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ABSTRACT

This thesis describes the use of control-based continuation for design opti-

mization, in the presence of constraints and without access to a model, of

the response of a linear system to harmonic input. A proof of concept of this

paradigm is presented in the context of an armature-controlled DC motor.

Specifically, three design problems are formulated with the objective function

equal to the maximum angular velocity response to a harmonic torque dis-

turbance, and a constraint that is imposed on each of three distinct stability

margins, respectively. The analysis shows that the simulation model for the

DC motor may be treated analogously to an actual experiment with all in-

formation drawn from real-time measurements, rather than from the model

itself. The control-based continuation paradigm is formulated in terms of a

non-invasive, yet locally stabilizing control scheme, which can be tuned to

accelerate convergence to the steady state response. The numerical analy-

sis uses the matlab-compatible continuation platform coco to determine

the implicit relationship between model parameters that results from the

constraint, and to evaluate the objective function along the corresponding

constraint manifold. A comparison between a scheme that relies on finite

differences for approximating the problem Jacobian and an algorithm based

on the Broyden update is also included.
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CHAPTER 1

INTRODUCTION

This study focuses on the combination of a numerical method with feedback

control for design optimization of an unmodeled system. In particular, the

analysis seeks to identify parameters of an armature-controlled DC motor

[24] to improve disturbance rejection performance under constraints on the

stability of the system.

This chapter serves as an essential introduction to the topics discussed in

this study. This includes the necessary background for implementing pa-

rameter continuation in problems where an explicit model may or may not

be available. Also included is a brief literature review about control-based

continuation. A summary of the contributions of this thesis and an outline

conclude the chapter.

1.1 Design and Optimization

In engineering design, parameters that govern a system are adjusted until the

system performance meets desired requirements while satisfying predefined

constraints [13]. Optimization is a process of selecting from all the possible

designs an optimal choice that maximizes or minimizes a suitably defined

objective function. Different collections of constraints may lead to different

optimal designs, even for the same objective function.

In the absence of constraints, when the relationship between the adjustable

parameters and the objective function is explicitly available, it may be pos-

sible to find the optimal design choice analytically. When constraints are

present, the adjustable parameters are no longer independent, and it may be

very difficult to eliminate the constraints by restricting to a smaller number

of independent parameters [19]. Instead, numerical methods must be used

to explore the design space.
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A further complication arises when neither the constraints nor the objective

function can be expressed explicitly in terms of the adjustable parameters.

In this case, experiments must be integrated in the process of optimization

[22].

1.2 Linear Systems

The steady-state response of a harmonically excited, stable, linear, time-

invariant system is harmonic with the same frequency [25]. The function

that describes the response amplitude and phase is the frequency response

function [15]. The frequency response function can be used to character-

ize the sensitivity of a system to disturbances. Similarly, the stability of a

dynamical system with closed-loop feedback may be evaluated in terms of

properties of the frequency response function of a suitably defined open-loop

dynamical system.

For example, the gain margin of the closed-loop system is defined as the

ratio of the maximum possible gain that preserves stability to the actual

system gain [33]. It can be measured at the phase crossover frequency when

the phase of the open-loop frequency response function equals −π. Simi-

larly, the phase margin is measured at the gain crossover frequency when the

amplitude of the open-loop frequency response function equals 1.

In this thesis, we consider design and optimizations problems formulated

in terms of the frequency response functions of several linear systems. For

example, we analyze an objective function defined in terms of the maximum

response amplitude for one frequency response function under constraints

imposed on the gain or phase margin of another frequency response function.

1.3 Parameter Continuation

This thesis considers only equality constraints corresponding to equations

in terms of the system properties. Continuous families of solutions to such

equations may be analyzed using the method of parameter continuation. We

use the canonical formulation of the extended continuation problem described

in [10]. Specifically, let the function Φ : Rn → Rm, where n ≥ m ≥ 1, be
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continuously differentiable. The equation Φ(u) = 0 is a zero problem in

the vector u of continuation variables and represents the constraints on the

design problem. Consider, in addition, a set of monitor functions denoted by

Ψ : Rn → Rr that include the objective function. The extended continuation

problem is then defined as F (u, κ) = 0, where

F : (u, κ) 7→

(
Φ(u)

Ψ(u)− κ

)
. (1.1)

Further, let I ∈ {1, ..., r} be an index set of cardinality |I| ≤ n−m. Its com-

plement is denoted by J := {1, ..., r}\I. Given a constant κ∗I , the restriction

G : Rn+r−|I| → Rm+r, where

G : (u, κJ) 7→ F (u, κ) |κI=κ∗I , (1.2)

defines the restricted continuation problem G(u, κJ) = 0. Every regular

solution point of the restricted continuation problem lies on a locally unique

n−m− |I|-dimensional solution manifold.

A restricted continuation problem is initialized with an initial solution

guess u0, such that κJ = ΨJ(u0). The entries of the vector κ∗I may either be

initialized with the entries of ΨI(u0), or assigned some other preferred values.

Given an initial solution guess, the restricted continuation problem may

be solved numerically by application of Newton’s method. In general, the

solution to the equation f(x) = 0 may be approximated by the limit of a

sequence

xn+1 = xn − j−1
n f(xn), (1.3)

where jn is an approximation to the Jacobian Df(xn). In the Broyden update

method,

jn = jn−1 +
(f(xn)− f(xn−1))− j−1

n−1(xn − xn−1)

‖(xn − xn−1‖
(xn − xn−1)T . (1.4)

In this case, j0 may be initialized arbitrarily, for example, using a matrix

obtained from a related problem.

A continuation algorithm combines a nonlinear solver, such as the Newton

method, with a method for generating new solutions on the solution manifold

from existing solutions.
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1.4 Control-Based Continuation

As suggested previously, it may be necessary to perform an experiment in

order to evaluate the zero and monitor functions of a restricted continuation

problem. This requires that the outcome of the experiment can be uniquely

associated to the values of the continuation variables. For example, in a linear

system, the frequency response function is uniquely parameterized by the

system parameters and the excitation frequency, independently of the initial

conditions, and measurable using an experiment, provided that convergence

to the steady state is achieved.

The rate of convergence to the steady-state response may be regulated

by the addition of feedback control with adjustable gains. Such a feedback

scheme is said to be noninvasive if the control input equals 0 when the system

is in steady state [4]. When combined with parameter continuation, such an

implementation is called control-based continuation. The literature on this

topic is relatively young (e.g., [26]) and its application to constrained design

optimization has yet to be explored (but see [2]).

A general setup of control-based continuation includes sensors that collect

measurements from the experiment and a computer with an embedded nu-

merical algorithm that applies the nonlinear solver and manifold continuation

method to locate successive points on the solution manifold. Experiments

are repeated with the updated setup until the continuation is completed.

In 2008, Sieber and Krauskopf [29] explores control-based continuation

in simulations by investigating an autonomous dry friction oscillator. They

successfully tracked periodic responses of the nonlinear oscillator, as well as

associated bifurcations, using just the output of a simulation. In another

work [30], they illustrated the use of control-based continuation for studying

the periodic response of a pendulum with axis of rotation suspended on a

mass-spring-damper system. Specifically, they suggested that control-based

continuation could be applied to a hybrid substructured model, with a sim-

ulated mass-spring-damper system interacting with a physical model of the

pendulum through an appropriate actuator. The formulation showed that

delay-induced instability of the hybrid test could be eliminated by a suitable

identification of the continuation variables and zero functions. The first ap-

plication of control-based continuation in an actual experiment was achieved

by Sieber et al. [31]. In this paper, a saddle-node bifurcation of periodic
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orbits was tracked successfully for a vertically forced pendulum.

Inspired by Sieber and Krauskopf, Barton and Burrow [2] used control-

based continuation in a physical experiment to track a branch of periodic

orbits of a nonlinear energy harvester through a saddle-node bifurcation.

The bistable spring characteristics of this harvester were explored further in

[3], where a bifurcation diagram obtained using control-based continuation

was validated against the result of harmonic balance applied to an explicit

mathematical model of the system dynamics.

The control-based continuation method was applied in an equation-free bi-

furcation analysis of an idealized traffic jam model by Marschler et al. [16, 17].

Another interesting application was discussed by Krauskopf and Sieber [21],

where they performed a bifurcation analysis of the EI-Nino Southern Oscil-

lation. An even more complicated application of control-based continuation

was backbone curve identification, proposed by Renson et al. [23] as an alter-

native to the resonant-decay approach, in which amplitude-dependent char-

acteristics of the system are extracted experimentally from the free response.

A detailed investigation of the algorithmic nature of a control-based con-

tinuation scheme, the sensitivity to experimental noise, and methods for ap-

proximating the problem Jacobian has been performed in a series of papers

by Bureau et al. [6, 7, 8, 9, 27] on a piecewise smooth oscillator. The authors

present a systematic method for tuning the feedback gains and discuss three

methods for on-the-fly evaluation of the uncontrolled stability of periodic re-

sponses of the oscillator. Moreover, they describe the implementation of their

control-based continuation algorithm in the continex toolbox, compatible

with the matlab-based continuation platform coco [28].

1.5 Contribution and Outline

This thesis makes an original contribution to the literature by applying the

method of control-based continuation to an example linear dynamical system

in order to show how this approach can be integrated with design optimiza-

tion in the presence of constraints and without access to an explicit model.

The system of interest in this thesis is a DC motor. Three design prob-

lems are proposed in terms of two model parameters, constraints on suitably

defined stability margins, and an objective function characterizing the mini-
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mum disturbance rejection. Numerical results of control-based continuation

are validated against the predictions from parameter continuation performed

on explicit expressions for the zero functions and monitor functions.

The proposed method and simulation strategies in this thesis generalize

to arbitrary linear, time-invariant systems, and may also give insight into

design analysis for time-varying systems and nonlinear systems.

The remainder of this thesis is organized as follows. Chapter 2 introduces

the model of the DC motor and derives analytical expressions for the fre-

quency response functions of interest. These are used to propose the three

design problems associated with constant gain margin, constant phase mar-

gin, and constant Nyquist distance, respectively. In Chapter 3, the algebraic

systems of equations obtained in Chap. 2 for each of the three design prob-

lems are analyzed numerically using coco.

In Chap. 4, the DC motor is considered as a black box represented by

a simulink model with adjustable inputs and measurable outputs. The

control-based continuation approach is used to reformulate the design prob-

lems in terms of computable zero and monitor functions. These are then

analyzed with coco and the results are compared to the predictions from

Chap. 3. A slight variation is introduced in Chap. 5, where the implementa-

tion of Broyden’s method in continex is used during continuation.

The thesis concludes with a brief summary and a discussion about possible

future research.
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CHAPTER 2

PROBLEM FORMULATION

In this chapter, we develop the general design methodology introduced in

Chap. 1 in the context of the dynamics of a linear, armature-controlled DC

motor with an integrator in the feedback loop and driven by a reference

angular velocity. We formulate three distinct design problems amenable to

parameter continuation. In each case, a constraint is imposed on the Nyquist

curve for the open-loop transfer function, and optimization seeks to minimize

the amplitude of the steady-state response to a harmonic torque disturbance.

2.1 Mathematical Model

To illustrate the methodology, consider the following model of an armature

controlled DC motor [24]:

Jω′(t) + bω(t) = Kti(t) + λ(t), (2.1)

Li′(t) +Ri(t) = v(t)−Keω(t), (2.2)

where ω(t) is the angular velocity of the motor shaft at time t, i(t) is the

current through the armature, v(t) is the driving voltage applied to the mo-

tor, and λ(t) is a disturbance torque on the motor shaft. The parameters

J , b, L, and R represent the shaft moment of inertia about its axis of ro-

tation, the viscous damping coefficient, the armature inductance, and the

armature resistance, respectively. The proportionality constants Kt and Ke

relate current to the induced torque and angular velocity to the back emf, re-

spectively. This system of coupled differential equations models the response

of the armature current and the shaft’s angular velocity to variations in the

applied voltage and the presence of the disturbance torque. For example, for

constant voltage V (t) ≡ V0 and and zero disturbance, λ(t) ≡ 0, the steady
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state angular velocity equals KtV0/(bR+KeKt), corresponding to a constant

current i(t) ≡ bV0/(bR +KeKt).

Since the model is linear with constant coefficients, it is convenient to

transform the description to the frequency domain, such that

JsΩ(s) + bΩ(s)−KtI(s) = Λ(s) + Jω0, (2.3)

KeΩ(s) + LsI(s) +RI(s) = V (s) + Li0, (2.4)

where Ω(s), I(s), V (s), and Λ(s) are the corresponding Laplace transforms,

ω0 = ω(0), and i0 = i(0). This implies that

Ω(s) =
KtLi0 + (R + Ls)(Jω0 + Λ(s)) +KtV (s)

(b+ Js)(R + Ls) +KeKt

, (2.5)

I(s) =
−KeJω0 + (b+ Js)(Li0 + V (s))−KeΛ(s)

(b+ Js)(R + Ls) +KeKt

. (2.6)

It follows that the voltage-to-angular velocity transfer function equals

HV→Ω(s) :=
Kt

(b+ Js)(R + Ls) +KeKt

, (2.7)

whereas the voltage-to-current transfer function equals

HV→I(s) :=
b+ Js

(b+ Js)(R + Ls) +KeKt

. (2.8)

Similarly, the disturbance torque-to-angular velocity transfer function equals

HΛ→Ω :=
R + Ls

(b+ Js)(R + Ls) +KeKt

(2.9)

and the disturbance torque-to-current transfer function equals

HΛ→I(s) := − Ke

(b+ Js)(R + Ls) +KeKt

. (2.10)

A corresponding system representation is shown in the block diagram below

(Fig. 2.1).
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[
HΛ→I(s) HV→I(s)
HΛ→Ω(s) HV→Ω(s)

]
V (s)

Λ(s)

Ω(s)

I(s)

Figure 2.1: System representation of the DC motor.

2.1.1 Time-domain responses

Let h(t) denote the inverse Laplace transform of [(b+ Js)(R + Ls) +KeKt]
−1.

If (bL+RJ)2 6= 4JL(bR +KeKt), then

h(t) =
eσ1t − eσ2t

σ1 − σ2

, (2.11)

where

σ1,2 = −bL+RJ

2JL
±
√

(bL+RJ)2

4J2L2
− bR +KeKt

LJ
(2.12)

are the poles of the transfer functions HV→Ω(s), HV→I(s), HΛ→Ω(s), and

HΛ→I(s). If, instead, (bL+RJ)2 = 4JL(bR +KeKt), then

h(t) = teσt, (2.13)

where

σ = −bL+RJ

2JL
(2.14)

is a repeated pole of the transfer functions. It now follows that the angular

velocity and current responses to a unit impulse in the driving voltage equal

hv→ω(t) = Kth(t) (2.15)

and

hv→i(t) = bh(t) + Jh′(t). (2.16)

Similarly, the angular velocity and current responses to a unit impulse in the

disturbance torque equal

hλ→ω(t) = Rh(t) + Lh′(t) (2.17)

and

hλ→i(t) = −Keh(t). (2.18)
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Since the poles lie in the left half of the complex plane, the unit-impulse

responses decay to 0 exponentially in t and the system is input-to-output

stable.

For general v(t) and λ(t), the time-dependence of the angular velocity and

current are now given by

ω(t) = (KtLi0 + JRω0)h(t) + JLω0h
′(t) + (v ∗ hv→ω + λ ∗ hλ→ω) (t) (2.19)

and

i(t) = (−KeJω0 + bLi0)h(t) + JLi0h
′(t) + (v ∗ hv→i + λ ∗ hλ→i) (t) (2.20)

in terms of the convolution operator ∗.

2.1.2 Steady-state dynamics

The exponential decay of h(t) in Eqs. (2.11) and (2.13) implies that the

steady-state responses ωss(t) and iss(t) equal the asymptotic behavior of the

convolutions v ∗ hv→ω + λ ∗ hλ→ω and v ∗ hv→i + λ ∗ hλ→i, respectively. For

example, when v(t) = V0 cos ηt and λ(t) ≡ 0, we find

ωss(t) = KtV0
(KeKt + bR− JLη2) cos ηt+ (bL+ JR)η sin ηt

(b2 + J2η2)(R2 + L2η2) + 2KeKt(bR− JLη2) +K2
eK

2
t

(2.21)

and

iss(t) = V0
(bKeKt + b2R + J2Rη2) cos ηt+ (b2L− JKeKt + J2Lη2)η sin ηt

(b2 + J2η2)(R2 + L2η2) + 2KeKt(bR− JLη2) +K2
eK

2
t

.

(2.22)

Similarly, when v(t) ≡ 0 and λ(t) = Λ0 cos ηt, we find

ωss(t) = Λ0
(RKeKt +R2b+ L2bη2) cos ηt+ (R2J − LKeKt + L2Jη2)η sin ηt

(b2 + J2η2)(R2 + L2η2) + 2KeKt(bR− JLη2) +K2
eK

2
t

(2.23)

and

iss(t) = −KeΛ0
(KeKt + bR− JLη2) cos ηt+ (bL+ JR)η sin ηt

(b2 + J2η2)(R2 + L2η2) + 2KeKt(bR− JLη2) +K2
eK

2
t

.

(2.24)

To investigate the dependence of the steady-state response on the exci-
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tation frequency η, consider the amplitude of the response of the angular

velocity to a harmonically varying voltage:

KtV0√
(b2 + J2η2)(R2 + L2η2) + 2KeKt(bR− JLη2) +K2

eK
2
t

. (2.25)

From this expression, we obtain a DC gain of Kt/(bR+KeKt). This exceeds

1 if Ke < 1− bR/Kt, and is below 1 otherwise. Furthermore, the amplitude

gain approaches 0 asymptotically as η−2 when η → ∞. A resonance peak

occurs at

η =

√
2JLKeKt − b2L2 − J2R2

√
2JL

(2.26)

provided that 2JLKeKt − b2L2 − J2R2 > 0. It follows that there exists a

unique and transversal crossing of the amplitude gain with the value 1, only

if Ke < 1 − bR/Kt. If, instead, Ke > 1 − bR/Kt, then the amplitude gain

equals 1 at two frequencies provided that 2JLKeKt − b2L2 − J2R2 > 0 and

the local maximum is bigger than 1, and remains below 1 otherwise.

Similarly, the phase of the steady-state response for the angular velocity

is given by

− arctan

(
(bL+ JR)η

KeKt + bR− JLη2

)
(2.27)

when η2 < (KeKt + bR)/JL,

arctan

(
(bL+ JR)η

JLη2 −KeKt − bR

)
− π (2.28)

when η2 > (KeKt + bR)/JL, and −π/2 when η2 = (KeKt + bR)/JL. It

follows that the phase is a continuous decreasing function of η for all η. In

particular, the phase lies in the interval (−π, 0] for all η.

Consider, instead, the amplitude of the response of the angular velocity to

a harmonically varying disturbance torque:

Λ0

√
R2 + L2η2√

(b2 + J2η2)(R2 + L2η2) + 2KeKt(bR− JLη2) +K2
eK

2
t

. (2.29)

From this expression, we obtain a DC gain of R/(bR+KeKt). This exceeds

1, provided that b < 1−KeKt/R, and is below 1 otherwise. Furthermore, the

amplitude gain approaches 0 asymptotically as η−1 as η →∞. A resonance
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peak occurs at

η =

√√
KeKtL(KeKtL+ 2bRL+ 2JR2)− JR2

JL2
(2.30)

provided that the expression in the outer radical is positive.

2.2 Design Criteria

Now consider assigning the driving voltage to the DC motor in the previous

section as the output of an amplifier with gain (bR+KeKt)/Kt, whose input

is the desired angular velocity of the shaft, ωin(t) (see Fig. 2.2). The open-

loop transfer function from ωref to ω is then given by

H̃Ωin→Ω(s) :=
bR +KeKt

Kt

HV→Ω(s) =
bR +KeKt

(b+ Js)(R + Ls) +KeKt

(2.31)

with a DC gain of 1. Similarly, the open-loop transfer function from ωref to

i is given by

H̃Ωin→I(s) :=
bR +KeKt

Kt

HV→I(s) =
1

Kt

(b+ Js)(bR +KeKt)

(b+ Js)(R + Ls) +KeKt

(2.32)

with a DC gain equal to b/Kt.

[
HΛ→I(s) HV→I(s)

HΛ→Ω(s) HV→Ω(s)

]
KΩin(s)

Λ(s)

Ω(s)

I(s)

Figure 2.2: System representation of the DC motor with additional input
gain. Here, K = (bR +KeKt)/Kt.

Alternatively, consider assigning the driving voltage to the DC motor as the

sum of (i) the output of an amplifier with gain (bR+KeKt)/Kt whose input is

a desired angular velocity of the shaft, ωin(t), and (ii) the difference between

the desired angular velocity of the shaft and its actual angular velocity ω(t)

(see Fig. 2.3).

The corresponding closed-loop transfer function from ωin to ω is then given
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[
HΛ→I(s) HV→I(s)
HΛ→Ω(s) HV→Ω(s)

]
KΩin(s)

Λ(s)

Ω(s)

I(s)

+

+

−+

Figure 2.3: System representation of the DC motor with additional input
gain and additional feedback.

by

ĤΩin→Ω(s) :=
bR +KeKt +Kt

Kt

HV→Ω(s)

1 +HV→Ω(s)

=
bR +KeKt +Kt

(b+ Js)(R + Ls) +KeKt +Kt

, (2.33)

which also has a DC gain of 1. In this case, the closed-loop transfer function

from λ to ω is given by

ĤΛ→Ω(s) :=
HΛ→Ω(s)

1 +HV→Ω(s)
=

R + Ls

(b+ Js)(R + Ls) +KeKt +Kt

. (2.34)

The input-to-output stability of the closed-loop transfer functions ĤΩin→Ω

and ĤΛ→Ω is verified by the observation that their poles again lie in the

left half of the complex plane. Alternatively, we may arrive at this con-

clusion for certain parameter combinations by establishing a positive phase

or gain margin for the transfer function HV→Ω(s). These are obtained as

the difference between the phase of HV→Ω(jη1) and −π, where η1 satisfies

|HV→Ω(jη1)| = 1, or from the absolute value |HV→Ω(jη2)|, where η2 satisfies

arg(HV→Ω(jη2)) = −π, respectively. From the discussion above, we recall

that the phase lies in (−π, 0] for all η and all parameter combinations, again

implying stability.

As a further alternative (cf. [18]), consider assigning the driving voltage

to the DC motor as the sum of (i) the output of an amplifier with gain

(bR+KeKt)/Kt whose input is a desired angular velocity of the shaft, ωin(t),

and (ii) the integrated difference between the desired angular velocity of the

shaft and its actual angular velocity ω(t) (see Fig. 2.4).
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+

+

−+

Figure 2.4: System representation of the DC motor with additional input
gain and integral feedback.

The corresponding closed-loop transfer function from ωref to ω is then

given by

H̄Ωin→Ω(s) :=
s(bR +KeKt) +Kt

Kt

HV→Ω(s)

s+HV→Ω(s)

=
s(bR +KeKt) +Kt

s(b+ Js)(R + Ls) + sKeKt +Kt

, (2.35)

which also has a DC gain of 1. In this case, the closed-loop transfer function

from λ to ω is given by

H̄Λ→Ω(s) :=
sHΛ→Ω(s)

s+HV→Ω(s)

=
s(R + Ls)

s(b+ Js)(R + Ls) + sKeKt +Kt

. (2.36)

From the Routh-Hurwitz test [11], it follows that the closed-loop transfer

functions H̄Ωin→Ω and H̄Λ→Ω are input-to-output stable provided that (bR+

KeKt)(bL+JR) > JLKt. The same conclusion follows from the gain margin

of HV→Ω(s)/s, which here is obtained as

−20 log10

JLKt

(bR +KeKt)(bL+ JR)
. (2.37)

A further observation is the disturbance rejection that results for small

excitation frequencies from the inclusion of the integrator. Here, the square

14



of the frequency-dependent gain equals

(R2 + L2η2)η2

(Kt − bLη2)2 + η(KeKt − JLη2)2 +Rη2(b(bR + 2KeKt) +R(Jη)2 − 2JKt)
.

(2.38)

It follows that the gain converges to 0 as η → 0 and as η−1 as η → ∞. By

Descartes’ rule [14], there exists a unique global maximum at some positive

η.

In general, the phase and gain margins provide a measure of robustness

to uncertainty in model parameters, including nonlinear effects. One might

want to hold the phase or gain margin fixed while varying model parameters

to retain a desired degree of stability, even as the system design is optimized

for other criteria.

Consider for example, the system of equations

JLKt − γ(bR +KeKt)(bL+ JR) = 0, (2.39)

fη(ηm, R,Kt; b, L, J,Ke) = 0, (2.40)

f(ηm, R,Kt; b, L, J,Ke)− µ = 0, (2.41)

where f(η,R,Kt; b, L, J,Ke) is the expression in Eq. (2.38), the subscript η

denotes differentiation with respect to η, and γ and µ correspond to the de-

sired gain margin of HV→Ω(s)/s and maximal amplification of a disturbance

torque, respectively. We may consider these equations as determining R, Kt,

and ηm as functions of µ for fixed values of γ, b, J , L, and Ke.

Alternatively, we may impose a condition of constant phase margin on the

problem of choosing optimal model parameters, as encoded in the following

equations

|HV→Ω(jηc)| − ηc = 0, (2.42)

arg (HV→Ω(jηc)) +
π

2
− ϕ = 0, (2.43)

fη(ηm, R,Kt; b, L, J,Ke) = 0, (2.44)

f(ηm, R,Kt; b, L, J,Ke)− µ = 0. (2.45)

Here, the magnitude of |HV→Ω(jηc)| is obtained by substituting ηc for η

in Eq. (2.25), arg (HV→Ω(jηc)) is given in Eqs. (2.27-2.28) with the same

substitution, and f(η,R,Kt; b, L, J,Ke) is again given by the expression in
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Eq. (2.38). The variable ηc represents the cross-over frequency for HV→Ω(s)/s

and ϕ is the corresponding phase margin. In this case, the four equations

may constitute a system for determining R, Kt, ηm, and ηc as functions of µ

for fixed values of ϕ, b, J , L, and Ke.

A third option is to impose a condition on the minimum distance from

the Nyquist plot of the open-loop transfer function HV→Ω(s)/s to the point

(−1, 0) in the complex plane. For simplicity, this distance is referred as

Nyquist distance through this document. Consider, for example, the equa-

tions

d

dη

(
= (HV→Ω(jη))

η
+

1

2

|HV→Ω(jη)|2

η2

)∣∣∣∣∣
η=ηn

= 0, (2.46)

(ηn + = (HV→Ω(jηn)))2 + (< (HV→Ω(jηn)))2 − δη2
n = 0, (2.47)

fη(ηm, R,Kt; b, L, J,Ke) = 0, (2.48)

f(ηm, R,Kt; b, L, J,Ke)− µ = 0, (2.49)

where < and = denote the real and imaginary parts of the corresponding

arguments. Here, ηn represents the frequency at which the tangent vector to

the Nyquist curve is perpendicular to the vector from −1, and δ equals the

corresponding squared distance to −1. As before, these four equations may

constitute a system for determining R, Kt, ηm, and ηn as functions of µ for

fixed values of δ, b, J , L, and Ke.

2.3 Discussion

In all cases considered in the previous section, given the explicit expression

for the transfer function HV→Ω(s), we obtain a system of algebraic and highly

nonlinear equations that relate the model parameters, certain characteristic

frequencies, and properties of the feedback structure to each other. Due to

the complexity of these equations, we must rely on numerical methods for

their solution, e.g., Newton’s method.

As discussed in chap. 4, we may trace families of solutions by combining

nonlinear solvers with manifold covering algorithms. Indeed, with some ad-

ditional effort, we may achieve this task even in instances where an explicit

expression is not available for the open-loop transfer function.
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CHAPTER 3

ALGEBRAIC CONTINUATION

In this chapter, we express each of the design problems from Chap. 2 in the

form of a restricted continuation problem with a one-dimensional solution

manifold. We use coco [10] to locate a sequence of points on each solution

manifold, and consider the implications to the search for optimal values of

the design parameters. Through out the remainder of this thesis, we fix

b = 1, L = 10, J = 0.4, and Ke = 1, and consider variations in the design

parameters R and Kt.

3.1 Constant Gain Margin

Consider the first continuation problem defined by Eqs. (2.39-2.41). To repre-

sent this problem in canonical form (cf. Eq. (1.1)), denote by u = (ηm, R,Kt)

the vector of continuation variables, and let

Φ : u 7→ fη(ηm, R,Kt; b, L, J,Ke), (3.1)

Ψ : u 7→

(
JLKt

(bR+KeKt)(bL+JR)

f(ηm, R,Kt; b, L, J,Ke)

)
, (3.2)

κ = (γ, µ), and I = {1}. The dimensional deficit of this problem equals 1.

It follows that the family of solutions through any regular solution point is a

one-dimensional manifold along which the gain margin γ is constant, while

the maximum squared amplitude of the steady-state response to a harmonic

disturbance torque µ, the design parameters R and Kt, and the extremal

frequency ηm vary.

The matlab functions dist resp, gain margin, and dist resp deta

below contain coco-compatible encodings of the zero function and monitor

functions, respectively.
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function [data y] = dist resp(prob, data, u)

eta m = u(1);

R = u(2);

Kt = u(3);

J = data.J;

L = data.L;

b = data.b;

Ke = data.Ke;

esq = eta mˆ2;

y = (Lˆ2*esq + Rˆ2)*esq/((bˆ2+Jˆ2*esq)* ...

(Rˆ2+Lˆ2*esq)*esq-2*Kt*(b*(L-Ke*R)+J* ...

(R+Ke*L*esq))*esq+Ktˆ2*(1+Keˆ2*esq));

end

function [data y] = gain margin(prob, data, u)

R = u(1);

Kt = u(2);

J = data.J;

L = data.L;

b = data.b;

Ke = data.Ke;

y = J*L*Kt/(b*R+Ke*Kt)/(b*L+J*R);

end

function [data y] = dist resp deta(prob, data, u)

eta m = u(1);

R = u(2);

Kt = u(3);

J = data.J;

L = data.L;

b = data.b;

Ke = data.Ke;

esq = eta mˆ2;

y = 2*eta m*(-2*Kt*L*(b*L+J*R)*(L-Ke*R)*esqˆ2 ...

-Jˆ2*esqˆ2*(Rˆ2+Lˆ2*esq)ˆ2 ...

+Ktˆ2*(Rˆ2+Lˆ2*esq*(2+Keˆ2*esq))) ...

/((bˆ2+Jˆ2*esq)*(Rˆ2+Lˆ2*esq)*esq ...

-2*Kt*(b*(L-Ke*R) ...

+J*(R+Ke*L*esq))*esq+Ktˆ2*(1+Keˆ2*esq))ˆ2;

end
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To initialize the continuation problem, we estimate the values of γ and ηm

corresponding to a particular choice of R and Kt. Substitution of R = 1 and

Kt = 100 in the explicit expression for the gain margin gives γ ≈ 0.3808,

while a graph of the steady-state voltage amplitude response to a harmonic

disturbance torque shows a maximum at ηm ≈ 4.9. Consequently, let u0 =

(5, 1, 100) and suppose that γ = 0.3808 is the constant value of the gain

margin along the corresponding solution manifold.

The following code uses the coco entry-point function to perform contin-

uation along this manifold.

>> u0 = [5; 1; 100];

>> data = struct('b', 1, 'Ke', 1, 'J', 0.4, 'L', 10);

>> prob = coco prob();

>> prob = coco set(prob, 'cont', 'ItMX', 1000, ...

'h max', 100, 'NPR', 1,'h0', 20);

>> prob = coco set(prob, 'corr', 'TOL', 1.0e-5);

>> prob = coco add func(prob, 'phi', @dist resp deta, ...

data, 'zero', 'u0', u0);

>> prob = coco add func(prob, 'psi1', @gain margin, ...

data, 'inactive', 'gamma', 'uidx', [2;3]);

>> prob = coco add func(prob, 'psi2', @dist resp, data, ...

'active', 'mu', 'uidx', [1:3]);

>> prob = coco add pars(prob, 'pars', [2 3], {'R', 'Kt'}, ...

'active');

>> prob = coco set parival(prob, 'gamma', 0.3808);

>> coco(prob, 'p1 coco', [], 1, {'mu', 'Kt', 'R'}, ...

{[0 5], [1 300], [0.1 300]});

Here, two inactive continuation parameters associated with R and Kt are

introduced using the coco add pars constructor and subsequently released

during continuation.

A projection of the solution manifold onto the (µ,R,Kt) coordinate space

is shown below in Fig. 3.1. As µ decays monotonically along the manifold, its

minimum is attained on the boundary of the computational domain, where

µ = 2.415, R = 1.159, and Kt = 300.
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Figure 3.1: Variations in µ, R, and Kt along the one-dimensional manifold
obtained for a constant gain margin γ = 0.3808, and their projections onto
the coordinate planes. In this case, the minimal value of µ is attained on
the boundary of computational domain.

The Nyquist diagram in Fig. 3.2 collects the graphs of the frequency re-

sponse functions for several distinct points along the solution manifold. All

the Nyquist curves cross the negative imaginary axis at −0.3808, consistent

with the imposition of a constant gain margin. However, as R and Kt de-

crease, the corresponding Nyquist curve crosses the unit circle further away

from the imaginary axis, shows that the phase margin of the corresponding

system also decreases.
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Figure 3.2: The Nyquist curves corresponding to the solution points labeled
in Fig. 3.1 cross the negative real axis at the same point.

3.2 Constant Phase Margin

Consider the second continuation problem defined by Eqs. (2.42-2.45). To

represent this problem in canonical form, denote by u = (ηm, R,Kt, ηc) the

vector of continuation variables, and let

Φ : u 7→

(
|HV→Ω(jηc))| − ηc

fη(ηm, R,Kt; b, L, J,Ke)

)
, (3.3)

Ψ : u 7→

(
arg (HV→Ω(jηc))

f(ηm, R,Kt; b, L, J,Ke)

)
, (3.4)
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κ = (ϕ − π/2, µ), and I = {1}. The dimensional deficit of this problem

equals 1. It follows that the family of solutions through any regular solution

point is a one-dimensional manifold along which the phase margin ϕ is con-

stant, while the maximum squared amplitude of the steady-state response to

a harmonic disturbance torque µ, the design parameters R and Kt, the ex-

tremal frequency ηm, and the crossover frequency ηc of the open-loop transfer

function HV→Ω(s)/s vary.

The matlab functions dist resp deta, gain cross, phase margin,

and dist resp contain coco-compatible encodings of the zero function and

monitor functions, respectively. Since dist resp deta and dist resp are

the same as the functions defined for the previous problem, only gain cross

and phase margin will be shown below.

function [data y] = gain cross(prob, data, u)

R = u(1);

Kt = u(2);

freqc = u(3);

J = data.J;

L = data.L;

b = data.b;

Ke = data.Ke;

y = Kt/sqrt((bˆ2+Jˆ2*freqcˆ2)*(Rˆ2+Lˆ2*freqcˆ2)...

+2*Ke*Kt*(b*R-J*L*freqcˆ2)+Keˆ2*Ktˆ2)-freqc;

end

function [data y] = phase margin(prob, data, u)

R = u(1);

Kt = u(2);

freqc = u(3);

J = data.J;

L = data.L;

b = data.b;

Ke = data.Ke;

phsre = real(Kt/(Ke*Kt+(b+J*freqc*i)*(R+L*freqc*i)));

phsim = imag(Kt/(Ke*Kt+(b+J*freqc*i)*(R+L*freqc*i)));

y = atan2(phsim,phsre);

end

To initialize the continuation problem, we estimate the values of ϕ, ηm,
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and ηc corresponding to a particular choice of R and Kt. As before, when

R = 1 and Kt = 100, a graph of the amplitude of the steady-state response

to a harmonic disturbance torque shows a maximum at ηm ≈ 4.9. Similarly,

graphs of the amplitude and phase of the open-loop frequency-response func-

tion HV→Ω(jη)/(jη) shows that crossover occurs at ηc ≈ 1 with ϕ ≈ 1.461.

Consequently, let u0 = (5, 1, 100, 1) and suppose that ϕ = −0.1099 + π/2

is the constant value of the phase margin along the corresponding solution

manifold. The following code uses the coco entry-point function to perform

continuation along this manifold.

>> u0 = [5; 1; 100; 1];

>> data = struct('b', 1, 'Ke', 1, 'J', 0.4, 'L', 10);

>> prob = coco prob();

>> prob = coco set(prob, 'cont', 'ItMX', 1000,...

'h min',1e-3, 'h max', 90, 'NPR', 1, 'h0', 10);

>> prob = coco add func( prob, 'phi1', @dist resp deta, ...

data, 'zero', 'u0', u0(1:3));

>> prob = coco add func(prob, 'phi2', @gain cross, ...

data, 'zero', 'uidx',[2;3],'u0', u0(4));

>> prob = coco add func(prob, 'psi1', @phase margin, data, ...

'inactive', 'phasemargin', 'uidx', [2:4]);

>> prob = coco add func(prob, 'psi2', @dist resp, data, ...

'active', 'mu', 'uidx', [1:3]);

>> prob = coco add pars(prob,'pars', [2 3], {'R','Kt'}, ...

'active');

>> prob = coco set parival(prob, 'phasemargin', -0.1099);

>> coco(prob,'p2 coco', [], 1, {'mu' 'R' 'Kt'}, ...

{[0 5], [1 300], [0.1 300]});

A projection of the solution manifold onto the (µ,R,Kt) coordinate space

is shown below in Fig. 3.3. Unlike the constant gain margin problem, µ no

longer decreases monotonically along the manifold. Within the computa-

tional domain, its minimum is attained at a fold point, where µ = 0.1459,

R = 115.1, and Kt = 219.4.
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Figure 3.3: Variations in µ, R, and Kt along the one-dimensional manifold
obtained for a constant phase margin φ = 0.1099, and their projections
onto the coordinate planes. In this case, the minimal value of µ is attained
on the interior of the computational domain.

The Nyquist diagram in Figure 3.4 collects the graphs of the frequency

response functions for several distinct points along the solution manifold.

All the Nyquist curves cross the unit circle at a single point, consistent with

the imposition of a constant phase margin. Although the gain margin varies,

it remains less than 1 on solution manifold.
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Figure 3.4: The Nyquist curves corresponding to the solution points labeled
in Fig. 3.3 cross the unit circle at the same point.

3.3 Constant Nyquist Distance

Consider the third continuation problem Eqs. (2.46-2.49). To represent this

problem in canonical form, denote by u = (ηm, R,Kt, ηn) the vector of con-

tinuation variables, and let

Φ : u 7→

 d
dη

(
=(HV→Ω(jη))

η
+ 1

2
|HV→Ω(jη)|2

η2

)∣∣∣
η=ηn

fη(ηm, R,Kt; b, L, J,Ke)

 , (3.5)

Ψ : u 7→

(
(ηn+=(HV→Ω(jηn)))2+(<(HV→Ω(jηn)))2

η2
n

f(ηm, R,Kt; b, L, J,Ke)

)
, (3.6)

κ = (δ, µ), and I = {1}. The dimensional deficit of this problem equals

1. It follows that the family of solutions through any regular solution point

is one-dimensional manifold along which the mininum squared distance δ
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from the Nyquist curve of the open-loop transfer function HV→Ω(s)/s to the

complex number −1 is constant, while the maximum squared amplitude of

the steady-state response to a harmonic disturbance torque µ, the design

parameters R and Kt, the extremal frequency ηm, and the critical frequency

ηn of the open-loop transfer function corresponding to the minimum distance

vary.

The matlab functions dist resp deta, nyq dist deta, nyq dist, and

dist resp contain coco-compatible encodings of the zero function and

monitor functions, respectively. Since dist resp deta and dist resp are

the same as the functions defined for the previous problem, we only show

nyq dist deta and nyq dist below.

function [data y] = nyq dist deta(prob, data, u)

R = u(1);

Kt = u(2);

freqc = u(3);

b = data.b;

J = data.J;

L = data.L;

Ke = data.Ke;

y = -((Kt*(Keˆ2*Ktˆ3-2*bˆ3*Lˆ3*freqcˆ4-...

2*b*Jˆ2*L*freqcˆ4*(Rˆ2+2*Lˆ2*freqcˆ2)+...

Jˆ2*freqcˆ2*(2*Kt*Rˆ2+3*Kt*Lˆ2*freqcˆ2-...

2*J*Rˆ3*freqcˆ2-4*J*Lˆ2*R*freqcˆ4)+...

bˆ2*(Kt*Rˆ2+2*Kt*Lˆ2*freqcˆ2-2*J*Lˆ2*R*freqcˆ4)+...

2*Ke*Kt*(2*J*L*freqcˆ2*(-Kt+J*R*freqcˆ2)+...

b*(Kt*R+2*J*Lˆ2*freqcˆ4))))/(freqcˆ3*(Keˆ2*Ktˆ2+...

2*Ke*Kt*(b*R-J*L*freqcˆ2)+...

(bˆ2+Jˆ2*freqcˆ2)*(Rˆ2+Lˆ2 *freqcˆ2))ˆ2));

end

function [data y] = nyq dist(prob, data, u)

R = u(1);

Kt = u(2);

freqc = u(3);

J = data.J;

L = data.L;

b = data.b;

Ke = data.Ke;
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y = (Ktˆ2*(1+Keˆ2*freqcˆ2)+...

freqcˆ2*(bˆ2+Jˆ2*freqcˆ2)*(Rˆ2+Lˆ2*freqcˆ2)...

-2*Kt*freqcˆ2*(b*(L-Ke*R)+J*(R+Ke*L*freqcˆ2)))/...

(freqcˆ2*(Keˆ2*Ktˆ2+2*Ke*Kt*(b*R-J*L*freqcˆ2)+...

(bˆ2+Jˆ2*freqcˆ2)*(Rˆ2+Lˆ2*freqcˆ2)));

end

To initialize the continuation problem, we estimate the values of δ, ηm,

and ηn corresponding to a particular choice of R and Kt. As before, when

R = 1 and Kt = 100, a graph of the amplitude of the steady-state re-

sponse to a harmonic disturbance torque shows a maximum at ηm ≈ 4.9.

Similarly, the Nyquist diagram of the open-loop frequency-response function

HV→Ω(jη)/(jη) shows that the minimum distance to −1 occurs at ηn ≈ 4.8

with δ ≈ 0.36. Consequently, let u0 = (5, 1, 100, 5) and suppose that δ = 0.36

is the constant value of the locally minimal squared distance along the cor-

responding solution manifold. The following code uses the coco entry-point

function to perform continuation along this manifold.

>> u0=[5; 1; 100; 5];

>> data = struct('b', 1, 'Ke', 1, 'J', 0.4, 'L', 10);

>> prob = coco prob();

>> prob = coco set(prob, 'corr', 'ItMX', 20);

>> prob = coco set(prob, 'cont', 'ItMX', 1000, ...

'h min',1e-2,'h max', 90, 'NPR',1, 'h0', 10);

>> prob = coco add func( prob, 'phi1', @dist resp deta, ...

data, 'zero','u0', u0(1:3));

>> prob = coco add func(prob, 'phi2', @nyq dist deta, ...

data,'zero', 'uidx',[2;3],'u0', u0(4));

>> prob = coco add func(prob, 'psi1', @nyq dist, data, ...

'inactive', 'delta', 'uidx', [2:4]);

>> prob = coco add func(prob, 'psi2', @dist resp, data,...

'active', 'mu', 'uidx', [1:3]);

>> prob = coco add pars(prob, 'pars', [2 3], {'R', 'Kt'});
>> prob = coco set parival(prob,'delta', 0.36);

>> coco(prob,'P3 COCO', [], 1, {'mu' 'Kt' 'R'}, ...

{[0 5], [1 300], [0.1 300]});

A projection of the solution manifold onto the (µ,R,Kt) coordinate space

is shown below in Fig. 3.5. Unlike the constant gain margin problem, µ

no longer decreases monotonically along the manifold. Within the computa-

tional domain, its minimum is again attained at a fold point, where µ = 1.881,
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R = 7.481, and Kt = 3.559.
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Figure 3.5: Variations in µ, R, and Kt along the one-dimensional manifold
obtained for a constant locally minimal squared distance δ = 0.36 from the
Nyquist curve to −1, and their projections onto the coordinate planes. In
this case, the minimal value of µ is attained on the interior of the
computational domain.

The Nyquist diagram in Fig. 3.6 collects the graphs of the frequency re-

sponse functions for several distinct points along the solution manifold. All

the Nyquist curves are tangential to the circle centered on −1 with radius

0.6, consistent with the imposition of a constant distance to −1.
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Figure 3.6: The Nyquist curves corresponding to solution points labeled in
Fig. 3.5 have the same Nyquist distance to −1. The red dashed circle
represents the circle has a radius of 0.6.

3.4 Discussion

The results in this chapter show that it is possible to design for improved

disturbance rejection while imposing constraints on the system stability. The

three stability criteria introduced in the previous chapter correspond to three

different families of solution manifolds. Depending on the criteria, the opti-

mal solution may be attained either on the boundary or in the interior of the

computational domain.

As an alternative, denote by u = (ηm, ηc,1, ηc,2, R,Kt) the vector of contin-
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uation variables, and let

Φ : u 7→

 |HV→Ω(jηc,1)| − ηc,1
arg
(
HV→Ω(jηc,2)) + π

2

)
fη(ηm, R,Kt; b, L, J,Ke)

 , (3.7)

Ψ : u 7→

 arg (HV→Ω(jηc,1))

|HV→Ω(jηc,2))| /ηc,2
f(ηm, R,Kt; b, L, J,Ke)

 , (3.8)

and I = ∅. The dimensional deficit of this problem equals 2. It follows

that the family of solutions through any regular solution point is a two-

dimensional manifold along which the gain margin, the phase margin, and

the maximum squared amplitude of the steady-state response to a harmonic

disturbance torque vary. This formulation can be used for multi-objective

optimization.

In the next chapter, we use control based continuation to repeat the analy-

sis in this chapter without assuming explicit knowledge of the system model.
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CHAPTER 4

CONTROL-BASED CONTINUATION

In this chapter, we replace explicit model of the DC motor in the continuation

analysis with simulated experiments and corresponding measurements. The

continuation problems considered in the previous chapter are composed of

conditions in terms of an open-loop and a closed-loop system respectively.

Here. we use control-based continuation to analyze each system separately,

and show how such systems can be coupled experimentally in order to again

perform design optimization.

4.1 Elementary Experiments

Consider the block diagram shown in Fig. 4.1. The corresponding transfer

function HV→Θ(s) = HV→Ω(s)/s is the open-loop transfer function analyzed

in previous chapters. If we have an explicit expression for the transfer func-

tion HV→Ω, then we can determine the frequency-response function associ-

ated with steady-state responses of θ(t) to harmonic inputs v(t) = cos ηt,

as was done in Chap. 2. This could then be used to impose additional con-

ditions on the steady-state response in the form of algebraic equations. In

contrast, if the system is treated as a black box, then the frequency-response

function can be found only through experiments.

[
HV→I(s) HΛ→I(s)

HV→Ω(s) HΛ→Ω(s)

]
1/sV (s) Θ(s)

I(s)

Ω(s)

Figure 4.1: Open-loop system representation of the DC motor without
disturbance torque and with additional integrator in the output.

In such an experiment, a measurement of the response amplitude or phase
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would be made after sufficient convergence to the steady-state solution. We

can modify the rate of convergence through the imposition of feedback, as

suggested in Fig. 4.2, in terms of the reference signals Iref , Ωref , and Θref .

The transfer functions CI , CΩ, and CΘ determine the locations of the poles,

and can be designed so that the system is input-output stable and a desired

settling time is achieved. Here, we assume proportional control and replace

the transfer functions by the corresponding gains KI , KΩ, and KΘ. In this

case,

Θ =
HV→Ω(V +KIIref +KΩΩref +KΘΘref )

s+ (KΩs+KΘ)HV→Ω +KIsHV→I
, (4.1)

Ω =
sHV→Ω(V +KIIref +KΩΩref +KΘΘref )

s+ (KΩs+KΘ)HV→Ω +KIsHV→I
, (4.2)

I =
sHV→I(V +KIIref +KΩΩref +KΘΘref )

s+ (KΩs+KΘ)HV→Ω +KIsHV→I
. (4.3)

Here, the poles are the roots of the polynomial

JLs3 + (KIJ + bL+ JR)s2 + (bKI +KtKΩ +KeKt + bR)s+KtKΘ. (4.4)

By Routh-Hurwitz Stability Criterion, the system is therefore asymptotically

stable if

(bKI +KtKΩ +KeKt + bR)(KIJ + bL+ JR) > JLKtKΘ. (4.5)
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[
HV→I(s) HΛ→I(s)

HV→Ω(s) HΛ→Ω(s)

]
1/s Θ(s)

I(s)
+

+

+

+

V (s)

Ω(s)

−
CΩ

Ωref (s)

+

−
CΘ

Θref (s)

+

−

Iref (s)

+
CI

Figure 4.2: System representation of the DC motor without disturbance
torque and with additional integrator in the output and additional
reference feedback.

By construction, the steady-state responses to a harmonic input v(t) =

cos ηt are identical to those in the absence of feedback, provided that the ref-

erence signals iref (t), ωref (t), and θref (t) equal these steady-state responses.

In practice, suppose that iref (t) = αi cos ηt + βi sin ηt, ωref (t) = αω cos ηt +

βω sin ηt, and θref (t) = αθ cos ηt + βθ sin ηt, and let the signals Ai cos ηt +

Bi sin ηt, Aω cos ηt + Bω sin ηt, and Aθ cos ηt + Bθ sin ηt denote the corre-

sponding steady-state responses for i(t), ω(t), and θ(t). Notably, each of the

upper-case coefficients depend on all the lower-case coefficients, the excitation

frequency, and the system parameters. A non-invasive feedback structure [32]
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then results provided that 

Ai − αi
Aω − αω
Aθ − αθ
Bi − βi
Bω − βω
Bθ − βθ


= 0. (4.6)

We can embed these equations with a continuation problem that requires

imposition of constraints on the steady-state response.

Analogously, consider the block diagram shown below in Fig. 4.3. The cor-

responding transfer function sHΛ→Ω(s)/(s+HV→Ω(s)) describes the angular

velocity response to a disturbance torque discussed in Chap. 2. As before,

if the system is treated as a black box, then the corresponding frequency-

response function can be found only through experiments.

[
HΛ→I(s) HV→I(s)

HΛ→Ω(s) HV→Ω(s)

]

−1 1/s

Λ(s)

Ω(s)

I(s)

Figure 4.3: Closed-loop system representation of the DC motor with
negative integral feedback.

To this end, consider the imposition of feedback, as suggested in Fig. 4.4,

in terms of the reference signals Iref , Ωref , and Θref and the proportional

gains KI , KΩ, and KΘ. In this case, The solution to the above equations is

Ω =
sHΛ→Ω(Λ +KIIref +KΩΩref +KΘΘref )

(s+HV→Ω)(1 +HΛ→IKI)−HΛ→Ω(HV→IKI −KΩs)
, (4.7)

I =
(HΛ→IHV→Ω −HV→IHΛ→Ω +HΛ→Is)(Λ +KIIref +KΩΩref +KΘΘref )

(s+HV→Ω)(1 +HΛ→IKI)−HΛ→Ω(HV→IKI −KΩs)
.

(4.8)
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Here, the poles are the roots of the polynomial

JLs3+(KΩL+bL+JR)s2+(Ke(Kt−KI)+KΘL+(b+KΩ)R)s+Kt+KΘR−KΩ.

(4.9)

By Routh-Hurwitz Stability Criterion, the system is therefore stable if

Ke(Kt −KI)(Lb+ LKΩ + JR) + JL(KΩ −Kt) + Σ > 0, (4.10)

Kt +KΘR−KΩ > 0, (4.11)

where Σ = (b+KΩ)(L2KΘ + JR2 + LR(b+KΩ)).

[
HΛ→Ω(s) HΛ→I(s)

HV→Ω(s) HV→I(s)

]
1/s Θ(s)

I(s)

+

+

+

+

Λ(s)

KΘ

Ω(s)

−
KΩ

Ωref (s)

+

−1

−

Θref (s)

+

−

Iref (s)

+
KI

Figure 4.4: System representation of the DC motor with additional
negative integral feedback and reference feedback.

By construction, the steady-state responses to a harmonic input λ(t) =
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cos ηt are identical to those of the problem in the absence of feedback,

provided that the reference signals iref (t), ωref (t), and θref (t) equal these

steady-state responses. In practice, suppose that iref (t) = αi cos ηt+βi sin ηt,

ωref (t) = αω cos ηt + βω sin ηt, and θref (t) = αθ cos ηt + βθ sin ηt, and let the

signals Ai cos ηt + Bi sin ηt, Aω cos ηt + Bω sin ηt, and Aθ cos ηt + Bθ sin ηt

denote the corresponding steady-state responses for i(t), ω(t), and θ(t). As

before, each of the upper-case coefficients depend on all the lower-case coeffi-

cients, the excitation frequency, and the system parameters. A non-invasive

feedback structure then results provided that

Ai − αi
Aω − αω
Aθ − αθ
Bi − βi
Bω − βω
Bθ − βθ


= 0. (4.12)

We can embed these equations with a continuation problem that requires

imposition of constraints on the steady-state response.

4.2 Frequency Sweeps

Consider the simulink implementation shown in Fig. 4.5 of the feedback

structure in Fig. 4.2. As suggested above, each reference signal is of the

form α cos ηt+β sin ηt. Simulation for some fixed integration time, sufficient

in duration to allow transients to settle, followed by identification of the

coefficients in the decomposition A cos ηt + B sin ηt of each of the steady-

state responses then allows evaluation of the left-hand side of Eq. (4.6).
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Figure 4.5: simulink realization of Fig. 4.2

Let u = (η,R,Kt, αω, βω, αi, βi, αθ, βθ, φ) be a vector of continuation vari-

ables, and consider the restricted continuation problem defined by

Φ : u 7→



Ai − αi
Aω − αω
Aθ − αθ
Bi − βi
Bω − βω
Bθ − βθ

βθ cosφ− αθ sinφ


, (4.13)

Ψ : u 7→


η

α2
θ + β2

θ

R

Kt

φ

 , (4.14)

and I = {3, 4}. The dimensional deficit of this problem equals 1. It fol-

lows that the family of solutions through any regular solution point is one-

dimensional manifold. This manifold is parameterized by η. Each point

corresponds to a unique set of trigonometric coefficients for the steady-state

responses and phase φ of θ(t) resulting from the input v(t) = cos ηt. The

corresponding value of the second continuation parameter is the squared am-
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plitude of θ(t).

The matlab functions openloopsystem and amplitude below contain

coco-compatible encodings of the zero functions and the squared amplitude

monitor function, respectively.

function [data y] = openloopsystem(prob, data, u)

k1 = data.ok1;

k2 = data.ok2;

k3 = data.ok3;

omega0 = data.ox0(1);

current0 = data.ox0(2);

theta0 = data.ox0(3);

b = data.b;

J = data.J;

L = data.L;

Ke = data.Ke;

eta = u(1);

R = u(2);

Kt = u(3);

v2r = u(4);

v2i = u(5);

v3r = u(6);

v3i = u(7);

v4r = u(8);

v4i = u(9);

th = u(10);

T = 2*pi/eta;

tstart = 0;

tsam = 20*T;

tstep = T/4;

simout = sim('simopenloopsystem', 'SrcWorkspace', ...

'current');

omega = simout.get('omega');

current = simout.get('current');

theta = simout.get('theta');

data.ox0 = [omega(end); current(end); theta(end)];

tsize = numel(theta);

fomega = fft(omega(tsize-4:tsize-1)); %4pts

y = [v2r-real(fomega(2))/2; v2i-imag(fomega(2))/2];

fcurrent = fft(current(tsize-4:tsize-1)); %4pts

y = [y; v3r-real(fcurrent(2))/2; ...
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v3i-imag(fcurrent(2))/2];

ftheta = fft(theta(tsize-4:tsize-1)); %4pts

y = [y; v4r-real(ftheta(2))/2; ...

v4i-imag(ftheta(2))/2; ...

v4i*cos(th)-v4r*sin(th)];

end

function [data y] = amplitude(prob, data, u)

v4r = u(1);

v4i = u(2);

y = v4rˆ2+v4iˆ2;

end

Here, simopenloopsystem refers to the simulink model of the open-loop

system (see Fig. 4.5). The matlab fft function is used to find the coefficient

amplitudes for each steady-state response. Since we know that the response

is harmonic, it suffices to sample four evenly distributed points over one

period.

To initialize the continuation problem, let u0 correspond to the steady-

state response obtained from harmonic excitation at η = 5 with R = 1 and

Kt = 100. The following code uses the coco entry-point function to perform

continuation along the associated one-dimensional solutions manifold.

>> data = struct('k1', 10, 'k2', 10, 'k3', 10, 'b', 1, ...

'J', 0.4, 'L', 10, 'Ke', 1, 'x0', [0; 0; 0]);

>> u0 = [5; 1; 100; 0.037; -1.9; 0.039; -0.018; ...

-0.38; -0.0074; -3.1221];

>> prob = coco prob();

>> prob = coco set(prob, 'cont', 'PtMX', 1000, ...

'h0', 1, 'h max', 50, 'al max', 10, ...

'NPR', 1);

>> prob = coco set(prob, 'corr', 'TOL', 1.0e-5);

>> prob = coco add func(prob, 'p1init o phi1', ...

@openloopsystem, data, 'zero', 'u0', u0);

>> prob = coco add func(prob, 'p1init o psi1', ...

@amplitude, data, 'active', ...

'sqmag', 'uidx', [8 9]);

>> prob = coco add pars(prob,'pars', [1 2 3 10], ...

{'eta', 'R', 'Kt', 'o phs'});
>> prob = coco add event(prob, 'co', 'o phs', -pi);
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>> bd phsco = coco(prob,'p1init o gmdetect', [], ...

1, {'eta' 'sqmag' 'o phs'}, [4 6]);

>> lab phsco = coco bd labs(bd phsco, 'co');

>> chart phsco = coco read solution('', 'gmdetect', ...

lab phsco(end), 'chart');

A projection of the solution manifold onto the (η, φ) coordinate plane is

shown below in Fig. 4.6. The phase crosses −π when η = 5.025. The squared

amplitude of θ(t) at this point is 0.145, corresponding to a gain margin of

0.3808 (cf. the initialization in Chap. 3 of γ).

4 4.5 5 5.5 6
−3.8

−3.14

−2.4

η

φ

 

 

Figure 4.6: Phase of the frequency response function HV→Ω(jη)/η. Here,
the black dot corresponds to the phase crossover frequency.

The same initialization can be applied to the constant phase margin prob-

lem by changing the detected event from phase crossover to gain crossover

[1], as shown in the following code.

>> data = struct('k1', 10, 'k2', 10, 'k3', 10, 'b', 1, ...

'J', 0.4, 'L', 10, 'Ke', 1, 'x0', [0; 0; 0]);

>> u0 = [5; 1; 100; 0.037; -1.9; 0.039; -0.018; ...

-0.38; -0.0074; -3.1221];

>> prob = coco prob();

>> prob = coco set(prob, 'cont', 'PtMX', 1000, ...

'h0', 1, 'h max', 50, 'al max', 10, ...

'NPR', 1);

>> prob = coco set(prob, 'corr', 'TOL', 1.0e-5);
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>> prob = coco add func(prob, 'p1init o phi1', ...

@openloopsystem, data, 'zero', 'u0', u0);

>> prob = coco add func(prob, 'p1init o psi1', ...

@amplitude, data, 'active', ...

'sqmag', 'uidx', [8 9]);

>> prob = coco add pars(prob,'pars', [1 2 3 10], ...

{'eta', 'R', 'Kt', 'o phs'});
>> prob = coco add event(prob, 'co','sqmag',1);

>> bd magco = coco(prob,'pmdetect', [], 1, ...

{'eta' 'sqmag' 'phase'}, [1 5.1]);

>> lab magco = coco bd labs(bd magco,'co');

>> chart magco = coco read solution('', 'pmdetect', ...

lab magco(end), 'chart');

A projection of the solution manifold onto the (η, γ) coordinate plane is

shown below in Fig. 4.7. The phase shift at the gain crossover frequency is

−1.68071, which corresponds to the phase margin ϕ = −0.1099+π/2 (cf. the

initialization in Chap. 3 of ϕ).
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Figure 4.7: Magnitude of the frequency response function HV→Ω(jη)/η.
Here, the black dot corresponds to the gain crossover frequency.

Next, let u = (η1, R1, Kt,1, αω,1, βω,1, αi,1, βi,1,

αθ,1, βθ,1, η2, R2, Kt,2, αω,2, βω,2, αi,2, βi,2, αθ,2, βθ,2) be a vector of continuation
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variables, and consider the restricted continuation problem defined by

Φ : u 7→



Ai,1 − αi,1
Aω,1 − αω,1
Aθ,1 − αθ,1
Bi,1 − βi,1
Bω,1 − βω,1
Bθ,1 − βθ,1
Ai,2 − αi,2
Aω,2 − αω,2
Aθ,2 − αθ,2
Bi,2 − βi,2
Bω,2 − βω,2
Bθ,2 − βθ,2

η1 − η2 − 0.01

R1 −R2

Kt1 −Kt2



, (4.15)

Ψ : u 7→


η1

(αθ,1 + 1)2 + β2
θ,1

R1

Kt,1

(αθ,1 + 1)2 + β2
θ,2 − (αθ,2 + 1)2 − β2

θ,2

 , (4.16)

and I = {3, 4}. The dimensional deficit of this problem equals 1. It fol-

lows that the family of solutions through any regular solution point is one-

dimensional manifold. This manifold is parameterized by η1. Each point

corresponds to a pair of sets of trigonometric coefficients for two distinct

steady-state responses (with subscripts 1 and 2, respectively) resulting from

the inputs v(t) = cos η1t and v(t) = cos η2t, where η2 = η1− 0.01. The corre-

sponding value of the second continuation parameter is the squared distance

∆1 from the Nyquist curve associated with η = η1 to −1, and the fifth con-

tinuation parameter evaluates to the difference ∆1−∆2 between this squared

distance and that for η = η2.

coco-compatible encodings of the zero functions and the monitor function

are shown in the matlab functions openloopsystemp, etadif, distnyq,

and othnyq below.
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function [data y] = openloopsystemp(prob, data, u)

k1 = data.ok1;

k2 = data.ok2;

k3 = data.ok3;

omega0 = data.ox0(1);

current0 = data.ox0(2);

theta0 = data.ox0(3);

b = data.b;

J = data.J;

L = data.L;

Ke = data.Ke;

eta = u(1);

R = u(2);

Kt = u(3);

v2r = u(4);

v2i = u(5);

v3r = u(6);

v3i = u(7);

v4r = u(8);

v4i = u(9);

T = 2*pi/eta;

tstart = 0;

tsam = 20*T;

tstep = T/4;

simout = sim('simopenloopsystem', 'SrcWorkspace', ...

'current');

omega = simout.get('omega');

current = simout.get('current');

theta = simout.get('theta');

data.x0 = [omega(end); current(end); theta(end)];

tsize = numel(theta);

fomega = fft(omega(tsize-4:tsize-1)); %4pts

y = [v2r-real(fomega(2))/2; v2i-imag(fomega(2))/2];

fcurrent = fft(current(tsize-4:tsize-1)); %4pts

y = [y; v3r-real(fcurrent(2))/2; ...

v3i-imag(fcurrent(2))/2];

ftheta = fft(theta(tsize-4:tsize-1)); %4pts

y = [y; v4r-real(ftheta(2))/2; ...

v4i-imag(ftheta(2))/2];

end
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function [data y] = etadif(prob, data, u)

eta1 = u(1);

eta2 = u(2);

y = eta1-eta2-0.01;

end

function [data y] = distnyq(prob, data, u)

v4r1 = u(1);

v4i1 = u(2);

y = (v4r1+1)ˆ2+(v4i1)ˆ2;

end

function [data y] = othnyq(prob, data, u)

v4r1 = u(1);

v4i1 = u(2);

v4r2 = u(3);

v4i2 = u(4);

y = (v4r1+1)ˆ2+(v4i1)ˆ2-(v4r2+1)ˆ2-(v4i2)ˆ2;

end

To initialize the continuation problem, let u0 correspond to the steady-

state response obtained from harmonic excitation at η = 5 with R = 1 and

Kt = 100 with η1 = 5 and η2 = 4.99. The following code uses the coco entry-

point function to perform continuation along the associated one-dimensional

solutions manifold.

>> data = struct('ok1', 10, 'ok2', 10, 'ok3', 10, 'b', 1, ...

'J', 0.4, 'L', 10, 'Ke', 1, 'ox0', [0; 0; 0]);

>> u0 = [5; 1; 100; 0.037; -1.9; 0.039; -0.018; ...

-0.38; -0.0074];

>> prob = coco prob();

>> prob = coco set(prob, 'all','TOL',1e-5);

>> prob = coco set(prob, 'corr', 'ItMX',50,'MaxStep',0.1);

>> prob = coco set(prob, 'cont', 'PtMX',

2000,'h0 ',1,'h max',10,'NPR',1,'al max',7);

>> prob = coco add func(prob, 'phi1', @openloopsystemp, ...

data, 'zero', 'u0', u0);

>> prob = coco add func(prob, 'phi2', @openloopsystemp, ...

data, 'zero', 'u0', u0+[-0.01;zeros(8,1)]);

>> prob = coco add func(prob, 'phi3', @etadif, data, ...
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'zero', 'uidx', [1;10]);

>> prob = coco add func(prob, 'psi1', @distnyq, data, ...

'active', 'sqdist', 'uidx', [8; 9]);

>> prob = coco add func(prob, 'psi2', @othnyq, data, ...

'active', 'oth', 'uidx', [8; 9; 17; 18]);

>> prob = coco add glue(prob,'glue',[2 3],[11 12]);

>> prob = coco add pars(prob,'pars',[1 2 3],{'eta','R','Kt'});
>> prob = coco add event(prob, 'ot','oth',0);

>> coco(prob,'nyq dist run', [], 1, {'eta' 'oth' 'sqdist'}, ...

[4.7 5.1]);

>> lab nyq dist = coco bd labs(bd nyq dist run,'ot');

>> chart othco = coco read solution('', 'nyq dist run', ...

lab nyq dist(end), 'chart');

A projection of the solution manifold onto the (η1,∆1 − ∆2) coordinate

plane is shown below in Fig. 4.8. At the point where ∆1 = ∆2, η1 ≈ 4.8 and

∆1 ≈ 0.36 (cf. the initialization in Chap. 3 of ηn and δ).
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Figure 4.8: Difference in distances to −1 for the frequency response
function HV→Ω(jη)/η. Here, the black dot corresponds to the approximate
frequency associate with Nyquist distance.

Next, consider the simulink implementation shown in Fig. 4.9 of the feed-

back structure in Fig. 4.4.
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Figure 4.9: simulink model for maximum disturbance detection. The
shown system is the disturbance rejection of the superimposed integrator
feedback structure 4.4

Let u = (η,R,Kt, αω, βω, αi, βi, αθ, βθ, ν) be a vector of continuation vari-

ables, and consider the restricted continuation problem defined by

Φ : u 7→



Ai − αi
Aω − αω
Aθ − αθ
Bi − βi
Bω − βω
Bθ − βθ

α2
ω + β2

ω − ν


, (4.17)

Ψ : u 7→


ν

η

R

Kt

 , (4.18)

and I = {3, 4}. The dimensional deficit of this problem equals 1. It fol-
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lows that the family of solutions through any regular solution point is one-

dimensional manifold. This manifold is parameterized by η. Each point

corresponds to a unique set of trigonometric coefficients for the steady-state

responses and phase φ of θ(t) resulting from the input λ(t) = cos ηt. The

corresponding value of ν is the squared amplitude of ω(t).

The matlab function closeloopsystem below contain coco-compatible

encodings of the zero functions and the monitor function.

function [data y] = closeloopsystem(prob, data, u)

k1 = data.ck1;

k2 = data.ck2;

k3 = data.ck3;

omega0 = data.cx0(1);

current0 = data.cx0(2);

theta0 = data.cx0(3);

b = data.b;

J = data.J;

L = data.L;

Ke = data.Ke;

eta = u(1);

R = u(2);

Kt = u(3);

v2r = u(4);

v2i = u(5);

v3r = u(6);

v3i = u(7);

v4r = u(8);

v4i = u(9);

mag = u(10);

T = 2*pi/eta;

tstart = 0;

tsam = 20*T;

tstep = T/4;

simout = sim('simcloseloopsystem', ...

'SrcWorkspace', 'current');

omega = simout.get('omega');

current = simout.get('current');

theta = simout.get('theta');

data.cx0 = [omega(end); current(end); theta(end)];

tsize = numel(omega);

fomega = fft(omega(tsize-4:tsize-1)); %4pts
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y = [v2r-real(fomega(2))/2; v2i-imag(fomega(2))/2];

fcurrent = fft(current(tsize-4:tsize-1)); %4pts

y = [y; v3r-real(fcurrent(2))/2; ...

v3i-imag(fcurrent(2))/2];

ftheta = fft(theta(tsize-4:tsize-1)); %4pts

y = [y; v4r-real(ftheta(2))/2; v4i-imag(ftheta(2))/2];

y = [y; (abs(fomega(2)/2))ˆ2-mag];

end

Here, simcloseloopsystem refers to the simulink model of the closed-

loop system (see Fig. 4.9). To initialize the continuation problem, let u0

correspond to the steady-state response obtained from harmonic excitation

at η = 3 with R = 1 and Kt = 100. The following code uses the coco entry-

point function to perform continuation along the associated one-dimensional

solutions manifold.

>> data = struct('k1', 10, 'k2', 10, 'k3', 10, 'b', 1, ...

'J', 0.4, 'L', 10, 'Ke', 1, 'x0', [0; 0; 0]);

>> u0 = [3; 1; 100; 2.3643e-04; 0.4615; ...

-0.0155; 0.0046; 0.4615; 0.1333; 0.0402];

>> prob = coco prob();

>> prob = coco set(prob, 'cont', 'PtMX',1000, 'h0', 1, ...

'h max', 50, 'al max', 10, 'NPR', 1);

>> prob = coco set(prob, 'corr', 'TOL', 1.0e-5);

>> prob = coco add func(prob, 'p1init c phi1', ...

@closeloopsystem, data, 'zero', 'u0', u0);

>> prob = coco add pars(prob,'p1init c psi1', 10, 'mag');

>> prob = coco add pars(prob,'pars', [1 2 3], ...

{'eta', 'R', 'Kt'});
>> bd maxmag = coco(prob,'maxmagdetect', [], 1, ...

{'mag' 'eta'}, [0.1 5]);

>> lab maxmag = coco bd labs(bd maxmag, 'FP');

>> chartmaxmu = coco read solution('', 'maxmagdetect', ...

lab maxmag, 'chart');

A projection of the solution manifold onto the (η, ν) coordinate plane is

shown below in Fig. 4.10. The maximum value of ν is detected as a fold

point along the solution manifold at η ≈ 4.9, the maximum value of ν is

approximated 2.5108 (cf. the initialization in Chap. 3 of ηm).
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Figure 4.10: Magnitude for the frequency response function
(jη)HΛ→Ω(jη)/((jη) +HV→Ω(jη)). Here, the black dot corresponds to the
frequency of the minimum disturbance rejection.

4.3 Constant Gain Margin

For the constant gain margin optimization problem, let

u =

 η1, R1, Kt,1, αω,1, βω,1, αi,1, βi,1, αθ,1, βθ,1, φ,

η2, R2, Kt,2, αω,2, βω,2, αi,2, βi,2, αθ,2, βθ,2, ν2,

η3, R3, Kt,3, αω,3, βω,3, αi,3, βi,3, αθ,3, βθ,3, ν3

 (4.19)

be a vector of continuation variables, and consider the restricted continuation

problem defined by
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Φ : u 7→



Ai,1 − αi,1
Aω,1 − αω,1
Aθ,1 − αθ,1
Bi,1 − βi,1
Bω,1 − βω,1
Bθ,1 − βθ,1

βθ,1 cosφ− αθ,1 sinφ

Ai,2 − αi,2
Aω,2 − αω,2
Aθ,2 − αθ,2
Bi,2 − βi,2
Bω,2 − βω,2
Bθ,2 − βθ,2

α2
ω,2 + β2

ω,2 − ν2

Ai,3 − αi,3
Aω,3 − αω,3
Aθ,3 − αθ,3
Bi,3 − βi,3
Bω,3 − βω,3
Bθ,3 − βθ,3

α2
ω,3 + β2

ω,3 − ν3

η2 − η3 − 0.01

ν2 − ν3

R1 −R2

Kt,1 −Kt,2

R2 −R3

Kt,2 −Kt,3



, (4.20)

Ψ : u 7→


α2
θ,1 + β2

θ,1

R1

Kt,1

φ

ν2

 , (4.21)

and I = {1, 4}. The dimensional deficit of this problem equals 1. It fol-

lows that the family of solutions through any regular solution point is one-
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dimensional manifold. Each point on this manifold corresponds to three

coupled experiments in which constraints are imposed on the steady-state

response. Specifically, subscript 1 denotes an instance of the first elementary

experiment, whereas subscripts 2 and 3 denote instances of the second ele-

mentary experiment, for excitation frequencies that differ by 0.01, but with

identical amplitudes of ω(t). The choice of inactive continuation parameters

ensures that the gain margin is constant provided that the value of the fourth

continuation parameter equals −π.

The functions openloopsystem, closeloopsystem, and ampitude have

been introduced in the previous section. coco-compatible encodings of the

matlab functions closeloopdiff and closeloopeqdist are shown be-

low.

function [data y] = closeloopdiff(prob, data, u)

eta1 = u(1);

eta2 = u(2);

y = eta1-eta2-0.01;

end

function [data y] = closeloopeqdist(prob, data, u)

mag1 = u(1);

mag2 = u(2);

y = mag1-mag2;

end

To initialize the continuation problem, let u open correspond to the phase

crossover frequency and the corresponding steady-state response obtained

from the frequency sweep in Fig. 4.6. Let u close correspond to the fre-

quency associated with the maximum steady-state response magnitude of

ω(t) for a harmonic torque disturbance and the corresponding steady-state

response obtained from the frequency sweep in Fig. 4.10. The following code

uses the coco entry-point function to perform continuation along the asso-

ciated one-dimensional solutions manifold.

>> data = struct('ok1', 10, 'ok2', 10, 'ok3',10,...

'ck1', 10,'ck2', 5, 'ck3',10, 'b', 1, ...

'J', 0.4, 'L', 10, 'Ke', 1, ...
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'ox0', [0; 0; 0 ],'cx0', [0; 0; 0 ]);

>> u open = chart phsco.x(1:10);

>> u close = [chartmaxmu.x(1:10)];

>> prob = coco prob();

>> prob = coco set(prob, 'all', 'TOL', 1e-5);

>> prob = coco set(prob, 'corr', 'ItMX', 50);

>> prob = coco set(prob, 'cont', 'PtMX', 2000, ...

'h0', 1, 'h max', 100, 'h fac min', ...

0.1, 'NPR', 1);

>> prob = coco add func(prob, 'p1 coco phi1', ...

@openloopsystem, data, 'zero', 'u0', u open);

>> prob = coco add func(prob, 'p1 coco phi2', ...

@closeloopsystem, data, 'zero', 'u0', u close);

>> prob = coco add func(prob, 'p1 coco phi3', ...

@closeloopsystem, data, 'zero', ...

'u0', u close+[-0.01;zeros(9,1)]);

>> prob = coco add func(prob, 'p1 coco phi4', ...

@closeloop diff, data, 'zero', 'uidx', [11;21]);

>> prob = coco add func(prob, 'p1 coco phi5', ...

@closeloop eqdist,data, 'zero','uidx', [20 30]);

>> prob = coco add glue(prob,'p1 coco glue1', ...

[2 3], [12 13]);

>> prob = coco add glue(prob,'p1 coco glue2', ...

[12 13], [22 23]);

>> prob = coco add func(prob, 'p1 coco psi1', ...

@amplitude, data, 'inactive', 'sqmag', ...

'uidx', [8 9]);

>> prob = coco add pars(prob,'pars',[2 3 10 20], ...

{'R','Kt','phase','mu'});
>> prob = coco set parival(prob, 'sqmag', 0.3808ˆ2);

>> prob = coco set parival(prob, 'phase', -pi);

>> coco(prob,'P1MuRKt COCO S', [], 1, {'mu' 'Kt' 'R'}, ...

{[0 5], [1 300], [0.1 300]});

A projection of the solution manifold onto the (ν2, R1, Kt,1) coordinate

space is shown in Fig. 4.11. This figure also includes the corresponding

results from Chap. 3 for comparison. Note that although the frequencies η2

and η3 deviate slightly from ηm, the agreement is very good.
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Figure 4.11: The results (red dots) from control-based continuation agree
with those (solid) obtained using algebraic continuation for the constant
gain margin optimization problem.

4.4 Constant Phase Margin

Consider the identical continuation problem as in the previous section, but

let u open correspond to the gain crossover frequency and the corresponding

steady-state response obtained from the frequency sweep in Fig. 4.7. The

following code uses the coco entry-point function to perform continuation

along the associated one-dimensional solutions manifold.

>> data = struct('ok1', 10, 'ok2', 10, 'ok3', 10, ...
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'ck1', 10,'ck2', 5, 'ck3',10, 'b', 1, ...

'J', 0.4, 'L', 10, 'Ke', 1, 'ox0', [0; 0; 0 ], ...

'cx0', [0; 0; 0 ]);

>> u open = chart magco.x(1:10);

>> u close = [chartmaxmu.x(1:10)];

>> prob = coco prob();

>> prob = coco set(prob, 'all', 'TOL', 1e-5);

>> prob = coco set(prob, 'corr', 'ItMX', 50);

>> prob = coco set(prob, 'cont', 'PtMX', 2000, 'h0', 1, ...

'h max', 100, 'NPR', 1, 'h fac min', 0.1);

>> prob = coco add func(prob, 'phi1', @openloopsystem, ...

data, 'zero', 'u0', u open);

>> prob = coco add func(prob, 'phi2', @closeloopsystem, ...

data, 'zero', 'u0', u close);

>> prob = coco add func(prob, 'phi3', @closeloopsystem, ...

data, 'zero', 'u0', u close+[-0.01;zeros(9,1)]);

>> prob = coco add func(prob, 'phi4', @closeloopdiff, ...

data, 'zero', 'uidx', [11;21]);

>> prob = coco add func(prob, 'phi5', @closeloopeqdist, ...

data, 'zero', 'uidx', [20;30]);

>> prob = coco add glue(prob, 'glue1', [2 3], [12 13]);

>> prob = coco add glue(prob, 'glue2', [2 3], [22 23]);

>> prob = coco add func(prob, 'psi1', @amplitude, data, ...

'inactive', 'sqmag', 'uidx', [8 9]);

>> prob = coco add pars(prob, 'pars', [2 3 10 20], ...

{'R', 'Kt', 'phase', 'mu'});
>> prob = coco set parival(prob, 'sqmag', 1);

>> prob = coco set parival(prob, 'phase', -1.6807);

>> coco(prob, 'P2MuRKt COCO', [], 1, {'mu' 'Kt' 'R'}, ...

{[0 5], [1 300], [0.1 300]});

A projection of the solution manifold onto the (ν2, R1, Kt,1) coordinate

space is shown below in Fig. 4.12. This figure also includes the corresponding

results from Chap. 3 for comparison. Note that although the frequencies η2

and η3 deviate slightly from ηm, the agreement is very good.
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Figure 4.12: The results (red dots) from control-based continuation agree
with those (solid) obtained using algebraic continuation for the constant
phase margin optimization problem.

4.5 Constant Nyquist Distance

Next, let

u =


η1, R1, Kt1, αω,1, βω,1, αi,1, βi,1, αθ,1, βθ,1,

η2, R2, Kt2, αω,2, βω,2, αi,2, βi,2, αθ,2, βθ,2,

η3, R3, Kt3, αω,3, βω,3, αi,3, βi,3, αθ,3, βθ,3, ν3,

η4, R4, Kt4, αω,4, βω,4, αi,4, βi,4, αθ,4, βθ,4, ν4

 (4.22)
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be a vector of continuation variables, and consider restricted continuation

problem defined by

Φ : u 7→

F1

F2

F3

 , (4.23)

where

F1 =



Ai,1 − αi,1
Aω,1 − αω,1
Aθ,1 − αθ,1
Bi,1 − βi,1
Bω,1 − βω,1
Bθ,1 − βθ,1
Ai,2 − αi,2
Aω,2 − αω,2
Aθ,2 − αθ,2
Bi,2 − βi,2
Bω,2 − βω,2
Bθ,2 − βθ,2



, (4.24)

F2 =



Ai,3 − αi,3
Aω,3 − αω,3
Aθ,3 − αθ,3
Bi,3 − βi,3
Bω,3 − βω,3
Bθ,3 − βθ,3

α2
ω,3 + β2

ω,3 − ν3

Ai,4 − αi,4
Aω,4 − αω,4
Aθ,4 − αθ,4
Bi,4 − βi,4
Bω,4 − βω,4
Bθ,4 − βθ,4

α2
ω,4 + β2

ω,4 − µ4



, (4.25)
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F3 =



η1 − η2 − 0.01

η3 − η4 − 0.01

ν3 − ν4

R1 −R2

Kt1 −Kt2

R1 −R3

Kt1 −Kt3

R1 −R4

Kt1 −Kt4


, (4.26)

Ψ : u 7→


R

Kt

(αθ,1 + 1)2 + β2
θ,2 − (αθ,2 + 1)2 − β2

θ,2

(αθ,1 + 1)2 + β2
θ,2

ν3

 , (4.27)

and I = {3, 4}. The dimensional deficit of this problem equals 1. It fol-

lows that the family of solutions through any regular solution point is one-

dimensional manifold. Each point on this manifold corresponds to four

coupled experiments in which constraints are imposed on the steady-state

response. Specifically, subscripts 1 and 2 denote instances of the first el-

ementary experiment, whereas subscripts 3 and 4 denote instances of the

second elementary experiment. For the two instances of each experiment,

the frequencies of excitation differ by 0.01. The choice of inactive continua-

tion parameters ensures that the approximated Nyquist distance is constant

provided that the value of the third continuation parameter equals zero.

The function openloopsystemp, closeloopsystem, closeloopdiff,

closeloopeqdist, distnyq, othnyq, etadiff and coco add glue have

been introduced in the previous section. To initialize the continuation prob-

lem, let u open correspond to the minimum Nyquist distance frequency and

the corresponding steady-state response obtained from the frequency sweep

in Fig. 4.8. Let u close correspond to the frequency associated with the

maximum steady-state response magnitude of ω(t) for a harmonic torque

disturbance and the corresponding steady-state response obtained from the

frequency sweep in Fig. 4.10. The following code uses the coco entry-point

function to perform continuation along the associated one-dimensional solu-

tions manifold.
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>> data = struct('ok1', 10, 'ok2', 10, 'ok3', 10, ...

'ck1', 10,'ck2', 5, 'ck3', 10,'b', 1, ...

'J', 0.4, 'L', 10, 'Ke', 1, 'ox0', [0; 0; 0 ], ...

'cx0', [0; 0; 0 ]);

>> u open = chart othco.x(1:9);

>> u close = chartmaxmu.x(1:10);

>> prob = coco prob();

>> prob = coco set(prob, 'all', 'TOL', 1e-5);

>> prob = coco set(prob, 'corr', 'ItMX', 50, 'MaxStep', 0.1);

>> prob = coco set(prob, 'cont', 'PtMX', 2000, 'h0', 1, ...

'h max', 15, 'NPR', 1, 'FP', true);

>> prob = coco add func(prob, 'phi1', @openloopsystemp, ...

data, 'zero', 'u0', u open);

>> prob = coco add func(prob, 'phi2', @openloopsystemp, ...

data, 'zero', 'u0', u open+[-0.01, zeros(8,1))]);

>> prob = coco add func(prob, 'phi3', @closeloopsystem, ...

data, 'zero', 'u0', u close);

>> prob = coco add func(prob, 'phi4', @closeloopsystem, ...

data, 'zero', 'u0', u close+[-0.01; zeros(9,1)]);

>> prob = coco add func(prob, 'phi5', @closeloopdiff, ...

data,'zero', 'uidx', [19;29]);

>> prob = coco add func(prob, 'phi6', @etadif, data, ...

'zero', 'uidx', [1;10]);

>> prob = coco add func(prob, 'phi7', @closeloopeqdist, ...

data, 'zero', 'uidx', [28;38]);

>> prob = coco add glue(prob, 'glue1', [2 3], [11 12]);

>> prob = coco add glue(prob, 'glue2', [2 3], [20 21]);

>> prob = coco add glue(prob, 'glue3', [2 3], [30 31]);

>> prob = coco add func(prob, 'psi1', @dist nyq, data, ...

'inactive', 'sqdist', 'uidx', [8; 9]);

>> prob = coco add func(prob, 'psi2', @oth nyq, data, ...

'inactive', 'oth', 'uidx', [8; 9; 17; 18]);

>> prob = coco add pars(prob, 'pars', [2 3 28], ...

{'R','Kt','mu'});
>> prob = coco set parival(prob, 'sqdist', 0.36);

>> prob = coco set parival(prob, 'oth', 0);

>> coco(prob,'P3MuRKt COCO)',[], 1,{'mu' 'Kt' 'R'}, ...

{[0 5],[1 300],[0.1 300]});

A projection of the solution manifold onto the (ν3, R1, Kt,1) coordinate

space is shown below in Fig. 4.13. This figure also includes the corresponding

results from Chap. 3 for comparison. Note that although the frequencies η1

and η2 deviate slightly from ηn, and η3 and η4 deviate slightly from ηm, the
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agreement is very good.
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Figure 4.13: The results (red dots) from control-based continuation agree
with those (solid) obtained using algebraic continuation for the constant
Nyquist distance optimization problem.

4.6 Discussion

In this chapter, we have formulated the continuation problems for simulated

experiments and analyzed the same optimal design problems as in Chap. 3

based on measurable outputs only. The results verify that it is possible to find

the parametric manifold associated with solutions of a system of equations

without having explicit expressions for these equations. This is especially

useful for actual experiments with unmodeled dynamics. In the following
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chapter, we will describe an alternative implementation that substitutes an

iterated method for approximating the problem Jacobian instead of finite

differences.
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CHAPTER 5

THE CONTINEX TOOLBOX

The implementation of coco used in the previous chapters relies on an it-

erated Newton solver for locating points on the solution manifold. In the

absence of explicit derivatives for the continuation variables, it is necessary

to approximate the Jacobian that appears in Newton’s method. In the previ-

ous chapters, the default algorithm uses a first-order finite-difference scheme

to estimate the Jacobian. Such an implementation requires repeated eval-

uation of the zero and monitor functions, which can be time-consuming if

simulations are run every iteration. The number of such evaluations per

Newton step equals the number of continuation variables plus 1.

This chapter describes the use of the Broyden method, implemented in the

coco-compatible continex toolbox [28], for updating an approximation of

parts of the problem Jacobian in each Newton step. The Broyden update

uses a previous approximation obtained either by finite differences or by a

previous iteration of Broyden’s method. If no previous approximation exists,

then by default continex initializes the matrix to an identity matrix padded

with zero columns. This initialization causes a singular problem matrix in

cases where additional constraints are imposed on coupled instances of the

continex toolbox. In the analysis described below, this was addressed by

initializing the matrix to an identity matrix padded with columns with small

amplitude random entries.

5.1 Numerical Results

The continex implementation of the continuation problems formulated in

Chap. 4 is similar to the implementation shown there with only a few changes

to fit the syntax of continex. The codes for implementing eac of the ele-

mentary experiments are shown in Appendix A. The implementation of the
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three coupled design problems can be found in Appendix B. The correspond-

ing results are shown in Figs. 5.1-5.3 and agree closely with the predictions

from Chap. 4.
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Figure 5.1: The results (red dots) from continuation using continex agree
with those obtained in Chap. 4 using control-based continuation (black
solid) for the constant gain margin problem.
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Figure 5.2: The results (red dots) from continuation using continex agree
with those obtained in Chap. 4 using control-based continuation (black
solid) for the constant phase margin problem.
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Figure 5.3: The results (red dots) from continuation using continex agree
with those obtained in Chap. 4 using control-based continuation (black
solid) for the constant Nyquist distance problem.

To compare the computational efficiency of the continex implementation

and the method used in Chap. 4, it is instructive to inspect the initial part of

the screen output from the coco run. In Chap. 4, each point on the solution

manifold is located using Newton iterates with approximate Jacobians ob-

tained using finite differences. The initial part of the screen output in Fig. 5.4

shows the convergence to a starting point on the solution manifold from the

initial solution guess. Here, convergence is achieved after five iterates and 50

seconds of computation time.
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Figure 5.4: Screen printout of the initial convergence to a starting point on
the solution manifold for the constant gain margin problem using
finite-difference approximations of the problem Jacobian.

In continex, each point on the solution manifold is located using New-

ton iterates with approximate Jacobians obtained using simultaneous Broy-

den updates. The initial part of the screen output in Fig. 5.5 shows the

convergence to a starting point on the solution manifold from the initial so-

lution guess. Here, convergence is achieved after 21 iterates and 25 seconds

of computation time.
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Figure 5.5: Screen printout of the initial convergence to a starting point on
the solution manifold for the constant gain margin problem using Broyden
updates for the problem Jacobian.

This suggests that Broyden’s method takes less computational time than

the implementation based on finite differences. It is also worth noting that

Broyden’s method uses more iterations to converge to the solution, which

is consistent with the fact that Broyden’s method does not preserve the

quadratic convergence of Newton’s method.
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CHAPTER 6

CONCLUSIONS

This thesis focuses on the feasibility of applying control-based continuation

to solve constrained design problems for periodically excited linear systems.

As implemented here, control-based continuation enables the imposition of

nontrivial nonlinear constraints on the frequency response of a linear system

with opportunities to regulate rates of convergence by the tuning of feedback

gains, without access to an explicit model of the system. As an example, the

analysis shows the possibility of reducing the angular velocity response of an

armature-controlled DC motor to a disturbance torque while imposing con-

straints on the properties of a suitably defined open-loop transfer function.

The formulation in Chap. 4 of elementary experiments points to the po-

tential implementation of the control-based continuation paradigm in a real-

time physical system. Indeed, each simulink model can be replaced by a

physical experiment, with complete transparency as far as the coco imple-

mentation is concerned. The continex toolbox discussed briefly in Chap. 5

is specifically designed to handle noise-contaminated data from such a phys-

ical experiment [27]. Future research with the proposed design methodology

should consider a coupling of continex with an appropriate experimental

realization of the DC motor and its feedback embeddings.

Although the DC motor model is a linear system, the stability margins

and design functions considered in this thesis are nonlinear functions of the

system parameters. Linearity is thus not an essential part of this design

paradigm. Indeed, the method of control-based continuation can also be

used to analyze design problems in which constraints are imposed on the

properties of a periodic trajectory of a nonlinear system, whether stable

or unstable. In such cases, analytic expressions are rarely available, and a

mathematical model may offer a poor approximation of the actual physical

system. The control-based continuation approach overcomes both of these

challenges, provided that it is suitably initialized (e.g., by using a stable
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response, as in [31]).

Notably, in a nonlinear system, the periodic response is typically not har-

monic. In this case, the reference signals used in the feedback formulation

must account for additional harmonics in the Fourier expansion. In Chap. 4,

we relied on the fact that only the fundamental harmonic was present in

choosing to use four evenly distributed samples per period in the matlab

fft function. With additional harmonics in the response, it becomes nec-

essary to include more samples per period. In a nonlinear system, it might

therefore be useful to develop an adaptive algorithm that updates the sam-

pling interval to avoid the potential for aliasing while still minimizing the

number of measurements (cf. Chap. 19 of [10]).

Similarly, while the feedback gains were chosen and then held fixed dur-

ing continuation, a nonlinear application would typically require that the

gains be updated along the solution manifold, for example, to accommodate

changes to the local stability of a periodic trajectory [20]. Additionally, the

continuation paradigm could be coupled to an optimization algorithm that

seeks to locate the optimal value of the objective function (e.g., [12]).

Another possible application of control-based continuation is hybrid sub-

structuring [5]. Here, a physical system is broken down into multiple parts.

Some parts are modeled on a computer, whereas others are realized in an

experiment. Coupling between the simulated parts and the experiment is

achieved using actuators and sensors. This allows a hybrid substructuring

experiment to be performed without recreating the entire physical system. In

fact, [30] proposes a formulation of the control-based continuation paradigm

for analyzing the periodic trajectories in a nonlinear substructured system

that eliminates the negative effects of delay that are otherwise present in

hybrid substructured experiments.
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APPENDIX A

CONTINEX-COMPATIBLE
IMPLEMENTATION OF ELEMENTARY

EXPERIMENTS

The matlab functions below implement zero functions used in the applica-

tion in Chap. 5 of continex to each of the coupled design problems (cf. Ap-

pendix B).

function [data y] = openloopsystem(data, x, p)

k1 = data.ok1;

k2 = data.ok2;

k3 = data.ok3;

omega0 = data.ox0(1);

current0 = data.ox0(2);

theta0 = data.ox0(3);

b = data.b;

J = data.J;

L = data.L;

Ke = data.Ke;

eta = p(1);

R = p(2);

Kt = p(3);

v2r = x(1);

v2i = x(2);

v3r = x(3);

v3i = x(4);

v4r = x(5);

v4i = x(6);

th = x(7);

T = 2*pi/eta;

tstart = 0;

tsam = 20*T;

tstep = T/4;

simout = sim('simopenloopsystem', 'SrcWorkspace',...

'current');

omega = simout.get('omega');
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current = simout.get('current');

theta = simout.get('theta');

data.x0 = [omega(end); current(end); theta(end)];

tsize = numel(theta);

fomega = fft(omega(tsize-4:tsize-1)); %4pts

y = [v2r-real(fomega(2))/2; ...

v2i-imag(fomega(2))/2];

fcurrent = fft(current(tsize-4:tsize-1)); %4pts

y = [y; v3r-real(fcurrent(2))/2; ...

v3i-imag(fcurrent(2))/2];

ftheta = fft(theta(tsize-4:tsize-1)); %4pts

y = [y; v4r-real(ftheta(2))/2; ...

v4i-imag(ftheta(2))/2];

y = [y; v4i*cos(th)-v4r*sin(th)];

end

function [data y] = openloopsystempcont(data, x, p)

k1 = data.ok1;

k2 = data.ok2;

k3 = data.ok3;

omega0 = data.ox0(1);

current0 = data.ox0(2);

theta0 = data.ox0(3);

b = data.b;

J = data.J;

L = data.L;

Ke = data.Ke;

eta = p(1);

R = p(2);

Kt = p(3);

v2r = x(1);

v2i = x(2);

v3r = x(3);

v3i = x(4);

v4r = x(5);

v4i = x(6);

T = 2*pi/eta;

tstart = 0;

tsam = 20*T;

tstep = T/4;

simout = sim('simopenloopsystem', ...

'SrcWorkspace', 'current');
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omega = simout.get('omega');

current = simout.get('current');

theta = simout.get('theta');

data.x0 = [omega(end); current(end); theta(end)];

tsize = numel(theta);

fomega = fft(omega(tsize-4:tsize-1)); %4pts

y = [v2r-real(fomega(2))/2; ...

v2i-imag(fomega(2))/2];

fcurrent = fft(current(tsize-4:tsize-1)); %4pts

y = [y; v3r-real(fcurrent(2))/2; ...

v3i-imag(fcurrent(2))/2];

ftheta = fft(theta(tsize-4:tsize-1)); %4pts

y = [y; v4r-real(ftheta(2))/2; ...

v4i-imag(ftheta(2))/2];

end

function [data y] = closeloopsystem(data, x, p)

k1 = data.ck1;

k2 = data.ck2;

k3 = data.ck3;

omega0 = data.cx0(1);

current0 = data.cx0(2);

theta0 = data.cx0(3);

b = data.b;

J = data.J;

L = data.L;

Ke = data.Ke;

eta = p(1);

R = p(2);

Kt = p(3);

v2r = x(1);

v2i = x(2);

v3r = x(3);

v3i = x(4);

v4r = x(5);

v4i = x(6);

mag = x(7);

T = 2*pi/eta;

tstart = 0;

tsam = 20*T;

tstep = T/4;

simout = sim('simcloseloopsystem', 'SrcWorkspace', ...
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'current');

omega = simout.get('omega');

current = simout.get('current');

theta = simout.get('theta');

data.x0 = [omega(end); current(end); theta(end)];

tsize = numel(omega);

fomega = fft(omega(tsize-4:tsize-1)); %4pts

y = [v2r-real(fomega(2))/2; v2i-imag(fomega(2))/2];

fcurrent = fft(current(tsize-4:tsize-1)); %4pts

y = [y; v3r-real(fcurrent(2))/2; ...

v3i-imag(fcurrent(2))/2];

ftheta = fft(theta(tsize-4:tsize-1)); %4pts

y = [y; v4r-real(ftheta(2))/2; ...

v4i-imag(ftheta(2))/2];

y = [y; (abs(fomega(2)/2))ˆ2-mag];

end
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APPENDIX B

IMPLEMENTATION OF COUPLED
CONTINUATION PROBLEMS USING

CONTINEX

The matlab commands shown below were used to analyze the three cou-

pled design problems using the coco-compatible continex toolbox (cf. Ap-

pendix A).

B.1 Constant Gain Margin

The commands below use the continex toolbox and the coco entry point

function to generate the one-dimensional solution manifold associated with

the constant gain margin problem (see Fig. 5.1).

>> data = struct('ok1', 10, 'ok2', 10, 'ok3', 10, ...

'ck1', 10,'ck2', 10, 'ck3', 10, 'b', 1, ...

'J', 0.4, 'L', 10, 'Ke', 1, 'ox0', [0; 0; 0 ], ...

'cx0', [0; 0; 0 ]);

>> u open = chart phsco.x(1:10);

>> u close = chartmaxmu.x(1:10);

>> p10=u open(1:3);

>> x10=u open(4:10);

>> p20=u close(1:3);

>> x20=u close(4:10);

>> prob = coco prob();

>> prob = coco set(prob, 'all', 'TOL', 1e-5);

>> prob = coco set(prob, 'cont', 'ItMX', -2000, ...

'h max', 10, 'NPR', 1)

>> prob = coco set(prob, 'corr', 'ItMX', 1000);

>> prob = coco set(prob, 'continex', 'NJac', 20);

>> prob = coco set(prob, 'continex', 'JacH', [0.05 0.05]);

>> prob = continex isol2sol(prob,'phi1', ...

@openloopsystemcont, 'fpar', data,x10,p10);

>> prob = continex isol2sol(prob, 'phi2', ...
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@closeloopsystemcont, 'fpar', data, x20, p20);

>> prob = continex isol2sol(prob, 'phi3', ...

@closeloopsystemcont, 'fpar',...

data, x20, p20+[-0.01;0;0]);

>> prob = coco add func(prob, 'phi4', @closeloopdiff, ...

data, 'zero','uidx', [18 28]);

>> prob = coco add func(prob, 'phi5', ...

@closeloopeqdist, data, 'zero', 'uidx', [17 27]);

>> prob = coco add func(prob, 'psi1', @amplitude, data, ...

'inactive', 'sqmag', 'uidx', [5 6]);

>> prob = coco add glue(prob, 'glue1', [9 10], [19 20]);

>> prob = coco add glue(prob, 'glue2', [9 10], [29 30]);

>> prob = coco add pars(prob, 'pars', [7 9 10 15], ...

{'phase','R','Kt','mu'});
>> prob = coco set parival(prob, 'sqmag', 0.3808ˆ2);

>> prob = coco set parival(prob, 'phase', -pi);

>> coco(prob,'P1MuRKt CONTINEX N', [], 1, ...

{'mu' 'Kt' 'R'}, {[0 5], [1 300], [0.1 300]});

B.2 Constant Phase Margin

The commands below use the continex toolbox and the coco entry point

function to generate the one-dimensional solution manifold associated with

the constant phase margin problem (see Fig. 5.2).

>> data = struct('ok1', 10, 'ok2', 10, 'ok3', 10, ...

'ck1', 10,'ck2', 10, 'ck3', 10, 'b', 1, ...

'J', 0.4, 'L', 10, 'Ke', 1, ...

'ox0', [0; 0; 0 ], 'cx0', [0; 0; 0 ]);

>> u open = chart phsco.x(1:10);

>> u close = chartmaxmu.x(1:10);

>> p10 = u open(1:3);

>> x10 = u open(4:10);

>> p20 = u close(1:3);

>> x20 = u close(4:10);

>> prob = coco prob();

>> prob = coco set(prob, 'all', 'TOL', 1e-5);

>> prob = coco set(prob, 'cont', 'PtMX', ...

2000, 'NPR', 1, 'TrMX', 5, 'h max', 1, ...

'h min', 0.001, 'h0', 0.05);
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>> prob = coco set(prob, 'corr', 'ItMX', 80);

>> prob = coco set(prob, 'continex', 'NJac', 10);

>> prob = coco set(prob, 'continex', ...

'JacH', [0.01 0.01]);

>> prob = continex isol2sol(prob,'phi1', ...

@openloopsystemcont, 'fpar',data,x10,p10);

>> prob = continex isol2sol(prob, 'phi2', ...

@closeloopsystemcont, ...

'fpar',data,x20,p20);

>> prob = continex isol2sol(prob, 'phi3', 'fpar', ...

@closeloopsystemcont, ...

data, x20, p20+[-0.01;0;0]);

>> prob = coco add func(prob, 'phi4', ...

@closeloopdiff,data, 'zero', ...

'uidx', [18 28]);

>> prob = coco add func(prob, 'phi5', ...

@closeloopeqdist,data, ...

'zero','uidx', [17 27]);

>> prob = coco add func(prob, 'psi1', ...

@amplitude, data, 'inactive', ...

'sqmag', 'uidx', [5 6]);

>> prob = coco add glue(prob, 'glue1', ...

[9 10], [19 20]);

>> prob = coco add glue(prob, 'glue2', ...

[9 10], [29 30]);

>> prob = coco add pars(prob, 'pars', ...

[7 9 10 15], {'phase', 'R', 'Kt', 'mu'});
>> prob = coco set parival(prob, 'sqmag', 1);

>> prob = coco set parival(prob, 'phase', -0.1099);

>> coco(prob,'P2MuRKt CONT P', [], 1, ...

{'mu' 'Kt' 'R'}, {[0 5],[1 300],[0.1 300]});

B.3 Constant Nyquist Distance

The commands below use the continex toolbox and the coco entry point

function to generate the one-dimensional solution manifold associated with

the constant Nyquist distance problem (see Fig. 5.3).

>> data = struct('ok1', 10, 'ok2', 10, 'ok3', 10, ...

'ck1', 10,'ck2', 5, 'ck3',10, 'b', 1, ...
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'J', 0.4, 'L', 10, 'Ke', 1, 'ox0', [0; 0; 0 ],...

'cx0', [0; 0; 0 ]);

>> u open = chart othco.x(1:9);

>> u close = chartmaxmu.x(1:10);

>> x110 = u open(4:9);

>> p110 = u open(1:3);

>> x120 = u open(4:9);

>> p120 = u open(1:3)+[-0.01;0;0];

>> x20 = u close(4:10);

>> p20 = u close(1:3);

>> prob = coco prob();

>> prob = coco set(prob, 'all','TOL',1e-6);

>> prob = coco set(prob, 'cont', 'PtMX', -2000, ...

'NPR', 1, 'TrMX', 5, 'h max', 10, ...

'h min', 0.01, 'h0', 0.05)

>> prob = coco set(prob, 'corr', 'ItMX', 200);

>> prob = coco set(prob, 'continex', 'NJac', 10);

>> prob = coco set(prob, 'continex', 'JacH', [0.01 0.01]);

>> prob = continex isol2sol(prob, 'phi1', ...

@openloopsystempcont, 'fpar', data, ...

x110, p110);

>> prob = continex isol2sol(prob, 'phi2', ...

@openloopsystempcont,...

'fpar',data,x120,p120);

>> prob = continex isol2sol(prob, 'phi3', ...

@closeloopsystemcont,...

'fpar',data,x20,p20);

>> prob = continex isol2sol(prob, 'phi4', ...

@closeloopsystemcont,...

'fpar',data,x20,p20+[-0.01; 0; 0]);

>> prob = coco add func(prob, 'phi5', ...

@closeloopdiff, data, ...

'zero', 'uidx', [26 36]);

>> prob = coco add func(prob, 'phi6', @etadif, ...

data, 'zero', 'uidx', [7 16]);

>> prob = coco add func(prob, 'phi7', ...

@closeloopeqdist,data, ...

'zero','uidx', [23 33]);

>> prob = coco add func(prob, 'psi1', ...

@distnyq, data, 'inactive', ...

'sqdist', 'uidx', [5; 6]);

>> prob = coco add func(prob, 'psi2', ...

@othnyq, data, 'inactive', '...
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oth', 'uidx', [5; 6; 14; 15]);

>> prob = coco add glue(prob,'glue1', [8 9], [17 18]);

>> prob = coco add glue(prob,'glue2' ,[8 9], [27 28]);

>> prob = coco add glue(prob,'glue3', [8 9], [37 38]);

>> prob = coco add glue(prob,'glue4', [8 9], [46 47]);

>> prob = coco add pars(prob,'pars', [8 9 23],...

{'R', 'Kt', 'mu'});
>> prob = coco set parival(prob, 'sqdist', 0.36);

>> prob = coco set parival(prob, 'oth', 0);

>> coco(prob,'P3MuRKt CONT N', [], 1, {'mu' 'Kt' 'R'},...
{[0 5],[1 300],[0.1 300]});
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