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ABSTRACT

This thesis endeavors to characterize the performance of nonreciprocal mi-

crowave devices enabled by parametric frequency conversion. Although such

devices have been explored somewhat superficially in the 1960s, resurgent

interest in low-noise nonreciprocal components has motivated new research

in parametric frequency conversion. In particular, this work explores the

contributions of nonidealities to performance degradation of a parametric gy-

rator. Expressions are developed for loss and noise performance contributed

by nonideal components constituting the gyrator, and simulations are used

to verify the findings. The gyrator is then used to construct a circulator,

and its performance’s dependence on the same nonidealities is evaluated. A

simulated design example is used to demonstrate a practical realization of

such a circulator.
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“Du Sterne hellster, o wie schön verkündest du den Tag! Wie schmückst du

ihn, o Sonne du, des Weltalls Seel’ und Aug’! Ihr’ Elemente, deren Kraft,

stets neue Formen zeugt...”

-Gottfried van Swieten

From the libretto to Haydn’s “Die Schöpfung”
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CHAPTER 1

INTRODUCTION

Electrical circuits with variable parameters are known as parametric circuits.

Most often, the term is used to describe circuits containing a lossless element

with a parameter that varies in time. One example of this would be the

variation of the reverse-bias capacitance of an ideal varactor diode by an

external voltage source. In such a circuit, an excitation of one frequency can

be used to generate signals of many other frequencies. Although the concept

of parametric excitation was first observed in a mechanical system by Michael

Faraday [1] in 1831, it was first applied to electrical circuits in 1892 by G.

F. FitzGerald [2]. Throughout the 20th century, parametric circuits were

utilized often in high-sensitivity receiver systems for satellite communications

[3, 4, 5] or as amplifiers in radar systems [6, 7, 8] due to their unique low-noise

properties and their ability to operate at microwave frequencies. Before the

invention of the high electron mobility transistor (HEMT) [9], parametric

amplifiers built with varactor diodes were the only solid-state technique to

amplify a signal at microwave frequencies. Although parametric circuits fell

largely into obscurity with the invention of the HEMT, they have found

new applications in modern times as the demand has grown for small, low-

noise nonreciprocal microwave elements readily realized in integrated form.

This demand comes largely from the communications industry, where such

components are needed to achieve full-duplex communication, also called

simultaneous transmit-and-receive (STAR). In this scheme, a transceiver can

transmit and receive information at the same time and the same frequency.

This is in contrast to time domain duplex, where transmission and reception

are performed at different times, or frequency domain duplex, where each is

done at different frequencies. Intuitively, STAR could be used to double the

bandwidth of conventional transceivers.
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1.1 Reciprocity and Noise in Microwave Devices

The behavior of signals traveling in different directions inside a microwave

device is known as the reciprocity of the device. When discussing the reci-

procity of the device, it is convenient to describe the device as an n-port

network, where a port is a pair of terminals. In this case, the formalism of

scattering parameters can be used to classify the device. For a reciprocal

device, the scattering parameters must satisfy the relation shown in equation

1.1.

Sij = Sji, i 6= j, i = 1, 2, 3...n, j = 1, 2, 3...n (1.1)

This means that if some voltage Va is applied at some port i and a corre-

sponding voltage Vb is measured at port j, then the same voltage Vb should

be measured at port i if Va is applied to port j. For a nonreciprocal device,

relation in equation 1.1 is not satisfied for at least one pair of ports. This

means that for at least one pair of ports i and j, if some voltage Va is applied

to port i and Vb is measured at port j, it will be observed that some voltage

Vc 6= Vb is measured at port i if Va is now applied to port j. The existence

of these two types of devices can be demonstrated from Maxwell’s equations

using the reciprocity theorem [10].

1.1.1 Reciprocity Theorem and Relation to Electrical
Circuits

In the study of electromagnetic fields and waves, there exists an important

theorem relating the behavior of two independent fields generated by two

independent sources. This theorem originates from the fact that both fields

are governed by Maxwell’s equations and is known as the reciprocity theo-

rem. Although the theorem exists in several forms and can be generalized to

an arbitrary number of independent sources, the form known as the Lorentz

reciprocity theorem is most amenable to the description of circuits. The the-

orem can be derived by first considering two independent electromagnetic

fields: ( ~E1, ~H1) and ( ~E2, ~H2). Each of these field quantities is a vector in
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three-dimensional space, and thus can be represented with a column vector.

In the context of an electrical circuit, such as a two-port device, these inde-

pendent fields could represent a signal incident upon port one and a signal

incident upon port two. These fields follow Ampère’s and Faraday’s laws,

meaning

∇× ~E1 = −jω ¯̄µ ~H1 − ~M1 (1.2)

∇× ~H1 = (jω¯̄ε+ ¯̄σ) ~E1 + ~J2 (1.3)

∇× ~E2 = −jω ¯̄µ ~H2 − ~M2 (1.4)

∇× ~H2 = (jω¯̄ε+ ¯̄σ) ~E2 + ~J2 (1.5)

In the most general case, the material parameters ¯̄µ, ¯̄ε and ¯̄σ are expressed

as tensors with positional dependence. In rectangular coordinates,

ε(x, y, z) =

 εxx(x, y, z) εxy(x, y, z) εxz(x, y, z)

εyx(x, y, z) εyy(x, y, z) εyz(x, y, z)

εzx(x, y, z) εzy(x, y, z) εzz(x, y, z)



µ(x, y, z) =

 µxx(x, y, z) µxy(x, y, z) µxz(x, y, z)

µyx(x, y, z) µyy(x, y, z) µyz(x, y, z)

µzx(x, y, z) µzy(x, y, z) µzz(x, y, z)



σ(x, y, z) =

 σxx(x, y, z) σxy(x, y, z) σxz(x, y, z)

σyx(x, y, z) σyy(x, y, z) σyz(x, y, z)

σzx(x, y, z) σzy(x, y, z) σzz(x, y, z)


The physical reason for this is that, in general, material parameters can

be dependent on the direction of propagation of EM waves. This is referred

to as anisotropy. If these material parameters are spatially dependent, this

is referred to as inhomogeneity. Rearranging equations 1.2, 1.3, 1.4 and 1.5

yields

∇· ( ~H2× ~E1) = −jω¯̄ε ~E1 · ~E2 + ¯̄σ ~E1 · ~E2 + jω ¯̄µ ~H2 · ~H1 + ~E1 · ~J2 + ~H2 · ~M1 (1.6)

∇· ( ~H1× ~E2) = −jω¯̄ε ~E2 · ~E1 + ¯̄σ ~E2 · ~E1 + jω ¯̄µ ~H1 · ~H2 + ~E2 · ~J1 + ~H1 · ~M2 (1.7)
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For a symmetric tensor, its product with a vector is commutative, which is

to say ¯̄α ~A = ~A ¯̄α, and thus if ¯̄µ, ¯̄ε and ¯̄σ are all symmetric, then subtracting

equation 1.7 from 1.6 yields

∇ · ( ~H2 × ~E1 − ~H1 × ~E2) = ~E1 · ~J2 + ~H2 · ~M1 − ~E2 · ~J1 − ~H1 · ~M2 (1.8)

Materials that satisfy this condition are known as reciprocal materials. If

equation 1.8 is integrated over a region of finite volume V that contains no

sources (i.e. ~Ji = 0, ~Mi = 0), then applying the divergence theorem yields

1.9

�
S

( ~E1 × ~H2) · n̂ dS =

�
S

( ~E2 × ~H1) · n̂ dS (1.9)

Figure 1.1: Two-port network. Ports 1 and 2 are driven by sources a and b,
respectively. Each source is connected to the two-port via a waveguide with
modal fields shown. Surface S encloses the two-port.

This is the Lorentz reciprocity theorem. Per the definition of the divergence

theorem, S is the closed surface that encloses V , and n̂ is the unit vector

normal to S. Now, consider a two-port network with sources a and b driving

ports 1 and 2, respectively, as shown in Fig. 1.1. The surface S is now defined

to enclose the boundaries of the network. Each port is a pair of terminals,
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and can be addressed by some type of waveguide. If the waveguides are

constructed from perfect electrical conductors, the fields excited in each due

to some source can be expressed in terms of each waveguide’s transverse

modal fields. If the waveguide connecting port 1 has modal fields (~e1, ~h1)

and the waveguide at port 2 has modal fields (~e2, ~h2), then the fields at each

port due to each source can be linearly related to the modal fields as shown

in 1.10.

~E1a = V1a~e1, ~H1a = I1a~h1 (1.10a)

~E1b = V1b~e1, ~H1b = I1b~h1 (1.10b)

~E2a = V2a~e2, ~H2a = I2a~h2 (1.10c)

~E1b = V2b~e2, ~H2b = I2b~h2 (1.10d)

Each field is denoted with a two-part subscript with the first part being the

port and the second being the source. For example, ~E1a is the electric field

at port 1 excited by source a. Now, 1.10 can be substituted into 1.9 to

obtain

(V1aI1b − V1bI1a)
�
S

(~e1 × ~h1) · n̂ dS

+ (V2aI2b − V2bI2a)
�
S

(~e2 × ~h2) · n̂ dS = 0 (1.11)

Comparing equations 1.10 and 1.9, then it can be seen that

�
S

(~e1 × ~h1) · n̂ dS =

�
S

(~e2 × ~h2) · n̂ dS = 1 (1.12)

and now equation 1.11 can be reduced to

(V1aI1b − V1bI1a) + (V2aI2b − V2bI2a) = 0 (1.13)

Next, one must consider the definition of the admittance matrix:
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[
I1

I2

]
=

(
Y11 Y12

Y21 Y22

)[
V1

V2

]
(1.14)

Using this definition, equation 1.13 can be rewritten as

(V1aV2b − V1bV2a)(Y12 − Y21) = 0 (1.15)

Since sources a and b are independent, the total voltage at each port due

to each source can take on arbitrary values, and the only way to satisfy

equation 1.15 is to have Y21 = Y12. Although this is a proof for the admittance

matrix, the effect of reciprocity on the scattering matrix of this network can

be demonstrated without going into the definition of the scattering matrix

itself. It has been demonstrated that the relationship between Y and S

is

S12 =
−2Z0Y12

∆
(1.16a)

S21 =
−2Z0Y21

∆
(1.16b)

with ∆ as the determinant of the admittance matrix. Since Y12 = Y21, it is

clear that S12 = S21. The theorem of equation 1.9 can be generalized to an

arbitrary number of fields, meaning a reciprocal n-port network will have, for

i = 1, 2, 3...n, j = 1, 2, 3...n and i 6= j, Sij = Sji. As stated earlier, an n-port

network constructed with reciprocal materials follows this requirement. In

this work, it will be shown that networks with lossless, time-varying elements

can violate this theorem.

1.1.2 Nonreciprocal Devices

In microwave engineering, some designs require components that manipu-

late signals differently depending on their direction of propagation [10]. As

stated before, reciprocal devices have Sij = Sji, and therefore cannot per-

form these tasks. Instead, nonreciprocal devices are required. This section

6



describes three common devices to familiarize the reader with the utility of

nonreciprocal components.

1.1.2.1 Circulators

A circulator is a device that transmits signals from one port to the next in

a successive rotation , but blocks transmission in the opposite rotation. It is

also matched at all ports. Although a circulator can have n > 2 ports, three-

port and four-port circulators are the most common. The handedness of a

circulator is the rotation direction of circulation. A right-handed three-port

circulator circulates power in a succession of ports as 1 → 2 → 3 → 1. Its

scattering matrix is

S =

 0 1 0

0 0 1

1 0 0

 (1.17)

Figure 1.2: System-level representation of various circulators. The curved
arrows represent the sense of rotation.

A left-handed three-port circulator circulates power in a succession of ports

as 1→ 3→ 2→ 1. Its scattering matrix is

S =

 0 1 0

0 0 1

1 0 0

 (1.18)

Right-handed and left-handed four port circulators exist as well. Scattering

matrices for each are shown in equations 1.19 and 1.20, respectively.
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S =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 (1.19)

S =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 (1.20)

Circulators in practice can impart any phase on signals, so the 1s in the

scattering matrices could be replaced by complex numbers with unity magni-

tude. Symbolic representations of each of these circulators are shown in Fig.

1.2. At microwave frequencies, the most common type of circulator is the

ferrite circulator, which employs the principle of Faraday rotation within a

magnetic material to create a nonreciprocal effect. Ferrite devices are bulky

and difficult to include in integrated circuits.

1.1.2.2 Isolators

An isolator is a two-port device that only allows transmission of a signal

in one direction. An ideal isolator can be described by the scattering ma-

trix

S =

(
0 0

1 0

)
(1.21)

Much like circulators, isolators are most often built with ferrite materials.

The functionality of an isolator can be achieved by terminating one of the

ports of a three-port circulator with a matched load. A schematic represen-

tation of this is shown in Fig. 1.3. Isolators suffer from the same limitations

circulators do, since their operation is very similar.

8



Figure 1.3: An isolator constructed from a circulator. The value of the
resistance is the same as the system impedance.

1.1.2.3 Gyrators

First proposed as a new network element by B. D. H. Tellegen in 1948 [11], the

gyrator is a nonreciprocal element described by the scattering matrix

S =

(
0 1

−1 0

)
(1.22)

A gyrator can essentially be seen as a nonreciprocal phase shifter. In one

direction of transmission, the signal emerges in phase. In the opposite di-

rection, the signal emerges with a 180◦ phase shift. A versatile element, the

gyrator is a fundamental nonreciprocal element that can be used to construct

other nonreciprocal elements. Shown in Fig. 1.4 is Tellegen’s symbol for a

gyrator, as well as two circulator configurations that can be realized using a

single gyrator.

1.1.3 Noise in Microwave Systems

To appreciate the value of low-noise reciprocal components, it is important

to understand the impact of a component on the noise performance of a

system. The effect of noise in microwave systems is often characterized by

the noise factor. Defining SNRinput as the signal-to-noise ratio at the input

and SNRoutput as the signal-to-noise ratio at the output, noise factor can be

defined as

F =
SNRinput

SNRoutput

(1.23)
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Figure 1.4: (a) Tellegen’s symbol for a gyrator. (b) Three-port circulator
from gyrator. (c) Four-port circulator from gyrator.

When expressed in a decibel scale, this quantity is referred to as the noise

figure. Often, a microwave system is modeled as a cascade of individual two-

port networks that can represent devices such as amplifiers, mixers, filters

and so forth. This model can be used to estimate GA, the available gain, and

F , the noise factor, of the entire network. The definition of available gain

is

GA =
Pavn
Pavs

(1.24)

Pavs represents the available source power and Pavn represents the available

power from the two port network on the output side. With this definition,

a load connected to a two-port network sees the network as a source whose

available power has been transformed by the gain of the network. Using this

property, it is possible to compute the overall available gain of cascade of n

two-port networks by taking the product of each network’s available gain. In

other words, if the overall available gain is GA,total and the available gain of

the ith network is GA,i, then

GA,total =
n∏
i=1

GA,i (1.25)

If in this cascade of n two-port netwoks, the ith network has a noise factor
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of Fi, then the overall noise factor of the entire system [10] can be expressed

as

Ftotal = F1 +
F2 − 1

GA,1

+
F3 − 1

GA,1GA,2

+ ...+
Fn − 1

GA,1GA,2GA,3...GA,n

(1.26)

The most critical result of this formula is that devices present near the

front-end of a microwave system contribute the most to the overall noise

factor of the system. It is therefore paramount to minimize the noise figure

of the first stage of the system. Perhaps the most well-known example where

a nonreciprocal component is placed on the front end of a system is the

full-duplex transceiver. A block diagram of this transceiver is shown in Fig.

1.5.

Figure 1.5: A full-duplex transceiver. A circulator separates the transmit
and receive chains.

A circulator is placed on the front end of the transceiver to isolate the trans-

mit and receive chains. This allows transmission and reception of signals at

the same time and at the same frequency. The noise factors of the antenna,

circulator and low-noise amplifier are FANT, Fcirculator and FLNA, respectively.

The circulator has unity gain and the low-noise amplifier has a gain of GLNA.

The total noise factor FRX of the receiver after the low-noise amplifier is given

by

FRX = FANT + Fcirculator +
FLNA − 1

GLNA

(1.27)

This example illustrates the importance of low-noise nonreciprocal compo-
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nents.

1.2 Scope of this Research

This thesis concerns the mathematical analysis of a gyrator constructed from

parametric devices. This particular gyrator was first explored by A. K. Ka-

mal [12] in 1960 with supporting experimental results, but only a first-order

analysis was performed demonstrating the principle of operation. This work

seeks to further explore the parametric gyrator by performing an analysis of

the effect of nonidealities of nonlinear reactance elements on the insertion loss

and noise performance. The results of this analysis are then used to estimate

the performance of the parametric gyrator when operating as a circulator.

The bandwidth of the circulator is explored, as well as various topologies

that can be utilized to physically realize it in both three- and four-port form.

Finally, a design example along with simulations is presented to demonstrate

the application of the theory presented in the construction of a parametric

circulator.
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CHAPTER 2

LITERATURE REVIEW

In order to understand the application of parametric circuits to the creation

of nonreciprocal elements, an understanding of the operation of paramet-

ric circuits is necessary. In this section, the fundamentals of time-varying

reactance circuits are explored from the quintessential literature on the sub-

ject.

2.1 Analysis of Circuits with Time-Varying

Reactance

The seminal two-part paper by J. M. Manley and H. E. Rowe [13, 14] is the

fundamental reference in the design of circuits with time-varying reactance,

referred to as parametric circuits. In the first part, Manley uses a Fourier

expansion of the charge on a nonlinear capacitor to derive general energy re-

lations that characterize the power in all frequencies that are generated when

the capacitor is driven with two signals of two incommensurate frequencies.

In the second paper, Rowe confirms the findings of the first paper by ap-

proaching the nonlinear capacitor with small-signal circuit analysis. This

part contains information that is paramount in designing physical paramet-

ric circuits that are conjugately matched at all ports and provide bilateral

frequency conversion.

2.1.1 General Energy Relations

The analysis in both papers assumes the time-varying element is a capacitor

with a voltage v that is an arbitrary single-valued function of the charge,
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q.

v = f(q) (2.1)

If two signals of frequencies ω0 and ω1 are applied to the capacitor, in general,

currents of frequencies ωmn = mω0 + nω1, where m and n take on all integer

values, will be generated. In this case, the time-varying charge q(t) flowing

through the capacitor can be expressed as a double Fourier series:

q(t) = q(ω0t, ω1t) =
∞∑

m=−∞

∞∑
n=−∞

Qmne
j(mω0t+nω1t) (2.2a)

Qmn =
1

4π2

� 2π

0

� 2π

0

q(ω0t, ω1t)e
−j(mω0t+nω1t)d(ω0t)d(ω1t) (2.2b)

The voltage v(t) across the capacitor is a periodic function, as f(q(t)) is a

single-valued function. The current i(t) through the capacitor is also periodic,

as it is related to the charge as i(t) = dq(t)
dt

. Thus, both can be expanded

using a Fourier series:

i(t) = i(ω0t, ω1t) =
dq

dt
=

∞∑
m=−∞

∞∑
n=−∞

j(mω0 + nω1)Qmne
j(mω0t+nω1t) (2.3)

v(t) = v(ω0t, ω1t) =
∞∑

m=−∞

∞∑
n=−∞

Vmne
j(mω0t+nω1t) (2.4a)

Vmn =
1

4π2

� 2π

0

� 2π

0

f(q(ω0t, ω1t))e
−j(mω0t+nω1t)d(ω0t)d(ω1t) (2.4b)

By multiplying 2.4b by jmQ∗mn, and defining Imn = j(mω0 + nω1)Qmn, then

equation 2.5 is obtained after a summation over all m and n is applied.
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∞∑
m=−∞

∞∑
n=−∞

jmQ∗mnVmn =
∞∑

m=−∞

∞∑
n=−∞

mVmnI
∗
mn

mω0 + nω1

=

1

4π2

( � 2π

0

� 2π

0

f(q(ω0t, ω1t))e
−j(mω0t+nω1t)d(ω0t)d(ω1t)

)
×( ∞∑

m=−∞

∞∑
n=−∞

jmQ∗mne
−j(mω0t+nω1t)

)
(2.5)

Another similar expression, given in 2.6, can be obtained by multiplying

equation 2.4b by jnQ∗mn.

∞∑
m=−∞

∞∑
n=−∞

jnQ∗mnVmn =
∞∑

m=−∞

∞∑
n=−∞

nVmnI
∗
mn

mω0 + nω1

=

1

4π2

( � 2π

0

� 2π

0

f(q(ω0t, ω1t))e
−j(mω0t+nω1t)d(ω0t)d(ω1t)

)
×( ∞∑

m=−∞

∞∑
n=−∞

jnQ∗mne
−j(mω0t+nω1t)

)
(2.6)

These two expressions seem daunting at first glance, but two relations can

be found by observing equation 2.2a:

dq

d(ω0t)
=

∞∑
m=−∞

∞∑
n=−∞

mQ∗mne
−j(mω0t+nω1t) (2.7)

dq

d(ω1t)
=

∞∑
m=−∞

∞∑
n=−∞

nQ∗mne
−j(mω0t+nω1t) (2.8)

dq
d(ω0t)

is just dq with ω1t held constant, and dq
d(ω1t)

is just dq with ω0t held

constant. Taking this fact, as well as ignoring the existence of negative

frequencies, equations 2.5 and 2.6 can be expressed respectively as

∞∑
m=0

∞∑
n=−∞

nVmnI
∗
mn

mω0 + nω1

=

� 2π

0

� q(2π,ω1t)

q(0,ω1t)

f(q) dq d(ω1t) (2.9)
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∞∑
m=−∞

∞∑
n=0

nVmnI
∗
mn

mω0 + nω1

=

� 2π

0

� q(ω0t,2π)

q(ω0t,0)

f(q) dq d(ω0t) (2.10)

Since q is periodic both in ω0t and ω1t, and f(q) is single-valued, the right

hand sides of both of these expressions vanish. Lastly, the power at frequency

mω0+nω1 is then defined to be Wmn = VmnI
∗
mn. The final result is the general

energy relations for a parametric circuit, given as

∞∑
m=0

∞∑
n=−∞

mWmn

mω0 + nω1

= 0 (2.11a)

∞∑
m=−∞

∞∑
n=0

nWmn

mω0 + nω1

= 0 (2.11b)

This is, from a physical standpoint, a statement of conservation of energy.

Of most interest to this work is the case referred to as the three-frequency

parametric converter. This can be thought of as a single sideband mixer. One

frequency is a local oscillator, denoted as ωLO. Another is the IF, denoted as

ωIF. The RF, ωRF, then has two possibilities, as shown in Fig. 2.1. If ωRF =

ωLO + ωIF, this is called the non-inverting converter, as the shapes of the

spectra centered around ωIF and ωRF are the same. If ωRF = ωLO − ωIF, this

is called the inverting converter, as the shapes of the spectra centered around

ωIF and ωRF are mirrored with respect to each other. The difference between

an upconverter and a downconverter of either of these types is the roles of

fIF and ωRF. For an upconverter, the input frequency is ωIF and the output

is ωRF. For a downconverter, the input frequency is fRF and the output

frequency is ωIF. The energy relations for each case are as follows.

2.1.1.1 Non-inverting Converter

The non-inverting converter has energy relations that are given by

WLO

ωLO

+
WRF

ωRF

= 0 (2.12)
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WIF

ωIF

+
WRF

ωRF

= 0 (2.13)

where WIF is the power consumed at frequency ωIF, WRF is the power con-

sumed at frequency ωRF and WLO is the power consumed at frequency ωLO.

When operating the non-inverting converter as an upconverter, WIF > 0 and

WRF < 0, and the power gain is given by

GNI,+ =
WRF

WIF

=
ωRF

ωIF

(2.14)

When operating the non-inverting converter as a downconverter, WIF < 0

and WRF > 0, and the power gain is given by 2.15.

GNI,- =
WIF

WRF

=
ωIF

ωRF

(2.15)

This means that an upconverter will always have a power gain greater than

unity and a downconverter will always have a power gain smaller than unity

in the non-inverting case.

2.1.1.2 Inverting Converter

The inverting converter has energy relations that are given by

WLO

ωLO

+
WRF

ωRF

= 0 (2.16)

WIF

ωIF

− WRF

ωRF

= 0 (2.17)

When operating the inverting converter as an upconverter, WIF < 0 and

WRF < 0, and the power gain is given by

GI,+ =
WRF

WIF

= −ωRF

ωIF

(2.18)
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Figure 2.1: Spectra of non-inverting and inverting parametric converter.

When operating the non-inverting converter as a downconverter, WIF < 0

and WRF < 0, and the power gain is given by

GI,- =
WIF

WRF

= − ωIF

ωRF

(2.19)

This represents a potentially unstable system and the transducer gain can

take on any value from zero to infinite in both the modulator and demodu-

lator application.

2.1.2 Small-signal Relations for Parametric Circuits

As it was assumed that the voltage v across the nonlinear capacitor is a

function of the charge q, it follows that the charge is a function of the voltage.

This function is considered the nonlinear capacitance.

q = f(v) (2.20)

In this analysis, the power of the local oscillator is assumed to be large

compared to any other frequency components present in the capacitor. In

that case, the operating point is governed solely by the local oscillator, which

is to say
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qLO = f(vLO) (2.21)

Now the signal component of charge δq and the signal component of voltage

δv are much smaller than that of the local oscillator.

δq =
df(vLO)

dv
δv =

∞∑
n=−∞

Cne
jnωLOδv (2.22)

Note that ωLO = 2πfLO. With this assumption, the capacitor can be seen as

a linear, time-varying capacitance. Since f is a real-valued function, it follows

that Cn = C−n and the time-varying capacitance can be written as

C(t) = C0 + 2C1 cos(ωLOt) + 2C2 cos(2ωLOt) + ... (2.23)

Now, if a small signal with angular frequency ωIF is applied and only the

fundamental frequency of the local oscillator is considered, δq and δv will

contain all frequency components (nωLO + mωIF) with m and n taking all

integer values including zero. If ideal filters suppress all frequencies but

ωIF, ω+ = ωLO + ωIF and ω− = ωLO − fIF (assuming, of course, that the

local oscillator is still modulating the capacitance), then δq and δv can be

expanded using Euler’s identity:

δq = QIFe
jωIFt +Q∗IFe

−jωIFt+

Q+e
jω+t +Q∗+e

−jω+t +Q−e
jω−t +Q∗−e

−jω−t (2.24)

δv = VIFe
jωIFt + V ∗IFe

−jωIFt+

V+e
jω+t + V ∗+e

−jω+t + V−e
jω−t + V ∗−e

−jω−t (2.25)

The small signal current I through the capacitor can be related to the charge

as I = jωQ and I∗ = −jωQ∗, and thus an admittance matrix can be ex-
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Figure 2.2: Norton equivalent circuit of either non-inverting or inverting
parametric converter. The filters are ideally open at the marked frequency
and short otherwise. The nonlinear capacitor has an admittance matrix of
either equation 2.27 or 2.34.

pressed for this nonlinear capacitor:

 I∗−

IIF

I+

 = j

 −ω−C0 −ω−C1 −ω−C2

ωIFC1 ωIFC0 ωIFC1

−ω+C2 −ω+C1 −ω+C0


 V ∗−

VIF

V+

 (2.26)

As stated before, only the fundamental component of the local oscillator

modulates the capacitance, so C2 = 0. If the filters are then adjusted to re-

ject either the upper or lower sideband, then the non-inverting and inverting

case can be simplified to the Thévenin equivalent circuit of Fig. 2.2.

2.1.2.1 Non-inverting Converter

The admittance matrix of equation 2.26 simplifies to that of equation 2.27

in the non-inverting case, as the signal at ω− is suppressed.

[
IIF

I+

]
= j

(
ωIFC0 ωIFC1

ω+C1 ω+C0

)[
VIF

V+

]
(2.27)

With reference to Fig. 2.2, the input admittances at the IF and RF terminals

are respectively given by

YIF,in = j(Bs + ωIFC0) +
ωIFω+C

2
1

GL + j(BL + ω+C0)
(2.28)

20



YL,in = j(BL + ω+C0) +
ωIFω+C

2
1

GL + j(BL + ωIFC0)
(2.29)

The transducer gain of the converter is

GT =

4|ω+C1|2GSGL

|(j(BS + ωIFC0) +GS)(j(BL + ω+C0) +GL) + ωIFω+C2
1 |2

(2.30)

This gain is defined as the ratio of the power at the converted frequency to

the power available from the source at the input frequency. The reactive

components can be removed by choosing the terminal susceptances BS and

BL to be provided by inductors with values

LS =
1

ω2
IFC0

(2.31a)

LL =
1

ω2
+C0

(2.31b)

With this selection, the transducer gain reduces to that of equation 2.32.

GT =
4ω2

+C
2
1GSGL

|GS +GL + ωIFω+C2
1 |2

(2.32)

An infinite number of terminal conductances maximize this transducer gain.

For instance, if GS = GL = C1
√
ωIFω+, then the transducer gain becomes

the limit shown in the general energy relations (GT = ω+

ωIF
). In this case, it

was implicitly assumed that the converter was an upconverter. If one were to

reverse the roles of the terminals, under the same circumstances, the power

gain would be GT = ωIF

ω+
. Another consequence of this result is that any

system impedance can be matched by either choosing the properties of the

nonlinear capacitor or the choice of input and output frequencies. Rowe also

estimates the 3 dB fractional bandwidth (FBW) of such a converter as
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FBW =
C1

C0

√
2
ω+

ωIF

(2.33)

For a given ωIF, increased bandwidth is obtained with a large modulation

depth or a high LO frequency.

2.1.2.2 Inverting Converter

For the inverting converter, the admittance matrix of equation 2.26 simplifies

to that of equation 2.34, as the signal at ω+ is suppressed.

[
IIF

I∗−

]
= j

(
ωIFC0 ωIFC1

−ω−C1 −ω−C0

)[
VIF

V ∗−

]
(2.34)

The real part of the input admittance at each port now has the potential to

be negative, as shown in equations 2.35 and 2.36. This means the inverting

converter is potentially unstable in both the upconverting and downconvert-

ing modes of operation.

YIF,in = j(Bs + ωIFC0)−
ωIFω−C

2
1

GL + j(BL + ω−C0)
(2.35)

YL,in = j(BL + ω+C0)−
ωIFω−C

2
1

GL + j(BL + ωIFC0)
(2.36)

If the condition of equation 2.31 is satisfied, then the transducer gain can be

expressed as

GT =
4ω2

+C
2
1GSGL

|GS +GL − ωIFω+C2
1 |2

(2.37)

It is noteworthy that 0 < GT < ∞. Although this type of frequency

converter can yield arbitrary gain in both the upconverter and downconverter

modes, these devices often have a negative input resistance, precluding their

use as any of the nonreciprocal devices mentioned above. These devices,

however, operate well as reflection-type amplifiers.
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CHAPTER 3

A PARAMETRIC GYRATOR

Several researchers have found that parametric devices can exhibit nonrecip-

rocal behavior depending on the topology of the device [15, 16, 17]. In this

application, it is desired that the device have reciprocal amplitude response,

but nonreciprocal phase response. The topology chosen for this gyrator is

that explored by A. K. Kamal in 1960 [12], shown in Fig. 3.1. The gyrator

is a cascade of two non-inverting parametric converters with the LO inputs

of the converters out of phase by 90◦. A signal at frequency ωIF entering the

gyrator at port 1 is upconverted to a higher frequency (called the idler fre-

quency) ω+ = ωIF+ωLO at converter 1. It is then downconverted at converter

2 and emerges from port 2 at ωIF and at some phase θ21. A signal entering

the gyrator at port 2 is upconverted to ω+ = ωIF + ωLO at converter 2 and

then downconverted at converter 1. The signal emerges from port 1 at ωIF

and at some phase θ12. The 90◦ phase difference between the two LO signals

causes |θ21 − θ12| = 180◦. Although the transmission phase between ports

is frequency dependent, the differential phase shift can be maintained over

the entire bandwidth of the device, as the difference in forward and reverse

phase shifts is controlled solely by the phase difference between the two LO

signals. An ideal model of this gyrator can have a maximum gain of unity.

Intuitively, this can be predicted with Manley’s general energy relations, as

the gain of an upconverter is exactly the reciprocal of that of a downcon-

verter. This can be shown more explicitly using the small-signal analysis of

Rowe.
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Figure 3.1: Component-level diagram of parametric gyrator.

3.1 Theory of Operation

If the LO in a non-inverting converter is now allowed to have a phase angle

θ, then the time-varying capacitance in equation 2.23 can be expressed as

in equation 3.1, assuming the fundamental tone of the LO is the only signal

modulating the capacitor.

C(t) = C0 + 2C1 cos(2πfLO + θ) (3.1)

Considering equation 2.22, it is clear that θ can be considered the phase

angle of C1. Thus, the admittance matrix of equation 2.27 can be rewritten

as

[
IIF

I+

]
= j2π

(
fIFC0 fIF|C1|ejθ

f+|C1|e−jθ f+C0

)[
VIF

V+

]
(3.2)

The ABCD matrix formalism is more amenable to analysis of a cascade of

two-port networks, and so the matrix of equation 3.2 is expressed in ABCD

form as

[
VIF

IIF

]
=

(
e−jθ 0

0 e−jθ

)(
− C0

|C1|
j

ωIF|C1|

jωIF(|C1| − C2
0

|C1|) −
ωIF

ω+

C0

|C1|

)[
V+

I+

]
(3.3)

In equation 3.3, this represents an upconverter. A downconverter would have
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a matrix equal to the inverse of this matrix, or:

[
V+

I+

]
=

(
ejθ 0

0 ejθ

)(
− C0

|C1|
j

ωIF|C1|

jωIF(|C1| − C2
0

|C1|) −
ωIF

ω+

C0

|C1|

)−1 [
VIF

IIF

]
(3.4)

Now, the overall ABCD matrix of the gyrator can be found by taking the

product of each of the ABCD matrices of each converter in Fig. 3.1:

[
V1

I1

]
=

(
e−jα 0

0 e−jα

)(
− C0

|C1|
j

ωIF|C1|

jωIF(|C1| − C2
0

|C1|) −
ωIF

ω+

C0

|C1|

)
×

(
ejβ 0

0 ejβ

)(
− C0

|C1|
j

ωIF|C1|

jωIF(|C1| − C2
0

|C1|) −
ωIF

ω+

C0

|C1|

)−1 [
V2

I2

]

=

(
ej(β−α) 0

0 ej(β−α)

)[
V2

I2

]
(3.5)

The nonreciprocity of the device can be seen more clearly by converting the

ABCD matrix to a scattering matrix:

[S] =

(
0 ej(β−α)

ej(α−β) 0

)
(3.6)

If α = 0 and β = π
2
, then the scattering matrix becomes

[S] = j

(
0 1

−1 0

)
(3.7)

This is the function of a gyrator, except there is an additional π
2

phase delay

in each direction, but the differential phase shift is π. In practice, there will

be additional phase delay in each direction because of filter networks, tuning

elements, etc. but the differential phase is controlled solely by the phase

difference of the two LO signals.
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3.2 Amplitude Response

When constructing parametric devices, the nonlinear reactance utilized will

have some appreciable loss. Assuming the device is constructed using loss-

less filters, the effect of nonideal reactance on various performance parame-

ters can be estimated. Including the losses in filters and matching elements

can be used to model the loss even more accurately if those losses are non-

negligible.

3.2.1 Insertion Loss

Insertion loss (IL) of a two-port device is defined as the ratio of output

power observed at a port to the input power supplied to the other port, and

is expressed in decibel scale. If a two-port network has some transducer gain

function GT , under the condition of conjugate matching at both ports, the

transducer gain becomes equal to the available gain, GA. For a cascade of

two-ports each conjugately matched at each port, the total gain of the system

is the product of each two-port’s available gain. In other words, if there are

n two-ports, each with available gain GA,n, then the overall available gain

GA,network of the network is

GA,network =
n∏
i=1

GA,n (3.8)

This fact is useful, as the insertion loss of the gyrator can be estimated

by deriving the transducer gain of an individual conjugately matched con-

verter, and then taking the product of the transducer gains of two converters.

Whether a signal propagates from port 1 to port 2 or vice versa, it will en-

counter an upconversion stage and then a downconversion stage (although it

is possible to design the converter to begin with a downconversion stage and

end with an upconversion stage). Therefore, the transducer gains of an up-

converter and a downconverter should be explored. Varactors are frequently

used in parametric converters, and the loss in a varactor is characterized

using a series resistance. It is more convenient, then, to work in terms of

the impedance matrix of a non-inverting parametric converter. First, the
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time-varying capacitance is re-expressed as

C(t) = C0(1 + 2ψ cos(ωLOt+ θ)) (3.9)

where ψ is the modulation parameter, and is restricted to be 0 < ψ < 1
2

so

C(t) is positive. The impedance matrix can then be found by inverting the

admittance matrix of equation 2.27 after replacing C1 with ψC0e
jθ:

[
VIF

V+

]
=

(
1

jωIFC0(1−ψ2)
ψ

jω+C0(1−ψ2)
ejθ

ψ
jωIFC0(1−ψ2)

e−jθ 1
jω+C0(1−ψ2)

)[
IIF

I+

]
(3.10)

This impedance matrix can be used in the Thévenin equivalent circuit of the

parametric converter, shown in Fig. 3.2. The impedance matrix of equation

3.10 represents the two-port network labeled “Nonlinear Capacitor”.

Figure 3.2: Thévenin equivalent circuit of non-inverting parametric
converter. The nonlinear capacitor can be represented by the impedance
matrix of equation 3.10.

RS and RL represent the source and load impedances, respectively. XS and

XL are the tuning reactances at the source and load, respectively. Filters at

the input and output ensure the assumption that only fIF is present at the

input and f+ is present at the output. The loss of the nonlinear capacitor is

modeled as a series resistance Rc. To simplify the derivation, it is assumed

that the source and load impedances are equal (RS = RL = R) and purely

resistive. The input impedance presented to the source, Zin, can be expressed

as
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Zin = Rc + j

(
XS −

1

ωIFC0(1− ψ2)

)
+

1

ωIFω+

(
ψ

C0(1− ψ2)

)2

× 1

j

(
XS − 1

ω+C0(1−ψ2)

)
+R

(3.11)

To match the converter at both ports, XS and XL should be positive reac-

tances, and so inductors are selected. The reactances can then be written as

XS = ωIFLS and XL = ω+LL, where LS and LL are the source and load tun-

ing inductances, respectively. These inductances are chosen to tune out the

static portion of the capacitance, which allows a resistive input impedance

and output impedance to be presented to the source and load terminations,

respectively.

LS =
1

ω2
IFC0(1− γ2)

(3.12)

LL =
1

ω2
+C0(1− γ2)

(3.13)

Under this matching condition, the input impedance reduces to

Zin = Rc +
1

ωIFω+

(
ψ

C0(1− ψ2)

)2(
1

R +Rc

)
(3.14)

The transducer gain under the matching condition can be expressed as

GT =
4|Z21|2R2

|ZinZout − Z12Z21|2

=
4R2 ψ2

ω2
IFC

2
0 (1−ψ2)2

(R2 +R2
c + 2RRc + ψ2

ωIFω+C2
0 (1−ψ2)2

)2
(3.15)

with Zout defined as
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Zout = Rc +
1

ωIFω+

(
ψ

(C0(1− ψ2))

)2(
1

R +Rc

)
(3.16)

The symmetry of the equivalent circuit causes Zin = Zout, meaning both

ports can be conjugately matched. To find the optimum source and load

terminations, the derivative of the transducer gain is taken with respect to

R and then set to zero.

dGT

dR
=

8 ψ2

ω2
IFC

2
0 (1−ψ2)2

R( ψ2

ωIFω+C2
0 (1−ψ2)2

+R2
c −R2)

( ψ2

ωIFω+C2
0 (1−ψ2)2

+ (Rc +R)2)3
= 0 (3.17)

The value of R that satisfies this condition is given by

RS = RL = Rc

√
1 +

ψ2

ωIFω+R2
cC

2
0(1− ψ2)2

(3.18)

With this selection of R, at the center frequency of operation, Zin = Zout = R.

This is exactly the condition for conjugate matching at both ports. In order

to characterize the lossy behavior of a varactor, the dynamic quality factor,

Qd, is introduced:

Qd =
1

ωIFRcC0(1− ψ2)
(3.19)

Much like the ubiquitous figure of merit Q of an ordinary resonator, a large

value of Qd indicates a low-loss device. A device with Qd = ∞ is lossless,

and one would expect the transducer gain of such a device to be f+
fIF

. Using

this new definition, GT as defined in equation 3.15 can be rewritten.

GT =
(1 + ωIF

ω+
ψ2Q2

d)Q2
dψ

2

((1 + ωIF

ω+
ψ2Q2

d) +
√

1 + ωIF

ω+
ψ2Q2

d)2
(3.20)

Now, a new parameter, ξ, called the dynamic loss factor is defined:

ξ2 =
f+
fIF

1

(ψQd)2
(3.21)
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The transducer gain can then be rearranged to be in terms of this new pa-

rameter.

GT =
ω+

ωIF

1

(ξ +
√

1 + ξ2)2
(3.22)

When ξ = 0, the transducer gain is f+
fIF

for an upconverter and fIF
f+

for a

downconverter, the result for a lossless parametric converter following the

formalism of Manley and Rowe (recall that an upconverter has an input

frequency fIF and an output frequency of f+, but a downconverter has the

opposite). This is also apparent because ξ = 0 when Qd =∞. Returning to

the discussion of the gyrator of Fig. 3.1, when both converters are conjugately

matched at both ports, each converter’s transducer gain GT becomes equal to

its available gain GA, and thus the insertion loss of the gyrator is the product

of the transducer gain of an upconversion stage, G↑, and the transducer gain

of a downconversion stage, G↓.

G↑ =
ω+

ωIF

1

(ξ +
√

1 + ξ2)2
(3.23)

G↓ =
ωIF

ω+

1

(ξ +
√

1 + ξ2)2
(3.24)

The insertion loss is then expressed as

IL = G↑G↓ =
1

(ξ +
√

1 + ξ2)4
(3.25)

Although this analysis was performed assuming the initial stage of the

gyrator is an upconverter and the final stage is a downconverter, the results

are identical in the case that the first stage is an upconverter and the last

stage is a downconverter. This is because the product of transducer gains is

commutative, meaning G↑G↓ = G↓G↑. In Fig. 3.3, the insertion loss of the

gyrator is plotted over dynamic quality factor for various conversion ratios

( ω+

ωIF
).
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Figure 3.3: Insertion loss of gyrator for various conversion ratios with ψ
fixed at 0.25.

3.3 Noise Performance

The noise performance of variable capacitance devices was investigated by

many researchers, including Kurokawa and Uenohara [18]. Although the

analysis was performed for parametric amplifiers, the discussion is still rele-

vant here. Since it is required that a gyrator is matched at both ports, the

noise figure under matched conditions is considered. Since the only dissipa-

tive element in the nonlinear capacitor is the series resistance Rc, it is the

only element that contributes noise aside from the terminations. Considering

just a signal converter stage under matched conditions, the circuit model of

Fig. 3.2 can be reformulated as that of Fig. 3.4. The values of RCAP, A↑

and A↓ are
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Figure 3.4: Equivalent noise model of both upconverter and downconverter.

RCAP =
ψ2

(R +Rc)ωIFω+C2
0(1− ψ2)2

(3.26a)

|A↑|2 =
ω+

ωIF

1

(ξ +
√

1 + ξ2)2
(3.26b)

|A↓|2 =
ωIF

ω+

1

(ξ +
√

1 + ξ2)2
(3.26c)

The noise factor (F ) is then defined as the ratio of the SNR across the

input resistance to the SNR across the output resistance. As in Fig. 3.4,

the upconverter and downconverter are considered as separate cases, as the

roles of the terminations as input and output are different in these cases. In

general, the noise factor can be expressed as in equation 3.27 where Ps,IN is

the input signal power, Ps,OUT is the output signal power, PN,OUT is the noise

output power and PN,IN is the noise input power.
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F =
SNRIN

SNROUT

=
Ps,IN
Ps,OUT

× PN,OUT

PN,IN
(3.27)

3.3.1 Parametric Modulator Noise Factor

In reference to Fig. 3.4, the noise factor can be found for an upconverter by

taking 3.27 and rewriting it as

F↑ =
1

|A↑|2
× PN,OUT

PN,IN
(3.28)

Since the ratio of the output to input noise power is needed, finding the

square RMS noise voltage at both the input and output is sufficient to com-

pute this ratio. The square RMS noise voltage at the input, v2N,in,RMS, is the

familiar quantity 4kTBRs, where k is Boltzmann’s constant, T is the phys-

ical temperature and B is the measurement bandwidth. The square RMS

output noise voltage, v2N,out,RMS, at the output can then be found from the

upconverter model.

v2N,out,RMS = 4kTB

(
Rc +RL + |A↑|2(Rs +Rc)

)
(3.29)

Applying the matching condition of 3.18, this can be further simplified:

v2N,out,RMS = 4kTBRc

(
1 +

√
1 +

1

ξ2

)(
1 + |A↑|2

)
(3.30)

Now, the noise factor, F↑, can be found from these quantities:

F↑ =
1

|A↑|2
×
v2N,out,RMS

v2N,in,RMS

= 1 +
ξ√

1 + ξ2
+
ωIF

ω+

(
1 +

ξ√
1 + ξ2

)(
ξ +

√
1 + ξ2

)2

(3.31)

For a downconverter, the same procedure can be utilized to find the noise
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factor, F↓:

F↓ = 1 +
ξ√

1 + ξ2
+
ω+

ωIF

(
1 +

ξ√
1 + ξ2

)(
ξ +

√
1 + ξ2

)2

(3.32)

If the modulation parameter ψ is held fixed, a lower noise factor is achieved

using a higher LO frequency (as ω+ = ωIF + ωLO) for an upconverter, but

this is the opposite for a downconverter. This is evident in Fig. 3.5. If the

LO frequency is fixed, then a deeper modulation depth (larger value of ψ)

can achieve a somewhat lower noise factor. This is demonstrated in Fig. 3.6

for both an upconverter and downconverter.

3.3.2 Gyrator Noise Factor

Since the upconverter has a lower noise factor and provides gain, it is fairly

obvious that a gyrator whose first stage is an upconverter and second stage is

a downconverter yields the lowest noise factor. For that reason, only this case

is investigated. It is trivial to find this noise factor, Fgyrator, using the Friis

formula of equation 1.25. The expression is more convenient when written

in terms of the insertion loss (IL) defined in equation 3.25:

Fgyrator = F↑ +
F↓ − 1

|A↑|2

=
ωIF

ω+

1√
IL

+ 2

[
1 +

ξ√
1 + ξ2

(
1 +

ωIF

ω+

1√
IL

)]
(3.33)

In the losssless case, ξ = 0 and IL = 1, which reduces the gyrator noise

factor to 2 + ωIF

ω+
. As a brief example, for conversion ratios ( ω+

ωIF
) of 1.5, 3 and

5, the noise figures would be 4.26 dB, 3.68 dB and 3.42 dB, respectively. Of

course, this derivation assumes the only contributor to noise by the nonlinear

capacitor itself is the series loss resistance Rc, but nonlinear capacitors are

often implemented using varactor diodes. In this case, other factors such as

shot noise would need to be considered. In a design situation, typically the
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Figure 3.5: Noise figure for a fixed modulation parameter (ψ = 0.25) for an
upconverter (F↑) and a downconverter (F↓).
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Figure 3.6: Noise figure for a fixed frequency ratio ( ω+

ωIF
= 3) for an

upconverter (F↑) and a downconverter (F↓).
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value of ψ is fixed at some maximum value supported by a variable capacitor,

and so it is most useful to analyze a gyrator with a fixed value of ψ. Shown

in Fig. 3.7 is the gyrator noise figure over the frequency conversion ratio
ω+

ωIF
for various values of Qd. The modulation parameter ψ is held fixed at

0.25. It is noteworthy that when the dynamic quality factor is fixed (which

is a typical situation where the design frequency and nonlinear capacitor

properties cannot be changed), there is a conversion ratio that minimizes the

noise figure. This implies that the LO frequency should be carefully chosen

if minimum noise figure is imperative in a design.

Figure 3.7: Noise figure of gyrator with various Qd with ψ fixed at 0.25.
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CHAPTER 4

ANALYSIS OF A FOUR-PORT
PARAMETRIC GYRATOR-CIRCULATOR

As was discussed and shown in Fig. 1.4, circulators can be constructed

from gyrators, but the topologies shown only function properly for the ideal

circulator. When physically realized, the topologies must be adjusted to be

compatible with the nonidealities of the device. In both of the topologies,

circulation is achieved between port pairs by evenly dividing a signal incident

upon some port into two paths with one path having reciprocal phase and

another path having nonreciprocal phase. When the signal recombines at

the other port, it is combined either in phase or out of phase depending on

the direction of transmission. This mechanism requires that both paths have

the same time delay in order for the split signal to combine properly. This

is easily achieved in the topology of Fig. 1.4 (c) due to the symmetry of the

topology, but it is not so readily achieved in Fig. 1.4 (b). For this reason,

this section focuses primarily on the topology of Fig. 1.4 (c). It is of interest

to develop a method to estimate the time delay of the gyrator in order to

compensate for the effect. In addition, this circulator is bandwidth limited,

as the 180◦ phase balance between coupled ports in the hybrid coupler is

only maintained at the center frequency. The hybrid couplers only maintain

equal power division between coupled ports over a limited range as well. The

gyrator itself may limit the useful isolation bandwidth of the circulator if its

own amplitude bandwidth is limited. In the work of Manley and Rowe, it was

found that having a high conversion ratio ω+

ωIF
can yield a higher amplitude

bandwidth, and the noise analysis of the previous chapter found that in

general, up to a certain point, higher conversion ratios yield a lower noise

figure.
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4.1 Theory of Operation

As stated before, the parametric gyrator relies on cancellation of signals to

achieve isolation at various ports. There are essentially two elements that

comprise the four-port circulator. The first element is a passive, recriprocal

power divider/combiner known as a 180◦ hybrid coupler. The other is the

nonreciprocal component, which is the parametric gyrator.

4.1.1 The 180◦ Hybrid Coupler

The 180◦ hybrid coupler, henceforth referred to as a hybrid for brevity, is

a common component in microwave engineering. It is a four-port passive

device that can be realized in many forms, such as a waveguide magic tee

or a microstrip ratrace coupler. Although various properties of the hybrid

(such as bandwidth) are dependent its realization, the function is the same

irrespective of implementation. The ideal scattering matrix of the hybrid at

its center frequency is

S =
−j√

2


0 1 1 0

1 0 0 −1

1 0 0 1

0 −1 1 0

 (4.1)

For any given port, the remaining three ports are termed the sum port

(represented with the symbol Σ), the difference port (represented with the

symbol ∆) and the isolated port. When a signal is sent through a port,

the hybrid divides it equally between the sum and difference ports. The

divided signals are in phase with each other. The isolated port ideally has

no signal exit. For example, if a signal is sent into port 1 of the hybrid, port

2 is the sum port, port 3 is the difference port and port 4 is the isolated

port. Alternatively, the hybrid can operate as a combiner. Now, if a signal is

applied to both the input port and isolated port, the sum port outputs the

sum of the two signals and the difference port outputs the difference of the

two signals. Using the same example as before, if two equal power, in-phase

signals are applied to ports 1 and 4 each, then port 2 outputs the sum of the
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two signals and port 3 should output no signal, since the difference between

the two signals is zero. Figure 4.1 shows the system-level symbol commonly

used for a hybrid, as well as a pictorial representation of the magic tee and

the microstrip ratrace hybrid. In Kamal’s work, the hybrid of choice was the

magic tee, as parametric modulators were often constructed in waveguide

form at the time.

Figure 4.1: (a) System level diagram of hybrid coupler. (b) Waveguide
magic tee. (c) Microstrip ratrace coupler.

4.1.2 Operation of Right-Handed Four-Port Circulator

The operation of the four-port circulator is shown pictorially in Fig. 4.2.

In the diagram, the gyrator is represented as a box with its ideal scattering

matrix. Port 1 is on the lefthand side and port 2 is on the righthand side.
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Figure 4.2: Graphical representation of operation of right-handed four-port
parametric circulator. All quantities shown are in phasor form.
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Consider a time-harmonic signal incident upon port 1 of the form V1(t) =

V cos(ωt). In phasor form, this is represented as Ṽ1 = V ej0
◦
. The lefthand

hybrid (lh) evenly divides this signal between two paths: one with the gyrator

and the other a short. The signal leaving the hybrid on both paths can be

written in phasor form as V√
2
e−j90

◦
. The gyrator imparts a 180◦ phase delay

on the signal passing through its path and the signal on the other path

is unchanged. The righthand hybrid (rh) then acts as a combiner for two

signals, one coming from the gyrator with the form V√
2
e−j270

◦
and one from

the short of the form V√
2
e−j90

◦
. Port 4 of the circulator then becomes the

righthand hybrid’s sum port, and the output is then V4(t) = 0. Port 2 of the

circulator becomes the righthand hybrid’s difference port, and the output

from this port is then V2(t) = −V cos(ωt). From this, one can infer that

S21 = −j and S31 = S41 = 0. One can infer the remaining S-parameters

through a similar approach keeping in mind that the gyrator imparts a 180◦

phase shift to a signal traveling from the lefthand hybrid to the righthand

hybrid, but imparts no phase shift to a signal traveling from the righthand

hybrid to the lefthand hybrid. Since both hybrids are matched at all four

ports and the gyrator is matched at all four ports, all four ports of the

circulator will be matched as well. The four-port circulator therefore has the

scattering matrix

S = −j


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 (4.2)

This is almost the ideal scattering matrix of equation 1.19 except there

is an additional 90◦ phase shift imparted on a circulated signal. It is also

worth noting that instead of 180◦ hybrids, a designer can also use four-port

quadrature couplers (such as a branchline coupler) to achieve the four-port

circulator. As an exercise to the reader, it may be shown that the matrix of

equation 4.2 would become
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S =


0 0 0 1

j 0 0 0

0 −1 0 0

0 0 j 0

 (4.3)

4.1.3 Reversal of Rotation Sense

One important property of the parametric gyrator is its ability to reverse its

values of S21 and S12 by changing the LO phase. Recall that the choice of

α = 0 and β = π
2

in equation 3.6 yielded the scattering matrix of 3.7. By

now choosing α = π
2

and β = 0, the scattering matrix of equation 3.6 changes

to

S = j

(
0 1

−1 0

)
(4.4)

A simple analysis similar to that of the previous section can be used to show

that the scattering matrix becomes

S = −j


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 (4.5)

A pictorial representation of the left-handed version of the four-port cir-

culator is shown in Fig. 4.3. Note the only change to the topology was

reversing the phase shifting direction of the gyrator. In practice, this can be

accomplished trivially by using switched delay lines or phase shifters for the

LO signal.
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Figure 4.3: Graphical representation of operation of left-handed four-port
parametric circulator.
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4.2 Transmission Phase and Group Delay of

Parametric Gyrator

As mentioned in the introduction to this chapter, the physical realization of

the gyrator-circulator requires knowledge of the transmission properties of

the gyrator. Although the amplitude response was explored in chapter 3,

the phase response is also of interest. Since the ideal gyrator transmission

phase must be equal to 2nπ in one direction and (2n + 1)π in the other for

n ∈ R, it is important to be able to predict this phase in case it needs to

be adjusted to satisfy these conditions. In addition, in order for the delay

of the two paths connecting the hybrids in the four-port topology to be the

same, it is imperative that the group delay of the gyrator be estimated as

well.

4.2.1 Derivation

The impedance matrix of equation 3.10 can be utilized to predict the phase

imparted by a nonlinear capacitor. The voltage gain of a two-port network

with respect to its impedance parameters is

Av =
Z21ZL

(Z11 + ZG)(Z22 + ZL)− Z12Z21

(4.6)

The phase of this quantity is readily found from its real and imaginary

parts.

∠Av = arctan

(
=(Av)

<(Av)

)
(4.7)

∠Av can be interpreted as the phase of the signal exiting the nonlinear capac-

itor. In the previous sections, it was implicitly assumed that filters enforced

a single frequency component at each port of the parametric modulators used

to construct the gyrator. To accurately model the transmission phase, the

filters must now be accounted for. The filters tuned to ωIF are assumed to

impart a phase delay of θIF(ω) within their passbands. The filter tuned to ω+

is assumed to impart a phase delay of θ+(ω+ωLO) in its passband. Denoting
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the transmission phase from port 1 to port 2 as θ21(ω) and that from port

2 to port 1 as θ12(ω), a new equivalent model of the gyrator is given in Fig.

4.4.

Figure 4.4: Expanded model of parametric gyrator that explicitly accounts
for the effects of the necessary filters. The components ZL and ZR can both
be described by the matrix of 3.10 by substituting the value of θ with α
and β, respectively. As before, these quantities denote the LO phase.

Ignoring the effect of the loss resistance Rc in the modulators, the relevant

voltage gain quantities can be computed:

AL21 = e−jαAv↑(ω) (4.8a)

AL12 = ejαAv↓(ω) (4.8b)

AR21 = e−jβAv↓(ω) (4.8c)

AR12 = ejβAv↑(ω) (4.8d)

The other quantities can be found from:
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Av↑(ω) =
j ψ
ωIFC0(1−ψ2)

R

ZINZOUT + ψ2

ωIFω+C2
0 (1−ψ2)2

(4.9a)

Av↓(ω) =
j ψ
ω+C0(1−ψ2)

R

ZINZOUT + ψ2

ωIFω+C2
0 (1−ψ2)2

(4.9b)

ZIN = j

(
ωIFLS −

1

ωIFC0(1− ψ2)

)
+R (4.9c)

ZOUT = j

(
ω+LL −

1

ω+C0(1− ψ2)

)
+R (4.9d)

R =
ψ

√
ωIFω+C0(1− ψ2)

(4.9e)

The inductor values LS and LL are given by equations 3.12 and 3.13, respec-

tively. Finally, the transmission phase in each direction is given by equation

4.10. For the gyrator, as before, one should select α = 0 and β = 90◦ or

α = 90◦ and β = 0.

θ21(ω) = 2θIF(ω) + ∠AL21(ω) + θ+(ω + ωLO) + ∠AR21(ω) (4.10a)

θ12(ω) = 2θIF(ω) + ∠AL12(ω) + θ+(ω + ωLO) + ∠AR12(ω) (4.10b)

The group delay from port 1 to port 2, τg21, and that from port 2 to port 1,

τg12, can be found from

τg21 = − d

dω
θ21(ω) (4.11a)

τg12 = − d

dω
θ12(ω) (4.11b)

It is desirable for the gyrator to add no distortion to signals passing through

it, which means τg21 = τg12 = const. over frequency. This is achieved when

θ21 and θ12 are linear over frequency and have the same slope.
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4.2.2 Design Examples

Two design examples are given here to demonstrate the use of this approach.

In the first example, the method is used at the center frequency to determine

the additional phase delay that must be added to the gyrator in order for its

behavior to approach ideal. In the second example, the group delay of an

idealized gyrator is estimated.

4.2.2.1 Example 1 - Center Frequency Transmission Phase

fIF = 500 MHz

fLO = 1000 MHz

C0 = 1 pF

ψ = 0.3

θIF = −100◦ at 500 MHz

θ+ = −150◦ at 1500 MHz

Assuming the lefthand modulator has a LO phase of 0◦ and the righthand

modulator has a LO phase of 90◦, the analysis starts from equations 3.12

and 3.13 to find that LS = 111.3 nH and LL = 12.4 nH. From equation

4.9e, R = 60.6Ω. These quantities can be used to find that AL21 = AL12 =

−90◦, AR12 = 0◦ and AR12 = −180◦. Thus, θ21 = −620◦ and θ12 = −440◦.

Therefore, an extra -100◦ of phase delay should be added to the gyrator for

its S-matrix to become that of equation 4.12 at ω = ωIF, which is the ideal

gyrator.

S =

(
0 −1

1 0

)
(4.12)

4.2.2.2 Example 2 - Group Delay

fIF = 500 MHz
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fLO = 1000 MHz

C0 = 1 pF

ψ = 0.3

θIF = 0◦

θ+ = 0◦

The filters are assumed to be phaseless, since any number of filters can be

chosen in the event the nonlinear capacitors have undesirable phase charac-

teristics. The values of LL, LS and R are the same as in Example 1. First,

the value of θ21(ω) can be evaluated. The values of ∠AL21, ∠AL12, ∠AR21,

and ∠AR12 are computed and shown in Fig. 4.5 along with the transducer

gain normalized to the ideal Manley-Rowe value. The frequency range cor-

responds to the 3 dB bandwidth of 402 - 588 MHz, or 37.2%. Now, the two

phase curves can be added together to find the overall transmission phase.

This exercise can be repeated for θ21(ω) as well. Shown in Fig. 4.6 is the

transmission phase in both directions of the gyrator. Note that the addition

of filters can serve to change the shape of the phase plot if different character-

istics are required. Mathematically, this confirms the derivation of equation

3.7, as in Fig. 4.6, it is seen that the values of the transmission phase at the

center frequency, 500 MHz, are exactly as predicted by 3.7. Now, the group

delay is found by taking the derivative of each phase curve with respect to

frequency. The phase slope is found to be 0.8801 ◦/MHz through a line of

best fit (R2 = 0.9987), meaning the group delay is 2.44 ns. If more realis-

tic filters were included, the total group delay of the gyrator would be this

calculated value plus the group delay of each individual filter.

4.3 Adjusted Circulator Topologies

Shown in Fig. 4.7 are two topologies that can be used to physically realize the

gyrator-circulator. Figure 4.7a shows the familiar four-port circulator. Two

new elements have been added: a delay balancer and a phase compensator.

The phase compensation is used to ensure the gyrator provides a 2nπ phase

49



Figure 4.5: Computed values of ∠AL21, ∠AL12, ∠AR21, and ∠AR12

alongside modulator/demodulator transducer gain. The gain is normalized
to the ideal Manley-Rowe value: fp+f

f
for an upconverter and f

f+fp
for a

downconverter.

Figure 4.6: Transmission phase characteristic in each direction over the 3
dB bandwidth of the gyrator.
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Figure 4.7: (a) Adjusted four-port circulator topology and (b)
approximation of three-port circulator. The phase compensation can be
used to tune the center frequency of the gyrator to the center frequency of
the hybrids and dividers. The delay balance has a time delay equal to the
combined delay of the gyrator and the phase compensation.
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shift in one direction and a (2n + 1)π phase shift in the other at the center

frequency of operation. This is necessary to ensure the gyrator operates

at the same center frequency of the two hybrids in order to ensure proper

operation. In the arm below the gyrator, the delay balancer is adjusted to

provide a path delay equal to the delay of both the gyrator and the phase

compensator. Its group delay should be the same as in expression 4.11.

Figure 4.7b shows an approximation to the three-port circulator that can be

referred to as a quasi-circulator. The quasi-circulator uses just one hybrid,

as well as an in-phase power divider. The power divider’s matrix can be

expressed as

SPower Divider =
−j√

2

 0 1 1

1 0 0

1 0 0

 (4.13)

This divider can be realized in different ways, such as a Wilkinson divider.

The choice of the term quasi-circulator is evident from the S-parameters of

the three-port circulator approximation, shown in

S =

 0 0 −1

1 0 0

0 0 0

 (4.14)

Ports 2 and 3 are isolated from each other, meaning no signal can travel

between them irrespective of direction of propagation. This isolation is con-

trolled by the isolation of the hybrid, meaning even if the gyrator provides

poor circulator performance, a well-designed hybrid can compensate for it if

a designer only wishes to deeply isolate one port pair. An example of when

this is useful is in the full-duplex transceiver. A representation of the use

of the quasi-circulator in the full-duplex transceiver is shown in Fig. 4.8.

Since it is desired that no signal ever travel between the transmitter and the

receiver, full circulator operation is not necessary.
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Figure 4.8: (a) Symbol for a quasi-circulator. (b) Full-duplex
communication system with quasi-circulator.
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4.4 Bandwidth Performance

The circulator isolation bandwidth is controlled by both the bandwidths of

the hybrids as well as the amplitude bandwidth of the gyrator. Even if the

gyrator’s bandwidth is quite broad, the hybrids have limitations based on

their topology. It is of interest, then, to investigate the upper limits on

bandwidth due to the hybrids themselves.

4.4.1 Ideal Four-Port Gyrator-Circulator Isolation
Performance

S-parameter simulations were performed to estimate the maximum achievable

bandwidth of the gyrator-circulator using ideal, lossless transmission lines to

create various hybrid coupler topologies. The gyrator was modeled as a two-

port network with its S-parameters being that of 1.22 over all frequencies.

Since this circulator is ideal, it provides infinite isolation at the center of its

band, but this isolation rolls off with frequency. The isolation bandwidth of

the gyrator-circulator is defined to be the fractional bandwidth over which

the circulator provides at least 20 dB of isolation.

4.4.1.1 Ratrace Hybrid

The ratrace coupler, a 180◦ hybrid shown in Fig. 4.1, provides a maximum

achievable isolation bandwidth of 17.1%, as seen in Fig. 4.9.
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Figure 4.9: Isolation performance of idealized four-port circulator using
ratrace hybrids. The isolation characteristic is not identical between all
port pairs.

4.4.1.2 Branchline Hybrid

The branchline coupler is a quadrature coupler shown schematically in Fig.

4.10. Since it is also a four-port device like the 180◦ hybrid, it is connected in

the same fashion as the 180◦ hybrid in the topologies of 4.7. Observing the

S-parameter simulation in Fig. 4.11, it displays even less symmetry than the

ratrace hybrid, but the bandwidth of the narrower curve is 17.6%, which is

more or less the same as the circulator constructed with ratrace hybrids.
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Figure 4.10: Transmission line realization of branchline coupler. All lines
are 90◦ in electrical length.

Figure 4.11: Isolation performance of idealized four-port circulator using
branchline hybrids. The isolation characteristic is not identical between all
port pairs.

4.4.2 Broadband Realization of the Gyrator-Circulator

In order to create a broadband architecture for the gyrator-circulator, a de-

signer must broaden the bandwidths of both the hybrids and the gyrator it-

self. Although there are many topologies of hybrids that can achieve this, this

section focuses on the multistage branchline hybrid as an example. Although

there have been several efforts in broadbanding the branchline coupler, one

simple topology called the double-box branchline [19] can be employed here.

A schematic representation of the idealized gyrator-circulator with with the

double-box hybrids is shown in Fig. 4.12. S-parameter simulations, shown
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in Fig. 4.13, demonstrate a 20 dB isolation bandwidth of 30.6%, which is 1.7

times the bandwidth achievable by a single-stage branchline coupler.

Figure 4.12: Topology of the broadbanded circulator. All transmission lines
are 90◦ in electrical length.

Figure 4.13: Isolation performance of idealized four-port circulator. The
isolation characteristic is not identical between all port pairs.

4.5 Design Example

A four-port parametric circulator is to be designed for operation at 500 MHz.

The gyrator used in the circulator should be designed with a noise figure less

than 3.4 dB. The circulator should be matched to a system impedance of

50 Ω. The parametric gyrator is to be constructed from a variable capacitance

that has the following properties:
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C0 = 1 pF

ψ = 0− 0.45

Rc = 2.5 Ω

The design begins by selecting an appropriate LO frequency ωLO and mod-

ulation parameter ψ. Since a large modulation parameter yields a lower noise

factor, the highest possible modulation parameter (ψ = 0.45) is used to find

the lowest possible LO frequency. Using equation 3.33, the noise figure can

be plotted for various LO frequencies as in Fig. 4.14.

Figure 4.14: Noise figure of the gyrator for various LO frequencies. The
dynamic quality factor Qd is approximately 160 for the highest supported
modulation parameter.

Choosing fLO to be 2 GHz gives a slight margin below 3.4 dB noise figure.

Now, the actual modulation parameter can be selected. Since Rc = 2.5 Ω

and ωLO = 2π × 2 GHz, equation 3.18 can be used to find that ψ must be

0.41 to match to 50 Ω. This is close to the maximum modulation parameter,

and thus yields an actual noise figure of the gyrator still in the vicinity of 3.4

dB. From equations 3.12 and 3.13, the tuning inductances are LS = 152.3

nH and LL = 6.1 nH. From equation 3.19, Qd = 153 and from equation 3.21,
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ξ2 = 0.00127. Finally, from equation 3.25, the predicted insertion loss of

the gyrator is 0.61 dB. Before simulating the gyrator, a simple S-parameter

simulation using ratrace couplers created with ideal transmission lines can

be used to predict the isolation at the center frequency for varying levels

of gyrator insertion loss. Observing such a simulation in Fig. 4.15, it can

be estimated that this gyrator in a four-port circulator with ideal ratrace

couplers will provide a center frequency isolation of 29.4 dB.

Figure 4.15: Four-port circulator insertion loss and isolation between port
pairs for increasing levels of gyrator insertion loss.

The gyrator was then simulated using a harmonic balance routine. The

three filters used were Bessel-Thompson filters, chosen because of their highly

linear phase response. The two ωIF filters had a center frequency of 500 MHz

with 10% fractional bandwidth. The ω+ filter had a center frequency of

2500 MHz with a bandwidth of 10%, though a narrower bandwidth could

have been tolerated. The simulation was performed in Keysight ADS using

the schematic shown in Fig. 4.16. The tuning inductances were adjusted

slightly, as the filters provide some reactance even at the center frequency

that changes the tuning requirements.
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Figure 4.16: Keysight ADS simulation of gyrator. LSSP simulation
performs the function of a typical harmonic balance simulation, but makes
computation of quantities like insertion loss and transducer gain simpler,
especially when the frequency is swept over some range.

After setting up the simulation, the modulation parameter was swept over

the supported range of the nonlinear capacitor. As seen in Fig. 4.17, the

optimal value of ψ was in the vicinity of the predicted value of 0.41. The

insertion loss for this was slightly better than predicted, at about 0.55 dB.

With the gyrator optimized, a simulation was performed over frequency as

shown in Fig. 4.18. It can be seen that the gyrator’s amplitude response is

centered about 504 MHz with a 3 dB bandwidth of 6.3%. The phase of S21

and S12 at 500 MHz is -348◦ and -528◦, respectively, meaning an additional

12◦ of phase delay is necessary to operate the gyrator as a circulator at 500

MHz. The transmission phase is quite linear, and can be approximated with

equation 4.15 where f is the frequency in MHz.

θ12 ≈ −7.56f + 3253 (4.15)

Of course, this approximation is only valid within the 3 dB bandwidth. Since

the phase slope is 7.56 ◦/MHz, from equation 4.11, it is expected that this

gyrator will have a group delay of about 21 ns. The delay balance should be

about this amount, keeping in mind the additional 12◦ phase compensation
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will affect the group delay a bit.

Figure 4.17: Simulation of gyrator insertion loss (magnitude of S21, S12)
and return loss (magnitude of S11, S22) for varying ψ.

The four-port gyrator-circulator was then simulated in Keysight ADS. The

additional 12◦ phase delay was accomplished by placing an ideal transmission

line inline with the gyrator. The delay balancer is also an ideal transmis-

sion line. The couplers used were branchline couplers. Although these are

quadrature couplers, the performance should not differ drastically from a

four-port gyrator-circulator using 180◦ hybrids. Simulation results are dis-

played in Fig. 4.19 and the ADS setup is shown in Fig. 4.20. Although the

performance of only one port pair is displayed here, the reader is encouraged

to duplicate the simulation setup to observe the circulator’s performance in

more detail. The 20 dB isolation bandwidth is 6.2%, which is almost the

same as the gyrator’s 3 dB amplitude bandwidth. The isolation at midband

is 29.55 dB, which is in good agreement with the prediction.
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Figure 4.18: Simulation of gyrator insertion loss and transmission phase
over frequency.

Figure 4.19: Magnitude of S21 and S12 of the gyrator-circulator.
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Figure 4.20: Keysight ADS simulation schematic for four-port parametric
circulator.
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CHAPTER 5

CONCLUSION

5.1 Findings of this Work

This work has verified the findings of Kamal [12] and performed a more in-

depth analysis of the parametric gyrator and its relation to the four-port

circulator and three-port quasi-circulator. This gyrator topology has a very

wide design space, and it is still quite unexplored. There have been both

older and modern attempts to create parametric circulators [20, 21, 22], but

none have achieved any more than 5% bandwidth. Even the design exam-

ple under idealized conditions in this work only achieved 6.2% bandwidth,

but the potential of this circulator topology for much higher bandwidths is

very enticing, even though the design space still requires exploration. This

parametric gyrator has a fair share of disadvantages as well. Its performance

sensitivity to losses in the filters and nonlinear capacitors is probably its

greatest weakness. Its advantages include the need for only two nonlinear

capacitors modulated at two different LO phases (compared to the three used

in [21] with three different LO phases); the differential phase shift is inde-

pendent of frequency, which offers the potential for extreme broadbanding;

and its fairly simple design.

5.2 Areas of Future Research

Several avenues of future research in this device topology have been consid-

ered by the author.
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5.2.1 Gyrator Loss Compensation

One major disadvantage of the parametric gyrator is the need for low-loss

filters and low-loss varactors in order to implement the device, meaning the

insertion loss of the gyrator is likely a major issue. One possible remedy for

this is the use of four-frequency parametric devices. Several researchers [23,

24, 25] have found that a hybrid parametric converter that utilizes both the

non-inverting and inverting mode at the same time can exhibit a gain higher

than the Manley-Rowe limit of f+
fIF

while still maintaining a positive input

resistance. Use of such a device could be used to overcome filter losses, or

even create a gyrator with insertion gain. It is unknown to the author at this

time if such a device is practical or if the noise figure of such a device would be

considerably better or worse. Intuitively, the author believes the noise figure

would be higher, as the four-frequency devices make use of idler terminations

that can be resistive in nature, and this resistance can really only serve to add

noise to the system. Perhaps this can be acceptable if a circulator with gain

is constructed, as it could function as a low-noise amplifier for the receiver

system, and so a higher noise figure could be tolerated, since the circulator-

amplifier combination could have lower noise figure than a separate circulator

and amplifier system.

5.2.2 Gyrator with Large Tuning Range

In practice, parametric converters are often subject to narrow bandwidth.

Since the differential phase shift afforded by the gyrator is independent of

frequency, the gyrator could potentially have a large tuning range, which

could be accomplished with a variable phase shifter inline with the the gyrator

itself. At this time, a suitable topology for the parametric gyrator that could

realize this tuning feature without significantly affecting the insertion loss is

unknown to the author.
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5.2.3 Broadening the Amplitude Bandwidth of Parametric
Gyrator

As one can imagine, the use of a simple tuning inductance as the matching

element in the parametric converters limits the bandwidth of the gyrator.

In order to utilize the broadbanding techniques mentioned in chapter 4, it

is imperative that the gyrator’s amplitude bandwidth be as broad as, if not

broader than, that of the hybrids to which it is connected. The author has

explored some literature that discusses the use of multiple tuning circuits

rather than just the inductance, but most promising is the theoretical work

by E. S. Kuh [26]. Experimental validation of a gyrator with more than 30%

bandwidth is necessary to eventually achieve a circulator with at least that

amount of bandwidth.

5.3 Concluding Remarks

One day, a broadband circulator could be realized using the principles dis-

cussed here. At high frequencies where the hybrid couplers are physically

small, this type of circulator could prove advantageous in communication

systems, especially if it could be used also as an amplification device. Since

the parametric circulator uses a sinusoidal LO signal to operate, it could

easily make use of the LO already present for mixing stages in communi-

cation systems. Of course, more analysis is required to determine whether

this circulator is suitable for a communication system. It seems possible to

design a gyrator with linear phase over its 3 dB bandwidth, but experimental

validation is necessary to characterize the actual harmonic distortion proper-

ties of the gyrator. Perhaps this document will be an inspiration to a future

researcher to answer these questions, just as the work of A. K. Kamal was

an inspiration to this author.
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