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ABSTRACT 
 

This dissertation will highlight a path to achieve high conversion efficiency of optoelectronic 

devices, including photovoltaic concentrators and LED display modules. Semiconductor nanocrystals, 

also known as quantum dots (QDs), serve as the pivotal luminescent materials in these devices. A 

quantum dots encapsulation method was developed here to homogeneously disperse QDs in a transparent 

polymer matrix, enabling high optical quality devices and thorough investigation of light material 

interactions.  

A luminescent solar concentrator (LSC) typically consists of a luminophore embedded in a polymer 

sheet with a high-performance solar cell attached at the side. In such a device, sunlight is absorbed in a 

luminophore, emitted into the waveguide modes of the polymer sheet, and directed to a photovoltaic cell 

where it is absorbed and converted to electricity. Since the area of the polymer sheet is greater than the 

area of the photovoltaic cell, concentration of the solar photon flux is achieved. Approaching high 

concentration ratio will require a luminophore with large Stokes Shift, high quantum yield, minimal 

overlap between absorption and emission, and a narrow emission spectrum. We have examined the 

performance of LSCs utilizing CdSe/CdS core-shell QDs, with significantly reduced absorption-emission 

overlap and long propagation distances in the waveguide. Furthermore, a distributed Bragg reflector 

dramatically mitigates the negative impact of scattering in the waveguide, allowing efficient photon 

collection and concentration ratio. 

White-light LED is achieved by using a phosphor material to convert monochromatic light from a 

blue or UV LED to broad-spectrum white light. However, tradition yellow phosphors suffer from low 

color rendering index due to the broad emission spectrum of the phosphors. QDs have been proposed as 

better candidate than traditional yellow phosphors due to their narrow and tunable emission spectrum, and 

wide absorption spectrum in the UV-blue spectrum range. We have fabricated QD-polymer thin films as 

color conversion layers on blue LED via different methods, including spin-coating, drop casting and 
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electrohydrodynamic jet printing. The polymer surface has been incorporated with nano-sized features to 

create photonic crystal structure. Up to 8 times QD excitation and emission enhancement have been 

demonstrated. We have also designed and fabricated QD-polymer based concentrating cavity on blue 

LED that acts both as color conversion layer and light concentrator. Distributed Bragg reflector and 

sputtered silver have been used as reflectors surrounding QD-polymer thin film. The exterior of the 

concentrator cavity was coated with black absorber to suppress light reflection, and a small aperture in the 

center allows concentrated photons to exit. High power conversion efficiency and high ambient contrast 

have been achieved in module devices. 
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CHAPTER 1: INTRODUCTION 
 

This chapter introduces the motivation of employing Quantum Dots in various optoelectronic 

applications, and the necessity of encapsulating Quantum Dots in transparent polymer materials for light 

management in optoelectronic devices. 

   

1.1 General introduction to quantum dots 

Quantum dots (QDs) are very small semiconductor particles, usually several to tens of nanometers 

in size, so small that their optical and electronic properties differ from those of bulk particles. They were 

first discovered in 1980, and they have been a central theme in nanotechnology ever since. Many types of 

quantum dot will emit light of specific wavelength if electricity or light is applied to them, and the 

emission wavelength can be precisely tuned by changing the dots size, shape and material, giving rise to 

many applications.  

A quantum dot gets its name because it is a tiny speck of matter so small that it is effectively 

concentrated into a single point. As a result, the particles inside it that carry electricity are trapped and 

have well-defined energy levels according to the laws of quantum theory, a bit like individual atoms. 

Quantum dots are also sometimes referred to as artificial atoms, a term that emphasizes that a quantum 

dot is a single object with bound, discrete electronic states, as is the case with naturally occurring atoms 

or molecules.
1
 Tiny really does mean tiny: quantum dots are crystals a few nanometers wide, so they are 

typically a few dozen atoms across and contain anything from perhaps a hundred to a few thousand atoms. 

Quantum dots exhibit properties that are intermediate between those of bulk semiconductors and those of 

discrete molecules. Their optoelectronic properties change as a function of both size and shape. Larger 

QDs (radius of 5-6 nm, for example) emit longer wavelengths resulting in emission colors such as orange 

or red. Smaller QDs (radius of 2-3 nm, for example) emit shorter wavelengths resulting in colors like blue 
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and green, although the specific colors and sizes vary depending on the exact composition of the QD 

(Figure 1.1).
2-3

  

 

 

Figure 1.1 

(a) 

(b) 
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Figure 1.1 (cont.) (a) Illustration of energy levels splitting in quantum dots due to the quantum 

confinement effect, where semiconductor band gap increases with decrease in size of the nanocrystal. (b) 

Photograph of a series of quantum dots from violet to red color. 

 

The luminescent properties of quantum dots arise from recombination of electron-hole pairs 

(exciton decay) through radiative pathways. However, the exciton decay can also occur through 

nonradiative methods, reducing the fluorescence quantum yield. One of the methods used to improve 

efficiency and brightness of semiconductor nanocrystals is growing shells of another higher band gap 

semiconducting material around them. These quantum dots with small regions of one material embedded 

in another with a wider band gap are known as core-shell quantum dots or core-shell semiconducting 

nanocrystals. Coating quantum dots with shells improves quantum yield by passivizing nonradiative 

recombination sites and also makes them more robust to processing conditions for various applications.
4-5

 

 

1.2 Applications of quantum dots materials  

The unique size and composition tunable electronic property of these very small, semiconducting 

quantum dots make them very appealing for a variety of applications and new technologies. Among them, 

quantum dots are particularly significant for optical applications owing to their bright, pure colors along 

with their ability to emit rainbow of colors coupled with their high efficiencies, longer lifetimes and high 

extinction coefficient. Examples include LEDs and solid state lighting, displays and photovoltaics.
6
 

Additionally, their small size allows for QDs to be suspended in solution which leads to possible uses in 

inkjet printing and spin-coating.
7
 

Being zero dimensional, quantum dots have a sharper density of states than higher-dimensional 

structures. Their small size also means that electrons do not have to travel as far as with larger particles, 

thus electronic devices can operate faster. Examples of applications taking advantage of these unique 
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electronic properties include transistors, solar cells, ultrafast all-optical switches and logic gates, and 

quantum computing, among many others.
8
 

Furthermore, the small size of quantum dots allows them to go anywhere in the body making them 

suitable for different bio-medical applications like medical imaging, biosensors, etc. At present, 

fluorescence based biosensors depend on organic dyes with a broad spectral width, which limits their 

effectiveness to a small number of colors and shorter lifetimes to tag the agents. On the other hand, 

quantum dots can emit at different wavelength by tuning their size, are brighter and have little 

degradation over time thus proving them superior to traditional organic dyes used in biomedical 

applications.
9
 

   

1.3 Motivations of research 

 In this dissertation thesis, we mainly focus on the application of QDs in optoelectronic devices, 

including photovoltaic solar cells and LED display technology. Application of QDs in optoelectronic 

devices requires proper encapsulation to maintain QDs luminescence and protect QDs from degradation. 

As a result, it is crucial to find a suitable matrix to encapsulate QDs without any negative effect. 

 This thesis is organized in the following way. In Chapter 2, we introduce the design and fabrication 

of QDs embedded polymer composite materials as luminescent solar concentrators. Chapter 3 introduces 

the addition of distributed Bragg reflectors to further increase the optical efficiency of concentrator 

devices, and Chapter 4 introduces the QDs enhanced output through photonic crystal structure design. 

The proposal and preliminary results of QD-polymer concentrating cavity for LED pixel display are 

described in Chapter 5.   
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CHAPTER 2: LUMINESCENT SOLAR CONCENTRATOR WITH 

QUANTUM RODS AND TRANSFER-PRINTED SOLAR CELLS 
 

In this chapter, we examine the performance of luminescent solar concentrators utilizing CdSe/CdS 

core-shell seeded nanorods embedded in transparent polymer matrix. In collaboration with Paul 

Alivisatos research group, who synthesized these nanorods, we explored the possibility of using these 

quantum rods as luminophore for luminescent solar concentrators. Similar to CdSe/CdS core-shell 

particles, there is a small CdSe core with a large volume of CdS grown on top. However, it is possible to 

grow much larger volumes of CdS in the nanorod geometry than in the core-shell geometry, resulting in 

significantly reduced absorption-emission overlap and long propagation distances in the waveguide. We 

also explore the tunable geometry of the CdSe/CdS nanorod system and demonstrate that large nanorods 

do indeed reduce the reabsorption of luminesced photons as they travel through the film.  

 

2.1 General introduction to concentrator photovoltaics 

2.1.1 Micro silicon solar cells 

Photovoltaic cells were invented to convert light into electricity in 1950’s.
10

 The fundamental idea 

was to use a semiconductor to absorb sunlight above its bandgap, which generated excited electrons. The 

device was structured to allow low energy electrons to pass through on one side and high energy electrons 

to pass through on the other side. Then an excited electron would rush out the high-energy-selective side, 

and be replaced by an unexcited electron on the low-energy side. This resulted in a net voltage and 

current that produced power. These devices were dubbed “photovoltaics” due to the light-induced voltage. 

The thermodynamics of photovoltaics were solved in 1961 by Shockley and Quessier.
11

 Under solar 

illumination, the maximum possible power output of a solar cell could be calculated by knowing the 

band-gap of the semiconductor absorbed material. This analysis indicates that silicon is a good choice of 
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material because of its appropriate bandgap, leading to a great deal of research developing better silicon 

photovoltaic cells. 

As the size of the solar cell decreases, bulk recombination loss is reduced, leading to increased 

open circuit voltage and improved energy conversion performance. On the other hand, the increased cell 

surface area subjects the cell to more surface recombination. The net effect is the competition between the 

two factors. By careful engineering of the cell surface passivation, the efficiency of micro cells can 

potentially be higher. From the energy conversion efficiency aspect, micro solar cells could be beneficial, 

acknowledging that the energy conversion efficiency might not be optimized, compared to the highest 

efficiency cells on record. 

With the discussion about concentrators, the factor of dimension has not been mentioned. Consider 

a very moderate geometric concentration ratio of 100, even with lossless interfaces and concentrator 

efficiency, the area of the concentrator will have to be at least 100 times larger than that of the cell. A 

typical bulk solar cell from a silicon wafer is 4 inches square with rounded corner from legacy of ingot 

cutting. The concentrator aperture will need to be at least be 40 inches on one side. For a geometric 

concentrator, the working distance of the concentration optical element will be on the order similar to that 

of the lateral dimension. So the concentrating optics with the cell will be of the dimension (40 in)3. For a 

concentration ratio greater than n2, the acceptance angle is small enough to require active tracking of the 

sun. Moving such a concentrator plus solar module assembly would already require a significant amount 

of energy. If we take a step further, considering a concentration factor of 1000, then this difficulty 

becomes even greater. A recent review of solar concentrators shows grandeur of many different types of 

solar concentrators. Miniaturization of solar cells greatly relaxes the size challenge for the concentrators. 

Reduction in solar cell lateral dimension by a factor of 10 will decrease the system size by 3 orders of 

magnitude for the CPV system. This only considers system dimension and weight. For optical elements, 

the larger it is, the harder it is to fabricate and thus the manufacturing cost grows superlinearly with the 

element’s size and eventually becomes unaffordable. As the solar cell itself comprises the majority of PV 
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power generation cost, with more effective concentration, the micro solar cells can save semiconductor 

material for the same energy output. In other words, for the same amount of solar cell material used, more 

power is generated. The result is decreased cost of per unit power generated. At least from CPV point of 

view, micro solar cells are desired. 

Crystalline semiconductor materials are usually perceived as rigid and brittle. The bending modulus 

of a slab object is actually dependent on the thickness and scales as thickness cubed. For very thin slab, 

even made of crystalline semiconductor, flexibility is also possible.
12-14

 Micro solar cells within the 

flexible regime can access the capability of flexible module. Application such as field deplorability, fold 

and easy-transport, or personal backpack charger can be envisioned (Figure 2.1). Combining the pros and 

cons of miniaturizing solar cells, the new opportunities and challenges invite investigation of micro solar 

cells and the concentrators that match. 

 

Figure 2.1 Photograph of a bent micron silicon solar cell array module. 
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2.1.2 Solar concentrator 

One big drawback of solar power generation is the low energy area density. The solar energy 

covers the entire surface of the earth, so the areal average energy density is small. Plus, the energy density 

is also distributed to only 12 hours of insolation per day on average. For energy intensive applications, 

such as driving automotive and pumping laser, light concentration is needed. For the sophisticated and 

efficient MJ cells exhibiting high efficiency, it is desired to extract as much power as possible from each 

single device as they are expensive to make and it is only worth it if high intensity is incident in it and 

thus high power output per cell dilutes the high cost per cell. The detailed balance theory predicts that 

under higher flux intensity than 1 sun, the solar cell efficiency is higher than that under 1 sun, with a 

maximum of 40.7% for a single junction solar cell. Thus, to improve the solar cell efficiency, 

concentrating the sun light into smaller area is of interest energetically. 

Solar concentrators can be divided into two categories dependent on if the interaction of photons 

with the material is elastic or inelastic. These two categories are geometric and luminescent solar 

concentrators. The former exploits ray optics and each photon can be reflected, refracted or scattered but 

photon energy does not change. The latter involves photon energy change due to interaction between 

incident photons and luminescent materials. 

2.1.3 Geometric solar concentrator 

The idea of utilizing lens arrays to concentrate parallel sunlight to a small focus point is very 

straight forward, but the limitation of such concentrator requires more analytical deduction. When the 

incident photon intensity is concentrated, the decrease in area of illumination enables us to cover less area 

with expensive solar cells. This decrease in translational entropy must be compensated otherwise 

somehow, and the answer is divergence angle. Regardless of the specific optics, the output after 

concentration is always more divergent than the input, as shown in Figure 2.2.
15

 Figure 2.2 illustrate the 

concentration accompanied by beam divergence increase The concentration ratio of a imaging 
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concentration system is where subscript 1 denotes the source and 2 denotes after concentration, I being 

flux intensity, n being refractive index, and θ being beam divergence angle. Consider a best scenario of θ2 

=90°, and the light source being in air, then the limit becomes if the receiving aperture, i.e., the solar cell 

is molded inside the lens material or index matched with the lens’ refractive index n2. One can engineer 

the surface of the concentrator so that all light, of all angles for diffuse light, incident on the surface can 

be concentrated on the output aperture where a solar cell is located, and the maximum concentration ratio 

simply becomes n2. An example of such device is a hemispherical lens with the solar cell being in the 

center, such device does not need tracking. On the other extreme, one can reduce the acceptance angle θ1 

and thus achieve a very high concentration ratio, but such a solar cell with concentrator will require very 

precise tracking. With a lens material of n2 =1.5, on a totally cloudless and dust free day, the largest solar 

concentration ratio is 45,000, which if achieved, is brighter than the irradiance on the surface of the sun 

itself. 

 

Figure 2.2 Operation mechanisms of geometric concentrators. 
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2.1.4 Luminescent solar concentrator 

In the 1970’s, semiconductor grade silicon was primarily being made for the budding 

microelectronics industry, and was far too expensive for photovoltaic application. Solar energy 

researchers responded to the economic reality of the time by proposing that solar cells could be less 

efficient than silicon but also dramatically less expensive.
11

 One proposed method was to use fluorescent 

polymer waveguides to concentrate light onto traditional silicon solar cells.
16-19

 These devices were 

initially called fluorescent planar concentrators and later became known as luminescent solar 

concentrators (LSC). As solar cells develop and receive more attention, the concept of LSC was proposed 

based on the similar principle to address the low energy area density of solar light for effective electricity 

generation for unit solar cell area in the late 1970s. While the economics of silicon solar panels have 

changed dramatically in the last several decades, LSCs may still play an important role in photovoltaic 

electricity production. Figure 2.3 shows photographs of different colored LSCs illuminated by solar 

radiation or UV light source. 

 

Figure 2.3 Exemplified photographs of LSC devices. 

 

LSC consists of a single layer or multilayer polymer slabs doped with luminescent materials such 

as organic dyes or QDs, with solar cells embedded or attached to the sides. The luminophores absorb high 

energy photons and emit at lower wavelength into the polymer waveguide layer, part of which will be 
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trapped inside the waveguide via total internal reflection (TIR) and being guided to the solar cells. LSCs 

can absorb both direct and diffuse incident photons, eliminating the need for any tracking system. The 

working mechanism of LSCs is demonstrated in Figure 2.4. Eli Yablonovitch derived a thermodynamic 

limit for LSC efficiency using a detailed balance principle, and concluded that the maximum 

concentration ratio for a planar LSC is: 

𝐺𝑓 = exp⁡(
ℎΔ𝜈

𝑘𝑇
) 

where hν is Stokes shift energy.
20-21

 This guideline reveals two important points regarding the LSC. First 

of all, a LSC waveguide can have a very high theoretical concentration if engineering difficulties are 

solved and thus have great potential for improvement and is worth intensive research. Secondly, 

fluorophores with a high optical bandgap should be used as the Stokes shift is always smaller than the 

bandgap, thus a large Stokes shift can only be achieved if the optical bandgap is large to start with. This is 

unfortunately a contradicting factor for broad band absorption as the solar spectrum is broad band. At 

ambient temperature, for a fluorophore with a Stokes shift of 0.5 eV, the maximum concentration ratio is 

4×10
8
, and 2,000 for a 0.2 eV fluorophore, without any practical engineering limit. If we compromise the 

concentration ratio to achieve high absorption efficiency, and choose an IR emitting fluorophore that 

absorbs up to 1000 nm with Stokes shift of 100 nm and emits at 1100 nm, which is well suited for silicon 

solar cell, the maximum concentration ratio becomes 120.  
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Figure 2.4 Working Mechanism of a Luminescent Solar Concentrator. Broadband and diffuse solar 

illumination at high enters a polymer waveguide. The high energy photons (λ1) are absorbed by a 

luminophore, represented by the black circle. The luminophore re-emits the light at a lower energy, 

(longer wavelength, λ2). Due to the refractive index contrast between the waveguide and the surrounding 

medium, most of the luminesced photons are trapped by total internal reflection. The rest impinge on the 

front of the waveguide at angles inside the escape cone, allowing them to couple to the air. The trapped 

photons travel through the waveguide some long distance and then are captured by a photovoltaic cell, 

which produces electricity. 

 

However, the experimental concentration ratio achieved today is still much lower than in theory.
22

 

The disparity between ideal and real luminescent solar concentrators is due to incomplete trapping of 

luminesced light and less-than-unity fluorescence quantum yields. The root of this problem is excessive 

overlap between luminophore absorption and emission spectra. As a luminesced photon travels through 

the LSC, it may be reabsorbed by other luminophores. Every reabsorption event presents an opportunity 

for loss, such as nonradiative decay or emission into the escape cone. For this reason, LSC concentration 
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ratios plateau long before the thermodynamic limit. This effect has been demonstrated by previous 

researchers with organic dyes and quantum dots, in microgeometries with transfer-printed silicon and 

GaAs solar cells, as well as studied by numerical modeling.
23-27

 In order for luminescent concentrators to 

approach their thermodynamic limits, the luminesced light must be trapped in the polymer and directed 

onto the solar cell. For the most effective light trapping, a luminophore with a narrow emission spectrum 

and a large Stokes shift is required. Studies of light trapping have been limited by a dearth of dyes 

meeting these criteria. In summary, approaching the thermodynamic concentration limit will require a 

luminophore with large Stokes shift, high quantum yield, minimal overlap between absorption and 

emission, and a narrow emission spectrum.
28

 

It should be noted that no matter the geometrical concentrator or luminescent concentrator, the 

direction of the light incident on the surface of the solar cell has been randomized, compared to the 

possible normal incidence directly from the sun. In the discussion of intensity ratio after and before 

concentration, only the flux density is considered but not the efficiency of the solar cell absorbing these 

photons. In other words, a solar photon reaching the surface of a solar cell is not the end of the story; 

rather, it is the beginning in terms of generating electricity to the outside circuit connected to the solar cell. 

The reflection off of the solar cell surface is a function of incident angle and wavelength, where normal 

incidence has the lowest reflectivity. This adds a sine factor to the observable solar cell performance 

enhancement for a blackbody absorber solar cell with Lambertian absorption profile. 

 

2.2 Design of luminescent solar concentrators 

Quantum dots have been considered as luminophores in LSCs due to their broad absorption spectra, 

high fluorescent quantum yields, resistance to photo-bleaching, and tunable absorption and emission 

spectra.
29

 However, they have not been systematically tuned in past LSC studies to reduce the 

absorption/emission overlap. Single-component nanocrystals such as CdSe have significant overlap 
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between their absorption and emission spectra and have small Stokes shifts. Core-shell materials such as 

CdSe/CdS utilize the separate absorption spectra of the two components to achieve lower reabsorption 

(Figure 2.5). While the absorption-emission overlap decreases with increasing CdS shell thickness, so 

does the luminescent quantum yield. Additionally, since the reabsorption is reduced by increasing the 

CdS shell size, a very large shell is needed. Progress has been made in the growth of thick CdS shells 

onto CdSe seeds, but shell thicknesses have so far been limited to around 10 nm.
30-31

 

     

 

Figure 2.5 
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Figure 2.5 (cont.) (a) Bandgap structure illustration of core-shell QDs. (b) Absorption and emission 

spectra for CdSe seeds and CdSe/CdS seeded rods. 

 

One of the main challenges in fabricating a LSC with inorganic nanoparticles is dispersing them in 

a polymer matrix without agglomeration or quenching of their luminescence. Earlier work by Lee et al. 

demonstrated that poly(lauryl methacrylate) (LMA) with a high concentration of cross-linker ethylene 

glycol dimethacrylate (EDGMA) may be used to form well-dispersed quantum dot-polymer composites.
32

 

A similar procedure has been utilized to successfully fabricate LSCs incorporating quantum dots.
33

 In this 

part of the project, we modify the polymer formulation by reducing the cross-linker concentration to 

avoid stress-induced tears in the film. We also use UV initiated polymerization to promote fast 

polymerization kinetics and mitigate agglomeration of the nanorods. The absorption spectra, 

luminescence spectra, and luminescence quantum yield of the nanorods were proven to be unchanged 

upon integration into the polymer. 

To study the performance of the LSC, a transfer-printed micro-silicon photovoltaic cell with 

thermal oxide passivation on the top and side walls was embedded in a 30 μm thick nanorod-polymer 

composite, all supported by a 180 μm thick quartz sheet.
34-35

 The best performance is attained when 

photons can propagate long distances in the waveguide, which requires excellent reflectivity of the 

waveguide surfaces. For example, in a LSC with a thickness of 210 μm and a radius of 20 mm, photons 

traveling from the edge of the sheet must be reflected up to 100 times without appreciable loss. To obtain 

highly reflective waveguide surfaces, the LSC polymer sheet was formed by capillary infilling of an air 

gap between two smooth quartz plates. The supporting substrate was treated with an acrylate functional 

silane to promote adhesion, while the top plate was treated with a fluorosilane to facilitate delamination. 

The liquid film was then cured under UV illumination, and the top plate was removed, leaving the μ-cells 

embedded in a polymer sheet with a flat top surface. A schematic of the completed device is shown in 
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Figure 2.6(a). It is also possible to support the LSC device with flexible plastic, as shown in Figure 2.6(b). 

Fabrication details are given in the next section. 

 

Figure 2.6 (a) vertical cross section schematic of the LSC. (b) Photograph of a fabricated device on a 

flexible plastic substrate. 

 

(a) 

(b) 
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2.3 Fabrication of luminescent solar concentrators 

2.3.1 Preparation of nanorod dispersion in monomer 

Lauryl methacrylate (LMA) and ethylene glycol dimethacrylate (EGDMA) were purchased from 

Sigma Aldrich and purified over an inhibitor removing column to remove the monomethyl ether of 

hydroquinone (MEHQ) polymerization inhibitor. LMA and EGDMA were mixed at a 10:1 ratio. 

Quantum rods in hexane solution, together with 4% volume trioctylphosphine were added to the mixture 

and then the solvent was evaporated with a rotovap at 40
o
C. Photoinitiator Daracure® 1173 was added (1% 

volume) before polymerization. 

2.3.2 Fabrication of LSC integrated with Si micro solar cell module 

A 180µm coverglass was suspended on a glass substrate using 2 µm spacers and adhered at four 

corners using UV-curable adhesive NOA 61. 10 µm layer of partially-cured NOA61 was spin-coated on 

the substrate, and a micro silicon solar cell (1500 µm x 100 µm x 30 µm) was transfer-printed on it. The 

substrate and device were ozone activated in a UV ozone cleaner and immediately brought into 3-

(Trimethoxysilyl)propyl methacrylate vapor for 1 hour to enhance adhesion between the PLMA and the 

substrate. Then 30 um spacer soda lime glass beads were sparsely sprinkled onto the substrate. A 

tridecafluoro-1,1,2,2-tetrahydrooctyl-1-trichlorosilane treated quartz plate was then secured on top of the 

printed cell module and spacers, with treated surface facing down. The solution of quantum rods in 

monomer was then capillary-filled into the cavity with the flow parallel to the long axis of the micro-cell. 

In inert atmosphere, the assembly was cured for 45 minutes under UV illumination. The quartz top-plate 

was then relieved, leaving the top surface of the micro cell and PLMA exposed. The top contact of the 

device is achieved by screen-printing a silver epoxy line through a stencil mask formed by aligning two 

sloped PDMS blocks under stereoscope and curing at room temperature for over 48 hours. The 

experimental procedure was illustrated in Figure 2.7. 
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Figure 2.7 Schematic of the fabrication of the LSC device and integration with a micro silicon solar cell. 
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2.3.3 Optical characterization 

Film absorption is characterized by a Cary 5G UV-Vis spectrometer, as well as a Cary 5000 with 

an integration sphere accessory, using two-beam mode with baseline subtraction. The fluorescent 

emission spectrum was measured on a Horiba Fluoromax fluorometer. 

The photo-luminescence quantum yield (PLQY) was measured using a custom setup. The light 

source is an Acton Research Corp 75W xenon lamp with an Opti-Quip 1200 power supply. The 

monochromater is a Jarrel-Ash M-20, with a slit size set to 0.5 mm. A Labsphere RTC-060-SF integration 

sphere with a center sample mount is used to collect all transmitted, scattered and emitted light from the 

sample. The output from the integration sphere is coupled into a 200 µm FT400EMT optical fiber 

(Thorlabs), then into an Acton Research SpectroPro3001 spectrometer with an Acton Pixis 100 CCD 

camera. The detection system’s spectral response was calibrated with a Labsphere halogen standard light 

source IRF G3 (NIST traceable). The dark current background collected over a 0.1 s integration time was 

recorded. The reference is taken with just the sample holder in the empty integration sphere as 100% 

transmitted. The sample spectrum was taken at the same condition as the dark and reference. The peak 

area of the transmitted signal was compared with the reference to obtain the amount absorbed and the 

peak area of the emission signal was compared with the reference to obtain the amount emitted. The ratio 

between the emitted and absorbed photons was calculated as the apparent PLQY. The experimental setup 

and measurement result are shown in Figure 2.8.  

    

Figure 2.8  
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Figure 2.8 (cont.) (a) Schematic of the custom setup for film QY and trapping efficiency measurements. 

(b) Luminescent quantum yield of nanorods dispersed in polymer film as a function of excitation 

wavelength. 

 

2.4 Optical performance of composite materials 

Due to the small size of the micro solar cells, the LSC thickness should be comparable to the cell 

thickness, which is on the order of tens of microns, typically 15-30 µm. To achieve good light absorption 

for such thin film, i.e., an optical density of ~ 1 across a 30 µm film is needed. The stability of quantum 

rods in solution, however, becomes more challenging for high concentrations. With organic surface ligand 

coated nanoparticles in an organic solvent such as hexane, the suspension is kinetically stabilized. This 

requires good solvation of the ligand polymer brush in the solvent. Polymerization, on the other hand, 

reduces the mixing energy by decreasing the entropy upon polymerization, and makes the polymer a poor 

(b) 
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host for solubilizing nanoparticles. By using a neat monomer as a solvent, the quantum rods can be 

stabilized the same as in a small molecular solvent. 

Upon polymerization, however, the kinetic stabilization is disturbed and quantum rods tend to 

agglomerate and fall out of the uniform dispersion. In order to combat that, the rate of polymerization 

related molecular immobilization, i.e., sol-gel transition, needs to be very fast compared to the rate of 

agglomeration of the nanoparticle in the polymerizing matrix. By using a higher percentage of bi-

functional monomer, it is possible to tune the gel point to achieve fast structural formation in the 

polymerizing matrix and thus maintain a uniform distribution kinetically even though it is not 

energetically favored any more. It is found that a high crosslinker concentration, 10% +, can still maintain 

an agglomeration free, and thus scatter free, homogeneous film of quantum rods in polymer. The slower 

thermal cure makes it harder to stabilize the dispersion at a low crosslinker concentration, while at high 

crosslinker concentration film stress caused a saddle splay deformation. Due to these disadvantages 

thermal initiation was determined unsuitable and not pursued. 

The film’s mechanical property is dependent on the concentration of crosslinkers. The resulting 

film from the polymerizing monomer has a lot of stress. A high degree of crosslinking results in high 

rigidity and thus a more brittle film. When the film area is large and the film stress is high but the 

thickness is small, the great internal stress can tear the film apart. By tuning down the degree of 

crosslinking, the film becomes susceptible to annealing above the glass transition temperature Tg and thus 

can relieve some of the stress accumulated during polymerization. By changing the formulation, it is 

found that with a reduced concentration of crosslinker, it is easier to achieve a flat film by photo curing, 

and a critical crosslinker concentration of 1% is enough to form a solid film at after 30 minutes UV 

exposure. 

During the formation of the film, it is necessary to use a relief layer to help delaminate the film 

from the mold surface. A silane compound tridecafluoro-1,1,2,2- tetrahydrooctyl-1-trichlorosilane (no-
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stick) was used. For thin films, due to the flexibility at those thicknesses, it is necessary to firmly bond the 

film on the substrate to retrain its shape. 3-(Trimethoxysilyl)propyl methacrylate (better-stick) was 

applied to the substrate to promote adhesion. This is especially important when a good contact between 

the solar cell surface and the polymer is needed for effective optical coupling. 

To accommodate both mechanical stability and chemical dispersion stability, a crosslinker density 

of 10% was determined through experiments. With this composition, a nanoparticle load of as high as 

4×10
-4

 M was achieved with a uniform nanoparticle distribution. The casted film can be as thick as 

millimeter size and as thin as micron size and remain mechanically sturdy and scattering free, as shown in 

Figure 2.9. The TEM graph of the polymer film shows that the nanorods are well dispersed in the 

polymer matrix.  

       

Figure 2.9 Dispersion of quantum rods in polymer host: (a) a cured block of quantum rods doped polymer 

block of 0.5 mm thick, under UV illumination; (b) HRTEM of quantum rods dispersion in cured polymer 

and in monomer before cured (inset). 

 

(a) 
(b) 
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2.5 Electrical performance of devices 

The LSC devices were characterized by measuring the photovoltaic response of the embedded solar 

cell under AM1.5G illumination. Four typical curves are shown in Figure 2.10. The control device has a 

black absorbing back surface and no nanorods in the LSC polymer, resulting in short circuit current (Jsc) 

of 26.7 mA•cm
-2

. The introduction of nanorods results in modest increase in the short circuit current (Jsc = 

34.4 mA•cm
-2

). The addition of both mirrored silver and white scattering back surfaces further increase 

the short circuit current (to 47.3 and 57.3 mA/cm
-2

 respectively) and result in small increases in the open 

circuit voltage. While it should be noted that these curves do not represent the best performance achieved 

in this study, the electronic properties of the cells remain consistent regardless of the LSC fabrication 

process, as evidenced by the consistent fill factor of around 0.7 for all devices.  

 

Figure 2.10 Current-voltage plot shows performance characteristics of a micro-silicon cell integrated with 

the LSC. 
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2.5.1 Effects of nanorod loading on LSC performance  

Figure 1a–f shows TEM micrographs of a series of nanorods that were synthesized, keeping the CdSe 

seed a constant 2.5 nm diameter and increasing the final rod size from 4.1 nm × 8.8 nm in the smallest 

case to 9.3 nm × 78 nm in the largest case. As shown in Figure 2.11(a-g), longer and thicker rods result in 

a lower volume fraction of CdSe and thus lower absorption at wavelengths longer than 500 nm. 

Additionally, the absorption spectrum is measured in transmission mode, allowing the spectra of the 

largest nanorods to display scattering at energies lower than the excitonic absorption feature at 580-620 

nm. Increasing nanorod size results in a red shift of the luminescence peak from 570 nm (in the smallest 

rods) to 610 nm (in the largest nanorods) due to reduction in quantum confinement effect. Figure 2.11(h) 

shows the relationship between nanorod size, luminescent quantum yield, radiative lifetime, and 

nonradiative lifetime. The increase in radiative lifetime with increasing nanorod volume is mitigated by 

an increase in the nonradiative lifetime from 79 ± 19 ns for the smallest nanorods to 494 ± 41 ns for the 

largest nanorods. As a result, the quantum yield does not decrease as much as one might expect, dropping 

from 71% for the smallest nanorods to 35% for the largest nanorods. 

 

Figure 2.11  
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Figure 2.11 (cont.) (a-f) TEM graph of CdSe/CdS nanorods with different CdS volumes. (g) Absorption 

and emission spectrum of the six nanorods. (h) Luminescent quantum yield from 380 to 450 nm and 

radiative and nonradiative lifetimes of the six nanorods. 

 

(g) 

(h) 
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Figure 2.12 shows the performance of the LSC as a function of nanorod loading. The concentration 

as a function of incident wavelength is measured by taking external quantum efficiency measurements 

with the beam illuminating a 7 mm radius spot on the LSC, and normalizing to the performance of the 

micro solar cell measured at 600 nm in the same geometry without any luminophore and without a 

reflective back surface. The device with no nanorods (OD = 0) but with a reflective back surface is shown 

for comparison. To determine a concentration ratio, the photocurrent must be normalized. For the 

photocurrent vs. aperture radius data, this was accomplished by integrating the product of the AM1.5G 

spectrum and the blue band-pass filter transmission, and multiplying by the area of the cell and the solar 

cell absorption (calculated with FDTD) at the luminescence wavelength (600 nm) and normal incidence. 

The result is 3.495 µA. 

For the spectral concentration data, which were measured on a commercial EQE setup, the 

illumination area of each device was held constant at a roughly elliptical 7 mm radius spot. The response 

of a device with a black back surface and no luminophore was measured, and the EQE at 600 nm was 

used as the normalization constant. The concentration can exceed 1 without nanorods but with a reflective 

back surface due to the angular spread of the light source in the measurement. Photons that enter the LSC 

at oblique angles near the solar cell can be reflected on to the solar cell. To maximize the probability that 

a photon travelling through the waveguide is absorbed in the photovoltaic cell, the polymer must not be 

much thicker than the photovoltaic cell itself, which is 30 µm. To achieve optical density of 1 in the film, 

approximately 0.3% of the polymer volume must be displaced by nanorods. Increasing the nanorod 

loading initially increases the concentration of light from the blue region of the spectrum, where the 

nanorods absorb, without concentrating light from the red region of the spectrum, where the nanorods do 

not absorb. However, above optical density 0.1, concentration of blue light decreases and concentration of 

red light increases because of the scattering of light in the waveguide, likely as a result of nanoparticle 

agglomeration. Under the UV curing polymerization scheme, increasing the EGDMA cross-linker content 

to 20% allows kinetic control of the polymer matrix, keeping the nanoparticles well-dispersed as 
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evidenced by high optical clarity. These films, however, have a tendency to tear and crack, presumably 

due to internal stress. 

 

Figure 2.12 Concentration of LSC devices as a function of nanorod loadings 

 

2.5.2 Effects of nanorod size on LSC performance 

The performance of the LSC as a function of nanorod size was also investigated. Optical density 

for these devices was held to around 0.1 at 450 nm to avoid the scattering apparent at higher loadings 

(Figure 2.13(a)). This is accomplished by holding the volume fraction of CdS nearly constant. Large 

nanorods, then, are incorporated in fewer numbers than small nanorods. Absorption spectra of the films 

can be found in supporting information. Figure 2.13(b) shows the concentration as a function of 

wavelength for the different nanorod sizes. In all cases, the concentration of blue photons in the device 
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follows the absorption spectrum of the nanorods; the concentration of red photons is suppressed in each 

case, confirming minimal scattering of light in the LSC sheet.  

                            

 

Figure 2.13  

(a) 

(b) 
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Figure 2.13 (cont.) (a) Absorption spectrum of nanorod-polymer films with different nanorod sizes. (b) 

Concentration of LSC device as a function of nanorod loadings 

 

The propagation of photons inside the waveguide was characterized by illumination in a solar 

simulator with an aperture controlling the illumination area. A blue band-pass filter centered at 405 nm is 

used to isolate the luminescence of the nanorods from scattered red light. A circular aperture is centered 

on the silicon photovoltaic cell, and the photocurrent measured as a function of aperture radius (Figure 

2.14).  

 

Figure 2.14  

(a) 
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Figure 2.14 (cont.) (a) photograph of experimental measurement setup with variable aperture under solar 

simulator. (b) Transmission spectrum of the 400 nm band-pass filter used in the aperture study. 

 

Figure 2.15(c) shows the results for six different sizes nanorods. The smallest nanorods show 

concentration that increases rapidly at small radii, but begins to asymptote at larger radii. In contrast, the 

larger nanorods show current that increases nearly linearly with increasing radius. The propagation of 

photons inside the waveguide can be approximated as an exponential decay with a characteristic length-

scale known as the propagation length. Allowing for a short-propagating population of scattered photons 

and a long-propagating population of luminesced photons, the photocurrent is fit to the equation:  

𝐽𝑝ℎ𝑜𝑡𝑜(𝑟) = 𝐽𝑚𝑎𝑥 − 𝐴1 exp (−
𝑟

𝐿1
) − 𝐴2 exp (−

𝑟

𝐿2
) 

where Jphoto(r) is the measured photocurrent at an aperture radius r and the following parameters are a 

result of the curve fit: Jmax is the photocurrent at infinite device size, L1 and L2 are propagation lengths for 

scattered and luminesced photons, respectively, with their associated magnitudes A1 and A2. This model 

is reasonable because the population of scattered photons must be generated on one pass through the LSC, 

(b) 
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requiring a characteristic scattering length on the order of the thickness of the LSC. As a result, scattered 

photons only travel a few hundred microns. In contrast, the luminesced photons have been shifted from 

their incident wavelength to the luminescent wavelength, allowing the different length scales for 

generation and propagation. The propagation length of the luminesced photons, plotted in Fig. 2.5, shows 

increasing propagation length with increasing nanorod volume due to the reduced reabsorption from the 

CdSe seed. 

 

Figure 2.15  
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Figure 2.15 (cont.) Photocurrent dependence on aperture radius for LSC devices with different sizes of 

nanorods, with a white scattering back surface both (a) through a 400 nm band-pass filter and (b) under 

AM1.5G illumination. 

 

As a result of the limited optical density of the films, a reflective back surface is required to 

increase the absorption path-length. In this study, a black anodized aluminum surface, a silver mirror, and 

a scattering white Spectralon surface were used. The propagation lengths in Figure 2.16 are not 

significantly different for the different back surfaces. A black back surface allows 1 pass for absorption, a 

mirror back surface allows 2 passes, and a scattering surface allows 2.2 passes for a polymer with 

refractive index of 1.4, as the oblique rays bend back toward normal upon refraction into the polymer. 

While this optical path-length enhancement is less than the 4n
2
 Yablonovitch scattering limit of 7.8, that 

limit is only achieved by continual randomization of photons within the polymer, which would eliminate 

the long-travelling waveguide modes. While it is still possible in theory to achieve luminescent 
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concentration beyond the scattering limit in such a circumstance with the application of perfect light 

trapping, continuous randomization would place an extraordinary burden on the luminescent quantum 

yield of the luminophore and reflectivity of all surfaces. This logic also applies to highly scattering 

luminophores such as nanorod agglomerates and is the reason that agglomeration is detrimental to device 

performance. 

 

Figure 2.16 Luminescence propagation length by curve fitting with different back-surfaces. 

 

2.6 Future directions 

This investigation of CdSe/CdS nanorod luminophores for luminescent solar concentration 

highlights design considerations for reaching the high concentration regime. We demonstrate 

experimentally that increases in nanorod volume lead to increases in the propagation length of luminesced 

photons. We show the importance of narrow emission line widths for achieving efficient trapping of 

luminesced light, and the importance of efficient luminescence trapping for achieving high concentration. 
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Further, we show the trade-off between luminescence quantum yield and reabsorption once trapping is 

implemented, showing the necessity of luminophores with both low reabsorption and high quantum yield. 

We expect additional improvements to be made in the LSC device through synthesis of particles with 

bandgaps better matched to the solar spectrum, further optimization of the LSC geometry, and the 

utilization of a photovoltaic cell that is well- matched to the emission of the luminophore. With the design 

principles shown in this paper, the high concentration regime should be accessible. 

   

  



35 

 

CHAPTER 3: LUMINESCENT SOLAR CONCENTRATOR WITH 

DISTRIBUTED BRAGG REFLECTORS 
 

Escape cone loss is one of the primary limiting factors for efficient photon collection in large-area 

luminescent solar concentrators (LSCs). The Stokes shift of the luminophore, however, opens up an 

opportunity to recycle the escaped luminescence at the LSC front surface by utilizing a photonic band-

stop filter that reflects photons in the luminophore emission range while transmitting those in its 

absorption range. In this chapter, we examine the functional attributes of such photonic filter designs, 

ones realized here in the form of a distributed Bragg reflector (DBR) fabricated by spin-coating 

alternating layers of SiO2 and SnO2 nanoparticle suspensions onto a supportive glass substrate. The 

central wavelength and the width of the photonic stopband were programmatically tuned by changing the 

layer thickness and the refractive index contrast between the two dielectric materials. We explore the 

design sensitivities for a DBR with an optimized stopband frequency that can effectively act as a top 

angle-restricting optical element for a microcell-based LSC device, affording further capacities to boost 

the current output of a coupled photovoltaic cell. Detailed studies of the optical interactions between the 

photonic filter and the LSC using both experimental and computational approaches establish the 

requirements for optimum photon collections efficiencies. 

 

3.1 Loss mechanisms in optical waveguide 

The principal advantages of an LSC are that it operates independent of the incident irradiance angle, 

collects both direct and diffuse sunlight, and thus eliminates the need for precise mechanical tracking 

required by a geometric solar concentrator. The intention for a LSC is to replace expensive active PV 

materials with relatively inexpensive luminophores.
36

 Recent reports from our group illustrate an 

unconventional geometry for LSCs whereby arrays of silicon- or GaAs-based solar microcells (μ-cells) 

are directly embedded in a much thinner (~30 µm) polymer matrix doped with organic or inorganic 
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luminophores.
37-38

 In this LSC system, the sidewalls and bottoms of the μ-cells are utilized to capture the 

luminescence while the top surfaces absorb the direct sunlight. A key feature of this layout is the large 

geometric gain achieved within a relatively small waveguide area due to the small dimensions of the 

semiconductor device. The prospective cost-effectiveness of this design follows from the low 

semiconductor material consumption of these light-weight devices and the capability of optimizing device 

spacing via a transfer-printing process. 

The achievable concentration ratios and efficiencies of LSC devices have been limited historically 

by several loss mechanisms, including: (1) incomplete absorption of the incident illumination due to the 

limited spectral coverage of the luminophore; (2) a portion of absorbed photons not being reemitted, as 

the quantum yield (QY) of most dyes are typically less than unity; and (3) a portion of the emitted light 

being refracted out of the waveguide through an escape cone rather than being trapped inside it via TIR.
39-

41
 In addition, for luminophores with an absorption/emission band overlap, emitted photons in the TIR 

mode can be reabsorbed by adjacent luminescent molecules, further increasing their chances of being lost 

via the above-mentioned mechanisms (2) and (3). The various loss mechanisms are illustrated in Figure 

3.1. These features have been discussed in previous researchers.
42-46

 In this chapter, we addresses in great 

detail one of these issues, escape cone losses, to establish quantitative guidance for designs we have 

described for its mitigation. 
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Figure 3.1 Illustration graph of loss mechanisms inside LSC waveguide. 

 

Escape cone loss is one of the primary limiting factors for large LSC devices. As illustrated in Fig. 

1, all emitted photons impinging on the internal surface with an angle smaller than the critical angle leave 

the waveguide and are lost. The trapping efficiency (η) in this process is determined by the refractive 

index of the waveguide (n): 

𝜂 = √1 − 𝑛−2 

For a typical organic polymeric material as an example (n =1.5), η is around 74%, which means 

that 26% of the emitted photons are lost through the front and back surfaces. An attached backside 

reflector (BSR) does not change this number, as photons still leave the LSC through the front surface after 

being reflected at the backside. However, the Stokes Shift between the dye absorption and emission 

spectra opens up an opportunity to trap all of the potentially escaping photons at the front surface using a 

photonic band-stop filter, which reflects all the light in the dye emission range while transmitting all the 

light in the absorption range (see Figure 3.2).
47-49

 Such an idealized filter would eliminate the escape cone 

losses completely. A real filter, however, will show a reduced performance for several reasons. First, as 

an absorption/emission overlap exists in all dye species, it is impossible to design a filter that reflects all 
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the emitted luminescence without some measure of losses in the luminophore absorption band. Second, 

the reflectivity of the filter’s stopband will be lower than unity and so not all light in the escape cone will 

be recycled. 

 

Figure 3.2 Effects of a photonic band-stop filter on top of a LSC device: the filter selectively reflects back 

luminesced photons in non-TIR modes and guides them to the attached solar cell to generate extra power, 

while allowing the transmission of light in the dye absorption range. 

 

Finally, the most important challenge with a photonic band-stop filter originates from the 

dependence of reflectance on the photon incidence angle. The stopband typically is shifted towards 

shorter wavelengths, with a decreasing reflectivity seen for increasing incidence angles. As the directions 

of the luminescent photons impinging on the front surface of the LSC are isotropic, photons with oblique 

angles are subjected to a lower trapping efficiency with a photonic mirror as compared to ones with a 

steeper angle of incidence. Light with steep angles, however, results in extremely long effective path 

lengths within the waveguide before it reaches the solar cell. It therefore suffers more strongly from path 

length dependent losses, including dye reabsorption, matrix absorption, and scattering. As a consequence, 

the photon recycling efficiency of the top filter will be dependent on the photon incidence angles, a result 

of both the filter’s angle dependent reflectivity and the path length dependent propagation losses. 
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These complexities make the demands placed on the quality of the photonic structure very high.
50

 

Only a filter with very low reflectance in the absorption range of the dye, a very high reflection in the 

emission range, and a very steep edge between these two spectral ranges has the potential to produce 

large/useful increases in light collection efficiency. The bandwidth and central wavelength of the filter 

further therefore need to be carefully designed to overcome the angle dependence of the reflectance and 

the resulting path length dependent loss of recycled photons. Suitable candidates for such structures 

include organic cholesteric mirrors
51-54

, inorganic Bragg stacks
55-58

, and Rugate filters.
59-63

 

These optical structures are all one-dimensional photonic crystals, consisting of alternating layers 

of two materials with a refractive index contrast. The reflected waves at each layer boundary can interfere 

constructively, creating high reflectance for a certain wavelength range, the so-called a photonic stopband. 

These photonic structures have been used as band-stop filters directly on solar cells and LSCs to 

selectively reflect photons within the escape cone and to achieve enhanced photon recycling.
64-68

 

 

3.2 Fabrication of distributed Bragg reflectors 

A series of DBRs with different λc values was fabricated via layer-by-layer spin-coating of SiO2 

and SnO2 nanoparticle suspensions with a subsequent calcination step to remove residual organic 

components, as reported by Puzzo et al.
69

 The as-prepared dielectric multilayer, here supported on a 

quartz substrate, displays high optical uniformity over a large central region of the optic, with minimal 

adventitious defects, as illustrated by the optical images presented in Fig. 3.3(a). It is noteworthy that the 

size of the DBR is only limited by that of the underlying substrate, and could be expanded by using a 

larger quartz plate and optimized coating processes. A cross-sectional secondary electron microscopy 

(SEM) image of the fabricated DBR is presented in Fig. 3.3(b). The spin-coating method yields a periodic 

multilayer stack with well-defined, flat interfaces between the adjacent layers, which are critical to 
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minimize undesired scattering/refraction and ensure excellent optical properties. The first-order stopband 

central wavelength (λc) of the DBR is determined by the Bragg equation: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜆𝑐 = 2(𝑛1𝑑1 + 𝑛2𝑑2) 

where n1 and d1, n2 and d2, are the refractive indices and thicknesses of the two dielectric materials in the 

stack, respectively. In this fabrication protocol, the thickness of each dielectric layer can be effectively 

manipulated via the spin-coating speed and suspension concentration (see Fig. 3.4), generating DBRs 

with various values of λc. The reflectance spectra of the as-prepared DBRs were measured at normal 

incidence and are plotted in Fig. 3.3(c). The experimental spectra agree well with ones simulated using 

the transfer-matrix method (see Figure 3.5), confirming the high optical quality of the DBRs. The 

reflectivity of a DBR increases with the number of alternating layers, owning to the increasing number of 

constructive and destructive interferences occurring at its layer boundaries. Each DBR for which data are 

presented in Figure 3.3(c) consists 16 alternating layers, leading to peak reflectance values as high as 95%. 

These values are suitable for use in studies exploring their utility as photonic band-stop filters for LSCs. 

The stopbands of the DBR shift to shorter wavelengths as the light incidence angles (θ) increase, as 

shown by the experimental and simulated reflectance data presented in Figure 3.3(d) and (e). This effect 

can be seen visually by looking at the DBR at different viewing angles (Figure 3.3(a)). The angle-

dependent reflectance of the DBR provides a critical constraint for the design of a LSC-DBR system, as 

an optimized DBR should allow high optical transmission in the dye absorption range while providing 

angle restriction for escaped luminescence, as discussed in greater detail in sections that follow. 
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Figure 3.3 Characterization of fabricated photonic structure: (a) Optical images of a spin-coated DBR, its 

central region shifts from blue to purple as the viewing angles become more oblique. (b) Cross-sectional 

SEM image of a DBR with alternating layers of SiO2 and SnO2. (c) Reflectance (normal incidence) of six 

DBRs with various stopband positions, achieved by tuning the thickness of spin-coated dielectric layer. (d)  
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Figure 3.3 (cont.) 

Experimental and (e) simulated reflectance spectra of a DBR, its stopband shifts to shorter wavelength 

range with increasing incidence angles. 

 

3.3 Device fabrication 

SiO2 and SnO2 nanoparticles were purchased from Sigma Aldrich (Ludox SM-30, 30 wt%) and Nyacol 

Inc. (15 wt%) respectively. SiO2 suspension was diluted to the desired concentration. Each suspension 

was filtered through 2 μm pore syringe filter to remove any nanoparticle agglomerates. Piranha cleaned 

quartz discs or silicon wafers were used as substrates for the nanoparticle DBRs. The prepared SiO2 and 

SnO2 nanoparticle suspension was spin-coated sequentially onto the substrate between 2000 and 5000 

rpm for 30 s until 16 layers were deposited. The relationship between spincoat speed, nanoparticle 

concentration and film thickness are shown in Figure 3.4. Following each layer deposition, the substrate 

was baked on hotplate at 400 
o
C for 30 min. A small opening the size of the solar cell was carved in the 

center the DBR with a razor blade to allow direct solar radiation on the top surface of the cell. 

 

Figure 3.4  
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Figure 3.4 (cont.) Spin-coat recipes for SnO2 and SiO2 suspension. (a) The SnO2 concentration was kept 

at 15 wt% while the spin speed changed between 1500 and 3000 rpm to achieve desired film thickness; (b) 

The SiO2 spin speed was kept at 3000 rpm while the concentration changed between 5 wt% and 7.5 wt% 

to achieve desired film thickness. 

 

Fabrication of LSC integrated with Si solar microcell: Fabrication and transfer-printing of solar 

microcells has been described previously. A glass substrate is prepared by spin-coating a layer of 

partially-cured UV-curable adhesive (NOA61, Norland) at 3000 rpm. Then 30 μm soda lime glass beads 

(SPI product #2714) were sparsely sprinkled onto the four corners of the substrate. A repel silane (GE 

health) treated quartz plate was then secured on top of the printed cell module. The solution of DCM in 

NOA was then capillary-filled into the cavity with the flow parallel to the long axis of the micro-cell. The 

assembly was cured for 20 minutes under UV, and the quartz top-plate was peeled off afterwards. The top 

contact of the device is achieved by screen-printing a silver epoxy (E4110, Epoxy Technology) line on 

two top contacts of the cell and curing at room temperature for 48 hours. The DBR was directly applied 

on top of the LSC device with solar cell aligned with the carved opening in the middle of the DBR. The 
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control sample was measured with a quartz plate the same as DBR substrate applied on top to compensate 

for the reflectance of the quartz plate surface. 

SEM images were obtained on a JOEL 7000 FE Scanning Electron Microscope. Film thickness and 

angle-resolved reflectance of DBR was measured using a J.A. Woollam VASE Ellipsometer. Photovoltaic 

characterization was performed with a Keithley 2400 Sourcemeter. The illumination source is an Oriel 

91192-1000W Solar Simulator with an AM1.5G filter. Its light intensity was calibrated to one sun and 

monitored by a Radiant Power Meter and Probe (New Port 70260 and 70268), with a measured intensity 

fluctuation of ~1%. External Quantum Efficiency is measured using a Gooch & Housego OL-750 

Automated Spectroradiometric System. 
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Figure 3.5 Simulated versus experimental measured reflectance of all DBRs (a-f). The simulated results 

were calculated using the transfer matrix method. 

 

(a) (b) 

(c) (d) 

(e) (f) 



46 

 

3.4 Device performance  

3.4.1 Nanoparticle distributed Bragg reflector 

The LSC system utilized in this study consists of transfer-printed silicon solar microcells42 (30 µm 

thick, 100 µm wide and 1.5 mm long) embedded in a polymer matrix doped with an organic luminophore 

(DCM), supported on a thin (180 μm thick) quartz substrate, as illustrated in Figure 3.6(a). An embedded 

PV microcell provides what is an essentially weakly perturbing means for measuring the photo fluxes 

present in the waveguide. A DBR (λc = 735 nm, Sample D) is placed directly on top of the LSC device 

with a natural air gap in-between to trap the escaped luminescence, while photons already in the TIR 

modes remain unaffected by the photonic structure (a cross-sectional illustration is presented in Figure 

3.6(b)).  

 

 

Figure 3.6  

(a) 

(b) 



47 

 

Figure 3.6 (cont.) (a) 3-D illustration of a LSC device composed of a silicon solar microcell (grey) and a 

polymer matrix doped with DCM (orange) supported on a thin glass substrate (light lavender); (b) Cross-

sectional schematic of the LSC device with a top DBR 

 

This particular photonic mirror is designed to allow high transmission of incident illumination 

within the DCM absorption range, while providing high reflectance for emitted luminescence at larger 

incidence angles. This can be seen in the comparison of the dye absorption/emission spectra and the DBR 

reflectance data presented in Figure 3.7(a): it is notable that the DBR reflectance peak matches that of the 

dye emission when θ = 60 degrees (i.e. not at normal incidence). The relationship between dye emission 

and stopband frequencies in terms of the LSC performance is discussed further in the following section. 

With the addition of the DBR (λc = 735 nm), the short circuit current (Isc) of the device increased 6%, 

from 100 μA to 106 μA (Figure 3.7(b)). In contrast, the Isc of the blank control sample (no luminophore in 

the NOA matrix) dropped from 56.0 μA to 51.8 μA after applying the DBR, due to the fact that the DBR 

stopband blocks part of the incoming solar radiation that can be utilized by the microcell through non-TIR 

waveguiding. To isolate the luminescence recycling effects from the top photonic structure, the current 

output contributed from the dye emission (Idye) was calculated by subtracting the Isc of the blank control 

sample. Compared with the LSC value without a DBR (Idye = 100-56 = 44 μA), the Idye value (106-51.8 = 

54.2 μA) of a LSC with DBR showed a 22% relative enhancement, indicating that otherwise escaping 

photons are being recycled back into the waveguide by the top photonic mirror. 
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Figure 3.7 (a) Comparison between DCM absorption/emission spectra and DBR reflectance: DBR allows 

the transmission of dye emission at close to normal incidence, while reflects dye emission at larger 

incidence angles; (b) I-V curves: adding a DBR on top results in an increase of Isc for a LSC device 

 

(a) 

(b) 
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The light management properties of the different DBRs were further elucidated by the results of the 

external quantum efficiency (EQE) measurements, the data for which are presented in Figure 3.8(a). The 

benefits from the luminophore on PV performance are highlighted by the marked blue spectrum 

enhancements that are seen, ones corresponding to the dye absorption (curves in red vs. black in Figure 

3.8(a)). This illustrates the changing fraction of the emitted photons from the luminophore that are 

trapped in TIR modes and subsequently collected by the embedded solar cell in the waveguide. The DBR 

series A-F (reflectance data shown in Figure 3.3(c)) were placed directly on top of the LSC device. 

Adding photonic band-stop filters results in a significant dip in the EQE curves at frequencies 

corresponding to their photonic stopbands. This effect is also seen in the EQE measurements made of a 

blank control sample without a luminophore present when the same DBRs are applied on top (Figure 3.9). 

These results show that the photonic filter brings intrinsic challenges in that it blocks the part of the solar 

spectrum corresponding to its stop-bandwidth. This blocking of illumination results in a decrease in the 

short circuit current. This negative effect can be mitigated, however, by reducing the bandwidth of the 

DBR, with the caveat that a lessened coverage of the dye emission spectrum and will lead to a lowered 

luminescent photon trapping efficiency. The key point is that, for an overall positive effect, the 

illumination blocking loss will need to be exceeded by the current gain from the photon recycling 

afforded by the DBR. Experimentally, the enhanced EQE responses seen after adding a DBR are 

observed at two distinctive regions (Figure 3.8(a)): the first occurring on the high-energy side of the DBR 

stopbands (580 to 700 nm); and the second in the dye absorption region (300 to 580 nm). 



50 

 

 

 

Figure 3.8 (a) Experimental and (b) Simulated EQE for a LSC device with various DBR, the photon 

recycling effects are evidenced by the enhancements in the blue region. 

 

(a) 

(b) 
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The features seen on the high energy side of the stopbands in the EQE plots are due to the angle 

restriction effects of the DBR on the photons reflected by the diffuse backside reflector. Here the photons 

transmitted through the LSC film bounce back with randomized directions, and when it reaches the top 

photonic mirror again, have new, angular-dependent chances of being recycled into propagating modes 

(non-TIR) inside the cavity between DBR and diffuse backside reflector before reaching the cell. Since 

the DBR reflectance blue-shifts as the incident angle increases, photons with a higher energy than DBR 

bandgap have a larger chance of being recycled, leading to enhanced collection efficiencies on this side of 

the stopband. It is important to note that this enhancement is not large enough to compensate for the total 

current loss due to the stopband, a conclusion further supported by the fact that all current output from a 

blank control sample (i.e. without luminophore) is lost in the stopband when it was coupled with a DBR. 

As shown in the Figure 3.9 and Table 3.1, the blue spectrum response is suppressed because there is no 

dye present to absorb and emit photons. The response dips corresponding to each DBR stopband and the 

peaks on the high energy side of the dips are identical to those of the dye-embedded LSC sample, 

indicating that these features are non-relevant to dye presence. 

 

Figure 3.9 EQE measurement of the blank control sample with each DBR applied on top. 
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 No DBR A B C D E F 

Isc (µA) 53.34 48.89 49.36 52.17 51.77 51.19 54.44 

 

Table 3.1 Short circuit current of the measured blank control sample with different DBR. The Isc of the 

device with DBR are always lower than without DBR, indicating that the enhancement in the EQE curve 

does not compensate the dips caused by DBR blocking part of illumination. 

 

Significant UV-blue region enhancements associated dye absorption are observed with all the 

DBRs (Figure 3.8(a)), as each can reflect fluorescent photons within a certain range of incident angles. As 

its stopband red shifts away from dye emission peak, the photons that can be reflected by the DBR will be 

at a larger angle of incidence. For example, the reflectance of DBR A (λc = 620 nm) matches the dye 

emission at an angle close to normal incidence, while for DBR D (λc = 735 nm), matches it at around 60 

degrees. To assess the quantitative impacts of these effects, an integration of the EQE with excitation by 

the AM 1.5G solar spectrum was carried out between 300 and 580 nm (the dye absorption range) to 

quantify the current contribution coming from the dye luminescence for each of the different DBRs. 

These results are presented in Table 3.2. 

λc (nm) No DBR 620 (A) 656 (B) 690 (C) 735 (D) 760 (E) 800 (F) 

I300-580 (µA) 52.9 57.6 63.0 63.6 64.4 61.9 58.7 

ΔI (µA) 0 4.8 10.1 10.8 11.5 9.1 5.8 

 

Table 3.2 Calculated current contributed by photons in the DCM absorption range. 
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As is shown by these data, DBRs B to E have similar current outputs in this particular spectral 

region as compared to the control sample (see Table 1 for ΔI values, defined as the difference between the 

samples with and without a DBR), where Sample D performs the best, showing a relative enhancement of 

~22%. For DBR A, the enhancement is the lowest as its stopband blocks the low-energy side of the 

absorption edge of the DCM dye. Its angle restriction property further limits its efficiency, being subject 

to higher path length dependent losses. The properties of DBR F are also limited for reasons that fall at 

the other limit. Here, the stopband red shift is too large to cover the dye emission effectively, even at very 

large incidence angles. As a result, the DBR reflectance drops significantly at oblique angles, which leads 

to a low photon recycling efficiency. To extend understandings of these optical effects, a Monte-Carlo 

ray-tracing model was constructed using measured material optical constants, with the reflectance for 

each DBR being calculated using the transfer matrix method. All of the features observed in the 

experimental EQE plots (Figure 3.8(a)) - stopband dips, diffuse light enhancements and the UV-blue 

region enhancements - are also well captured in the simulated EQE curves, as shown in the data presented 

in Figure 3.8(b).  

The results of measurements of the total current output from the LSC device with each DBR are 

plotted in Figure 3.10(a) (black dots and line). The optimum system among these DBRs is that afforded 

by Sample D, with a central wavelength of 735 nm. From these data it is clear that the center wavelength 

of the DBR needs to be red-shifted substantially from the dye emission peak (600 nm) for best 

performance. For Sample D, the DBR stopband fully overlaps with dye emission at around 60 degrees 

incidence angles, indicating that the design of the photonic structure’s stopband should target photons in 

this range as they have the highest chance of being guided to the cell. The Monte-Carlo ray-tracing 

simulations affirm this interpretation. The results of simulations addressed to this point are shown plotted 

against the experimental data in Figure 3.10(a) (blue curve). The agreement in the general trend versus 

DBR central wavelength confirms the inferred trends in the efficacy of enhanced light trapping of the 
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LSC system. These results thus provide and affirm a theoretical guideline for designing a DBR with 

respect to the dye emission profile of the LSC. The relative current enhancements integrated from dye 

absorption range (300-580 nm) in EQE plots were plotted in Figure 3.10(b), demonstrating a similar trend 

to Figure 3.10(a), and further confirm the relationship between DBR center wavelength and device 

current enhancement.  

                                     

 

Figure 3.10  

(a) 

(b) 
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Figure 3.10 (cont.) (a) Both experimental and simulated enhancements show that the optimal stopband of 

DBR red-shifts from dye emission peak; (b) Relative current enhancements integrated from dye 

absorption range (300 to 580 nm) in EQE plots, DBR with a center wavelength of 735 nm shows the best 

performance. 

 

In order to investigate light propagation behavior inside the LSC film, the device performance was 

also measured with a circular aperture centered on the solar cell while controlling the illumination area of 

the LSC device with DBR D affixed on top. The photocurrents extracted from these measurements are 

plotted as a function of aperture radius in Figure 3.11. At smaller aperture radii, the LSC without the DBR 

(black curve) performs better, as the stopband of the top photonic structure blocks incident light that can 

be waveguided to the device via non-TIR modes within short ranges. The DBR-LSC coupled device (red 

curve) exhibits a faster growth rate in the current output as the aperture area expands, outperforming the 

control device at larger radii. This indicates that a longer propagation distance of luminescent photons 

occurs inside the waveguide with a top photonic mirror being affixed, and thus illustrates a beneficial role 

for their use in improving performance in large LSC devices. 

 

Figure 3.11  
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Figure 3.11 (cont.) LSC with a DBR shows faster increase in current output with increasing illumination 

area, indicating a longer photon propagation length. 

 

3.4.2 High reflectivity distributed Bragg reflector 

Inspired by the LSC performance enhancement by applying nanoparticle DBRs, we decided to 

optimize the design geometry and explore the full potential of photon recycling. On the basis of the 

properties of previously used QDs, we designed a distributed Bragg reflector that accepts incident blue 

sunlight and traps luminescence with much higher reflectivity. The DBRs were custom designed and 

purchased from Optical Filter Source, LLC (Austin, TX, USA). From 350 to 520 nm the photonic mirror 

exhibits 90% average transmission at normal incidence. Over the emission band of the lumophore, the 

hemispherically averaged reflectance of the mirror is 98%, with a maximum reflectivity of >99.999% at 

650 nm at normal incidence. The dependence of reflectivity on angle of incidence is characterized in 

Figure 3.12; luminesced photons are reflected efficiently up to 60 degrees from normal, with diminished 

reflectivity at higher angles.  
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Figure 3.12  

(a) 
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Figure 3.12 (cont.) (a) Absorption and emission spectra of the QDs as compared to the reflectivity of the 

photonic mirror at different incidence angles. (b) Measured DBR reflectivity as a function of angle and 

wavelength. 

 

The photographs in Figure 3.13 show the effect of the photonic mirror on luminescence from the 

quantum dot solution under 440 nm laser illumination. In the first photograph, two mirrors are arranged in 

a tent over the cuvette and all luminescence is directed to the opening since it cannot pass through the 

mirror. In the second, the scattered blue laser light transmits through the mirror, while the luminescence 

from the luminophore solution is blocked. 

(b) 
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Figure 3.13 Photographs of the QD solution under blue laser illumination with photonic mirrors reflecting 

the luminesced red light. 

 

Figure 3.14(a) shows the concentrator cavity, consisting of the wavelength-selective photonic 

mirror on top, a PLMA/QD waveguide with an embedded Si solar microcell, and a trench-shaped diffuse 

reflector that both enhances absorption of incident photons and recycles photons that escape through the 

bottom and edges of the waveguide. It is important to note that in this iteration the single Si microcell acts 

as a detector of the optical concentration. The overall EQE and collection efficiency of the device are low 

due to the small area covered by the single microcell. In the future, arrays of microcells could be 

integrated so as to capture more of the waveguided light with minimal shadowing. The best device 

performance under AM1.5G illumination is summarized in Table 3.3, with current density (J)-voltage (V) 

curves shown in Figure 3.14(b). Both the Jsc and the Voc of the microcell increase significantly upon 

integration with the LSC including the trench reflector and increase further with the addition of the 

photonic mirror. The total Jsc of the Si microcell is 7.7 times higher after integration with the complete 

device. The spectral dependence of C is plotted in Figure 3.14(c) and shows that the current enhancement 
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originates from concentration of blue photons, the spectral region where the nanocrystals absorb. From 

550 to 800 nm C is greatly suppressed, as this spectral region is reflected by the photonic mirror and 

prevented from entering the LSC. This loss is outweighed by the improvement in the concentration of 

blue photons as demonstrated by the total current enhancement. 

 

Figure 3.14  

(a) 
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Figure 3.14 (cont.) (a) Photograph of a microcell-LSC integrated with a photonic mirror and a trench-

shaped diffuse trench reflector; (b) Reflectance of the trench diffuse reflector; (c) concentration ratio as a 

function of excitation wavelength of the LSC-PV device with and without the photonic mirror. 

(b) 

(c) 
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Testing Condition 

JSC 

(mA/cm
2
) 

Concentration 

350-500 nm 

VOC 

(V) 

Fill 

Factor 

Power 

(mW/cm
2
) 

-Si device 28.51 1 0.504 0.72 10.35 

-Si device/LSC/trench 

reflector 

149.3 18.9 0.569 0.64 54.37 

-Si device /LSC/trench 

reflector/photonic mirror 

218.7 30.3 0.580 0.61 77.38 

Table 3.3 Summary of PV device performance before and after the integration with the LSC, trench 

reflector and photonic luminescence-trapping mirror under AM1.5G illumination. 

 

The optical density (OD) at 450 nm of the QD-polymer films was then varied from 0.1 to 1.2 

(Figure 3.15(a)), and the LSCs were characterized under blue-filtered illumination. The highest 

concentration factor occurs when OD = 0.65 (Figure 3.15(b)). At lower OD, absorption of incident 

sunlight in the blue portion of the spectrum is diminished, while at higher OD reabsorption and scattering 

of luminesced photons decrease the optical efficiency. All samples demonstrate more than 60% 

enhancement in C after applying the photonic mirror except the control device (no QDs added in the 

polymer). The optimum C under the blue-filter illumination with the photonic mirror reaches 30.3, a value 

unprecedented in the LSC literature. 
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Figure 3.15 (a) Absorption spectrum of QD-polymer thin film with different QD loadings. (b) 

Experimental and simulated photon concentration ratios at different optical densities of QD, with a 

geometric gain (G) of 61. 

 

(a) 

(b) 
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To study the propagation of photons inside the LSC, we measured the propagating curve as a 

function of geometric gain G (the ratio of illuminated area to illuminated edge area) for all six samples. 

The results are shown in Figure 3.16. It can be seen that for all the samples the concentration ratios 

increase linearly. We also compared a sample with high internal scattering (Figure 3.17(a), due to the 

absence of thorough QD cleaning before polymerization) to one with low scattering (Figure 3.17(b)). 

Both samples had an optimal OD of 0.65 at 450 nm and were measured under blue-filtered illumination 

with a variable illumination spot diameter, resulting in variable geometric gain. Without the photonic 

mirror acting as a photon-recycling element, the sample with high scattering (Figure 3.17(a)) shows a 

limited growth of C that quickly plateaus with increasing G, as luminesced photons are scattered out of 

the waveguide and lost. In comparison, the sample with low scattering exhibits a quasi-linear increase of 

C with G (Figure 3.17(b)), as contributed by the uninterrupted TIR modes inside the waveguide. 

 

Figure 3.16 Photocurrent of the LSC device under the blue filtered illumination at various aperture size. 
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Adding the photonic mirror on top allows both non-TIR and scattered photons to be recycled and 

then to propagate inside the concentrator cavity before finally reaching the solar cell. As a result, the 

losses associated with scattering are strongly reduced, and photons are concentrated over distances much 

longer than the scattering length of the waveguide. In the high-scattering case (Figure 3.17(a)) C becomes 

quasi-linear with increasing G and reaches 16 at G = 37, nearly 5 times higher than without the mirror. 

This value is still smaller than that in the low-scattering case (C = 20), indicating that scattering loss is not 

completely mitigated as the mirror reflectivity diminishes at oblique angles. Measurement of the 

luminescent concentration factor of the high-scattering sample with the dielectric mirror at G = 61 

resulted in C = 26, only slightly reduced from the best value of 30.3 for the nonscattering device. In the 

device with low scattering (Figure 3.17(b)), C increases superlinearly with the illumination diameter, 

increasing faster than the TIR limit imposed by Fresnel equation. This superlinearity marks the onset of a 

transition from ballistic, single-pass photon transport to diffusion-based transport afforded by photon 

recycling. Our results suggest that efficient trapping of luminescence with a dielectric mirror can keep the 

luminescence inside the cavity regardless of the optical clarity and smoothness of the waveguide. If the 

optical quality of the waveguide could truly be made irrelevant by the dielectric mirror, the fabrication of 

the devices could be simplified. 
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Figure 3.17 High scattering (a) and low scattering device (b) propagation curve with and without DBR. 

 

(a) 

(b) 



67 

 

To further investigate the connection between photon scattering, the photonic mirror, and C, we 

used a Monte Carlo ray tracing model. The mechanism of the ray tracing model will be discussed in detail 

in later chapter. These simulations assume that scattering derives from the refractive index contrast 

between the nanocrystals and the PLMA waveguide. For each device, a range of scattering lengths are 

simulated and fit to the experimental data. All other model inputs are measured experimentally. For the 

high- and low-scattering devices (Figure 3.17), the best fit is achieved with 0.18 and 3 mm scattering 

lengths. A scattering length of 3 mm corresponds to roughly one scattering event for a photon propagating 

at 19 mm from the edge of the waveguide to the solar cell.  

 

3.5 Future directions  

The device fabricated here is tuned to utilize the blue portion of the spectrum due to the choice of 

appropriate organic dye, as well as engineered absorption spectrum of the luminophore. The system 

efficiency remains limited, as only one silicon microcell is utilized to detect rather than fully convert the 

luminescence in the waveguide. Using transfer-printing-based assembly, however, arrays of these 

microscale devices could be embedded in the waveguide to dramatically enhance the PV conversion 

efficiency. Coupling with III–V (e.g., InGaP) microcell arrays with band gaps tailored to match the 

luminophore emission, a luminescent concentrator cavity module could be constructed with efficiencies 

comparable to conventional PV panels but with reduced materials consumption. Additionally, this LSC 

module can be potentially used as the top layer (e.g., over Si) in a mechanically stacked multijunction 

architecture for full spectrum conversion, utilizing both the high-energy photons in the LSC and the low-

energy photons in the bottom photovoltaic. We expect that future devices will achieve even higher 

concentration ratios while maintaining high waveguide efficiency through improvements to the 

luminescence quantum yield, waveguide geometry, and photonic mirror design. Thus using a 

luminophore with a larger Stokes shift and narrower emission bandwidth (such as obtained with core-
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shell quantum dots or quantum rods) and selective, omnidirectional (e.g. meta-surface) reflectors could 

potentially lead to much higher photon recycling and conversion efficiencies for LSC-based solar 

concentrators.  
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CHAPTER 4: QUANTUM DOTS PHOTONIC CRYSTAL 
 

In this work, we demonstrate an approach in which visible-wavelength-emitting quantum dots are 

integrated within a polymer-based photonic crystal and excited by an ultraviolet-emitting LED. The PC 

design incorporates two interleaved regions, each with distinct periods in orthogonal directions. The 

structure enables simultaneous resonant coupling of ultraviolet excitation photons to the QDs and visible 

QD emission at two different wavelengths to efficiently extract photons normal to the PC surface. The 

combined excitation and extraction enhancements result in a 5.8X increase in the QD output intensity. 

Further, we demonstrate multiple QD-doped PCs combined on a single surface to optimally couple with 

distinct populations of QDs, offering a means for blending color output and directionality of multiple 

wavelengths. Devices are fabricated upon flexible plastic surfaces by a manufacturable replica molding 

approach. 

 

4.1 General introduction to photonic crystal 

Usually, the conventionally structured white light-emitting-diodes (WLEDs) rely on a three-ways 

coupling techniques of GaN-based blue LEDs, yellow-red phosphors and organic materials encapsulation. 

But it often suffers from awkward predicaments, such as the relatively high fabrication cost of 

conventional yellow and red phosphors and comparatively low robustness due to peripherally organic 

encapsulating materials. These limitations greatly hampered the further commercially expanding of 

WLEDs. Various researchers have demonstrated an alternative approach for fabrication of high-

performance phosphors-free WLEDs by using QD-polymer as color conversion layer. The narrow 

emission, high quantum yield, tunable emission spectrum and high photostability render QDs promising 

materials to achieve high quality WLEDs.
70-73
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A photonic crystal (PC) is a periodic optical nanostructure that affects the motion of photons in 

much the same way that ionic lattices affect electrons in solids (Figure 4.1). Photonic crystals occur in 

nature in the form of structural coloration-and, in different forms, promise to be useful in a range of 

applications. In 1887 the English physicist Lord Rayleigh experimented with periodic multi-layer 

dielectric stacks, showing they had a photonic band-gap in one dimension. Research interest grew with 

work in 1987 by Yablonovitch and John on periodic optical structures with more than one dimension-now 

called photonic crystals.
74-75

 

When externally incident light interacts with PCs in the subwavelength regime, only the zeroth-

order forward- and backward-diffracted waves can propagate. However, the periodicity also allows for 

phase-matching of higher (evanescent) orders to localized leaky modes supported by the PC. Once 

excited, the leaky modes, defined by a complex propagation constant, possess a finite lifetime as they are 

diffracted in both the forward (transmitted) and backward (specular) directions. The backward re-radiated 

waves are in phase and constructively interfere with the zeroth backward-diffracted order, whereas the 

forward re-radiated waves are out of phase with the zeroth forward-diffracted order by π radians, causing 

destructive interference and consequently zero transmission. Thus, the external excitation of leaky modes 

is associated with a 100% reflection phenomenon for a resonant wavelength, assuming a defect-free, 

lossless system. As the excited leaky modes are localized in space during their finite lifetimes, they can be 

engineered to have very high energy density within regions of the PC at resonance. The magnitude of this 

energy density is directly related to the resonant mode lifetime or Q-factor of resonance, which in turn can 

be controlled by adjusting the device parameters. The intensity of emission of fluorescent species (which 

are absorptive at the resonant wavelengths) can be greatly enhanced by placing them in proximity to 

regions where the resonant modes concentrate most of their energy.
76

 

The existence of leaky modes overlapping the fluorescence emission spectrum opens up pathways 

for the emitted light to escape into free space. As well as direct emission, the fluorescence can now couple 

to the overlapping leaky modes and Bragg scatter out of the structure, thereby greatly reducing the 



71 

 

amount of light trapped as guided modes compared with an unpatterned substrate.
77

 If the dispersion of 

these overlapping leaky modes is close to the Γ-point band edge, that is, K‖ (magnitude of the in-plane 

wave vector) ~ 0, most of the emitted light will be extracted within small angles to the surface normal. 

More generally, appropriately engineering the leaky dispersion of the PC facilitates the funneling of 

guided light into regions of space where it can be easily detected. It can thus be appreciated that 

enhancement of fluorescence can be achieved in two steps: enhanced excitation and enhanced extraction. 

 

Figure 4.1 Visible-wavelength two-dimensional PC slab design and fabrication. (a) Layout of the two 

dimensional PC device. (b) Scanning electron microscope images of a sample fabricated by the 

nanoreplica molding approach. Scale bars are 500 nm. 

 

Photonic crystals can be fabricated for one, two, or three dimensions. One-dimensional photonic 

crystals can be made of layers deposited or stuck together. Two-dimensional ones can be made by 

photolithography, or by drilling holes in a suitable substrate. Fabrication methods for three-dimensional 

ones include drilling under different angles, stacking multiple 2-D layers on top of each other, direct laser 

writing, or, for example, instigating self-assembly of spheres in a matrix and dissolving the spheres. 

Photonic crystals can, in principle, find uses wherever light must be manipulated. Existing applications 

(a) (b) 
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include thin-film optics with coatings for lenses. Two-dimensional photonic-crystal fibers are used in 

nonlinear devices and to guide exotic wavelengths. Three-dimensional crystals may one day be used in 

optical computers. 

Photonic crystals are attractive optical materials for controlling and manipulating light flow. One 

dimensional photonic crystals are already in widespread use, in the form of thin-film optics, with 

applications from low and high reflection coatings on lenses and mirrors to color changing paints and inks. 

Higher-dimensional photonic crystals are of great interest for both fundamental and applied research, and 

the two dimensional ones are beginning to find commercial applications. 

The first commercial products involving two-dimensionally periodic photonic crystals are already 

available in the form of photonic-crystal fibers, which use a microscale structure to confine light with 

radically different characteristics compared to conventional optical fiber for applications in nonlinear 

devices and guiding exotic wavelengths. The three-dimensional counterparts are still far from 

commercialization but may offer additional features such as optical nonlinearity required for the operation 

of optical transistors used in optical computers, when some technological aspects such as 

manufacturability and principal difficulties such as disorder are under control. 

There are a broad range of application-specific needs for lighting and display technologies, given 

their prevalence in our homes, workplaces, and pockets. Precisely engineered control of the output 

spectrum of lighting products is desired to match the requirements for color temperature and output 

directionality, while at the same time optimizing power efficiency and manufacturing cost. For video 

display applications, controlling the blend of primary colors in each pixel is necessary, while the control 

of pixel output directionality must be tailored for a range of viewing methods that may be either tightly 

confined (for privacy) or widely dispersed (for wide viewing angle). 

Precisely engineered control of the output spectrum of lighting products is desired to match specific 

requirements for color temperature and output directionality, while at the same time optimizing power 
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efficiency and manufacturing cost. As the effects of polarization, wavelength, and directionality within 

periodic dielectric structures are characterized, various applications continue to emerge for optical 

resonators using PC structures.
78-81

 By varying the duty cycle, period, and refractive index, the resonant 

characteristics of a PC can be tuned to interact with wavelengths extending from the ultraviolet to the 

infrared. These properties have been used for a variety of applications including polarizers, filters, 

biosensors, optical communication components, displays, and lighting.
82-86

 PCs have been incorporated 

into light emitting diodes (LEDs) in order to increase extraction efficiency, and to control the 

directionality of light output, either normal to the device or into angular sidelobes.
87-91

 

With an appropriate choice of dielectric materials and dimensions, the resonant modes of a PC can 

be engineered to occur at specific combinations of angle and wavelength. This allows light of the selected 

wavelength and incident direction to couple to the PC and excite a highly localized electromagnetic 

standing wave with amplitude that is substantially greater than the original illumination source. Enhanced 

excitation will occur by placing emitters within the region with an increased electric field magnitude at 

their excitation wavelength. Because the guided modes will couple in and out of the PC under phase 

matching conditions for specific combinations of wavelength and incident angle, it is possible to collect 

light at the outcoupling angle more efficiently, and thus providing an enhanced extraction mechanism.
92

 

QDs that down-convert light from a broad band of excitation wavelengths to a very specific emission 

wavelength, have been successfully incorporated into PCs with specific resonances designed to couple to 

the relevant excitation and/or emission wavelengths of the QDs.
93-94

 By introducing two-dimensional 

variation into the PC structure, through the use of different periods in orthogonal directions, a PC may 

incorporate multiple resonances at widely varied wavelengths so as to interact simultaneously with the 

excitation and emission spectra of the integrated QD emitters as a means of enhancing the number of 

photons generated by each QD, while increasing the efficiency of emitted photons that reach the viewer. 

In this work, we demonstrate an approach, shown in Fig. 1(a), which incorporates one or more types of 

QDs into a replica-molded flexible polymer-based PC structure that is excited by a UV backlight LED. 
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The UV excitation source couples to a resonant mode of the PC, which creates an enhanced excitation at 

the coupling wavelength by increasing the magnitude of the electric field experienced by the QDs in the 

PC, thus producing greater photon output than would occur without a PC structure. The rectangular lattice 

of the PC is designed to produce a resonance at the wavelength of QD emission, resulting in photon 

emission that is efficiently channeled normal to the PC surface. As shown in Figure 4.2, we designed and 

fabricated an interleaved surface in a checkerboard pattern, containing two PC designs. While both 

regions are designed to produce resonances for the same UV excitation wavelength, each region is 

optimized for a different QD emission wavelength. This is a novel device structure that allows multiple 

types of QDs to experience simultaneous enhancement in a single device structure. Such a structure can 

enable a customized output spectrum through control of the enhancement wavelengths and the relative 

surface area of each PC region. 

 

4.2 Photonic crystal design 

The device structure interleaves the regions of two distinct 2D PCs in a checkerboard pattern. Each 

region consists of rectangular cavities, as shown in Figure 4.2, with resonances created by the periodic 

variation in the orthogonal directions on the surface. Each region varies in one direction with dimensions 

selected to provide enhancement from the same UV excitation source (200 nm period with 40% and 70% 

duty cycles in Regions 1 and 2, respectively), while the orthogonal directions have larger feature sizes for 

producing resonances at visible wavelengths. The larger features in Region 1 have a lateral width of 250 

nm to produce resonances at λ = 490 nm, while the features in Region 2 have a lateral width of 340 nm, 

designed to produce resonances at λ = 590 nm. For both regions, the structure is formed from a QD doped 

polymer with a grating depth of 80 nm that is coated with an 85 nm thin film of TiO2. While the period of 

the structure is the main determinant of the resonant wavelength, the resonances can also be tuned via 

control of the TiO2 thickness. 
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Figure 4.2 (a) A cross-sectional schematic of the device structure where a backlight UV LED source 

illuminate multiple regions. (b) A top down schematic of the two interleaved regions of the device with 

TiO2 and their respective feature sizes. 

 

4.3 Fabrication of quantum dots embedded photonic crystal device 

A silicon wafer was fabricated to serve as a master mold template for the replica molding process. 

The master’s grating structure was fabricated via electron beam lithography on a layer of thermal SiO2 on 

a Si wafer, upon which reactive ion etching was used to produce 80 nm tall pillars. The patterned device 

area was 3  3 mm
2
. The master wafer was cleaned with a piranha solution for 20 min, rinsed with DI 
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water, and dried with N2. Next, a vapor-phase deposition of (tridecafluoro-1,1,2,2-tetrahydrooctyl) 

trichlorosilane (no-stick) was performed by placing the wafer into an enclosed container with two drops 

of the No-Stick solution for 1 h.  

CdSeS/ZnS alloyed QDs were purchased from Sigma-Aldrich (1 mg/mL in toluene, oleic acid as 

ligand), or synthesized for this application by collaborators. Lauryl methacrylate (LMA) and ethylene 

glycol dimethacrylate (EGDMA) were purified to remove the inhibitor with an inhibitor removal column 

before their use. The UV curable polymer, consisting of 182 µL of LMA and 18 µL of EGDMA, was 

mixed in a flask, and 4 mL of QD hexane solution and 8 µL oleic acid was added and mixed well, then 20 

µL PLMA monopolymer solution was added to increase the solution viscosity. The remaining solvent 

was removed using a rotavap at room temperature and 2 µL of initiator (Darocur 1173) was added 

immediately before spin coating. The solution was spin coated onto the master wafer at 600 rpm for 30 s, 

then immediately polymerized by exposure to a high intensity UV lamp for 30 min in a nitrogen 

atmosphere glovebox. After the film was fully cured, a layer of NOA 61 was drop coated over the 

composite film. An acetate sheet substrate was then placed over the master wafer and brought into contact 

with the uncured NOA drops to form a thin continuous layer between the acetate sheet and the composite 

thin film. Next, the NOA was cured for 20 min using a UV lamp under ambient conditions. The acetate 

substrate, along with the NOA layer and composite thin film, was then released from the master wafer 

with the thin film of QD-PLMA containing the replicated 2D cavity structure. After replica molding, 

TiO2 is deposited by sputtering to the depth required for resonance at the desired wavelength. Deposition 

times were restricted to keep the substrate temperature from exceeding 40°C, to avoid thermally induced 

damage to the polymer materials. Figure 4.3 shows the top-down SEM photograph of the silicon master 

wafer and final devices.  
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Figure 4.3 (a) An SEM of the replica molding master. The inset shows the pillars of the two regions at 

diagonal corners within the master structure. (b) SEM images of both Region 1 (left) and Region 2 (right) 

from the device after TiO2 has been deposited to form the PC. (c) AFM images of PC surface. 

(a) 

(b) 

(c) 
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The emission properties of the devices were measured using a UV LED centered at 375 nm with a 

20 nm full-width half-maximum as the excitation source. A 350-390 nm bandpass filter was used to 

eliminate any non-UV emission from the LED. The LED output was collimated before illuminating the 

PC. The device was mounted over a cover with a 3 mm diameter aperture, assuring that only the patterned 

PC region was excited and measured. 

 

4.4 Quantum dots output enhancement  

The device under test was mounted to a motorized rotary stage, allowing the incident excitation 

angle to be varied. The output passed through a UV filter to eliminate any light from the excitation source, 

then was collected by a collimating lens attached to an optical fiber. The fiber was connected to a 

spectrometer (USB2000+, Ocean Optics) from which the emission can be measured and observed through 

the LabView OmniDriver software which also controlled the rotation position of the stage in 0.1 degree 

steps. To measure the impact of the extraction angle, the same equipment was used, but instead of 

mounting the PC sample to a rotation stage and varying the excitation angle, the PC sample position was 

fixed. The collimator coupled to the optical fiber was instead mounted on the stage and rotated around the 

PC, allowing extracted light to be collected over a range of angles with respect to the PC surface. The 

photonic band diagram of a device was determined using the same experimental setup as that to measure 

the excitation output, but the UV LED and associated bandpass filter were replaced with a tungsten-

halogen lamp coupled to an optical fiber that outputs unpolarized light through a collimator, then the 

broadband transmission was measured across a range of angles. 

In a sample with QDs emitting at a peak wavelength of λ = 505 nm, the extraction was measured 

before and after a deposition of 20 nm of TiO2 to compare the output intensity with and without a 

photonic crystal structure, as shown in Figure 4.4. A narrow, angle-dependent extraction enhancement is 
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shown, in addition to a broader excitation enhancement. In the inset, a scan of the output intensities for λ 

= 450-550 nm across a range of angles is shown in a device with a 20 nm TiO2 thin film coating. In the 

main plot, the angle dependence of the output at λ = 505 nm is shown. With no PC present, the output 

emission of the quantum dots is lower. In the structure with the PC, there is a strong angle-dependent 

enhancement of a factor of 2X centered at -2 degree off normal incidence, representing the angle and 

wavelength combination at which the QD emission is enhanced through resonance with the PC. 

 

Figure 4.4 Impact of angle on QD extraction measured with and without a PC structure present. 

 

Another sample was fabricated with a homogeneous mixture of QDs, with emissions centered at λ 

= 490 nm and λ = 585 nm. This mix demonstrated the ability of the PC to selectively enhance a 

subpopulation of embedded QDs. The emission was measured on a QD-doped grating structure without 

PC resonances by measuring the emission of a structure without TiO2 (Figure 4.5(a)) and after the PC is 

formed by deposition of a 43 nm TiO2 thin film. The maximum QD emission increased by 4 times for the 
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490 nm QDs and 5 times for the 585 nm QDs, shown in Figure 4.5(b), but only within the regions in 

which their emission matched their corresponding PC resonance. To adjust the resonance conditions of 

the PC for enhancing the emission wavelengths of both types of QDs, an additional 42 nm of TiO2 was 

deposited, and that resulted in a total increase of 4.2X for the 490 nm QDs and 5.8X for the 585 nm QDs 

(Figure 4.5(c)), as the resonance conditions of the PC were redshifted by the thicker TiO2 layer. After the 

final TiO2 deposition, the band structure of the PC was measured using the broadband source, as shown in 

Figure 4.5(d). 

 

Figure 4.5 Comparison of the angle dependence of excitation at different stages of TiO2 deposition, as the 

thickness enables tuning of the resonance conditions. (a) Measured output intensity with no PC structure. 

(b) Measured enhancement from a PC with a 43 nm thick TiO2 layer. (c) Measured enhancement from a 

PC with an 85 nm think layer of TiO2. (d) Transmission spectrum with an 85 nm think layer of TiO2 

confirms the locations of the peak resonance as measured by the varied excitation output intensity in (c). 

 

Because the device structure has a different period in each orthogonal direction, the transmission 

efficiency can be measured over the range of angles across θ that vary with the shorter, UV resonant 
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features or the Φ angle with the larger features that couple to visible wavelengths. The difference in the 

two photonic bands is shown in Figure 4.6. In Figure 4.6(a), the angle θ is varied, and there is an angle-

dependent resonance in the UV, while the resonance in the visible is constant for all wavelengths, 

regardless of angle. This occurs because there is no angle variation experienced by the features 

responsible for coupling to those wavelengths. A similar situation occurs in Figure 4.6(b) with constant 

wavelength resonance occurring in the UV wavelengths, while varying the angle Φ experienced by the 

PC only changes its coupling to the larger PC features and shows angle-dependent variation at 

wavelengths greater than λ = 450 nm. The enhancement of QDs in a region with PC coupling is 

substantial enough to be easily visible to the naked eye. Figure 4.7 shows photographs of two dual region 

QD-doped PCs with emissions at from λ = 490 and λ = 590 nm. The brighter regions are providing both 

enhanced excitation and extraction for the embedded QDs. The alternate regions have a resonance 

condition of the PC that is coupling only to the excitation wavelength, and appears darker due to the lack 

of an extraction enhancement. 

 

Figure 4.6  
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Figure 4.6 (cont.) (a) transmission measured only with angle variation along θ direction. (b) transmission 

measured only with angle variation along Φ direction. 

 

The QD excitation measurements for structures with and without a PC structure all showed a 

slightly asymmetrical output, which corresponded to asymmetrical output intensity from the UV-LED 

source. This can be seen in Figure 4.4, where the peak extraction occurs at -2° from normal incidence. 

This narrow peak is angle dependent, and shows a factor of 2 enhancement in output emission with the 

photonic crystal present, while the broader enhancement across all measured angles is due to the 

enhanced excitation over the entire PC area. The extraction enhancement occurs only in the PC region, 

but both regions have resonances at the UV excitation wavelength and so contribute to the enhanced 

excitation. As shown in Figure 4.6, the UV and visible resonances show angle dependence in orthogonal 

directions, so it is expected that the enhanced excitation shows little angle dependence when varying the 

extraction angle. 

 

Figure 4.7 Photographs of quantum dot enhancement within the checkerboard of PC regions. (a) The QD 

emission at λ = 490 nm is brighter in Region 1, where both the excitation and extraction are being 

enhanced, compared to Region 2, in which only enhanced excitation occurs. (b) A sample with a mix of  



83 

 

Figure 4.7 (cont.) 

QDs emitting at λ = 490 nm and λ = 590 nm. The yellow QDs in Region 2 dominate the output, because 

the peak extraction enhancement for λ = 490 nm in Region 1 is directed away from normal, resulting in 

reduced intensity when observed from above the PC. 

 

By adjusting the thickness of the TiO2 layer, the resonance conditions can be easily tuned. As 

shown in the varied depositions in Figure 4.5(a-c), a thicker layer redshifts the resonance wavelength of 

the structure. Figure 4.5(d) shows the photonic band diagram of the structure with the total 85 nm of TiO2, 

where the darker bands indicate the wavelength and angle coupling leading to resonance within the PC. 

These bands correspond to the bands of enhancement seen in Fig. 4.5(c) within the QD emission. Devices 

using the PC structure demonstrated in this work combine excitation and extraction enhancement for an 

increase of up to 5.8X as compared to the QD output produced with no PC structure present. There is an 

expected difference between the improvements in excitation and extraction, given that the QDs are 

dispersed through both regions of the PC structure. Therefore, the QDs in every region experience 

enhancement of the UV excitation wavelength, but the output wavelengths are enhanced only in one 

region, or half the total device area. 

There are also a several mechanisms by which it will be possible to further improve the 

enhancements offered by this approach. By optimizing the feature sizes for specific colors, the PCs may 

be designed to better couple to the emission and excitation wavelengths of the desired QDs, increasing the 

local electric field within the PC, and thus the enhancement experienced in the QD output. This can also 

be accomplished by coupling QDs to only the TM mode, with higher Q-factor resonance conditions. In a 

1D PC, the TM mode (which has electric field components in the x and z directions) can be isolated from 

the TE mode (with only y-directional electric field). However, in a 2D PC, the two polarizations cannot 

be separated and present as TE- and TM-like modes. These modes are similar to their 1D counterparts, 
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with the TM-like mode occurring at a longer wavelength and having a narrower resonance than the TE-

like mode, as shown in the band diagram in Figure 4.6. 

In addition, the lattice structure in the PC has a dramatic effect on the possible enhancement, where 

square and hexagonal arrangements of circular cavities demonstrated enhancement factors of 100-200X. 

Specifically placing the QDs only in the PC pixel region where they would experience both excitation and 

extraction would decrease the quantities of QDs required and also extract light more effectively. With 

these improvements, it is likely that the PC enhancement would be even higher.  

The devices in this work demonstrate the incorporation of QDs into a replica molded 2D PC. These 

structures have demonstrated combined excitation and extraction enhancements up to 5.8X output 

intensity. These structures also combine regions of PCs with different feature sizes, allowing different 

types of QDs to be embedded into the device and experiencing simultaneous enhancement from the same 

excitation source, but different extracted wavelengths. This creates a pixelated surface on a flexible 

substrate suitable for blending the color and directional output of multiple QD emission wavelengths for 

potential lighting or display applications. 

 

4.5 Fabrication of photonic crystal with electrohydrodynamic jet printing 

Due to high fabrication costs, there is a significant interest in improving the performance and 

efficiency of QDs within devices. In 1-D and 2-D PC slabs that serve as a quasi-planar device structure 

upon which QD-infused thin films can be readily applied, the optical coupling between PCs and QDs 

requires that the QDs reside within the resonant evanescent electric field volume, which decays 

exponentially away from the PC surface.
95

 The evanescent field of a PC resonator extends from the PC 

surface and decreases to 1/e of the peak value at a depth ranging from 10% to 50% of the resonant 

wavelength. Therefore, for QDs designed to emit in the visible part of the optical spectrum, QDs should 

be located within a few hundred nanometers of the PC surface if they are to experience enhanced 
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excitation and enhanced extraction. Methods used to apply QD-doped polymer thin films to PCs must 

therefore be capable of producing film thicknesses in the 10-500 nm range. 

In our previous approach for QD-polymer thin film fabrication is spin coating, which results in 

substantial waste of QDs, because only a small fraction of the QD-polymer material is incorporated into 

the resulting thin film, while the remaining material is cast into the spinner bowl lining. 

Electrohydrodynamic jet (E-jet) printing is a recently developed approach for highly controlled spatial 

and volumetric deposition of liquids onto a variety of planar and nonplanar surfaces. E-jet printing uses a 

voltage difference between the printing nozzle and the substrate to create consistent, high resolution 

printed patterns (Figure 4.8).
96-98

 E-jet printing has been used for semiconductor fabrication, biological 

sensing, and micro-optical devices.
99-100

 QD-embedded polymer structures have been fabricated with ink 

jet printing for display applications, but E-jet printing is also capable of printing with multiple nozzles, 

and achieves finer resolution than ink jet printing, with features as small as 240 nm to 10 lm and 

linewidths as narrow as 25 nm.
101-105

 

 

Figure 4.8 Schematic illustration of E-jet printing process. 
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In this continuation of previous work, we fabricated QD-embedded PCs by E-jet printing of a UV 

curable polymer onto a replica molding master and subsequent transfer to a substrate that supports the 

finished device structure. The QDs are placed inside the regions with the greatest electric field magnitude 

within the PC structure, resulting in a higher photon output than is produced without the PC structure. In 

addition, the targeted placement of the QDs to be in close proximity to the PC grating minimizes any QD 

emission outside the resonant evanescent field volume. The fabrication process was demonstrated in 

Figure 4.9. The PC structure consists of a linear grating formed by replica molding a polymer doped with 

QDs. The polymer mixture is E-jet printed over a master where the grating has a pitch of Λ = 340 nm with 

a 67% duty cycle and a depth d = 120 nm. The printed structure is then transferred to a plastic substrate, 

and a high refractive index layer of TiO2 (t = 105 nm) is deposited over the surface of the polymer grating 

to create the periodic variation in the refractive index of the device. 

 

Figure 4.9 Photonic crystal fabrication process: (i) E-jet printing the QD embedded polymer over the 

silicon master, (ii) applying the plastic substrate and curing the polymer, (iii) peeling off the replica from 

the master, and (iv) depositing the TiO2 film over the cured polymer. 

 

The E-jet printing process allows for precise placement of QDs on the PC patterned regions, to 

fabricate devices that show an 8X enhancement in output intensity. This capability is important in the 

context of creating a surface that contains an array of PCs in the form of red-green-blue emitting pixels, 

where individual PC regions may be optimized for a specific wavelength of QD emitter that would be 
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selectively printed upon them. Figure 4.11 shows a fluorescence microscope image of the E-jet printed 

device. The top inset shows the clean edges printed by the system over the device regions. The bottom 

inset shows a duller edge where the printing was not perfectly aligned with the PC region. The fainter 

regions occur where there is no PC enhancement of the QD emission and show a clearly visible contrast 

in brightness between the planar region and the 8X enhancement provided by the PC structure, thus 

verifying the enhancement effect of the PC. 

The enhanced emission is also polarized. The measured QD emission is shown for both the TM and 

TE polarizations in Figure 4.10 (a-b), respectively, where a polarizer has been added between the device 

and the measurement collection optics. The TM output intensity is 5X greater than the TE, and the TE 

output is comparable to the noise floor of the measurement system. 

 

Figure 4.10 (a) TM and (b) TE polarized output from the PC figure. The TM polarized output 

demonstrates enhancement, while the output of the TE polarization is comparable to the measured 

background. 

 

The E-jet printing process allows for precise placement of QDs on the PC patterned regions, to 

fabricate devices that show an 8X enhancement in output intensity. This capability is important in the 

(a) (b) 
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context of creating a surface that contains an array of PCs in the form of red-green-blue emitting pixels, 

where individual PC regions may be optimized for a specific wavelength of QD emitter that would be 

selectively printed upon them. Figure 4.11 shows a fluorescence microscope image of the E-jet printed 

device. The top inset shows the clean edges printed by the system over the device regions. The bottom 

inset shows a duller edge where the printing was not perfectly aligned with the PC region. The fainter 

regions occur where there is no PC enhancement of the QD emission and show a clearly visible contrast 

in brightness between the planar region and the 8X enhancement provided by the PC structure, thus 

verifying the enhancement effect of the PC. 

 

Figure 4.11 A fluorescence microscope image of the E-jet printed device.  

 

The cost improvements offered by the use of E-jet printing are substantial. The precise placement 

of the QDs eliminates the waste of spin-casting or loading QDs into device regions where there is no need 
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for emitters. In addition, the 600 nm film thickness, compared to the 8 µm thick layer produced with spin-

casting, concentrates the emitters in the high enhancement regions of the photonic crystal and reduces the 

required volume of QD-polymer solution for the film by over 90%. There are minimal regions in which 

the QD emitters experience no enhancement and this drastically increases the total emission efficiency. 

 

4.6 Future directions 

Future devices may be designed to utilize a non- UV excitation source simply by adjusting the 

design parameters to couple to a different wavelength. Pixel patterning can also create regions with no PC 

structure at all, allowing only the excitation source light to pass through, thus increasing the flexibility of 

color mixing options for lighting. 

The use of nanoreplica molding for fabrication makes it possible to scale up to large area 

fabrication on flexible substrates. With appropriate materials, large area, flexible displays and light 

sources can be constructed to use pixelated PC enhancement. The use of PCs in lighting and displays 

gives the advantage of angle steering possible with PC enhancement to broaden or narrow the output 

angles and control the directivity of light output in both lighting and displays. Polarization control is also 

possible with a PC, and could eliminate the 50% loss of backlight power by providing an initially 

polarized output in display technology. 

The technological opportunities afforded by PCs combined with the levels of enhancement possible 

using QD-embedded PC devices may be a key enabler for the affordable incorporation of QDs into novel 

lighting and display applications. The enhancements require lower concentrations of QDs and could 

advance the color purity and performance of QD-based light sources toward consumer applications. 

Future improvements for the E-jet printed device include increasing the printing speeds and 

printing red-green-blue specific device regions would improve the viability for scalable display 

production. If coupled with thin film transistors for switching, then E-jet printed PC regions would 



90 

 

provide pixelated control of color and polarization for use in screen displays for computers, televisions, 

and other devices that require the high color purity of QDs. 

  



91 

 

CHAPTER 5: LED DISPLAY PIXEL CAVITY 
 

 This chapter proposes a new design architecture for backlit LED display devices that utilize a 

luminescent concentrator cavity to produce color output, where a QD-polymer thin film is surrounded by 

high reflective photonic mirror and sputtering silver, and the top surface is coated with black absorber 

with a small aperture. This pixel design eliminates the need for color filters and polarization filters, 

achieving high power conversion efficiency and high ambient contrast at the same time. 

 

5.1 General introduction to LED display 

While the advent of OLED devices has introduced attractive features to optical displays such as 

wide, vibrant color gamut and mechanical flexibility, LED-backlit LCD devices are less expensive and 

more reliable to produce, and therefore continue to dominate the color display market. Despite their 

competitive advantage, conventional LED displays are hampered by poor efficiencies and severe 

limitations to the accessible range of emitted colors. In order for LED-backlit displays to maintain their 

competitive advantage, new innovations must be pursued in order to improve their contrast, color gamut, 

and power consumption. The left schematic of Figure 5.1(a) illustrates a conventional LED-backlit 

display, which produces color by filtering white light through color filters placed on top of each sub-pixel. 

Devices utilizing white backlights with even the purest red, blue and green components, over two-thirds 

of the photons which transmit through the underlying LCD device are lost in each color filter. Figure 

5.1(b) shows transmission profile of a commercial (CF-60 type) color filter used in optical displays. 

These color filters impose major limitations on the accessible color gamut and output efficiency. 

Additional losses reduce the overall light usages to only 6-7% for conventional displays, and as low as 4% 

for touch panel displays. 
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Each sub-pixel of a conventional LED-backlit liquid crystal display (LCD) contains a color filter to 

output either red, green or blue light. Each color filter eliminates 2-out-of-3 colors of the RGB spectrum, 

resulting in massive losses of optical intensity, which means the display requires more power. 

Another main issues regarding LED-backlit display devices is their low ambient contrast. This 

issues is especially serious for mobile displays. When you try to look at the display screen under direct 

sunlight, the reflection intensity at each interfaces sum up to so high intensity that it overwhelms the 

display intensity. One solution to reduce the ambient contrast is by apply multiple circular polarizers to 

suppress ambient reflection (Figure 5.1(c)). But it would further reduce the display intensity of the LED 

backlight. 

 

Figure 5.1 (a) Schematic illustrating the components of a conventional LCD device. Linear polarizers and 

color filters both result in significant loss of output. (b) Transmission profile of a commercial (CF-60 type) 

color filter used in optical displays. Even using a narrow linewidth light sources with equal distributions 

of red, green and blue, each color filter discards over two-thirds of incident light, resulting in major losses  

(c) 

(a) (b) 
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Figure 5.1 (cont.) 

of efficiency.  (c) Schematic showing the function of circular polarizers in high ambient contrast optical 

displays. While a circular polarizer/quarterwave plate reduces back-reflection of ambient light, it also 

results in additional (≥50%) loss of output. 

 

5.2 Pixel design 

For decades, luminescent concentrators have been explored as a potential way to increase the 

output efficiency of solar cells. Here, we propose a novel optical display architecture that integrates a 

luminescent concentrator to achieve more efficient utilization of source light, and high ambient contrast 

without any need for circular polarizers.  

The current design provides a new design architecture for backlit LCDs that uses a luminescent 

concentrator to produce color output. Our proposed design eliminates the need for color filters (which 

tend to be a major detriment to optical efficiencies in conventional backlit LCDs), and polarization filters 

used to enhance the ambient contrast as well as enable access to wider color gamut on par with emerging 

OLEO technologies. The combination of these attributes is very attractive as it reduces the required power, 

and improves the viewing experience. The concept is a new display design that can be formed using 

known materials. 

The design is a luminescent concentrator waveguide and outcoupling device that emits narrow-

linewidth visible light for pixelated displays from small openings in an otherwise black top surface. The 

salient features of the invention are luminescent materials (e.g. quantum dots or organic luminophores) 

and an optical microcavity containing high reflectivity mirrors and notch filters that prevent leakage of 

emitted light between sub-pixels. 
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As shown by the right schematic of Figure 5.2, our proposed design replaces traditional color filters 

with a luminescent concentrator micro-cavity, which is aligned directly above the top polarizer of an LCD 

panel. Each 25 µm by 25 µm sub-pixel contains a transparent polymer film embedded with quantum dots 

(QDs) that absorb photons from a single-wavelength (e.g. deep blue) source and emit light of a particular 

visible wavelength (such as green as shown in Figure 5.2). A combination of air gaps and high reflectivity 

mirrors create a cavity that concentrates the emitted light toward a small (4 µm diameter) outcoupler, 

which efficiently extracts light out the top of the device. A black absorber completely surrounds the 

outcoupler; the black absorber comprising 98% of the top surface area, resulting in high ambient contrast. 

Such a design may also find application for OLED displays, as it would eliminate the need for the circular 

polarizers required for such displays. The bottom DBR strongly reflects the emitted light from the QDs 

while acting as a deep-blue pass filter, thereby concentrating light towards the outcoupler and side mirrors, 

preventing leakage of light into adjacent sub-pixels. A green absorbing filter (not shown) will be added 

below the bottom DBR to minimize cross-talk between adjacent sub-pixels if green leakage through the 

bottom DBR is noticeable. We note that since the light in each subpixel will be produced by narrow 

linewidth QDs rather than a wide-band white light source, our design has the potential to achieve color 

gamut on par with emerging OLED displays. 

We anticipate that the reflectivity values of the mirrors shown in Figure 5.2 (98% averaged all 

incident angles for the top DBR, 96% for the side silver mirrors, and 95% for the UV-pass DBR filter) are 

attainable through extensive research, and we note that the efficiency of the device shown can be 

improved even more by including air gaps on the top and bottom of the luminescent concentrator as well 

as by increasing the size of the outcoupler at the top. Finally, we also plan to explore methods of tapering 

the side edges of the luminescent concentrator as a potential route towards simplifying subsequent 

fabrication steps while potentially reducing losses through the edges of the device.   
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Figure 5.2 (a) Schematic of our proposed design for a green sub-pixel. The UV source backlight excites 

polymer embedded QD luminophores which emit light at visible wavelengths. The emitted light is 

concentrated, via reflections at the cavity edges, towards a 4 µm diameter outcoupler. 98% of the total top 

surface area is coated with a black absorber, resulting in a high ambient contrast with no need for circular 

polarizers. 

 

5.3 Device fabrication 

 In order to demonstrate the feasibility of the pixel array design, we firstly fabricated a larger scale 

single pixel module for ease of measurement. Experimentally, the UV curable polymer, consisting of 91 

µL of LMA and 9 µL of EGDMA, was mixed in a vial, and certain amount of QD hexane solution and 4 

µL TOP was added and mixed well. The remaining solvent was removed by placing the vial inside the 

glovebox for several hours. Due to the low boiling point of hexane, the solvent will be fully evaporated 

without the use of rotavap. 0.05 µL of initiator (Darocur 1173) was added and mixed well with the 
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solution. Then the solution was capillary filled between two quartz plate with 500 um spacers in between, 

then immediately polymerized by exposure to a high intensity UV lamp for 40 min inside glovebox.  

The DBR mirror was purchased from Optical Filter Source, LLC (Austin, TX, USA). The 

aluminum cap was custom made by the machine shop at University of Illinois at Urbana-Champaign. The 

cap interior was then sputtered with 100 nm thick silver. The photographs of the silver coated cap and the 

fabricated QD-polymer slab are shown in Figure 5.3(b). The module was assembled by directly putting 

the QD-polymer slab on DBR with the cap on top. The 3D illustration graph of the final device is shown 

in Figure 5.3(a). The power conversion efficiency of the device was measured by placing the device at the 

front aperture of an integrating sphere, with the outcoupler side facing the integrating sphere. A 440 nm 

single wavelength light source was used to illuminate the whole polymer slab. The incident photon counts 

and QD emitted photon counts were collected to calculate the power conversion efficiency. 

 

Figure 5.3  
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Figure 5.3 (cont.) (a) 3D schematic of the large scale pixel module. (b) Photograph of custom-made 

aluminum cap and QD-polymer slab. 

 

5.4 Device performance  

5.4.1 High reabsorption quantum dots 

In this part of the project, we used commercial CdSeS/ZnS alloyed QDs from Sigma-Aldrich 

(Product #753785). The QDs are dissolved in toluene at 1 mg/mL concentration. The quantum yield of 

the QDs embedded in the polymer is 70%. We used these commercial QDs as the benchmark 

luminophores. 

The power conversion efficiency measurement result is shown in Figure 5.4. In Figure 5.4(a), the 

source illumination without any samples or DBR is plotted in blue curve, and the source illumination with 

the device module in front of the integrating sphere is plotted in black curve. From the signals we can 

conclude that over 99.9% of the incident blue light is absorbed by the QDs, which eliminates the need for 

additional color filters to block the blue spectrum. The emission from QDs is shown in Figure 5.4(b), 

where the signal around 630 nm is purely coming from QDs emission, and it can be calculated that the 

power conversion efficiency is 17.7%. This number is already significantly higher than traditional display 

devices. 

(b) 
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Figure 5.4 Power conversion efficiency measurement result. (a) Illumination source with and without 

sample. (b) QD emission when illuminated with blue light. 
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5.4.2 Low reabsorption quantum dots 

Aside from commercial QDs, we also used self-synthesize CdSe/CdS QDs as luminophore 

materials. The structure of these QDs is tuned to suppress the CdSe absorption peak by growing much 

larger CdS shells. By comparing the absorption spectrum of the commercial and synthesized QDs in 

Figure 5.5, it is obvious that the synthesized QDs exhibit a much lower reabsorption. The quantum yield 

of these QDs is the same as commercial QDs (70%), which enables very good side-by-side comparison. 

 

Figure 5.5 Absorption profile comparison between commercial QDs and synthesized QDs 

 

The power conversion efficiency result is shown in Figure 5.6. The optical density of the 

synthesized QDs slab is kept the same as commercial QDs at 440 nm. First of all, we can see that there is 

minimal leakage of blue light at 440 nm, which means that the majority portion of the incident photons 

are absorbed by the QD-polymer layer. Secondly, the power conversion efficiency calculated here is as 

high as 34%, almost twice of the commercial QDs sample. Since absorption emission overlap is the only 
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difference between the two samples, it is clear evidence that QDs reabsorption is a major factor in 

luminescent material performance.  

 

Figure 5.6 QD-polymer concentrating cavity emission by using synthesized QD. 

 

5.5 Ray tracing simulation 

In order to better understand the photon propagation behavior inside the device and provide insight 

into the designing rules, a Monte-Carlo ray tracing simulation program was developed. Monte-Carlo ray-

tracing simulations have been previously shown to be accurate if accurate physical parameters are 

used.
106-107

 In general, they are highly accurate and can model a wide variety of LSC shapes, sizes, and 

designs.  

5.5.1 Simulation method 

The method treats each incident photon as a classical geometric ray. At the scale we are interested 

in, wave optic effects are negligible. In addition, the incident light source is incoherent and so wave 

effects are minimized. The challenge, however, is in the treatment of absorption and fluorescence. As 
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commercial, geometric ray tracing software does not emphasize fluorescent emission using any of those 

software packages would require introducing many light sources according to the incident photon 

distribution. So our Monte Carlo simulation code precisely traces each photon in a fashion similar to 

traditional ray tracing for reflection and refraction, but also allows for absorption and fluorescent 

emission inside the media. Additionally, instead of doing ray splitting at interfaces, a probability is given 

according to the reflection coefficient to determine if the ray is reflected or refracted to reduce the 

computational cost. This does not sacrifice accuracy, as the ensemble average of these probability 

reflections is effectively the same as ray splitting when the number of rays sampled is large. In the regime 

of ray optics, diffraction and interference are not considered. Since the purpose of this study is to 

understand and optimize solar concentrator design each ray is characterized with its starting location, 

propagation direction, and intensity. 

Reflection off of a smooth surface is modeled using simple law of reflection. The field reflection 

coefficient r is calculated for perpendicular and parallel polarization respectively. 

𝑟𝑠 =
𝑛𝑖𝑐𝑜𝑠𝜃𝑖 − 𝑛𝑖𝑐𝑜𝑠𝜃𝑡
𝑛𝑖𝑐𝑜𝑠𝜃𝑖 + 𝑛𝑡𝑐𝑜𝑠𝜃𝑡

 

𝑟𝑝 =
𝑛𝑖𝑐𝑜𝑠𝜃𝑡 − 𝑛𝑡𝑐𝑜𝑠𝜃𝑖
𝑛𝑖𝑐𝑜𝑠𝜃𝑡 + 𝑛𝑡𝑐𝑜𝑠𝜃𝑖

 

The subscript i refers to incident side and t refers to transmission side, and θ is the angle between 

the ray and interface norm. The amplitude reflection coefficient is the norm squared of the field reflection 

coefficient. 

The propagation direction after reflection is determined by rotating the original direction 180° 

around the surface normal direction by the incidence angle. Refraction is modeled according to Snell’s 

law. 

𝑠𝑖𝑛𝜃1
𝑠𝑖𝑛𝜃2

=
𝑛2
𝑛1
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Upon ray incidence onto a surface, a reflection coefficient R is calculated from the materials 

property at the interface, and then a random number is generated and compared with R. If it is greater 

than R the ray is transmitted and otherwise the ray is reflected. 

In ray optics regime, absorption can be modeled as isotropic, uniformly distributed absorbers in a 

transparent matrix. The measured absorption and emission profiles of the luminophore are used as input 

parameters. After a photon is absorbed by a luminophore, the photon is excited into a higher energy state, 

and then relaxes to ground state via a number of channels, emitting a photon with a new random 

wavelength based on the emission profile of the fluorophore, and traveling in a new random direction. 

Due to the quantum yield being less than unity, a random number is introduced in the simulation to better 

represent the process. Every time a photon is absorbed by a luminophore, a random number between 0 

and 1 is generated. And if the random number value is larger than 0.7, it means that the photon will not 

converted to low energy photon. On the other hand, if the value is equal to or smaller than 0.7, it means 

that the luminophore will emit a low energy photon. The wavelength at which the luminophore emits is 

determined by the input emission profile of the luminophore. For this study, Monte-Carlo ray-tracing 

simulations are performed by collecting statistics on large numbers of photons incident on the QD-

polymer slab. The logic flow of the simulation is shown in Figure 5.7.  
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Figure 5.7 Trajectory loop of ray tracing simulation. 

 

First of all, a photon is created immediately above the polymer sheet, with designated wavelength, 

position, direction and polarization. When the program starts, the photon starts moving directly 

downward into the sheet. The photon is moved forward 5.01 μm at a time, and then a series of checks are 

performed. The photon can be absorbed or scattered, and at every interface it can be reflected or refracted. 

Absorbed photons can be luminesced, or they can be lost to nonradiative events. As mentioned before, 

luminescence, scattering, and reflection are all treated probabilistically with a random number generator 

initiated to the computer epoch. The polarization of the photon is maintained until a scattering or 

luminescence event allows it to randomize. The checking loop stops only when this particular photon is 

collected or lost. And then the program moves on to the next photon. The overall efficiency of the device 

is calculated when all the photons have been analyzed. The size of the device is set as the same as 
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experimental device (Figure 5.8). Photons are created at every point in a rectangular grid with 50 μm 

spacing. Additionally, every grid-point is populated with photons at 440 nm. 

                           

Figure 5.8 Schematic cross-section view of the device geometry in simulation. 

 

5.5.2 Simulation results 

The simulated typical spectrum output is shown in Figure 5.9(a). The illumination source is set as 

single wavelength (440 nm), thus displaying a single peak value. The QD emission very much resembles 

the experimental results. The simulated power conversion efficiency of the device varying the quantum 

yield value is shown in Figure 5.9(b). As we can see, at 70% quantum yield, the simulated efficiency is 

only several percent higher than experimental value. Considering the fact that the small defect in DBR 

mirror or silver mirror reflectivity is not accounted for in the simulation, the simulation result is very 

trustworthy. And if we extend the quantum yield both higher and lower, the curve exhibits an exponential 

function shape. It provided us with a clear route for higher device efficiency. If we could improve the 

quantum yield of the QDs from 70% up to 90%, then we could expect over 50% output efficiency. 
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Figure 5.9 (a) Simulated spectrum with QD-polymer concentrating cavity module. (b) Simulated power 

conversion efficiency by varying quantum yield. 
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Another factor that is important in the performance if the concentrating device is the transparency 

of the polymer slab. In previous chapter, we have proved that scattering inside the polymer layer disrupts 

the TIR mode of the photon traveling inside, and diminishes the photon collection efficiency to the 

micron silicon solar cell embedded. However, in our pixel design, the goal is to extract more light out of 

the concentrating cavity towards the front outcoupler, thus it is potentially beneficial to introduce 

scattering inside the polymer to promote more light output. In order to test this theory, we tuned the 

scattering probability inside the polymer from 0 up to 0.01, and the result is shown is Figure 5.10. As we 

can see, when the scattering is relatively small, the output efficiency fluctuates on a very small scale, 

which means scattering doesn’t affect the light extraction process. But when the scattering probability 

increases further, the efficiency drops significant to essentially negligible photon output. Similar to 

precious LSC simulation result, when scattering events happen frequently inside the polymer, photons are 

subjected to more loss mechanisms such as reabsorption, reflection and refraction. In conclusion, Monte-

Carlo ray tracing simulation provides us with a functional tool for predicting device performance and 

optimizing device geometry and material designs. 

 

Figure 5.10 Simulated power conversion efficiency by varying scattering probability. 
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5.6 Future direction 

In this part of work, we have successfully demonstrated the plausibility of designing such a pixel 

cavity to achieve high power conversion efficiency and high ambient contrast. Currently our experimental 

results were still collected with millimeter scale devices. Our future step will be focused on reducing 

device size to micron size, which is comparable to that of commercial display devices. One way to do so 

is to fabricate pixel arrays using photolithography method, creating a top cover with micron-sized 

aperture arrays (Figure 5.11).  

Figure 5.11  

(a) 
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Figure 5.11 (cont.) (a) Schematic drawing of pixel arrays module. (b) SEM image of patterned silicon 

surface with 10 μm hole arrays. 

  

(b) 
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CHAPTER 6: CONCLUDING REMARKS 
 

  With the advantage of a micro solar cell capable of being distributed into the LSC, dimensions on 

the order of a millimeter can be accessed to achieve optimal concentration ratio, while a millimeter sized 

LSC for a typical centimeter sized solar cell is incommensurate. A concentration ratio of 31 was 

demonstrated with a LSC device with DBR mirror, a result unprecedented in previous literature. Key 

parameters affecting LSC performance are identified and each investigated for their contribution. It is 

found that luminophore reabsorption plays a dominant role. It is concluded that to achieve higher 

concentration ratio, large Stokes shift is required, agreeing with previously developed theory according to 

thermodynamics by E. Yablonovitch. 

There are additional aspects that could be explored to further optimize the system. The micro solar cells 

studied in this work were silicon solar cells. It is possible to achieve higher efficiency both from the micro 

solar cell itself and the concentrators, by using a higher efficiency material such as GaAs. For a high 

concentration ratio especially, the quality of the solar cell is more important. For a low concentration ratio, 

silicon PV is good candidate. Another area of improvement is the design of DBR to better match the 

absorption and emission profile of QDs. 

For QDs or nanorods, there are great opportunities to explore other luminophores that cover a broader 

spectral range than the CdSe/CdS structure, yet still maintain a large Stokes shift. One possible pair of 

materials is PbSe/PdS and InCuP/ZnS. Current materials that absorb in the visible and emit in the NIR all 

suffer from stability issues. With advancements in this area possible in the future, a LSC or LED using 

more optimized quantum dots could achieve large improvements in terms of collector efficiency. 
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