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ABSTRACT

The increasing demand for high performance power conversion systems continuously pushes for

improvement in efficiency and power density. This dissertation focuses on a topological effort to

efficiently utilize the active and passive devices. In particular, a hybrid approach is adopted, where

both capacitors and inductors are used in the voltage conversion and power transfer process.

Conventional capacitor-based converters, called switched-capacitor (SC) converters, suffer from

poor efficiency due to the inevitable charge redistribution process. With a strategic placement

of one or more inductors, the charge redistribution loss can be eliminated by inductively charg-

ing/discharging the capacitors, a process called soft-charging operation. As a result, the capacitor

size can be greatly reduced without reducing the efficiency. A general analytical framework is

presented, which determines whether an arbitrary SC topology is able to achieve full soft-charging

operation with a single inductor. For topologies that cannot, a split-phase control technique is

introduced, which amends existing two-phase controls to completely eliminate the charge redistri-

bution loss. In addition, alternative placements of inductors are explored to extend the family of

hybrid converters.

The hybrid converters can have two modes of operation, the fixed-ratio mode and pulse width

modulated (PWM) mode. The fixed-conversion-ratio hybrid converters operate in a similar man-

ner to that of a conventional SC converter, with the addition of a soft-charging inductor. The

switching frequency of such converters can be adjusted to operate in either zero current switching

(ZCS) mode or continuous conduction mode (CCM), which allows for the trade-off of switching

loss and conduction loss. It is shown that the capacitor and inductor values can be selected to

achieve a minimal passive component volume, which can be significantly smaller than that of a

conventional SC converter or a magnetic-based converter. On the other hand, PWM-based hybrid

converters generate a PWM rectangular wave as the terminal voltage to the inductor, similar to the

operation of a buck converter. In contrast to conventional SC converters, such hybrid converters

can achieve lossless and continuous regulation of the output voltage. Compared to buck converters,

the required inductor is greatly reduced, as well as the switch stress. A 80 – 170 V input, 12 – 24 V

output prototype PWM Dickson converter is implemented using GaN switches. The measured peak

efficiency is 97%, and high efficiency can be maintained over the entire input and output operating

range. In addition, the similarity between multilevel converters (for example, flying capacitor mul-

tilevel (FCML) converters) and the PWM-based hybrid SC converters is discussed. Both types of
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converters can be seen as a hybrid converter which uses both capacitors and inductors for energy

transfer. A general framework to compare these converters, along with conventional buck convert-

ers, is proposed. In this framework, the power losses (including conduction loss and switching loss)

are kept constant, while the total passive component volume is used as the figure of merit.

Based on the principle of maximizing energy utilization of passive components, a 7-level FCML

converter and an active energy buffer are designed and implemented for single phase dc-ac appli-

cations. In addition, the stand-alone system includes a start-up circuitry, EMC filter and auxiliary

power supply. The enclosed box achieves a combined power density of 216 W/in3 and an efficiency

of 97.4%, and compares favorably against the state-of-the-art designs under the same specification.

To further improve the efficiency and power density, soft-switching techniques are investigated

and applied on the hybrid converters. A zero voltage switching (ZVS) technique is introduced for

both the fixed-ratio mode and the PWM mode operated hybrid converters. The previous hardware

prototypes are modified for ZVS operation, and prove the feasibility of simultaneous soft-charging

and soft-switching operation.

Last but not the least, some of the practical issues associated with the hybrid converter are

discussed, such as practical capacitor selection, capacitor voltage balancing and other circuit im-

plementation challenges. Future work based on these topics is given.

In summary, these hybrid converters are suited for applications where extreme efficiency and

power density are critical. Through efficient utilization of active and passive devices, the hybrid

topologies can offer a greater optimization opportunity and ability to take advantage of technology

improvement than is possible with conventional designs.
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CHAPTER 1

INTRODUCTION

The use of switch-mode power supplies is prevalent in applications involving the generation and

consumption of electrical power. For instance, in data centers, power converters are needed to

convert the 400 V dc bus voltage, down to 12 V for each server, and then to 1 V for CPUs. In

electric vehicles, dc-ac converters are used to drive the electric motor. In power systems, more and

more power electronics are used to interface renewable energy sources with the grid. The most

desirable features of power converters are high power density, high efficiency, high reliability and

low cost, but there are always trade-offs among these attributes. For example, a high-efficiency

converter usually employs a lower switching frequency and thus has a larger size. A converter with

a simple structure and a low component count is likely to have high reliability, but often cannot

utilize the components as efficiently as a more complicated topology. Meanwhile, high-performance

converters incur a higher cost due to the use of advanced components, control and manufacturing

processes. Different applications rank these features with different priorities.

Due to the growing trend of electrification, more applications and functions are realized by

means of electricity, and thus power electronics are playing an increasingly pivotal role, since they

directly affect the overall performance of these systems. In many performance driven applications,

achieving simultaneous high efficiency and high power density is most important, and oftentimes

the associated complexity and cost can be accepted. The goal of this work is to explore ways to

enable further improvement of the power density and efficiency of converters.

Switch-mode power converters in general have four major elements: active devices, passive com-

ponents, topology, and control. Passive components are capacitors and inductors, which are used

to store and transfer energy during each switching cycle. Energy density, which is energy storage

capability stored by the component divided by the volume, is a major metric for passive devices.

The quality factor, which determines the amount of loss generated by the passive components, is

another important aspect. Active devices are semiconductor switches (such as MOSFETs) and

diodes, which realize the switching functions. Lower on-state resistance of the switches (or lower

forward voltage drop of the diodes) can reduce the conduction loss of the converter. Lower output

charge, Qoss, and gate charge, Qg, can reduce the switching loss. Topology is how the active and

passive components are connected. It determines the voltage and current stress of the active and

passive components, and how effectively and efficiently these devices are used. Last but not the

least, control is used to realize the topology as well as other goals of the converter, such as current
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regulation, voltage regulation and fault protection. There are also other aspects of a practical

converter, including packaging and cooling, which are also gaining in importance as the efforts

in pushing the power density boundary continue [1]. In order to improve the performance of the

power converters, progress is being made on all fronts. For example, the growing usage of planar

magnetics enables high-frequency inductors and transformers with a low profile; the latest devel-

opment in switch technologies, such as GaN FETs, promises significantly lower on-state resistance

and output/gate charge.

This work focuses on the topology aspect of power converters, with an emphasis on the fundamen-

tal utilization of the active and passive devices. Traditionally, most common converter topologies

are inductor based, meaning that the inductor is the main instrument for voltage conversion and

energy transfer. Oftentimes, the capacitors are only used to filter the current ripple in order to

obtain a steady voltage. Due to their relatively low energy density, the magnetic components are

bulky in size, and are frequently the largest component in a converter. On the other hand, there

are converters which use only capacitors in energy conversion, called switched-capacitor (SC) con-

verters [2–11]. The SC converters are shown to have a lower switch stress at high conversion ratios,

but they require a large volume of capacitors and cannot regulate the output voltage efficiently. As

a result, they are most commonly used as low power fully integrated converters. Recently, there

has been a trend to use a hybrid approach, in which both the inductor and capacitors are actively

involved in power transfer. This work explores the possible ways inductor and capacitors can be

efficiently utilized together in a converter. It will be demonstrated that utilizing both capacitors

and inductors can yield significant power density and efficiency improvement. The thesis is outlined

as follows.

Chapter 2 introduces switched-capacitor (SC) converters and reviews the fundamental limit

caused by the charge-sharing process of capacitor-based energy transfer. It then introduces the

soft-charging concept, which aims to eliminate the charge-sharing power loss and improve the

capacitor utilization of SC converters by the addition of a small inductor at the output. A general

analytical framework is presented, which can be used to determine if an arbitrary SC topology

is able to take full advantage of the soft-charging operation. A split-phase control technique is

introduced for the hybrid Dickson converter and enables it to achieve full soft-charging operation,

which is not possible with conventional two-phase control. Chapter 2 concludes with hardware

prototypes that demonstrate the superior power density and efficiency of the hybrid converters

over conventional SC converters.

While Chapter 2 presents from concept to circuit implementation, how soft-charging operation

can be achieved with a single inductor at the output, Chapter 3 explores alternative inductor

placements. In addition, it provides a method to optimally choose the capacitor and inductor

values so that the total passive component volume can be minimized. It then compares various

soft-charging topologies based on their switch stress and component volume, as a guide for topology

selection.

Chapter 4 focuses on the other drawback of SC converters, which is the inability to regulate
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the output voltage efficiently. A regulation technique is presented that achieves lossless output

voltage regulation for the hybrid SC converters, by using PWM operation similar to that of a

buck converter, but without requiring additional switches from existing SC topology. Combining

the split-phase control from Chapter 2 and the regulation technique, a hybrid Dickson converter

prototype with a wide range of input and output voltage is implemented, and can maintain a high

efficiency across the operating range.

While Chapters 2 and 3 show that the fixed-conversion-ratio hybrid SC converters have a better

performance over conventional SC and buck converters, Chapter 5 attempts to analytically show

that the regulating, PWM-based hybrid converter proposed in Chapter 4 also has a superior per-

formance compared to buck converters, especially in large conversion ratio applications. A general

framework is developed that can be used to compare different hybrid and non-hybrid topologies. In

this framework, the power losses of the converters are designed to be the same, and the total passive

component volume is used to reflect the performance of a converter. Flying capacitor multilevel

(FCML) converters and the hybrid Dickson converters are used as examples of converters that

utilize both capacitor and inductor for energy transfer. It is shown that both of these converters

can achieve much higher power density at the same power loss level, compared to conventional

buck converters. Converter prototypes are also implemented to support the theoretical analysis.

Based on the concept of high energy utilization, Chapter 6 presents the design and implemen-

tation of a flying capacitor multilevel converter and an active energy buffer for single phase dc-ac

or ac-dc applications. The multilevel topology reduces the voltage ripple seen by the inductor and

increases the equivalent ripple frequency, both of which reduce the required inductor size. On the

other hand, the flying capacitors are designed with a large voltage ripple at the switching frequency,

resulting in a high energy utilization. Therefore, both the capacitors and inductor are small and a

high power density design is possible. For the active energy buffer, a new series-stacked topology

is proposed, which is able to achieve high energy utilization of the capacitor and high efficiency

simultaneously. The combined inverter and buffer, together with the heat-sink, achieve a power

density of 216 W/in3 and an efficiency of 98.4%.

A common technique to reduce converter size and improve efficiency at high frequency operation

is to use soft-switching techniques. In Chapter 7, some zero voltage switching (ZVS) techniques

are explored for hybrid converters, enabling potentials for an even higher power density by mini-

mizing the switching loss and drain-source voltage ringing. Hardware prototypes from the previous

sections are modified to support ZVS operation, and measured results show a significant efficiency

increase for the fixed-ratio hybrid converter, and improved light-load efficiency for the PWM hybrid

converter.

Chapter 8 discusses some of the practical issues associated with the hybrid converter, such as

practical capacitor selection, capacitor voltage balancing and other circuit implementation chal-

lenges. It also suggests some future work based on these topics. Finally, conclusions are given in

Chapter 9.
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CHAPTER 2

SOFT-CHARGING OPERATION - IMPROVING THE

CAPACITOR UTILIZATION OF SC CONVERTERS

In this chapter, the hybrid converters are obtained by adding one or more inductors to existing

conventional SC topologies. It will be shown that with the additional inductors, the charge-sharing

loss of SC converters can be eliminated – an operation called soft-charging. As a result, the

capacitor values can be reduced, thereby significantly improving the power density of SC converters.

In addition, it is shown that resonant and soft-charging SC converters are closely related and it

is possible to use similar techniques to analyze and synthesize both types of converters. Then a

formal method is presented to analyze arbitrary SC topologies to determine their suitability for full

soft-charging operation with a single additional inductor. It is found that the series-parallel and

Fibonacci topologies are able to achieve full soft-charging operation, while the Dickson topology

can achieve partial soft-charging operation. A split-phase control method is then introduced to

completely eliminate charge-sharing loss for the Dickson converter. Moreover, simulation and

hardware results are provided to validate the proposed technique and analysis, and to demonstrate

the improved power density and efficiency of the hybrid converters.

2.1 Background on Switched-Capacitor Converters

In this section, the background on SC converters is presented, and the charge-sharing loss mecha-

nism explained. Figure 2.1 shows the energy density (energy storage capability per unit volume) of

some surface mount capacitors and inductors.1 It can be seen that on average, the energy density of

capacitors is higher than that of inductors by a factor of 10 – 100. A similar trend can be observed

for chip-integrated capacitors and inductors. Therefore, for the same amount of stored energy,

capacitors can be less than one tenth the size of inductors. This is the fundamental motivation

why energy transfer by capacitors should be considered. In addition, SC converters also tend to

achieve a higher efficiency at large voltage conversion ratios, due to their efficient utilization of

switches [12]. These advantages make SC converters desirable for a broad range of applications,

including voltage balancing [3,4], energy buffering [5], CMOS integrated power conversion [6,8,13]

and renewable energy harvesting [9].

1Energy of inductor is calculated as 1
2
LI2

sat, where Isat is the saturation current of the inductor. The energy of
capacitor is calculated by 1

2
CV 2. The energy density of the X7R ceramic capacitors has accounted for the derating

of capacitance value with DC bias.
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Figure 2.1: Energy density of selected inductors and capacitors.

+
−Vin

+

Vload

-

Cout

Cfly

φ1 φ2

φ1

φ2

(a) Schematic drawing.

+
− Vin

Cfly

VoutCfly

+
−

Phase φ1 Phase φ2

+
−

Vout

(b) Equivalent circuits.

Figure 2.2: A simple 2-to-1 SC converter.

A simple conventional 2-to-1 SC converter is shown in Fig. 2.2a. There are two pairs of switches,

operating with a non-overlapping 50% duty ratio. In Phase φ1, the flying capacitor, Cfly, is in series

with the output, while in Phase φ2, Cfly is in parallel with the output, as shown in the equivalent

circuits in Fig. 2.2b. The no-load steady state solution of the circuit is VCfly
= Vout = 1

2Vin.

A generic SC converter model as shown in Fig. 2.3 is commonly used to capture the steady-

state characteristics of an SC converter. The model consists of an ideal fixed-conversion-ratio stage

with an output-referred impedance [14]. The output impedance directly reflects the efficiency of

the converter, and incorporates both the conduction loss and the capacitor charge-sharing loss.

This impedance is usually plotted against the switching frequency or capacitance value to reveal

the characteristics of the SC converters. A typical such plot is shown in Fig. 2.4, which shows

two asymptotic operating regions for SC converters: the fast switching limit (FSL) and the slow

switching limit (SSL) [12] [15–18]. The FSL occurs at high switching frequencies, when the dom-

inating loss is the conduction loss due to the resistance of the switches as well as the ESR of the

capacitors. As can be seen in Fig. 2.4, the output impedance in the FSL region is independent of

the switching frequency. On the other hand, the SSL occurs at low switching frequencies, when the
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output impedance is dominated by the charge-sharing loss of the capacitors during the charge re-

distribution process at phase transitions. The SSL impedance depends on the switching frequency

and capacitor values, and cannot be reduced by lowering the series resistance. In-between the

FSL and SSL, the output impedance can be approximated [19] or obtained analytically [20] and

numerically [18].

Based on the model in Fig. 2.3, the efficiency of an SC converter is given by

η =
n
mVin −RoutIout

n
mVin

. (2.1)

Evidently, to maximize the efficiency, the output impedance, Rout should be minimized. One

straightforward way to reduce Rout is to simply increase the switching frequency so that the con-

verter operates in the FSL region. However, it is often not favorable to do so, since the transistor

switching losses, as well as the bottom plate capacitance losses in integrated SC converters, increase

as the switching frequency increases. Alternatively, increasing the flying capacitor values can push

the FSL region of operation to a lower frequency, but it inevitably increases the circuit size and

cost, undermining the energy density advantage of capacitors.
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Figure 2.5: Basic capacitor charging scenarios.

Figure 2.6: Capacitor voltages and current waveform in charge redistribution process.

Fundamentally, the SSL power loss is the result of charging/discharging the capacitor with a

constant voltage source or another capacitor, as illustrated in Fig. 2.5a and Fig. 2.5b respectively.

All switching states of an SC converter can be reduced to these two basic scenarios. Without loss

of generality, we will examine case 2 (Fig. 2.5b) more closely since case 1 (Fig. 2.5a) can be seen

identical to case 2 with C2 being infinite. When the switch, S1, closes, since the capacitor voltage

cannot change instantaneously, the mismatch of the initial capacitor voltages will be present across

the series resistor, resulting in a large instantaneous current as shown in Fig. 2.6. The power loss

incurred for complete charge redistribution for the schematic showing in Fig. 2.5b can be easily

calculated and is given by

Ploss =
1

4
C1(VC1(t=0) − VC2(t=0))

2fsw

=
1

4
C1∆V 2

(t=0)fsw , (2.2)

assuming C1 = C2. This equation is valid provided that the duration of each phase is much larger

than the time-constant of the circuit, i.e. in SSL region of operation. As seen in Eq. (2.2), this

power loss does not depend on the value of the series resistance. Instead, it depends on the initial

voltage difference between the capacitors. Additionally, in periodic steady state operation, the

initial difference in capacitor voltages in one cycle of operation is due to the charge transfer in the
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previous cycle, and thus is proportional to the current drawn by the load and inversely proportional

to the capacitor values and the switching frequency. These relations are summarized below.

∆V ∝ 1

fsw
,

1

Cfly
, Iout, (2.3)

where Cfly represents the overall flying capacitor value, and for the circuit in Fig. 2.5b, it is simply

C1. Substituting (2.3) into the power loss equation in (2.2), we have

Ploss ∝
1

fsw
,

1

Cfly
, I2

out. (2.4)

Combining Eq. (2.4) and Fig. 2.3, one can see that the power loss due to the charge sharing process

manifests as an output impedance which is inversely proportional to the capacitance value and

the switching frequency, giving the SSL region of operation in Fig. 2.4. For more complex SC

converters, more complicated charge sharing scenarios (involving multiple capacitors in series or

parallel) will arise, but the general relationship stays the same, as shown by the analytical results

given in [12].

Another way to look at the limitation imposed by the charge-sharing loss is to examine the

energy utilization of the capacitors, µC , which is defined as the energy transfered by the capacitor

in a cycle, divided by the peak energy stored by the capacitor [5]. For a fixed amount of energy

delivered to the load, high energy utilization means a lower stored energy and smaller capacitor

size, and vice versa. For a single capacitor, it is given by

µC =
1
2C(V + 1

2∆VC)2 − 1
2C(V − 1

2∆VC)2

1
2C(VC + ∆VC)2

, (2.5)

where ∆VC is the change in capacitor voltage, and VC is the nominal capacitor voltage. It can be

simplified to

µC =
2∆V
V

(1 + 1
2

∆V
V )2

. (2.6)

It can be seen that the utilization of the capacitor can be improved by allowing a larger ∆V .

However, from Eq. (2.2), the power loss of the converter increases quadratically as ∆V increases,

resulting in a fundamental conflict. As an example, the efficiency and capacitor utilization of the

2-to-1 converter in Fig. 2.2a are plotted in Fig. 2.7. For small capacitor voltage ripple, efficiency

decreases linearly and utilization increase lineary, approximately. In order to achieve a 95% ef-

ficiency, the capacitor utilization is less than 10%, meaning that the capacitor needs to store 10

times more energy than it delivers to the load.
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Figure 2.7: Capacitor voltages and current waveform in charge redistribution process.

2.2 Soft-charging Operation with an Inductor

In order to eliminate the capacitor charge sharing loss and improve the utilization of capacitors,

the soft-charging technique was proposed [21]. In soft-charging operation, a controlled current

load is placed in the charging/discharging paths of the capacitors. The majority of the voltage

mismatch between the capacitors and the input/output will be present across the current load,

instead of across the switch resistance. With this technique, the capacitor charging loss that

is present in conventional SC converters is recovered through the controlled current load. As a

result, smaller capacitance can be used without sacrificing the efficiency, despite the resultant

larger capacitor voltage ripples. This is the key benefit of soft-charging operation. In practice

however, the majority of the loads are voltage-source loads or current-source loads with large

decoupling capacitors. Therefore, an interfacing element typically has to be inserted between the

SC converters and the voltage-source load. Buck converters can be such an interfacing element,

providing controlled charging/discharging of the capacitors while regulating the output voltage

[21, 22]. Since an inductor allows instantaneous change of its terminal voltage, it can also act as

a controlled current load [19, 23]. In fact, the buck converter is able to facilitate soft-charging

operation precisely because of the inductor it contains.

This section investigates soft-charging operation of SC converters by adding an inductor to

form an LC filter at the output node of the voltage step-down topologies. The inductor permits

its terminal voltage to change instantaneously to accommodate the voltage mismatch between the

flying capacitors and the load during phase transitions. Furthermore, it will be shown that resonant

operation can also be achieved using the same technique.

To illustrate the technique, the hybrid 2-to-1 SC converter with an output LC filter is shown in

Fig. 2.8. Figure 2.9 plots the simulated output impedance as a function of frequency for both the

original SC converter (Fig. 2.2a), as well as the hybrid converter (Fig. 2.8). It can be seen that for

the original SC converter, the output impedance reduces as the frequency increases, while leveling
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Figure 2.8: A 2-to-1 SC converter with an inductor.

  

Figure 2.9: Simulated output impedance vs frequency.

off at high frequencies, marking the transition from SSL to FSL. The output impedance curve is

more complicated for the hybrid converter, but a few key observations can be made. First, with

the additional inductor, the hybrid converter is able to reach the same minimum impedance at a

much lower switching frequency, due to the elimination of the current transient and associated loss.

Therefore, the proposed converter can achieve the same efficiency as conventional SC converters

while using a significantly lower switching frequency, or equivalently, significantly smaller flying

capacitor values. The second observation is that, at lower frequencies, the output impedance

oscillates around the SSL impedance of the conventional SC converter.

The minimum frequency at which the converter is able to stay in FSL operation can be defined

as fcrit and for the hybrid converter in Fig. 2.8, it is given by the resonant frequency of the circuit:

fcrit =
1

2π
√
LC

, (2.7)

where L is the added inductance and C is the collective capacitance in series with the inductor.

In the case of the example SC converter in Fig. 2.8, the capacitance is simply Cfly. For more

complex SC converter topologies, this equivalent capacitance can be obtained by calculating the
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(a) fsw = f1 > fcrit. (b) fsw = fcrit. (c) fsw = f2 < fcrit.

Figure 2.10: SC stage voltage (Vsc in Fig. 2.8) and inductor current of the modified 2-to-1
converter.

equivalent series and parallel connected capacitance at the inductor input node for each phase.

For instance, for the 4-to-1 Dickson converter shown later in Fig. 2.13, the effective capacitance in

Phase 1 is (C1 ‖ C2 +C3) and the capacitance in Phase 2 is (C2 ‖ C3 +C1). Both phases have the

same equivalent capacitance of 1.5C1 assuming C1 = C2 = C3. For converter topologies that have

different equivalent capacitance in each phase (such as the Fibonacci and series-parallel), there is

a critical frequency for each phase, and the overall critical frequency is the weighted average of the

individual frequencies according to the duty ratio.

To understand the frequency dependent behavior of the modified SC converter, the terminal

voltage before the inductor (Vsc in Fig. 2.8) as well as the inductor current are shown in Fig. 2.10

at 3 different frequencies - the resonant frequency (fcrit) as well as below and above the resonant

frequency (f2 and f1, respectively). It can be seen that, above the resonant frequency, the current

waveform (Fig. 2.10a) is smooth and has a small ripple, due to the filtering effect of the induc-

tor. Moreover, since the flying capacitor is always in the same current path as the inductor, the

conventional current spikes of the capacitor are eliminated, and the capacitors transfer charges

in soft-charging mode, with no charge-sharing loss. The effect of this can be seen directly from

Fig. 2.9, where for switching frequencies larger than the critical frequency, the SC converter has the

minimum FSL output impedance. As the switching frequency is reduced, the current waveform has

larger ripple, while having the same average value, since the load current is kept constant. At the

resonant frequency, fcrit, the inductor current takes the shape of a rectified sinusoid, and the current

reaches zero at moments of phase transitions, as shown in Fig. 2.10b. Thus, zero current switching

(ZCS) can be achieved at the resonant frequency. As can be seen in Fig. 2.9, the impedance of the

converter at resonance is slightly larger than the FSL impedance. This is because the sinusoidal

current has larger RMS value than the near constant current in FSL operation. As the switching

frequency is reduced further (Fig. 2.10c), the inductor current drops negative during each cycle,

resulting in a much larger RMS current for the same average power delivered. This is why the

impedance increases sharply for fsw < fcrit. At one half of the resonant frequency defined by (2.7),
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(a) Conventional SC converter. (b) Soft-charging SC converter.

Figure 2.11: Power loss at different frequencies for different Rds,on values, for the circuit in
Figs. 2.2a and 2.8. Simulation parameters: C = 10 µF , L = 0.1 µH.

the current becomes nearly a full-wave sinusoid, giving a peak impedance in Fig. 2.9. This peak

repeats itself at lower frequencies when the current waveform has multiple periods of the full-wave

sinusoid, at fsw = 1
nfcrit, where n is an integer and n ≥ 2. Therefore, fcrit given in (2.7) sets the

lower bound on the switching frequency for which near FSL impedance in soft-charging operation

can be achieved.

Therefore, the reduction in frequency and capacitance with soft-charging operation can be

achieved but at the expense of adding an inductor. While the trade-off between the capacitor

values and inductor values should be evaluated on a case-by-case basis, in general, adding an in-

ductor results in better utilization of passive components than simply using larger capacitance.

For a traditional SC converter circuit, whether the high current transient takes place is determined

by the time constant of the circuit, RESRC, where RESR is the series resistance in each conduct-

ing branch and C is the capacitance in each branch. Thus the critical frequency at which the

conventional SC converter enters FSL operation is

fcrit =
1

2πRESRC
. (2.8)

It can be seen that the switching frequency is inversely proportional to the product of the equivalent

series resistance and capacitance. Thus, for a given desired critical frequency, the capacitance must

be increased if the resistance is lowered. This limitation can be clearly seen in Fig. 2.11a, where the

power loss of a pure SC converter is plotted against two different switch Rds,on values. Even when

the Rds,on of the switch is reduced by a factor of 10, to see a factor of 10 reduction in the power

loss, one needs to increase the switching frequency by a factor of 10, or equivalently, increase the

capacitor values by a factor of 10. This is due to the inversely proportional relationship among the

resistance, capacitance and switching frequency. On the other hand, with the additional inductor

presented here, the critical frequency is decoupled from the series resistance, and only depends
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on the inductance and the capacitance, as shown in (2.7). The effect can be seen in Fig. 2.11b,

where a reduction in the series resistance instantly brings a nearly equal reduction in power loss,

without the need to increase the capacitance nor the frequency. Therefore, the addition of the

inductor gives the designer the choice of using smaller on-state-resistance switches and introduces

a new design dimension in which the converter can be optimized. Also observed in Fig. 2.11b is that

oscillation does not occur for the case of Ron = 100 mΩ. This is because the system is over-damped

(R2

√
C
L < 1) for large resistance values. In this case, the RC time constant starts to dominate

the frequency response of the system again, and soft-charging operation does not take place. As a

result, there is no change in power loss by adding the small inductor, as can be seen by comparing

the red dotted lines in Fig. 2.11a and Fig. 2.11b. In this case, a larger inductance would have been

needed to achieve a reduction in power loss in the SSL region. Therefore, in addition to the critical

switching frequency requirement given in (2.7), the soft-charging (as well as resonant) SC converters

need to be designed such that the system is under-damped (R2

√
C
L < 1). Nevertheless, a lower series

resistance is one of the goals for power converters aiming for high conversion efficiency, especially

for applications with small load resistances. This naturally coincides with the design goal of the

soft-charging SC converters. In discrete implementations, the addition of the inductors often results

in overall improvement in energy utilization of the passive components. While the inductor is more

difficult to integrate than the capacitors given the current IC technology, the energy density and

quality of integrated inductors are improving as more advanced processes are adopted [24–26], and

the proposed converter is able to take advantage of the progress and advancement of technologies

in inductors, capacitors and switches simultaneously.

2.3 Analyzing an Arbitrary SC Topology for Soft-Charging Operation

It has been shown in the previous section that resonant and non-resonant soft-charging operation

are closely related and both modes of operation can be achieved with a single additional inductor.

Since resonance with the inductor at the output can be viewed as a particular case of soft-charging

operation at a special switching frequency, only the term, soft-charging, is used in this section

for convenience. The example used was a 2-to-1 SC converter, which easily satisfies the second

condition given in Section 2.2, which states that to achieve full soft-charging operation, there

can be no voltage mismatch among the flying capacitors during phase transitions. The example

2-to-1 SC converter satisfies this condition easily since it only has a single flying capacitance.

More complicated SC converters have multiple flying capacitors connected in a number of different

configurations. Therefore, it is of great interest to determine whether this proposed technique can

be broadly applied to other SC converter topologies. To answer this question, a general method is

derived in this section to determine if an arbitrary SC converter topology can operate in resonance

or soft-charging operation with the addition of an output inductor [27,28].

In essence, the proposed method examines the charge flow characteristics of an SC converter
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Figure 2.12: 4-to-1 Dickson topology.
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Figure 2.13: 4-to-1 Dickson topology in each phase.

topology and observes the change in capacitor voltage subject to Kirchhoff’s voltage law (KVL)

constraints. In each phase of the SC converter, the voltage across a capacitor changes according

to the charge flow in the given phase. When the converter switches to the next phase, KVL

poses new constraints on each component. Complete soft-charging is achieved if and only if the

ideal capacitor network satisfies KVL at all times, including at phase transitions. If during any

period, the KVL constraint is not satisfied, the voltage discrepancy will appear across the series

resistances, resulting in a charge transfer impulse. The KVL constraint is present whether soft-

charging or resonant operation is of interest, and thus the analysis presented in this section applies

to both operations.

2.3.1 General analysis using Dickson converter as an example

The analysis method in this work is illustrated with a 4-to-1 SC converter in Dickson configuration

[6, 29, 30] shown in Fig. 2.12. To simplify the analysis, a constant current source is used as the

load for this and all following examples, while we note that a practical implementation would use

a magnetic-based converter or an inductor. The two phases of the Dickson topology are shown in

Fig. 2.13a and Fig. 2.13b respectively. In each phase of Fig. 2.13, the circuit consists of a number

of closed loops, and a KVL equation can be written for each loop. For a circuit with n nodes

and b components, a total of b − (n − 1) independent KVL loop equations exist. For example,

the following two independent KVL equations can be written for Phase 1 of the Dickson converter

14



(Fig. 2.13a): Vin − VC3 − Vout = 0

VC2 − VC1 − Vout = 0 ,
(2.9)

and for Phase 2 (Fig. 2.13b): VC3 − VC2 − Vout = 0

VC1 − Vout = 0 .
(2.10)

These KVL equations can be written in a matrix-vector-product form as

Aiv
i = 0, (2.11)

where Ai is called the reduced loop matrix of the ith phase [31] and the voltage vector v is defined

as

v = [vin vc1 vc2 vc3 vout]
T (2.12)

= [vin vc
T vout]

T . (2.13)

In this analysis, the entries of the loop matrices are positive if the circuit element is traversed

from the negative terminal to the positive terminal and vice versa. Combining the definitions in

Eqs. (2.11) and (2.12) and the KVL equations in Eqs. (2.9) and (2.10), the loop matrices are found

to be

A1 =

[
1 0 0 −1 −1

0 −1 1 0 −1

]
and A2 =

[
0 0 −1 1 −1

0 1 0 0 −1

]
.

Denoting the voltage vector at the start of phase 1 as v1, KVL analysis yields

A1v1 = 0, (2.14)

which captures the KVL constraints given by Eq. (2.9) at the moment when the converter has

begun Phase 1 operation. At the end of Phase 1, the voltage vector becomes v1 + ∆v1, creating

a second KVL constraint:

A1(v1 + ∆v1) = 0, (2.15)

where ∆v represents the change in voltage due to charge being delivered to the load, and is in the

form of [∆vin ∆vc
T ∆vout]

T , similar to the voltage vector in Eq. (2.12) . Since both Eq. (2.33) and

Eq. (2.34) must be satisfied, a resulting constraint is that the vector ∆v must satisfy

A1∆v1 = 0. (2.16)

From a circuit intuition point of view, Eq. (2.16) describes the fact while the individual node

voltages can (and will) change as a result of charge transfers, the sum of the changes in a KVL
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loop must be zero. Similarly for Phase 2, we have

A2∆v2 = 0. (2.17)

Note that the ∆vin component of ∆vi is typically zero since the input voltage is considered constant.

This information can be included in the loop matrices by adding a row of [1 0 0 0 0] to both A1 and

A2, resulting in A1m and A2m respectively, where the subscript m indicates a modified reduced

loop matrix. Correspondingly, Eq. (2.16) and Eq. (2.17) become

A1m∆v1 = 0 (2.18)

A2m∆v2 = 0 . (2.19)

The solution to Eq. (2.18) and Eq. (2.19) represents the set of permissible voltage changes that

satisfy KVL and ∆vin = 0. This solution is the nullspace of A1m and A2m, by definition. Let

w and u be the collective bases for nullspaces of A1m and A2m respectively. It follows that any

solution to Eq. (2.18) and Eq. (2.19) can be represented by a linear combination of the basis vectors:

∆v1 = a1w1 + a2w2 (2.20)

∆v2 = b1u1 + b2u2 . (2.21)

In the case of the 4-to-1 Dickson converter, such bases can be found2 as

w =




0

0.607

0.763

−0.157

0.157




0

−0.482

0.131

−0.613

0.613



 and u =




0

0.362

0.398

0.761

0.362




0

0.518

−0.664

−0.146

0.518



 .

For conventional SC converters, we have the additional constraint that

∆v1 = −∆v2 , (2.22)

from the condition of periodic steady-state operation. This is because in a capacitive network, the

voltage changes must sum up to zero in a full switching cycle. Combining Eq. (2.20) Eq. (2.21)

and Eq. (2.22), we have

a1w1 + a2w2 + b2u1 + b2u2 = 0 . (2.23)

2For example, by using the command “null” in Matlab, which will yield a set of orthonormal basis vectors.

16



Note that Eq. (2.23) can be written in a matrix form as

[
w1 w2 u1 u2

]

a1

a2

b1

b2

 = 0 . (2.24)

For the conventional Dickson SC converter, no solution for Eq. (2.24) can be found, except for the

trivial case of zero. This means that no voltage change exists for the circuit that satisfy KVL at

all times. This result is reassuring and consistent with the behavior of conventional SC converters,

where it has been shown in the previous sections that this instantaneous voltage mismatch at phase

transitions is what gives rise to the power loss. Hence, conventional SC converters have to rely

on high switching frequency or larger capacitor values to minimize the voltage mismatch and the

associated power loss.

However, with soft-charging operation, the SC stage output node is connected to an inductor,

and the inductor voltage is allowed to change instantaneously during phase transitions, as opposed

to the capacitor voltages, which must be continuous. Stated in another way, the parameter ∆vout

defined previously is no longer a state variable in a switch-linear circuit, and can be discontinuous.

As a result, the change in output voltage in Phase 1 due to the current load, ∆v1
out, does not

necessarily equal −∆v2
out. Therefore, the inductor introduces one more degree of freedom to the

system. To mathematically express this additional degree of freedom, the bases w and u can be

modified by removing the last element in each column (the entry that represents ∆vout), resulting

in the new bases w̄ and ū. Now, replacing the bases in Eq. (2.24) with the newly formed w̄ and

ū, we obtain for the soft-charging converter:

[
w̄1 w̄2 ū1 ū2

]

a1

a2

b1

b2

 = 0 . (2.25)

Mathematically, the matrix in Eq. (2.25) has a reduced rank compared to the one in Eq. (2.24),

and thus a non-zero solution can be found.

Solving Eq. (2.25) for the Dickson converter, we obtain
a1

a2

b1

b2

 =


0.120

−0.697

−0.607

−0.364

 . (2.26)
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The voltage change vectors in each phase can then be found using Eq. (2.20) Eq. (2.21), yielding

∆v1 =


0

0.408

0

0.4088

−0.408

 and ∆v2 =


0

−0.408

0

−0.408

−0.408

 . (2.27)

Note that the original bases are used to obtain the voltage change at each node. From Eq. (2.27),

it can be seen that the net change in the capacitor voltages is zero (i.e., each column adds to zero),

except for the last entry. This entry represents ∆vout, which is the node that can be discontinuous

owing to the soft-charging operation. Having obtained the change in capacitor voltage required

to satisfy KVL in each phase, we can then calculate the required capacitance for soft-charging

operation as:

Cj = qj/∆vcj , (2.28)

for each capacitor j. Equation (2.38) requires the charge that flows into each flying capacitor to be

found for each phase. For any well-posed switched-capacitor topology, a charge flow vector can be

obtained for each phase either by inspection [12] or Kirchhoff’s current law [15]. In this work, the

charge flow vector is defined as the vector of charge that flows into the positive terminal of each

element in the circuit and is given in the form of

q =
[
qin qc1 qc2 qc3 qout

]
.

The charge flow vectors for the Dickson converter of this example are found to be

q1 =
[
−1 1 −1 1 2

]
and q2 =

[
0 −1 1 −1 2

]
.

Together with the voltage change vector found in Eq. (2.27), the capacitor values are obtained

using Eq. (2.38) and are simplified as follows.C1

C2

C3

 =

 1

∞
1

 .

It can be seen that the Dickson topology can achieve complete soft-charging only when C2 = ∞
and C1 = C3. In practice, this means that it can approach soft-charging with a C2 large enough

compared to C1 and C3. As can be seen from Eq. (2.27), the output voltage ripple has the same

magnitude as the voltage ripple of C1 and C3 under soft-charging operation. Thus, for soft-charging

operation with the Dickson converter, a designer would want to minimize the charging/discharging

loss by maintaining a relatively large C2/C1 ratio while keeping the output ripple of the SC stage
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tolerable with a second-stage converter or an inductor.

To summarize, the following steps are used to determine whether any given SC topology is

compatible with soft-charging or resonant operation using a single inductor connected to the output

of the SC stage:

1. Obtain the reduced loop matrix for each phase (A1 and A2) using KVL analysis.

2. Add a row of [1 0 0 ... 0] to A1 and A2, obtaining A1m and A2m.

3. Find the collective nullspace bases of A1m and A2m (w and u respectively).

4. Remove the last row of w and u to obtain w̄ and ū.

5. Use Eq. (2.25), Eq. (2.20) and Eq. (2.21) to find the change in capacitor voltages.

6. Find the charge transfer vector for each capacitor [12,15].

7. Use Eq. (2.38) to find the capacitance values required for soft-charging.

As demonstrated in this section, for a two-phase SC dc-dc converter, if a capacitor voltage change

vector, ∆vc, can be found to satisfy KVL at all times, and the resultant capacitor values required

are practical (finite and positive), the given topology is able to perform soft-charging and resonant

operation and will exhibit no charging/discharging loss. Otherwise, at least one loop of the circuit

will not be able to perform soft-charging, and the benefit will be limited.

2.3.2 Simulation verification

To verify that the analytical method is correct, the Dickson converter shown in Fig. 2.12 is simulated

using LTSpice with simulation parameters given in Tables 2.1 and 2.2. A total capacitance of 30

µF is used for the flying capacitors. In hard-charging (conventional) operation, an additional 100

µF output capacitor is added in parallel to the current load while there is no output capacitance

in the soft-charging simulation. The converters are operated at a fixed duty ratio of 0.5. The

simulated power losses are plotted in Fig. 2.14. It can be seen that the hard-charging power loss

decreases linearly as switching frequency increases, while leveling off at high frequency, showing

Table 2.1: Simulation parameters.

Vin 5 V
Iload 2 A

Ron 10 mΩ
RESR 1 mΩ

Co, hard-charging 100 µF
Co, soft-charging 0.1 µF
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Table 2.2: Flying capacitor values.

Configuration C1 (µF) C2 (µF) C3 (µF)

Hard-charging 10 10 10
Soft-charging 1 10 10 10
Soft-charging 2 5 20 5

105 106
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Soft-charging 1
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Figure 2.14: Power loss of Dickson converter at different frequencies.

the transition from SSL to FSL. In soft-charging operation, a significant reduction in power loss at

lower frequencies is seen when the capacitors are such that C1 = C2 = C3, as in the hard-charging

case. However, a more prominent reduction is seen when the capacitor values are chosen such that

C2/C1 = 4, plotted in Fig. 2.14 as “Soft-charging 2”. This confirms that the Dickson converter can

approach full soft-charging by maintaining a high C2/C1 ratio, as predicted by the analysis in this

work.

The currents through the capacitor C2 of the Dickson SC converter (Fig. 2.12) in hard-charging

and soft-charging operations with the converter switching at 250 kHz are shown in Fig. 2.15. The

different waveforms are shifted apart in the time axis for clearer observation. It can be seen

that under hard-charging condition, the capacitor current resembles the exponential discharge, as

expected. With soft-charging 1, both the magnitude and the width of the impulse are reduced,

while the tail of the exponential decay is raised. In the soft-charging 2 case, with capacitor values

selected according to the analysis result, the height and the width of the impulse are further reduced

and current waveform resembles more of a square wave. The transient effect is not completely

eliminated, due to the fact that perfect soft-charging cannot be achieved. To quantify the change

in the current waveform, the RMS and the average currents through the capacitor for one phase

duration are calculated and tabulated in Table 2.3. It can be seen that while in all cases the

capacitor supplies the same average current over a phase duration, the RMS value of the current
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Figure 2.15: Current waveform of capacitor C2 of the Dickson SC converter.

Table 2.3: The RMS and average current of capacitor C2 in a single phase.

Configuration RMS current (A) Average current (A)

Hard-charging 2.19 1.00
Soft-charging 1 1.40 1.00
Soft-charging 2 1.11 1.00

decreases from hard-charging operation to soft-charging operation. Again soft-charging 2 is an

improvement over soft-charging 1. Thus, the soft-charging operation reduces the impedance in the

SSL region due to the improvement in the charging and discharging current waveform.

2.3.3 Application to other topologies

The general analysis method proposed is applied to four additional commonly used two-phase

switched-capacitor converter topologies: series-parallel, ladder, Fibonacci and doubler. The schematic

drawings are shown in Fig. 2.16a, 2.16b, 2.16c and 2.16d respectively. The same analysis is repeated

for each of them and the results are shown in Fig. 2.17.

It can be seen that for the series-parallel converter, a simple requirement for soft-charging is that

all the flying capacitors have the same value. Under soft-charging condition, the output voltage

ripple is shown to be equal to N − 1 times the change in any of the capacitor voltages, where N

is the conversion ratio. These observations agree with the experimental work in [21]. In addition,

the Fibonacci converter is also found capable of soft-charging operation with equal capacitors. On

the other hand, for the ladder configuration, one can see that a negative capacitance is needed on

C2 for soft-charging operation, which is not achievable. This means that the change in capacitor

voltage of C2 is in the opposite direction of what is required to satisfy KVL. Thus, the single-

output ladder topology is not compatible with soft-charging without modification, and a limited
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Figure 2.16: Common switched-capacitor converter topologies.
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Figure 2.17: Voltage change vectors and relative capacitor values for soft-charging operation.

improvement is expected. As for the doubler converter, both C1 and C2 have to be infinite for

complete soft-charging, indicating a partial soft-charging capability similar to that of the Dickson

converter.

To verify the analysis results, the circuits shown in Fig. 2.16 are simulated with the same pa-
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Figure 2.18: Power loss of hard-charging and soft-charging SC converters from LTSpice
simulation.

rameters as those of the Dickson converter. Equal flying capacitors are used in all cases. Again, a

constant current source is used as the load instead of an inductor to simplify the simulation and

remove the effect of resonance, since in practice, operation below the critical frequency is to be

avoided as shown in Section 2.2. The corresponding power loss curves are plotted in Fig. 2.18. It

should be noted that the power loss values are not intended for cross-comparison between different

SC topologies. Rather, it is the reduction of the power loss by changing from hard-charging oper-

ation to soft-charging operation that is of key interest here. For both the series-parallel converter

and the Fibonacci converter, soft-charging operation results in a significantly lower power loss in

SSL region than in the hard-charging case, and the loss is almost independent of the frequency. The

ladder configuration only receives very limited benefit from soft-charging and a strong frequency

dependency is still seen on the power loss plotted in Fig. 2.18b. The doubler converter shows

moderate improvement with soft-charging. These simulation results agree with the prediction of

the analytical technique presented earlier.

Since the Fibonacci converter is shown to be able to achieve full soft-charging operation, it is
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Figure 2.19: Current waveform of capacitor C3 of the Fibonacci converter.

Table 2.4: The RMS and average of the absolute current of capacitor C2 of the Fibonacci
converter.

Configuration RMS current (A) Average current (A)

hard-charging 1.45 0.800
soft-charging 0.816 0.800

useful to examine the current waveform of the Fibonacci converter, as shown in Fig. 2.19. It can

be seen that the waveform in soft-charging operation is a square wave, confirming that the current

transient associated with capacitor charge redistribution has been eliminated. Table 2.4 shows

the RMS and average of the absolute values of the current through capacitor C3 of the Fibonacci

converter. It can be seen that now the RMS current is almost equal to the average current in the

soft-charging case, ensuring the lowest power loss.

2.4 Achieving Complete Soft-charging Operation for Dickson Converter
using Split-Phase Control

In the previous section, it has been shown that the Dickson converter is not able to achieve complete

soft-charging operation. Flying capacitor values can be adjusted such that the converter approaches

soft-charging operation, but the resultant configuration has capacitors with uneven values connected

in series, which reduces the capacitor utilization. In this section, a control method to achieve

complete soft-charging operation is proposed, without incurring additional components.
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Figure 2.20: Two-phase operation of a 4-to-1 Dickson converter.
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Figure 2.21: Gate signals of switches for two-phase operation of Dickson converter. High
represents ON and low represents OFF.

2.4.1 Incomplete soft-charging operation with conventional two-phase control

The control signals for the two-phase operation are given in Fig. 2.21 and the equivalent circuits

are reproduced in Fig. 2.20, and as can be seen, the converter simply operates at a 50% duty ratio.

For conventional (hard-charging) operation, the flying capacitor network is directly connected

to the output, with a large output capacitance Co acting as a voltage-source load. Thus, a large

current transient occurs during the phase switching instances due to the capacitor voltages mis-

match and the resultant charge redistribution process. The current waveforms for the capacitors

of the converter in SSL operation are shown in Fig. 2.22, using the simulation parameters given in

Table 2.5. It can be seen that there is a large impulse current through each capacitor (and thus

through switches) at phase transitions.

In soft-charging operation, the output capacitance is removed so that the output voltage of the

SC stage can change instantaneously to compensate for the difference in capacitor voltages. By

eliminating the voltage mismatch and the resultant current impulse, soft-charging SC converters

Table 2.5: Simulation parameters.

Vin 40 V
Iload 2 A
fsw 100 kHz

Rds,on 10 mΩ
RESR 1 mΩ

C1, C2, C3 10 µF
Co,hard−charging 100 µF
Co,soft−charging None
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Figure 2.22: Capacitor current waveforms of the Dickson SC converter in conventional two-phase
hard-charging operation. Simulation parameters are given in Table 2.5.

exhibit the same behavior as an SC converter in FSL, while operating at a switching frequency

corresponding to the SSL region of a conventional design. While the current load ensures that

there is no transient current drawn from the SC converter due to the voltage mismatch between

the capacitor network and the final output node, complete soft-charging operation also requires that

there is no voltage mismatch among the internal capacitor connections of the SC stage, so that there

is no charge redistribution within the flying capacitor network, as analyzed in the previous section.

For example, by applying KVL to the equivalent circuits in Fig. 2.13, the following requirements

can be found for soft-charging operation.

Phase 1: Vin − VC3 = VC2 − VC1 (2.29)

Phase 2: VC3 − VC2 = VC1 (2.30)

However, constraints (2.29) and (2.30) cannot be satisfied during the transition between phases

when the Dickson converter is operated with a conventional, two-phase control scheme. Figure

2.23 shows the voltage and current waveforms of interest during the transition from Phase 2 to

Phase 1. It can be seen that, due to the charging and discharging process in Phase 2, the two

voltage values, (Vin − VC3) and (VC2 − VC1), are different and diverging. Thus, when the converter

transitions to Phase 1 and forces the two nodes to have the same voltage, charge redistribution

occurs, which results in the large current impulse as seen in the bottom plot of Fig. 2.23, which

shows the current through capacitor C2 of Fig. 2.12. A similar scenario happens at the start of

Phase 2, when (VC3 − VC2) is always greater than VC1 , making it also a hard-charging transition

from Phase 1 to Phase 2. From a circuit intuition point-of-view, the voltage mismatch is due

26



8 9 10 11 12 13
1

1.2

1.4

1.6

1.8

2

Timer(µs)

V
ol

ta
ge

r(
V

)

V
c2
−rV

c1

V
in
−rV

c3

8 9 10 11 12 13
−20

−15

−10

−5

0

5

Timer(µs)

C
ur

re
nt

r(
A

)

I
C2

Phaser2 Phaser1

Figure 2.23: Voltage and current waveforms for two-phase soft-charging operation of the Dickson
converter.

to the asymmetry in the capacitor connection, particularly for the outermost (C3) and innermost

capacitor (C1). As can be seen in Fig. 2.13, these two capacitors are in series with another capacitor

in one phase but not in the other phase. As a result, not all current paths have the same equivalent

capacitance, giving rise to voltage mismatch when transitioning to the other phase of operation.

Therefore, unlike topologies such as series-parallel and Fibonacci, the Dickson SC converter cannot

achieve complete soft-charging operation, despite using a current load. The current waveforms of all

capacitors for the Dickson converter with a current-source load are plotted in Fig. 2.24. Comparing

it to the hard-charging case in Fig. 2.22, while the magnitude and width of the current impulse

are reduced with two-phase soft-charging operation, there is still significant transient effect and

associated losses, owing to the internal capacitor voltage mismatch.

2.4.2 Complete soft-charging operation with split-phase control

To ensure that each branch in the capacitor network results in the same voltage at the output

node, we propose the split-phase control of the Dickson converter, with two secondary phases

introduced [32–34], as shown in Fig. 2.25. Phase 1a and 2a are the same as Phase 1 and Phase 2

in the original operation, while the Phase 1b configuration is a subset of Phase 1 and the Phase

2b configuration is a subset of Phase 2. The switching sequence is Phase 1b → Phase 1a → Phase

2b → Phase 2a. As can be seen from the schematic in Fig. 2.25c, in Phase 1b, C2 discharges and

C1 charges, and thus (VC2 − VC1) decreases while (Vin − VC3) remains constant. The circuit can

transition from Phase 1b to Phase 1a when (VC2 − VC1) equals (Vin − VC3), i.e., when (2.29) is

satisfied. This process is illustrated in the voltage and current waveforms of Fig. 2.26. As can

be seen, with the introduction of the additional “buffer” phase, 1b, KVL is satisfied during phase

transitions and the current transient can be eliminated. Similarly, the circuit transitions from
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Figure 2.24: Capacitor current waveforms of the Dickson SC converter in two-phase soft-charging
operation. Simulation parameter are given in Table 2.5.

Table 2.6: The average, RMS and peak values of current of capacitor C2 in a single half period.
Simulation parameters are as in Fig. 2.27.

Configuration Average (A) RMS (A) Peak (A)

Hard-charging 1.00 3.52 27.3
Soft-charging, two-phase 1.00 1.91 15.8

Soft-charging, split-phase 1.00 1.15 2.00

Phase 2b to Phase 2a when (2.30) is satisfied. The effect on the overall current waveform can be

seen in Fig. 2.27, which shows the currents through all the capacitors in one complete switching

cycle. It can be seen that, in contrast to the waveforms in Fig. 2.22 and Fig. 2.24, all of the currents

have no transient component, and are of a constant value in each phase.

To quantify the improvement in the power transfer, the average, RMS and peak values of capaci-

tor current for a half-period duration are calculated and tabulated in Table 2.6. For SC converters,

the average capacitor current represents the delivered power, and is hence held fixed in this compar-

ison. The RMS current reflects the conduction loss of the switches and capacitors, and should be

as close to the average value as possible for high-efficiency operation. It can be seen that two-phase

soft-charging operation reduces the RMS and peak values of the capacitor current, but to a limited

extent. On the other hand, the proposed split-phase control achieves both the lowest RMS values

and the lowest peak values. By eliminating the current transient, the converter efficiency can be

improved and the current stress of the devices reduced.

The switch control signals to achieve the proposed split-phase operations are shown in Fig. 2.28.

It can be seen that compared to the original two-phase control in Fig. 2.21, the proposed switching
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Figure 2.25: Split-phase operation of a 4-to-1 Dickson converter. Switching sequence:
1b→1a→2b→2a.

sequence only delays the turn-on of two switches (S5 and S8). Thus, generating the extra phases in

the split-phase operation does not increase the switching frequency of the switches, and therefore

introduces no added switching loss. Another advantage of the proposed split-phase control is

the scalability of the technique. Even though the technique is illustrated with a 4-to-1 Dickson

converter with only three flying capacitors, it can be applied to Dickson converters with larger

conversion ratios without introducing more secondary phases [32]. This is because only the switch

that connects to the input voltage and the switch that connects to the innermost capacitor (C1)

need to be delayed. Additional switches for higher conversion ratios follow the original gate signals

as do switch S6 and S7. Therefore, there is no increase in control complexity as the conversion

ratio increases.

2.4.3 Output impedance comparison

The output referred impedance of an SC converter encapsulates both the capacitor charge transfer

loss and the conduction loss of the converter and is widely used to characterize the performance of

such converters [14–16]. The output impedance can be calculated as

Rout =
Vin
N − Vout
Iout

, (2.31)

where N is the conversion ratio. For a given switching frequency and converter volume, it is

desirable to have an output impedance that is as low as possible. To illustrate the benefit of

the split-phase soft-charging operation, the 4-to-1 step-down Dickson converter is simulated using

Spice with simulation parameters given in Table 2.1. In the hard-charging operation, the duty

ratio is fixed to 0.5 (as is convention) while the duty ratio of the split-phase operation is as found
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Figure 2.26: Voltage and current waveforms for split-phase soft-charging operation of the Dickson
converter.

analytically in Section 2.4.4. The output impedance is plotted against switching frequency in

Fig. 2.29. It can be seen that the conventional hard-charging Dickson converter shows two regions

of asymptotic behavior as found in previous literature [12]. At low frequencies (slow switching

limit, SSL), when the power loss due to the current transient dominates, the impedance decreases

as the switching frequency increases. The impedance reaches a constant at high frequencies (fast

switching limit, FSL), when the resistive conduction loss dominates. With two-phase soft-charging

operation, the impedance in the SSL region is reduced significantly, owing to the current-source

load. However, there is still non-negligible frequency dependent behavior since complete soft-

charging operation cannot be achieved with two-phase Dickson converter. With the proposed split-

phase control, however, it can be seen that now the output impedance is both low and independent

of the switching frequency, due to the complete elimination of the charge transfer losses. Therefore,

using split-phase control, soft-charging Dickson converters can achieve significant efficiency and

power density improvement. It should be noted that the impedance at high frequencies in split-

phase operation is slightly higher than the FSL impedance of the conventional two-phase operation.

This is due to the fact that in the added phases (Phase 1b and Phase 2b), there is one path less that

delivers current to the load, resulting in a slightly increased effective switch resistance. However,

this increase in conduction loss will diminish as the converter conversion ratio increases.

2.4.4 Extending the analysis

While the preceding section presents an intuitive understanding of why the split-phase control

eliminates the current transient in the operation of the Dickson converter, it is beneficial to for-
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Figure 2.27: Capacitor current waveforms of the Dickson SC converter in split-phase soft-charging
operation. Simulation parameters are given in Table 2.5.
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Figure 2.28: Gate signal for split-phase operation of the Dickson converter. High represents ON
and low represents OFF.

mulate a general analysis. Existing numerical analysis methods such as that proposed in [18] can

provide accurate predictions on the performance of SC converters. Instead, this work focuses more

on analytical tools that provide additional insights into the operation of the proposed control. In

Section 2.3, an analytical method was presented that determines whether an arbitrary SC topology

is able to achieve complete soft-charging operation. However, the method is developed for an SC

converter with two phases, and for the proposed split-phase control, a total of four different circuit

states are present. Hence, the method is extended in this section to a higher number of phases.

With a higher number of phases, the duty ratio of each phase becomes unknown. Therefore, unlike

in Section 2.3 [28], where the capacitor values required by soft-charging operation are found given

the expected duty ratio, the objective here is to find the corresponding duty ratios for complete

soft-charging operation, given a set of capacitor values.

As explained in the previous section, complete soft-charging can be achieved if and only if the

internal capacitor network satisfies KVL at all times, including at phase transitions. The aim of the

analysis is thus to find the set of charge flow vectors for the capacitors, such that the corresponding
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Figure 2.29: Simulated output impedance of the Dickson converter.

capacitor voltage changes result in node voltages that satisfy KVL during all phase transitions. To

represent the KVL constraint, a voltage vector is first defined for the circuit elements as

v =
[
vin vc

T vout

]T
, (2.32)

where vc is a column vector of the capacitor voltages. In each phase of Fig. 2.25, the circuit

consists of a number of closed loops, where a KVL equation can be written for each loop. These

KVL equations can be lumped into a matrix-vector product form [31] as

Aiv
i = 0, (2.33)

where Ai is called the reduced loop matrix for the ith phase. In this analysis, the entries of the loop

matrices are positive if the circuit element is traversed from the negative terminal to the positive

terminal and vice versa. At the end of phase i, the voltage vector becomes vi + ∆vi, due to charge

being delivered to the load, and the KVL equations become

Ai(v
i + ∆vi) = 0. (2.34)

From (2.33) and (2.34), we have from the property of linear circuits:

Ai∆vi = 0. (2.35)

Similar to the voltage vector, a charge flow vector is defined as the vector of charge that flows into

the positive terminal of each element in the circuit and is given in the form of

q =
[
qin qc

T qout

]T
, (2.36)
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where qc is a column vector of charges that flow into the flying capacitors. In the ith phase, KCL

equations can be expressed by

Biq
i = 0, (2.37)

where Bi represents the reduced incidence matrix of the topology [31]. Entries of Ai and Bi can

be directly obtained from KVL and KCL equations of the circuit. Moreover, for a capacitor, the

change in voltage and the charge flow is related by

qc = C∆vc . (2.38)

In addition, for periodic steady-state operation, there is also a condition being that the net charge

that flows into a capacitor in a period is zero:∑
phases

qi
c = 0. (2.39)

Combining the constraints given by Eqs. (2.35) and (2.37) to (2.39), a set of non-zero charge

vectors (qi) required for soft-charging operation can be obtained. A detailed derivation of the

charge flow vectors from the constraints for the 4-phase Dickson converter in Fig. 2.25 is provided

in the appendix and only the result is given in this section. Using equal flying capacitor values,

the final charge vectors are found to be

qi =


qin

qc3

qc2

qc1

qout

 , q1a =


−2

2

−1

1

3

 , q2a =


0

−1

1

−2

3

 ,

q1b =


0

0

−1

1

1

 , q2b =


0

−1

1

0

1

 . (2.40)

From the definition in (2.36), the last entries in the charge vectors are the amount of charge delivered

to the load. Assuming a constant current load, the last entry of each of the charge vectors is thus

in proportion to the relative duration of each phase. Since the total charge delivered to the load

in a period is 8 units (3 + 3 + 1 + 1), we derive that for complete soft-charging operation of the

Dickson converter with equal flying capacitance, the duty ratio of each phase is

D1a =
3

8
, D2a =

3

8
, D1b =

1

8
, D2b =

1

8
. (2.41)
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Table 2.7: Duty ratio of each phase for the Dickson topology at different conversion ratios.

Conversion ratio 4:1 6:1 8:1 N:1

D1a 3/8 4/12 5/16 (N+2)/4N

D2a 3/8 4/12 5/16 (N+2)/4N

D1b 1/8 2/12 3/16 (N+2)/4N

D2b 1/8 2/12 3/16 (N+2)/4N

Table 2.8: Switching sequences.

Sequence 1: Phase 1b → Phase 1a → Phase 2b → Phase 2a
Sequence 2: Phase 2a → Phase 2b → Phase 1a → Phase 1b
Sequence 3: Phase 1a → Phase 2a → Phase 1b → Phase 2b

These duty ratios are what were used to obtain the simulation results in Fig. 2.27. In addition,

the required duty ratio for complete soft-charging operation varies with the native conversion ratio.

Similar analysis has been carried out for conversion ratios of 6:1 and 8:1, and the results are shown

in Table 2.7. It can be seen that, as the conversion ratio increases, the duty ratios of the “a” phases

approach 0.25 each and those of “b” phases approach 0.25 each. Thus, there is no extreme duty

ratio as the conversion ratio increases.

Another useful result that can be obtained from the analysis is that soft-charging operation can

be achieved regardless of the order of the switching phases, since the preceding derivation does

not rely on the sequence of the phases. With the proposed split-phase control, there are four

phases. These four phases can be ordered to form six distinct periodic sequences in total, and

three representative ones are shown Table 2.8. While Sequence 1 is the same sequence obtained

from the voltage balance intuition in Section 2.4.2, Sequence 2 is the reverse of Sequence 1; and in

Sequence 3, the two original phases (Phase 1a and 2a) are adjacent instead of being separated by

the secondary phases. The duration of each phase is still given by the constraint of Eq. (2.41).

Figure 2.30 shows the simulated current waveforms for these switching sequences. It can be seen

that all three of the switching sequences result in a non-impulse current, showing that complete

soft-charging operation can be achieved for each switching sequence. This is a particularly useful

result: as will be discussed in Section 2.5, the intuitively devised sequence (Sequence 1), cannot be

easily implemented due to practical constraints, whereas other sequences may yield practical and

feasible solutions.
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Figure 2.30: Current waveform of capacitor C2 of the Dickson SC converter under different
switching sequences.

2.5 Experimental Results

In this section, the proposed theories and techniques are validated with hardware results. A hybrid

Dickson prototype is implemented, which can be reconfigured to operate in hard-charging, two-

phase soft-charging and split-phase soft-charging mode.

The Dickson converter has a conversion ratio of 8 to 1 and its schematic drawing is shown in

Fig. 2.31. A total of 12 GaN switches are used, together with seven flying capacitors. The design

specification can be found in Table 2.9 while a full component listing is provided in Table 2.10. A

photograph of the hardware prototype is shown in Fig. 2.32. All the components are placed on the

+
−Vin

C2

C3

C1

Rload

Co

S12 S7 S6 S5

S4 S1

S2S3

C6

S10 S9 S8S11

C7

C4

C5

 +        Vsc                -  

Figure 2.31: Schematic drawing of the two-phase soft-charging Dickson SC converter.
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Figure 2.32: Annotated photograph of the experimental converter prototype, with a US penny
added for scale.

top side of the PCB for clear illustration.

First, the two-phase conventional (hard-charging) and two-phase soft-charging operations are

compared. For the conventional configuration, the flying capacitors are all 2.2 µF. For the two-

phase soft-charging configuration, capacitors of 2.2 and 0.22 µF, and an inductor of 3.3 µH are used,

so that it can approach soft-charging operation, according to the analytical results in Section 2.3.

The volume of the passive components of the two configurations are given in Table 2.11. The total

volume of the passive components of the hybrid SC converter with the inductor is 454 mm3 while

that of the pure SC converter is 682 mm3. It can be seen that even with the additional inductor,

the volume of the proposed converter is still smaller than that of the pure SC converter, thanks to

the improved utilization of capacitors due to soft-charging.

The measured efficiencies of the prototype at various load currents are plotted in Fig. 2.33. It can

be seen that not only is the efficiency of the soft-charging converter always higher than that of the

conventional hard-charging converter, but it also drops at a slower pace as the current increases, due

to the lower output impedance. The efficiency represents an approximate 2x power loss reduction

at 53 W. For both cases, the measured efficiencies do not include the power loss due to control

circuit and gate drivers. The combined losses of these components are approximately 0.5 W, which

is mainly attributed to the poor efficiency of the level-shifting circuit used to power the gate drivers.

Overall, the experimental results demonstrate that the soft-charging SC converter simultaneously

Table 2.9: Tested specifications.

Vin 200 V DC
Conversion ratio 8:1

Pout 53 W
fsw 250 kHz
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Table 2.10: Component listing of the proposed converter.

Component Part number Parameters

S12, S5 - S1 EPC2014 40 V, 16 mΩ, 10 A
S11 - S6 EPC2007 100 V, 30 mΩ, 6 A

C7, C5 C1812X224K2RACTU 250 V, 0.22 µF
C6, C4 C2220C225MAR2CTU 250 V, 2.2 µF

C3 C0805C224K1RACTU 100 V, 0.22 µF
C2 C3216X7S2A225K160AB 100 V, 2.2 µF
C1 C1608X7R1H224K080AB 50 V, 0.22 µF
Co C3216X5R1V226M160AC 35 V, 22 µF

Inductor XAL5030-332 3.3 µH

Level-shifters ADUM5210
Microcontroller STM32f051

Table 2.11: Passive components volume comparison.

Conventional Soft-charging

Capacitor volume (mm3) 681.8 378.9
Inductor volume (mm3) - 75.0

Total volume (mm3) 681.8 453.9

achieves higher efficiency and higher power density than the conventional SC converter.

To see the similarity between resonant and soft-charging operations, the current through the in-

ductor is shown in Fig. 2.34 at three different switching frequencies. As can be seen, for fsw = fcrit

(Fig. 2.34b), the current is sinusoidal and reaches zero at each phase transition, and thus ZCS

operation is achieved. For fsw > fcrit (Fig. 2.34a), the current has a much smaller ripple and

the converter operates near FSL. For fsw < fcrit (Fig. 2.34c), the current goes negative in each

phase. These experimentally obtained waveforms closely resemble the simulated waveforms in

Fig. 2.10, with some voltage spikes as a result of switching dead-time in the practical implementa-

tion. Therefore, the hardware not only shows that soft-charging operation is able to achieve a high

efficiency with smaller passive component footprint, but also confirms that resonant operation can

be achieved at the specified frequency using the same technique.

Next, two split-phase soft-charging configurations are implemented, whose parameters are given

in Table 2.12. The first split-phase configuration is to demonstrate the power density improvement

by reducing the flying capacitance, while the second one is to demonstrate efficiency improvement

by reducing the switching frequency and keeping the same capacitance compared to hard-charging.

It should be noted that in practice, a soft-charging converter is most likely designed to achieve a

combination of both. A photo of the power stage of the prototype in soft-charging configuration 1

is shown in Fig. 2.35.

The waveforms in this section are captured with soft-charging configuration 1. The voltage Vsc

(from Fig. 2.31) as well as the switch gate signals are shown in Fig. 2.36. Vsc decreases during each
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Figure 2.33: Measured efficiency for soft-charging and conventional SC converter prototypes.

(a) fsw = 250 kHz > fcrit (b) fsw = 90 kHz = fcrit (c) fsw = 50 kHz < fcrit

Figure 2.34: SC stage voltage (Vsc in Fig. 2.31) (upper) and inductor current (lower).

phase due to the charging and discharging of capacitors, and jumps up after each major transition.

Therefore Vsc resembles a sawtooth waveform. It can be seen that Vsc has a relatively large ripple,

which is the result of the increased voltage ripple on the flying capacitors. This increased ripple

is the key to enable smaller capacitors in soft-charging SC converters. The absolute slope of Vsc

increases as load current increases. The flying capacitor and switching frequency should be chosen

such that the voltage ripple on Vsc is a reasonable value, say 10% - 20% of the maximum output

voltage value, since the ripple magnitude adds to the voltage stress of the switches. It can also

be seen from the Vsc waveform in Fig. 2.36, that Vsc goes to about −2.0 V at every major phase

transition. This is due to the dead-time implemented to prevent current shoot-through. During

Table 2.12: Design specifications and parameters.

Hard-charging Split-phase Prototype 1 Split-phase Prototype 2

fsw 250 kHz 250 kHz 50 kHz
Inductor - 3.3 µH 3.3 µH

Flying capacitors 2.2 µF 0.47 µF 2.2 µF

38



Figure 2.35: Photo showing the power stage of the hardware prototype of the proposed 8-to-1
Dickson SC converter. A US quarter is included for scale.
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S12

S2, S4, S6, S8, S10

S5

VSC

2a 2b 1a 1b

Figure 2.36: Output voltage (Vsc in Fig. 2.31) (top) and switching functions (lower). Bandwidth
of the waveform capture is 1 Gsamples/s.

the dead-time, the equivalence of the body diode of the GaN devices is forced to conduct by the

inductor, and the forward voltage of roughly 1.4 V [35] appears negatively on Vsc. The dead-time

can be tuned to achieve the maximum efficiency of the converter [35], but the process is not carried

out for this prototype. In addition, the output LC filter should be designed such that the ripple on

Vsc in worst load condition results in an acceptable output voltage ripple at the output of the LC

filter. This however, can be easily achieved since the ripple on Vsc is much smaller than what is

commonly present at the input of the LC filter of a PWM magnetic converter. The output voltage

after the inductor (Vout) is shown in Fig. 2.37. It can be seen that the ripples on Vsc are filtered by

the LC circuit and the output is a steady dc voltage with 50 mV of ripple at 1A of load current.

The switching signals as seen in Fig. 2.36 are slightly different from those used in simulation

(Fig. 2.28). This is because using the original phase sequence (1b → 1a → 2b → 2a) results in

negative Vds voltages across some of the switches, due to the large voltage ripples during the oper-

ation. Bidirectional blocking switches would have to be used, which would increase the complexity

of the circuit and reduce the efficiency. Since it has been shown by the analysis in Section 2.4.4

that complete soft-charging operation can be achieved regardless of the switching sequence, the

actual sequence used by the hardware prototype is Sequence 2 in Section 2.4.4 (i.e., 2a → 2b → 1a

→ 1b). This switching sequence results in no negative Vds voltage on any of the switches so that

the converter operates properly using the GaN FETs.

To demonstrate the soft-charging operation, the capacitor voltages are measured for both two-

phase control and split-phase control. The simulated and measured waveforms for two-phase control

39



IL

VSC

Vout

S1

1 A

5 V

5 V

50 mV
Vout (AC coupled)
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inductor current. Vin = 40 V and Iload = 1 A. Waveform capture is band-limited to
25 Msamples/s for the AC coupled waveform.
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Figure 2.38: Capacitor voltage mismatch during two-phase soft-charging operation.

are shown in Fig. 2.38. The experimental waveform clearly shows the mismatch in voltage Vin−Vc7
and Vc6−Vc5 during the transition between Phase 2 and Phase 1, as expected from the analysis and

simulation. On the other hand, as shown in Fig. 2.39, the voltage mismatch has been eliminated

by using the proposed split-phase control, as the two sets of voltages converge right before the

switching occurs.

The efficiency of the soft-charging converter configuration 1 in split-phase operation is plotted

in Fig. 2.40. It can be seen that the converter achieves a peak efficiency of 95% at the rated load.

It should be noted that the efficiency at light load can be improved by scaling down the switching

frequency, provided that the constraint given in Eq. (2.7) is still satisfied.

For a direct comparison of the output impedance, the second split-phase configuration is used,

since it has the same capacitor values as the hard-charging converter. The only difference between

this prototype and the hard-charging one is the extra inductor to make the LC filter. The additional

inductor incurs an approximately 10% increase in the components volume of the power stage,

but the penalty in volume is much less significant when the total enclosed box volume of the
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Figure 2.39: Capacitor voltage mismatch eliminated with split-phase soft-charging operation.
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Figure 2.40: Measured efficiency of converter prototype in split-phase operation with
soft-charging configuration 1, at Vin = 150 V.

power stage is considered. The output impedance is plotted against the switching frequency in

Fig. 2.41, and is calculated from (2.31) using the measured data. It can be seen that similar to

the simulation results, the output impedance in hard-charging operation increases as frequency

decreases. Two-phase soft-charging operation reduces the impedance at low switching frequencies

while the proposed split-phase operation results in the lowest output impedance. For example,

to achieve the same output impedance as the split-phase operation at 100 kHz, the two-phase

soft-charging operation requires a switching frequency of approximately 200 kHz while the hard-

charging converter has to switch at over 500 kHz. Moreover, it can be seen in Fig. 2.41 that the

measured data closely match the simulated values, especially at higher switching frequencies. At

lower switching frequencies, the experimental values of all three cases are larger than expected. This

can be attributed to the tolerance of the flying capacitor used (up to 20%). Since the split-phase

control assumed equal capacitor values for soft-charging operation, different capacitor values will
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Figure 2.42: Measured efficiency of the Dickson converter in deep SSL region. Vin = 40 V, fsw =
100 kHz.

result in some degree of capacitor charging/discharging loss and are not modeled in the simulation.

In addition, the efficiencies of the converters in the SSL region are compared in Fig. 2.42, using the

split-phase configuration 2. It can be seen that soft-charging operation brings significant efficiency

improvement while the proposed split-phase control has the highest efficiency. The split-phase soft-

charging operation also has the smallest drop in efficiency as the load increases, due to its smallest

output impedance. At a load current of 2 A, the split-phase reduces power loss by 30% compared

to two-phase soft-charging operation, and by 75% compared to the projected power loss with the

hard-charging operation. It should be noted that both the output impedance measurements and

the efficiency measurements are obtained using reduced input voltage and output current rather

than the rated values. This is to prevent the conventional hard-charging converter from breaking

due to the excessive heat when the converter is operating inefficiently with high output impedance
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in the SSL region. The hardware results also demonstrated that indeed the split-phase control is

effective for a Dickson converter with a conversion ratio that is higher than the analyzed 4-to-1.

2.6 Chapter Summary

In this chapter, the fundamental cause of capacitor charge sharing loss is examined. A soft-charging

concept is introduced, which eliminates the charge sharing loss by introducing a current source

in the circuit. The elimination of the charge sharing loss reduces the output impedance of SC

converters in the SSL region to the same level of the FSL region. An inductor is shown to satisfy

the requirement of the current source load. Another requirement for soft-charging is that there is

no charge sharing loss internal to the switched-capacitor topology. A general method is proposed,

which can be used to analyze an arbitrary SC converter topology and determine whether full soft-

charging can be achieved. It is found that among the classic topologies, the series-parallel and

Fibonacci converters are able to achieve full soft-charging operation with equal capacitor values.

The Dickson converter can only approach soft-charging operation with uneven capacitor values,

while the Doubler and ladder converters can only achieve partial soft-charging operation. One

approach to achieve soft-charging is explored. Capacitors are selectively charged and discharged so

that when switches turn on, no KVL violation happens for the ideal circuit. The technique, named

split-phase control, is applied to Dickson converter, and it has been shown that SSL loss can be

completely eliminated. Hardware prototypes have been implemented to support the analysis.
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CHAPTER 3

DESIGN AND COMPARISON OF FIXED-RATIO HYBRID

CONVERTERS

In the previous chapter, it has been shown that soft-charging (both resonant and non-resonant)

operation for the two-phase series-parallel and Fibonacci converter can be achieved with a single

inductor at the output node in step-down configurations (input node in step-up configurations). For

Dickson converter, split-phase control is introduced to achieve complete soft-charging operation.

In this chapter, alternative locations to add inductors to SC topologies, as well as the converter’s

sensitivity to component tolerance are investigated (Section 3.1). In addition, since the extra

inductor introduces an additional design space, the inductor and capacitor values can be selected

to achieve the minimal total passive component volume. Such a design process is presented in

Section 3.2. Furthermore, different hybrid SC topologies are compared in Section 3.3, based on

switch stress and the optimized component volume to reveal the advantages and disadvantages of

the respective topologies.

3.1 Soft-charging Operation with Multiple Inductors

Another way to augment SC converters is to add an inductor in series with the flying capacitor

(Fig. 3.1b) as opposed to adding one at the output (Fig. 3.1a). For the example 2-to-1 topology

shown in Fig. 3.1b, the simulated output impedance is plotted in Fig. 3.2. It can be seen that

+
−Vin

+

Vload

-

Cout

Cfly

φ1

L1

φ2

φ1φ2

(a) 2-to-1 converter with inductor at the output.
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(b) 2-to-1 converter with inductor in series with the flying
capacitor.

Figure 3.1: Common switched-capacitor converter topologies.
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Figure 3.2: Simulated output impedance vs. frequency.
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Figure 3.3: Operating waveforms for the hybrid converter in Fig. 3.1b.

for switching frequency that is lower than or equal to the critical frequency, the converter behaves

similarly to the plot in Fig. 2.9. However, for switching frequency that is higher than the critical

frequency, the impedance increases sharply, in contrast to the flat curve in Fig. 2.9. The inductor

current waveforms are shown in Fig. 3.3, together with gate signal indicating the two different circuit

states. For the case fsw = fcrit, the inductor current resembles a full-wave sinusoid, charging the

capacitor in one state and discharging the capacitor in the other. For the case fsw = 1
2fcrit, the

inductor current becomes a full-wave sinusoid within each state, resulting in a large circulating

current and associated power loss. For fsw > fcrit, the resonant tank becomes inductive, and the

current looks like a triangular wave with an approximately 90◦ phase shift. Again, the current is

both positive and negative within one state, resulting in a large conduction loss, and the sharply

increasing output impedance. Therefore, the most viable way to operate such a converter is at the

resonant frequency of the circuit.
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The concept can be extended to all existing SC topologies, by adding an inductor in series to

each of the flying capacitors. In this way, each flying capacitor is replaced with an LC resonant

tank. The modified versions of the classic topologies are shown in Fig. 3.4, and their corresponding

output impedance is plotted in Fig. 3.5. It can be seen that they all have shapes similar to that of

the impedance of the basic 2-to-1 topology, and have minimal impedance at the resonant frequency

of the circuit, due to the soft-charging operation. The reason why soft-charging operation can be

achieved by adding an inductor to all flying capacitors can be understood as follows. Since each

switched element is an LC resonant tank, they can be connected either in series or parallel or a

combination of these. Regardless of how these elements are connected in each state, the resonant

frequency is always 1
2π
√
LC

, provided that all the resonant tanks have the same LC time constant.

When operating at the resonant frequency, all the capacitors will be resonantly charged in one

state and discharged in the other state, resulting in no charge-redistribution loss.

It should be noted that while the feasibility of soft-charging operation is demonstrated in this

section, practical constraints can influence whether the converter can be realized with devices such

as MOSFETs. For example, in practice, perfect ZCS cannot always be achieved due to capacitor

and inductor tolerance. In this case, the path for the current to flow during the deadtime needs to

be investigated, to make sure that the voltages across the switches do not exceed their rating. On

the other hand, an advantage of the inductor-in-series approach is that during normal operation,

the inductor shields switches from the capacitor voltage ripples, and thus the switch voltage rating

is always the nominal voltage, and thus the capacitors are allowed to have a large ripple without

increasing the switch stress. Table 3.1 summarizes the two ways to augment inductors in the circuit

from different perspectives.

Table 3.1: Inductor placement.

Inductor at output Inductor in series

Operating frequency fsw ≥ fcrit fsw = fcrit

Duty ratio According to the charge vectors 50%
Applicability Applicable to selective topologies Applicable to all SC topologies 1

Switch ratings Increased by capacitor voltage ripple Capacitor voltage ripple shielded by inductor
Regulation capability Regulation possible Regulation complicated

It should be noted that these two ways to augment the inductor presented here are two extreme

examples. It is possible to find more ways to augment the inductor by placing inductors in series

with some, but not all of the flying capacitors. For example, the doubler converter shown in

Fig. 2.16d can be seen as a cascade of two basic 2-to-1 structures , if C2 � C1 & C3. Therefore,

hybrid SC converters can be obtained by cascading the structures in either Fig. 3.1a or Fig. 3.1b,

giving rise to the topologies in Fig. 3.6a and Fig. 3.6b, respectively. In this work, they are referred

to as cascaded doubler or cascaded 3-level converters. Converters obtained in this way require that

Cmid � C1 & C2, so that Cmid does not take part in the resonant operation. As a result, the

volume of Cmid could dominate the size of the capacitors, if they have the same energy density.

One way to avoid the penalty is to interleave two phases of the cascaded converters and connect
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Figure 3.4: Hybrid SC converter topologies obtained by adding an inductor in series to each
flying capacitor.

them at the input, middle and output point, and operate them 180◦ out of phase. This way, both

the input filter and Cmid can be significant reduced.

Another issue associated with hybrid SC converters is how the output impedance or power loss

changes when the capacitor values deviate from the nominal values. Here, the sensitivity of the

output impedance with respect to the tolerance of the flying capacitor values is investigated for

the series-parallel converter. The different capacitor values used in the simulation are shown in

Table 3.2 and the simulated impedance is shown in Fig. 3.7. It can be seen that for both types

of inductor placement, there is minimal change in the output impedance for a small variance in

capacitor values (< 20%). When the mismatch is severe (50%), the impedance is noticeably higher,

due to the increase in charge redistribution loss. The series inductance structure is affected more by

the severe capacitor mismatch, due to the steeper slope of the impedance curve. In addition, non-

ZCS introduced by the mismatch will introduce additional problems in practical implementation.

Table 3.2: Capacitors values used in simulation.

C1 C2 C3

Matched capacitors 20 µF 20 µF 20 µF
±20% mismatch 16 µF 20 µF 24 µF
±50% mismatch 10 µF 20 µF 30 µF
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(c) 5-to-1 Fibonacci.
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Figure 3.5: Output impedance plots for resonant SC topologies.

3.2 Inductor and Capacitor Selection

For the soft-charging hybrid SC converters, the minimum frequency with low conduction loss is the

resonant frequency of the circuit. As has been mentioned, the added inductor offers an additional

design space by allowing the designer to adjust the values of capacitors and inductors to reach a

certain resonant frequency, while minimizing the total passive component volume. In this section,

the design process is carried out from the energy storage perspective.

Often, the volume of a passive component is determined by the peak energy it needs to store.

Therefore, the passive component volume can be calculated as the peak energy stored by the

capacitor (or inductor) divided by the volumetric energy density of the capacitor (or inductor).

For a converter with multiple capacitors and inductors, the total passive component volume is

given by

Vtot,hybrid =
1
2

∑
CV 2

ρE,C
+

1
2

∑
LI2

ρE,L
, (3.1)

assuming that the capacitors have the same energy density ρE,C , and the inductors have the same
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Figure 3.6: Cascaded hybrid doubler topologies.
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Figure 3.7: Output impedance plots for hybrid SC topologies with capacitor mismatch.

energy density ρE,L. Now, the capacitor voltage and the inductor current can be expressed in terms

of Vout and Iout, respectively, giving

Vtot,hybrid =
kCCV

2
out

ρE,C
+
kLLI

2
out

ρE,L
, (3.2)

where kC and kL are topology dependent parameters, and L and C are the equivalent values to

achieve a resonant frequency of fsw. By using Q as the quality factor of the resonant tank given

by
√

L
C

1
Rload

, and fsw = 1
2π
√
LC

, Eq. (3.2) can be rearranged to form Eq. (3.3).

Vtot,hybrid =
1

2π
(

1

Q

kC
ρE,C

+Q
kL
ρE,L

)
Pout

fsw
. (3.3)

For a given set of Pout, fsw, kC , kL, ρE,C and ρE,L, Eq. (3.3) can be differentiated with respect to

Q to obtain the quality factor that minimizes the total passive component volume:

Q∗ =

√
kC
kL

√
ρL
ρC

. (3.4)

It can be seen thatQ∗ only depends only on topology dependent factors (kC and kL), and component
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Figure 3.8: Plot of total passive component volume against capacitance value. Parameter values
used are: fsw = 100 kHz, Pout = 100 W.

energy densities ( ρE,C and ρE,L), and is independent of the output power or switching frequency.

From Q∗, and the worst case Rload, the optimal inductor and capacitor values can be calculated.

Substituting Eq. (3.4) into Eq. (3.3), the minimized volume for a resonant SC converter is then

given by

Vtot,min =
1

π
(

√
kCkL

ρE,LρE,C
)
Pout

fsw
. (3.5)

As expected, the total volume is proportional to the output power and inversely proportional to the

switching frequency. It also depends on the energy density of the components and how effectively

the components are utilized.

The optimization process can be graphically interpreted in Fig. 3.8, where the total component

volume is plotted against the capacitance value. Intuitively, since capacitor volume depends on

the voltage and inductor current depends on the current, a higher capacitance should be used for

applications with low voltage and high current (low Rload), while a higher inductance should be

used for applications with high voltage and low current (high Rload).
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3.3 Comparison of Topologies

In this section, the different hybrid converters obtained from Chapter 2 are compared. The

inductor-at-output configuration of the hybrid converters is used, since it has the same energy

storage requirement as the inductor-in-series configuration. The metrics used are the switch stress

and total passive component volume. By assuming the same switching frequency, a lower total

switch stress indicates a potentially lower conduction loss, lower switching loss and smaller switch

size. The switch stress is defined as the

Total switch stress =
∑

switches

VdsIds, (3.6)

where Vds is the voltage rating of the switch, and Ids is the current through the switch. In this work,

the rms current through the switch over a complete switching cycle is used. Since one can express

Vds using the output voltage (βvVout), and Ids using the output current (βiIout), the normalized

switch stress can be defined as

Normalized switch stress = Ms =
total switch stress

VoutIout
=

∑
switches

βvβi. (3.7)

The total switch stress can be seen as the total switch power rating necessary to deliver a certain

power to the output.

The normalized switch stresses of the previously discussed soft-charging resonant topologies at

different conversion ratios are shown in Fig. 3.9 in log-linear scale. The switch stress of a buck

converter is also included as a reference. It can be seen that the switch stress for the buck converter,

the FCML converter and the series-parallel converter increases linearly as the conversion ratio

increases, resulting in a high switch power rating for a given output power. The cascaded 3-level

converter shows smaller switch stress at higher conversion ratios, while the Dickson converter (with

full soft-charging operation) achieves the lowest switch stress and quickly approaches a constant as

the conversion ratio increases.

To compare the total passive component volume, the normalized passive component stress is

defined as

Mp =
total passive component volume

1
ρE,L

Pout
fsw

, (3.8)

where the denominator is the volume of an inductor needed to store the amount of energy delivered

to the load in each switching cycle. Combining with the optimized passive component volume in

Eq. (3.5), the normalized passive component stress for hybrid SC converters is given by

Mp,hybrid =
1

π
(

√
kCkLρE,L
ρE,C

). (3.9)
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Figure 3.9: Normalized switch stress for various resonant converters. Lower is better.

For the buck converter, kC in Eq. (3.2) is zero. In addition, it is assumed that the inductor

current ripple is twice the average current (i.e. the converter is operating at boundary conduction

mode), so that the utilization of the inductor is maximized. Then, the inductor volume for a buck

converter can be simplified to

Vtot,buck =
kL
ρE,L

Pout

fsw
, (3.10)

where kL = 2(1−D), and D is the duty ratio. Therefore, the normalized passive component volume

for a buck converter is simply given by

Mp,buck = kL . (3.11)

By comparing Eq. (3.9) and Eq. (3.11), it can be seen that in order for the hybrid topologies to

achieve a smaller volume, the energy density of the capacitors need to be much higher than that

of the inductors (i.e. ρE,C � ρE,L).

The normalized passive component volumes of different topologies are plotted in Fig. 3.10 in

log-linear scale, with a
ρE,C
ρE,L

ratio of 80. It can be seen that all of the hybrid converters perform

significantly better than the buck converter, especially at small conversion ratios. Among the

hybrid converters, series-parallel and the cascaded 3-level have the smallest volume, thanks to the

lower voltage stress on the capacitors.

By comparing Fig. 3.9 and Fig. 3.10, it can be observed that in general, resonant topologies that

have high switch stress tend to have smaller volume, and vice versa. This allows the designers to

choose the topologies based on available switch and passive component technologies. In addition,

since for a fixed switching frequency, the switch stress represents the power loss, while the passive

component volume reflects the converter size, the performance of these converters also shows an-

other facet of the fundamental efficiency and power density trade-off. In order to directly compare

the converter, the overall performance figure of merit (FOM) is obtained by multiplying the switch
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Figure 3.10: Normalized passive component volume for various resonant converters. Lower is
better.

stress and the component volume, as given by Eq. (3.12).

FOM = MsMp (3.12)

It is based on the general trade-off that a converter with smaller switch stress can operate at a higher

switching frequency for the same conduction and switching loss, which results in reduction in passive

component volume. Therefore, combining both metrics can be indicative of the overall performance

potential of the converter. The combined FOM is plotted in Fig. 3.11 in log-linear scale. It shows

that all of the hybrid topologies out-perform the buck converter by a wide margin. In a addition, a

few interesting results can be learned. It can be seen that both series-parallel and cascaded 3-level

converters achieve lower FOM than other hybrid topologies. Despite being a popular SC topology,

the series-parallel has not been a widely used SC topology for performance reasons, due to the

use of high voltage switches. Yet, by considering both the passive component and switches, it has

the lowest FOM, thanks to the low voltage capacitors. Likewise, cascaded converters are usually

not favored in the literature, due to the perception that cascading converters results in processing

the“power twice”. However, by considering the total switch and passive component utilization,

cascaded 3-level hybrid converters can be excellent candidates for converters with high efficiency

and power density.

It should be noted that the weights of the switch stress and the passive component volume in

the overall FOM can be adjusted to reflect characteristics of available technologies, and the final

performance for different topologies can be different than what is plotted here. The goal of this

section is to establish the method to compare the topologies.
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Figure 3.11: Normalized passive component volume for various resonant converters. Lower is
better.

3.4 Chapter Summary

In this chapter, alternative inductor placements are first discussed. It is found that by placing an

inductor in series to each flying capacitor, complete soft-charging operation can be achieved, if the

converter operates at the resonant frequency. However, whether the converter is implementable

depends on practical considerations, such as the current direction during the deadtime. It is also

found that hybrid converters can tolerate about 20% of component mismatch, without a noticeable

increase in power loss. In addition, the optimal capacitor and inductor values to achieve the smallest

passive component size are analytically obtained. Various hybrid topologies are compared based

on switch stress and the optimized component values. It is found that cascaded 3-level converters

and series-parallel converters have a better performance compared to the others.
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CHAPTER 4

VOLTAGE REGULATION OF HYBRID SC CONVERTERS

4.1 Motivation

The second well-known drawback of conventional SC converters is their inability to losslessly regu-

late the output voltage [15,16,36]. The term “lossless regulation” means that the power loss of the

converter is not influenced by the voltage regulation, if the circuit elements are assumed to be ideal

(i.e., ideal switches, capacitors and inductors). While magnetics-based PWM voltage source con-

verters operate on the concept of lossless regulation, it is not possible for pure SC converters. This

is again due to the voltage source characteristic of the capacitors. SC converters can only operate

with a fixed conversion ratio determined by the topology. The ideal efficiency of a conventional SC

converter while regulating the output voltage is shown in Fig. 4.1. It can be seen that the efficiency

decreases linearly as the output voltage is reduced from the nominal value. While the conversion

ratio can be changed by re-configuring the topologies dynamically, as shown by the dotted line in

the plot, it is difficult to achieve a fine voltage resolution and the utilization of the components can

be poor due to the redundancy. There are many attempts to alleviate the regulation problem of

the SC converters. Typical usage of conventional converters is to cascade it with a buck or boost

converter [37]. The SC stage is responsible for the bulk of the voltage conversion and the buck

or boost is responsible for regulation. These conventional two-stage designs use conventional SC

converters, which have poor capacitor utilization as discussed in Chapter 2. The merged two-stage

design in [21, 22] improves the capacitor utilization using the theory shown in Chapter 2, but the

feed-forward plus voltage hysteresis control can be complicated. A “MultiTrack” architecture is

presented in [38], where a ladder based SC converter is combined with transformers to form a

voltage conversion stage of galvanic isolation. A PWM stage with an additional inductor is used

in front to achieve voltage regulation.

This chapter approaches the regulation problem with a single stage design, by utilizing the

soft-charging inductor and PWM switching technique. Therefore, in contrast to the fixed-ratio

operation of the hybrid converter, a family of PWM-based hybrid converter is introduced. It will

be shown that proposed hybrid SC converter is able to regulate the output voltage continuously,

and can compare favorably against both the conventional SC converters and the buck converters.
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Figure 4.1: Efficiency of conventional SC converter when regulating the output voltage.

4.2 Proposed Method

The proposed technique is illustrated with the hybrid (soft-charging) Dickson converter presented

in Chapter 2, whose schematic is repeated here in Fig. 4.2. However, the operating details and

component sizing of the two are quite different. Two switching phases responsible for voltage

regulation have been introduced. The equivalent circuit states in one complete switching cycle are

shown in Fig. 4.3. In order to achieve both split-phase control and PWM regulation, there are six

states in total. Phase 1a and 2a are the original circuit states in the operation of a conventional

Dickson SC converter. They determine the native conversion ratio of the converter, which is 4-to-1

for the schematic shown in Fig. 4.2. The reasons for the additional phases are explained as follows.

Phase 3 is the regulation state for voltage regulation. The technique used here is similar to

the pulse width modulation (PWM) of a buck converter. By periodic steady-state operation, the

average voltage across an inductor is zero. Therefore, the output voltage (defined as the bottom

terminal of the inductor in Fig. 4.2) can be reduced by reducing the average switching node voltage

(defined as the top terminal of the inductor in Fig. 4.2). Therefore, a regulation circuit state (Phase

3) is created, by shorting the switching node to ground for a certain amount of time during the full

switching period. This is accomplished by turning on all the bottom 4 switches (S1 to S4) at the

same time and keeping all other switches off. Using conventional duty ratio representation, if the

total duration of a switching cycle is T and the duration of Phase 3 is (1−D)T , then the output

voltage is given by

Vout ≈
DVin
N

, (4.1)

where N : 1 is the native conversion ratio of the original Dickson converter. In this way, the

output voltage can be regulated by adjusting the relative duration of Phase 3 and other phases,

i.e., the duty ratio D. It should be noted that the regulation state appears twice in each complete
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Figure 4.2: Schematic of the proposed regulated soft-charging Dickson converter.

switching cycle, effectively doubling the pulse frequency seen by the inductor, without an increase

in transistor switching frequency.

Phase 1b and Phase 2b are the additional phases introduced by split-phase operation to ensure

no voltage mismatch among capacitors during phase transitions. As shown in Section 2.4, with

conventional two-phase control, when the circuit transitions between Phase 1a and Phase 2a,

some capacitor voltages inevitably add up such that KVL for the ideal circuit is violated [39].

Consequently, large impulse currents circulate through the flying capacitors and create excessive

power loss. This can be seen from Fig. 4.4, in which the switching node voltage, inductor current and

flying capacitor currents are plotted for conventional two-phase control with PWM regulation. It

can be seen that, despite the continuous inductor current, all the capacitor currents have a transient

impulse during switch transitions, giving rise to high power loss. To eliminate this undesirable

operation mode, Phase 1b and Phase 2b are introduced to selectively charge and discharge the

relevant capacitors through the load. As a result of these buffer states, when the circuit transitions

to the original Phase 1a and 2a, KVL is satisfied. The effect of the additional phases is shown in

Fig. 4.5, where the same converter is operated with split-phase control. It can be seen that, even

when the capacitance is reduced by 10 times compared to the previous case, the impulse current

can still be effectively eliminated. To ensure complete soft-charging operation, the ratio of the

duration of a phases and b phases is fixed. For a 4-to-1 Dickson converter, the duration of the a

phases needs to be three times that of the b phases, as shown in Section 2.4. It should be noted that

the introduction of the regulation phase does not change this phase timing, since none of the flying

capacitors conduct any current during the regulation phase. Therefore, for complete soft-charging
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Figure 4.3: Equivalent circuits in one complete switching cycle.

operation and lossless regulation of the output voltage, the duty cycle of each phase is given by:

• Phase 1a: 3
8D Phase 1b: 1

8D

• Phase 2a: 3
8D Phase 2b: 1

8D

• Phase 3: 1
2(1−D)

The gate control signals to achieve the proposed switching scheme are shown in Fig. 4.6. It can

be seen that signals q2, q2s and q̄2 are 180◦ phase shifted versions of signals q1, q1s and q̄1. In

addition, q̄1 is complementary of q1 and q̄2 is complementary of q2. It should be noted that while

the control scheme may seem complicated with six gate signals and six circuit states, there is only

one independent control signal (D), and all other signals can be derived from it. Additionally, each

switch still only makes two transitions during one complete switching period, and therefore there is

no increase in device switching frequency (and thus switching loss) compared to the conventional

operation.

4.3 Design Considerations

In this section, converter design approaches for the hybrid SC converter are discussed, including

how to select capacitor values, inductor value and switches.

For soft-charging SC converters without regulation, the inductor is chosen such that the switching

frequency, fsw, is equal to or higher than the LC resonant frequency of the converter, in order to
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Figure 4.4: Waveforms with two-phase regulated operation. C1 = C2 = C3 = 4.7 µF, fsw =250
kHz, Iload= 5 A.

ensure elimination of the power losses associated with charge sharing [28,40]. For the 4-to-1 Dickson

SC converter, this leads to a requirement of

fsw ≥
1

2π
√

1.5LC
, (4.2)

assuming each of the flying capacitor has a value of C. In that case, a design should trade off

the values of C, L and fsw in order to achieve efficiency and power density targets. However,

with the proposed PWM operation, another factor that decides the inductor value and switching

frequency is the inductor current ripple. Similar to the design of a buck converter, a reasonably

small inductor current ripple is usually desired for efficiency reasons. Thus, using the current ripple

as a constraint, the inductor of the hybrid SC converter is given by

LSC =
Vout(1− VoutN

Vin
)

2fsw,sc∆IL
, (4.3)

where Vin is the input voltage, Vout is the output voltage, and N : 1 is the native conversion

ratio. The factor of two in the denominator is due to the fact that the pulse frequency seen by the

inductor is twice the switching frequency of the transistors, as discussed in the previous section. For
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Figure 4.5: Waveforms with split-phase regulated operation. C1 = C2 = C3 = 0.47 µF, fsw =250
kHz, Iload= 5 A.

comparison, the inductor required by a buck converter is given by (5.5), again using the inductor

current ripple as a constraint.

Lbuck =
Vout(1− Vout

Vin
)

fsw,buck∆IL
(4.4)

By taking the ratios of (4.3) to (5.5), as given by (5.7), the inductance required by the hybrid

converter can be normalized by that required by the buck converter.

LSC
Lbuck

=
1− NVout

Vin

1− Vout
Vin︸ ︷︷ ︸

Kd

×
fsw,buck
2fsw,sc︸ ︷︷ ︸

1
2
Kf

(4.5)

It can be seen that the first component, Kd, is always less than one, and approaches zero when
Vout
Vin

approaches 1
N . Intuitively, this is due to the fact that the SC stage acts like a “pre-step-down”

stage that reduces the input voltage seen by the inductor. The second component, 1
2Kf , is also less

than one in most cases. This is because the SC converter can usually operate at a higher switching

frequency than a buck converter, owing to a better device utilization [19]. Therefore, as shown

by (5.7), the inductor of the hybrid SC converter is much smaller than that of a buck converter,
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Figure 4.6: Gate signal for regulated split-phase operation of the Dickson converter in one
switching period. High represents ON and low represents OFF.

resulting in the superior power density of the hybrid converter.

Table 4.1: Voltage ratings on switches.

Switch S1 S2 S3 S4 S5 S6 S7 S8

Voltage rating (assuming no ripple) 1
N Vin

1
N Vin

1
N Vin

1
N Vin

1
N Vin

2
N Vin

2
N Vin

1
N Vin

Voltage rating (assuming 10% ripple) 1
N Vin

1
N Vin

1
N Vin

1
N Vin

1.1
N Vin

2.1
N Vin

2.1
N Vin

1.1
N Vin

The required capacitor value can be calculated using the amount of charge that flows through

the capacitor in a switching cycle (Qc) and the permissible voltage ripple on the capacitors (∆Vc).

For the 4-to-1 Dickson converter, an approximate expression is given by (6.2), where Iload is the

load current. The exact values would need methods similar to charge multiplier analysis [12,28].

Cfly =
Qc

∆Vc
=

Iload
3fsw∆Vc

. (4.6)

As can be seen, a higher capacitor voltage ripple leads to a lower capacitor value. In conventional

SC converters, this voltage ripple gives rise to the capacitor charge redistribution loss, and thus

is usually kept very small for high efficiency. On the other hand, soft-charging SC converters can

operate with substantially higher ripple without attendant loss increases, and hence their superior

power density. Nevertheless, the voltage ripple also adds to the voltage rating of the switches, and

thus should be kept reasonable. For example, one can impose a voltage ripple that is, say, 10% of

the nominal output voltage, to limit the maximum voltage seen by the transistors.

The conventional Dickson converter has switch ratings that are either 1
N Vin or 2

N Vin. With the

split-phase technique and PWM operation, the proposed converter has the same overall switch

ratings as conventional ones. However, as mentioned above, the increased voltage ripples on the

capacitors are added onto the rating of the switches. Assuming the capacitor voltage ripple is

chosen to be 0.1( 1
N Vin), the exact ratings are given in Table 4.1. It can be seen that the increase
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Figure 4.7: Operating range for the designed converter.

Table 4.2: Design specifications.

Vin 170 V DC
Pout 70 W
Vout 12 - 24 V DC
fsw 250 kHz

in switch voltage rating is quite limited using the design guideline presented here.

4.4 Hardware Verification

In order to validate the proposed design, a converter prototype is implemented. The nominal input

voltage is 170 V. The converter has a native 6:1 conversion ratio, but supports a wide input and

output range by PWM operation. The full operating range achieved is shown in the shaded area

of Fig. 4.7. Since the PWM operation can only reduce the output voltage, the lower bound on the

input voltage is given by 6Vout. A photograph of the converter is shown in Fig. 4.8, together with

a US quarter for scale. All the components are placed on the top side of the PCB. The tallest

component is the inductor, which has a thickness of 3.5 mm. Such a thin profile is enabled by the

reduction in inductor size owing to the switched-capacitor stage. The design specification is given

in Table 4.2 and a component listing is provided in Table 4.3. As can be seen, switches S1 to S4 are

low voltage and high current devices, while switches S5 to S10 are chosen to have higher voltage

and lower current capability, according to the discussion in Section 4.3.

Waveforms of the switching node voltage, output voltage, inductor current and the gate signals

are captured and shown in Fig. 4.9. It can be seen that the switching node voltage has the same

trapezoidal shape as in simulation. The inductor current is approximately triangular, similar to

that of a buck converter.
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Table 4.3: Component listing of the converter prototype.

Component Part number Parameters

S4 - S1 EPC2015 40 V, 4 mΩ, 33 A
S10 - S5 EPC2007 100 V, 30 mΩ, 6 A
D1, D2 Toshiba CRS08

C5 - C3 TDK C4532X7T2E105K250KA 250 V, 1.0 µF
C2, C1 TDK C2012X7S2A105K125AB 100 V, 1.0 µF

Co TDK C3216X5R1V226M160AC 35 V, 22 µF

Inductor Vishay IHLP-5050CE-01 6.8 µH, 9 A

Gate drivers TI LM5113
Level-shifters Analog Device ADUM5210

Microcontroller TI Piccolo F28035

Figure 4.8: Photo of the converter prototype. A US quarter is included for scale.

The efficiency of the prototype with a 12 V constant output voltage is shown in Fig. 4.10a, as

the load current and input voltage vary. It can be seen that, at light load, higher input voltage

results in a lower efficiency, due to the higher switching loss. At heavy load, the difference in

efficiency across input ranges narrows, since the conduction loss starts to dominate. For example,

there is a reduction of only 1% in efficiency when the input voltage increases from 85 V to 150 V

at 4 A load. Furthermore, even though a few discrete input voltages are given in the plot, the

achievable conversion ratios are continuous, thanks to the PWM regulation. This is in contrast to

conventional SC converters with one or multiple native conversion ratios, whose high efficiency is

only possible at selected conversion ratios.

Similar to a buck converter, during the dead-time of the switches, the switching node voltage can

be negative owing to the conduction of body diode. The GaN devices have large equivalent “body

diode” voltage drop of approximately 2 V, as can be seen from the negative part of Vsw in Fig. 5.4.

The efficiency of the converter can be affected at large load current due to high conduction loss

during “body diode” conduction. Thus, an anti-parallel diode with a low forward drop voltage is
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Figure 4.9: Waveforms showing the split-phase PWM operation of the converter prototype.
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Figure 4.10: Measured efficiency of the converter prototype with a constant 12 V output.

placed across the switching node and ground. The effect of the diodes on the converter efficiency is

illustrated by comparing Fig. 4.10a and Fig. 4.10b. It can be seen that by including the anti-parallel

diodes, the peak efficiency is increased from 96% to nearly 97%. The efficiency at full load is also

increased by 0.5% for most input ranges.

The efficiency of the converter with 24 V output is shown in Fig. 4.11. It can be seen that the

converter efficiency can be maintained at above 96% at 3 A load current and at different input

voltages. Furthermore, the efficiency curve is very flat across the load range. This demonstrates

the high conversion efficiency possible with the hybrid converter.

For converters with such high power density and compact size, the output power is often limited

by thermal constraint. The thermal design becomes difficult due to the extremely small size of

the GaN devices. For this prototype, a 3D printed heat sink made of brass is placed on top of

the converter to aid the cooling of the GaN switches. Because the highest converter thickness is

the inductor, the heat sink is designed such that the overall thickness after mounting on the GaN
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Figure 4.11: Measured efficiency of the converter prototype with a constant 24 V output voltage.

Figure 4.12: Power stage of the converter prototype with the 3D printed heat sink attached. A
US penny is on the left for scale.

devices is the same as the inductor, thus making the best use of vertical space. Figure 4.12 shows

the heat sink covering the GaN devices. The volume of the converter power stage is 0.254 in3. It is

calculated by taking a rectangular box containing the power stage, including the thickness of the

PCB (1.6 mm). The calculation includes all passive and active devices, plus gate drivers, but does

not include the level-shifting circuitry and the microcontroller. With a tested power of 70 W, the

power density is 276 W/in3. As demonstrated in this section, the proposed converter is able to

simultaneously achieve high efficiency and high power density.

4.5 Extension to Other SC Topologies

The PWM technique presented in this chapter is not limited to the Dickson SC converter alone.

In fact, any SC converter that is able to achieve soft-charging operation with an inductor at the

output can utilize PWM for regulation. For example, among the traditional SC topologies, it

has been shown that series-parallel and Fibonacci converters are able to achieve full soft-charging

operation in Chapter 2. A 4-to-1 series-parallel converter and a 5-to-1 Fibonacci converter with the
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Figure 4.13: PWM hybrid SC converters with gate signals and optional diodes.
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(b) Fibonacci converter with 0.5 PWM duty ratio.

Figure 4.14: Gate signals for the PWM hybrid SC converters.

additional inductors are shown in Fig. 4.13, together with optional diodes added to the switching

node to improve the efficiency of GaN implementations. Since these converters also have switches

that can pull the switching node before the inductor to ground, they can also achieve lossless output

voltage regulation using the same PWM technique. The gate signals for the PWM operation are

shown in Fig. 4.14, and the equivalent circuits for different states are shown in Fig. 4.15. The

circuits shown in Fig. 4.13 are simulated, and waveforms are shown in Fig. 4.16. In order to

balance the capacitor voltages in steady state, the durations of the two State 0’s are kept the same.

This ensures that the average inductor currents in State 1 and State 2 are the same. As shown in

Fig. 4.16, the inductor current ripple is smaller for the Fibonacci converter, due to the more even

duration of State 1 and State 2.
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Figure 4.15: Equivalent circuits of hybrid SC converters in PWM operation.

4.6 Chapter Summary

In this chapter, a high-efficiency PWM hybrid SC converter is proposed, which is ideal for large

step-down/step-up applications. It overcomes the fundamental constraints of conventional SC

converters by adding a small inductor. Split-phase control method is implemented to eliminate

the charge sharing loss, and PWM regulation technique is utilized to achieve lossless regulation of

the output voltage. Design approaches and considerations are presented for such converters. A

170 V to 24 V regulated SC converter with a wide input/output voltage range is implemented to

demonstrate the effectiveness of the proposed approach. The converter prototype achieves a peak

efficiency of 97% and is able to maintain high efficiency under voltage regulation. The converter

prototype simultaneously achieves high efficiency and power density that can be hard to achieve

with conventional SC converters or buck converters.
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(a) Series-parallel converter with 0.67 PWM duty ratio.
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(b) Fibonacci converter with 0.5 PWM duty ratio.

Figure 4.16: Equivalent circuits of hybrid SC converters in PWM operation.
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CHAPTER 5

DESIGN AND COMPARISON OF HYBRID SC CONVERTERS

5.1 Motivation

The previous chapter has shown that the hybrid SC converters are able to achieve a higher power

density and efficiency compared to conventional SC converters. The addition of the soft-charging

inductor significantly improves the energy utilization of the capacitors. In this chapter, it will be

shown that, compared to conventional magnetic based converters, the addition of the capacitors

also improves the energy utilization of the inductor. A general framework to evaluate different

topologies that employ both capacitors and inductors is attempted.

The applications of interest are those involve large voltage step-down/step-up ratios. For in-

stance, 380 V to 12 or 48 V conversions are required to deliver power to servers in data centers.

Likewise, in off-line applications, PFC front-ends generate near 400 VDC that is often stepped

down to 12–24 V. High step-up boost converters are used to interface PV panels with the grid [41].

At lower voltage levels, microprocessors are powered by voltage regulation modules which convert

the 12 V DC bus to 1–1.6 V. In these applications, the magnetic elements typically dominate the

size of the converter. Therefore, in order to reduce the overall volumetric footprint, it is desirable

to further reduce the inductor size without sacrificing the conversion efficiency.

Flying capacitor multilevel converters (FCMC) have received attention in medium voltage dc-

ac applications due to their low device voltage ratings and increased pulse frequency seen by the

inductor [42–44]. Recently, it has also been shown that the FCMC converter is able to achieve

excellent power density and efficiency at low voltages (e.g., 400 V) [45]. While there has been

extensive research on FCMC converters in the dc-ac domain, the use of such converters in dc-

dc applications has been relatively limited. A three-level FCMC, also called three-level buck, is

used in [46] for envelope tracking power amplifier and shown to be superior to conventional two-

level interleaved buck converters. A four-level step-up FCMC for plug-in hybrid electric vehicles

is presented in [47], but with only fixed conversion ratios (i.e., no output voltage regulation).

A variant of the five-level FCMC is implemented as a bidirectional high voltage dc-dc converter

in [48]. Flying capacitors can also be added to multiphase buck converters [49, 50] to reduce the

device voltage stress, and a recent implementation shows significant efficiency improvement over

conventional buck in high frequency-operation at 3 MHz [51].

Another type of converter that has potential in large step-up/down ratio applications is the
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switched-capacitor (SC) converters [18, 52]. It has been shown that the switch utilization in SC

converters is higher compared to buck or boost converters [12]. Chapters 2 and 4 have shown

that by adding an inductor to SC topologies, the power density can be significantly improved, and

lossless regulation can be achieved. However, comparisons against conventional buck converters

are non-existent to date.

The hybrid SC converters can be regarded as multilevel converters since there are multiple

intermediate voltage domains, generated by the flying capacitors. On the other hand, the FCMC

can also be seen as a type of hybrid SC converter, since it combines an SC cell with an inductor.

Therefore, these topologies are closely related, and the terms multilevel SC and hybrid SC refer

to both types of converters in this dissertation Due to the use of flying capacitors and multiple

switches, a large number of topological variations is possible for the hybrid SC converters, with

some better than others. This work presents a quantitative method to compare these hybrid

converters, from the perspective of the fundamental utilization of active device and passive devices.

In particular, it explores the applications of FCMC converters and hybrid SC converters in dc-dc

conversion, with an emphasis on a large voltage conversion ratio. Unlike previous three-level buck

analysis [46], a formal comparison method is given, and the volume of the flying capacitors is taken

into account. It will be shown that the hybrid SC converters have significantly reduced passive

component size compared to buck converters. This work analytically shows the advantages of the

multilevel converters and serves as a guide for designing these converters.

This chapter is organized as follows. Section 5.2 outlines the comparison methodology and the

motivation and assumption behind. Section 5.3 analyzes the FCMC and compares it against the

buck converter using the proposed methodology. Section 5.4 generalizes the methodology to hybrid

SC converters and use the Dickson hybrid SC converter as an example. Experimental verification

is given in Section 5.5. Finally conclusions are given in Section 5.6.

5.2 Proposed Comparison Methodology

The scope of the comparison is focused on the power stage, which in most cases determines the size

and efficiency of a converter. While many additional gate driving and level-shifting circuitries can

be required by the multilevel types of converters, their contribution to the size of the circuit can be

small when high power applications are considered. On the other hand, in low voltage applications,

these auxiliary circuits can be further miniaturized by IC integration.

When comparing topologies, a dilemma often faced is the trade-off between the complexity of the

model and the accuracy of the result. Comprehensive loss and size calculations can be carried out,

which may yield accurate results, but the resultant expressions are often too complicated to provide

any intuitive understanding. On the other hand, simple expressions are easily comprehensible, but

the theoretical results may differ significantly from reality. A compromise is struck in this work,

with an emphasis on obtaining tractable expressions. The rationale is that converter design is a
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multi-dimensional problem, which involves the trade-off between semiconductor conduction loss,

semiconductor switching loss, inductor dc and ac loss, inductor volume, capacitor volume, etc. Each

of the components (switch, inductor, capacitor) has multiple parameters that influence both the

efficiency and size. There are many second-order effects that are not easily captured in equations

with reasonable accuracy. An attempt to compare topologies aiming for high accuracy will likely

end up designing and optimizing every topology in detail using real components, which involves a

considerable amount of work and sacrifices generality and usefulness of the method along the way.

Therefore, this work on topology comparison serves as the first pass in identifying the advantageous

candidates among the applicable topologies. The merits and demerits of each topology can be easily

spotted analytically and intuitively. It should then be followed with design methods such as the

Pareto front optimization [53], which can be used to determine the final converter and design choice

for an application.

In order to yield comprehensible expressions that allow sensible comparison among topologies,

the following assumptions are made.

1. The losses considered are only the conduction and switching losses of the semiconductor

switches, as well as the conduction loss in inductors.

2. The volume is calculated based on only the volume of the capacitors and inductors. The

volume of the active devices and auxiliary circuits are neglected.

These assumptions are based on the observations that the passive components - the inductors and

capacitors - usually dominate the size of a converter. On the other hand, the active switching devices

usually dominate the losses in hard-switching converters, especially in continuous conduction mode

(CCM) operation where the inductor current ripple is small. While the core loss and ac winding

loss of the inductor also can make significant contributions to the power loss, the comparison is

valid as long as it does not favor any particular topology by omitting this loss. Ceramic and film

capacitors are known to have very small ESR (a few milliohms) in the frequency range of hundreds

of kilohertz, and thus the power loss due to the ESR can often be neglected, as is done in this work.

These losses should certainly be considered in the later design stage.

Another difficulty in comparing different topologies is that there is a trade-off between the effi-

ciency and size of a converter. As a result, it is not enough just to compare the efficiencies of two

converters, without taking into account the size of a converter, and vice versa. In order to carry

out a fair comparison among topologies, in this work, the switch and inductor conduction losses are

designed to be the same across the topologies, as well as the device switching losses, by choosing

the appropriate switch conductance and switching frequency. With these parameters established,

the required inductance or capacitance values can be obtained. This results in a single metric

(passive components volume) that reflects the performance of the converter. An advantage of the

proposed approach is that it is free from the effect of design trade-off for each type of converter.

By scaling the design parameters such that the switching loss and conduction loss are the same for

all converters, the passive component size becomes the only variable and thus the comparison can
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Figure 5.1: Flowchart of the proposed comparison methodology.

focus on the fundamental difference between the topologies. It should be noted here that size and

efficiency are the two facets of the fundamental trade-off in converters. The choice in this work

is to compare size while keeping efficiency the same, while it is certainly possible to compare the

efficiency while keeping the size the same.

Following the preceding rationale, the comparison procedure is proposed as follows.

1. Determine the conductance needed for the switches in order to make the equivalent resistance

of each topology the same, so that the conduction losses are the same.

2. Given the conductance and voltage rating of each switch, determine the switching frequency

such that the switching losses of all the converters are the same.

3. Determine the inductance required by each topology based on the allowed inductor current

ripple, the switching frequency and duty ratio.

4. Determine the capacitance required by the multilevel topologies from the allowed capacitor

voltage ripple.

5. Combine the inductance and capacitance into a single passive component volume metric.

An overview of the above procedure is shown as a flowchart in Fig. 5.1. Since the buck converter

is the most basic PWM step-down converter, it is used as a reference to which all topologies are

compared to.

5.3 Flying Capacitor Multilevel Converters

In this section, the details of the comparison method are presented, using the FCMC converters

as examples. The schematic drawing of a five-level FCMC converter is shown in Fig. 5.2. The

switching node voltage, Vsw, can have five values (Vin, 3
4Vin, 2

4Vin, 1
4Vin, and 0), depending on the
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circuit states. For each switching node voltage, there is more than one circuit state that results

in the corresponding voltage. In this work, since the FCMC is used in large voltage step-down

applications, it is assumed that the desired output voltage is between 0 and 1
N−1Vin, where N is

the number of levels. The corresponding switch states are shown in Table 5.1, where ‘1’ represents

on and ‘0’ represents off. The circuit states to achieve a switching node voltage of 1
N−1Vin are

shown in Fig. 5.3. A typical switching sequence is 1a → 0 → 1b → 0 → 1c → 0 → 1d → 0,

and then back to 1a. By observing Table 5.1 and Fig. 5.3, it can be seen that in one complete

switching sequence, all the switches only make one set of transitions, yet four voltage pulses at

the switching node are produced. In general, the switching node frequency is (N − 1) times the

transistor switching frequency, for an N -level FCMC. This is known as the “multiplication” effect

of the FCMC converter [42]. In addition, it should also be noted that a buck converter can be

viewed as a two-level FCMC, and therefore two-level and buck are used interchangeably in the rest

of this dissertation.
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Table 5.1: Switch states and capacitor states corresponding to switching node voltages of Vin
N−1

and 0. For switches, “1” denotes on-state and “0” denotes off-state. For capacitors, “+” denotes
charging state and “-” denotes discharging state.

State Vsw S1 S2 S3 S4 S11 S12 S13 S14 C1 C2 C3

1a Vin/(N − 1) 1 0 0 0 0 1 1 1 +
1b Vin/(N − 1) 0 1 0 0 1 0 1 1 + -
1c Vin/(N − 1) 0 0 1 0 1 1 0 1 + -
1d Vin/(N − 1) 0 0 0 1 1 1 1 0 -

0 0 0 0 0 0 1 1 1 1

5.3.1 Conduction loss

Following the comparison procedure proposed in Section 5.2, the first step is to make the conduction

losses of the converters the same, by selecting the conductance of the switches. Since the switch

pairs (Sx and S1x) in Fig. 5.2 operate in a complimentary fashion, for an N -level FCMC, there are

always (N − 1) switches that are closed and connected in series with the load. On the other hand,

a buck converter (for which N = 2) always has one switch conducting the load current. Thus, if

the conductance of the switches of a buck converter is Gbuck, the switch conductance of an N -level

FCMC, GFCMC, needs to satisfy Eq. (5.1), in order to result in the same conduction loss.

GFCMC

Gbuck
= N − 1. (5.1)

It should be noted that the calculation assumes that all the switches in a converter have the same

conductance. While in practice, the low side switch of the buck converter is usually chosen to have

a higher conductance than the high side switch to maximize the efficiency in a large voltage step-

down scenario, the same optimization can be performed on the multilevel converters, and would

yield a similar benefit in terms of efficiency improvement. In general, for each different topology,

the switches can be optimized so that their conductance corresponds to the RMS current through

them. For simplicity, this asymmetric switch sizing is omitted from the examples used here, but

can be easily included if desired.

5.3.2 Switching loss

The next step is to make the switching losses the same by choosing the switching frequency, based

on previously selected switching conductance and the switch voltage ratings. Assuming the same

switch technology, the switch size as well as the switching loss are often approximately proportional

to the GV 2 product of the switch, where G is the conductance and V is the blocking voltage of

the switch [12]. A justification for the use of the GV 2 product is provided in Appendix C.1,

which presents an empirical analysis of GaN transistors that support this particular device scaling
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parameter. Moreover, it is recognized here that other metrics can be used in place to represent the

switching loss, in order to reflect the scaling or limitation of a particular switch technology.

In order to achieve the same switching losses for the buck converter and FCMC converter,

Eq. (5.2) needs to be satisfied.∑
switches

(GV 2)FCMC × fFCMC =
∑

switches

(GV 2)buck × fbuck (5.2)

The FCMC converter has 2(N − 1) switches, each with a voltage rating of 1
N−1Vin, while the buck

converter has two switches, each with a rating of Vin. Rearranging Eq. (5.2) and substituting in

Eq. (5.1), the sums of the GV 2 products for the two converters are obtained in Eq. (5.3).

∑
(GV 2)FCMC∑
(GV 2)buck

=
GFCMC

Gbuck
×

2(N − 1)× ( 1
N−1Vin)

2

2× V 2
in

= 1. (5.3)

As can be seen, the sum of the GV 2 turns out to be the same for both converters. This means that

the FCMC converters can switch at the same transistor switching frequency as the buck converter

for the same conduction loss and switching loss:

fFCMC = fbuck. (5.4)

In existing literature, the advantage of the FCMC is often stated to be reduced inductor current

ripple compared to a buck converter, while it is implicitly assumed that the switching frequency is

the same as that of the buck converter. The above analysis provides a basis for such an assumption.

5.3.3 Inductor

For efficiency reasons, the inductance value of PWM converters is usually chosen based on a certain

inductor current ripple: a larger ripple allows for a smaller inductance, but results in higher ac

conduction loss and magnetic core loss. The inductor current ripple in turn depends on the terminal

voltages the inductor experiences during a switching cycle. As an illustration, the switching node

voltages of a 2-level converter and a 5-level converter are shown in Fig. 5.4, for the case of 100 V

to 12 V conversion. Using periodic steady-state constraint, the inductor value of a buck converter

is given by

Lbuck =
(1− Vout

Vin
)Vout

∆ILfbuck
, (5.5)

where ∆IL is the peak-to-peak inductor current ripple.

For the FCMC, the required inductance can be calculated in the same way. For large-step-down
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voltage conversion ratios that satisfy Vin
Vout

> N − 1, the inductance is given by

LFCMC =
(1− Vout(N−1)

Vin
)Vout

∆ILfFCMC(N − 1)
, (5.6)

for a specified inductor current ripple, ∆IL. As a quick check, the inductance required by the buck

converter can be obtained by setting N to 2. By taking the ratio of Eq. (5.6) and Eq. (5.5), the

inductance of the FCMC normalized by the inductance of the buck converter can be obtained as:

LFCMC

Lbuck
=

(1− Vout(N−1)
Vin

)

1− Vout
Vin︸ ︷︷ ︸

Kd

1

N − 1︸ ︷︷ ︸
Kf

. (5.7)

It can be seen that the reduction in inductor size compared to the buck converter comes from two

terms. The term Kd is due to the difference in the duty ratio of the voltage pulse seen by the

inductor. The duty ratio of the switching node pulse of the FCMC is N − 1 higher due to the

step-down from the flying capacitors. The second term, Kf , is due to the fact that for the FCMC,

the pulse frequency seen by the inductor is (N − 1) times the switching frequency of each switch.

To visualize the difference in the required inductance, Eq. (5.7) is plotted in Fig. 5.5, in which each

curve is for an FCMC with a different number of levels. It can be seen that, as the conversion

ratio, Vin/Vout, approaches that of the native conversion ratio of the FCMC, (N−1), the inductance

required goes to zero, contributed by the term, Kd. This is due to the near unity duty ratio of the

switching node pulse seen by the inductor. On the other hand, as the conversion ratio increases,

the effect of Kd becomes smaller, and the normalized inductance approaches a constant for each

level, which is determined by Kf . Overall, the inductance required can be significantly reduced

by employing the FCMC, especially if the number of levels is designed to be close to the targeted

voltage conversion ratio.
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The energy stored by the inductor is also calculated. Using Eq. (5.6) and using the parameter

αI to represent the ripple factor (∆IL = αIIload), the energy stored by the inductor is

EL,FCMC =
1

2
LFCMCI

2
L

=
1

2
(1− Vout(N − 1)

Vin
)

Pout

αI(N − 1)fFCMC
. (5.8)

Since the buck converter and the FCMC have the same inductor current magnitude, the ratio of

the inductor energy is the same as inductor value:

EL,FCMC

EL,buck
=
LFCMC

Lbuck
(5.9)

The dc conduction losses of the inductors for the FCMC and buck converter are made the same

by choosing the same dc resistance for the inductors, since they have the same RMS current. It

should be noted that core loss and ac loss are neglected in this analysis. In reality when core loss

and ac loss are significant, the multilevel converter losses may differ somewhat, due to the increase

in frequency by a factor of (N − 1). Appendix C.4 investigates in detail how the core loss changes

according to the inductor size and frequency scaling, and can be augmented to the main procedure

if desired. In addition, while the presented method fixes conduction and switching losses, and uses

the passive component volume as the comparison metric, it is by no means the only performance

metric that the FCMC should be designed for. For example, the FCMC converter can be designed

to have the same inductor volume and inductor loss with a lower switching frequency than the

buck converter, and thus benefit from an overall higher efficiency. Therefore, the fundamental

advantages of the FCMC converter are not exaggerated by excluding the ac related losses in the

inductor, though the design space may be more limited.

5.3.4 Flying capacitors

The low voltage switch and small inductance are enabled by the multiple voltage levels provided

by the flying capacitors. As the number of levels increases, the volume of the flying capacitors

increases, and needs to be taken into account. For a multilevel converter, the energy stored by all

flying capacitors can be calculated as

EC =
1

2

m∑
i

CiV
2
C,i , (5.10)

where Ci is the capacitance, VC,i is the voltage rating of the i-th capacitor, and m is the total

number of capacitors. For the FCMC converter, there are N − 2 flying capacitors, and their

voltage ratings are given by

VC,i =
i

N − 1
Vin , (5.11)
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Figure 5.5: Inductance required by the FCMC normalized by that required by two-level buck. N
is number of levels.

for the i-th capacitor as labeled in Fig. 5.2. With the typical design choice of having equal flying

capacitors (Ci = C1), the total energy stored can be obtained by substituting Eq. (5.11) into

Eq. (5.10):

EC =
(N − 2)(2N − 3)

12(N − 1)
C1V

2
in. (5.12)

The next step is to determine the capacitor value, C1. While the capacitors have much higher

energy density than inductors, it is important that the energy is utilized in the conversion process.

The energy utilization of the capacitor is proportional to the voltage ripple across it. Therefore,

analogous to sizing the inductor using inductor current ripple, the flying capacitor value can be

obtained from the capacitor voltage ripple constraint. The flying capacitor voltages in a switching

cycle are shown in Fig. 5.6. A larger voltage ripple allows for smaller capacitor values, but also

adds to the maximum voltage rating of capacitors and switches. In this work, capacitor voltage

ripple is chosen as a fraction of the smallest capacitor voltage rating or the smallest switch voltage

rating. Thus, for the FCMC converter, the allowed peak-to-peak capacitor voltage ripple is given

by

∆VC = αV
Vin

N − 1
, (5.13)

where αV is a relative ripple factor and is less than 1. Then, the capacitance required can be

calculated as

C1 =
∆QC
∆VC

=
(N − 1)Iload tc

αV Vin
, (5.14)

where ∆QC is the charge flowing into the capacitor in a charging period, Iload is the load current

and tc is the duration of one capacitor charging period before it gets discharged, as annotated in

Fig. 5.6. From Fig. 5.3 and Fig. 5.6, it can be observed that each flying capacitor is only charged

in one particular state and discharged in another state. The duration of each state 1 in Fig. 5.3 is
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Figure 5.6: Flying capacitor voltages for 100 V to 12 V conversion.

proportional to the duty ratio and inversely proportional to the switching frequency, as given by

tc =

(N−1)Vout

Vin

(N − 1)fFCMC
. (5.15)

Thus, substituting Eq. (5.15) into Eq. (5.14) and simplifying, the required capacitance is obtained:

C1 =
(N − 1)VoutIload

αV V 2
infFCMC

. (5.16)

Substituting Eq. (5.16) into Eq. (5.12) and simplifying, we obtain the energy storage of the capac-

itors:

EC =
(N − 2)(2N − 3)

12

Pout

αV fFCMC
. (5.17)

It can be seen that the energy stored by the capacitors increases by the square of the number of

levels for FCMC converter.

5.3.5 Combined comparison metric

In this section, the combined volume of passive components is investigated. It is assumed that

the inductor volume is proportional to the energy stored (1
2LI

2), where L is the inductance, and

I is the rated (by saturation or thermal limit) current of the inductor. On the other hand, the

volume of capacitors is proportional to the energy stored (1
2CV

2) by the capacitor, where C is the

capacitance and V is the rated voltage of the capacitor. The justifications for these metrics are

provided in Appendix C.2 and Appendix C.3.

For the FCMC, the energy storage requirement for the inductor is given by Eq. (5.8) and the

energy storage requirement for the capacitor is given by Eq. (5.17). For simplicity, both Eq. (5.8)
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Figure 5.7: Passive component volume required by the FCMC normalized by that required by
two-level buck converter.

and Eq. (5.17) use the nominal values of inductor current and capacitor voltages, by assuming a

relatively small ripple. By comparing Eq. (5.17) and Eq. (5.8), it can be seen that the ratio of the

energy stored by the capacitor to that of the inductor only depends on the conversion ratio, the

number of levels and the percentage ripples, and is independent of the output power and switching

frequency:
EC,FCMC

EL,FCMC
=

(N − 1)(N − 2)(2N − 3)

6(1− Vout(N−1)
Vin

)
× αI
αV

(5.18)

The energy stored by the capacitors and inductors cannot be simply added together, since the

energy densities of capacitors and inductors can be different by orders of magnitude. In order to

compare the volume, the energy needs to be converted into a total volumetric figure of merit, as

given by

Vtot = VL + VC =
EL
ρE,L

+
EC
ρE,C

, (5.19)

where ρE,L and ρE,C are the volumetric energy densities of inductors and capacitors respectively.

Therefore, the volume ratio of the FCMC and buck converters is given by

Vtot,FCMC

Vtot,buck
=

( EL
ρE,L

+ EC
ρE,C

)FCMC

( EL
ρE,L

)buck

=
EL,FCMC

EL,buck
(1 +

EC,FCMC

EL,FCMC

ρE,L
ρE,C

). (5.20)

By assuming an appropriate
ρE,C
ρE,L

ratio, one can find the total passive component volume normal-
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Figure 5.8: Schematic drawing of a 4-to-1 soft-charging Dickson converter.

ized with respect to that required by the two-level buck converter from Eq. (5.18) and Eq. (5.20).

An example is provided in Fig. 5.7, using αV = αI = 0.2 and a
ρE,C
ρE,L

ratio of 150, which is an average

value obtained from a survey of X7R capacitors from TDK and XAL inductors from Coilcraft as

shown in Appendix C.3. Comparing Fig. 5.5 and Fig. 5.7, one can observe that the increase in

total volume due to the capacitors is small with fewer levels, but with more levels the capacitor

size starts to be comparable to that of inductors, and further increase in the number of levels will

yield minimal benefit. Therefore, the proposed method can also be used to determine the optimal

number of levels of FCMC converters for a particular application. It should be noted that the exact

curves in Fig. 5.7 depend on the parameters used (αI , αV , ρE,L, ρE,C), and will change based on

the actual components selected and thus will be different for each design. The contribution here is

the development of such a general and quantitative method to aid in the evaluation and design of

the multilevel converters.

5.4 Generalization to Hybrid SC Converters

Another type of converter that utilizes both capacitors and inductors for energy transfer is the

hybrid switched capacitor converter. In this section, the proposed analytical method is applied to

hybrid SC converters, and a more generalized way to obtain the switch conductance and switching

frequency is presented. One example of the hybrid SC converters is the soft-charging Dickson

converter in Chapter 4, whose schematic is repeated in Fig. 5.8. The capacitor voltage ratings

for the Dickson converter are the same as the FCMC converters, while the voltage ratings for the

switches are 1
N−1Vin (for S1, S2, S3, S4, S5, S8) and 2

N−1Vin (for S6, S7).
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An analysis following the method presented in Section 5.2 is carried out for the hybrid Dickson

converter. The first step is to determine the required switch conductance such that the conduction

loss of the Dickson converter is the same as that of a buck converter. The difficulty of analyzing such

converters lies in the fact that multiple circuit branches conduct current to the load simultaneously,

unlike in the FCMC converter, in which there is only a single current loop. Thus, a general switched-

capacitor analysis approach is taken, by calculating the current through the capacitors using the

charge multiplier method presented in [12], with modification to take into account of the regulation

operation. It should be noted that while the conduction loss of the the FCMC converter can be

easily related to the buck converter using the specific analysis in Section 5.3, it can also be formally

determined by the general analysis presented in this section.

A charge multiplier vector can be defined for the switches in each phase of the topology as

[
ain,j a1,j a2,j a3,j ... aout,j

]
, (5.21)

where each element is defined as ai,j =
qi,j
qout

, i.e. the charge through the ith switch in the jth

phase normalized by the total charge delivered to the load over the entire switching period. The

first and last elements correspond to the charge delivered by the input source and the load. The

total conduction loss through the switches can be calculated from the mean squared value of the

currents, and is then given by

Pcond = I2
out

phases∑
j

1

Dj

switches∑
i

a2
i,jRi, (5.22)

where Dj is the duty ratio of the jth phase, and Ri is the on-state resistance of the ith switch.

Each element of the charge multiplier vector in Eq. (5.21) can be found by summing the charges

through the appropriate capacitors, which in turn can be found through KCL analysis [12, 28].

The conduction loss of the two-phase Dickson converter is calculated, and is found to approach

Eq. (5.23) as N increases.

Pcond = 2I2
outR1, (5.23)

For simplicity, the resistance of each switch is assumed to be the same, and is R1. Comparing

Eq. (5.23) to that of the buck converter, we know that in order to achieve the same conduction

loss, the switch conductance of the Dickson converter is given by

GDickson

Gbuck
= 2. (5.24)

The next step is to determine the switching frequency that satisfies∑
(GV 2)Dickson × fDickson =

∑
(GV 2)buck × fbuck, (5.25)
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Figure 5.9: Passive component volume required by the hybrid Dickson converter normalized by
that required by two-level buck converter. N is number of levels.

which can be rearranged to

fDickson

fbuck
=

Gbuck

GDickson
×

∑
(V 2)buck∑

(V 2)Dickson
. (5.26)

With known switch conductance and voltage ratings, Eq. (5.26) can then be evaluated as

fDickson

fbuck
=

(N − 1)2

4(N − 1) + 6
. (5.27)

The energy stored by the inductors and flying capacitors of the hybrid Dickson converter can then

be calculated in the same way as the FCMC converter, and only the final results are presented in

this section. The overall passive component volume required by the Dickson converter normalized

by that of the two-level buck converter is plotted in Fig. 5.9. It can be seen that similar to the

FCMC converter, the Dickson converter yields significant reduction in passive component volume.

However, the volume penalty introduced by the flying capacitance as the number of levels increases

is much smaller compared to the FCMC, due to more efficient utilization of the capacitors by the

parallel-connected branches. It can be concluded that the Dickson converter is a better topology

when the number of levels and the voltage conversion ratio are large.

It should also be noted that there are other practical aspects that influence the choice of topolo-

gies, such as the available switches and capacitors. For example, the Dickson converter has fewer

switches at higher conversion ratios, thus requiring fewer gate drivers and level-shifters. In addi-

tion, the control of the Dickson converter is simpler due to fewer circuit states, and the balance

of flying capacitor voltages is less of an issue. On the other hand, the FCMC can provide a wide

range of output (Vin to 0), while the Dickson converter only provides an output voltage between
Vin
N−1 to 0.
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Table 5.2: Component listings.

Buck 3-level FCMC Hybrid Dickson

fsw 200 kHz 200 kHz 250 kHz

Switches EPC2010C x 2 EPC2001C x 4 EPC2007 x 6, EPC2015 x 4
Rds,on 25 mΩ 7 mΩ 30 mΩ, 4 mΩ
Vds 200 V 100 V 100 V, 40 V

Inductor IHLP-8787MZ-5A IHLP-6767GZ-11 IHLP-5050CE-01
Inductance 47 µH 22 µH 6.8 µH

Isat 10.0 A 9.5 A 18 A
Rdc 17.3 mΩ 20.0 mΩ 19.8 mΩ

Flying capacitor value - 4.7 uF 1.0 uF
Voltage - 100 V x 2 250 V x3, 100 V x 2

5.5 Experimental Verification

In order to experimentally validate the proposed analytical method, reference designs are developed,

following the principles used in the analytical comparison, subjected to available part selection.

Two converter prototypes are implemented: a buck converter and a 3-level FCMC to compare with

the 7-level hybrid Dickson SC converter in Chapter 4. The converters are designed with an input

voltage of 100 V and an output voltage of 12 V. An output current of 4 A has been tested without

external cooling. The component listings for the converter prototypes are shown in Table 5.2. GaN

switches are used on all three prototypes for similar switch performance. A voltage rating margin

of approximately 2x is chosen for the switches for all three converters. The inductor is chosen to

have a dc resistance of approximately 20 mΩ, so that the conduction loss is similar to that in the

switches, and a current ripple of about 1.1 A. As a result, the inductor has current rating of about

10 A while the peak load tested is only 4 A. To make a fair comparison, the capacitors are also

selected with a voltage that is 2x that of the rated voltage. The converter photos are shown in Fig.

5.10. It should be noted that while care has been taken in the board layout to reduce the parasitics,

the component placement is not optimized for a minimum overall converter size. Therefore, the

volumes of individual components are compared (inductors, capacitors and switches). This also

corresponds to the comparison methodology, which does not take into account the influence on the

converter size by the PCB layout.

The normalized power losses (defined as Pin−Pout
Pin

) of the converters at the rated voltages are

plotted in Fig. 5.11. It should be noted that according to the comparison methodology, each

converter is to be designed with the same power loss, and therefore similar power losses should

be expected from all three prototypes. From Fig. 5.11, it can be seen that the power losses for

the converters at 4 A load (where conduction loss dominates) are within 25% of each other. It

should be noted that while we strive to follow the methodology presented here in the design of

the converters, the choices in components are oftentimes limited by available parts. This partly
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(a) 2-level (buck) converter.

(b) 3-level FCMC.

(c) 7-level hybrid Dickson.

Figure 5.10: Photos of converter prototypes.

explains the lower power loss for the Dickson SC converter at light load. Overall, the power losses

are close to each other, and the volume comparison can be carried out on a fair ground.

The volumes of the passive components used in the prototypes are compared in Table 5.3. It

can be seen that the inductor size can be reduced considerably by moving to a higher number of

levels, while the additional capacitor volume is only a fraction of inductor size. The overall volume

is reduced by a factor of approximately three each time, as the number of levels increased from two

to three, and then to seven. It should be noted that the goal of the comparison is not to conclude

that the Dickson SC converter is a better topology than an FCMC, but rather to show that a

topology with more levels can result in a smaller overall volume than a topology with fewer levels.

To visualize the difference in the passive component volume, photos of the passive components for

the three converters are shown in Fig. 5.12.

Another advantage associated with reduced inductor size is that the inductor can have a lower

85



1 1.5 2 2.5 3 3.5 4

Load current [A]

0

0.05

0.1

0.15

0.2

N
o
rm

a
li
ze
d
p
ow

er
lo
ss

2-level (buck)
3-level FCMC
Hybrid Dickson

Figure 5.11: Normalized power loss comparison between the buck, 3-level FCMC, and hybrid
Dickson converter.

Table 5.3: Volume comparison of passive components.

2-level (buck) 3-level FCMC Hybrid Dickson

Inductor 6292 mm3 2059 mm3 596 mm3

Capacitor - 125 mm3 115 mm3

Total 6292 mm3 2184 mm3 711 mm3

height, reducing the overall profile of the design. This has a large impact on the overall volume, since

the switches and control circuitry are usually very thin. This advantage can offset the additional

footprint of gate drivers and level-shifters in the multilevel topologies. The PCB areas occupied by

the converters are compared in Table 5.4, as well as the final volume of the overall converter. It

can be seen that even for a relatively low-power application (50 W), where the auxiliary circuits

can occupy a large portion of the converter area, the overall converter volume can be significantly

reduced with multilevel converters.

12.3 mm

3.5 mm

17.2 mm

7 mm

22 mm

13 mm

2-Level (Buck) 3-Level FCMC 7-Level Dickson SC

Figure 5.12: Photos of inductors and flying capacitors used by the three converter prototypes.
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Table 5.4: Area and overall volume of the prototypes.

Buck 3-level FCMC Hybrid Dickson

Passive components (mm2) 500 350 230
Switches and drivers (mm2) 25 50 125

Level-shifters - 100 300
Total area (mm2) 525 500 655

Maximum height (mm) 13 7 3.5

Overall volume (mm3) 6800 3500 2300

5.6 Chapter Summary

In this chapter, an analytical method to compare different multilevel and hybrid SC converters is

presented, based on the fundamental active and passive device utilization. The proposed method

keeps the losses of the converters the same and uses the overall passive device volume as a conve-

nient metric to evaluate these converters. The use of multilevel converters in large step-down dc-dc

conversion applications is explored. It is shown that both types of multilevel converters have sig-

nificantly reduced passive component volumes, compared to two-level buck converters. The hybrid

Dickson SC converter is especially suited for designs with many levels due to the efficient use of

flying capacitors. Three converter prototypes are implemented to support the proposed methodol-

ogy. It is shown with both theoretical analysis and hardware that these multilevel converters can

achieve a higher efficiency and power density than conventional buck converters.
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CHAPTER 6

DESIGN OF A SINGLE-PHASE MULTILEVEL INVERTER

WITH AN ACTIVE ENERGY BUFFER

6.1 Motivation

Recent efforts in industry and academia have emphasized the reduction in the physical dimen-

sions and weight of inverters and rectifiers for use in residential and commercial grid-interfaced

applications, such as solar energy harvesting and electric vehicle battery charging. A smaller and

lighter inverter can reduce the size of the overall system, and the associated cost of installation,

operation and maintenance. In addition to high power density, it is also preferable to maintain

high efficiency. By reducing the losses and associated heat generation, the additional power losses

and size overhead introduced by the cooling efforts can be minimized.

A common inverter topology is an H-bridge operating with pulse width modulation (PWM).

Compared to non-PWM inverters, which usually have a large harmonic content in the output

waveform, the PWM H-bridge pushes the undesired frequency content up near the switching fre-

quency. Thus, it is desirable to leverage a high switching frequency such that the output filter size

is significantly reduced. Yet, the high-frequency switching actions result in high power loss, which

limits the maximum switching frequency in practice. In-depth investigations have been carried out

to quantify the power densities achievable by two-level PWM converters. Passive components and

thermal management are identified as the main barrier for further power density increase [1].

A promising alternative approach is multilevel converters, which operate by generating a low-

frequency staircase waveform, whose fundamental Fourier component approximates the desired

sinusoidal waveform. The PWM operation can be carried out between two adjacent voltage levels

of the staircase waveform. Therefore, multilevel converters require much smaller filter size for the

same total harmonic distortion (THD) content and inductor current ripple. Common multilevel

converter topologies include the cascaded H-bridge (CHB), diode clamped (DC), flying capacitor

multilevel (FCML) [42] and the modular multilevel converters (MMC) [54–56]. The MMC has

become most popular in medium (1 kV - 70 kV) and high (>70 kV) voltage applications owing to

its modularity and scalability [56], as it makes use of both low voltage switches and low voltage ca-

pacitors. However, the capacitors of the MMC have a dominating voltage ripple at the fundamental

frequency of the AC waveform, leading to a large energy storage requirement for the capacitors,

especially for low-frequency applications [57]. While there are control techniques that inject current

harmonics in the MMC arms to reduce the fundamental frequency ripple, there can be significant
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Figure 6.1: Full system overview of the single-phase inverter.

efficiency penalty due to the increased circulating current [55]. On the other hand, FCML con-

verters (also known as multilevel buck converters in dc-dc applications) [42, 46, 58–62], and their

topological variants [63, 64], alternate the charging and discharging states of the flying capacitors

at the switching frequency, allowing for reduced capacitor energy storage if the switching frequency

is increased [57]. Therefore, FCML converters can exhibit a higher power density and efficiency

in low voltage applications (< 1kV), where high energy density ceramic capacitors are readily

available. Existing efforts in FCML converters mostly focus on modulation techniques [65,66] and

capacitor voltage balancing methods [43,67], while little attention is given to the potential for high

power density. Recent hardware prototypes in the low voltage range either have a small number of

levels [60,65,66] or switch at a low frequency (less than 10 kHz) [59,61,64,66].

Another challenge associated with single-phase power converters involves the twice-line-frequency

power pulsation. On the ac side of the inverter, the product of the sinusoidal output voltage and

current results in a twice-line-frequency (120 Hz) power ripple. On the dc side, a constant power

draw is desirable. The instantaneous power mismatch requires energy to be stored by the converter.

This energy storage requirement cannot be reduced by increasing the switching frequency, as it

depends only on the power output and line frequency.

This work is the first practical demonstration of a 7-level FCML converter implemented using

GaN switches operating at a high frequency of 120 kHz. Both the number of levels and the

switching frequency are much higher than previously reported in the literature. Moreover, this

work has demonstrated – for the first time – that FCML converters can achieve power densities and

efficiencies significantly higher than conventional, two-level designs through an innovative switching

cell implementation that achieves low inductance commutation paths and enables the theoretical

advantages of the FCML converter to be realized in practice. This work also incorporates an active

energy buffer architecture that utilizes a partial processing technique to drastically reduce the

required buffering capacitor values compared to conventional passive decoupling capacitors, while

maintaining a very high efficiency [68, 69]. Finally, the hardware prototype has been evaluated

and benchmarked against some of the most sophisticated hardware designs built to date [53,70,71]

in the highly competitive Google/IEEE Little Box Challenge [72], which attracted high quality

entries from academic and industrial research groups around the world. The inverter prototype is

a stand-alone box, including auxiliary converters (to power the control and gate drivers from the
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Figure 6.2: Schematic drawing of the dc-ac conversion stage, consisting of the 7-level
flying-capacitor multilevel converter and the full-bridge unfolder.

450 V DC bus), start-up circuits, Electromagnetic interference compliance (EMC) filters (to meet

FCC Class B requirements) and cooling fans. With rectangular dimensions of 4.02 in × 2.42 in ×
0.95 in and a total volume of 9.26 in3, the experimentally verified power density is 216 W/in3. The

measured peak efficiency is 97.6%, including the power losses from control and cooling fan.

This chapter is organized as follows: Section 6.2 provides the theory of operation and hardware

implementation of the 7-level flying capacitor multilevel converter. Section 6.3 presents the oper-

ation and implementation of the active energy buffer. The design of the EMC filters is detailed

in Section 6.4 and the measured experimental results for the converter prototype are provided in

Section 6.5. Finally, conclusions are given in Section 6.6.

6.2 Flying Capacitor Multilevel Converter

The overall architecture of the single-phase inverter is shown in Fig. 6.1. The DC voltage source

is connected to the inverter through a series resistance of 10 Ω, as prescribed by the Little Box

Challenge document. At full load, the input current is 5 A, resulting in a 50 V drop across the

resistance. The resistance is added to emulate the IV characteristics of a PV panel, which is one

of the target application of the proposed inverter. Apart from the main multilevel converter and

the active energy buffer, there is also an auxiliary converter, which generates 12 V and 6.5 V from

450 V for control and fan power, a start-up circuitry to limit the inrush current, and filters for

electromagnetic emission compliance. This section presents the details of the multilevel converter

block while the buffer converter block is presented in Section 6.3.

6.2.1 Principle of operation and converter design

The schematic drawing of the dc-ac conversion stage is shown in Fig. 6.2. It consists of a 7-level

FCML converter and an H-bridge unfolder. The FCML converter produces a rectified sinusoidal

output between 0 V and Vbus, while the unfolder flips the polarity of the output every 1/120 second

to produce a true AC output.
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(Vsw) at the switching frequency. While the switching frequency of individual switches is 120 kHz,
the effective ripple frequency seen by the inductor is six times higher (720 kHz).

For an FCML converter with N levels, there are (N − 1) pairs of switches, each with an ideal

voltage rating of Vbus
N−1 . There are also (N − 2) flying capacitors with ratings of Vbus

N−1 , 2Vbus
N−1 , ...,

(N−2)Vbus

N−1 , respectively. In this work, the FCML converter is operated with phase-shifted pulse

width modulation (PSPWM) [42]. In this control scheme, each adjacent switch turns on and off

with a phase shift of 360
N−1 degrees. The signals for the “a” switches are complementary to those

for the “b” switches. All the “a” switches have a duty ratio of D, and all the “b” switches have a

duty ratio of 1−D, and the average output voltage is given by DVbus. Figure 6.3 shows the gate

signals for the “a” switches of the 7-level converter with a duty ratio of 25%. It can be seen that

each switch has a phase lag of 60 degrees from the previous one. In one complete switching period

of each switch, the switching node voltage has six pulses. In addition, the pulses are in-between

two intermediate voltage levels set by the flying capacitors. By modulating the duty ratio, the

switching node voltage can be made to follow a rectified sinusoidal waveform, as shown in Fig. 6.4.

A major advantage of the FCML converter is the reduction in the required output filter inductor

size. Compared to a conventional two-level converter, the PWM operation is between two voltage

levels that are only Vbus
N−1 apart, where N is the number of levels. In addition, the effective pulse

frequency seen by the filter inductor is (N − 1)fsw, where fsw is the switching frequency of each

switch. Therefore, the worst inductor current ripple of an N -level FCML converter is given by

∆iL =
0.25VDC

(N − 1)2fswL
. (6.1)
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Figure 6.4: Simulated switching node voltage (Vsw) in 1
60 of a second, showing the rectified

sine-wave modulation used. Note that the switching frequency is reduced for better illustration of
the PWM operation.

Thus, on an analytical level, given a certain inductor current ripple, an FCML converter can have

an output inductor that is 1
(N−1)2 the size of that in a two-level converter [73]. This assumes that

the switching frequency of each switch in a multilevel converter is the same as that of a two-level

converter, which is a reasonable assumption in order for FCML converter to have similar conduction

losses as well as switching losses compared to the two-level converters [74]. In this design, with the

choice of fsw = 120 kHz, a single 22 µH inductor is able to achieve a low current ripple of 1.2 A.

The values of the flying capacitors are designed based on the allowed voltage ripple. A higher

voltage ripple enables the flying capacitor to transfer more energy in a switching cycle, and thus

reduces the required capacitor values, but the large ripple also increases the voltage stress on the

switches. For the FCML converters, the worst case peak-to-peak voltage ripple on capacitors needs

to be below VDC
N−1 by design. Otherwise, a scenario where VCi > VCi−1 can occur momentarily

during a switching cycle, resulting in a negative voltage on the switches and forcing the body diode

to turn on [75]. The capacitance of the flying capacitors is given by (6.2). With 1.5 µF as each of

the flying capacitors, the voltage ripple is about 12 V.

C =
Iout,max

∆Vcfsw(N − 1)
(6.2)

6.2.2 Hardware implementation

Several implementation challenges were met when building the high-frequency multilevel converter

under area and space constraint. This section discusses the design choices and challenges, as well

as our approaches to solve them.

GaN switches are selected in this work, since in general they have better figures of merit compared

to silicon devices, such as a smaller Rds,onQoss or Rds,onQgd product [76]. This allows a lower
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conduction loss, a higher switching frequency, and smaller filter components. In addition, the 5 V

Vgs operating voltage, instead of 7 to 15 V of silicon MOSFETs, can also enable the use of 5 V

level-shifting circuits.

Common to all multilevel converters, the distributed switches have source voltages at different

voltage domains. Therefore, floating power supplies are needed for each gate driver. While in high

power applications, these auxiliary circuits account for a small fraction of the total volume, due

to the large passive components, in this design, their area cannot be neglected due to the small

targeted overall volume. In this work, fully integrated isolated power supplies with a 5 V output

are used to deliver the power for the gate drivers at their respective floating ground. In addition,

a single half-bridge gate driver is used for each pair of adjacent switches, due to their cascade

connection in the FCML converter.

Another common practical implementation issue associated with multilevel converters is the

capacitor voltage imbalance, which describes the scenario where the actual capacitor voltages are

deviated from the ideal desired levels. Since the switch voltage stress is the difference between

the voltages of adjacent capacitors, imbalanced capacitor voltages increase the drain-source voltage

stress across the switches, which can lead to switch failure if the rated blocking voltage is exceeded.

In order to keep the capacitor voltages within a desired set of bounds, the capacitor voltages can

be monitored and actively controlled by changing the switching patterns to selectively charge or

discharge one or more flying capacitors [43, 67]. Yet, these methods can be difficult to apply to

inverters with a high number of levels, high switching frequency and small capacitor values, due

to the high bandwidth sensing and control required, and the added area overhead. Instead, in

our hardware implementations, we rely on the natural balancing property of the PSPWM scheme

[77–79]. In short, the capacitor voltage imbalance increases inductor current ripple, which in

turn causes power dissipation in the series resistance of the circuit, such that the capacitors are

incrementally charged/discharged towards their nominal voltages. This self-balancing property can

offset the adverse effect of the non-ideality in the circuits, as long as the non-ideality are small.

Therefore, to minimize capacitor voltage imbalance, in this work, efforts are made towards a precise

generation of the PWM gate signals using the microcontroller, and a symmetrical board layout to

minimize the parasitic effects.

The switching frequency of the transistors is 120 kHz, generating an effective frequency of 720

kHz. This is substantially higher than reported in existing literature, partly owing to the use of

GaN devices. The GaN switches have extremely low output capacitance, and thus the main source

of switching loss is the voltage-current overlap during the switching transitions, as will be shown

in Section 6.5 later. The challenge in operating the multilevel converter at such a high frequency is

therefore to minimize the overlap time by increasing the dv/dt, without causing significant drain-

source voltage ringing. Similar to that in a buck converter, voltage ringing can occur due to the

interaction between the drain-source capacitance of the transistors and the parasitic inductance in

the circuit during the fast turn-on of the high-side switch. The overshoot resulted from the ringing

can exceed the drain-source breakdown voltage of the transistors.
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In order to reduce the voltage ringing, the high dv/dt loops need to be identified first. For the

FCML converter, each “a”, “b” switch pair operates in a complementary manner and thus forms a

commutation loop in-between two flying capacitors, as shown in Fig. 6.5a. When the “a” switches

turn on, the LC circuit consisting of the Coss of the “b” switches and the parasitic inductance

is excited by a high dv/dt step, causing voltage ringing across the “b” switches. In general, a

tight layout can help reduce the parasitic inductance. However, for FCML converter, the flying

capacitors themselves have significant series inductance (ESL); and the relatively large size of these

components limits how small the loop can be.

In order to reduce the parasitic inductance, a modular switching cell structure is proposed. Each

cell is a daughter PCB consisting of two pairs of half-bridge connected switches with gate drivers,

and small decoupling capacitors placed in parallel with the flying capacitors, in close proximity of

the switches. As illustrated in Fig. 6.5b, the loop inductance can be significantly reduced due to

the smaller current loop as well as the smaller ESL of the decoupling capacitors. A photo of the

switching cell is shown in Fig. 6.6, with an overlay of the converter schematic. The 7-level FCML

converter is constructed using three such switching cells.

Coss

S2a

S2b

C2 C1

Lpar

Lpar Lpar

Lpar

Lpar

Lpar

Coss

(a) Without decoupling capacitors.

Coss

S2a

S2b

C2 C1

Lpar

Lpar Lpar

Lpar Lpar

Lpar

Lpar2 Lpar2

C2s C1s

Coss

(b) With decoupling capacitors.

Figure 6.5: Partial schematic of FCML converter including parasitic inductance and switch
output capacitance.

The top, side and bottom views of the FCML inverter are shown in Fig. 6.7. To the left is the

start-up circuitry in order to charge the flying capacitors and bus capacitors to their steady-state

values. The flying capacitors and inductors are on the bottom side of the PCB, and are aligned in

the center. Three capacitors, each with a nominal capacitance of 2.2 µF, are connected in parallel

to make a single flying capacitor, so that the capacitance is at least 1.5 µF when biased at the

rated voltage. To the right and on top of the PCB are the common-mode and differential-mode

Electromagnetic interference (EMI) filters. A small common-mode choke that fits on the right edge

on the back is not shown, since it is connected through the assembly. The GaN switches are placed

in the center, distributed on the three red switching cells. The use of modular interchangeable
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Figure 6.6: Photo of the switching cell, overlaid with a partial schematic drawing of the inverter.

switching cells also facilitates the assembly and rework of the converter during prototyping. The

total thickness of the inverter is 10.3 mm and the tallest component is the inductor at 7.5 mm.

This low profile is enabled by the drastically reduced inductor size with the multilevel structure as

discussed previously. Finally, a component listing of the inverter board is given in Table 6.1.

Table 6.1: Component listing of the inverter board.

Component Part number Parameters

GaN switches (S1a, S1b to S6a, S6b) EPC 2033 150 V, 7 mΩ
GaN gate driver Texas Instruments LM5113 100 V half-bridge
Unfolder MOSFETs (S11, S12, S21, S22) STMicroelectronics STL57N65M5 ×2 650 V, 69 mΩ
Unfolder gate driver Fairchild FAN73932MX 600 V half-bridge

Flying capacitors (C1 − C5) TDK C5750X6S2W225K250KA ×3 2.2 µF ×3
Inductor Vishay IHLP6767GZER220M11 22 µH

Digital isolators Silicon Labs Si8423BB-D-IS
Power isolators Analog Devices ADUM5210

6.3 120 Hz Input Current Ripple Compensation

The most common method to achieve twice-line-frequency power decoupling is to connect a passive

capacitor bank across the dc bus. To meet the stringent ripple requirement on bus voltage and dc

input current, a large volume of capacitors is required. Such a capacitor bank is typically formed

by electrolytic capacitors due to their high energy density, but their high power loss, poor ripple

current capability and short lifetime become a significant constraint [80]. Ceramic or film capacitors

are preferable from an efficiency and reliability perspective, but they require a large volume, as

their capacitance density is generally significantly lower than that of the electrolytic capacitors.

Many active decoupling approaches have been proposed in the literature to reduce the required

capacitance and even allow for the use of ceramic or film capacitors [5,70,71,81–84]. One common
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Figure 6.7: Annotated photographs of the FCML inverter board.

approach is a full ripple port converter [81, 82], where energy storage capacitors are interfaced

to the dc bus through a power converter. The capacitors operate with a large voltage swing to

buffer more energy, while the dc bus voltage is regulated by the ripple port converter. To achieve

this functionality, the converter needs to process a large portion of the full power on average (i.e.,
2
πPout, where Pout is the average output power of the inverter) and to withstand high voltage stress

(i.e., the full dc bus voltage at least). As a result, ripple port converters can have a significant

negative impact on the overall inverter efficiency. Moreover, the added volume (especially the

magnetic components) can be very large and even completely offset the volume reduction from

smaller energy storage capacitors.

In this work we use a series-stacked buffer architecture that overcomes the aforementioned prob-

lems. This architecture achieves very high efficiency and power density with a low complexity

circuit while tightly regulating the dc bus voltage. Details on this buffer architecture are presented

in [68,69,85], and this dissertation only provides an overview.

6.3.1 Principle of operation

The schematic drawing of the active energy buffer is shown in Fig. 6.8. In this architecture,

a full-bridge converter is connected in series with a main energy storage capacitor, C1. Unlike
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Figure 6.8: Schematic drawing of the active energy buffer. The auxiliary power supply and
start-up circuit in Fig. 6.1 are omitted for simplicity.

conventional dc bus capacitors, C1 is operated with a relatively large voltage ripple, for example

at 25% of the rated voltage. Since VC1 has a relatively large ripple, the energy utilization is

significantly increased compared to the dc bus capacitors, and much smaller capacitance is needed

(eight times reduction in this design). To maintain a constant dc bus voltage, the voltage of C3 is

controlled such that its ac component is of the same magnitude but opposite sign to that of VC1, as

shown in Fig. 6.9. A support capacitor C2 is used to maintain a certain voltage (higher than VC3)

to ensure the correct operation of the full-bridge converter, while C3 is only a small filter capacitor

to absorb the switching frequency ripple.

A key advantage of this architecture is that the full-bridge converter only processes a fraction

of the total output power, as C1 provides the bulk of the power buffering. While the entire active

filter architecture buffers 2 kW in this application, the full-bridge converter only processes 100 W

on average, as shown in Fig. 6.9. Hence, the efficiency penalty on the overall system is small.

In this architecture, capacitor C1 blocks the majority of the bus voltage, such that the voltage

across the terminal labeled VC3 is only the ripple magnitude of VC1. The full-bridge converter thus

experiences low voltage stress, enabling the use of a small-size inductor and low-voltage, high-speed

transistors for a small buffer converter size. A current hysteresis control scheme is implemented

to match the buffer current with the inverter current, such that the voltage waveform in Fig. 6.9

follows naturally.

A considerable challenge in this architecture is that the losses in the full-bridge converter will

drain capacitor C2 over time. A loss compensation scheme which exploits the phase difference

between the buffer current and bus voltage is devised to supply additional energy to capacitor C2

to compensate for this loss. In our proposed method, the small bus voltage ripple is utilized to

deliver a net positive energy into the converter, so that the voltage of C2 can be maintained within

appropriate bounds. A detailed explanation of the control scheme is presented in [69].
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Figure 6.9: Waveforms illustrating the operation of the 2 kW active energy buffer architecture:
voltages (top) and converter power (bottom). The power processed by the converter is only a
fraction of the total power.

6.3.2 Hardware implementations

One practical issue with sizing ceramic capacitors for energy buffering is that their capacitance

decreases in a non-linear fashion as the dc bias increases. It is common for the capacitance to

reduce to less than one quarter of the nominal value when biased at the rated dc voltage. Thus,

care must be taken to not over- or underestimate the required capacitor volume. The experiment

based methodology presented in [86] is followed to determine precisely the energy storage capability

of the ceramic capacitors.

Annotated photographs of the buffer converter board are shown in Fig. 6.10. The full-bridge

converter and the sensing circuitry are placed on top, together with the microcontroller, which

controls both the FCML inverter and the energy buffer. The capacitors C1 and C2 on the bottom

side are placed such that the inverter flying capacitors and inductors can fit inside. This allows

the inverter board to stack on top of the buffer board with minimal unused space in-between, as

shown in Fig. 6.12. The auxiliary converter to power both the buffer converter and the inverter

from the 450 V are placed in the bottom right corner. A component listing of the buffer converter

is shown in Table 6.2.
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Table 6.2: Component listing for the active energy buffer.

Component Part number Parameters

GaN FETs EPC 2016C 100 V, 16 mΩ
Capacitors (C1) TDK C5750X6S2W225K250KA × 239 450 V, 2.2 µF ×239
Capacitors (C2) TDK CKG57NX7R2A106M500JH × 126 100V, 15 µF ×126
Inductor Vishay IHLP6767GZER470M11 × 2 47 µH

Power isolators Analog Devices ADUM5210
Microcontroller Texas Instruments TMX320F28377D

6.4 Electromagnetic Compliance

For grid-interfaced converters, the electromagnetic interference emissions must be kept below the

required limits set by regulatory bodies. In this work, the inverter has been designed so that the

conducted emissions pass the FCC Part 15 Class B requirements [72]. The strategy for achieving

EMC compliance was first to minimize any conducted and radiated EMI through careful layout

and component placement. Efforts were made to reduce coupling between high dv/dt nodes and

sensitive analog circuitry. Particular attention was paid to ground planes, with large copper fills

where appropriate. All loops were kept to a minimum, and signals were routed directly above a

return path, or ground plane, to minimize the chance of coupling, and unintended radiation of

signals. The fast transients of the GaN devices were well managed by the custom GaN modules,

which minimize the commutation loops.

Overall, the multilevel architecture provides excellent inherent EMI mitigation, as each switching

node only switches between potentials of 1
6VDC at a frequency of 6fsw, rather than between 0 and

VDC at a frequency of fsw, as is the case for conventional inverter structures. The reduction

in switching amplitude and increase in effective ripple frequency help to relax the attenuation

requirement for the filter.

In addition to these efforts to minimize the generated EMI, filters were placed at the converter

output terminals to keep the small conducted EMI in the system from leaving the enclosure.

The schematics of the EMI filters are shown in Fig. 6.11, and the component listing is in Table

6.3. As can be seen from the photographs in Fig. 6.7, the EMC filters constitutes to less than

10% of the inverter area and less than 3% of the volume. It should be noted that in the design

competition targeted here, small overall size was the ultimate goal. In a product implementation,

safety capacitors with suitable ratings would need to be employed in the EMI filter with larger

overall footprints.

99



GaN full bridge

Auxiliary 
supply

Sensing 
circuitry

Microcontroller𝐶𝐶1

58 mm

𝐶𝐶2 Inductor

Auxiliary 
supply

𝐶𝐶1
𝐶𝐶3
𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏

14 mm

Figure 6.10: Annotated photographs of the active energy buffer board.

6.5 Experimental Results

The box enclosure, milled out of copper with heat-sink fins and fitted with blower fans, is shown in

Fig. 6.13. With a dimension of 10.2 cm × 6.14 cm × 2.42 cm (4.02 in × 2.42 in × 0.95 in) and a total

volume of 152 cm3 (9.24 in3), the inverter prototype achieves a power density of 13.2 W/cm3 (216

W/in3). The weight breakdown of the inverter is given in Table 6.4. The high-level performance

metrics of the prototype are displayed in Table 6.5. For all metrics listed, the converter meets

the specifications required by the Google/IEEE Little Box Challenge [72], and compares favorably

against other published inverter prototypes [53,70,71] in the competition.

The individual efficiencies of the FCML inverter and the active energy buffer are measured with

Y capacitors Differential 
LC filters

Common-mode 
chokeVFCML+

VFCML-

VAC+

VAC-

CY1

CY2

LX2

LX1

CX1

Lchoke

Figure 6.11: Schematic drawing of the EMC filter used in the inverter.
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Table 6.3: Component listing of the EMC filter.

Component Part number Parameters

LX1, LX2 Coilcraft XAL7030-222ME 2.2 µH

CX1
TDK C5750X6S2W225K250KA 2.2 µF ×2
TDK C2012X7T2W473K125AA 0.047 µF ×6

Lchoke West coast magnetics 503-6 95.3 µH
CY1, CY2 TDK C3216X7T2W104K160AE 0.1 µF ×2

Figure 6.12: Photograph of the FCML inverter board and energy buffer fit together.

Yokogawa WT310 digital power meters, and are plotted in Fig. 6.14. It can be seen that the energy

buffer alone is able to achieve a high efficiency of above 99%, thanks to the partial power processing

architecture. For the multilevel inverter, the peak conversion efficiency is 98.6% at about half load

and the efficiency at full load is above 98%. The efficiency of the inverter at 10% load is about

92%, without any special light load control. Since the output inductor is designed with a small

current ripple, the light load efficiency of the converter can be improved by reducing the switching

frequency, if so desired. Also shown in Fig. 6.14 is the efficiency after including all power losses

from control and cooling fans, with error bars indicating potential measurement errors resulted

from the precision limit of the power meters. A 450 V to 12 V fly-back converter and a 12 V

to 6.5 V converter provide power for both the cooling fans (which consume about 5 W), and the

control and gate driving circuits (which dissipate about 4 W). They represent a constant power

loss independent of the load conditions. The overall light load efficiency can be further improved

by turning-off the fan when the output power is below a preset threshold. A detailed estimated

power loss breakdown at full load is shown in Fig. 6.15.

The full load operation of the energy buffer is shown in Fig. 6.16. At full load, the input current

ripple is approximately 760 mA, which is 15% of the average input current. The voltage of C2 and

C3 as well as the bus voltage are also shown. To generate a resultant bus voltage with a very small

ripple, C3 has a large voltage ripple in order to counter the voltage ripple of C1 (not shown). The
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Figure 6.13: Photograph of the inverter prototype inside the heat-sink and enclosure.

Table 6.4: Converter weights breakdown.

Components Weight (g) Percentage
Specific power
density (W/g)

Multilevel converter board,
including start-up and EMC

circuits
52 9.7% 38.4

Energy buffer board, including
microcontroller and auxiliary

power supply
209 39% 9.57

Copper enclosure 275 51.3% -

Overall 536 100% 3.73

large voltage swing on C1 is the key to the volume reduction of the buffer capacitors.

The operation of the 7-level inverter can be seen in Fig. 6.17, which shows the switching node

voltage as well as the output voltage and current. The output voltage is 240 V RMS and the output

current is 8.3 A RMS at full load. The switching node has a unipolar 120 Hz envelope as well as a

high-frequency PWM between two smaller voltage levels.

The average flying capacitor voltages are monitored with a National Instruments data acquisition

system (PXIe-1073), and are plotted in Fig. 6.18. With a PSPWM control scheme and no active

capacitor voltage balancing, the capacitor voltages are evenly distributed across the input voltage

range. This is the first demonstration that the FCML converter is able to self-balance capacitor

voltages at this high number of levels and switching frequencies, with aggressive flying capacitor

sizing. The maximum voltages across the GaN switches are measured and tabulated in Table 6.6.

The deviations of switch voltages from ideal ratings are small and the largest increase in blocking

voltage is approximately 12%.

The responses of the inverter during a load transient are presented in Fig. 6.19 and Fig. 6.20.
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Table 6.5: Key performance specifications.

Specifications Little Box Achieved

Rated power 2 kVA 2 kVA
Volume 40 in3 9.52 in3 (152 cm3)
Power density 50 W/in3 216 W/in3 (13.2 W/cm3)
Rated input voltage 450 V 450 V
Rated output voltage 240 VRMS 240 VRMS

Efficiency (CEC Method) 95.0% 97.0%
Efficiency at rated power 95% 97.4%
Load power factor 0.7 – 1.0 0.7 – 1.0
Voltage THD 5% 0.3%
Input current ripple 20% 15%
Max. case temperature 60 ◦C 57 ◦C
EMC FCC Class B FCC Class B
Ground current 50 mA 1 mA

Output power [kW]
0 0.5 1 1.5 2

E
ffi
ci
en
cy

[%
]

92

94

96

98

100

Active energy buffer efficiency

Inverter conversion efficiency

Overall conversion efficiency
Overall efficiency
including control and fans

Figure 6.14: Converter efficiencies at different power levels.

Figure 6.19 shows the input current, bus voltage, VC2 and VC3 during a load step-down from 100%

to 75%. The input current ripple comes back within the 20% specification in 80 ms after the load

change. Figure 6.20 shows the output voltage and output current of the inverter during the same

load step. The output voltage is not impacted by the change in load current.

At full power, the inverter incurs approximately 40 W of power loss. To dissipate this amount

of heat, the top of the enclosure is machined with fins that are 2 mm tall. A total of six radial

fans are placed on the edge of the top, blowing air across the fins. A thermal image is taken with

a thermal camera after the converter reaches thermal steady-state at full power operation, and is

shown in Fig. 6.21. It can be seen that the maximum temperature is at 57 ◦C.

The conducted EMI measurements made with a Tektronix RSA5126A real-time signal analyzer

are depicted in Fig. 6.22. For the entire 150 kHz to 30 MHz measurement range, the inverter’s
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Figure 6.15: Estimated power loss breakdown of the converter at 2 kW load.

Table 6.6: Drain-source voltages across the switches

Switch S6 S5 S4 S3 S2 S1

Measured at 20% load (V) 78 84 63 81 66 79
Measured at 100% load (V) 70 76 51 71 51 76

conducted EMI emission is lower than the Class B limit. The peak emission closest to the limit

is at 720 kHz as expected, which is six times the switching frequency of 120 kHz. There are also

peaks with comparable magnitude at the 2nd, 3rd, 4th and 5th harmonics of 120 kHz, which are

the consequence of the imperfect capacitor voltage balance, and the lower attenuation strength of

the EMC filter at lower frequencies. Parasitics in the filtering elements, such as the equivalent

series inductance (ESL) of filter capacitors and inter-winding capacitance of filter inductors, cause

the emissions to rise significantly after 10 MHz, but the emissions are still below the limit.

6.6 Chapter Summary

This chapter has presented a 2 kW, 450 VDC to 240 VRMS single-phase inverter. The dc to

ac conversion is accomplished through a 7-level flying-capacitor multilevel converter, with GaN

transistors switching at 120 kHz, which is the highest switching frequency achieved to date for a 7-

level implementation. The commutation loop in the FCML converter is identified, and a switching

cell design is used to minimize loop inductance and reduce the drain-source voltage ringing. In

addition, the multilevel inverter is complemented by a series-stacked buffer converter for twice-line-

frequency ripple compensation. The active energy buffer achieves a high efficiency of 99% while
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Figure 6.16: Waveforms showing active energy buffer operation at 2kW. Voltage ripple on VC3

counters the ripple on VC1 so that the bus voltage is constant.

Figure 6.17: Waveforms showing the output voltage, output current and the switching node
voltage (VSW) of the 7-level inverter at full load.
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Figure 6.18: Capacitor voltages of the 7-level inverter during full load operation, obtained using
National Instruments data acquisition system (PXIe-1073).
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Figure 6.19: Energy buffer operation during a load step-down from 100% to 75%. The input
current ripple becomes within specifications after 80 ms.

Figure 6.20: Inverter operation during a load step-down from 100% to 75%.

reducing the required capacitor volume by a factor of eight.

The combined inverter prototype successfully demonstrated a 216 W/in3 power density with a

rectangular volume of 9.26 in3. A peak overall efficiency of 97.6% is achieved, including the power

losses from control and cooling fan. The prototype meets all the specifications of the Google/IEEE

Little Box Challenge, such as the current ripple, the load transient, the EMC and case temperature

requirement, showcasing the capability of the multilevel converter design and the series-stacked

active energy buffer.
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Figure 6.21: Thermal image of the inverter operating at full power (2 kW). The maximum
temperature is 57 ◦C.
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Figure 6.22: Conducted EMI measurement at full power (2 kW) from 150 kHz to 30 MHz,
obtained using Tektronix RSA5126A real-time signal analyzer.
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CHAPTER 7

SOFT-SWITCHING OPERATION OF HYBRID SC

CONVERTERS

7.1 Motivation

For power converters, a higher frequency can usually yield a smaller passive component volume and

an improved converter power density. The constant effort to push for a higher switching frequency

has been recently aided by the commercialization of GaN switches. Compared to silicon MOSFETs,

GaN FETs in general have a lower on-state resistance, output capacitance and gate capacitance,

leading to the possibility of switching at a higher frequency while maintaining a high efficiency [87].

There are two major sources of switching losses in a typical power converter with an inductive

load. The first is the loss of energy stored by the output capacitance of the switch when it turns

on. This capacitance loss is given by

PCoss =
1

2
fswCossV

2
ds, (7.1)

where Coss is the output capacitance and Vds is the voltage across the switch before it turns on.

Since the actual output capacitance of the device is highly non-linear, Coss used here is the energy

equivalent value, whose stored energy is the same as that stored by the actual capacitance. GaN

switches have much lower such capacitance than MOSFETs [87], and thus a much lower resultant

power loss. The other type of switching loss comes from the simultaneous existence of the voltage

across the switch and the current through the switch during a switching transition, due to the

MOSFET operating in the saturation region. This is because of the fact that when the switch

turns on, the switch current first rises to the on-state current before the voltage across the switch

can drop; and when the switch turns off, the voltage first rises before the current can drop. The

power loss from the overlap can be approximated given by

Poverlap =
1

2
VoffIonfsw(tturn-on + tturn-off), (7.2)

where Voff is the off-state voltage, Ion is the on-state current, and tturn-on and tturn-off are the duration

for which the voltage and current overlap when the switch turns on and turns off, respectively.

Note that Eq. (7.2) is an approximation suitable for certain kinds of switching transitions, and

more details can be found in [88]. Usually, the turn-on time is much longer than the turn-off time,
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and the output capacitance of the switch reduces the overlap during device turn-off. Therefore, the

turn-on overlap loss is the dominating one. In general, the overlap times are proportional to the

gate charges, (Qgd + 1
2Qgs). GaN switches typically have gate charges that are much smaller than

those of MOSFETs [87], and thus offer the possibility for a fast turn-on and turn-off transition, and

a much lower overlap loss. However, fast transition time causes voltage ringing due to the parasitic

inductance in the high di/dt loop. Therefore in practice, the transition time is usually intentionally

slowed down by increasing the gate resistance, to increase the damping during the transition period.

Even though the GaN switches have the advantages of smaller package inductance, especially with

the flip-chip packaging [89], the parasitic inductance from the commutation loop, as well as the

ESL from the decoupling capacitance, sets a lower limit on the transition times.

The slowed switch transition time owing to the parasitic inductance is especially prominent in

a converter with distributed switches, such as the hybrid SC converters. For these converters, the

high di/dt loop can be quite large, and can be difficult to confine through layout and decoupling

techniques. For the flying capacitor multilevel converter presented in Chapter 6, a modular switch-

ing cell was designed to minimize the parasitic inductance by minimizing the commutation loop

and strategic placement of small decoupling capacitors. However, due to the physical size of the

decoupling capacitor, there was still a considerable amount of inductance in the switching loop, and

a large gate resistance was needed to reduce the voltage ringing to accepted values. As a result, the

loss breakdown in Fig. 6.15 shows that the overlap switching loss is dominant. Furthermore, for

the hybrid Dickson converters presented in Chapter 4, due to the switched-capacitor configuration,

an effective decoupling method cannot be easily obtained. Large gate resistance was used, which

severely penalizes the efficiency. Therefore, in order to fully utilize the potential provided by GaN

switches for high-frequency and high-efficiency operation, soft-switching techniques are employed

on hybrid SC converters to minimize or eliminate the switching losses.

Unlike in hard-switching converters, the switches of soft-switching converters commutate natu-

rally due to the load current, and thus do not have significant voltage-current overlap during the

commutation period. Many soft-switching converters are derived from conventional PWM convert-

ers [90, 91]. In the quasi-resonant converters (QRC) [90], zero voltage switching (ZVS) is achieved

by placing a capacitor in parallel with the switch to slow down the rising of the switch voltage

during the turn-off; and zero current switching (ZCS) is achieved by slowing down the rising of

current during turn-on with a small inductor connected in series. An additional resonant element is

added to release the energy stored in the soft-switching enabling inductor or capacitor in a lossless

manner. Other soft-switching converters based on PWM operation exist, such as quasi-square-wave

(QSW) converters [92] and zero-voltage-transition (ZVT) converters [93].

Another type of soft-switching converter is the resonant converter [94, 95]. Unlike PWM-based

soft-switching converters, resonant converters employ resonance over the entire switching period.

Typical resonant converters are series-resonant converter, parallel-resonant converters, LCC con-

verters and LLC converters [96]. These converters are usually optimized for a narrow operating

range, and employ transformers to achieve a large voltage step-down or step-up ratio.
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Figure 7.1: Schematic drawing of a buck converter.

Table 7.1: Direction of currents for the buck converter in CCM operation.

deadtime State 1 deadtime State 2
L + + + +

Q1 +
Q2 d d -

Since the hybrid converters such as the Dickson and FCML converters discussed in Chapters 4

and 5 use PWM technique to regulate the output voltage, the use of the inductor is very simi-

lar to conventional PWM converters. Therefore, existing techniques, such as quasi-resonant and

quasi-square-wave ZVS switching can be applied. Section 7.2 examines the Dickson converter and

the FCML converter for quasi-square-wave (QSW) operation. In addition, the soft-charging SC

converters in ZCS resonant mode presented in Chapter 2 are modified to achieve ZVS operation in

Section 7.3.

7.2 Quasi-Square-Wave Hybrid SC Converter

To turn on a switch with zero voltage switching, one sufficient condition is that the anti-parallel

diode (or body diode diode) is conducting before the switch turns on. This condition demands

that the current that flows through the switch is negative during the switch turn-on period. In this

work, positive current is defined as current flowing from drain to source of the MOSFET. Take the

buck converter in Fig. 7.1 as an example. The direction of the current and switches under CCM

(continuous conduction mode) are shown in Table 7.1, where “-” represents a negative current, “+”

represents a positive current, and “d” represents a current flowing through the body diode (which

is also negative in the direction defined by the switch current). When the high side switch (Q1) is

conducting, its current is always positive, and thus switching loss exists when it turns on. On the

other hand, the synchronous switch Q2 always turns on when the current through it is negative and

thus the synchronous switch can turn on with ZVS, provided that the dead-time is long enough

for the inductor current to discharge the switching node capacitance, and subsequently turn on its

body diode. On the other hand, with QSW operation, the inductor current ripple is designed to

be large enough that the valley of the inductor current is below zero at the end of State 2. The

negative current charges the device capacitance and forces the conduction of Q1 body diode, and
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Table 7.2: Direction of currents for the buck converter in QSW operation.

State 1
end

deadtime
State 2
start

State 2
end

deadtime
State 1
start

L + + + - - -

Q1 + d -
Q2 d - +

+−

C2

C1

C3

S1

S2S3

S4

S5

S6

S7

S8

+−

Vin

L

Vout

Figure 7.2: Schematic drawing of a hybrid Dickson converter.

thus Q1 can turn on with ZVS in addition to Q2. The current directions in QSW operation are

shown in Table 7.2.

Here, we extend the concept of QSW for hybrid SC converters, using the Dickson converter as

an example, whose schematic is reproduced in Fig. 7.2 with MOSFETs and their body diodes. In

order to identify the hard-switched MOSFETs, the directions of current in each switch during each

phase and deadtime in CCM operation are shown in Table 7.3. It can be seen that switches S1−S4

turn on with negative currents, and thus their body diodes conduct during the deadtime so that

the switches can turn on with ZVS. On the other hand, switches S5 − S8 have a positive current

flowing through them, and thus their body diodes do not turn on during the deadtime, resulting

in hard-switching. It can be deduced that, if the inductor current is reversed (i.e. the converter

is running in boost mode), switches S1 − S4 would have positive current through them and have

hard turn-on, while switches S5 − S8 would have soft turn-on.

With QSW operation, the current in the inductor has a large ripple by design, and thus reverses

direction within each phase (changes from positive to negative in State 0 and from negative to

positive in State 1 and State 2), as shown in shown in Table 7.4. It can be seen that now, all of

the switches have a negative current through them, and thus all switches can turn on with zero

voltage switching. The ZVS operation for state transitions from State 1 to State 0 and from State

0 to State 2 are shown in Fig. 7.3.
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Table 7.3: Direction of current for the PWM Dickson converter in CCM operation.

Switch # State 1 deadtime State 0 deadtime State 2 deadtime State 0 deadtime State 1

1 - - - d d - - -

2 d - - - - - d

3 - - - d d - - -

4 d - - - - - d

5 + +

6 +

7 + +

8 +

S5, S7 turn off

S2, S4 turn on

S1, S3 turn off

S6, S8 turn on

Vsw

IL

State 1 State 2State 0

t1 t2 t3 t4

Figure 7.3: QSW operation of the PWM Dickson converter.

The Dickson converter prototype in Chapter 4 is modified to demonstrate the feasibility of the

ZVS operation. The 5.6 µH inductor is replaced with a 1.0 µH inductor to increase the current

ripple. Figure 7.4 shows the captured waveforms of the switching node voltage and the inductor

current. It can be seen that for the soft-switched version, the switching node has a slow slope at

both the rising and the falling edge transition, without an overshoot. In contrast, the hard-switched

version shows significant drain-source voltage ringing in Fig. 4.9. The measured efficiencies of the

Dickson converter in QSW operation are shown in Fig. 7.5.

The QSW Dickson converter inherits similar advantages and disadvantages as the QSW buck

converter compared to their hard-switching counterparts. With ZVS operation, both Coss loss and

the overlap loss can be eliminated, at the expense of increased conduction loss and core loss. In

addition, since the inductor current valley depends on the load conditions (Vin, Vout, Iout), complete

ZVS cannot be satisfied at all times without adjusting the switching frequency. This can be seen

from the droop in efficiencies in Fig. 7.5 as the load increases for the QSW mode, when the converter

transitions from ZVS to hard-switching operation. The transition happens at higher load condition
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Table 7.4: Current direction of the PWN Dickson converter in QSW mode of operation. For
simplicity, only transition from State 1 to State 2 are shown. Transition from State 2 to State 1 is
similar.

Switch
number

State 1
(t1)

dead-
time

State 0
(t2)

State 0
(t3)

dead-
time

State 2
(t4)

1 - - - +

2 d - + + +

3 - - - +

4 d - + + +

5 +

6 d -

7 +

8 d -

Figure 7.4: Captured waveforms of the switching node voltage (top) and inductor current
(bottom) of the QSW Dickson converter. Vin = 130 V, Iout = 3 A.

if the switching frequency is reduced. Therefore, by varying the switching frequency, the QSW

mode of operation can yield higher efficiency across the load range than the hard-switching mode.

While the QSW operation of the hybrid Dickson converter is demonstrated in this section,

the method used (by investigating the current direction) can also be used to analyze all other

PWM based hybrid SC converters. For example, the FCML converter can also achieve QSW ZVS

operation while the series-parallel converter cannot.
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Figure 7.5: Measured efficiencies of the hybrid Dickson converter.

7.3 ZVS Resonant SC Converters

For the soft-charging SC converters shown in Chapter 2, it has been shown that the inductor

current goes to zero at the phase transition, as shown in Fig. 2.10b, if the switching frequency is

exactly the resonant frequency. Thus, ZCS operation can be easily achieved. With ZCS operation,

the prolonged switching transition duration will not cause a significant increase in the overlap

switching loss. In this section, it is demonstrated that ZVS operation is also possible, which in

addition to having near zero overlap loss, also eliminates the output capacitance loss, and increases

the efficiency.

A method to achieve ZVS using the resonant SC converter with the inductor at the output is to

make the switching frequency slightly lower than the resonant frequency. In this way, a negative

inductor current is again introduced during the switching transition, as shown in Fig. 7.6. To fulfill

the ZVS requirement, the bottom switches need to turn on when the inductor current is positive,

and the top switches need to turn on when the inductor current is negative.

In order to achieve full ZVS operation, there are a few requirements that the control signal needs

to meet. First, the inductor needs to have enough energy to charge and discharge the switching

node capacitance. Therefore, the inductor current, I1 and I2 need to satisfy

LI2
1 ≥ CossV

2
out

LI2
2 ≥ CossV

2
out , (7.3)

(7.4)

where Coss is the energy equivalent value of the output capacitance of the switches seen at the

switching node. In addition, the duration, t2 − t3, needs to be long enough such that the desired

inductor value I2 can be reached. The second requirement is that the deadtime needs to be long
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S5, S7 turn off

S2, S4 turn on

S1, S3 turn off

S6, S8 turn on

Vsw

IL

State 1 State 2

t2 t4t3t1

I1

I2

Figure 7.6: ZVS resonant operation of the Dickson converter, showing transition from State 1 to
State 2. The transition time is exaggerated for clear illustration.

enough for the switch voltage to fall to zero before the other switches turn on. This means that

the durations, t1 − t2 and t3 − t4, need to be long enough for the inductor to discharge and charge

Coss. Finally, the switching frequency needs to be adjusted so that the desired I1, as well as the

above requirements, is met. These conditions are summarized in Table 7.5.

Table 7.5: ZVS operation requirement.

Item Requirement

I1 Large enough to discharge Coss

I2 Large enough to charge Coss

t1 - t2 Long enough for the inductor to discharge Coss

t2 - t3 Long enough for the inductor current to reach I2

t3 - t4 Long enough for the inductor to charge Coss

The Dickson converter prototype in Section 4.4 is modified to operate at ZVS resonant mode

with a 0.1 µH inductor. Due to the resonant operation, the converter has a fixed conversion ratio of

approximately 6-to-1. The switching node voltage and the inductor current waveforms are shown

in Fig. 7.7, which resembles the illustrated waveforms in Fig. 7.6. The lack of voltage ringing during

state transitions indicates successful ZVS operation. The efficiencies of the converter operating at

an input voltage of 108 V and a frequency of 375 kHz are plotted in Fig. 7.8 for both ZCS and ZVS

operation. It can be seen that the efficiency under ZVS operation is much higher than that of the

ZCS operation, especially at light and medium load, thanks to the elimination of the switching loss.

At heavy load, where the conduction loss begins to dominate, the efficiency of the ZVS operation
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Figure 7.7: Captured waveforms of the switching node voltage (top) and inductor current
(bottom) of the resonant Dickson converter in ZVS operation.

Figure 7.8: Measured efficiency for ZCS and ZVS operations. Input voltage is 108 V and the
switching frequency is 375 kHz.

begins to approach that of ZCS operation, due to similar or a slightly higher total RMS current. It

should be mentioned that the hardware prototype was designed for hard-switching PWM operation

in Chapter 4, and not for ZVS operation. Should the switch selection be optimized (by choosing

a lower Rds,on value) for ZVS operation, the efficiencies of both the QSW and the resonant ZVS

operation in this chapter are expected to be further improved.

Table 7.6 lists the inductor used for different operating modes. The selected inductors have a

similar volume, resulting in a fair comparison of the converter efficiencies.
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Table 7.6: Inductors used for the different operating modes of the hybrid Dickson.

Hard-switched PWM QSW PWM ZCS and ZVS resonant

Part number Coilcraft XAL7030-562 Coilcraft XAL7030-102 Coilcraft SLC7530S-101
Specification 5.6 µH, 28 mΩ 1.0 µH, 4.55 mΩ 0.1 µH, 0.123 mΩ
Dimension 7.5 x 7.5 x 3.1 mm 7.5 x 7.5 x 3.1 mm 7.5 x 6.7 x 3 mm

7.4 Chapter Summary

In this chapter, zero-voltage switching techniques for the hybrid converters are explored. For the

PWM based hybrid converters, the QSW technique is implemented, which allows the inductor

current to fall below zero to soft turn on the switches. The technique is demonstrated with the

Dickson converter, and is also applicable to the FCML converter. In addition, a ZVS technique is

proposed for the fixed-ratio hybrid converters. It has been shown that ZVS operation can achieve a

much higher efficiency than ZCS operation, by eliminating the transistor output capacitance loss,

while only introduces a minimal increase in conduction loss.

Since the ZVS operation shows great promise for the fixed-ratio hybrid converters, it would be

useful to see whether other hybrid topologies can benefit from the same technique. For example,

it is applicable to the cascaded 3-level converter in Section 3.1, due to its similar basic structure.

In addition to the ZVS techniques investigated in this chapter, other soft-switching techniques can

also be explored.
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CHAPTER 8

PRACTICAL CHALLENGES WITH HYBRID SC

CONVERTERS AND FUTURE WORK

While this work focuses on the fundamental analysis and comparison of active and passive device

utilization of hybrid converters, it should be recognized that there are many practical issues associ-

ated with circuit implementations that can influence the topology selection and converter design as

well. This chapter discusses some of the challenges and possible solutions. First, a survey of current

capacitor technologies and their suitability for hybrid converters are presented Section 8.1. Capac-

itor voltage balancing problem is presented in Section 8.2. Finally, other circuit implementation

challenges are presented in Section 8.3.

8.1 Practical Capacitor Selection

The design and selection of inductors for magnetic-based converters are well understood and prac-

ticed. For the hybrid converters, the inductor design is similar to that of the resonant converters for

the fixed-ratio configuration, and is similar to that of a buck converter for the PWM configuration.

In this section, practical aspects in selecting capacitors for hybrid converters are discussed.

Capacitors can be broadly categorized based on the dielectric technology used, such as elec-

trolytic, film and ceramic. It has been shown in Section 3.2 that high energy density is the fun-

damental reason why the hybrid approach can achieve a higher efficiency and power density than

magnetic-based converters. A plot of energy density against energy storage capability for different

types of capacitors is shown in Fig. 8.1. It can be seen that film capacitors have an energy density

that is one order of magnitude lower than that of ceramic or electrolytic capacitors, and therefore

are inferior from a energy density point of view. However, electrolytic capacitors have a low RMS

current limit (which comes from either dielectric loss or reliability constraint), and a high series

inductance (ESL), both of which render electrolytic capacitors unsuitable for high frequency design.

Therefore, for most designs, ceramic capacitors should be used. However, ceramic capacitors only

come with small package sizes, as shown by the small total energy storage in Fig. 8.1, and thus

for high power designs, film capacitors should be considered instead. The characteristics of the

different capacitors are qualitatively compared in Table 8.1.

Ceramic capacitors are categorized into classes based on their dielectric properties [86]. Class I

ceramic capacitors (such as C0G and U2J) have a smaller value variation and flat DC bias and

temperature characteristics. These properties make Class I ceramic capacitors particularly suitable
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Figure 8.1: Plot of energy density against rated voltage. Dotted lines are the contour of the
maximum energy density available.

Table 8.1: Capacitor technology comparison.

Ceramic Film Electrolytic

ESR small medium large
ESL small medium large

RMS current rating high medium low
Energy density high medium high
Available size small small and large large

for resonant hybrid SC converters, as they can easily meet the component matching requirement.

Class II ceramic capacitors (such as X7R, X5R, X6S) are less precise, but offer a much larger

energy density. The energy densities of X7R and C0G capacitors at different voltages are plotted

in Fig. 8.2. It can be observed that at low voltages (< 400 V), the energy density of X7R capacitors

can be an order of magnitude higher. On the other hand, the energy density of C0G capacitors

increases as voltage increases, and becomes higher than that of X7R at 630 V. As a result, for

high voltage designs, C0G (or other Class I) ceramic capacitors should be used. In addition to the

constant capacitor values at difference DC bias and different temperature, the C0G capacitors also

have a high Q of 1000 (vs. a typical value of 20 to 30 for X7R), which results in a much lower

conduction loss and higher current rating. Therefore, even at lower voltages, Class I capacitors can

be chosen if the capacitor size is loss limited, rather than energy storage limited.

For FCML and PWM hybrid SC converters, the inductors and capacitors are selected separately.

The capacitors are selected based on the allowable voltage ripple, which is usually a few percentage

of the nominal capacitor or switch voltage. In this case, the capacitor value variation has no

effect on circuit operation, and has a marginal effect on performance. Therefore, Class II ceramics
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Figure 8.2: Plot of energy density against rated voltage. Dotted lines are the contour of the
maximum energy density available.

with the highest energy density are preferable. The preferred capacitor technologies and their

corresponding converter topologies are summarized in Table 8.2.

Table 8.2: Hybrid SC topologies and suitable capacitors.

Resonant SC
converter with
series inductors

Resonant SC
converters with
output inductor

FCML and PWM
Hybrid SC
converters

Class I ceramic • •
Class II ceramic • •

In summary, there is not a single type of capacitors that satisfies all the need for use in the hybrid

converters. Therefore, developing a type of ceramic capacitor that has a higher energy density than

Class I capacitors and a better dc bias characteristic than Class II capacitors can be extremely

beneficial to the hybrid topologies.

8.2 Capacitor Balancing

As has been briefly discussed in Section 6.2, capacitor voltage balancing (capacitor voltages being

at their nominal values) is crucial to the operation and performance of FCML converters. Previ-

ous literature on multilevel converters either focuses on capacitor balancing methods using active

sensing and control, or on the dynamics of the self-balance property of PSPWM. While the active

balancing methods can robustly regulate the flying capacitor voltages, the added complexity in

sensing and control can sometimes be prohibitive, especially for high frequency operations and

designs with a large number of levels. On the other hand, current understanding in the community

of the self-balance property of the FCML converter is not enough to be relied upon without active
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balancing, as many hardware prototypes show severe voltage imbalance [97]. In particular, while

it is commonly cited that non-idealities in the circuits cause imbalance, it is not clear what are

the non-idealities and to what extent their effects have on the capacitor balance. Therefore, it is

useful as a future work to investigate the origins of the capacitor voltage imbalance in practical

implementations of FCML converters, so that the responsible non-idealities can be understood,

and consequently minimized in the circuit design stage.

In addition, the introduction of the inductor in hybrid SC converters makes the circuit under-

constrained, and the capacitor voltages can no longer be determined by KVL as in conventional

SC converters, so hybrid SC converters are also afflicted with the same issue of capacitor voltage

balancing. Since PWM hybrid converters share a similar operation to FCML converters, it is

proposed here that a similar approach as to the FCML converter can be used to model the self-

balance mechanism for PWM hybrid SC converters, and that further exploration of the self-balance

property can benefit both FCML converters and other hybrid converters. Furthermore, existing

theories need to be extended to accommodate the asymmetric duty ratios for different phases, such

as with the PWM-based series-parallel and Fibonacci converter introduced in Section 4.5. The

self-balance property of fixed-ratio hybrid converters should also be analyzed, as their operation

can differ from the PWM based ones.

8.3 Practical Circuit Implementations for Hybrid SC Converters

Since most of the hybrid converters use low voltage switches, whose voltage ratings depend on

the capacitor voltages, the switch voltage ratings may be exceeded during the start-up process of

the converter, before the capacitors are charged to their respective levels. In many applications

where the input voltage can be slowly ramped up to the rated voltage, for example, when the

converter is a second stage to a previous stage (e.g., voltage regulator module and intermediate

bus architectures), no additional startup circuitry is required, since a soft-start procedure of the

previous stage can be utilized. In other cases however, where the input voltage is not well controlled,

start-up circuitry needs to be included for the multilevel and hybrid converters. For FCML and

Dickson converters, one implementation is to use a top switch that is able to withstand the full

input voltage while the flying capacitors charge up. The switch loss and size do not necessarily

increase a lot, since for large step-down applications, the top switch has small RMS current and is

the smallest switch. In addition, for high number of levels, the top switch is only one of the many

switches. Another possible solution is to use a small start-up switch in parallel with a switch that

turns on permanently after start-up, as demonstrated in [45,98]. This solution can be more efficient

compared to the over-rated-top-switch approach, since there is no additional switching loss. For

series-parallel converters, the first switch already has a high voltage rating, and thus can possibly

accommodate a pre-charge process with an even smaller penalty.

Another challenge is to deliver power to the floating gate drivers, due to the large number of
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switches used by the hybrid converters. In this work, state-of-the-art isolated power supply IC’s

are used to deliver power to each half-bridge gate driver. While the IC is much smaller compared

to conventional isolated converters, thanks to the integrated transformer, its size is still larger

than the switches and gate drivers it is powering, and its peak efficiency is quite low at 30% [99].

In [100, 101], modified bootstrap methods are proposed, which are demonstrated to be smaller,

cheaper and more efficient than the transformer-based isolated power supply. While the methods

were implemented on FCML converters, they can also be adopted by other hybrid topologies such

as the Dickson and series-parallel converters. In addition, in [102], a monolithically integrated

converter is implemented with all the auxiliary circuits on-chip, and successfully demonstrated

high efficiencies across a wide operating range.

While the multilevel and hybrid SC converters add design complexity in terms of pre-charge,

level-shifting and control, the challenges can be addressed by the innovation of circuit designers.

Addressing the complexity of multilevel and hybrid converters is an on-going research, and can in

many cases be worthwhile, given the potential efficiency and power density improvement.
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CHAPTER 9

CONCLUSIONS

In this work, hybrid converters are explored, which use both capacitor and inductor in the power

transfer process. It is proposed that these converters can achieve high power density and higher

efficiency than conventional switched-capacitor converters and switched-inductor converters, thanks

to high energy density of capacitors and high energy utilization of these components.

When applied to conventional switched-capacitor topologies, the hybrid approach is able to

eliminate the charge sharing loss of the capacitors, thus leading to the reduction of capacitor size

without penalizing the efficiency. A general method is presented that can be used to determine

which switched-capacitor converter topology is able to achieve full soft-charging operation with

a single inductor. It is found that among the classic topologies, series-parallel and Fibonacci

converters are able to achieve full soft-charging operation with equal capacitor values. Dickson

converter can only approach soft-charging operation with uneven capacitor values. Doubler and

ladder converters cannot only achieve partial soft-charging operation. The Dickson converter is

then analyzed in detail. A split-phase control technique is presented, which selectively charges and

discharges the capacitors, such that full soft-charging operation can be achieved for the Dickson

topology. Hardware prototypes are implemented, which show that the hybrid approach is able to

achieve simultaneous high efficiency and power density.

Alternative placements for the inductor are then investigated. It is found that by placing an

inductor in series with each of the flying capacitors, soft-charging operation can be achieved at

the resonant frequency, for all of the existing SC topologies. However, practical constraints need

to be observed before these topologies can be realized in hardware. A method to minimize the

passive component volume for the hybrid converters is then proposed, by adjusting the capacitor

and inductor values, subjected to the resonant frequency constraint. Using the minimized passive

component volume, and the switch stress, different hybrid SC converters are compared.

Another drawback of conventional SC converters is the poor efficiency when the output voltage

needs to be regulated. Here, a regulation technique using PWM switching is thus presented. This

technique can be used on hybrid SC converters to achieve lossless voltage regulation, which is not

possible with conventional SC converters. The proposed technique does not introduce additional

components, and can achieve continuous voltage regulation. A 80-170 V input, 12 - 24 V output

converter is implemented using GaN switches. The peak efficiency is 97%, and high efficiency can

be achieved over the entire input and output operating range.
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The similarity between the the flying capacitor multilevel (FCML) converters and the hybrid SC

converters is then discussed. Both types of converters can be seen as a hybrid converter which uses

both capacitors and inductors for energy transfer. A general framework to compare these converters,

along with conventional buck converters, is proposed. In this framework, the power losses (including

conduction loss and switching loss) are kept constant, while the total passive component volume

is used as the figure of merit. The analysis shows that both the FCML converters and the hybrid

Dickson converters have a much smaller total volume compared to buck converters, since they have

a high utilization of the energy stored by both capacitors and inductors. Hardware prototypes have

been implemented and the total reduction in passive components of the hybrid converters is similar

to the results predicted by the theoretical analysis.

Based on the same principle of maximizing energy utilization of passive components, a 7-level

FCML converter and an active energy buffer are designed and implemented for single phase dc-ac

applications. The system achieves a combined power density of 216 W/in3 and an efficiency of

97.4%, and compares favorably against other solutions in the setting of the Little Box competition.

A common technique to reduce converter size and improve efficiency at high frequency operation

is to use soft-switching techniques. Zero voltage switching (ZVS) techniques are explored for hybrid

converters, enabling potentials for an even higher power density by minimizing the switching loss

and drain-source voltage ringing. Hardware prototypes from the previous sections are modified to

support ZVS operation, and measured results show a significant efficiency increase for the fixed-

ratio hybrid converter, and improved light-load efficiency for the PWM hybrid converter.

Some of the practical issues associated with the hybrid converter, such as practical capacitor

selection, capacitor voltage balancing and other circuit implementation challenges. Future work

based on these topics is also suggested.

In summary, this work demonstrated that both in theory and with hardware prototypes, hybrid

converters utilizing both capacitors and inductors in the voltage conversion process can have per-

formance superior to that of conventional SC and magnetics-based converters, due to their more

efficient utilization of the switches and passive components. It is expected that these hybrid con-

verters will find applications where high efficiency and power density are demanded, and are critical

to the core function, so that the associated higher cost premium can be afforded.
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APPENDIX A

SOFT-CHARGING OPERATION OF THE DICKSON

CONVERTER

A.1 Derivation of the Charge Flow Vector for a 4-to-1 Dickson Converter

For the 4-to-1 Dickson converter in Fig. 2.12, the voltage change vector is defined as

∆v =

∆vin

∆vc

∆vout

 =


∆vin

∆vc3

∆vc2

∆vc1

∆vout

 . (A.1)

Using the KVL equations defined in Eq. (2.33) and examining each loop in Fig 2.25, the following

reduced loop matrices can be found:

A1a =

[
1 −1 0 0 −1

0 0 1 −1 −1

]
A2a =

[
0 1 −1 0 −1

0 0 0 1 −1

]
A1b =

[
0 0 1 −1 −1

]
A2b =

[
0 1 −1 0 −1

]
. (A.2)

In addition, since ∆Vin is considered zero for a constant voltage-source input, a row of
[
1 0 0 0 0

]
can be added to each of the reduced loop matrices, resulting in the modified reduced loop matrix

A1am, A2am, A1bm and A2bm. The solution to (2.35) and (A.2) represents the possible change

in values that the voltages of the circuit elements can take, constrained by KVL. By definition, the

solution is the nullspace of each of the modified reduced loop matrix1 , and is shown below.

1The nullspace can be found, for example, by using the null command in Matlab.
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w1a =


0

0.1225

0.6325

0.7550

−0.1225




0

−0.6205

0.4472

−0.1733

0.6205

 (A.3)

w2a =


0

−0.2124

−0.6968

0.4844

0.4844




0

0.7449

0.3383

0.4066

0.4066



w1b =


0

−0.5774

0.6667

0.3333

0.3333




0

0.5774

0.3333

0.6667

−0.3333




0

0.5774

0.3333

−0.3333

0.6667

 (A.4)

w2b =


0

0.5774

0.7887

0

−0.2113




0

0

0

1.000

0




0

0.57740

−0.2113

0

0.7887


′ (A.5)

In addition, for soft-charging operation, the output voltage is able to change instantaneously to

accommodate the change in the terminal voltage during phase transitions, and thus it is no longer

a state in the linear circuit being analyzed. Therefore, ∆vout is excluded from the analysis. The

bases corresponding to the capacitor voltage change (∆vc) are obtained from the middle elements
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of the wi vectors.

w1a
c =

0.1225

0.6325

0.7550


−0.6205

0.4472

−0.1733

 (A.6)

w2a
c =

−0.2124

−0.6968

0.4844


0.7449

0.3383

0.4066



w1b
c =

−0.5774

0.6667

0.3333


0.5774

0.3333

0.6667


 0.5774

0.3333

−0.3333

 (A.7)

w2b
c =

0.5774

0.7887

0


 0

0

1.000


0.57740

−0.2113

0

 ′ (A.8)

The charge vector for the 4-to-1 Dickson converter is defined as

q =

 qinqc

qout

 =


qin

qc3

qc2

qc1

qout

 . (A.9)

Taking the Phase 1 schematic repeated in Fig. A.1 as an example, by applying KCL to Node 1,

Node 2 and the ground node respectively, the following equations can be found.
qc3 + qc1 − qout = 0

−qin − qc3 = 0

qin + qc2 + qout = 0

(A.10)

The number of independent KCL equations for a circuit is given by n− 1, where n is the number

of nodes in the circuit [31]. Therefore, only three nodes from the circuit in Fig. A.1 are used to

generate the KCL equations. Expressing these KCL equations using the matrix-vector product

form given in (2.37) yields the reduced incidence matrix B1a. The same process is repeated for the

other phases and all four of the reduced incidence matrices are given below:
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Figure A.1: Phase 1 of the split-phase Dickson converter.

B1a =

 0 1 0 1 −1

−1 −1 0 0 0

1 0 1 0 1

 (A.11)

B2a =

 0 −1 −1 0 0

−1 0 0 0 0

1 1 0 1 1



B1b =


0 0 −1 −1 0

0 0 0 1 −1

−1 −1 0 0 0

0 1 0 0 0

 (A.12)

B2b =


0 −1 −1 0 0

0 0 1 0 −1

−1 0 0 0 0

0 0 0 −1 0

 . (A.13)

The solution for the possible capacitor charge vectors that satisfy (2.37) and (A.13) are found to
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be

u1a =


0.2443

−0.2443

−0.6109

0.6109

0.3666




−0.5615

0.5615

−0.0432

0.0432

0.6047

 u2a =


0

0.6325

−0.6325

−0.3162

−0.3162




0

0

0

−0.7071

−0.7071



u1b =


0

0

−0.5774

0.5774

0.5744

 u2b =


0

−0.5774

0.5774

0

0.5744

 (A.14)

Similar to the preceding analysis of the voltage vector, only the elements that correspond to the

charge through the capacitors (qc) are of interest. Again, the corresponding elements are grouped

into a set of new vectors, defined as ui
c.

u1a
c =

−0.2443

−0.6109

0.6109


 0.5615

−0.0432

0.0432

 u2a =

 0.6325

−0.6325

−0.3162


 0

0

−0.7071



u1b
c =

 0

−0.5774

0.5774

 u2b
c =

−0.5774

0.5774

0

 . (A.15)

Since each basis in (A.8), wi represents a set of voltage changes, it can be related to the charge

transferred by multiplying with the respective capacitor values. The result can be represented by

c ∗wi
c, (A.16)

where ∗ represents element-wise multiplication and c is given by

c =

C3

C2

C1

 . (A.17)

Since the ui
c vectors in (A.15) represent the possible charge transfer constrained by KCL and the

c∗wi
c, vectors in (A.16) represent the possible charge transfer due to the change in capacitor voltage

constrained by KVL, the actual charge transfer values must satisfy both. To find the actual charge

flow, the common space spanned by ui
c and c ∗wi

c can be found, and is defined as pi
c. Therefore,
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pi
c can be expressed as

pi
c =

∑
j

βju
i
c(j) + γjc ∗wi

c(j), (A.18)

where i is the phase number and j represents the jth basis. For C1 = C2 = C3, (A.18) can be

solved for β and γ, and the charge vectors are found as

p1a
c =

 0.3714

−0.1857

0.1857

 p2a
c =

 0.2000

−0.2000

0.4000



p1b
c =

 0

−0.5774

0.5774

 p2b
c =

−0.5774

0.5774

0

 . (A.19)

These are the bases for the charge vectors which satisfy KCL and which also result in a capacitor

voltage change that satisfies KVL. To find the actual values of the charge transferred, the steady-

state condition given in (2.39) results in the following equation:

α1ap
1a
c + α2ap

2a
c + α1bp

1b
c + α2bp

2b
c = 0 . (A.20)

Equation (A.20) can be used to find the values of the α’s. Finally, the actual charge flow vectors

are given by

q1a
c = α1ap

1a
c , q2a

c = α2ap
2a
c , (A.21)

q1b
c = α1bp

1b
c , q2b

c = α2bp
2b
c . (A.22)

It should be noted that even though the coefficient values (α, β, γ) are obtained using only the basis

whose elements correspond to the capacitors (ui
c and wi

c), their values are also valid for the original

basis, ui and wi, which contains the elements corresponding to the input and output source. The

overall charge vectors, which also contain the charge flow through the input and output element,

can be found using the same set of coefficients and the resultant values are given as in (2.40).
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Figure A.2: 5-to-1 Dickson topology.
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Figure A.3: Two-phase operation of a 4-to-1 Dickson converter.

A.2 Split-phase Control with Odd Conversion Ratios

A 5-to-1 Dickson converter is shown in Fig. A.2 and the corresponding two phases are shown in

Fig. A.3. One flying capacitor (C4) and one switch (S9) are added to the 4-to-1 Dickson converter

to increase to conversion ratio to 5:1. For a Dickson converter with an odd conversion ratio, such

as in this case, only a single secondary phase is needed for the split-phase operation, as shown in

Fig. A.4. This is because the outermost and innermost switches in the center string (S9 and S5)

are controlled by the same switching function in an odd conversion ratio topology, rather than the

opposite switching function in an even conversion ratio topology. The control signals are shown

in Table A.1 and Fig. A.5. As can be seen, there is only one additional control signal (q3) for

split-phase operation, as opposed to two additional signals (q3 and q4) for Dickson converters with

even conversion ratios.

Table A.1: Control of switches for split-phase 5-to-1 Dickson converter.

Switches S9 S8 S7 S6 S5 S4 S3 S2 S1

Two-phase q1 q2 q1 q2 q1 q2 q1 q2 q1

Split-phase q3 q2 q1 q2 q1 q3 q1 q2 q1
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Figure A.4: Split-phase operation of a 5-to-1 Dickson converter.
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Figure A.5: Control diagrams for split-phase 5-to-1 Dickson converter.
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APPENDIX B

EXACT DUTY RATIO OF THE SPLIT-PHASE CONTROL

UNDER PWM OPERATION

The duty ratio for the split-phase operation has been calculated in Section 2.4, assuming the load is

a constant current load. The split-phase duty ratio is independent of the load current. However, in

practice, the inductor current is triangular with a dc offset, rather than being a constant dc value.

In this section, the duty ratio of the split-phase is calculated given the duty ratio of the ideal case.

The duty ratios of the split-phase at different inductor current ripple values are plotted in Fig. B.1.

It can be seen that with small relative inductor current ripple (i.e. large average inductor current

and small absolute ripple), the split-phase duty approaches that calculated in Section 2.4. With

relatively large inductor current ripple, the split-phase duty ratio decreases.

Since the relative inductor current ripple can be calculated on the fly using the PWM duty ratio,

inductor value, switching frequency and the measurement of the input voltage, and the average

inductor current, a feed-forward control can be used to choose the optimal split-phase duty ratio

across the input, output voltage as well as the load range.
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Figure B.1: Schematic of the 6-to-1 hybrid converter prototype.
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APPENDIX C

ADDITIONAL CONVERTER LOSS AND MODELING

CONSIDERATIONS.

C.1 The Switching Loss of Converters

There are two major sources of switching losses, the capacitance switching loss and the voltage-

current overlap loss. These two losses will be investigated separately in this section.

The switching loss of a semiconductor device as a result of the drain-source capacitance is given

by

Pcoss ∝ fswCossV 2
ds

∝ fswQossVds . (C.1)

The related device parameters of GaN switches (Qoss, Vds, Rds) are collected from EPC. The

QossVds values (capacitance switching loss metric) are plotted against GV 2
ds in Fig. C.1, where G

is 1
Rds

. A linear best fit line is also plotted, which has a slope of 1.06 in log-log scale. This means

that GV 2
ds is linearly proportional to QossVds, and that it is a good indication of the switching loss

as a result from output capacitance discharge.

The switching loss of a semiconductor switch due to the voltage-current overlap during transition

is given by

Poverlap ∝
switches∑

fswVdsIdsttr, (C.2)

where VdsIds is the power dissipation during the transition and ttr is the duration of the switch

transition (commutation). Traditionally, ttr is assumed to be proportional to Qgd, since the gate-

to-drain charge determines how fast the switch can be turned on. Provided that Ids of the switches

are the same across the topologies, QgdVds can be used as metric to compare the overlap switching

loss. The QgdVds values against the GV 2
ds product are plotted in Fig. C.2. The linear best fit line

has a slope of 0.96 in log scale. This shows that GV 2
ds is linear with respect to QgdVds, and thus

a good representation of the overlap switching loss. This assumption that Ids is the same for all

switches is true for FCMC, but may not be true for a general hybrid SC topology. Therefore, a

more accurate representation of the switching loss is GV 2
dsIds, but is omitted in this appendix for

simplicity.

In practice, especially for the fast GaN devices, the commutation time, ttr is likely limited by the
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Figure C.1: Plot of capacitance switching loss metric against GV 2 product. Data obtained from
EPC GaN switches.

Table C.1: Suitable metrics for switching losses.

Switching loss Metric

Capacitance loss GV 2
ds

Overlap loss (limited by Qgd, same Ids) GV 2
ds

Overlap loss (limited by Qgd) GV 2
dsIds

Overlap loss (limited by loop inductance ) VdsIds

allowable voltage ringing during the switch transition, which depends on the parasitic inductance

in the commutation loop, but not Qgd. As a result, Qgd may have limited influence on the switching

loss. Therefore, in practice, a suitable metric for the switching loss is VdsIds, assuming that ttr is a

constant value determined by the layout inductance. For the FCMC, there are 2(N − 1) switches

with voltage rating of Vin
N−1 and current rating of Iload. Thus, we have

∑
(V I)FCMC∑
(V I)buck

=
2(N − 1)× Vin

N−1Iload

2× VinIload

=1, (C.3)

which is the same result given by Eq. (5.3).

Suitable metrics for switching losses are summarized in Table C.1. For simplicity, the sum of

GV 2
ds products are used as the overalls switching loss metric since it is a good indication of the

capacitance switching loss and also partly reflects the overlap switching loss.
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Figure C.2: Plot of overlap switching loss metric against GV 2 product. Data obtained from EPC
GaN switches.

C.2 Inductor Volume Metric

The value of an inductor is given by

L =
µn2Ac
lm

, (C.4)

where µ is the permeability, n is the number of turns, Ac is the cross-sectional area of the core and

lm is the mean length of the magnetic path. The saturation current of an inductor is given by

Isat =
Bsatlm
µn

, (C.5)

where Bsat is the saturation flux density. From Eq. (C.4) and Eq. (C.5), we obtain the expression

for the LI2 product of the inductor as

LI2
sat =

B2
satAclm
µ

. (C.6)

For a given core material and configuration, Bsat and µ are constant, and therefore the LI2 product

is proportional to the volume of the core, Aclm, which in turn is proportional to the volume of the

inductor. It should be noted that here it is assumed that the size of the inductor is constrained

by saturation, not by the core loss, which is often the case for the filter inductors used in PWM

converters.

In order to validate the expression, the parameters of surface-mount inductors from the Coilcraft

XAL and SER families are collected. The volumes of these inductors are plotted against their LI2

product in Fig. C.3, where I is taken as the saturation current. The linear best fit line for the XAL

series has a slope of 1.1, while the best fit line for the SER inductors has a slope of 0.95. This

suggests the LI2 product can be a good indication of the volume of an inductor.
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Figure C.3: Plot of LI2 product against the inductor volumes. Data are obtained from Coilcraft
inductors.

Figure C.4: Plot CV 2 product against the capacitor volumes. Data are obtained from TDK
capacitors.

The following series of inductors is used in the plots: Coilcraft XAL4030, XAL4040, XAL5020,

XAL5030, XAL5050, XAL7030, XAL7070, XAL1010, XAL1350, XAL1510, XAL1513; Coilcraft

SER1360, SER1390, SER1408, SER1410, SER8050, SER8052, SER2915L.

C.3 Capacitor Volume Metric

The parameters of TDK multilayer ceramic capacitor X7R series as well as its metal film capacitor

MKT series are collected. The volumes are plotted against CV 2 product in Fig. C.4. The slope

of the linear best fit line is 1.1 for the X7R capacitors and the slope for the MKT capacitors is

1.3. Comparing Fig. C.3 and Fig. C.4, it can be seen that the X7R capacitors have on average 150

smaller volume for the same amount of energy stored than the XAL inductors.
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Table C.2: Loss scaling of selected Vishay inductors.

FCMC Part No. Inductance Ripple Frequency Isat ∆IL

2-level IHLP-6767GZ-01 22 µH 100 KHz 23 A 4.8 A
3-level IHLP-6767DZ-01 10 µH 200 KHz 19.5 A 4.6 A
4-level IHLP-5050CE-01 5.6 µH 300 KHz 19 A 4.6 A
5-level IHLP-4040DZ-01 3.3 µH 400 KHz 18.6 A 4.73 A
6-level IHLP-3232DZ-01 2.2 µH 500 KHz 23 A 4.4 A

FCMC Part No. Core loss (W) AC loss DC loss Total loss Volume

2-level IHLP-6767GZ-01 1.04 W 2.06 W 1.85 W 4.95 W 2140 mm3

3-level IHLP-6767DZ-01 0.80 W 2.28 W 1.80 W 4.89 W 1160 mm3

4-level IHLP-5050CE-01 0.76 W 1.56 W 1.26 W 3.58 W 592 mm3

5-level IHLP-4040DZ-01 0.66 W 1.43 W 0.93 W 3.03 W 474 mm3

6-level IHLP-3232DZ-01 0.48 W 0.34 W 1.48 W 2.30 W 290 mm3

The following series of capacitors is used in the plots (not all parts in a series are used). MKT

capacitors: TDK B32529, B32520, B32521, B32522, B32523; Ceramic capacitors: TDK X7R ca-

pacitors with case size 0402, 0603, 0805, 1206, 1812, 2220, each with voltage ratings at 16 V, 25 V,

35 V, 50 V, 100 V, 250 V, 630 V and 1000 V where applicable.

C.4 Inductor Core Loss Consideration

The proposed analytical framework neglects the core loss and ac loss. This section explores the

scaling of these losses as the inductor size changes. A common empirical core loss formula is the

Steinmetz equation [103] given by

Pcore = αfγ∆BβAclm, (C.7)

where α is a constant for each core material, γ is the exponent that reflects the frequency dependent

behavior, β reflects the flux swing dependent behavior of the core loss, and Aclm is proportional to

the volume of the core. β usually has a range of 2 - 3 while γ has a range of 1 - 3. For multilevel

converters, while the core loss density increases due to the increase in the ripple frequency as in

the comparison method, the volume of the core decreases as Ac decreases (due to the reduction

in the required inductance). Thus whether the overall core loss increase or decrease compared to

buck converters depends on the exponent γ.

For multilevel converters in general, we have

Pcore,ml = αfγml∆B
βAc,mllm, (C.8)

= α(
fbuck
Kf

)γ∆Bβ(KfKdAc,buck)lm, (C.9)

= Pcore,buck
Kd

Kγ−1
f

, (C.10)
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Figure C.5: Core loss of the FCMC inductor normalized by that of the buck converter. (N − 1) is
the number of levels.

where Kf and Kd are as defined in Eq. (5.7). For the FCMC, the core loss normalized by that of

a buck converter (i.e. Kd
Kγ−1
f

) is plotted in Fig. C.5, by assuming a γ of 2. It can be seen that when

the desired conversion ratio is close to N − 1, i.e. when Kd factor is dominating, the core loss for

the FCMC is smaller. When the desired conversion ratio is much larger than N − 1, i.e. when Kf

factor is dominating, the core loss for the FCMC can be larger than that of the buck converter. It

should be noted that the scaling strongly depends on the value of γ. A γ value of 1 means that the

core loss for the FCMC is always smaller, and a γ value of 3 can result in a core loss that is much

higher than plotted in Fig. C.5. It should be noted here that a more accurate core loss frequency

scaling can be obtained using the modified Steinmetz equation [104], which takes into account the

triangular inductor current waveform at different duty ratios. The core loss for multilevel converter

is expected to be lower than that given by the Steinmetz equation, since its duty ratio is closer to

0.5. In addition, a more rigorous inductor loss scaling is given in [105].

The core loss, ac loss and dc loss of selected inductors from Vishay IHLP family, evaluated at

the same current ripple, are obtained from the manufacturer’s website and are shown in Table C.2.

The operating condition is 100 V to 12 V conversion with an average load current of 8 A. Smaller

inductors are chosen for the FCMC converter with more levels according to Fig. 5.5. It can be seen

that the core loss (and the total loss) actually decreases as the number of levels increases, despite

operating at a higher frequency.

Therefore, while including the core loss in the analysis can yield more accuracy, omitting core

loss does not necessarily yield a biased analysis favoring the multilevel converters.
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