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ABSTRACT 

 

Soybean has capacity as a development crop to generate new sources of income for smallholder 

farmers.  Yet as an unfamiliar commercial crop, soybean requires farmers to move beyond 

traditional production practices and market engagements in order to succeed.  In this context 

soybean represents a long-jump agricultural technology, requiring significant, non-incremental 

changes for smallholder farmers.  This research addresses the adoption process for long-jump 

agricultural technologies like soybean to understand the drivers that enable or hinder farmer 

participation in this dynamic agricultural market.   

Specifically, I explore the role experience, space, economies of scale, demographics, market 

access, and land rights play in understanding adoption and performance in soybean production 

among smallholder women farmers.  I consider three estimation strategies using a primary 

dataset on smallholder soybean producers in the Upper West region of Ghana.  I first employ 

probit and ordinary least squares (OLS) regression models to understand adoption and 

performance.  I then employ a combined spatial-autoregressive with spatial-autoregressive 

disturbances (SARAR) model using a generalized spatial two-stage least squares to understand 

cross-unit interactions in a spatial dimension.   

I demonstrate that there exists positive, large, and significant spatial autoregressive dependence 

and knowledge spillover in soybean yields among smallholder female farmers within spatial 

networks.  This finding provides guidance for agricultural development programs about the 

importance of social interaction and information provision through farmer networks in 

improving farmer performance in soybean production.  Further, I show that larger farms and 

producers who allocate more land to soybean cultivation are associated with higher yields and 

sustained soybean adoption, which may indicate economies of scale.  Finally, I demonstrate that 

experience and extension access are important drivers of success in soybean cultivation.  These 

findings ultimately contribute to the understanding of whether soybean as a development crop 

can directly benefit smallholder farmer livelihoods. 
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CHAPTER 1:  INTRODUCTION 

 

For most of the developing world, agriculture represents the largest employment sector for rural 

households and is a leading contributor to national income.  However, in many developing 

countries, agricultural productivity is extremely low, with stagnant or even declining yields in 

many parts of Sub-Saharan Africa (Doss, 2006; Damania et al., 2016).  As a result, there is 

tremendous interest and focus on increasing agricultural productivity through the introduction of 

improved agricultural technologies and management systems.  Improved agricultural 

technologies have the potential to drive sustainable advances in labor productivity, incomes, food 

security and general economic growth (Doss, 2006; Maertens & Barrett, 2012).   

Agricultural technologies have predominantly been implemented through improved varieties of 

traditional, familiar, staple crops; improvements in land, soil and water management practices; 

and input and fertilizer utilization and subsidy packages (Ainembabazi & Mugisha, 2014; 

Muzari, Gatsi & Muvhunzi, 2012).  These types of agricultural technologies can be considered in 

the context of short-jump technologies as they require farmers to engage in incremental shifts in 

their existing agronomic practices and do not represent significant changes in their overall crop 

production portfolios.   

Short-jump, or incremental, agricultural technologies use the tacit knowledge, experience and 

core competencies of farmers to improve agricultural productivity without requiring farmers to 

engage in more risky endeavors often associated with long-jump agricultural technologies 

(Goldsmith & Gow, 2005).  Further, short-jump agricultural technologies have a high probability 

of adoption and success by smallholder farmers as they build upon the traditional practices and 

norms of farmers and typically require fewer new assets, have a lower risk premium and are less 

expensive than long-jump agricultural technologies (Muzari et al., 2012).   

Long-jump agricultural technologies are riskier than short-jump technologies as they raise 

fundamental questions about how producers select appropriate strategies for their farm and can 

require smallholder farmers to adopt not only a new crop, but new cropping and marketing 

practices as well.  In this context, producers inherently possess little tacit knowledge relevant to 

the new agricultural technology and must move beyond their core competencies to be successful.  

For producers, this may mean shifting their focus from a subsistence and consumption 
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production framework to one focused on the business and marketing of their agricultural 

products (Osmani, Islam, Ghosh, & Hossain, 2014). This thesis explores commercial soybean 

farming as an example of a long-jump agricultural technology.   

Commercial farming occurs when households make product choice and input use decisions 

based on profit maximization, rather than on subsistence determinants.  The shift from 

subsistence to commercial farming presents significant risk for farmers as their interaction with 

markets and dependence on market transactions increases.  When farmers make this shift, they 

encounter a new dependence on markets for input, equipment and service procurement; grain 

aggregation, sales and storage; technical training; and access to information providers to offset 

the steep learning curve associated with new crop and production practices.   

This new level of market reliance exposes farmers to high variability in the prices of farm 

products, inputs, services and equipment and creates farmer dependence on market conditions 

and market access (Immink & Alarcon, 1993; Osmani et al., 2015).  Further, inefficient 

marketing institutions and inadequate rural infrastructure can inhibit the ability, interest and 

performance of smallholders who choose to move to commercial farming practices.  The level, 

quality and diffusion of information provision through both formal channels and informal 

channels changes over time as well.  These changing market and information characteristics also 

affect the adoption process for farmers engaging in new commercial crop production, and 

subsequently affect the performance and persistence of adoption. Finally, in some cases, 

commercial farming may substitute for traditional staple crop production, resulting in farmers 

becoming more reliant on market prices and availability for their household consumption needs 

(Immink & Alarcon, 1993).   

While these potential constraints certainly warrant attention, policy-makers, development 

agencies and donors continue to see commercial farming as integral to sustainable development 

for smallholder producers.  Commercial production can move smallholder farmers out of poverty 

by generating new sources of income for farming families, increasing the dietary diversity in the 

household and increasing household expenditures on education, healthcare and non-food 

consumption (Osmani et al., 2015).  Further, increased domestic production of commercial crops 

can improve local, regional, and national economic growth.  
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Equally important in the identification, development and rollout of an agricultural technology is 

understanding the drivers of the technology adoption process to ensure that the goals of 

improved farmer livelihoods, increased overall productivity and improved economic growth are 

achieved.  Understanding the technology adoption process enables researchers and policy-

makers to identify and reduce constraints to adoption, quantify impacts on poverty, hunger and 

economic development and set priorities for future research in agricultural technology 

development (Doss, 2006).   

The technology adoption process in the context of short-jump, incremental agricultural 

technologies is well researched (Maertens & Barrett, 2012; Ainembabazi & Mugisha, 2014; 

Ward, Ortega, Spielman & Singh, 2014; Ward & Pede, 2015; Damania et al., 2016).  Findings 

from this literature point to a number of important areas of consideration in determining if, how, 

and at what pace a farmer decides to adopt agricultural technologies that are incremental in 

nature.  These areas include resource endowments such as available land, labor, mechanization 

and livestock; the existence of credit and input and output markets; risk and uncertainty; 

differences in soil, weather and land quality; and human capital such as education, farming 

experience and extension information access (Ainembabazi & Mugisha, 2014).  Additional 

research underlines the importance of transaction costs, spatial interaction and social networks in 

influencing the adoption of agricultural technologies (Conley & Udry, 2001; Maertens & Barrett, 

2012; Ward et al., 2014; Damania et al., 2016).   

Despite the considerable amount of literature focused on the adoption process for short-jump 

agricultural technologies, the adoption process for long-jump agricultural technologies is less 

understood.  Long-jump agricultural technologies do not operate within the same contextual 

framework as short-jump technologies as they represent significant, non-incremental changes to 

a farmer’s existing production practices and engagement with markets.  These non-incremental 

agricultural technologies do not build on the tacit knowledge, experience and core competencies 

of farmers as incremental agricultural technologies do.   

The contribution and focus of this research is thus to examine the adoption process for 

commercial soybean farming as an example of a long-jump agricultural technology.  Due to the 

growing global demand for soybean as an animal feed and edible oil resource, policy-makers, 
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development agencies and donors recognize the potential for soybean to generate new sources of 

income for smallholder farmers (Dogbe et al., 2013).   

Yet as a new, unfamiliar commercial crop, soybean involves a number of critical, complex and 

market-oriented components that affect technology adoption and performance.  Successful 

soybean production requires inputs such as fertilizer and inoculum (Bradyrhizobia inoculum is a 

naturally occurring bacteria that helps enhance the nitrogen-fixing capacity of soybean through 

root nodulation) and mechanization to improve seed and grain quality and reduce labor and time 

burdens on the household. Further, soybean producers must access markets to purchase inputs, 

seed, and services and may benefit from interaction with neighboring farmers to aggregate grain, 

and achieve volume discounts for input procurement.  Thus as farmers decide whether to engage 

in soybean production, these market drivers require them to shift their focus from subsistence 

production to the business and marketing of their agricultural products (Goldsmith & Gow, 

2005).   

This research identifies the critical drivers that enable or hinder farmer entry into the soybean 

market.  Understanding these drivers provides insight into the role smallholder farmers may play 

in supplying the increased local production needed to meet the growing demand for soybean.  

These insights are critical to understanding whether soybean can ultimately directly benefit 

smallholder livelihoods, and if soybean production can successfully move smallholders from 

traditional, low-input modes of production that make it difficult to escape the cycle of poverty 

(Damania et al., 2016).   

The setting for my research is the Upper West region of Ghana where the primary dataset 

involves smallholder female soybean producers.  I employ three estimation strategies to 

understand how different drivers affect soybean sustained adoption, intermittent adoption, and 

performance, as well as how spatial interactions and spatial dependence affect these outcomes.  
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CHAPTER 2:  LITERATURE REVIEW 

 

Returns to agricultural technologies can be far reaching, impacting both rural and national 

economies in Sub-Saharan Africa (Muzari et al., 2012).  Further, agricultural technologies can 

increase agricultural productivity and incomes, leading to improved food security (Maertens & 

Barrett, 2012).  Yet farmers must see the benefit of these agricultural technologies, decide to 

adopt them and appropriately implement them in a sustained fashion to achieve these larger 

development goals (Muzari et al., 2012).  Further, improved technologies may not be 

immediately or completely adopted throughout a given population (Maertens & Barrett, 2012).  

Thus a substantial body of literature has sought to address and understand the technology 

adoption process – specifically the mechanisms underlying how, why, if, and when these 

agricultural technologies are adopted by smallholder farmers in the developing world (Doss, 

2006; Ward et al., 2014).   

Long-jump vs. short-jump technologies  

In the context of agricultural technologies, a distinction can be drawn between long-jump and 

short-jump technologies.  Feder, Just and Zilberman (1985) in their seminal survey of the 

adoption of agricultural innovations in developing countries originally defined the difference 

between these two types of agricultural technologies.  This survey identifies the case in which 

modern agricultural technologies can have two components: one that is neutral to scale (short-

jump, incremental) and one that is positive to scale (long-jump, non-incremental, or “lumpy”).  

Long-jump agricultural technologies require fixed installation costs regardless of total farm size 

and, because of the risk and credit constraints associated with these technologies, farmers may 

delay or avoid adoption altogether.  Further, there will be a critical farm size such that only 

larger farms will adopt the lumpy, non-incremental agricultural technology (Feder et al., 1985).   

Although the early literature focuses on physical investment as the fixed cost that defines a long-

jump technology, it is possible to consider an investment in learning as a fixed cost even if there 

is no lumpy physical input.  Any technology that represents a dramatic change in current 

production or marketing practices could be considered as a long-jump technology if the learning 

requirements are significant.   
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Conversely, short-jump, or incremental, agricultural technologies are not as risky. Examples of 

incremental agricultural technologies are those that are associated with the Green Revolution.  

These technologies did not present any credit or tenure constraints to the farmer when 

considering adoption (Feder et al., 1985).  Short-jump, incremental agricultural technologies are 

typically applied within the context of staple, familiar and traditional crops with which 

smallholder farmers already have experience producing.  In this context, the farmer’s overall 

production portfolio remains unchanged, and the agricultural technology is defined by an 

incremental shift in the farmer’s production practice.   

In the adoption of short-jump agricultural technologies, farmers continue producing within a 

framework of staple, traditional and familiar crops and are not required to purchase new inputs, 

change the scale of their production, enter into new commercial environments, or significantly 

shift their cultivation norms and practices.  The application of short-jump agricultural 

technologies within the context of staple and traditional crops has sought to address the looming 

food and agricultural crisis in Sub-Saharan Africa, a region that has shifted from self-sufficiency 

in production to becoming a net food importer (Muzari et al., 2012).   

The adoption of incremental, short-jump agricultural technologies has been widely researched.  

Ward and Pede (2015) examined farmer demand and adoption of drought-tolerant rice cultivars 

in India.  In this analysis, existing rice-producing households were given the choice of adopting 

hybrid or varietal drought-tolerant (DT) rice cultivars.  While the hybrid DT rice cultivars 

required farmers to purchase new seed every year and used lower seeding rates as compared to 

the varietal cultivars, other aspects of the farmer’s rice cultivation practices remained unchanged.  

Further, the DT rice cultivars required no additional inputs for enhanced productivity.  In this 

context, the DT rice cultivars represented an incremental agricultural technology as farmers were 

required to make a marginal, non-significant and approachable change at one point in their 

production cycle without altering their traditional crop production choices.   

Further, as existing rice-producing households, farmers were familiar with cultivating this staple 

crop.  Thus in adopting the DT rice cultivar, farmers could rely on their tacit knowledge, norms 

and experience.  Hybrid rice production in India is also generally well known and supported, and 

is not an unfamiliar cultivation practice.  The Government of India targeted 25% of all rice 

production to be undertaken using hybrid rice by 2015 and 24% of farmers in the poorer 
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northeastern states where the study took place had cultivated hybrid rice at least once as of 2009 

(Ward & Pede, 2015).  These statistics display a context in which DT rice cultivars were 

relatively well known among smallholder farmers, were utilized by smallholders in the past and 

were supported by the public sector.  Thus farmers were able to rely upon their knowledge of a 

familiar crop and its associated production practices as well as a familiar agricultural technology 

when determining whether or not to adopt the DT rice cultivar.   

Herath and Takeya (2003) examined farmer adoption of intercropping in the production of 

rubber among smallholder farmers in Sri Lanka.  Rubber production is widespread and familiar 

to smallholder farmers in Sri Lanka.  70% of total rubber growers in Sri Lanka are smallholders 

farming on less than 4 hectares of land and 8% of all agricultural land in Sri Lanka is dedicated 

to rubber production.  Thus rubber is not a new crop to Sri Lanka and is already considered a 

commercial crop among smallholder farmers.  With its historical status as a commercial crop, 

farmers are already integrated into the various market structures inherent within the rubber 

production context, are not required to engage in new market conditions or interact with new 

market actors, and are not exposed to potentially new market risks.   

Further, intercropping as an agricultural technology is not new to Sri Lanka.  Intercropping of 

immature rubber with various crops was introduced as early as 1979 and around 40% of 

smallholders were already engaged in intercropping (Herath & Takeya, 2003).  Therefore farmer 

experience with rubber as a commercial crop and with intercropping as an agricultural 

technology was likely not new.  The overall scale of production did not change based on the 

adoption of intercropping as farmers producing on both small and large plots of land engaged in 

the practice.  Finally, apart from the new crop used in the intercropping scheme, farmers were 

not required to purchase or utilize any additional, new inputs like fertilizers, herbicides or 

pesticides.   

Similar to Ward and Pede (2015), intercropping in rubber production represents an incremental, 

short-jump agricultural technology. Both rubber as a commercial crop and intercropping as an 

agricultural practice are familiar to Sri Lankan farmers.  As such, farmers were able to rely on 

their existing tacit knowledge, norms, and experience and were not required to incur additional 

costs or encounter new, market-oriented risks in deciding whether or not to adopt the technology.   
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In the context of short-jump agricultural technologies, much of the research has focused on the 

production of high-yielding, drought-resistant and disease-resistant staple or traditional crop 

varieties and improved agronomic practices (soil fertility management, planting date, planting 

rates, weed control, soil and water management, legume and cereal rotation) (Muzari et al., 

2012).  Other examples of the short-jump agricultural technology adoption process, assessed 

within the context of familiar crops, include evaluations of improved Bt cotton in India 

(Maertens & Barrett, 2012), improved mangrove swamp rice varieties in Sierra Leone (Adesina 

& Zinnah, 1993), fertilizer and hybrid seed adoption for maize production in Malawi (Chirwa, 

2005); and improved cowpea varieties in Nigeria (Alene & Manyong, 2006).   

Conversely, relatively little work has been done on non-incremental agricultural technologies 

that represent significant changes to farmer production portfolios, practices, norms and 

standards.  This research uses soybean, a new and unfamiliar commercial crop for smallholder 

producers, as an example of a non-incremental, long-jump agricultural technology.   

Long-jump technology adoption  

Commercial crops represent an important economic development opportunity in developing 

country settings.  Commercial crops can enable smallholder farmers to earn higher profits, 

increase their family income and promote improved standards of living.  Further, commercial 

crops can increase the consumption of basic and high-valued foods and enable farmers to make 

higher expenditures on education, healthcare, non-food consumption and durable goods.  As 

agricultural commercialization is assumed to enhance household income, farmers are capable of 

purchasing a diversified mix of goods and services and/or increase their household consumption 

portfolio (Osmani et al., 2015).  Further, as identified by Osmani et al. (2015) “through the 

income-food-consumption linkage, commercialization is assumed to increase the food intake of 

household members, which could improve their nutrition and health status”. 

Osmani et al. (2015) assessed the level or extent of commercialization among 100 smallholder 

farming households in Bangladesh using a Household Commercialization Index (HCI).  The HCI 

measured the degree to which a household sells its agricultural output to market.  For households 

engaged in solely subsistence farming, the index was zero and grew larger as households 

engaged in commercialization of their agricultural output.  The researchers then measured 

various welfare outcomes as a result of commercialization including expenditures on non-food 
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items, education, healthcare, housing and farm implements as well as consumption of basic food 

items.  Results showed an increasing pattern of welfare outcomes among smallholders as they 

moved from low to high levels of commercialization.  The model used by Osmani et al. (2015) is 

useful for measuring the welfare outcomes of commercialization among smallholder farmers, but 

does not capture the drivers that lead some farmers to adopt higher levels of commercialization 

than others.  Further, this research does not address how commercialization may or may not 

change the existing agricultural and market engagement practices of farmers.   

Further, not all commercial crops are long-jump agricultural technologies.  While rubber is a 

commercial crop, its production in Sri Lanka is not new and unfamiliar to smallholder farmers.  

In this context Sri Lankan producers are not required to engage with new market actors, market 

channels or adopt significantly new agricultural production practices.  Other commercial crops 

are indeed new and unfamiliar to smallholder farmers.  In this case farmers must not only learn 

the production practices of a new crop, but the commercial nature of the crop requires farmers to 

engage in new market integration and interactions, can present significant gender and labor 

considerations and may be risky for the farming household.  It is in this context that new 

commercial crops represent non-incremental, long-jump agricultural technologies. 

Staal, Baltenweck, Waithaka, deWolff and Njoroge (2002) examined the adoption of specialized 

fodder use, concentrate feed use and the keeping of improved dairy cattle among smallholder 

dairy producers in Kenya.  These agricultural technologies are non-incremental for a number of 

reasons.  First, the keeping of improved dairy cattle require farmers to engage in significantly 

new management expertise and resources outside of their traditional norms, practices, tacit 

knowledge and experiences.  The large size of the improved dairy cattle require farmers to invest 

significant time and resources in sourcing the appropriate quality and quantity of feed through 

new commercial channels.  Further, farmers must engage with new commercial actors to acquire 

specialized reproductive services needed for the improved dairy cattle which are more 

susceptible to local animal diseases (Staal et al., 2002).   

The production demands of the improved breeds are different than traditional breeds, requiring 

farmers to move beyond their traditional dairy raising practices and engage in new, unfamiliar 

and risky production practices.  Further, the improved breeds demand a new level of market 

access for farmers to engage livestock service centers for artificial or natural insemination 
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services.  For the bulk of farmers with limited means of transport and communication, the costs 

of accessing these market services represents a significant new and variable cost to their 

traditional production practices (Staal et al., 2002).  Thus, in determining whether to keep an 

improved breed, farmers must weigh the costs and benefits of engaging in a riskier, more 

market-oriented and unfamiliar production practice.   

If a farmer decides to shift to using specialized fodder in their dairy production, they are required 

to divert land from food or cash crops for the fodder production.  Specialized fodder as an 

agricultural technology significantly changes the scale of production for a given farmer, and can 

add significant costs to the dairy production practice itself, presenting a new scenario of credit 

and risk constraints.  Farmers may need to purchase, rent, lease, or borrow land for the fodder 

cultivation or may need to divert existing land from other crops for the fodder cultivation.  

Fodder cultivation is thus as an additional non-incremental agricultural technology in that it 

requires significant changes to the farmer’s existing land use and production norms and 

practices, and presents new credit and risk constraints. 

In the context of concentrate feed, farmers are exposed to potential market and risk-related 

shocks as the concentrate feed is a commercial product, requiring cash expenditures and 

integration with market actors (Staal et al., 2002).  Thus, even while the use of concentrate feed 

as an agricultural technology has shown to raise average returns in dairy production, the risk-

adjusted returns may be lower when farmers’ levels of risk aversion are incorporated (Staal et al., 

2002).  Therefore, the level of risk associated with the use of concentrate feeds, as well as the 

necessity of market integration and cash expenditures in its procurement, may prevent adoption 

among smallholder producers.  The constraints associated with this technology are significant 

and represent a long-jump agricultural technology.  

A final point to consider in the Staal et al. (2002) analysis is that with the use of agricultural 

technologies, farmers are thought to generate increased milk production.  To ensure the 

additional production has an adequate market, farmers must engage in new, formal commercial 

milk markets to access more customers to purchase their products.  In Kenya, 80% of marketed 

milk is neither processed nor packaged, but is bought by the consumer in raw form via direct 

sales, small traders or other retail outlets.  Shifting from this informal raw milk distribution 

system to a formal milk market distribution system represents an additional significant and new 
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change in farmer production practice, and can lead to similar market-oriented risks for the 

farmer.   

In sum, Staal et al.’s (2002) study evaluates the adoption process of three long-jump agricultural 

technologies.  Together, these technologies require farmers to change the scale of their existing 

practice in a number of ways. First, farmers must engage new lands or shift existing lands to 

fodder cultivation.  Next, farmers must move beyond their traditional production norms and 

standards to engage in unfamiliar and new production practices using improved breeds of cattle.  

Further, farmers must engage in new markets to procure the commercial inputs and agricultural 

services for concentrate feed and artificial insemination or bull services.  Finally, farmers may 

need to move from traditional marketing norms, practices, and experiences to access new, formal 

commercial milk markets for their increased production.  

To model the adoption decision of the three technologies described above, Staal et al. (2002) 

employ an augmented logit regression model among 3,330 Kenyan dairy producers using both 

explanatory household variables and geocoded variables.  The geocoded variables include agro-

climatic measures and measures of farmer distance to urban areas, differentiated by road type.  

While this model captures the farm characteristics that drive adoption of long-jump agricultural 

technologies, the geocoded variables included in the analysis do not adequately evaluate how 

spatial interaction and relationships among farmers drive adoption decisions.  The authors note 

that the geographic distance measurements used in their analysis potentially capture the 

interaction between neighbors and can potentially control for neighbors’ influence on adoption.  

However it is difficult to see how measures of farmer distance to urban areas is an adequate 

control for the existence of spatial autocorrelation.  This type of spatial autocorrelation can occur 

when, for example, two farmers are located an equal distance from an urban area but are not 

located near to each other.   

Few other studies evaluate the adoption process for non-incremental agricultural technologies. 

One example is work by Conley and Udry (2010) who investigate how farmers learn about new 

agricultural technologies related to intensive pineapple production in Ghana for export to 

European markets.  In this context, farmers intensively engaged in the use of fertilizers and other 

agricultural chemicals to ensure the volume and quality required by the European export market.  

Farmers thus had to adopt new and commercial technologies like fertilizers and engage in a new 
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form of pineapple production that was commercial and intensive in nature, which exposed 

farmers to new markets and market actors.  In the case of this agricultural technology, producers 

encountered significant, and non-incremental shifts in their production practices.   

Conely and Udry (2010) employ a learning model that defines a farmer’s ‘information 

neighborhood’ and examine how a farmer’s decision to adopt new and unfamiliar inputs for their 

pineapple production is affected by their information neighborhood.  Using data from 47 

pineapple producers in southern Ghana they conclude that adoption decisions for unfamiliar 

technologies like intensive fertilizer use are affected by social learning while decisions for more 

familiar technologies are not affected by social learning.  The findings of Conley & Udry (2010) 

highlight the importance of farmer networks and spatial interactions in the adoption of long-jump 

agricultural technologies.  Their robust measure of information neighborhoods is developed 

through individual questioning of farmers about conversations between individuals in their 

network.  My dataset does not contain this type of social interaction information, yet I recognize 

the importance of social networks in my analysis and employ a spatial model to account for these 

effects.  

The goal of this research is to apply aspects of the long-jump agricultural technology adoption 

research to a new commercial crop context:  smallholder adoption of soybean.  The dramatic 

growth of feed demand stemming from the “livestock revolution” is fueling interest in soybean 

as a potential development crop capable of providing smallholder farmers with new sources of 

income and improved agricultural productivity (Masuda & Goldsmith, 2012).  In addition to the 

demand for soybean as a feed source for livestock and aquaculture, soybean demand is also 

growing for its use as an oilseed crop, as a biodiesel feedstock, and as a high-quality protein for 

use in human diets (Masuda & Goldsmith, 2009).   

Yet soybean is a new agricultural technology for much of the developing world.  In Africa, it is 

not a traditional crop, hence farmer utilization of soybean is limited in many settings (Dogbe et 

al., 2013).  As an unfamiliar, non-staple, commercial crop, soybean exhibits the characterizations 

of a long-jump agricultural technology.  Soybean production does not rely on farmer 

experiences, tacit knowledge, norms and traditional cultural practices.  The embedded behaviors 

and practices in smallholder producing communities will likely affect the adoption of soybean as 

an agricultural technology (Muzari et al., 2012).  Farmers may instead prefer to invest in 
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agricultural technologies that improve the productivity of their staple crops which can be easily 

processed, utilized and consumed in the household and do not depend on favorable markets for 

utility (Dogbe et al., 2013).  

Further, as a commercial crop, soybean production requires farmers to purchase new and 

unfamiliar inputs like inoculum, engage in new and precise agronomic practices (proper seed 

spacing, row spacing and plant populations), and connect to markets and buyers for sourcing 

inputs and aggregating and selling grain.  The market or profit-oriented production system for 

soybean differs from traditional practices where production is oriented towards subsistence 

(Osmani et al., 2015).   

Research by Dogbe et al. (2013) and Etwire et al. (2013) examine soybean production among 

smallholder farmers in Ghana by evaluating the level of profitability and technical efficiency, 

respectively, among farmers. These studies provide important contributions to the foundational 

knowledge surrounding soybean production among smallholders and comprise half of the total 

studies focused on the context of soybean adoption by smallholders.  Wendland and Sills (2008) 

examine the adoption of soybean among smallholders in Togo and Benin, but focus on soybean 

as an example of a health technology promoted exclusively for its nutritional benefits.  Mbanya 

(2011) studied the technical and socio-economic constraints in soybean production among 

smallholder farmers in Ghana, yet does not address adoption or performance in soybean 

cultivation.   

Table 2.1 provides a summary of the differentiation between the long-jump and short-jump 

agricultural technology adoption literature. 
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Table 2.1      
  

 
Characterization of long-jump vs. short-jump agricultural technology adoption literature     

Technology  Familiar, 

staple, or 

traditional, 

crop 

New 

market 

exposure 

required 

Farmer 

experience 

in the 

technology 

New 

agronomic 

practices 

required 

Increased 

scale 

required 

New 

inputs 

required 

Improved mangrove swamp rice adoption (Adesina & Zinnah, 

1993)  

Yes No Yes No No No 

Commercial crop production by smallholders (Immink & Alarcon, 

1993) 

No Yes No Yes Yes Yes 

Dairy technology adoption (Staal et al., 2002) No Yes No Yes Yes Yes 

Intercropping in rubber production (Herath & Takeya, 2003) Yes No Yes No No No 

Improved cowpea variety adoption (Alene & Manyong, 2006) Yes No Yes No No No 

Social learning in pineapple production (Conley & Udry, 2010) No Yes No Yes Yes Yes 

Bt cotton adoption (Maertens & Barrett, 2012) Yes No Yes No No No 

Economics of soybean production (Dogbe et al, 2013) No Yes No Yes Yes Yes 

Technical efficiency in soybean production (Etwire et al., 2013) No Yes No Yes Yes Yes 

Crossbred cow adoption (Edirisinghe & Holloway, 2015) Yes Yes No Yes Yes Yes 

Social network effects in hybrid rice adoption (Ward & Pede, 2015) Yes No Yes No No No 

Demand for drought-tolerant rice (Ward et al., 2014) Yes No Yes No No No 

Transportation costs in yam, rice, cassava & maize production 

(Damania et al., 2016) 

Yes No Yes No No No 

Oil palm adoption (Euler et al., 2017) Yes No Yes No No No 
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Drivers of adoption  

Previous literature has broadly characterized the drivers of the agricultural technology adoption 

process by resource endowments (land, labor, and equipment), market access (credit and input 

and output markets), risk and uncertainty (idiosyncratic and covariate shocks), environmental 

factors (slope, soil type, and location) and human capital (education, experience, extension) 

(Ainembabazi & Mugisha, 2014).  This research focuses on the following set of drivers to 

understand the adoption process for soybean.  These drivers relate to farmer characteristics 

(education, household head, and experience/extension access); economies of scale (total farm 

size, land allocated to soybean cultivation); market access (intention to sell grain, engagement in 

dry-season activities); land rights (land tenure, duration of land control) and spatial interaction 

among farmers. 

This research evaluates how these various drivers affect two different aspects of the smallholder 

soybean adoption process.  First, I address how these drivers affect farmer performance in 

soybean production, as measured through yield.  Second, I address how these drivers affect 

farmer sustained, or persistent, adoption of soybean, as measured through the number of 

consecutive years producing soybean.  Below, I provide a description of each of these adoption 

drivers and how I expect these drivers to affect both farmer performance in soybean and 

sustained, or persistent adoption, of soybean.  

Farmer characteristics and technology adoption  

Some research links the number of years of formal education to an increased ability to manage 

agricultural technologies and to use information regarding the technology provided by extension 

and through farmer networks (Staal et al., 2002).  Indeed, most of the previous literature finds a 

significant and positive relationship between education and technology adoption (Ainembabazi 

& Mugisha, 2014).   Herath and Takeya (2003) highlight the effect of human capital on 

investments in adoption behavior, noting positive impacts of rural literacy (education) on the 

adoption of high-yielding varieties of rice and wheat in India and in the adoption of modern 

varieties of maize in Ghana (Herath & Takeya, 2003).   

Feder et al. (1985) note that formal educations plays much more important role in determining 

allocative ability than worker ability.  They conclude that farmers with more education are 
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earlier adopters of agricultural technologies and utilize these technologies more efficiently 

throughout the adoption process.  I therefore expect that farmers who have more years of formal 

education will experience higher performance in their soybean yields and will be associated with 

sustained adoption of soybean. 

Within the context of farmer characteristics, farmers who are heads of their household may differ 

in their adoption preferences and performance in soybean production than those who are not.  

Further, important considerations need to be given to the gender of the household head.  In Sub-

Saharan Africa, it is common for women to provide more labor for agriculture and more total 

labor than men.  Thus even if an agricultural technology is productivity-enhancing, women may 

not be able to devote more hours in their day to utilizing the technology.  Female-headed 

households tend to be smaller, have lower incomes and as a result may be less productive than 

male-headed households.  These important characteristics may incline female-headed households 

to be less likely to adopt improved agricultural technologies because they face constraints not 

faced by farmers in male-headed households (Doss, 2006).  As my focus is on female 

smallholders, I therefore expect that the female farmers who are heads of household will 

experience lower performance in their soybean yields and will not be associated with sustained 

adoption of soybean.   

An additional focus of agricultural technology adoption relates to farmer access to extension 

information.  Interactions and learning via extension officers and through extension information 

channels facilitates increased productivity growth by fostering the spread of improved 

technologies within social networks (Ward et al., 2014).  Ainembabazi and Mugisha (2014) find 

that extension service delivery significantly enhanced the adoption rate of agricultural 

technologies in certain farmer enterprises in Uganda.  Not addressed in my research is the impact 

of long-jump technologies on the effectiveness of extension services.  New technologies like 

soybean are not only new to farmers, but also to the research and extension community as well.  

Thus extension services potentially could provide negative feedback in terms of sustained 

adoption and performance in soybean production as farmers may receive poor or improper 

information and guidance.   

In the case of soybean in Ghana, farmer knowledge about the production and utilization of the 

crop is low and extension workers with knowledge on soybean production is limited (Dogbe et 
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al., 2013).  Etwire, Martey and Dogbe (2013) find that farmers mentored via agricultural value-

chain enhancement projects with soybean as a focus crop are more technically efficient 

compared to farmers not participating in the project.  However, there are limitations in 

identifying the effect of extension services on farmer adoption of agricultural technologies and 

performance in utilizing them.  Extension effectiveness can be affected by, among other 

constraints, literacy, different and mixed exposure sources, messages and information diffusion 

channels and platforms.   

Nevertheless, I expect farmers with improved access to agricultural extension information to 

experience higher performance in their soybean yields and be more likely to sustain the adoption 

of soybean. Under conditions very similar to my dataset of female smallholder soybean 

producers in Ghana, Ragsdale and Read-Wahidi (2015) find that women often struggle when 

they have to engage extension for guidance in new technologies due to traditional gender norms 

and relationships.  Specifically, they find that 41% of female producers in their sample reported 

that they were not at all comfortable or had a great deal of difficulty speaking up in public to ask 

agricultural extension agents questions about agricultural practices, policies or decisions that 

affected themselves, compared to 14% of male respondents.  As the majority of Ministry of 

Agriculture extension agents are male, this finding may represent a potentially important limiting 

factor in sustained soybean adoption and performance among Ghanaian smallholder female 

producers (Ragsdale & Read-Wahidi, 2015).    

Finally, as a new commercial crop in a developing country setting, farmer effectiveness with 

soybean is thought to be improved as a result of learning by doing.  That is, a farmer’s 

effectiveness with an agricultural technology changes over time and a farmer may become more 

proficient with the technology as he or she accumulates more information by using it (Feder et 

al., 1985).  As a farmer’s experience in soybean production is confounded by their adoption 

decision (farmers who engage in sustained adoptions inherently have more years of production 

experience), my research addresses the effect of farmer experience on farmer performance only.  

Farmers with more experience are likely to be more proficient in soybean production as they 

have had more time to obtain information on improved production practices and to become 

integrated with new market actors and market channels.  I therefore expect that farmers who 
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have more experience in soybean production will experience higher performance in their 

soybean yields.   

Economies of scale and technology adoption 

The effect of total farm size and relative land allocation for new agricultural technologies have 

been identified in previous literature as important drivers of soybean adoption and performance.  

Total farm size captures the land a farmer uses to produce his or her crop portfolio.  Land 

allocation captures the land a farmer uses to produce a given crop; soybean in this case.  I use 

both variables in this analysis as soybean production in Ghana comprises only a portion of a 

farmer’s total farm size.  Ghanaian smallholder farmers produce maize, rice, cassava, yams and 

vegetables for consumption, and also produce cotton and cowpea as cash crops (Dogbe et al., 

2013).  Thus total farm size in my analysis is the land a farmer uses to produce all of his or her 

crops while land allocated to soybean production is only the amount of land a farmer uses to 

produce soybean. 

In soybean production, farmers incur fixed costs in adoption, as well as labor requirements, 

credit constraints and risk associated with the commercial nature of the crop.  Previous work 

shows that larger fixed costs associated with agricultural technologies reduce the likelihood and 

pace of adoption by smaller farms.  Therefore it may be more difficult for smaller farms to 

efficiently utilize and adopt long-jump agricultural technologies because of the inherent fixed 

costs in adoption (Feder et al., 1985).  Herath & Takeya (2003) also highlight the positive impact 

of farm size on the adoption of improved wheat and maize varieties.  Interestingly, Immink and 

Alarcon (1993) find that diversified farmers engaged in commercial crop production tend to have 

larger farm sizes than farmers producing only maize.  This reflects a situation when farm size 

and allocation to one crop diverge.  Further, Ainembabazi & Mugisha (2014) observed dis-

adoption rates in the range of 21-32% among smallholder Ugandan farmers producing a variety 

of crops who had limited access to adequate farm size.  They note that this constraint was 

primarily associated with the wide plant spacing practice encouraged in producing these various 

crops. 

In the context of soybean production in Ghana, Etwire et al. (2013) find that increasing farm 

size, up to a certain threshold, results in an increase in soybean yields in two districts of northern 

Ghana (though does not result in increasing returns to scale).  Chirwa (2005) reports a positive 
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relationship between farm size and maize production in Malawi.  Idiong (2007) and Al-Hassan 

(2008) note the positive effects of farm size on rice production in Nigeria and Ghana, 

respectively.  I therefore expect that producers with larger farm sizes will experience higher 

performance in their soybean yields and will be associated with sustained adoption of soybean.   

When examining the effect of land allocation for new agricultural technologies on performance 

with the technology, I see mixed evidence.  Feder et al. (1985) show that when utility is defined 

as income generated in excess of subsistence levels, land allocation devoted to a new agricultural 

technology increases in line with farm size.  However the authors do not address the effect of 

land allocation on performance (yield).  Among soybean producers in Ghana, Etwire et al. 

(2013) find a positive correlation between land kept under soybean cultivation and yield, but not 

one that results in increasing returns to scale.  Specifically, they find that a 1 percent increase in 

land kept under soybean cultivation results in an increase in production of 0.85 percent, ceteris 

paribus.  When adding the cost of hired labor, family labor, inputs like herbicides and 

insecticides, and seed to the analysis, they estimate a return to scale of 0.75, indicating that 

soybean farmers in their sample are operating inefficiently.   

As Mbanya (2011) and Dogbe et al. (2013) report, very few smallholder soybean farmers in 

Ghana report using inputs like rhizobium inoculants, fertilizers, herbicides and pesticides in their 

soybean production practices.  The findings of Etwire et al. (2013) are in line with these 

observations, and indicate a low-input production scenario for Ghanaian soybean farmers.  Thus, 

while the amount of land dedicated to soybean cultivation is positively correlated with yield, the 

low-input production system in Ghana results in decreasing returns to scale and overall, 

inefficient production systems. 

Other research shows increasing returns to scale by smallholder farmers producing swamp rice in 

Nigeria.  Idiong (2007) finds that the effect of land under swamp rice cultivation had a 

significant and positive effect on rice yields.  Further, when adding to the analysis the effects of 

fertilizer use, seed, capital and labor, Idiong (2007) found that farmers were operating in the 

increasing returns to scale region.  Among the various effects analyzed in the production system, 

labor was the largest contributor to increasing returns to scale.  As swamp rice production is a 

tedious operation it requires large contributions of labor.  Thus, in this context labor was a highly 

productive component of the overall production system for farmers and contributed to the 
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positive effect of land allocation.  This was not the case in Etwire et al.’s (2013) study of 

soybean farmers in Ghana.   

Overall I see that the effect of land allocated to a new agricultural technology can have a positive 

or negative effect on productivity.  The effect of land allocation on sustained adoption and 

farmer performance in soybean production will be linked, through the direction of this effect, 

whether positive or negative, is unclear. 

Among Ghanaian smallholder producers, soybean production is labor intensive and is largely 

undertaken with minimum use of machinery.  Farmers require labor for land clearing and 

preparation, planting, weeding, harvesting, threshing, pest and disease control and carting of 

produce.  A number of different sources, and combinations of these sources, are used to address 

these needs and include personal, family, hired and communal labor.  Some farmers engage hired 

labor for plowing, harrowing, and for leveling their fields after tractor harrowing (Dogbe et al., 

2013).   

Etwire et al. (2013) find that the marginal product of hired labor is negative in the context of 

soybean production in Ghana, implying that an increase in hired labor will have a negative effect 

on soybean production. Their explanation focuses on the fact that hired laborers, without an 

attachment to the land they are servicing, are less likely to provide adequate services as 

compared to family labor.  Further, hired labor may change with each contracted service and 

with the timing of each service’s delivery.  The resulting lack of long-term relationships, or 

contracts, between farm owners and hired labor may thus lead to agency problems and poor 

performance. They also note that knowledge build-up does not occur in the context of hired 

labor, leading to potentially lower production results (Etwire et al., 2013).  However this result 

may need to be considered with the assumption that the amount of household labor is not being 

held constant.  

The linkage between gender and labor, particularly hired labor, is also an important component 

to address.  Dogbe et al. (2013) find that specifically in Ghana, females incurred a higher cost for 

hired labor related to all aspects of the soybean production practice (land preparation, planting, 

weeding, harvesting, threshing) than males.  This led to an increased overall cost of production 

for females as compared to males.  Ainembabazi & Mugisha (2014) find that farmers may 

abandon an agricultural technology if the technology is labor demanding.  Specifically they find 
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that dis-adoption rates were common among Ugandan farmers producing certain crops that 

required labor-demanding activities.   

Doss (2001) notes that when male and female labor are not substitutes, as is the case in Ghana 

where men and women farm separate and individual plots of land, households face seasonal 

labor constraints and labor bottlenecks in the planting and harvesting seasons that may be 

exacerbated by the gender division of labor.  Yet she also notes that when local labor markets 

exist, farmers can hire labor as needed.  Further, as women’s responsibilities increase with, for 

example, the adoption of a new technology, their control over labor and output may also 

increase.  When a female producer decides to engage hired labor in her soybean production 

practice, her labor burden is reduced and simultaneously, her independence and control may be 

increased.  Thus soybean adoption may cause a reallocation of labor and change the balance 

between household labor and hired labor (Doss, 2001).   

The literature however is unclear regarding under what circumstances farmers prefer to hire 

labor versus using cooperative or shared labor (Doss, 2001).  Women-led households may have 

less access to family labor because they include fewer men, resulting in an increase in hired 

labor.  Finally, Doss (2001) notes that agricultural technologies that reduce labor burdens for 

female producers while increasing their control over labor will have the biggest impact on farmer 

well-being.  In sum, it is therefore difficult to assess the impact hired labor will have on 

sustained adoption and performance in soybean production. 

Market access and technology adoption  

Smallholder farmers commonly cultivate plots of land less than 2 hectares (ha).  Further, they are 

typically spatially dispersed and may be located significant distances from agricultural markets, 

extension and research services, support services and financial institutions.  Farmers in rural 

areas are also faced with constraints to selling and aggregating their grain, where a lack of 

competition among buyers can result in less competitive prices for their output, exacerbating the 

adverse effects of their distance to markets (Villano, Fleming & Moss, 2016).  Indeed, multiple 

factors affect the price a farmer pays for their inputs and services, and the corresponding 

availability and quality of these inputs and services.  These factors also affect the price farmers 

receive for their grain output.       
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With respect to soybean, a farmer’s market access affects both the supply and demand-sides of 

their production.  Market access affects a farmer’s ability to procure high-quality and necessary 

inputs like fertilizer, inoculum, and certified seed.  Markets also provide farmers with labor for 

land preparation, planting, weeding and harvesting.  The price of these inputs and services can be 

significantly affected by a farmer’s market access.   

Measures of farmer access to both output and input markets has been evaluated in the technology 

adoption literature by measuring farmer distance to markets using travel-distance estimation 

methods via road networks (Staal et al., 2002; Damania et al., 2016; Villano et al., 2016).  These 

measures assume that a farmer’s market access depends on their ability to access critical 

infrastructure such as roads and population centers.  Yet these market access measures might not 

be appropriate or applicable when evaluating the case of a non-perishable, storable and 

transportable crop like soybean.   

In the context of soybean, farmers are able to store their grain for long durations and then sell the 

crop well after harvest, when prices are elevated.  Indeed, price data from 2011-2015 show that 

demand for soybean is relatively strong even in regions of Ghana located far from large urban 

areas and markets (Goldsmith, 2017).  Yet previous literature as in the case of Staal et al.’s 

(2002) research on dairy production in Kenya uses measures of travel-time and distance to large 

cities, urban areas, and formal aggregation and sales centers as primary indicators of market 

access. The strong demand for soybean in regions of Ghana located far from traditional markets 

may indicate that these more common measures of market access may be of less importance in 

the soybean context.  This could also indicate that farmer access to less urban and less formal 

markets may be a more appropriate predictor of adoption and performance in the soybean 

context.  

While a farmer’s physical distance to traditional, urban and formal markets may be less relevant 

in the context of soybean production, their ability to access new market actors, channels and 

suppliers remains of critical importance.  Within this market access framework, network 

externalities can affect the adoption of new agricultural technologies like soybean.  As more 

producers within a network shift to commercial soybean production they experience a network 

externality as the group begins to build a marketing infrastructure to support the new crop 

(Besley & Case, 1993).  This marketing infrastructure can take the form of grain aggregation, 



23 

 

group financing for volume discounts on inputs and services, central or shared storage facilities 

or physical farm clusters to attract hired labor.  In this case, the price a farmer receives for their 

grain output, as well as their production margins, may be affected by these network externalities.   

Dogbe et al. (2013) note that in the case of soybean production in Ghana, the majority of 

soybeans produced in the two districts where the study was conducted were sold to institutional 

buyers.  These institutional buyers support farmers during production with the understanding that 

they will buy grain back from the farmer at a pre-determined price at harvest.  While this type of 

arrangement can generate adequate prices for farmers, those without this type of market access 

must sell their grain through intermediaries like aggregators, assemblers or traders.   

Intermediaries determine the timeliness of their payment to farmers and their marketing margin, 

which can be affected by the costs a trader incurs in securing a seller.  Further, farmers must 

engage in verbal agreements with traders that do not have any binding power or written 

contractual arrangement, presenting risk to the farmer if a trader backs out on an agreement or 

claims that grain was of inferior quality.  In this scenario, farmers are likely to receive less secure 

and lower prices for their grain because of the marketing costs and margin incurred by the 

intermediary as well as the uncertainty in the purchasing agreement (Dogbe et al., 2013).  Farmer 

inability to access markets, coupled with low prices received, price instability and the selling of 

produce on credit were ranked as primary constraints in a study of soybean production in Ghana 

by Dogbe et al. (2013).    

In this context, farmers who express an intention to sell their grain after harvest may exhibit 

increased market access than farmers who do not intend to sell their grain.  For those who do not 

intend to sell their grain, the reasons could be numerous.  A lack of intention to sell may be a 

result of low yield expectations; a desire to process, utilize, and consume the agricultural product 

in the household; or a lack of awareness, access to markets that will provide a fair price for their 

product.   

Farmers intending to sell their grain may have existing contracting schemes with institutional 

buyers such as processors who offer a better, pre-determined, and/or secure price for grain 

output.  They may also have existing relationships and interaction within the market that enable 

them to access buyers, as well as the needed inputs and services for improved production.  

Farmers who intend to sell their grain may thus experience lower costs in accessing markets and 
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as a result may experience more profitable production systems than farmers who do not intend to 

sell their grain.  I therefore expect that soybean farmers who intend to sell their grain after 

harvest will experience higher performance in their soybean yields and will be associated with 

sustained adoption of soybean.   

An additional measure of market access among smallholder farmers is their involvement in dry-

season and off-farm activities that generate additional sources income for the household outside 

of traditional production activities.  In this context farmers must access different types of markets 

including markets for buyers of their products, markets where they can sell their own labor, and 

credit and input markets.  Many dry-season, income-generating activities depend on access to 

these types of markets for selling products and determining appropriate prices for farmers’ goods 

and services.  Herath and Takeya (2003) note that farmers who engage in off-farm activities have 

increased ability to access outside, market-driven information that may have positive effects on 

adoption.   

Examples of dry-season activities in Ghana include drinking establishment operation, shea butter 

processing, charcoal and fire wood sales as well as to a lesser extent groundnut oil extraction, 

petty trading, dress making and grain banking (Muhammed & Baker, 2015).  Income generated 

from dry-season activities can help support the financing of a new agricultural technology.  In 

the case of soybean, the new income generated can help offset the costs of input and service 

procurement needed for production.  Muzari et al. (2012) report that higher levels of income 

generated from dry-season and off-farm activities lead to higher rates of adoption of yield-raising 

agricultural technologies.   

Farmers engaged in dry-season activities that are more commercial in nature (as is the case with 

examples presented above) may be better connected and have more access to output markets and 

financing via self-financing opportunities. On the other hand, farmers engaged in dry-season 

activities may be more diversified, and thus less focused in soybean production and adoption, 

causing them to be less likely to be a sustained adopter of soybean and experience higher 

performance in their soybean yields.  As a result, the expected effect of engagement in dry-

season activities on soybean adoption and performance is unclear.  

Land rights and technology adoption  
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The nature of land rights in the technology adoption process is defined by two separate but 

complementary aspects.  Land tenure relates to the relationship between tenant (operator) and 

landlord (owner), not the relationship between tenant (operator) and the land.  In land tenure 

scenarios where farmers own their land, the farmer is both the tenant/operator and the 

landlord/owner.  This is in contrast to farmers who borrow, lease or share their land where they 

are still the tenant/operator, but the landlord/owner is a different individual.   

Duration of land control is an attribute of all land tenure scenarios and is defined by the relative 

land rights specifications for these differing scenarios.  Farmers operating under different land 

tenure scenarios (i.e. own, borrow, share, or lease land) all do so with distinct land rights 

specifications, some of which contain provisions on the duration of control over the land.  

Farmers may own their land indefinitely, for a set period of time, or for a duration that is unclear 

to them.   

In Ghana, acquiring land for production occurs between January and April, during the dry-

season.  Land is either acquired through cash payments, through exchange of inputs or through 

in-kind payment with produce following harvest.  Permission is usually granted on an annual 

basis through oral consent in the presence of at least one witness (Dogbe et al., 2013).  In the 

context of soybean, land rights can play a significant role in the adoption process and 

performance with the crop.  Soybean requires soil amendments including fertilizer and inoculum.  

While amendments are costly to the farmer, they result in improved nutrient content and overall 

health of soils for future planting seasons and for the cultivation of other crops.   

Farmers who borrow, lease or rent their land, may not value the long-term benefits of soil 

correction necessary for improved soybean production (Herath & Takeya, 2003).  Similarly, they 

may not see the income-generating potential of soybean cultivation as outweighing the 

immediate costs of these inputs.  Farmers who own their land either individually or through their 

family experience longer planning horizons, potentially allowing them to see the benefits of soil 

correction for improved soybean cultivation.   

Similarly, the rate of time preference may be shorter for farmers who own their land as they may 

exhibit improved familiarity with the land in terms of its inherent soil characteristics, 

topography, slope, etc.  Land owners may also experience reduced uncertainty in land 

performance, leading to a shorter rate of time preference for adoption (Herath & Takeya, 2003).  
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I therefore expect that soybean farmers who own their land will experience higher performance 

in their soybean yields and will be associated with sustained adoption of soybean.   

A farmer’s analysis of their cost-benefit for investment in a new agricultural technology is also 

affected by their duration of land control.  In making investment decisions, farmers consider their 

future benefits, which are diminished if their duration of land control will not allow them to reap 

the benefits resulting from their investment (Doss, 2001).  Thus farmers with less secure, or 

shorter term land rights, are less likely to adopt new technologies.  Dogbe et al. (2013) cite lack 

of land rights as the most important constraint to soybean production among smallholder farmers 

in Northern Ghana.  Land disputes and conflicts were also common in Dogbe et al.’s (2013) 

study area.  This resulted in farmers being hesitant to make long-term investments to improve 

soil fertility and increase their area of soybean cultivation.  

Conversely, farmers with uncertain or relatively short term land rights may still experience the 

economic benefits of an income-generating crop like soybean even in the short-run.  Noting this, 

adoption and performance may not differ between farmers with differing durations of land 

control (Herath & Takeya, 2003).  It is therefore difficult to predict how the duration of land 

control will affect farmer adoption of, and performance in, soybean cultivation.  As a result, the 

expected effect of the duration of land control is unclear. 

Spatial interaction and technology adoption  

The spatial interaction and integration among farmers can be exemplified by the existence and 

extent of social networks and the presence of social learning.  Including measures of spatial 

interaction in the analysis of technology adoption provides insight into the potential roles that 

social connections may play in farmer decision-making and performance (Maertens & Barrett, 

2012).  Further, understanding spatial interaction among producer networks allows research to 

move beyond just the characteristics of farmers, plots and technologies to understand an 

additional critical aspect of the adoption process (Doss, 2006).   

By focusing on the spatial dimensions of agricultural technology adoption, I recognize that 

knowledge about new technologies spills over within members of spatial networks.  This often 

occurs as farmers face similar production, demographic and market access conditions; interact 

directly with each other; and observe the costs and benefits of new technologies directly rather 
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than relying on information from extension agents, development agencies or other actors (Ward 

& Pede, 2015).  Further, network economies and social networks can affect farmer awareness, 

interest and understanding in an agricultural technology (Staal et al., 2002).   

Ward and Pede (2015) identify three hypotheses to explain the effect of spatial interaction on 

individual behavior:  endogenous effects, contextual effects and correlated effects.  Endogenous 

effects relate to the idea that one individual’s actions can affect group actions, while at the same 

time being affected by group behavior. Contextual effects relate to the idea that one individual’s 

actions are affected by the exogenous characteristics of his or her group/social network.  

Correlated effects relate to the idea that individuals within a group/social network behave 

similarly because they tend to have similar characteristics or similar conditions related to their 

political affiliations, institutions (e.g. agricultural policies) or environment (e.g. soil 

characteristics, climate).  While endogenous effects have policy implications because of the 

associated social multiplier effect (policies that affect individual behavior may affect group 

behavior, and vice-versa), contextual and correlated effects are not thought to have the same 

multiplier effects, since they lack feedback loops (Ward & Pede, 2015).   

Spatial networks are particularly important in the context of long-jump agricultural technologies 

like soybean because of the technical learning curve associated with a new crop.  Farmers are 

unable to rely on their tacit knowledge, norms, and traditional production practices to enable 

sustained adoption of a non-incremental technology, and to achieve high performance in 

production.  Instead, farmers must shift to new production practices, procure new and unfamiliar 

inputs like inoculum, and engage in new market interactions.  Social networks enable farmers to 

directly share knowledge of new production practices amongst themselves, reinforce key 

messages, translate new and unfamiliar messages and provide feedback to information suppliers.  

Thus, understanding the role of spatial networks is critical to evaluating farmer adoption and 

performance in agricultural technologies representing significant changes to existing farmer 

production practices. 

A growing number of studies find positive social interaction effects on technology adoption, 

indicating that the agricultural decisions of neighboring farmers are not independent of each 

other (Wollni & Andersson 2014).  The spatial externality of neighborhood effects influence the 

propensity for neighbors to make the same agricultural adoption decisions and the magnitude of 
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the neighborhood to make these decisions (Villano et al., 2016).  Previous literature shows that 

neighborhood effects yield positive spatial externalities with respect to the demonstration effect 

and information and knowledge flow between neighboring smallholders.  Social interaction, 

networks and knowledge transmission channels can affect farmer awareness, interest and 

understanding in the agricultural technology.   

In this context, neighboring farmers can help reduce the uncertainty of a new agricultural 

technology, thereby lowering the fixed costs of learning about the technology (Villano et al., 

2016).  Social interaction can also play a role in farmers’ ability to access common property to 

enable technology adoption.  In the work of Staal et al. (2002), Kenyan farmers decide whether 

to adopt significantly new and more resource-demanding dairy production technologies.  The 

authors note that in this context a farmer’s adoption decision may be a function of spillover 

effects arising from neighborhood effects including common sources of information diffusion 

and that neighbor interactions may influence the adoption decision of a given farmer. Further, 

social institutions, organizational structures and policies that change across ethnic community, 

and/or administrative boundaries can affect farmer preference and attitude towards agricultural 

technologies (Staal et al., 2002).    

Smallholder farms are not uniformly distributed in rural areas, so some farmers may experience 

high levels of interaction while others may not (Villano et al., 2016).  Spatial interaction among 

farmers enables producers to share technical information, guidance, and knowledge, aggregate 

grain, be at a better scale to receive formal technical support services, and reduce the cost of 

inputs through reduction in fixed costs and volume discounts.  Social interaction can also 

potentially reduce the capital risk and technical learning curve associated with new agricultural 

technologies.  

Understanding how spatial interaction affects the adoption of new agricultural technologies can 

improve extension strategies.  If spatial interaction is a strong determinant in the adoption and 

performance of agricultural technologies, extension programs may focus on specific areas, 

communities or even individuals where technologies can be introduced to generate the widest 

impact (Ward and Pede, 2015).  I expect that spatial interaction among farmers will have a 

positive effect on farmer performance in soybean production.  Further, I expect that by including 

a measurement of spatial interaction in my model I will be able to provide more insight, a better 
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understanding and an improved fit to explain the technology adoption process of a non-

incremental commercial agricultural technology like soybean.   

Finally, the use of spatial autoregressive models can provide more in-depth insight into the 

effects of spatial interactions than more conventional methods that incorporate spatial variables 

such as farmer distance to markets or urban areas into traditional regression models.  Spatial 

autoregressive models effectively identify the causal influences arising from spatial interactions 

between producers in a given network.  Thus my analysis employs a spatial autoregressive model 

with spatial autoregressive disturbances (SARAR) similar to Drukker et al. (2013) and Ward and 

Pede (2015).  The SARAR model combines two elements of spatial dependence.  The first 

element is a spatially lagged dependent variable that assesses the existence and strength of direct 

spatial interaction, or spatial dependence, within my sample.  The second element is a spatial 

error (referred to as nuisance dependence) that corrects for the potential biasing influence of 

spatial autocorrelation (Anselin, 2001).    

A listing of the independent variables included in my analysis, as well as the expected sign and 

associated rationale are provided in Table 2.2.   
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Table 2.2              
  

Description of independent variables included in technology adoption and performance models, expected sign and rationale 

Variables H0 sign Rationale 

Education + Farmers with more education are likely to have an increased ability to manage new 

agricultural technologies like soybean and may be more capable of applying information 

provided through extension services and through farmer networks.  I expect that farmers 

with more years of formal education will be more likely to be sustained adopters and will 

experience higher performance in soybean production. 

Household head  - Female-headed households tend to be smaller, have lower incomes and as a result may be 

less productive than male-headed households.  I therefore expect that the female farmers 

who are heads of household will experience lower performance in their soybean yields and 

will not be associated with sustained adoption of soybean.   

Sustained adoption  + Sustained adopters, by definition, have produced soybean for three consecutive years.  

Experience with new agricultural technologies changes over time.  Farmers may become 

more proficient with the technology as they accumulate more information by using it.  I 

expect that farmers who are sustained adopters will experience higher performance in 

soybean production. 

Lead farmer + Lead farmers are likely to have more access to extension information and engage in more 

interactions and learning via extension officers and through extension information 

channels.  I expect that lead farmers will be more likely to be sustained adopters and will 

experience higher performance in soybean production. 

Farm size + Producers with larger farm sizes may experience economies of scale related to the 

production of a long-jump agricultural technology like soybean.  They may be able to more 

effectively handle the up-front fixed and variable costs associated with soybean production.  

I expect that producers with larger farm sizes will be more likely to be sustained adopters 

and will experience higher performance in soybean production.  

Land allocation + Similar to farm size, producers who allocate more hectares to soybean production may 

experience economies of scale that impact their adoption of, and performance in, soybean 

production.  I expect that producers who allocate more land to soy production will be more 

likely to be sustained adopters and will experience higher performance in soybean 

production.  
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Table 2.2 (continued)             
  

Description of independent variables included in technology adoption and performance models, expected sign and rationale 

Variables H0 sign Rationale 

Land tenure  +/- Farmers who borrow, lease or rent their land may not value the long-term benefits of soil 

correction needed for successful soybean production.  Farmers who own their land either 

individually or through their family have a longer planning horizon, allowing them to see 

the benefits of soil correction for improved soybean cultivation.  On the other hand, 

farmers who rent or borrow land may experience the economic benefits of soybean even in 

the short-run.  As such, the expected sign of the variable for land ownership is 

undetermined. 

Duration of land control (can farm land 3+ 

years) 

+/- Farmers with certain, and relatively long, land tenures are likely to have longer planning 

horizons and shortened rates of time preference for adoption than farmers with uncertain 

and relatively short land tenures.  On the other hand, farmers with uncertain or relatively 

short land tenures may experience the economic benefits of soybean even in the short-run.  

As such, the expected sign of the variable for land ownership is undetermined. 

Hired labor +/- Hired laborers may not have an attachment to the land they are servicing, and may be less 

likely to provide adequate services as compared to family labor.  Further, hired laborers 

change based on the service required and the time of service delivery, leading to different 

levels of service provided.  Farmers may abandon an adoption of an agricultural 

technology if the technology is labor demanding.  Conversely, when a female producer 

decides to engage hired labor in her soybean production practice, her labor burden is 

reduced and simultaneously, her independence and control may be increased.  As such, the 

expected sign of the variable for hired labor is undetermined. 

Intention to sell grain  + Farmers who intend to sell their grain after harvest may be better positioned to access input 

and service markets as well as buyers, aggregators and processors.  I expect that farmers 

who intend to sell their grain will be more likely to be sustained adopters and will 

experience higher performance in soybean production. 

Dry-season activities  +/- Farmers who engage in dry-season activities have been observed to be less risk-averse than 

farmers without sources of dry-season income.  However these same farmers may be more 

diversified and thus less focused in soybean production.  As such, the expected sign of the 

variable for engagement in dry-season activities is undetermined. 
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Intermittent adoption  

Much of the previous agricultural technology adoption literature analyzes adoption through 

static, binary choice models assessed at one point in time.  In reality, adoption is a dynamic and 

continually changing process, influenced by information gathering, learning by doing, or 

accumulating resources (Feder et al., 1985; Edirisinghe & Holloway, 2015).  Farmers do not 

decide whether to permanently adopt an agricultural technology but instead make a series of 

decisions that affect adoption and performance of the agricultural technology over time.  These 

include whether or not to try the agricultural technology, how much land to allocate to the 

technology, whether or not to continue adopting the technology, and whether to adopt a different 

technology (Doss, 2006).  These decisions are affected by decisions made in previous periods, 

highlighting the need to understand farmer adoption decisions over time.  

Adoption can be followed by dis-adoption.  Some cases of farmer dis-adoption are a result of 

reductions in gains due to a negatively sloped demand as prices decline and supply expands with 

increased adoption.  In this scenario, more skilled producers, who have a higher opportunity cost 

in deciding to adopt an agricultural technology, may switch to an alternative activity, since the 

opportunity cost for their resources is high (Feder et al., 1985).  This is not the case with 

soybean, as demand continues to increase domestically and the crop itself is relatively new in its 

introduction as an income-generating commercial agricultural technology.  The phenomenon of 

dis-adoption in the context of soybean is likely related to a variety of factors highlighted within 

the various drivers defined in this literature review section.   

Dis-adoption can be defined using different methods.  Ainembabazi and Mugisha (2014) 

measured farmer experience in technology adoption and the rate of adoption among smallholder 

Ugandan producers.  The rate of adoption was measured by assessing the number of technology 

components adopted within a production package for a given agricultural enterprise (i.e. rice, 

pineapples, maize, etc.).  Next, farmer experience in technology adoption was measured by 

averaging the number of years a farmer adopted each technology component.  In this context, 

farmers who began using a technology, and then abandoned it, were classified as dis-adopters, 

indicating that their definition of dis-adoption is synonymous with abandonment.   

While the definition of dis-adoption offered by Ainembabazi and Mugisha (2014) captures the 

dynamic adoption decisions of farmers that can change over a given time period, it does not 



33 

 

account for the potential reversal of adoption decisions by farmers. In my analysis I know 

whether a producer cultivated soybean over a three-year period, from 2013 to 2015, but I do not 

have information on their soybean production practices prior to this three-year period, which 

could affect both their probability of adoption and production performance.  In my sample, all 

farmers produced soybean in 2015.  I thus define intermittent adoption as farmers who produced 

soybean in 2013, stopped producing in 2014, and resumed production in 2015.  My analysis thus 

moves beyond a linear definition of adoption to account for farmers who reverse their adoption 

decision, going from adoption, to dis-adoption and finally back to re-adoption.   

I provide in my analysis a series of potential explanations for why a farmer may have decided to 

engage in intermittent soybean adoption.  First, for producers shifting to soybean cultivation, 

they will experience a number of new variable costs.  Variable costs can include input costs for 

seed, fertilizer and inoculum; transaction costs in securing a buyer; and labor demands for land 

preparation, harvesting and weeding.  When producers are unwilling to pay these variable costs 

they may underinvest in their soybean production system, potentially leading to intermittent 

adoption as they experience poor performance and disinterest in producing the crop. 

An important variable cost in this analysis is the use of fertilizers to elevate the nutrient content 

tropical soils.  Fertilizers are a costly input for a farmer, but significantly improve soil nutrient 

content and overall soil health, and contribute to improved cultivation of crops other than 

soybean.  However, for farmers who do not own their land, or for those with uncertain or 

relatively short land duration control, the long-term benefits of soil correction may not outweigh 

the immediate cost of the fertilizer.  The benefit of improved soils may spill over into additional 

years beyond their duration of land control, or may benefit land that they do not own.  In this 

scenario, farmers may not invest or may underinvest in the required inputs, leading to reduced 

performance and potential lack of continued interest in soybean cultivation. 

Further, isolation from other farmers where social interaction, social networks and social 

learning can benefit adoption and performance may lead to intermittent adoption.  Farmers 

without economies of scale may not see the crop as profitable when aspects of farm size, land 

allocation for soybean, and labor requirements are included in a farmer’s decision making 

process.  Reduced market access may limit farmer ability to purchase needed inputs and services 

at a cost they can afford, at the time needed and in sufficient quantity and quality.   
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Intermittent adoption can be a result of poor performance in soybean cultivation.  Poor 

performance can be a result of a number of different factors including non-investment or 

underinvestment in necessary inputs; a lack of adequate or high-quality labor; a lack of market 

access; or the inability to purchase or access high-quality, certified seed.  Intermittent adoption 

can also be a result of low profitability due to the high fixed and variable costs described above.  

Thus a farmer may experience high performance, but low profitability.  Due to the limits of my 

data, I are unable to test profitability in my analysis, so the relationship between profitability and 

performance among farmers in my sample is unclear.  Therefore I assess the impact of the 

demographic, economies of scale, market access, land rights and spatial interaction variables 

described in this section on both sustained soybean adoption and soybean performance.   
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CHAPTER 3:  SOYBEAN IN GHANA 

 

Agriculture is the dominant employer in Ghana, contributing 51% of the gross domestic product 

and 54% of the labor force.  80% of the country’s domestic agricultural production is contributed 

by smallholder farming, characterized by land holdings of less than 2 hectares (ha) among 90% 

of smallholder farming communities.  Among smallholder farmers, women play a critical role, 

representing 40% of the overall agricultural labor force and are engaged in the majority of 

soybean production in Ghana.  Female smallholders engage in all aspects of agricultural 

production in Ghana, from land preparation and clearing activities, to planting, weeding, 

harvesting and threshing as well as animal rearing and the home production and marketing of 

agricultural products (Mbanya, 2011).   

Soybean is a relatively new crop in Ghana.  It was first introduced in the country in the early 20th 

century as a food crop used to improve the nutritional value of traditionally consumed foods 

(Mbanya, 2011).  Soybean was initially cultivated for household consumption and as a crop used 

for rotation with maize production, owing to soybean’s nitrogen-fixing capabilities.  In recent 

years there has been growing interest among agricultural development programs in Ghana to 

promote soybean not only as a protein resource for human consumption but also as a valuable 

source of feed for the growing global livestock and aquaculture value chains (Dogbe et al., 

2013).  In this sense, soybean is now seen as a potential new source of income for smallholder 

farming communities.   

Further, domestic soybean production is seen by many Sub-Saharan African countries, including 

Ghana, as a tool to stem imports of raw soybean and soybean meal.  In 2014, the Ghanaian Cedi 

significantly depreciated in the third quarter, losing approximately 40% of its value.  This 

resulted in significantly increasing the cost of imported soy products for domestic buyers such as 

the poultry industry.  Further, the unmet domestic demand for soybean in Ghana leaves little, if 

any, soybean for export to neighboring countries (MEDA, 2015).  Within this context, increasing 

domestic production can be an important policy tool for reducing hard currency outflows and 

promoting regional and national economic development.   

The strong demand for soybean in Ghana, along with its potential to contribute to smallholder 

farmer incomes, has resulted in increased promotion, awareness building, and extension and 
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outreach efforts among agricultural development and government actors.  As such, soybean is 

gaining popularity and acceptance among smallholder farmers in Ghana (Dogbe et al., 2013).  

Nevertheless, average Ghanaian soybean yields remain well-below global averages.  Dogbe et al. 

(2013) found that average soybean yields in the Northern Region of Ghana, an area of Ghana 

that contributes approximately 70% of the national soybean area and 77% of national production, 

ranged from 509 to 642 kilograms per hectare (kg/ha).  These yield figures represent only 30% 

of the national average of 1,910 kg/ha (Dogbe et al., 2013) and only 25% of the global soybean 

yield average of 2,310 kg/ha (Masuda & Goldsmith, 2009).  

Low yields can be attributed to a low-input, low-output production scenario.  Awuni and 

Reynolds (2016) show that yields of currently available soybean varieties can be doubled 

through the use of improved agricultural management strategies and inputs.  Yet Mbanya (2011) 

and Dogbe et al. (2013) observe very few smallholder farmers reporting the use of rhizobium 

inoculants and other improved agricultural technologies including fertilizer application, herbicide 

and pesticide use and good management practices (for example, row planting and using the 

correct plant population).   

In a study of smallholder soybean farmers in the Northern Region of Ghana, Dogbe et al. (2013) 

found that no male farmers used inorganic fertilizers in their soybean production practices and 

only 2.5% of females used inorganic fertilizers.  Mbanya (2011) reports that smallholder 

Ghanaian farmers do not plant in rows or use the correct plant population, two management 

practices that can ensure effective weed control, a problem that affects not only soybean yields 

but production costs as well.  Poor management practices, coupled with the lack of use of 

herbicides and weedicides, result in farmers needing to engage in three separate weeding 

sessions throughout the growing period, the first 2-3 weeks after planting, the second 4-6 weeks 

after planting and the last 8-10 weeks after planting (Dogbe et al., 2013).   

This low-input production scenario results not only from a lack of accessibility of inputs due to 

cost and availability, but also to a lack of awareness and farmer preference.  Both Dogbe et al. 

(2013) and Mbanya (2011) report a low awareness of improved production practices like the use 

of rhizobium inoculants in soybean production.  Further, many farmers prefer to invest in 

technologies that improve the productivity of staple crops that can be readily consumed in the 

household and/or sold at market.  Smallholder farmers also believe that soybean, as a nitrogen-
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fixing legume, does not require additional fertilizers for improved production (Dogbe et al., 

2013).   

The underdeveloped Ghanaian soybean seed system also contributes to the low yields 

experienced by smallholder soybean farmers.  Most farmers do not purchase certified planting 

seeds for their cultivation but rather use seed from their own stocks (Mbanya, 2011).  Even when 

farmers choose to utilize certified seed for production, their choice is limited.  Tripp and 

Mensah-Bonsu (2013) report that in 2011, only one variety of soybean was produced by 

commercial seed producers, compared to 6 varieties of maize, 4 varieties of rice, and 3 varieties 

of cowpea.  In terms of quantity produced, in the same year only 189 metric tons (MT) of 

soybean were produced by certified seed producers, compared to 2,670 MT of maize and 2,367 

MT of rice (Tripp & Mensah-Bonsu, 2013).   

The low level and diversity of certified seed production in Ghana thus constrains farmers from 

accessing the appropriate variety of certified soybean seed needed for their agro-ecological 

growing conditions.  Further, farmers may find it difficult to access the appropriate quantity of 

certified seed required for their scale of production.  These issues of accessibility, coupled with 

constraints related to affordability, farmer awareness and farmer preference contribute to the 

low-input, low-output soybean production situation in Ghana.   

The region of focus for my analysis is the Upper West region of Ghana.  The Upper West region 

covers a geographical area of approximately 18,478 square kilometers, representing close to 13% 

of the total land area of Ghana.  The Upper West region is bordered on the north by the Republic 

of Burkina Faso, on the east by the Upper East region of Ghana, on the south by the Northern 

region of Ghana and on the west by Cote d’Ivoire.  The largest city and capital of the region is 

Wa, with 224,066 inhabitants.  The total population of the region is 576,583, representing 3% of 

the national population of Ghana (Government of Ghana, 2017). 
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CHAPTER 4:  DATA 

 

The Greater Rural Opportunities for Women (GROW) project is an agricultural development 

project operating in the Upper West region of Ghana with soybean as its focus crop.  The GROW 

project is a six-year initiative begun in 2012 and funded by the Mennonite Economic 

Development Associates (MEDA) organization and the Department of Foreign Affairs, Trade 

and Development (DFATD) of Canada.  The primary goal of the GROW project is to improve 

food security for families in Ghana by helping female smallholder farmers increase their 

productivity in soybean cultivation, link farmers to sustainable markets, and create nutrition 

awareness among project beneficiaries (Muhammed & Baker, 2015).   

Recognizing the market access and market power constraints inherent in the production of a 

commercial crop like soybean, the GROW project strategically targeted its efforts among female 

smallholder farmers located in the Upper West region of Ghana.  Through this geographically 

focused program design, the GROW project seeks to create a social network effect among 

producers to enable direct sharing of information and knowledge regarding new production 

practices, clarification of key extension messages, and bi-directional communication with 

information providers to ensure clarity and understanding of key messages.     

As a result of the GROW project only focusing on female smallholder farmers, the respondents 

in my dataset are all female soybean producers.  This scenario presents important considerations 

in analyzing the results of my research.  Households headed by female producers may be smaller 

in size, have lower incomes and may be less productive than household headed by male 

producers (Doss, 2006).  Further, men and women in Ghana farm separate plots of land and 

produce different crops.  Therefore in reporting total farm size, female respondents will likely 

report their personal farm size rather than the combined size of their farm and their husband’s, or 

other family members’ farms.  Similarly, when reporting land allocated to soybean cultivation, 

female respondents may report a land size larger than their individual farm size if they produce 

soybean on their farm as well as their husband’s or other family members’ farms.   

GROW project farmers are supported via a number of mechanisms.  These include linking 

farmers to extension services, input suppliers, markets, and financial services and training 

farmers on nutrition, gender empowerment and the importance of dry-season income-generating 
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activities. Beneficiaries of the GROW project are trained on how to incorporate soybean into 

traditional Ghanaian foods, are connected with aggregators, buyers and processors and receive 

training from Ghanaian Ministry of Agriculture extension agents.  The GROW project also 

integrates its farmer beneficiaries with Village Savings and Lending Associations (VSLAs) to 

strengthen financing opportunities for farmers to purchase seed, inputs, labor, and land 

preparation and harvest services (MEDA, 2015).   

A certain number of GROW farmers within each community are designated as “lead farmers” by 

the project.  Lead farmers receive direct extension training and mentorship from the project 

through a train-the-trainer model.  The intention of the train-the-trainer model is that once 

trained, lead farmers will pass on the extension training they received to other project farmers 

within their social and spatial networks.  In addition to direct extension outreach, lead farmers 

also receive extension information and agricultural messages through an information 

communication technology (ICT) tool called a “talking book”.  The GROW project’s “talking 

book” is an audio device that contains recorded messaging in local languages focused on 

improved agricultural production strategies for soybean cultivation (MEDA, 2015).   

Farmers become a GROW project “client” during project enrollment, occurring prior to planting.  

Farmers self-selected to participate in the GROW project thus there may exist selection bias and 

my dataset may not represent the population at large.  Enrollment data is collected via a Client 

Registration Form (CRF).  CRF data contain information on farmer characteristics (education, 

household head, and experience/extension access), scale (farm size, land allocated to soybean 

cultivation); market access (intention to sell grain, engagement in dry-season activities); land 

rights (land tenure, duration of land control) and the geographic coordinates of the farm 

household.  Farmers are surveyed after harvest via a Client Monitoring Form (CMF).  CMF data 

contain information on soybean harvest (reported yield, harvest and threshing techniques, grain 

sales and dry-season activities). 

There likely exists a degree of endogeneity due to the type of data included in the MEDA CRF 

and CMF surveys, which were designed for recordkeeping, not for testing adoption. Thus the 

direction of causation cannot be determined with certainty, and the resulting analysis should be 

considered as showing correlation rather than pure causality. 

  



40 

 

Enrollment and surveying of GROW project clients is conducted by one of five Key Facilitating 

Partners (KFPs).  KFPs are local non-governmental organizations (NGOs) contracted by the 

GROW project.  Each KFP covers a specific geographic area within the Upper West region.  The 

data for my analysis comes from one of the five implementing KFPs from the GROW project. 

The GROW project began in 2012 with farmer enrollment beginning in 2013.  My dataset 

contains observations for GROW project clients who enrolled in 2013, 2014 and 2015.  

Throughout the three year period from 2013 to 2015 59% of total registered GROW project 

clients provided CRF, or enrollment data, but did not provide any post-harvest, or CMF data.  

This indicates that this portion of the total sample did not follow through with soybean 

cultivation and harvest after enrollment as their observations do not contain values for post-

harvest data, as measured by the CMF which captures measures of soybean yields and grain 

sales.  As this is a large share of the total sample, there is potential for attrition bias.  As such, the 

generalizability of the results need to be taken with caution.   

In 2013 and 2014 CRF and CMF data were collected using paper survey forms.  This resulted in 

significant errors in the data collection process.  In 2015 CRF and CMF data were collected 

using electronic survey forms loaded onto tablets with the “iFormBuilder” software.  The use of 

tablets and electronic surveys considerably improved the accuracy of data collection in 2015.  

The data used for my analysis thus comes from CRF and CMF data collected via electronic 

surveys during the 2015 growing season.   

CRF and CMF data from the 2015 growing season provided information on 496 project clients.  

Of these 496 total observations, 453 had complete values across the variables used in my 

analysis.  A description of how observations were coded for the dependent and independent 

variables used in my analysis is provided in the sub-section below.  Table 4.1 provides a 

description of the data collection process. Figure 4.1 shows the geographic distribution of the 

453 farmers based in the Upper West region of Ghana, classified by adopter type.  

Table 4.1 
 

Description of data   

Key Facilitating Partner (KFP) ProNet North 

Country Ghana 

Region Upper West 

Districts Daffiama-Bussie-Issa (DBI) 
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Table 4.1 (continued) 
 

Description of data   

Districts Nadowli  
Wa East 

Total number of 2015 CRF and CMF 

farmer observations  

496 

  

Total number of 2015 CRF and CMF 

farmer observations used in analysis 

453 

Survey tool: Client Registration Form 

(CRF) 

Collected prior to planting. 

Focuses on farmer 

characteristics, economies of 

scale, market access, land 

rights and the geographic 

coordinates of farm 

household. 

Survey tool: Client Monitoring Form 

(CMF) 

Collected after harvest. 

Focuses on soybean harvest 

(reported yield, harvest and 

threshing techniques, grain 

sales and dry-season 

activities). 
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Figure 4.1:  Households surveyed in the Upper West region of Ghana (n = 453) 

 



43 

 

Variables 

To measure whether a farmer engaged in sustained adoption of soybean, I use recall data from 

the Client Registration Form (CRF) where farmers were asked whether they produced soybean in 

2013, 2014 and 2015.  In my sample, all farmers produced soybean in 2015.  Farmers who 

indicated that they grew soybean consecutively in 2013, 2014 and 2015 were coded as being 

engaged in sustained adoption of soybean. Of the 453 total observations, 227 observations were 

coded as being sustained adopters.   

Recall my definition of intermittent adoption refers to farmers who reversed their decision to 

engage in soybean cultivation, or farmers who indicated that they grew soy in 2013, did not in 

2014, and resumed soybean cultivation in 2015.  These farmers were coded as being intermittent 

adopters.  Of the 453 total observations, 38 observations were coded as being intermittent 

adopters.   

A third classification was used among my sample to designate farmers who reported 2015 as 

their first year of soybean cultivation.  These farmers indicated that they did not grow soy in 

2013 or 2014, but did grow soy in 2015.  These farmers were coded as late adopters.  Of the 453 

total observations, 188 observations were coded as being late adopters.   

Summary statistics for the sustained adopter, intermittent adopter, and late adopter groups are 

provided below in Tables 4.2, 4.3, and 4.4, respectively.  Results from the t-test comparing the 

sustained adopter group with the intermittent adopter group showed that I cannot reject the null 

hypothesis that the means differ with respect to four of the variables: education, household head, 

lead farmer and engagement in dry-season activities.  Similarly the results from the t-test 

comparing the sustained adopter group with the late adopter group showed that I cannot not 

reject the null hypothesis that the means of the two groups are the same with respect to the 

education and household head variables.   
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Table 4.2               

Summary statistics of variables included in empirical analysis for sustained adopter group 

Variables Mean Mean Standard 

deviation 

Minimum Maximum 

  Full sample 

(N = 453) 

Sustained adopter 

(N = 227) 

Education 0.137 0.106 0.428 0.000 3.000 

Household head (=1) 0.084 0.088 0.284 0.000 1.000 

Lead farmer (=1) 0.079 0.062 0.241 0.000 1.000 

Farm size 1.335 1.761 0.801 0.000 6.475 

Soy hectares planted (2015) 0.545 0.704 0.485 0.202 4.047 

Hired labor (=1) 0.804 0.912 0.284 0.000 1.000 

Dry-season activities (=1) 0.565 0.493 0.501 0.000 1.000 

Intent to sell grain (=1) 0.740 0.934 0.249 0.000 1.000 

Family or owned land (=1) 0.967 0.991 0.094 0.000 1.000 

Can farm land 3+ years (=1) 0.364 0.185 0.389 0.000 1.000 

Yield (2015) 748.631 950.034 550.914 24.711 2965.262 

 

Table 4.3              

Summary statistics of variables included in empirical analysis for intermittent adopter group 

Variables Mean Mean Standard 

deviation 

Minimum Maximum 

  Full sample 

(N = 453) 

Intermittent adopter 

(N = 38) 

Education 0.137 0.053 0.226 0.000 1.000 

Household head (=1) 0.084 0.105 0.311 0.000 1.000 

Lead farmer (=1) 0.079 0.000 0.000 0.000 0.000 

Farm size 1.335 0.857 0.529 0.202 2.023 

Soy hectares planted (2015) 0.545 0.426 0.168 0.202 0.809 

Hired labor (=1) 0.804 0.763 0.431 0.000 1.000 

Dry-season activities (=1) 0.565 0.632 0.489 0.000 1.000 

Intent to sell grain (=1) 0.740 0.605 0.495 0.000 1.000 

Family or owned land (=1) 0.967 0.895 0.311 0.000 1.000 

Can farm land 3+ years (=1) 0.364 0.395 0.495 0.000 1.000 

Yield (2015) 748.631 486.082 364.711 24.711 1482.631 
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Table 4.4              

Summary statistics of variables included in empirical analysis for late adopter group 

Variables Mean Mean Standard 

deviation 

Minimum Maximum 

  Full sample 

(N = 453) 

Late adopter 

(N = 188) 

Education 0.137 0.193 0.642 0.000 3.000 

Household head (=1) 0.084 0.074 0.263 0.000 1.000 

Lead farmer (=1) 0.079 0.117 0.322 0.000 1.000 

Farm size 1.335 0.917 0.891 0.202 6.475 

Soy hectares planted (2015) 0.545 0.376 0.128 0.121 1.214 

Hired labor (=1) 0.804 0.681 0.467 0.000 1.000 

Dry-season activities (=1) 0.565 0.638 0.482 0.000 1.000 

Intent to sell grain (=1) 0.740 0.532 0.500 0.000 1.000 

Family or owned land (=1) 0.967 0.952 0.214 0.000 1.000 

Can farm land 3+ years (=1) 0.364 0.574 0.496 0.000 1.000 

Yield (2015) 748.631 558.517 402.510 6.178 2471.052 

 

Farmer characteristics variables include whether a farmer was head of their household, their level 

of education and their extension access in soybean production.  Education was coded to reflect 

the various levels of education present in the dataset (0 = never attended school; 1 = primary 

school education; 2 = middle school, junior high school or junior secondary school education; 3 

= secondary school education; 4 = tertiary education).  For observations where the education 

type did not fall into one of these categories (i.e. Arabic school, vocational school), farmers were 

given a value corresponding to the average among all observations.   

On average, sample farmers are not educated past a primary school education.  Average 

education among sustained adopters was .11, and .05 and .19 among intermittent adopters and 

late adopters, respectively. The education variable was statistically different between the three 

adopter groups.  These results indicate that on average, among all adopter groups, farmer 

respondents had never attended school.  These findings are in line with Ragsdale and Read-

Wahidi’s (2015) survey of smallholder farmers in the Northern Region of Ghana where 87.6% of 

female farmers surveyed reported less than a primary school education.  Similarly, research by 

Dogbe et al. (2013) showed similar results with 87.1% of female farmers indicated they had no 

formal education.  However my results, and those from the previously referenced authors, show 

lower levels of education compared to statistics reported by the U.S. Agency for International 
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Development (USAID) in 2015.  In their report, 57% of the 4,410 households surveyed in 

Northern Ghana had never been educated (USAID, 2015).    

Farmers who indicated that they were heads of their household were given a value of 1 while 

those who did not were given a value of 0.  Among the three adopter groups, between 7 and 11% 

of farmers indicated that they were heads of their household.  The household head variable was 

statistically different between the three adopter groups.   The low percentage of female heads of 

household is in line with previous research by Ragsdale and Read-Wahidi (2015) among 

smallholder farmers in northern Ghana, where 4.3% of households were female-headed as 

compared to 93.7% of households that were dual-headed.   

Being a “lead farmer” within the GROW project indicated a farmer’s access to extension 

information in soybean production.  Farmers who indicated that they were a lead farmer were 

given a value of 1 while those who did not were given a value of 0.  The majority of farmers in 

the sample are not lead farmers.  No farmers in the intermittent adopter group were lead farmers.  

Among sustained adopters, 6% of farmers were lead farmers and 12% of late adopters were lead 

farmers. The lead farmer variable was statistically different between the three adopter groups.     

Farm size and area of land allocated to soybean production were converted from acres to 

hectares.  Agriculture production in Ghana is separated along gender lines, with males and 

females each having separate plots of lands and crops of focus.  As all sample farmers in my 

dataset are female, farm size is expected to reflect the individual female farmer’s farm size rather 

than total family farm size.  In some instances the area of land allocated to soybean production 

may be larger than the farm size reported by a given farmer if that farmer produced soybean on 

their land as well as other land owned by relatives.  The land allocated for soybean cultivation 

reported was for the 2015 growing season only.   

Average farm size among sustained adopters was 1.76 ha, .86 ha among intermittent adopters 

and .92 ha among late adopters.  Land allocated to soybean cultivation among sustained adopters 

was .7 ha, .43 ha among intermittent adopters and .38 ha among late adopters. Both the farm size 

and land allocated to soybean production variables were not significantly different among the 

three adopter groups.   The average amount of land allocated for soybean production among 

smallholder farmers in Etwire et al.’s (2013) research was .80 hectares, a figure similar to the 

land allocation for sustained adopters in my sample.   
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Farmers who reported using hired labor were given a value of 1 while farmers who didn’t report 

the use of hired labor were given a value of 0.  Farmers were able to report using more than one 

labor source in their soybean production practices, including individual labor, hired labor, 

communal labor, and family labor.  Therefore farmers who indicated that they used hired labor, 

regardless of the proportion of hired labor used with respect to their overall labor source, were 

given a value of 1.  91% of sustained adopters engaged the use of hired labor in their soybean 

production practices with 76% of intermittent adopters and 68% of late adopters using hired 

labor.  The hired labor variable was not significantly different among the three adopter groups.  

Dogbe et al. (2013) notes that soybean producers in northern Ghana depend on different labor 

sources including family, hired, and communal labor for land clearing, planting, weeding, 

harvesting, threshing, pest and disease control.  Noting the relatively high labor demand of 

soybean cultivation, it is therefore likely that producers will engage hired labor at some point in 

their cultivation practices.   

Land rights variables relate to land tenure and the duration of land control. With respect to land 

rights, farmers indicating that their land was owned individually or through their family were 

given a value of 1 while farmers indicating that their land was either shared, leased or borrowed 

were given a value of 0.  Duration of land control was not dependent upon a farmer’s land rights 

status.  For example a farmer who reported owning their land and a farmer who reported 

borrowing, leasing or sharing their land could both experience the same duration of land control.  

Farmers indicating that the duration of their land control was at least 3 years (and up to 6 years, 

the maximum value reported) were given a value of 1.  Farmers who responded that they either 

didn’t know the duration of their land control, or that the duration of their land control was 1 

year or 2 years were given a value of 0.   

The nature of land rights for the vast majority of sample farmers is owned land, either 

individually or family owned, with between 86 and 99% of respondents indicated that their land 

is owned among the different adopter types.  Population-based survey results from USAID’s 

2015 study show that 85% of households surveyed own their agricultural land.  More 

specifically, 21% of women surveyed in the study indicated that they were able to purchase land 

and 23% were able to sell, give or rent land.  This finding is similar to Dogbe et al.’s (2013) 
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findings that male producers in two districts of northern Ghana typically own their land and 

provide land for rent to friends and colleagues at relatively low prices.   

The duration of land control variable however differed among the adopter types.  19% of 

sustained adopters reported land ownership of at least 3 years while 40% of intermittent adopters 

57% of late adopters control their land for at least 3 years. Both the land rights and duration of 

land control variables were not significantly different among the three adopter groups.     

Yield measurements were calculated by dividing the total soybean production for a given farmer 

by the total number of hectares (converted from acres) allocated for soy production.  2015 farmer 

yield varied among the three adopter groups.  Sustained adopters experienced an average yield of 

950 kg/ha in the 2015 growing season with a median yield value of 906 kg/ha.  Among 

intermittent adopters, average yield was 486 kg/ha with a median yield value of 371 kg/ha.  

Finally, late adopters experienced an average 2015 yield of 559 kg/ha with a median yield value 

of 494 kg/ha.  Yield values were not significantly different among the three adopter groups.  

Research conducted by Dogbe et al. (2013) among smallholder Ghanaian soybean farmers 

showed average yields in the range of 509 to 642 kg/ha.  Etwire et al. (2013) found that 

Ghanaian soybean farmers in their sample experienced averaged yield of 757 kg/ha.  The 

average yields among intermittent adopters and late adopters are in line with the ranges reported 

by Dogbe et al. (2013) and Etwire et al. (2013).  However, sustained adopters reported higher 

yields than the farmers in Dogbe et al.’s (2013) study, potentially indicating the benefit of three 

consecutive years of experience in achieving higher yields.  Yet these yield ranges are still well 

below the national average soybean yield of 2012, 1,910 kg/ha (Dogbe et al., 2013), and 2011, 

1,500 kg/ha (Etwire et al., 2013).  This indicates that farmers in my sample are achieving 

performance in their soybean production that is well below the national average.   

With respect to the market access variables included in my analysis, farmers indicating that they 

did intend to sell their grain after harvest were given a value of 1, while farmers who indicated 

that they did not intend to sell their grain after harvest were given a value of 0.  Similarly, 

farmers who indicated that they were engaged in dry-season, income-generating activities were 

given a value of 1; while farmers indicating the opposite were given a value of 0.  At least 50% 

of respondents in all adopter groups reported engaging in dry-season activities.  50% of sustained 

adopters engaging in dry-season activities, while 63% of intermittent adopters and 64% of late 
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adopters reported engaging in dry-season activities.  The dry-season variable was statistically 

different between the three adopter groups.    

Ragsdale and Read-Wahidi (2015) report different peak income-generating months among male 

and female smallholder farmers in northern Ghana, indicating that women may derive income 

from different sources, including possibly dry-season activities.  Interestingly, in the same study 

the authors find that there was little difference in male and female responses regarding having 

input in non-farm economic activities, potentially indicating that dry-season activities are split 

along gender lines in Ghana (Ragsdale & Read-Wahidi, 2015).   

Between 53 and 93% of respondents indicated an intention to sell their grain at harvest. Among 

the adopter groups, sustained adopters were most mot likely to intend to sell their grain at 93% 

while 53% of late adopters and 61% of intermittent adopters reported an intention to sell grain at 

harvest. The intention to sell grain variable was not statistically different between the three 

adopter groups.  Farmers intending to sell their grain therefore exhibit a level of commercial 

awareness that likely affects their access to source inputs like soybean seed as well. Ragsdale and 

Read-Wahidi (2015) find that 53.8% of female smallholder farmers in their survey reported 

knowing where to buy soybean seed that grows well in their agro-ecological area.  Therefore the 

level of commercial awareness in my sample is in line with previous research in this area.  
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CHAPTER 5:  MODEL 

 

Adoption 

The probability of a farmer adopting an agricultural technology has typically been evaluated 

within the literature using probit or logit models with flexible functional forms in the 

independent variables that work well for the analysis of dichotomous choices (Besley & Case, 

1993; Immink & Alarcon, 1993; Staal et al., 2002; Herath & Takeya, 2003; Maertens & Barrett, 

2012; Ainembabazi & Mugisha, 2014).  Yet in reality, farmers do not decide to adopt an 

agricultural technology permanently at one point in time.   

Instead, farmers make a series of decisions that change over time and subsequently affect the 

adoption, and the performance, of an agricultural technology.  These decisions include when, 

how, and at what intensity to adopt the agricultural technology; how much land to allocate to the 

technology; whether or not to continue adopting the technology; and whether to adopt a different 

technology as they gain more experience through adoption or observe the experiences of fellow 

farmers using the technology (Doss, 2006).   

The adoption process is thus affected by decisions made in previous periods, and is influenced by 

information gathering, learning by doing, and accumulating resources (Feder et al., 1985; 

Edirisinghe & Holloway, 2015).  These considerations highlight the need to understand how 

farmer adoption decisions change over time rather than evaluating them in a snapshot, static 

manner.  My analysis acknowledges the inherent changing nature of the adoption process to 

explore the idea of dynamic adoption among smallholder soybean farmers.   

Previous research has sought to address the idea of dynamic adoption by evaluating either the 

sequence or intensity of adoption by farmers when faced with an adoption package containing 

different components (Doss, 2006; Ainembabazi & Mugisha, 2014).  Examples of this type of 

dynamic adoption research include evaluating the quantity of inputs a farmer decides to use 

(intensity); modeling adoption as a two-stage process (sequence); different combinations of 

technology adoption; step-wise adoption patterns; sequential decision making and simultaneous 

adoption decisions (Doss, 2006).    
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An additional important component in understanding how the dynamic adoption process relates 

to farmers’ histories of technology use (Doss, 2006).  This consideration moves beyond simply 

asking a farmer whether or not they are currently using a particular technology, but whether they 

have ever used it in the past.  My analysis delves into this question to enable an understanding of 

two types of dynamic adoption:  sustained (persistent) adoption, and intermittent adoption.   

In my analysis I draw a distinction between three types of dynamic adoption:  farmers who 

adopted and continued using a technology (sustained adopters), farmers who adopted a 

technology, discarded it, then returned to the technology (intermittent adopters), and farmers 

with one year of adoption (late adopters).  In evaluating these different adoption scenarios, my 

research addresses the inherent dynamic nature of the adoption process and particularly the 

drivers behind sustained versus intermittent adoption of a non-incremental, long-jump 

technology like commercial soybean production.  Further, the GROW project has struggled with 

the presence of intermittent adoption among project farmers.  This analysis examines the drivers 

that predict intermittent adoption among project farmers as well as those that predict sustained 

adoption among project farmers.    

Following Besley and Case (1993), I model the existence of sustained adoption and intermittent 

adoption using a probit regression analysis.  I first acknowledge that the gain to farmer i of using 

a new agricultural technology is typically parameterized as 𝛾𝑥𝑖 +  𝑢𝑖, where 𝑥𝑖 are farm and 

farmer characteristics and 𝑢𝑖 is an independently and identically distributed farm specific ex ante 

shock.  As it is often assumed that these shocks are normally distributed, the model is run as a 

probit, which assumes a normal distribution and is preferred over a logit model which assumes a 

logistic distribution (Besley & Case, 1993; Herath & Takeya, 2003).   

The probability of sustained adoption or intermittent adoption can be written as: 

(1) 𝑃𝑟𝑜𝑏{𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛 𝑏𝑦 𝑓𝑎𝑟𝑚𝑒𝑟 𝑖} = ∅(𝑦𝑥𝑖/𝜎𝑢) 

where ∅(∙) is the distribution function of the standard normal.  In equation (1) I measure the 

impact of 𝑥𝑖 on the decision of farmer 𝑖 to engage in either sustained or intermittent adoption of 

soybean.  In this model 𝑥𝑖 is a vector of explanatory variables related to farmer characteristics, 

economies of scale, market access and land rights. 
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In the sustained adoption probit regression model sustained adopters are given a value of 1, while 

late adopters are given a value of 0.  As the sample size for intermittent adoption is relatively 

small compared to the other two adopter types, these farmers were removed from the sample 

used for this analysis.  Further, the focus of this probit regression model is to understand what 

drives sustained adoption of soybean as compared to late adoption of soybean.   

In the probit regression model used to predict intermittent soybean adoption, farmers engaged in 

intermittent adoption are given a value of 1, while sustained adopters are given a value of 0.  As 

late adopters have by definition not yet had the possibility to engage yet in intermittent adoption, 

they were removed from the sample used for this analysis.   

Soybean Performance 

I use individual farmer soybean yields in the 2015 growing season to measure farmer 

performance in soybean production.  I assume that farmer performance in soybean is a function 

of drivers related to farmer characteristics, economies of scale, market access, and land rights.  

Further, I explore the effect of different adoption decisions of a given farmer on performance in 

soybean production in 2015.  As sustained adopters have the most experience in soybean 

production, they may be better integrated within commercial markets to enable procurement of 

inputs and services that can improve their production performance. I therefore expect farmers 

engaged in sustained adoption of soybean to be associated with higher performance in soybean 

and farmers engaged in intermittent adoption of soybean to be associated with lower 

performance in soybean production. 

Farmer performance in soybean cultivation can be written as:  

(2) 𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖 

where 𝑦𝑖 denotes the output of famer 𝑖 in 2015 (soybean yield in my context).  In equation (2) I 

measure the impact of 𝑥𝑖, a vector of explanatory variables for farmer 𝑖 (including the adoption 

decision for farmer 𝑖), and 𝜖𝑖, an error term, on the performance of farmer 𝑖 in 2015.  As Feder et 

al. (1985) note, this model is flexible enough to allow a situation where some variables positively 

affect the mean and variance of yields, while others may have a negative effect. 
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Spatial Interaction 

Spatial interaction among farmers may have important effects on the performance in soybean 

production as a long-jump commercial agricultural technology.  Spatially-connected farmers 

may share technical information, guidance and knowledge within their networks.  Further, their 

spatial distribution may enable them to aggregate grain to yield better prices for output.  Farmers 

located within a network may receive more formal technical support services and achieve 

savings in input procurement through volume discounts.  

Previous research has sought to address the effects of space in the technology adoption process 

through relatively rudimentary specifications of spatial relationships.  These include the use of 

regional dummy variables, measures of farmer distance to urban or market centers or measures 

of spatial clustering among farmers (Staal et al., 2002; Ward & Pede, 2015).  When these simple 

spatial measures are integrated into inadequate regression models, estimates can be biased or 

inconsistent, as they assume the absence of spatial correlations among unobservable factors.  

However, unobservable factors can be present and likely play a large role within the endogenous, 

contextual and/or correlated effects of spatial interaction on farmer performance in agricultural 

technologies (Ward & Pede, 2015).  I thus move beyond more simplistic integrations of spatial 

variables into household adoption models and instead use a more refined, integrated approach to 

better understand the spatial dimensions of soybean performance.   

My dataset contains geographic coordinates for each household, provided in latitude and 

longitude coordinates.  As such I are able to spatially represent each farmer observation in my 

sample to enable for a robust analysis of the effect of spatial interaction on farmer performance 

in soybean production.  The dataset used for the sustained adopter and soybean performance 

models contained 453 farmer observations.  However, due to coding errors with respect to the 

latitude and longitude coordinates for 16 observations in this dataset, I were only able to use 437 

of these farmer observations in the spatial interaction analysis.   

Following Drukker, Prucha and Raciborski (2013) and Ward and Pede (2015), I employ a 

generalized spatial two-stage least squares (GS2SLS) process that effectively identifies the 

causal influences arising from spatial interactions between GROW project farmers.  The 

GS2SLS process augments the basic linear regression model to include spatially lagged 

observations of the exogenous explanatory variables.  An assumption of this model is that the 
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only effect of these spatially lagged variables on my outcome variables of interest (soybean 

performance) is indirect, through the effect of neighbors’ performance in soybean production.   

Further, as Ward and Pede (2015) note, by incorporating the spatial error component within this 

broader econometric specification, I control for correlations of unobservable characteristics that 

may condition behavior.  Thus, my framework for analysis effectively examines both 

endogenous spatial effects (individual actions affect group action and vice versa), measured by 

the spatially lagged variable, and correlated effects (the similar characteristics or similar 

conditions of spatial networks affect individuals actions), measured by the spatial error term.  

The model I employ effectively disentangles these two types of spatial effects to assess the 

individual influence of each on farmer performance.  I use a combined spatial-autoregressive 

(SAR) model with SAR disturbances for my analysis, often referred to as a SARAR model, 

represented in equation (3) and (4) (Drukker et al., 2013).  In this model, the spatial lag variable 

in equation (3) represents a weighted average of the values of the dependent variable observed 

for the other cross-sectional units and captures the endogenous spatial effects.  The spatial error 

term in equation (4) represents the correlated spatial effects.  The dependent variable for my 

analysis is farmer performance, as measured by yield, in soybean production in the 2015 growing 

season. 

The model of interest is given by: 

(3) 𝑦 = 𝑌𝜋 + 𝑋𝛽 +  𝜆𝑊𝑦 + 𝑢 

(4) 𝑢 =  𝜌𝑀𝑢 +  𝜖 

where: 

 𝑦 is an n x 1 vector of observations on the dependent variable; 

 𝑌 is an n x p matrix of observations on p right-hand-side variables, and 𝜋 is the 

corresponding p x 1 parameter vector; 

 𝑋 is an n x k matrix of observations on k right-hand-side exogenous variables (where 

some of the variables may be spatial lags of exogenous variables), and 𝛽 is the 

corresponding p x 1 parameter vector; 

 𝑊 and M are n x n spatial-weighting matrices (with 0 diagonal elements);  
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 𝑊𝑦 and 𝑀𝑢 are n x 1 vectors typically referred to as spatial lags, and 𝜆 and 𝜌 are the 

corresponding scalar parameters typically referred to as spatial-autoregressive 

parameters; 

 𝜖 is an n x 1 vector of innovations  

Note that if 𝜌 = 0 and 𝜆 = 0 the resulting model reduces to a linear regression model with 

endogenous variables (Drukker et al., 2013).  Thus the SARAR model is an augmented form of 

the linear regression model which includes the additional right-hand-side variable known as the 

spatial lag.   

The spatial-weighting matrices 𝑊 and M are part of the model definition and are described in the 

sub-section below.  Following Drukker et al. (2013), if I let 𝑦̅ = 𝑊𝑦, let 𝑦̅𝑖 and 𝑦𝑖 denote the 𝑖th 

element of 𝑦̅ and 𝑦, respectively, and let 𝑤𝑖𝑗 denote the (𝑖, 𝑗)th element of W.  Then  

(6) 𝑦̅𝑖 =  ∑ 𝑤𝑖𝑗𝑦𝑗
𝑛
𝑗=1  

This shows that the dependence of 𝑦𝑖 on neighboring outcomes is measured by the spatial lag 𝑦̅𝑖.  

The SARAR parameter 𝜆 measures the extent of these interactions (Drukker et al., 2013). 

I also employ a modification of the SARAR model to include an additional right-hand side 

spatially lagged variable for the presence of GROW project lead farmers within a spatial 

network.  The previous SARAR model shows the spatial dependence of farmer yields within a 

network.  Further, the model recognizes that spatial dependence is indirectly due in part to 

individual farmer yields which are affected by individual farmer characteristics (contextual 

effects).  The inclusion of the additional spatially lagged variable in the augmented SARAR 

model shows the direct, contextual effect of individual farmer characteristics (like lead farmer 

status) on average farmer yields within a spatial network.  Thus the augmented SARAR model 

provides a richer interpretation of the spatial effects on yield, and explains, to a degree, why 

space matters and how space matters.   

The augmented SARAR model is given by: 

(5) 𝑦 = 𝑌𝜋 + 𝑋𝛽 +  𝜆𝑊𝑦 + 𝛾𝑊𝑥 + 𝑢 

(6) 𝑢 =  𝜌𝑀𝑢 +  𝜖 
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where: 

 𝑥 is an n x 1 vector of observations on lead farmer status 

 𝑊𝑥 is an n x 1 vector typically referred to as a spatial lag for the lead farmer variable 

 𝛾 is the corresponding spatial scalar parameter 

In this augmented SARAR model the parameter 𝛾 measures the effect of having lead farmers in a 

spatial network on farmer yields within the network (Drukker et al., 2013). 

Spatial Weights Matrix 

Similar to Ward and Pede (2015), I construct the spatial weights matrix, W, such that the strength 

of network relationships is inversely related to the physical distance (measured in kilometers) 

between farmer households, thereby creating an inverse distance spatial weights matrix.  In 

inverse distance matrices, more weight is placed on nearby farmers rather than on more 

distantly-located farmers.  The (𝑖, 𝑗)th element of an inverse-distance spatial-weighting matrix is 

1/𝑑𝑖𝑗, where 𝑑𝑖𝑗 is the distance between unit 𝑖 and 𝑗 computed from the geographic coordinates 

of the household and distance measure (Drukker et al., 2013).   

I explored creating matrix W as a contiguity matrix, a matrix design that indicates whether spatial 

units share a boundary or not.  The most precise spatial boundary representation available in the 

Ghanaian context is at the district level.  In the spatial distribution of my sample, farmers are 

located within only three districts of the Upper West region of Ghana.  As such, a contiguity 

matrix that is defined by shared boundaries among farmers does not provide an accurate and 

detailed enough representation of the spatial distribution of my sample.  Further, as my dataset is 

comprised of point data (farmer household location), rather than polygon data (e.g. village-level 

boundaries), a contiguity matrix is not appropriate for my analysis.   

I further construct W to be a minmax-normalized matrix where each element of the matrix is 

divided by the minimum of the largest row sum and column sum of the matrix.  Specifically, in a 

minmax-normalized matrix, the (𝑖, 𝑗)th element of 𝑊̃ becomes 𝑤̃𝑖𝑗 = 
𝑤𝑖𝑗

𝑚
, where 𝑚 =

min{max𝑖(𝑟𝑖), max𝑖(𝑐𝑖)}, with max𝑖(𝑟𝑖) being the largest row sum of W and max𝑖(𝑐𝑖) being the 

largest column sum of W.  Minmax-normalized matrices are normalized by a scalar while 

preserving their basic model specification.  This process scales the weight values of the matrix to 
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a fixed range between -1 and 1.  I explored other normalization options for matrix W including 

row normalization and spectral normalization.  Minmax normalization was the most appropriate 

method for my analysis as the spatially lagged variable will differ for two people with a different 

number of neighbors, or two people with the same number of neighbors but at a different average 

distance.  The minmax normalization process effectively lowers the weight on the neighbor 

outcomes (and thus the spatially lagged variable) for a farmer who is more distant from their 

neighbors.     

In constructing W I also explored different truncation methods.  Truncation specifies that the 

values of the spatial-weights matrix W that meet the truncation criteria will be changed to 0.  Bin 

truncation partitions the values of W into B equal-length bins and truncates to 0 entries that fall 

into bin b or below, b < B.  Value truncation truncates to 0 the values of W that are less than or 

equal to a set value v (Drukker et al., 2013).   

In exploring the various truncation possibilities, bin truncation was determined as the most 

appropriate method that preserved the structure of W while also removing from my analysis any 

neighbors that were not appropriate.  Using bin truncation I first determine the maximum value 

in W. As my spatial weights matrix W is normalized so my weighted values fall between 0 and 1, 

1 is the maximum value of W.  I then divide the values of W into a set number of bins so that 

observations with weights falling in the smallest bin are rounded to 0.  The smallest bin b was 

determined by first observing the average weight value in W which was found to be .223.  Thus 

any observations with a weight value smaller than the average of .223 were rounded to a weight 

value of zero.  For my minmax-normalized, bin-truncated W the average number of links 

(neighbors) between the different adopter types is 52 with an average weight of .0004 and a 

maximum weight of .223.  The average distance between neighbors overall in W is 10.148 

kilometers and the maximum distance between neighbors within each bin is .312 kilometers.   

Without bin truncation, the average weight of W remains as .0004, the maximum weight changes 

to .222 and the average number of links increases to 436.  As my dataset contains 437 total 

farmer observations, this indicates that the non-truncated matrix allows for nearly all farmers 

within the matrix to be neighbors with each other, independent of distance.  Without truncation, 

the average distance between neighbors overall in W is similar to with bin truncation, at 10.292 
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kilometers, but the maximum distance between neighbors is 52.477 kilometers.  This maximum 

distance measurement is too large to enable classification of two farmers as neighbors.  
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CHAPTER 6:  RESULTS AND DISCUSSION 

 

Table 6.1    

Estimated probit regression results for sustained soybean adoption 

Variables Estimate Delta-method 

standard error 

Education -0.017 0.034 

Household head 0.079 0.066 

Lead farmer -0.107 0.066 

Farm size .129*** 0.019 

Soy hectares planted (2015) .303*** 0.095 

Hired labor  .150*** 0.054 

Dry-season activities  -.073* 0.039 

Intent to sell grain  .207*** 0.041 

Family or owned land 0.157 0.115 

Can farm 3+ years -.133*** 0.038 

N 415  
LR chi2 236.58  
Prob > chi2 0.0000  

Pseudo R2 0.4139   

% Correctly classified  84.82%  

Note:  *Significant at 10% level; **Significant at 5% level; ***Significant at 1% level. 

 

The sustained soybean adoption probit results are shown in Table 7.1.  Recall that this probit 

regression model compares famers engaged in sustained adoption with farmers classified as 

intermittent adopters to understand the drivers that predict sustained adoption of soybean.  The 

results are presented in the form of marginal effects expressed as percent change in the 

probability of sustained soybean adoption.  Marginal effects interpret how much the probability 

of the outcome variable changes as the value of a single independent variable changes, holding 

all other independent variables constant.  

The farmer characteristics variables of household head, lead farmer and education were all 

insignificant in the probit model.  However, these results may be attributable to the nature of my 

dataset.  In my sample, average education ranged from 0.11 to 0.20 among all adopter types.  As 

a value of 1 indicated that a farmer had received a primary school education, my farmer dataset 

was comprised primarily of individuals who had never received any formal education. Noting the 

low variability in education among my sample, it is unlikely that education would have a 
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statistically significant effect on the probability of engaging in sustained adoption.  Similarly, 

only between 6 and 12% of my sample indicated that they were lead farmers within the GROW 

project.  Therefore the lack of significance for the lead farmer variable may also be attributable 

to the small percentage of my sample designated as a lead farmer. 

The household head variable result may also be driven by the nature of my dataset.  As Ragsdale 

and Read-Wahidi (2015) found in their research in northern Ghana, only 4.3% of households 

were female-headed, as compared to 93.7% that were dual-headed.  Similarly in my sample, 

between 7 and 11% of respondents indicated that they were heads of their household.  The low 

variability of female-headed households in my dataset may also be driving the lack of 

significance for this variable.     

While these variables were not statistically significant, my findings do not align with my initial 

hypotheses that education and extension would be important drivers in helping farmers achieve 

success in approaching the new and unfamiliar agronomic practices, commercial interactions and 

market dependence inherent in soybean adoption.  However unaccounted for in my analysis is 

the quality of formal education and extension (provided through the lead farmer model) available 

to my farmer sample.  Extension agents, research institutes and development agencies all have 

relatively little experience with soybean as a new and non-traditional crop.  This lack of technical 

knowledge and guidance may thus lessen the overall effect of extension information on adoption.   

Results from this model indicate that, holding all other variables constant, each additional 

hectare that comprises a GROW project farmer’s total farm size is associated with a 12.9 

percentage point increase in the likelihood of that producer being a sustained adopter.  Similarly, 

I find that each additional hectare of land allocated to soy cultivation by a GROW project farmer 

is associated with a 30.3 percentage point increase in the likelihood of that producer being a 

sustained adopter.   

These results point to the importance of economies of scale in the sustained adoption of a long-

jump agricultural technology like soybean.  As previously highlighted, new commercial crops 

like soybean require up-front fixed costs related to learning about new production practices and 

in making market linkages for input and service procurement and grain sales.  My results show 

that it may be easier for producers with larger farms and with more land allocated to soybean 

production to efficiently spread these fixed costs over more land, subsequently leading to 
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sustained adoption.  My findings are in line with other research addressing economies of scale in 

the technology adoption process literature (Etwire et al., 2013; Feder et al., 1985).    

Further within the economy of scale framework, my results also show that producers who use 

hired labor in some proportion to overall labor used in their soybean production are 15 

percentage points more likely to be sustained soybean adopters.  This result may point to the fact 

that as women begin to adopt soybean, their independence and control over labor utilization may 

increase, causing a reallocation of labor and a change in the balance between hired labor and 

household/community labor.  Further, female producers who engage hired labor in their soybean 

production practices may present a level of sophistication to their farming practice that other 

producers do not exhibit.  Their interest, dedication and commitment to soybean production may 

result in the use of hired labor, which can lead to improved production, a reduction in the labor 

burden for women, and result in sustained adoption of soybean.  

Both of the market access variables in my analysis are significant when analyzing their effect in 

predicting sustained soybean adoption.  Farmers who engage in dry-season activities are 7.3 

percentage points less likely to be a sustained soybean adopter.  However it is unclear how dry-

season activities may or may not compete for farmer attention with soybean production.  At a 

minimum, results indicate that farmers who engage in these types of activities are less likely to 

engage in sustained soybean adoption.  Soybean, as a new commercial crop with a steep 

technical learning curve, requires farmers to exhibit a higher level of focus and specialization to 

procure necessary inputs, services and make market linkages.  Thus if dry-season activities do 

indeed compete for farmer attention, then farmers who engage in these activities may be more 

diversified in their farm enterprise, and therefore potentially less focused in soybean production.   

Conversely, the variable for intention to sell grain has a significant and positive effect on 

sustained soybean adoption.  Farmers intending to sell their grain are 20.7 percentage points 

more likely to be engaged in sustained soybean adoption.  This result may indicate that farmers 

who intend to sell their grain after harvest are better positioned to access input and service 

markets as well as buyers, aggregators and processors.  This leads to more competitive prices for 

their grain as well as for inputs and services and may influence producers to remain engaged in 

soybean production and be a sustained adopter.  Further, farmers who exhibit an intention to sell 

their grain may view soybean as a commercial crop requiring market integration and connection 
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rather than as a household nutrition crop.  Farmers who approach soybean cultivation as a 

commercial activity may thus be more committed to sourcing the necessary inputs needed for 

successful production, leading to sustained adoption.  

With respect to land rights, the land tenure variable is positive but not statistically significant.  

Specifically, farmers with individual or family ownership of their land are 15.7 percentage points 

more likely to engage in sustained adoption of soybean.  This finding may indicate that the 

longer planning horizons experienced by farmers with land ownership encourages investment in 

soil correction practices that improve soybean yields and encourage sustained adoption.  Further, 

if land owners are more knowledgeable about the inherent quality of the land they farm they may 

be more willing to invest in the appropriate soil correction practices needed to improve yields, in 

turn leading to sustained adoption. 

The duration of land control measure is negative and significant.  My results show that farmers 

who indicate that the duration of their land control is at least three years are 13.3 percentage 

points less likely to be a sustained soybean adopter.  The rationale behind the duration of land 

control result is unclear.  The finding may point to the fact that income generated from soybean 

production encourages famers, regardless of the duration of their land control, to engage in 

sustained adoption of soybean and makes the fixed and variable costs of production manageable 

for farmers.  Further, this finding may point to the idea that producers with uncertain or relatively 

short land control durations may still experience the economic benefits of soybean as an income-

generating crop, even in the short-run, and thus the duration of land control is irrelevant in 

determining sustained soybean adoption.   

Table 6.2   

Estimated probit regression results for intermittent soybean adoption 

Variables Estimate Delta-method 

standard error 

Education -0.033 0.040 

Household head 0.020 0.046 

Lead farmer omitted omitted 

Farm size -.063*** 0.024 

Soy hectares planted (2015) -0.024 0.064 

Hired labor  -0.027 0.037 

Dry-season activities  0.001 0.030 

Intent to sell grain  -0.023 0.031 
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Table 6.2 (continued)   

Estimated probit regression results for intermittent soybean adoption 

Variables Estimate Delta-method 

standard error 

Family or owned land -.126** 0.058 

Can farm 3+ years -0.016 0.031 

N 251  
LR chi2 69.52  
Prob > chi2 0.0000  

Pseudo R2 0.3258   

% Correctly classified  86.06%  

Note:  *Significant at 10% level; **Significant at 5% level; ***Significant at 1% level. 

 

The intermittent adoption probit results are shown in Table 7.2.  Recall that this probit regression 

model compares farmers who engage in intermittent adoption with sustained adopters.  This 

comparison provides insight into what predicts intermittent adoption of soybean, a phenomenon 

that the GROW project has identified as a critical challenge faced by smallholder women 

soybean farmers in Ghana.  Similar to the probit regression model assessing sustained adoption, 

the results in Table 7.2 are expressed in marginal effects, showing the percent change in the 

probability of intermittent soybean adoption.  Overall the results from the intermittent adoption 

probit model are weaker than the sustained adoption regression.    

As in the sustained adoption model, farmer characteristics including education and household 

head were insignificant in the intermittent adoption model.  As a new commercial crop, soybean 

requires farmers to invest new time and resources, engage with new market actors and 

significantly change their production practices.  As such, traditional drivers of adoption for 

incremental, short-jump technologies may not apply in this context.  The variable for lead farmer 

was omitted from the analysis as no intermittent adopters were classified as lead farmers.   

Results from the intermittent adoption model show that, holding all other variables constant, 

each additional hectare of a GROW project producer’s total farm size is associated with a 6.3 

percentage point decrease in the likelihood of engaging in intermittent adoption.  The effect of 

land allocation to soy cultivation in the intermittent adoption model is negative, indicating that as 

farmers allocate more land to soy production they are less likely to become an intermittent 

adopter. 
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This finding indicates that while increased land allocated for soybean production may encourage 

sustained adoption, the converse is not true, in that reduced land allocation for soybean does not 

predict intermittent adoption.  Therefore economies of scale may play a more important role in 

predicting sustained adoption than predicting intermittent adoption in the context of soybean 

production.  Due to the high fixed costs for soybean as a new commercial crop for smallholders, 

it may be more difficult for producers with smaller farms to efficiently utilize soybean as an 

income-generating crop.  This may discourage producers from continuing to adopt soybean, 

resulting in intermittent adoption.   

Interestingly, the variables for the amount of land allocated for soybean production, the use of 

hired labor, engagement in dry-season activities and intention to sell grain are all insignificant in 

the intermittent adoption model, though the direction of the effect is as expected.  Thus variables 

related to economies of scale and farmer market access provide more explanatory power in 

predicting sustained adoption rather than intermittent adoption.  This finding may indicate that 

there are unobserved effects driving intermittent adoption among farmers in my sample that are 

not accounted for in my analysis. 

Land ownership is significant and negative in predicting intermittent adoption of soybean.  

Specifically, when farmers own their land, either individually or through family ownership, they 

are 12.6 percentage points less likely to engage in intermittent adoption of soybean.  This finding 

indicates that while land ownership is not a significant predictor of sustained adoption, it is an 

important indicator of preventing intermittent adoption.  Farmers who borrow, lease or rent their 

land may not see the value in correcting soils on lands that they do not own, regardless of the fact 

that this practice improves performance in soybean production.  Not engaging in this production 

practice can lead to poor performance, thus leading to intermittent adoption.   

Table 6.3       

Estimated OLS regression results for 2015 yield      

Variables Estimate Standard 

error 

Education 28.240 41.484 

Household head -25.143 76.545 

Lead farmer 150.887* 80.598 

Sustained adopter 101.153* 58.910 

Intermittent adopter -93.077 80.843 
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Table 6.3 (continued)        

Estimated OLS regression results for 2015 yield      

Variables Estimate Standard 

error 

Farm size 73.015*** 27.767 

Soy hectares planted (2015) 103.528* 62.549 

Hired labor -47.353 64.268 

Dry-season activities  -132.825*** 45.367 

Intent to sell grain  327.842*** 55.515 

Family or owned land 121.584 120.022 

Can farm 3+ years -156.815*** 51.454 

N 453  
R-squared 0.286  
F-stat (12, 440) 14.66  

Prob > F 0.0000   

Note:  *Significant at 10% level; **Significant at 5% level; ***Significant at 1% level. 

 

Table 7.3 reports results from the OLS regression of 2015 farmer yields among the various 

adopter groups.  Similar to the sustained adoption probit model, farmer characteristics of 

household head and education were insignificant in the yield regression model.  Again, this 

finding may be a result of the low variability of these characteristics among my farmer sample.   

While lead farmer status was not a significant predictor of sustained soybean adoption, there is a 

significant effect of being a lead farmer on soybean yields.  Specifically, producers who reported 

that they were lead farmers experienced an additional 150.9 kg/ha in their 2015 soybean yields.  

This result may point to the fact that being a lead farmer doesn’t significantly change a 

producer’s decision of whether or not to continue adopting soybean.  Instead this decision may 

be affected more by drivers related to market connectedness and economies of scale.  However, 

being a lead farmer, and having direct access to extension messaging and guidance, does have a 

significant effect on yield.  This finding is significant in the case of long-jump agricultural 

technologies like soybean where producers cannot rely on their tacit knowledge, norms and 

practices to engage in successful cultivation, but must rely on outside extension messaging and 

information channels.    

The final contributing variable in the farmer characteristics framework relates to experience in 

soybean production.  Sustained adopters, those with three consecutive years of producing 
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soybean, experienced an additional 101.2 kg/ha in their 2015 soybean yields than farmers who 

were not classified as sustained adopters.  Conversely, intermittent adopters on average 

experienced 93.1 less kg/ha in their 2015 yield as compared to sustained adopters and late 

adopters, though this result is not statistically significant.  This result may indicate that soybean 

performance is improved over time as farmers gather more information about this new crop, 

accumulate more resources and become more experienced in production.  Further, this result 

underlines the negative effect that lack of experience and commitment in soybean production can 

have on performance.   

The same economy of scale variables found to be significant in the probit regression model were 

also significant in the OLS regression, with the exception of the use of hired labor.  Specifically, 

farm size and land allocation for soy production both had a significant and positive effect on 

farmer soybean yields in 2015, increasing yields by 73 kg/ha and 103.5 kg/ha, respectively.  

These large yield increases point to the positive benefits that economies of scale contribute in 

managing the fixed costs associated with soybean production, and in leading to both sustained 

soybean adoption and high performance in soybean production.  Economies of scale may result 

in increased returns to scale for farmers adopting a new, commercial, long-jump agricultural 

technology like soybean.  However hired labor may not play a critical role in soybean 

performance as it does for sustained and intermittent adoption of soybean.   

Market access measures related to engagement in dry-season activities and intention to sell grain 

are both significantly associated with farmer yields in this model.  Specifically, farmers who 

engage in dry-season activities produce, on average, 132.8 kg/ha less than farmers who are not 

engaged in dry-season activities.  Similar to the explanation in the probit regression results, the 

potential for these dry-season activities to compete for farmer attention with soybean is unclear.  

Therefore the results indicate at a minimum that farmers who engage in dry-season activities 

achieve lower soybean yields than those who do not.  However if the dry-season activities do 

indeed compete for farmer attention then the hypothesis holds that success in soybean cultivation 

requires a level of focus and specialization.   

Farmer intention to sell grain at harvest has the strongest effect on farmer soybean yields in 

2015.  Farmers who intend to sell their grain experience, on average, 327.8 kg/ha more than 

farmers who do not.  Farmers who intend to sell their grain may have existing contracting 
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schemes with institutional buyers such as processors who offer a better, pre-determined, and/or 

secure price for their grain output.  Further, these producers may also have existing market 

connections that enable them to access buyers, and procure inputs and services necessary for 

improved production.  This result highlights the importance of market connectedness in 

determining farmer performance in the production of a long-jump agricultural technology like 

soybean. 

Similar to the probit model, duration of land control is negatively associated with soybean 

performance.  Specifically, producers who indicate that the duration of their land control is at 

least three years experienced lower yields in the magnitude of 156.8 kg/ha.  Similar to the 

sustained adoption and intermittent adoption probit regressions, the rationale behind this finding 

is unclear.  There may be an unobservable relationship between land quality and duration of 

control driving this result.   

Conversely, producers who indicate that their land is owned either individually or through their 

family generated an additional 121.6 kg/ha on average than producers who do not own their land 

and instead lease, borrow or share their land, though this result was not statistically significant.  

Thus while the duration of land control may present a seemingly contradictory effect, the effect 

of land tenure on soybean performance is clearer.  I should note that producers with a certain or 

relatively long duration of land control do not necessarily own their land.  However, land tenure 

is a more definitive measure of farmer land ownership, and thus may be a better proxy to assess 

tenure security than the duration of land control variable.   

Table 6.4          

Estimated SARAR model results for 2015 yield   

Variables Estimate Standard 

error 

Education 16.253 39.883 

Household head -23.462 75.832 

Lead farmer 167.543** 79.830 

Sustained adopter 125.655** 63.829 

Intermittent adopter  -89.325 83.184 

Farm size 53.807** 27.868 

Soy hectares planted (2015) 57.380 61.847 

Hired labor -25.272 62.861 

Dry-season activities  -94.345** 44.638 
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Table 6.4 (continued)          

Estimated SARAR model results for 2015 yield   

Variables Estimate Standard 

error 

Intent to sell grain  275.516*** 56.976 

Family or owned land 50.458 125.298 

Can farm 3+ years -114.177** 57.969 

Lambda .644*** 0.258 

Rho .947*** 0.200 

N 437   

Note:  *Significant at 10% level; **Significant at 5% level; ***Significant at 1% level. 

 

Table 7.4 displays the results of the SARAR model for 2015 yield among the different adopter 

groups. As discussed in the Model section, the spatial lag parameter lambda (𝜆) measures the 

extent of the spatial interactions on 2015 soybean yields.  The lambda value at .644 is both 

positive and significant at the 1% level.  (Without truncation or normalization of the spatial 

weights matrix W the lambda value remains positive and significant, but to a lesser extent.)  

Recall that in creating a minmax-normalized spatial weights matrix the range of 𝜆 can only fall 

between -1 and 1.  Thus the value of 𝜆 at .644 shows a strong effect of spatial interaction on 

farmer yields.  This confirms my hypothesis that there is positive, large, and significant spatial 

autoregressive dependence in soybean yields.  In other words, the soybean yield of a given 

GROW project farmer is strongly affected by the soybean yield of neighboring GROW project 

farmers.   

This finding also underlines the presence of spatial interaction and integration among farmers, 

highlighting the potential roles that social multiplier effects may play in farmer performance in 

soybean production.  Knowledge about new agricultural technologies, particularly those that are 

new, unfamiliar and commercial in nature, can spill over within members of spatial networks.  

The positive and significant 𝜆 value in the SARAR model indicates that farmers are expected to 

have higher yields if, on average, their neighbors have higher yields.   

In terms of the individual independent variables included in my SARAR analysis, the results are 

for the most part in line with the OLS regression.  However the interpretation of the coefficients 

in the SARAR model is different than in the OLS regression.  The SARAR model assesses the 

impact of each independent variable on average farmer yield while also controlling for spatial 
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dependence, or the extent to which variation in a given farmer’s yield can be accounted for by 

the yield of a neighboring farmer.  Thus the magnitude of the various coefficients in the SARAR 

model are affected by the inclusion of the spatially lagged variable in the model.   

The presence of a lead farmer and sustained adopter have significant and positive effects on 

farmer soybean yields, and at larger magnitudes than in the OLS yield regression model.  This 

finding indicates that producers who are lead farmers and sustained adopters have, on average, 

higher yields which in turn have a positive effect on the average yields within their spatial 

network.  Further, there is a positive and significant effect of farm size on yield in the SARAR 

model, yet the effect is at a smaller magnitude than in the OLS regression.  This finding indicates 

that in addition to the spatial effects of farmer networks and experience on yield, economies of 

scale continue to play a role in successful soybean production when assessing the impact from a 

spatial perspective.   

The effect of the market access variables of dry-season activity engagement and intention to sell 

are both consistent with the OLS regression results. Engagement in dry-season activities has a 

negative and significant effect on soybean yields when controlling for spatial dependence. 

Conversely, farmer intention to sell grain positively and significantly affects soybean yields in 

the SARAR model.  As noted earlier, farmers who intend to sell their grain may be better 

integrated with markets and institutional buyers who offer more secure and potentially higher 

prices for grain output as well as for inputs and services.  Further, farmers with connection to 

markets may be in a better position to aggregate grain, receive formal technical support services, 

and reduce the cost of inputs through reduction in fixed costs and volume discounts.  These 

characteristics may contribute to the positive effect that intention to sell grain has on farmer 

yields.  Finally, farmers with a longer duration of land control have a significant and negative 

effect on the soybean yields of farmers within a spatial network, as seen in the OLS regression.   

The estimated 𝜌 value is also strong, significant, and positive with a value of .947.  Recall that 

the 𝜌 value enters the model specification only through the error terms.  Therefore the 

significant, large and positive 𝜌 value indicates that observations within the farmer sample are 

related in terms of unmeasured factors that are correlated across the distances among the 

observations.  Thus the 𝜌 value is a coefficient indicating the correlation of the residuals, rather 

than a right hand side covariate of explicit interest.   
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The effects captured in the spatial error term may relate to correlated effects as noted by Ward 

and Pede (2015).  Examples of potential correlated effects include soil and climate characteristics 

that are spatially correlated across farmer networks.  Farmers within a given spatial network may 

farm land with inherently better soils than farmers in a different spatial network.  Similarly, the 

topography and slope among spatial networks may differ, contributing to the unobserved spatial 

error effect in the model.  Further the social institutions, organizational structures and policies 

that change across spatial boundaries can affect farmer performance in agricultural technologies 

(Ward & Pede, 2015).   

In sum, as both the 𝜌 and 𝜆 values are large and greater than their standard errors, there exists 

substantial spatial dependence in yield among GROW project farmers.  As such, my results show 

that standard OLS regressions that assume independent observations may be misleading 

(Gleditsch et al., 2007). 

Table 6.5          
Estimated GS2SLS spatial autoregressive model results for 2015 yield with lead farmer spatial 

lag 

Variables Estimate Standard 

error 

Education 14.738 39.428 

Household head -17.227 75.037 

Lead farmer 182.791** 79.558 

Lead farmer lag 2843.505** 1327.867 

Sustained adopter 140.572** 64.038 

Intermittent adopter  -74.770 82.618 

Farm size 55.347** 27.713 

Soy hectares planted (2015) 63.583 61.365 

Hired labor -15.471 62.282 

Dry-season activities  -96.010** 44.191 

Intent to sell grain  280.184*** 56.625 

Family or owned land 44.146 124.022 

Can farm 3+ years -128.200** 58.232 

Lambda 0.362 0.292 

Rho -.947 0.200 

N 437   

Note:  *Significant at 10% level; **Significant at 5% level; ***Significant at 1% level. 
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The results of the augmented SARAR model that includes a spatially lagged lead farmer variable 

are presented in Table 7.5.  The additional spatially lagged variable shows the direct effect of the 

presence of lead farmers within a spatial network on average farmer yields.  The contribution of 

this model is to identify what spatial mechanism is contributing to the spatial dependence shown 

by the lambda term in Table 7.4.  A clearer understanding of how space and proximity matter, to 

what degree, is provided by the augmented SARAR model.   

The spatially lagged lead farmer variable is large, significant and positive, indicating that 

average farmer yields within a spatial network were improved by the presence of lead farmers 

within this network.  Specifically, the presence of lead farmers within a spatial network increased 

average farmer yields by 2,843.51 kg/ha.  The value of the coefficient on the spatially lagged 

lead farmer variable is relatively high and should be cautiously interpreted because such a small 

percentage (8%) of the sample are lead farmers. 

This finding underlines the success of the GROW project’s lead farmer extension model and the 

existence of knowledge spillover within spatial networks.  As a long jump agricultural 

technology, soybean production requires farmers to engage in knowledge acquisition to offset 

the steep learning curve of a new commercial crop. Farmers are unable to rely on their tacit 

knowledge, experiences and norms in soybean cultivation.  Therefore farmers must have access 

to critical information on agronomic practices and input utilization to successfully produce 

soybean.   

Lead farmers who had direct access to extension messaging and guidance were able to share this 

knowledge and training with farmers within their spatial networks.  This finding underlines the 

presence of spatial interaction and integration among farmers, highlighting the potential roles 

that social multiplier effects may play in farmer performance in soybean production.  We see that 

knowledge about new agricultural technologies, particularly those that are new, unfamiliar and 

commercial in nature, can spill over within members of spatial networks  

This finding thus has important policy considerations in that community-based extension models 

can yield positive effects for spatial networks and may have a place alongside traditional 

extension models.  Traditional extension models rely on irregular visits by extension officers 

who may or may not be integrated within the social network of a given farmer group.  Extension 

agents may also not have adequate or appropriate knowledge regarding the agronomics of 
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soybean production and input utilization and may be ill-equipped to respond to the technical 

questions and knowledge needs of smallholder farmers.  The lead farmer model instead provides 

focused extension messaging on soybean production and does so through a network-based 

approach.   

Further, as Ragsdale and Read-Wahidi (2015) show, Ghanaian female smallholders in particular 

struggle when they have to engage extension for guidance in new technologies due to traditional 

gender norms and relationships.  Thus employing extension models that are both community 

based and gender sensitive, as lead farmers in this context were also female smallholder farmers, 

may represent a new development tool to ensure adoption and high performance in the context of 

long jump agricultural technologies.   

This finding highlights the importance of farmer clustering and farmer networks in encouraging 

successful production of soybean as a long-jump technology.  As farmers face similar 

production, demographic and market access conditions and interact directly with each other they 

learn first-hand from lead farmers about improved agronomic practices.  Further, farmers learn 

from each other regarding the importance of inputs in their production and can first-hand observe 

the costs and benefits of new technologies rather than relying on information from extension 

agents, development agencies or other actors.   

In the case of soybean as a long-jump agricultural technology, there is an inherent risk and 

technical learning curve associated with the crop due to its unfamiliarity and market dependence.  

The positive effect of lead farmer presence on a spatial network’s soybean yields lends credence 

to the idea that there exists positive spatial externalities with respect to the demonstration effect 

and information and knowledge flow between neighboring smallholders.  Equipping farmers 

within a spatial network with direct extension access can thus help to reduce the uncertainty of a 

new agricultural technology, thereby improving farmer performance.   

Finally, results from the augmented SARAR model show that the lambda and rho parameters 

remain positive, but the spatial dependence parameter is no longer statistically significant.  While 

the inclusion of the spatially lagged lead farmer variable clearly reduced the overall spatial 

dependence effect in the model, it should not be discounted either or assumed to be zero.  

Though not statistically significant, there is still a level of spatial dependency among farmer 

yields within the GROW project that is unobserved and not attributed to the lead farmer effect.  
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As the spatial error term rho remains positive and significant, the augmented SARAR model 

shows unobserved correlated effects within a given spatial network that contribute to overall 

spatial dependence among yields within the network.   
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CHAPTER 7:  CONCLUSION 

 

As governments, development agencies, donors and the international community seek to identify 

new pathways to move rural African communities out of poverty, the production of profitable 

commercial crops may hold potential as a promising agricultural technology.  It is within this 

context that soybean, a crop with a large, growing and global demand, is seen as a tool 

worthwhile of investment and capable of shifting smallholders out of subsistence farming and 

into new opportunities for income generation.  While soybean farming presents significant 

opportunities for smallholders, it also carries with it complex challenges as a non-traditional and 

non-staple commercial crop.  Understanding how farmers may achieve success in soybean 

production, and continue to utilize the crop as an agricultural technology is critical to achieving 

broader goals of poverty reduction and economic growth in rural areas.   

This research fills a void in the existing literature by examining the adoption process for soybean 

as a representative example of a non-incremental, or long-jump, agricultural technology.  To do 

so, I examine three critical components of the technology adoption process.  First, I move 

beyond the idea of static, or binary, adoption choice models to examine the idea of dynamic 

adoption, or sustained, persistent adoption versus intermittent adoption.  Next, I employ a 

continuous dependent outcome variable in the adoption process research to understand how 

farmer performance in soybean as a technology is impacted by a number of different drivers and 

farmer characteristics.  Finally, I recognize the importance of space and farmer networks in 

impacting farmer performance by using a spatial autoregressive model that moves beyond more 

traditional methods that include spatial measures as an explanatory variable in linear regressions.   

Dynamic adoption recognizes that adoption decisions change over time and are not adopted at 

one point in time with permanence.  Instead, adoption is affected by decisions made in previous 

periods and is influenced by experience, among other factors.  By assessing the impact of farmer 

characteristics, market access, land rights, and economies of scale on soybean performance, I 

highlight a critical component in the technology adoption process: the role of success in 

encouraging adoption.  Farmers must not only adopt a technology in a sustained, persistent 

manner, but they must also experience a level of success in production that can generate the 

income potential of the crop.  Finally, in recognizing the role of space in soybean performance, I 

underline the importance of social learning, social networks, and farmer groups in sharing 
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information, resources, knowledge and experience.  This analysis delves into more traditional 

modes of communication in rural settings, and examines the impact of peer networks rather than 

top-down approaches more characteristic of traditional extension delivery systems.    

My findings highlight the importance of economies of scale in the production of new commercial 

crops like soybean.  Soybean production requires up-front fixed costs for farmers related to 

learning about new agronomic and production practices and making the necessary market 

linkages to source inputs and services and aggregate and sell grain.  Smaller farms and those 

without adequate land to allocate to soybean cultivation may not find soybean a profitable 

endeavor for their farm when they are unable to spread these fixed costs over larger land areas.  

Further, smaller farms may find it difficult to attract buyers who will provide a competitive price 

for their grain if their overall output is low.  If they are only able to attract intermediary buyers 

who offer relatively lower prices, they may be unable to offset the costs incurred in the soybean 

production system.   

The importance of scale in predicting sustained adoption and improved performance of long-

jump agricultural technologies like soybean points to the non-incremental nature of the crop.  

Successful soybean production and persistent adoption requires farmers to make significant 

changes to their overall production practices and to the overall focus of their farming enterprises.  

A component of this shift may include changing the scale of production for a given farmer.  In 

the context of soybean, my analysis shows that producers with larger farm sizes and those who 

devote more land to soybean cultivation may be in a better position to ultimately achieve the 

income generating potential of the technology.  Further, there may exist certain farm sizes for 

which the production of new commercial crops and the application of other long-jump 

technologies are not suitable due to a lack of scale.  This is an important consideration for 

development agencies, governments, and donor groups attempting to transition smallholders to 

new long jump technologies.  

The economy of scale finding points to two potential policy intervention areas.  The first relates 

to cooperative marketing for a new commercial crop like soybean.  Cooperative marketing and 

grain aggregation activities can attract institutional buyers and processors who can pay fair and 

competitive prices for grain, reduce post-harvest losses through shared storage facilities, and 

achieve volume discounts on input and service procurement.  These mechanisms can also 
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promote the inclusion of farmers producing on a range of different farm sizes and may offset the 

negative returns to scale for smaller farmers.  

Secondly, subsidization packages that offset the relatively high cost of inputs necessary for 

soybean production including phosphorous fertilizers and inoculum may be an area worthwhile 

of investment and attention.  While many governments do subsidize components of staple crop 

production, like maize, similar subsidy programs do not exist for new commercial crops that can 

generate significant sources of income for rural communities.  Encouraging the use of necessary 

inputs through subsidization, at least in the short term, can encourage producers, regardless of 

farm size, to apply them in their cultivation practices.    

An additional critical finding of my analysis centers on the importance of market access for 

smallholder producers engaged in soybean production.  My findings show that farmer intention 

to sell grain is a significant predictor of sustained adoption and success in soybean performance.  

Farmers producing a subsistence portfolio consisting of traditional, staple crops need not rely on 

new aspects of market integration for successful production.  Instead, their success in production 

is a result of the inherent knowledge and skills they possess with respect to these crops.  Soybean 

presents a new, complex crop that requires farmers to engage in new levels of market access to 

engage the necessary service providers, source inputs and reach buyers for their grain.   

Farmers who intend to sell their grain may have an existing level of market access that can be a 

result of a number of factors, including physical location, market engagement from other crops 

produced, or as a result of outside institutional support.  Regardless of the contributing factor, my 

research highlights the importance of market access in successful and sustained soybean 

production.  Thus if soybean is to be successful as a development engine to move rural 

communities out of poverty and improve regional economic growth, farmer penetration in 

markets must be considered.  Development agencies can help foster connections between 

institutional buyers and processors with farmer cooperatives, farmer networks and farmer 

associations.  More widespread availability of certified seed, phosphorous and inoculum would 

enable a larger proportion of farmers to access these necessary inputs.  Further, village or 

community-level processing mechanisms or enterprises would serve as an intermediary market 

for farmer grain output while also contributing processed soy products to the local animal feed 

industry. 
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My results show that engaging dry-season activities is associated with intermittent adoption of 

soybean and low performance in soybean yields.  The production of new, commercial crops like 

soybean require focus not only during production but prior to production as well.  Producers 

must engage input and seed suppliers during the dry-season, prior to planting, and must ensure 

that they have adequate labor and services to support their production.  While dry-season 

activities may be seen as an added income-generating activity, when coupled with the demands 

of soybean as a new commercial crop, they may diminish from overall farmer output and 

discourage sustained adoption.  It is difficult to know how and to what degree dry-season 

activities may compete for farmer attention in soybean production, but evidence shows that they 

are not associated with sustained adoption and high performance. Therefore, a more targeted 

investment for development agencies, governments and donors may be to focus on connecting 

farmers with markets, input and seed suppliers, and forming cooperative unions and farmer 

associations rather than encouraging producers to engage in multiple income-generating 

activities. 

New commercial crops, and particularly soybean, which requires threshing to separate the seed 

from the pod, exposes farmers to new labor demands.  This is of critical concern as rural farm 

households, and particularly women, already dedicate a large portion of time and energy on labor 

for their agricultural production.  Outsourcing labor for the production of new commercial crops, 

particularly in the planting, weeding and harvesting stages may allow farmers to focus their time 

and remaining resources on procuring high-quality seed and inputs to enhance their production, 

and engage in farmer networking to develop new skills with respect to soybean production.  The 

decision of how to allocate time and resources within the farm enterprise is associated with a 

level of sophistication and focus necessary for success in soybean cultivation.  As the use of 

hired labor in my analysis was associated with improved performance in soybean production and 

sustained adoption, my findings highlight the importance of sophistication and discernment in 

terms of resource allocation.  Providing training and education to famers in this arena may be 

beneficial to overall production in soybean among smallholders.   

A final key finding of my analysis centers on the importance of spatial networks and social 

learning in improving the performance of soybean production among smallholder farmers.  

Specifically, the steep learning curve associated with soybean as a new commercial crop results 
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in substantial knowledge spillover and social multiplier effects that take place within traditional, 

peer-based farmer networks.  As farmers within a network face similar production, demographic 

and market access conditions they can interact directly with each other to learn and observe first-

hand the importance of improved agronomic practices, the appropriate use of inputs and the costs 

and benefits of new technologies like soybean.   

This finding has important policy considerations for agricultural development programs with 

respect to developing extension approaches.  My results show that community-based extension 

models can yield positive benefits in soybean yields within a spatial network.  Farmer networks 

can serve as a knowledge and information hub and warrant a place alongside traditional 

extension models that rely on irregular visits by extension officers who may or may not be 

integrated within the social network of a given farmer group and are likely not well trained on 

soybean cultivation.  Instead, providing extension information focused on soybean through a 

social network, lead farmer model may be more appropriate.  Additionally, in the context of 

female smallholder farmers, women may feel more comfortable approaching other female peers 

for extension information rather than government extension agents who are predominately male.   

As such, the use of soybean as a development tool must be considered within the framework of 

farmer networks, peer groups and social learning.  Agricultural development programs must 

recognize the information and knowledge flow between neighboring smallholders and encourage 

responsive extension models that focus on community-based information hubs where 

information sharing, resource building and aggregation opportunities can have the largest impact.  

In the context of soybean, producers are unable to rely on their tacit knowledge, norms, and 

traditional production practices and will look elsewhere for critical information and training on 

how to produce a new commercial crop.  Investing in farmer networks to build these knowledge 

and information resources can yield sustainable extension models for farming communities.    
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