
c© 2017 Yinai Fan

BIPED WALKING CONTROL DESIGN BASED ON ZERO MOMENT
POINT DYNAMICS

BY

YINAI FAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Mechanical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Adviser:

Professor Seth Hutchinson

ABSTRACT

Biped walking control for humanoid robots has been a challenging yet promis-

ing research topic in the past decades. The complicated nonlinear dynamics

and numerous degrees of freedom are the main obstacles for biped walking

control. This thesis studies the complete control scheme of biped walking

control based on Zero Moment Point dynamics. Starting with basic defi-

nitions, a new trajectory planning method using boundedness solutions of

Linear Inverted Pendulum Model is studied and implemented as a replan-

ning algorithm. Stabilizers for walking trajectory tracking are investigated

and evaluated, with an emphasis on the Whole Body Cooperation method,

which is then implemented along with the replanning algorithm in simula-

tions.

ii

ACKNOWLEDGMENTS

I would like to thank my parents and friends, for their love and support

in my research and interest. I won’t have this much courage and optimism

without their support. I would also like to thank my advisor, Professor Seth

Hutchinson, for his enlightening and patient guidance.

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Background . 2
1.3 Thesis Goals . 5
1.4 Thesis Outline . 5

CHAPTER 2 WALKING PATTERN GENERATION 7
2.1 ZMP generation . 7
2.2 CoM Generation . 12

CHAPTER 3 STABILIZER DESIGN 25
3.1 Ankle Position Controller . 28
3.2 Whole Body Cooperation Control 31

CHAPTER 4 SIMULATIONS . 41
4.1 Implementation of Ankle Position Controller 41
4.2 Implementation of WBC Controller 49
4.3 Walking Simulation . 52

CHAPTER 5 EVALUATION OF STABILIZERS 70
5.1 Evaluation of Replanning Algorithm 70
5.2 Evaluation of WBC controller 73

CHAPTER 6 CONCULSION . 79
6.1 Summary . 79
6.2 Future Works . 80

APPENDIX A SIMULATION PARAMETERS 82

REFERENCES . 93

iv

LIST OF TABLES

4.1 Gait Parameters . 53
4.2 Replanning Parameters . 54
4.3 Swing foot Trajectory Spline Parameters in x,y Direction . . . 56
4.4 Swing foot Trajectory Spline Parameters in z Direction 56
4.5 Simulation Gait Parameters 62
4.6 Stabilizer Gains . 65

A.1 Joint Psosition Controller PID Gains 92

v

LIST OF FIGURES

2.1 ZMP and distributed ground reaction force 8
2.2 Support polygon . 9
2.3 CoM of a biped robot . 9
2.4 ZMP generation from desired gaits 11
2.5 Cubic/Linear ZMP . 11
2.6 LIPM diagram . 13
2.7 Cubic/Linear ZMP . 19
2.8 Solution of T for 4 steps . 21
2.9 CoM generation for 4 steps . 22
2.10 Linear/Cubic ZMP . 23

3.1 Control flow of biped walking 26
3.2 Ankle position control . 28
3.3 Ankle position controller scheme 29
3.4 Joints in one leg . 30

4.1 Simulation for sinusoidal stance of ZMP tracking in y direction 43
4.2 PD control for ZMP tracking 45
4.3 Simulation for sinusoidal stance of CoM tracking in x direction 46
4.4 Side view of Reem-C lower body in stance 47
4.5 Simulation of CoM tracking in y direction:PD control 48
4.6 Frontal plane: Ankle joints rotated by the same amount 49
4.7 Simulation for sinusoidal CoM tracking in z direction 51
4.8 Control Diagram . 52
4.9 Replanning for 3 steps . 55
4.10 Splined swing foot trajectory 57
4.11 Walking: CoM tracking without stabilizer 64
4.12 Walking: CoM tracking with stabilizer 66
4.13 Walking: CoM tracking with stabilizer (constant zc,ref) 68
4.14 Walking: ZMP tracking with stabilizer 69

5.1 Walking Without Replanning: CoM 71
5.2 Walking Without Replanning: ZMP 72
5.3 Close Look of Replanning for CoM 73
5.4 Swing foot Position Tracking in Stance Foot frame 74

vi

5.5 Ankle Joint Motion in Sagittal Plane 75
5.6 Ankle Joint Motion in Frontal Plane 76
5.7 Double Support in Sagittal Plane 77

vii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Conventional robot manipulators have become common in industries, medical

surgeries, and our daily lives, because of their simple structures and easy

control algorithms. In the past few decades, researchers have started to

explore humanoid robots, which have a stronger ability to perform more

versatile and demanding tasks and adapt to human environments. Among

the topics of humanoid robots, biped walking is one of the most attractive

topics. Biped robots can perform tasks in human environments such as

carrying heavy loads in uneven and winding terrain, and entering high-risk

areas. The biggest advantage compared with wheeled robots is flexibility.

They can walk like a human to avoid obstacles and step on steep and uneven

terrain by flexibly planning the motions of two legs, while it’s not physically

possible for wheeled robots. However, everything has its other side. The

challenge of biped walking is its complex, nonlinear dynamics. Numerous

degrees of freedom and lacking fixed base link leads to an extremely complex

system; therefore how to keep this complex system stable while walking like

a human is the most challenging part. Starting with very early work like

[1] stating basic theories of biped walking, researchers have developed lots of

outstanding control methods for biped walking ([2] to [3] for older works and

[4],[5],[6] for the most recent developments).

1

1.2 Background

1.2.1 Zero Moment Point

The Zero Moment Point (ZMP) is the point on the ground where the to-

tal moment generated by the ground reaction forces is zero. The details of

derivation and usage for ZMP will be introduced in 2.1.1. There are two

kinds of stabilities for biped walking [7]: static stability and dynamic stabil-

ity. Static stability is trivial since it requires the projection of the center of

mass to be restricted in the convex hull enclosed by contact points at any

time, which is not how humans walk. So researchers have been focusing on

achieving dynamic stability for biped robots. In [7], the condition for dy-

namic stability of a linear inverted pendulum model (LIPM) is discussed.

A new quantity “Extrapolated center of mass position” (XcoM) is used to

measure the stability of the model. Different stability situations are listed

based on the relation between XcoM, center of mass (CoM), center of pres-

sure (CoP) and base of support (BoS). Most of the research have been focus

on zero moment point tracking based biped walking control. The concept

of ZMP was first introduced in [1], in which ZMP is defined and used as a

stability criterion for biped robot. It’s proved that the ZMP should always

be restricted in the support polygon during walking to maintain stability.

The robot’s dynamics is usually complicated, due to numerous degrees of

freedom and nonlinear properties, so instead of measuring all the parameters

of a biped robot and calculate the exact dynamics, a simple linear inverted

pendulum model (LIPM) is used to generate walking pattern. Then a stabi-

lizer is used to compensate the tracking error. The LIPM will be discussed

in detail in 2.2.1. In [8], the linear inverted pendulum mode is proposed.

By assuming the CoM of robot moves in a particular straight line, which is

controlled by a constraint controller (PD control is used in the simulation of

[8]), the model is completely linear in all state space and easy to plan and

control. In the same work, a walking pattern is generated by defining the

constraint line and using conservation of orbital energy. In addition, ankle

torque is used as an input to compensate the disturbance during walking.

This work was extended to 3D situation in [9], where the motion of CoM is

constrained in an arbitrarily defined plane by introducing two virtual input

2

to compensate the nonlinearity.

Based on LIPM, there are several ways to generate a desired CoM trajec-

tory such that it has the desired ZMP trajectory. One of the most outstand-

ing methods is [2]. A preview controller is used to obtain CoM trajectory

from reference ZMP trajectory. The biped robot is simplified as a cart-

table model, which is the inverse of LIPM. The cart-table model uses the

third derivative of CoM as input and actual ZMP as output. A preview

controller [10] which consists of state feedback term, ZMP error term and

preview reference ZMP term is applied to the system to track the reference

ZMP, therefore the corresponding CoM can be obtained as the state of the

system. Also when the actual biped robot is tracking the reference ZMP,

another preview controller uses future ZMP error to compensate tracking

error. By taking advantage of future information, the robot is able to act

before each step. However, this kind of pattern generation is done off-line

and is not able to deal with modification of foot placement. A real-time gait

generation based on ZMP is proposed in [11]. Generally, given a reference

ZMP trajectory and two boundaries of CoM (initial and final conditions),

CoM can be solved uniquely, which is used in off-line pattern generation. In

order to generate trajectory in real time, the generated trajectory has to be

connected smoothly with the robot’s actual current initial condition. The

proposed method generates a new ZMP reference to match initial conditions

of CoM to ensure smooth connection. Based on [11], [12] improves the on-line

gait generation method by adjusting the period of single support phase and

using preview control to compensate the ZMP fluctuation. While [11] can-

not handle immediate modification of foot placement (new ZMP sometimes

won’t stay in support polygon), this new method can ensure the stability of

immediate modification of foot placement. In [13], vertical CoM motion is

captured from human data and used for improving preplanned CoM trajec-

tory.

One advantage of ZMP is that dynamic biped walking control can be de-

composed into two parts, a walking pattern generation and a stabilization

around it [3]. The main contribution of [3] is the CoM/ZMP tracking con-

troller, also known as stabilizer. A clear hierarchical control structure is given

in this work, which consists of three layers: a CoM/ZMP control layer en-

3

sures ZMP tracking based on LIPM; a posture force control layer calculates

reference joint angles; finally a servo control layer controls the joints to track

the given reference joint angles.

1.2.2 Capture Point

In recent years, a new perspective of solving stability problem for biped

walking was studied, which is the application of capture point. The capture

point is defined as the position that the robot have to step such that the

robot will come to a complete stop [14]. To simplify the biped model, a linear

inverted pendulum plus flywheel model is used. The solution of capture point

for a given state is calculated using conservation of orbital energy of LIP, also

the capture region is calculated if the flywheel torque is considered. If the

set of the intersection of support polygon and capture region is not empty,

the robot will be able to stabilize. To apply capture point in biped walking,

N-step capture point was calculated in [15] for three simplified models: point

foot LIP, finite-size foot LIP and finite-size foot LIP with a reaction mass.

In [15], a new possibility is provided to solve biped walking problem, which

is to plan walking pattern based on N-step capture point.

In [16], the LIPM is decoupled into a stable subsystem and an unstable

subsystem by changing the coordinates, where the unstable state coincides

with the definition of instantaneous capture point. A constraint is found to

link the desired ZMP trajectory to CoM initial conditions, in order to have a

bounded CoM trajectory. Based on this result, a new way to generate CoM

trajectory from desired ZMP trajectory is proposed in [5]. One can adjust

the parameterized ZMP trajectory such that the actual CoM initial condi-

tions will satisfy the constraint calculated from ZMP. The CoM trajectory

generated is anticipatory since the constraint takes account the future values

of desired ZMP trajectory. The walking pattern generation in this thesis will

mainly focus on this method.

4

1.3 Thesis Goals

This thesis aims to study the current state of art of biped walking control

and then propose a new control method of biped walking by improving some

of the existing methods. Since the feedback control scheme includes different

layers, and there are different problems need to be solved in each layer, the

specific goals for each layer or stage are listed:

1. The pattern generation method needs to be studied and proposed.

More specifically, a CoM/ZMP trajectory that satisfies the ZMP sta-

bility criterion need to be generated. This thesis solves this problem by

using the boundedness condition of LIPM proposed in [5]. A new way

for CoM/ZMP replanning based on boundedness condition is proposed.

2. The controller for CoM/ZMP tracking needs to be studied and com-

pared. There are numerous of existing controller for CoM/ZMP track-

ing in the past two decades. This thesis evaluates several of the most

representative methods and chooses the whole body cooperation con-

troller for deeper investigation.

3. To show the efficiency of proposed CoM/ZMP replanning algorithm and

the tracking controller, we have to implement them in simulation. So

the implementation and simulation details are designed in this thesis.

1.4 Thesis Outline

Based on the thesis goals, the structure of following chapters are:

• Chapter 2

Definition of ZMP and LIPM are introduced. The boundedness condi-

tion for CoM/ZMP generation is derived.

• Chapter 3

Several mostly used stabilizer controller designs and their derivations

are studied, with an emphasis on the whole body cooperation controller.

• Chapter 4

Different stabilizers are implemented in simulations in Gazebo. Also,

5

walking control simulations are done using generated trajectory of Chap-

ter 2 and stabilizer in Chapter 3.

• Chapter 5

Different stabilizers are evaluated, based on the simulation results and

difficulties in implementation.

6

CHAPTER 2

WALKING PATTERN GENERATION

Walking pattern generation is a procedure to generate the reference CoM and

ZMP trajectories. To generate the trajectories, we have to start with the gait

design, for example, the step length and time of each step, double and single

support time, etc. From gait information, we can generate a ZMP to fit the

gait. Then from this desired ZMP trajectory, we can use the method in [5]

to get a CoM trajectory which will result in our desired ZMP trajectory.

2.1 ZMP generation

In this section, we will show that the ZMP has to always stay in the interior

of the support polygon. With this constraint, one can easily design the ZMP

trajectory once the support polygon profile is given. Here, ZMP trajectory is

designed using splines of polynomials that stays inside the support polygon

at any time instant.

7

2.1.1 Definition of Zero Moment Point

Figure 2.1: ZMP and distributed ground reaction force [17]

The Zero Moment Point (ZMP) is defined as following in [1]: The distributed

floor reaction force can be replaced by a single force R acts on Zero-moment

Point. In another word, it specifies the point on the ground such that the

contact force between the foot and the ground does not produce any moment

around any axis passing this point on the ground plane. Therefore, for a finite

size foot in 3D locomotion, the ZMP coincide with the center of pressure

(CoP) point, and can be found by measuring the distributed ground reaction

force fx and fy:

xzmp =

∫
xfx(x)dx∫
fx(x)dx

(2.1)

yzmp =

∫
yfy(y)dy∫
fy(y)dy

For a biped robot, the support polygon is the region formed by enclosing

all the contact points between the robot and the ground, mathematically the

smallest convex hull including all contact points as shown in Figure 2.2.

8

Figure 2.2: Support polygon [18]

One useful property of ZMP is that it always stays in the support polygon

of the robot. To prove this, let’s assume the ZMP is outside the support

polygon, for example, it’s ahead of the toes. Since the ground cannot provide

suction reaction force, the reaction force at any contact points is pointing up,

so the overall torque generated by the reaction force around the ZMP will be

a non-zero value (can be positive or negative depending on how we define the

positive rotation direction), which contradicts with the definition of ZMP.

Instead of calculating ZMP by measuring the reaction forces at the foot,

another way to calculated ZMP is to solve the dynamics equations of the

robot.

Figure 2.3: CoM of a biped robot [18]

As shown in Figure 2.3, for a complex biped robot, we can find the overall

equivalent center of mass. Then the robot can be modeled as an inverted

pendulum with CoM at the top, the ZMP at the base, and with a variable

length. In x direction, from the fact that the total moment around the CoM

9

is the sum of torques produced by the ground reaction forces, we can calculate

the total moment as following (the same method can be used for y direction).

T = mg(xc − xzmp) +mz̈c(xc − xzmp)−mẍczc (2.2)

where m is the mass, g is the gravitational acceleration, xc and zc are the

horizontal and vertical coordinates of CoM, xzmp is the ZMP in x direction,

T is the torque generated by ground reaction force about the ZMP. The term

−mẍczc is the torque generated by the horizontal reaction force, since this

force also produces horizontal acceleration ẍc. The term mg(xc − xzmp) +

mz̈c(xc − xzmp) is the torque generated by the vertical reaction force, since

this force supports the gravity and produces vertical acceleration z̈c.

By definition, for ZMP, T = 0, so we have:

xzmp = xc −
zc

g + z̈c
ẍc (2.3)

The LIPM is an inverted pendulum with a constant CoM height h0, which

means the vertical acceleration z̈c is 0. So (2.3) becomes:

xzmp = xc −
h0
g
ẍc (2.4)

ZMP in y direction can be calculated using the same method.

2.1.2 ZMP Trajectory Generation

In the previous section, it is proved that the ZMP always stays in the support

polygon of the robot. This fact will be used as the stability criterion of biped

walking. It should be noted that the stability here is the ability of walking

without tipping over or falling. It’s different from the one in control theory.

When the robot tends to tip over, the actual ZMP is approaching the edge

of support polygon and when it is tipping over, the ZMP will stay at the

edge of support polygon, since the only set of contact points between foot

and ground is the edge. So in order to make sure the robot will not tip over,

the ZMP should be strictly inside the support polygon at all time.

10

Figure 2.4: ZMP generation from desired gaits

As shown in Figure 2.4, once the gaits are specified, that is, the step length

and step period for each step, the foot size are specified, we are able to locate

the soles of each step, therefore draw the path of the support polygon, which

is shown in red lines in Figure 2.4. Then a ZMP trajectory can be designed

such that it always stays inside the support polygon, as shown in green line.

In double support phase, the ZMP move from heel to the toe (or closed to

toe in the real case), then in single support phase, it moves from the toe of

the foot to the heel of the other foot, while maintains in the polygon enclosed

by the two feet.

Figure 2.5: Cubic/Linear ZMP

In order to have a smooth mathematical expression for the trajectory, we

use spline to fit the ZMP trajectory as in [16], [5], [11], [12]. As shown in

11

Figure 2.5. Starting with double support, every step consists of 1 double

support phase and 1 single support phase. The values of ZMP at time t0,t1

and t2 are known by predefined gait specifications. For double support, we

use a cubic spline which corresponds the shift of ZMP between feet. For

single support, slightly different from [5], we use a linear spline to express

the shift of ZMP from heel to toe in one foot.

For an arbitrary step:

xcubic(t) = a0 + a1(t− t0) + a2(t− t0)2 + a3(t− t0)3, t ∈ [t0, t1)(2.5)

xlinear(t) = b0 + b1(t− t1), t ∈ [t1, t2)

where [t0, t1) is the double support phase and [t1, t2) is the single support

phase. We need to solve the 4 unknown parameters a0,a1,a2,a3 of the cubic

equation and b0,b1 of the linear equation by solving the following boundary

conditions,

xcubic(t0) = xzmp(t0) (2.6)

ẋcubic(t0) = ẋzmp(t0)

xcubic(t1) = xzmp(t1)

xlinear(t1) = xzmp(t1)

xlinear(t2) = xzmp(t2)

ẋcubic(t1) = ẋlinear(t1)

where xzmp(t0), xzmp(t1), xzmp(t2) are given waypoints.

By solving these equations, the parameters can be found. Since the ex-

pression is long and tedious, we won’t show here but will directly implement

in the code in next section.

2.2 CoM Generation

Once the ZMP trajectory is designed, the CoM trajectory of the robot is

still not fixed. If we use LIPM as the simplification of the robot, from (2.4),

the solution of CoM is not unique given a fixed ZMP trajectory because the

boundary conditions for xc and ẍc are free to choose. In this section, the

LIPM is introduced. Then a new method based on boundedness solution of

12

CoM as in [16] and [5] is studied and used for CoM generation.

2.2.1 Linear Inverted Pendulum Model

To calculate the CoM that will give a desired ZMP, we have to go through

the dynamics of the biped robot. Due to the complexity of a real biped robot

(too many links and joints), a linear inverted pendulum model is often used

as a good approximation of the biped robot. Then when implementing the

walking pattern generated using LIPM, a closed-loop control scheme has to

be used as well to stabilize the real biped robot during locomotion.

Figure 2.6: LIPM diagram [16]

The 3D LIPM for biped walking was first proposed and studied by Kajita

in [9]. In 2D case, as shown in Figure 2.6, the biped robot is modeled as a

linear inverted pendulum (LIP) which has a mass m concentrated at the top.

A point foot is at the bottom end of the pendulum, which contacts with the

ground at xa. xc is the position of the mass. h0 is its constant height. τa is

the ankle torque. τh is the hip torque and F (t) is a time varying disturbance

force.

The LIPM dynamics [2],[16] in sagittal plane is

ẍc(t) =
g

h0
(xc − xa) +

1

mh0
(τa − τh) +

F (t)

m
(2.7)

Since real biped robot has a finite-sized foot and we assume there’s no

external disturbance and no hip torque, will only have xa and τa as input.

13

Introducing the center of pressure(CoP) position

xcop = xa −
τa
mg

(2.8)

which coincide with ZMP position xzmp = xcop, substitute back to (2.7) and

defining ω0 =
√
g/h0. we get the following model:

ẍc(t) = ω2
0xc − ω2

0xzmp (2.9)

The state space representation is(
ẋc

ẍc

)
= Ac

(
xc

ẋc

)
+Bcxzmp (2.10)

where

Ac =

(
0 1

ω2
0 0

)
, Bc =

(
0

−ω2
0

)
(2.11)

2.2.2 Bounded Solutions For The LIPM

According to the LIPM dynamics (2.9), if we use xzmp as input and xc as

state, then the solution is determined by the specific trajectory of xzmp and

boundary conditions of xc. A bounded CoM solution not guaranteed if we

assign arbitrary boundary conditions to xc for a given xzmp trajectory. In

this part, we’ll discuss boundedness issues of xc trajectory.

We can decouple the system by changing the coordinate(
xu

xs

)
=

(
1 1/ω0

1 −1/ω0

) (
xc

ẋc

)
(2.12)

where xu is the unstable state and xs is the stable state. The unstable state

coincides with the definition of capture point, which makes sense since the

capture point is an unstable property. Similarly, we can express xc and ẋc in

terms of the new states

xc =
1

2
(xu + xs) (2.13)

ẋc =
ω0

2
(xu − xs)

14

The decoupled system becomes

ẋu = ω0xu − ω0xzmp (2.14)

ẋs = −ω0xs + ω0xzmp

Generally, the unstable eigenvalue ω0 will lead to divergent behavior. For a

given ZMP trajectory as input, we can find an initial value for xu analytically

such that the resulting xu trajectory is bounded. In another point of view, if

we have a known initial condition for xu, we can find a ZMP trajectory input

which stabilizes xu. Either way needs us to find a constraint that relates the

initial condition and the ZMP.

For a linear first order system given the input xzmp, the general solution is

xu(t, xzmp) = eω0(t−t0)xu(t0)− ω0

∫ t

t0

eω0(t−τ)xzmp(τ)dτ (2.15)

If we choose an initial condition as derived in [16]

xu(t0) = x?u(t0, xzmp) = ω0

∫ ∞
t0

e−ω0(τ−t0)xzmp(τ)dτ (2.16)

we obtain the particular solution and choose t0 = 0

x?u(t, xzmp) = ω0

∫ ∞
0

e−ω0τxzmp(τ + t)dτ (2.17)

The notation x?u(t, xzmp) is used to denote the particular solution solved

under input xzmp and initial condition (2.16). This particular solution is

bounded, given a desired ZMP trajectory. A special property of this partic-

ular solution is that it need the future value of ZMP trajectory, which makes

the CoM generated noncausal and anticipatory, that is, the robot will able

to move its CoM before the step by knowing the future information of ZMP.

The particular initial condition in (2.16) gives a constraint of xc and ẋc if

we apply (2.12)

x?u(t0, xzmp) = xu(t0) = xc(t0) +
1

ω0

ẋc(t0) (2.18)

which is called the boundedness condition in [16] and [5].

Now let’s consider the stable subsystem, which has a eigenvalue −ω0. The

15

general solution becomes

xs(t, xzmp) = e−ω0(t−t0)xs(t0) + ω0

∫ t

t0

e−ω0(t−τ)xzmp(τ)dτ (2.19)

For a particular initial condition

x?s(t0, xzmp) = x?s(0, xzmp) (2.20)

we have a particular solution under this initial condition

x?s(t, xzmp) = e−ω0(t)x?s(0, xzmp) + ω0

∫ t

0

e−ω0(t−τ)xzmp(τ)dτ (2.21)

From (2.13), we have the full bounded trajectory of CoM and velocity

x?c(t) =
1

2
(x?u(t, xzmp) + x?s(t, xzmp)) (2.22)

ẋ?c(t) =
ω0

2
(x?u(t, xzmp)− x?s(t, xzmp))

It should be noted that the notation x?u(t, xzmp) denote the xu trajectory

derived from the boundedness condition, while x?s(t, xzmp) is the xs trajectory

derived from its particular initial condition x?s(0, xzmp). Actually, for a given

desired ZMP trajectory, x?u(0, xzmp) is fixed, knowing any one initial condition

of xs, xc and ẋc will provide sufficient information to solve for the bounded

CoM trajectory.

When the initial state of stable subsystem deviate from x?s(0, xzmp), which

means the initial condition xc(0) and ẋc(0) deviate from x?c(0) and ẋ?c(0), we

16

can prove the convergence

xc =
1

2
(x?u + xs) (2.23)

=
1

2
(x?u + e−ω0txs(0) + ω0

∫ t

0

e−ω0(t−τ)xzmp(τ)dτ)

=
1

2
(x?u + e−ω0t(xs(0)− x?s(0, xzmp)) + e−ω0tx?s(0, xzmp)

+ω0

∫ t

0

e−ω0(t−τ)xzmp(τ)dτ)

=
1

2
(x?u + e−ω0t(xs(0)− x?s(0, xzmp)) + x?s(t))

= x?c +
1

2
e−ω0t(xs(0)− x?s(0, xzmp))

The term
1

2
e−ω0t converges to 0 so xc will converge to x?c .

2.2.3 CoM Generation Based on Parameterized ZMP

From the conclusion of the previous section, if the boundedness constraint

(2.18) is satisfied, then a bounded solution of the unstable state is guaranteed.

This lead us to two possible ways to generate CoM trajectory. If the desired

ZMP trajectory is given, a pair of initial CoM condition can be chosen to

satisfy the constraint, which is not possible in the implementation of a real

robot, since the initial CoM condition is arbitrary. The other choice is to re-

shape or re-design the ZMP trajectory, such that the constraint is satisfied,

for a pair arbitrarily given CoM initial condition.

A method of CoM/ZMP design is proposed in [5], where the step length

of each step is unknown and need to be found such that the ZMP will satisfy

the constraint condition specified by actual CoM Initial condition. Also a

constant/cubic/constant ZMP is used as the reference ZMP. In this method,

the step time of each step has to be known. The unknown step lengths can be

solved efficiently since they enter the constraint condition linearly. It should

be noted that in this section, we only discuss the motion in x direction since

the derivations in y direction follow the same procedures.

17

2.2.3.1 Case I: Unknown step period

For a mobile robot, the moving speed is usually specified. Therefore, we’ll

set both the step lengths and the step time unknown, but relate them using

the specified walking speed,

d = vT (2.24)

where d is the step length, T is the step period of one step and v is the

walking speed.

For a single step, or for a series of steps with same step length and same

step period, only one degree of freedom is left to solve if the walking speed

is specified, based on (2.24). Solving for one of d and t will directly give the

value for the other one, so here we’ll use T as the only unknown parameter

that needs to be solved such that the ZMP will satisfy the boundedness

constraint condition.

If we have n steps, then for the i-th step, we have the following ZMP

boundary conditions from (2.6), which gives smooth a connection between

i-th and previous step, and between cubic and linear spline:

x
(i)
cubic(ti) = x

(i−1)
linear(ti) (2.25)

ẋ
(i)
cubic(ti) = ẋ

(i−1)
linear(ti)

x
(i)
cubic(ti + Td) = x

(i)
cubic(ti) + d− ds

x
(i)
linear(ti + Td) = x

(i)
cubic(ti) + d− ds

x
(i)
linear(ti + T) = x

(i)
cubic(ti) + d

ẋ
(i)
cubic(ti + Td) = ẋ

(i)
linear(ti + Td)

where ti is the starting time of i-th step, ds is the single support length(distance),

Td is the double support period, as illustrated in Figure 2.7. Both ds and Td

should be specified by gait specifications.

18

Figure 2.7: Cubic/Linear ZMP

Substituting the boundary condition for i-th step (2.25) into the cubic/-

linear spline in (2.5), we have the cubic/linear spline for the i-th step:

x
(i)
cubic(t, T) = a

(i)
0 + a

(i)
1 (t− (i− 1)T) + a

(i)
2 (t− (i− 1)T)2 + a

(i)
3 (t− (i− 1)T)3

t ∈ [(i− 1)T, (i− 1)T + Td)

x
(i)
linear(t, T) = b

(i)
0 + b

(i)
1 (t− (i− 1)T + Td)

t ∈ [(i− 1)T + Td, nT) (2.26)

which can be written as:

x
(i)
cubic(t, T) = a

(i)
0 (T) + a

(i)
1 (T)t+ a

(i)
2 (T)t2 + a

(i)
3 (T)t3

t ∈ [(i− 1)T, (i− 1)T + Td)

x
(i)
linear(t, T) = b

(i)

0 (T) + b
(i)

1 (T)t

t ∈ [(i− 1)T + Td, nT) (2.27)

where a
(i)
k (T) and b

(i)

k (T) are new coefficients that consist of polynomials of

the unknown parameter T , and the splines are now a function of both time

t and the unknown parameter T .

19

For n steps, the full ZMP trajectory will be,

xzmp(t, T) =
n∑
i=1

[x
(i)
cubic(t, T)(H(t− (i− 1)T) (2.28)

−H(t− (i− 1)T − Td))

+x
(i)
linear(t, T)(H(t− (i− 1)T − Td)−H(t− iT))]

+x
(n)
linear(nT, T)H(t− nT)

where xzmp is now a function of both time t and the unknown T , and the

function H(t) is a unit step function. The long summation term sums up

the cubic and linear parts for the i-th step. The cubic part of i-th step is

calculated by multiplying its cubic expression derived from (2.27) with a step

function between time t−(i−1)T and t−(i−1)T −Td. The linear term part

of i-th step is calculated similarly. The final term x(n)linear(nT, T)H(t− nT)

makes sure the ZMP stays at its final value for the rest of the time.

Then substitute (2.28) into (2.16), the specific initial condition becomes:

x?u(0, xzmp(t, T)) = ω0

∑n
i=1(
∫ (i−1)T+Td
(i−1)T e−ω0τx

(i)
cubicdτ (2.29)

+
∫ iT
(i−1)T+Td

e−ω0τx
(i)
lineardτ)

+
∫∞
nT
e−ω0τx

(n)
linear(nT)dτ

where the cubic and linear spline terms xcubic and xlinear enter the integral

linearly.

As we can see in (2.27), x
(i)
cubic and x

(i)
linear can be broken into power terms

of t with T appearing in the coefficients of these power terms, a
(i)
k (T) and

b
(i)

k (T). Therefore, if we substitute (2.27) back to (2.29), the integral terms

can be broken into the following basic modulus:

ω0

∫
e−ω0τc

(i)
1 (T)dτ = −c(i)1 (T)e−ω0t (2.30)

ω0

∫
e−ω0τc

(i)
2 (T)tdτ =

−c(i)2 (T)e−ω0t(ω0t+ 1)

ω0

ω0

∫
e−ω0τc

(i)
3 (T)t2dτ =

−c(i)3 (T)e−ω0t(ω2
0t

2 + 2ω0t+ 2)

ω2
0

ω0

∫
e−ω0τc

(i)
4 (T)t3dτ =

−c(i)4 (T)e−ω0t(ω3
0t

3 + 3ω2
0t

2 + 6ω0t+ 6)

ω3
0

20

where c
(i)
1 to c

(i)
4 are coefficients of powers of t for the i-th step and can be

any of the a
(i)
k (T) and b

(i)

k (T) in (2.27). Combining all equations from (2.24)

to (2.30), we’ll have the final closed form of the constraint, in terms of T ,

x?u(0) = x?u(0, xzmp) = xc(0) +
1

ω0

ẋc(0) (2.31)

where xzmp = xzmp(t, T).

The required initial condition of xu is a nonlinear function of unknown vari-

able T , since it includes high order polynomials of T . It can be solved using

numerical method in Matlab, given arbitrary initial conditions of CoM,xc(0)

and ẋc(0).

Figure 2.8: Solution of T:4 steps planned, v = 0.5m/s, Td = 0.25T ,
ds = 0.1m, xc(0) = 0,ẋc(0) = 1

Figure 2.8 shows a typical nonlinear function of x?u(0, xzmp(t, T)) in terms

of T . For a given set of initial conditions for CoM, in another word, for a

given value of x?u(0, xzmp(t, T)), generally there are two solutions in [0,∞].

We’ll only take the one that is feasible for real robot, which is usually less

than 2 second.

21

Figure 2.9: CoM generation:4 steps planned, v = 0.5m/s, Td = 0.2T ,
ds = 0.1m, xc(0) = 0,ẋc(0) = 1

As shown in Figure 2.9, CoM trajectory of 4 steps is generated by solving

the variable T, to achieve a walking speed of 0.5m/s. After 4 steps the CoM

converges to the final value of ZMP, which shows the convergence of the

solution.

This algorithm can be used in a situation where changing of walking speed

is needed. When the desired walking speed is changed, based on the actual

initial condition of CoM, it’s able to adjust the future reference ZMP to sat-

isfy the actual CoM initial condition, while maintaining the required walking

speed.

The challenge of this method is that, since we have to solve a nonlin-

ear function, it’s not guaranteed that we can find a solution for T , given

an arbitrary initial condition of CoM. One might need to add more design

parameters for ZMP to solve this problem, which will lead to a underdeter-

mined case. The next case is where we can find a linear relation between the

unknown parameter of ZMP and the initial condition of xu, so that there’s

always a solution for arbitrary values of CoM initial conditions.

22

2.2.3.2 Case II: Unknown step length

To make the planning process easier to implement, we will assume the only

unknown parameter is the step length. Because the step length enters the

cubic/linear spline ZMP equation linearly, it will take much less computa-

tional time to solve. Here, we start the step with single support, followed by

double support. So the ZMP trajectory for one step will be a linear/cubic

spline as shown in Figure 2.10:

Figure 2.10: Linear/Cubic ZMP

In this case, we assume the distance traveled in single support is fixed

and smaller than the foot length, since ZMP has to be in some safe margin

to avoid tipping over. The only unknown becomes the step length during

double support phase, ∆x and ∆y, for x and y direction. The algorithm for

∆y is the same as ∆x, so here only the procedures to solve for ∆x is showed.

With the unknown step length ∆x enters the linear/cubic spline of ZMP

equation, the coefficient in (2.27) for the i-th step becomes:

a
(i)
k = a

(i)
k (∆x), k ∈ 0, 1 (2.32)

b
(i)

k = b
(i)

k (∆x), k ∈ 0, 1, 2, 3

Unlike (2.27), now a
(i)
k and b

(i)

k are linear functions of ∆x, since ∆x only

enters the ak and bk linearly in (2.5) but won’t enter the polynomials of time.

23

Then follow the same procedure from (2.28) to (2.31) we have:

x?u(0) = x?u(0, xzmp(t,∆x)) = xc(0) +
1

ω0

ẋc(0) (2.33)

where x?u(0, xzmp(t,∆x)) is also a linear function of ∆x. The solution for ∆x

exists and is unique.

Up to this point, we have a known ZMP trajectory that guarantees con-

vergence of CoM. Now we can recover CoM trajectory using this ZMP as

input.

First, using the given initial condition for xu and the ZMP trajectory

designed by solving unknown parameter, we can recover xu from (2.17). The

initial condition for xs can be calculated using relation (2.13). Then xs

can be recovered using solution (2.21) with the designed ZMP trajectory as

input. Now we have both xu and xs trajectories ready, xc can be recovered

by applying the change of coordinate (2.13) again.

24

CHAPTER 3

STABILIZER DESIGN

From walking pattern generation part, we have generated a CoM trajectory

which matches the desired ZMP trajectory. However this CoM trajectory is

only valid for LIP model, that is, we won’t have the expected desired ZMP

trajectory if we control the robot to follow this CoM trajectory, due to the

deviation between a real robot and LIP model. At this point, it’s necessary

to design a series of feedback controllers that compensate the error due to

model deviation and achieve the desired CoM and ZMP trajectories on the

real robot, or modify the generated CoM and ZMP such that the real robot

can still keep its balance when walking. We call this series of controllers

stabilizers.

The advantage of this 2 layer control structure is that, it decouples the

complicated task into two separate tasks, and it’s easier to achieve each of

the tasks. For path planning, we only need to focus on trajectory generation

based on LIP model while in the stabilization part, we only need to be

focus on the tracking. In other words, it will have the same procedures as

controlling a traditional manipulator. This hierarchical control method is

used in most of the biped walking control works, among which, [19], [3], [4]

and [20] are the most representative works, though they use different planning

methods and stabilizers.

However, the drawback of this control structure is that, if there’s error

or uncertainties in each part of the procedures, the errors will accumulate,

which may cause instability. Especially in implementation, if the robot turns

out to be falling, it’s hard to tell which part contribute to the failure.

There are a large variety of different types of stabilizer, based on different

types of pattern generation methods. Here, based on the functionality, one

can categorize most of the existing stabilizers into two level:

• High level stabilizer

The higher level controller takes care of the stability of walking, namely,

25

it will feedback the actual CoM and ZMP of the robot, then compensate

the error between the desired and actual CoM, ZMP by modifying the

reference CoM or ZMP that the robot is actually tracking. Some of

the controllers modify the desired CoM given by pattern generation

then the robot will follow this modified CoM, which implicitly modifies

the actual ZMP such that it will track the desired CoM [21], [19],

[20]. Another slightly different approach is that the controller directly

modifies the reference ZMP for the robot to track [22], [3], [4].

• Low level stabilizer

From the higher level controller of stabilizer, either a CoM or a ZMP

will be sent to robot to track. The lower level controller will focus on

this tracking task by directly controlling each individual joint. The

joints could be position controlled via PID controller [23], [24], [25],

[21], [19], or they could be directly torque controlled [20], [3], [6].

Up to this point, we can draw the complete scheme of biped walking con-

trol, based on the “planning + stabilizing” method:

Figure 3.1: Control flow of biped walking

It should be noted that the planning process is included in “trajectory

generation” part. This diagram shows the general case of the hierarchical

control: plan a trajectory (for n steps) then use stabilizer to stabilize and

track it. One can also add replanning procedure in the planning part, which

will replan the trajectory for each step and then use stabilizer to stabilize and

track it for that step. The replanning procedure is used in implementation

in Section 4.3.

26

In this chapter, we will concentrate on the low level controller of stabilizer,

assuming we already have a stabilized CoM/ZMP trajectory, and we want

to track this trajectory. For ZMP tracking, early works have proposed some

intuitive methods to directly control the ZMP of the robot by changing the

torso angle and ankle angle [26]. In 2010 Kajita proposed a novel way to track

the ZMP by calculating the distribution of ZMP for each foot and designed

a torque controller for ankles to track the calculated ZMP [3]. For CoM

tracking, the most famous method is the Whole Body Cooperation (WBC)

control and Resolved Momentum control, which need the cooperation of each

individual position controlled or velocity controlled joints of the robot. The

concept of WBC was proposed by Sujihara in 2002 [23], which utilize the CoM

Jacobian to map the joint velocities and CoM velocity. Later WBC method

was extended to embedded limb motions by Choi in 2007 [19]. The Resolved

Momentum control was first proposed by Kajita in 2003 [24], which instead

of mapping CoM velocity, maps the overall linear and angular momentum

with joint velocities. Later this method is extended to include embedded

motion in [25]. These two methods are similar in some aspect since they all

map the joint velocities to the target velocities via some Jacobian matrices.

More recent works have been using torque controlled robot and tracked the

CoM acceleration by generating appropriate torques in each joint, calculating

inverse dynamics [6].

27

3.1 Ankle Position Controller

Figure 3.2: Ankle position control

Earlier works have focused on achieving ZMP tracking by modification of

desired joint trajectories derived by inverse kinematics. The early version of

Honda humanoid robot uses 2 position controllers for balance control [27].

One of the controllers modifies the ankle angle to control the actual ground

reaction force indirectly, such that the actual ZMP tracks the desired ZMP.

The other controller is used to adjust the posture of the robot by changing

the hip angle, such that a torque is applied on the torso which restores the

posture of the body. Another similar work gives a more straightforward

control method to achieve ZMP tracking and balancing in [26]. Desired

ankle angle is modified base on the ZMP error. While this controller can

intuitively track the desired ZMP, the body posture is changed and tend

to deviate from the desired posture. Therefore a body posture controller is

proposed to maintain the torso orientation by changing the hip angle.

28

Figure 3.3: Ankle position controller scheme

According to these previous works, we can summarize the idea of ZMP

tracking using ankle position controller as following (also see Figure 3.3).

LIPM is used to generate the desired ZMP and corresponding desired CoM

trajectory. By assuming the CoM of the robot is concentrated at torso,

the torso trajectory is the same as CoM trajectory. We can solve for the

joint trajectories using inverse kinematics given the trajectory of torso. We

call these joint trajectories desired joint trajectories. While the joints are

tracking the desired joints trajectories but there’s error between actual ZMP

and desired ZMP due to model difference and disturbance, the reference

ankle joint angle that is actually being tracked will be modified base on

ZMP error: If the actual ZMP is ahead of the desired ZMP, the ankle will

rotate the body backward a little to bring the ZMP back towards the desired

value, if the actual ZMP is behind the desired value, the ankle will rotate the

body forward a little. The amount of rotation is a function of ZMP error.

Here we make the controller in a PD controller form:

qr5,i = qd5,i + (Kpxδxzmp +Kdxδẋzmp) (3.1)

qr6,i = qd6,i + (Kpyδyzmp +Kdyδẏzmp)

δxzmp = xzmp − xdzmp
δyzmp = yzmp − ydzmp
δẋzmp = ẋzmp − ẋdzmp
δẏzmp = ẏzmp − ẏdzmp

where the superscript d is the desired trajectory from inverse kinematics

29

assuming the CoM is concentrated at the origin of the torso, as explained in

the previous paragraph. The superscript r is the actual reference trajectory

that the ankle joint is tracking. So if there’s no model difference or any

disturbance, there will be no error therefore the reference joint trajectory is

the same as desired joint trajectory. δxzmp, δyzmp, δẋzmp and δẏzmp are ZMP

errors and derivatives of ZMP errors. The subscript 5 and 6 corresponding

to the two ankle joints as shown by J5 and J6 in Figure 3.4. And i = R,L

indicates the left or right ankle. Kpx, Kpy, Kdx and Kdy are controller gains.

Figure 3.4: Joints in one leg: J1 to J3 are hip joints, J4 is knee joint, J5
and J6 are ankle joints.

From the simulation of ZMP tracking by using ankle position controller

(see Figure 4.1), we conclude that the performance is bad. Based on (2.4), if

we consider the robot as an LIPM, then the ZMP can be decided only using

CoM. So if we track the CoM trajectory, the ZMP should be automatically

30

tracked. The CoM tracking controller is:

qr5,i = qd5,i + (Kpxδxc +Kdxδẋc) (3.2)

qr6,i = qd6,i + (Kpyδyc +Kdyδẏc)

δxc = xc − xdc
δyc = yc − ydc
δẋc = ẋc − ẋdc
δẏc = ẏc − ẏdc

which is similar to the previous controller for ZMP tracking. However, the

error terms used here are δxc, δyc, δẋc and δẏc, which are the errors of CoM

and their derivatives. Assuming the changing of CoM height is negligible

(true for static stance case and some slow motion), we can simply change the

CoM in horizontal plane by rotating the body forward and backward.

In addition, the noises of position sensors for links and joints are much

smaller than force-torque sensors used for ZMP calculation, so the calculated

actual CoM trajectory will be much smoother than the calculated actual ZMP

trajectory, which allows us to implement derivative control.

3.2 Whole Body Cooperation Control

While the high level stabilizer is modifying the reference CoM from the

planned CoM to stabilize the biped walking, whole body cooperation (WBC)

control is a lower level controller which make sure the biped robot tracks the

modified reference CoM. WBC Control is controlling each individual joint’s

angle such that the robot CoM follows the reference trajectory. Instead of

using the nonlinear inverse kinematics, this is achieved by mapping joint

velocities and CoM velocity, using CoM Jacobian. This method is first pro-

posed in [23], where quadratic programming is used to find the discrete joint

angles under given CoM and CoM Jacobian constraints. Since the walking

motion includes swing foot motion tracking, later works developed similar

WBC method allowing tracking embedded motion like swing foot motion at

the same time, as proposed in [28], [21] and [19]. Some recent works also

used WBC control based capture point dynamics and centroidal moment

31

pivot dynamics, [4] and [29].

3.2.1 CoM Jacobian

For a manipulator with a fixed base and n joints, the CoM of a manipulator

can be expressed in terms of the CoM of each link:

Pc(q) =

∑n
1 miPi(q)∑n

1 mi

(3.3)

where Pc = [xc yc zc]
T is the position vector of CoM in world frame, Pi is

the CoM position of link i in world frame, q = [q1 q2 ... qn]T are the joint

positions, and mi is the mass of link i.

Since the position of each link Pi(q) has a nonlinear relation between joint

positions due to forward kinematics, the CoM position Pc(q) also has a non-

linear relation with joint positions. Therefore, it’s hard to calculate the

inverse P−1c to get the joint position trajectories corresponding to a desired

CoM trajectory, especially for biped robot since the number of joints is much

larger than 3. However, the velocities of joints and CoM has a linear relation

and are related by CoM Jacobian. One can control the joint velocities to

achieve a desired CoM velocity trajectory.

For a serial-link manipulator, the velocity of the end-effector can be cal-

culated using joint velocities and the Jacobian, where the Jacobian gives the

relation between joint velocities and end effector velocity:(
Ṗ

ω

)
= J(q)q̇ (3.4)

where J is the 6×N Jacobian matrix which is a function of the joint positions

q, P is the position vector and ω is the angular velocity vector of the end-

effector. More specifically, we have:

(
Ṗ

ω

)
=

ẋ

ẏ

ż

ωx

ωy

ωz

(3.5)

32

and

J(q) =

(
Jv(q)

Jω(q)

)
(3.6)

in which ẋ, ẏ, ż, ωx, ωy, ωz are linear and angular velocities of the end effector.

Jv and Jω are 3 × N Jacobians for linear velocities and angular velocities.

We will use this concept to relate joint velocities of our humanoid robot to

body velocities of specific links, as shown later in this section and Section

3.2.2.

The Jacobian for linear velocities is:

Jv(q) =
∂P (q)

∂q
(3.7)

which is the derivative of end effector respect to joint positions.

The Jacobian for angular velocities is a little more complicated (assuming

revolute joints):

Jω(q) =
(
k0(q) k1(q) ... kn−1(q)

)
(3.8)

where ki is axis of rotation for the i-th joint expressed w.r.t the base link

frame.

Similarly, for a biped robot with n revolute joints, the CoM can be treated

as a special end effector with only linear velocity. We can find the Jacobian

to relate joint velocities and CoM velocity in world frame:

Ṗc = Jc(q)q̇ (3.9)

where Pc is the position vector of CoM in world frame, Jc is called CoM

Jacobian and q = (q1 q2 ... qn)T are joint angles.

In biped robot, we usually take the floating torso as the base (link 0). The

CoM position can be written in terms of the CoM position of each link in

33

the base link frame:

0Pc =

∑n
0 mi

0Pi∑n
0 mi

(3.10)

=

∑n
0 mi

0Pi
M

0Ṗc =

∑n
0 mi

0Ṗi
M

=

∑n
1 mi

0Ṗi
M

since 0Ṗ0 = 0

=

∑n
1 mi

0Jiq̇

M

=

∑n
1 mi

0Ji
M

q̇ = 0Jcq̇

where M is the total mass of robot. The subscript c stands for CoM , and the

notation 0Pc represents the position of CoM expressed w.r.t 0 frame (torso

frame). Compare with (3.9), the CoM Jacobian in base frame is:

0Jc =
1

M

n∑
1

mi
0Ji (3.11)

where 0Ji is the Jacobian of CoM for link i in base frame.

Generally, if a rigid body is moving in both frame A and frame B, and a

local frame a is attached to the rigid body with origin at point a, then the

velocity of frame a in frame A can be calculated using the relation between

frame a and frame B, as well as frame B and frame A (also used in [23], [28],

[21], [19]): (
AṖa
Aωa

)
=

(
AṖB + AωB × (ARB

BPa) + ARB
BṖa

AωB + ARB
Bωa

)
(3.12)

in which, ARB is the orientation of frame B w.r.t coordinate frame A. BṖa is

linear velocity of origin of frame a, w.r.t frame B expressed relative to coor-

dinate frame B, Bωa is angular velocity of frame a, w.r.t frame B expressed

relative to coordinate frame B. BPa is the position of origin of frame a, w.r.t

frame B, expressed relative to coordinate B. Other variables share the same

notation rules.

It should be noted that even though the CoM is a point and its velocity

in world frame can be calculated from the first row of (3.12), the second row

34

is still needed for base frame velocities calculation for later use.

We can compute the velocity of CoM in world frame using the first row of

formula (3.12):

Ṗc = Ṗ0 + ω0 × (R0
0Pc) +R0

0Ṗc (3.13)

where R0 is the orientation of base link in w.r.t world frame. Ṗ0 and ω0 are

base link velocities w.r.t world frame, expressed in world frame. They can

be calculated by the following procedures.

Using both rows of the formula (3.12), foot velocities w.r.t world frame,

expressed in world frame can be expressed as:(
Ṗf

ωf

)
=

(
Ṗ0 + ω0 × (R0

0Pf) +R0
0Ṗf

ω0 +R0
0ωf

)
(3.14)

where the subscript f denote the foot frame.

If it’s a stance foot, then both linear and angular velocities w.r.t world

frame are zero:

Ṗf = 0 (3.15)

ωf = 0

Substituting the zero velocities of foot (3.15) into (3.14) and rearrange, we

have the torso velocities w.r.t world frame, expressed in world frame:(
Ṗ0

ω0

)
=

(
−ω0 × (R0

0Pf)−R0
0Ṗf

−R0
0ωf

)
(3.16)

Substituting torso velocities Ṗ0 and ω0 from (3.16) into (3.13), we have:

35

Ṗc = Ṗ0 + ω0 × (R0
0Pc) +R0

0Ṗc (3.17)

= −ω0 × (R0
0Pf)−R0

0Ṗf − (R0
0ωf)× (R0

0Pc) +R0
0Ṗc

substituting ω0 (3.18)

= (R0
0ωf)× (R0

0Pf)−R0
0Ṗf − (R0

0ωf)× (R0
0Pc) +R0

0Ṗc

= R0(
0ωf × 0Pf)−R0

0Ṗf −R0(
0ωf × 0Pc) +R0

0Ṗc

= R0(
0ωf × (0Pf − 0Pc) + 0Ṗc − 0Ṗf)

= R0((
0Pc − 0Pf)× 0ωf + 0Ṗc − 0Ṗf)

= R0(([
0Pc − 0Pf]×)0Jωf

+ 0Jc − 0JPf
)q̇ = Jcq̇

where 0Jωf
and 0JPf

are Jacobians of the linear and angular velocity of stance

foot link in base frame, and []× is the outer product matrix of a vector. So

the CoM Jacobian in world frame is:

Jc = R0([
0Pc − 0Pf]×

0Jωf
+ 0Jc − 0JPf

) (3.19)

3.2.2 Embedded motion

For a biped walking robot, there are lots of constraints for the motion and

posture. For example, to minimize the impact of landing, the swing leg’s

velocity in world frame should be zero when it contact with the ground.

Sometimes arm motions are specified to compensate the momentum. These

constraints are in the form of embedded motion.

For a specified link i, since the stance foot frame is fixed in world frame,

each extreme link of limb, link i, can be treated as an end effector of a

manipulator whose base link is the stance foot. The torso is one of the links

in this manipulator. The embedded motion in world frame of this link can

be expressed as: (
Ṗi

ωi

)
= Ji(q)q̇ (3.20)

For example, the motion of swing leg is:(
Ṗsw

ωsw

)
= Jsw(q)q̇ (3.21)

36

where subscript sw denotes the swing foot link, and Jsw is the Jacobian of

swing foot frame w.r.t world frame. If each leg has 6 joints, then Jsw is a

6× 12 matrix. And it can be calculated using 0Jsw, 0Jf and the information

of base link.

In the torso base frame, we have the following relation of stance foot and

swing foot: (
0Ṗsw
0ωsw

)
= 0Jswq̇ (3.22)(

0Ṗf
0ωf

)
= 0Jf q̇

In the stance foot frame: (
f Ṗsw
fωsw

)
= fJswq̇ (3.23)

Applying formula (3.12) by assigning stance foot frame to frame A, base

(torso) frame to frame B and swing foot frame to frame a, we can write the

velocity of swing foot in stance foot frame by using base (torso) frame as an

intermediate frame:(
f Ṗsw
fωsw

)
=

(
f Ṗ0 + fω0 × (fR0

0Psw) + fR0
0Ṗsw

fω0 + fR0
0ωsw

)
(3.24)

=

(
f Ṗ0 − (fR0

0Psw)× fω0

fω0

)

+

(
fR0

0Ṗsw
fR0

0ωsw

)

Let

T1 =

(
I3 −[fR0

0Psw]×

03 I3

)
(3.25)

T2 =

(
fR0 03

03
fR0

)

37

then (3.24) becomes:(
f Ṗsw
fωsw

)
= T1

(
f Ṗ0

fω0

)
+ T2

(
0Ṗsw
0ωsw

)
(3.26)

Also, we can replace the velocities of torso frame w.r.t stance foot frame

expressed in stance frame (f Ṗ0 and fω0) with the velocities of stance frame

w.r.t torso frame expressed in torso frame (0Ṗf and 0ωf):(
f Ṗ0

fω0

)
= −

(
fR0 03

03
fR0

)(
0Ṗf
0ωf

)
= −T2

(
0Ṗf
0ωf

)
(3.27)

Substituting (3.27) into (3.26), we have:(
f Ṗsw
fωsw

)
= −T1T2

(
0Ṗf
0ωf

)
+ T2

(
0Ṗsw
0ωsw

)
= −T1T20Jf q̇ + T2

0Jswq̇

= (−T1T20Jf + T2
0Jsw)q̇ = fJswq̇ (3.28)

Now we have the Jacobian fJsw. We need to transform it to world frame.

Applying formula (3.12) again by assigning world frame to frame A, stance

foot frame to frame B and swing foot frame to frame a, and noting that the

velocities of stance frame w.r.t world frame are zero, we have:(
Ṗsw

ωsw

)
=

(
Rf 03

03 Rf

)(
f Ṗsw
fωsw

)

=

(
Rf 03

03 Rf

)
fJswq̇ = Jswq̇ (3.29)

3.2.3 WBC Controller

Combining (3.17) and (3.21), we have the overall Jacobian J that transforms

the joints velocities to CoM velocity and embedded motion of swing foot: Ṗc

Ṗsw

ωsw

 = J(q)q̇ (3.30)

38

where J has to be full rank, in order to map the whole target space velocities

to joints space velocities.

J =

(
Jc

Jsw

)
(3.31)

is a 9× n matrix, and n ≥ 12 since it at least includes the lower body.

Therefore, the corresponding joint velocities needed to achieve the desired

CoM velocity and embedded motion is:

q̇ = J†(q)

 Ṗc

Ṗsw

ωsw

 (3.32)

where J†(q) is the pseudo inverse of J(q), which can be calculated using

following formula with the assumption that J is full rank and the fact that

all entries of J are real:

J† = JT (JJT)−1 (3.33)

In addition, J†(q) can be calculated in real time using the equations derived

in the Section 3.2.1, Section 3.2.2 and the joint angles from sensors.

The CoM position trajectory, the position and orientation trajectories of

embedded motion are given as references. We need to control the joint ve-

locities such that the actual CoM and embedded motion will follow the ref-

erences. Here we can use a proportional controller, where the target space

velocities are inputs:(
Ṗc,ref

Ṗsw,ref

)
= Kpo

((
Pc,ref

Psw,ref

)
−

(
Pc

Psw

))
(3.34)

ωsw,ref = −R−1sw,refKoruλ

where the subscript ref denote the reference trajectory, P is position and R

is rotation matrix. So Pc,ref , Psw,ref and Rsw,ref are reference trajectories,

expressed w.r.t world frame.

In (3.34), the first equation is a simple proportional controller for CoM

position and embedded motion position tracking, Kpo is the controller gain.

For embedded motion orientation tracking, the controller (second equation)

will be a little more complicated since we cannot simply subtract the refer-

ence rotation matrix by the actual orientation matrix to calculate the error.

39

The subtraction of rotation matrix is meaningless. Here we use axis-angle

representation for the orientation. If we consider the rotation from reference

orientation to actual orientation, then u is the axis of rotation expressed in

reference orientation frame and λ is the angle of rotation. So −uλ is a mea-

surement of the orientation difference between the actual orientation and

reference orientation. It should be noted that u and λ are both changing

during motion. When −uλ is zero, it means that the reference is perfectly

tracked. Kor is the controller gain to calculate control input (angular veloc-

ity). So −Koruλ is the controller input, expressed in reference frame. Finally,

multiplying this by R−1sw,ref we get the control input in world frame.

Now we have world frame velocities as control input to track the CoM and

embedded motion. By applying (3.32), we can calculate the joint velocities

that are needed for tracking. However, in most cases, instead of joints veloc-

ities, only the positions of joints can be controlled using PID controller. In

this case, we can implement the above controller numerically:

qk+1
ref = qk + δqkref (3.35)

δqkref = J†(qk)

Kpo

((
Pc,ref

Psw,ref

)
−

(
Pc

Psw

))
−R−1sw,refKoruλ

 δt

where δt is the sample time. The reference joint angle for each individual

joint PID controller to track during the (k+1)-th sample period is qk+1
ref . It’s

calculated by summing up the actual joint angle at k-th sample and the

increment of joint angle calculated using WBC controller. The increment of

joint angles δqkref is calculated using controller (3.34) and the Jacobian J(qk),

where qk comes from the sensors. This equation holds for small sample time

δt since if we multiply each side by 1/δt, we get exactly Eq .3.32.

It should be noted that the reference CoM trajectory Pc,ref can be gener-

ated using the boundedness condition method derived in Section 2.2.3. The

reference swing foot position and orientation trajectories are planned to form

an support polygon such that the ZMP will be inside it all the time. The

details of swing foot trajectory generation will be discussed in Section 4.3.1.2.

40

CHAPTER 4

SIMULATIONS

Simulations are done using the humanoid robot Reem-C [30] developed by Pal

Robotics, under the physics engine Gazebo [31] in ROS [32]. The simulations

in this chapter use the lower body of Reem-C, whose detailed parameters can

be found in Appendix A.0.1. The controller is written in Matlab, and the

Robotics System Toolbox [33] is used for exchanging information between

Matlab and Gazebo. All simulation videos can be found at [34].

The stabilizers discussed in Chapter 3 are implemented. First, the ankle

position controller in 3.1 is implemented to track a desired ZMP trajectory

and then a CoM trajectory. The poor performance of this tracking controller

brings us to the use of WBC controller.

The WBC controller is tested by tracking a CoM trajectory of squat mo-

tion. The result shows that the performance is good enough for us to imple-

ment it in walking simulation.

The last part of the simulation is walking simulation, which combines re-

planning algorithm based on the boundedness condition in Section 2.2.3, and

the WBC controller as the lower level stabilizer. The details of implementa-

tion will be discussed.

4.1 Implementation of Ankle Position Controller

In this section, the controller derived in Section 3.1 is implemented in sim-

ulation. First, the ankle position controller for ZMP tracking is tested on

Reem-C to track a sinusoidal ZMP motion, which gives an unsatisfactory

result, due to the noise in ZMP calculation and affect of CoM acceleration.

Therefore, the controller is improved by tracking the CoM directly, which

gives a better simulation result.

41

4.1.1 ZMP tracking

In order to test the efficiency of the ankle position controller, a simulation

for stance is constructed, as following. A sinusoidal motion for CoM in y

direction is generated, the corresponding ZMP trajectory is calculated using

LIPM and is used as the desired ZMP.

ydc = A sin (
2π

T
t) (4.1)

ydzmp = ydc −
h0
g
ÿdc (4.2)

where A = 0.04m and T = 2s, the corresponding ZMP trajectory will also

be sinusoidal and the magnitude is small enough to keep inside the support

polygon. Here h0 = 0.59m and the robot posture is adjusted such that

the actual CoM height matches h0 (the corresponding torso height is 0.75,

which is used for inverse kinematics). The desired trajectories for joints are

generated by assuming the torso follows desired ydc and xdc = 0.

At this point, since most of the mass is on the torso and the torso will

rotate if the ankle rotate, which increase the total angular momentum, a

simple compensation for hip angles is used:

qr2,i = qd2,i − (Kpyδyzmp +Kdyδẏzmp) (4.3)

where the subscript 2 corresponds the hip joints, and (Kpyδyzmp +Kdyδẏzmp)

term is actually the modification made to the ankle joints, but with negative

sign. The reason is that, if the ankle is rotated by q, then the torso is rotated

by q, in order to bring the torso back to its desired posture, the hip should

rotate by −q.

42

(a) Openloop

(b) P control with kpy = 0.005

Figure 4.1: Simulation for sinusoidal stance of ZMP tracking in y direction

In Figure 4.1, it’s shown that the ankle angle is tracked pretty well, and the

reference angle is slightly modified by the controller compared with openloop.

43

The actual CoM trajectory follows the desired trajectory, although it’s not

because of the controller. For ZMP trajectory, the simulation shows that

the ankle position controller makes the ZMP converge to the desired ZMP

quicker than openloop. But still the convergence is slow since it need almost

2 seconds to converge to an acceptable range, which won’t work well for

walking, since we need immediate convergence of ZMP for walking, otherwise

the large and persistent oscillation of ZMP error will cause the actual ZMP

reach the boundary of support polygon and the robot tips over.

The maximum control loop frequency the simulation environment can

achieve is around 150Hz, which is low. Theoretically, we can have any control

rate, if the iteration of physics engine is slow enough. However, observations

show that the maximum rate that can be achieved is around 150Hz. Even if

we use a very slow iteration in physics engine (for example, 10 per second),

the control rate will stay at 150Hz. The control loop frequency is highly re-

lated to Gazebo speed and the transmission delay between Matlab and ROS.

In order to have 150Hz control frequency and an acceptable time consump-

tion, the physics engine in Gazebo is slowed down by 20 times. However, the

frequency of control loop only affects the smoothness of tracking.

The large oscillation at the first few seconds is due to the discontinuity of

the desired ZMP. The actual ZMP and it’s derivative start at 0, however the

desired ZMP’s initial derivative is not zero (since it’s a sinusoidal function), so

a possible solution to have better tracking is to have a desired ZMP trajectory

that match the actual ZMP initial condition.

The stiffness of foot will also enlarge the oscillations. The joints of this

Reem-C robot is rigid and not compliant due to the fact that it’s a position

controlled robot. So if there’s impact between foot and ground, it won’t be

absorbed. Also during the tracking of ZMP, there’s always tracking error,

which sometimes causes the soles to detach the ground, or to be in bad

contact with the ground. This will cause bouncing of the feet.

In order to reduce overshoot, PD controller is also implemented, as shown

in Figure 4.2. Since the force sensor readings for ZMP calculations are noisy

even with an average filter added, it’s a challenging to implement, which

makes the behavior of PD controller worse than the P controller.

44

Figure 4.2: PD control for ZMP tracking with kpy = 0.1, kdy = 0.002

The tracking of ZMP is not guaranteed since the ZMP is a function of both

CoM and the acceleration of CoM. According to (2.3), for an LIPM, the ZMP

can be calculated using CoM and CoM acceleration. For y direction, it will

follow the same dynamics. Controlling the ankle angles is actually controlling

the CoM position, since CoM is directly related to ankle angles for a LIPM.

However, based on (2.3), CoM acceleration also has to be controlled in order

to track the ZMP. Therefore, if we simply control the ankle angle depending

on the ZMP error, the tracking of ZMP is not guaranteed. For example, if

the actual ZMP is ahead of reference ZMP, the controller will try to rotate

ankle such that the CoM will rotate backward. In this case, even though xc

is decreased, the rotation will cause a negative acceleration ẍc, which will be

subtracted according to (2.3), and counteract on the ZMP tracking.

So instead of tracking ZMP, it’s expected that it will have a better perfor-

mance if we directly track the CoM trajectory, since the ZMP is a function of

CoM and it’s second derivative. However in this case, we have to make sure

the reference CoM trajectory that we are tracking will result in the desired

ZMP trajectory. Simulations are done in the next section.

45

4.1.2 CoM tracking

First, a CoM tracking in x direction is simulated using Reem-C lower body.

Since the corresponding two ankle joints share the same axis, we can control

both joints using the same ankle position controller and the soles will always

be in contact with the ground (which means the soles are always in the same

plane since the controller will modify the angles by the same amount).

(a) Openloop

(b) PD control with kpx = −2, kdx = −0.2

Figure 4.3: Simulation for sinusoidal stance of CoM tracking in x direction

46

The simulation results show that the CoM is tracked with a small steady

state error, and the actual ZMP is also kept closed to the desired ZMP. To

eliminate the steady state error, an integral term can be added.

In the openloop simulation, it’s shown that the actual CoM is always ahead

of the desired CoM. This is due to the bending of legs in Figure. 4.4. Since

in the CoM generation, we assume the robot is an LIPM and all the mass

is concentrated in the torso, so the desired CoM trajectory we planned is

actually the torso trajectory. However, in order to simulate the posture of

walking (or any movements that need to lower the torso), the legs are bent

forward in reality, which causes the actual CoM to be ahead of the desired

CoM. To avoid this, one can reduce the bending of the knee while walking.

However, this will reduce the step length of walking due to kinematics con-

straint. Also having a straight knee while walking is bad for landing of swing

foot, since a straight knee cannot absorb any impact during landing.

Figure 4.4: Side view of Reem-C lower body in stance

Then the CoM tracking in y direction is simulated:

47

Figure 4.5: Simulation of CoM tracking in y direction:PD control

The results show that the same controller that’s working good for x direc-

tion is not performing good in y direction. The CoM is roughly tracked but

there are too many oscillations.

We are using the same controller for both ankles in y direction. However,

the two ankle joints are not sharing the same axis, so if we simply modify

the joint angles by the same amount, the two soles won’t stays in the same

plane anymore, the robot will stand on the rims of soles (Figure. 4.6), which

changes the support polygon. The actual ZMP will fall on the boundaries of

the soles and this causes the oscillations.

48

Figure 4.6: Frontal plane: Ankle joints rotated by the same amount

To sum up, this kind of intuitive ankle position controller is not good

enough for walking, since ZMP has to be tracked with little error during

walking to ensure it to stays inside the support polygon. Next, the WBC

controller will be tested for CoM tracking.

4.2 Implementation of WBC Controller

Before implementing the WBC controller to the closed-loop walking simula-

tion, we have to test the controller to see the performance of CoM tracking.

A sinusoidal squat motion is tracked in the following simulation. The ref-

erence CoM trajectory is such that x and y are kept at constant but z is a

sinusoidal function of time:

Pc,ref =

 0.02

0

h0 + A sin (2π
T
t)

 (4.4)

Here h0 = 0.53m and the period T = 2s.

The trajectory of feet also needs to be specified. Both feet are standing

still. If we can set the left foot to be stance foot while the right foot to be

swing foot, with a constant position and orientation, the reference position

49

and orientation of swing foot are:

Psw,ref =

xsw,refysw,ref

zsw,ref

 =

xsw(0)

ysw(0)

zsw(0)

 (4.5)

Rsw,ref =

 0 0 1

0 1 0

−1 0 0

where Psw,ref and Rsw,ref are swing foot reference position and orientation,

as used in (3.34). This reference trajectory simply means we want the swing

foot to stay at its initial position. And the orientation is constant (here it’s

not an identity matrix, it depends on how the foot frame is defined in the

specific robot model).

Another very important embedded motion is the torso motion. Since the

torso has most of the mass and inertia, we want the orientation of torso to be

vertical all the time to minimize the total angular momentum. The reference

of torso orientation will be:

R0,ref =

1 0 0

0 1 0

0 0 1

 (4.6)

which is an identity matrix.

Now we have all the world frame references, which are Pc,ref , Psw,ref ,

Rsw,ref and R0,ref . To track these world frame references, we need to control

at least 12 DoF.

Other than (3.31), now the overall Jacobian including torso motion is:

J(q) =

 Jc(q)

Jsw(q)

J0,ω(q)

 (4.7)

where Jc is 3×12 CoM Jacobian, Jsw is 6×12 Jacobian and J0,ω is a 3×12

Jacobian only for orientation of torso.

Based on (3.34) and (3.35) with torso motion added, we have the following

50

controller for numerical implementation:

qk+1
ref = qk + δqkref

k
(4.8)

δqkref = J†(qk)

Kpo

((
Pc,ref

Psw,ref

)
−

(
Pc

Psw

))
−Rsw,ref

−1Ksw,oruswλsw

−R0,ref
−1K0,oru0λ0

 δt

in which, the Jacobian J is now for motion of CoM, swing foot and torso.

usw, λsw, u0 and λ0 are axes and angles of rotation as defined in Section 3.2.3,

for swing foot and torso orientations. Kpo, Ksw,or and K0,or are controller

gain matrices.

By implementing numerically following (4.8) and choosing appropriate gain

matrices Kpo, Ksw,or and K0,or as shown in (A.1), we have the following

tracking result for the squat motion:

Figure 4.7: Simulation for sinusoidal CoM tracking in z direction

The tracking performance is good in z direction, with a slight delay. In x

and y direction, there’s a little oscillation at the beginning. Simulations for

tracking sinusoidal reference in x and y direction are also made, the results

51

are similar with z direction tracking, which validated the efficiency of WBC

controller.

4.3 Walking Simulation

In this section, we will close the loop and integrate all the parts: ZMP/CoM

replanning, CoM/ZMP stabilization and tracking. The control scheme used

in the walking control is shown in Figure 4.8:

Figure 4.8: Control Diagram

The walking pattern is replanned at the beginning of each step, based on

the actual initial condition of CoM. The swing foot trajectory is generated

using replanned ZMP to ensure the ZMP will stay in the support polygon

for the next step. These two procedures will be discussed in Section 4.3.1.

Then the replanned CoM and ZMP are sent to the high level stabilizer, the

stabilizer read the actual CoM and ZMP, and send a CoM velocity that can

stabilize both CoM and ZMP. This CoM velocity along with the swing foot

trajectory then is sent to WBC controller, which has been derived in Section

4.2. WBC controller will directly send joint position command to the robot

52

such that the robot will track the CoM velocity and swing foot trajectory.

4.3.1 Implementation

The detailed procedures of the scheme Figure 4.8 are discussed as following.

4.3.1.1 CoM and ZMP Replanning

Input: • Actual initial Condition of Pc(t0)

• desired gait parameter: step period T , double support ratio r

(which is the ratio of double support duration to step period),

single support length dss

Output: • step length ∆x,∆y

• CoM and ZMP trajectory for one step, Pc,ref and xzmp,ref , yzmp,ref

The robot is tracking the planned CoM and ZMP when walking. Therefore,

it’s sure that there will be tracking error. The tracking error will accumulate

and result in falling. So the replanning takes place at the beginning of each

step. Instead of using the planned CoM from the previous step, it uses the

actual CoM initial condition for planning. This will make sure the replanned

CoM initial condition is consistent with actual initial condition.

1. The procedures in Section 2.2.3 Case II is followed. The ZMP is param-

eterized as a linear/cubic spline, starting with linear splines for single

support phase, followed by cubic spline for double support phase. Here

we assign the double support time to total step period ratio and the

step period. So the only unknown parameter is the step length ∆x and

∆y in x and y direction.

Parameters assigned in this step:

Table 4.1: Gait Parameters

Parameter Notation

step period T

double support ratio r

single support length dss

53

2. Plug the actual initial condition of ZMP and the unknowns ∆x and

∆y into the ZMP spline function, we will have a ZMP spline function

with coefficients in (2.32), which are linear functions w.r.t ∆x and ∆y.

Then using CoM initial condition calculated from sensors along with

the ZMP spline function (with ∆x and ∆y in it), we can use the bound-

edness condition (2.27) to solve for ∆x and ∆y in x and y direction

such that the CoM is convergent given the parameterized ZMP as input.

Parameters assigned in this step:

Table 4.2: Replanning Parameters

Parameter Notation

ZMP initial condition xzmp(t0),yzmp(t0)

CoM initial position xc(t0),yc(t0)

CoM initial velocity ẋc(t0),ẏc(t0)

The boundedness condition in 2.27 becomes:

x?u(t0) = x?u(t0, T, r, dss, xzmp(t0),∆x) = xc(t0) +
1

ω0

ẋc(t0) (4.9)

where x?u(t0, T, r, dss, xzmp(0),∆x) is an known linear function of ∆x,

which can be calculated by going through (2.25) to (2.30), with ∆x as

unknown parameter instead of T . Plug in all the known parameters,

∆x can be solved. Solving of ∆y follows the same procedures.

3. Plug the ∆x and ∆y into the parameterized ZMP, we will have the

reference ZMP trajectory for the step. Reference CoM trajectory can

be solved by plugging the ZMP trajectory into dynamics equation of

LIPM.

54

Figure 4.9: Replanning for 3 steps: the ZMP and CoM trajectories are
planned separately for x (top right) and y (bottom left) direction using the
boundedness condition and parameterized ZMP. Combining the ZMP and
CoM in both x and y direction, we can draw the trajectory of ZMP and
CoM in the ground plane (bottom right). The footprint profile (green and
yellow lines) are designed such that they will form a support polygon
(purple line) that can always contain the ZMP inside.

Figure 4.9 shows the relation of replanned ZMP and the foot prints. Here,

based on the CoM initial condition, the step lengths in x and y direction

∆x and ∆y are solved, then 3 steps are generated though only the first step

will be executed. The replanned ZMP provides information for swing foot

trajectory generation, which is the next step.

4.3.1.2 Swing Foot Trajectory Generation

Input: • Replanned ZMP trajectory xzmp,ref , yzmp,ref

• initial condition of swing foot Psw(t0)

Output: • swing foot trajectory for one step Psw,ref

55

The swing foot trajectory is generated using a 5th order spline. The reason

for choosing 5th order is that we have 6 boundary conditions to meet: initial

and final position, velocity and acceleration. Including the acceleration as

boundary condition is important since it’s directly related to the force applied

on the foot (including the ground reaction force). The initial conditions are

the actual initial condition of the swing foot (ideally the initial velocity and

acceleration are zero since swing foot is not moving at the beginning), we

need to assign final condition for the foot in order to satisfy the support

polygon criteria and reduce the impact.

In the x,y plane, the final position at the end of swing phase is assigned

to be the final position of ZMP that replanned from previous part. This will

make sure the ZMP will stay inside the new support polygon during stance

phase, see Figure 4.9. The final velocity of swing foot are set to zero since it

will stand still once contact with the ground. The final acceleration is also

assigned to be zero, which physically means the contact force is zero at the

instant of contact. This will minimize the effect of impact.

Initial condition and final condition for 5th order swing foot trajectory

spline:

Table 4.3: Swing foot Trajectory Spline Parameters in x,y Direction

time t0 time t0 + T (1− r)

x direction

position xsw(t0) position xzmp(t0 + T)

velocity 0 velocity 0

acceleration 0 acceleration 0

y direction

position ysw(t0) position yzmp(t0 + T)

velocity 0 velocity 0

acceleration 0 acceleration 0

Here xzmp and yzmp are the replanned ZMP trajectory.

The foot has to detach from the ground in order to move. So for the

trajectory in z direction, the swing foot have to lift up and come back to

the ground during swing phase and stays still at stance phase, a similar 5th

order spline can be used for swing phase:

56

Table 4.4: Swing foot Trajectory Spline Parameters in z Direction

time t0 time t0 + T (1− r)/2 time t0 + T (1− r)

position zsw(t0) position hsw position 0

velocity 0 velocity 0 velocity 0

acceleration 0 acceleration 0 acceleration 0

The swing foot starts at it’s initial z position, lifted to a predefined height

hsw at the middle of swing phase, then lowers to 0 height at the end of swing

phase. So hsw is the highest point the foot can reach, so at this point the

velocity should be 0. hsw is chosen such that the swing motion satisfies the

kinematics constraints of legs and the posture looks natural. If hsw is too

small, the swing foot is likely to contact the ground and slide during swing

phase. If hsw is too large, the CoM of swing leg is lifted up too much so the

torso has to be lowered to keep the overall CoM at constant height, which

causes an unexpected posture. Here we choose hsw = 5cm, which is a trade

off of these two effects. In stance phase, the foot’s z position is kept at 0.

Since we add an intermediate point in the middle of swing phase for z

direction, we need 2 pieces of splines for swing phase, the boundary conditions

are given in Table 4.4.

Figure 4.10: Splined swing foot trajectory: T = 1s, r = 0.1

57

Figure 4.10 shows an example of generated swing foot trajectory for one

step. In x direction, the swing foot moves forward by around 0.4m in swing

phase. It should be noted that in y direction, the swing foot also moves

2cm in swing phase in order to form a support polygon that can contain the

planned ZMP when landing. In other words, the distances that the swing

foot moves in x and y direction during swing phase depend on the planned

ZMP position at the time of landing.

Since landing position of the swing foot depends on the planned ZMP

position, if the planned ZMP is drifted to the same side for each step, the

robot will not walk in a straight line but tend to lean to this side more and

more. This is actually happening in simulation since the ZMP and CoM

are replanned at the beginning of each step based on the actual ZMP and

CoM initial condition. That is to say, the robot will forget the trajectory

and tracking error it has walked with and plan the next step based on the

current initial condition. For example, let’s consider two successive steps. If

we start the first step with the left foot, then for this step, the stance foot

is right foot and assume it’s position is at origin. At the end of the first

step, there’s a tracking error for ZMP, δyzmp(T), where T is step period. The

second step will switch the stance foot so left foot will be the stance foot and

the right foot will be swing foot. At the beginning of the second step, the

CoM and ZMP error will be reset to zero, CoM and ZMP trajectories are

replanned using the CoM and ZMP final condition of the first step. Since

the final condition of ZMP has an error of δyzmp(T) at the end of first step,

the replanned trajectory for the second step will have an offset of δyzmp(T).

Therefore the ZMP position at the time when right foot land on ground is

shifted by δyzmp(T), which means that the y position of right foot has to

move from origin to δyzmp(T) during the swing phase of second step.

The functionalities of replanning part and swing foot trajectory generation

part is summarized as follow: The replanning algorithm can make sure that

the tracking errors of CoM and ZMP will be kept small for each step since

it prevent the errors from accumulating by resetting them. The swing foot

trajectory generator can force the ZMP to stay inside the support polygon

all the time. So these two modules together will guarantee the stable walking

of robot. However, global trajectory tracking can not be guaranteed, since

the replanning algorithm forgets the previous trajectories and starts over a

new planning and tracking task for the next step, so there will be drifting

58

of actual global ZMP and CoM trajectory. This will be also discussed in

Section 4.3.2.2 and a possible solution is discussed.

4.3.1.3 Stabilizer

Input: • Actual CoM’s x,y position xc, yc and ZMP position xzmp, yzmp

• reference CoM’s x,y position xc,ref , yc,ref and ZMP xzmp,ref , yzmp,ref

Output: • CoM velocity that need to tracked ẋc, ẏc

The stabilizer in [19] is implemented:

ẋc = ẋc,ref − kxexc + kzxezx (4.10)

ẏc = ẏc,ref − kyeyc + kzyezy

where ẋc, ẏc are CoM velocities that sent to WBC controller to track. ẋc,ref ,

ẏc,ref are replanned CoM velocity, or desired CoM velocity. k are the con-

troller gains. exc, eyc, ezx and ezy are CoM errors and ZMP errors respect to

replanned CoM and ZMP:

exc = xc,ref − xc (4.11)

eyc = yc,ref − yc
ezx = xzmp,ref − xzmp
ezy = yzmp,ref − yzmp

The velocities ẋc, ẏc in (4.10) will be the reference CoM velocities for the

robot to track.

4.3.1.4 Whole Body Cooperation Control

Input: • Input CoM velocities from stabilizer ẋc,ẏc

• Generated swing foot position Psw,ref

• Actual joint positions q and link positions, orientations

Output: • reference joint positions qref

59

This controller will cooperate each individual joint such that the robot will

track both the reference CoM and swing foot motion, as well as the torso

orientation.

For CoM tracking, xc and yc are controlled directly by the stabilizer in

previous procedure to stabilize CoM and ZMP. However, the other target

coordinates are tracked using the controller (4.8). These target coordinates

include CoM position in z direction, zc, position and orientation of swing

foot Psw, Rsw, and torso orientation R0. So the overall controller modified

from (4.8) is:

qk+1
ref = qk + δqkref

k
(4.12)

δqkref = J†(qk)

ẋc

ẏc

kzc(zc,ref − zc)
Ksw,po(Psw,ref − Psw)

−Rsw,ref
−1Ksw,oruswλsw

−R0,ref
−1K0,oru0λ0

δt

in which, the only difference from controller (4.8) is that the control inputs

of first two states, are replaced by the control inputs given by the stabilizer

ẋc and ẏc. The gain and gain matrix kzc and Ksw,po are decomposed from

the bigger diagonal gain matrix Kpo from (4.8).

1. Plug the input CoM velocities calculated by the stabilizer for x and

y direction into (4.12). Read the actual swing foot position Psw and

CoM position in z direction xz, plug into (4.12).

2. Read the actual swing foot and torso orientation Rsw and R0. Calculate

the rotation axis and angle for swing foot and torso, as defined in

Section 3.2.3, usw, u0, λsw and λ0. Then plug these values into (4.12).

3. Plug all the reference positions and orientations into (4.12). The ref-

erence for CoM position in z direction is chosen to be constant during

each step, the value is the initial value of CoM height of each step.

The swing foot reference position is given by the swing foot trajectory

generation part. And the reference rotation matrix of swing foot and

60

torso are the same as (4.5) and (4.6) since we still want the torso and

swing foot to keep horizontal at all time.

4. Calculate the CoM Jacobian and embedded motion Jacobians (in this

case, swing foot Jacobian and torso Jacobian), from link and joint

kinematics. We will have Jc, Jsw and J0 as in (4.13). Calculate the

pseudo inverse (in this case it’s simply inverse since it’s 12×12 matrix)

of J using (3.33).

J(qk) =

 Jc(q
k)

Jsw(qk)

J0(q
k)

 (4.13)

5. Up to this point, we have plugged all the values of variables in controller

(4.12). We can calculate the joint angle increments δqkref . Adding up

the current readings of joint angles qk and the increments δqkref , finally

we can get the reference joint angles for next step, qk+1
ref . The reference

joint angles are then tracked by PID controller of each joint.

4.3.1.5 Implementation Notes

In addition to the previous main steps of implementation, some minor im-

plementation details should be noted.

WBC control is based on the assumption that the stance foot is fixed on

the ground. So if the stance foot detached from the ground due to tracking

error or disturbances, the WBC calculation won’t be valid anymore. There-

fore, an ankle joint position compensator is added to the stance ankle joints.

This compensator will compensate the ankle joints’ angles such that the ori-

entation of the stance foot still keeps horizontal, therefore the stance foot

will stay in good contact with the ground at all time. This is actually a

limitation of WBC controller, and will be discussed in Section 5.2.1.

The compensator for stance leg’s ankle joints has the following form:

q′5,ref = q5,ref + q5,comp (4.14)

q′6,ref = q6,ref + q6,comp

where the subscript 5 and 6 correspond to the two ankle joints as shown by J5

61

and J6 in Figure 3.4. q5,ref and q6,ref are the original reference joint angles

calculated by the WBC controller. q′5,ref and q′6,ref are the compensated

reference joint angles that the joints are actually tracking. q5,comp and q6,comp

are the amounts of compensation needed to bring the deviated orientation

of stance foot to the horizontal orientation. They can be simply calculated

using the euler angles needed to transform from the actual orientation to the

horizontal orientation.

The PID gains of ankle joints of swing foot are set to 0 during landing to

reduce impact. This is due to the fact that the robot is position controlled

and lack of compliance, which will be discussed in Section 5.2.2.

4.3.2 Simulation results and discussion

In this section, simulation results of walking are discussed. In order to evalu-

ate the performance of each module in the whole control loop, several different

walking simulations are made. This section will focus on the performance of

stabilizer, so walking simulation with and without stabilizer are made to be

compared. More evaluations will be discussed in the next chapter.

4.3.2.1 Walking Without Stabilizer

First, to show the effect of stabilizer in (4.10), simulation without the stabi-

lizer is made. The gait paratemters are chosen to be:

Table 4.5: Simulation Gait Parameters

Parameter Notation value

step period T 1s

double support ratio r 0.1

single support length dss 0.05m

The step period is chosen to be 1 second, which is very close to slow walking

of human. During double support, the two soles are not necessarily in the

same plane due to tracking errors. To reduce this effect, the double support

ratio is chosen to be 0.1, which is a little smaller than human’s double support

ratio. Since the foot length is 0.15m, we choose the single support length to

be 0.05m to ensure the ZMP stays in the stance sole during swing phase.

62

According to the replanning procedures, the initial desired ZMP position

need to be assigned. Here we assign the desired ZMP position with the actual

stance foot position, so that during the following step, the desired ZMP will

stay inside the support polygon (which is the area enclosed by stance foot).

Also, in simulation, we only assign the desired CoM initial position with

actual CoM initial position, but not the velocity. The desired initial CoM

velocity will be left as a variable and will be chosen such that the solved

step length is physically possible. As a result, the replanned CoM trajectory

will match the actual CoM initial position but not the velocity, however, it

can be still tracked by the WBC controller. In the simulation, we chose the

following initial conditions:

xzmp,ref (0) = xst(0) (4.15)

yzmp,ref (0) = yst(0)

xc,ref (0) = xc(0)

yc,ref (0) = yc(0)

ẋc,ref = (xzmp,ref (0)− xc,ref (0)± 0.0175)w0

ẏc,ref = (yzmp,ref (0)− yc,ref (0)± 0.0043)w0

zc,ref (t) = zc(0)

where the initial condition for ZMP and CoM positions are actual values cal-

culated from sensors at the beginning of the step. The CoM initial velocities

can be chosen arbitrarily since we only need the reference CoM positions to

match with actual CoM positions of the robot. However, the value of CoM

initial velocities will affect the solution of step lengths ∆x and ∆y linearly.

By choosing the initial velocities in (4.15), we are able to have a solution

that’s feasible for the robot.

By choosing the above initial desired initial condition ẋc,ref and ẏc,ref , the

solved step length ∆x and ∆y are both approximately 0.2m. The sign ±
simply denote the different cases when different foot (left or right) is con-

sidered to be stance foot. Also, the desired z position of CoM is constant

during the step, whose value is just the initial value of zc.

Controller (4.8) is used, since there’s no stabilizer. The gain matrices are

listed in (A.1). The gain matrices are diagonal, so each coordinate is actually

decoupled and controlled individually. This makes it easier to tune the gains.

63

Here the gain values are chosen such that the tracking is fast enough and the

overshoot is acceptable.

The PID gains for each joint’s position control can be found in Table A.1

in Appendix A.0.2, which is given designed by Pal Robotics.

The robot successfully walked for 6 steps then fell down. The following

result shows the tracking of CoM trajectory.

Figure 4.11: Walking: CoM tracking without stabilizer

As we can see from Figure 4.11, generally, the CoM in x and y direction is

tracked very well. The tracking in z direction is worse compared with x and

y direction because the WBC controller gain for z direction is smaller. The

reason is that the tracking in x and y direction has higher priority since it’s

related to ZMP tracking, therefore related stability of walking.

Also, it’s shown that the reference CoM trajectories for x and y direction

are not continuous, due to replanning. A closer look for the discontinuity of

reference CoM in y direction is shown in Figure 5.3 in Section 5.1. At the

beginning of each step (here the step period is T = 1s), the CoM is replanned

such that the replanned CoM start from the actual CoM initial position, but

64

the initial velocities are chosen according to (4.15). The reference for z

direction is not continuous since it used the actual initial CoM height as

reference. This also caused the problem that the actual CoM height for each

step is increasing. There’s always a positive error at the end of each step for

CoM height, and this final value will become the reference for next step, so

the CoM height is increasing slowly.

While the CoM is tracked, the ZMP is not guaranteed to be tracked,

because the reference ZMP is replanned using LIPM dynamics, which is

obviously different from the actual robot dynamics. The ZMP error will

accumulate and eventually the actual ZMP moves out of support polygon.

This explained why the robot only walked for steps. To track the ZMP at

the same time, the stabilizer should be used.

4.3.2.2 Walking With Stabilizer

Using the same gait parameters, we add the stabilizer in (4.10) to the loop.

This stabilizer is based on LIPM. By choosing proper gains, the stability is

proved in [19], for any given LIPM. Here, stabilizer gains are chosen based

on the parameters of LIPM of Reem-C Robot, using the tuning method in

[19]:

Table 4.6: Stabilizer Gains

kx 150 kzx 5

ky 100 kzy 10

As described in the Section 4.3.1.4, the reference for xc and yc are given

by the stabilizer independently, while the other target space coordinates are

still controlled by WBC controller, with the gain matrices in (4.12):

Kzc = 75 (4.16)

Ksw,po = diag(140, 140, 140)

which are the decomposed diagonal matrices of previous gain matrix Kpo,

without the first two element for xc and yc.

The way to assign initial values for desired CoM and ZMP is the same as

the previous section, 4.3.2.1.

65

Since the actual ZMP position is calculated using force sensor data, which

is noisy, the ZMP position is filtered using a second order low pass filter with

cutoff frequency around 5hz :

0.0201s2 + 0.0402s+ 0.0201

s2 − 1.5610s+ 0.6414
(4.17)

With the help of stabilizer, the robot walked for 30 steps without falling

in the simulation.

Figure 4.12: Walking: CoM tracking with stabilizer

Figure 4.12 shows similar behavior as the simulation without stabilizer in

Figure 4.11. But this time the robot can walk 30 steps without falling. It

should be noted that the CoM in y direction is drifting slowly. This is caused

by the error of tracking and replanning algorithm. That is, if there’s tracking

66

error of CoM at the end of the step, the replanning algorithm will replan the

CoM of next step based on this actual CoM final value. So if there’s a negative

tracking error at the end of each step. The initial condition of each step is

actually drifting to the right, and the replanned CoM trajectory of each step

is also drifted to the right. To improve this problem, some calibration of the

robot’s world frame position can be added in the future work. For example,

if the actual CoM trajectory is detected to be drifted to the right, some

calibration can be added to the replanned CoM trajectory of next step such

that the CoM will return to the center by the end of next step.

Similarly with Figure 4.11, the CoM position in z direction is also drifting

for the same reason with the drifting in Figure 4.11. In this case, the tracking

error is negative at the end of each step. To avoid the drifting of CoM height,

a constant reference CoM in z direction is used, instead of taking the initial

CoM z position of each step as reference for that step. The result is shown

in Figure 4.13. The robot walked for 16 steps and falls, which is worse

than the 30 steps simulated using variable reference height in Figure 4.12.

The possible reason for the falling is that, if the reference of CoM height is

constant, the error of CoM height will be accumulated and won’t be reset to

zero at beginning of each step. So when there’s large disturbance, it’s very

likely that the CoM error caused by this disturbance will be accumulated and

divergent. Also, since the reference for CoM height is constant, the value of

this reference has to be carefully chosen. In Figure 4.13, the reference is

chosen to be the CoM height of it’s initial pose. Better choice of reference

CoM height may be existed, though this work will not focus on choosing

reference CoM height.

67

Figure 4.13: Walking: CoM tracking with stabilizer (constant zc,ref)

Back to the simulation of Figure 4.12, with the stabilizer, the critical dif-

ference is that the ZMP is also tracked as shown in Figure 4.14.

68

Figure 4.14: Walking: ZMP tracking with stabilizer

Figure 4.14 shows the tracking of ZMP trajectory. We see that although

there’s still noises and oscillations in actual ZMP, the ZMP error is small all

the time, which ensures that it will always stay inside the support polygon

(since the support polygon is determined by swing foot position which is

designed to contain the desired ZMP).

69

CHAPTER 5

EVALUATION OF STABILIZERS

Two lower level stabilizers are discussed in detail in Chapter 3. The first

one, ankle position controller is an intuitive controller modified from the

one developed 15 years ago in [27] to track CoM or ZMP. The simulation

results in Figure 4.1, Figure 4.3 and Figure 4.5 in Section 4.1 shows that it

cannot track the desired ZMP and CoM trajectory very well, therefore it’s

not implemented in walking simulation in this work.

The second lower level stabilizer, WBC controller is the most broadly used

controller among position controlled robots. And from the simulation of this

thesis, the performance of this controller is validated.

In this Chapter, the advantage of the hierarchical control in Figure 4.8 im-

plemented in Section 4.3 will be discussed. Then the challenge and difficulties

of this method will be discussed.

5.1 Evaluation of Replanning Algorithm

In order to show the performance of replanning algorithm, a simulation with-

out the replanning procedure is made for comparison. In this simulation, the

CoM and ZMP trajectories are generated for n-steps, using actual initial

condition, without replanning at the beginning of each step. In other words,

it only planned once. Then the trajectories are followed using higher level

stabilizer in Section 4.10 and WBC controller.

70

Figure 5.1: Walking Without Replanning: CoM

The reference trajectories in Figure 5.1 and Figure 5.2 are for two steps

with step period 1 second. The robot steps its right foot for the first step

from rest, then followed by the second step with the left foot as swing foot.

So in y direction, the ZMP stays constant during the first step to stay in

the sole of stance (left) foot then shifts to right foot at the end of the first

step, then stays constant to stay in the sole of stance (right) foot. The

corresponding CoM slowly approaches right foot at the beginning of the first

step then approaches faster in the double support phase since the ZMP is

shifting fast in double support. At the beginning of the second step, the

acceleration of CoM if positive, according (2.4), CoM has to move to the left

in order to keep ZMP constant.

71

Figure 5.2: Walking Without Replanning: ZMP

As shown in Figure 5.1 and Figure 5.2, the robot tips over during the

second step. If we take a close look at the CoM at t = 1s, where the second

step start, we see that the actual CoM has large accumulated error respect to

the reference, since the reference CoM is not replanned to match the initial

CoM condition of the second step. This large CoM error directly results in

a large error in ZMP tracking, which causes large overshoot and oscillations.

At some point, the oscillated ZMP moves out of the support polygon, the

robot tips over.

If we take a close look at the CoM tracking with replanning in Figure 4.12,

for example, for yc at t = 16s, where the replanning process takes place, we

see that the replanning (reference) CoM is forced to match the actual CoM

initial condition, so the tracking error is 0 at this moment. Starting with 0

error, the WBC controller is able to keep the error small for the rest of the

time.

72

Figure 5.3: Close Look of Replanning for CoM

Up to this point, it has been shown that the replanning process is important

for keeping the tracking error bounded and make the reference trajectory

adaptive.

5.2 Evaluation of WBC controller

The main power of WBC controller is that it can cooperate all the joints to

track both desired CoM and embedded limb motions. It’s already shown in

the squat motion simulation (Figure 4.7) and walking simulation Figure 4.12

that the CoM is tracked. Here, we show that the embedded motion, that is,

the swing foot trajectory is also tracked. This is important since the landing

area of the swing foot will determine the support polygon for double support

phase and single support phase for next step.

For the 30-step walking simulation in Figure 4.12, the swing foot position

is tracked:

73

Figure 5.4: Swing foot Position Tracking in Stance Foot frame

Figure 5.4 shows the swing foot trajectory in the stance foot frame. The

reference trajectory discussed in Section 4.3.1.2 is calculated in the world

frame. When implementing this reference trajectory, it’s transformed into

stance foot frame, so that the calculations for tracking can be done in stance

foot frame, just like tracking the end-effector of manipulator. This transfor-

mation happens at the beginning of every control loop, so even if the stance

foot is not perfectly pointed forward due to tracking error, the reference

swing foot position for this sample period is transformed into stance foot

frame using the actual position and orientation of the stance foot, so the

world frame tracking can be still achieved.

The discontinuity at the beginning of each step is due to switch of stance

foot. Since it’s in stance foot frame and the stance foot is switching for each

step, the trajectory actually has a periodic behavior.

While all the tracking results show the efficiency of the WBC controller,

there’s still some challenging issues with it, which caused most of the failed

simulations. In the next section, challenges and limitations of WBC con-

troller will be discussed.

74

5.2.1 Limitation of WBC Controller: Fixed Stance Foot
Assumption

The derivation of WBC method is based on a very important assumption,

which is the fixed stance foot assumption, which assumes that the stance foot

is fixed on the ground. In this case, the robot becomes simply a manipulator,

and all the Jacobians calculated based on this assumption will holds, as long

as the stance foot stays fixed. However, there will be some cases during the

walking that break this assumption.

1. Large CoM error

Since the WBC is a proportional controller that reads CoM error and

send joint velocities as command. If the CoM error is large, the instan-

taneous joint velocities will be large. Among these joints, ankle joint

plays an important role. If the instantaneous ankle joint velocity is too

large, the foot will detach from the ground.

Figure 5.5: Ankle Joint Motion in Sagittal Plane

In the sagittal plane, as shown in Figure 5.5 (a), if the foot rotates

counter clockwise respect to the body in slow motion, the stance foot

will stay on the ground but the body will rotate clockwise. This is the

case when the WBC calculations can be valid. However, in Figure 5.5

75

(b), if the stance foot rotates too fast, it will detach from the ground

before the body rotate clockwise. In this case, the fixed foot assumption

is broken and all the WBC calculations are invalid.

Figure 5.6: Ankle Joint Motion in Frontal Plane

Similar problem happens in the lateral motion as shown in Figure 5.6

(a). In single support phase, if the foot rotates counter clockwise re-

spect to the body in slow motion, the stance foot will stay on ground

but the body will rotate clockwise. In Figure 5.6 (b), if the stance foot

rotates too fast, it will detach from the ground before the body rotate

clockwise.

2. Collision of Swing Foot

In WBC method, the stance foot is considered as the base link, the

swing foot is considered as the end-effector. During the double support

phase, the swing foot contacts the ground. Even though the swing

foot position and orientation are designed such that the swing foot will

stay in the same plane as the stance foot, there’s always tracking error,

which causes the stance foot to detach from the ground (since it’s not

a real base link), as shown in Figure 5.7. The situation is worse in the

transition from single support to double support, when the swing foot

collides with the ground.

76

Figure 5.7: Double Support in Sagittal Plane

In order to avoid the effect of this limitation, and keep the fixed foot

assumption valid all the time, an ankle joints position compensator is added

in the simulations. The compensator simply read the orientation of stance

foot, if the stance foot is detached from the ground, it will compensate the

ankle joints positions such that the foot will resume the fixed pose respect to

ground. This compensator is already implemented in the simulations. The

details of the compensator can be found in Section 4.3.1.5. The trade off is

that the tracking of CoM will be affected.

5.2.2 Limitation of WBC Controller: Stiff Joint Motion

Theoretically, the WBC method can directly control the joint velocities to

achieve CoM tracking and embedded motion tracking, while in implementa-

tion it’s actually controlling the joint positions’ increments. And the position

tracking is done by PID loop of each individual joint. In order to track the

joint positions command from WBC controller almost simultaneously, the

PID gains are set to be very large. The disadvantage of a high gain con-

troller is that the joints become very stiff and lack of compliance.

During the landing of swing foot, human use the hip, knee and ankle joints

to absorb the impact, such that the swing foot won’t bounce. These can not

be achieved by stiff joints of robots, so there’s always large disturbances and

discontinuities in swing foot position tracking.

77

To minimize the effect of impact, in the simulations of this paper, PID

gains of swing foot’s ankle joints are reduced to 0 during landing. So the

ankle joints become completely compliant during landing, and reduces the

impact to some degree.

78

CHAPTER 6

CONCULSION

The thesis has presented the development of biped robot walking control

based on ZMP dynamics, with the emphasis on stabilizer and replanning al-

gorithm design. This chapter is dedicated to conclude the study presented in

this thesis. A brief summary of the conclusion and contribution of this study

is presented in Section 6.1. Possible future developments will be discussed in

Section 6.2.

6.1 Summary

In this thesis, the ZMP based biped walking control is studied. A new way

of trajectory generation based on LIPM is discussed and developed. Sev-

eral stabilizers for walking control are investigated and the WBC method is

studied and derived in detail.

The walking pattern generation is based on the walking stability criteria

of ZMP and the simplified model, LIPM. Because of the unstable nature of

ZMP dynamics of LIPM, the boundedness issue of the solution is studied in

Section 2.2.2. A boundedness constraint for the initial condition of CoM and

the input ZMP trajectory is derived. This boundedness constraint provides

a new way to generate convergent CoM trajectory, which allows us to pa-

rameterize the ZMP trajectory and solve for the unknown parameters using

this boundedness constraint, as shown in Section 2.2.3. Based on this logic, a

replanning algorithm is proposed and implemented in walking simulation of

Reem-C, in Section 4.3.1.1. The replanning algorithm uses the actual CoM

initial condition and solve for the step length that can result in a conver-

gent CoM trajectory. The simulation results in Section 4.3.2.2 show that the

replanning algorithm plays a critical role, which prevents the CoM tracking

error to accumulate.

79

Two different stabilizers are studied and implemented in simulation. The

first stabilizer, ankle position controller in Section 3.1, is an intuitive con-

troller modified from the controller in [27]. The ankle joints angles are di-

rectly controlled to track CoM and ZMP. The simulations in Section 4.1 show

that this controller cannot guarantee the tracking of CoM and ZMP since

the tracking is slow and the steady state error is large. Also, since the ankle

joints are controlled individually and they don’t cooperate, which causes the

soles not sharing the same plane. The robot will stand on the boundary of

foot, therefore start to tip over.

Most of the work in this thesis is focus on the lower level stabilizer, WBC

controller, which cooperate all the joints to track the CoM as well as embed-

ded motion. The core concept, CoM Jacobian is derived as a mapping from

joint velocities to world frame CoM velocities, in Section 3.2.1. A similar

Jacobian, embedded motion Jacobian is also derived to map from the joint

velocities to world frame embedded motion velocities, in Section 3.2.2. Based

on these mappings, in Section 3.2.3, the WBC controller is derived in a pro-

portional controller form, to track the overall CoM of the robot. Simulations

in Section 4.2 and 4.3.2 show the good performance of WBC controller in

walking. The CoM are tracked very fast with small errors. However, the

limitations of WBC controller is obvious, due to the assumption that the

stance foot is fixed on the ground. This assumption can be easily violated if

the contact force needed to accelerate the robot exceed the contact force con-

straint or there’s unexpected contact of other links, as discussed in Section

5.2.1. The stiffness of joints also limits the performance of WBC controller,

by giving too much impact during the landing of swing foot.

To implement the complete control loop in simulation, the detailed pro-

cedures for implementation are listed in Section 4.3.1. It provides a com-

prehensive step-by-step instruction of implementing the integrated control

algorithm for walking.

6.2 Future Works

The main contribution of this thesis is that the combination of a new plan-

ning method based on boundedness solution of LIPM and the WBC control,

with their successful application in a realistic humanoid robot in the simu-

80

lations. The preliminary simulation results show a promising future of this

control method. Therefore, future work will focus on more application of the

proposed control method.

To overcome the limitation of WBC controller, the contact force constraint

needs to be studied and added to the control and planning algorithm.

So far, only walking in straight line is simulated. Algorithms for turning,

and stopping should be studied in future work.

Also, the terrain is flat in all the simulations. A stabilizer that can handle

uneven terrain needs to be studied.

81

APPENDIX A

SIMULATION PARAMETERS

A.0.1 Reem-C Lower Body Parameters (URDF file)

1 <?xml version=” 1 .0 ”?>

2 < !−−
3

4 Copyright (c) 2011−2012 , PAL Robotics , S . L .

5 Al l r i g h t s r e s e rved .

6

7 This work i s l i c e n s e d under the Creat ive Commons

Attr ibut ion−NonCommercial−NoDerivs 3 .0 Unported L icense .

8 To view a copy o f t h i s l i c e n s e , v i s i t h t tp : //

creativecommons . org / l i c e n s e s /by−nc−nd/3 .0/ or send a

l e t t e r to

9 Creat ive Commons , 444 Castro Street , Su i t e 900 , Mountain

View , Ca l i f o rn i a , 94041 , USA.

10 −−>
11 <robot name=”reemc” xmlns :xacro=” ht tp : // ros . org /wik i / xacro ”>

12

13 < !−−F i l e i n c l ud e s−−>
14 <xa c r o : i n c l ud e f i l ename=”$(f i nd r e emc de s c r i p t i on) / urdf /

deg to rad . xacro ” />

15 <xa c r o : i n c l ud e f i l ename=”$(f i nd r e emc de s c r i p t i on) / urdf / l e g

/ l e g . t r ansmi s s i on . xacro ” />

16 <xa c r o : i n c l ud e f i l ename=”$(f i nd r e emc de s c r i p t i on) / urdf /

s en so r s / f t s e n s o r . gazebo . xacro ”/>

17 <xa c r o : i n c l ud e f i l ename=”$(f i nd r e emc de s c r i p t i on) / urdf /

s en so r s / l a s e r . urdf . xacro ”/>

18

19 < !−−Constant parameters−−>
20 <xac ro :p rope r ty name=” l e g f r i c t i o n ” value=” 1 .0 ” />

21 <xac ro :p rope r ty name=” leg damping ” value=” 1 .0 ” />

22 <xac ro :p rope r ty name=” l e g r e du c t i o n ” value=” 1 .0 ” />

23 <xac ro :p rope r ty name=” l e g e p s ” value=” 0 .0 ” />

82

24 <xac ro :p rope r ty name=” l e g f r i c t i o n a n k l e ” value=

” 1 .0 ” />

25 <xac ro :p rope r ty name=” leg damping ankle ” value=”

1 .0 ” />

26

27 <xac ro :p rope r ty name=” l e g 1 j o i n t max v e l ” va lue=”

2 .35 ” />

28 <xac ro :p rope r ty name=” l e g 2 j o i n t max v e l ” va lue=”

2 .27 ” />

29 <xac ro :p rope r ty name=” l e g 3 j o i n t max v e l ” va lue=”

3 .64 ” />

30 <xac ro :p rope r ty name=” l e g 4 j o i n t max v e l ” va lue=”

3.225 ” />

31 <xac ro :p rope r ty name=” l e g 5 j o i n t max v e l ” va lue=”

2 .44 ” />

32 <xac ro :p rope r ty name=” l e g 6 j o i n t max v e l ” va lue=”

2 .27 ” />

33

34 <xac ro :p rope r ty name=” l e g 1 j o i n t e f f o r t ” va lue=”

42 .7 ” />

35 <xac ro :p rope r ty name=” l e g 2 j o i n t e f f o r t ” va lue=”

64 .0 ” />

36 <xac ro :p rope r ty name=” l e g 3 j o i n t e f f o r t ” va lue=”

55 .7 ” />

37 <xac ro :p rope r ty name=” l e g 4 j o i n t e f f o r t ” va lue=”

138 .3 ” />

38 <xac ro :p rope r ty name=” l e g 5 j o i n t e f f o r t ” va lue=”

80 .9 ” /> < !−− d e f u l t : 80 .9−−>
39 <xac ro :p rope r ty name=” l e g 6 j o i n t e f f o r t ” va lue=”64”

/> < !−− d e f u l t : 64 .0−−>
40

41

42 <xacro:macro name=” reemc leg ” params=”name parent s i d e

r e f l e c t ”>

43

44 < l i n k name=” l e g ${ s i d e } 1 l i n k ”>

45 < i n e r t i a l>

46 <mass value=” 1.02901 ”/>

47 <o r i g i n xyz=”−0.02571 0 0.02557 ” rpy=”0 0 0”/>

48 < i n e r t i a ixx=”0.00132187534 ” ixy=”0.00000001514 ”

i x z=”0.00040022268 ” iyy=”0.0018528617 ” iy z=”

0.00000050713 ” i z z=” 0.00084231334 ”/>

49 </ i n e r t i a l>

83

50 <v i s u a l>

51 <o r i g i n rpy=”0 0 0” xyz=”0 0 0”/>

52 <geometry>

53 <mesh f i l ename=”package : // r e emc de s c r i p t i on /meshes/

l e g / l e g 1 . dae” s c a l e=”1 1 1”/>

54 </geometry>

55 <mate r i a l name=”LightGrey” />

56 </ v i s u a l>

57 </ l i n k>

58

59 < j o i n t name=” l e g ${ s i d e } 1 j o i n t ” type=” r evo lu t e ”>

60 <o r i g i n xyz=”0 ${− r e f l e c t ∗0.075} −0.14353” rpy=”0 0

0”/>

61 <ax i s xyz=”0 0 1”/>

62 <parent l i n k=”${ parent }”/>
63 <ch i l d l i n k=” l e g ${ s i d e } 1 l i n k ”/>

64 <dynamics f r i c t i o n=”${ l e g f r i c t i o n }” damping=”${
leg damping }”/>

65 < l im i t lower=”${−37.5∗ deg to rad + r e f l e c t ∗7 .5∗
deg to rad }” upper=” ${37.5∗ deg to rad + r e f l e c t

∗7 .5∗ deg to rad }” e f f o r t=”${ l e g 1 j o i n t e f f o r t }”
v e l o c i t y=”${ l e g 1 j o i n t max v e l }” />

66

67 <s a f e t y c o n t r o l l e r k po s i t i o n=”100”

68 k v e l o c i t y=”100”

69 s o f t l ow e r l im i t=”${−37.5∗
deg to rad + r e f l e c t ∗7 .5∗
deg to rad + l e g e p s }”

70 s o f t u pp e r l im i t=”${ 37 .5∗
deg to rad + r e f l e c t ∗7 .5∗
deg to rad − l e g e p s }” />

71 </ j o i n t>

72

73 < l i n k name=” l e g ${ s i d e } 2 l i n k ”>

74 < i n e r t i a l>

75 <mass value=” 0.69621 ”/>

76 <o r i g i n xyz=” 0.00057 ${− r e f l e c t ∗0.00881}
−0.01125” rpy=” 0 .0 0 .0 0 .0 ”/>

77 < i n e r t i a ixx=” 0.0008416476 ” ixy=”−0.00000268743”
i x z=”0.00000667199 ” iyy=”0.00039794844 ” iy z=”

0.00002668971 ” i z z=” 0.00084196694 ”/>

78 </ i n e r t i a l>

79 <v i s u a l>

84

80 <o r i g i n rpy=”${90∗ deg to rad } 0 0” xyz=”0 0 0”/>

81 <geometry>

82 <c y l i nd e r l ength=” 0 .10 ” rad iu s=” 0 .04 ”/>

83 </geometry>

84 <mate r i a l name=”LightGrey” />

85 </ v i s u a l>

86 </ l i n k>

87

88 < j o i n t name=” l e g ${ s i d e } 2 j o i n t ” type=” r evo lu t e ”>

89 <o r i g i n xyz=”0 0 0 .0 ” rpy=”0 ${ 90 .0 ∗ deg to rad } 0”

/>

90 <ax i s xyz=”0 0 1”/>

91 <parent l i n k=” l e g ${ s i d e } 1 l i n k ”/>

92 <ch i l d l i n k=” l e g ${ s i d e } 2 l i n k ”/>

93 <dynamics f r i c t i o n=”${ l e g f r i c t i o n }” damping=”${
leg damping }”/>

94 < l im i t lower=”${−22.5∗ deg to rad − r e f l e c t ∗7 .5∗
deg to rad }” upper=” ${22.5∗ deg to rad − r e f l e c t

∗7 .5∗ deg to rad }” e f f o r t=”${ l e g 2 j o i n t e f f o r t }”
v e l o c i t y=”${ l e g 2 j o i n t max v e l }” />

95

96 <s a f e t y c o n t r o l l e r k po s i t i o n=”100”

97 k v e l o c i t y=”100”

98 s o f t l ow e r l im i t=”${−22.5∗
deg to rad − r e f l e c t ∗7 .5∗
deg to rad + l e g e p s }”

99 s o f t u pp e r l im i t=”${ 22 .5∗
deg to rad − r e f l e c t ∗7 .5∗
deg to rad − l e g e p s }” />

100 </ j o i n t>

101

102 < l i n k name=” l e g ${ s i d e } 3 l i n k ”>

103 < i n e r t i a l>

104 <mass value=” 3.97852 ”/>

105 <o r i g i n xyz=” 0.14784 −0.01646 ${− r e f l e c t ∗0.01793} ”
rpy=” 0 .0 0 0 .0 ”/>

106 < i n e r t i a ixx=”0.00507885174 ” ixy=”−0.00034076421” ix z

=”−0.00225952731” iyy=”0.02850097402 ” i y z=”

0.00003047874 ” i z z=” 0.02632392239 ”/>

107 </ i n e r t i a l>

108 <v i s u a l>

109 <o r i g i n rpy=”0 0 0” xyz=”0 0 0”/>

110 <geometry>

85

111 <mesh f i l ename=”package : // r e emc de s c r i p t i on /meshes/

l e g / l e g 3 . dae” s c a l e=”1 1 ${−1∗ r e f l e c t }”/>
112 </geometry>

113 <mate r i a l name=”LightGrey” />

114 </ v i s u a l>

115 <c o l l i s i o n>

116 <o r i g i n rpy=”0 ${90∗ deg to rad } 0” xyz=” 0 .15 0 ${−
r e f l e c t ∗0.015} ”/>

117 <geometry>

118 <box s i z e=” 0 .15 0 .10 0 .20 ”/>

119 </geometry>

120 </ c o l l i s i o n>

121 </ l i n k>

122

123 < j o i n t name=” l e g ${ s i d e } 3 j o i n t ” type=” r evo lu t e ”>

124 <o r i g i n xyz=”0 0 0 .0 ” rpy=”${ −90.0 ∗ deg to rad } 0 0”

/>

125 <ax i s xyz=”0 0 1”/>

126 <parent l i n k=” l e g ${ s i d e } 2 l i n k ”/>

127 <ch i l d l i n k=” l e g ${ s i d e } 3 l i n k ”/>

128 <dynamics f r i c t i o n=”${ l e g f r i c t i o n }” damping=”${
leg damping }”/>

129 < l im i t lower=”${ −100.0 ∗ deg to rad }” upper=”${45 ∗
deg to rad }” e f f o r t=”${ l e g 3 j o i n t e f f o r t }” v e l o c i t y

=”${ l e g 3 j o i n t max v e l }” />

130

131 <s a f e t y c o n t r o l l e r k po s i t i o n=”100”

132 k v e l o c i t y=”100”

133 s o f t l ow e r l im i t=”${−100.0 ∗
deg to rad + l e g e p s }”

134 s o f t u pp e r l im i t=”${ 45 .0 ∗
deg to rad − l e g e p s }” />

135 </ j o i n t>

136

137 < l i n k name=” l e g ${ s i d e } 4 l i n k ”>

138 < i n e r t i a l>

139 <mass value=” 2.86055 ”/>

140 <o r i g i n xyz=” 0.14618 −0.0022 ${− r e f l e c t ∗0.02189} ” rpy

=” 0 .0 0 .0 0 .0 ”/>

141 < i n e r t i a ixx=”0.00361006492 ” ixy=”0.00012218208 ” i x z=

” 0.00160208242 ” iyy=”0.02470649045 ” iy z=”

0.00008129755 ” i z z=” 0.02272322206 ”/>

142 </ i n e r t i a l>

86

143 <v i s u a l>

144 <o r i g i n rpy=”0 0 0” xyz=”0 0 0”/>

145 <geometry>

146 <mesh f i l ename=”package : // r e emc de s c r i p t i on /meshes/

l e g / l e g 4 . dae” s c a l e=”1 1 ${−1∗ r e f l e c t }”/>
147 </geometry>

148 <mate r i a l name=”LightGrey” />

149 </ v i s u a l>

150 <c o l l i s i o n>

151 <o r i g i n rpy=”0 ${− r e f l e c t ∗ 90∗ deg to rad } 0” xyz=”

0 .15 0 ${− r e f l e c t ∗0.015} ”/>
152 <geometry>

153 <box s i z e=” 0 .15 0 .10 0 .20 ”/>

154 </geometry>

155 </ c o l l i s i o n>

156 </ l i n k>

157

158 < j o i n t name=” l e g ${ s i d e } 4 j o i n t ” type=” r evo lu t e ”>

159 <o r i g i n xyz=” 0.300 0 0 .0 ” rpy=”0 0 0” />

160 <ax i s xyz=”0 0 1”/>

161 <parent l i n k=” l e g ${ s i d e } 3 l i n k ”/>

162 <ch i l d l i n k=” l e g ${ s i d e } 4 l i n k ”/>

163 <dynamics damping=” 0 .1 ” f r i c t i o n=”0”/>

164 <dynamics f r i c t i o n=”${ l e g f r i c t i o n }” damping=”${
leg damping }”/>

165 < l im i t lower=”${0 ∗ deg to rad }” upper=”${ 150 .0 ∗
deg to rad }” e f f o r t=”${ l e g 4 j o i n t e f f o r t }” v e l o c i t y

=”${ l e g 4 j o i n t max v e l }” />

166

167 <s a f e t y c o n t r o l l e r k po s i t i o n=”100”

168 k v e l o c i t y=”100”

169 s o f t l ow e r l im i t=”${ 0 .0 ∗
deg to rad + l e g e p s }”

170 s o f t u pp e r l im i t=” ${150.0 ∗
deg to rad − l e g e p s }” />

171 </ j o i n t>

172

173 < l i n k name=” l e g ${ s i d e } 5 l i n k ”>

174 < i n e r t i a l>

175 <mass value=” 0.68213 ”/>

176 <o r i g i n xyz=”−0.00028 0.01119 ${− r e f l e c t ∗0.00859} ”
rpy=” 0 .0 0 .0 0 .0 ”/>

87

177 < i n e r t i a ixx=”0.00082035023 ” ixy=”0.00000048534 ” i x z=

” 0.00000226301 ” iyy=”0.00082074105 ” iy z=”

−0.00002892247” i z z=” 0.00037614067 ”/>

178 </ i n e r t i a l>

179 <v i s u a l>

180 <o r i g i n rpy=”0 0 0” xyz=”0 0 0”/>

181 <geometry>

182 <c y l i nd e r l ength=” 0.104 ” rad iu s=” 0 .04 ”/>

183 </geometry>

184 <mate r i a l name=”LightGrey” />

185 </ v i s u a l>

186

187 </ l i n k>

188

189 < j o i n t name=” l e g ${ s i d e } 5 j o i n t ” type=” r evo lu t e ”>

190 <o r i g i n xyz=” 0 .30 0 0 .0 ” rpy=”0 0 0” />

191 <ax i s xyz=”0 0 1”/>

192 <parent l i n k=” l e g ${ s i d e } 4 l i n k ”/>

193 <ch i l d l i n k=” l e g ${ s i d e } 5 l i n k ”/>

194 <dynamics f r i c t i o n=”${ l e g f r i c t i o n a n k l e }” damping=”${
l eg damping ankle }”/>

195 < l im i t lower=”${−100 ∗ deg to rad }” upper=”${ 45 .0 ∗
deg to rad }” e f f o r t=”${ l e g 5 j o i n t e f f o r t }” v e l o c i t y

=”${ l e g 5 j o i n t max v e l }” />

196

197 <s a f e t y c o n t r o l l e r k po s i t i o n=”100”

198 k v e l o c i t y=”100”

199 s o f t l ow e r l im i t=”${−100.0 ∗
deg to rad + l e g e p s }”

200 s o f t u pp e r l im i t=”${ 45 .0 ∗
deg to rad − l e g e p s }” />

201 </ j o i n t>

202

203 < l i n k name=” l e g ${ s i d e } 6 l i n k ”>

204 < i n e r t i a l>

205 <mass value=” 2.00843 ”/>

206 <o r i g i n xyz=” 0.06111 ${− r e f l e c t ∗0.00336} −0.00497”
rpy=” 0 .0 0 .0 0 .0 ”/>

207 < i n e r t i a ixx=”0.00366502559 ” ixy=”0.00020479295 ” i x z=

” 0.00112439297 ” iyy=”0.00532618026 ” iy z=”

0.00012133755 ” i z z=” 0.00353091463 ”/>

208 </ i n e r t i a l>

209 <v i s u a l>

88

210 <o r i g i n rpy=”0 0 0” xyz=”0 0 0”/>

211 <geometry>

212 <mesh f i l ename=”package : // r e emc de s c r i p t i on /meshes/

l e g / l e g 6 . dae” s c a l e=”1 ${−1∗ r e f l e c t } 1”/>

213 </geometry>

214 <mate r i a l name=”LightGrey” />

215 </ v i s u a l>

216 <c o l l i s i o n>

217 <o r i g i n rpy=”0 0 0” xyz=” 0 .1 ${− r e f l e c t ∗0 .01} 0 .025 ”

/>

218 <geometry>

219 <box s i z e=” 0 .02 0 .14 0 .210 ”/>

220 </geometry>

221 </ c o l l i s i o n>

222 </ l i n k>

223

224 < j o i n t name=” l e g ${ s i d e } 6 j o i n t ” type=” r evo lu t e ”>

225 <o r i g i n xyz=”0 0 0” rpy=” ${90 .0 ∗ deg to rad } 0 0” />

226 <ax i s xyz=”0 0 1”/>

227 <parent l i n k=” l e g ${ s i d e } 5 l i n k ”/>

228 <ch i l d l i n k=” l e g ${ s i d e } 6 l i n k ”/>

229 <dynamics f r i c t i o n=”${ l e g f r i c t i o n a n k l e }” damping=”${
l eg damping ankle }”/>

230 < l im i t lower=”${−22.5∗ deg to rad + r e f l e c t ∗7 .5∗
deg to rad }” upper=”${ 22 .5∗ deg to rad + r e f l e c t

∗7 .5∗ deg to rad }” e f f o r t=”${ l e g 6 j o i n t e f f o r t }”
v e l o c i t y=”${ l e g 6 j o i n t max v e l }” />

231

232 <s a f e t y c o n t r o l l e r k po s i t i o n=”100”

233 k v e l o c i t y=”100”

234 s o f t l ow e r l im i t=”${−22.5∗ deg to rad

+ r e f l e c t ∗7 .5∗ deg to rad +

l e g e p s }”
235 s o f t u pp e r l im i t=”${ 22 .5∗ deg to rad

+ r e f l e c t ∗7 .5∗ deg to rad −
l e g e p s }” />

236 </ j o i n t>

237

238 < l i n k name=”${ s i d e } s o l e l i n k ”>

239 < i n e r t i a l>

240 <mass value=” 0.001 ”/>

241 <o r i g i n xyz=”0 0 0” rpy=”0 0 0”/>

89

242 < i n e r t i a ixx=” 0 .0 ” ixy=” 0 .0 ” i x z=” 0 .0 ” iyy=” 0 .0 ” i y z=

” 0 .0 ” i z z=” 0 .0 ”/>

243 </ i n e r t i a l>

244 </ l i n k>

245

246 < j o i n t name=”${ s i d e } s o l e j o i n t ” type=” f i x ed ”>

247 < !−− o r i g i n x taken from l i n k ${ s i d e } 6 l i n k / v i s u a l /

o r i g i n /x above −−>
248 <o r i g i n xyz=” 0.117 0 .0 0 .0 ” rpy=” 0 .0 ${−90.0 ∗

deg to rad } 0 .0 ”/>

249 <ax i s xyz=”0 0 1”/>

250 <parent l i n k=” l e g ${ s i d e } 6 l i n k ”/>

251 <ch i l d l i n k=”${ s i d e } s o l e l i n k ”/>

252 <dynamics f r i c t i o n=”${ l e g f r i c t i o n }” damping=”${
leg damping }”/>

253 < l im i t lower=” 0 .0 ” upper=” 0 .0 ” e f f o r t=”60” v e l o c i t y=”0”

/>

254 </ j o i n t>

255

256

257 <gazebo r e f e r e n c e=” l e g ${ s i d e } 1 l i n k ”>

258 <mu1>0 .9</mu1>

259 <mu2>0 .9</mu2>

260 </gazebo>

261 <gazebo r e f e r e n c e=” l e g ${ s i d e } 2 l i n k ”>

262 <mu1>0 .9</mu1>

263 <mu2>0 .9</mu2>

264 </gazebo>

265 <gazebo r e f e r e n c e=” l e g ${ s i d e } 3 l i n k ”>

266 <mu1>0 .9</mu1>

267 <mu2>0 .9</mu2>

268 </gazebo>

269 <gazebo r e f e r e n c e=” l e g ${ s i d e } 4 l i n k ”>

270 <mu1>0 .9</mu1>

271 <mu2>0 .9</mu2>

272 </gazebo>

273 <gazebo r e f e r e n c e=” l e g ${ s i d e } 5 l i n k ”>

274 <mu1>0 .9</mu1>

275 <mu2>0 .9</mu2>

276 </gazebo>

277

278 < !−− contact model f o r f o o t s u r f a c e −−>
279 <gazebo r e f e r e n c e=” l e g ${ s i d e } 6 l i n k ”>

90

280 <kp>1000000.0</kp>

281 <kd>100000000000000.0</kd>

282 <mu1>5 .0</mu1>

283 <mu2>5 .0</mu2>

284 < f d i r 1>0 0 1</ f d i r 1>

285 <maxVel>1 .0</maxVel>

286 <minDepth>0 .00</minDepth>

287 <impl ic i tSpr ingDamper>1</ impl ic i tSpr ingDamper>

288 </gazebo>

289

290 < !−−f o r c e torque senso r −−>
291 < !−−xa c r o : r e emc f o r c e t o r qu e s en s o r name=” l e g ${ s i d e }

6 l i n k ” update rate=” 100 .0 ”/−−>
292

293 <gazebo r e f e r e n c e=” l e g ${ s i d e } 1 j o i n t ”>

294 <impl ic i tSpr ingDamper>1</ impl ic i tSpr ingDamper>

295 </gazebo>

296 <gazebo r e f e r e n c e=” l e g ${ s i d e } 2 j o i n t ”>

297 <impl ic i tSpr ingDamper>1</ impl ic i tSpr ingDamper>

298 </gazebo>

299 <gazebo r e f e r e n c e=” l e g ${ s i d e } 3 j o i n t ”>

300 <impl ic i tSpr ingDamper>1</ impl ic i tSpr ingDamper>

301 </gazebo>

302 <gazebo r e f e r e n c e=” l e g ${ s i d e } 4 j o i n t ”>

303 <impl ic i tSpr ingDamper>1</ impl ic i tSpr ingDamper>

304 </gazebo>

305 <gazebo r e f e r e n c e=” l e g ${ s i d e } 5 j o i n t ”>

306 <impl ic i tSpr ingDamper>1</ impl ic i tSpr ingDamper>

307 </gazebo>

308 <gazebo r e f e r e n c e=” l e g ${ s i d e } 6 j o i n t ”>

309 <impl ic i tSpr ingDamper>1</ impl ic i tSpr ingDamper>

310 <provideFeedback>1</provideFeedback>

311 </gazebo>

312

313 <xa c r o : r e emc l e g s imp l e t r an sm i s s i on name=”${name}” s i d e=

”${ s i d e }” number=”1” reduct i on=”${ l e g r e du c t i o n }” />

314 <xa c r o : r e emc l e g s imp l e t r an sm i s s i on name=”${name}” s i d e=

”${ s i d e }” number=”2” reduct i on=”${ l e g r e du c t i o n }” />

315 <xa c r o : r e emc l e g s imp l e t r an sm i s s i on name=”${name}” s i d e=

”${ s i d e }” number=”3” reduct i on=”${ l e g r e du c t i o n }” />

316 <xa c r o : r e emc l e g s imp l e t r an sm i s s i on name=”${name}” s i d e=

”${ s i d e }” number=”4” reduct i on=”${ l e g r e du c t i o n }” />

91

317 <xa c r o : r e emc l e g s imp l e t r an sm i s s i on name=”${name}” s i d e=

”${ s i d e }” number=”5” reduct i on=”${ l e g r e du c t i o n }” />

318 <xa c r o : r e emc l e g s imp l e t r an sm i s s i on name=”${name}” s i d e=

”${ s i d e }” number=”6” reduct i on=”${ l e g r e du c t i o n }” />

319

320 <xa c r o : r e emc l a s e r name=”${ s i d e } l a s e r ” parent=”${ s i d e }
s o l e l i n k ” r o s t o p i c=”${ s i d e } scan ” update rate=” 10 .0 ”

min angle=”${−90∗ deg to rad }” max angle=”${90∗
deg to rad }” nrays=”360” >

321 <o r i g i n xyz=” ${0.170 −0.085} ${0.071 −((1+ r e f l e c t) ∗0 .01
+ 0 .061) } ${0.073} ” rpy=” 0 .0 0 .0 ${−30.0∗ r e f l e c t ∗
deg to rad }” />

322 </ xa c r o : r e emc l a s e r>

323

324 </ xacro:macro>

325 </ robot>

A.0.2 Controller Gains

For all joints, the PID gains for joint position tracking are the same (given

by Pal Robotics):

Table A.1: Joint Psosition Controller PID Gains

P gain I gian D gian

3000 1 10

The WBC controller gain matrices are tuned to be:

Kpo = diag(150, 100, 75, 140, 140, 140) (A.1)

Ksw,or = diag(90, 90, 75)

K0,or = diag(55, 55, 55)

where diag() is a diagonal matrix.

92

REFERENCES

[1] M. Vukobratović and J. Stepanenko, “On the stability of anthropomor-
phic systems,” Mathematical biosciences, vol. 15, no. 1-2, pp. 1–37, 1972.

[2] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in Robotics and Automation, 2003. Pro-
ceedings. ICRA’03. IEEE International Conference on, vol. 2. IEEE,
2003, pp. 1620–1626.

[3] S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko,
F. Kanehiro, and K. Yokoi, “Biped walking stabilization based on linear
inverted pendulum tracking,” in Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on. IEEE, 2010, pp. 4489–
4496.

[4] J. Englsberger, C. Ott, M. A. Roa, A. Albu-Schäffer, and G. Hirzinger,
“Bipedal walking control based on capture point dynamics,” in Intelli-
gent Robots and Systems (IROS), 2011 IEEE/RSJ International Con-
ference on. IEEE, 2011, pp. 4420–4427.

[5] L. Lanari and S. Hutchinson, “Planning desired center of mass and
zero moment point trajectories for bipedal locomotion,” in Humanoid
Robots (Humanoids), 2015 IEEE-RAS 15th International Conference
on. IEEE, 2015, pp. 637–642.

[6] A. Herzog, L. Righetti, F. Grimminger, P. Pastor, and S. Schaal, “Bal-
ancing experiments on a torque-controlled humanoid with hierarchical
inverse dynamics,” in Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on. IEEE, 2014, pp. 981–988.

[7] A. Hof, M. Gazendam, and W. Sinke, “The condition for dynamic sta-
bility,” Journal of biomechanics, vol. 38, no. 1, pp. 1–8, 2005.

[8] S. Kajita and K. Tani, “Study of dynamic biped locomotion on rugged
terrain-derivation and application of the linear inverted pendulum
mode,” in Robotics and Automation, 1991. Proceedings., 1991 IEEE
International Conference on. IEEE, 1991, pp. 1405–1411.

93

[9] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3d
linear inverted pendulum mode: A simple modeling for a biped walking
pattern generation,” in Intelligent Robots and Systems, 2001. Proceed-
ings. 2001 IEEE/RSJ International Conference on, vol. 1. IEEE, 2001,
pp. 239–246.

[10] D. Rosenthal, “On the optimal digital state vector feedback controller
with integral and preview actions1,” Journal of Dynamic Systems, Mea-
surement, and Control, vol. 101, p. 173, 1979.

[11] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, “An analytical
method for real-time gait planning for humanoid robots,” International
Journal of Humanoid Robotics, vol. 3, no. 01, pp. 1–19, 2006.

[12] M. Morisawa, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fuji-
wara, S. Nakaoka, and H. Hirukawa, “A biped pattern generation allow-
ing immediate modification of foot placement in real-time,” in Humanoid
Robots, 2006 6th IEEE-RAS International Conference on. IEEE, 2006,
pp. 581–586.

[13] K. Harada, K. Miura, M. Morisawa, K. Kaneko, S. Nakaoka, F. Kane-
hiro, T. Tsuji, and S. Kajita, “Toward human-like walking pattern gen-
erator,” in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on. IEEE, 2009, pp. 1071–1077.

[14] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A
step toward humanoid push recovery,” in Humanoid Robots, 2006 6th
IEEE-RAS International Conference on. IEEE, 2006, pp. 200–207.

[15] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion, part 1:
Theory and application to three simple gait models,” The International
Journal of Robotics Research, vol. 31, no. 9, pp. 1094–1113, 2012.

[16] L. Lanari, S. Hutchinson, and L. Marchionni, “Boundedness issues in
planning of locomotion trajectories for biped robots,” in Humanoid
Robots (Humanoids), 2014 14th IEEE-RAS International Conference
on. IEEE, 2014, pp. 951–958.

[17] S. Kajita, “Overview of zmp-based biped walking,” Keynote Presenta-
tion, 2008.

[18] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to hu-
manoid robotics. Springer, 2014, vol. 101.

[19] Y. Choi, D. Kim, Y. Oh, and B.-J. You, “Posture/walking control for
humanoid robot based on kinematic resolution of com jacobian with
embedded motion,” IEEE Transactions on Robotics, vol. 23, no. 6, pp.
1285–1293, 2007.

94

[20] R. Tedrake, S. Kuindersma, R. Deits, and K. Miura, “A closed-form
solution for real-time zmp gait generation and feedback stabilization,”
in Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International
Conference on. IEEE, 2015, pp. 936–940.

[21] Y. Choi, D. Kim, and B.-J. You, “On the walking control for humanoid
robot based on the kinematic resolution of com jacobian with embedded
motion,” in Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on. IEEE, 2006, pp. 2655–2660.

[22] S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fuji-
wara, and H. Hirukawa, “Biped walking pattern generator allowing aux-
iliary zmp control,” in Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference on. IEEE, 2006, pp. 2993–2999.

[23] T. Sugihara and Y. Nakamura, “Whole-body cooperative balancing of
humanoid robot using cog jacobian,” in Intelligent Robots and Systems,
2002. IEEE/RSJ International Conference on, vol. 3. IEEE, 2002, pp.
2575–2580.

[24] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Resolved momentum control: Humanoid motion
planning based on the linear and angular momentum,” in Intelligent
Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on, vol. 2. IEEE, 2003, pp. 1644–1650.

[25] K.-h. Ahn and Y. Oh, “Walking control of a humanoid robot via explicit
and stable com manipulation with the angular momentum resolution,”
in Intelligent Robots and Systems, 2006 IEEE/RSJ International Con-
ference on. IEEE, 2006, pp. 2478–2483.

[26] Q. Huang, K. Kaneko, K. Yokoi, S. Kajita, T. Kotoku, N. Koyachi,
H. Arai, N. Imamura, K. Komoriya, and K. Tanie, “Balance control of
a piped robot combining off-line pattern with real-time modification,”
in Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE Inter-
national Conference on, vol. 4. IEEE, 2000, pp. 3346–3352.

[27] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development
of honda humanoid robot,” in Robotics and Automation, 1998. Proceed-
ings. 1998 IEEE International Conference on, vol. 2. IEEE, 1998, pp.
1321–1326.

[28] D. Kim, Y. Choi, and C. Kim, “Motion-embedded cog jacobian for a
real-time humanoid motion generation.” in ICINCO, 2005, pp. 55–61.

95

[29] R. Beranek, H. Fung, and M. Ahmadi, “A walking stability controller
with disturbance rejection based on cmp criterion and ground reac-
tion force feedback,” in Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on. IEEE, 2011, pp. 2261–2266.

[30] “Remm-c humanoid robot by pal robotics,” http://pal-
robotics.com/en/products/reem-c, 2016.

[31] “Gazebo simulator,” http://gazebosim.org/, 2016.

[32] “Robot operating system,” http://www.ros.org, 2016.

[33] “Robotics system toolbox, mathworks,” 2016,
https://www.mathworks.com/products/robotics.html.

[34] “Simulation play list,” https://www.youtube.com/watch?v=PcKEdUVqZtQ,
2016.

96

