
c© 2017 by Cory Mikida.

MULTI-RATE TIME INTEGRATION ON OVERSET MESHES

BY

CORY MIKIDA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Aerospace Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Advisors:

Professor Daniel J. Bodony
Professor Andreas Kloeckner

Abstract

In the computational fluid dynamic simulation of problems with complex geometries or multiscale

spatio-temporal features, overset meshes can be effectively used. However, in the case of overset

problems in which one or more of the meshes vary significantly in resolution, standard explicit time

integrators limit the maximum allowable timestep across the entire simulation domain to that of the

finest mesh, per the well-known Courant-Friedrichs-Lewy (CFL) condition. What therefore results

is a potentially high amount of computational work that theoretically need not be performed on the

grids with coarser resolution and a commensurately larger timestep. With the targeted use of multi-

rate time integrators, separate meshes can be marched at independent rates in time to avoid wasteful

computation while maintaining accuracy and stability. This work features the application of such

integrators (specifically, multi-rate Adams-Bashforth (MRAB) integrators) to the simulation of

overset mesh-described problems using a parallel Fortran code. The thesis focuses on the overarching

mathematical theory, implementation via code generation, proof of numerical accuracy and stability,

and demonstration of serial and parallel performance capabilities. Specifically, the results of this

study directly indicate the numerical efficacy of MRAB integrators, outline a number of outstanding

code challenges, demonstrate the expected reduction in time enabled by MRAB, and emphasize the

need for proper load balancing through spatial decomposition in order for parallel runs to achieve

the predicted time-saving benefit.

ii

To my parents

iii

Acknowledgments

I am first and foremost forever grateful for the guidance of my primary advisors on this project,

Professors Daniel Bodony and Andreas Kloeckner, of the University of Illinois’ Aerospace Engi-

neering and Computer Science Departments, respectively. Without the knowledge you both have

imparted to me in countless meetings and reviews of my work, I surely wouldn’t be here today.

Additionally, I wouldn’t be here without my parents, who doubtlessly taught me the value and

importance of hard work, perseverance, and, above all, family. Speaking of which, I also thank the

rest of my family: my siblings Eric, Craig, and Kate, my sister-in-law, Ariel, and the rest of my

numerous aunts, uncles, cousins, and grandparents, who, for brevity’s sake, I’ll refrain from naming

here.

I thank my friends and groupmates Fabian Dettenrieder, Shakti Saurabh, Mahesh Natarajan,

Nek Sharan, Michael Banks, Bryson Sullivan, Mohammad Mehrabadi, Shreyas Bidadi, Wentao

Zhang, and Qi Zhang for all of their helpful input and endless wisdom in the ways of fluid mechanics,

computer science, and places to eat on Green Street. I also thank my friends here in Illinois and

back home in New York - you’ve been crucial in maintaining my sanity in these past few years.

This material is based in part upon work supported by the Department of Energy, National

Nuclear Security Administration, under Award Number DE-NA0002374.

iv

Contents

Nomenclature . vii

List of Tables . ix

List of Figures . xi

Chapter 1 Introduction . 1
1.1 Background . 1
1.2 Historical Perspective . 2

1.2.1 DNS Simulations Using Overset Meshes . 2
1.2.2 Multi-rate Time Integration . 3

1.3 The Structure of the Thesis . 5

Chapter 2 Overset Meshes and Adams-Bashforth Integration 6
2.1 The Navier-Stokes Equations on Overset Meshes . 6

2.1.1 Governing Equations . 6
2.1.2 Summation-by-Parts (SBP) Operators . 9
2.1.3 Simultaneous-Approximation-Term (SAT) Boundary Conditions 10
2.1.4 Overset Interpolation . 12

2.1.4.1 Injection . 13
2.1.4.2 SAT-Based Penalty Interpolation . 14

2.2 Adams-Bashforth Integration . 15
2.2.1 Single-rate Adams-Bashforth (SRAB) Integration 15
2.2.2 Multi-rate Adams-Bashforth Integration . 17

2.3 Software Tools and Issues . 18
2.3.1 PlasComCM . 19
2.3.2 Leap . 19
2.3.3 Dagrt . 19
2.3.4 Data Ownership . 20
2.3.5 Timestep Adaptivity . 20

Chapter 3 Stability and Convergence of Multi-rate Integrators 22
3.1 Test Case . 22

3.1.1 Physical Problem . 22
3.1.2 Computational Model . 23

v

3.1.3 Boundary Conditions . 24
3.2 Results . 24

3.2.1 Stability . 24
3.2.1.1 Theory . 24
3.2.1.2 Procedure . 25
3.2.1.3 Third Order . 26
3.2.1.4 Fourth Order . 27

3.2.2 Validation With Small-Scale Results . 29
3.2.3 Accuracy and Convergence . 31

3.2.3.1 Procedure . 31
3.2.3.2 Third Order . 31
3.2.3.3 Fourth Order . 32
3.2.3.4 Comparison With Runge-Kutta . 34

3.2.4 Influence of MRAB Policy Decisions . 35

Chapter 4 Performance of Multi-Rate Integrators 38
4.1 Performance Model . 38
4.2 Serial Performance . 40
4.3 Parallel Performance . 42

4.3.1 Small-Scale Runs . 42
4.3.2 Decomposition . 44
4.3.3 Large-Scale Runs . 45

Chapter 5 Conclusions . 48
5.1 Discussion . 48
5.2 Present and Future Work . 49

5.2.1 Overdecomposition and AMPI . 49
5.2.2 Multiphysics Implementation . 50

Appendix A Third Order Convergence Results . 51

Appendix B Fourth Order Convergence Results 55

Appendix C Parallel Performance Plots . 59

Bibliography . 63

vi

Nomenclature

List of Abbreviations

NNSA National Nuclear Security Administration

DOE Department of Energy

XPACC The Center for Exascale Simulation of Plasma-Coupled Combustion

DNS Direct Numerical Simulation

CFL Courant-Friedrichs-Lewy

RK4 fourth-order Runge-Kutta

AB Adams-Bashforth

SRAB single-rate Adams-Bashforth

MRAB multi-rate Adams-Bashforth

SBP summation-by-parts operator

SAT simultaneous-approximation-term

RHS right-hand side

HO-OG high-order overset grid

MOL method of lines

ODE ordinary differential equation

MPRK multi-rate partitioned Runge-Kutta

vii

List of Symbols

Greek Symbols

ρ Fluid density

τij Viscous stress tensor

γ Ratio of specific heats

δij Kronecker delta tensor

µ First coefficient of Newtonian fluid viscosity

λ Second coefficient of Newtonian fluid visosity

Roman Symbols

Pr Prandtl number

Re Reynolds number

p Pressure

t Time

ui Velocity in the ith coordinate direction

xj jth coordinate direction

qj Heat flux in the jth coordinate direction

E Total energy per unit volume

~F Flux vector

k Thermal conductivity

Cp Specific heat at constant pressure

c Advection speed

h Step size

H Macrostep size

Subscripts, Superscripts and Accents

(·)∞ Environmental or ambient state

viii

List of Tables

3.1 Grid sizes for test case. 23
3.2 Measured timesteps for test problem shown in Figure 3.1. 23
3.3 Description of boundary conditions for test case. 24
3.4 Stability results for third order Adams-Bashforth integrators. 26
3.5 Stability results for fourth-order Adams-Bashforth integrators. 28
3.6 Maximum stable timesteps for one-dimensional advection case. 30
3.7 Convergence data for third-order MRAB, SR=4. 31
3.8 Convergence results for third-order Adams-Bashforth integrators. 32
3.9 Convergence data for fourth-order MRAB, SR=4. 33
3.10 Convergence results for fourth-order Adams-Bashforth integrators. 33
3.11 Convergence data for RK4. 35
3.12 Maximum stable CFL numbers for various policy combos - third order. 36
3.13 Maximum stable CFL numbers for various policy combos - fourth order. 36

4.1 Evaluating RHS costs for MRAB integrators compared to RK4 - third order. 39
4.2 Evaluating RHS costs for MRAB integrators compared to RK4 - fourth order. 39
4.3 Performance timings for third-order MRAB integrators. 41
4.4 End-to-end performance timings for various processor counts. 43
4.5 RHS performance timings for various processor counts. 43
4.6 Operator performance timings for various processor counts. 43
4.7 Interpolation performance timings for various processor counts. 43
4.8 Description of grids for large-scale case. 45
4.9 Evaluating RHS costs for MRAB integrators compared to RK4 - large-scale case. . . 46

A.1 Convergence data for third-order MRAB, SR=1. 51
A.2 Convergence data for third-order MRAB, SR=2. 52
A.3 Convergence data for third-order MRAB, SR=3. 52
A.4 Convergence data for third-order MRAB, SR=5. 53
A.5 Convergence data for third-order MRAB, SR=6. 53
A.6 Convergence data for third-order MRAB, SR=7. 54
A.7 Convergence data for third-order MRAB, SR=8. 54

B.1 Convergence data for fourth-order MRAB, SR=1. 55
B.2 Convergence data for fourth-order MRAB, SR=2. 56

ix

B.3 Convergence data for fourth-order MRAB, SR=3. 56
B.4 Convergence data for fourth-order MRAB, SR=5. 57
B.5 Convergence data for fourth-order MRAB, SR=6. 57
B.6 Convergence data for fourth-order MRAB, SR=7. 58
B.7 Convergence data for fourth-order MRAB, SR=8. 58

x

List of Figures

2.1 Outlining the overset procedure. 13

3.1 Physical case: flow past a cylinder. 22
3.2 Overset grid configuration: flow past a cylinder. 23
3.3 Stability regions for AB integrators compared to RK4. 25
3.4 Stable CFL ratio as a function of step ratio - third order. 27
3.5 Stable CFL ratio as a function of step ratio - fourth order. 28
3.6 The small-scale case models one-dimensional advection of a Gaussian from a fine grid

to a relatively coarse one. 29
3.7 Total time spent composing the step matrices for a range of MRAB step ratios. . . . 30
3.8 Plotted third-order convergence data for SR=4. 32
3.9 Plotted fourth-order convergence data for SR=4. 34
3.10 Plotted convergence data for RK4. 35

4.1 Plotted serial performance data - RHS, end-to-end. 41
4.2 Plotted serial performance data - operator, interpolation. 42
4.3 Jet-in-crossflow grid configuration for large-scale run. 45
4.4 Performance timing data for large-scale case. 46
4.5 Additional timing data for large-scale case. 47

A.1 Plotted third-order convergence data for SR=1. 51
A.2 Plotted third-order convergence data for SR=2. 52
A.3 Plotted third-order convergence data for SR=3. 52
A.4 Plotted third-order convergence data for SR=5. 53
A.5 Plotted third-order convergence data for SR=6. 53
A.6 Plotted third-order convergence data for SR=7. 54
A.7 Plotted third-order convergence data for SR=8. 54

B.1 Plotted fourth-order convergence data for SR=1. 55
B.2 Plotted fourth-order convergence data for SR=2. 56
B.3 Plotted fourth-order convergence data for SR=3. 56
B.4 Plotted fourth-order convergence data for SR=5. 57
B.5 Plotted fourth-order convergence data for SR=6. 57
B.6 Plotted fourth-order convergence data for SR=7. 58
B.7 Plotted fourth-order convergence data for SR=8. 58

xi

C.1 Plotted end-to-end wallclock time for third-order MRAB integrators at various pro-
cessor counts. 59

C.2 Plotted accumulated inclusive RHS time for third-order MRAB integrators at various
processor counts. 60

C.3 Plotted accumulated inclusive operator time for third-order MRAB integrators at
various processor counts. 61

C.4 Plotted accumulated inclusive interpolation time for third-order MRAB integrators
at various processor counts. 62

xii

Chapter 1

Introduction

1.1 Background

In the explicit direct numerical simulation (DNS) of computational fluid dynamic problems, the

maximum timestep allowable for stable integration of the governing equations is often limited by

the well-known Courant-Freidrichs-Lewy condition (CFL). This is given by the simple formula,

CFL =
c∆t

∆x

where ∆x is the minimum characteristic length of the computational grid, and c is the maxi-

mum advection speed of the physical phenomena being simulated. One can quickly conclude that

(especially in complex multiscale and multiphysics problems) the timestep taken when integrat-

ing over the entire computational domain using a standard explicit single-rate integrator can be

limited—sometimes severely—by what occurs on a small portion of the domain, be it due to quickly

advecting physical phenomenon or locally-high grid resolution. The result of this limitation is that

much wasteful work must be done in large parts of the domain, where the local CFL number is

lower, in order to ensure the stable advancement of a particularly fast physical process or fine mesh,

giving a suboptimal distribution of work.

With multi-rate integration, solution components differing in timescale can be integrated with

independent time steps, allowing computational work to be avoided on the slow components while

the fast components remain stable and well-resolved in time. This will improve the performance of

the application in serial, and in parallel, provided the proper decomposition of the domain is used;

1

however, a critical consideration when implementing these integrators is their ability to maintain

accuracy and stability of the solution.

In this study, we implement a multi-rate Adams-Bashforth integrator in a massively parallel

fluid solver, taking advantage of the solver’s overset mesh capabilities to segregate solution com-

ponents with differing timescales. We do so with particular focus on the resulting improvement in

performance, reduction in work through right-hand-side evaluations, and accompanying changes in

stability regions and accuracy. What results from this effort is a number of conclusions about the

viability and extensibility of these integrators to other problems and applications.

1.2 Historical Perspective

1.2.1 DNS Simulations Using Overset Meshes

The general method of overset meshes (also known as the Chimera method [32]) is an approach

that attempts numerical simulation of conservation-law equations by discretizing the domain using

multiple, independent overlapping meshes. In this work, the individual meshes are structured, so

that the entire domain can be considered locally structured and globally unstructured. Typically,

this method is used as an effective way of handling complex geometries or moving-body problems.

The earliest known appearance of a composite mesh method was in a numerical application towards

the solution of elliptic partial differential equations [39], but similar methods were soon thereafter

applied to inviscid transonic flow [18] and the Euler equations [4]. In the years since, high-order

overset-grid (HO-OG) approaches have been developed [31] and applied to numerous problems [17],

[29], [8].

A further concise summary of recent developments in the usage of overset meshes to solve

problems in compressible viscous fluids, along with a discussion of stable and accurate interpolation,

is given by [6]. This work also demonstrates a few examples of the overset methods at work, largely

on computational aeroacoustic problems, occasionally with moving grids. Additionally, a discussion

of various applications of overset can be found in [20].

2

1.2.2 Multi-rate Time Integration

Some of the earliest work on multi-rate multistep methods, like the ones discussed here, was per-

formed in 1974 by Gear [12]. Ten years later, in 1984, Gear and Wells [13] further pioneered these

methods, with a specific focus on their automation. The primary conclusion therein was that the

problems of automation were mostly a function of software organization. In 1997, Engstler and

Lubich [11] used Richardson extrapolation along with simple Euler schemes to attempt a similarly

automated process of multi-rate integration. The resulting method was implemented in a Fortran

code and applied to an astrophysics example.

Around the same time as Gear and Wells were pioneering the field of multi-rate, in 1983,

Osher and Sanders [21] introduced numerical approximations to conservation laws that changed

the global CFL restrictions to local ones. As for the more recent work in this field, in 2001, Dawson

and Kirby [10] attempted local time stepping based on the formulations of Osher and Sanders,

attaining only first-order accuracy in time in spite of a second-order finite volume approach. Tang

and Warnecke [38] expanded on this work in 2006 to produce second-order accuracy via more refined

projections of solution increments at each local timestep.

In 2001, Gunther, Kvaerno, and Rentrop [14] introduced multi-rate partitioned Runge-Kutta

(MPRK) schemes, starting from a discussion of Rosenbrock-Wanner methods, and based on strate-

gies introduced by Gunther and Rentrop in 1993 [15]. This method focuses on coupling the active

and latent solution components primarily via interpolation and extrapolation of state variables,

echoing the earlier work presented in [12] and [13].

In 2007, Savcenco et. al [24] developed a self-adjusting timestepping strategy primarily using

implicit Rosenbrock methods on stiff ODEs. The schemes developed are based on local temporal

error estimation, refining fast-moving solution components with a repeatedly decreasing timestep

and using interpolation to obtain values of slower-moving components at the intermediate times

requisite to model the coupling between the components. In this study, two timestep estimation

strategies are tested: a simple method of repeated bisection and a more involved two-level recursive

approach. The methods presented are largely notable for their simplicity, but incur overhead in

3

their repeated calculation of the solution for the refined components during error estimation.

Also in 2007, Constantinescu and Sandu [9] developed multi-rate timestepping methods for

hyperbolic conservation laws based on a method of lines (MOL) approach with partitioned Runge-

Kutta schemes. The implemented schemes inherit the strong stability preservation of their single-

rate inspiration—that is, the integrators ensure that a certain norm or semi-norm of the solution

does not increase— and are second-order accurate in time. The resulting family of schemes also

conserve the system invariants, and rigorous proofs of positivity, maximum principle preservation,

and total variation boundedness are documented. The separation of solution components is here

done on an entirely spatial basis. More recently, in 2009, Sandu and Constantinescu [23] developed

explicit multi-rate Adams-Bashforth methods similar to the ones discussed in this thesis, but their

application is limited to one-dimensional hyperbolic conservation laws, and their accuracy is limited

to second order by the interface region.

Recently, Seny and Lambrechts expanded on the explicit multi-rate Runge-Kutta schemes of

Constantinescu and Sandu to discontinuous Galerkin computations for large-scale geophysical flows,

introducing the method in 2010 [25] and in the forthcoming years demonstrating its efficacy in both

serial and parallel implementations for various problems. Specifically, their latest work in 2014 [26]

focuses on efficient parallelization of the method, using a multi-constraint partitioning library to

effectively ensure that the same number of cells are active on each processor for a given multi-

rate stage, whilst also reducing the number of inter-processor communications and thus minimizing

idle time. Unfortunately, the method demonstrated, however, is once again only of second order

accuracy.

As for stability, a more rigorous discussion of the stability of a multi-rate method (namely, for

numerical integration of a system of first-order ODEs that can be readily separated into subsystems)

is given by Andrus in [2]. This study is based on a method that combines a fourth-order Runge-

Kutta scheme (for the fast component) with a similar third-order scheme (for the slow component),

introduced by the same author in [3].

For further reference on the multi-rate Adams-Bashforth schemes implemented here, thorough

analyses (especially empirical analyses of stability and effect of various method design choices) are

4

given in Kloeckner [16]. The method is also discussed in a particle-in-cell context by Stock [33].

More generally, these methods are multistep methods, and so the work presented in [12], [13], [23],

is also most critically relevant and will be referenced as needed in Chapter 2.

1.3 The Structure of the Thesis

In Chapter 2, we will discuss the methods behind our implementation, including (but not limited to)

the Navier-Stokes equations on overset meshes, summation-by-parts (SBP) operators, simultaneous-

approximation-term (SAT) boundary conditions, interpolation on overset meshes, single-rate and

multi-rate Adams-Bashforth time integration, and the software tools used to run the forthcoming

simulations. In Chapter 3, we focus on confirming the numerical accuracy and stability of the

derived multi-rate integrators using a small-scale test case, and in Chapter 4 we document the

current state of performance of the developed integrators on that same case. In Chapter 5, we

summarize the obtained results, conclude the study, and discuss future work.

5

Chapter 2

Overset Meshes and
Adams-Bashforth Integration

2.1 The Navier-Stokes Equations on Overset Meshes

Below, we discuss the governing equations to be simulated, along with a number of special char-

acteristics of the solver, operators used, and boundary conditions employed, along with a brief

discussion of interpolation on overset meshes.

2.1.1 Governing Equations

For the equations that follow, a non-dimensionalization is employed such that we have

t =
t∗∞

L∗/c∗∞
xi =

x∗i
L∗

ρ =
ρ∗

ρ∗∞
ui =

u∗i
c∗∞

p =
p∗∞

ρ∗∞c
∗2
∞

µ =
µ∗

µ∗∞
λ =

λ∗

µ∗∞
T =

T ∗

c∗2∞/C
∗
p ,∞

=
T ∗

(γ − 1)T ∗∞
.

From these non-dimensional variables, the Reynolds number is defined as

Re =
ρ∗∞c

∗
∞L

µ∗∞

Likewise, the Prandtl number is given by

Pr =
C∗pµ

∗
∞

k∗∞

where C∗p is the specific heat at constant pressure and k∗∞ is the thermal conductivity.

6

The conservation equations to be marched in time are given as follows, in summation convention,

∂ρ

∂t
+

∂

∂xj
ρuj = 0

∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij − τij) = 0

∂ρE

∂t
+

∂

∂xj
({ρE + p}uj + qj − uiτij) = 0.

where ρ is the mass density, ρui is the momentum density, and ρE is the total energy density. These

equations can be written in the compact form

∂Q

∂t
+
∂ ~Fj
∂xj

= 0

where Q = [ρ, ρu, ρE]T is the vector of conserved variables and ~F = ~F I − ~FV is the flux vector.

The Cartesian coordinates (~x, t) can be mapped to another coordinate system (~ξ, τ) via the

mappings

~x = X(~ξ, τ) with inverse ~ξ = Ξ(~x, t)

where X−1 = Ξ and we only consider non-singular mappings such that X−1 exists and is well

defined. Moreover we assume the time to be invariant, taking t = τ . The Jacobian of the trans-

formation is defined as J = det(∂Ξi/∂xj) and is strictly positive. An application of the chain rule

thus allows us to write

∂

∂τ

(
Q

J

)
+
∂ ~̂F Ii
∂ξi
− ∂ ~̂FVi

∂ξi
=
S

J

after using the identities

∂

∂ξj

(
1

J

∂ξj
∂xi

)
= 0 for i = 1, . . . , N

∂

∂τ

(
1

J

)
+

∂

∂ξj

(
1

J

∂ξj
∂t

)
= 0,

7

where N is the number of dimensions. If we define the weighted metric ξ̂i = J−1(∂ξ/∂xi) and

contravariant velocity Û = uj ξ̂j + ξ̂t, with similar expressions for the remaining components, then

the inviscid fluxes F̂ Ii are

~̂F I1 =



ρÛ

ρuÛ + pξ̂x

ρvÛ + pξ̂y

(ρE + p)Û − ξ̂tp


and ~̂F I2 =



ρV̂

ρuV̂ + pη̂x

ρvV̂ + pη̂y

(ρE + p)V̂ − η̂tp


in two dimensions and

~̂F I1 =



ρÛ

ρuÛ + pξ̂x

ρvÛ + pξ̂y

ρwÛ + pξ̂z

(ρE + p)Û − ξ̂tp


, ~̂F I2 =



ρV̂

ρuV̂ + pη̂x

ρvV̂ + pη̂y

ρwV̂ + pη̂z

(ρE + p)V̂ − η̂tp


, and ~̂F I3 =



ρŴ

ρuŴ + pζ̂x

ρwV̂ + pζ̂y

ρwŴ + pζ̂z

(ρE + p)Ŵ − ζ̂tp


in three dimensions.

The viscous stress constitutive relation is given by

τij =
µ

Re

(
∂ui
∂xj

+
∂uj
∂xi

)
+

λ

Re

∂uk
∂xk

δij

and the transport coefficients µ, λ and k are modeled by the power law, with n defined for air,

µ

µ∞
=

k

k∞
=

λ

λ∞
=

(
T

T∞

)n
, n = 0.666

For the viscous terms, we use the nonorthogonal strong form given by Tannehill, Anderson, and

Pletcher [1]:

8

∂

∂t

(ρu1

J

)
= · · · ∂

∂ξ

(
ξ̂iτi1

)
+

∂

∂η
(η̂iτi1) +

∂

∂ζ

(
ζ̂iτi1

)
∂

∂t

(ρu2

J

)
= · · · ∂

∂ξ

(
ξ̂iτi2

)
+

∂

∂η
(η̂iτi2) +

∂

∂ζ

(
ζ̂iτi2

)
∂

∂t

(ρu3

J

)
= · · · ∂

∂ξ

(
ξ̂iτi3

)
+

∂

∂η
(η̂iτi3) +

∂

∂ζ

(
ζ̂iτi3

)
∂

∂t

(
ρE

J

)
= · · · ∂

∂ξ

(
ξ̂i[ujτij − qi]

)
+

∂

∂η
(η̂i[ujτij − qi]) +

∂

∂ζ

(
ζ̂i[ujτij − qi]

)

2.1.2 Summation-by-Parts (SBP) Operators

In order to discretize the spatial derivatives present in the equations above, we make use of sev-

eral finite difference operators that possess the summation-by-parts (SBP) property. Taking two

matrices P,Q, we here state that these two matrices are SBP matrices of order p provided

• P−1Qv is an order hp approximation to ∂/∂x, where h is the spatial step size in one dimension.

• P is a symmetric positive-definite matrix.

• Q+QT = diag(−1, 0, 0, ..., 0, 1).

These conditions together ensure that the discrete version of the integration by parts property

holds; that is,

〈P−1Qx,y〉P = xNyN − x1y1 − 〈x, P−1Qy〉P .

The resulting operators can be either explicit (in this case, P is purely diagonal) or implicit.

This theory, originally presented in [34], can also be extended to higher dimensions using Kronecker

products. For example, in two dimensions, the matrices H−1Gx and H−1Gy define the x- and y-

derivatives on a two-dimensional grid:

H = Px ⊗ Py

Gx = Qx ⊗ Py

Gy = Px ⊗Qy

9

Note that this formulation assumes that we have Px, Qx, a pair of nx×nx SBP matrices of approx-

imation order p, and Py, Qy, a pair of ny × ny SBP matrices of approximation order q.

Finally, we also note that these SBP operators do not guarantee strict stability for an initial

boundary value problem. We must also apply the boundary conditions using a formulation that

permits an energy estimate. More information on the boundary conditions is given in the next

section.

More information on SBP operators of various order, including the coefficients themselves, can

be found in [34], [7], [19]. For the results provided in Chapter 3, we use a third-order SBP operator.

2.1.3 Simultaneous-Approximation-Term (SAT) Boundary Conditions

As mentioned above, in order to facilitate an energy estimate (and thus prove energy stability), we

must combine the SBP operators with a specific weak boundary treatment. In order to characterize

this treatment, we examine a simple case: the continuous one-dimensional advection equation. Per

reference [7], we take

∂u

∂t
= λ

∂u

∂x
, 0 ≥ x ≥ 1,

In order for this to be well-posed for λ > 0, we require the boundary condition u(1, t) = g(t) at

x = 1. We can then write the discrete system, using SBP operators P and Q, as

d

dt
u = λP−1Qu− τλqN,NP−1E1(uN − g(t))

where qN,N is the bottom-right element of Q, E1 = (0, 0, ...0, 1)T , and where τ is a parameter set

by the user. It can be shown via a brief analysis that τ ≥ 1/2 gives energy stability for this case.

The semi-discrete problem has an energy estimate in the P -norm given by

d||u||2P
dt

=

(
u,
du

dt

)
P

+

(
u,
du

dt

)
P

= −uT (Q+QT)u− 2τu2
0 + 2τg(t)u0 = (1− 2τ)u2

0 − u2
N + 2τg(t)u0

where u(t) = [u0(t), ..., uN (t)]T on the discrete domain xj = nh, h = 1/N , n = 0, 1, ..., N . We can

10

see that if we set g(t) = 0 and τ ≥ 1/2,

d||u||2P
dt

≤ 0⇒ ||u||P ≤ K||f ||P

where K is constant—that is, the approximation is Lax stable. Generally speaking, it is straightfor-

ward to observe that while increasing the penalty parameter τ increases the accuracy of the overall

solution, it also increases the numerical stiffness of the problem.

A similar treatment can be used for the compressible Navier-Stokes equations as given here,

and is discussed more thoroughly in [36], [37]. For now, we simply give a few of the critical details.

Following the notation of Svärd and Nordstrom, we can give the penalized equation as

∂q

∂t
= R(q) + σI1P−1E1A

+(q− gI1) +
σI2

Re
P−1E1I(q− gI2)

where σI1 and σI2 are the penalty parameters for the inviscid and viscous boundary conditions, re-

spectively, Re is the Reynolds number, I is the identity matrix, and once again, E1 = (0, 0, ...0, 1)T .

R(q) represents the divergence of the fluxes in the governing equations, and A+ = TΛ+T−1 selects

only the incoming characteristic variables R = Tq (where T is given by Pulliam and Chaussee [22],

and transforms the conserved variables to characteristic variables). Λ+ = Λ − |Λ| is a diagonal

matrix such that Λ = diag{Û , Û , Û + c, Û − c}|∇xξ| where Û is the wall-normal component of the

velocity. The target vectors for the inviscid and viscous penalty terms, respectively, are given for a

no-slip, isothermal condition for a non-moving wall as

gI1 =


ρ

ρ(u− (u · n)n)

p
γ−1 + 1

2ρ|u− (u · n)n|2



gI2 = [ρ,0, ρTw/γ]T

11

where Tw is the wall temperature. As for the penalty parameters, it is known that in order to attain

numerical stability, we must have σI1 ≤ −2 and

σI2 ≤ − 1

4p0
max

(
γµ

Prρ
,

5µ

3ρ

)

where µ is the first viscosity coefficient, Pr is the Prandtl number, and γ is the ratio of specific heats.

For more on the demonstrated accuracy of these boundary conditions as applied to aeroacoustic

problems, see [5].

2.1.4 Overset Interpolation

Our interpolation between overset meshes relies on a Chimera framework that makes use of PEGA-

SUS [35] and BELLERO [30] formats and tools. The process of communication between grids will

be described in minimal detail here, but for more information the reader should refer to reference [6].

In general, the process can be broken down into a number of phases:

• Establish communication between grids. Each process computes the bounding box of each

grid that it “owns,” and, via collective communication, determines any collisions it may have

with other grids on other processors.

• Hole cutting/fringe determination. After first classifying grids as either background grids or

feature grids, we can use an integer-valued array to identify points as “fringe points” which

will donate and receive data from other grids, and also to identify points on the background

grid which are well within the boundaries of a feature grid, and can thus be deemed inactive.

• Donor-receiver pair search — see Figure 2.1. Fringe points on the receiver grid are paired

with donor cells on the donor grid.

• Interpolation. State data from the points in the donor cell is transferred to the receiver

point via Lagrangian interpolation, with corresponding weights determined as a function of

Lagrange shape functions.

12

(a) Sample grids for explanation of overset interpola-
tion. (b) The receiver points and donor cell.

Figure 2.1: Outlining the overset procedure.

Further discussion of this implementation, including algorithms for hole-cutting and the donor-

receiver pair search, is omitted here, but given in [6]. The majority of this process, including the

collision determination, hole cutting, fringe identification, donor-receiver pair search, and calcula-

tion of the interpolation weights, is performed as a preprocessing step. The interpolation itself is

performed at each Runge-Kutta substep in the case of an RK4-driven run, and is considered part

of a given grid’s right-hand side evaluation.

Once the donor data is sent (interpolated) to the receiver grids, it must be applied to the receiver

state. There are two such methods of application that will be briefly discussed here - it is important

to note that only the latter method (the SAT-based approach) is used in generating the results we

will present later, and in fact is a critical step in attaining proper numerical convergence of the

integrators.

2.1.4.1 Injection

In the compressible Navier-Stokes solver we will be using for the forthcoming simulations, the

standard method of interpolation between overset meshes uses a simple injection procedure to

apply the result of overset interpolation, in which the state values on the receiver grid are directly

overwritten by the interpolated values from the donor grid.

One of the complications associated with this method of interpolation is that it operates directly

13

on the state being integrated (in our case, the vector Q = [ρ, ρ~u, ρE]T for a given receiver point)

rather than the right-hand side of our governing equations. Strictly speaking, ordinary differential

equations and their discretizations depend strongly upon the idea that state values are only altered

by explicit applications of a right-hand side, as opposed to outright replacements - the numerical

issues introduced by injection-based interpolation when using MRAB integrators is readily seen in

practice, and is a direct result of the use of right-hand side history values as a critical piece (as

we will see in Section 2.2) of the time-marching scheme. In order for the scheme to maintain a

history of right-hand side values that accurately models the evolution of the state, the result of

interpolation must show up as a right-hand side term. When state is modified via other means,

such as the injection we are discussing here, the right-hand sides being extrapolated through to

step forward in time can no longer be considered a sound and complete approximation of the actual

temporal behavior of the state.

2.1.4.2 SAT-Based Penalty Interpolation

An alternative interface treatment follows a methodology similar to the weak boundary treatment

described in Section 2.1.3, and applies the interpolated values as a penalization term in the right-

hand side via a target vector. As done in [27], we consider a single grid point on an overlapping

interface - using the same notation as [27], we describe this interface as a κ± boundary where κ = ξ,

η, or ζ. κ is the normal direction to the face the grid point lies on, and the ± superscript indicates

inflow (+) or outflow (-). If we denote the solution at this grid point as qijk, with the interpolated

value from the donor grid given as q̂ijk, we can express the discretized equation at this point as

dqijk
dt

= −(DξmFm)ijk − p−1
0 (σIK±κ + σV1 I5)(qijk − q̂ijk) + σV2

(
(FVκ)ijk − (F̂Vκ)ijk

)

where (Dξm ,Fm)ijk denotes the derivatives of the fluxes, Fm = FIm − FVm, p0 is the (1,1) element

of the P matrix, I5 is an identity matrix of size 5× 5, and K±κ = Tκ

(
|Λκ|±Λκ

2

)
T−1
κ , where T and

Λ are the same matrices mentioned in Section 2.1.3, given by Pulliam and Chaussee [22]. (FVκ)ijk

denotes the viscous flux at the interface point, and all hatted terms indicate interpolated values.

14

Note also that if the grid point lies on an edge or a corner in 3 dimensions, the interface terms for

each normal direction must be added. The penalty parameters σ are given by

σI ≥ 1

2
, σV1 =

1

2Re
(κ2
x + κ2

y + κ2
z), σV2 = ±1

2

for an inflow (+) or outflow (-) interface point. As opposed to the injection-based interpolation

method described above, this scheme is dissipative and provably stable. This method of interpola-

tion is more thoroughly outlined in [27] and [28].

The most critical of benefits associated with using this interpolation scheme in the multi-rate

context is that it allows for application of the result of interpolation as a component of the right-

hand side applied to the state—that is, interpolation contributes to a right-hand side term rather

than a simple state replacement. Furthermore, it also more readily allows us to apply this “result”

of interpolation selectively (i.e. to one grid at a time) depending on which right-hand side we are

currently evaluating (fast or slow). These reasons allow interpolation to be incorporated into the

Adams-Bashforth framework laid out in the forthcoming section as a component of the right-hand

side histories, and, as a result, this method of interpolation is critical to attaining the numerical

accuracy and stability we will show later.

2.2 Adams-Bashforth Integration

In this section, we describe our implementation of Adams-Bashforth methods of various order; both

single-rate and multi-rate forms are discussed.

2.2.1 Single-rate Adams-Bashforth (SRAB) Integration

Here we give a brief derivation of a standard Adams-Bashforth integrator. We will step through

the derivation of a third-order AB integrator in detail, while also giving the final results without

derivation for fourth and fifth order AB integrators as well, which we will use in upcoming sections.

15

We start with a simple ODE given by

dy

dt
= f(t, y).

We can thus find the solution at the next timestep by taking

y(tn+1) = y(tn) +

∫ tn+1

tn

f(s, y(s))ds.

The operating principle of Adams-Bashforth methods and other similar linear multistep methods

involves approximating the right-hand side function by a polynomial using past values of f(t, y),

extrapolating through that approximation, and integrating.

For the time being, we assume that tn+1 − tn = tn − tn−1 = tn−1 − tn−2 = h. In practice, and

for the cases we will later discuss, this is not the case. The computational procedure for eliminating

this restriction on our derived coefficients is discussed in Section 2.4.1. Assuming a constant value

of h, the third-order extrapolation of y(tn) to time tn+1 is given as

y(tn+1) = y(tn) +
23

12
hf(tn, yn)− 4

3
hf(tn−1, yn−1) +

5

12
hf(tn−2, yn−2).

By similar procedure, the fourth and fifth-order Adams-Bashforth integrators are given as

y(tn+1) = y(tn) +
55

24
hf(tn, yn)− 59

24
hf(tn−1, yn−1)

+
37

24
hf(tn−2, yn−2)− 3

8
hf(tn−3, yn−3)

y(tn+1) = y(tn) +
1901

720
hf(tn, yn)− 1387

360
hf(tn−1, yn−1)

+
109

30
hf(tn−2, yn−2)− 637

360
hf(tn−3, yn−3)

+
251

720
hf(tn−4, yn−4)

It is clear from our derivation of the method that the length of the past history needed to

16

calculate a step (and, thus, the memory required) is directly dependent on the order of accuracy

desired. A derivation of a first-order Adams-Bashforth integrator simply results in Euler’s method.

We note that given that Adams-Bashforth integrators require past history values of the right-

hand side to march forward in time, an alternative method is required for the first few time steps

(the exact number of which is dependent on order) in order to establish history and “bootstrap” the

method. In all cases discussed in upcoming sections, a standard 4th-order Runge-Kutta integrator

is used to bootstrap the AB methods.

2.2.2 Multi-rate Adams-Bashforth Integration

With the fundamentals of Adams-Bashforth integration firmly established, we can now attempt a

multi-rate implementation of the scheme. We replace our initial problem given in Section 2.3.1 with

a two-component system comprised of fast and slow portions of the solution (henceforth using the

notation of Kloeckner [16], where f indicates the “fast” variable and s the “slow”):

d

dt

 f(t)

s(t)

 =

 aff (f, s) + afs(f, s)

asf (f, s) + ass(f, s)


Assuming smoothly varying right-hand side terms aff , ass, asf , afs, we note that the linearity of the

integral required for explicit Adams-Bashforth integration allows us to maintain separate histories

(with independent time intervals) for each right-hand side term. With this in mind, we can set a

slow (larger) time step H such that we maintain stability in the integration of the slow component,

subsequently setting a fast time step h such that h is an integer multiple of H and, as a result we

can define the ratio between the two, k = H/h, as the step ratio of the MRAB scheme. We note

that the choice of rate for the two diagonal (self-influencing) right-hand side terms, aff and ass, is

quite clear, whereas the rates of the coupling terms afs and asf is less so. As for the integration

of each right-hand side component such that it influences the state, the procedure and coefficients

(dependent on order) outlined in the section above are unchanged.

In the overset formulation with which we are concerned, we define the fast and slow components

17

of our Navier-Stokes solution as the conserved variables on each grid, that is (using a two-grid

case as an example): f = Q1 = [ρ, ρ~u, ρE]T , s = Q2 = [ρ, ρ~u, ρE]T , where the subscripts of the

vectors Q indicate global grid number, and in this instance we assume Grid 1 to be the grid with

the fast-moving component of the solution, be it due to physical behavior or finer mesh quality

(per the aforementioned CFL condition). In this case, the coupling terms afs and asf in the above

formulation are embodied by the SAT-based interpolation scheme described in Section 2.2.4.

Within this simple two-component scheme, a number of design choices are available to the user,

including but not limited to:

• The order in which we evaluate and advance the solution components. Should we advance the

fast-evolving solution component through all of its substeps and wait to perform the single

macro-step required for the slow component until the end (a “fastest-first” scheme, per the

nomenclature of [16]), or should we pursue an algorithm in which the slow component is

instead advanced first?

• If we have explicit coupling terms afs and asf , at what rates should they advance? Should

they use the micro-timestep h or the macro-timestep H?

• For slowest-first evaluation schemes, should we re-extrapolate the slow state after additional

state and right-hand side information is gathered at the substeps?

An in-depth discussion of the numerical effects of these choices in the context of the overset

formulation described is deferred to Chapter 3. Additionally, empirical observations on the effects

of these choices, among others, are made by Kloeckner [16]. For the results shown in Chapters 3 and

4 (with the exception of Section 3.2.4), we use a simple fastest-first scheme with no re-extrapolation.

2.3 Software Tools and Issues

Below, we give brief synopses of the software tools used in the simulations that follow.

18

2.3.1 PlasComCM

PlasComCM is a Fortran 90 code written to solve the compressible Navier-Stokes equations (see

Section 2.1.1) for various orders on overset meshes. The code has been used to solve problems

involving compressible turbulence, fluid-structure interaction, and sound generation and propa-

gation, and is capable of simulating moving boundaries. Additionally, PlasComCM is currently

being used in the University of Illinois’ NNSA and DOE-funded PSAAPII center, the Center for

Exascale Simulation of Plasma-Coupled Combustion (XPACC), and is thus the subject of various

computer science-oriented optimizations and novel numerical and scientific simulation techniques.

For more on PlasComCM and XPACC, see https://bitbucket.org/xpacc-dev/plascomcm and

https://xpacc.illinois.edu, respectively.

2.3.2 Leap

Leap is a Python package used to describe integration methods (including multi-rate integrators)

with flexible algorithms via a virtual machine, and is capable of describing both implicit and

explicit time steppers in the form of instructions that can then be passed to Dagrt (see below) to

generate Fortran or Python code. Leap has been primarily developed by Prof. Andreas Kloeckner

and student Matt Wala at the University of Illinois at Urbana-Champaign. For more on Leap’s

functionality, dependencies, and capabilities, see https://documen.tician.de/leap/.

2.3.3 Dagrt

Dagrt, a second Python package, is a DAG-based runtime system which can generate Fortran or

Python code implementing the integrators described by Leap for a given right-hand-side. In using

this tool, and Leap, with a host application, the user needs to describe the data types to be operated

on, along with the right-hand-sides that the host application uses, in a short Python driver. As

with Leap, Dagrt has been developed by Prof. Andreas Kloeckner and student Matt Wala at the

University of Illinois at Urbana-Champaign in the Computer Science department. More information

can be found at https://documen.tician.de/dagrt/.

19

2.3.4 Data Ownership

A pervasive issue in implementing Leap-generated integrators within PlasComCM’s existing code-

base has been data ownership; that is, the host application (PlasComCM) “owns” the state and

right-hand side data in its existing structures, but Leap-generated integrators also want to “own”

this same state and right-hand side data in its own data structures whilst operating upon it and

storing/accessing history required to march in time. At this time, there is not yet a policy for who

is responsible for allocating and freeing the buffers that contain the results of state operations.

Thus far, the issues associated with data ownership have been circumvented using Fortran

pointers - that is, before state-dependent right-hand side evaluations in Leap code are performed, we

must first save PlasComCM’s states in separate pointers, then point PlasComCM’s data structures

to Leap’s state. Then the right-hand side evaluation occurs as normal, using PlasComCM structures

and thus causing no PlasComCM-side issues. Finally, once the given right-hand side evaluation is

complete, the PlasComCM structures are pointed back to the initially saved PlasComCM states.

A similar procedure must be carried out with the right-hand side: upon initialization of a

given right-hand side evaluation, PlasComCM’s right-hand side structures are pointed to Leap’s

result structures (fast or slow, dependent on the given right-hand side instance). However, since

PlasComCM does not care explicitly about right-hand side histories, we need not save right-hand

side data in separate pointers before evaluating a right-hand side, and similarly, we need not reset

PlasComCM’s right-hand side structures once the right-hand side evaluation is complete.

2.3.5 Timestep Adaptivity

While the packages Leap and Dagrt have been developed largely independently of PlasComCM

and its various applications, we here give a brief discussion of one of the major capabilities added

to Leap-generated integrators to better facilitate its interoperation with PlasComCM: timestep

adaptivity. In the use of PlasComCM for its various fluid dynamic applications, a constant CFL

time-marching mode is often used to evolve the solution in time, resulting in a constantly changing

timestep. This is problematic for Leap-generated Adams-Bashforth integrators - as we have seen

20

above, the coefficients multiplying the right-hand side history values depend directly on timestep

h, so calculating these coefficients once on initialization (as Leap had previously done) is no longer

sufficient. Leap-generated AB integrators calculate the coefficients used in the integration using a

Vandermonde system with monomial basis:

V T · α =

∫ ∆t

0

xidx

where α is the vector of coefficients to be solved for, and V T is the transpose of the Vandermonde

matrix with monomial basis, given by

V =



1 t1 . . . tn−1
1

1 t2 . . . tn−1
2

...
...

. . .
...

1 tn . . . tn−1
n


Here, n is equal to the order of the integrator, and ti are the time history values. These coefficients,

when obtained, are used to extrapolate to the next state via

y(ti+1) = y(ti) + α1f(ti−n, yi−n) + α1f(ti−n−1, yi−n−1) + . . .+ αnf(ti, yi)

In order to handle a constantly changing timestep, these operations must now be performed once

every macro-timestep. As a result, the Leap-generated Fortran code now makes use of LAPACK

routines for the necessary linear algebra solves (not needed with a constant timestep), and so

proper linking with the appropriate libraries is required to use the generated code. Furthermore,

time history information for each solution component must now be stored and tracked by Leap

integrators, whereas before this was unnecessary.

21

Chapter 3

Stability and Convergence of
Multi-rate Integrators

3.1 Test Case

In this section, we outline the MRAB test case that will be used to produce the results discussed

in this chapter, as well as in Chapter 4.

3.1.1 Physical Problem

The two-dimensional problem modeled by our test case is viscous flow over a cylinder with diameter

D = 0.6 in the non-dimensional spatial domain x/D = [−4, 4], y/D = [−4, 4]. The cylinder center

is located at x/D = −1.2, y/D = 0. The initial condition used in this case models uniform subsonic

flow in the positive x-direction, with a Mach number of 0.2. The Reynolds number is 200 and the

Prandtl number is 0.72.

Figure 3.1: Physical case: flow past a cylinder.

22

3.1.2 Computational Model

The test case models the physical problem discussed above on two overset meshes: a coarser,

base Cartesian grid, and a finer teardrop-shaped curvilinear grid surrounding the IBLANK region

representing the stationary cylinder.

Figure 3.2: Overset grid configuration: flow past a cylinder.

Grid Nx Ny Npoints
1 61 61 3721
2 121 41 4961

Table 3.1: Grid sizes for test case.

For the purposes of multi-rate, it is important to characterize the disparity in timescales between

the two grids, such that we can estimate the maximum allowable substep ratio we are able to attain.

In order to gain a sense of this parameter, we query the minimum initial timesteps on each grid for

a fixed CFL, and find the ratio between them to be about 12 (see Table 3.2 below).

Grid ∆tmin
1 0.261994
2 0.021430

Table 3.2: Measured timesteps for test problem shown in Figure 3.1.

23

3.1.3 Boundary Conditions

The boundary conditions employed in our simulation are given in Table 3.3 below:

Grid Boundary Condition Location Direction
1 SAT Far-Field Left (x = −3) +x
1 Sponge Left (x = −3) +x
1 SAT Far-Field Right (x = 3) −x
1 Sponge Right (x = 3) −x
1 SAT Far-Field Bottom (y = −3) +y
1 Sponge Bottom (y = −3) +y
1 SAT Far-Field Top (y = 3) −y
1 Sponge Top (y = 3) −y
2 SAT Isothermal Wall Cylinder Surface Normal to Surface

Table 3.3: Description of boundary conditions for test case.

Note that the inner fine grid (Grid 2) is periodic, and therefore no boundary conditions are

needed in the x-direction. As for the cylinder surface itself, we model it as an SAT isothermal wall.

On Grid 1 (Cartesian base grid), all boundaries are modeled as SAT far-field (see Chapter 2). In

addition, sponge boundaries with a cell depth of 6 are used.

3.2 Results

3.2.1 Stability

3.2.1.1 Theory

Before discussing the results of applying MRAB integrators to the case we have outlined, it will

serve us well to first briefly discuss the stability regions of third and fourth-order SRAB integrators

in comparison to PlasComCM’s standard RK4 integration. To do so, we will define a simple

differential equation

dy

dt
= λy

24

and plot in complex λ-space the regions within which each integrator remains stable:

2 1 0
Re

2

0

2

Im

Stability Regions
AB3
AB4
RK4

(a) Stability plots for each integrator.

0.6 0.4 0.2 0.0
Re / RHS Call

0.5

0.0

0.5

Im

 /
RH

S
Ca

ll

Normalized Stability Regions
AB3
AB4
RK4

(b) Stability plots normalized by RHS calls.

Figure 3.3: Stability regions for AB integrators compared to RK4.

We see that in general, Adams-Bashforth integrators have a far more restrictive stability region

than an explicit fourth-order Runge-Kutta integrator—however, it is important to also note that

RK4 requires four right-hand side evaluations per timestep, whereas an Adams-Bashforth integrator

only requires one. Figure 3.3b normalizes the stability regions of each integrator based on the

number of right-hand side evaluations required per timestep, and as a result we see regions that are

far more commensurate in size. This tells us that while SRAB integrators have far lower maximum

stable timesteps (roughly one fifth that of RK4 for a third-order SRAB integrator, and about one

ninth for fourth-order), they also require less computation per step.

3.2.1.2 Procedure

In characterizing the stability limits of our integrators with various step ratios, we follow a simple

procedure: we increase the CFL value used by PlasComCM to set the macro-timestep until numer-

ical instability is observed in the solution. The stability results that we present below for our third

and fourth order integrators are given in terms of this metric, to the nearest 0.01. The CFL value

reported is that for the slow, coarser grid. The step ratio is a user-selected independent parameter.

The CFL ratio we will report in our upcoming results is a measure of the efficiency of a given

MRAB integrator, and is defined as r = CFLMRAB/CFLSRAB . Therefore, a MRAB integrator

25

with a step ratio of 2 should attain a CFL ratio of 2, a MRAB integrator with a step ratio of 3

should attain a CFL ratio of 3, and so on and so forth, until the speed ratio between the grids is

reached—in our case, we have already determined this ratio to be about 12.

It is important to note that the CFL ratio does not measure effectiveness of a given MRAB

integrator compared to RK4 in terms of the maximum stable timestep that the solver can take—for

this comparison, the CFL limits themselves are given. Based on the theory outlined in Section

3.2.1.1, we expect the maximum stable CFL for the SRAB integrator of third order to be about

one fifth that of the standard RK4 integrator, while the SRAB integrator of fourth order should

have a maximum stable CFL about one ninth that of RK4.

3.2.1.3 Third Order

We present below a table comparing the stable CFL condition for our simulation using a fourth-

order Runge-Kutta simulation to those of MRAB-driven simulations at various step ratios.

Integrator CFL Limit CFL Ratio
RK4 (PlasComCM) 4.17 5.02

Single-Rate Adams-Bashforth 0.83 1.00
MRAB (Step Ratio = 2) 1.66 2.00
MRAB (Step Ratio = 3) 2.49 3.00
MRAB (Step Ratio = 4) 3.33 4.01
MRAB (Step Ratio = 5) 4.16 5.01
MRAB (Step Ratio = 6) 5.00 6.02
MRAB (Step Ratio = 7) 5.81 7.00
MRAB (Step Ratio = 8) 6.30 7.59
MRAB (Step Ratio = 9) 6.30 7.59
MRAB (Step Ratio = 10) 6.30 7.59
MRAB (Step Ratio = 20) 6.30 7.59

Table 3.4: Stability results for third order Adams-Bashforth integrators.

The primary result of note here is that past a certain step ratio, we are unable to further

increase the maximum stable CFL, and in fact, past a step ratio that is slightly more than half of

the observed speed ratio for our case of interest (about 12), we see no real benefit to the increase,

since the maximum stable macro-timestep remains unchanged. Above this step ratio, we expect

26

our performance to degrade, given that we are simply performing extra right-hand side evaluations

(more substeps on the fast grid) with no commensurate macro-timestep gain.

0 5 10 15 20
0

2

4

6

8

ABStepRatio

C
F
L
R
at
io

Stable CFL Ratio

Figure 3.4: Stable CFL ratio as a function of step ratio - third order.

We also note that for MRAB step ratios greater than 5, we are able to drive simulations at higher

CFL numbers than RK4 achieved without introducing instability. Given the reduced number of

right-hand side evaluations required on the coarse grid, we expect performance benefit for these

step ratios especially, given that therefore fewer iterations are required to stably reach the same end

time. For now, a more thorough discussion of performance expectations and benefits is deferred to

Chapter 4.

3.2.1.4 Fourth Order

Now we can perform the same tests on our fourth-order MRAB integrators, noting that the increase

in order shrinks our stability region considerably, necessitating the use of lower CFL numbers for

all step ratios.

As we would expect, we see the same trend for fourth order as we did for third order - past a

step ratio of 8, we can continue to increase the step ratio, and the resulting integrators will drive our

27

Integrator CFL Limit CFL Ratio
RK4 (PlasComCM) 4.16 9.24

Single-Rate Adams-Bashforth 0.45 1
MRAB (Step Ratio = 2) 0.91 2.02
MRAB (Step Ratio = 3) 1.36 3.02
MRAB (Step Ratio = 4) 1.82 4.04
MRAB (Step Ratio = 5) 2.27 5.04
MRAB (Step Ratio = 6) 2.73 6.07
MRAB (Step Ratio = 7) 3.19 7.09
MRAB (Step Ratio = 8) 3.32 7.38
MRAB (Step Ratio = 9) 3.32 7.38
MRAB (Step Ratio = 10) 3.32 7.38
MRAB (Step Ratio = 20) 3.32 7.38

Table 3.5: Stability results for fourth-order Adams-Bashforth integrators.

simulations just fine, but we are no longer able to increase the maximum allowable CFL. This means

that as we increase the step ratio, we are simply doing more work while using the same macro-

timestep as with lower step ratios, thus making these higher step ratio integrators comparatively

inefficient.

0 5 10 15 20
0

2

4

6

8

ABStepRatio

C
F
L
R
at
io

Stable CFL Ratio

Figure 3.5: Stable CFL ratio as a function of step ratio - fourth order.

28

3.2.2 Validation With Small-Scale Results

In an attempt to validate the stability results we have above, we will now aim to replicate the

trend we have observed using a small-scale one-dimensional advection case. The case models the

advection of a Gaussian bump across an interface at which the SAT exchange discussed in Section

2.3.2 occurs. The code used to model this example was written by Nek Sharan to demonstrate the

efficacy of the interpolation method discussed in Section 2.3.2, and in reference [27].

Figure 3.6: The small-scale case models one-dimensional advection of a Gaussian from a fine grid
to a relatively coarse one.

While only in one dimension, SBP operators of order 3 as discussed in Section 2.3 are still used

for the spatial discretization. The case is periodic in x, and the computational domain is x ∈ [−1, 1],

with the grid interface occurring at x = 0. For the specific case we will present results for, Grid 1

(the left grid) contains 54 equally spaced points, while Grid 2 (the right grid) contains 6 equally

spaced points. In this case, the CFL condition tells us (assuming a constant advection speed) that

the speed ratio between the grids should be exactly equal to 9.

By symbolically determining the resulting step matrix using MAXIMA (see http://maxima.sourceforge.net/)

for each case as a function of the timestep and performing a search to determine the maximum

29

timestep below which the eigenvalues of the matrix are negative, we can roughly characterize the

stability bounds for each method. Due to prohibitive costs of the step matrix formation (see Figure

3.7), we perform the stability search only for third order MRAB integrators for step ratios of 1

through 7. We give the results of this process here.

MRAB Step Ratio Maximum Stable Real Timestep Maximum Stable Imaginary Timestep
1 0.009 0.009
2 0.019 0.019
3 0.029 0.029
4 0.039 0.039
5 0.049 0.049
6 0.059 0.059
7 0.069 0.069

Table 3.6: Maximum stable timesteps for one-dimensional advection case.

2 3 4 5 6 7

102

103

104

105

MRAB Step Ratio

S
te

p
M

at
ri

x
F

or
m

at
io

n
T

im
e

(s
)

Figure 3.7: Total time spent composing the step matrices for a range of MRAB step ratios.

We see here that our MRAB integrators remain stable up to higher step ratios here, with the

maximum stable real and imaginary timesteps linearly increasing through all step ratios tested. We

expect that the failure to realize the stability plateau behavior manifested in the results given in

Section 3.2.2 and Section 3.2.3 is due to lack of boundary conditions (as previously mentioned, the

30

one-dimensional case we test here is periodic). Furthermore, this case also does not include any

diffusion, which is clearly present in the governing equations we are solving in the PlasComCM case

tested.

3.2.3 Accuracy and Convergence

Below we examine the accuracy and convergence of the developed integrators at various step ratios,

attempting to draw conclusions for various orders.

3.2.3.1 Procedure

In presenting some accuracy results for our schemes, we will generate integrators for step ratios

ranging from 1 (single-rate) to 8. As we have seen in the previous section, above this step ratio, the

maximum stable CFL remains unchanged for our speed ratio of about 12. For each integrator, we

attempt to calculate an order of accuracy using 4 - 5 data points consisting of the macro-timestep

used and the maximum error obtained in the density contour after a solution time of 2.5 seconds.

3.2.3.2 Third Order

To show the execution of our procedure, we present the application and results of our convergence

study for a third-order multi-rate integrator with a step ratio of 4. These same results for additional

step ratios are given in the appendix.

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.01 1.49E-05 -2.000 -4.827
0.005 2.08E-06 -2.301 -5.682
0.0025 2.67E-07 -2.602 -6.573
0.001 1.66E-08 -3.000 -7.780
0.0005 2.02E-09 -3.301 -8.694

Table 3.7: Convergence data for third-order MRAB, SR=4.

31

●

●

●●●
0.000 0.002 0.004 0.006 0.008 0.010
0

2.×10-6

4.×10-6

6.×10-6

8.×10-6

0.00001

0.000012

0.000014

Δt


ρ

∞

Order of Accuracy-SR = 4

(a) Plot of density error curve for SR=4.

●

●

●

●

●

-3.5 -3.0 -2.5 -2.0

-10

-9

-8

-7

-6

-5

-4

-3

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 4

logρ∞ = 1.159 + 2.98 logΔt

(b) Log-log plot for SR=4.

Figure 3.8: Plotted third-order convergence data for SR=4.

Below, we attempt to concisely present our results for order of accuracy obtained by all step

ratios studied.

MRAB Step Ratio Observed Order of Accuracy
1 2.969
2 3.238
3 2.988
4 2.980
5 2.983
6 2.967
7 2.973
8 2.974

Table 3.8: Convergence results for third-order Adams-Bashforth integrators.

Simply put, we see that an empirical order of accuracy of about 3 is obtained in all cases

— this is consistent with our theoretical analysis presented in Chapter 2, and confirms that the

implementation is sound.

3.2.3.3 Fourth Order

For testing of our fourth order integrators, nothing about our procedure changes, but we do note

that the range of timesteps explored does become smaller across all step ratios - this is primarily

32

due to two factors:

• As discussed in the Section 3.2.1.1, the stability region for the Adams-Bashforth formulation

shrinks as the order increases, and thus the stability regions for the fourth order integrators

tested here are smaller than those of the third order integrators already tested, and fur-

thermore, the stability region is significantly smaller than that of the standard fourth-order

explicit Runge-Kutta formulation customarily used by PlasComCM.

• At smaller time steps like the lower limits of those examined in the case of the third-order

integrators, the error in the density contour eventually becomes too low to be accurately

measured by our analysis tools.

As in the previous subsection, we present a sample application of our convergence study to a

fourth-order integrator with a step ratio of 4, followed by our results for all step ratios studied for

fourth-order integrators here.

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.005 2.77E-07 -2.301 -6.558
0.0025 2.32E-08 -2.602 -7.635
0.001 4.62E-10 -3.000 -9.335
0.0005 2.01E-11 -3.301 -10.697

Table 3.9: Convergence data for fourth-order MRAB, SR=4.

MRAB Step Ratio Observed Order of Accuracy
1 3.872
2 4.169
3 4.126
4 4.158
5 3.879
6 4.040
7 4.164
8 4.225

Table 3.10: Convergence results for fourth-order Adams-Bashforth integrators.

33

●

●

●●

0.000 0.001 0.002 0.003 0.004 0.005

0

5.×10-8

1.×10-7

1.5×10-7

2.×10-7

2.5×10-7

3.×10-7

Δt


ρ

∞

Order of Accuracy-SR = 4

(a) Plot of density error curve for SR=4.

●

●

●

●

-3.5 -3.0 -2.5 -2.0
-12

-10

-8

-6

-4

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 4

logρ∞ = 3.09+ 4.158 logΔt

(b) Log-log plot for SR=4.

Figure 3.9: Plotted fourth-order convergence data for SR=4.

Once again, the order of accuracy is observed to be sufficiently close to 4 in all cases, suggesting

that the scheme developed is sound.

3.2.3.4 Comparison With Runge-Kutta

For comparison, we will examine the numerical performance of these Adams-Bashforth integra-

tors, established above, in comparison with a standard explicit fourth-order Runge-Kutta scheme,

commonly used for time marching by PlasComCM and given by the following set of equations:

k1 = hf(xn, yn)

k2 = hf(xn +
1

2
h, yn +

1

2
k1)

k3 = hf(xn +
1

2
h, yn +

1

2
k2)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) +O(h5), (3.1)

With the stability of RK4 for our simulation already well-established in the above sections (maxi-

mum stable CFL of 4.17), we can run a simple convergence test (as performed for MRAB) of this

integrator, presenting those results below.

34

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.01 1.91E-06 -2.000 -5.719
0.005 9.06E-08 -2.301 -7.043
0.0025 4.91E-09 -2.602 -8.309
0.001 1.15E-10 -3.000 -9.939
0.0005 6.99E-12 -3.301 -11.16

Table 3.11: Convergence data for RK4.

0.000 0.002 0.004 0.006 0.008 0.010
0

5.×10-7

1.×10-6

1.5×10-6

2.×10-6

Δt

Δ
ρ

Order of Accuracy-RK4

(a) Plot of density error curve for PlasComCM RK4.

●

●

●

●

●

-3.5 -3.0 -2.5 -2.0 -1.5

-11

-10

-9

-8

-7

-6

-5

logΔt

lo
g
Δ
ρ

Order of Accuracy-Log-Log-RK4

(b) Log-log plot for RK4.

Figure 3.10: Plotted convergence data for RK4.

We see here that PlasComCM’s standard RK4 integrator indeed achieves fourth-order accuracy.

3.2.4 Influence of MRAB Policy Decisions

We will now demonstrate the effect of a few policy decisions mentioned in Section 2.2.2 on the

stability of MRAB integrators at various step ratios and orders, using the same case used to obtain

the stability and convergence results given in the previous sections.

The lack of coupling right-hand-side terms allows us to limit our scope of study to the following

two policy decisions:

• Term evaluation order: in the case of two rates, do we use a fastest-first or slowest-first

scheme? In theory, a scheme in which the fast component is evaluated first at the microsteps

35

should be numerically superior, given that the evaluation of the slow that occurs at the end

can then make use of more recently computed fast state.

• Should we re-extrapolate the slow state as more information becomes available? Note that

this option is only available when using a slowest-first scheme, in which the overall step begins

with an extrapolation of the slow state—in the case of a fastest-first scheme, our extrapolation

for the slow state occurs at the end.

We will use an MRAB integrator with a fastest-first evaluation order as a baseline against

which other candidates are measured - this is the integrator for which the above convergence and

stability results have been obtained. For the purposes of this study, we will limit the scope of this

investigation to the effect of these parameters on stability, and we will perform stability tests in

the same manner described in Section 3.2.1. Note that we here restrict ourselves to studying step

ratios ranging from 2 to 8 (where we see the maximum stable CFL for MRAB reach a plateau for

both orders). We adopt a nomenclature similar to [16] here, such that the first capitalized letter

indicates which right-hand side is evaluated first, and a lowercase “r” indicates re-extrapolation of

the slow state.

The maximum stable CFL numbers attainable for a number of configurations based on changing

these policy decisions are given in Table 3.11 (third order) and Table 3.12 (fourth order) below.

Policy Combo SR=2 SR=3 SR=4 SR=5 SR=6 SR=7 SR=8
F 1.66 2.49 3.33 4.16 5.00 5.81 6.30
S 1.66 2.49 3.33 4.16 5.00 5.81 6.30
Sr 1.66 2.49 3.33 4.16 5.00 5.81 6.31

Table 3.12: Maximum stable CFL numbers for various policy combos - third order.

Policy Combo SR=2 SR=3 SR=4 SR=5 SR=6 SR=7 SR=8
F 0.91 1.36 1.82 2.27 2.73 3.19 3.37
S 0.91 1.36 1.82 2.27 2.73 3.19 3.37
Sr 0.91 1.36 1.82 2.27 2.73 3.19 3.37

Table 3.13: Maximum stable CFL numbers for various policy combos - fourth order.

36

In short, we see that both the order of evaluation and re-extrapolation appear to have no effect

on the stability as seen in the maximum stable CFLs the MRAB integrators attain—for both third

and fourth order integrators we see the exact behavior seen in Section 3.3, with a plateau being

reached at a step ratio of 8. The identical stability nature of the simple “F” and “S” schemes mirrors

the result given in [16] for a simple 2×2 model system, and demonstrates our implementation to be

insensitive to choices regarding order of evaluation. Similarly, the lack of change in the maximum

stable CFL with the introduction of re-extrapolation of the slow state suggests that a single early

extrapolation of the slow state is sufficient.

37

Chapter 4

Performance of Multi-Rate
Integrators

Having in the prior chapter established the numerical accuracy and stability of the resulting multi-

rate integrators, we now examine their performance, with specific focus on end-to-end simulation

wallclock time and the reduction in the required right-hand-side evaluations.

4.1 Performance Model

We develop a rough performance model for how we would expect a multi-rate Adams-Bashforth

integrator of a certain step ratio to perform in comparison to PlasComCM’s standard Runge-Kutta

integrator. In doing so, we make a number of assumptions:

• We assume that right-hand side evaluations make up the bulk of the cost of running a simu-

lation.

• We assume that all comparison runs to validate this model will be performed at or near the

maximum stable timestep of a given integrator.

In all performance modeling and testing, we run each integrator to the same end time — that is,

we must scale the number of iterations each integrator is run to ensure that each reaches the same

point in time. As an example: if the RK4 integrator can stably run at ∆t = 0.1, but an SRAB

integrator can only stably run at ∆t = 0.05, we must run the SRAB integrator for 20 iterations in

order to accurately compare to an RK4 run over 10 iterations.

38

As an example of this performance model in execution, we can compose a model for the case

discussed in Chapter 3 modeling the cylinder in crossflow, for a number of step ratios, and for both

orders:

Integrator Total RHS Evaluations % Reduction from RK4 Est. Speedup
RK4 (PlasComCM) 34244 0.00 1.00x

Single-Rate Adams-Bashforth 42805 -25.00 0.80x
MRAB (Step Ratio = 2) 33503 2.16 1.02x
MRAB (Step Ratio = 3) 30402 11.22 1.13x
MRAB (Step Ratio = 4) 28851 15.75 1.19x
MRAB (Step Ratio = 5) 27921 18.46 1.23x
MRAB (Step Ratio = 6) 27301 20.28 1.25x
MRAB (Step Ratio = 7) 26858 21.57 1.28x

Table 4.1: Evaluating RHS costs for MRAB integrators compared to RK4 - third order.

Integrator Total RHS Evaluations % Reduction from RK4 Est. Speedup
RK4 (PlasComCM) 34244 0.00 1.00x

Single-Rate Adams-Bashforth 77049 -125.00 0.44x
MRAB (Step Ratio = 2) 60305 -76.10 0.57x
MRAB (Step Ratio = 3) 54723 -59.80 0.63x
MRAB (Step Ratio = 4) 51932 -51.65 0.66x
MRAB (Step Ratio = 5) 50258 -46.76 0.68x
MRAB (Step Ratio = 6) 49142 -43.50 0.70x
MRAB (Step Ratio = 7) 48344 -41.18 0.71x

Table 4.2: Evaluating RHS costs for MRAB integrators compared to RK4 - fourth order.

Note that we need separate models for each order of accuracy because of the change in stability

region between orders. Table 4.1 shows that based on right-hand side evaluations required to

reach the same end time, we can expect speedup for all MRAB integrators for this specific case —

however, based on Table 4.2, we speculate that fourth-order accurate MRAB integrators will fail

to be profitable for this specific case.

More generally, we can do more to theorize the location of a performance-critical step ratio

for a given implementation of multi-rate on this overset case — in other words, we can calculate

the minimum step ratio above which the benefits of multi-rate Adams-Bashforth (reduction in

39

RHS evaluations per macro-timestep) should outweigh its drawbacks (reduction in maximum stable

macro-timestep when compared to fourth-order Runge-Kutta). For a two-rate case, the resulting

expression comparing the required work of the two integrators is as follows, noting from the stability

results of Chapter 3 that a single-rate AB integrator needs to take a timestep roughly 5 times as

small as that of RK4 in order to remain stable:

4(npoints,1 + npoints,2) = 5(npoints,1 +
1

SR
(npoints,2))

We can therefore solve for the minimum beneficial step ratio for third order for this specific

case, given the grid sizes given in Chapter 3, expecting it to be :

SRcrit =
5npoints,2

4(npoints,1 + npoints,2)− 5npoints,1

SRcrit = 1.55

Noting that we only test integer step ratios here for convenience, what this practically tells us

for this case is that while a single-rate Adams-Bashforth integrator will not provide performance

benefit here, a multi-rate Adams-Bashforth integrator with a step ratio of 2 should. More generally

speaking, this conclusion is essentially a mathematical statement of the fact that the benefit of

multi-rate in the context of overset is highly dependent on both the speed ratio of the grids and

the relative sizes of the grids in question.

4.2 Serial Performance

We can run a number of performance tests to the same end time with both PlasComCM’s standard

Runge-Kutta integrator and a number of MRAB integrators with varying step ratios, tracking in

these runs a number of timings:

• End-to-end wallclock time of the full application

• Inclusive time spent in right-hand side calculation subroutines (that is, the total time spent

40

in right-hand side subroutines and all the subroutines that those subroutines call)

• Inclusive time spent in interpolation between grids

• Inclusive time spent in operator-related subroutines

We limit our performance testing here to third-order MRAB integrators only, noting that the

small stability region of the fourth-order MRAB integrators clearly precludes us from attaining

performance benefit using them for this specific case.

Integrator RHS (s) Operator (s) Interp (s) Total End-to-end (s)
RK4 (PlasComCM) 23.62 13.70 0.546 29.59

Single-Rate Adams-Bashforth 29.69 17.43 0.287 38.97
MRAB (Step Ratio = 2) 23.32 13.53 0.426 32.36
MRAB (Step Ratio = 3) 21.32 12.42 0.383 30.24
MRAB (Step Ratio = 4) 20.22 11.80 0.362 27.88
MRAB (Step Ratio = 5) 19.90 11.57 0.350 26.82
MRAB (Step Ratio = 6) 19.25 11.21 0.340 25.63
MRAB (Step Ratio = 7) 19.09 11.15 0.335 25.18
MRAB (Step Ratio = 8) 19.21 11.19 0.335 25.18

Table 4.3: Performance timings for third-order MRAB integrators.

RK4SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8

25

30

35

40

Integrator

E
n

d
-t

o-
E

n
d

W
al

lc
lo

ck
T

im
e

(s
)

(a) End-to-end timing.

RK4SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8

20

22

24

26

28

30

Integrator

In
cl

u
si

ve
R

H
S

T
im

e
(s

)

(b) Serial RHS timing.

Figure 4.1: Plotted serial performance data - RHS, end-to-end.

41

RK4SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8

12

14

16

18

Integrator

In
cl

u
si

ve
O

p
.

T
im

e
(s

)

(a) Serial operator timing.

RK4SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8

0.3

0.4

0.5

Integrator

In
cl

u
si

ve
In

t.
T

im
e

(s
)

(b) Serial interpolation timing.

Figure 4.2: Plotted serial performance data - operator, interpolation.

We see in Table 4.3 that the times given here correlate well with our performance model,

indicating the expected speedup or slowdown in all cases. Our theoretical critical step ratio, as

calculated above, matches the character of the performance results given here. Furthermore, we

note in the case of serial performance profiling that the observed inclusive interpolation times are

low as we would expect (when not running in parallel, this amounts to copying data between buffers)

- we will see that the time spent in interpolation routines becomes more significant when we discuss

parallel runs.

4.3 Parallel Performance

4.3.1 Small-Scale Runs

As with the serial runs, we here run each integrator to the same end time for various processor

counts, tracking the time spent in certain subroutines and also the end-to-end wallclock time, and

report the results. An important distinction to note is that we here document end-to-end wallclock

time, but the times reported for certain subroutines are accumulated inclusive times (the total

time spent by all processors in a given routine and all the routines it calls). In the tables that

follow, green cells indicate lower time spent in a certain subroutine than that of the baseline (RK4)

integrator. Plots of this data are also given in Appendix C.

42

Processors RK4 SR=1 SR=2 SR=3 SR=4 SR=5 SR=6 SR=7 SR=8
2 17.15 23.19 29.59 28.10 26.45 25.36 24.75 24.34 24.37
4 13.59 17.82 10.56 10.16 10.05 9.565 9.393 9.365 9.397
8 7.202 9.009 7.271 7.128 6.826 6.713 6.764 6.719 6.715
16 4.496 5.686 4.904 4.771 4.930 4.559 4.477 4.521 4.497

Table 4.4: End-to-end performance timings for various processor counts.

Processors RK4 SR=1 SR=2 SR=3 SR=4 SR=5 SR=6 SR=7 SR=8
2 24.372 30.952 24.15 22.34 21.15 20.57 20.21 19.96 20.04
4 27.313 34.450 27.87 25.48 24.56 23.86 23.53 23.30 23.39
8 37.116 45.344 36.27 32.67 30.79 29.73 29.64 29.11 29.14
16 46.776 57.918 47.12 42.51 41.82 39.31 38.43 38.33 38.23

Table 4.5: RHS performance timings for various processor counts.

Processors RK4 SR=1 SR=2 SR=3 SR=4 SR=5 SR=6 SR=7 SR=8
2 14.096 17.756 13.88 12.73 12.04 11.73 11.50 11.29 11.38
4 15.232 19.394 15.40 14.16 13.58 13.23 13.08 12.87 12.99
8 18.952 24.062 18.80 17.16 16.42 15.88 15.77 15.52 15.59
16 22.948 29.170 23.16 21.04 20.58 19.54 19.21 19.10 19.10

Table 4.6: Operator performance timings for various processor counts.

Processors RK4 SR=1 SR=2 SR=3 SR=4 SR=5 SR=6 SR=7 SR=8
2 4.732 5.137 24.82 23.35 22.90 22.16 21.94 21.79 21.98
4 18.29 15.75 2.096 2.847 4.883 5.045 5.532 6.01 6.45
8 11.28 3.742 3.611 6.119 9.023 10.43 11.86 12.60 13.36
16 13.59 1.839 5.260 8.054 13.11 14.12 15.45 16.71 17.56

Table 4.7: Interpolation performance timings for various processor counts.

Generally, what we see here is first and foremost that the accumulated inclusive time spent

in RHS and operator related subroutines (Table 4.5 and Table 4.6, respectively) is almost always

lowered by the use of multirate, in certain cases by up to 20%. The few exceptions occur at a step

ratio of 2, where the reduction in right-hand side evaluations required is observed to be quite small

based on the model proposed in Section 4.1, and the time spent in the RHS and operator routines

43

is quite close to that of RK4. Furthermore, the end-to-end wallclock times (Table 4.4), while not

showing benefit at the 2-processor level (where load imbalance appears to dominate, as evidenced

by the high wait times in interpolation), show that the reduction in right-hand side evaluations

indeed leads to end-to-end speedup for the simulation run for a number of step ratios and core

counts.

The inclusive time spent by all processors in interpolation-related subroutines (Table 4.7) high-

lights the need for a improved grid-to-grid communication - namely, in spite of the benefits we

obtain from using a split send-receive communication model for the multi-rate integrators with our

new SAT interpolation algorithm, we still see high inclusive times for higher step ratios—especially

at higher processor counts—due to idle time spent in these subroutines waiting for other grids.

We expect that for the highest processor count tested for this small-scale case (16 cores), this is

what causes poor end-to-end results. In order to alleviate this issue and reduce time spent by

processors waiting in MPI calls, rescaling of the decomposition (see Section 4.3.2) and/or different

communication models need to be explored. For the time being, this is deferred to future work.

4.3.2 Decomposition

We note here that the usage of multi-rate integration in the overset sense naturally induces load

imbalance within the application, given that in a given macro-timestep, we will be evaluating

more right-hand sides on certain grids than on others. This motivates a change to PlasComCM’s

existing standard decomposition, which simply distributes processors to grids based on the ratio

of that grid’s number of points to the total number of points in the simulation. Rescaling this

decomposition based on the multi-rate step ratio being used (a direct indication of how many right-

hand side evaluations per macro-timestep a given processor is responsible for) can be demonstrated

to have a strong influence on performance results at higher processor counts, especially regarding

grid-to-grid communication. While the small-scale case and low core counts in the previous section

preclude us from modifying the existing decomposition to obtain this benefit, the decomposition is

appropriately scaled to produce the large-scale results included in the forthcoming section.

44

4.3.3 Large-Scale Runs

In order to demonstrate the efficacy of our MRAB integrators for larger problems, we will now

time-march a three-grid system featuring roughly 41 million points and demonstrate performance

benefit. The grids are shown in Figure 4.3, and are numerically described in Table 4.8. Note the

percentage of total points in Grid 1 - this will be our slow grid, and therefore this is where the

number of right-hand side evaluations required will be reduced.

Grid Grid Type No. of Points % of Total
1 Cartesian 26,624,172 64.2
2 Cylindrical 13,210,890 31.9
3 Cartesian 1,626,625 3.9

Table 4.8: Description of grids for large-scale case.

Figure 4.3: Jet-in-crossflow grid configuration for large-scale run.

45

The results given here are obtained from a 128-core run on Cab, a Linux commodity cluster at

Lawrence Livermore National Laboratory, and (as in Section 4.3.1) document the accumulated in-

clusive time spent in certain PlasComCM right-hand side related subroutines, along with end-to-end

wallclock time. These estimates are obtained exclusive of bootstrapping costs, instead examining

the per-timestep costs of a third-order MRAB scheme with a step ratio of 2 versus that of Plas-

ComCM’s standard single-rate RK4 integrator, scaling these results for a number of timesteps such

that the same end time is reached by each integrator. Based on the relative grid sizes, a performance

model similar to that described in Section 4.1 is given here.

Integrator Total RHS Evaluations % Reduction from RK4 Est. Speedup
RK4 (PlasComCM) 165,846,748 0.00 1.00x

Single-Rate Adams-Bashforth 207,308,435 -25.00 0.80x
MRAB (Step Ratio = 2) 140,748,005 15.1 1.18x

Table 4.9: Evaluating RHS costs for MRAB integrators compared to RK4 - large-scale case.

Note that the grid sizes only allow a maximum step ratio of 2 - the resulting ideal speedup is

therefore quite modest compared to the actual capabilities of Leap-generated multi-rate integrators

applied to simulations with more wildly varying grid resolution. In any case, we ideally expect

program speedup when marching to the same end time using our generated MRAB integrator.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

Interp Operator RHS Main

A
cc

u
m

u
la

te
d

 I
n
cl

u
si

v
e
 T

im
e

Routine

PlasComCM Timing on 128 Cab Processors (41M points/3 grids)

RK4
SR2

Figure 4.4: Performance timing data for large-scale case.

46

Generally speaking, we see here that the results show inclusive times similar to what we would

expect for operator and right-hand side costs, and furthermore, we see drastic reduction in the time

spent in interpolation-related subroutines - this is a direct result of implementation of multi-rate-

specific overset interpolation schemes featuring selective communications and separate send-receive

schemes (interleaved with useful right-hand side work). In the end, the main time marching loop

sees about 5% speedup, which is below our expected ideal speedup. Looking at the accumulated

inclusive times for a few other subroutines illustrates why the multi-rate code is underperforming

here:

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

Timestep Ghost Main

A
cc

u
m

u
la

te
d

 I
n
cl

u
si

v
e
 T

im
e

Routine

PlasComCM Timing on 128 Cab Processors (41M points/3 grids)

RK4
SR2

Figure 4.5: Additional timing data for large-scale case.

Our results show that time spent in timestep calculation and ghost cell updates (halo exchanges)

is higher for MRAB than for RK4 - specifically, this additional time is being spent in communication-

related portions of these routines, performing MPI functions. We therefore conclude that these

inflated times are a direct result of the inherent load imbalance associated with the use of multirate.

47

Chapter 5

Conclusions

5.1 Discussion

In this study, we have developed multi-rate Adams-Bashforth (MRAB) integrators by taking ad-

vantage of an overset mesh formulation. After laying out the mathematical underpinnings of the

methods at work, we demonstrated proper convergence of third and fourth order integrators on

a viscous two-grid problem by comparing the result at a given time to the results of a standard

Runge-Kutta integration to the same time with a sufficiently small timestep. We have also shown

that the maximum stable timestep of the integrators linearly increases, eventually surpassing that

of the standard RK4 integrator, but also eventually meeting a limiting point at a step ratio of

slightly more than half of the speed ratio between grids. The latter result is confirmed by a number

of smaller-scale numerical tests, and furthermore brief parameter study was also undertaken regard-

ing the effects of various MRAB policy decisions on the stability of a given method, finding that

the maximum stable CFL obtained remained unaffected by different orders of evaluation and the

use of re-extrapolation. A study of the effect of the policy decisions on convergence characteristics

is reserved for future work.

In terms of performance, we have developed a model that assumes right-hand-side evaluations

of the compressible Navier-Stokes equations to compose the bulk of the work being done by the

solver, and have from this model extracted relations for minimum profitable Adams-Bashforth

step ratio. In running the integrators, we have found that while profitable step ratios are indeed

reached (especially in terms of reduction in RHS and operator costs), the overall performance of the

integrators is at times limited by inefficient communication between grids, along with the inherent

48

load imbalance that results from the use of multi-rate integrators. While the core counts on which

the example here is tested are relatively low, we are able to demonstrate the importance of spatial

decomposition in performance, motivating future work in the use of overdecomposition with AMPI

(see below). We also briefly demonstrate the use of multi-rate within PlasComCM on a larger-scale

jet in crossflow problem, showing overall performance benefit and identifying a number of code

hotspots where the remaining load imbalance manifests.

5.2 Present and Future Work

In this section, we provide a brief summary of present and future research directions to be explored

in the context of multi-rate integration on overset meshes.

5.2.1 Overdecomposition and AMPI

Adaptive MPI is an implementation of the MPI standard written on top of Charm++. Charm++

is an object-oriented parallel programming system based on C++, built on an adaptive runtime

system. A Charm++ program is decomposed into parallel objects that communicate via asyn-

chronous remote method invocation and can be migrated between nodes of a distributed system.

The runtime system schedules tasks invoked on the parallel objects in a message-driven manner,

which encourages programmers to over-decompose their problem into many more work units and

data units than there are physical processors or cores on the target machine. Load balancers can

be plugged into the runtime system to use the fact that all work and data units are migratable to

dynamically balance the load across the whole system.

As suggested by the performance results above, multi-rate time integration is expected to induce

load imbalance as different ranks operate on grids of different speeds. Assuming there is sufficient

load imbalance, we can use one of the existing load balancing strategies included in Charm++ or

write our own application specific strategies, with Dagrt passing its knowledge of the DAG through

to the load balancer. The code generated by Leap and Dagrt is thread-safe and contains no global

or static variables. Therefore, to use multirate time integration and AMPI together, we simply

49

generate the Fortran modules for multi-rate and then compile PlasComCM and the generated

codes together using AMPI’s compiler wrappers. At the time of this writing, limited performance

runs have been performed with the two tools, using PlasComCM as the host application.

5.2.2 Multiphysics Implementation

Still to come is an implementation of multi-rate integrators in the context of a compressible viscous

fluid solver (like PlasComCM) that separates the timescales based on the physics dictating the

rate of change of the given state, rather than using a purely spatial separation. As an example: a

combustion simulation involving multiple species on a single grid could involve multiple fluids/states

changing at different speeds, be it due to bulk fluid motion (and possibly turbulence) or chemical

kinetics. The ability to run a multi-rate integrator on slow states and fast states rather than slow

grids and fast grids is potentially critical to realizing the full potential of the method as a tool for

improving the efficiency of large-scale fluid simulations, especially given that the involvement of

certain physical mechanisms like plasma (the effects of which are not necessarily confined to a given

grid) can greatly increase the effective timestep ratio between solution components beyond values

that are practically possible for a grid-based implementation. In the future, schemes developed

in a manner similar to the one described in this thesis may include the capability to distinguish

timescales via both approaches, perhaps at the same time.

50

Appendix A

Third Order Convergence Results

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.001 1.56E-07 -3.000 -6.807
0.0005 2.05E-08 -3.301 -7.688
0.00025 2.63E-09 -3.602 -8.580
0.0001 1.71E-11 -4.000 -9.767
0.00005 2.15E-11 -4.301 -10.668

Table A.1: Convergence data for third-order MRAB, SR=1.

●

●

●●●

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

0

5.×10-8

1.×10-7

1.5×10-7

Δt


ρ

∞

Order of Accuracy-SR = 1

(a) Plot of density error curve for SR=1.

●

●

●

●

●

-4.5 -4.0 -3.5 -3.0 -2.5
-11

-10

-9

-8

-7

-6

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 1

logρ∞ = 2.108 + 2.969 logΔt

(b) Log-log plot for SR=1.

Figure A.1: Plotted third-order convergence data for SR=1.

51

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.005 6.49E-06 -2.301 -5.188
0.0025 8.44E-07 -2.602 -6.074
0.001 4.07E-08 -3.000 -7.390
0.0005 4.04E-09 -3.301 -8.394
0.00025 4.26E-10 -3.602 -9.370

Table A.2: Convergence data for third-order MRAB, SR=2.

●

●

●●●
0.000 0.001 0.002 0.003 0.004 0.005
0

1.×10-6

2.×10-6

3.×10-6

4.×10-6

5.×10-6

6.×10-6

Δt


ρ

∞

Order of Accuracy-SR = 2

(a) Plot of density error curve for SR=2.

●

●

●

●

●

-4.0 -3.5 -3.0 -2.5 -2.0

-10

-9

-8

-7

-6

-5

-4

-3

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 2

logρ∞ = 2.304 + 3.238 logΔt

(b) Log-log plot for SR=2.

Figure A.2: Plotted third-order convergence data for SR=2.

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.01 1.57E-05 -2.000 -4.804
0.005 2.49E-06 -2.301 -5.603
0.0025 3.26E-07 -2.602 -6.487
0.001 1.82E-08 -3.000 -7.740
0.0005 2.18E-09 -3.301 -8.661

Table A.3: Convergence data for third-order MRAB, SR=3.

●

●

●●●
0.000 0.002 0.004 0.006 0.008 0.010
0

5.×10-6

0.00001

0.000015

Δt


ρ

∞

Order of Accuracy-SR = 3

(a) Plot of density error curve for SR=3.

●

●

●

●

●

-3.5 -3.0 -2.5 -2.0

-10

-9

-8

-7

-6

-5

-4

-3

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 3

logρ∞ = 1.231 + 2.988 logΔt

(b) Log-log plot for SR=3.

Figure A.3: Plotted third-order convergence data for SR=3.

The convergence data for a step ratio of 4 is given in the main body of the thesis (Chapter 3).

52

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.01 1.47E-05 -2.000 -4.832
0.005 1.99E-06 -2.301 -5.701
0.0025 2.54E-07 -2.602 -6.595
0.001 1.60E-08 -3.000 -7.796
0.0005 1.96E-09 -3.301 -8.708

Table A.4: Convergence data for third-order MRAB, SR=5.

●

●

●●●
0.000 0.002 0.004 0.006 0.008 0.010
0

2.×10-6

4.×10-6

6.×10-6

8.×10-6

0.00001

0.000012

0.000014

Δt


ρ

∞

Order of Accuracy-SR = 5

(a) Plot of density error curve for SR=5.

●

●

●

●

●

-3.5 -3.0 -2.5 -2.0

-10

-9

-8

-7

-6

-5

-4

-3

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 5

logρ∞ = 1.151 + 2.983 logΔt

(b) Log-log plot for SR=5.

Figure A.4: Plotted third-order convergence data for SR=5.

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.02 1.08E-04 -1.699 -3.967
0.01 1.45E-05 -2.000 -4.839
0.005 1.94E-06 -2.301 -5.712
0.001 1.56E-08 -3.000 -7.807
0.0005 1.93E-09 -3.301 -8.714

Table A.5: Convergence data for third-order MRAB, SR=6.

●

●

●●●
0.000 0.005 0.010 0.015 0.020

0.0000

0.00002

0.00004

0.00006

0.00008

0.0001

Δt


ρ

∞

Order of Accuracy-SR = 6

(a) Plot of density error curve for SR=6.

●

●

●

●

●

-3.5 -3.0 -2.5 -2.0 -1.5

-10

-9

-8

-7

-6

-5

-4

-3

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 6

logρ∞ = 1.093 + 2.967 logΔt

(b) Log-log plot for SR=6.

Figure A.5: Plotted third-order convergence data for SR=6.

53

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.025 2.13E-04 -1.602 -3.672
0.01 1.45E-05 -2.000 -4.839
0.005 1.91E-06 -2.301 -5.719
0.001 1.54E-08 -3.000 -7.812
0.0005 1.91E-09 -3.301 -8.719

Table A.6: Convergence data for third-order MRAB, SR=7.

●

●
●●●

0.000 0.005 0.010 0.015 0.020 0.025
0.00000

0.00005

0.00010

0.00015

0.00020

Δt


ρ

∞

Order of Accuracy-SR = 7

(a) Plot of density error curve for SR=7.

●

●

●

●

●

-3.5 -3.0 -2.5 -2.0 -1.5

-10

-9

-8

-7

-6

-5

-4

-3

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 7

logρ∞ = 1.104 + 2.973 logΔt

(b) Log-log plot for SR=7.

Figure A.6: Plotted third-order convergence data for SR=7.

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.025 2.13E-04 -1.602 -3.671
0.01 1.44E-05 -2.000 -4.842
0.005 1.90E-06 -2.301 -5.721
0.001 1.53E-08 -3.000 -7.815
0.0005 1.90E-09 -3.301 -8.721

Table A.7: Convergence data for third-order MRAB, SR=8.

●

●
●●●

0.000 0.005 0.010 0.015 0.020 0.025
0.00000

0.00005

0.00010

0.00015

0.00020

Δt


ρ

∞

Order of Accuracy-SR = 8

(a) Plot of density error curve for SR=8.

●

●

●

●

●

-3.5 -3.0 -2.5 -2.0 -1.5

-10

-9

-8

-7

-6

-5

-4

-3

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 8

logρ∞ = 1.104 + 2.974 logΔt

(b) Log-log plot for SR=8.

Figure A.7: Plotted third-order convergence data for SR=8.

54

Appendix B

Fourth Order Convergence Results

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.002 2.98E-07 -2.699 -6.526
0.001 2.22E-08 -3.000 -7.654
0.0005 1.51E-09 -3.301 -8.821
0.00025 9.84E-11 -3.602 -10.007

Table B.1: Convergence data for fourth-order MRAB, SR=1.

●

●

●●●

0.0000 0.0005 0.0010 0.0015 0.0020

0

5.×10-8

1.×10-7

1.5×10-7

2.×10-7

2.5×10-7

3.×10-7

Δt


ρ

∞

Order of Accuracy-SR = 1

(a) Plot of density error curve for SR=1.

●

●

●

●

●

-3.6 -3.4 -3.2 -3.0 -2.8 -2.6
-11

-10

-9

-8

-7

-6

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 1

logρ∞ = 3.943 + 3.872 logΔt

(b) Log-log plot for SR=1.

Figure B.1: Plotted fourth-order convergence data for SR=1.

55

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.004 1.01E-06 -2.398 -6.000
0.0025 1.73E-07 -2.602 -6.762
0.001 3.67E-09 -3.000 -8.435
0.0005 1.79E-10 -3.301 -9.747

Table B.2: Convergence data for fourth-order MRAB, SR=2.

●

●

●●
0.000 0.001 0.002 0.003 0.004
0

2.×10-7

4.×10-7

6.×10-7

8.×10-7

1.×10-6

Δt


ρ

∞

Order of Accuracy-SR = 2

(a) Plot of density error curve for SR=2.

●

●

●

●

-3.5 -3.0 -2.5 -2.0
-12

-10

-8

-6

-4

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 2

logρ∞ = 4.044 + 4.169 logΔt

(b) Log-log plot for SR=2.

Figure B.2: Plotted fourth-order convergence data for SR=2.

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.005 6.02E-07 -2.301 -6.220
0.0025 5.02E-08 -2.602 -7.299
0.001 1.03E-09 -3.000 -8.987
0.0005 4.70E-11 -3.301 -10.328

Table B.3: Convergence data for fourth-order MRAB, SR=3.

●

●

●●
0.000 0.001 0.002 0.003 0.004 0.005
0

1.×10-7

2.×10-7

3.×10-7

4.×10-7

5.×10-7

6.×10-7

Δt


ρ

∞

Order of Accuracy-SR = 3

(a) Plot of density error curve for SR=3.

●

●

●

●

-3.5 -3.0 -2.5 -2.0
-12

-10

-8

-6

-4

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 3

logρ∞ = 3.348 + 4.126 logΔt

(b) Log-log plot for SR=3.

Figure B.3: Plotted fourth-order convergence data for SR=3.

The convergence data for a step ratio of 4 is given in the main body of the thesis (Chapter 3).

56

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.01 1.28E-06 -2.000 -5.893

0.0025 1.35E-08 -2.602 -7.870
0.001 2.64E-10 -3.000 -9.578
0.0005 1.11E-11 -3.301 -10.955

Table B.4: Convergence data for fourth-order MRAB, SR=5.

●

●●●
0.000 0.002 0.004 0.006 0.008 0.010
0

2.×10-7

4.×10-7

6.×10-7

8.×10-7

1.×10-6

1.2×10-6

1.4×10-6

Δt


ρ

∞

Order of Accuracy-SR = 5

(a) Plot of density error curve for SR=5.

●

●

●

●

-3.5 -3.0 -2.5 -2.0
-12

-10

-8

-6

-4

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 5

logρ∞ = 1.999 + 3.879 logΔt

(b) Log-log plot for SR=5.

Figure B.4: Plotted fourth-order convergence data for SR=5.

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.01 1.34E-06 -2.000 -5.872

0.0025 9.01E-09 -2.602 -8.045
0.001 1.74E-10 -3.000 -9.759
0.0005 7.14E-12 -3.301 -11.146

Table B.5: Convergence data for fourth-order MRAB, SR=6.

●

●●●
0.000 0.002 0.004 0.006 0.008 0.010
0

2.×10-7

4.×10-7

6.×10-7

8.×10-7

1.×10-6

1.2×10-6

1.4×10-6

Δt


ρ

∞

Order of Accuracy-SR = 6

(a) Plot of density error curve for SR=6.

●

●

●

●

-3.5 -3.0 -2.5 -2.0
-12

-10

-8

-6

-4

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 6

logρ∞ = 2.306 + 4.04 logΔt

(b) Log-log plot for SR=6.

Figure B.5: Plotted fourth-order convergence data for SR=6.

57

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.01 1.38E-06 -2.000 -5.860

0.0025 6.54E-09 -2.602 -8.184
0.001 1.25E-10 -3.000 -9.903
0.0005 5.05E-12 -3.301 -11.300

Table B.6: Convergence data for fourth-order MRAB, SR=7.

●

●●●
0.000 0.002 0.004 0.006 0.008 0.010
0

2.×10-7

4.×10-7

6.×10-7

8.×10-7

1.×10-6

1.2×10-6

1.4×10-6

Δt


ρ

∞

Order of Accuracy-SR = 7

(a) Plot of density error curve for SR=7.

●

●

●

●

-3.5 -3.0 -2.5 -2.0
-12

-10

-8

-6

-4

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 7

logρ∞ = 2.54+ 4.164 logΔt

(b) Log-log plot for SR=7.

Figure B.6: Plotted fourth-order convergence data for SR=7.

∆t ‖ρ‖∞ log(∆t) log(‖ρ‖∞)
0.01 1.40E-06 -2.000 -5.854

0.0025 5.03E-09 -2.602 -8.298
0.001 1.27E-10 -3.000 -9.896
0.0005 3.83E-12 -3.301 -11.417

Table B.7: Convergence data for fourth-order MRAB, SR=8.

●

●●●
0.000 0.002 0.004 0.006 0.008 0.010
0

2.×10-7

4.×10-7

6.×10-7

8.×10-7

1.×10-6

1.2×10-6

1.4×10-6

Δt


ρ

∞

Order of Accuracy-SR = 8

(a) Plot of density error curve for SR=8.

●

●

●

●

-3.5 -3.0 -2.5 -2.0
-12

-10

-8

-6

-4

logΔt

lo
g

ρ

∞

Order of Accuracy-Log-Log-SR = 8

logρ∞ = 2.651 + 4.225 logΔt

(b) Log-log plot for SR=8.

Figure B.7: Plotted fourth-order convergence data for SR=8.

58

Appendix C

Parallel Performance Plots

2 4 6 8 10 12 14 16

10

20

30

No. of Processors

E
n
d
-t

o-
E

n
d

W
al

lc
lo

ck
T

im
e

(s
) RK4

SR=1

SR=2

SR=3

SR=4

SR=5

SR=6

SR=7

SR=8

Figure C.1: Plotted end-to-end wallclock time for third-order MRAB integrators at various proces-
sor counts.

59

2 4 6 8 10 12 14 16

20

30

40

50

60

70

No. of Processors

A
cc

u
m

u
la

te
d

In
cl

u
si

ve
R

H
S

T
im

e
(s

)

RK4

SR=1

SR=2

SR=3

SR=4

SR=5

SR=6

SR=7

SR=8

Figure C.2: Plotted accumulated inclusive RHS time for third-order MRAB integrators at various
processor counts.

60

2 4 6 8 10 12 14 16

10

20

30

40

No. of Processors

A
cc

u
m

u
la

te
d

In
cl

u
si

ve
O

p
.

T
im

e
(s

)

RK4

SR=1

SR=2

SR=3

SR=4

SR=5

SR=6

SR=7

SR=8

Figure C.3: Plotted accumulated inclusive operator time for third-order MRAB integrators at
various processor counts.

61

2 4 6 8 10 12 14 16

0

10

20

30

40

50

No. of Processors

A
cc

u
m

u
la

te
d

In
cl

u
si

ve
In

t.
T

im
e

(s
)

RK4

SR=1

SR=2

SR=3

SR=4

SR=5

SR=6

SR=7

SR=8

Figure C.4: Plotted accumulated inclusive interpolation time for third-order MRAB integrators at
various processor counts.

62

Bibliography

[1] D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational fluid dynamics
and heat transfer, Washington: Hemisphere, (1984).

[2] J. Andrus, Stability of a multi-rate method for numerical integration of ode’s, Computers &
Mathematics with applications, 25 (1993), pp. 3–14.

[3] J. F. Andrus, Numerical solution of systems of ordinary differential equations separated into
subsystems, SIAM Journal on Numerical Analysis, 16 (1979), pp. 605–611.

[4] J. Benek, J. Steger, and F. C. Dougherty, A flexible grid embedding technique with
application to the euler equations, in 6th Computational Fluid Dynamics Conference Danvers,
1983, p. 1944.

[5] D. J. Bodony, Accuracy of the simultaneous-approximation-term boundary condition for time-
dependent problems, Journal of Scientific Computing, 43 (2010), pp. 118–133.

[6] D. J. Bodony, G. Zagaris, A. Reichert, and Q. Zhang, Provably stable overset
grid methods for computational aeroacoustics, Journal of Sound and Vibration, 330 (2011),
pp. 4161–4179.

[7] M. H. Carpenter, D. Gottlieb, and S. Abarbanel, Time-stable boundary conditions for
finite-difference schemes solving hyperbolic systems: methodology and application to high-order
compact schemes, tech. report, NASA, 1993.

[8] H. Chou and J. Ekaterinaris, A compact high-order cfd package for the flow solver overflow,
in 41st Aerospace Sciences Meeting and Exhibit, 2003, p. 1234.

[9] E. M. Constantinescu and A. Sandu, Multirate timestepping methods for hyperbolic con-
servation laws, Journal of Scientific Computing, 33 (2007), pp. 239–278.

[10] C. Dawson and R. Kirby, High resolution schemes for conservation laws with locally varying
time steps, SIAM Journal on Scientific Computing, 22 (2001), pp. 2256–2281.

[11] C. Engstler and C. Lubich, Multirate extrapolation methods for differential equations with
different time scales, Computing, 58 (1997), pp. 173–185.

[12] C. Gear, Multirate methods for ordinary differential equations, tech. report, Illinois Univ.,
Urbana (USA). Dept. of Computer Science, 1974.

63

[13] C. W. Gear and D. Wells, Multirate linear multistep methods, BIT Numerical Mathemat-
ics, 24 (1984), pp. 484–502.

[14] M. Günther, A. Kvaernø, and P. Rentrop, Multirate partitioned runge-kutta methods,
BIT Numerical Mathematics, 41 (2001), pp. 504–514.

[15] M. Günther and P. Rentrop, Multirate row methods and latency of electric circuits, Ap-
plied Numerical Mathematics, 13 (1993), pp. 83–102.

[16] A. Klockner, High-performance high-order simulation of wave and plasma phenomena, PhD
thesis, Brown University, 2010.

[17] Y. Lee and J. Baeder, High-order overset method for blade vortex interaction, in 40th AIAA
Aerospace Sciences Meeting & Exhibit, 2002, p. 559.

[18] R. Magnus and H. Yoshihara, Inviscid transonic flow over airfoils, AIAA Journal, 8 (1970),
pp. 2157–2162.

[19] K. Mattsson, M. Svärd, and J. Nordström, Stable and accurate artificial dissipation,
Journal of Scientific Computing, 21 (2004), pp. 57–79.

[20] R. Noack and J. Slotnick, A summary of the 2004 overset symposium on composite grids
and solution technology, in 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005, p. 921.

[21] S. Osher and R. Sanders, Numerical approximations to nonlinear conservation laws with
locally varying time and space grids, Mathematics of computation, 41 (1983), pp. 321–336.

[22] T. H. Pulliam and D. Chaussee, A diagonal form of an implicit approximate-factorization
algorithm, Journal of Computational Physics, 39 (1981), pp. 347–363.

[23] A. Sandu and E. M. Constantinescu, Multirate explicit adams methods for time integration
of conservation laws, Journal of Scientific Computing, 38 (2009), pp. 229–249.

[24] V. Savcenco, W. Hundsdorfer, and J. Verwer, A multirate time stepping strategy for
stiff ordinary differential equations, BIT Numerical Mathematics, 47 (2007), pp. 137–155.

[25] B. Seny, J. Lambrechts, R. Comblen, V. Legat, J.-F. Remacle, et al., Multirate
time stepping methods for accelerating explicit discontinuous galerkin computations., in 9th
International workshop on Multiscale (Un)-structured mesh numerical Modeling for coastal,
shelf, and global ocean dynamics, 2010.

[26] B. Seny, J. Lambrechts, T. Toulorge, V. Legat, and J.-F. Remacle, An efficient
parallel implementation of explicit multirate runge–kutta schemes for discontinuous galerkin
computations, Journal of Computational Physics, 256 (2014), pp. 135–160.

[27] N. Sharan, Time-stable high-order finite difference methods for overset grids, PhD thesis,
University of Illinois at Urbana-Champaign, 2016.

[28] N. Sharan, C. Pantano, and D. J. Bodony, Energy stable overset grid methods for hy-
perbolic problems, in 7th AIAA Theoretical Fluid Mechanics Conference, 2014, p. 2924.

64

[29] S. Sherer and M. Visbal, Implicit large eddy simulations using a high-order overset grid
solver, in 34th AIAA Fluid Dynamics Conference and Exhibit, 2004, p. 2530.

[30] S. Sherer, M. Visbal, and M. Galbraith, Automated preprocessing tools for use with
a high-order overset-grid algorithm, in 44th AIAA Aerospace Sciences Meeting and Exhibit,
2006, p. 1147.

[31] S. E. Sherer and J. N. Scott, High-order compact finite-difference methods on general
overset grids, Journal of Computational Physics, 210 (2005), pp. 459–496.

[32] J. Steger, The chimera method of flow simulation, in Workshop on applied CFD, Univ of
Tennessee Space Institute, vol. 188, 1991.

[33] A. Stock, Development and application of a multirate multistep ab method to a discontinuous
galerkin method based particle in cell scheme, 2009.

[34] B. Strand, Summation by parts for finite difference approximations for d/dx, Journal of
Computational Physics, 110 (1994), pp. 47–67.

[35] N. Suhs, S. Rogers, and W. Dietz, Pegasus 5: an automated pre-processor for overset-grid
cfd, in 32nd AIAA Fluid Dynamics Conference and Exhibit, 2002, p. 3186.

[36] M. Svärd, M. H. Carpenter, and J. Nordström, A stable high-order finite difference
scheme for the compressible navier–stokes equations, far-field boundary conditions, Journal of
Computational Physics, 225 (2007), pp. 1020–1038.

[37] M. Svärd and J. Nordström, A stable high-order finite difference scheme for the com-
pressible navier–stokes equations: no-slip wall boundary conditions, Journal of Computational
Physics, 227 (2008), pp. 4805–4824.

[38] H.-z. Tang and G. Warnecke, High resolution schemes for conservation laws and
convection-diffusion equations with varying time and space grids, Journal of computational
mathematics, (2006), pp. 121–140.

[39] E. A. Volkov, The method of composite meshes for finite and infinite regions with piecewise
smooth boundary, Trudy Matematicheskogo Instituta imeni VA Steklova, 96 (1968), pp. 117–
148.

65

