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Abstract 

In recent years, cancer treatment strategies have moved towards personalized approaches, 

specifically tailoring cancer treatments on a single-patient basis using molecular profiles from 

the patients’ tumor genomes. Knowledge of a patient’s molecular profile can be used to 1) 

identify the disease mechanisms and underlying cause of a single patient’s cancer, 2) assign 

patients into treatment groups based on the molecular prognosis, and 3) recommend potential 

treatments for individual patients based on the patient’s molecular signature data. However, the 

bottleneck of the personalized medicine approach lies in the challenge of translating the vast 

amount of sequencing data to meaningful clinical insights.  

This dissertation explores several computational methods that utilize molecular signature data to 

understand disease mechanisms of cancer, categorize patients into biologically relevant subtypes, 

and recommend drug treatments to patients. In the dissertation, we present a method, DawnRank, 

a patient-specific method that determines the potential driving genomic alterations (the drivers)

of cancer. We expand on DawnRank’s capabilities by using the DawnRank scores in key driver 

mutations and copy number variants (CNVs) to identify breast cancer subtypes. We found 5 

alternative subtypes based on potentially clinically relevant driver genes, each with unique 

defining target features and pathways. These subtypes correspond to and build upon our previous 

knowledge of breast cancer subtypes. 

We also identify disease mechanisms in identifying key novel cancer pathways in which driver 

genes interact. We developed a method, C3, which pinpoints patterns of cancer mutations in a 

pathway context from a patient population to detect novel cancer pathways that consist of 
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significant driver genes. C3 improves on current methods in driver pathway detection both on a 

technical aspect and a results-oriented aspect. C3 can detect larger and more consistent pathways 

than previous methods as well as discovering more biologically relevant drivers. Finally, we 

address the issue of drug recommendation in the wake of molecular signature data. We develop a 

method, Scattershot, which combines genomic information along with biological insights on 

cancer disease mechanisms to predict drug response and prioritize drug treatments. Scattershot 

outperforms previous methods in predicting drug response and Scattershot recommends drugs to 

cancer patients that are in line with the actual drugs prescribed by the physician. 
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 Chapter 1: Overview 

Cancer is a disease of the genome that is the second-leading cause of death in the United States 

[1]. Although a “cure” for cancer is a top priority goal for medicine and society alike, cancer is 

notoriously difficult to treat due to the vast amount of genetic diversity and heterogeneity among 

tumors [2], [3]. Tumor heterogeneity is the observation that tumors present distinct 

morphological and phenotypic profiles, and can occur both between two different tumors or even 

within the same tumor [4]. Tumor heterogeneity can be explained by the clonal evolution model 

of cancer, in which tumorigenesis occurs when a genomic alteration (a driver) in a cell improves 

a cell’s fitness, allowing it to outcompete in its environment, divide and grow eventually leading 

to tumorigenesis with the cells of the tumor sharing a common ancestor [5]. Because the driver 

occurs at the molecular level, understanding the human genome  and molecular signature 

information is a crucial tool in combatting cancer [6].  

The ability to utilize vast amounts of molecular signature data has been made possible in the 

recent years. Advances in the scope and reduction in the cost of next-generation sequencing 

technologies have provided us with an opportunity to better characterize the molecular signatures 

of human cancers. Information from sequencing can be used  to identify perturbations between 

cancer cells and normal cells that contribute to tumorigenesis on a single-patient basis, which can 

be used to classify a patient’s cancer as well as recommend potential life-saving cancer 

treatment. The single-patient precision of NGS data paves the way for personalized treatment 

strategies in cancer [7]. The ultimate goal of personalized medicine is to integrate genomic 

information with traditional treatment methods (the patient interview, laboratory testing, and 

1	



2	

socioeconomic and environment factors) to provide a treatment plan that is tailored to a single 

patient, revolutionizing the way cancer care is conducted [7], [8]. 

Although the prospects of a personalized medicine are promising, the challenges of applying the 

genomic information obtained from the lab bench to the bedside are substantial [9]. Three of the 

most prominent challenges in realizing the dream of personalized medicine to the clinic are: (1) 

improving our understanding cancer development and progression by identifying the drivers  of 

cancer [10], [11]; (2) applying our understanding of the genetic basis of cancer to better improve 

diagnostic capabilities [12]; (3) integrating genomic and diagnostic information to ultimately 

select and prioritize effective treatments for cancer patients [13]. The sheer volume of complex, 

multidimensional data that represents the cancer genomic profiles makes it difficult to analyze 

such molecular signature data [14]. Therefore, new computational and statistical methods are 

needed to model tumor mechanisms, diagnostic subgroups, and treatment suggestions. The 

objective of this dissertation is to develop new computational methods that identify important 

genomic alterations related to tumor mechanisms, comprehensively stratify patient subgroups, 

and effectively recommend drugs for personalized cancer medicine. 

1.1 Personalized approaches in driver identification in cancer 

A key question in cancer genomics is focused on identifying the drivers and the driving 

mechanisms behind the important tumorigenesis pathways related to tumor development and 

progression. A driver is considered to be a genomic alteration such as a mutation or a copy 

number change that significantly increases the fitness of the tumor. The functionality and driving 
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pathways of these alterations may vary. Some hallmark examples include constant response to 

growth signals, no response to anti-growth or apoptosis signals, improved replication potential 

with telomerase, sustained angiogenesis, and factors that promote invasion and metastasis [10]. 

Although the alteration rate is high in many cancer cells, only a small number of mutations will 

lead to tumorigenesis. A key challenge lies in distinguishing “driver” mutations, which 

contribute to tumorigenesis, from functionally neutral “passenger” mutations [15]. The most 

basic approach is to categorize mutations based on recurrence, i.e., the most commonly occurring 

mutations are more likely to be drivers [16], [17], or by comparing mutation rates in individual 

genes based on an empirically derived background mutation rate, such as MutSig [18] and 

MuSiC [19]. Machine learning-based approaches use existing knowledge to help identify drivers. 

For example, CHASM utilizes random forest to classify driver mutations using alterations 

trained from known cancer-causing somatic missense mutations [20] and CONEXIC was 

developed to integrate copy number change and gene expression data to identify potential driver 

genes located in regions that are amplified or deleted in tumors [21]. One very promising class of 

driver detection methods models the interaction a driver might have with associated genes in a 

cancer pathway. Network and pathway-based approaches are one of the most promising methods 

to understand drivers due to their ability to model gene-gene interactions by aggregating small 

effect sizes from individual genes. Examples of network-based driver models include 

PARADIGM-Shift [22], which was developed to utilize pathway-level information along with 

other features (such as expression, methylation, copy number) to infer gain and loss of function 

for mutations; DriverNet [23], which classifies driver mutations as mutations that propagate 

outlying downstream differential expression in the transcriptional regulatory network [23]; and 
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MAXDRIVER, [24] which was proposed to identify driver genes by integrating multiple omics 

data and heterogeneous networks. Our method DawnRank, addresses several of the shortcomings 

of previous methods by providing a truly patient-specific model that does not require population-

level information to make an inference on driver genes. Since DawnRank, multiple new 

ensemble methods have been developed to build consensus drivers that are found by multiple 

types of previously-established methods, including DawnRank. Ensemble methods combine 

insights from recurrence-based information, sequence information, and network information. 

Two recent ensemble methods: EC [25] and MADGiC [26] incorporate this information in a 

machine learning framework to predict drivers. DriverDBv2 [27] is an ensemble method that 

detects drivers from multiple established sources, including results from in DriverNet and 

DawnRank. 

Driver identification software has contributed tremendously to our understanding of how 

alterations in genes may impact cancer. However, the narrative of tumorigenesis does not 

necessarily begin and end with a single alteration in a driver gene. An altered gene may have 

many downstream effects, leading to effects on several pathways that drive cancer [28]. 

Discovery of driver pathways provides insight on how mechanisms of tumorigenesis. Several 

methods have been proposed to model potential driver subnetworks and pathways. One method, 

MEMo [29], found closely related driver groups, called modules, that contribute to 

tumorigenesis using principles of mutual exclusivity. The mutual exclusivity in cancer pathways 

is supported by the observations in which one mutated gene suffices to perturb the function of its 

corresponding pathway. Multiple mutations require significantly higher energy investments on 

the part of cancer cells, and are hence selected against. Zhang et al. [30]  expanded the ideas 
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behind the concept of MEMo with iMCMC, and provided a framework to integrate mutation 

data, copy number, and expression information into cancer network weights which they used to 

identify modules. Dendrix [31] was developed to identify potential driver subnetworks using 

mutual exclusivity and coverage over a patient cohort, without relying on known network 

information. It has the potential to facilitate the discovery of new modules. MDPFinder [32] 

expanded on the overall framework of Dendrix by incorporating gene expression information to 

ensure that genes in discovered mutually exclusive pathways were also co-expressed. Multi-

Dendrix [33] and CoMDP [34] address the limitations of Dendrix and MDPFinder, respectively, 

by allowing their algorithms to find multiple co-occurring modules. More recently, CoMEt [35] 

was proposed to address an inherent bias in Dendrix and Multi-Dendrix that resulted in high 

frequency mutations being significantly more likely to be included in mutually exclusive 

modules. The previous methods are not without limitations. The most prominent limitations are 

the size of the modules and the inability to integrate biological insights such as gene expression 

and gene network interaction in determining driver pathways. Even the most recent method, 

CoMEt cannot efficiently identify modules consisting of more than 10 genes. Incorporation of 

biological insights and the ability to identify expansive functional pathways in cancer are needed 

to improve our understanding of the driving pathways in cancer.  

 

1.2 Personalized approaches to discovering diagnostic cancer subgroups 

 

One of the most useful diagnostic tools in cancer care is the identification of clinically relevant 

patient subgroups. These molecular subgroups, or subtypes, account for tumor heterogeneity by 

stratifying patients with different prognoses, variable first sites of metastasis, differential 
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response to targeted therapeutics, and different rates of survival [36]. The end goal of subtyping 

is to divide patients into strata that will likely respond to tailored cancer treatments. Molecular 

subtypes in breast cancer have been crucial to our understanding in both the clinical features and 

treatments in cancer. Subtypes from both DNA/RNAseq and Microarray data serve as prognostic 

markers that can be used to both predict survival times, relapse times, and other clinical features 

as well as define genetic markers that can serve as therapeutic drug targets [37]. 

 

Breast Cancer (BRCA) has one of the most well-studied molecular subtypes  [38]. The earliest 

molecular subtyping for BRCA used the major hormone receptors in the tumor: Estrogen 

Receptor (ER) and  Progesterone (PR), and the growth factor receptor, Her2 (Her2) [39]. By 

testing for the receptor presence in these three subtypes, clinicians prescribe treatments that 

selectively target these receptors and its corresponding signaling pathway. Nevertheless, 18% of 

BRCA patients do not test positive for any of the three receptors. These patients, called Triple 

Negative Breast Cancer (TNBC) patients, are associated with poor prognosis, poor survival, and 

poor response to traditional BRCA therapeutics due to lack of available drug receptor targets 

[40], [41]. 

 

The advent of next-generation sequencing has made it possible to categorize BRCA subtypes 

through genomic and molecular signature data with the hope to finding new genomic markers 

that guide novel drug development, especially for the sorely needed TNBC patients. The most 

prominent of these methods is PAM50 [36], [42]. PAM50 illustrates a list of fifty gene markers 

whose gene expression serves as features in a median-centered hierarchical clustering, which 

ended up with five major BRCA subtypes: “Luminal A”, “Luminal B”, “Her2”, “Basal”, and 
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“Normal-like”.  In addition to the PAM50 subtypes, the authors of the Molecular Taxonomy in 

Breast Cancer International Consortium (METABRIC) found that the PAM50 “Luminal A” and 

“Luminal B” subtypes could be further divided in significant subtypes using Item Cluster 

Analysis (iClust) [43]. METABRIC found 10 significant BRCA subtypes. The METABRIC 

clusters further break down several of the original PAM50 clusters, especially differentiating 

several types of Luminal A and Her2 clusters. Other methods have defined BRCA subtypes 

using other types of method such as The Cancer Genome Atlas’s (TCGA) BRCA landmark 

paper which found five significant clusters using copy number calls through a Non-Negative 

Matrix Factorization (NMF) [44]. This model used copy number calls exclusively with no gene 

filter and no incorporation of others molecular signature information such as gene expression. 

One promising new approach in BRCA subtype detection lies in using driver genes as features to 

further stratify BRCA subtypes. Specific mutations and copy number alterations have used as 

factors to identify specific subgroups within Luminal breast cancers [45], and one potential 

future direction in breast cancer research lies in using driver genes as features in identifying 

alternate BRCA subtypes which may result in new molecular markers targets that can be used to 

diagnose and treat BRCA patient populations.  

1.3 Personalized drug response prediction in cancer 

The computational identification of novel driver genes and pathways and the integration of 

genomic data to discover alternative subtypes have set the stage to accurately portray the 

molecular and clinical profiles for a cancer patient. The next step in personalized medicine is to 

accurately predict a cancer therapy for individual patients in the context of the newfound 
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genomic and clinical diagnostic tools [13]. This is crucial to guide clinicians to assign the most 

effective therapeutic treatments individual cancer patients to ultimately combat the cancer and 

improve the quality of life [46][47]. One of the most promising personalized treatment strategies 

available to physicians is the prescription of drugs that target the driver genes of the patient [11]. 

For example, a lung cancer patient with an aberrant epidermal growth factor EGFR may respond 

well to a tyrosine kinase inhibitor which inhibits EGFR [48] while a breast cancer patient with an 

aberrant Her2/ERBB2 receptor may respond well to a monoclonal antibody, Trastuzumab, that 

targets the Her2/ERBB2 receptor [49]. The goal of computational methods that recommend drug 

treatment is to provide a framework which assigns the right targeted therapy to the right patient 

based off of the patient’s molecular signature information.     

 

Modeling the effect of cancer drugs is ripe with many major challenges. On the treatment side, 

cancer treatments work under a variety of drug mechanisms, each with unique indications, and 

contraindications which add many confounding variables to the precision and reliability of the 

prediction of the response of the targeted therapy [50]. Even in targeted therapies, cancer drugs 

have complex interactions with cell lines in which the interaction between the drugs and the 

targeted pathways are not well understood in many cases [51]. On the disease side, Cancers are 

multifactorial genetic diseases that are heterogeneous and operate under different disease 

mechanisms from patient to patient [52].  

 

The majority of data available for drug response analysis comes from cell lines compendiums 

such as The Genomics of Drug Sensitivity of Cancer (GDSC) [53] and the Cancer Cell Line 

Encyclopedia (CCLE) [54]. Cell line information has spawned many of the landmark studies in 
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drug response research. One example comes from the National Cancer Institute’s (NCI) 

DREAM7 project, where contestants predicted the drug response of “hidden” BRCA cell lines 

using RNA-seq data from training cell lines. Other cell line studies include Dong et al.’s machine 

learning model which uses Support Vector Machines (SVM) predicting the drug response of 

GDSC cell lines [55]; CancerDP, a drug prioritization method based on SVM with F-stepping 

feature selection [56]; A linear model study that calculated the drug response or Lymphoblastic 

cell lines using a linear model [57]. Most recently, a flagship study modeled drug response 

predictions through an ensemble method by identifying functionally impactful and unique 

Cancer Functional Events (CFEs) [58]. However, results from cell line studies is not without 

drawbacks. Experimental procedure differences between the major cell line compendiums have 

shown inconsistent drug response when the same drug is treated with the same cell line [59] 

Additionally, cancer tumors do not reside in a closed system. Tumors react closely with normal 

cells and the patient’s environment [60].  

 

Ideally, a drug treatment model built on real patient data and histories such as one utilizing 

TCGA data would accommodate these factors; however, such a model would need to be able to 

handle the added complexity and separate out the important features. Some methods have been 

developed to model drug effectiveness in drug response. The authors of [61] utilized a linear 

Ridge-Regression model to bridge the gap using in vitro gene expression models to make 

predictions in cancer patients. While gene expression models have shown a degree of success, 

gene expression models alone have been found to be insufficient in predicting drug response in 

some cancers [62]. The IntOGen platform has also built a drug recommendation model based on 

the proximity of the driving cancer gene to the drug target [63]. The identification of targetable 
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genes was expanded using the EMD model, which identified a list of candidate drivers using 

integrated gene expression, mutation, copy number and network information with potential drug 

targets for the drivers [64]. Another method GOPredict [63] integrates both genomic and 

pathway data to provide a ranked drug list of potential targets [65]. Most recently, Zhang et al. 

[66] developed a method ElasticNet Regression machine learning method that predicts the 

clinical response of a drug directly from TCGA molecular signature data using mRNA 

expression, mRNA expression, methylation, or copy number individually. However, this method 

has been hampered by several significant limitations. No model presented in their paper 

predicted drug response with a higher AUC of 0.7 when compared to the actual prediction. 

Additionally, the lack of a filter for curated cancer genes has led to overfitting due to the 

incorporation of low-information and redundant variables in the model. In this dissertation, we 

describe a novel method in drug response prediction and recommendation which addresses the 

limitations of previous methods by only using high-impact biological features to prevent 

overfitting as well as integration of multiple types of genomic features to increase the reliability 

of the model. 

 

1.4 Contribution of the dissertation 

 

While the aforementioned computational methods in driver detection have greatly contributed to 

our understanding of cancer progression from both an individual gene and a driver pathway 

perspective. The goals in driver detection addressed in the dissertation are two-fold: 1) the ability 

to precisely detect individual rare drivers that are potentially obscured by conventional methods 

and 2) the ability to describe in a biological context the interaction of multiple driver genes 



	 11	

working together. The work in this dissertation also seeks to explore potential clinical 

application. We use the insights highlighted by our driver detection methods as a guide to the 

identification of novel clinical subtypes using driver genes as important features for 

classification. Additionally, we use the integrated knowledge from drivers and other genomic 

sources to develop a new approach which prioritizes and predicts the response of cancer drugs.  

 

In Chapter 2, we introduce a method called DawnRank [67] that detects driver genes using data 

from a single patient sample. By only using data from an individual patient sample rather than a 

large cohort, we identify personalized, patient-specific drivers. The single patient approach 

detects drivers regardless of mutation frequency, thereby allowing us to focus on potential rare 

(infrequent) drivers. DawnRank ranks potential driver genes based on their impact on the overall 

differential expression of its downstream genes in the molecular interaction network. Mutated 

genes with a higher ranking are more likely to be drivers. DawnRank has been shown to 

outperform previous methods in detecting known, biologically-verified driver genes, while also 

proposing potential novel and rare driver genes. In Chapter 2, we explore the biological 

significance of the DawnRank driver genes, by using the DawnRank scores as the basis for a 

diagnostic tool to identify subtypes in breast cancer. In this analysis, we performed a consensus 

clustering on the DawnRank score on genes with mutation and copy number alterations to 

identify breast cancer subtypes. This method is novel in its application as it clusters BRCA over 

an integrated dataset of both mutation drivers and copy number drivers simultaneously. Our 

framework identified five alternative BRCA clusters which we compared to existing BRCA 

clinical subtypes as well as the established PAM50 gene expression subtype, and we identified 

potential driver genes that may serve as molecular markers for each of these subtypes.  
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With respect to driver pathways, while current methods such as Dendrix, Multi-Dendrix and 

CoMEt all have the ability to identify driver subnetworks/pathways involving multiple driver 

genes, the aforementioned methods are typically inefficient when applied to large-scale datasets 

with large values of their relevant parameters. Some of these methods are randomized in nature 

and no guarantees exist that multiple runs of the methods will produce compatible results. 

Almost all methods are only able to identify a small number of modules of limited size as cluster 

sizes are critical algorithmic parameters from the perspective of computational tractability. Most 

importantly, they have to be redesigned or restructured whenever new biological information is 

included in the discovery process. Chapter 3 introduces a novel method called Cancer 

Correlation Clustering C3 [68] which addresses the shortcomings of the existing methods. C3 

uses a new agnostic optimization framework specifically developed and rigorously analyzed for 

the driver discovery task that allows for the integration for flexible biological data from multiple 

sources such as coverage, mutual exclusivity, expression data and network pathway information. 

C3 has low computational cost compared to previous methods, and it allows for adding relevant 

problem constraints while retaining good theoretical performance guarantees. 

 

Chapter 4 of the dissertation introduces a novel method, Scattershot. Scattershot addresses 

several of the limitations of previous methods in order to develop a drug prioritization tool that 

assigns the right drug to the right patient. The data that Scattershot uses is from real patient, 

TCGA data, rather than the closed-system in vivo cell line studies. Scattershot models the drug 

recommendation problem as a multilabel machine learning problem [69] in which we develop 

ensemble classifiers from multiple genomic sources such as mutation, expression, copy number, 
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and pathway-level information as well as clinical variables. Scattershot uses the multilabel 

framework to build binary classifiers that predict the drug response of an individual drug while at 

the same time, aggregating multiple pairwise binary classifiers comparing pairs of drugs in a 

drug list to prioritize the drug rankings. We compared Scattershot’s treatment predictions in 

cancer patients to the treatments actually assigned to the patient by physicians and we found 

Scattershot’s predictions are mostly in line with the physician recommendation, outperforming 

the previous models. 
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Chapter 2: Integrated Mutation and Copy Number Driver Analysis Identifies Molecular 

Subtypes of Breast Cancer1 

 

2.1 Introduction 

 

Breast cancer remains the second leading cause of cancer related death in women each year [1]. 

Breast cancer is a heterogeneous disease with multiple subgroups. Patients in different subgroups 

have different prognoses, variable first sites of metastasis, and differential response to targeted 

therapeutics. Currently, the estrogen-independent breast cancers have the worst prognosis, fewest 

therapeutic options, and no currently approved targeted therapies. Standard of care includes 

chemotherapy and radiation therapy [38]. Identification of targetable drivers in breast cancer 

could provide novel therapeutic targets. 

 

The discovery of the driving events in cancer has been the subject of years of research in 

personalized medicine [2], [19], [21]–[24]. However, these methods, while providing a starting 

point in identifying common drivers, are often challenged by limitations in identifying rare, 

patient-specific drivers. Most of the methods listed above select drivers based on categorize 

mutations based on recurrence, i.e., the most commonly occurring mutations are more likely to 

be drivers [16], [17], and thus are disadvantaged due to the fact that they require a large number 

																																																								
1	The description of the DawnRank method in this chapter is based on a published paper in 

Genome Medicine and is referred to in the dissertation as “J. P. Hou and J. Ma, 
“DawnRank: discovering personalized driver genes in cancer,” Genome Med., vol. 6, no. 7, 
p. 56, 2014” 
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of patient samples to generate reliable results and lack the ability to discover rare and patient-

specific drivers. Other methods such as PARADIGM-Shift are designed to determine drivers in 

small pathways and often require detailed previous knowledge of specific pathways and focus 

genes to operate effectively. New methods are needed to identify novel and rare drivers when we 

do not have much prior knowledge of the tumor. 

 

It is now acknowledged that individual tumors of the same type are highly heterogeneous and 

have diverse genomic alterations [70], [71]. This stems from the “long-tail phenomenon” which 

states that cancer mutations are characterized by a small number of frequently mutated genes and 

a large number of infrequently mutated genes [72], [73]. Discovering rare drivers in the long tail 

of genetic alterations remains difficult. Therefore, we urgently need methods to assess the impact 

of patient-specific and rare mutations from individual tumor samples in order to elucidate 

personalized molecular drivers.  

 

Large efforts to identify the genetic underpinnings causing breast cancer have led to 

unprecedented amounts of both DNA and RNA genomic data. However, the significance of 

these alterations often is not well understood.  Copy number alterations (CNA), are known to be 

an early, common, and critical factor in the development of breast cancer. It is much more 

common across the TCGA cohort and has been shown to be an early event in the development 

from normal breast to pre-invasive cancer to invasive and metastatic tumors. CNAs, in 

conjunction with mutation-based alterations have been used to define and distinguish cancer 

subtypes in the past. Mutation and Copy Number alteration markers have used as factors to 

identify specific subgroups within Luminal breast cancers [45]. These driver genes present a 
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unique perspective in stratifying breast cancer subgroups [74]. Patient subgroups can be treated 

using targeted therapy directly aimed at the driver genes that that define the subgroup [75]. The 

implications of this are especially important in treating Triple Negative Breast Cancers (TNBC) 

which are defined by their lack of targeted therapeutic targets and poor overall prognosis [76]. 

Therefore, an integrated approach that identifies patient subgroups based on their driver genes 

may provide alternative targets in breast cancer targeted therapy. 

 

The identification of driver-defined subtypes requires a reliable method to identify the driver 

genes in a given cancer patient. One method that identifies personalized driver alterations in 

cancer is DawnRank [67]. DawnRank detects driver genes using data from a single patient 

sample. By only using data from an individual patient sample rather than a large cohort, we 

identify drivers in a personalized fashion. DawnRank allows for the integration of mRNA gene 

expression, DNA mutations, and DNA copy number data. The proportion of drivers from CNA 

as compared to mutation is not well known. Additionally, it is largely unknown if drivers on an 

individual tumor level are consistent within and across subtypes or private to a tumor. By 

applying DawnRank to TCGA breast cancer data, an understanding of the biology driving breast 

cancer can be explored with the hopes of identifying alternative, tractable therapeutic targets 

especially in estrogen-negative breast cancer. 

 

2.2 Results 

 

We applied DawnRank to the TCGA datasets. For evaluation purposes, we applied DawnRank to 

512 glioblastoma multiforme (GBM) samples, 504 breast cancer (BRCA) samples, and 572 
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ovarian cancer (OV) samples in TCGA. The datasets we used in this work include gene 

expression and coding-region mutation data for three cancer types generated by TCGA [44], 

[77], [78]. The data was accessed on May 20, 2013. The mutation data we used included non-

synonymous point mutations and insertions and deletions (indels) in coding regions. We first 

showed that DawnRank outperforms two pathway-based methods DriverNet and PARADIGM-

Shift. We then used the results of DawnRank to determine both potential novel drivers (new 

genes mutated frequently), and more importantly, potential rare and personalized drivers that 

previously could not be assessed by other methods. The discussion of potential novel and rare 

driver alterations as well as an in-depth comparison of DawnRank to other methods can be found 

in the DawnRank paper [67]. 

 

We then applied DawnRank to discover BRCA subtypes. We developed a framework for an 

integrative analysis of somatic mutations and copy number alterations that identified five breast 

cancer molecular subtypes within a TCGA breast cancer cohort of 351 patients weighted to be 

representative of a BRCA population using known subtypes. An overview of our method is 

shown in Figure 2. For this study, we utilized the Cancer Genome Atlas [44] as the discovery 

dataset and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) 

[43] as a validation set. DawnRank was used to identify candidate driver genes. 

ConsensusClusterPlus [79] was then applied to discover subtypes of breast cancer based on 

driver alterations with a classification to nearest centroids classifier (ClaNC) [80]. Consensus 

Cluster Plus identifies stable clusters by assigning a patient into a cluster through a thousand runs 

of randomized patient sample, while ClaNC provides a feature compact method that predicts the 

class of a sample using the fewest features possible. Association with PAM50 [36] subtype and 
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clinical characteristics were assessed. Finally, we defined subtype-specific candidate drivers with 

both an Analysis of Variance (ANOVA) and significance analysis of microarray (SAM) [81]. 

The resulting alteration-based clusters yielded five potential BRCA subgroups with strong 

associations to the PAM50 gene expression clusters and the ER/PR/Her2 clinical classifications. 

We identified multiple sub-chromosomal altered hotspot regions encompassing candidate and 

subtype-specific, potentially new breast cancer drivers.  

 

2.2.1 Comparison of DawnRank to previous methods 

 

We evaluated the performance of DawnRank’s ability to identify known drivers and compared it 

with DriverNet and PARADIGM-Shift. As mentioned above, we utilized CGC as an 

approximate benchmark of known drivers. Here, we implicitly assume that all non-synonymous 

mutations in driver genes are potential driver mutations if they are selected by a method. We 

performed two separate comparisons. (1) We compared DawnRank to DriverNet over a large 

network in order to evaluate the performance of the two methods using a large human interaction 

network (which PARADIGM-Shift is not able to work with practically). (2) We also compared 

DawnRank to PARADIGM-Shift and DriverNet over a smaller, but well-annotated gene network 

based on KEGG in order to determine the effectiveness of the three algorithms in smaller 

networks. The network used in the first comparison was the same network described earlier. The 

network used in the second comparison was a smaller network built from the aggregation of the 

KEGG cancer pathways with 1,492 gene nodes and 8,070 edges. We ran DriverNet version 

1.0.0, defining a differentially expressed gene using their default settings of 2 standard deviations 

(http://www.bioconductor.org/packages/release/bioc/html/DriverNet.html), and we ran 
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PARADIGM-Shift version 0.1.9 using the suggested global-rank transformation for expression 

data (http://sysbio.soe.ucsc.edu/paradigm/tutorial/). To facilitate the comparison, we applied the 

Condorcet rank aggregation (see Methods) for the DawnRank scores based on individual patient 

samples to provide the consensus population-level driver scores. For each comparison, we used 

the following three measures (Precision, Recall, and F1-Score). 

 

Precision, recall and F1 scores were based on the top N genes. We first evaluated the 

performance between DawnRank and DriverNet. In general, DawnRank outperforms DriverNet 

in all three cancer datasets with respect to CGC (Figure 3). Although DriverNet performs 

comparably in ranking the top genes in GBM, it has poorer performance in OV and BRCA. A 

potential explanation of the difference may lie in the total number of mutations in the three 

cancer datasets. GBM had 5,478 mutations over 599 genes, while OV had 13,520 mutations over 

4,968 genes and BRCA had 11,900 mutations over 5,205 genes. The numbers indicate that there 

may be more passenger mutations in BRCA and OV and DawnRank is less affected by noise 

than DriverNet. An illustration of this is DriverNet’s ranking of the gene TTN as a top 5 driver in 

both BRCA and OV. TTN is the longest gene in the human genome and recent TCGA analysis 

has suggested that that higher mutation rate in TTN is likely to be artifacts [78]. TTN was not 

ranked among the top 60 genes in any cancer according to DawnRank. We then evaluated the 

performance of DawnRank, PARADIGM-Shift, and DriverNet using the smaller KEGG 

network. Overall, DawnRank outperforms both DriverNet and PARADIGM-Shift in terms of 

precision, recall, and F1 scores using CGC as a standard (Figure 4) or the Pan-Cancer results as a 

standard. In BRCA, although some known drivers such as TP53 and ATM were detected by 

multiple methods, DawnRank detected important known driver genes in the top 10 such as 
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CDH1, PIK3R1, and BRCA1 in breast cancer which were not detected by either PARADIGM-

Shift or DriverNet as top ranking drivers. 

 

2.2.2 Identification of driver-based subtypes 

 

In order to define the genetic drivers of breast cancer through an integrated analysis of gene 

expression, copy number, and mutation, we applied DawnRank to BRCA using a custom 

balanced cohort in TCGA, which samples a cohort where the proportion of each PAM50 subtype 

matches that of the population. Genes with cohort-wide DawnRank p-values ≤ 0.05	were 

considered for clustering to define driver-subtypes. 65 copy number altered genes and 38 

mutated genes were significant across the cohort (Figure 5A). These genes are selected by 

DawnRank to maximize pathway impact and driving potential. The copy number altered genes 

cluster along 1q gains, 8q gains, 11p loss, and 16p loss (Figure 5C-F). Running 

ConsensusClusterPlus on TCGA tumors with 1000 iterations of ConsensusClusterPlus with 80% 

resampling of genes and samples, we identified five as the ideal number of clusters by observing 

the maximum cophenetic correlation when testing k = 2 to k = 10. We compared the clusters 

after 25 different runs of ConsensusClusterPlus and observed consistent clustering results with a 

pairwise Rand Index of 0.97. Centroids for each subtype were built with ClaNC classifier with 

the feature parameter of 11, causing the least amount of misclassification in TCGA.  

 

2.2.3 Driver-subtypes reflect the genomic heterogeneity of breast cancer 
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To classify the driver-subtypes in the context of previously defined clinical predictors and 

molecular taxonomy, we examined the correlation with PAM50 subtype and known clinical 

predictors. Plotting Pearson residual for each driver-subgroup, we observe subgroups highly 

correlated to the PAM50 molecular subtypes (Figure 5B). The first cluster (red) is weakly 

positively correlated to both Luminal A and B PAM50 subtypes. The second subgroup 

demonstrates strong association with Basal-like and weakly positive correlation with Her2. The 

third cluster demonstrates an association with Luminal B subtype and a weak association with 

Her2-enriched PAM50 subtype. The fourth alteration cluster is consistent with previous work 

demonstrating shared genomic features between Luminal B and HER2-enriched PAM50 

subtypes [82]. The two remaining alteration clusters, “Luminal A1” and “Luminal A2”, are both 

strongly associated with the Luminal A PAM50 subtype.  

 

Since the mutation data is used for clustering, it is unsurprising that multiple mutation markers 

have strong associations with the alteration clusters which we confirmed using the Chi-square 

test for association. We tested mutation status of TP53, PIK3CA, GATA3, MAP2K4, and 

MAP3K1 due to their previously defined significance as drives by MutSig [44]. TP53 mutations 

are highly correlated with the Basal/Her2 and Luminal B/Her2 alteration clusters (p-value < 2e-

16). PIK3CA and GATA3 mutations are highly associated with the Luminal B and Luminal A2 

alteration clusters (p-value < 2e-16 and p-value = 0.043) [83]. These results confirm previously 

identified mutational and PAM50 subtype associations [44].  

 

2.2.4 Driver-subtypes correlate with Estrogen Receptor status, Progesterone status, and tumor 

stage 
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We next examined the correlation of each driver-subgroup to known clinically predicted values 

including: estrogen receptor (ER) status, progesterone receptor (PR) status, and Her2 receptor 

(Her2) status, tumor stage (T), node status (N), metastasis status (M). Clusters demonstrated 

significant association with 3 of the 6 tested clinical and mutation features, including ER, PR, 

and T. Interestingly, Her2 did not significantly associated with any subgroup. As expected, the 

three Luminal alteration clusters (Luminal A1, Luminal A2, and Luminal) demonstrated positive 

signals with ER and PR (Chi-squared test for association p-value < 2e-16). Tumor Stage 

associated with Luminal A2 group p-value = 0.001. These results further validate our 

classification scheme to recapitulate known clinical markers and biological subtypes. 

 

2.2.5 Subtype-defining drivers 

 

To define subtype-specific drivers, each driver (68 CNAs and 38 mutations) are tested by 

ANOVA for overall variation among the subgroups, and one class against all others to define the 

driver-subgroup specific to the driver with the significance analysis for microarray (SAM). For 

large, focal, CNAs we limited candidate drivers to the top two gene markers to represent the 

focal length alteration. ANOVA identified 11 copy number altered genes and 8 somatically 

mutated genes significantly associated with one subtype (Figure 6A). SAM analysis identified 37 

significantly altered genes within the driver-subtypes under a false discovery rate of 0.05 (Figure 

6B). Comparing results across both statistical analyses, we found five significant driver genes 

(ARF1, AKT3, PIK3CA, ATM and BCAR1) across both the ANOVA and SAM analyses.  
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For the Luminal driver-subtypes, we identified consistent drivers gained on chr1q across all three 

subgroups; however, subtype-specific candidate drivers are also present. BIRC3 (chr11) copy 

number loss is specific to the Luminal alteration cluster. 77.6% of the Luminal subtype has a 

copy number loss at BIRC3, and 66.0% of all BIRC3 alterations occur in the Luminal subtype. 

We visualized the network impact of BIRC3 within the Luminal driver-subtype (Figure 6C) 

compared to the network in the other driver-subgroups (Figure 6D). We identified a large 

downstream down-regulation of several genes within the network specific to the Luminal driver-

subtype (Figure 4C). In particular, PAK1 is the most distinct downstream differentially 

expression gene within the BIRC network for the Luminal subgroup but not in the other 

subgroups. PAK1 is two degrees of separation from BIRC3 and is a known oncogene that 

activates MAPK and MET signaling in cancer [84]. Our results suggest that PAK1 is highly 

overexpressed in Luminal subtype, which may be due to the deletion of upstream BIRC3. 

 

2.2.6 Subtype-specific driver CNAs in four chromosomal hotspots  

 

Specific regions of the genome are known to be commonly gained and lost within breast cancer. 

The drivers at these locations, however, are not well understood. Whether subtype-specific 

differences within each region of the genome selects for different driver genes is not known. We 

explored four known regions with a high prevalence of copy number alterations in BRCA to 

define subtype-specific drivers within each region including: 1q amplification, 8q amplification, 

11q deletion, and 16q deletion (see Figure 5C-F).  
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The chr1q amplification is one of most frequently occurring CNAs in breast cancer [85] [86]. 

Using a Chi-squared test, chr1q amplification is significant in the Luminal, Luminal A1, and 

Basal/Her2 clusters (p-value < 2e-16). In each of these clusters, chr1q copy number gains 

occurred in more than half of the samples with 76.2% alteration rate in samples in these three 

clusters as compared to only 12.2% alteration rate in the other two clusters. The DawnRank 

drivers in chr1q significant in these three driver-subgroups include AKT3 (25/335, 7.1%) and 

NCSTN (23/335, 7.1%). AKT3 is an integral member of PIK3CA signaling pathway, responsible 

for many vital cell functions such as growth and apoptosis [87]. NCSTN, a recently identified 

candidate target for altered Notch signaling activity within Basal-like breast cancers, provides 

the structural support for Notch signaling and is required for GSC cleavage of Notch receptor 

[88] 

 

Chr8q is a frequently occurring copy number gain with subtype defining features [89]. Chr8q 

amplification is significant in the Luminal B/Her2 (95.9% alteration rate) and Basal/Her2 (67.0% 

alteration rate) but not in the Luminal A related subtypes (20.2% alteration rate; Chi square p < 

2e-16). LumB/Her2 is significant for MYC (driver in 4.6% samples, SAM p-value=5.7e-8) and 

NCOA3 (driver in 2.8% samples, SAM p-value=1.47e-7). MYC is a key regulator of cell growth, 

proliferation, metabolism, differentiation, and apoptosis [90]. NCOA3 is a nuclear receptor that is 

known to be overexpressed in breast cancer and involved in estrogen-mediated cancer cell 

proliferation [91].  

 

Chr11q loss is primarily defined by the Luminal alteration cluster. Subtype defining driver genes 

in chr11q include BIRC2 and BIRC3 (drivers in 5.4% samples). These genes function by 
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inhibiting apoptosis by binding to tumor necrosis factor receptor-associated factors TRAF1 and 

TRAF2 [92]. 

 

The fourth major hotspot is chr16q loss. Previously associated with Luminal A breast cancer 

[93], chr16q loss is consistently associated with our three Luminal driver-subgroups.  This region 

is marked by CDH1 (driver in 16.5% samples) and TRADD (driver in 4.0% samples). CDH1 has 

prominent role in epithelial differentiation and may play a role in tumor differentiation and 

metastasis [94] . TRADD codes for an adaptor molecule that interacts with TNFRSF1A/TNFR1 

and mediates programmed cell death signaling and NF-kappaB activation [95]. TRADD also 

interacts with key drivers TRAF and CASP3 genes.  

 

2.2.7 Validation using METABRIC dataset  

 

Utilizing gene expression, recently published mutation data, and copy number data from the 

METABRIC dataset (n = 339 patients), we calculated the DawnRank scores for each tumor. We 

then applied ClaNC classifier on the 103 driver genes identified in the TCGA cohort to classify 

METABRIC samples into the 5 subtypes. We associated the 5 METABRIC driver-subtypes with 

PAM50 subtypes (Figure 7A). Similar to the TCGA alteration clusters, four of the METABRIC 

subgroups significantly associate with PAM50 subtypes (Chi-squared test for p-value=1.2561e-

10). The fifth subtype is associated with both Her2 and Luminal B. A Chi-squared based 

Goodness-of-Fit test confirmed that the distribution of between the TCGA and METABRIC 

results share the same distribution as compared to the PAM50 results (p-value=0.2128). These 



	 26	

results from the ClaNC classification of METABRIC driver-subgroups validate the TCGA 

driver-subgroups. 

 

Using the METABRIC dataset, we compared the overall survival time from the alterations 

clusters from METABRIC subtypes (Figure 7B) to that of PAM50 (Figure 7C). Both the 

alteration clusters and the PAM50 subtype demonstrate significant differences in survival within 

each group (p-value = 0.0251 and p-value = 0.0186), with the Basal-associated subgroups 

showing worsened overall survival.  

 

2.3 Discussion 

 

It is now acknowledged that individual tumors of the same type are highly heterogeneous and 

have diverse genomic alterations. Therefore, we urgently need novel methods to identify patient-

specific and rare drivers from individual tumor samples in order to elucidate personalized 

molecular mechanisms in different types of cancer. The goal of DawnRank is to integrate 

mutation data, gene expression, and network information to discover drivers in a personalized 

manner. We applied DawnRank to a large number of TCGA samples. By comparing to previous 

studies, our results demonstrated the effectiveness of DawnRank: (1) Despite its single-patient 

scope, DawnRank detects common and known drivers with as much or more precision than 

existing methods. (2) DawnRank can identify rare and novel genes that are potential drivers to 

specific patients. We believe this method will complement existing driver identification methods 

and will help us discover potential personalized drivers. The application to breast cancer 
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subtypes further demonstrates that the rare drivers predicted by DawnRank provides new insights 

into the molecular explanations of cancer subtypes with higher tumor heterogeneity. 

 

Using DawnRank, we present a new and different classification of breast cancer and subtype-

specific driver analysis of both copy number and mutation data. Utilizing both TCGA as a test 

set and METABRIC as the validation set, we demonstrate five robust driver-subtypes. Three 

subtypes correlate highly with the Luminal A subtypes, one with Basal/Her2, and the final with 

LumB/Her2. Additionally, the subgroups correlate with known clinical markers such as the 

estrogen and progesterone receptors with the Luminal subtypes, TP53 mutation in the 

Basal/Her2 subtypes, and worsened overall survival in the Basal/Her2 subtype. 

 

Known hotspots of copy number alteration in breast cancer, including 1q amplification, 8q 

amplification, 11q loss, and 16q loss, demonstrate subtype-specific differences. Chromosome 11 

loss is specific to Luminal subtype including BIRC3 and CBL loss. BIRC3 network analysis 

demonstrates loss of BIRC3 and a strong up-regulation of PAK1, a known oncogene downstream 

of BIRC3. A second interesting result is the loss of CBL, an E3 ubiquitin protein ligase which 

recognizes known oncogenes including FGFR2, KIT, and PDGFRA. CBL loss has not been 

previously described in the context of Luminal breast cancer. Targeting of FGFR family 

members with dovitinb has been showing to be effective in a small cohort of breast cancer 

patients in Phase 2 trial [96]. CBL loss could be a second marker for FGFR sensitivity in patients 

who lack FGFR amplification but still may be dependent on this pathway.  
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Integrating gene expression to evaluate the impact of a genomic alteration allows for novel driver 

identification such as the loss of BIRC3 and CBL playing major roles in defining the Luminal A 

subtype. Novel therapeutic targets are desperately needed for breast cancer patients, especially 

triple negative (TNBC) patients who lack estrogen receptor (ER), progesterone receptor (PR) 

overexpression or amplification of the human epidermal growth factor (HER2). In the metastatic 

setting, TNBC patients often do not benefit from the addition of systemic therapy. The paucity of 

systemic, targeted anti-cancer therapies in these patients begs for new treatment options. 

Improving our understanding of the underpinning molecular drivers of this subgroup are 

necessary to develop better targeted and more effective therapies.  

 

Future in vitro and in vivo confirmation will be needed to confirm our findings. We are also 

limited by the biases in the curated pathway used to evaluate the networks. Finally, assessment 

of these drivers through both therapeutic selection (comparing pre-treatment and post-treatment 

samples) and the selection of these drivers through the metastatic process are needed. Metastases 

are the leading cause of cancer related deaths, and often a small percentage clone in the primary 

causes seeding of distant metastases. Thus, drivers identified in the primary may not be the main 

causes of metastasis or the genes that need to be targeted to halt metastatic progression. Future 

studies on large cohorts of matched primaries and metastases will soon answer these questions. 

 

The heterogeneity of breast cancer has long been described and understood from a clinical, 

histopathologic, and molecular lens. Through DawnRank, we were able to capture this 

heterogeneity and assess novel molecular drivers for each breast cancer subtype. Future 

functional studies confirming the role of these drivers in a subtype-specific manner are needed in 
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order to lead to novel therapeutic development. Incorporation of mutations, copy number 

alterations, and gene expression confirm the importance of evaluating not only mutations but 

also copy number variations in understanding the underlying biology driving breast cancer.  

 

2.4 Methods 

 

2.4.1 DawnRank algorithm 
 
 
Our method ranks genes according to their impact on the perturbation of downstream genes, i.e., 

a gene will be ranked higher if it causes many downstream genes, directly or indirectly in the 

interaction network, to be differentially expressed. DawnRank views the gene network as a 

directed graph. We adopted the random walk approach used in PageRank [97], [98] to model this 

process iteratively.  

 

In DawnRank, a gene will possess a higher impact score (i.e., rank) if the gene is highly 

connected to differentially expressed downstream genes (directly and indirectly connected). 

Driver genes tend to display a high-degree of connectivity within the gene network [99], [100]. 

For example, using the number of outgoing edges alone, known driver genes as classified by the 

Cancer Gene Census (CGC) [101] have a mean and median of 31.45 and 12 outgoing edges, 

respectively, whereas genes not typically classified as drivers (not in CGC) have a mean and 

median of 17.73 and 3 outgoing edges, respectively. The higher number of outgoing connectivity 

of known driver genes suggests that the PageRank model would be appropriate to prioritize 

driver genes based on their impact in the gene interaction network. PageRank has had several 

adaptations in genomics. GeneRank utilized PageRank to rank the importance of genes in a 
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molecular network [102]. PageRank derivatives (such as SPIA [103]) have also been used to 

analyze pathway-level importance. More recently, it was utilized to predict clinical outcome of 

cancer patients based on gene expression [104] and to assist subtype identification [105]. Such 

approaches also show similarity in nature to modeling network impact as a heat diffusion process 

as used in HotNet [106] and TieDIE [107]. DawnRank builds on the original PageRank 

algorithm by providing a way to model a network’s directionality with more stable rankings by 

utilizing dynamic damping factors (see below). 

 

DawnRank views the gene network as a directed graph. Let N be the number of nodes (in our 

case, genes) in the directed graph, and A be the adjacency matrix representation of the graph, a 0-

1 matrix (if node i links to j, then 𝐴'( = 1). Note that the current 0-1 adjacency matrix can be 

naturally extended to consider weighted edges to further distinguish different gene-gene 

interactions.  

 

We define the rank of each gene iteratively: 

𝑟(,-. = (1 − 𝑑()𝑓( + 𝑑(
𝐴('𝑟',

𝑑𝑒𝑔'

7

'8.

, 1 ≤ 𝑗 ≤ 𝑁	 (2.1)	

𝑟,	is the rank in the 𝑡,= iteration. The output of the rank describes a gene’s overall impact on the 

network: the higher the rank, the higher the impact of the gene. 𝑑 is the damping factor, a 

parameter representing the extent to which the ranking depends on the structure of the graph. In 

DawnRank, the damping factor is individualized based on gene connectivity (discussed below). 

𝑓 is the prior probability of the gene which we set to the absolute differential expression. The 

absolute differential expression is the absolute value of the difference of the log scale tumor and 
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normal expression values. The 𝑑𝑒𝑔' = 𝐴('7
(8.  is the in-degree of i, or the number of incoming 

nodes to i. This differs from the original PageRank definition of 𝑑𝑒𝑔', which was the out-degree 

of i. A webpage’s PageRank is dependent on the rank of the webpages that link to it (incoming 

edges), whereas our gene’s rank is dependent on the rank of the genes that it links to (outgoing 

edges).  

 

The zero-one gap problem refers to the potential pitfall that assigns biased ranks to some nodes 

[108]. When trying to rank nodes with 0 incoming edges, known as “dangling nodes”, the 

𝑑𝑒𝑔'	will be 0, arising to a divide-by-zero error. In our real gene network data, 15.5% of all 

genes do not have any incoming edges. The initial PageRank algorithm attempts to handle the 

problem by setting the damping factor to be 0 for such genes, while using the damping factor 

0.85 for all other nodes. If we use this approach, the ranks of genes with no incoming edges will 

be based solely on its differential expression (and not the network structure). However, this 

correction in itself causes a large gap in the damping factor for genes with 0 and 1 incoming edge 

This large gap in the damping factor can cause a drastic change in the ranking of the gene when 

an incoming edge is added to the gene which in turn may cause unstable rankings [108]. An 

unstable ranking system is especially concerning to gene network data, as it is still not a 

complete representation of all interactions among genes [109]. Therefore, small modifications 

and additions to certain gene interactions may significantly alter the rankings of potential drivers. 

To address this problem, we utilize dynamic damping factors [108], where each gene possesses 

an individualized damping factor based on the number of incoming edges to that gene (Eq. 2). As 

the number of incoming edges increases, the damping factor gradually rises to incorporate more 
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connectivity information into the ranking of the gene, therefore no large gap is observed from 0 

in-degree and 1 in-degree. 

𝑑' = 	
𝑑𝑒𝑔'

𝑑𝑒𝑔' + 𝜇
	 (2.2)	

The parameter 𝜇 follows a Dirichlet prior trained from maximizing the values of 𝜇 over 100 

random samples. We selected the 𝜇 value of 3 because it had the highest average DawnRank 

scores for known drivers in CGC. Overall, the dynamic damping factor mitigates the large 

change in the damping factor in nodes with 0 and 1 incoming edges by gradually increasing the 

damping factor as the gene’s in-degree increases, thereby creating more reliable and more stable 

rankings. We also show that DawnRank performs more reliably with a dynamic damping factor 

than a static damping factor on the TCGA datasets. 

 

In addition to the iterative version of DawnRank, the method can also be presented in matrix 

form: 

𝑟,-. = (1 − 𝑑)𝑓 + 𝑑𝑀×𝑟,	 (2.3)	

where 𝑟,,	𝑑, and 𝑓 are N×1 matrices to represent the rank, gene-specific damping factor, and the 

gene expression, respectively, and 𝑀 is the transition matrix defined by: 

𝑴 =	

𝐴.,.
𝑑𝑒𝑔.

⋯
𝐴.,C
𝑑𝑒𝑔C

⋮ ⋱ ⋮
𝐴C,.
𝑑𝑒𝑔.

⋯
𝐴C,C
𝑑𝑒𝑔C

	 (2.4)	

 

DawnRank converges when there is no longer a significant update in the ranks. This is when the 

magnitude of the difference of the ranks between time 𝑡 + 1 and the previous time point 𝑡 falls 
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below a small 𝜀, which we set to 0.001, the same value suggested by [108]. DawnRank also 

stops when no solution is present after a maximum number of iterations, which we set at 100. In 

practice, DawnRank always converges for any reasonable µ between 0.01 and 20 within 20 

iterations. Nonetheless, there are corner cases at low damping factors (µ < 10I.J) where 

DawnRank either does not converge or converges very slowly. 

 

2.4.2 Rank aggregation for population rankings of drivers 

 

To aggregate the rankings of genes from individual patient samples to determine the most 

impactful drivers in a population (e.g., known drivers for the same type of cancer or a specific 

sub-type), DawnRank applies a modified version of the Condorcet method [110]. The Condorcet 

method is a voting scheme in which “voters” vote for the best “candidate” by submitting a rank-

ordered list of candidate preferences. The list of preferences is allowed to be either partial or full. 

The Condorcet method then selects a winning candidate by comparing every possible pair of 

candidates A and B and determining a “winner” by comparing the number of voters that 

preferred A to B and vice-versa. We applied the Condorcet method to the personalized rankings 

of genes to determine aggregate ranking of genes in a patient population. 

 

Although the Condorcet method is built to handle partial voting lists, one difficulty of 

implementing the Condorcet method is the lack of patient samples that possess the commonly 

mutated genes. Many pairwise comparisons are missing for many gene combinations due to the 

lack of patients that have mutations in both genes simultaneously. However, since DawnRank 

can output a ranking as an impact score for all genes regardless if a gene is mutated, we 
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evaluated pairwise comparisons of two genes based on patients with a mutation in at least one of 

the two genes. This approach avoids the use of non-mutated gene comparisons to calculate the 

aggregate score of genes, as the objective of DawnRank is to determine the altered genes that are 

the most impactful. However, since mutation recurrence is an important factor in detecting 

common drivers, we also implemented a penalty heuristic,	𝛿, a number between 0 and 1 in our 

approach to lower the ranking of a gene in a pairwise comparison that is not mutated. This 

penalty allows us to rank aggregate frequent drivers based on both impact and frequency. 

 

PairwiseWinner 𝐴, 𝐵 = 𝐴		if	𝛿(𝐴)×𝑅𝑎𝑛𝑘(𝐴) > 𝛿(𝐵)×𝑅𝑎𝑛𝑘(𝐵)
	𝐵																													otherwise

	 (2.5)	

where  

𝛿(𝐴) = 𝛿												if	𝐴	is	NOT	mutated
1																					if	𝐴	is	mutated 	 (2.6)	

 

We used the output from DawnRank, which we converted to percentile rank format, to represent 

the ranking of the gene. The penalty heuristic lowers the value of a non-mutated gene when 

comparing it against a mutated gene. This heuristic serves as both a means to prevent a rare 

mutation that is impactful in one patient from winning all pairwise comparisons (akin to a 

candidate winning just because one and only voter that voted for it ranked it higher than any 

other candidate) and to prevent a low impact, high frequency mutation from winning a pairwise 

comparison against high-impact genes that are not frequently mutated (akin to an unpopular 

candidate winning just because many voters had a low-preference vote for that candidate). We 

selected 𝛿 by running DawnRank over 100 random patient samples for various instances of 𝛿 

between 0 and 1 and calculating the precision with respect to CGC genes. We found 𝛿 to be 0.85. 
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2.4.3 Patient sample selection for BRCA subtype analysis 

 

We selected gene expression and copy number data from 871 TCGA samples and 1,992 

METABRIC samples. The gene expression is converted into a Z-score, and segmented CNAs are 

converted into a discrete copy number gene matrix. Significant copy number altered segments 

with segment means greater than 0 are assigned 1 while significant segments with segment 

means less than 0 are assigned -1, while all other regions are assigned 0. Using the hg19 gene 

annotation, genes that are completely encompassed within a segment (based on genomic 

location) are such that the segment’s discrete copy number value and all other genes are assigned 

0. DawnRank mutation scores are further distinguished with mutations in oncogenes represented 

as positive values and tumor suppressors as negative values. A gene mutation matrix is created 

by assigning -1 to mutations in known tumor suppressors and 1 to mutations in known 

oncogenes (based on publically available OncodriveRole data) and the value 0 is assigned to all 

others [111]. Overall survival data is calculated up to 10 years and plotted using a Kaplan-Meier 

survival curve. Patient samples with greater than 10-year survival are censored at the 10-year 

mark. An ANOVA analysis is performed to test for significant difference in survival within a 

patient group. We selected 500 samples from each TCGA and METABRIC. To keep the relative 

distribution of PAM50 subtypes consistent between the two datasets, we randomly selected 

TCGA samples based on the average distribution of PAM50 subtypes within the METABRIC 

cohort. The composition of samples based on the PAM50 molecular subtypes: 19.3% Basal, 

10.9% Her2, 39.5% Luminal A, and 30.3% Luminal B (Normal-like breast cancer not included). 

 

2.4.4 Alteration based subtype classification using consensus clustering 
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During clustering, ConsensusClustersPlus was used to partition the samples and features (driver 

genes), and builds an unsupervised hierarchical cluster from that particular data subset. Through 

iterations, a final agglomerative hierarchical consensus clustering using distance of 1-consensus 

values is completed and pruned to k groups. ConsensusClusterPlus is run on k = 2 to k =10 

groups with sample distances calculated using the Pearson distance over 1,000 iterations. To 

ensure that ConsensusClusterPlus rarely samples a subset where a patient has no driver 

alterations (which makes the Pearson distance calculation yield undefined numbers), we trimmed 

the TCGA and METABRIC datasets to only include samples with at least 5 driver alterations 

(TCGA n=351 and METABRIC n=339). Since ConsensusClusterPlus is not deterministic, we 

used 1,000 iterations to minimize the misclassification rate between different runs of 

ConsensusClusterPlus to less than 10%. Each iteration sampled 80% of samples of the total 

dataset and the corresponding pairwise misclassification rate of only two single iterations of the 

sample was 22%. We also sampled 80% of all features (all common drivers in TCGA and 

METABRIC) compared to only TCGA drivers (53/65=81%).  

 

2.4.5 Validation of the classifier 

 

ClaNC is a custom implementation of Linear Discriminant Analysis (LDA) that selects for 

features using regular t-statistics to account for class difference given a number of features and 

classes. Using a 5-fold cross-validation approach on misclassification, ClaNC calculates both the 

number of classes and the number of transformed features. We used ClaNC in the METABRIC 

validation section, and we used TCGA DawnRank alteration clusters through 



	 37	

ConsensusClusterPlus results as training with METABRIC data as testing. We found that ClaNC 

works optimally at reducing misclassification when k=5 at 11 transformed features with the 

misclassification rate of 0.223. In addition to the optimal parameter setup of the supervised 

ClaNC classifier, we also determined that 5 alteration subtypes were optimal in reducing 

misclassification, and thus 5 classes were selected.  
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FIGURES 

 
Figure 1: Overview of the DawnRank Method 
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Figure 2: A schematic diagram detailing the overall workflow in this work.  
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FIGURES 

 
Figure 3: A comparison of the precision, recall, and F1-scores for the top ranking genes in 

DawnRank and DriverNet. The X-axis represents the number of top ranking genes involved in 

the precision, recall, and F1 score calculation. The Y-axis represents the score of the given 

metric. 
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Figure 4: A comparison of the precision, recall, and F1 scores for the top ranking genes in 

DawnRank, DriverNet, and PARADIGM-Shift on a small network (defined from the KEGG 

database). The X-axis represents the number of top ranking genes involved in the precision, 

recall, and F1 score calculation. The Y-axis represents the score of the given metric. 
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Figure 5: Clustering result based on driver genomic alterations using TCGA data. (A) A 

landscape plot detailing the subtypes defined by driver genomic alterations in TCGA breast 

cancer samples. The columns represent the samples and the rows represent the DawnRank-

selected genes used in the clustering. The green entries represent copy num© gain (for CNA) and 

oncogene mutations (for point mutations). The red entries represent copy ©ber loss (for CNA) 

and tumor suppressor mutations (for point mutations). The intensity of the color reflects the 

DawnRank score. The tracks above the heatmap shows clustering results as well as comparison 

to other information such as PAM50 subtype, tumor stage, and ER/PR/Her2 status. (B) 

Correlation result between the ConsensusClusterPlus (CCP) and PAM50 subtypes. Positive 

associations are in blue and negative correlations are in red. The p-value at the bottom of the 

legend shows the p-value of the Chi-squared association test that determines the difference 

between the clusters. (C)-(F) The zoom-in view of the clusters with focal CNAs on 

chromosomes 1, 8, 11, and 16, as well as the key genes involved. 
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Figure 6: Subtype defining genes. (A) Genes selected from ANOVA analysis. (B) Gene selected 

from SAM analysis. (C) A network view in Luminal subtype detailing the gene interactions 

between BIRC3 and nearby genes in the network up to two levels downstream. Red nodes 

represent downregulation and green nodes represent overexpression. The intensity of the node 

represents the magnitude of gene expression. Edge thickness and color represent the distance 

between the gene in question and BIRC3. Magenta edges represent 1 degree of separation from 

BIRC3, black represents 2, and gray represents 3. (D) A network view of BIRC3 in non-Luminal 

subtypes. 
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Figure 7: Comparison with the results in METABRIC dataset (based on classifier trained from 

TCGA clusters). (A) Comparison between the METABRIC predicted subtypes and PAM50 

subtypes. (B) The K-M plot of the METABRIC predicted subtypes. (C) The K-M plot of the 

PAM50 subtypes. 
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CHAPTER 3: A new correlation clustering method for cancer mutation analysis2 
 
 
3.1 Introduction 

 

Rapid advances in high-throughput sequencing technologies have provided unique opportunities 

for analyzing large numbers of cancer genomes. However, the complexity of genomic alterations 

in cancer causes significant analytical and computational challenges that have to be overcome in 

order to fully characterize the functional roles of various mutations. In particular, as cancer 

genomes tend to contain a large number of diverse mutations (e.g., point mutations or copy 

number changes) most of which are neutral, one problem of significant importance is to identify 

a small set of mutations that perturb key biological pathways and have significant impact on 

tumorigenesis [10]. Hence, a central question in cancer genomics is how to distinguish “driver'' 

mutations, which contribute to tumorigenesis, from functionally neutral “passenger'' mutations.  

 

Many computational methods have been developed to facilitate the discovery of driver genes 

[19], [112]–[115], most of which rely on mutation counts. Due to the high level of inter-tumor 

heterogeneity, two patients with the same cancer may have vastly different drivers and as a result 

many cancer mutations occur with low frequency in the patient population. Therefore, 

approaches relying on simple estimates of recurrence or frequency of mutations usually do not 

work well in practice. To mitigate this problem, several recent approaches have integrated 

frequency analysis with pathway-based and network-based models in order to ensure high 

																																																								
2	This chapter appeared in its entirety in Bioinformatics and is referred to in the dissertation as  

“J. P. Hou, A. Emad, G. J. Puleo, J. Ma, and O. Milenkovic, ‘A new correlation clustering 
method for cancer mutation analysis.,’ Bioinformatics, p. btw546, Aug. 2016.” 
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accuracy of common driver mutation discovery [23], [67], [71], [107], [116]. Such methods have 

an advantage in so far that in addition to mutation analysis, they take into account gene 

interactions as an added source of prior knowledge. 

 

In parallel, methods have been proposed to identify driver pathways, i.e., groups of genes that 

may interact together in combinatorial patterns to promote tumorigenesis. [29] described a 

method called MEMo, and subsequently used it to show that mutually exclusive modules based 

on known networks can aid in determining groups of genes that contribute to tumorigenesis. 

These gene groups, or modules, are jointly highly recurrent, have similar pathway impact in 

terms of biological processes, and their corresponding mutations tend to be mutually exclusive, 

meaning that very often only one gene in each gene group is mutated at a given time in any given 

patient. This mutual exclusivity rule in cancer pathways is supported by the observations that, in 

general, one mutated gene suffices to perturb the function of its corresponding pathway. Multiple 

mutations would require significantly higher energy investments on the part of cancer cells, and 

are hence selected against. [30]  expanded the ideas behind the concept of MEMo with iMCMC, 

and provided a framework to integrate mutation data, copy number, and expression information 

into cancer network weights which they used to identify modules; they also performed multiple 

types of integrative cancer perturbation data analysis. Dendrix [31] was developed to identify 

driver pathways de novo using mutual exclusivity and coverage (patient coverage) principles, 

without relying on known network information that has the potential to improve the discovery 

process of new modules. MDPFinder [32] expanded on the overall framework of Dendrix by 

incorporating gene expression information to ensure that genes in discovered mutually exclusive 

pathways were also co-expressed. Multi-Dendrix [33] and CoMDP [34] improved on the 
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limitations of Dendrix and MDPFinder, respectively, by allowing their algorithms to find 

multiple co-occurring modules. More recently, CoMEt [35] was proposed to address an inherent 

bias in Dendrix and Multi-Dendrix that resulted in high frequency mutations being significantly 

more likely to be included in mutually exclusive modules.  

 

However, while methods such as Dendrix, Multi-Dendrix and CoMEt all have the ability to 

identify mutually exclusive modules de novo, they still have significant limitations.  

The aforementioned methods are typically inefficient when applied to large-scale datasets with 

large values of their relevant parameters. Also, some of these methods are randomized in nature 

and no guarantees exist that multiple runs of the methods will produce compatible results. 

Furthermore, almost all methods are able to identify only a small number of modules of limited 

size as cluster sizes are critical algorithmic parameters from the perspective of computational 

tractability. Most importantly, they have to be redesigned or restructured whenever new 

biological information is included in the discovery process. 

 

To overcome these and other shortcomings of existing methods, we introduce a novel method 

called Cancer Correlation Clustering C3 to directly tackle the problems of integrating diverse 

sources of evidence regarding driver pattern behavior and eliminating computational bottlenecks 

associated with large cluster sizes or cluster numbers. The C3 method uses a new agnostic 

optimization framework specifically developed and rigorously analyzed for the driver discovery 

task, in which patient data is converted into a simple set of weights used in the objective function 

that do not require the algorithm to change upon incorporation of new data sources. In addition 

to this flexibility, C3 has low computational cost, and it allows for adding relevant problem 
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constraints while retaining good theoretical performance guarantees. Furthermore, the algorithm 

outperforms CoMEt in three out of four evaluation criteria, where the three criteria depend on 

which weights are “emphasized” in the optimization problem: tuning the weights allows one to 

select which features to improve or emphasize. What the relevant constraints features are may be 

chosen by the user, although our analysis included coverage, mutual exclusivity, expression data 

and network pathway information. We also point out that the weights may be chosen so as to 

cater to the need of many other computational biology problems that involve optimization on 

graphs.  

 

To test C3, we ran extensive simulations for several cancer types (including breast cancer, kidney 

cancer, ovarian cancer, glioblastoma, etc). Unfortunately, the patient sample set sizes for all 

except two cancers -- breast cancer and glioblastoma -- did not allow for accurate and 

statistically significant driver identifications for any of the used methods. We hence report results 

for these two cancers only, although a pan-cancer study is easy to conduct once sufficiently 

many samples become available. 

 

The chapter is organized as follows. Section Results contains the main results of our analysis, a 

comparison of the performance of C3 and CoMEt on breast cancer and glioblastoma data. A 

discussion of our findings and concluding remarks are given in Discussion. Section Methods 

contains a basic introduction of the principles of correlation clustering and the evaluation criteria 

used to compare C3 and CoMEt.  

 
3.2 Methods 
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3.2.1 C3 approach 
 

The basic idea behind C3 approach is correlation, an agnostic learning technique first proposed in 

Bansal et al. [117]. In the most basic form of the clustering model, one is given a set of objects 

and, for all or some pairs of objects, one is also given an assessment as to whether the objects are 

“similar” or “dissimilar”. This information is described using a complete graph with labeled 

edges: each object is represented by a vertex of the graph, and the assessments are represented by 

edges labeled with either a “+” symbol, for similar objects, or a “-”  symbol, for dissimilar 

objects. The goal is to partition the objects into clusters so that the edges within clusters are 

mostly positive and the edges between clusters are mostly negative. Unlike in many other 

clustering models, such as k-means [118], the number of clusters is not fixed ahead of time and 

finding the optimal number of clusters is part of the problem. Furthermore, the assignment of 

positive and negative edges does not have to be mutually consistent: for example, if the graph 

contains a triangle with two positive edges and one negative edge, then we must either group the 

endpoints of the negative edge together, erroneously putting a negative edge inside a cluster, 

resulting in a “negative error” or else we must group them separately, forcing one of the positive 

edges to erroneously go between clusters, resulting in a “positive error”. When a perfect 

clustering is not possible, we seek an optimal clustering: one that minimizes the total number of 

“error”. This form of correlation clustering is known to be NP-hard, but depending on the graph 

topology, various constant or logarithmic approximation guarantees exist. Bansal et al [117] also 

proposed a weighted version of the correlation-clustering problem. A more general weighted 

formulation was introduced in Chakiar et al [119] [120], and this is the formulation we 

subsequently generalize. In this model, each edge e is assigned two nonnegative weights, 𝑤f-and 

𝑤fI.	A clustering incurs cost, 𝑤f- if e is placed between clusters, and incurs cost	𝑤fI	if e is placed 
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within a cluster.  

 

If no restrictions are placed on the weights 𝑤f- and 𝑤fI then it is possible to have edges with 

𝑤f- = 𝑤fI = 0; these edges are effectively absent from the graph, so there is no loss of 

generality in assuming that the graph is a complete graph. Nevertheless, in order to arrive at 

problems that have efficient constant approximation algorithms, one needs to  place certain 

restrictions on 𝑤f- and 𝑤fI. The probability constraints give a natural restriction on the edge 

weights 𝑤f- = 𝑤fI = 1 for every edge e. Another restriction involves the triangle inequality, and 

one requires that  𝑤ghI = 𝑤giI + 𝑤ihI   for all distinct vertices 𝑢, 𝑣 and 𝑤. 

 

The analytic approach pursued in this work operates on the following model: genes which show 

sufficiently large mutation prevalence in cancer patients represent vertices of a complete 

connected graph whose vertices are to be clustered according to similarity criteria and weights to 

be described in detail in the next section. Note that we only use the top 5% of mutated genes in 

cancer patients, ordered by mutation frequency, as vertices. The reasoning behind our approach 

is as follows: First, low-frequency mutations require specialized statistical and network analysis 

methods which have to be developed in parallel and for which not sufficiently many patient 

samples are yet available [121], [122]; Second, even when restricting our attention to the most 

frequently mutated genes we outperform all known methods, which illustrates that one can 

significantly scale down the set of genes under consideration and at the same time improve 

identification performance. The low-frequency trimming approach results in 170 genes in 

glioblastoma (GBM) and 130 genes in breast cancer (BRCA). Although these numbers may 

appear prohibitively small given that more than a hundred cancer driver genes are reported, 
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usually only a very small number of driver genes are needed to initiate the process of 

tumorigenesis (For example, in [123], it was shown that only three driver gene mutations are 

required for the development of lung and colorectal cancers.)  

 

The weights  𝑤f- and 𝑤fI assigned to an edge e connecting two genes u and v are weighted sums 

of weights capturing driver gene features, such as mutual exclusivity, coverage strength, network 

distance and expression similarity. More precisely, the negative weights 𝑤fI are chosen to be 

relatively small if the endpoint genes describing the edge are deemed to be mutually exclusive in 

cancer patients. A small negative weight encourages placing mutually exclusive genes within the 

same cluster, as the penalty paid for placement in the same cluster is small. The positive weights 

jointly depend on the coverage, network distance and expression correlation of the endpoint 

genes: The larger the joint coverage, co-expression and inverse of the network distance of the 

endpoint genes, the larger the positive weight and the more likely the genes will end up in the 

same cluster so as to avoid paying a large cross-cluster cost. For a detailed and rigorous 

discussion of the exact method for determining clustering weights with respect to the expression, 

coverage, network and mutual exclusivity, refer to the main paper [68]. 

 

To control the size of the resulting clusters so as to discourage uninformative singleton and giant 

clusters, we developed two new correlation clustering algorithms that use cluster sizes as 

problem parameters that may be chosen by the users. These cluster size bounds also allow for 

more accurate comparison with other methods which operate with inherent cluster size 

constraints. Furthermore, as pointed out in [31], driver pathways obeying mutual exclusivity and 

coverage constraints are usually smaller than most pathways annotated in the literature. This 
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observation provides another reason for using bounded cluster sizes as well. Note that unlike in 

the aforementioned known methods, the cluster sizes have no bearing on the complexity of our 

algorithm nor on their overall approximation quality, and they may be completely removed by 

the user if so desired. 

 

The driver discovery approaches closest to C3 are Multi-Dendrix [35] and CoMEt [124] Multi-

Dendrix is an integer linear programming clustering algorithm that ensures that the genes within 

a cluster have mutation patterns that satisfy mutual exclusivity and coverage: In a nutshell, for 

any two genes in a cluster, the number of patients in which these genes are mutated at the same 

time is relatively small; in addition, a large portion of the patients has at least one mutation in 

each cluster. CoMEt uses a statistical score for mutation exclusivity that is conditioned on the 

frequency of each alteration, alleviating the inherent bias caused by frequently mutated genes. 

 

Compared to Multi-Dendrix and CoMEt, C3 uses weighted linear programming relaxation instead 

of an integer linear program which significantly improves the versatility and running time of the 

algorithm. Furthermore, the weights allow for straightforward incorporation of heterogeneous 

sources of evidence into the clustering method and the algorithm itself remains unchanged with 

the addition of new data. On the other hand, Multi-Dendrix cannot be easily adapted to new 

problem constraints. This flexibility comes at the cost of C3 providing only an approximate 

solution, but the approximate solutions exhibit large overlap with the exact solutions for a 

number of tested smaller synthetic networks. In addition, given the inherently approximate 

nature of optimization criteria, the weight selection and parametrization of both algorithms, this 

does not appear to be a significant shortcoming. Also, empirical evaluations on real data suggest 
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that the approximation algorithms produce results very close to the optimal solution.  

 

3.2.2 Clustering algorithms 
 

The classical formulation of correlation clustering does not include cluster size restrictions. On 

the other hand, all known driver identification methods operate with de facto cluster size bounds, 

as the cluster sizes govern the computational complexity of the method. For example, 

comprehensive testing of CoMEt reveals that the algorithm fails to operate beyond cluster sizes 

of 10-12. In order to perform a fair comparison, we introduce a cluster size constraint in our 

algorithm, by assuming that all clusters are of size K. Clearly, setting K equal to the number of 

vertices (genes) removes the cluster size constraint, hence our algorithm has a large flexibility in 

cluster size selection. An additional reason for choosing a restricted cluster size is that we expect 

driver genes of specific cancer types to be grouped together within clusters, and as already 

remarked, a number of recent results suggest that only a few drivers are actually present in any 

cancer type. Making the clusters excessively large would potentially lead to inclusions of 

multiple cancer type drivers in the same cluster, thereby obscuring the fine partition of the 

drivers. Nevertheless, the user of the method may choose K according to her/his own 

requirements. Yet another reason for introducing cluster sizes is to avoid the shortcomings of 

many known clustering algorithms which tend to produce non-informative “giant clusters” and 

singleton clusters. 

 

The bounded cluster size correlation clustering problem for driver gene inference may be 

formulated as follows. As already described, let K be a “hard” bound on the size of the driver 

clusters, and let the positive 𝑤-	and negative weights 𝑤I	be chosen according to a desired 
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combination of datasets, as explained in the previous section. The optimum clustering may be 

found by solving the integer linear program (ILP) below. 

 

 

Min
m

	(𝑤f- − 𝑤fI 1 − 𝑥f )
f∈p(q)

 	

 

(3.1)	

Subject	to	 𝑥gi ≤ 𝑥gv + 𝑥vi	(for	all	distinct	u, z, v	 ∈ V(G))	 (3.2)	

	 1 − 𝑥gi ≤ 𝐾	for	all	u
g}i

∈ V(G)	 (3.3)	

x� ∈ 0,1 	for	all		𝑒 ∈ 𝐸(𝐺)	 (3.4)	

 

In this formulation, and for a fixed edge 𝑒 = 𝑢𝑣, 𝑥gi = 1	implies that 𝑢 and 𝑣should belong to 

different clusters and 𝑥gi = 0	implies that the two vertices should belong to the same cluster. 

Note that the triangle inequality (3.2) ensures that if u and z are in the same cluster and z and v 

are in the same cluster, then u and v are also in the same cluster. Any clustering of the vertices 

can be described using the variables x�. For a fixed clustering, the objective function is the cost 

associated with that clustering. 

 

Solving the ILP is NP-hard. We hence relax the problem by changing the integer constraint 𝑥f ∈

{0,1} to an interval constraint 𝑥f ∈ {0,1}. This relaxation leads to a classical linear program (LP), 

the solution of which may be fractional. To obtain a valid clustering, the fractional solutions 

have to be subsequently rounded to produce integer solutions. Unfortunately, known rounding 

algorithms we previously developed in [125] tend to produce very small clusters, often as small 

as single-vertex clusters that are not meaningful. For our study, we hence slightly modify the 
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algorithm by moving the cluster size constraint (3.3) from the LP to the rounding procedure (See 

original paper, Algorithm 1). Hence, the clustering algorithm involves solving (3.1) without the 

constraint 	 1 − 𝑥gi ≤ 𝐾	g}i  and then applying the rounding procedure of the rounding 

procedure. 

 

The rounding procedure is closely based on the rounding algorithm described in [119], [120] The 

idea behind the rounding algorithm is to pivot on one vertex, examine its closest neighbors, 

where closeness is governed by the value of the output variables 𝑥fof the LP, and partition large 

neighborhoods if needed to get clusters of size at most K + 1. Given that the parameter α is set to 

2/7 and given that the weights obey the following constraints: 

• 𝑤f- ≤ 1 For each edge e 

• 𝑤f- + 𝑤fI ≤ 1 For each edge e 

 

The above inequalities were addressed as described in the previous section, and we remind the 

reader that they were imposed on the weights through proper normalization. Note that we only 

used high frequency mutations for our clustering problem, and hence did not encounter any 

computational issues with the LP solvers. On the other hand, if one were touse all 25,000 genes 

in the analysis, the LP solver implemented in Gurobi (https://www.gurobi.com/) would 

inevitably break down due to the large number of constraints, which is quadratic in the number 

of genes. In this case, a much simpler scalable solution is to use  approximate LP solvers, akin to 

those described in [126].The approximate solver is guaranteed to produce a solution that does not 
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exceed the LP solution by more than a factor 1 + 𝜀, for some small value of 𝜀, by using gradient 

descent methods that are highly scalable. 

 

3.2.3 Evaluation methods 

 

We evaluated the performance of both C3 and CoMEt in terms of their ability to detect mutually 

exclusive, high-coverage, and biologically relevant gene clusters. At this point, it is important to 

observe that the inference and evaluation strategies may appear to involve circular arguments: 

Mutual exclusivity, coverage and network distance, used to predict the clusters, are also used to 

evaluate the performance of the clustering method. But this is clearly not the case, as mutual 

exclusivity, coverage and network distance are optimization constraints, and one always needs to 

test the quality of a (approximate) solution to an optimization problem based on how well the 

constraints are accounted for. Other driver discovery tools, such as CoMEt, use the same 

constraint modeling and evaluation criteria. Furthermore, we added one more evaluation criteria, 

related to biological significance and pathway enrichment analysis, which is independent on the 

optimization criteria. As will be shown in the subsequent section, this evaluation criterion 

confirms the quality of the C3 analysis for cancer driver gene inference and its improvements 

over CoMEt. 

 

We ran both the C3 and CoMEt methods using mutation and CNA data collected from TCGA, 

pertaining to breast cancer (BRCA) [44] and glioblastoma (GBM) [77]. In addition to GBM and 

BRCA, we also considered kidney cancer (KIRC) and ovarian cancer (OV), but the available 

patient data appeared limited at this stage to allow for statistically significant and comprehensive 
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results. We accessed the TCGA provisional data using the cBioPortal platform [127] on August 

14, 2015.  

 

We ran both methods using the same alteration dataset.  We evaluated both point mutations and 

indels, and for CNAs, we used the GISTIC thresholds [128] of -1 and 3 as our cut-offs (as 

already pointed out in the previous section).  To focus on mutations with high frequency, we 

only selected genes in the top 95 percentile of alteration frequencies, thereby obtaining 130 

genes spanning 959 patient samples in BRCA and 170 genes spanning 291 patient samples in 

GBM. 

 

To test the effects of cluster sizes and the quality of our results, we ran both C3 and CoMEt to 

find clusters of sizes upper bounded by 5, 6, 7, 10, and 15. As already pointed out, larger cluster 

sizes are easily accommodated for C3, but since CoMEt failed to produce solutions for clusters of 

sizes roughly greater than ten, we restricted our attention to the aforementioned range of values. 

Due to the fact that correlation clustering and CoMEt will cluster all genes in a dataset, and 

hence produce a partition of the gene set, a large number of clusters will contain neutral 

mutations only and will hence have no biological significance. This is why we only compared 

the top ten most mutually exclusive gene sets generated by C3 with those of CoMEt. 

 

We ran CoMEt with 1,000 iterations each and 3 initialization points to ensure both timely and 

consistent runs. For C3, we ran the C3 clustering method for all combinations of weights 

𝑤.,𝑤�, 𝑤� ∈ {0,0.25,0.5,0.75,1} that satisfy 𝑤. + 𝑤� + 𝑤� = 1	but selected to report only 

results for the weight parameters 𝑤. = 0.167 (coverage), 𝑤� = 0.333 (network information) and 
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𝑤� = 0.5  (expression data). Our choice is governed by the fact that coverage seems to be a 

biologically much less important criterion then network information or expression. Hence, high 

weights for expression and network information increase the ability of the C3 algorithm to detect 

biologically significant clusters. Furthermore, the patient coverage criteria appear to be less 

relevant than pathway coverage and some other coverage properties that have not been explicitly 

investigated in the literature. Nevertheless, we observe that the choice of the weights may be 

completely governed by the user, and that the increase in one weight may produce better results 

in one performance category while reducing the performance in another category.  

We used four statistical methods to assess the performance of the algorithms which reflect both 

the statistical and biological significance of the clusters found. 

 

Mutual Exclusivity: To evaluate the degree of mutual exclusivity in a cluster’ we performed a 

Fisher's exact tests [129] for each pair of genes in ’he cluster. The Fisher's exact test uses a 

hypergeometric distribution to calculate the probability of observing a 2	×	2 contingency table of 

a total of n samples, with a samples that have an alteration in two genes (say, 𝑔'	and 𝑔(), 

𝑏	samples with an alteration in gene	𝑔' only, and 𝑐 samples with an alteration in gene 𝑔(	only. If 

d is the number of samples with no alteration in either gene, then the probability of co-mutation 

is evaluated according to 

 

𝑃 𝑔', 𝑔( =
�-�
�

�-�
�

C
�-�

 (3.5)	
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We also evaluated the overall exclusivity of a cluster as the median value of each 

pairwise exclusivity test, for each pair of genes 𝑔', 𝑔( in the netwo’k. The pairwise Fisher's 

method has also been used by the Mutex suite to establish mutual exclusivity [130]. However, 

because the context that the Fisher's exact test is used as an evaluation rather than as a discovery 

tool, we used the median pairwise p-value rather than the maximum p-value to get a better sense 

of the overall exclusivity of genes within a cluster. It is also important to note that while CoMEt 

has a built-in method that generalizes the exclusivity test to a 2k contingency table for a cluster 

size 𝑘 ≥ 2	the exponential size of their test set makes evaluation for large cluster sizes 

computationally impractical. An alternative test for overall mutual exclusivity is a permutation 

test, as implemented by MEMo, which compares the exclusivity of a gene set by sampling 

random gene sets and patients with multiple alterations. 

 

Coverage: To compare and evaluate the overall coverage of a cluster found by C3 or CoMEt, we 

calculated and reported the proportion of patients with at least one alteration in a gene belonging 

to the given cluster. 

 

Network Clustering: We performed an additional pathway analysis for the potential cancer gene 

drivers. As pointed out in the previous section, driver genes tend to be, on average, closer to each 

other in a pathway compared to randomly selected genes. Our tests involved assessing the 

shortest network distance of genes within the discovered clusters. We remind the readers that the 

distances were e’aluated using Dijkstra's Algorithm on 8,726 genes from [29]. 
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Biological Significance: In addition to testing the quality of the algorithm in terms of optimizing 

mutual exclusivity and coverage, we also investigated the biological significance of the C3 and 

CoMEt methods from the perspective of gene discovery and pathway analysis. Although there is 

no overarching gold standard to determine biological significance, a commonly accepted metric 

employed by MEMo, Dendrix, Mutex, CoMEt and other similar tools is to count the number of 

known driver genes found within the best clusters according to the given criteria. These clusters 

usually contain known driver genes. To determine the driver gene-based biological significance, 

we calculated the proportion of drivers found in the ten most mutually-exclusive C3and CoMEt 

clusters using a comprehensive, curated list of known drivers from the CGC. 

 

It is important to point out that while the four test benchmarks we introduced are a reliable way 

to test the optimization quality and performance of CoMEt and C3, no perfect benchmark exists 

for detecting mutually exclusive and biologically significant genes clusters. The hope is that 

multiple evaluation methods taken together may provide a better understanding of which 

methods outperform others in a given parameter and criteria setting. 

 

3.3 Results 
 

In what follows, we demonstrate that C3outperforms CoMEt in almost all of the aforementioned 

benchmarking criteria, or more precisely, for three out of the four chosen criteria. This is 

achieved without any special parameter tuning or optimization. As a rule of thumb, C3 can be 

made to outperform CoMEt in any chosen single, pair of triple of criteria by adjusting the 

weights. This observation may be explained by the fact that the weights trade off the strengths of 

different modeling assumptions. We supplement our statistical analysis with a discussion of the 
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biological relevance of our findings, and explore the role of the new potential drivers found by 

C3 within their driver gene communities. In particular, we discuss the significance of large 

mutually exclusive clusters that cannot be recovered by other methods. Recall that we restrict our 

attention to the ten best performing clusters according to mutual exclusivity, as this approach 

was used in the original evaluation process of the CoMEt algorithm. 

 

3.3.1 Performance evaluation 

 

The results of our extensive comparison between C3 and CoMEt, regarding mutual exclusivity, 

coverage, driver identification, and pathway-level evaluation, are shown in Figure 10. Both 

algorithms were tested on the same server with a 256GB RAM memory. Both methods ran 

uninterruptedly when the cluster sizes were constrained 𝑘 = 5, 6, 7,	10. CoMEt reported segfault 

memory errors for 𝑘 = 15, and for this case, only C3 was benchmarked. 

 

To assess the biological significance of the two methods in terms of their ability to cluster high-

impact drivers from the CGC repository together, we compared the results of C3 and CoMEt both 

to each other and to a “baseline” value equal to the average proportion of drivers in the ten most 

mutually-exclusive clusters found, in this case 0.067, using uniform random sampling of genes 

(see Figure 10A).  

 

In BRCA, we found that C3 detected a median driver proportion of 0.160 and CoMEt detected a 

median driver proportion of 0.117 in the top ten clusters. C3 outperformed CoMEt for each 

cluster size. We also used a Mann-Whitney Rank Sum test [131] to compare the overall 
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performance of the algorithms with respect to mutual exclusivity, for all cluster sizes. We chose 

a rank-sum test because it is unclear that the drivers are following a normal distribution due to 

the small amount of data points available. The results show that C3 outperforms CoMEt (p-value 

of 0.0079) in terms of amount of drivers in clusters. C3 also outperforms CoMEt on GBM, with a 

median proportion of drivers per cluster equal to 0.170, compared to a 0.12 proportion of drivers 

per cluster found by CoMEt. This finding holds for every cluster size, with a rank-sum test p-

value of 0.0361. Both methods succeed in finding biologically significant drivers within clusters 

exhibiting high mutual exclusivity, and both methods significantly outperform the expected 

number of drivers per cluster in the random setting p-value 1.594e-5 and p-value 1.312e-3 for C3 

and CoMEt, respectively). 

 

We next tested the clusters found by each method based on their mutual exclusivity (see Figure 

10B). To do so, we used the previously described pairwise Fisher's exact test to obtain a p-value 

for each of the top ten clusters of the two methods. For better visualization, we performed a 

negative log transform on the p-values, and plotted the transformed p-value distribution. Hence, 

in this system, larger values indicate more mutually exclusivity.  

 

We again used a Mann-Whitney rank-sum test to evaluate the performance of C3 and CoMEt. 

For BRCA, one can see that while both methods have significant median exclusivity values (p = 

7.541e-6 for C3 and p = 3.337e-4 for CoMEt, C3 has an overall more significant p-values for 

each cluster size. The median p-value of C3 for each cluster size is lower than its CoMEt 

counterpart except for the case k=10. However, C3 does have superior performance overall with a 

rank-sum p-value of p = 4.020e-4. For GBM, the median exclusivity results are not as strong as 
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for the BRCA set, for both the C3 and CoMEt method. C3 has a median p-value of 0.3095 as 

opposed to CoMEt’s 0.5022. The general drop in significance may be attributed to a lower 

c’nfidence of the Fisher's test due to a small number of samples available; recall that the GBM 

set involved 291 samples, compared to 959 BRCA samples. This indicates that one should look 

at individual significant clusters to evaluate mutual exclusivity. Even for the reduced median p-

value regime, C3 outperforms CoMEt in significance, having lower median p-values for each 

cluster size. Overall, the C3 p-values are consistently and significantly lower than those produced 

by CoMEt for mutual exclusivity (the rank-sum test p-value equals 0.04401). 

 

The results of the coverage tests are depicted in Figure 10C. In the coverage benchmark, CoMEt 

outperforms C3 for GBM, but neither method outperforms the other for BRCA. In BRCA, both 

methods show comparable performance, with a median result for the fraction of samples covered 

equal to 0.5505 for C3, and 0.5662 for CoMEt. This rather poor performance of both methods is 

observed for all values of k, with no p-value based on Student's T-test [132] being less than 0.05. 

The largest difference in coverage recorded for the two methods is present for 𝑘 = 6. In 

conclusion, there appears to be no statistical difference between C3 and CoMEt in terms of 

BRCA coverage percentage (p-value of 0.5127). In GBM, the median p-value for coverage 

difference is more pronounced. The median coverage of C3 is 0.632 and the median coverage of 

CoMEt is 0.696. CoMEt finds significantly higher-coverage cluste’s according to Student's T-

test, with p-value 0.0345, and the most pronounced coverage percentage differences exist for 

small values of k (0.3745 vs. 0.6495 for 𝑘 = 5 C3 and CoMEt, respectively). 

It is also important to note the wide distribution of coverage score values produced by C3 for 

small k; the IQR (Interquartile range) value is roughly 0.35 for 𝑘 = 6. The most likely reason 
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behind this result is that our test weights were chosen to boost the relevance of mutual-

exclusivity and biological significance rather than coverage. Mutual exclusivity accounts for 

100% of the negative weights of edges, while coverage accounts for only 16.7% of the positive 

weights. We justify this weight choice by the fact that it leads to multiple significant cluster 

discovery and with our assumption that coverage is a less significant driver property compared to 

mutual exclusivity. We also point out that it appears that a biologically more relevant coverage 

constraint is pathway coverage, rather than patient sample coverage. Another setting in which we 

analyzed C3 and CoMEt involves pairwise distances of drivers in the network (see Figure 10D). 

Here, we calculated the average pairwise distance between all pairs of genes clustered together. 

We then used Student's T-test to determine the statistical significance of this value. We also 

compared the values for both algorithms based on 1000 randomly selected genes by using a 

permutation test. For BRCA, we found no significant performance difference between the two 

methods in terms of the average pairwise distance: 3.110 for C3 and 3.070 for CoMEt, with a p-

value of 0.9330. In GBM, C3 showed a smaller average pairwise distance of 2.908 compared to 

CoMEt's 3.097. This difference is statistically significant, with a p-value of 0.0379. The small 

average network distance results of C3 for GBM, coupled with the low coverage, leads to the 

conclusion that C3 favors niche, exclusive clusters in biologically relevant cancer pathways. 

Hence, the method may be useful for discovering specific molecular cancer subtypes. Both 

methods had an average pairwise distance well below the permutation benchmark of 3.903: the 

p-values of both C3 and CoMEt were less than 2e-16 for both cancers. 

 

In conclusion, from our detailed evaluation we conclude that although C3 does not 

simultaneously outperform CoMEt with respect to all four evaluation criteria, but only three of 
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them (which already represents a significant advantage), the C3 performance indicates a strong 

overall propensity to select biologically more relevant and more mutually exclusive clusters, 

with a higher degree of flexibility compared to CoMEt. 

 

3.3.2 Discovering potential driver pathways  

 

We examine next the potential of the C3 algorithm to detect clusters whose genes may be new 

candidate cancer drivers. We focus our search on clusters that contain biologically significant 

driver genes and known biological network interactions, and exhibit high mutual exclusivity and 

coverage. At the same time, we only consider the large cluster size regime, as results in this 

domain have not been previously reported in the literature and as they offer many new 

interesting insights. Two examples of our analysis are shown in Figure 11 and Figure 12. 

 

In BRCA, one candidate cluster with several potential novel driver genes is the cluster 

containing PTEN, HUWE1, CNTNAP2, GRID2, CACNA1B, CYSLTR2, MYH1 depicted in Figure 

11. The genes in the candidate cluster are mutually exclusive (p-value 0.0084). The genomic 

landscape of this cluster is dominated primarily by mutations in PTEN and HUWE1, and 

secondarily by homozygous deletions in PTEN and CYSLTR2. The most frequently altered gene 

in this set is a common driver gene PTEN, a tumor suppressor gene that negatively regulates the 

AKT/PKB apoptosis pathway [133]. The remaining six genes in the cluster are potential driver 

candidates HUWE1 is a part of the Mule multidomain complex of the HECT domain family of 

E3 ubiquitin ligases responsible for apoptosis suppression, DNA damage repair, and 

transcriptional regulation [134]. CNTNAP2 is a neurexin protein with functions in cell-to-cell 

adhesion and an epidermal growth factor and was found to be hypomethylated in breast cancer 
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cell lines [135]. Hypomethylation and the association with epidermal growth factors, coupled 

with a large number of amplifications in the alteration landscape of CNTNAP2 suggest potential 

oncogenic functions of the gene. GRID2 is an ionotropic glutamate receptor that is frequently 

deleted in lymphoma [136]. CACNA1B codes for a N-type calcium channel which is responsible 

for calcium influx. Defects in the calcium influx channel can lead to alteration in the apoptosis, 

proliferation, migration and invasion pathways of breast cancer [137]. CYSLTR2 is a 

proinflammatory cysteinyl leukotriene receptor that plays a role in cancer cell differentiation and 

is associated with breast cancer survival rates [138]. MYH1 is a myosin heavy chain protein that 

plays a role in cell signaling and pro-apotosis pathways. 

 

Perhaps more important than the propensity of each individual gene to be a driver is the 

collective interaction pattern of the seven genes in the cluster in a cancer pathway. From Figure 

11, it is clear that the each gene in the cluster interacts with each other in a tightly-connected 

community with no gene more than three nodes away when plotted in the network, using the 

cBioPortal visualization tool [127]. The seven genes in the cluster PTEN, HUWE1, CNTNAP2, 

GRID2, CACNA1B, CYSLTR2, MYH1 are strong candidates to define a novel driver pathway.  

 

This conclusion is reinforced by the presence of high impact common drivers TP53, MYC, AKT, 

and PIK3R1 which define several important cancer pathways such as apoptosis, DNA repair, and 

cell cycle arrest [139], [140].We also examined a cluster containing potential cancer drivers 

relevant for GBM. In GBM, we found a cluster of size 10 with four known drivers and many 

potential drivers. The cluster includes GLI1, WNT2, BRAF, PLCG1, FAS, CREBBP, BRCA2, 

GLI2, PIK3R5, VAMP3 (see Figure 12). This large cluster has a p-value of 0.0901 in terms of 
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mutual exclusivity, which is actually low as compared to other GBM clusters. The cluster also 

contains several important driver genes such as WNT2, BRAF, BRCA2 and CREBBP which 

encompass pathways such as sonic hedgehog signaling, cell fate determination, cell growth and 

apoptosis, checkpoint activation, and DNA repair. Additionally, six out of the ten members are 

within the same compact network community GLI1, PLCG1, FAS, CREBBP, BRCA2, PIK3R5. 

Of these six genes, GLI1 and GLI2 are hedgehog signaling genes that are common and first 

isolated in glioblastoma. These genes are responsible for cell differentiation and stem cell self-

renewal [141]. PLCG1 is involved in intracellular transduction of receptor-mediated tyrosine 

kinase activators, and it has been classified as a biomarker in GBM [142]. FAS is a cell surface 

receptor that mediates apoptosis. FAS is known as a histological hallmark of GBM, affecting 

both apoptosis and necrosis factors [143]. Finally, PIK3R5 is a subunit of phosphatidylinositol 3-

kinases who together have important effects on cell growth, proliferation, differentiation, 

motility, survival and intracellular trafficking.  

 

3.4 Discussion 

  

We described a novel method, termed C3, which has the potential to precisely and efficiently 

identify clusters of gene modules with mutually exclusive mutation patterns. The C3 algorithm 

uses large-scale cancer genomics datasets which are pre-processed to yield parameters governing 

novel constrained correlation clustering techniques. The optimization criteria used in clustering 

include patterns of mutual exclusivity of mutations, patient sample coverage, and network driver 

concentration. 
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There are several major advancements of our method when compared to previously known 

approaches. Unlike methods that use randomized approaches without the guarantee that multiple 

runs of the methods on the same data will produce compatible results (such as CoMEt), C3 is 

“consistent” in so far that by running the same LP solver, the same results will be generated. 

Also, C3 has computational complexity that does not depend on the chosen cluster sizes, and is 

hence much more appropriate for large cluster problems than other methods. Furthermore, it 

partitions the gene set and hence creates clusters covering all genes used in the analysis, although 

it may also be adapted to accommodate overlapping clusters. This is in contrast with the results 

produced by other methods that tend to identify only a small number of modules with limited 

number of genes. 

 

None of the previous methods were able to identify clusters utilizing different sources of 

information via a weighting mechanism. This is important because it gives us flexibility to focus 

more on certain aspects based on the analysis. For example, we can focus more on mutual 

exclusivity instead of coverage to identify clusters specific to a group of samples which may 

facilitate the discovery of subtype-specific modules. 

 

By addressing the above challenges, we believe our new method C3 represents a unique tool to 

efficiently and reliably identify mutation patterns and driver pathways in large-scale cancer 

genomics studies. 
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FIGURES

Figure 8: Histogram of shortest distances between randomly selected genes and driver genes in 

the network. 
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Figure 9: A workflow of C3 displaying heterogeneous data sources converted into different 

clustering weights. 

ME-CO NI-ME-CO EX-ME-CO
Patient data: mutation+CNV Patient data: mutation+CNV

Coverage Coverage + Network Coverage + Expression + Network

Patient data: mutation+CNV
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71	

Figure 10: A comparative analysis of C3 (Red) and CoMEt (Blue) based on four evaluation 

criteria. We used five cluster sizes (5,6,7,10, and 15) that index the x-axis in each benchmark 

test. (A) depicts the results based on the driver gene evaluation criteria. The y-axis represents the 

proportion of drivers found by each method, contained within the best ten clusters found. The 

purple line represents the expected value of drivers detected if clusters are randomly selected.  

(B) shows the pairwise mutual exclusivity of each run. The y-axis represents the negative log

transform of the mutual exclusive p-value such that larger values are more mutually exclusive 

than smaller ones. The boxplots illustrate the distribution of exclusivity results concerning each 

of the top ten individual clusters for C3 and CoMEt. (C) shows the distribution of coverage, 

measured by proportion of samples with at least one alteration in a given cluster (the y-axis). The 

boxplot illustrates the distribution of coverage results for individual top ten cluster results.  

(D) includes the network connectivity results of C3  and CoMEt. The y-axis measures the average

pairwise network distance between all genes in a cluster, and the distribution of each cluster is 

shown in the boxplot. The purple line represents the average pairwise distance of random 

clusters. 
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Figure 11: A cluster of potential driver genes inferred from BRCA. (A) shows the alteration 

landscape of the cluster, with blue representing mutation events, red representing copy number 

deletions, and green representing copy number amplifications. (B) represents a known 

subnetwork which contains 6 genes (out of 7) in (A). The more intense the red, the higher the 

alteration frequency of the gene. Nodes highlighted in black represent driver candidates 

identified by C3 within a small subnetwork. Edges are depicted in black if there exists a direct 

interaction between two genes. Green edges represent an interaction that undergoes a protein 

state change. Purple edges are other interactions.  
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Figure 12: A cluster of potential driver genes inferred from BRCA. (A) shows the alteration 

landscape of the cluster, with blue representing mutation events, red representing copy number 

deletions, and green representing copy number amplifications. (B) represents a known 

subnetwork which contains 6 genes (out of 7) in (A). The more intense the red, the higher the 

alteration frequency of the gene. Nodes highlighted in black represent driver candidates 

identified by C3 within a small subnetwork. Edges are depicted in black if there exists a direct 

interaction between two genes. Green edges represent an interaction that undergoes a protein 

state change. Purple edges are other interactions.  

(A)

(B)

GLI1
WNT2
BRAF

PLCG1
FAS

CREBBP
BRCA2

GLI2
PIK3R5
VAMP3

Alteration Type
Deletion
Amplification
Mutation
N/A



74	

4.1 Introduction 

The practice of oncology continually faces the challenge of matching cancer patients with an 

optimal treatment regimen. The challenge is especially daunting in cancer chemotherapy, where 

the success rate of cancer compounds meeting FDA approval for effectiveness and safety is a 

mere 13.4% [144]. The marginal success rate of cancer therapeutics is likely due to the enormous 

complexity of the disease mechanism of cancer coupled with an inability to properly match the 

drug to the patients where it would have the largest positive impact [145]. Cancer is a disease of 

the genome is driven by unique, patient specific, alterations that affect major pathways in 

growth, survival, and division [52]. One strategy that can be employed by physicians is to target 

the genome by prescribing targeted therapies in which treatments are tailor-made to individual 

patients that specifically target perturbations in the patient’s genome [146].  In recent years, 

computational methods have been utilized to define and process the enormous swaths of data 

needed to identify the patient’s genomic perturbations and predict the drug targets that work best 

for the patient.  

The problem of developing computational tools to model drug treatment presents a set of major 

challenges. The interaction between cancer drugs and cancer cell lines is complex and not well 

not well understood in many cases [51]. Even though databases such as the Drug Gene 

Interaction Database (DGIdb) [147] have mapped out many of the interactions between drugs 

and the genome, the database is far from complete and many drug interactions with the genome 

and drug interactions with other drugs are unknown [148]. The context of the data is also 

CHAPTER 4: Scattershot: Personalized cancer drug recommendation 
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imperfect. The majority of data available for drug response analysis comes from cell lines 

compendiums such as The Genomics of Drug Sensitivity of Cancer [53] and the Cancer Cell 

Line Encyclopedia [54]. However, experimental procedure differences between the major cell 

line compendiums have shown inconsistent drug response when the same drug is treated with the 

same cell line [59] Additionally, cancer tumors do not reside in a closed system. Tumors react 

closely with normal cells and the patient’s environment [60]. This may limit the scope of many 

cell line-based studies of drug response. 

Many pioneering studies concerning drug response have been made using cell lines. One of them 

was the NCI’s DREAM7 initiative. [149]. The DREAM7 project was a community driven 

project where teams would predict the drug response of “hidden” BRCA cell lines using RNA-

seq data from training cell lines. The winning methods in DREAM7 were a Bayesian kernel 

multitask model and an integrated Random Forest method. Since DREAM7, several 

contemporary methods have been developed predict the drug response in cancer cell lines. Such 

studies include the machine learning methods using GDSC and CCLE datasets such as SVM 

with Recursive Feature Elimination binary prediction approach in calculating acute drug 

response [55] and CancerDP, another drug prioritization method based on SVM with F-stepping 

feature selection [56]. The authors of [57] implemented a linear method which calculated the 

drug response of Lymphoblastic cell lines (LCL). An ensemble method utilizing the integration 

of multiple machine learning methods, PGM, was especially unique in that it simultaneously 

modeled chemical and cell line information together to make a prediction [150]. Most recently, a 

comprehensive study unconverted a list of features corresponding to Cancer Functional Events 
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(CFEs) and used those features to accurately predict the drug response of over 1000 human cell 

lines [58]. 

One important limitation of the cell line studies is that the extent that application of in vitro 

studies extends to conclusions of the treatment paradigm in real patients is still unknown [151]. 

Therefore, several studies in drug response have shifted focus from cell line data models to 

models based on real patient data. Many of these methods utilize patient data from The Cancer 

Genome Atlas [152]. The authors of [61] utilized a linear Ridge-Regression model to bridge the 

gap using in vitro gene expression models to make predictions in vivo. While gene expression 

models have shown a degree of success, gene expression models alone have been found to be 

insufficient in predicting drug response in some cancers [62]. The IntOGen platform also has a 

tool that assigns drugs to patients based on their proximity to the driver gene in a cancer network 

[63]. The identification of targetable genes was expanded using the EMD model, which 

identified a list of candidate drivers using integrated gene expression, mutation, copy number 

and network information with potential drug targets for the drivers [64]. Another method 

GOPredict [63] integrates both genomic and pathway data to provide a ranked drug list of 

potential targets [65]. While these methods provide a starting point in computational drug 

prediction, none of these the methods evaluate their approach using recorded actual drug 

response or the actual drugs that were prescribed to the patient. Rather, these methods rely on 

indirect comparisons of potential drug targets, or they only look at evaluating a few select 

patients, drug target, and drug response combinations. 



77	

Recently, the authors of [66] have presented a method that predicts the clinical response of a 

drug directly from in vivo molecular signature data. The authors of [66] used an ElasticNet 

Regression classifier to predict a physician-coded drug response on cancer patients using data 

from one type of feature ranging from mRNA or miRNA expression, methylation, or copy 

number. However, while the approach was new, it was also hindered by several limitations. Most 

drug-specific models in [66] exhibited poor performance due to lack of sophisticated feature 

selection and filtering coupled with the limitation of a small n large p (large number of features 

compared to a small number of samples) and the inability to build models using multiple types of 

features. 

To address the limitations of previous methods, we developed a novel drug response prediction 

and drug prioritization algorithm called Scattershot. Scattershot models the problem of drug 

response and drug recommendation as a multilabel machine learning problem in which multiple 

response variables (labels) are predicted simultaneously while accounting for the interactions 

among the labels [69] where we develop ensemble classifiers from multiple genomic sources 

such as mutation, expression, copy number, and pathway-level information as well as clinical 

variables. Scattershot uses the multilabel framework to build binary classifiers that predict the 

drug response of an individual drug while at the same time, aggregating the results of multiple 

pairwise binary classifiers comparing pairs of drugs in a drug list to prioritize the drug rankings. 

Scattershot’s integrated approach has outperformed previous methods in predicting drug 

response in actual patient data, and its novel recommender has consistently ranked actual 

prescribed drugs high in a large majority of patients. 



78	

4.2 Results 

4.2.1 Method overview 

Here we provide an overview of the Scattershot algorithm. Detailed method description is in the 

Methods section. Figure 13 provides an overview of the whole method. Scattershot is a 

multilabel machine learning algorithm that predicts multiple responses (a list of drugs) with two 

modes: 1) single drug mode (SDM) and 2) pairwise recommendation mode (PRM). Single drug 

mode uses a classifier to predict the clinical response of a single drug in a group of test patients. 

Pairwise recommendation mode is a multilabel classification method that ranks a list of drugs in 

a test patient ordered from most to least likely to respond by simplifying the multilabel problem 

into a combination of binary label classifiers and rank-aggregating the binary classifiers to 

provide the final rank list.  The first step of Scattershot is feature selection. Scattershot assembles 

features from multiple different sources. These sources include genomic features from 

expression, mutation and copy number information, drug target interaction data in a human gene 

pathway context as well as other user input features such as clinical information. The feature 

selection step for genomic information includes only genomic features that have been proven to 

have a biological and clinical significance to drive cancer. The significant cancer gene filter was 

assembled from 3 sources: 1) DawnRank [67] 2) Cancer Functional Events (CFEs) [58] and 3) 

the cancer gene census [101]. The second step in the Scattershot process is the machine learning 

classifier. This was done as a binary classifier using Random Forest with recursive feature 

elimination, RFE to further whittle down extraneous features. The response variable for the 

Random Forest differs in the single drug mode and pairwise recommendation mode. In SDM, the 
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binary classifier calculates effectiveness (did the drug work?) for a test patient while in pairwise 

recommendation mode, the binary classifier predicts a preference between any two drugs (which 

of the two drugs would work better?). For Scattershot in PRM, multiple binary classifiers 

comparing all combinations of any two drugs were rank-aggregated in a FAS-pivot algorithm to 

identify a preference list using the multi-label learning framework.  

We ran Scattershot on two TCGA drug response datasets: a Pan-Cancer dataset consisting of 

1508 samples, and a breast cancer dataset consisting of 647 samples. Within each dataset, we 

performed two analyses: a single drug mode analysis to quantify the drug response of a single 

drug, and a pairwise recommendation mode to rank-order potential drug treatments for any given 

patient. The single drug mode was done on 4 breast cancer drugs and 7 additional Pan-Cancer 

drugs. We limited our drug response information to the same information used in [66] to 

compare the performance of the two methods as closely as possible. We then used the results of 

the classifier to determine whether our drug prescription is associated with any clinical outcomes 

such as survival. The PRM analyses ranked a list of 11 breast cancer drugs and 22 Pan-Cancer 

drugs for each patient, and we visualized the data in terms of its pairwise classifier performance, 

overall rank precision performance, and its ability to recommend novel and/or infrequently 

prescribed drugs. 

4.2.2 Scattershot accurately predicts drug response for single drugs 

We first used Scattershot in SDM to build a drug response classifier for each drug to evaluate the 

overall performance of the model. We limited our results to drugs with physician-coded response 
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in at least 5% of prescribed patients, leaving 4 breast cancer drugs and 11 Pan-Cancer drugs 

(including the 4 breast cancer drugs). We chose 5% because it is the smallest cutoff in all 

analyses where the number of cross-validation samples n will be larger than the average number 

of features p, which avoids the small n large p problem [153]. At a 5% cutoff in breast cancer, 

for example, a drug has to have at least 30 physician coded responses . The average number of 

features in a breast cancer single drug mode is 24.25. We evaluated our method using standard 

binary metrics in sensitivity, specificity, AUC, and accuracy. We also used at the Cohen’s kappa 

coefficient which evaluates the model performance by comparing to a chance agreement. The 

kappa statistic is defined as: (𝑝� − 𝑝f)/(1 − 𝑝f), where 𝑝f is the expected probability that the 

classifier will output the result by chance and 𝑝� is the observed probability that the classifier 

will output the result. In other words, given a 2	×	2 confusion comparing the classifier 

predictions with the true results. 

(+) (-) 

(+) 𝑎 b 

(-) c d 

𝑝�	is the observed accuracy of the confusion matrix (𝑎 + 𝑑)/(𝑎 + 𝑏 + 𝑐 + 𝑑) while 𝑝f is the 

expected probability of random agreement, calculated by the sum of the marginal probabilities 

(𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙� + 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙�)/(𝑎 + 𝑏 + 𝑐 + 𝑑) where	𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙� = ( 𝑎 + 𝑏 𝑎 + 𝑐 )/(𝑎 + 𝑏 +

𝑐 + 𝑑) and 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙� = ( 𝑑 + 𝑐 𝑑 + 𝑏 )/(𝑎 + 𝑏 + 𝑐 + 𝑑). 

A kappa statistic is similar to a correlation measure and the output ranges from -1 to 1 where 1 

indicates a perfect classification in which all predictions made by the model are not by chance or 
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guessing, -1 indicates that the classifier built on random guessing always performs better than the 

model, and 0 indicates no distinguishable difference between the model and the result by chance 

or guessing. We interpret the kappa statistic using Landis and Koch’s approach where 0-0.2 is 

“weak”, 0.2-0.4 is “fair”, 0.4-0.6 is “moderate”, 0.6-0.8 is “substantial”, and 0.8 to 1 is “almost 

perfect” [154]. 

Figure 14A shows the mean AUC performance of three of the drug response classifiers in BRCA 

from 10-fold cross validation, and reported the median value from the classifer. We excluded 

Doxorubicin because it had highly skewed class imbalances where <10% of the data was a 

disease state, which did not yield enough data points to accurately assess the performance of the 

Doxorubicin classifier. Hence, we observed excellent performances of Doxorubicin accuracy of 

91%, AUC of 90%, but a poor Doxorubicin kappa of 0.02. The remaining single drug classifiers 

in breast cancer had more reliable results, with an 88.3% AUC for Anastrozole and a “moderate” 

kappa of 0.463, a 94.1% AUC for Tamoxifen and a “fair” kappa of 0.384, and an 81.8% AUC 

for Paclitaxel and a “moderate” kappa of 0.435.  

In Figure 14C, we extended our Scattershot single drug mode classifiers of the Pan-Cancer 

dataset. With many more samples, the Pan-Cancer dataset allows us to evaluate more drugs than 

the BRCA dataset alone. The median of AUC of the classifiers is 86.1% with a median kappa of 

0.277.  The Pan-Cancer results provide analysis of drugs that we were not able to categorize in 

the breast cancer analysis due to lack of data. This includes Cisplatin (AUC: 90.9%), Carboplatin 

(AUC: 82.0%), Cyclophosphalamide (AUC: 85.5%), Doxorubicin (AUC: 86.7%), Gemcitabine 

(AUC: 76.5%), and Temzolomide (AUC: 74.3%). We next determined whether or not the 
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patients that we predict to respond to a certain drug would actually have a clinically significant 

response. We used survival analysis in breast cancer patients to determine whether patients with 

a Scattershot predicted positive response to Anastrozole, Paclitaxel, or Tamoxifen treatment 

would have a different clinical outcome in terms of survival (see Figure 14B). We looked at 

TCGA clinical 5-year survival data. The significance of survival was calculated using a chi-

squared test, and we found that the patients predicted to respond to Anastrozole and Tamoxifen 

exhibited a statistically higher survival rate than patients expected to respond poorly to these 

drugs (p-value 0.012 and p-value < 2e-16, respectively). No significant difference in survival 

was found in Paclitaxel (p-value 0.516).  

Scattershot identifies patients in which Anastrozole and Tamoxifen administration significantly 

improve survival. Both Anastrozole and Tamoxifen inhibit aromatase, an enzyme that 

synthesizes estrogen. Unsurprisingly, Aromatase Inhibitors are often prescribed for ER+ breast 

cancer patients [155]. We examined features of the Anastrozole and Tamoxifen classifier to 

identify which features in the model are the most important survival indicators in ER+ breast 

cancer. Tamoxifen has the ESR2 drug target as its fourth most common feature. The ESR2 gene 

codes for Estrogen Receptor beta, a key pathway in ER+ breast cancer [156]. Clinically, ESR2 is 

widely targeted in BRCA, and the ESR2 molecular marker is highly correlated with survival 

[157]. Anastrozole is another drug that serves as a survival predictor . In  Scattershot’s 

Anastrozole classifier, the second most important feature is CTNNB1.  CTNNB1 coordinates cell-

to-cell adhesion and gene transcription, and it promotes the Wnt signaling pathway, a prominent 

signaling pathway which controls cell fate specification, cell migration, and G1/S cell 

proliferation. CTNNB1 and the Wnt signaling pathway is commonly perturbed in ER+ breast 
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cancer [158]. Like with ESR2, CTNNB1 is also widely targeted and it is strongly associated with 

BRCA survival [159].  Survival markers such as ESR2 and CTNNB1 in ER+ breast cancer 

explain how Scattershot identifies patients where Tamoxifen and Anastrozole can be 

administered to improve survival. 

4.2.3 Scattershot achieves better performance in single drug prediction than previous methods 

We compared Scattershot to the method described in [66], which was the method most similar to 

Scattershot where it attempts to predict the same physician-coded drug response. Using the same 

response variables, the method in [66] built 4 models corresponding to expression, miRNA, copy 

number, and methylation for Paclitaxel in BRCA (no other BRCA-specific drugs were reported 

in that work), and reported that their best model was the miRNA model, which had a mean AUC 

performance of 67.3%. In contrast, Scattershot’s average Paclitaxel AUC performance is 81.8%. 

[66] also modeled the drug response for Carboplatin and Cisplatin with respect to the Pan-Cancer

analysis. Scattershot’s performance respect to Cisplatin AUC is 90.9%, and Scattershot’s 

performance with respect to Carboplatin AUC is 81.2%. In contrast, the strongest Cisplatin 

model in [66] was miRNA with an AUC 68.4% and the mRNA expression model of Cisplatin 

had an AUC of 62.6%. The best Carboplatin model in [66] was expression with an AUC of 

58.0%. These performance results suggest that Scattershot provides a framework that can better 

predict the drug response of single drugs. 

Three potential reasons Scattershot shows stronger performance than previous methods. 1) 

Scattershot identifies a data integration step that allows for the integration of data from multiple 
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sources, whereas the model presented in [66] only allows for one type of genomic data. 2) 

Scattershot’s feature selection step includes an initial cutoff that selects for significant cancer 

genes. 3) Scattershot’s inclusion of pathway features, and drug target features present add crucial 

clinically significant predictive features. 

Scattershot is able to incorporate multiple data types (binary variables, continuous variables, 

whole numbers, and integers), using the non-parametric Random Forest classifier which can 

incorporate multiple types input data to be present in the model without requiring normalization 

steps which result in information loss [160]. To explore the impact of data-integration, we ran 

Scattershot using one type of data only (expression-only model, copy number-only model, and 

mutation-only model) to predict drug response. For Paclitaxel in BRCA, the best model 

performance was gene expression with an AUC of 70.0%, lower than the fully-integrated model 

of AUC 81.8%. For Pan-Cancer Cisplatin, the best model performance was the mutation model, 

with an AUC of 75.2%, lower than the fully-integrated Scattershot model of 90.9%. For Pan 

Cancer Carboplatin, the best model performance was the expression model, with an AUC of 

61.9%, lower than the fully-integrated Scattershot model of 82.0%. 

We then examined the impact of Scattershot’s initial feature selection step. Unlike the previous 

method, Scattershot’s feature selection includes an initial cutoff of functional cancer genes from 

three sources: 1) known drivers found by the Cancer Gene Census [101], 2) drivers that have 

pathway impact from DawnRank [67], and 3) drivers that are associated with functional events 

in cancer [58]. This criteria leads to a feature space of 65 expression features, 76 copy number 

features, and 76 mutation features. The smaller feature space reduces the chances of overfitting 
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and prevents the model from selecting genomic features that provide little or no functional 

impact. To quantify the impact of this initial feature selection, we ran Scattershot without the 

initial feature elimination step and compared our results to the full Scattershot model. For 

Paclitaxel in BRCA, no feature selection yielded an AUC of 70.7%, higher than the model in 

[66] which had an AUC 67.3% but lower than the fully-integrated model of AUC 81.8%. For

Cisplatin in the Pan-Cancer analysis, no feature selection yielded an AUC of 81.4%, lower than 

the fully-integrated Scattershot model of 90.9%. For Pan-Cancer Carboplatin, no feature 

selection yielded an AUC of 52.1%, lower than the fully-integrated Scattershot model of 82.0%. 

Lastly, we examined the impact of pathway and drug target features in the model. The Paclitaxel 

model for BRCA, for example, consists of several features from drug targets and pathway 

features. This model consists of 10 features, and three of those features are pathway features: 

Cell Cycle Control (the most important feature), Receptor Tyrosine Kinase (RTK) signaling and 

Folate Transport. Additional two features are the PTEN and KRAS drug target. Mechanistically, 

these new features are quite important in Paclitaxel response. Paclitaxel mainly serves to enhance 

the polymerization of tubulin to stable microtubules, which are required to pass the G2/M phase 

of mitosis [161]. This explains why the Cell Cycle Control pathway variable is the single-most 

important predictor of Paclitaxel response. Receptor tyrosine kinases are cell surface receptors 

polypeptide growth factors, cytokines, and hormones that are key regulators in many cell 

processes. Paclitaxel and Trastuzumab (Herceptin) target RTK and are associated with stronger 

drug response [162]. Folic acid targets cell membranes and enhances endocytosis of 

nanoparticles, which facilitates the uptake of Paclitaxel to cancer cells, increasing its 

bioavailability [163] [164]. PTEN is a phosphatase and tensin homolog that plays a major role in 
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cell cycle progression and proliferation [165], and the PTEN signaling pathway has been linked 

to reversing chemoresistance to paclitaxel in p53 mutated cancer cells [166]. KRAS is a GTPase 

and is an early player in many signal transduction pathways [167], and Paclitaxel has been 

involved as a chemotherapeutic agent in KRAS mutated cell lines to improve drug response 

[168].  

4.2.4 Scattershot can accurately predict drug in pairwise recommendation mode 

We next ran Scattershot in pairwise recommendation mode to provide a ranked list of drugs 

using the results of the pairwise preference classifiers. As with the single drug classifier in SDM, 

we studied any drug that was prescribed in at least 5% of the patients to keep the n samples 

larger than the p features. This resulted in 11 eligible breast cancer drugs to rank and 22 eligible 

Pan-Cancer drugs to rank. Unlike the single drug mode, we were only concerned with whether a 

drug was prescribed, not whether the drug had a disease state or response outcome (see 

Methods). This was done in part to increase the number of drugs to rank to provide meaningful 

ranking results, in part because the vast majority (68%) of the prescribed patients exhibit a 

positive response, and in part to simplify the problem to keep the pairwise classifier a binary 

classifier for the rank aggregation method. The goal of each pairwise drug classifier is to 

determine whether or not a test patient would prefer one of the two drugs based on the patient’s 

genomic profiles. 

The results of the pairwise preference classifiers for breast cancer are shown in Figure 15. Figure 

3A shows the AUC evaluation and Figure 15B displays the kappa statistic for each pairwise 
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preference classifier. In breast cancer, we evaluated all but 3 of the potential 55 pairwise drug 

classifiers. We excluded Cyclophosphamide-Trastuzumab, Cyclophosphamide-Epirubicin, and 

Cyclophosphamide-Fluorouracil from the study due to severe class imbalance, where almost all 

(>99%) or none of the patients that were treated with Trastuzumab, Epirubicin, or Fluorouracil 

were also treated with Cyclophosphamide. 

For breast cancer, the average pairwise AUC is 82.8% with an average accuracy of 84.3%. Only 

one pairwise response, Epirubicin vs. Doxorubicin, out of 52 did not have a significant AUC 

when comparing with the model with a 0.5 AUC baseline. The average kappa statistic is 0.381. 

Looking at the kappa statistic, 10 of the 52 classifiers had a “slight” kappa score of 0-0.2, 20 of 

the 52 classifiers had a kappa score of 0.21-0.4, 11 of the 52 classifiers had a kappa score of 0.41 

to 0.6, and 11 of the 52 classifiers had a kappa score of 0.61 or higher. The distribution of kappa 

scores indicates that while the performance of the classifiers in general are not due to chance. 

However, the association is not very strong in many cases. One explanation for low kappa scores 

in some classifiers and high kappa scores in others may be related to drug mechanisms. 

Anastrozole, Exemestane, and Letrozole are all aromatase inhibitors with very similar 

mechanisms in estrogen receptor positive BRCA [169]. Due to drug response similarity, 

Scattershot has difficulty in comparing these drugs which explains why the kappa value of 

Anastrozole performs worst when paired with Exemestane and Letrozole, exhibiting a kappa of 

0.06 and 0.22.  

With regards to the Pan-Cancer analysis, the AUC results are higher than the breast cancer 

predictors with an AUC of 93.6%, and the kappa statistic is 0.765, and only 19 out of 209 
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classifiers returned a kappa of less than 0.2. This indicates that the overall classifiers for Pan-

Cancer analysis is very strong and that the vast majority of classifiers’ performance is not by 

chance. The kappa score for the pairwise classifier is substantially higher than they are for the 

breast cancer data meaning that the performance of Pan-Cancer classifiers is much less likely to 

be due to chance than in breast cancer. There are several differences in the data that are potential 

sources of this discrepancy. One reason is the larger n. The average preference classifier in Pan-

Cancer contains 2.3 times as many samples as the average preference classifier in breast cancer. 

Patients across multiple types of cancer have more distinguishable genomic features than patients 

within only one type of cancer. Cancer mechanisms vary from cancer to cancer, and some 

chemotherapeutic drugs are cancer-specific. An example of this is Bleomycin in Testicular 

Cancer (TGCT). Bleomycin is heavily prescribed in TGCT. 53 out of 162 TGCT patients, but it 

is not prescribed in patients in any other cancer. 

We next looked at the feature selection process for each of the subtypes in breast cancer. Figure 

15C highlights the most commonly selected features for each source of data with respect to the 

pairwise preference classifier. Selected features in Figure 15C represent the most commonly 

selected features when building a pairwise preference classifiers regarding the drug. With 

regards to expression data, the most selected feature is GATA3, which was heavily selected in the 

models of every drug, and EGFR and ERBB2, which are important features in 10/11 drug 

models. These three genes are known to be highly predictive of breast cancer subtypes, which 

are often used to prescribe drugs GATA3 along with BRCA1 is involved in pathogenesis of basal 

and triple negative breast cancer [170]. EGFR and ERBB2 are well-known for their driving 

potential in Her2 breast cancer [171]. For copy number analysis, PIK3R1 is the most selected 
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feature in breast cancer. PIK3R1 is selected in 8/11 drug models. PIK3R1 activated in response 

to activations in tyrosine kinases such as EGFR, VEGFR2, and ERBB2, and its involvement in 

multiple cancer pathways make it an ideal marker for predicting drug response [172]. BRCA2 is 

the most important mutation feature in the pairwise preference classifiers. BRCA2 is selected in 

10/11 drug models. The BRCA2 mutation, is a well-known hereditary mutation is involved in 

DNA repair mechanisms [173]. BRCA2-induced cancers are more likely to be ER+ and less 

likely to be Her2, and therefore, it is a strong treatment marker for ER+ prescribing drugs [174]. 

Pairwise classifiers involving Epirubicin and Docetaxel rely heavily on drug target features. 

Epirubicin-based classifiers use 80% of the available drug target features and Docetaxel-based 

features use 67% of the available drug target features. Both Epirubicin and Docetaxel have very 

similar drug target with common features such as ABCC6, NAT2, XRCC3, PRDX2, PLD2, 

SLCR10A2, TUBB, and NR112. Docetaxel and Epirubicin are often co-prescribed with targeted 

chemotherapy to improve drug response [175]. Some features such as multi-drug resistance 

proteins such as ABCC6 are associated with resistance to Docetaxel and Epirubicin treatment 

[176]. Pathway features may be quite drug specific, but many of the pathway features selected by 

our model agree with the current literature in breast cancer treatments. For example, 5-

Fluorouracil and Epirubicin are associated with telomerase length, and these two drugs have the 

telomere maintenance pathway as an important select breast cancer pathway [177]. In addition to 

genomic data and drug target-driver gene interaction, there are also important clinical features in 

breast cancer predictors, including ER status and Triple Negative status. This agrees with prior 

knowledge as the ER status or the lack thereof is often the most important current manual 

decision-making steps in breast cancer drug prescription as drugs [155]. 
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4.2.5 Scattershot in pairwise recommendation mode rankings are well associated with the 

prescribed drugs 

 

After building the pairwise response matrix, we used the FAS-Pivot algorithm to rank aggregate 

the pairwise comparisons and output a ranked list of drugs for each patient by relevance (see 

Methods). To evaluate the rankings, we compared the ranked list of drugs for each patient to the 

drugs that were actually prescribed to the patient by the health care provider. We used the 

precision @ k score to test the performance. The precision @ k score measures the precision, the 

percentage of drugs that were prescribed vs. all Scattershot proposed drugs at rank k [178]. 

Figure 16A illustrates the precision @ k score for each breast cancer drug. The precision @ 1 for 

Scattershot is 73.1% and the precision @ 2 is 56.6%. This means that for all patients, 

Scattershot’s top recommended drug was actually prescribed to the patient over 73% of the time, 

which indicates that Scattershot is able to reproduce a substantial number of physician 

recommendations in cancer. Scattershot’s second choice was prescribed over 56% of the time. 

The precision curve decreases with k, meaning that predictions ranked low are unlikely to be 

actually prescribed.  

 

To confirm that Scattershot recommends prescribed drugs higher than it does drugs that were not 

prescribed, we compared the distribution of the rankings for each drug when it was prescribed 

with the distribution of the rankings of the drugs when they were not prescribed (Figure 16B). A 

Mann Whitney Rank-Sum test showed that the rank difference between the Scattershot rank 

when the drug was prescribed compared to when it was not was statistically significant. The p-

value for each breast drug test was less than 0.05 for all 11 Scattershot breast cancer drugs, 
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meaning that Scattershot rankings for each drug were higher when the drug was actually 

prescribed. Similar results were found with the Pan-Cancer analysis, with a Mann Whitney 

Rank-Sum test showing that the rank difference was statistically significant for all 22 drugs 

(p<0.05).  

 

In breast cancer, the largest difference between Scattershot rankings is in Trastuzumab, or 

Herceptin. Scattershot’s rankings for Trastuzumab in patients where Trastuzumab was prescribed 

was 2.0 (See Figure 16B) while the median ranking for Trastuzumab where Trastuzumab was 

not prescribed was 11.0. Trastuzumab is often prescribed in aggressive Her2 BRCA patients, 

targeting growth factors such as ERBB2 and ERBB3, activating the PIK3 apoptosis pathways, 

and contributing to inhibiting cancer angiogenesis [179]. We looked at the features of the 

Trastuzumab pairwise classifiers and found that the most commonly selected features include 

ERBB2 and ERBB3 expression, copy number, and mutation features, PIK3R1 copy number, the 

Her2 clinical subtype, and the Angiogenesis pathways. Each of these features is a hallmark 

property in Trastuzumab response which may largely explain the reason the Trastuzumab 

ranking is so reliable. 

 

4.2.6 A cluster of Scattershot rankings reveals subtypes that are consistent with known breast 

cancer subtypes 

 

We further visualized the Scattershot personalized drug rankings by clustering the breast cancer 

patients based on the predicted drug rankings using hierarchical clustering with Ward’s linkage 

over the Spearman’s footrule distance. This resulted in five clusters from Scattershot 
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recommendations. We compared the breast cancer clusters based on Scattershot rankings to that 

of established cancer subtypes such as the ER/PR/Her2 [39] subtype classification as well as the 

commonly accepted PAM50 gene expression subtypes of Basal, Her2, Luminal A, Luminal B, 

and Normal-like [42] (see Figure 16C). We found that the Scattershot subtypes correspond very 

closely to each clinical subtype as well as each PAM50 subtype. A chi-square test for association 

was performed to determine the significance of the clusters, and a significant association was 

found between Scattershot drug recommendations subtypes with both the ER/PR/Her2 subtype 

(p-value < 2e-16 for each marker) and PAM50 subtypes (p-value < 2e-16). We found 5 subtypes 

in breast cancer based on drug prescription that were strongly associated both the clinical and 

gene expression subtypes. Three of the clusters (named Clusters 1, 3 and 5 in Figure 16C) are 

related to ER+ and PR+ breast cancer and the Luminal A and Luminal B PAM50 subtype (Chi-

square association test p <2e-16). Another cluster (Cluster 2) is related to the Her2+ subtype and 

the PAM50 Her2 subtype (Chi-square association test p <2e-16). The last cluster (cluster 4) is 

related to triple negative breast cancer and the PAM50 Basal subtype (Chi-square association test 

p <2e-16). 

 

We then compared the drugs that are associated with each cluster, using a Mann-Whitney Rank-

Sum test to compare the rankings of each drug within the cluster to those outside the cluster to 

determine if there is a significant association between the drug and the cluster. We used a 

Bonferroni correction for multiple testing. The ranking of Trastuzumab, which is associated 

strongly with the Her2 subtype, is strongly associated with high ranks in cluster 2 which 

corresponds to many Her2 patients (p <2e-16) and is also associated with low ranks in clusters 1, 

3, and 4.  Aromatase inhibitors in Anastrozole and Letrozole as well as anthracycline drugs in 
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Epirubicin and Doxorubicin are significantly associated with Cluster 1, a Luminal A and B and 

ER/PR+ subtype. Clusters 2 and 5 are other Luminal A and B and ER/PR+, however, and while 

most of the Cluster 1 drugs are still significant in clusters 3 and 5, the defining feature separating 

Clusters 3 and 5 from Cluster 1 is Tamoxifen, which is not significantly associated in Cluster 1, 

but is associated in Cluster 3 (p=1.68e-6) and cluster 5 (p=8.33e-5). Although Tamoxifen acts 

targeting the ER receptor, its mechanism is different from other ER drugs in that it causes a 

change in the folding of the steroid binding domain that prevents gene activation [180]. The 

drugs that define clusters 3 and 5 is Docetaxel which is not significant in Cluster 3, but 

significant in Cluster 5 (p = 1.63e-13). Docetaxel has been shown to effectively treat ER+ breast 

cancer patients, but the efficacy varies due to the level of ER expression [181]. 

 

The most interesting conclusions from Figure 16C come from Scattershot’s recommendations for 

Triple Negative Breast Cancer. Triple Negative Breast Cancer are defined by the lack of ER, PR, 

and Her2 receptors, and they are known for their low survival rates due to the lack of targeted 

therapies available [182][40]. In Triple Negative Breast Cancer, Scattershot tends to rank the 

drugs Cyclophosphamide, Fluorouracil, Epirubicin, and Doxorubicin high with statistical 

significance. Evidently, this corresponds to literature studies which show that both CEF 

(Cyclophosphamide, Epirubicin, Fluorouracil) and CDF (Cyclophosphamide, Doxorubicin, 

Fluorouracil) chemotherapies outperform traditional chemotherapy regimens for TNBC patients 

[183]. Triple Negative Breast Cancer patients are shown to be sensitive to anthracyclines such as 

Epirubicin and other DNA destabilization agents to a degraded DNA repair cascade in TNBC 

[184]. This result further demonstrates that the Scattershot clusters can be used to stratify breast 

cancer patients to well defined drug response subtypes. Therefore, Scattershot may be a useful 
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tool which could help physicians select a treatment by taking into account integrated genomic, 

drug target, and clinical outcome, complementing current strategies of identifying clinically 

relevant subtypes. 

4.3 Methods 

Scattershot operates under one of two modes: 1) single drug mode (SDM) and 2) pairwise 

recommendation mode (PRM). Single drug mode uses a classifier to predict the clinical response 

to a single drug in a group of test patients. Pairwise recommendation mode is a multilabel 

classification method (a method that predicts multiple responses simultaneously) that provides a 

ranked list of drugs in a test patient ordered from most to least likely to respond. We use 

multilabel problem transformation techniques [185] to transform a comparison of many drugs to 

a comparison of any two drugs in a binary classifier in which test patients are classified a 

“preference” between the two drug. The preferences binary classifiers are then rank-aggregated 

using the pairwise rank aggregation FAS-Pivot algorithm to determine a final rank (see the 

multilabel Rank Prioritization Section). The classifiers in both modes are based on Random 

Forest incorporating a wide array of integrated features from a multitude of data sources 

including molecular signature data in expression, mutation, and copy number information 

combined with drug target, pathway interaction, and clinical data (see Figure 13). 

4.3.1 Data Collection 
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All genomic features and drug response data were downloaded originally from TCGA [152]. For 

common genomic features, we obtained preprocessed and curated data from cBioPortal [127]. 

We used the genomic information including: mRNA expression (median z-score), copy number 

information (based on GISTIC [128]), and mutation information.  Although methylation 

information was shown by [58] to improve drug prediction models on GDSC cell lines, we 

excluded methylation data in this work due to a large number of missing values in breast cancer 

samples (29%) and an absence of reliable methylation HumanMethylation27 BeadChip 

information in ovarian cancer. We obtained genomic information from 15 cancers with a 

substantial number of patients with both genomic feature information and drug information: 

BLCA (bladder cancer), BRCA (breast cancer), CESC (cervical cancer), GBM (glioblastoma), 

HNSC (head and neck squamous cell), KIRC (kidney cancer), LGG (low grade glioma), LUAD 

(lung adenocarcinoma), LUSC (lung squamous cell carcinoma), OV (ovarian cancer), PAAD 

(pancreatic cancer), PRAD (prostate cancer), TGCT (testicular cancer), UCS (uterine 

carcinoma). 

Drug response information was also obtained from TCGA through the Broad institute [186] and 

the TCGABiolinks R package [187]. Drug response was recorded in the TCGA as one of five 

outcomes. The five outcomes, ordered from best to worse, are as stated: “Complete Response”, 

“Partial Response”, “Stable Disease”, “Radiographically Progressive Disease”, and “Clinically 

Progressive Disease”. The names of the recorded drugs and treatments in TCGA, however, are 

not standardized and require curation due to the use of formatting differences and the use of 

differing names for the same drug (e.g., Generic and Trade Name) [65]. The paper [66] provides 

a dictionary which translates all TCGA prescriptions to a standardized DrugBank ID [188] for all 
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treatments that were prescribed in a patient that yielded a drug response. We added curations to 

original dictionary to include prescriptions that yielded a missing or unknown responses using 

the same methodology from [66], standardizing prescription names to the corresponding 

DrugBank ID [188]. 

 

We included missing values in the pairwise recommendation mode analysis for several reasons. 

First, the vast majority of drug prescriptions in TCGA (68%) have no corresponding drug 

response. This can contribute to the small n large p problem where the number of features is 

much greater than the number of samples to train [189], or it can severely limit the number of 

drugs that we can apply to Scattershot, reducing the scope of the problem. Second, the mere 

prescription of the drug in an actual clinical setting implies that the physician believes that the 

drug will elicit a positive response in the patient. A majority of patients treated with any drug 

will respond favorably. 63.9% of patients prescribed with a certain drug had a “Complete 

Response”, 70.4% patients had a “Complete” or “Partial” response, and 83.0% of the patients 

had a “Stable Disease” response or higher. Therefore, we included all drug prescription 

information with missing and unknown values in order to increase the power of our classifiers. 

 

For drug target specific features, we gathered gene network and pathway information with 

respect to drug target and mutations. We used the gene network of 8726 genes from [67], which 

is a network combined with curated KEGG data [190] as well as non-curated interactions from 

[191]. We used 13 cancer pathways defined as “General” cancer pathways from cBioPortal 

[127]. Drug targets were obtained using the Drug Gene Interaction Database (DGIdb) [147]. 

Although, its compendium is not complete, the DGIdb compendium is one of the most extensive 



	 97	

databases to characterize drug interactions with the genome, integrating data from multiple well 

known databases. For mutation information, we focused only on mutations in known driver 

genes defined by the Cancer Gene Census [101]. All data was accessed on 7/9/2016. All in all, 

1508 patients across 15 cancers were analyzed. Of that, the cancer type with the drug 

information was breast cancer, with 647 patients. Because breast cancer is the cancer with the 

most prescription information by far, we did two analyses on drug response: one with only breast 

cancer patients and the other Pan-Cancer analysis with all 15 cancers. With the dataset, we made 

a training and test dataset with the training dataset consisting of 90% of the data and the test 

dataset consisting of the remaining 10%. Ten training datasets were created this way for a 10-

fold cross-validation. 

 

4.3.2 Binary Classification 

 

Both single drug and pairwise recommendation modes use binary classification at the heart of 

their method. In single drug mode, the binary response variable is 0 if the treatment elicits no 

drug response and 1 if the treatment does elicit a drug response. We define a drug response as a 

recorded outcome corresponding to a response state: either “Complete Response” or “Partial 

Response”. We define no response as a recorded outcome corresponding to a disease state: either 

“Stable Disease”, “Clinically Progressively Disease”, or “Radiographic Progressive Disease”. In 

pairwise recommendation mode, we created a binary classifier for each pairwise drug 

comparison using a training dataset of 90% of the data and a testing dataset of 10% of the dataset 

with 10-fold cross validation. Each pairwise binary classifier represents a preference of one of 

two drugs. If both drugs are prescribed in the same patient, the preference goes to the drug that 
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elicits the stronger response, and the patient is removed from the classifier if both drugs elicit the 

same response.    

 

Algorithm 4.1 listed below explains the building of the binary classifier. The first set of 

Algorithm 4.1 is to calculate process the features used in the model. We initially process the 

genomic features F, the distance features T, and the pathway features S, separately and merge 

them together to make the combined feature space for the model. We then implemented a 

Random Forest classifier with recursive feature elimination to predict the final outcome. The 

feature elimination step involves building the model with all the features, eliminating the features 

that provide the least amount of information according the Random Forest GINI index, and 

rerunning the model again until the model performance no longer performs better than the 

previous model. In single drug mode, it is the physician-coded drug response, and in pairwise 

recommendation mode, it is an indicator of which drug is most likely to be prescribed. 

 

We selected Random Forest as the binary classification model for three main reasons. 1) 

Random Forests have few parameters to train. 2) Random Forests do not require normalization 

3) Random Forests are more robust (though not immune) to small n large p problems. The only 

parameters that Random Forests are required to train are the number of features for each decision 

tree and the number of trees that make up the forest [192]. This is less than similarly performing 

methods such as SVM which require more parameters for any given kernel. Random Forests also 

do not require normalized data. Random Forests are better able to handle small n large p because 

it is an ensemble method aggregating results of multiple models (Random Trees) with a small 

number of features [193]. To evaluate our method, we ran Random Forest with 10-fold cross 



	 99	

validation training with 10, 50, 100, 500, 1000, and 5000 and we found that 5000 trees yielded 

the highest performance. We trained 1 to 10 features per tree and we selected the parameter on a 

per-model basis based on the 10-fold CV result, and we reported the median result from our 

classifier. We used the R package RandomForest to analyze our model. 

 

The genomic features F used in each binary classifier fall under one of three groups: (i) genomic 

features, (ii) drug-specific pathway target features, and (iii) clinical features. The genomic 

features include information from mutation, expression, and copy number information. Because 

the number of potential features from this data is large (~33,000) and can contribute to the small 

n large p problem, we limited genomic features to features that satisfy each of the following 

criteria: (i) genomic features with known tumorigenic properties, or driver genes; (ii) genomic 

features with network impact; and (iii) genomic features that have been previously identified as 

clinically relevant in cell line studies. We used the 580 driver genes in the Cancer Gene Census 

(CGC) [101]. Highly impactful genes were calculated by DawnRank [67], selecting a 

corresponding number of highly-ranked, significant, impactful genes in the cancer pathway. We 

used the cell line study [58] to detect Cancer Functional Events (CFEs), which are features from 

cell line data associated with drug response. Using the intersect of all three of the following 

criteria, we used 65 expression features, 76 copy number features, and 76 mutation features. For 

drugs that had DGIdb drug targets outside these 76 genes, the expression, copy number, and 

mutation features of those target genes were also included in the model. For breast cancer, we 

also used basic clinical information as well. We used patient information such as age as well as 

specific tumor staging (T, M, N information) [194] and subtype and tissue type information 
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[195]. The subtypes used for the breast cancer analysis are the clinical subtype (ER, PR, Her2) 

and not the PAM50 subtype. 

 

In addition to basic genomic and clinical features, we also sought to include information that 

quantifies the interaction between the drug’s targets with the patient’s driver genes. This is 

matrix T in algorithm 4.1. The drug target / driver gene interaction has been hypothesized to be 

predictive of drug response. Studies such as [63] operated under the paradigm that drugs that 

directly target a driver gene or target a gene that interacts with the driver should be candidates 

for targeted therapy. The authors used the drug target / driver gene interaction to assign targeted 

therapy to patients based on how close the drug target was to the patient’s driver genes. We also 

calculated the drug target / driver gene interaction in our model. For each drug target, we 

calculated the Dijkstra’s shortest path distance [196] for the drug target corresponding to the 

patient’s nearest predicted driver mutation (shortest Dijkstra’s path distance). This outputs a 

distance feature for each drug target. In pairwise recommendation mode, we consider two drugs 

at a time, so we used the drug targets of both drugs as features. For each drug, we also calculated 

the absolute minimum distance between all drug targets and all driver genes. The absolute 

minimum distance represents the smallest possible interaction distance between any drug target 

and any driver gene, which indicates the overall most likely mechanism in which a cancer drug 

would act on the patient. 

______________________________________________________________________________ 
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______________________________________________________________________________ 

(Algorithm 4.1) 

 

To complement the drug target-driver gene interaction, we further complemented our model with 

pathway information. This is matrix S in Algorithm 4.2. Driver genes affect tumorigenesis by 

acting on cancer pathways which act in tandem to produce a phenotypic effect. Important 

pathway features such as PIKC3A/AKT’s effect on apoptosis have been shown to be clinically 

significant features when perturbed in cell line models, which showed that drug target and driver 

gene interacting within the same pathway have an impact on predicting drug response [58]. We 

captured this type of interaction by mapping the distance of a driver to a specific cancer pathway 

by calculating the shortest path distance between the any driver gene with any gene in the 

pathway. Values closer to 0 indicate that the pathway interacts more closely with a patient’s 

drivers while values equal to 0 indicate that the pathway is directly perturbed in a patient. We 

used the R package igraph to calculate the pathway interaction values [197]. 
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The features in the model F, T, and S were then merged to form the feature space, which range 

from 217 to 265 total features. Although this feature space is much smaller than the potential 

30,000 features possible in our model, the limited availability of treatment information in many 

drugs still leaves us prone to overfitting from the small n large p problem. To rectify this, we 

used Recursive Feature Elimination (RFE). RFE eliminates redundant or irrelevant features to 

yield the most precise set of genes with the greatest predictive accuracy, and it has also been 

shown to have high predictive power in predicting cell line response [198]. RFE works by 

building a full model and calculating its performance, then rank ordering each variable by its 

importance, and then eliminating the least important features from the model and reevaluating 

the method to determine if there is an improvement in performance. The importance for our RFE 

was the Gini coefficient, the entropy calculation of Random Forest classifiers. The RFE process 

is repeated until there is no improvement in the model from eliminating features. The RFE step 

in our model was built using the R package, Caret [199]. One instance of Scattershot takes 1 

hour and 15 minutes on an 8 GB ram personal computer. 

 

4.3.3 Pairwise Rank Prioritization 

 

For Scattershot to run in single drug mode, only the binary classification step is needed. 

However, the drug prioritization step of pairwise recommendation mode requires an additional 

step to create the ranked list for drug prioritization. Algorithm 4.2 below describes the 

Scattershot approach. Comparing the results of many related labels (in this case, drugs in vector 

d), is a challenging machine learning problem because the labels do not act independently, and a 
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multilabel framework is designed to better handle inter-dependencies and interactions of the 

labels (drugs in this case) [69]. 

______________________________________________________________________________

 

______________________________________________________________________________ 

(Algorithm 4.2) 

We use binary problem transformation to convert the multi-label problem into single label 

problems. We compare two labels at a time for every combination of labels in one-vs-one 

comparison over the feature space F described in the previous section. This differs from the 

traditional one-vs-all problem formulation in which a classifier is built for each drugs in that in 

that it maps drug interactions and dependencies where one-vs-all methods cannot. One-vs-all 

problem formulation is the default model used most current methods in predicting drug response 

in cell line data, including the most recent [58].  

 

The result of each classifier indicates whether or not a test patient is more similar to patients 

prescribed with one of two drugs, resulting in a “preference” of one of these two drugs. The 
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advantage of using problem transformation is that we account for any potential interactions and 

interdependencies which may confound our data while at the same time simplifying the problem 

to binary, single-label, preference. The pairwise preferences, calculated as the median result from 

the 10-fold CV, are used to build a pairwise comparison matrix, P. P is unique for every patient 

in the test set. When comparing k drugs, P, is a k x k matrix holding the result of the drug 

preferences (results of the binary classifiers) for the test patient in which Pi,j is 1 if the patient is 

more likely to prefer drug i and 0 if the patient is more likely to prefer drug j. When i =j, no 

value is given in the matrix. A pairwise rank aggregation step is then done on P to obtain the 

final result. Scattershot’s model follows that of pairwise classification described in [200], which 

showed that pairwise, one-vs-one classification can be utilized to output promising experimental 

results compared to traditional one-vs-all methods. 

 

Algorithm 4.3 listed below describes the FAS-Pivot pairwise rank aggregation algorithm to 

determine the final drug rankings, which is a special case of the FAS-Tournament sports 

algorithm designed to rank sports teams in the wake of a large amount of inconsistent 

information [201]. FAS-Pivot provides a globally consistent rank solution when there is potential 

for large number of disagreements and inconsistent information in the pairwise ranking matrix P. 

FAS-Pivot is especially important for drug prediction in patient samples because the dataset 

itself is subject to many confounding factors beyond the scope of genomic data that may lead to 

inconsistent information. Confounding factors include patient demographics, patient medical 

histories, and environmental information which are not well recorded and difficult to adjust 

[202]. FAS-Pivot works by first selecting a random drug pivot q among all drugs in P. 

Afterwards, it splits each remaining drug into one of two vectors vL and vR. vL contains all drugs 
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preferred over the pivot and vR contains all drugs not preferred over the pivot. A pairwise matrix 

P[vL,vL] consisting of only drugs prefered over the pivot and then FAS-Pivot is run recursively 

with the input  P[vL,vL]. The results are appended to the left of the pivot.  A pairwise matrix 

P[vR,vR] is also made for drugs not preferred over the pivot, and then FAS-Pivot is run 

recursively with the input  P[vR,vR], and the results are appended to the right of the pivot. The 

algorithm runs the input of FAS-Pivot is a 1 x 1 matrix in which only the pivot is returned or a 0 

x 0 matrix in which nothing is returned. 

____________________________________________________________________________ 

 

______________________________________________________________________________ 

(Algorithm 4.3) 

FAS-Pivot has a distinct advantage over traditional rank-prioritization methods such as 

Condorcet Voting in that it will output a ranked list in all circumstances while Condorcet Voting 

may be trapped in cyclical ranks [203]. Cyclical ranks are avoided by FAS-Pivot because FAS-

Pivot forces a rank by comparing all drugs to a single pivot. Missing values in the pairwise rank 
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aggregation matrix were imputed by allowing downstream calls to rank the drug and applying 

rank-balancing as seen in [201] by using Spearman’s footrule distance to obtain a consensus rank 

over 100 FAS-Pivot calls. We implemented FAS-Pivot in R and used the R RankAggreg 

package for rank balancing via Spearman’s footrule distance [110]. 

 

4.4 Discussion 

 

The results of Scattershot highlight a method that can both predict the response of a single drug 

as well as rank-prioritize a list of drugs for any given test patient. Running Scattershot in Single 

Drug Mode found that Scattershot greatly outperforms previous methods in terms of predicting 

the response of the drug. Scattershot models several drugs such as Anastrozole and Tamoxifen 

using genomic markers that are indicative for survival. In Pairwise Recommendation Mode, we 

found that the pairwise classifiers predict the assigned drug with a high accuracy. The rank list of 

Scattershot recommendations indicate that the most recommended drugs are drugs that were 

actually prescribed with a high precision. BRCA subtypes based the Scattershot rankings are 

highly predictive of previously defined BRCA subtypes such as clinical subtypes and PAM50 

gene expression subtypes.  

 

The Scattershot method does have its limitations, and further work needs to be done to confirm 

and improve the results of Scattershot. One limitation of Scattershot lies within the quality of 

data in Scattershot. This extends to both the qualitative nature of the drug response information 

in the TCGA patient histories which are subject to subjectivity by physicians. Additionally, some 

of the input data may need to be examined further. One example of this lies in the drug target 
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information found in DGIdb. The database, while extensive is not complete, and it draws from 

drug target information from multiple sources. To ensure the highest quality in results with 

respect to drug target information, manual curation is a potential future step to fill in potential 

gaps of the non-curated drug target database.  

Another main difficulty in the classification step of Scattershot was the small number of samples 

for any given classifier. The small n may be one of the leading explanations to some of the low 

Cohen’s Kappa score in some classifiers. As more data is recorded, Scattershot may improve 

over time by more reliably predicting the response and prescription of more drugs. As more drug 

information becomes available in the future, we also plan to improve the Scattershot pairwise 

classifiers so that they simultaneously take into account prescription and the magnitude of 

response rather than a simple binary to determine drug prescription. 

Scattershot is a new computational method that can help clinicians prioritize potential drug 

treatments and predict the response of a certain drug to a patent. Researchers can utilize the 

Scattershot pipeline to select for important features that define the drug response for specific 

drugs. The pairwise classifier may also provide insight of drug-interactions as it directly 

compares the response of two drugs. Taken together, Scattershot shows strong promise in its 

application to predict drug response and to recommend drugs on a personalized basis. 
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FIGURES 

 

Figure 13: The workflow of Scattershot. It describes the steps necessary to run Scattershot in 

pairwise recommendation mode. In single drug mode, the drug response in the output so the 

method stops at the classification step. The lower portion of the figure illustrates the features and 

the feature types selected by Scattershot. 
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Figure 14: The performance evaluation of Scattershot run in single drug mode to measure drug 

response. (A) The ROC plots show the results of single drug mode Scattershot with breast cancer 

patients only in terms of Specificity (X axis, in reverse) and Sensitivity (Y-axis) for …. (B) The 

survival differences are shown for patients with predicted positive responses to the drug in 

question vs. predicted negative responses. The X axis represents survival time in days up to 5 

years and the Y axis represents the percentage of patients surviving. (C) The ROC plots show the 

results of single drug mode Scattershot with Pan-Cancer patients in terms of Specificity, the true 

negative rate compared to all negatives (X-axis, in reverse) and Sensitivity, the true positive rate 

compared to all positives (Y-axis). 
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Figure 15: A summary plot of the breast cancer performances of the pairwise binary relevance 

classifiers when Scattershot is run in pairwise recommendation mode (PRM). (A) The median 

AUC values from the 10-fold CV of each pairwise classifier are shown in the lower triangle and 

the corresponding color and size intensity are in the upper triangle. (B) The C value of each 

pairwise classifier are shown in the lower triangle and the corresponding color and size intensity 

are in the upper triangle. (C) We show the feature selection variables for each type of data. The 

X-axis represents the feature type and they Y-axis represents the drug. A value is colored if the 

feature was selected in at least 25% of the models involving the drug. 
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Figure 16: A summary plot of the recommendations in breast cancer after Scattershot’s Rank 

Aggregation step was performed on the pairwise binary relevance classifiers in pairwise 

recommendation mode. (A) We show the Precision @ k Score with the X-axis indicating the 

ranking and the Y axis indicating the Precision at that ranking. (B) We visualize the rank 

distribution of all 11 breast cancer drugs (X axis) ordered by prescription frequency, between all 

Scattershot ranks where the drug was actually prescribed (Blue-Green) and the ranking when not 

prescribed (red). The Y axis represents the final rank. Note that lower rankings indicate the top 

Scattershot recommendations while upper rankings indicate the worst Scattershot 

recommendations. (C) A clustering landscape of breast cancer patients (X axis) and drugs (Y-

axis) is shown. The intensity of purple signifies higher rank. The Spearman’s footrule 

Hierarchical Clustering is seen at the top followed by the k=5 split for Scattershot clusters. The 

bottom tracks indicate the clusters of other breast cancer subtypes in PAM50 and ER, PR, and 

Her2 markers. 
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CHAPTER 5: Conclusions 

 

5.1 Summary 

 

The process of bringing cancer treatment models from the lab bench to the patient bedside 

remains one of the daunting challenges in making personalized medicine a reality. This 

dissertation identifies several key aspects of this ordeal and proposes several new computational 

methods to overcome these challenges. First, our thesis identifies the drivers of cancer. We built 

the method DawnRank which integrates mutation data, gene expression, and network 

information to discover drivers in a personalized manner that is geared towards finding 

especially rare and novel drivers which may have been masked by previous methods. We further 

demonstrated the power of DawnRank by using it to identify driver subtypes in BRCA. 

DawnRank, coupled with Consensus Clustering found 5 novel subtypes in BRCA while defining 

driving chromosomal hotspots of copy number alterations in breast cancer, including 1q 

amplification, 8q amplification, 11q loss, and 16q loss. Three subtypes correlate highly with the 

Luminal A subtypes, one with Basal/Her2, and the final with LumB/Her2. Additionally, the 

subgroups correlate with known clinical markers such as the estrogen and progesterone receptors 

with the Luminal subtypes, TP53 mutation in the Basal/Her2 subtypes, and worsened overall 

survival in the Basal/Her2 subtype. DawnRank’s BRCA subtype analysis provides a proof-of-

concept which can be used to stratify patients into subgroups that can later be defined by 

potential personalized treatment. 
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We also addressed the concept of multiple drivers and the pathway-level impact involved in 

cancer progression. We described a novel method, termed C3, which has the potential to 

precisely and efficiently identify clusters of gene modules with mutually exclusive mutation 

patterns. The C3 algorithm uses large-scale cancer genomics datasets which are pre-processed to 

yield parameters governing novel constrained correlation clustering techniques. The optimization 

criteria used in clustering include patterns of mutual exclusivity of mutations, patient sample 

coverage, and network driver concentration. C3 improves over previous methods that use 

randomized with fixed cluster sizes approaches without the guarantee that multiple runs of the 

methods on the same data will produce compatible results for any cluster size. C3 was able to 

identify several potential driver pathways when applied to BRCA and GBM data that could 

guide new drug targets and new drug mechanisms. 

 

Finally, we presented a novel method that ties in the insights we obtained from molecular 

signature and pathway information to prescribe treatments to cancer patients. Scattershot’s 

comprehensive genomic, pathway, and clinical data to predict the drug response of a patient and 

make a ranked list of drug recommendations for any given patient in silico. We applied 

Scattershot to 647 breast cancer patients and a Pan-Cancer study of 1508 patients from the 

publicly available TCGA database. Scattershot’s integrated approach has outperformed previous 

methods in predicting drug response in actual patient samples, and its novel recommender has 

consistently ranked actual prescribed drugs highly in a large majority of patients.  We believe 

that Scattershot provides a framework which can be used to personalized treatment approaches in 

cancer. 
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5.2 Future Directions 

 

The conclusions from the chapters of the thesis pave the way for several potential future 

directions of our projects. In Chapter 2, one of the areas of interest lies in the construction of the 

gene network. We are also limited by the biased by the curated pathway used to evaluate the 

networks. The gene network is not complete, with many interactions incomplete. Additionally, 

the interactions between the genes themselves may change in a cancer genome. One future 

direction to model the interaction of the gene network is to utilize a dynamic network where the 

nodes and edges are specific to an individual cancer patient. Additionally, we would like to 

access the effect of the driver genes over time comparing pre-treatment and post-treatment 

samples) to determine if there are any changes in the driver function after treatment. We are also 

interested in looking at drivers that participate in the metastatic process. Metastases is the leading 

cause of cancer related deaths, and oftentimes a small percentage clone in the primary causes 

seeding of distant metastases. Thus, drivers identified in the primary may not be the main causes 

of metastasis or the genes that need to be targeted to halt metastatic progression. Future studies 

on large cohorts of matched primaries and metastases will soon answer these questions. In vitro 

and in vivo studies can also be used to confirm our findings. 

 

Several directions of future work are also present in Chapter 3. From a technical standpoint, 

several improvements can be made on determining the weights of the algorithm. Weights in C3 

were determined heuristically, using a brute force method to test C3 on multiple weighting 

parameters. This manner of selecting weights is less efficient and time consuming if optimal 
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weight parameters change in different cancer studies if the optimal weights for C3 vary from 

cancer to cancer. In the future, we plan on applying C3 to other data sets and other cancers to 

determine to determine whether the optimal weights for expression, coverage and mutual 

exclusivity vary within different biological context. Also, In vitro and in vivo studies can also be 

used to confirm our findings. 

 

Future work can also address limitations in Scattershot in Chapter 4. To a large amount of 

missing information, Scattershot’s drug response may be incomplete. This is especially true for 

many of the cancers outside of the 14 chosen in the Scattershot parameter selection. When more 

information from TCGA is made available, we will be able to update the results of Scattershot. 

Additionally, more scrutiny and curation can be made in the DGIdb derived drug target 

information. A manual curation of drug targets with like-mechanism drugs serving as a baseline 

may be useful in supplementing some potential incomplete information a generalized, non-

curated method like DGIdb provides from drug targets. Scattershot should be run in the future to 

create a more complete analysis of Pan-Cancer response once the TCGA data is updated. For this 

part of the analysis, in vitro cell line analysis may be used to confirm the findings of Scattershot.  
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