of 313 identified biochemical compounds, metabolome analysis 

revealed 13 or 43 compounds (p ≤ 0.10) in K vs. SM or K vs. MS. Among the up regulated 

compounds, mostly belong to primary bile acid, fatty acid, phenylalanine and tyrosine 

metabolism, urea cycle, arginine, and proline metabolism. Among the down regulated 

compounds, lysolipids, citrate cycle, and di-carboxylic acids along with components of purine 

and sphingolipid metabolism were identified as biomarkers. Citrate was markedly lower in the 

liver of K vs. SM. In K vs. MS, the up regulated compounds include intermediates of 

glycolysis/gluconeogenesis/pyruvate, histidine, and fatty acid metabolism. Among down 

regulated compounds, lysolipids, pentose metabolism (xylitol, ribulose, ribitol, and xylonate) and 

tryptophan metabolism were affected significantly. Analysis of transcriptomics data resulted in 

1021 or 771 DEG (p ≤ 0.05 and FC ≥ |1.5|) in K vs. SM or K vs. MS. The analysis using DIA 

revealed deactivation of several pathways in K vs. SM such as ‘Cynoamino acid metabolism’, 

‘Other glycan degradation’, ‘Erb signaling’ and ‘Pentose phosphate pathway’. In K vs. MS, we 

found deactivation of ‘Riboflavin metabolism’, ‘Pentose phosphate pathway’, and 

‘Glycolysis/gluconeogenesis’, whereas ‘Nitrogen metabolism’ was activated in this group. These 

results suggest that supplementation with SM or MS elicit distinct metabolomics and 

transcriptomics responses in the liver of transition dairy cows. The cows developing K 
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postpartum also had a distinct molecular phenotype compared with those supplemented with 

methionine. These findings indicate that ‘omics’ data integration could be helpful in better 

understanding the links between nutrition and incidence of metabolic disorders during early 

lactation, and to diagnose ketosis development using molecular signatures even before calving. 

The fourth study deals with the effects of heat stress on the health and productivity of 

dairy cows. During this study, we used gene network analysis on transcriptome data to uncover 

transcription regulators and their downstream target genes. Twelve multiparous Holstein dairy 

cows were selected to harvest liver tissues at -30, +3, and +35 d relative to parturition during the 

spring (SP: March 28-April 30, n = 6) and summer (SU: June 15-July 02, n = 6). Mean 

temperature-humidity indexes for SP (day/night: below 72) and SU (day: 79.5±2.9, night: 

70.1±4.7) were recorded. Transcriptomics was conducted using the 44K Agilent bovine 

microarrays. Statistical analysis with FDR ≤ 0.10 resulted in 618, 1,030 and 894 DEG for -30, +3 

and +35 d respectively during SU vs. SP. Among molecular and cellular functions, IPA analysis 

identified cell death, survival, cellular growth and development as the most enriched functions. 

Carbohydrate metabolism appeared to be the most enriched at -30 and +3 d, whereas nucleic acid 

metabolism and cellular development were the most enriched at +3 and +35 d. A total of 6, 7 and 

7 transcription regulators were identified at -30, +3 and +35 d. The IPA analysis uncovered 

HNF4A, and MYC (-30, 3 and 35 d), RELA and KAT2B (-30 and 35 d), and BCL6 (3) as 

important transcription regulators. Comparing SU vs. SP at -30 d revealed HNF4A and MYC 

(both triggered by RELA) as key transcription regulators linked with several downstream target 

genes. The up regulated target genes were involved in oxidation of xenobiotic compounds 

(CYP3A4), tryptophan catabolism (ACMSD1), arginine catabolism (ARG1), apoptosis 

regulation, and ER Calcium homeostasis (CFLAR, TMBIM6). In contrast, the down-regulated 
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target genes were involved in cellular proliferation, anti-apoptotic activities, immune related 

disorders (CDKN1, LGALS1, TSPO), and liver disease (SERPINA1, FTH1). At +3 d, both 

HNF4A and MYC were down regulated. The up regulation of BCL6 was directly linked with the 

IL-6 dependent immune response and cell growth. Additionally, the BCL6 was associated with 

down regulation of IL7R, IL13R1 and CXCL10-dependent immune responses. During lactation 

at +35 d, the up regulation of RELA was associated with target genes involved in activation of 

anti-inflammatory reactions (CCL3, B2M), extracellular matrix breakdown (MMP1), regulation 

of cell cycle (MYC, PTEN, CASP8) and gluconeogenesis (PCK1). The evaluation of these 

results suggest that calving during the summer vs. spring is in fact associated with molecular 

phenotypes of the liver.  

 


