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Abstract 

In recent years, the demand for more wireless bandwidth (BW) has been soaring due to the 

booming of wireless applications in the marketplace and customers’ pursuit of higher data rates 

for communication. This need for more BW will continue to grow as the Internet of Things (IoT) 

foreshadows more applications requiring wireless connectivity and the use of radio spectrum. As 

a result, radio frequency (RF) front-end platforms capable of meeting the stringent requirements 

of higher performance and wider bandwidth are highly sought after and currently being heavily 

researched. These new platforms should be capable of dynamically operating in several dozens of 

frequency bands while maintaining high performance.  

RF piezoelectric laterally vibrating resonators (LVRs) have recently emerged as a promising 

candidate for front-end filtering and multiplexing in future radios. Compared with the incumbent 

filtering technology, such as thin-film bulk acoustic resonators (FBARs) and surface acoustic wave 

resonators (SAWs), this new class of microelectromechanical systems (MEMS) features an 

assortment of advantages, including integration capability with CMOS, frequency scalability 

towards higher frequencies, greater electromechanical coupling, and lower loss. Despite these 

promising features, LVRs still face the challenge of attaining linear response at high power levels 

and diminishing the intermodulation distortion. The moderate linearity and power handling, which 

are caused by the intrinsic thermal nonlinearity, produce an unacceptable amount of interference 

in front-ends. In this thesis, an analytical method has been developed to predict the thermal 

nonlinearity accurately. It is subsequently leveraged to reduce the nonlinear behavior of LVRs.   

The organization of the thesis is as follows. In Chapter 1, fundamentals of MEMS resonators are 

discussed. Chapter 2 explains the operating principles of piezoelectric LVRs in detail, describes 

the dominant nonlinearities in piezoelectric LVRs, and presents the prior studies on nonlinearities 

in piezoelectric LVRs. In Chapter 3, a quantitative approach is presented to precisely model the 

nonlinear dynamics and accurately predict the intermodulation distortions in LVRs. Chapter 4 

focuses on the experimental validation of the theoretical analysis. The last chapter concludes with 

the impact of the method described herein on guiding future optimizations and enhancing the 

power handling of LVRs for real-world applications.   
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Chapter 1 Introduction 

In this chapter, the background and the motivation of MEMS are first introduced. Among various 

MEMS applications, RF MEMS resonators are chosen to be the primary focus of this thesis. Next, 

MEMS resonators are categorized based on mechanical modes and transduction mechanisms. 

Features of different types of MEMS resonators are discussed. To better understand MEMS 

resonators, a linear model for the devices is presented. Finally, for more sophisticated situations 

where resonators are operating in nonlinear regime, the fundamentals of nonlinear MEMS 

resonator models are reviewed. 

1.1 MEMS Technology 

In the past few decades, the development of microfabrication techniques has enabled complex 

micrometer-scale machines, giving birth to a discipline called microengineering [1]. A wide range 

of microscale devices leveraging coupled physics between multiple domains (e.g. mechanics, 

optics, electromagnetism, fluid dynamics, etc.), particularly the electrical and mechanical domains, 

has emerged and enabled numerous new applications in actuators, sensors, and signal processing.  

These devices are called MEMS [2]. The pioneering work [3] in the early 1980s featured the 

possibility of scaling down devices with different goals using well-developed semiconductor 

fabrication techniques.  

The fabrication process of MEMS devices usually consists of a sequence of lithographical 

patterning, deposition, and etching. The patterning is usually defined by photolithography, 

transferring the geometric patterns from a photomask to a light-sensitive photoresist on the 

substrate [4]. The deposition of thin films and materials includes electroplating, chemical vapor 

deposition, plasma-enhanced chemical vapor deposition, evaporation, sputtering, etc. The etching 

process can be divided into two categories, the surface micromachining [5] and bulk 

micromachining [6]. The surface micromachining involves creating suspended structures with a 

sacrificial layer, while the bulk micromachining typically involves the etching of a thickness 

comparable to wafer for creating cavities. 
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MEMS technology is an efficient energy transduction conduit between the electrical and 

mechanical domains, thus allowing systems to harness many desirable features of the mechanical 

domain for processing electrical signals. Many applications that exploit the cross-domain nature 

of MEMS devices can be found in the literature, such as energy harvesters [7], optical switches 

[8], RF switches [9], RF resonators [10], ink injection [11], atomic force microscopy (AFM) [12], 

pressure sensors [13], microphones[14], and accelerometers [15]. This thesis primarily focuses on 

RF MEMS resonators. 

1.2 MEMS Resonators 

A MEMS resonator is a microelectromechanical device that is engineered to have a specific 

resonant frequency for applications such as timing, filtering, and sensing. Motivated by 

overcoming the shortcomings of quartz crystal resonators, resonance properties of microstructures 

have been studied since the 1960s [16].  Advancements of material, microfabrication techniques, 

and novel designs have fueled the development of MEMS resonators. Nowadays, the high 

frequency mechanical filters are irreplaceable due to their high performance (i.e. higher Q) and 

compact size [17].  

Table 1.1  Classification of MEMS resonators based on the mode of vibration. 

Mode of Vibration Frequency Range Example 

Flexural 10 kHz – 10 MHz [18] 

Contour 10 MHz – 10 GHz [10] 

Thickness Extensional 500 MHz – 20 GHz [19] 

Shear 800 MHz -2 GHz [20] 

As seen in Table 1.1, a variety of MEMS resonators (Fig. 1.1), classified based on the mode of 

vibration, are developed. Flexural mode resonators typically have resonances at low frequencies 

and are suitable for high Q and low frequency oscillator applications. Contour mode or Lamb wave 

resonators have their resonant frequencies set primarily by lithographic processes [i.e. the lateral 

(in-plane) dimensions of the structure]. Thickness extensional mode devices are known as thin-

film bulk acoustic resonators (FBARs), and are the commercial solution for filtering in RF front 

ends. Shear mode devices have a high stiffness and can operate at high frequencies. Without a net 
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volume change, this mode theoretically yields high mechanical Q (low damping) and low 

temperature sensitivity  [21]. 

 

Figure 1.1 MEMS resonators with various modes of vibration.  (a) Flexural mode device [18]. (b) 

Contour mode device [22]. (c) Thickness extensional mode device [23]. (d) Shear mode device [20]. 

 

Figure 1.2 MEMS resonators with various transduction mechanisms.  (a) Electrostatics [18]. (b) 

Electrostriction [24]. (c) Thermoelasticity effect [25]. (d) Piezoelectricity effect [26]. 

MEMS resonators can also be categorized according to their electromechanical transduction 

mechanisms, such as electrostatics [18], electrostriction [24], thermoelasticity [25], and 

piezoelectricity [26] (Fig. 1.2). The advantages of each mechanism are listed in Table 1.2. In this 

thesis, the piezoelectric contour mode resonators (more generally LVRs) will be the focus for 

several reasons. First, piezoelectric actuation has a high-energy transduction efficiency at RF than 
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other actuation mechanism. Second, the state of the art piezoelectric materials (e.g. AlN and 

LiNbO3) have been demonstrated with low acoustic loss and high Q. Third, the resonance of a 

LVR is mainly determined by the lateral dimensions, thus enabling great frequency salability by 

lithography and monolithically integration of devices with multiple center frequencies.   

Table 1.2  Classification of MEMS resonators based on transduction mechanism. 

Mode of Vibration Advantages Example 

Electrostatics High Q [18] 

Electrostriction Highest f-Q product in MEMS resonator [24] 

Thermoelasticity Scales advantageously to higher frequencies [25] 

Piezoelectricity Piezoelectric coupling is strong, commercial success [26] 

1.3 Modeling of MEMS Resonators 

 

Figure 1.3 Linear second-order single-degree-of-freedom (SDOF) system[27]. 

To model the mechanical response of a MEMS resonator, regardless of its actuation mechanism, 

a single-degree-of-freedom (SDOF) system is first discussed for simplicity (Fig. 1.3). Assume that 

a mass m is moved along the x-axis under the influence of 3 forces: a restoring force from a spring 

with a spring constant of k, a damping proportional to the velocity by constant b and an external 

force F(t). The second-order differential equation for the displacement u(t) can be represented as 

[28] : 

𝑚
𝑑2𝑢(𝑡)

𝑑𝑡2
+ 𝑏

𝑑𝑢(𝑡)

𝑑𝑡
+ 𝑘𝑢(𝑡) = 𝐹(𝑡) (1.1) 
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𝑢(𝑡)̈ + 2𝜁𝜔𝑛𝑢(𝑡)̇ + 𝜔𝑛
2𝑢(𝑡) =

𝐹(𝑡)

𝑚
 (1.2) 

where the natural resonance of the system ωn and the damping ratio ζ are defined as [28] : 

𝜔𝑛 = √
𝑘

𝑚
 (1.3) 

𝜁 =
𝑏

2𝑚𝜔𝑛
 (1.4) 

Under the free vibration condition where F(t) is absent, the solution can be presented for an 

underdamped system as [28] : 

𝑢(𝑡) = 𝑢0𝑒
−𝜁𝜔𝑛𝑡cos⁡(𝜔𝑛√1 − 𝜁2𝑡 − 𝜃0) (1.5) 

where uo and θ0 are dependent on the initial conditions of the system. The quality factor Q is 

defined as 2π times the energy stored in the system divided by the energy dissipated per cycle, 

which can also be rewritten as [28] : 

𝑄 =
1

2𝜁
 (1.6) 

As presented in Eq. 1.5, the Q also can be defined as the number of cycles needed to reduce the by 

a factor of e2π.  

For an n-degree-of-freedom (n-DOF) system, the behavior of the system can be described by Eq. 

1.1, with m, b, k becoming nth-order symmetrical matrices. The model essentially presents an 

eigenvalue problem. It can be proven that the eigenvectors of a n-DOF problem can form a set of 

orthogonal bases [28]. Hence, the displacement of the bodies comprising the system can be 

expressed as a linear superposition of the eigenvectors or vibration modes.  

For a more sophisticated model considering all the physics parameters as distributed cases, based 

on Eq. 1.1, the finite element method (FEM) can be used to achieve more accurate prediction of 

the mechanical resonance [21]. 
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Figure 1.4 Typical solutions of a Duffing equation model.(a) Calculated vibration amplitude in a system 

with nonlinear elasticity [29]. (b) Measured nonlinear response of an electrostatic resonator [30]. 

1.4 Nonlinearity in MEMS Resonators 

Typically, a MEMS resonator is modeled and considered as a linear system, in which the force is 

only linearly related to the displacement. However, a MEMS resonator can be driven into the 

nonlinear regime for a number of different reasons [31]. Despite their different physical origins, 

the nonlinear response in a MEMS resonator can be studied with a simplified model that includes 

a nonlinear elastic term in Eq. 1.1, as [30]: 

𝑚
𝑑2𝑢(𝑡)

𝑑𝑡2
+ 𝑏

𝑑𝑢(𝑡)

𝑑𝑡
+ 𝑘1𝑢(𝑡) + 𝑘3𝑢(𝑡)

3 = 𝐹(𝑡) (1.7) 

Such an equation is referenced as the Duffing equation [32]. The solution of the equation can be 

analytically approximated or numerically attained. Using an analytical approximation, the resonant 

frequency can be expressed as [30]: 

𝜔𝑛
′ = 𝜔𝑛 +

3𝑘3
8𝑘1

𝜔𝑛𝑋0 (1.8) 

where X0 is related to the boundary conditions. A typical solution and measured response for an 

electrostatic MEMS resonator are shown in Fig. 1.4.  

The solutions of the nonlinearity imply that more linear transduction and resonant modes should 

be leveraged to minimize the nonlinearity. Piezoelectric transduction and bulk modes are ideal for 
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such requirements [33]. However, for applications leveraging the nonlinear effects, electrostatic 

transduction and flexural modes are more suitable [34]. 
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Chapter 2 Piezoelectric MEMS LVRs and Their 

Nonlinearities 

As discussed in the last chapter, this thesis focuses on piezoelectric MEMS resonators due to their 

high-energy transduction efficiency and other merits. To appreciate the high electromechanical 

coupling found in piezoelectric MEMS resonators, the fundamentals of piezoelectricity are first 

discussed in this chapter. The designs, fabrication, and performance of piezoelectric MEMS LVRs 

are then introduced, followed by the discussions on the nonlinearities in piezoelectric MEMS 

LVRs. Last, previous studies on reducing or harnessing nonlinearities in piezoelectric resonators 

are presented. 

2.1 Fundamentals of Piezoelectricity  

The piezoelectric effect is the capacity of certain materials to interchange energy between the 

mechanical and electrical domains [35]. The direct effect transforms a force applied to the material 

into internal electrical charges, while the reverse effect leads to the generation of mechanical strain 

through the application of an electric field. Typical piezoelectric materials include piezoelectric 

crystals, piezoelectric ceramics and polymers [36]. Only materials of which the lattice structures 

lack a center of symmetry can possess piezoelectricity as shown in Fig. 2.1. The electric moment 

generated by the elastic deformation is the origin of piezoelectricity. Other crystals due to their 

centrosymmetry (e.g. Si), do not exhibit piezoelectricity. 

The piezoelectricity is usually a linear process, and its constitutive relationships are expressed as 

[36]: 

𝐷 = 𝜀𝑇𝐸 + 𝑑𝑇 (2.1) 

𝑆 = 𝑑𝑡𝐸 + 𝑠𝐸𝑇 (2.2) 

where T is the stress, S is the strain, E is the electric filed strength, D is the electric displacement, 

εT is permittivity with constant stress, sE is the elastic compliance with constant electric field 

strength, d is the piezoelectric strain constant with the subscript t referring to the transposed matrix. 

The units of the parameters are shown in Table 2.1. Due to the reciprocity in the definitions of S 

and T, d is a 6 by 3 matrix, S, T are 1 by 6 matrices, and s is a 6 by 6 matrix [37].  
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Figure 2.1 Electric moment generation in crystals under elastic deformation. (a) A hexagon cell with 

piezoelectricity. (b) A square cell without piezoelectricity.  

Table 2.1  Symbols and units for piezoelectric constants. 

Parameter Symbol Unit Parameter Symbol Unit 

Stress T N/m2 Elastic compliance s m2/N 

Strain S m/m Elastic stiffness c N/m2 

Electric field strength E V/m Permittivity ε F/m 

Electric displacement D C/m2 Piezoelectric strain constant d C/N 

The piezoelectricity can be characterized by dimensionless constants to present the strength of the 

electromechanical effect. A piezoelectric coupling factor (K) is defined as the square root of the 

ratio of energy available in the electric form to total input mechanical energy or that of energy 

available in the mechanical domain to the total input electric energy. Such a coupling factor 

depends on the electric and mechanical boundary conditions [36]. For a fundamental longitudinal 

resonant mode excited by a transverse electric field (LEt mode), K is defined as [36]:  

𝐾 = 𝑑31/√𝑠11
𝐸 𝜀33

𝑇  (2.3) 

where the piezoelectric constant d31 describes interaction between the electric field in out-of-plane 

direction and in-plane extensional strain, s11
E is the in-plane elastic compliance and ε33

T is the 
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permittivity in polar direction. K2 sets the ultimate energy transduction efficiency with a given 

material and given boundary conditions. However, the transducer effective coupling factor, which 

is more commonly used in evaluating device performance, depends on both the K2 and transducer 

design. For a transducer embedded in a resonant element, the effective coupling factor (keff) can be 

evaluated with [36]: 

𝑘𝑒𝑓𝑓
2 =

𝑓𝑝
2 − 𝑓𝑠

2

𝑓𝑝2
⁡ (2.4) 

where fs and fp are defined as the series and parallel resonances. For lateral modes, considering that 

the overtones of the fundamental modes form an exact odd harmonic sequence, we have effective 

electromechanical coupling factor (kt) for lateral modes defined as [36]: 

𝑘𝑡
2 = 𝑘𝑒𝑓𝑓

2 (1 +
1

9
+

1

25
+⋯) =

𝜋2

8
𝑘𝑒𝑓𝑓
2 ⁡ (2.5) 

 

Figure 2.2 Lattice structure of piezoelectric crystals. (a) AlN [38]. (b) LiNbO3 [39].  

This thesis focuses on two piezoelectric materials, namely AlN and LiNbO3 (Fig. 2.2). AlN is a 

well-known piezoelectric material that has reasonably high piezoelectric constants and integration 

capability with CMOS [40]. AlN thin films can typically be deposited using reactive sputtering 

processes where an Al target is sputtered in a N2 filled chamber. Even though the sputtered AlN 

thin films are polycrystalline, radio frequency acoustic waves exhibit low propagation loss in them. 

Most lateral modes also have high phase velocities in AlN, and thus support good frequency 

scalability.  
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In contrast, LiNbO3 is also a known piezoelectric material but with even higher electromechanical 

coupling coefficients. Despite its pronounced piezoelectricity, it was not until recently that thin 

film LiNbO3 became available thanks to the techniques of ion slicing and film transfer. 

Consequently, lateral extensional mode [26] and shear mode [41] induced by lateral electrical 

fields have been demonstrated to achieve piezoelectric resonators with high figures of merit 

(FOM)[26].  

2.2 Piezoelectric MEMS LVRs  

Piezoelectric resonators operating in a variety of modes have been demonstrated [10], [42]. Among 

different resonant modes, as discussed in Chapter 1.2, LVRs have various advantages including 

their high Q, high kt
2 and potential for monolithically integrating resonators of different resonances. 

Therefore, piezoelectric LVRs have been vastly researched in the past decade and are chosen to 

be the focus of this thesis. Design, modeling, fabrication and applications of LVRs will be 

introduced consequently in this section. 

2.2.1 Design and Modeling of Piezoelectric LVRs 

 

Figure 2.3 Mocked-up view of a typical LVR.  

As shown in Fig. 2.3, a typical piezoelectric LVR is composed of a suspended piezoelectric thin 

film and patterned interdigitated transducers (IDTs). The configuration of the IDTs varies 

depending on the piezoelectric material in use, and whether a one-port or two-port device is being 

constructed. More detailed discussions can be found in [43]. For instance, in a one-port LiNbO3 

device, the IDTs are alternatingly connected to the ground and signal to generate lateral electric 
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fields in the resonator body and excite the device into lateral extensional mode vibration via the 

d31 piezoelectric coefficient of AlN. Acoustic standing waves are subsequently formed in the 

lateral direction off the reflective acoustic boundaries. In a similar fashion with only top electrodes, 

LiNbO3 based LVRs can be excited with lateral E-fields to accommodate the acoustic standing 

waves (Fig. 2.4). It is noteworthy that to satisfy the boundary condition of the mechanical 

resonance for a maximum kt
2, a weighted electrode technique is typically adopted in LiNbO3 LVRs 

[44]. 

 

Figure 2.4 Electrical field and piezoelectric effect in the resonator.   

The resonant frequency is collectively determined by the lateral dimensions and material 

properties. The resonant frequency can be approximated as [10]: 

𝜔𝑠 =
𝜋

𝑊𝑒
√
𝐸𝑒𝑞

𝜌𝑒𝑞
⁡ (2.6) 

where ωs is the resonance frequency, We is the width of pitch, Eeq and ρeq are the equivalent 

Young’s modulus and density of the film stack forming the resonator respectively.  

For operations in the linear regime, the electromechanical behavior can be described by the 

modified Butterworth–Van Dyke (MBVD) model (Fig. 2.5) to represent the mechanical resonance 

in the electrical domain, described as [10]: 

𝑅𝑚 =
𝜋2

8
∙

1

𝜔𝑠
2 ∙ 𝐶0

∙
1

𝑘𝑡
2𝑄

 (2.7) 
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𝐶𝑚 =
8

𝜋2
∙ 𝐶0𝑘𝑡

2 (2.8) 

𝐿𝑚 =
𝜋2

8
∙

1

𝜔𝑠
2 ∙ 𝐶0

∙
1

𝑘𝑡
2 (2.9) 

𝑍 =
1

𝑗𝜔𝐶0
//(𝑅𝑚 + 𝑗𝜔𝐿𝑚 +

1

𝑗𝜔𝐶𝑚
) (2.10) 

The symbols are explained in Table 2.2. The motional terms represent the mechanical vibration as 

electrical components. In addition to the current generated by the modal response of the structure, 

the dielectric behavior of the piezoelectric layer must be taken into account through the inclusion 

of a static capacitance Co in parallel. 

 

Figure 2.5 MBVD model for piezoelectric resonators.   

Table 2.2  Parameters in the MBVD model. 

Symbol Parameter Unit Symbol Parameter Unit 

ω
s
 Resonant Frequency rad/s 

k
t

2

 
Electromechanical Coupling 

Coefficient 
1 

Q Quality Factor 1 C
0
 Static Capacitance F 

R
m
 Motional Resistance Ω C

m
 Motional Capacitance Ω 

L
m
 Motional Inductance H Z Impedance Ω 

2.2.2 Fabrication of Piezoelectric LVRs 

The fabrication of LVRs has been extensively investigated in the past decade [10]. The devices 

used as the testbed for the investigation in this thesis were fabricated using processes shown in 

Fig. 2.6.  

On the one hand, for AlN LVRs, a four-mask, CMOS compatible process is adopted on a 4-inch 

high resistivity Si wafer. First, 80 nm of Pt is evaporated as bottom electrode. Then, 500 nm AlN 

is reactively sputtered. Phosphoric acid is used to etch the ground vias. Then the Al is sputtered to 
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form the top electrodes. Inductively coupled plasma reactive-ion etching (ICP-RIE) is utilized to 

define the resonator boundaries and open the release windows. For the last step, the device is 

released by XeF2 based etching of Si. The scanning electron microscope (SEM) image of a 

fabricated device is presented in Fig. 2.7(a). 

 

Figure 2.6 Fabrication flow chart of piezoelectric LVRs. (a) AlN LVR. (b) LiNbO3 LVR.  

 

Figure 2.7 SEM of the fabricated piezoelectric LVRs. (a) AlN LVR [43]. (b) LiNbO3 LVR [44].  

On the other hand, LiNbO3 LVRs are fabricated with a different method [45], [46], as seen in Fig. 

2.6(b). A LiNbO3 thin film on a carrier substrate with an intermediate SiO2 layer are first fabricated 

by the vendor NanoLN (Jinan, China). Next, gold electrodes are defined on the top of the thin film. 

Then, SiO2 layer is used as the hard mask and LiNbO3 is etched by ICP-RIE for defining the release 

windows and reflective boundaries. Last, SiO2 is removed by HF and the resonator is released. 

The SEM of a fabricated LiNbO3 resonator is shown in Fig. 2.7. 
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Figure 2.8 Typical LVR admittance responses. (a) Typical AlN resonator [47]. (b) Typical LiNbO3 

resonator [48]. The extracted parameters of the MBVD model are shown in the inset tables.  

Table 2.3  Reported performance of piezoelectric LVRs. 

Reference Material kt2 Q Frequency 

[10] AlN 1.2% 2100 86 MHz 

[49] AlN 0.3% 414 8.5 GHz 

[50] GaN 0.83% 1174 163 MHz 

[48] LiNbO3 17.8% 920 132 MHz 

[51] LiNbO3 17.5% 1400 460 MHz 

 

2.2.3 Performances and Applications of Piezoelectric LVRs 

Typical performances of one-port piezoelectric LVRs, shown in admittance, are presented in Fig. 

2.8. Reported performance of piezoelectric resonators is shown in Table 2.3 for AlN [10], [49], 

GaN [50], and LiNbO3 [48], [51] resonators. Various approaches are used to optimize different 

performance aspects of LVRs (e.g. spurious mode suppression [41], [52], and quality factor 

improvement [53]). 
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Figure 2.9 Typical LVR applications. (a) RF filtering font-end [54]. (b) Integrated oscillator [55]. (c) 

Optical modulation [56]. (d) Sensors [57]. 

A number of applications as seen in Fig. 2.9 have been proposed based on piezoelectric LVRs. 

Leveraging the low loss and high electromechanical coupling of piezoelectric LVRs, high 

performance filters [54] have been demonstrated with great potential for future monolithic multi-

frequency wideband RF filters. Integrated oscillators [55] have also been demonstrated, providing 

an alternative method for miniature timing. Using the mechanical vibrations of the LVRs to 

acousto-optically affect the coupling of light, optical modulators have been shown  [56]. Sensors 

[57], [58], [59] with high sensitivity and small sizes are reported for a wide range of purposes.  

Although the LVRs have been demonstrated with promising applications in RF, one major 

challenge, namely the inherent nonlinearity in miniature piezoelectric LVRs at high power levels, 

remains a bottleneck in the path of their deployment in RF front ends. The nonlinearity in LVRs 

performance leads to undesirable performance degradation of their comprising RF systems (e.g. 

higher insertion loss and intermodulation for filters, larger frequency drift and more noise in 

oscillators, and lower sensitivity in sensors). The nonlinearities in piezoelectric LVRs will be 

discussed in the next section. 
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2.3 Nonlinearities in Piezoelectric LVRs 

As discussed in the last section, nonlinearities greatly affect the performance of systems based on 

piezoelectric LVRs. In this section, the origins of nonlinearities will be first identified and 

examined. Techniques for reducing or harnessing nonlinearities will be introduced then. 

2.3.1 Thermal Nonlinearity 

 

Figure 2.10 Thermal nonlinearity in piezoelectric LVRs. (a) GaN resonator [50]. (b) AlN resonator [60]. 

Thermal nonlinearity arises from the resonance drift caused by the joule heating and mechanical 

energy dissipation in the resonator. When thermal nonlinearity is dominant, typical admittance 

responses at different power levels are presented in Fig. 2.10 for GaN resonators [50] and AlN 

resonators [60]. Near the resonance, the admittance curve shifts to lower frequency due to the 

negative temperature coefficient of frequency (TCF) of the resonator [61]. Off the resonance, the 

thermal nonlinearity is not as obvious because the larger impedance leads to less energy dissipation 

and thus less temperature rise. It has been shown with a quantitative analysis based on Duffing 

equation approximation that thermal nonlinearity is the dominant nonlinearity in AlN LVRs [60]. 

However, the approach is only applicable to piezoelectric resonators with low kt
2 at relatively low 

input power levels. 

In this thesis, thermal nonlinearity will be proved as the main nonlinear effect in piezoelectric 

LVRs with quantitative discussions presented in Chapters 3 and 4. 
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2.3.2 Permittivity and Piezoelectric Nonlinearity 

Although permittivity and piezoelectric nonlinearities have not been studied in piezoelectric 

LVRs, they have been investigated for AlN FBARs [62], [63]. They are represented as [62]: 

𝐷 = 𝜀𝑇𝐸 + 𝑑𝑇 + 𝜀2
𝑇𝐸2 + 𝑑2𝑇

2 + 𝜀3
𝑇𝐸3 + 𝑑3𝑇

3 (2.11) 

It is reported that these nonlinearities are no longer negligible when the E-field is larger than 15 

V/μm in AlN FBARs [63]. Compared with FBARs, LVRs have much narrower thermal paths, so 

the thermal nonlinearity usually greatly distorts the frequency responses before permittivity and 

piezoelectric nonlinearities can be observed. Thus, these nonlinearities are not as critical as the 

thermal nonlinearity in LVRs.  

 

Figure 2.11 Nonlinearity near the anti-resonance caused by the substrate effect. (a) GaN resonator [50].  

(b) AlN resonator. 

2.3.3 Substrate Nonlinearity 

Substrate nonlinear effect can also affect the performance of piezoelectric resonators. This is 

mainly caused by the doping in the substrate underneath the probing pads and piezoelectric thin 

film. At high power levels, the conductivity of the substrate becomes lower and thus another 

parasitic path is formed through the substrate, causing a higher admittance value near parallel 

resonance, as shown in Fig. 2.11. One method to reduce this substrate nonlinear effect is using 

substrates with higher resistivity.  
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2.3.4 Reducing and Harnessing Nonlinearities in Piezoelectric Resonators 

 

Figure 2.12 Piezoelectric resonator applications for reducing or harnessing nonlinearities. (a) Thermally 

compensated FBAR [64]. (b) Thermally compensated LVR [33]. (c) Resonant amplitude amplification due 

to nonlinear parametric amplification [65]. (d) Q enhancement leveraging parametric amplification [66]. 

Aside from studies aiming at identifying the origins of nonlinearities in LVRs, studies to reduce 

or to harness nonlinearities in piezoelectric LVRs have been reported. For applications susceptible 

to nonlinearities in LVRs (e.g. RF filtering front-ends), different techniques have been reported to 

reduce the dominant thermal nonlinearity [60]. SiO2 thin film is used to compensate the negative 

TCF of AlN with its positive TCF both in FBARs [64] and LVRs [33]. Other approaches include 

modifying the geometry of the resonators to reduce heat accumulation in the resonant body [60].  

Studies on harnessing nonlinearities in LVRs have just started to emerge. The nonlinearities in 

piezoelectric resonators, especially the parametric amplification phenomenon, can also be 

leveraged to achieve greater resonant amplitude [65], better Q, and lower phase noise [66]. Some 

of the reported applications are summarized in Fig. 2.12. 
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Chapter 3 Modeling of Thermal Nonlinearity and 

Intermodulation in Piezoelectric LVRs 

In this chapter, a nonlinear MBVD model is shown first. Leveraging the nonlinear model and an 

iterative method, a numerical approach is presented to precisely model the thermal nonlinearities. 

Next, the intermodulation in resonators is introduced. Finally, based on the thermal nonlinearity 

model, an approach to accurately predict the intermodulation distortions in LVRs caused by 

thermal nonlinearity is presented. 

3.1 Modeling of Thermal Nonlinearity in Piezoelectric LVRs 

3.1.1 Nonlinear MBVD Model 

As discussed in the last chapter, thermal nonlinearity originates from the resonance drift caused 

by the self-heating in the resonator. The resonance is approximated as [10]: 

𝜔𝑠 =
𝜋

𝑊𝑒
√
𝐸𝑒𝑞

𝜌𝑒𝑞
⁡ (3.1) 

where ωs is the resonance frequency, We is the width of pitch, Eeq and ρeq are the equivalent 

Young’s modulus and density of the film stack forming the resonator respectively. When 

temperature rises, most materials (except a few materials like SiO2 [64]) become softer, which is 

quantitatively described by negative temperature coefficient of elasticity (TCE) [33].  

As a given power is applied to the resonator, the mechanical dissipation in the resonator manifests 

itself in heat, and introduces a temperature rise in the resonator body. Due to the negative TCE of 

piezoelectric material [61], the resonant frequency of LVRs exhibits a negative dependence on the 

temperature of the resonator, and can be formulated by [10]: 

𝜔𝑠(𝑇) = 𝜔𝑠0 ∙ (1 + 𝑇𝐶𝐹 ∙ (𝑇 − 𝑇0)) (3.2) 

where T and T0 are the raised temperature and the room temperature, ωs(T) and ωs0 are the shifted 

resonance and the resonance at room temperature respectively, and TCF is the resonator 

temperature coefficient of frequency. For AlN LVRs, the TCFs have been reported around -30 
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ppm/K [60]. For LiNbO3 LVRs, the TCFs have been experimentally characterized, ranging from 

-85 ppm/K to -50 ppm/K for various orientations [45].  

 

Figure 3.1 Nonlinear MBVD model for piezoelectric resonators.   

Due to the resonance shifting, a nonlinear MBVD model, modified from the linear MBVD model, 

is introduced as shown in Fig. 3.1. Based on the linear MBVD model, which can accurately predict 

the resonator behavior in linear region, a nonlinear model is described as:  

𝑍(𝑇) =
1

𝑗𝜔𝐶0
//(𝑅𝑚(𝑇) + 𝑗𝜔𝐿𝑚(𝑇) +

1

𝑗𝜔𝐶𝑚
) (3.3) 

𝑅𝑚(𝑇) =
𝜋2

8
∙

1

𝜔𝑠𝐶0
∙
1

𝑘𝑡
2𝑄

 (3.4) 

𝐿𝑚(𝑇) =
𝜋2

8
∙

1

𝜔𝑠
2𝐶0

∙
1

𝑘𝑡
2 (3.5) 

𝐶𝑚 =
8

𝜋2
∙ 𝐶0𝑘𝑡

2 (3.6) 

3.1.2 Modeling of Thermal Nonlinearity  

The nonlinear MBVD model introduced in the last section depends on the temperature rise T in 

the resonator. To solve for the temperature rise, an investigation on the nonlinear process is first 

conducted. As depicted in Fig. 3.2, the thermally induced nonlinear process can be interpreted as 

the results of either a positive or a negative feedback for an excitation signal higher or lower than 

the resonant frequency. Figure 3.2 (a)- (c) show the positive feedback process when a high-power 

input RF signal is applied at a frequency lower than resonance. The heat generated causes a 

temperature rise and subsequently a resonance shift toward the lower frequency. It also leads to a 

larger admittance at the input frequency that in turn enables higher power absorption into the 

resonator body and produces further resonance downward shift. This nonlinear process eventually 

converges as the temperature (T) saturates and reaches equilibrium. A negative feedback process 
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is presented in Fig. 3.2. (d) - (f) when a high-power input RF signal is exerted at a frequency higher 

than resonance. The temperature rise induced by accumulated heat shifts the resonance toward the 

lower frequency, which causes a smaller admittance and less dissipated heat. The negative 

feedback will also reach to equilibrium. The convergence of the temperature is dictated by thermal 

dynamics of the resonator structure and described by the following equation:  

|
𝑉𝑟

𝑍
|
2

∙ 𝑅𝑒[𝑍(𝑇)] − 𝑛 ∙ ⁡
𝑇−𝑇0

𝑅𝑡ℎ
= 𝐶𝑡ℎ ∙

𝑑𝑇

𝑑𝑡
  (3.7) 

 

Figure 3.2 Conceptual explanation of the nonlinear distortion in resonator admittance response. 

(a) - (c) Positive feedback. (d) - (f) Negative feedback. 

The first term in Eq. 3.7 is the joule heating generated in the resonator assuming all dissipated 

energy is converted to heat. Vr is the voltage applied across the resonator, and Z(T) is resonator’s 

input impedance as a function of resonator temperature described by the nonlinear MBVD model 

(Eq. 3.3 – 3.6). 

The second term in Eq. 3.7, in which n is the number of anchors, and T-T0 is the difference between 

the raised temperature and the room temperature, embodies the heat escaping the resonator via the 

anchors. Rth is the thermal resistance of individual anchors, related with the physical dimensions 

and material properties as [60]: 

𝑅𝑡ℎ =
𝐿𝑚𝑒𝑡𝑎𝑙

𝜅𝑚𝑒𝑡𝑎𝑙∙𝑊𝑚𝑒𝑡𝑎𝑙∙𝐷𝑚𝑒𝑡𝑎𝑙
⁡//⁡⁡

𝐿𝑝𝑖𝑒𝑧𝑜

𝜅𝑝𝑖𝑒𝑧𝑜∙𝑊𝑝𝑖𝑒𝑧𝑜∙𝐷𝑝𝑖𝑒𝑧𝑜
  (3.8) 

where L, W, and D are dimensions of each material layer in the anchor. κ is the material thermal 

conductivity. The thermal resistance of the anchors can be considered as two thermal resistances 
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connected in parallel. 

The third term is the transient stored heat, and Cth is the thermal capacitance of the resonator, 

defined as [60]: 

𝐶𝑡ℎ = 𝜌𝑚𝑒𝑡𝑎𝑙 ∙ 𝑉𝑚𝑒𝑡𝑎𝑙 ∙ 𝐶𝑚𝑒𝑡𝑎𝑙 + 𝜌𝑝𝑖𝑒𝑧𝑜 ∙ 𝑉𝑝𝑖𝑒𝑧𝑜 ∙ 𝐶𝑝𝑖𝑒𝑧𝑜  (3.9) 

where ρ, V and Cp are the density, volume and specific heat of each layer. The total thermal 

capacitance of the device structure is the sum of the thermal capacitances stemming from the metal 

electrodes and the piezoelectric material. 

Based on the aforementioned nonlinear model, Eq. 3.7 is enough for solving the thermal 

nonlinearity in piezoelectric LVRs. However, directly solving the equation leads to an expression 

which can be approximated by the Duffing equation [29] when temperature variation is small. To 

get an accurate prediction of the thermal nonlinearity, a numerical method is adopted, which will 

be discussed in the next section. 

3.1.3 Numerical Method for Thermal Nonlinearity 

 

Figure 3.3 The iterative procedure for numerically simulating the thermal nonlinearity in piezoelectric 

LVRs. 

Utilizing the parameters in a MBVD model that accurately describes resonance response in the 

linear region, we can prepare the beginning of an iterative procedure shown in Fig. 3.3. In the first 

iteration for each excitation frequency, the temperature rise is set to either 0 or the converged T 

value derived from iterations for the prior frequency. The method then starts with calculating the 
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resonant frequency for this initialized temperature. Subsequently, the resonator impedance at the 

excitation frequency is calculated with the MBVD model that is dependent on the resonance. The 

real part of the impedance introduces joule heating and represents mechanical power dissipation, 

and leads to a temperature increase that can be solved with a thermodynamic equation for the 

resonator. This procedure is iterated until the temperature variation in the resonator converges. The 

converged temperature is then used in the MBVD model to compute the admittance at the given 

frequency. To attain the nonlinear admittance response over a wide frequency range, this algorithm 

is repeated for each excitation frequency. 

 

Figure 3.4 Bisection method for seeking convergence. 

For excitation frequencies close to the resonance, the thermally induced admittance variation will 

be much more radical due to the high Q of the resonator. A merely recursive method cannot 

guarantee convergence in iterations. Results of iterations can be driven into an oscillation between 

two temperatures, neither of which is the converged value. In this case, the bisection method [67] 

is adopted to ensure that iterations progress toward the convergence, as seen in Fig. 3.4. The 

calculation is finished by a Mathematica code. More details are included in Appendix A.1. 

3.2 Modeling of Intermodulation in Piezoelectric LVRs 

Thermal nonlinear, modeled in the last section, is not the only concern when designing an RF 

system. Moreover, intermodulation distortion (IMD) is another important characteristics for 
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describing linearity for a wide range of microwave and RF components [68]. This section 

emphasizes on examining the origin of IMD and accurately modeling IMD in piezoelectric LVRs. 

3.2.1 Intermodulation Distortion 

 

Figure 3.5 Typical intermodulation distortions.  

 

Figure 3.6 Definition of IMD3. 

The IMD originates from the injection of a two-tone signal (f1 and f2) into the device under test 

(DUT). For an ideal linear device, the output signal only contains f1 and f2. However, a realistic 

component with certain level of nonlinearity will produce signals at other frequencies. These 

signals include the harmonics of the original (named as nth order harmonics at n-time frequencies 

of the fundamental tones) and the intermodulation between the two-tones. The intermodulation 

signals are sorted into different orders as seen in Fig. 3.5. 

Two of the most challenging distortion products for RF applications are the third-order distortion 

(IMD3) products near the original two-tone signals (2f1-f2 and 2f2-f1). It is because third-order 

distortion products create additional frequency content near the modulated signal (called spectral 

regrowth [68]). The spectral regrowth caused by poor linearity interferes other wireless channels. 
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Besides, for two-tone signals with small frequency spacing, IMD3 are difficult to remove with 

filters. 

To quantitatively describe IMD3, third order intercept points (TOIs) are defined for both third-

order input intercept point (IIP3) and third order output intercept point (OIP3) as shown in Fig. 

3.6.  

For piezoelectric MEMS resonators, the IMD3 has been experimentally tested on FBARs [69] and 

LVRs [60], [70] (Fig. 3.7). It is reported that severe IMD3 is one of the biggest hurdles for 

commercially adopting LVRs as RF front-ends [60]. However, this issue has never been 

quantitatively studied. An accurate model is needed for optimizing the performances of LVRs.  

 

Figure 3.7 Reported IMD3 in piezoelectric (a) FBARs [69] and (b) LVRs [70]. 
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3.2.2 Modeling of Thermally Induced Intermodulation in LVRs 

Figure 3.8 Method for quantitatively characterizing the IMD3 in AlN LVRs. (a) Two tones with equal 

spectral spacing to the resonance are used in IMD3 measurement. (b) Resonance bifurcation caused by the 

absorbed power and subsequently produced heat. (c) Bifurcation-induced unequal impedances, reflection 

coefficients, and absorbed power. (d) Combined absorbed power interpreted as an AM signal source and a 

constant signal source. (e) Temperature variation and impedance fluctuation at a given frequency solved 

using thermal dynamics of the resonator. (f) Calculated reflection coefficients in both the time and 

frequency domains. (g) Spectral analysis of the reflected signals and the contributing terms of IMD3. (h) 

Fourier transform results of reflected signals. 

Based on the thermal nonlinearity model described in section 3.1, a model for thermally induced 

intermodulation in LVRs is achieved. It is worth noting that Eq. 3.3 is modified for excitations at 

different frequencies: 

𝑍(𝑓, 𝑇) =
1

𝑗2𝜋𝑓𝐶0
//(𝑅𝑚(𝑇) + 𝑗2𝜋𝑓𝐿𝑚(𝑇) +

1

𝑗2𝜋𝑓𝐶𝑚
) 

(3.10) 

As depicted in Fig. 3.8(a-b), upon the excitation from two tones at f1 and f2, the mechanical energy 

dissipation in the resonator produces joule heating and causes the resonance to bifurcate. The 

bifurcation [Fig. 3.8(c)] leads to unequal impedances presented to the two tones and induces 

uneven power absorption. The even parts of the two tones can be combined and interpreted as an 

amplitude modulated (AM) heat source while the uneven portion is considered as a constant heat 

source [Fig. 3.8(d)]: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑉𝑖𝑛𝑐 = 𝐴1cos⁡(2𝜋𝑓1𝑡) + 𝐴2cos⁡(2𝜋𝑓2𝑡) 
  ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= 2𝐴1cos⁡(2𝜋𝑓0 ⋅ 𝑡)cos⁡(2𝜋𝛥𝑓 ⋅ 𝑡) + (𝐴2 − 𝐴1)cos(2𝜋𝑓2𝑡) 

(3.11) 
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where Vinc is the total incident signal of the resonator. Ai is the amplitude of the incident signal of 

each source and can be formulated by:  

𝐴𝑖 = 2√𝑃𝑍0 ∙
𝑍(𝑓𝑖 , 𝑇(𝑡))

𝑍(𝑓𝑖 , 𝑇(𝑡)) + 𝑍0
 (3.12) 

where P is the RF power provided by the sources and Z0 is the characteristic impedance of the 

system. The modulation frequency (f1 - f2) of the heat equates the spectral difference between the 

two tones.  

The resonator temperature, varying in time, can be solved with the thermal dynamic equation: 

   
 |
𝑉𝑖𝑛𝑐

𝑍
|
2

∙ 𝑅𝑒[𝑍(𝑓, 𝑇)] − 𝑛 ∙ ⁡
𝑇−𝑇0

𝑅𝑡ℎ
= 𝐶𝑡ℎ ∙

𝑑𝑇

𝑑𝑡
       (3.13) 

which is similar to Eq. 3.7. The first term in Eq. 8 is the joule heating assuming all dissipated 

energy in the resonator is converted to heat. Z(f,T) is the impedance corresponding to the signal 

frequency at certain temperature T defined by Eq. 3.10. The second term embodies the heat 

escaping the resonator via the anchors. Rth is the thermal resistance of an individual anchor defined 

by Eq. 3.8 with the physical dimensions and material properties. The third term is the transiently 

stored heat that can determined by the thermal capacitance (Cth), defined in Eq. 3.9, and 

temperature variation rate of the resonator. 

Naturally, the temperature variation would follow an amplitude modulation (2𝛥𝑓 in Eq. 3.11) that 

is lower than or comparable to the resonator thermal frequency (1/τthermal). Due to the dependence 

of resonance on temperature, the second order effect of the temperature variation would manifest 

as impedance fluctuations near the resonance, introducing time-varying reflection coefficients 

(modulated at f1 - f2) at the input of the resonator [Fig. 3.8(e)]. Consequently, the reflected waves 

[Fig. 3.8(f-g)], a mixing product of the reflection coefficients (f1 - f2) and input tones (f1 and f2), 

feature IMD3 at 2f1-f2 and 2f2-f1: 

 𝑉𝑟𝑒𝑓𝑙 = 𝐴1 cos(2𝜋𝑓1𝑡)
𝛤1(𝑡)

1 + 𝛤1(𝑡)
+ 𝐴2 𝑐𝑜𝑠(2𝜋𝑓2𝑡)

𝛤2(𝑡)

1 + 𝛤2(𝑡)
 (3.14) 

  
𝛤(𝑇) =

𝑍(𝑓, 𝑇) − 𝑍0
𝑍(𝑓, 𝑇) + 𝑍0

 (3.15) 

where Vrefl is the reflected power, and 𝛤 is the reflection coefficient.  
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To predict the IMD3 quantitatively, the thermally influenced parameters, including resonance, 

impedance, temperatures, and reflection coefficients, are holistically solved in the time domain, 

before fast Fourier transform is performed to extract the spectral density of the reflected signals 

[Fig. 3.8(h)]. The analysis of the intermodulation term is achieved by a Matlab code, as shown in 

Appendix B.   
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Chapter 4 Experimental Validation 

In this chapter, experimental validation of the theoretical analysis is presented. The experimental 

validation is conducted on both AlN and LiNbO3 devices. The linear responses of DUTs are first 

measured. The thermal nonlinearity model is then verified with measurement. Next, IMD3 are 

measured and compared with the model provided in Chapter 3. Finally, discussions of thermal 

nonlinearities and IMD3 are presented. 

4.1 Devices under Test and Measurement Setup 

4.1.1 Linear Response of DUT 

Both AlN and LiNbO3 LVRs were fabricated in the cleanroom. The fabrication process for AlN 

resonator is described in [71] while that for LiNbO3 resonators is discussed in [61]. The SEM 

images of the fabricated devices are shown in Fig. 4.1. 

 

Figure 4.1 Fabricated AlN resonators [71] and LiNbO3 resonators [61]. 

The linear responses of DUTs were measured with an Agilent 5230A PNA-L Network Analyzer 

and a probe station. First, a 456 MHz and a 566 MHz device are measured in vaccum and fitted 

with MBVD model described in section 2.1. The measurement was carried out at -10 dBm power 

level which is in the linear regime of the resonator. The responses are presented in Fig. 4.2 and 

Table 4.1.  
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Figure 4.2 Measured spurious mode-free AlN resonators in vacuum. (a) 456 MHz resonator. (b) 566 MHz 

resonator. 

 

Figure 4.3 Measured 456 MHz spurious mode-free AlN resonator (a) in vacuum and (b) in air. 

Next, the frequency response of the resonator was also measured in air and compared with the 

performance in vacuum in Fig. 4.3 and Table 4.1. The results show a significant decrease in Q, 

which is caused by more damping in air, described by [72]: 

 
1

𝑄𝑎𝑖𝑟
=

1

𝑄𝑎𝑖𝑟_𝑑𝑎𝑚𝑝𝑖𝑛𝑔
+

1

𝑄𝑣𝑎𝑐
 (4.1) 
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where Qair is the quality factor in air, 1/Qair_damping represents the energy loss due to air damping, 

Qvac is the quality factor in vacuum considering anchor losses, electrical loadings, etc. 

 

Figure 4.4 Measured LiNbO3 resonators. (a) SH0 mode device oriented 30° to –Y axis. (b) S0 mode 

device oriented 50° to +Y axis. 

Table 4.1  Extracted linear performance from measured piezoelectric LVRs. 

No. Material Condition kt2 Q fs 

1 AlN Vacuum 1.78% 1234 456.1MHz 

2 AlN Vacuum 1.59% 1321 566.9MHz 

1 (air) AlN Air 1.63% 987 456.4MHz 

3 LiNbO3 Air 0.96% 1860 272.9MHz 

4 LiNbO3 Air 0.69% 1550 310.9MHz 

Third,  LiNbO3 resonators, both S0 and SH0 devices were tested in air, as shown in Fig. 4.4. The 

extracted MBVD key parameters of the tested devices are presented in Table 4.1. 

4.1.2 Thermal Nonlinearity and IMD3 Measurement Setup  

The thermal nonlinearity was measured with an Agilent 5230A PNA-L Network Analyzer at 

different input power levels. The power level is controlled by the power source in the VNA. 
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Forward frequency sweep and backward frequency sweep were set by choosing the sweeping 

either from low to high frequency or high to low frequency respectively. The sweeping time was 

controlled to be long enough for the system to reach equilibrium. 

 

Figure 4.5 IMD3 measurement setup. 

The IMD3 measurement setup is shown in Fig. 4.5. The low-pass filters and isolators were used 

to attenuate higher order harmonics of the sources and suppress the IMD3 caused by measurement 

setup other than the DUT. 

4.2 Comparison of Measurement and Theory 

4.2.1 Comparison of Thermal Nonlinearity Results 

Based on the linear responses reported in the last section and the model in Chapter 3, thermal 

nonlinearities were calculated and compared with measurement. The thermal resistances of 

different resonators were first calculated with Eq. 3.8. The physical dimensions were set by the 

design [71], [73]. The thermal conductivities of metal layers (Al and Au layer) were obtained from 

[74]. The thermal conductivity of AlN was obtained from [75]. For piezoelectric LiNbO3 thin film, 

the thermal conductivity was reported in [76]. Detailed values used in the calculation are presented 

in Table 4.2.  

Using the thermal nonlinearity model described in Chapter 3, the thermal nonlinear behaviors were 

modeled and compared with the measurements. First, AlN resonators at 456 MHz and 566 MHz 

were measured in vacuum condition. The results are presented in Fig. 4.6. The calculated and 

measured Rth are also presented. 
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Table 4.2  Key parameters for calculating thermal resistance Rth. 

No. Unit 1 2 3 4 

Lmetal μm 18 16 20 60 

κmetal W/(m∙K) 205 205 205 205 

Wmetal μm 17.5 14 5 25 

Dmetal μm 0.15 0.15 0.15 0.15 

Lmetal μm 18 16 40 60 

κpiezo W/(m∙K) 48.1 48.1 4.18 4.18 

Wpiezo μm 21.5 18 5 25 

Dpiezo μm 1 1 1 1 

n 1 4 4 4 2 

Rth K/W 2862K/W 3086K/W 27510K/W 33000K/W 

 

Figure 4.6 Measured and simulated nonlinearity of a (a) 456 MHz AlN resonator and (b) 566 MHz AlN 

resonator. 

Second, the influence of air ambience to the thermal conductivity was investigated (Fig. 4.7). The 

thermal convection process conducts a portion of the accumulated heat and thus generates a smaller 

equivalent thermal resistance. Measured thermal resistance in air is around half of that measured 

in vacuum for the 456 MHz AlN design (1750 K/W in air compared with 3400 K/W in vacuum).  
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Figure 4.7 Measured and simulated nonlinearity of a 456 MHz AlN resonator (a) in air and (b) in vacuum. 

Third, forward and backward sweep were conducted on LiNbO3 resonators. The bifurcation 

response shown in Fig. 4.8 is commonly observed for resonant systems bearing nonlinearity, and 

its origin can be mathematically explained. Bifurcation occurs when the input signal of sufficiently 

high power gives rise to two viable solutions for the equilibrium resonator temperature near 

resonance. Further increase in the power can result in three solutions for the equilibrium resonator 

temperature. The resonator temperature can only stabilize to one of the solutions, and the process 

is determined by the prior condition of the resonator. Forward and backward frequency sweeps 

impose different prior conditions for capturing bifurcation phenomena, and therefore lead to 

different stabilized temperatures and response near the bifurcated resonance. For example, a 

backward sweep approaching bifurcation point would have a higher prior temperature than that 

for a forward sweep approach bifurcation from the opposite direction. The resonator temperature 

converges to the solution closer to its prior condition in bifurcation frequency range during forward 

and backward frequency sweeps. Away from the frequency range over which the admittance 

response bifurcates, there will be only one equilibrium solution. Thus, the response is identical for 

two sweep types.   
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Figure 4.8 Comparison between the simulated nonlinearity response and measured results at different 

power levels. (a), (b) Forward and backward frequency sweep for the SH0 mode device. (c), (d) Forward 

and backward frequency sweeps for the S0 mode device. 

 

Figure 4.9 (a) Simulated temperature response at different power levels for the S0 mode device at forward 

sweep. (b) Maximum temperature increase vs. thermal resistance at different power levels for the S0 

mode device. 

The method described herein is also extended in Fig. 4.9 (a) to show the temperature rise (∆T) in 

the S0 mode resonator at various excitation frequencies around the resonance. It is expected that 
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higher excitation power gives rise to a larger temperature variation and consequently more severely 

distorted admittance response from the linear regime. For the S0 mode device under forward sweep 

test of 10 dBm power, the resonator temperature rises by 15 K. The temperature rises with respect 

to input power. For 20 dBm back-sweep signal, the maximum temperature rise can reach 91 K. 

The interdigitated electrodes made of Al would degrade due to the accelerated oxidation of Al in 

high temperature and dry air ambience.   

As shown in Fig. 4.9 (b), the maximum ∆T for the S0 mode resonator, defined as the peak 

equilibrium temperature in Fig. 4.9 (a), is also theoretically investigated for its dependence on the 

thermal resistance associated with the anchors. It is important to note that thermal nonlinearity can 

be suppressed by reducing the thermal resistance associated with anchors and hastening the heat 

conduction out of the resonator.  

4.2.2 Comparison of IMD3 Results 

 

Figure 4.10 Measured and simulated IMD3 at various frequency differences and input power of 5 dBm. 

First, a 456 MHz AlN resonator was measured in air condition with two tones at various frequency 

differences and a fixed input power of 5 dBm. Using the described quantitative method, the 

measured and calculated IMD3 at various frequency differences are presented in Fig. 4.10. An 

excellent agreement is obtained between the measurements and simulations. The simulation was 

done with Rth=1750 K/W, Cth=30∙10-8 J/K, kt
2=1.63%, and Q=987. Because the measurement was 

done in room temperature and dry air ambiance, the calculation of Cth includes contribution from 
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the air surrounding the resonator.  

The high IMD3 products for Δf smaller than the thermal frequency can be attributed to the larger 

temperature variation (Fig. 4.11). As seen in Fig. 4.11, the frequency of envelope modulation, 2Δf, 

introduces much larger time-varying temperature fluctuation in the resonator when it is much 

smaller than the thermal frequency. The increase in Δf would cause a decrease in the amplitude of 

temperature variation as the thermal response struggles to follow the electrical excitation. The 

phenomenon leads to the diminishing of IMD3 at larger Δf. A sufficiently large Δf would 

eventually result in IMD3 in the resonator predominantly produced by other types of nonlinearity.  

The simulated response of a typical fully anchored FBAR with similar characteristics is also 

included for comparison with AlN LVRs (Rth=350 K/W, Cth=30∙10-8 J/K, kt
2=5%, Q=987). It is 

clear that FBARs outperform LVRs in linearity at low Δf due to their lower thermal resistance and 

subsequently higher thermal time constant. 

 

Figure 4.11 Simulated resonator temperature variations in time domain for different values of Δf. 

Second, the IMD3 at different input power levels with the same Δf was measured. The 

measurements are compared with simulations in Fig. 4.12. The discrepancy between simulations 

and measurements stems (shown in the highlighted region) from the fabricated device having 

lower Q at low power levels. This phenomenon, in which Q decreases at low power level, was 

observed in multiple fabricated AlN devices, and its origin is still under investigation. 

It is noteworthy that the measured curves are different from typical IMD3 curves measured in 

filters. As the input power increases, the slope of IMD3 terms is not 3 times of the slope of the 

input two-tone signal. The reason is that the reflection power instead of the transmitted power is 
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measured since the resonator is a one-port device. An extended simulation is shown in Fig. 4.13. 

At low power level, larger input power generates greater temperature variation and thus leads to a 

rise in the IM3 of the reflected signal. However, at high input power level, the increase in IM3 

products gradually saturates, because at high input power level, although the temperature variation 

is still large, the highly bifurcated impedance curve fails to provide enough difference in the 

reflection coefficient caused by the temperature fluctuation. Thus, the IM3 products in the reflected 

power gradually saturate.  

 

Figure 4.12 Measured and simulated IMD3 at different input power levels and a frequency difference of 2 

kHz. 

 

Figure 4.13 (a) Measured and simulated reflected power (including two-tone signals and IMD3 products) 

for the AlN LVR with different input power. (b) Simulated transmitted power of the AlN LVR with 

different input power when the ground is terminated with a receiving port. 

For a better comprehension of the IMD3, a simulation for the transmitted power is shown in Fig. 
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4.13 (b). The simulation assumes the same DUT but terminates the ground of the resonators with 

another 50Ω termination, thus it becomes a virtual two-port device. We can clearly observe that 

the three times relation in the slopes of the first order term and IMD3 products. The IIP3 is 

calculated to be 24.9 dBm implying the limited power handling ability of the current LVR designs. 

Third, the impact of surrounding air on the thermal resistance and thermal capacitance was also 

investigated. The same device was measured in vacuum for comparison. The results indicate that 

surrounding air creates a thermal pass (smaller Rth) and absorbs certain amount of heat (larger Cth). 

A quantitative study is presented in Fig. 4.14. The air ambiance causes a smaller intermodulation 

in general. 

In conclusion, it can also be observed that thermal nonlinearity is dominant for intermodulation 

within 10 kHz. Other nonlinearities (likely mechanical nonlinearity) cannot be ignored for large 

intermodulation spacing or small input power (although usually insignificant). The study of other 

nonlinearities and their impact on IMD3 in LVRs is still inconclusive.  

 

Figure 4.14 Measured and simulated higher-order intermodulation products of the AlN LVR. 
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Figure 4.15 Measured and simulated higher-order intermodulation products of the AlN LVR. 

Furthermore, the intermodulation model is generalized for higher-order harmonics. Higher-order 

harmonics cannot be ignored when the frequency spacing between two tones is close or the two-

tones are at high power level. As seen in Fig. 4.15, the measured spectral density of the reflected 

signals is also precisely predicted by our quantitative method up to the 5th order. The simulation 

was done using Fourier transform with the Blackman window function to reduce the influence of 

the spectrum leakage (side lobes in the spectrum).  
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Chapter 5 Conclusion and Future Work 

5.1 Conclusion 

In this thesis, thermal nonlinearity and thermally-induced nonlinearity have been investigated. 

First, an iterative method has been reported to numerically model the thermal nonlinearity. Second, 

a numerical method has been adopted to capture the IMD3 in AlN LVRs based on the thermal 

nonlinear MBVD model. Next, the experimental results of the nonlinear admittance response of 

both AlN and LiNbO3 resonators at different power level have been compared with the simulations 

results. The excellent agreement between theory and measurements has confirmed the validity of 

the analysis on the thermal linearity in LVRs. Finally, the IMD3 in the reflected power of AlN 

resonators have also been measured at different frequency differences and different power levels 

respectively. The excellent agreement between theory and measurements has confirmed the 

analysis on the origin of IMD3 in AlN LVRs. This work has provided a precise theoretical 

framework to improve the linearity of piezoelectric micro-resonator for commercial RF front end 

filtering. 

5.2 Future Work 

Although this thesis provides a good platform for predicting thermal nonlinearities and IMD3 in 

piezoelectric LVRs, the models can be further improved to more thoroughly describe nonlinearities 

in LVRs. 

5.2.1 Thermal Resistance Based on Finite Element Simulation 

Currently, the whole resonator body is assumed to have the same temperature, and only the thermal 

resistance at the anchors is considered. However, the displacement of the resonator body is not 

uniform at resonance and thus generates different amounts of heat in different parts of the 

resonator. To get a more accurate model, a distributed thermal model based on FEM is desirable. 

By assigning the total power dissipation into different elements according to the displacement 

amplitude, a thermally-coupled electromechanical simulation is promising for further optimization 

of the thermal nonlinear model. 



43 

 

5.2.2 Investigation of Other Nonlinearities in LVRs 

As discussed in section 2.2, there are other nonlinearities in LVRs, which also affect the resonator 

performance. These nonlinearities cannot be ignored in certain conditions, especially at ultra-low 

power levels or high power levels. Study of other nonlinearities will provide deeper insights into 

further design optimizations and physical limitations for LVRs working in extreme conditions. 

5.2.3 Nonlinear Response of RF Systems Based on Piezoelectric LVRs 

RF systems, particularly future monolithic filtering front-ends, contain more than one single 

resonator. It is important to generalize the method discussed in this thesis to the real-world 

applications. This will be a crucial tool aiding the design of RF systems based on piezoelectric 

LVRs. 
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Appendix Code 

A.1 Code for Thermal Nonlinearity Model 
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A.2 Code for Intermodulation Model 

close all; 

clear all; 

clc; 

Pa =5; 

Pb =5; 

deltafreq=1000; 
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mkdir(num2str(deltafreq)); 

samp_freq=1e9; 

tspan = 0:1/(samp_freq):0.09; 

options = odeset('MaxStep', 1e-5); 

% [T Y] = ode23(@diff_lu, [0 0.1],0, options); 

[T Y] = ode23(@diff_lu_t, tspan,0, options); 

fig1=figure('visible','off'); 

plot(T,Y); 

saveas(fig1, strcat(num2str(deltafreq),'/figure1.png')); 

temp=size(T); 

length=temp(1)/9*8; 

X = fft(Y(size(Y)/21:size(Y)))*2/length; 

timelength=0.08 

X(1)=X(1)/2; 

fig2=figure('visible','off'); 

% plot((0:99)/timelength,abs(X(1:100))); 

plot((0:deltafreq/2)/timelength,abs(X(1:deltafreq/2+1))); 

saveas(fig2, strcat(num2str(deltafreq),'/figure2.png')); 

kt=sqrt(0.0163); 

C0=460*10^-15; 

ws0=456.4*10^6*2*3.1415926;  

TCF=-30*10^-6; 

Rth=3500; 

Cth=30*10^-8; 

Q=987*1.01;    

deltaw=2*pi*deltafreq; 

ws=ws0*(1+TCF*Y); 

Rm=pi*pi/8*1./(C0*kt*kt*Q.*ws); 

Lm=pi*pi/8*1./(C0*kt*kt*ws.*ws); 

Cm=8/pi/pi*C0*kt*kt; 

w1=ws0-deltaw; 

w2=ws0+deltaw; 

Z1=1./(i*w1*C0+1./(Rm+i*w1*Lm+1./(i*w1*Cm))); 

Z2=1./(i*w2*C0+1./(Rm+i*w2*Lm+1./(i*w2*Cm))); 

ReZ1=real(Z1); 

ReZ2=real(Z2); 

P1 = (10^(Pa/10 - 3)); 

P2 = (10^(Pb/10 - 3)); 

Voc1=2*sqrt(50*P1); 

Voc2=2*sqrt(50*P2); 

Vback = 

real(Voc1.*exp(i*w1*T).*50./(2*50+Z1)+Vdevice2.*exp(i*w2*T).*50./(2*50+

Z2)); 

fig3=figure('visible','off'); 

plot(T,Vback); 

saveas(fig3, strcat(num2str(deltafreq),'/figure3.png')); 

X2 = fft(Vback(size(Vback)/9:size(Vback)))*2/length; 

X2(1)=X2(1)/2; 

% figure; 

% plot((0:99)/0.07,abs(X2(1:100))); 

fig4=figure('visible','off'); 

lowlim=timelength*ws0/2/pi+1-10*deltafreq*timelength; 

highlim=timelength*ws0/2/pi+1+10*deltafreq*timelength; 

frange=linspace(ws0/2/pi-10*deltafreq,ws0/2/pi+10*deltafreq,1-

round(lowlim)+round(highlim)); 

plot(frange,abs(X2(round(lowlim):round(highlim)))); 

saveas(fig4, strcat(num2str(deltafreq),'/figure4.png')); 
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plot(frange,10*log10(1000*abs(X2(round(lowlim):round(highlim)).*X2(roun

d(lowlim):round(highlim))/50))); 

saveas(fig5, strcat(num2str(deltafreq),'/figure5.png')); 

index=[round(timelength*ws0/2/pi+1-

3*deltafreq*timelength),round(timelength*ws0/2/pi+1-

1*deltafreq*timelength),round(timelength*ws0/2/pi+1+1*deltafreq*timelen

gth),round(timelength*ws0/2/pi+1+3*deltafreq*timelength)] 

save=10*log10(1000*abs(X2(index).*X2(index)/50)) 

dlmwrite(strcat(num2str(deltafreq),'/RT.txt'),save,'\t') 

save2=10*log10(1000*abs(X2(round(lowlim):round(highlim)).*X2(round(lowl

im):round(highlim))/50)); 

dlmwrite(strcat(num2str(deltafreq),'/RT2.txt'),save2,'\t'); 

 

function [dy] = diff_lu_t(t, y) 

    deltafreq=1000; 

    kt=sqrt(0.0163); 

    C0=460*10^-15; 

    ws0=456.4*10^6*2*3.1415926;   

    TCF=-30*10^-6; 

    Rth=3500; 

    Cth=30*10^-8; 

    Q=987*1.01; 

    ws=ws0*(1+TCF*y); 

    Rm=pi*pi/8*1/(C0*kt*kt*Q*ws); 

    Lm=pi*pi/8*1/(C0*kt*kt*ws*ws); 

    Cm=8/pi/pi*C0*kt*kt; 

    deltaw=2*pi*deltafreq; 

    w1=ws0-deltaw; 

    w2=ws0+deltaw; 

    w0=ws0; 

    Z1=1./(i*w1*C0+1./(Rm+i*w1*Lm+1./(i*w1*Cm))); 

    Z2=1./(i*w2*C0+1./(Rm+i*w2*Lm+1./(i*w2*Cm))); 

    Z0=1./(i*w0*C0+1./(Rm+i*w0*Lm+1./(i*w0*Cm))); 

    ReZ1=real(Z1); 

    ReZ2=real(Z2); 

    ReZ0=real(Z0); 

 

    Pa =5; 

    Pb =5; 

    P1 = (10^(Pa/10 - 3)); 

    P2 = (10^(Pb/10 - 3));       

    Voc1=2*sqrt(50*P1); 

    Vdevice1=Voc1.*((Z1)./(Z1 + 2*50)); 

    Voc2=2*sqrt(50*P2); 

    Vdevice2=Voc2.*((Z2)./(Z2 + 2*50)); 

    flag=(Vdevice1>Vdevice2); 

    dy =-y/Cth/Rth+1/Cth*ReZ1*(abs((Vdevice1-

Vdevce2)*flag/Z1))^2+1/Cth*ReZ2*(abs((Vdevice2-Vdevice1)*(1-

flag)/Z2))^2+1/Cth*ReZ0*(abs((Vdevice2*flag+Vdevice1*(1-

flag))*2*cos(deltaw*t)/Z0))^2; 

end 


