
c© 2017 by Man Ki Yoon.

SECURE AND DEPENDABLE CYBER-PHYSICAL SYSTEM ARCHITECTURES

BY

MAN KI YOON

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

Professor Lui Sha, Chair/Director of Research
Professor Carl Gunter
Professor Tarek Abdelzaher
Research Assistant Professor Sibin Mohan
Dr. Mihai Christodorescu, Qualcomm Research

Abstract

The increased computational power and connectivity in modern Cyber-Physical Systems (CPS) inevitably introduce

more security vulnerabilities. The concern about CPS security is growing especially because a successful attack

on safety-critical CPS (e.g., avionics, automobile, smart grid, etc.) can result in the safety of such systems being

compromised, leading to disastrous effects, from loss of human life to damages to the environment as well as critical

infrastructure. CPS poses unique security challenges due to its stringent design and implementation requirements.

This dissertation explores the structural differences of CPS compared to the general-purpose systems and utilizes the

intrinsic characteristics of CPS as an asymmetric advantage to thwart and detect security attacks to safety-critical CPS.

The dissertation presents analytic techniques and system design principles to enhance the security and dependability

of CPS, with particular focus on (a) modeling and reasoning about the logical and physical behaviors of CPS and (b)

architectural and operating-system supports for trusted, efficient run-time monitoring as well as attack-resiliency.

ii

To my father and mother who have waited for a long time with love and belief.

iii

Acknowledgments

I would like to express my deepest gratitude to my advisor, Prof. Lui Sha, for giving me the opportunity to study under

his guidance and instruction. He has supported me with endless patience, generosity, encouragement, and invaluable

advice from his own inspiring experience. He has taught me not only how to do research but, more importantly,

how to be a good researcher and teacher, which will guide me through my academic journey. I would also like to

thank Sibin Mohan for introducing me to the area of real-time systems security and for helping me enjoy this exciting

field. I am also grateful to my other committee members, Prof. Carl Gunter and Prof. Tarek Abdelzaher, for their

valuable feedback and guidance that have improved the quality of this dissertation. I also thank Mihai Christodorescu

for mentoring me through the Qualcomm Innovation Fellowship and my internship at Qualcomm Research. I am

also grateful to Jaesik Choi for helping me get to know the power of machine learning. I would like to thank Prof.

Chang-Gun Lee who guided me to pursue research in the field of real-time systems in the first place. I would also

like to thank my internship mentors - Gabriela Ciocarlie at SRI International who gave me the opportunity to have my

first Silicon Valley experience, Negin Salajegheh and Yin Chen at Qualcomm Research who helped me go through a

challenging yet exciting project, and Michael LeMay at Intel Labs who gave me an opportunity to work on a unique

project that I would never have experienced elsewhere. I am also very grateful to Bo Liu who has provided me with

great technical supports for the drone project and helped me get to like the field of robotics. I would like to thank Min

Young Nam who sincerely helped me settle down in this new place and also in school life.

I would like to acknowledge the National Science Foundation, the Office of Naval Research, Rockwell Collins,

and Lockheed Martin for the funding that have made my research possible. I am also grateful to Qualcomm Research

and Intel for awarding me the fellowships that not only financially supported my research but also encouraged me to

pursue my goals with confidence.

Finally, no single page of this dissertation would have been written without Jung-Eun’s supports both at and away

from school. I am truly grateful to her for having always been with me, tasting the sweets and bitters of life together.

I could not have endured this long journey without her.

iv

Table of Contents

Chapter 1 Introduction . 1
1.1 Overview of Research . 1

1.1.1 Research Goal and Challenges . 1
1.1.2 Summary of Solutions . 3

1.2 Background and Related Work . 5
1.2.1 Security Attacks to CPS . 5
1.2.2 Simplex Architecture . 6
1.2.3 Behavior-based Intrusion Detection . 7
1.2.4 Hardware-based Security Measures . 9
1.2.5 Virtual Machine Introspection . 10

Chapter 2 SecureCore: A Multicore-based Intrusion Detection Architecture for Real-Time Embedded
Systems . 11
2.1 Introduction . 11

2.1.1 Assumptions . 12
2.1.2 Motivation . 13

2.2 SecureCore Architecture . 14
2.2.1 High-Level Architecture . 14
2.2.2 Design Considerations . 15
2.2.3 Timing Trace Module (TTM) . 17

2.3 Gaussian Kernel Density Estimation for Execution Time-Based Intrusion Detection 19
2.3.1 Overview . 20
2.3.2 Trace Tree . 21
2.3.3 Profiling Block Execution Time Using Gaussian Kernel Density Estimation 22
2.3.4 Intrusion Detection Using Execution Time Profiles . 23

2.4 Implementation . 24
2.4.1 System Implementation . 25
2.4.2 Application Model . 26

2.5 Result and Discussion . 28
2.5.1 Early Detection of an Intrusion . 28
2.5.2 Intrusion Detection Accuracy . 29
2.5.3 Limitations and Possible Improvements . 30

2.6 Conclusion . 31

Chapter 3 Memory Heat Map: Anomaly Detection in Real-Time Embedded Systems Using Memory
Behavior . 32
3.1 Introduction . 32
3.2 The Memory Heat Map . 34

3.2.1 Monitoring Kernel Memory Space . 35
3.2.2 Overall Process . 35
3.2.3 Assumptions . 36

3.3 Monitoring Memory Heat Maps . 36

v

3.3.1 Memometer . 36
3.4 Learning Memory Heat Maps . 39

3.4.1 Definitions and Overall Learning Process . 39
3.4.2 Eigenmemory . 40
3.4.3 Finding MHM Patterns . 43

3.5 Evaluation . 44
3.5.1 Prototype Implementation . 44
3.5.2 Training . 45
3.5.3 Anomaly Detection . 46
3.5.4 Analysis Time . 52
3.5.5 Limitation . 52

3.6 Conclusion . 53

Chapter 4 Learning Execution Contexts from System Call Distribution for Anomaly Detection in Smart
Embedded Systems . 54
4.1 Introduction . 54
4.2 Overview . 55

4.2.1 Attacks against Sequence-based Approach . 56
4.2.2 Adversary Model . 57
4.2.3 Assumptions . 58

4.3 Anomaly Detection Using Execution Contexts Learned from System Call Distributions 58
4.3.1 Definitions . 58
4.3.2 Learning Single Execution Context . 59
4.3.3 Learning Multiple Execution Contexts . 62
4.3.4 Reduced SCFD . 64

4.4 Evaluation Framework . 65
4.4.1 Target Application . 65
4.4.2 System Implementation . 66
4.4.3 Attack Scenarios . 67

4.5 Evaluation Results . 67
4.5.1 Sequence-based Security Analysis . 68
4.5.2 SCFD Training . 72
4.5.3 Accuracy . 75
4.5.4 Time Complexity . 78
4.5.5 Limitations and Discussion . 78

4.6 Conclusion . 79

Chapter 5 The DragonBeam Framework: Hardware-Protected Security Modules for In-Place Intru-
sion Detection . 80
5.1 Introduction . 80

5.1.1 Threat Model and Assumptions . 82
5.2 Overview . 82

5.2.1 High-level Architecture . 82
5.2.2 Sample Use Cases . 85
5.2.3 Requirements and Challenges . 85

5.3 Detailed Architecture . 85
5.3.1 DragonBeam Framework Operations . 85
5.3.2 SKM Registration . 86
5.3.3 Secure Memory and Access Control . 88
5.3.4 Heartbeat and SKM Integrity Check . 90
5.3.5 Secure Memory for SecMan and Secure Stack . 90

5.4 Security Guarantees of the DragonBeam Framework . 91
5.5 Implementation . 92

5.5.1 System Configuration . 92

vi

5.5.2 Secure Memory Implementation . 93
5.5.3 Software Configuration . 94

5.6 Evaluation . 94
5.6.1 Implementation of Detection Mechanisms . 94
5.6.2 Performance Evaluation . 96
5.6.3 Hardware Costs . 98
5.6.4 Extension to Multiple Monitored Cores . 98
5.6.5 Limitations . 100

5.7 Conclusion . 100

Chapter 6 VirtualDrone: Virtual Sensing, Actuation, and Communication for Attack-Resilient Un-
manned Aerial Systems . 101
6.1 Introduction . 101
6.2 VirtualDrone Framework . 103

6.2.1 High-level Framework . 103
6.2.2 Assumptions and Adversary Model . 105
6.2.3 Virtual Sensing, Actuation, and Communication . 106
6.2.4 Security and Safety Monitoring . 110

6.3 Implementation . 111
6.3.1 Quadcopter Control . 111
6.3.2 System Implementation . 112
6.3.3 Autopilot . 112
6.3.4 Virtualization . 113

6.4 Experiments . 115
6.4.1 Case Study . 115
6.4.2 Discussion . 125

6.5 Conclusion . 127

Chapter 7 Conclusion and Future Work . 128

References . 130

vii

Chapter 1

Introduction

Cyber-Physical Systems (CPS) such as advanced avionics and automotive systems as well as industrial automation

systems have traditionally been considered to be invulnerable against security breaches. This was particularly the case

since, in general, such systems are physically isolated from the external world and also used specialized protocols.

However, increased computational power and connectivity in modern CPS platforms inevitably introduce more secu-

rity vulnerabilities. Accordingly, threats to such systems are growing, both in number as well as sophistication, as

demonstrated by recent attacks [145, 91, 131, 142, 88, 29, 31, 30]. Attackers can not only steal critical information but

also destabilize such systems. A successful attack on such safety-critical systems can have disastrous effects, from loss

of human life to damages to the environment as well as critical infrastructures. Despite tremendous advances in secu-

rity technologies for general-purpose systems, these systems still rely on rather primitive, outdated countermeasures.

Hence, there is a need to develop effective mechanisms that foil attacks on such systems.

CPS poses unique security challenges, as such systems are required to meet stringent requirements in design and

implementation as well as strong safety requirements. Furthermore, the limited resources in these systems, namely,

computational power, storage, energy, etc., prevent security mechanisms that have primarily targeted on general-

purpose systems from being effective. On the other hand, CPS provides defenders with a unique opportunity to take

advantage of the design and implementation constraints and the tight coupling of cyber and physical components to

deter attackers. This dissertation investigates the software and hardware architectures as well as analytic methods to

enhance the security and dependability of CPS, utilizing the inherent characteristics of CPS.

1.1 Overview of Research

In this section, we overview the research goal and challenges as well as the solutions proposed in this dissertation.

1.1.1 Research Goal and Challenges

It is infeasible to completely secure modern CPS since they have many entry points that are vulnerable to potential

attacks and also security attack mechanisms keep evolving. Hence, instead of attempting to prevent every possible

1

security breach, this research focuses on (a) detecting attacks as soon as they happen and, more importantly, (b) en-

suring that the underlying physical system remains safe. Such security mechanisms work in CPS due to the regularity

of their behavior – designers ensure that the systems have narrow operational ranges and fixed modes of execution for

safety guarantees. Hence, the parameters for legitimate behavior are limited by design. This behavioral predictability

can enhance the security of such systems by enforcing a strong invariant on their execution behavior. This is because

any form of unwanted malicious activity consumes finite resource such as time, memory, I/O, etc., to carry out, and

thus it would inevitably alter the run-time behavioral signature from expected baseline behavior.

The behavioral properties should be not only fairly deterministic in normal cases, but also sensitive to abnormal

deviations during the execution of the application and the system under monitoring. Depending on the types of the

target application and system, the most effective behavior signal and thus the corresponding detection method can

vary. The challenge in profiling the normal behaviors lies in the fact that mundane reasons such as system effects (e.g.,

cache pollution, task preemption, etc.) can also result in variations of execution behavior.

Another key challenge towards the realization of this behavior monitoring is how to monitor, since if the monitor-

ing component itself is compromised, whatever we monitor is no longer trustworthy and informative. Thus, a secure

separation of the monitoring entity from the monitored entity is needed while still guaranteeing a high observability of

the monitor, i.e., the ability to instrument the behavior of target application or system at a certain level of granularity.

A successful security attack on CPS, especially safety-critical systems, can lead to failure or malfunction which

may result in a safety hazard. Hence, one of the key requirements for secure and dependable CPS is the attack-

resiliency. That is, the system should be able to maintain safety, for example, even in the presence of zero-day attacks

or in the event that the root privileges are taken over by the attacker.

Hence, the goal and key challenges of this research are:

• Behavior-based Intrusion Detection: Identifying various types of behavioral properties that can accurately

differentiate abnormal behaviors from normal ones and validate the cause of any variations, by utilizing the

intrinsic properties of CPS.

• Trusted Monitoring: Developing system design principles that can achieve high observability on the system

behavior while guaranteeing the integrity and availability of the monitoring and detection mechanisms.

• Attack-resiliency: Providing robust recovery mechanisms that can rebound from security attacks and keep the

system controllable with minimal disruption.

2

App
App

App
App

Monitored Core Secure Core

Secure
Monitor

Profiles

On-Chip
Instrumentation

Hardware
Module

App

Operating
System

Trusted
Computing
Base (TCB)

Untrustworthy Accessible only by
Secure Core

Figure 1.1: Overview of the SecureCore Architecture.

1.1.2 Summary of Solutions

This dissertation presents cross-layer approaches that employ (a) light-weight yet accurate learning and monitoring

of the deterministic behavioral properties of CPS to look for anomalous behavior in spite of normal variations of

execution behaviors and (b) architectural and operating-system supports to facilitate behavior monitoring, increase

trust, and provide attack-resiliency.

Specifically, we propose an array of analytic techniques that take advantage of the behavioral predictability of CPS

and yet can be realized with their constraints. These techniques include statistical learning-based methods to build

models of timing behavior (Chapter 2), memory access patterns (Chapter 3), and operating system-level resource usage

(Chapter 4). The major strength of such learning mechanisms is that any variability due to changes in inputs, code

complexity, system effects, etc. can be captured in the resulting execution profile. With such mechanisms, attackers

would not only need to know the profile of legitimate behavior but would also need to be able to implement an attack

without disturbing it. This significantly raises the bar against would-be attackers.

We also present an architectural solution called SecureCore architecture, shown in Figure 1.1, a multicore-based

architectural supports for run-time monitoring by protected monitoring components (i.e., the trusted computing base,

or TCB). SecureCore takes advantage of the redundancy in multicore processors and includes the installation of an

on-chip hardware module residing between the cores for a high-resolution but non-intrusive instrumentation. Using

the on-chip monitoring module, the trusted entity, i.e., secure core, continuously monitors the run-time behavior of

the untrustworthy entities, i.e., monitored core(s). The SecureCore architecture has the following two distinguishing

requirements:

• One-Way Observability: The monitoring activity of the secure core must be invisible to the untrustworthy

entities, i.e., the monitored cores. The secure core should be able to observe the state of the physical system

under control, the processor state of the monitored cores, and the I/O data to and from them.

3

• One-Way Controllability: The secure core must be able to intercept and to control data exchange between the

monitored cores and the external world for inspection and integrity. When a malicious activity is detected, the

secure core should be able to stop the malicious activity from affecting the system.

Chapter 2 provides further details about the SecureCore Architecture. We also show how the architecture can facilitate

the process of monitoring timing and memory behavior of real-time embedded systems in Chapters 2 and 3, respec-

tively. In Chapter 5, we present an extension of the SecureCore architecture for monitoring and detecting high-level

activities in general-purpose systems, and an implementation on an FPGA softcore processor.

One of the key design principles of the SecureCore architecture is that it should be able to recover the system

from security attacks by taking an evasive or corrective action as soon as an abnormal behavior is detected, and

thus guarantee that the physical system does not come to harm. For this, the SecureCore architecture is built upon

the concept of the Simplex architecture [128]. In Chapter 2, we describe an architectural support for the Simplex

mechanism and show how it, coupled with behavior-based intrusion detection, can provide a loss-less control for a

real-time control system even when it is compromised. Extending the concept of SecureCore architecture, Chapter 6

presents an attack-resilient software-based architecture for unmanned aerial systems (UAS) that takes advantage of

modern embedded computing technologies including multicore processor and virtualization. The architecture aims

to enable advanced flight applications to run in a potentially untrustworthy software environment. Upon detection

of a security or safety violation, it overrides the malicious system state to keep the UAS operational. We present a

prototype quadcopter that runs open-source software stack on a commercial-off-the-shelf embedded computing board,

and demonstrate how the framework can provide the attack-resiliency in the presence of various types of security

attacks.

This dissertation includes some material previously published in peer-reviewed conferences [162, 163, 161, 156,

159]:

• Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Jung-Eun Kim, Lui Sha, ”SecureCore: A Multicore-based Intrusion

Detection Architecture for Real-Time Embedded Systems,” in Proceedings of the 19th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS 2013), Apr. 2013.

• Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Lui Sha, ”Memory Heat Map: Anomaly Detection in Real-Time Em-

bedded Systems Using Memory Behavior,” in Proceedings of the 52nd ACM/EDAC/IEEE Design Automation

Conference (DAC 2015), Jun. 2015.

• Man-Ki Yoon, Mihai Christodorescu, Lui Sha, Sibin Mohan, ”The DragonBeam Framework: Hardware-Protected

Security Modules for In-Place Intrusion Detection,” in Proceedings of the 9th ACM International Systems and

Storage Conference (SYSTOR 2016), Jun. 2016.

4

• Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu, Lui Sha, ”Learning Execution Contexts from

System Call Distribution for Anomaly Detection in Smart Embedded System,” in Proceedings of the 2nd

ACM/IEEE International Conference on Internet-of-Things Design and Implementation (IoTDI 2017), Apr.

2017.

• Man-Ki Yoon, Bo Liu, Naira Hovakimyan, Lui Sha, ”VirtualDrone: Virtual Sensing, Actuation, and Commu-

nication for Attack-Resilient Unmanned Aerial Systems,” in Proceedings of the 8th ACM/IEEE International

Conference on Cyber-Physical Systems (ICCPS 2017), Apr. 2017

1.2 Background and Related Work

In this section, we present the background and relevant work related to the research problem and solutions proposed

in this dissertation.

1.2.1 Security Attacks to CPS

The W32.Stuxnet worm [145] was able to successfully subvert operator workstations and gain control of Iran’s nu-

clear power plants through sophisticated attacks including the first known PLC rootkits and use of multiple zero-day

vulnerabilities. The worm was able to intrude into the control system by first gaining access and then downloading

attack code from a remote site. The malware then gradually inflicted damage to the physical plant by substituting

infected actuation commands for legitimate ones over a period of time. Despite the employment of several protection

and monitoring mechanisms, the control system could not detect the intrusion and the attack until the physical damage

to the plant was significant.

Koscher et al. [91] demonstrated a malicious code injection into the telematics units of modern automobiles. They

replaced the engine control module by overwriting the firmware of Electronic Control Unit (ECU), while the vehicle

is running. The injected malicious code gained access to the inputs of the internal network, Controller Area Network

(CAN). Miller and Valasek [31] showed that attackers can take control of modern automobiles remotely through the

Internet. They were able to hack into the central entertainment system of Jeep Cherokee through Wi-Fi and also a

cellular network, and to reach the car’s CAN bus. Once they had full access to the car’s internal system, they were

able to take control of physical components such as locks, transmission, brake, etc.

Current unmanned vehicle systems are also vulnerable to cyber-threats as demonstrated by recent attacks. Mal-

drone [29] is a software virus that can compromise drones based on ARM Linux systems. It was demonstrated that the

malware can open a backdoor in the Parrot AR Drones software, infect on-board software and take over the control.

Pleban et al. [122] presented analysis details on the insecure WiFi network and OS user management of the Parrot

5

Safety
Controller

Complex
Controller

Safety
Decision
Module

Physical System
Actuators

Sensors
Sensor dataSensor data

Actuation

Figure 1.2: Simplex architecture for high-assurance control.

AR Drones. Also, researchers were able to demonstrate that they can hijack DJI consumer drones by emulating fake

GPS signals using low-cost software defined radio tools [33]. It is also possible to inject MAVLink message into a

radio link by modifying the radio firmware, and hijack a flying drone [30]. Javaid et al. [80] addressed some vulnera-

bilities of wireless communications channels in unmanned aerial vehicles. Commercial airplanes are also facing with

such security problems. The Actel ProASIC chip used in early Boeing 787 had a backdoor [27] that could allow an

attacker, via internet connection or as a passenger, to use entertainment system in the aircraft to take over the control

of the aircraft. Teso [142] was able to break into the on-board computer system and manipulate the steering of an

airplane in the autopilot mode, using Aircraft Communications Addressing and Reporting System (ACARS). It is also

demonstrated that the airplane could even be led to a collision.

1.2.2 Simplex Architecture

The Simplex architecture [128, 148, 83], shown in Figure 1.2, is a software solution that enables the use of a high-

performance (with the purpose of system performance optimization), potentially unverifiable controller (due to com-

plex software structure) in a safe manner; a high-assurance control is guaranteed even when the complex controller

fails due to, for example, software bugs or unreliable logic. This is achieved by running a safety controller, which has

a limited level of performance but is robust and formally verifiable, in parallel. Sensor data from the physical system

is fed to both controllers, each of which individually computes actuation commands using their own control logic.

Under normal circumstances, the plant is actuated by commands from the complex controller. The safety decision

module plays a critical role in assuring the safety of the system; it continuously monitors physical states of the plant

and checks safety violations, determined by a safety envelope. If such a violation is detected, the control is transferred

to the safety controller to maintain loss-less actuation of the physical plant and thus guarantee robust control of the

system.

6

1.2.3 Behavior-based Intrusion Detection

Instead of attempting to prevent every possible security breaches, monitoring the behavior of systems and applica-

tions has drawn a great deal of attention, especially in general-purpose systems, due to its ability to detect zero-day

attacks [56]. Behavior-based intrusion detection systems (IDS) rely on the reference behavior model that is profiled

when the target system was in a known good state (i.e., no security violations). The run-time behavior monitored

by a specific monitoring/detection technique is compared against the normal profile, and any significant deviation is

considered to be abnormal/suspicious. To obtain the normal behavior profile, machine learning techniques are often

used. Because the behavior-based IDS treat the unknowns abnormal, they can detect zero-day attacks well. However,

for the same reason, an inaccurate model can cause lots of false positives.

Behavior-based IDS have been used in various contexts. The use of system calls has been extensively studied

in behavior-based anomaly detection for general-purpose systems since many malicious activities often use system

calls to execute privileged operations on system resources. Forrest et al. [63] opened up the direction of system call

monitoring. They build a database of look-ahead pairs of system calls; for each system call type, what is the next ith

system call for i = 1, 2, up to N . Then, given a longer sequence of length L > N , the percentage of mismatches is

used as the metric to determine abnormality. Hofmeyr et al. [76] extends the method by profiling unique sequences

of fixed length N , called N-gram, to reduce the database size. The legitimacy test for a given sequence of length N

is carried out by calculating the smallest Hamming distance between it and all the sequences in the database. This

fundamental model evolved in various aspects in follow-up work. For example, the N-gram model requires a prior

assumption on suitable N because it affects the accuracy as well as the database size. Marceau [100] proposes a finite

state machine (FSM) based prediction model to relax these requirements; it can predict the next system call given a

sequence consisting of the last N system calls, where N varies with the sequence. Eskin et al. [61] further improves

by modeling legitimate sequences as a mixture of prediction trees, in which a wild-card is employed to represent

sequences in a compact and flexible way. Other prediction models such as Hidden Markov Model (HMM) [150],

Markov chains [81], and variable-order Markov chain [140] have also been explored. Chandola et al. [47] provides

an extensive survey on various anomaly detection techniques for discrete sequences, considering among different

applications, sequences of system calls or user commands.

Burguera et al. [46] find malicious apps using the system call counts of Android applications (traced by a software

tool called strace). Using a crowdsourcing, the approach collects the system call counts of a particular application

from multiple users and applies k-means (with Euclidean distance metric) to divide them into two clusters. A smaller

cluster is considered to be malicious based on the assumption that benign apps are the majority. There has also

been work on system call arguments monitoring. Mutz et al. [104] introduce several techniques to test anomalies in

argument lengths, character distribution, argument grammar, etc. Maggi et al. [97] use a clustering algorithm to group

7

system call invocations that have similar arguments.

Network activity is another type of behavior signal used to detect abnormality. Sinclair et al. [133] used decision

trees along with genetic algorithms to generate rules for differentiating malicious traffic from normal network activi-

ties. Similar work used robust support vector machines (RSVMs) to detect network activity anomalies [77]. Barford

et al. [40] detect abnormal traffic in terms of volume that deviates from the expected baseline traffic by using wavelet

analysis. Gu et al. [68] proposed a method to monitor packet class distributions (packet types and port numbers).

Yoon and Ciocarlie [157] considered a problem of detecting malicious traffic on Industrial Control Systems (ICS)

network by a probabilistic sequence model of legitimate command/data traffic. Sommer et al. [135] provides a good

summary of network security using machine learning techniques. There also exists work that looks at function call

sequences [114] and unexpected changes to system files [116].

Bigham et al. [43] analyzed n-grams of power readings in an electricity network to detect anomalous events. They

also proposed a technique that learns relationships between different power readings to model the normal behavior

of the system. Düssel et al. [58] evaluated different combinations of feature extraction and similarity measurement

techniques for SCADA (Supervisory Control and Data Acquisition) network payload. These techniques were used

to build the center of mass of the normal data, performing n-gram analysis on payloads. Abnormalities were deter-

mined by computing the distance from the center. Cheung et al. [50] demonstrated the regularity in communications

among SCADA network devices and developed a communication-pattern-based detector that triggers an alert when

the availability of (Modbus) server or service is changed due to, for example, a denial-of-service attack. Valdes et

al. [146] proposed a flow-based anomaly detection approach, which keeps a library of flows and, using simple statis-

tics, such as mean and variance, detects flows that are unexpected or exhibit significant change in parameters such as

packet inter-arrival time, volume, etc. Hadziosmanovic et al. [70] analyzed network- and host-based data traces from

a real-world industrial control system network. The traces included communication topology and patterns, message

type and content, and also host-level information such as system log and memory traces. The authors evaluated each

of these data-trace types in terms of various criteria including threat scope, approach validation, analysis granularity

and so on. Good summaries of SCADA-specific intrusion/anomaly detection are provided by Zhu and Sastry [166]

and Garitano et al. [66].

In the context of real-time systems, timing information has been used as a behavior signal. The Secure System

Simplex Architecture (S3A) proposed by Mohan et al. [103] uses the execution time and the period of real-time control

application as a side-channel monitored by a trusted hardware. An earlier work was proposed by Zimmer et al. [168],

in which the absolute worst-case execution time (WCET) was used as a security invariant. Zadeh et al. [164] proposed

a signal processing technique that analyzes event traces (including time, processor specific identifier, system call type)

obtained from periodic execution of embedded system applications. Salem et al. [124] modeled embedded system

8

behaviors using inter-arrival curves of recurrent system operations in a discrete event trace.

1.2.4 Hardware-based Security Measures

Hardware-based security measures can improve the overall security of system by cutting off potential vulnerabilities

in software modules. ARM TrustZone [153] is an architectural extension that allows a coexistence of secure world

and normal world using the same on-chip hardware. Access to certain secure components are blocked depending on

the execution mode. Azab et al. [39] proposed TZ-RKP which protects the integrity of operating system kernel that

runs on a normal world by running a security monitor in the secure world. Santos et al. [125] use the TrustZone

to build a trusted language runtime (TLR) for running secure applications on mobile devices. Zhou et al. [165] use

ARM processors memory domain support for software fault isolation. They isolate untrusted modules in sandboxes

by assigning different memory domain IDs to different sandboxes and hence block out-of-domain memory access by

controlling control access registers.

There exists work in which a multicore processor (or a coprocessor) is employed as security measure in different

aspects. Shi et al. [132] proposed INDRA, an Integrated Framework for Dependable and Revivable Architecture,

in which logs of application executions on monitored cores are verified by a monitoring core through buffering of

logs on a special on-chip memory. While this is similar to the work presented in this dissertation, the difficulties

arise due to the real-time nature of the systems we consider. Also, the security measure in their work is functional

behavior such as function calls and return (e.g., the monitoring core verifies if each function always returns to the

right address). Similar work can be found in [48] by Chen et al. The work also employs a logging hardware that

captures the execution information, e.g., program counter, input and output operands and memory access addresses of

any instruction that the monitored application executes. The captured traces are delivered through a cache to another

core for inspection for the detection of memory leaks and access to unallocated memory. The work was extended

where a hardware accelerator was proposed to reduce high overheads in instruction-grain monitoring [49]. There

have also been coprocessor-based approaches. Kannan et al. [87] addressed the high overheads in the multicore-based

Dynamic Information Flow Tracking (DIFT) by proposing the DIFT Co-processor, in which application instructions

and memory access addresses, etc. are checked with a pre-defined security policy. A similar approach was taken

by Deng et al. [55] where reconfigurable logic attached to the main CPU checks for software error as well as DIFT

from execution traces. Mohan et al. [103] use an FPGA-based trusted hardware component to monitor the real-time

execution behavior of a real-time control application running on an untrustworthy main system.

The common theme in these systems is that they dedicate hardware resources to specific security tasks. These

hardware-based approaches provide better security than virtualizations can do because the latter relies on the security

and correctness of the virtual machine monitor which is susceptible to software attacks [154, 45, 115].

9

1.2.5 Virtual Machine Introspection

Advances in virtualization technologies have enabled Virtual Machine Introspection (VMI) [65], in which a trusted

virtual machine (VM) or the virtual machine monitor (VMM) monitors and analyzes the state of applications or

operating system running inside untrusted VMs. By placing the detection mechanism outside of the VMs it monitors

(i.e., the untrusted VMs), VMI overcomes the vulnerability of the traditional host-based IDS. VMI also has advantages

in that no hardware modification is needed.

VMIs have been applied to process execution monitoring [86, 138], kernel control-flow integrity check [119],

virtual memory and disk monitoring [112], dynamic information flow tracking [75, 155], system call tracing [120],

etc. Although the out-of-box approach can improve the security of IDS due to the separation, it misses out on a detailed

view of the untrusted VMs, and OS/applications running on it, that leads to semantic gap problems [82, 57]. Hence, a

line of work closes the gap by placing security hooks inside the untrusted VMs. Lares [113] closes the gap by placing

hooks inside kernel APIs from which relevant information are passed to the security VM through the VMM. They

modified the VMM to protect the hooks by making their memory regions read-only. The switching between the VMs,

however, cause a significant performance overhead. Sharif et al. [130] proposed Secure In-VM Monitoring (SIM) in

which the hook handler runs in the same VM as if it resides in a separate VM. The VMM protects the in-VM handlers

by providing a separated address space to them; this is done by manipulating the shadow page tables by the VMM,

which is also used by Wang et al. in [149] for in-VM hook memory protection.

As briefly mentioned above, virtualization is susceptible to security attacks because of the increased complexity

in the virtualization software. For example, Pék et al. [115] demonstrated a number of device-related attacks that

make it possible for an attacker to control or reconfigure devices attached to other virtual machines, or to modify

unauthorized memory regions. They were also able to demonstrate interrupt attacks that can launch Denial-of-Service

attacks against other VMs or the VMM, and even can execute arbitrary code in them. There have also been techniques

to improve the security of virtualization. SecVisor [127] and TrustVisor [101] are special-purpose hypervisors (i.e.,

VMMs) that reduces the attack surfaces by minimizing the amount of code within the VMMs. Szefer et al. [141]

eliminates VMM attack surface by removing the need for VMs to constantly interact with the VMM. CertiKOS [67],

a certified operating system that can serve as a VMM, reduces vulnerabilities in VMMs by incorporating formal logic

and verification techniques.

10

Chapter 2

SecureCore: A Multicore-based Intrusion
Detection Architecture for Real-Time
Embedded Systems
Security attacks are becoming more common in safety-critical real-time embedded systems, an area that was consid-

ered to be invulnerable against software security breaches in the past. A failure to protect such systems from malicious

entities could result in significant harm to both humans as well as the environment. Many recent successful security

attacks on such systems call for a rethink of the security of safety-critical embedded systems. This chapter presents

the SecureCore architecture that, coupled with novel monitoring techniques, is able to improve the security of real-

time embedded systems. We aim to detect malicious activities by analyzing and observing the inherent properties of

the such systems using statistical analyses of their temporal behavior profiles. With careful analysis based on these

profiles, we are able to detect malicious code execution as soon as it happens and also ensure that the physical system

remains safe.

2.1 Introduction

Multicore processors are finding wide use in a variety of domains and embedded systems are no exception. The

increase in performance, reduction in power consumption, and reduced sizes of systems using multicore processors

(a single board instead of multiple boards) makes them very attractive for use in safety-critical embedded systems.

A problem with the use of multicore processors in such systems is that of shared resources – components such as

caches, buses, memory, etc., are shared across the multiple cores and could result in security vulnerabilities [109].

For example, malicious entities could snoop on privileged information used/generated by critical code running on

alternate cores, high-priority tasks could be prevented from executing by a denial-of-service attack on the shared

resources (e.g., keeping the bus occupied by large DMA transfers could prevent the high priority task from obtaining

the memory reads it requested), etc. Hence, there is a need for a comprehensive solution where multicore processors

could be used in safety-critical systems in a safe and secure manner. In fact, the very nature of such processors – the

parallel cores and the convenience they provide – could be used to improve the overall security of the system.

In this chapter, we present SecureCore, a secure and reliable multicore architecture solution to tackle security

vulnerabilities in real-time embedded systems. We specifically pursue an approach to entrusting certain CPU cores in

11

a multicore processor with the role of monitoring and intrusion detection. The use of multicore processors has inherent

advantages over off-chip security devices: (i) a CPU core is able to more closely monitor the execution behavior of

software running on the other (potentially) unsecured core(s); (ii) the mechanisms cannot be tampered with easily or

reverse-engineered. Section 2.2 provides further details about the SecureCore Architecture.

We also introduce novel techniques to observe inherent properties of the real-time code executing on the monitored

core in Section 2.3 – properties such as execution time for instance. These properties tend to be fairly deterministic in

such real-time systems and hence can be used as a way of detecting anomalous behavior that is indicative of malicious

activity. These observations, in conjunction with the capabilities of the SecureCore architecture, significantly increase

the security of the overall system by enhancing the abilities to detect intrusions. The key idea behind the proposed

architecture and intrusion detection mechanism is that since real-time embedded control applications generally have

regular timing behavior, an attack would inevitably alter its run-time timing signature from expected values [103].

Our architecture proposes a design so that a trusted entity, a secure core, can continuously monitor the run-time ex-

ecution behavior of a real-time control application on an untrustworthy entity (henceforth referred to as the monitored

core), in a non-intrusive manner. In case malicious behavior is detected, a reliable backup control application residing

on the secure core takes control away from the infected core in order to guarantee stability and loss-less control for a

physical system [128]. Since there will be some inherent variability in these properties – for instance due to changes

in inputs, interference on shared resources, etc., we use a statistical learning-based mechanism for profiling the correct

execution behavior of a sanitized system.

In summary, this work implements the following: (a) a novel architecture based on a multicore platform that

provides security mechanisms for use in embedded real-time systems; (b) execution time-based intrusion detection

mechanisms using a statistical learning; and (c) Simplex [128] architecture-based reliability. All of these combined

provides non-intrusive, invisible monitoring capabilities and reliable, seamless control for safety-critical real-time

systems.

2.1.1 Assumptions

In this work, the following assumptions are made without loss of generality:

• We consider a CPU-based real-time control application – i.e., a system consisting of periodic sensing and control

tasks.

• We assume the application runs on a single monitored core. The proposed intrusion detection method does not

work with multiple monitored entities in the current form.

• We assume that the size of the input set (to the control application under consideration) is small. This can be

12

justified by the fact that most real-time control applications have a small footprint for input data (velocity, angle,

etc.) within fairly narrow ranges.

• We assume that the execution time of the application is not unbounded. For example, the upper bounds for loops

is known a priori. However, this assumption is not strictly required. It is sufficient to assume that (almost) all

possible loop bounds are profiled.

• Similarly, we assume there is no hidden execution flow path in the application – all paths are present when being

profiled.

2.1.2 Motivation

Threat Model

Instead of trying to prevent and/or detect intrusions at every vulnerable component, we intend to monitor and detect

intrusions at the most critical component: in real-time control systems, the primary concern is the safety of the physical

plant under control. Thus, we focus on detecting an intrusion that directly targets the real-time control application. We

assume that regular security process was in place to ensure the security during the application design and development

phases, i.e., the application is trustworthy initially. The execution timing model is obtained via profiling prior to system

deployment. Also, the timing information is obtained by re-profiling the system after any updates and is supplied with

the modified application (if any). We assume that the application could be compromised after the profiling stage but

the stored timing profile cannot be tampered with during the updating process. We consider malicious code that can

be secretly embedded in the application, either by remote attacks or during upgrades. The malicious code activates

itself at some point after the system initialization and then gradually tries to change, damage, or even snoop on the

physical state of the plant under control. We are not directly concerned with how the malicious code gained entry, but

more concerned with what happens after that.

Use of Multicore Processor in Real-Time Control Systems

Multicore processors are receiving wide attention from industries due to their ability to support generic and high-end

real-time applications that traditional control hardware, e.g., programmable logic controllers (PLC), are unable to

provide. This trend is especially strong for instance in automotive industries [5] where CPU-based real-time control

applications have a significant presence, e.g., engine control, anti-lock braking systems (ABS), etc. It was shown that

automotive control applications are increasingly vulnerable to security attacks as they are more equipped with high-

end and complex technologies [91]. Although we do not specifically consider automotive control applications, the use

of the mechanisms presented in this chapter will naturally fit into the future development processes of safety-critical

13

components as the industries are more moving toward employing more multicore-based real-time control systems.

Also, the use of one or more cores for improving the security (and overall safety) of such systems is a big plus. Even

though some of the resources (cores in this case) are being used up, the increase in security that is provided as a result

definitely offsets any losses in performance. Hence, the use of multicore processors in secure real-time embedded

systems will be beneficial to the community.

2.2 SecureCore Architecture

In this section, we present the SecureCore Architecture, a secure and reliable multicore architecture that aids in the

detection of intrusions in embedded real-time systems and guarantees a seamless control to the physical system. We

first introduce the overall structure of the architecture and then discuss the design consideration of each component in

detail.

There exist several challenges in both hardware as well as software, before these techniques could be implemented

in a satisfactory manner. First, a protection mechanism must be provided to the secure core so that it is tamper-

resistant (especially from malicious activity on the unsecured/monitored cores). Second, the secure core should be

able to closely monitor the state of the other core in real time. However, the monitoring activity should be invisible as

far as the observer is concerned – this is mainly so that an attacker should not be able to deceive the intrusion detection

mechanisms by means of replay attacks (i.e., replicating previously recorded execution behavior of an application in

its correct state). Third, in a multicore environment, an application will inevitably experience a considerable variation

in its execution time due to the interference caused from inter-core resource contentions [126, 167, 158]. Thus, the

security invariant, i.e., the execution time profile, should be accurate enough so that the intrusion detection method

can effectively validate the cause of any such variations. Similarly, the method should be able to take into account

execution time variation caused by legitimate application contexts such as differences in input sets and execution flow.

Finally, the secure core should be able to guarantee loss-less control to the physical system that it manages even if the

main, monitored, or control application is compromised. How we solved these problems is elaborated in the following

sections.

2.2.1 High-Level Architecture

Figure 2.1 shows the high-level structure of the SecureCore architecture. The system is composed of four major

components – (a) the secure core, (b) the monitored core, (c) the on-chip Timing Trace Module (TTM) and (d) the

hypervisor. The system is built upon the concept of the Simplex architecture [128]: a safety controller and a decision

module rest on the secure core while a complex controller (essentially the controller that manages the physical system)

14

Complex
Controller

Monitored Core Secure Core

Secure
Monitor

Profiles

Timing Trace
Module

Scratch Pad
Memory

Decision
Module

I/O
Proxy

Safety
Controller

H
yp

er
vi

so
r

OS/Bare-Metal Operating System

Inter-Core
Communication

Plant

Actuation
Command

Sensor
Data

Figure 2.1: SecureCore Architecture.

runs on the monitored core. Sensor data from the physical plant is fed to the both controllers, each of which computes

actuation commands using their own internal control logic. The decision module on the secure core then forwards the

appropriate command to the plant depending on a pre-computed safety envelope for the physical system. In normal

circumstances, the plant is actuated by commands from the complex controller. However, when an abnormal operation

of the complex controller is detected (e.g., due to unreliable/erroneous logic and faults), control is transferred to the

safety controller in order to maintain loss-less actuation of the physical plant. With this mechanism, the stability of

the control actions can be guaranteed by the decision module and the safety controller (that can be formally verified),

provided however that all the entities are trustworthy. It is possible for the decision module or safety controller to be

compromised by a security attack. Furthermore, the complex controller may deceive the decision module by providing

a legitimate actuation value while, for example, collecting critical system information that could be exploited during a

future attack. Thus, it is important to ensure a high security level for the system. In the following sections, we describe

how the security as well as the reliability of this basic Simplex mechanism can be enhanced by use of the SecureCore

architecture.

2.2.2 Design Considerations

Our solution includes a hypervisor that provides a virtualization of hardware resources on our proposed SecureCore

architecture through partitioning and consolidation. In order to protect the secure core from malicious alteration by a

compromised complex controller, the hypervisor provides a clean separation of memory spaces by programming the

memory management unit (MMU). Also, the hypervisor itself runs in its own protected memory space. Thus, any

attempts at memory access across the partitions is blocked by the hypervisor.

15

I/O Proxy

(In)

Safety

Controller

Complex

Controller

Sensor Data

Secure Monitor +

Decision Module

I/O Proxy

(Out)

Actuation Command

TTM

SPM

Trace

Write

R
e
ad I/O Proxy

(In)

Period

In
t
e
r
-C
o
r
e

C
o
m
m
u
n
ic
a
t
io
n In

t
e
r
-C
o
r
e

C
o
m
m
u
n
ic
a
t
io
n

Figure 2.2: Execution flow of the SecureCore components.

With the help of this memory protection, we design an I/O channel between the processor and the plant. The

channel is managed by an I/O proxy process that runs on the secure core. The I/O proxy manages all I/O to and from

the physical plant. This is to prevent I/O data obfuscation that could be caused by malicious code on the monitored

core. Furthermore, if the I/O channel device is directly accessible by both cores then a compromised application on

the monitored core may attack the secure core indirectly by, for example, causing a denial-of-service attack on the

I/O channel – this will prevent the safety controller from taking over from the complex controller. This I/O device

consolidation capability is also provided by the hypervisor through the I/O MMU. The system is configured such that

the device cannot be seen from the monitored core.

Since the memory space is partitioned and the I/O device is consolidated to the secure core, data to and from the

monitored core is relayed via the inter-core communication channel on the hypervisor level. Transferring data through

a shared memory region is strictly prohibited because of a potential vulnerability [109]. As shown in Figure 2.2,

the I/O proxy first retrieves sensor data from the plant and then transfers it to the two controllers. For the complex

controller, the I/O proxy places the data on a dedicated channel between the memory space of the secure core and

that of the hypervisor. The data is then copied to the buffer at the monitored core’s side. The complex controller

retrieves the data by either polling or an interrupt-driven method. For the opposite direction, however, i.e., if the

complex controller wishes to send out actuation commands and when the decision module wishes to retrieve such a

command, the decision module polls the buffer on the inter-core communication channel. The decision module also

sets a watch-dog timer for this process. When the timer expires and the decision module has still not received data

from the complex controller, the safety controller takes over the control. This polling-based data passing is to prevent

the secure core from being unboundedly interrupted by a compromised complex controller – a vulnerability that can

be exploited using an interrupt-driven method.

The main component that enforces the security invariant in the architecture is the secure monitor – a process that

16

continuously monitors the execution behavior of the complex controller. The secure monitor works in conjunction

with an on-chip hardware unit called the Timing Trace Module (TTM). The details of secure monitor and TTM are

discussed in Section 2.2.3. The key role of the monitor is to detect if the run-time execution time signature has deviated

from what is expected/has been profiled. If any unexpected deviations are observed then the secure monitor informs

the decision module and the control is immediately switched over to the safety controller in the secure core. At the

same time, the hypervisor is told to reset the monitored core and then reload a clean copy of the complex controller

binary from a secure memory region. Once the reset and reload is complete, the monitored core could, potentially,

resume operation and take control back. Of course, this could depend on the policy for recovery that is implemented

on the actual system. It could also happen that the monitored core is completely shut down and not restarted until

an engineer analyzes the issue. This will prevent smart attackers from triggering constant back and forth switches

between the complex and simple controllers – events, that could themselves, cause harm to the physical system if

timed correctly.

As described above, the architecture relies heavily on the hypervisor. Thus, the entire secure mechanism can col-

lapse if the hypervisor itself is compromised in the first place. Hence, it is assumed in this chapter that the hypervisor

forms part of the trusted base; no malicious code is embedded in it. We note that while a hardware-enforced memory

protection mechanism would further enhance the security of the hypervisor [153], we do not address this issue in this

work.

One may argue why the monitored core does not receive the same protection as the secure core. The secure core

needs to exist for two reasons: (i) fault tolerance when the main controller fails either due to a fault or a security

violation and (ii) security; the monitored core might need to have software updates/interact with external sensors,

perform I/O, etc., while the data/code in the secure core will not often change. Hence, it makes sense to harden the

secure core and not always the monitored core. Of course, even if the monitored core is hardened, it can still be

susceptible to smart attackers. Another issue is that the way the secure core is hardened is by providing it with private

memory and other hardware mechanisms. Doing this for all other cores would be prohibitive, especially when we

want to increase the observation to multiple cores.

2.2.3 Timing Trace Module (TTM)

The Timing Trace Module (TTM) is a special on-chip hardware unit that traces the run-time timing information of the

monitored core. The module is located between the monitored and secure cores and directly attached to the former

as seen in Figure 2.3. When a certain event is triggered (the execution of a special instruction; explained shortly), a

part of the processor state is read by the TTM. The processors state includes the values of the timestamp counter, the

program counter (PC) and the process ID (PID) of the current task. The trace information is then written to the scratch

17

Complex

Controller

Timing

Trace

Module

(TTM)

Scratch Pad

Memory

(SPM)

Monitored Core

Timestamp

Counter

Program

Counter

Process ID

Secure

Monitor

Secure Core

Figure 2.3: Timing Trace Module.

pad memory (SPM) that can be seen/accessed only by the secure core. The SPM is mapped to a range of the secure

core’s address space. A sequence of traces is collected during one single run of the complex controller (Figure 2.2).

The secure monitor verifies the legitimacy of the execution profile obtained from the trace by comparing it with one

that has been collected during implementation time when the system was in a known good state.

We now present how TTM traces the required information from a running application. A trace operation is carried

out by executing a special trace instruction in the monitored application, as described in Figure 2.4 (a). The special

instruction also has a mode when it can register the PID of the monitored application with the TTM. Once a PID is

registered, only a process that matches the PID can execute other trace instructions; this is to prevent traces from being

forged by another process that might be compromised. The PID value is written at the top of the SPM and the PC

value at that point is registered as the Base Address (BA) as shown in Figure 2.4 (b). When the trace instruction is

executed while the tracing is enabled, the timestamp and the instruction address at that point execution are written at

the address specified by the value of AddrHead. Here, the address being written is a relative address from BA, i.e.,

PCi − BA, that can contain positive or negative values. The reason for storing a relative address is to capture the

exact signature of each trace, since the real addresses can change between executions – two sequences of traces may

not match although they are produced at the identical places.1

Note that the TTM is used at two different points in the whole process: (i) during the development/testing phase, it

is used to collect profiling information about the application tasks, i.e., the real-time execution time profile described

later in this chapter and (ii) when the system is actually deployed in the field, the TTM is a conduit for flow of the

monitoring information from the monitored core to the secure core. Meanwhile, the trace instructions are manually

inserted into the code.

The SPM is a circular buffer of traces. When a single run of the complex controller completes, the secure monitor

consumes a sequence of traces specified by AddrHead and AddrTail. While it is possible for SPM buffer to overflow

during execution, we note that only a small number of traces would be enough in a real-world control application due

1We assume that no dynamically loaded libraries exist in the system and even if they do, we do not trace them.

18

Timestamp i+2

PID BA Addr

Head

Timestamp i Addr i

Timestamp i+1 Addr i+1

Addr i+2

...

...

Addr

Tail

0x000

Timestamp j Addr j

Timestamp j+1 Addr j+1

0x010

0xFF0

4 Bytes

0x8a0

0x8b0

0x8c0

rlwimi 0,0,0,0,1

rlwimi 0,0,0,0,2

rlwimi 0,0,0,0,3

rlwimi 0,0,0,0,4

INST_REG_PID

INST_ENABLE_TRACE

INST_DISABLE_TRACE

INST_TRACE

foo() {

INST_TRACE;

Do_something();

INST_TRACE;

Do_something();

INST_TRACE;

}

main() {

INST_REG_PID;

…

INST_ENABLE_TRACE;

…

foo();

...

INST_DISABLE_TRACE;

}

(b) SPM layout(a) Trace instructions

Figure 2.4: Trace instructions and the memory layout of SPM.

to a short span of the execution times. Also, we chose to use an SPM instead of shared memory as the buffer for the

traces because an SPM has a lower access latency. The shared memory communication can also open up potential

security breaches [109].

2.3 Gaussian Kernel Density Estimation for Execution Time-Based

Intrusion Detection

The intrusion detection method presented in this chapter utilizes the deterministic timing properties of real-time con-

trol applications. Since any form of unwanted malicious activity consume finite time to execute, a deviation from

expected regularity would likely point towards an intrusion. However, as explained in Section 2.1, the execution time

of an application can also include variations due to other, more mundane, reasons such as system effects. On a mul-

ticore processor, the sharing of hardware resources such as caches, buses, memory, etc., can result in variability in

the execution times. Also, an application’s own context such as different input sets and execution flows can cause

deviations in timing. The main difficulty in profiling and estimating execution time comes from the fact that it is often

non-parametric; e.g., monitoring only the mean, minimum, or maximum values is often not accurate enough for our

purposes. Thus, in this section, we present a statistical learning-based execution time profile and intrusion detection

method that can effectively validate the causes of any observed perturbations in execution time and account for their

causes.

19

Begin

Block 1

Block 2

Block 3

End

Input = I
C Input = I

A

 or I
B

Input = I
A

, I
B

, or I
C

e
1

e
2

e
3

(a) Execution flow graph

Block 1

Block 2

Block 3

(b) Trace instructions

INST_TRACE

INST_TRACE

(Addr
1

, t
1

)

(Addr
2

, t
2

)

INST_TRACE (Addr
4

, t
4

)

INST_TRACE (Addr
3

, t
3

)

Figure 2.5: Trace instructions inserted to an example application.

2.3.1 Overview

Let us first consider a simple example application consisting of three blocks of code (Figure 2.5 (a)).2 The blocks are

sequentially executed but depending on the input value Block 2 may be skipped. Here, we do not assume a specific

form of inputs – the input can be a single value, a range, or even multiple ranges of values. However, it should be

assumed that the execution flow does not show deviations when presented with the same input.

The execution time profiling method (explained in Section 2.3.2) profiles the execution times of each block (mea-

sured in CPU cycles) and generates an estimation on it. During run-time monitoring, each measured execution time of

block i, ei, is compared with the estimation, êi, to check how close it is to the legitimate behavior. The reason we do

not profile aggregated execution time is to improve the detection accuracy by narrowing the estimation domain. That

is, each variation at every block gets accumulated along the execution path and this would obscure potential malicious

code execution inside. For example, an attack code could redirect the execution (say using buffer overflows) during

the execution of Block 2 and then return to the right address in a short amount of time. In such cases, the time taken by

the extra code may fall within the interval of allowed deviations of aggregated execution time. Moreover, with block

level monitoring, each block boundary can be used as a check point – the monitor can detect malicious execution along

a path where a block is either skipped or never exited. Thus, an attacker would need to not only keep within fixed

paths, but also complete execution in a very short amount of time – both of which significantly raise the bar against

would be attackers.
2A Block could refer to a sequence of instructions of arbitrary size and does not necessarily mean Super Block [78].

20

t
2

-t
1

t
6

-t
5

...

t
3

-t
2

t
10

-t
9

...

t
4

-t
3

t
11

-t
10

...

t
7

-t
6

...

(Addr
1

, t
1

)

(Addr
2

, t
2

)

(Addr
3

, t
3

)

(Addr
4

, t
4

)

(Addr
1

, t
5

)

(Addr
2

, t
6

)

(Addr
4

, t
7

)

(Addr
1

, t
8

)

(Addr
2

, t
9

)

(Addr
3

, t
10

)

(Addr
4

, t
11

)

(Addr
1

, t
12

)

...

Addr
1

Addr
2

Addr
4

Addr
2

Addr
3

Addr
4

P
a

th
 1

P
a
th

 2

T
im

e

B
lo

c
k

 1

B
lo

c
k

 2

B
lo

c
k
 3

B
lo

c
k

 3

Path 2

Path 1

Path 2

Figure 2.6: Trace tree generated from a sequence of traces.

2.3.2 Trace Tree

We now explain how traces generated by the TTM can be used to profile block execution times. Consider the execution

flow graph in Figure 2.5 (a). Suppose we are interested in monitoring blocks between Begin and End. Then, we add

an INST TRACE instruction at the end of each block and at the top of the flow as shown in Figure 2.5 (b).3 Every

time the instruction executes, a pair (Addri, ti) is added as a trace (see Section 2.2.3). This results in a sequence of

traces for a single execution of the application – e.g., (Addr1, t1), (Addr2, t2), (Addr4, t4), etc., for one input of IC .

Assuming each run of the application begins at the same entry point, we can construct a trace tree from a collection

of such sequences as shown in Figure 2.6. In the tree, each edge corresponds to the address (relative from a base

address) at which each INST TRACE is executed. Thus, a block in the original execution flow graph can be defined

as a pair (Addrp, Addrc), where Addrp is the address of the last trace instruction that is executed before and Addrc

is the address of the instruction that is executed right after the block. Accordingly, each node in the tree is a set of time

differences between the two addresses that then are the samples of the block execution time.

Note, however, that the same block may have different Addrp values depending on an execution flow, for instance

Block 3. Observe that such a block appears in multiple trace paths. Here, we define trace path Pi as a sequence of

addresses (Addri,1, Addri,2, . . . , Addri,n), where n is the number of blocks along the execution path. Thus, two trace

paths, Pi and Pj , are distinguishable if there exists a k such that Addri,k 6= Addrj,k (e.g., Addr1,3 = Addr4 and

Addr2,3 = Addr3). Thus, the two Block 3’s can be distinguished by the trace paths taken. Note that we extracted the

trace paths from the tree without prior knowledge of input values. The tree is constructed only from a given collection

of trace sequences. A higher accuracy in profiling and monitoring would be achieved by including input information

3It should be noted that no INST TRACE instruction must be placed inside a recursive function.

21

when constructing the trace trees.

Now the trace tree gives us the information of how the application needs to behave in order to be considered as

legitimate execution – i.e., in what order the traces have to be generated. In the next step, we estimate each block’s

execution time with samples at each node. The obtained profile will strengthen the invariant by enforcing what ranges

of execution time each block has to fall within. The trace tree will also infer what each block’s execution time should

be, for individual path. However, one issue remains: a block’s execution time can also vary for different inputs even

along the same path (e.g., Block 3 at the right subtree in Figure 2.6). In what follows we address the problem of block

execution time estimation in the face of varying control flow and inputs.

2.3.3 Profiling Block Execution Time Using Gaussian Kernel Density Estimation

Suppose we are given a set of samples of block execution times from a trace tree node. In this section, we show how

to find a good estimation on the samples that can effectively classify the differences between legitimate and malicious

execution behaviors. As previously explained, although a real-time control application has regularity in timing, noise

(system effects, resource contentions, etc.), control flow variations and even input sets can cause variance in execution

times. Thus, instead of trying to obtain accurate (or tight) ranges of execution times we calculate the likelihood

of legitimate executions by taking into account the effects of such perturbations. For this purpose, we estimate the

probability density function (pdf) of execution times, f(e), from a set of samples, (e(1), e(2), . . . , e(m)), by using

the Kernel Density Estimation (KDE) [111, 85, 51] method. KDE is a non-parametric pdf estimation method that

estimates an unknown pdf directly from sample data as follows:

f̂h(e|e(1), . . . , e(m)) =
1

m

m∑
i=1

Kh(e− e(i)),

where Kh is a Kernel function and h is Bandwidth (also known as the smoothing constant). Hereafter, we simplify

f̂h(e|e(1), . . . , e(m)) as f̂h(e).

There exist several kernel functions such as Epanechnikov [60], triangular, uniform, etc. However, in this work, we

use the Gaussian kernel, Kh(x) = 1√
2πh

e−x
2/2h2

, where −∞<x<∞.4 The key idea of the Gaussian KDE is to first

draw a scaled Gaussian distribution (parameterized by the bandwidth h) at each sample point along the x-axis (i.e.,

e-axis) and then to sum up the Gaussian values at each e that results in the probability density estimate at e, i.e., f̂h(e).

Thus the more samples that are observed near e, the higher the density estimate f̂h(e) will be. Figure 2.7 shows the

probability density estimation derived by Gaussian KDE from a set of 6708 samples of an example block (used in the

prototype implementation in Section 2.4). As can be seen from the figure the estimated pdf is in a non-regular shape

4We do not address the problem of choosing the kernels and the optimal bandwidth. Interested readers can refer to [111, 60, 85].

22

2.72 2.74 2.76 2.78 2.8 2.82 2.84 2.86 2.88

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−3

Execution Time

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Samples

h = 2.6240e−004

h = 7.8719e−004

2.74 2.76 2.78 2.8 2.82

x 10
5

0

5

10

15

x 10
−5

Execution Time

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

u

Figure 2.7: Probability density estimation of an example execution block.

compared to what could have been obtained by a parametric distribution such as Gaussian. Also, as the bandwidth

becomes wider, the resulting pdf is further smoothed out. Given this pdf, one can expect that a newly observed e∗

would highly likely fall within the ranges close to 2.73× 105, 2.75× 105 cycles, etc.

2.3.4 Intrusion Detection Using Execution Time Profiles

To deal with the timing variations during the execution of the code, we use the idea of probability density estimations

for monitoring and detecting intrusions. We now show how this information is used to detect intrusion at run-time. In

what follows we limit ourselves to a single trace node (i.e., a block). The same method is applied to all other nodes

that form a part of the code. Suppose we are given the probability density estimation f̂k of node k.5 Let P k(a≤e≤b)

be the probability that an arbitrary execution time e is observed between a and b with the given pdf. Note that the

probability that e is included within a range [a, b] is

P k(a≤e≤b|e(1), · · · , e(m)) =

∫ b

a

f̂k(e|e(1), · · · , e(m)) de.

Here, the obtained pdf may not be directly usable in the continuous domain, depending on the implementation.

Thus, we derive the discrete probability distributions (or probability mass functions) instead. Let N be the number

of uniformly distributed points on the e-axis that the Gaussian KDE evaluated on. Then, there are N − 1 bins, each

of which is characterized by [emin + i·u, emin + (i+1)·u]. Simply put: [bimin, b
i
max], for i = 0, . . . , N−1 and

5We drop the subscript h from f̂h to simplify the expression.

23

u = (emax−emin)/(N−1), where emax and emin are the maximum and the minimum values among the observed

samples, respectively. In this setting, P k(e∗), the probability of a specific execution time e∗, is approximated by

P k(bi
∗

min ≤ e ≤ bi
∗

max) ≈ f̂k(bi
∗

min) · u,

where i∗ = b e
∗−emin

u c, i.e., e∗ ∈ [bi
∗

min, b
i∗

max]; u is the bin width and
∑

0≤i≤N−1 P
k(e ∈ [bimin, b

i
max]) = 1.

Note that P k(e∗) is the probability of being a legitimate execution instance assuming that the estimated pdf is

the true distribution. Thus, in order to deal with errors resulting from the estimation we compare P k(e∗) with a pre-

defined minimum required probability, θ (e.g., θ = 0.05 or θ = 0.01). If P k(e∗) is below θ we consider that the

execution instance to be malicious.6 Hence,

 if P (e∗) < θ malicious,

if P (e∗) ≥ θ safe.

The value of θ affects the rate of misclassification. We define a false positive as a case where the secure monitor says

something is malicious when it is not. Similarly, a false negative is defined as a case where the monitor could not

detect a real attack. With a higher θ, the rate of false negatives would decrease. However, at the same time, the rate of

false positives will also increase. Note that setting θ to 0 implies that any execution is considered to be legitimate.7

Lastly, suppose we obtained f̂k for all nodes in a trace tree. For a given sequence of traces generated during

a single execution of the monitored application, the secure monitor traverses the trace tree with the address values

as explained in Section 2.3.2. At each node k, the secure monitor calculates P k(tc − tp) where tp and tc are the

timestamps when two subsequent trace instructions are executed at Addrp and Addrc. If there exists at least one k

such that P k(tc−tp) < θ, the secure monitor considers that execution to be malicious. Since we use Gaussian KDE of

execution time variations for detecting intrusions, we shall henceforth refer to this technique as the Gaussian methods

for Intrusion Detection using Timing profiles (GaIT).

2.4 Implementation

In this section, we present the implementation details for a SecureCore prototype. We first describe the hardware-

level implementation and setup and then explain the software components. The latter includes a real-time control

application and embedded malicious code.

6The proposed model is related to outlier detection algorithms [89]. More specifically, the null hypothesis - e∗ is legitimate - is that the sample
has at least θ percent of all other points having a distance to the sample less than u, the bin width. One may regard that we reject the null hypothesis
when Pk(e∗) < θ.

7One may perform a non-parametric hypothesis test such as Wilcoxon Signed-Ranks Test [152] or Anderson-Darling Test [37]. It should be
noted, however, that the intrusion detection process needs to be performed for a set of execution time samples instead of a single sample in such

24

Core 0 (Monitored Core)

LWE

Simics (P4080)

Linux

CC SM

DM

SC

IOP

Inverted

Pendulum

Dynamics

Host PC

H
y
p
e
rv
is
o
r

Serial (tty) Pseudo Terminal

(pts)

Core 1 (Secure Core)

Reset Doorbell

Byte Channel

TTM

SPM

Figure 2.8: SecureCore prototype implemented on Simics P4080 model.

2.4.1 System Implementation

We implemented SecureCore on Simics [98], a full-system simulator that can run a hardware platform including real

firmware, device drivers as well as an unmodified OS and hypervisor and also allow processor architecture modifica-

tions. Figure 2.8 shows the system implementation overview (see Table 2.1 for the implementation parameters). We

used the Freescale QorIQ P4080 Processor [11] platform that has eight e500mc cores [8]. Only two out of the eight

cores were enabled – i.e., cores 0 and 1 were used as the monitored and secure cores respectively. The secure core

side runs Linux kernel 2.6.34. The monitored core runs on the Freescale Light Weight Executive (LWE) [12]. The

choice of LWE is specific to this implementation but we used it for the support of rapid reset and reload of a trusted

binary it provides. The LWE could easily be replaced by any commodity or real-time OS, depending on the system

requirements.

The hypervisor is configured such that the memory spaces between the cores are cleanly separated and the mon-

itored core is set to be a managed partition under the secure core (core 1 can reset core 0 via a unidirectional reset

doorbell). A byte channel (16 bytes-wide) was established to be the inter-core communication channel between the

cores. We set the clock speed of each e500mc core to be 1000Mhz. In addition, we attached caches to the cores

(not shown in the figure) for a more realistic environment. Each core has L1 instruction and data caches, each of size

16KB. The cores share a unified L2 cache of size 128KB. We note that without the caches, every instruction execution

and data fetch would take 1 cycle on Simics.

The Timing Trace Module (TTM) was implemented by extending the Simics sample-user-decoder that

is attached to core 0. When the decoder encounters the trace instructions, the relevant information is written to the

non-parametric tests. Thus, the process of detection could be delayed depending on how many samples are used to perform the test.

25

Table 2.1: Implementation and experimental parameters.
Component Description
Clock speed 1000MHz

L1 Instruction and Data cache 16KB, 8 ways, latency: 2 cycles
L2 Unified cache 128KB, 32 ways, latency: 10 cycles

Exec. time of complex controller [0.856, 1.26] cycles
Exec. times of malicious loops 440, 720, 1000 cycles (1,2,3 loops, resp.)

Min. required probability θ 0.01 or 0.05

SPM. We modified the instruction set architecture (ISA) of the e500mc core [8] so that the execution of the rlwimi

instruction will trigger an event to the TTM.8 As shown at the bottom of Figure 2.4, there are four types of trace events

differentiated by the last parameter:

• INST REG PID registers the process ID of the calling application with the TTM,

• INST ENABLE/DISABLE TRACE enables/disables the trace operations of TTM and

• INST TRACE writes a trace to the SPM.

As mentioned in Section 2.2.3, when tracing is turned on and the INST TRACE instruction is executed, the times-

tamp and the instruction address at the point of the execution are written at the address specified by the value of

AddrHead. The SPM has a size of 4 KB and is mapped to a region of core 1’s address space by the hypervisor.

Lastly, all processes including secure monitor (SM), decision module (DM), I/O proxy (IOP) and the safety con-

troller (SC) run in user-space. Sending/receiving data through the byte channel is done via a kernel module that

requests a hypervisor call. The processes (Figure 2.2) execute with a period of 10 ms.

2.4.2 Application Model

As our physical control system, we used an Inverted Pendulum (IP). However, since the simulation speed of Simics is

slower by an order of magnitude than the dynamics of a real IP, we used control code and related dynamics generated

from a Simulink [22] IP model. These were then encapsulated into software processes. The dynamics process runs

on the host PC and is synchronized with the control system managing it in Simics through a pseudo terminal. The

physical state of IP is defined as the cart position and the rod’s angle (perpendicular to the ground). This state is

sent to the controllers executing on Simics and they, in turn, compute an actuation command that is then sent back to

the dynamics process that then emulates the action of the IP. For realistic dynamics, we embedded a Gaussian noise

generator at the output of the rod angle in the dynamics.

8rlwimi is the Rotate Left Word Immediate Then Mask Insert instruction. Execution of rlwimi 0,0,0,0,i for 0 ≤ i ≤ 31 is equivalent
to nop.

26

IP

Control

FFT

Init

FFT

Phase #2

FFT

Phase #3

Begin

IP

Control

FFT

Init

FFT

Phase #1

FFT

Phase #2

FFT

Phase #3

End

1 run if Path ID = 0, 1

2 runs if Path ID = 2

P
a

th
 I

D
 =

 0

Path ID = 1 or 2

FFT

Phase #3

IP

Control

FFT

Phase #1

(a) Execution flow graph (b) Trace tree

Addr = 392

Addr = -3856

Addr = -2916

Addr = -2916

Addr = -716

Addr = -1520 Addr = -1520

Addr = 476 Addr = 476

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

x 10
5

0

1

2

3

4

5

6
x 10

-4

2.65 2.7 2.75 2.8 2.85 2.9

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

2.72 2.74 2.76 2.78 2.8 2.82 2.84 2.86 2.88

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-3

2.5 3 3.5 4 4.5 5 5.5

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2
x 10

-3

1000 1100 1200 1300 1400 1500 1600 1700
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

2.589 2.59 2.591 2.592 2.593 2.594 2.595 2.596

x 10
5

0

1

2

3

4

5

6

7

8
x 10

-3

1000 1200 1400 1600 1800 2000 2200 2400
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 2.9: The execution flow and the corresponding trace tree of IP+FFT.

As mentioned above, the system runs on Simics and monitors the IP control application. We use the same control

code for the complex and simple controllers for evaluation purpose only. However, since the code is too simple

with very little variance in execution time, we inserted a fast fourier transform (FFT) benchmark from the EEMBC

AutoBench suite [9], aifft, to the complex controller as shown in Figure 2.9 (a). The benchmark consists of three

phases after initialization. We modified it so that after initialization it randomly selects a path ID. If the ID is ‘0’, FFT

Phase 2 is skipped, and Phase 3 is executed twice if the ID is ‘2’. From this structure, we wish to observe how well our

detection methods can deal with execution time variances caused by inputs and flows. After the FFT phases complete,

the IP control logic is executed. The logic controls the IP so that it is kept stabilized at position ‘+1’ meter from the

origin.

We inserted malicious code at the end of FFT Phase 3. It is a small loop in which some arrays used in previous

FFT phases are copied. The average execution time of the malicious code is 440, 720 and 1000 cycles for 1, 3 and 5

loops respectively. The code becomes activated when the cart position of IP received from IOP becomes +0.7 meter.

Thereafter the code is executed randomly and the complex controller discards the actuation command calculated by

the IP logic and sends out one duplicated from the previous execution. This will result in two effects – variances in

execution time that differ from expected values and also wrong actuation information to the control system. Both of

27

these effects should trigger our detection systems.

To profile the execution times of the complex controller, we inserted INST TRACE instructions at the end of each

block and one at the top of each flow (i.e., before FFT init()) as explained in Section 2.3.2. We executed the system in

a normal condition (i.e., no malicious code activation) for 10, 000 runs until we obtained a collection of traces. From

these traces, a trace tree is constructed as shown in Figure 2.9 (b). We then used the ksdensity function in Matlab

to derive the pdf estimation f̂k of the samples at each block k.9

2.5 Result and Discussion

In this section, we evaluate our SecureCore architecture through experiments on the prototype presented in Section 2.4.

We then discuss some limitations and possible improvements.

2.5.1 Early Detection of an Intrusion

We first evaluate our timing-based intrusion detection method by measuring how quickly it can detect malicious code

execution compared to vanilla Simplex-only approach. As explained in Section 2.4.2, the malicious code embedded

in the complex controller is activated when the cart passes through the point at +0.7 m. In this evaluation, we set

the minimum required probability θ to 0.01 and the loop count of the malicious code to 3. The cart positions were

traced from the IP dynamics process for the cases where (a) there is no attack, (b) attack + no protection, (c) attack

+ Simplex only and finally (d) attack + Simplex + GaIT (our detection method). Additionally, we set an event that is

triggered when Simplex or our method detect anomalies. However, for evaluation purposes, we intentionally disabled

our method until the cart passes over +0.5 meter; if we enable it from the beginning, a false positive would activate

the safety controller before an attack takes place.

Figure 2.10 shows the different trajectories of the cart for the four cases. The cart is stabilized at the position near

+1 m when there is no attack or if the control logic is protected (either by GaIT or vanilla Simplex). When there

is no such protection mechanism, however, the cart becomes destabilized finally after time 25 seconds. When the

protection mechanisms are active (SecureCore + GaIT) and the malicious code was activated (at around 6.9 seconds),

it was almost instantly detected by GaIT. We can see this from the magnified section of the plot showing the trajectory

of the cart along with the normal case (i.e., no attack). On the other hand, although it is not clear in the figure, the

Simplex-only method detected the abnormal behavior of the complex controller at around 9.5 seconds. In this case,

we see that the cart has deviated from its normal trajectory for a moment; it was later returned to the normal trajectory.

Even though the experiment was performed with a restrictive setup for a simple application, the result shows that

9We set the number of bins, N , to 1000. The kernel smoothing bandwidth h is then automatically selected by the function.

28

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Time (sec)

C
a
rt

 p
o
s
it
io

n
 (

m
e
te

r)

6 8 10 12 14 16

0.6

0.7

0.8

0.9

1

1.1

No Attack
GaIT

Simplex Only

No Attack

GaIT

Simplex Only

Attack
Activated

Attack
Activated

No
Protection

Figure 2.10: Trajectory of cart with different protection approaches.

our timing-based intrusion detection method (GaIT) can supplement Simplex through early detection. Even though

vanilla Simplex can detect malicious activity, it does so much later than GaIT and only because the compromised

controller tried to actuate the physical system into an unsafe state. Many times, attackers may not send wrong actuation

commands – they may snoop on the operation of the system and collect privileged information. SecureCore and GaIT

will be able to detect such activity almost instantaneously, as evidenced here, while Simplex will fail to detect it. Also,

attackers could increase the wear and tear on the physical system under vanilla Simplex – by causing the system to

operate, albeit briefly, in an unsafe state. This can also be avoided by use of our techniques.

2.5.2 Intrusion Detection Accuracy

The early detection capability, however, can be effective only when a higher classification accuracy is possible. Thus,

we evaluate the accuracy of our intrusion detection method by measuring the false positive and false negative rates.

In this experiment, we disabled the reset mechanism of secure core to correctly count the number of attacks and

misclassifications. However, the functionality exists for future work. As mentioned before, a false positive occurs

when the monitor classifies an execution to be malicious when it was not and a false negative is when a malicious

attack goes undetected. The evaluation was performed with the minimum required probability θ set to 0.01 or 0.05.

For each case, the loop count of the malicious code was set to 0, 1, 3 and 5. Then, we sampled decisions made by the

secure monitor until we collected at least 1000 samples.

To measure the rate of false positives, we ran the system without activating the malicious code. For θ = 0.01,

only one false positive out of 1024 samples was found. With θ = 0.05, the monitor classified 7 samples out of 1015

29

1 3 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Malicious loop count

R
at

e
o
f

fa
ls

e
n
eg

at
iv

e

θ=0.01 θ=0.05

Figure 2.11: False negative rates for different θ and malicious loop counts.

Table 2.2: False negative rates (# attacks missed / # attacks tried).
1 loop 3 loops 5 loops

θ =0.01 827/1022(81%) 574/1046(55%) 130/1098(12%)
θ =0.05 578/1050(55%) 117/1011(12%) 0/1045(0%)

legitimate executions as attacks. We then activated the malicious code to measure the false negative rates. Table 2.2

shows how many attacks the monitor missed for each θ and loop count. For example, for θ = 0.05 and the loop count

of 3, the monitor could not detect 117 out of a total 1011 malicious code executions. As can be seen from Figure 2.11,

the false negative rate decreased when the malicious code executed for longer time frames. For the same execution, a

higher value of θ also showed reductions in the rate of false negatives. However, as previously mentioned, there is a

tradeoff between a higher θ and a lower one. That is, while setting θ higher can reduce the chances that the monitor

will not miss malicious code execution, it can also increase the rate of false alarms. In such cases, the control would be

frequently switched to the safety controller even if the complex controller is not compromised. This could degrade the

overall control performance for the physical system. Thus, a balanced θ should be obtained, either through extensive

analysis or through empirical methods.

2.5.3 Limitations and Possible Improvements

The main cause of misclassifications comes from noise during execution time profiling. A legitimate execution time

might not appear in the samples but might be observed during the actual monitoring phase. Moreover, the malicious

execution time might also fall within a legitimate interval. This is especially possible when an attacker exploits

the system by using a short and steady malicious code execution such as an example using the Return-Oriented

30

Programming (ROP) attack [129]. An ROP-based attack is a sequence of short code blocks each of which would last

for less than 100 cycles (or even 10 cycles) before returning to the original execution path. Thus, an attacker may

deceive the proposed detection method by executing such short code because legitimate timing variations would likely

last longer than the ones caused by such malicious code. As the result in the previous subsection shows, the proposed

method would not perform well when such attacks are employed.

Thus, it is the key that we narrow the range of execution time variances as much as possible so that the above

situations, i.e., the probability that a legitimate execution instance can fall within the range and that even a short

length of malicious execution can deviate from the range is maximized. One way to achieve this is to run the final

system on a real-time operating system that inherently has more deterministic execution times. Disabling interrupts

during execution (if possible) [103] or locking frequently used data or instructions on cache [38] can help increase

the predictability of such executions. In addition, using a real-time multicore processor [93, 107, 158] can further

improve the accuracy by reducing or eliminating unpredictable variations in execution times caused from contentions

on shared resources such as cache, bus, memory, etc.

2.6 Conclusion

In this chapter, we proposed SecureCore, a novel application of a multicore processor for creating a secure and reliable

real-time control system. We used a statistical learning method for profiling and monitoring the execution behavior of

a control application. Through the architectural and the theoretical support, our intrusion detection mechanism imple-

mented could detect violations earlier than just a pure safety-driven method, Simplex. This helps in achieving reliable

control for physical systems. The isolation achieved by SecureCore and the monitoring mechanisms also prevent

attackers from causing harm to the physical systems, even if they gain total control of the main controller. Evaluation

results showed that with careful analysis and design of certain parameters, one can achieve a low misclassification rate

and higher intrusion detection rates.

31

Chapter 3

Memory Heat Map: Anomaly Detection in
Real-Time Embedded Systems Using
Memory Behavior
In this chapter, we introduce Memory Heat Map (MHM) to characterize system-wide memory behavior of real-time

embedded systems. Our machine learning algorithms automatically (a) summarize the information contained in the

MHMs and then (b) detect deviations from the normal memory behavior patterns. These methods are implemented on

top of the SecureCore architecture presented in Chapter 2 to aid in the process of memory behavior monitoring and

detection. The techniques are evaluated using multiple attack scenarios including kernel rootkits and shellcode.

3.1 Introduction

In this work, we present techniques to detect system-wide anomalies in the execution of real-time embedded systems

by monitoring the behavior of memory accesses for the operating system. Memory access is an important property

since it is particularly hard to fake or hide for malicious tasks. We find that the memory profiles of many real-time

applications have a predictable nature and use this property to detect malicious activity.

The behavior of memory access for a system can be defined in many ways. For instance, one could track the exact

sequence of memory addresses that are accessed. While this could provide very precise information on memory usage,

it requires a prohibitive amount of storage not to mention excessive computation times for lookup, etc. Hence, it will

be hard to apply in real-time systems with limited resources. Another problem is that such profiles are very sensitive

to even legitimate variations. On the other hand, we might still be able to use the memory behavior in a system but

relying on coarse-grained information. For instance, consider the amount of memory traffic generated during each

time interval. We can use these types of profiles to detect anomalies that significantly change the memory traffic.

However, such profiles could abstract away from the detection of small, abnormal variations.

To avoid such problems we present the use of a novel method to profile memory behavior, viz. the Memory Heat

Map (MHM). The MHM is a concise data structure that represents how many times a particular memory location was

accessed (regardless of which component accessed it) during a fixed time interval. An ‘access’, in this case, is defined

as a read/write of either an instruction or data. The key idea is that an MHM is a composition of different activities

in a certain memory region. Each activity will contribute differently in each MHM. The periodic nature of real-time

32

AddrBase

0xC0008000

Memory Region Size

3,013,284 Bytes

Granularity

2,048 Bytes

Cells

1,472

Figure 3.1: An example memory heat map of Linux kernel .text segment measured for an interval of 10 ms. The
darker the red color for a cell, the more number of times it is accessed.

systems enables us to learn the patterns of usage in such MHMs especially when the system is behaving in a normal,

expected fashion. Section 3.2 provides further insights into the construction of such MHMs while Figure 3.1 presents

an example of one such heat map. We then apply techniques learned from image recognition algorithms [134, 144]

to transform these memory profiles to a more efficient representation so that analysis becomes easier. Section 3.4

explains how we perform these transformations as well as the analysis that follows.

We demonstrate our techniques on a dual core architecture where one core captures the initial profiles and also

performs the analysis (at run-time) for anomaly detection. The other core executes the operating system and main ap-

plications. This is an extension of the SecureCore architecture (Chapter 2) that we adapt for the process of monitoring

memory behavior. The architecture is embellished with certain hardware modifications to ensure that (a) the infor-

mation can be captured in an efficient fashion without affecting the main flow of the system and (b) the information

that is obtained by the monitoring core can be trusted. Further details are provided in Section 3.3. We describe our

evaluation framework and results in Section 3.5. Experiments on a prototype show that our approach catches various

types of anomalies effectively in an efficient manner.

Hence, our main contributions of this work are:

• Novel monitoring model to characterize the memory behavior for real-time embedded systems – in the form of

memory heat maps.

• The novel combination of the MHM and image recognition algorithms to provide efficient representation and

analysis of MHMs that aids in the process of detecting anomalies.

• A multicore-based architecture to perform the profiling and run-time monitoring.

To the best of our knowledge, this is the first work that uses aggregated memory behavior, especially the concept of

memory heat maps, for detecting system-wide anomalies.

33

6952.032
 592.994
 -77.993

= +

x x

+

x

+ …

Figure 3.2: An MHM is a linear combination of primary activities on the target memory region.

3.2 The Memory Heat Map

A memory heat map (MHM) is defined by the following triple: the base address, AddrBase, the size, S, and the gran-

ularity, δ. These are configurable parameters (explained more in Section 3.3) that determine where and at what detail

we wish to monitor the memory behavior of the system. Figure 3.1 shows an example of an MHM that was profiled

from an embedded Linux kernel’s .text segment (between 0xC0008000 and 0xC02E7AA4) for an interval of 10

ms. A memory region is divided into cells, each with a size, δ. In the example, the Linux kernel’s .text segment

(size S is about 2, 943 KB) is divided into 1, 472 cells of 2 KB each. The 2-D plots of MHMs presented throughout

this chapter are for illustrative purposes only. An MHM is in reality a vector like the actual memory space is. The

length of the vector is equal to the number of cells.

Each cell counts the number of accesses to a memory address for a specified time interval. One can even consider it

to be the temperature of each cell (hence the phrase “memory heat map”). In the simplest case, it can be used to detect

abnormal “temperatures” of specific cells since they are supposed to be fairly predictable. But, the “temperature” of

each cell, on its own, does not reveal useful information; it might exhibit variations due to many factors. However,

the state of the entire map may reveal important system activities. An MHM is composed by the counts of accesses

from a variety of system activities due to applications as well as kernel executions). Figure 3.2 provides an overview

of how an MHM is composed.

In fact, the term ‘activity’ should be understood to be a collection of activities by smaller system components (and

applications) as well as the kernel. An MHM represents a composition of memory accesses from a variety of system

activities due to applications and OS. Thus, an MHM can be represented by a weighted combination of the primary

activities; where the weights represent their contributions to the MHM. The figure shows that an MHM is a linear

combination of such activities; 1 A good analogy is that of a Fourier series. The key ideas are that (i) normal memory

behavior can be grouped into a finite number of sets according to the weights of primary activities and (ii) abnormal

behavior can be detected by just looking at these weights. The creation and use of MHMs can be quite efficient since

1Precisely speaking, the MHM is the sum of the average MHM (not shown in the figure) and the linear combination on the right-hand side.

34

Monitoring interval

Time

Real-Time

Applications

Memory Heat Map

of Kernel .text

Figure 3.3: The overall memory heat map monitoring process.

it is just a vector of numerical counts. Also, the heat maps depend only on the size of the memory region that we

observe and not on the complexity of the kernel and other applications. Both of these make the process of analyzing

MHMs tractable and efficient.

3.2.1 Monitoring Kernel Memory Space

In this work, we focus on monitoring the memory space for the operating system kernel, though our memory heat map-

based method can be applied to any region as long as the system’s usage of these memory regions shows predictable

behavior. However, monitoring the kernel memory space has the following advantages. First, observation of the kernel

memory space provides a good indicator of system behavior since every application has to use kernel services (e.g.,

system calls) for privileged operations. From the kernel memory space, we can detect certain types of anomalies,

e.g., unexpected application launch/kill or even suspicious use of kernel services. Furthermore, monitoring the kernel

space makes the hardware design much simpler (when compared to monitoring user-level processes). This is because

(i) the (base) kernel’s location in the memory space is known and fixed and (ii) it is contiguous in both the virtual and

physical memory spaces.2 Hence, we do not need a complex hardware architecture to deal with the address translation

and also memory paging issues.

3.2.2 Overall Process

As shown in Figure 3.3, our anomaly detection framework periodically monitors the MHM of the kernel’s memory.

At each interval, one MHM is created by the on-chip hardware module (Section 3.3). The anomaly detector analyzes

the MHM at the end of the interval. At that point, we calculate the likelihood of this MHM being part of the normal

execution. Section 3.4 presents the details of this analysis.

2As will be explained in Section 3.3, we monitor the ‘base’ kernel’s .text segment. It is in the kernel’s logical address space.

35

3.2.3 Assumptions

We make the following assumptions without loss of generality:

• The system runs a set of real-time applications that execute in a periodic fashion.

• Most of the possible execution contexts due to, e.g., different execution modes and/or inputs, can be profiled

ahead of time for higher detection accuracy and lower false positive rate. This can be justified by the fact that

real-time embedded applications have a limited set of execution modes and input data fall within fairly narrow

ranges.

• The system is in its normal (trustworthy) state while being profiled; also, the profiling is done prior to system

deployment.

• We consider certain types of anomalies that make changes in the memory regions that are being monitored; our

detection mechanism cannot detect anomalies that access memory segments outside the region under monitor-

ing.

3.3 Monitoring Memory Heat Maps

This original SecureCore architecture presented in Chapter 2 provided the means for a trusted on-chip entity, viz., a

secure core, to monitor the run-time behavior of another component, the monitored core. We modified the SecureCore

architecture to observe the memory behavior of the monitored core through an on-chip module, Memometer. The

Memometer aids in the process of creating profiles for, and monitoring, memory heat maps (as explained in Section

3.2). Figure 3.4 shows this new architecture.

The Memometer hooks into the monitored core and continuously snoops upon the memory requests that are sent

from it. Using this information, the Memometer periodically creates heat maps that represent the memory usage of

the monitored core. The heat maps are then retrieved by the secure core that performs analyses on them as explained

in Section 3.4; the analysis determines if the monitored core is behaving in a normal or abnormal fashion.

3.3.1 Memometer

The actual implementation of a Memometer depends on the specific processor architecture especially (a) the memory

sub-system and (b) the type (instruction or data) of memory accesses it uses to build the heat maps. In this work,

the Memometer snoops on the address line between the monitored core and L1 cache because otherwise we would

lose memory access information due to cache hit. In addition, we consider an L1 cache is virtually addressed. Thus,

36

Memometer

L1 Cache
 MMU

Ad
dr

es
s

Ph
ys

ica
l

Ad
dr

In
st

/D
at

a

L1 Cache
 MMU

Ad
dr

es
s

Ph
ys

ica
l

Ad
dr

In
st

/D
at

a

Monitored Core
 Secure Core

Bus Interface

Ad
dr

es
s

Da
ta

Figure 3.4: The secure core architecture for memory-behavior monitoring using Memometer.

the hook should be placed before the MMU as shown in Figure 3.4. In fact, we could monitor physical addresses

if the target monitoring region has a linear mapping from virtual to physical address, e.g., kernel logical address.

Monitoring the physical addresses is in fact desirable since otherwise, for example, an attacker could potentially

execute a malicious code by modifying the memory mappings while making MHMs look normal.

The memory heat maps created by the Memometer can only be accessed by the secure core. The Memometer

includes a fast on-chip memory for MHM storage that can be physically addressed from the secure core. When an

MHM is ready to be analyzed the Memometer raises an interrupt on the secure core. The secure core then performs the

analysis on the MHM. However, neither the memory accesses by the monitored core nor the process of monitoring,

should be affected while the secure core analyzes the MHM. Thus, we implement a double buffering mechanism so

that both, the monitoring as well as the analysis can continue in an uninterrupted manner. Figure 3.5 shows the internal

structure of the Memometer; we will elaborate on each of the components shortly.

Memometer Controller

The secure core sets the monitoring parameters for the Memometer through control registers. The parameters

are (a) the base address of the target monitoring region; (b) the size of the region; (c) the granularity (a power of 2)

and (d) the monitoring interval. Parameters (a) – (c) are used to filter a snooped address and to calculate the target

cell location (explained below). One memory heat map is created during each monitoring interval, for example, 10 ms.

Address Filtering and Target Cell Calculation

Once a memory address is obtained by the Memometer, a series of filtering operations and calculations are per-

37

Snooped

Addr

0

MHM Memory 0

MHM Memory 1
-­‐	

Ad

dr
Ba

se

Controller

>>

1

Timer

Sh
ift

M
ux	

Secure C
ore

Memometer

M
on

ito
re

d
C

or
e

Control Reg 2

Control Reg 1

De
m
ux
	

>=
0

&&

<S
ize

 ?

Si
ze

Address

Figure 3.5: The internal structure of Memometer and the interfaces for the monitoring and the secure core.

formed to locate the target cell in the MHM that is currently being built. Let Addr∗ be the address that is being

accessed by the monitored core. Then, the following steps calculate the target cell index in the current MHM.

1. Calculate the offset, i.e., offset = Addr∗ − AddrBase.

2. Check if it is within the target region, that is, 0 ≤ offset < S where S is the region size. The process stops if

this is false.

3. Logical right-shift offset by g bits where g = log2 δ and δ is the MHM granularity. The resultant is the target

cell index,

idx =
⌊offset

2g

⌋
= offset >> g.

The resulting idx is then used to increment the count of the target cell. If it is out of the bounds (i.e., beyond the

maximum cell number) then there is no effect on the MHM. Note that the maximum cell number depends on the

MHM memory size and is implementation specific.3 Note also that the MHM memory size determines the maximum

number of cells an MHM can have and not necessarily the maximum size of target memory region. By controlling the

granularity parameter, the maximum size of the target region can be determined.

MHM Double Buffering

As mentioned above, one of the key requirements is that the Memometer should be able to monitor/profile the

memory heat maps in an uninterrupted fashion. Hence, it should be able to continue monitoring the memory accesses

3We skip the related logic from Figure 3.5.

38

of the main core while a recently completed MHM is being analyzed by the secure core. In our architecture, this is

achieved by use of a double buffering mechanism. For this purpose, the Memometer has two identical on-chip memory

units.

MHM Memory 0

MHM Memory 1

ith interval
 (i+1)th interval
 (i+2)th interval
 …

Active

Analysis
 Active

Active

Active

Analysis

Analysis

Analysis

The timing diagram above illustrates how this double buffering mechanism works. At any time instant, a cell count

update is carried out on what we call the active on-chip memory unit (say, ‘0’). Then, at a monitoring interval

boundary, say, between the ith and the (i + 1)th intervals the second on-chip memory unit (‘1’) is tagged as being

the active one and starts storing the (i+ 1)th MHM. At the same time, the secure core starts analyzing the ith MHM

residing on the first on-chip memory unit (‘0’). Once the secure core is done with the analysis, the old MHM is reset.

This double buffering mechanism is driven by Memometer controller. Let the start address of MHM memories ‘0’

and ‘1’ be Addrm0 and Addrm1 , respectively. Let the size of each be Sm. The two memories are contiguous and thus

Sm = Addrm1 − Addrm0 is the size of each. Now, when a cell index idx is provided, the count at the address,

Addrm0 + sel · Sm + 4 · idx

is increased by 1, assuming each count has a size of 4 bytes. Here, sel alternates between ‘0’ and ‘1’ at every interval.

Thus, sel = 0 (or = 1) selects MHM memory ‘0’ (or ‘1’). Meanwhile, the secure core knows the value of sel and thus

it can correctly retrieve the MHM from the inactive memory location starting from Addrm0 + (1− sel) · Sm.

3.4 Learning Memory Heat Maps

As part of the process of detecting anomalous behavior, we need methods to detect changes in MHMs. In this section,

we show how a statistical learning algorithm, based on image recognition methods, can be used for this purpose. We

address the following questions: (i) how to characterize the normal heat maps of untainted systems in an efficient and

accurate manner and (ii) how to detect anomalies using such normal profiles.

3.4.1 Definitions and Overall Learning Process

LetM = {M1,M2, . . . ,MN} be the set of memory heat maps we obtained during normal (trusted) system exe-

cutions on the architecture presented in Section 3.3. Each MHM is a vector of length L, where L is the size of the

39

Original MHMs
 Reduced MHMs
 MHM Clusters

Dimensionality !
Reduction! Clustering!

Figure 3.6: Learning normal MHM patterns.

MHM.4 Hence, the nth MHM is represented as, Mn = [mn,1,mn,2, . . . ,mn,L]T , where mn,k is a non-negative

integer which represents the number of memory accesses to the kth cell,
[
AddrBase + (k−1)δ,AddrBase + kδ

)
, where

AddrBase is the base address and δ is the cell granularity (see Section 3.2).

M is the training set that represents the normal/expected memory behavior. Using the statistical learning method

presented in this section we will calculate the likelihood of whether an MHM is either normal or abnormal with re-

spect toM.

When a new MHM is presented for classification (normal/abnormal), one naive but straightforward way is to com-

pare it with each of the training samples to find if any such heat map has been observed in the past. This approach

would not work, especially for real-time systems, since (i) it is computationally prohibitive to calculate the similarity

against every known MHM in the training set (N is often large) and (ii) the number of MHM configurations is expo-

nential in L; hence, there can, for all practical purposes, be an infinite number of MHM configurations (particularly

if L is large). Hence, it is desirable to find patterns in the normal MHMs and then calculate the statistical similarity

for the newly observed MHM. This reduces the problem into a more tractable scope. We use an image recognition al-

gorithm for this purpose. We treat each MHM as an image and apply an image recognition technique for comparison.

The challenges that remain are (a) how to handle high dimensionality of MHMs and (b) how to find representative

MHM patterns for efficient classification.

3.4.2 Eigenmemory

Memory heat maps are represented in a high dimensional space especially if we monitor a large memory region at a

fine granularity. Using such MHMs as is can be computationally expensive even for simple mathematical processes

such as Euclidean distance calculations. However, not all of the cells of an MHM include relevant information.

Hence, given a large set of MHMs, we can somehow compress each one into a low-dimensional image without losing

much information. Such a process can be carried out because each MHM is a composition of memory activities for
4As explained earlier, it depends on the size of the target memory region and the monitoring granularity. Also, remember that an MHM is a 1-D

vector.

40

different, yet unknown, components in the system. Hence, an MHM can then be viewed as the combination of the

memory activities of each of the components.

For purposes of compressing the information contained in an MHM, we use a dimensionality reduction/ feature

extraction method, the Principle Component Analysis (PCA) [84], which has widespread uses in image analysis. The

PCA transforms data with high dimensionality (in L-dimensions) into low-dimensional features (in L′-dimensions;

L′ � L) which of those are called principal components. These principal components can compactly represent the

original data when many features/dimensions are correlated each other. In the context of image recognition, this

is equivalent to the process of extracting a set of basic images, called eigenfaces [134, 144]5, that can be linearly

composed to reconstruct the original images with a minimal approximation error. In our context, the primary activities

of the target memory region are mapped to what we call eigenmemory.

The following steps transform a training setM = {M1,M2, . . . ,MN} (where each Mn is an L-dimensional

vector) intoM′ = {M ′
1,M

′
2, . . . ,M

′
N} (where eachM ′

n is an L′-dimensional vector and L′ � L):

1. Calculate the empirical mean MHM of the training set,

Ψ =
1

N

N∑
n=1

Mn.

2. Obtain the mean-shifted MHM,

Φn = Mn −Ψ

for all n.

3. Construct the empirical covariance matrix C,

C =
1

N

N∑
n=1

ΦnΦT
n = AAT , (3.1)

where A = [Φ1Φ2 · · ·ΦN] is an L by N matrix. Thus, the size of C is L by L. Then, find the eigenvectors

of C.6 The extracted eigenvectors are the eigenmemories which of those represent the principal components of

the MHMs in the training set.

4. Order the eigenmemories according to their corresponding eigenvalues in decreasing order. Then, pick the L′

best eigenmemories, u = [u1u2 · · ·uL′], with largest eigenvalues.

5. Transform each MHM Mn into M ′
n by projecting the mean-shifted MHM Φn onto the (L′-dimensional)

5It is also known as eigenpicture or eigenimage as this technique generally applies to image recognition.
6When L is large, it can be computationally intractable to compute the eigenvectors of an L by L matrix. In that case, if N < L, one can use

the Singular Value Decomposition [144] that finds the eigenvectors of C by using the eigenvectors of ATA which is an N by N matrix.

41

Eigenmemories (L’= 16)

…

=
-

=

u1 u2 u3 u16

[

[T
.

(Original MHM)! (Mean MHM)! (Mean-shifted MHM)!

Reduced MHM!

Mn �n

�n M 0
n

wn,16

wn,1

Figure 3.7: An example of the dimensionality reduction from Mn to M ′
n using 16 eigenmemories. The 2D plots

are only for illustrative purposes. Everything but M ′
n is a vector of length L = 1472 and M ′

n is a vector of length
L′ = 16. The original MHM,Mn, can be approximately reconstructed by u ·M ′

n + Ψ ≈Mn

eigenmemory space, i.e.,

M ′
n = uTΦn = [wn,1, wn,2, . . . , wn,L′]

T . (3.2)

Finally, we haveM ′
n which is in L′-dimensional space.

It is important to understand that the wn,i values, also called weights, represent the contribution of the eigenmem-

ory ui in representing the original (mean-shifted) MHM, Φn of Mn. We can view Φn being approximated using

a linear combination of eigenmemories, i.e., Φn ≈
∑L′

k=1 wn,kuk. Hence, the more eigenmemories we use, the

more accurate the approximation will be. Therefore, the best set of L′ eigenmemories is one that will retain the best

approximation for the original MHMs with regard to the principal components.

Figure 3.7 shows an example where the above process is applied. Mn is an (original) MHM of length L = 1472.

In this example, we chose the best 16 eigenmemories. Each eigenmemory represents a primary activity; in this case

an activity that touches upon the Linux kernel’s .text segment. Here, u1 is the most significant activity, u2 is

the next significant, and so on. Then, the resulting M ′
n represents the contribution (i.e., weight) of each primary

activity from the original memory heat map Mn. Thus, different MHMs in the original space can be represented by

different combinations of the contributions (weights). Also, notice that the original MHM can be reconstructed (in an

approximate manner) by applying the operations in reverse: u ·M ′
n + Ψ ≈Mn.

These eigenmemories are stored in the secure core and used to transform every newly obtained MHM M into

M ′ (after appropriate mean-shifting) using Eq. (3.2). The classification process, presented in the next subsection, is

carried out in the reduced dimensional space.

42

3.4.3 Finding MHM Patterns

Now that MHMs have been transformed into low-dimensional feature vectors, the problem becomes one of classifica-

tion. That is, givenM′ = {M ′
1,M

′
2, . . . ,M

′
N} (see Figure 3.8 in Section 3.5.2 for an example), we need to check

if a test MHM, M , appropriately transformed into M ′ (say, one in Figure 3.10 in Section 3.5.3), represents normal

or abnormal behavior. The simplest way is to look up the database of normal memory heat maps in the training set

M′ and check to see if similar MHMs exist there. This, however, would not work for our on-line analysis mechanism

because of the high computational costs. Note that in what follows, we will useM, M , and L instead ofM′, M ′,

and L′ for notational convenience. Also, we will use the term memory heat maps to denote the ones in the reduced

dimensional space.

A better approach is to identify a small set of representative MHM patterns (in the low-dimensional space) that

are significant enough to cover most of the normal MHMs. When a test sample M is provided, we check if it is

statistically similar to one of them. For this purpose, we use a cluster analysis, Gaussian Mixture Model (GMM) in

particular. GMM has been widely used in image/signal processing including image clustering, segmentation, retrieval,

etc. [36, 117, 41] due to its ability to approximate various probability distributions and its computational efficiency.

In GMMs, the probability density of a memory heat map is represented as a weighted sum of J multivariate

Gaussian,

Pr(M ; GMM parameters) =

J∑
j=1

λjf(M |µj ,Σj), (3.3)

where λj is a mixing parameter (
∑J
j=1 λj = 1 and 0 ≤ λj ≤ 1) and represents the prior probability that MHMs have

been generated from the jth Gaussian probability density,

f(M |µj ,Σj) =
√

(2π)L|Σj |
−1

exp{−1

2
(M − µj)TΣj(M − µj)},

where µj and Σj are the mean vector and the covariance matrix of the jth component. By modeling the normal

memory heat maps as a GMM we treat them as if they have been generated from a set of significant patterns, each of

which is modeled as a Gaussian distribution (component). This is a valid model since if the system shows deterministic

memory behavior, it can generate only a limited number of patterns; each MHM is then a result of small variations from

one or more of these patterns. Intuitively speaking, the MHMs generated from the same basis pattern (a multivariate

Gaussian) have similar weights for each eigenmemory (primary activity). Anomalies therefore inherently result in low

likelihood because some of their components have not been seen in the normal memory behaviors.

In order to model the normal MHMs as a GMM, we need to estimate the parameters, µj , Σj , λj , and even J .

43

For the estimation of the mixture parameters, we use the expectation maximization (EM) algorithm [54]. The EM

algorithm is iterative in nature and optimizes parameters in such a way that the likelihood of the data set is maximized.

However, the EM algorithm has a drawback in that the quality of parameters is sensitive to the initial values and the

number of components, J , must be known. Since these techniques are out of the scope of this work, we employ the

standard EM algorithm with a manually chosen J .7

In summary, given J and a training setM that is in the reduced-dimensional space,

1. We obtain the parameters by applying the EM algorithm toM.

2. When a test MHM is presented at run-time, we calculate its probability density using Eq. (3.3). If it is below a

threshold θ, we consider it to be anomalous.

3.5 Evaluation

In this section, we evaluate the memory heat map approach on a prototype running a set of embedded benchmark

applications. We present the methods for training the analysis engine in Section 3.5.2 and then show the effectiveness

of our methods in detecting anomalies in Section 3.5.3.

3.5.1 Prototype Implementation

We implemented a prototype of the memory heat map monitoring mechanism on the Simics full system simulation

platform [98] that allows microarchitectural modifications. We used an ARM Cortex-A9 processor [4] that consists of

two cores. Each core runs at 1000 MHz and has L1 instruction and data caches each of size 32 KB. The L1 instruction

cache is virtually indexed and physically tagged while the L1 data cache is physically indexed and tagged. The cores

share a unified L2 cache of size 512 KB. The main memory is 512 MB.

The Memometer is implemented as an on-chip hardware module in Simics as shown in Figure 3.4. The Mem-

ometer monitors instruction fetches by snooping on the address bus. The Memometer has two fast, on-chip, memories

(Figure 3.5) each of size Sm = 8 KB. Hence, it can support an MHM of at most about 2, 000 cells, each of which

counts up to 232. The memories are physically addressable and can be only read by the secure core.

The monitored core side runs embedded Linux kernel 3.4 [7] that main applications run on. The Memometer is

configured by the secure core to monitor the kernel’s .text segment that is mapped between 0xC0008000 and

0xC02E7AA4 (about 2, 943 KB). The secure core runs a secure monitor process that performs the analysis on the

MHMs and the initial configuration of the Memometer controller.

7Figueiredo et al. [62] present methods to deal with these problems.

44

Table 3.1: MiBench [69] applications running on the monitored core.
Exec. Time Period Category

FFT 2 ms 10 ms telecomm
bitcount 3 ms 20 ms automotive
basicmath 9 ms 50 ms automotive
sha 25 ms 100 ms security

For the applications, we used MiBench [69], a representative benchmark suite for embedded systems. A set of

MiBench applications (listed in Table 3.1) run on the monitored core where various kernel threads are running as

well:8 A longer hyper-period (i.e., the least common multiple of periods) would require a more number of training

samples, eigenmemories, and/or GMM components.

3.5.2 Training

To obtain a training set of MHMs for characterizing the normal system state, we executed the system with the bench-

marks (Table 3.1) and collected 10 sets of normal MHMs each of which spans 3 seconds. The system was reset before

collecting each new set. We set the monitoring interval to 10 ms and the granularity, δ, to 2, 048 bytes, both of which

are arbitrarily chosen. Each of the normal data set consists of 300 MHMs, which results in a grand total of 3, 000

MHMs each of which has 1, 472 cells (d2, 943KB/2KBe). The total number of accesses to the target region, which

is the sum of all the cells in an MHM, varies between 21, 000 and 88, 000. Considering that each instruction takes a

few CPU cycles this number is small enough compared to the monitoring interval of 10 ms. Meanwhile, the cell that

has the highest access count is around 38, 000. In this case, a 2 byte-long cell size would have been enough.

We then applied the learning method (Section 3.4.2) on the training set to transform it into a low-dimensional

space. To find a proper number of eigenmemories, we used a heuristic that uses the cumulative eigenvalues, cevK =∑K
k=1 αk/

∑L
k=1 αk, where αk is the eigenvalue of uk. The eigenvalues are sorted in decreasing order. One can

choose the minimum K such that, cevK >= 95%, 99% or 99.99%, and use it as the number of eigenmemories. This

implies that the first K eigenmemories can account for cevK of the variances in the training set and hence a higher

cevK achieves a better approximation accuracy. We used 9 eigenmemories, since they could account for more than

99.99% of the variances in the original training set. Having more than 9 eigenmemories does not help improve the

approximation accuracy.

Figure 3.8 shows the first 50 intervals (i.e., between t = 0 ms and t = 500 ms) for one of the training sets. As the

figure shows, although there exist some variations (notably, for example, in the interval 23, 24, 39, etc.), the patterns

repeat every 100 ms which is actually the hyper-period of the applications. Also, notice that the first few eigenmemo-

8The applications were not picked for any specific reason other than the fact that they are representative embedded benchmarks. The execution
times were measured on Simics. The periods are manually assigned based on the execution times and the system load (78%).

45

1
 2
 3
 4
 5
 6
 7
 8
 9
 10

11
 12
 13
 14
 15
 16
 17
 18
 19
 20

21
 22
 23
 24
 25
 26
 27
 28
 29
 30

31
 32
 33
 34
 35
 36
 37
 38
 39
 40

41
 42
 43
 44
 45
 46
 47
 48
 49
 50

Figure 3.8: The reduced MHMs for the first 50 intervals when the system is in a normal state. The patterns repeat
every 100 ms with small variations.

ries are significant enough to distinguish different patterns. In this example, the first two weights, i.e., the blocks at the

bottom-left and at the bottom-center in each, are the weights corresponding to the first two eigenmemories. In fact,

cev2 is already 99.7%.

With these reduced MHMs, we learn the GMM parameters, {µj , Σj , λj |j = 1, 2, . . . , J}, using the EM algo-

rithm [54]. For the number of Gaussian densities, we arbitrarily chose J = 5. Due to the local optimality of EM,

we ran the algorithm 10 times and picked the one that resulted in the highest log-likelihood of the training data, i.e.,∑N
i=1 log Pr(M i). Again, one can apply a deterministic learning method [62].

The last step is to find a proper threshold θ that will be used to check whether an MHM obtained at runtime

indicates abnormal behavior. We collected another set of normal MHMs and calculated the probability density of each

MHM in the set as if we were testing them. The resulting likelihoods are the probabilities that we would see such

MHMs in the normal system state. We use this information to decide θ. Specifically, let P be the probability densities

of this new set calculated by Eq. (3.3). Then, we set θ to the p-quantile of P where p can be 0.5%, 1%, and so on.

This means the expected false positive rate is p. As θ increases the false positive rate would also increase while we

would more likely detect abnormal MHMs. Hereafter, we denote the threshold corresponding to p-quantile as θp.

3.5.3 Anomaly Detection

To demonstrate our method’s ability to detect a broad range of anomalies, we consider the following three scenarios:

(1) addition/deletion of an application; (2) shellcode execution and (3) kernel rootkit loading and execution. We now

look at each of these in more detail.

46

Interval Index
0 50 100 150 200 250 300 350 400 450 500

lo
g 10

 f(
M

)

-80

-70

-60

-50

-40

-30

-20

-10

0

Normal state

qsort launched
 qsort exited

✓1

✓0.5
lo

g
P

r(
M

)

Figure 3.9: The log probability density of MHMs when qsort is launched and exited.

250
 251
 252
 253
 254

255
 256
 257
 258
 259

Normal
 Normal
 Normal
 Normal
 Normal

normal
 Abnormal
 Abnormal
normal
 Abnormal

Figure 3.10: Reduced MHMs (using 9 eigenmemories) for the intervals between 250 and 259, in which qsort is
launched.

1. Application Addition/Deletion

While the MiBench benchmark applications mentioned above are running, we launched another application,

qsort (execution time: 6 ms, period: 30 ms). Figure 3.9 shows the log probability density of the MHMs moni-

tored over 5 seconds (i.e., 500 intervals). The two horizontal lines show the thresholds corresponding to the 0.5% and

1% quantiles determined from the new normal set (explained above). Until the 250th interval, our anomaly detector

determined that 0 and 2 MHMs are abnormal according to θ0.5 and θ1, respectively; these values are the false positive

rates of 0% and 0.8%, respectively.

The qsort application was launched some moments after the 250th interval. The figure shows that the probability

densities drop immediately and stays low afterward. Figure 3.10 shows the sequence of reduced MHMs obtained for

the intervals between 250 and 259. Compare these with the ones from Figure 3.8, for example from 9 to 18.9 The

MHMs of interval 256, 258 and 259 are notably different from those for normal execution. Hence, they represent

low probability densities as shown in Figure 3.9. Now, if we look at the original MHMs, we can identify what makes

them look abnormal. Figure 3.11 shows the original MHMs for intervals 236, 246 and 256. As we can see, the 256th

9Notice that the sequence was drifted by an interval. This is because we did not try to fine-tune the timer.

47

246
 256
236

Figure 3.11: The original memory heat maps for intervals 236, 246, and 256 when qsort is launching.

0 50 100 150 200 250
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Interval Index

lo
g 10

 f(
M

)

bitcount exited

Normal state

✓1

✓0.5

lo
g

P
r(

M
)

Figure 3.12: The log probability density when bitcount exits at around 170th interval.

interval is different from what is expected; its probability density was 0 – this explains why there is a discontinuation

in the log probability density plot. In this particular situation, the abnormality is due to the use of kernel facilities to

launch the new application (qsort). Also, notice that even after qsort is launched some of the MHMs look normal

according to threshold θ1. This is valid since during those intervals qsort does not execute. Nevertheless, they are

low compared to normal because the timings of the other tasks are affected by qsort.

We tested another scenario where one of the applications, bitcount, exits at an unexpected time. As shown in

Figure 3.12, the monitor was able to easily detect the point in time when the application exited and also its absence

after that. This is due to that the contributions of bitcount to those MHMs are not present anymore, thus changing

their nature.

2. Shellcode Execution

A shellcode is a small piece of code that can be injected in the guise of data. It is typically sent over a network

or embedded in a file and can be executed by exploiting certain vulnerabilities, e.g., buffer overflows or format string

vulnerabilities. In our evaluation, we inject a shellcode into the bitcount application which results in the execution

of the code at a certain point. This is a much simpler way to launch a shellcode attack than exploiting a vulnerability

such as buffer overflow. Thus, the result would be more significant if such attack was employed.

48

0 50 100 150 200 250 300 350 400
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Interval Index

lo
g 10

 f(
M

)

Shellcode execution
(kill all processes)

Normal state

✓1

✓0.5

lo
g

P
r(

M
)

Figure 3.13: The log probability density when a shellcode kills all processes.

Interval Index
0 50 100 150 200 250 300 350 400

lo
g 10

 f(
M

)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
Shellcode execution

(disable ASLR)

Normal state

✓1

✓0.5

lo
g

P
r(

M
)

Figure 3.14: The log probability density when a shellcode disables ASLR.

We tested two pieces of shellcode that target Linux on ARM processor.10 The first one kills all the processes

by first obtaining root privileges (using setuid(0)) and then calling kill(-1, SIGKILL). This shellcode is

easily detectable as shown in Figure 3.13 since all the applications disappear. An escalation in the privileges for an

application in itself makes the MHMs look very abnormal (and thus made the probability density to be zero) because

such activity had not been seen before, during the normal system execution.

The next shellcode disables the address space layout randomization (ASLR)11 mechanism in Linux/ARM [16].

Again, this shellcode was launched through the bitcount application. The result is shown in Figure 3.14. The

shellcode executed some moments after the 250th interval. This shellcode was easily detectable because the shellcode

eventually kills its original host, i.e., bitcount. In fact, most shellcodes can be detected because they typically kill

the host process by spawning a shell.

10http://shell-storm.org/shellcode
11ASLR randomizes process memory layout to prevent an attacker from exploiting buffer overflows.

49

http://shell-storm.org/shellcode

0 50 100 150 200 250 300 350 400
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Interval Index

lo
g 10

 f(
M

)

Rootkit Launched

Normal state ‘read’ system call hijacked
(print out fd, buf, size)

✓1

✓0.5

lo
g

P
r(

M
)

Figure 3.15: The log probability density when a rootkit hijacks read system calls.

3. Kernel Rootkit

Kernel rootkits [21] are software that subvert the kernel to obtain privileged access to kernel data structures and

perform malicious activities while hiding from detectors. Such rootkits typically get into the system in the guise of

loadable kernel modules (LKMs); an LKM gives attackers the same privilege as those for the base kernel. Most

existing kernel rootkits that are publicly available do not work on our Linux kernel version (3.4) for a variety of

reasons. Thus, we created a simple LKM that resembles the most representative type of such rootkits, i.e., ones that

perform system call hijacking [121]. Our LKM redirects the read system call by modifying the corresponding entry

in the system call table, sys call table[NR READ]. The new, malicious, read handler just prints out the file

descriptor number, the buffer address and the number of bytes that are read. It then calls the original handler so that

the process that issued the original read would be served correctly (thus escaping detection). Note that an LKM

in Linux is loaded onto the kernel’s virtual address space that is outside our target memory region (i.e., the logical

address space). Thus, the execution of the new read handler is not captured, although that of the original handler is

still noted.

Figure 3.15 shows the log probability density of MHMs monitored in this scenario. The rootkit was launched

by modprobe at around the 200th interval. This resulted in a zero probability density due to the kernel functions

such as load module that loads kernel modules. After the launch, some MHMs indicated low probability densities

especially those when sha executes. It calls some fread function which eventually leads to the read system call.

Our rootkit hijacks it and prints out information using printk function; this makes the MHMs look abnormal. As

the figure shows abnormal MHMs repeat roughly every 10 intervals – this is sha’s period.

Next, we made the rootkit stealthier; our read handler first executes the original handler and then just reads the

buffer that is returned by the original handler and nothing else. Figure 3.16 shows the memory traffic volume of the

monitored region. The moment when the rootkit is being loaded is distinguishable as expected. However, after the

50

Interval Index
0 50 100 150 200 250 300 350 400

To
ta

l n
um

be
r o

f a
cc

es
se

s

#104

0

2

4

6

8

10

12

14
Rootkit Launched

‘read’ system call hijacked
Normal state

T
o
ta

l
n
u
m

b
er

of
a
cc

es
se

s

Figure 3.16: The memory traffic volume when the read system call is hijacked by a rootkit.

Interval Index
0 50 100 150 200 250 300 350 400

lo
g 10

 f(
M

)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
Rootkit Launched

Normal state
 ‘read’ system call hijacked

✓1

✓0.5

lo
g

P
r(

M
)

Figure 3.17: The log probability density when a (stealthier) rootkit hijacks read system calls.

launch the traffic does not show abnormalities in terms of the volume. This is because the rootkit still calls the original

read handler which resides in the region being monitored.

Nevertheless, even such stealthy activities (reading the buffer) showed somewhat low probability densities, though

not always statistically distinguishable, as shown in Figure 3.17. In fact, even those MHMs that show low probability

densities after the rootkit was launched did not provide visible clues on what caused such results. However, given that

many MHMs are normal and the abnormal ones’ appear synchronized with sha (whose period is 100 ms), it is likely

that the delays due to read system call hijacking have resulted in timing changes to sha’s execution (which uses

many read system calls) and, as a result, its contributions to the MHMs.

It should be noted that finding the location of the sys call table is not a straightforward task (for attackers)

since it is not a global symbol in newer kernels. It necessitates a search in the kernel address space and this would

likely increase the chance that the memory heat maps look abnormal. In our implementation, we obtained the address

for the sys call table from the System.map and hard-coded it in the module. Thus, no run-time search was

51

needed which, in reality, makes it harder to detect than the real-world scenarios. In spite of this, there were enough

differences in the MHMs. When real attack codes search for the table the differences will stand out more.

3.5.4 Analysis Time

We measured the time to perform the analysis on a newly observed MHM, i.e., how long it takes to decide whether

it is normal or not. For the parameters used in the evaluations above (L = 1472, L′ = 9, J = 5), it took 358 µs,

on average, on Simics. This time is very short compared to the interval (10 ms). For a coarse cell granularity of 8

KB (results in L = 368), it took 100 µs on average. For a smaller number of eigenmemories (L′ = 5), the average

time is 216 µs since the information is less precise. Each number is based on 1, 000 samples of MHMs. The results

show the computational efficiency of our method. Note that these are the times spent on the secure core. Hence, our

methods do not impose any overheads on the execution of the main system (i.e., the OS and applications running on

the monitored core).

3.5.5 Limitation

The proposed architecture is based on a dual-core configuration in which one core, secure core, analyzes the memory

heat map created from another core. When extending the proposed technique to support more than two cores, while the

on-line analysis overhead would be still negligibly small as explained in Section 3.5.4, the required hardware change

in the Memometer could be overhead. For AMP (Asymmetric Multiprocessing) architectures on which multiple

operating systems run, the Memometer should be replicated for each OS instance. However, for SMP (Symmetric

Multiprocessing) architectures on which a single operation system runs, the Memometer would need only one set of

MHM memories (see Figure 3.5) as there is only one OS kernel running on the system. Nevertheless, each monitored

core still needs to be hooked by the Memometer because the OS kernel can run at any core at any given time. Hence,

the address snoop and filtering logic should be replicated on the Memometer.

One solution to scale the proposed technique well with additional cores could be placing the Memometer at a

lower part of the memory subsystem such as the shared cache or even on the bus. In this case, we would need only

a single Memometer for the cores being monitored, which significantly simplifies the architecture.12 However, the

accuracy of the memory behavior model could drop since the Memometer loses parts of memory access information

due to cache hits. Nevertheless, we expect that the accuracy drop would not be significant because of the predictive

nature of real-time application executions.

Some systems may exhibit highly unpredictable, but yet legitimate, memory usage caused by, for example, network

12However, an AMP configuration requires an additional logic to figure out from which core a memory transaction comes. Thus, an SMP
architecture would be more suitable for the proposed technique.

52

activities or user interactions. In these cases, our current model may alarm many false positives. To deal with such

problems, we plan to build a robust classification algorithm by extracting local features from MHMs in an unsupervised

manner as in Deep Learning [74].

3.6 Conclusion

We showed that the use of memory heat maps can be effective in detecting anomalous system-wide behavior of

real-time embedded systems. We demonstrated a novel use of image recognition algorithm and a multicore-based

architecture to make the process of detecting anomalous behavior more efficient. Our evaluation using a prototype

showed that we are able to detect a wide variety of system-wide anomalies.

In this work, we used a general-purpose operating system. Our techniques will be even more effective when

applied to a real-time operating system (RTOS) as it has a more deterministic memory usage. Possible future work

also includes extending the architecture to support more than two cores and evaluating the required hardware changes,

and exploring Deep Learning-based technique to deal with more complex embedded systems.

53

Chapter 4

Learning Execution Contexts from System
Call Distribution for Anomaly Detection in
Smart Embedded Systems
This chapter proposes a lightweight method for detecting anomalous executions using a distribution of system call

frequencies. In contrast to previous chapters, we target general types of (more complex) embedded systems that do

not necessarily show regular patterns in low-level (e.g., timing or memory) behaviors. We aim to detect abnormal high-

level execution contexts. We use a cluster analysis to learn the legitimate execution contexts of embedded applications

and then monitor them at run-time to capture abnormal executions. Our prototype applied to a real-world open-source

embedded application shows that the proposed method can effectively detect anomalous executions without using

sophisticated analyses or affecting the critical execution paths.

4.1 Introduction

Traditional behavior-based anomaly detection systems rely on specific signals such as network traffic [71, 135], control

flow [35, 52], system calls [63, 104, 46], etc. The use of system calls, especially in the form of sequences [63, 76, 150,

100, 61, 140], has been extensively studied in behavior-based anomaly detection for general-purpose systems since

malicious activities often use system calls to execute privileged operations on system resources. In this chapter, we

present an anomaly detection mechanism for embedded systems using a system call frequency distribution (SCFD).

Figure 4.1 presents an example. It represents the numbers of occurrences of each system call type for each execution

run of an application. The key idea is that the normal executions of an application whose behavior is regular can be

0

5

10

15

20

write close munmap close unlink symlink mmap2 gettimenanosle ioctl open fstat64 accept

N
um

be
r o

f c
al

ls

Figure 4.1: A system call frequency distribution (SCFD) obtained from Motion.

54

modeled by a small set of distinct system call distributions (e.g., Figure 4.12 in Section 4.5), each of which corresponds

to a high-level execution context. We use a cluster analysis to learn distinct execution contexts from a set of SCFDs

and to detect anomalous behavior.

Our detection method is lightweight, has a deterministic time complexity – hence, it fits well for resource-

constrained embedded systems. This is due to the coarse-grained and concise representation of SCFDs. Although

it can be used for offline analysis, we demonstrate an implementation on an embedded computing board [20] and

show that minor modifications to the operating system and architectural supports from modern embedded processors

enable us to monitor and analyze the run-time system call usage of applications in a secure, non-intrusive manner.

We use a real-world open-source application [18] and demonstrate that SCFDs can effectively detect certain types of

abnormal execution contexts that are difficult for traditional sequence-based approaches. Detailed results including

the sequence-based security analysis is presented in Section 4.5.

Hence, the high-level contributions of this work are:

• We introduce a lightweight method, utilizing the predictable nature of embedded system behaviors, with a

deterministic time complexity for detecting anomalous execution contexts of embedded systems based on the

distribution of system call frequencies.

• We present a detailed security analysis on a real-world application and successful attacks that can fundamentally

circumvent sequence-based detection methods.

• We demonstrate our technique with the target application on an embedded computing board and evaluate its

advantages and limitations using various attack scenarios.

4.2 Overview

The main idea behind SCFD is to learn the normal system call profiles, i.e., patterns in system call frequency dis-

tributions, collected during legitimate executions of a sanitized system. Analyzing profiles is challenging especially

when such profiles change, often dramatically, depending on the execution modes, events, and inputs. We address this

issue by clustering the distribution of system calls capturing legitimate behavior. Each cluster then can be a signature

that represents a high-level execution context, either in a specific mode/event or for similar input data. Then, given an

observation at run-time, we test how similar it is to each previously calculated cluster. If there is no strong statistical

evidence that it is a result of a specific execution context then we consider the execution to be malicious with respect

to the learned model.

55

Motion
Frame
Save

Snapshot
Save

Leak Out
Motion
Frame

open-fstat64-mmap2-write- ...
-write-close-munmap-clone-write-write-

open-fstat64-mmap2-write- ...
-write-close-munmap-clone-write-

open-fstat64-mmap2-write- ...
-write-close-munmap-clone-write-write-

...
...

...
...

Ti
m

e

Figure 4.2: Sequence of system calls made by Motion (used in the evaluation in Section 4.4). An attacker can use
the exact same routine used by the legitimate code to leak an image out.

4.2.1 Attacks against Sequence-based Approach

Although sequence-based methods can capture detailed, temporal relations in system call usages, they may fail to

detect abnormal execution contexts. This is because sequence-based approaches fundamentally profile the local, tem-

poral relations among system calls within a limited time frame. Figure 4.2 highlights such a case. The system calls

shown in the figure are generated by Motion [18], an open-source motion detection application used in our eval-

uation. Each Motion loop saves the current motion frame to the filesystem if a motion is detected (the top block

in the figure). A snapshot is saved too (the bottom block), independently, at a regular interval (e.g., once per 5 sec-

onds). These two blocks use the same routine to save the images to files and thus generate same sequence of system

calls as depicted. We were able to insert a small piece of code that leaks out the current motion frame to a desired

location in the filesystem while making the resulting system call sequences still look legitimate (the detail is given in

Section 4.5.1). This was possible because (i) the sequence patterns generated only by the inserted block are identical

to those made by the other two blocks (since the same routine is used) and (ii) no new patterns are generated by

transitions across the blocks. Note that if only one of the legitimate blocks execute, the resulting sequences are still

legitimate because the inserted block looks like the other block that did not execute. The only way a sequence-based

approach can detect such a malicious execution is to know patterns that are long enough to learn the temporal relation-

ship between the two legitimate blocks. That is, the expected sequence patterns must know what system calls should

follow after two file operations. However, this is highly unlikely because the required pattern lengths are often too

long and also can vary greatly due to variations in data (i.e., image) sizes.

An attacker who has access to the target application code can implement such a stealthy, malicious code that

modifies the high-level execution context while not disturbing the system call sequence patterns. This is more probable

especially when the target application has such a vulnerable structure as described above. In contrast to sequence-

based techniques, our SCFD method can easily detect abnormal deviations in high-level, naturally variable execution

56

0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0

0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0

77 1 1 2 0 0 1 3 1 2 1 1 0
76 1 1 2 0 0 1 3 1 2 1 1 0
77 1 1 2 0 0 1 3 1 2 1 1 0
77 1 1 2 0 0 1 3 1 2 1 1 0
76 1 1 2 0 0 1 3 1 2 1 1 0
76 1 1 2 0 0 1 3 1 2 1 1 0
76 1 1 2 0 0 1 3 1 2 1 1 0
74 1 1 2 0 0 1 3 1 2 1 1 0
75 1 1 2 0 0 1 3 1 2 1 1 0
75 1 1 2 0 0 1 3 1 2 1 1 0

2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0

1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0

74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0

74 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
76 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
76 1 2 2 0 0 2 4 1 2 1 1 0
74 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
76 1 2 2 0 0 2 4 1 2 1 1 0

150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
148 2 2 3 1 1 2 3 0 2 2 2 0
151 2 3 3 1 1 3 4 0 2 2 2 0
148 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0

76 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
76 1 1 1 1 1 1 3 1 2 1 1 0
77 1 1 1 1 1 1 3 1 2 1 1 0
75 1 1 1 1 1 1 3 1 2 1 1 0

75 1 2 1 1 1 2 4 1 2 1 1 0
75 1 2 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0
75 1 2 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0
75 1 2 1 1 1 2 4 1 2 1 1 0
75 1 3 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0

77 1 1 1 1 1 2 4 1 3 1 1 1
1 0 2 0 0 0 1 4 1 2 0 0 0
1 1 1 0 0 0 1 4 1 2 0 0 0
3 0 0 0 0 0 1 4 1 3 0 0 1
1 0 2 0 0 0 1 4 1 2 0 0 0
2 0 0 0 0 0 1 4 1 2 0 0 0
1 0 2 0 0 0 1 4 1 2 0 0 0
1 1 1 0 0 0 1 4 1 2 0 0 0
68 1 1 2 0 0 1 3 1 2 1 1 0
66 1 1 2 0 0 1 3 1 3 1 1 0

220 3 3 4 1 1 3 3 0 2 3 3 0

149 2 2 3 0 0 2 3 1 2 2 2 0148 2 4 3 0 0 3 4 0 2 2 2 0

152 3 3 3 0 0 3 4 0 2 2 2 0

Normal SCFD Patterns

Abnormal SCFDs

Figure 4.3: The normal SCFD patterns (top) obtained from Motion in normal executions and abnormal SCFD
examples (bottom) due to the execution of the malicious block in Figure 4.2.

contexts such as the one illustrated above (Figure 4.2) since the SCFD significantly changes due to the malicious

execution; the SCFDs at the bottom in Figure 4.3 are clearly abnormal when compared to each of the normal patterns

for Motion (the 11 patterns shown in the top of the figure). Also, if the attacker corrupts the integrity of the data (for

instance, erases the motion frame so that no motion can be detected) then our method is able to detect it – this is not

easy for sequence-based methods as we explain in Section 4.5.1. Hence, by using these two approaches together, one

can improve the overall accuracy of the system call-based anomaly detection.

4.2.2 Adversary Model

We consider threat models that involve changes to the behavior of system call usage. If an attack does not invoke or

change any system calls, the activity at least has to affect executions afterward so that the future system call usage

may change. The methods in this work, as they stand, cannot detect attacks that never alter system call usage and that

just replace certain system calls by hijacking them (e.g., altering kernel system call table) [13]. These attacks cannot

be detected by any system call pattern monitoring methods.

We especially consider stealthy, indirect attacks, e.g., ones that collect important system information or leak out

sensitive data while the system/application is functioning normally; or attacks that degrade the availability of such

systems. The attacker may have installed the target program in the system or induced users to download the modified

source code or the executable binary using, for example, a social engineering tactic. We do not focus on more active

attacks such as process killing, privilege escalation, etc., as these will change the system call usage in an obvious way.

57

4.2.3 Assumptions

The following assumptions are made in this work:

• We consider applications that execute in a repetitive fashion which fits well for embedded applications (e.g.,

sensing and computation). Motion, used in our prototype and evaluation, is an example. We monitor and

perform a legitimacy test at the end of each invocation of a task.

• We limit ourselves to applications where most of the possible execution contexts can be profiled ahead of

time. Hence, the behavior model is learned under the stationarity assumption – this is a general requirement

of most behavior-based anomaly detection systems [56]. This can be justified by the fact that most embedded

applications have a limited set of execution modes and input data falls within fairly narrow ranges. Also, a

significant amount of analysis of embedded systems is carried out post-design/implementation anyways [64]

for a variety of reasons. Hence, the information about the usage of system calls can be rolled into such a-priori

analysis. Our method may not work well for applications that do not exhibit execution regularities but such

systems are not the focus of our work anyways.

• The profiling is carried out prior to system deployment when the application is trustworthy. Also, any updates

to the applications or the system must be accompanied by a repeat of the profiling process. We assume that

the stored profile cannot be tampered with (for example, by hardware-based protections [153, 162, 156]). As

mentioned earlier, these assumptions must hold for any behavior-based monitoring/detection mechanisms.

As mentioned above, we assume that an abnormal execution will exhibit a different pattern of system call usage.

For example, an execution that leaks out a sensitive information would make use of network-related system calls (e.g.,

socket, connect, write, etc.) thus changing the frequencies of these calls.

4.3 Anomaly Detection Using Execution Contexts Learned from System

Call Distributions

We now present our novel method to detect abnormal execution contexts in embedded applications by monitoring

changes in system call frequency distributions.

4.3.1 Definitions

Let S = {s1, s2, . . . , sD} be the set of all system calls provided by an operating system, where sd represents the

system call of type d. During the nth execution of an application, it calls a multiset σn of S . Let us denote the nth

58

Cluster 3D

Cluster 2

B

C

of system call s1

of

 s
ys

te
m

 c
al

l s
2

Cluster 1A
Cutoff
Distance

Figure 4.4: System call frequency distributions for S = {s1, s2} and clusters. The gray-colored objects are SCFDs in
the training set. Each star-shaped point inside each cluster is its centroid. The ellipsoid around each cluster draws the
cutoff line of the cluster; the points inside of the line are legitimate with respect to the cluster.

system call frequency distribution (or just system call distribution) as xn = [m(σn, s1),m(σn, s2), . . . ,m(σn, sD)]T ,

where m(σn, sd) is the multiplicity of the system call of type d in σn. Hereafter, we simplify m(σn, sd) as xnd . Thus,

xn = [xn1 , x
n
2 , . . . , x

n
D]T .

We define a training set, i.e., the execution profiles of a sanitized system, as a set of N system call frequency

distributions collected from N executions, and is denoted by X = [x1,x2, . . . ,xN]T . The clustering algorithm

(Section 4.3.3) then maps each xn ∈ ND to a cluster ci ∈ C = {c1, c2, . . . , ck}. We denote by c : {x1, · · · ,xN} → C

the cluster that xn ∈ X belongs to.

4.3.2 Learning Single Execution Context

The variations in the usage of system calls will be limited if the application under monitoring has a simple execution

context. In such a case, it is reasonable to consider that the executions follow a certain distribution of system call

frequencies, clustered around a centroid, and cause a small variation from it due to, for example, input data or execution

flow. This is a valid model for many embedded systems since the code in such system tends to be fairly limited in

what it can do. Hence, such analysis is quite powerful in detecting variations and thus catching anomalies.

For a multivariate distribution, the mean vector µ = [µ1, µ2, . . . ,µD]T , where µd = (
∑N
n x

n
d)/N , can be used

as the centroid. Figure 4.4 plots the frequency distributions of two system call types (i.e., D = 2). For now, let us

consider only the data points (triangles) on the left-hand side of the figure. The data points are clustered around the

star-shaped marker that indicates the centroid of the distribution formed by the points. Now, given a new observation

from the monitoring phase, e.g., the point marked ‘A’, a legitimacy test can be devised that tests the likelihood that

such an observation is actually part of the expected execution context. This can be done by measuring how far the

new observation is from the centroid. Here, the key consideration is on the distance measure for testing legitimacy.

59

One may use the Euclidean distance between the new observation x∗ and the mean vector of a cluster, i.e., ||x∗−

µ|| =
√

(x∗ − µ)T (x∗ − µ). Although the Euclidean distance (or L2-norm) is simple and straightforward to use,

the distance is built on a strong assumption that each coordinate (dimension) contributes equally while computing the

distance. In other words, the same amount of differences in xn1 and xn2 are considered equivalent even if, e.g., a small

variation in the usage of system call s2 is the stronger indicator of abnormality than system call s1. Thus, it is more

desirable to allow such a variable contribute more. For this reason, we use the Mahalanobis distance [99], defined

as
√

(xn − µ)TΣ−1(xn − µ), for a group of data set X, where Σ is the covariance matrix of X.1 Notice that the

existence of Σ−1 is the necessary condition to define the Mahalanobis distance; i.e., the difference of the frequency of

each system call from the mean (i.e., what is expected) is augmented by the inverse of its variance.

Accordingly, if we observe a small variance for certain system calls during the training, e.g., execve or socket,

we would expect to see a similar, small, variation in the usage of the system calls during actual executions as well. On

the other hand, if the variance of a certain system call type is large, e.g., read or write, the Mahalanobis distance

metric gives a small weight to it in order to keep the distance (i.e., abnormality) less sensitive to changes in such system

calls. Cluster 2 in Figure 4.4 shows an example of the advantage of using the Mahalanobis distance over the Euclidean

distance. Although C is closer to the centroid than B is in terms of the Euclidean distance, it is more reasonable to

determine that C is an outlier and B is legitimate because we have not seen (during the normal executions) frequency

distributions such as the one exhibited by C while we have seen a statistically meaningful amount of examples like

B. As an extreme case, let us consider D which is quite close to Cluster 3’s center in terms of the Euclidean distance.

However, it should be considered malicious because s2 (i.e., the y-axis) should never vary.

Using covariance values also make it possible to learn dependencies among different system call types. For

instance, an occurrence of the socket call usually accompanies open and many read or write calls. Thus, we

can easily expect that changes in socket’s frequency would also lead to variations in the frequencies of open, read

and write. Cluster 1 in Figure 4.4 is such an example that shows covariance between the two system call types. On

the other hand, they are independent in Cluster 2 and 3. Thus, using the Mahalanobis distance we can not only learn

how many occurrences of each individual system call should exist but also how they should vary together.

Now, given a set of system call distributions, X = [x1,x2, . . . ,xN]T , we calculate the mean vector, µ, and the

covariance matrix, Σ, for this data set. It then can be represented as a single cluster, c, whose centroid is defined as

(µ,Σ). Now, the Mahalanobis distance of a newly observed SCFD, x∗, from the centroid is

dist(x∗, c) =
√

(x∗ − µ)TΣ−1(x∗ − µ). (4.1)

1Σ is the positive definite. If we set Σ = I, the Mahalanobis distance is equivalent to the Euclidean distance. Thus, the Mahalanobis distance
is more expressive than the Euclidean distance.

60

If this distance is greater than a cutoff distance θ, we consider that the execution to be malicious. For example, B in

Figure 4.4 is considered legitimate with respect to Cluster 2. One analytic way to derive this threshold, θ, is to think

of the Mahalanobis distance with respect to the multinomial normal distribution,

p(x∗) =
√
|Σ|(2π)D

−1
exp

(
− 1

2
dist(x∗, c)2

)
. (4.2)

That is, we can choose a θ such that the p-value under the null hypothesis is less than a significant level p0, e.g., 1% or

5%. In general, there is no analytic solution for calculating the cumulative distribution function (CDF) for multivariate

normal distributions. However, it is possible to derive the CDF with Mahalanobis distance. The cutoff distance θ can

be derived by finding the smallest distance that makes the probability that a data point x, which in fact belongs to the

cluster and has a distance farther than θ, is not greater than p0 = 0.01 or 0.05. First, let z be a Mahalanobis distance

from a multivariate normal distribution. Then,

∫ θ

0

c · e− 1
2 z

2

dz = 1− p0, (4.3)

where c is a normalizing constant that satisfies Eq. (4.3) with θ = ∞ and p0 = 0 by the definition of a probability

density function. This results in c = 1/1.25331 because

∫ ∞
0

e−
1
2 z

2

dz w
[
1.25331 · erf(0.707107 · z)

]∞
0

= 1.25331,

where erf(z) is the error function and is 1 and 0 for z =∞ and z = 0, respectively. Accordingly, Eq. (4.3) becomes

1

1.25331

∫ θ

0

e−
1
2 z

2

dz w
1

1.25331

[
1.25331 · erf(0.707107 · z)

]θ
0

= erf(0.707107 · θ) = 1− p0.

Therefore, the cutoff distance θ for a significant level p0 is

θ =
erf−1(1− p0)

0.707107
. (4.4)

For p0 = 1% and 5%, θ ∼ 2.57583 and 1.95996, respectively. Figure 4.5 shows the cutoff distance for 0% ≤ p0 ≤

100%. The cutoff distance is not bounded (i.e., θ =∞) when p0 = 0% and is 0 when p0 = 100%.

61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

Significant level, p
0

C
u
to

ff
 d

is
ta

n
c
e
,

θ

Figure 4.5: The cutoff distance θ for significant level p0.

4.3.3 Learning Multiple Execution Contexts

In general, an application may show widely varying system call distributions due to multiple execution modes and

varying inputs. In such scenarios, finding a single cluster/centroid for the whole set can result in inaccurate models

because it would include many non-legitimate points that belong to none of the execution contexts – i.e., the empty

space between clusters in Figure 4.4. Thus, it is more desirable to consider that observations are generated from a

set of distinct distributions, each of which corresponds to one or more execution contexts. Then, the legitimacy test

for a new observation x∗ is reduced to identifying the most probable cluster that may have generated x∗. If there is

no strong evidence that x∗ is a result of an execution corresponding to any cluster then we determine that x∗ is most

likely due to malicious execution.

Suppose we collect a training set X = [x1,x2, . . . ,xN]T where xn ∈ ND. To learn the distinct distributions, we

use the k-means algorithm [96] to partition the N data points on a D-dimensional space into k clusters. The k-means

algorithm works as follows:

1. Initialization: Create k initial clusters by picking k random data points from X.

2. Assignment: For each xn ∈ X, assign it to the closest cluster c(xn), i.e.,

c(xn) = arg min
ck∈C

dist(xn, ck). (4.5)

3. Update: Re-compute the centroid (i.e., µ and Σ) of each cluster based on the new assignments.

62

Algorithm 1 GLOBAL K-MEANS(X, MAXK, BoundTD)
1: {X: the training set}
2: {MAXK: the maximum number of clusters}
3: {BoundTD: the total distance bound}
4: Create c1 with X. Calculate µ1 and Σ1.
5: C ← {c1}, k ← 2, MinTD ←∞
6: while k ≤ MAXK or total-dist(X, C) > BoundTD do
7: for n = 1, . . . , N do
8: Create ck with xn as its initial point.
9: C′ ←k-means(X, C ∪ ck)

10: if total-dist(X, C′) < MinTD then
11: {Note: The best clustering for k so far}
12: C∗ ← C′
13: MinTD ← total-dist(X, C′)
14: end if
15: end for
16: C ← C∗
17: k ← k + 1
18: end while
19: return C

The algorithm repeats steps 2 and 3 until the assignments stop changing. Intuitively speaking, the algorithm keeps

updating the k centroids until the total distance of each point xn to its cluster,

total-dist(X, C) =

N∑
n=1

dist(xn, c(xn)), (4.6)

is minimized.

The k-means algorithm requires a strong assumption that we already know k, the number of clusters. However,

this assumption does not hold in reality because the number of distinct execution contexts is not known ahead of

time. Moreover, the accuracy of the final model heavily depends on the initial clusters chosen randomly.2 Hence,

we use the global k-means method [94] to find the number of clusters as well as the initial assignments that lead to

deterministic accuracy. Algorithm 1 illustrates the global k-means algorithm. Given a training set X of N system

call frequency distributions, the algorithm finds the best number of clusters and assignments. This is an incremental

learning algorithm that starts from a single cluster, c1, consisting of the entire data set. In the case of k = 2, the

algorithm considers each xn ∈ X as the initial point for c2 and runs the assignment and updates steps of k-means

algorithm. After N trials, we select the final centroids that resulted in the smallest total distance calculated by Eq.

(4.6). These two centroids are then used as the initial points for the two clusters, respectively, in the case of k =

3. This procedure repeats until either k reaches a pre-defined MAXK, the maximum number of clusters, or the total

distance value becomes less than the total distance bound BoundTD. Note that the total distance in Eq. (4.6) decreases

2Finding the optimal assignment in the k-means algorithm with the Euclidean distance is NP-hard. Thus, finding the optimal assignments with
the Mahalanobis distance is at least NP-hard because the Mahalanobis distance is more general than the Euclidean distance.

63

monotonically with the number of clusters. For example, if every point is its own cluster then the total distance is zero

since each point itself is the centroid.

The original global k-means algorithm assumes the Euclidean distance. As explained above, we use the Maha-

lanobis distance as in Eq. (4.1). Meanwhile, k-means(X, C) (line 9) is the standard k-means algorithm without

the random initialization; it assigns the points in X to a ck ∈ C, update the centroids, repeats until stops, and then

returns the clusters with the updated centroids. The standard k-means algorithm uses the Euclidean distance and thus

the centroids of the initial clusters are the data points that were picked first. Remember, however, that the Maha-

lanobis distance requires a covariance matrix. Since there would be only one data point in each initial cluster we

use the global covariance matrix of the entire data set X for the initial clusters. After the first iteration, however, the

covariance matrix of each cluster is updated using the data points assigned to it.

The clustering algorithm finally assigns each data point in the training set into a cluster. Then, each cluster ci ∈ C

can be represented by the centroid, (µi,Σi), that now makes it possible to calculate the Mahalanobis distance of a

newly observed SCFD x∗ to each cluster using Eq. (4.1). The legitimacy test of x∗ is then performed by finding the

closest cluster, c∗, using Eq. (4.5). Thus, if

dist(x∗, c∗) = min
ci∈C

dist(x∗, ci) > θ

for a given threshold θ, we determine that the execution does not fall into any of the execution contexts specified by the

clusters since dist(x∗, ci) > θ for all i = 1, . . . , k. We then consider the execution to be malicious. As an example,

for the new observation C in Figure 4.4, Cluster 2 is the closest one and C is outside its cutoff distance. Thus, we

consider that C is malicious. Note that, as shown in the figure, the same cutoff distance defines different ellipsoids

for different clusters; each ellipsoid is a equidistant line from the mean vector measured in terms of the Mahalanobis

distance. Thus, a cluster with small variances (i.e., less varying execution context) would have a smaller ellipsoid in

the Euclidean space.

4.3.4 Reduced SCFD

The number of system call types, i.e., D, is quite large in general. Thus, the matrix calculations in Eq. (4.1) might

result in an unacceptable amount of analysis overhead.3 However, embedded applications normally use a limited

subset of system calls. Furthermore, we can significantly reduce the dimensionality by ignoring system call types that

never vary. Consider Cluster 3 from Figure 4.4. Here, x2 can be ignored since we can reasonably expect it to never vary

3Note that µ and Σ values are calculated from the clustering algorithm which is an offline analysis. Thus we store Σ−1 for computational
efficiency.

64

Time

Frame
Capture

Motion
Detection

Tuning,
Text/Graphics

Overlay
Event &
Action Snapshot Video

Loopback
Parameter

Update
Frame-rate

Control

1/Frame-rate

Frame
Capture

Motion detection by Motion Raspberry PI 2 with USB Camera

Image Server

Network
Live CAM

Figure 4.6: Motion’s main execution process (top). The main loop repeats at the frame rate (e.g., 3 frames per
second). Some of the blocks execute only when certain event occurs and hence they may not appear in every loop.

during the normal execution.4 Thus, before running the clustering algorithm, we reduce S to S ′ = {sd1 , sd2 , . . . , sD′},

where D′ ≤ D, such that the variance of xd for each sd ∈ S ′ is non-zero in the entire training set X. However, we

should still be able to detect any changes in such system calls that never varied (including those that never appeared).

Thus, we merge all such xd in S − S ′; the sum should not change in normal executions. In case D′ is still large, one

may apply a statistical dimensionality reduction technique such as Principal Component Analysis (PCA) [84].

4.4 Evaluation Framework

In this section, we present the implementation details for our prototype.

4.4.1 Target Application

We use Motion [18], an open-source program that monitors images captured from a camera and detects motion by

tracking changes between image frames as illustrated in Figure 4.6. It is often used for surveillance purpose and

provides live streaming and external program execution when certain events (e.g., motion detection, on file creation,

etc.) are detected.

Figure 4.6 also shows Motion’s main execution process. The main loop consists of a series of blocks. Each

loop starts by capturing an image frame from the camera using the Video4Linux (V4L) interface. Next, motion

detection algorithm looks for changes from the previous frames. When a change (i.e., motion) is detected, each frame

is saved to the filesystem. Following this, some pre-defined event actions could trigger external programs (such as

4In fact, s2 cannot be ignored in the example depicted in Figure 4.4 since its variance is non-zero in clusters 1 and 2.

65

Secure
Monitor

Linux
Core 3Core 0, 1, 2

App

Profiles

AppAppApp
SWI

Handler

Mailboxes
PID, SC#

Figure 4.7: System call monitoring framework implemented on Broadcom BCM2836 SoC. System calls made by
applications are captured by the software interrupt handler in Linux and are reported to Core 3 through a set of
mailboxes.

executing a script file, uploading image to a remote image server, etc.). This main loop repeats at the specified frame

rate (such as 3 frames per second). Depending on the events, some of the blocks may not execute in every loop.

In our configuration, a python script that logs the current time in a file executes (by on motion detected event

handler in Motion) when a motion is detected, and the wput Linux command is executed to upload the newly

created images (by on picture save event handler) to a remote server. These external commands are executed by

separate processes forked by the main process.

4.4.2 System Implementation

We implemented a prototype of our SCFD-based anomaly detection system on a Raspberry PI 2 Model B board [20].

It has a quad-core ARM Cortex-A7 CPU. Each core runs at 900 MHz. The system has a memory of 1 GB and runs

Linux 3.18.

Figure 4.7 shows our system call monitoring framework implemented on Broadcom BCM2836 SoC (System-on-

Chip) [6] on the Raspberry PI 2 board. We inserted a hook in the software interrupt (SWI) handler that dispatches each

system call handler. The hook sends the system call number and the PID (Process ID) of the caller to the monitoring

process (called Secure Monitor) on Core 3 through a set of mailboxes. Each mailbox on BCM2836 SoC is a 32-bit

wide core-to-core communication channel. The secure monitor performs the detection process presented in Section 4.3

using the SCFD built from the reported information.5 We implemented the secure monitor as a baremetal application

for the purposes of our proof-of-concept. We created a Linux kernel module that tells (through another mailbox) the

secure monitor what processes to monitor.

5We created a custom system call that indicates an execution boundary. We inserted a special system call at the end of Motion’s main loop.
The secure monitor recognizes this system call as the end of one execution.

66

Since we collect system call usage information at the operating system layer (i.e., software interrupt handler),

the OS is our trusted computing base (TCB). Note that we could either run the secure monitor inside or on top of

the OS as done by most system call monitoring/auditing modules [23, 110]. One can add more security by utilizing

a hardware-supported partitioning mechanism, e.g., the ARM TrustZone [153], and protecting the security monitor

even if the main system is compromised.

4.4.3 Attack Scenarios

Considering the purpose and the functionality of Motion, the primary security concerns are privacy and availability.

Hence, we consider the following attack scenarios:

• Attack 1: One attack is the leaking of images captured by Motion while leaving the original functionality

intact. We consider the case where an attacker saves the images at a desired location in the filesystem with the

intention that the collection will be used/retrieved later.

• Attack 2: The attacker corrupts the images captured from the camera so that no motion can be detected. Specif-

ically, the attacker erases frame(s) by calling memset. Note that this attack does not require any system calls.

The attacker tries to implement the above attacks as simply as possible (e.g., using existing routines/libraries)

because otherwise the system call usage will diverge in an obvious way. Note that we consider only the cases that

change the system call usage of Motion directly or indirectly. If the attacker had higher privileges in the system, then

he could perform more active attacks such as killing the Motion process, copying the legitimately-saved images out

of the device, deleting files, disabling the camera, etc. Such attempts can be detected by other techniques. Also, we

do not make any assumptions as to how the compromised program is present on the device. The modified program

may have already been installed or the user may have downloaded the modified (open) source code or the executable

binary.

4.5 Evaluation Results

We now evaluate the SCFD method on the prototype described in the previous section. We obtained a training set that

consists of 2420 loop executions of Motion that ran under normal conditions (i.e., no attack present) for about 15

minutes. Motion used total 15 types of system calls.

67

/* Frame-rate Control */

/* Frame Capture */

gettimeofday-gettimeofday

(ioctl)-rt_sigprocmask-ioctl-ioctl-rt_sigprocmask

clone

gettimeofday-(nanosleep)

select

Motion loop {

}

If (motion_detected) {

}
If (time to take a snapshot) {

}

If (a webcam-client is waiting) {

}

/* Wait for a webcam-client */

open-fstat64-mmap2-write- ... -write-close-munmap-clone-write
write

unlink-symlink

/* Save frame image*/

/* Save snapshot image*/

/* Update symbolic link to the latest snapshot file*/

open-fstat64-mmap2-write- ... -write-close-munmap-clone-write

/* Run external command upon ‘on_motion_detected’ event*/

(accept-ioctl-write)-(write-munmap-close)-(mmap2-gettimeofday)-(write)-(write)-(munmap)
/* Several variations are made with the these calls*/

/* write chain. Length depends on image size. */

Figure 4.8: The system call sequences made by Motion in each loop. Total 15 different types of system calls are
used. The three if blocks can independently execute and thus create various execution contexts. Further variations
are made by the write chain when saving images to files. The parenthesized calls (e.g., (ioctl)) may sometime
present/skip.

4.5.1 Sequence-based Security Analysis

We first show that it is feasible to implement the attack scenarios described in Section 4.4.3 while avoiding detection

from sequence-based approaches.

Figure 4.8 summarizes the system call sequences made in each loop in normal situations.6 Each loop always starts

by storing the current times (for time keeping) and taking the current image frame from the camera. Then, if motion

is detected, a separate process is forked to execute an external command upon the on motion detected event and

the image frame is saved as a file. If the time to take a snapshot arrives (e.g., once every 5 seconds, for archiving

purposes) the resulting image is saved as a file. Next, the loop feeds an image to a webcam-client if any are viewing.

This if block generates several variations that cannot be represented by a single sequence. The loop then ends with

the frame-rate control. The shortest sequence is when all the if conditions are false.

The three if blocks are independent; each loop may execute only one, a pair, or all of them depending on the

current situation. This creates various execution contexts. The system call usages can vary further when images are

saved to files, as can be seen from the first two if blocks. This is due to the varying length of the write chain that

depends on the image size.

6The sequence shown in the figure is the most representative one. In some loops, for example, the first ioctl in the second line may skip, and
nanosleep in the last line may not be called if there is no need to insert a delay to meet the next frame time.

68

clone
If (motion_detected) {

}

If (time to take a snapshot) {

}

open-fstat64-mmap2-write- ... -write-close-munmap-clone-write
write

unlink-symlink
open-fstat64-mmap2-write- ... -write-close-munmap-clone-write

Inserted by attacker

open-fstat64-mmap2-write- ... -write-close-munmap-clone-write
write

A

B

C

Figure 4.9: Attacker can insert a simple piece of code that uses the same routine as the legitimate code calls to save
an image data to the filesystem. If the code is inserted as depicted, the resulting system call sequences would look
normal.

We now explain how the attacks can be carried out while avoiding detection from sequence-based approaches.

Attack 1: Notice, from Figure 4.8, the system call sequence that is made when writing to files:

open-fstat64-mmap2-write-· · ·-write-close-munmap-clone-write

It is generated by a common routine, put picture, in Motion. Hence, the attacker can use the very same function

to save the current frame image at a desired location by inserting the following small piece of code:

const char* org_filepath = cnt->conf.filepath;

cnt->conf.filepath = "/path/to/attackers_desired_location";

event(cnt, EVENT_IMAGE_DETECTED, cnt->imgs.image_ring[cnt->imgs.image_ring_out].image,

NULL, NULL, &cnt->imgs.image_ring[cnt->imgs.image_ring_out].timestamp_tm);

cnt->conf.filepath = org_filepath;

The event function above is identical to what is called by the original code (in the first two if blocks in Figure 4.8)

and it in turn calls the put picture library routine. The attacker only needs to change the path to store the image

(i.e., cnt->conf.filepath) in the configuration and restore it back before and after calling the event function,

respectively, as depicted.7 Now, the attacker can place this piece of code (followed by a bogus write call) between

the two file write operations, as depicted in Figure 4.9. The figure shows the case when the attacker wants to steal

every motion frame. The attacker can instead steal snapshots by inserting the code at the beginning of the second if

block (i.e., before C).
7In the same way, the attacker can even execute an arbitrary external command too by changing the configuration parameter that stores the string

of external command that will execute upon image file creation. Hence, the attacker can upload the leaked image to a remote server by setting
Motion parameter to externally execute wput Linux command.

69

clone

write

open
fstat64
mmap2
write

.

.

.
write
close
munmap
clone
write

unlink
symlink

open
fstat64
mmap2
write

.

.

.
write
close
munmap
clone
write

clone

write

open
fstat64
mmap2
write

.

.

.
write
close
munmap
clone
write

write

open
fstat64
mmap2
write

.

.

.
write
close
munmap
clone
write

unlink
symlink

open
fstat64
mmap2
write

.

.

.
write
close
munmap
clone
write

clone

write

open
fstat64
mmap2
write

.

.

.
write
close
munmap
clone
write

write

open
fstat64
mmap2
write

.

.

.
write
close
munmap
clone
write

clone

write

open
fstat64
mmap2
write

.

.

.
write
close
munmap
clone
write

select
...

select
... select

...

select
...

(1) Only A (Normal) (2) A & B (3) A & C (Normal) (4) A & B & C

Identical Identical

Ti
m
e

Figure 4.10: Sequence-based approaches are fundamentally limited to catch the execution of the attacker’s inserted
code in Figure 4.9 because the resulting sequence patterns (that are generated by (2) and (4)) cannot be differentiated
from the normal patterns (that are generated by (1) and (3)).

Now, it is difficult for sequence-based approaches to catch this attack because the resulting subsequences look

normal. Let us consider the following cases:

1. Only the first if block executes (Case (2) in Figure 4.10): First of all, any subsequences made only by the

inserted code itself (marked as B in Figure Figure 4.9) are same with those made by the legitimate code (marked

as A). Now, the subsequences that span the legitimate (A) and the inserted codes (B) are same with those made

by the transition from A to C when the attack code was not inserted (Case (3) in Figure 4.10 which is a normal

sequence). That is, the execution looks as if both frame image and snapshot are saved (i.e., both if blocks

execute) although the second if block did not execute. Also, the subsequences that include the tail of B look

identical to those of A when only A executes (Case (1) in Figure 4.10). Hence, they are legitimate too.

70

(1) Normal open-fstat64-mmap2-write- -write-close-munmap-clone-write

(2) Erase Image
(Pattern length = 5) open-fstat64-mmap2-write-write-write-write-close-munmap-clone-write

(3) Erase Image
(Pattern length = 6)

open-fstat64-mmap2-write-write-write-write-close-munmap-clone-write

Legitimate!

Legitimate!

Abnormal!

Figure 4.11: The write chain becomes short when frame image is erased. For a sequence-based method to detect
the anomaly, the patterns should be long enough to cover the whole chain and also what leads and follows.

2. Both if blocks execute (Case (4) in Figure 4.10): Now suppose the inserted code executes between the two

file write operations, as depicted in Case (4) of Figure 4.10. Similar to the situation above, the subsequences

generated by the transitions from A to B and B to C are still legitimate with respect to the patterns that can be

learned from the normal case (i.e., Case (3)). This is because what A and B generate together (that is, patterns

that span across A and B) do not look different from what A and C would generate, and for the same reason, the

patterns generated by B and C look normal too.

The only way any sequence-based method could detect an execution of the inserted code for Attack 1 is to know

the legitimate patterns that are long enough to learn that the second appearance of open-fstat64-· · · sequence

should end with · · ·-clone-write-unlink-symlink as shown in Case (3) of Figure 4.10. If we were able

to learn such patterns, the inserted code (i.e., B) can be detected because it ends differently (i.e., Case (4)). To do

so, we need to learn the patterns much longer than the length of the whole sequence generated by a file operation.

However, this is unlikely8 because the sequences are too long and both length and patterns can vary greatly due to the

varying length of the write chain. Hence, this kind of attack (that uses a legitimate routine) can be effective if the

attacker can find such routines that are commonly used in places and that can carry out the attacker’s desired operation.

Attack 2: The attacker’s goal is to corrupt the image frames so that motions cannot be detected. The simplest way is

to erase the buffer that contains the frame image. This can be done by inserting a single line of code that calls memset

right after a frame is captured. Note that this does not require any system calls. Instead, this affects the execution

of code segments that follow in the rest of the loop. First of all, the first if block in Figure 4.8 does not execute as

there is no motion change. However, this behavior looks legitimate as this can happen in the normal executions. Next,

the length of the write chain when saving the snapshot image to a file changes. This is because the erased frame

produces 14 KB of green images. The reduced size of the images result in shortened write chain as depicted in Case

(2) of Figure 4.11. A single write call writes 4KB of data to the file and hence the write chain’s length becomes

4. It is significantly shorter than a normal length which is longer than 70 in general.

8No matter how patterns are learned. They could be learned by the fixed-length method such as N-gram [76] or variable-length such as
Markovian model (VMM) [42] or Probabilistic Suffix Tree [140], etc.

71

Sequence-based methods may or may not be able to detect such anomalies, depending on the length of patterns

they learn.9 If we have learned the patterns of length at most 5, the subsequences are still legitimate with respect

to the normal subsequences, as can be seen from Case (2) of Figure 4.11. On the other hand, if we have learned

longer (e.g., at least 6) patterns, we can know that mmap2-write-write-write-write should be followed by

another write in normal situations (as in Case (1) of the figure). The abnormal situation illustrated in Case (3) is thus

malicious with respect to such normal subsequences. Note that the difficulty of capturing such an abnormal situation

stems from the long chain of write calls in the normal execution scenarios. Hence, it is not straightforward for

sequence-based methods to learn the relationship between mmap2 and close especially because the write chain’s

length can vary with data as well. Note also that, if the image size got larger (say, by writing random values to image

frame) instead and thus made the write chain longer than usual, sequence-based methods cannot detect this behavior

because the only change would be that there are more subsequences that consists only of write that have a legitimate

length.

4.5.2 SCFD Training

With the training set obtained from the system under normal conditions, we applied the SCFD learning algorithm pre-

sented in Section 4.3. Out of 15 types of system calls used by Motion, two types, select and rt sigprocmask,

showed zero variance. As shown in Figure 4.8, these two system calls always execute once and twice, respectively, in

each loop. Hence, the algorithm first reduces the dimensionality of SCFDs to 13.

Figure 4.12 visualizes the training result obtained with settings MAXK = 20 and BoundTD = 1000. The table in the

middle is the training set (only unique SCFDs are shown) and the ones around it are the resulting clusters. Each row

represents an SCFD and the colors represent high (orange color) and low (green color) counts for each system call

type. As can be seen from the result, the 2420 SCFDs are clustered into 11 clusters. Table 4.1 summarizes the results

by providing the mean and the standard deviation of the training set and those of each cluster. From observing the

resulting clusters, we find the following execution contexts:

• Cluster 1 represents the case when no event occurs during a loop shown in Figure 4.8. The loop only takes the

current image frame and none of the if blocks in Figure 4.8 execute.

• Clusters 2, 4 and 5 are also the cases when no images are saved to files, because the related system calls (e.g.,

open, fstat64, close) do not appear and also the number of write calls is few. The differences among

the three clusters are due to the last if block (i.e., webcam remote view-related) in Figure 4.8 which shows

several variations.
9Again, we do not make any assumptions on the way that the sequence patterns are learned. It could be a fixed-length or variable-length.

72

Ta
bl

e
4.

1:
T

he
m

ea
n

an
d

th
e

st
an

da
rd

de
vi

at
io

n
of

th
e

sy
st

em
ca

ll
fr

eq
ue

nc
y

di
st

ri
bu

tio
ns

in
th

e
en

tir
e

tr
ai

ni
ng

se
ta

nd
in

ea
ch

cl
us

te
r

af
te

r
ru

nn
in

g
th

e
le

ar
ni

ng
m

et
ho

d.
#

pt
s

w
r
i
t
e

c
l
o
s
e

m
u
n
m
a
p

c
l
o
n
e

u
n
l
i
n
k

s
y
m
l
i
n
k

m
m
a
p
2

g
e
t
t
i
m

n
a
n
o
s
l

i
o
c
t
l

o
p
e
n

f
s
t
a
t
6
4

a
c
c
e
p
t

A
ll

24
20

M
ea

n
28

.0
15

0.
37

6
0.

56
5

0.
68

1
0.

06
7

0.
06

7
0.

56
5

3.
19

2
0.

98
8

2.
00

9
0.

37
4

0.
37

4
0.

00
2

St
de

v
39

.0
70

0.
52

5
0.

62
0

0.
95

5
0.

24
9

0.
24

9
0.

61
4

0.
39

4
0.

14
8

0.
09

5
0.

52
4

0.
52

4
0.

04
6

C
lu

st
er

1
11

29
M

ea
n

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
3.

00
0

1.
00

0
2.

00
0

0.
00

0
0.

00
0

0.
00

0
St

de
v

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

C
lu

st
er

2
24

8
M

ea
n

0.
00

0
0.

00
0

1.
00

0
0.

00
0

0.
00

0
0.

00
0

1.
00

0
4.

00
0

1.
00

0
2.

00
0

0.
00

0
0.

00
0

0.
00

0
St

de
v

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

C
lu

st
er

3
60

1
M

ea
n

74
.7

67
1.

00
0

1.
00

0
2.

00
0

0.
00

0
0.

00
0

1.
00

0
3.

00
0

1.
00

0
2.

00
0

1.
00

0
1.

00
0

0.
00

0
St

de
v

0.
95

4
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

C
lu

st
er

4
75

M
ea

n
2.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

3.
00

0
1.

00
0

2.
00

0
0.

00
0

0.
00

0
0.

00
0

St
de

v
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

C
lu

st
er

5
90

M
ea

n
1.

00
0

0.
00

0
1.

00
0

0.
00

0
0.

00
0

0.
00

0
1.

00
0

4.
00

0
1.

00
0

2.
00

0
0.

00
0

0.
00

0
0.

00
0

St
de

v
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

C
lu

st
er

6
73

M
ea

n
74

.0
00

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

3.
00

0
1.

00
0

2.
00

0
1.

00
0

1.
00

0
0.

00
0

St
de

v
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

C
lu

st
er

7
47

M
ea

n
40

.0
64

0.
66

0
1.

06
4

1.
04

3
0.

04
3

0.
04

3
1.

08
5

3.
55

3
0.

87
2

2.
46

8
0.

53
2

0.
53

2
0.

10
6

St
de

v
39

.4
47

0.
55

6
0.

69
7

1.
01

0
0.

20
2

0.
20

2
0.

45
3

0.
49

7
0.

33
4

0.
49

9
0.

54
0

0.
54

0
0.

30
8

C
lu

st
er

8
71

M
ea

n
74

.9
72

1.
00

0
2.

00
0

2.
00

0
0.

00
0

0.
00

0
2.

00
0

4.
00

0
1.

00
0

2.
00

0
1.

00
0

1.
00

0
0.

00
0

St
de

v
0.

69
1

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

C
lu

st
er

9
48

M
ea

n
14

9.
60

4
2.

00
0

2.
08

3
3.

00
0

1.
00

0
1.

00
0

2.
08

3
3.

08
3

0.
00

0
2.

00
0

2.
00

0
2.

00
0

0.
00

0
St

de
v

1.
30

3
0.

00
0

0.
27

6
0.

00
0

0.
00

0
0.

00
0

0.
27

6
0.

27
6

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

C
lu

st
er

10
13

M
ea

n
74

.6
15

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

3.
00

0
1.

00
0

2.
00

0
1.

00
0

1.
00

0
0.

00
0

St
de

v
1.

54
6

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

C
lu

st
er

11
25

M
ea

n
74

.4
40

1.
00

0
2.

04
0

1.
00

0
1.

00
0

1.
00

0
2.

00
0

4.
00

0
1.

00
0

2.
00

0
1.

00
0

1.
00

0
0.

00
0

St
de

v
0.

49
6

0.
00

0
0.

19
6

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

73

73 1 1 2 0 0 1 3 0 2 1 1 0
76 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 2 0 0 1 3 0 3 1 1 0
1 0 1 0 0 0 1 4 1 2 0 0 0
76 1 1 2 0 0 1 3 1 2 1 1 0
1 0 1 0 0 0 1 4 1 3 0 0 0
77 1 1 2 0 0 1 3 1 2 1 1 0
1 1 1 0 0 0 0 3 1 2 0 0 0
0 0 1 0 0 0 1 4 1 3 0 0 0
77 1 1 1 1 1 1 3 1 2 1 1 0
74 1 2 2 0 0 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0
1 1 1 0 0 0 1 4 1 2 0 0 0

150 2 2 3 1 1 2 3 0 2 2 2 0
78 1 1 2 0 0 1 3 1 2 1 1 0
77 1 1 1 1 1 2 4 1 3 1 1 1
4 1 1 0 0 0 1 4 1 3 0 0 1
76 2 2 2 0 0 2 4 1 2 1 1 0
74 1 1 2 0 0 1 3 0 2 1 1 0
0 0 1 0 0 0 1 4 1 2 0 0 0
75 1 2 2 0 0 2 4 1 2 1 1 0
74 1 1 2 0 0 1 3 1 2 1 1 0
75 1 2 1 1 1 2 4 1 2 1 1 0
76 1 3 2 0 0 2 4 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
76 1 2 2 0 0 2 4 1 2 1 1 0
0 0 1 1 0 0 1 4 1 2 0 0 0
68 1 1 2 0 0 1 3 1 2 1 1 0
150 2 3 3 1 1 3 4 0 2 2 2 0
75 1 1 1 1 1 1 3 1 2 1 1 0
148 2 2 3 1 1 2 3 0 3 2 2 0
0 0 0 0 0 0 0 3 1 3 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
3 0 0 0 0 0 1 4 1 3 0 0 1
72 1 1 2 0 0 1 3 1 3 1 1 0
71 1 1 2 0 0 1 3 1 3 1 1 0
148 2 2 3 1 1 2 3 0 2 2 2 0
73 1 1 2 0 0 1 3 1 2 1 1 0
1 0 2 0 0 0 1 4 1 2 0 0 0
66 1 1 2 0 0 1 3 1 3 1 1 0
73 1 1 2 0 0 1 3 1 3 1 1 0
75 1 3 1 1 1 2 4 1 2 1 1 0
75 1 1 2 0 0 1 3 0 2 1 1 0
148 2 3 3 1 1 3 4 0 2 2 2 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 2 0 0 1 3 1 3 1 1 0
152 2 2 3 1 1 2 3 0 2 2 2 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 1 4 1 2 0 0 0
75 1 1 2 0 0 1 3 1 2 1 1 0
151 2 3 3 1 1 3 4 0 2 2 2 0
71 1 1 2 0 0 1 3 0 3 1 1 0
77 1 1 2 0 0 2 4 1 2 1 1 0

0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0 0 0 1 0 0 0 1 4 1 2 0 0 0

0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0

77 1 1 2 0 0 1 3 1 2 1 1 0
76 1 1 2 0 0 1 3 1 2 1 1 0
77 1 1 2 0 0 1 3 1 2 1 1 0
77 1 1 2 0 0 1 3 1 2 1 1 0
76 1 1 2 0 0 1 3 1 2 1 1 0
76 1 1 2 0 0 1 3 1 2 1 1 0
76 1 1 2 0 0 1 3 1 2 1 1 0
74 1 1 2 0 0 1 3 1 2 1 1 0
75 1 1 2 0 0 1 3 1 2 1 1 0
75 1 1 2 0 0 1 3 1 2 1 1 0

2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0

1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0

74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0

74 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
76 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
76 1 2 2 0 0 2 4 1 2 1 1 0
74 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
76 1 2 2 0 0 2 4 1 2 1 1 0

150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
148 2 2 3 1 1 2 3 0 2 2 2 0
151 2 3 3 1 1 3 4 0 2 2 2 0
148 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0

76 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
76 1 1 1 1 1 1 3 1 2 1 1 0
77 1 1 1 1 1 1 3 1 2 1 1 0
75 1 1 1 1 1 1 3 1 2 1 1 0

75 1 2 1 1 1 2 4 1 2 1 1 0
75 1 2 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0
75 1 2 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0
75 1 2 1 1 1 2 4 1 2 1 1 0
75 1 3 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0

Training Set (2420 SCFDs)

Cluster 1 (1129 SCFDs)

Cluster 2 (248 SCFDs)

Cluster 3 (601 SCFDs)

Cluster 4 (75 SCFDs)

Cluster 5 (90 SCFDs)

Cluster 6 (73 SCFDs)Cluster 7 (47 SCFDs)

Cluster 8 (71 SCFDs)

Cluster 9 (48 SCFDs)

Cluster 10 (13 SCFDs)

Cluster 11 (25 SCFDs)

write close munm clone unlink symlin mmap gettim nanosl ioctl open fstat64 acceptSCFD

77 1 1 1 1 1 2 4 1 3 1 1 1
1 0 2 0 0 0 1 4 1 2 0 0 0
1 1 1 0 0 0 1 4 1 2 0 0 0
3 0 0 0 0 0 1 4 1 3 0 0 1
1 0 2 0 0 0 1 4 1 2 0 0 0
2 0 0 0 0 0 1 4 1 2 0 0 0
1 0 2 0 0 0 1 4 1 2 0 0 0
1 1 1 0 0 0 1 4 1 2 0 0 0
68 1 1 2 0 0 1 3 1 2 1 1 0
66 1 1 2 0 0 1 3 1 3 1 1 0

Figure 4.12: The result of clustering 2420 SCFDs. Each row represents an SCFD of 13 system call types – (from
left to right) write, close, munmap, clone, unlink, symlink, mmap2, gettimeofday, nanosl, ioctl,
open, fstat64, accept. The training set shows only the unique SCFDs and each cluster shows only 10 SCFD
examples that belong to it.

• Clusters 3, 6, 8, 10, and 11 correspond to the executions that write an image file once, because the file-related

system calls appear just once per SCFD (i.e., per loop). In addition, the write calls are used accordingly.

Among them, Clusters 6, 10, and 11 write snapshot images (i.e., the second if block in Figure 4.8). Cluster

11 is when an image is fed to a webcam-client as more mmap and unmap are observed. The only difference

between Clusters 6 and 10 is the number of write calls; it is fixed to 74 in Cluster 6, while Cluster 10 has

everything but 74.

The fewer number of unlink and symlink in Clusters 3 and 8 (than 6, 10, and 11) suggest that these two

correspond to the executions that write frame images (i.e., the first if block). Also, clone should be called

twice in that case.

• Cluster 9 corresponds to the case when both, the motion frame and snapshot files are saved (because of the

reasons explained above). This cluster covers both the cases when an image is fed or not fed to webcam-client.

Increasing the number of clusters will split the two cases.

74

1100 1150 1200 1250 1300 1350 1400
1

2

3

4

5

6

7

8

9

10

11

C
lo

se
st

 C
lu

st
er

Time (# SCFD)

Motion Detected Webcam feed

No MotionsNo Motions

Save Snapshot Only

Save Motion
Frame Only

Save Both

Figure 4.13: SCFDs in normal situation, their closest clusters assigned by our detection algorithm, and the corre-
sponding execution contexts.

• Cluster 7 is a mixture of some rare SCFDs that are similar to other clusters but vary in a very small way (due to

the last if block in Figure 4.8). Such differences caused them to stand out in comparison to other clusters. Each

one was also not representative enough to create its own cluster. For example, only 4 out of 2420 SCFDs in the

training set had a non-zero count of accept and these are assigned to Cluster 7. This cluster can be split into

smaller ones if we increased the number of clusters.

Figure 4.13 shows the closest cluster for each SCFD (for 300 SCFDs obtained during a normal situation) and the

corresponding execution context. The shaded areas represent the time period when motion is detected – during which

a frame image is saved to a file. We can also see that a snapshot is saved at regular intervals (every 5 sec) regardless of

motion detection. Overall, the results show the changes in the execution contexts as various events occur individually

or together.

4.5.3 Accuracy

Now, we evaluate the accuracy of our anomaly detection method. We enabled each of the attacks from Section 4.4.3.

An execution should be considered abnormal if any of the following is true: (i) any system call other than the 15

75

observed types is detected; (ii) any system call whose variance was zero during the profile (2 out of 15 in the case

above) actually exhibits variance or (iii) the distance of an observation from its closest cluster is longer than the

threshold. Among these, rules (i) and (ii) were never observed because Attacks 1 re-uses the same functions from

normal executions and Attack 2 makes no system calls at all.

• Attack 1: We inserted the code block that leaks out the current frame image to the attacker’s desired location

(code block ‘B’ as shown in Figure 4.9) and then obtained a test set of 1003 SCFDs. Note that not all of them

include the attack because the inserted code executes only when a motion is detected. 603 out of the 1003

SCFDs correspond to the case that did not detect a motion and thus are normal.

The rest of the SCFDs can be divided into two groups as shown in Figure 4.14. The first group (upper-right)

looks very similar to the ones in Cluster 9 (in Figure 4.12) that saves both motion frame and snapshot images. If

the test SCFDs were legitimate, then they should have used unlink and symlink system calls once as shown

in the Motion’s normal system call usage in Figure 4.8. Since the test SCFDs did not use the calls, they are

classified as abnormal with respect to the learned patterns. Of course, the attacker could insert bogus unlink

and symlink for this particular execution context. However, then the resulting sequences are identical to

those made by the normal code (when both images are saved) and no system call-based detection methods can

differentiate the two cases, which does not fall into our threat model.

The second group (at bottom-right in Figure 4.14) consists of SCFDs observed when the inserted code executes

between the two legitimate file operations (see Figure 4.9). The resulting SCFDs are clearly abnormal as there

are three file operations and hence too many write calls.

• Attack 2: This attack does not use any system calls; it just changes the values of the data (i.e., image). As

explained earlier, this attack produces 14 KB of frame images, which results in shortened write chains as

depicted in Figure 4.11. Hence, calls to write is much less frequent when compared to normal executions.

The SCFDs shown above, obtained when Attack 2 is enabled, are quite similar to Cluster 6 (top) and Cluster

11 (bottom), respectively. However, these SCFDs are always classified to be abnormal because the image sizes

(due to the number of write calls) are not typical when saving snapshot files during normal executions. The

attacker could have circumvented our detection method if, for example, the frame image is just replaced with

another that has a similar size as the unmodified frame images. However, again, such case is out of scope of our

threat model because the system call usage does not change.

The false positive rate is just as important as the detection rate because frequent false alarms degrade system

availability. To measure the false positive rates, we obtained a new set of SCFDs by running the system without

activating any attacks and measured how many times the secure monitor classifies an execution as being abnormal.

76

147 2 2 3 0 0 2 3 0 2 2 2 0
151 2 2 3 0 0 3 4 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
151 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
150 2 4 3 0 0 3 4 0 2 2 2 0
150 2 4 3 0 0 3 4 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
151 2 2 3 0 0 2 3 0 2 2 2 0
149 2 3 3 0 0 3 4 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
223 3 4 4 1 1 4 4 0 2 3 3 0
147 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
223 3 4 4 1 1 4 4 0 2 3 3 0
150 2 4 3 0 0 3 4 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
148 2 3 3 0 0 3 4 0 2 2 2 0
150 2 3 3 0 0 3 4 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
223 3 3 4 1 1 3 3 0 2 3 3 0
223 3 4 4 1 1 4 4 0 2 3 3 0
223 3 3 4 1 1 3 3 0 2 3 3 0
149 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
147 2 3 3 0 0 3 4 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
148 2 3 3 0 0 3 4 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
149 2 3 3 0 0 3 4 0 2 2 2 0
149 2 3 3 0 0 3 4 0 2 2 2 0
150 2 3 3 0 0 3 4 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
223 3 3 4 1 1 3 3 0 2 3 3 0
147 2 2 3 0 0 2 3 0 2 2 2 0
223 3 3 4 1 1 3 3 0 2 3 3 0
147 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0

149 2 2 3 0 0 2 3 1 2 2 2 0
149 2 2 3 0 0 2 3 1 2 2 2 0

149 2 2 3 0 0 3 4 0 2 2 2 0
151 2 2 3 0 0 3 4 0 2 2 2 0

147 2 3 3 0 0 3 4 0 2 2 2 0
148 2 3 3 0 0 3 4 0 2 2 2 0

148 2 4 3 0 0 3 4 0 2 2 2 0
150 2 4 3 0 0 3 4 0 2 2 2 0
150 3 3 3 0 0 3 4 0 2 2 2 0
152 3 3 3 0 0 3 4 0 2 2 2 0

220 3 3 4 1 1 3 3 0 2 3 3 0
223 3 3 4 1 1 3 3 0 2 3 3 0
221 3 4 4 1 1 4 4 0 2 3 3 0
223 3 4 4 1 1 4 4 0 2 3 3 0

147 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0

SCFDs with Attack1 Two file operations,

write close munm clone unlink symlin mmap gettim nanosl ioctl open fstat64 acceptSCFD

but no unlink and symlink

Too many writes and three file operations!

Figure 4.14: The SCFDs when the attacker leaks out current motion frames (Attack 1). They are abnormal with
respect to the normal SCFDs learned in Figure 4.12. Not all SCFDs are shown.

5 1 1 1 1 1 1 3 1 2 1 1 0

9 1 2 1 1 1 2 4 1 2 1 1 0

Save snapshot

Save snapshot + Webcam feed

For the cut-off distance θ with p0 = 5%, 4 out of 1755 executions (0.23%) were classified as malicious. With

p0 = 1%, i.e., a farther cut-off distance, it was reduced to just 1 (0.06%). Such a lower significant level relaxes the

cutoff distance and produces fewer false alarms because even some rarely-seen data points are considered normal.

However, this may result in lower detection rates as well. In the attack scenarios listed above, however, the results

did not change even with the lower significant level. This is a consideration for system designers to take into account

when implementing our detection methods; they will have a better feel for when certain executions are normal and

when some are not. Hence, they can decide to adjust values for p0 based on the actual system(s) being monitored.

While it is true that the accuracy of the method may depend on the attacks that are launched against the system,

in reality an attacker would need to not only know the exact distributions of system call frequencies but also be able

to implement an attack with such a limited set of calls – both of these requirements significantly raise the difficulty

levels for would-be attackers.

In Section 4.5.1, we showed that sequence-based approaches may fail to detect abnormal deviations in situations

that naturally have a high-level variance in the execution contexts or use data that is very diverse. Such instances

require a global view on the frequencies of different system call types made during the entire execution and the

77

Table 4.2: Average (standard deviation) of times to find the closest cluster given a test SCFD.
SCFD Dimension 5 Clusters 10 Clusters 15 Clusters

5 4.710 µs (0.522 µs) 8.348 µs (0.545 µs) 11.843 µs (0.373 µs)
10 11.262 µs (0.501 µs) 21.318 µs (0.470 µs) 31.474 µs (0.503 µs)
13 16.306 µs (0.463 µs) 31.582 µs (0.501 µs) 46.859 µs (0.356 µs)

correlations among different types. Sequence-based approaches are sensitive to local, temporal variations, e.g., an

unusual transition from one system call to another. Our SCFD might not catch such a small, local variation. Hence,

one can use these two approaches together to improve the overall accuracy of the system call-based anomaly detection

for embedded systems.

4.5.4 Time Complexity

To evaluate the time complexity of the proposed detection method, we measured the times to perform the analysis.

The times are measured from the moment when a new observation is given until the closest cluster is found (Eq. (4.5)).

We tested for different configurations of the SCFD dimensionality and the number of clusters.10 The statistic is based

on 10000 samples per configuration collected on our prototype system.

As Table 4.2 shows, the detection process is fast. This is possible because we store Σ−1, the inverse of the

covariance matrix, of each cluster, not Σ. A Mahalanobis distance is calculated in O(D2), where D is the number of

system call types being monitored (i.e., SCFD dimensionality), since in (x∗−µ)TΣ−1(x∗−µ), the first multiplication

takes O(D2) and the second one takes O(D). The results (top to bottom) in the table above show such a trend. Note

that it would have taken O(D3) if we stored the covariance matrix itself instead of its inverse; since a D ×D matrix

inversion takes O(D3). We can also see from the results that the analysis time increases linearly with the number of

clusters.

More importantly, the time complexity of our method is independent of how often and many times the application

uses system calls; it only depends on the number of system call types being monitored. Hence, the SCFD method has

a deterministic time complexity. This is determined in the training phase and does not change during the monitoring

phase (see Section 4.3.4). On the other hand, the overheads of sequence-based approaches are highly dependent on

the application complexity (i.e., how frequently system calls are made).

4.5.5 Limitations and Discussion

One of the limitations of our detection algorithm is that it checks for anomalies after execution is complete (for each

invocation). Combining a sequence-based method with our SCFD can be a solution if such attacks can be detectable

10Note that we found 11 clusters from the training. To test for 15 clusters, we simply added 4 duplicated clusters (i.e., means and inverse
covariance matrices).

78

by the former. If not, one can increase the chances of detecting such problems by splitting the whole execution range

into blocks [162] and checking for the distribution of system calls made in each block as soon as the execution passes

each block boundary. This also can relax the assumption of repetitive execution of the target application (explained in

Section 4.2) because an analysis is applied at block-level. This, however, would need more computation in the secure

monitor at run-time, more storage for profiles, and a few more code modifications.

Another way to handle this problem is to combine this analysis/detection with other behavioral signals, especially

ones that have a finer granularity of checks, e.g., timing [162]. Since some blocks may use very few system calls or

even a very stable subset of such calls, we can monitor the execution time spent in such a block to reduce the SCFD-

based overheads (which is still low). This keeps the profile from bloating and prevents the system from having to carry

out the legitimacy tests. We can also use the timing information in conjunction with the system call distribution; i.e.,

by learning the normal time to execute a distribution of system calls, we can enforce a policy where each application

block executes all of its system calls within (fairly) tight ranges. This is, of course, provided that the system calls do

not show unpredictable timing behavior. This makes it much harder for an attacker who imitates system calls [147] or

one that replaces certain system calls with malicious functions [13].

We can model a primitive operation (such as a network activity, a file operation, etc.) as a topic and then represent

an execution context as a mixture of several primitive operations [44]. In this work, we build instead a pragmatic

lightweight module. One of the main drawbacks of the k-means clustering algorithm is that one may need to know

or pre-define the number of clusters. That is, system behaviors should be correctly represented by k numbers of

multinomial (Gaussian) distributions of histogram. Some large-scale systems would have many heterogeneous modes

(distributions). In this case, the appropriate solutions would be using non-parametric topic models such as Dirichlet

process. However, we empirically observed that many embedded systems with predictable behavior can be represented

by a tractable number of clusters. Thus, we used a simpler model with the k-means cluster.

4.6 Conclusion

In this chapter, we presented a lightweight anomaly detection method that uses application execution contexts learned

from system call frequency distributions of embedded applications. We demonstrated our technique for a real-world

open-source application and showed that the proposed detection mechanism could effectively complement sequence-

based approaches by detecting anomalous behavior due to changes in high-level execution contexts. An interesting

extension of this work could be using the topic modeling approach to deal with large-scale heterogeneous behaviors

of complex embedded applications.

79

Chapter 5

The DragonBeam Framework:
Hardware-Protected Security Modules for
In-Place Intrusion Detection
The sophistication of malicious adversaries is increasing every day and most defenses are often easily overcome by

such attackers. Many existing defensive mechanisms often make differing assumptions about the underlying systems

and use varied architectures to implement their solutions. This often leads to fragmentation among solutions and could

even open up additional vulnerabilities in the system.

In this chapter, we present the DragonBeam Framework, an extension of the SecureCore architecture presented in

Chapter 2 for general-purpose systems. It enables system designers to implement their own monitoring methods and

analyses engines to detect intrusions. It is built upon a novel hardware/software co-designed mechanism. Depending

on the type of monitoring that is implemented using this framework, the impact on the monitored system is very low.

This is demonstrated by the use cases that also showcase how the DragonBeam framework can be used to detect

different types of attack.

5.1 Introduction

As attackers expand their reach into well protected systems, no layer is safe from intrusions. The targets of attacks in

recent years have ranged from applications to middleware services, operating system (OS) kernels and device drivers,

hypervisors and even firmware. The sophistication of such attacks, then, makes it harder to identify and build a trusted

computing base (TCB) to develop security mechanisms. The common approach has been to move security monitoring

(e.g., the reference monitor) functionality into a secure domain (e.g., a virtual machine separated from the virtual

machine that must be secured) [65, 113]. This suffers from the existence of a semantic gap between the interface used

for monitoring and the interface useful for security decisions. Another problem is that different security mechanisms

use a variety of architectures to implement their solutions. Trying to combine one or more of these to improve the

overall security of the system could result in a spaghetti of architectural mechanisms that, in itself, might open up new

vulnerabilities. Hence, there is a need to provide system designers with a cohesive framework for implementing their

monitoring and analysis techniques.

Our approach to solving such problems is to start with secure hardware and then to bootstrap security into higher

80

layers. We propose a system where the secure hardware is the first level TCB and introduces security monitoring com-

ponents into the system layer above (in this case, the OS kernel). By running the monitoring component in the layer

that is the target for attackers, we gain significant visibility into local operations as well as effects of attacks – thus

avoiding the semantic gap. The secure hardware ensures the run-time integrity of the upper-layer security monitoring

component(s) by protecting it and continuously validating its liveness and behavior. Designers can then implement

methods/hooks (to monitor the system resources/components that they care about) in our security monitoring compo-

nent. The gathered information can be offloaded to a different core of the processor where the designers can apply

their own analysis techniques on the collected data. We call this the DragonBeam framework.

The DragonBeam framework is a set of software and hardware mechanisms that allow us to develop and maintain

a two-level monitoring system that consists of: (i) a kernel module that resides in the OS kernel – it carries out any

desired security checks and measurements and (ii) capabilities to monitor the behavior of this module and to establish

its integrity by a combination of (a) integrity measurement and (b) run-time challenge-response protocol – these latter

components actually execute on a trusted computing base that resides on the secure core. One advantage of using

such methods is that the DragonBeam framework does not require modifications to the OS or the applications. In

addition, since the DragonBeam architecture provides a separate core for executing the TCB-related components,

(i) the overhead for the continuous security interactions is low and (ii) the effects on the critical executions paths is

limited (and often negligible).

The methods presented in this chapter lay the groundwork for DragonBeam to become a generic framework for

developing/implementing security solutions. System designers can implement their favorite monitoring and/or data

capturing methods in the kernel module that can then either analyze the data itself or relay it to additional analysis

components on the TCB. These components can perform more extensive analyses as required.

Our work makes the following contributions:

• We introduce a novel framework, DragonBeam, for implementing monitoring and intrusion detection solutions

– it provides hardware-guaranteed integrity for the security monitoring system. The latter can be extended to

other system layers to create a multi-level monitoring system rooted in the secure hardware. An overview of the

framework is presented in Section 5.2 while details are in Section 5.3.

• We have implemented the framework and carried out evaluations on an FPGA softcore processor (Section 5.5).

This helps us in gauging the real hardware costs for implementing such a system. As we see later, the additional

hardware costs are less than 1%.

• Two use cases as well as a performance evaluation are used to illustrate how to use the framework in Section

5.6. These use cases not only demonstrate the ease of use but also highlight the flexibility of our approach by

81

showcasing different types of attack detection methods. The evaluation shows negligibly small performance

overheads.

5.1.1 Threat Model and Assumptions

We aim to make our threat model as broad as possible which is in line with recent developments [53, 92]. An attacker

can breach any part of the software stack (OS kernels, middleware, run-time libraries, applications to name a few)

and can even have full control of any software running on the main (monitored) system. We assume that the attacker

does not perform physical attacks against the hardware. Thus trust can be placed in the hardware components, and in

particular in our TCB. We further assume that the whole system (both software and hardware) is secure during boot

time as well as immediately after the boot sequence is complete; also updates to the TCB require physical access.

While our threat model is quite broad, an attacker may attempt to carry out malicious activities between opera-

tions that verify the integrity of the DragonBeam framework – the attacker could corrupt some components of our

framework and restore it just before the next check. Such transient attacks [151, 79] cannot completely be ruled out in

external monitoring mechanisms [118] and the DragonBeam framework is no exception. On the other hand, some of

the mechanisms presented in this work, viz., the randomization techniques (Sections 5.3.4, 5.6.1 and 5.6.2), will help

mitigate such attacks.

5.2 Overview

The main idea that we propose in this work is that of a hardware/software mechanism to detect intrusions. This is

achieved by using a two-level monitoring framework that we call DragonBeam. This architecture takes advantage

of the redundancy available in computing resources on a modern multicore architecture – we trade off performance

to improve overall security by using one of the cores to monitor the other core(s). This mechanism can monitor the

operating system, the applications executing on the monitored core, or both. Figure 5.1 presents the DragonBeam

architecture, which we illustrate with use cases in the remainder of this section.

5.2.1 High-level Architecture

Figure 5.1 shows the DragonBeam framework, in which a trusted on-chip entity, the secure core, continuously

monitors the run-time behavior of another (potentially untrustworthy) entity, the monitored core. The secure core is

part of our trusted computing base. Since both cores are on the same die, minor hardware modifications are required to

extract the relevant information directly from the monitored core. This increases the trustworthiness of the monitored

signal since they are transparent to any code that executes on the monitored core. On the other hand, the amount of

82

Secure
Memory

Monitored Core Secure Core

OS

Applicatio
nApplicatio

nApplication

SKM Command/Response

SecMan

Untrusted Layer Secure Layer

Figure 5.1: Overview of the DragonBeam architecture.

information that can be gathered is somewhat limited by the amount of hardware changes (essentially probes) that can

be made. Such changes are often intrusive and might require significant efforts in design and verification.

To solve these problems and to increase the amount of information that the secure core can gather, we introduce

a software module that executes inside the monitored core as a kernel module. We call it the Secure Kernel Module

(SKM). The SKM is responsible for capturing information about the applications as well as the OS that executes on

the monitored core and passes this information (with help from a hardware unit) to the secure core. The SKM is

controlled by a software module that executes on the secure core called the SKM Manager (SecMan). The SecMan

also ensures that the SKM is not attacked or prevented from executing or carrying out its intended functions. The

SKM acts as a bridge to gather information about the behavior of the OS and/or applications on the monitored core;

this information is then sent to the secure core for analysis.

Hence, the overall architecture of our solutions is composed of three major components, viz.,

1. the Secure Kernel Module (SKM), which runs in the untrusted operating system,

2. the SKM Manager (SecMan), which protects the integrity of the SKM, and

3. the secure core, which runs the SecMan.

We now elaborate on the SKM and SecMan components in the following sections.

Secure Kernel Module (SKM)

The SKM is a kernel module that resides on the monitored core. It is controlled by the SecMan and carries out a

variety of security functions, chief among which is to gather information about the execution behavior of important

OS components and applications. It could either actively analyze or passively send to the secure core the information

that is gathered. For instance, it could (a) perform integrity checks on the kernel code and/or data structures, (b)

83

monitor the behavior of some critical applications, (c) actively monitor what processes/modules are executing, and (d)

what low level resources are being requested by what processes and how they are being used among other things. The

SKM executes in the most privileged mode as do other kernel components. Hence it has access to all of the kernel

data structures. This helps it detect anomalous activities on the monitored core.

The DragonBeam framework does not prescribe in any way the actual functionality of the SKM. The goal of the

framework is to ensure that the SKM operates without any external effects on its code or data, even when the attacker

has root-level access to the system. The execution of the SKM is closely tracked by the SecMan – this prevents

the situation that the SKM itself is taken over or prevented from executing. The SKM is developed by the system

designers themselves and also has a fixed, limited, functionality. Hence, it is easier to verify that the SKM itself does

not expose any security vulnerabilities.

Secure Kernel Module Manager (SecMan)

The SecMan actively manages and monitors the execution of the SKM. The SecMan and SKM follow a command

and response protocol that has been developed by the system designer. Consider the following example to illustrate

this: (a) the SecMan tells the SKM to capture the current state of the process list in the kernel; (b) the SKM wakes

up and gathers this information; (c) the SKM communicates this information back to the SecMan and finally, (d)

analysis modules on the secure core will compare the state of the process table to ones that were captured previously

to check for unexpected processes – this might allow us to detect the execution of malicious process on the monitored

core. The overall protocol will include a fixed set of commands that bound the operations of the SKM. At run-time,

the SecMan will issue one of these commands (or a sequence of them) and the SKM will execute them in the order

received.

Another important function of the SecMan is to guarantee the integrity and the liveness of the SKM itself via code

hash and a heartbeat mechanism. This is why we call this a two-level monitoring architecture – the SKM monitors the

behavior of kernel components and applications while the SecMan monitors the execution of the SKM itself.

As shown in Figure 5.1, the secure core is supplemented with a secure memory module that facilities secure

communication between the monitored and the secure core. The secure memory relays commands from the SecMan

to the SKM and also the data from the SKM (i.e., results from executing the commands) to the SecMan. The main

aim is to carry out these operations in a trusted manner. This secure memory can only be accessed by either the SKM

or the secure core. This ensures that the commands and responses cannot be intercepted, corrupted, or faked by an

adversary.

84

5.2.2 Sample Use Cases

The integrity of the system call table in the kernel is very important. Some kernel rootkits often overwrite the entries

in the system call table to hijack the execution of benign processes and hide the presence of malicious processes or

files [13]. One way to detect such rootkits is to regularly check the state of the system call table – the state can be

checked against what was stored at the secure-startup. Hence, the SecMan can send commands to the SKM to capture

the current state of the system call table and copy it into the secure memory. If the recently captured state of the table

deviates from what is expected, then the secure core can take corrective action or raise alarms. Similar operations can

be carried out to verify the integrity of the interrupt vector and to find malicious kernel module or user processes.

5.2.3 Requirements and Challenges

For the rest of this chapter, we will address the following requirements and challenges in implementing the two-level

SKM-based monitoring architecture:

1. The SKM must not be compromised even if the kernel on the monitored core is successfully attacked; also, the

SecMan must be able to detect if the SKM is no longer operating as expected.

2. The SKM should act promptly in response to commands from the SecMan.

3. The secure memory must not be corrupted by an adversary, even when the adversary has gained root access on

the monitored core. The access controller for the secure memory must ensure that only the SKM and the secure

core have access to the secure memory.

5.3 Detailed Architecture

We now present more details about the DragonBeam framework.

5.3.1 DragonBeam Framework Operations

We will explain the details behind each step in the DragonBeam framework using the example of detecting problems

in the system call table (explained in Section 5.2.2). An overview is presented in Figure 5.2. The steps are:

1. The SecMan sends a command (via the secure memory) to check the system call table.

2. The above process results in an inter-core interrupt that is handled by an interrupt handler on the monitored

core.1 The interrupt-service routine, skm ISR(), is the main body of the SKM and handles the command sent

1We will use ‘monitored core’, ‘application core’ and ‘main core’ interchangeably.

85

SKM

check_syscall_table() {
send_cmd(CMD_SYSCALL_TABLE);
settimer(TIMEOUT);

}

recv_syscall_table() {
cleartimer(TIMEOUT);
retrieve current syscall table;
for each entry i

if (cur.table[i]!=org.table[i])
Raise alert!

}

SecMan

send_syscall_table() {
get cur_syscall_table;
for each entry i

write cur_syscall_table[i];
response_ready();

}

Secure Data Memory

1

2

4

5

skm_ISR() {
save sp;
move sp to secure stack;
switch (*CMD) {

…
case CMD_SYSCALL_TABLE:

send_syscall_table();
break;

…
}
restore sp;

}
3

Figure 5.2: Overview of the execution of an example security task (integrity check of system call table) in the Drag-
onBeam framework. The SecMan issues a request (1) to the SKM via an interrupt. The SKM collects the data
needed (i.e., the contents of the system call table) and passes the data back to the SecMan via the secure memory in
steps (3) and (4). Finally, the SecMan verifies the integrity of the received data (5).

by the SecMan. No entity on the main core (other than the SKM) can know the command because access to

the secure memory is restricted.

3. The SKM calls the appropriate function to carry out the required task.

4. The function carries out its operations by placing the required information in the secure memory.

5. The secure core receives an interrupt that the data it requested is now available in the secure memory. On

receiving the interrupt, the SecMan reads out the information from the secure memory region and then sends it

to the appropriate module in the secure core that can analyze this information.

The above process repeats for every command that is sent by the SecMan to the SKM. Let us now look at the details

that enable the above process.

5.3.2 SKM Registration

The SKM is loaded onto the monitored core during the booting phase of the OS. Our assumption here is that the

system is in a clean state at boot time (we could even use a secure-boot mechanism such as IMA [123]).

The first task for the SKM (at load time) is to request the SecMan to register it. Figure 5.3 shows the SKM

registration process. For the SecMan to test the veracity of the SKM’s request for registration, it uses a hash of the

latter’s .text section. Since we do not trust the SKM yet, we do not wait for it to send its hash; rather, we calculate

it directly from the main memory. This prevents malicious modules from copying the SKM’s hash in order to pass off

as legitimate modules.

86

Base
address

SKM .text

Page
Size

SKM
Size

Virtual Address Space Physical Address Space

Main Memory

CTP Page Table
Hierarchy

SKM SecMan

SKM Loading

Registration request
Find physical frames

of SKM .text

Calculate the hash of
SKM .text

If match:
Register the base addr,
SKM size, CTP with
the secure memory

Begin
operations

Halt and
alarm

Match Not

SKM .text
Physical
Frames

CTP +
4xCTXNR

Context Table

Figure 5.3: SKM registration during secure boot.

The SecMan needs the following information about the SKM to compute this hash value: (a) the virtual base

address, (b) the size of the .text section, (c) the page size, and (d) the page table information—all for the SKM. In

SPARC processors (that our prototype is based on; see Section 5.5), the last piece of information corresponds to the

context table pointer (CTP) and the context number (CTXNR) [137]. The CTP points to the root of the page table tree

and the CTXNR is used to index the context table (i.e., the page table) of the current process (hence CTXNR is unique

for each process). The SecMan then translates the .text section of the SKM as defined by the base (virtual) address

and its size to a set of physical addresses that host the SKM code. The SecMan then calculates a hash of the physical

frames that store the SKM code using, for instance, the SHA-1 algorithm [59] (or whatever hashing algorithm that

the systems designers favor). If the newly computed hash matches what was calculated at the design time, then the

SecMan registers the base address for the SKM’s .text section, its size, the page size, CTP and CTXNR with itself.

Also, the base address, size, and CTP are registered with the secure memory controller. From then on, the secure

memory can only be accessed by the code that is verified to be part of the SKM.

Note that a malicious module may make a registration request to the SecMan. However, with the registration

process described above, the only way for the attacker to pass the registration process is to implement the malicious

code in such a way that its .text section has the same hash value as the SKM’s one – remember that the hash is

directly calculated by the SecMan from the given information about the malicious module’s .text section.

87

Program
Counter

Context
Table
Pointer

Rdata

>=

<

=

Registered CTP

AddrWdata

Registered Base

Re
gi

st
er

ed
Ba

se
 +

 S
iz

e

=

ID
(S

ec
ur

e
C

or
e)

Transaction
Master ID

0/1

0/1

0/1

0/1

0/1

EnableAccess
Control
Logic

RAM Array

Monitored
Core

Bus
Interface

Re
tu

rn
s

0x
00

00
00

00

Dr
op

pe
d

Access violation if 0

Figure 5.4: Secure memory access control.

5.3.3 Secure Memory and Access Control

The secure memory enables secure and trusted communication between the SKM and the SecMan. The secure

memory controller only allows the SKM on the main core (and any from the secure core) to access this on-chip

memory. To implement this access control, we use the program counter value to identify who initiated a memory

transaction to the secure memory. The program counter-based memory access control has been used in the context

of embedded devices with no support of virtual memory [139, 105, 90]. In systems with virtual memory, however,

the program counter cannot be used as a unique identifier. Hence, we combine it with a coarse-grained check on the

address mapping information.

Figure 5.4 presents the overview of the secure memory access control process. The secure memory controller

accesses the program counter (a virtual address) register (PC) on the main core as well as the context table pointer

register (CTP). It then checks if (i) the CTP register matches the one registered by the SecMan during the SKM

registration phase and (ii) the value of the PC register is within the .text region of the SKM. Note that we do not use

the context number register (CTXNR) because the kernel memory address mappings are identical across all contexts

on SPARC [137] and thus the context number is ignored by the MMU during kernel address translations. If the above

two conditions are satisfied, we can ensure that only the SKM can access the secure memory. If the memory controller

detects an illegal access attempt, the controller returns 0 for read or drops write transactions.

However, it is entirely possible that a smart adversary may have modified the page table referenced by the le-

gitimate CTP register so that the virtual addresses indexed by [Base, Base+Size] are mapped to the malicious code

88

Altered
CTP

Page Table
Hierarchy

Malicious
Modules’
Physical
Frames

Context Table

CTP
Altered

Page Table
Hierarchy

Context Table

Malicious
Modules’
Physical
Frames

(a) Altered page table

(b) Altered context table pointer

Incorrect hash value
(Caught by SecMan)

Incorrect CTP value
(Violate secure memory

access control)

Figure 5.5: Possible attack scenarios on the SKM page mapping.

instead of the SKM’s physical addresses as illustrated in Figure 5.5(a). Also, as shown in Figure 5.5(b), the adversary

may have set up a whole new context table tree at a different location. The malicious module might then be able

to access the secure memory by modifying the address mappings. To prevent such problems, we could check the

physical addresses of the instructions trying to access the secure memory to verify if it falls within the SKM’s physical

frames. However, we avoid this option since it would involve an address translation each time the secure memory is

accessed—this would result in huge performance overheads. Our solution (as will be elaborated in Section 5.3.4) is

for the SecMan to (a) translate the SKM’s .text section (indexed by [Base, Base+Size]) from virtual to physical

addresses using the registered CTP and CTXNR register values and (b) calculate the hash of the resultant frames—

following exactly the same process as the registration, only done often during execution, not just at the registration

time. If the attacker has modified the page table so that the virtual address range [Base, Base+Size] points to its ma-

licious code (case (a) in Figure 5.5), the resultant hash value will not match the legitimate value. Otherwise, we can

be sure that the range [Base, Base+Size] is pointing to the SKM. Also, an altered CTP value (case (b) in Figure 5.5)

cannot be effective because this simply violates the secure memory access control. Of course, these do not eliminate

the possibility where a carefully constructed malicious module changes the address mappings and restores it to the

original between two hash check points. However, regular hashing with random time intervals can significantly reduce

the possibility of success for such attempts.2

2The attacker would want to do this type of transient attack in an attempt to impersonate the SKM and send fake response through the secure
memory. The attacker would therefore try to alter the address mappings before the SKM is activated by a command from the SecMan. Such a
threat can be significantly reduced if the SecMan performs the hashing right before sending the command to the SKM.

89

Time

SKM

SecMan
 SKM

OP

SKM

OP

SKM

OP
HB

HB

HB
 HS
 HB

HB

HB
SKM

OP

SKM

OP

SKM

OP
 HS

SKM

OP
 HB
 HS

SKM Operation

(Send/Response/Analysis)

Heartbeat

(Check/Send/Receive)

Hashing

SKM .text

Figure 5.6: Timing diagram of SKM operation, heartbeat and hashing.

SKM

Secure
stack

0xa0000000 0xa0020000

SecMan

.text

0xa0010000

SecMan

.data

SecMan

stack

Secure Data

(communication between
SKM and SecMan)

Accessible only by Secure CoreAccessible only by SKM and Secure Core

Figure 5.7: The secure memory map.

5.3.4 Heartbeat and SKM Integrity Check

As mentioned earlier, we need to continuously check if (i) the SKM’s code has not been tampered with; (ii) the SKM

is actually starting up when it is commanded to do so by the SecMan; and finally (iii) the SKM responds to requests

in a timely manner. We have already discussed a technique to check for (i). The issues of liveness of the SKM, viz.,

(ii) and (iii), require a more active approach.

Our solution for this problem is to occasionally send out a special heartbeat command to the SKM as illustrated in

Figure 5.6. The SKM should respond to this command right away. This ensures that the SKM has not been deactivated

by an adversary. No other process can respond to this command since the communication happens through the secure

memory that can be accessed only by the SKM. When a heartbeat command is sent to the SKM, the SecMan starts a

countdown timer. If it does not receive the expected response from the SKM then this is also indicative of an attack.

The timer can be used for any/all commands that the SecMan sends across.

Another precaution that we can take is to send out these heartbeat commands, in addition to the SKM operations

and hashing, at random intervals so that an adversary cannot guess the pattern of checks by the SecMan.

5.3.5 Secure Memory for SecMan and Secure Stack

To ensure the integrity of the SecMan we load its code and data onto a part of the secure memory region that can

be accessible only by the secure core, as shown in Figure 5.7. Hence, an attacker that takes control of the main core

90

cannot corrupt the SecMan. The SKM is loaded onto the main memory (along with the rest of the kernel),3 and we

monitor and protect it by the mechanisms described earlier.

The secure memory also hosts the secure stack for the SKM. When an interrupt is raised and handled by the SKM,

the first step taken by the ISR is to change the stack pointer to the secure stack (see Step 2 in Figure 5.2). Hence, a

malicious module cannot read or alter the data stored in the secure stack even if it knew where the stack is.

5.4 Security Guarantees of the DragonBeam Framework

The DragonBeam framework provides for the secure operation of a kernel module, in the presence of attackers with

full access to the system, including kernel-level access. We outline here the potential attack vectors and the defenses

that the DragonBeam framework provides.

SKM Code Integrity: An attacker may try to replace the SKM with a malicious module and thus have it loaded onto

the system, either during the boot-phase or later during system operation. This is prevented by the SKM registration

process which requires the exact hash value obtained at the design time. Also, the hash is directly computed by the

SecMan using the page table information of the caller to dissuade such attempts. The attacker may also try to modify

the SKM’s ISR. However, since it is placed in the SKM’s .text section, any attempts by the attacker to change the

ISR will be detected by the hashing mechanism mentioned earlier.

SKM Control Flow: The attacker may try to change the state or parameters used by the SKM in order to cause a

buffer overflow and change its execution flow. This can take many forms, from code-injection attacks, to return-to-

library attacks and to return-oriented-programming attacks. All of these attacks rely on a software module processing

its inputs in a vulnerable way; for the purposes of this work, we assume the SKM is well designed and implemented

to avoid such problems. This is a realistic assumption as the SKM is supposed to be functionally self-contained and

small.

SKM Availability: The attacker may try to disable the SKM by preventing it from being scheduled for execution

on the CPU or disabling interrupts. Hence, to guarantee the liveness of the SKM, we use a heartbeat mechanism

(Section 5.3.4). The attacker may try to impersonate the SKM by redirecting the interrupts to itself and by responding

to the heartbeats. We prevent this situation by using the secure memory as a communication channel; no entity, other

than the SKM, can write a response to the secure memory and thus the fake response cannot be delivered to the

SecMan.

SecMan Integrity: The attacker may try to corrupt the SecMan directly so that none of its security functions are
3The SKM could be loaded onto the secure memory. However, this requires a modification of the OS, which we avoid.

91

Table 5.1: Details about the Implementation Platform.
Implementation Artifact Value
Platform Leon3 on Xilinx ZC702 FPGA
Processor SPARC V8 Dual Core @ 83.3 MHz each
Main Memory 256 MB
L1 cache Split, 16 KB, LRU
TLB Split, 8 Entries, 4KB page, LRU
Secure Memory 128 KB, Single-port
Monitored Core OS Linux 3.8
Secure Core OS None (Bare Metal Execution)

invoked in the first place. This cannot happen in our architecture since the attacker cannot access the memory region

of the SecMan.

OS Integrity: An attacker may try to create a distinction between the code and data of the actual running kernel

and the code and data inspected by the SKM. Indeed such attacks are possible – more so with the run-time splicing

support present in kernels these days. Such a distinction between the running and observed kernel states might allow

an attacker to perform malicious tasks – the SKM may not detect these anomalies if it is not well designed. For

example, an attacker who wishes to hijack the system call table could modify the software interrupt table to point to

a new system call dispatch handler, which in turn uses a new system call table placed elsewhere in memory. Thus,

the SKM’s task is not just to read and check the system call table but also to verify that the code that is supposed to

use this table is valid and active. At a minimum the SKM must check the interrupt descriptor table, the code of the

appropriate interrupt handler and, finally, the system call table used by that code. We leave the design of such checks

to the designer of the SKM while we ensure the integrity and confidentiality of the checks via the DragonBeam

framework.

5.5 Implementation

We implemented the DragonBeam framework on a Leon3 processor [14] for a Xilinx ZC702 FPGA [26]. Leon3

is a soft-core processor based on 32-bit, in-order, 7-stage pipeline SPARC V8 architecture [137]. From the soft-core

implementation, we (a) demonstrate the ease with which we can make the required modifications and (b) measure the

hardware costs for such an implementation.

5.5.1 System Configuration

Figure 5.8 shows our DragonBeam framework implementation on Leon3 processor and Table 5.1 lists the details

about the implementation. The system consists of two cores each of which runs at 83.3 MHz and the system has

92

Secure Memory

Leon3 Core 1
(Monitored Core)

Controller

Leon3 Core 2
(Secure Core)

MMU

AHBRAM

Instruction
Pipeline PC

CTP

AHB2AXI
Bridge

Main
Memory

AHB2APB
Bridge

Multiprocessor
Interrupt
Controller

MMU

Instruction
PipelinePC

CTP

U
nu

se
d

CTP

Base
Size

Access
Control

AMBA AHB BUS

IRQIRQ

SKM
Linux

SecManSecure
Data/Stack

Figure 5.8: The DragonBeam framework implementation on Leon3.

a main memory of 256 MB. Each core has L1 instruction (16 KB) and data (16 KB) caches. The MMU has split

TLBs for data and instruction. The Leon3 processor also includes a single-port on-chip RAM, AHBRAM, to which

the cores can access through AMBA [1] AHB (Advanced High-Performance Bus) bus, as depicted in Figure 5.8. We

instantiated it as an 128 KB on-chip SRAM that is addressable at 0xa0000000. The first half is used as the secure

communication channel between SKM and SecMan and also for the secure stack of the SKM, as shown in Figure 5.7.

The bottom half is used by the SecMan. The entire region is set to be uncacheable, otherwise a non-SKM process

can access the cached data without accessing the secure memory.

5.5.2 Secure Memory Implementation

We modified the control logic of AHBRAM, i.e., the on-chip SRAM, to implement the secure memory. As explained

in Sections 5.3.2 and 5.3.3, the information about SKM’s .text and page table are stored in the secure memory for

the access control. For this, we designate the first 16 bytes of the secure memory (i.e., 0xa0000000–0xa0000010)

as special memory-mapped registers in which the SecMan can write the information during the SKM registration

phase. The controller checks the AHB master ID of the memory transaction and grants access to these registers only

from the secure core. Hence, the information can be set only by the SecMan. The bottom half of the secure memory

used by the SecMan (explained in Section 5.3.5) is protected in the same way.

After the SecMan has validated the SKM at registration time, the SecMan locks the memory that contains the

93

control data (i.e., the first 16 bytes) by asserting the lock bit in the control register. From then on, access control

to the secure data and secure stack regions become enabled. As explained in Section 5.3.3, the access control logic

requires the current program counter (PC) and context table pointer (CTP) values from the monitored core. As shown

in Figure 5.8, we extract the PC value from the fetch stage of the core’s instruction pipeline and the CTP value from

the MMU and feed them to the secure memory controller. It returns 0 or drops the transaction for an illegal read or

write request, respectively.

5.5.3 Software Configuration

The monitored core runs an unmodified Linux 3.8 kernel residing on the main memory as shown in Figure 5.8. The

SKM is implemented as a Linux Kernel Module and resides in the main memory. The SKM has about 350 lines of

C code (including spaces) that implement the two use cases introduced in our evaluation (Section 5.6) along with

interrupt handling and inter-core communication routines.

We implemented the SecMan as a bare-metal executive running on the secure core for the purposes of our proof-

of-concept. A complete system can also have an OS and analysis modules running on the secure core. The SecMan

has about 450 lines of C code (excluding the SHA-1 library), a majority of which is for interrupt and timer-related

functionality. As mentioned above, the SecMan resides in the bottom half of the secure memory, accessible only by

the secure core.

5.6 Evaluation

In this section, we evaluate the DragonBeam framework along the following lines: (a) how it can be used by system

designers to implement different detection mechanisms to catch malicious activities; (b) the overheads imposed by the

DragonBeam framework on the main system; and (c) the costs for implementation in hardware.

5.6.1 Implementation of Detection Mechanisms

To demonstrate the effectiveness and versatility of our framework we implemented two existing detection mechanisms.

Note that we are not proposing new detection techniques for any of the use cases presented here. We instead intend to

demonstrate how to use our framework for the benefit of system designers. We also intend to show how SKM closes

the semantic gap by running directly inside the untrusted OS and collecting information useful to security decisions.

94

Hidden Module Detection

Many kernel rootkits such as modhide [17], suterusu [24], etc. hide themselves from the kernel module list to avoid

detection by anti-virus software. The hidden modules are invisible from even lsmod or \proc\modules, both of

which read the list of currently loaded modules from the same kernel data structure. For the following experiments,

we used the suterusu kernel rootkit that hides by deleting itself from the kernel module list.

Hidden kernel modules can be detected by scanning the memory region where modules are typically placed. The

main idea is that every page that is present in this memory region should be allocated to one of the modules present in

the kernel module list as such pages are not swapped out. If even one page cannot be matched up to a known module,

then it is an indication of a hidden module. For instance, in our experimental setup, the memory space where kernel

modules reside lies in the range of 12 MB which hosts 3072 pages of size 4 KB each.

We implemented the detection method using our DragonBeam framework as follows:

1. For each page in the module memory space, we check if it has been loaded into memory by checking the

requisite flag, viz., the present bit. We collect information on all pages in this region.

2. We traverse the module list. For each module, we obtain its base address and size – this corresponds to the list of

pages used by the module. We mark off the pages associated with each module from the list of pages obtained

above.

3. If any of the pages from Step 1 have not been marked off at the end of Step 2, then it is an indication of the

existence of hidden modules in the system.

The SecMan sends commands to the SKM to execute the procedure described above.4 The SKM replies with the

results of this checking procedure. To prevent attackers from evading the checking procedure mentioned above, the

SecMan must send the commands at random points in time.

Using our checking mechanism, the SKM found two pages that had been allocated for suterusu’s code and

data. Other rootkits that operate in a similar manner will also be caught by this procedure.

System Call Table Integrity Check

Many rootkits hijack system calls [13] to intercept sensitive data, hide malicious processes or files, etc. One way

to detect such attacks is to verify that the current state of the system call table matches the original state obtained

immediately after a secure boot. This will detect rootkits that rewrite entries in the table.

4Note that the SecMan could have just asked for the pieces of information – the list of modules and their page usage along with the list of
allocated pages in the kernel space. It could have then executed the matching procedure as well. We do it in the SKM for this experiment only for
convenience – it is up to the system designer to decide where to carry out the analysis/checking.

95

First, the SecMan asks the SKM to capture the initial state of the system call entry table. This information is

passed via the secure memory to the SecMan. This happens right after the SKM has registered with the SecMan, at

which point the OS state is still trustworthy. The SecMan stores this initial state in its internal memory region, part of

the secure memory. During regular execution, the SecMan asks the SKM to send snapshots of the system call table.

The SecMan compares the newly received state information with the one obtained initially. If it detects a change in

the table, then that is an indication of a rootkit having hijacked certain system calls.

We used the modhide1 [17] rootkit for our experiment – it hijacks the open system call to prevent the detection

of a module being inserted into the kernel (e.g., cat \hide hides the module). Using the method described above, the

SecMan was able to detect this rootkit’s presence. More generally this approach can check the state of any critical

kernel data such as the interrupt descriptor table and handlers (as described in Section 5.4), page tables and translation

base register, etc.

5.6.2 Performance Evaluation

We now analyze the overhead imposed on the main core due to the execution of the DragonBeam mechanisms.

Table 5.2 shows the latencies of the heartbeat and hashing operations as well as the operations necessary for

use cases explained in Section 5.6.1. The latency is measured between the time points when the SecMan sends a

command to the SKM and to when the SecMan completes the analysis after receiving data from the SKM. Each entry

in the table presents the average of 1000 measurements and the standard deviation. Note that the hashing operation

does not involve the SKM and thus the latency is simply the time required to (i) copy SKM .text to the secure

memory and (ii) perform the SHA-1 operation. The time spent for the system call table check is to copy a table of 343

entries (total size 1.3 KB in Linux 3.8 on SPARC) and then to compare it (with the stored version of the table) entry

by entry. The hidden module detection operations take much longer because it checks (i.e., looking up each entry in

the three-level page table) all the pages in the kernel module space (3072 pages).

Beyond microbenchmarks, we used the SPECINT2006 [72] benchmark suite5 and measured execution times for

two situations: when the SKM is enabled versus when it is disabled. Specifically, we executed each benchmark 20

times for each of the following scenarios: (a) when the SKM is not running, (b) heartbeat, (c) SKM .text hashing,

(d) system call table integrity check, and (e) hidden module detection is enabled. To obtain stable results, we used a

fixed period (100 ms at the CPU clock speed of 83.3 MHz) for the operations. Hence, the SKM was sent commands

to execute each operation about 1600–6400 times during one benchmark execution.

Figure 5.9 shows the average (geometric mean) ratios of the execution times for each benchmark when the SKM
5We used five benchmarks – bzip2, hmmer, libquantum, mcf, sjeng– from the suite after excluding ones that are failed to cross-

compile to the Leon 3 SPARC platform or ones that took very long time to execute one single execution trace (since the FPGA softcore is slower
on average than regular processors). The average execution time for each of these benchmarks (without the DragonBeam framework) are 370,
198, 161, 511 and 639 seconds, respectively.

96

Table 5.2: Average latencies of SKM operations.
SKM Operation Avg Latency (stdev)

Heartbeat 0.010 ms (4.100 us)
SKM .text hashing 2.679 ms (7.474 us)

System call table check 0.108 ms (5.727 us)
Hidden module detection 3.914 ms (4.772 us)

Benchmark
bzip2 hmmer libquantum mcf sjeng

A
v
e

ra
g

e
 r

a
ti
o

 o
f

e
x
e

c
u

ti
o

n
 t

im
e

 t
o

 t
h

e
 c

a
s
e

 o
f

N
o

 S
K

M

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

Heartbeat (100 ms)
SKM .text hashing (100 ms)
System call table check (100 ms)
Hidden module detection (100 ms)
Random (random interval)

Figure 5.9: The average ratio of execution time to the case when SKM is disabled for different SKM operations.

is enabled (with an SKM operation) compared to when the SKM is disabled. As the plot shows, the overheads

associated with the SKM operations are very small. Among them, the hidden module detection incurs the biggest

overhead (around 4%). This is because it is an in-SKM procedure, i.e., the analysis carried out inside the SKM

module. We could reduce this overhead by offloading the analysis to the SecMan – i.e., the SKM can just send the

list of modules with their base addresses and sizes to the SecMan. Since the latter can physically address the main

memory it can obtain the page information directly and check the flags. Overall, the overheads are consistent with the

latency of each SKM operation (except hashing) shown in Table 5.2. As mentioned above, the hashing operation does

not directly involve the SKM, however it generates a decent amount of bus traffic when copying the SKM’s .text

from the main memory to the secure memory. Hence, the operation indirectly imposes overheads on the main core by

interfering with the memory traffic of the core. The system call table integrity check operation affects the main core’s

memory traffic in the same way because it copies the system call table between the main and secure memories. As we

can see from Figure 5.9 the overheads imposed by these two operations vary more (as compared to the other two sets

97

of bars) across the benchmarks. This is because of the different memory footprints of the benchmarks. bzip2 and

mcf have a substantially larger memory footprint than the other three [73] and hence they experience more overheads

by such SKM operations that require large memory transfers.

Lastly, we performed a similar experiment with random operations that execute at arbitrary intervals. The Sec-

Man sends a command randomly chosen from the four operations and then schedules the next event at some ∆t after

the current time. We configured ∆t to be randomly drawn from [0, 1, . . . , 200] ms so that the median is 100 ms.

However, we configured the SecMan to send the next command as soon as the SKM responds to the current one if

∆t < 10 ms. That is, with 5% of probability, SKM operations can be back-to-back. These make it very difficult for

an adversary to predict when and what kind of SKM operation will occur next thus leading to a significantly reduced

chance of success for transient attacks. The right-most bar of each benchmark group in Figure 5.9 shows the overheads

imposed by this randomized check. The results are consistent with those of individual operation; the overhead is close

to the average of the four operations.

These results show that our DragonBeam framework imposes very little overheads on the main system and it

can still be an effective method to implement security mechanisms. One can also use the results when finding a

proper combination of random periods (for different operations) according to the expected system load and allowable

overheads.

5.6.3 Hardware Costs

Finally, we evaluate the hardware cost of the proposed architecture. The top half of Table 5.3 shows the cost of the

hardware change in terms of the FPGA resource utilization (based on Xilinx ZC702 board [26]). The number in each

cell is the number of resources used and the last column shows the extra resource due to the DragonBeam framework.

The table shows that the DragonBeam framework adds a very small amount of hardware resources. This was possible

because the only hardware changes in the framework are (i) the logic to fetch the 30-bit CTP (Context Table Pointer)

register from the MMU, (ii) the 32-bit PC (Program Counter) register from the instruction pipeline, and (iii) the logic

to implement the access control policy of the secure memory (see Figure 5.4). The logic for the two register fetch

components is duplicated for each core although those of the secure core are not used in the access control. This result

indicates that we can establish an on-chip secure communication channel between the SKM and the SecMan running

on different cores (and also protect the latter’s memory region) using less than 1% of additional hardware resources.

5.6.4 Extension to Multiple Monitored Cores

So far we have considered the situation where the DragonBeam framework runs on a dual core processor. While

we have shown how this works, the issue remains that most modern systems have more than two cores. A typical

98

Table 5.3: FPGA Resource Utilization* of Leon3 Processor with and without the DragonBeam framework.
Resource Default W/ DragonBeam ∆

Dual Registers 10258 10356 0.96%
Core LUTs 19482 19511 0.15%
Quad Registers 18932 19029 0.51%
Core LUTs 37777 37835 0.15%

*Available resource: Registers (106400), LUTs (Look-Up Table, 53200)

PC1

CTP1

>=

<

=

Registered CTP

Registered Base

R
eg

is
te

re
d

B
as

e
+

Si
ze

=

ID
(S

ec
ur

e
C

or
e)

Transaction
Master ID

0/1

0/1

0/1

0/1

Monitored
Cores

Bus
Interface

PCN-1

……

Transaction Master ID

…

CTPN-1

…

PC
Mux

CTP
Mux

Extension for N-1 monitored cores

Figure 5.10: The secure memory access control for monitoring N-1 cores running a single OS and an SKM.

configuration for such systems is that they run a single OS that manages all cores. In such situations, the SKM can run

on any core at any given time. Hence, every monitored core needs to be hooked to the secure memory controller. Now,

when a memory transaction comes in, the program counters and the context table pointer registers of all monitored

cores are multiplexed with the transaction master ID. The rest of the logic remains unchanged as only one SKM exists

and thus only one set of base, size, and CTP is registered.

We extended the original architecture to a quad-core configuration in which three cores are monitored by one secure

core as shown in Figure 5.10. The bottom half of Table 5.3 indicates that the extended architecture still imposes a

very small hardware cost. This SMP configuration with a single SKM instance can reduce the performance overheads,

especially due to in-SKM operations such as the hidden module detection, on the main cores because the SKM can run

in parallel with the main applications running on different cores. To see this, we performed a similar experiment to the

hidden module detection from Figure 5.9 in Section 5.6.2 with the quad-core configuration. The average overheads

are between 0.8% and 2.1%, which are substantially lower than what we observed (about 4%) with a single monitored

core on the dual-core setup.

For systems that have multiple operating systems executing on different cores (e.g., in the case of modern cloud

99

computing systems with virtual machines that share a single underlying processor), the secure memory controller

should be re-architected as there can exist multiple SKMs running on different monitored cores. The controller, at the

very least, needs to have a separate register set for each individual SKM’s information (i.e., the base, size, and CTP

value) and these should be multiplexed with the transaction master ID. Also, the secure memory should be partitioned

so that the SKMs do not interfere with each other. However, we have not fully investigated if there needs to be

additionally required HW changes.

5.6.5 Limitations

There exist some limitations of our approach. First of all, it is constrained to integrity checks. In other words, the

DragonBeam framework does not cover information-leakage attacks (e.g., via side channels). In our model, access

control mechanisms that are part of the DragonBeam framework are used to ensure the integrity and liveness of

security components running in the untrusted OS but with no guarantees about the various side (or covert) channels

created during the normal operation of the system.

A second limitation, specific to our prototype implementation is that an SKM cannot use kernel functions such as

sprintf when the arguments are in the secure memory. One way to get around this issue is to write a wrapper function

in the SKM that copies the required data to some part of the main memory and then pass it to the required library

functions. Automating this through the means of an API that will automatically migrate data between the secure and

insecure memory can mitigate this limitation.

Another important issue is that we trade off some performance for security – essentially one of the cores is reserved

for security monitoring, which could otherwise be used as part of the main system. But this is something that system

designers know about and can account for. This loss of performance comes with increased security guarantees – that

might be fine for many systems where security is often very critical.

5.7 Conclusion

System designers must often contend with different modes and entry vectors of attacks, multiple security solutions

and various monitoring and analysis techniques. A framework that can be used for integrating the different intrusion

detection and analysis methods will provide significant value to such designers. In this chapter, we presented such a

framework that we call DragonBeam. The use of this framework allows designers to implement and carry out their

own monitoring and analysis without affecting the execution of the main system, i.e., little to no effects on the critical

paths of the system.

100

Chapter 6

VirtualDrone: Virtual Sensing, Actuation,
and Communication for Attack-Resilient
Unmanned Aerial Systems
As modern Unmanned Aerial Systems (UAS) continue to expand the frontiers of automation, new challenges to se-

curity and thus its safety are emerging. It is now difficult to completely secure modern UAS platforms due to their

openness and increasing complexity. This chapter presents the VirtualDrone Framework, a software architecture that

enables an attack-resilient control of modern UAS. It allows the system to operate with potentially untrustworthy

software environment by virtualizing the sensors, actuators, and communication channels. The framework provides

mechanisms to monitor physical/logical system behavior and to detect security and safety violations. Upon detection

of such an event, the framework switches to a trusted control mode in order to override malicious system state and

to prevent potential safety violations. We built a prototype quadcoper running an embedded multicore processor that

features a hardware-assisted virtualization technology. We present extensive experimental study and implementation

details, and demonstrate how the framework can ensure the robustness of the UAS in the presence of security breaches.

6.1 Introduction

The booming UAS industry holds tremendous potential to boost productivity and the economy. In addition to military

use cases, UAS platforms have already been experimented in many civil uses, such as delivery, surveillance, trans-

portation, and journalism to name a few. With flight intelligence and autonomy enabled by modern computing and

communication technologies, UAS are ubiquitously networked as an important component for Internet of Things.

The concern about UAS security is growing with the increasing demand on advanced functionalities and thus their

increasing capabilities. General-purpose operating systems, especially Linux-based OS variants, are becoming the

leading OS for intelligent vehicles [28, 32], enabling the industry to promote more intelligent applications. Thanks

to manufacturing advancement, embedded systems can run on light-weight computing platforms, such as Raspberry

Pi [20], Qualcomm Snapdragon flight control board [32], and Intel’s Aero board [34]. Many computation-intensive

applications such as computer vision and complex navigation programs can now run onboard to unleash advanced

capabilities of modern UAS computing platforms. Applications developed for general-purpose systems can also be

ported to these platforms with minimal migration efforts. Moreover, these systems provide convenient networking

101

interface such as WiFi and cellular network which increases connectivity and usability of the platforms. Meanwhile,

many UAS applications are community-supported open-source applications [2]. They allow for adding new features,

tuning the performance, etc. However, the open nature of the software environment, in conjunction with the increased

capabilities and complexities of the modern UAS platforms, inevitably introduce more security vulnerabilities to UAS.

Hence, in order to fully integrate UAS into the current airspace, we need an attack-resilient UAS platform to assure

the safety of modern UAS and the environment. In this work, we propose VirtualDrone, a software framework to

tackle security challenges and achieve assured autonomy in modern UAS platforms. The framework aims to achieve

cyber attack-resilient control of UAS even in the event of a security violation. For this, it provides two separate

control environments – the normal control environment that allows the user to fully control the UAS with advanced

functionalities, and the secure control environment that provides only a minimal set of capabilities for a safe control

in order to minimize the attack surface. In normal circumstances, a UAS operates in the normal control environment,

utilizing advanced but potentially untrusted applications. A security and safety monitoring module, which runs in the

secure environment, continuously monitors the physical and logical states of the UAS in order to detect safety and

security violations. Upon detection of such an event, the secure control environment takes the control of the UAS,

limiting unreliable, untrustworthy functionalities. Then, the trusted controller drives the control of the UAS while a

corrective action takes place.

For a clean separation between the two control environments, we take advantage of modern embedded processor

that features hardware-assisted virtualization technology. We sandbox the normal control environment in a virtual

machine to isolate potential security breaches. The secure control environment runs directly on the host machine,

acting as if it is a hardware security module but with a higher flexibility due to software control. The virtualization of

sensor, actuator, and communication is the key element of the VirtualDrone framework. We virtualize these devices

to protect them from potential threats on the integrity and availability by abstracting away low-level details and by

controlling accesses. The virtual communication also enables an authorized operator to override suspicious behaviors

of the normal control environment, by providing a hidden communication channel.

Virtualization also allows for the use of a rich set of existing security techniques such as virtual machine intro-

spection [65] that can be found in general-purpose systems. Furthermore, multicore processors, which become more

prevalent in modern embedded computing systems, enable concurrent execution of the normal and secure control

environments and also run-time safety and security monitoring efficiently on the same chip.

Our work makes the following contributions:

• We introduce a novel framework, VirtualDrone, a software architecture that enables a cyber attack-resilient

UAS platform by safeguarding critical system resources using a virtualization technique on a multicore proces-

sor.

102

• We implemented the framework on a prototype quadcopter using an off-the-shelf embedded computing board

that runs a quad-core processor with hardware-assisted virtualization. Our implementation aims to use existing

open-source software stacks without any modifications to the host and guest operating systems and also the

virtual machine monitor.

• We present case studies to illustrate the effectiveness and versatility of the framework. Through experimental

validations we demonstrate how the framework provides an integrated platform to defend against various types

of attacks including attempts to hijack and to cause safety violations. We also show how the framework can

provide critical safety measures at the protected layer and also close some of the side channels.

6.2 VirtualDrone Framework

The increasing security challenges posed on the modern UAS platforms make it infeasible to completely secure them

because there exist many entry points that are vulnerable to potential security attacks. The main idea that we propose

in this work is that of a software framework to achieve an attack-resiliency. The framework isolates a normal but un-

trustworthy execution environment from a trusted one that (i) manages real I/O operations, (ii) continuously monitors

for detection of security and safety violations by the former and (iii) takes back the control of the physical system

in such an event. We achieve this by taking advantage of modern embedded processor that features virtualization

technology and increased computing power due to multiple cores.

6.2.1 High-level Framework

The VirtualDrone framework runs two separate control environments that provide different levels of functionalities

and capabilities and thus require different degrees of protection.

Normal Control Environment (NCE): It corresponds to the complex controller in the Simplex architecture (see

Figure 1.2 in Section 1.2.2) that runs software components for any normal function of UAS. This includes advanced

flight and mission controls, and supplementary software such as image processing and networking applications. These

typically require external networking (which could be insecure) for status reporting, data transfer, administration,

etc. Also, often they are complex, third party-developed, and/or subject to frequent updates/upgrades, which hinders

pre-verification or certification on them. Hence, these types of software components running in the NCE are more

susceptible to security threats.

Secure Control Environment (SCE): It runs a minimal set of software components that are critically required to

control the UAS even when the normal environment is completely taken over by an adversary and does not function.

103

Initialization

Time

Initialization

Secure Control Mode

Ready

Control Control

Control Control Control

Normal Control Mode

SCE

NCE

Secure Control Mode

Control

Control

Violation

Active Active

Inactive

Security and Safety Monitoring

Figure 6.1: Switching between the SCE and the NCE.

A security and safety monitoring module in the SCE thus not only monitors the physical state of the system but also

implements a set of security monitors to detect potential security violations. The software components running in

the SCE are static since they are designed for safety purpose and thus require simple software structure and that a

significant amount of analysis is carried out post-design/implementation. Also, they require no or infrequent updates

once deployed.

We call the system is in virtual control mode if the system is driven by the controller running in the NCE (i.e.,

virtual machine). By contrast, the system is in host control mode if the system is driven by the trusted controller in the

SCE (i.e., on the host). In normal circumstances, the system is in the virtual control mode (i.e., NCE), as illustrated

in Figure 6.1, providing the user with the full functionality including network access. Upon detection of the event of a

security or safety violation, the SCE takes back the control of the system in order to override the malicious behavior

and to maintain the system in a controllable state.

Figure 6.2 presents the high-level overview of the VirtualDrone framework. The key components in the frame-

work are

• the virtual machine that sandboxes the full-featured but untrusted operations including the control and relevant

applications (e.g., mission, imaging, networking),

• the virtualized sensors (e.g., inertial measurement unit), actuators (e.g., motors), communication channels (e.g.,

telemetry with the ground station) for use by the normal environment,

• the interface between the real I/O devices and the virtualized ones,

• the security and safety monitor that continuously monitors on the logical and physical behaviors of the system

driven by the normal environment, and lastly

• the trusted controller for a robust backup and recovery.

104

Host OS

Hardware

Trusted
Controller

Sensors Actuators

Peripheral Interfaces

Virtual Sensors
& Actuators &

Communication

Guest OS

I/O
Proxy

Secure Control
Environment (Host)

Security &
Safety Monitor

Normal Control
Environment (VM)

Ne
tw

or
k

Communication

Untrustworthy
Controller &

Apps

Figure 6.2: Overview of the VirtualDrone Framework.

It should be noted that the controller running in the NCE could have been fully verified. However, it is deemed

untrustworthy because of potential direct and indirect threats by other software components residing together.

The VirtualDrone framework benefits from a multicore processor by being able to run the normal and secure

environments in parallel. The latter can continuously perform safety and security checks, and real I/O operations

while the former is carrying out its normal operations, which are not possible on a single core processor.

6.2.2 Assumptions and Adversary Model

In this work, the following assumptions are made:

• Since we utilize a virtualization technique for the isolation of potentially untrustworthy software components,

the virtual machine monitor is our trusted computing base (TCB).

• The software components running in the secure control environment is static and trustworthy. This can be

justified by the fact that, as previously explained, they go through a rigorous verification/certification process

and require no or infrequent updates. If needed, any updates to the secure control environment require physical

accesses to the hardware; over-the-air management is not allowed unless a secure communication channel is

used.

• Inside the virtual machine, an adversary may breach any part of the software stack (the OS kernel, run-time

libraries, file system, user applications) and can even have root-level access (in the VM) and thus have full

control of any software running in the VM. This would enable the attacker to create a backdoor and even replace

105

applications with maliciously modified ones by exploiting vulnerabilities or social-engineering techniques.

• We do not consider physical attacks [143, 88, 136], such as GPS spoofing, against the hardware. Such attacks

can be handled by control-theoretic approaches such as [106, 102, 108].

6.2.3 Virtual Sensing, Actuation, and Communication

The key requirement for sound functioning of the VirtualDrone framework is a clear separation between the normal

and secure control environments. Otherwise, an attacker may take over the trusted controller or the monitoring module

so that they could not function properly when needed. It is also crucial to protect the sensors and actuators from the

untrustworthy components in the NCE as the attacker may degrade their availability or even corrupt them so that

the entire system operates with incorrect information on the physical state. Hence, we use a virtualization technique

to isolate the NCE from what we need to protect, i.e., the SCE. The NCE, which runs potentially untrustworthy

components, is sandboxed in a virtual machine. They see a controlled environment configured by the secure side that

has a direct control on the system resources.

Virtual Sensing and Actuation

One of the key functions of the SCE is to protect the sensors and actuators. Our framework does not allow the NCE

to directly access such devices (e.g., passthrough I/O [95]) because of potential security risks. Instead, as typically

done in virtualization, the I/O operations to/from the devices are emulated. Most sensors and actuators that we can find

from UAS are typically interfaced through certain on-board peripheral communication protocols such as SPI (Serial

Peripheral Interface) and I2C (Inter-Integrated Circuit). Hence, one possible way is to implement back-end drivers for

such common protocols at the virtual machine monitor (VMM) layer so that the applications running in the NCE can

transparently use the (front-end) drivers already provided by the guest OS. However, this approach poses significant

challenges to security and complexity for the following reasons:

• An attacker running in the NCE might reconfigure some sensor devices (e.g., changing the sampling rate or

gain) in use. Hence, we would need a proper way to filter out impermissible I/O transactions from the NCE.

This requires the emulation interface to have a comprehensive map of device registers that specifies write and

read permissions for the NCE. Furthermore, some permission assignments may need to change dynamically de-

pending on the current high-level context of each I/O operation, which is hidden in the low-level I/O emulation.

• The attacker may even attempt denial-of-service attacks on the shared devices by simply keeping them busy.

• Allowing low-level I/O transactions also requires a tight synchronization between the NCE and the SCE be-

cause some I/O operations are stateful. For instance, a compass sensor used in our prototype performs a register

106

I/O Proxy

Inertial Measurement Unit (MPU9250)

Trusted
Controller

MPU9250
Driver

IMU Interface

IMU Raw
Data

Receiver

Hardware

Host OS
SPI

Untrustworthy
Controller & Apps

IMU Interface

Security &
Safety Monitor

NCE (VM) SCE (Host)

IMU
Feeder
Thread

Host-Guest Communication

Figure 6.3: Sensor virtualization in the VirtualDrone framework.

read in two stages – the device driver initializes a read by writing the read address, waiting for 10 ms, and then

collecting the data. GPS parsing is also done with a state machine. Without a proper synchronization, the state

of the device could be lost due to interleaving transactions from the NCE and the SCE. An attacker in the NCE

could use this very property to hinder a timely, correct use of sensor data by the SCE (e.g., attacker may reini-

tialize a sensor while the SCE is waiting for a sample). If a synchronization is to be enforced, the availability

could significantly degrade because the device should be locked for a long time to serve one at a time.

To solve the challenges illustrated above, we take a more passive approach to sensor and actuator virtualization.

The framework runs an I/O proxy for each device in the SCE that feeds sensor data to the NCE. This is a suitable

mechanism because of the periodic nature of their operations and the small data sizes that we can find from typical

sensor and actuator devices on UAS platforms (see Table 6.2 in Section 6.3). Since it is known and fixed how often

each sensor data should be sampled, the I/O proxy only needs to make sure that the SCE feeds the sensor data in time.

It feeds raw sensor data instead of processed ones so that the applications in the NCE can process them as needed.

From the perspective of the NCE, this sensor feeding looks as if the data is sampled from invisible, inaccessible

devices (i.e., virtual sensors). Hence, the SCE can also remove certain side-channels (e.g., radio signal strength

indicator) present in sensor information by not providing it to the NCE especially if this would not degrade the normal

functionality of the NCE.

Figure 6.3 illustrates how an IMU (inertial measurement unit) sensor is virtualized in our prototype based on an

107

I/O Proxy

PWM Generator
(PCA9685)

Trusted
Controller

Motor Driver

Motor Interface

Virtual
Motor
Driver

Hardware

Host OS
I2C

Untrustworthy
Controller

Motor Interface

Security &
Safety Monitor

NCE (VM) SCE (Host)

Motor
Thread

Host-Guest Communication

Motors
0,1,2,3

Figure 6.4: Actuator virtualization in the VirtualDrone framework.

open-source autopilot suite [2]. A user-level device driver (MPU9250 Driver) uses the SPI interface to fetch raw IMU

data. The IMU I/O proxy runs a feeder thread which sends the current sample to the raw data receiver running inside

the NCE through a host-to-guest communication interface. The receiver behaves as a device driver from which the

higher-level interface (i.e., IMU interface) can fetch sensor data, without needing to know the particular model of the

real device. Hence, no modifications are needed in the higher layers.

Actuators (e.g., motors) are virtualized in a similar way. Figure 6.4 shows how an actuator is virtualized in the

VirtualDrone framework, which is similar to the sensor virtualization explained above. The controller running in

the NCE computes a set of PWM (Pulse Width Modulation) output values to control the motors of the vehicle. The

controller writes these values to the virtual motor driver through the motor interface. It transfers the data to an I/O

proxy thread that relays the PWM values to the motor driver in the SCE. The motors are finally actuated by analog

signals converted by the on-board PWM generator.

Virtual Communication

Applications running in the NCE require network communication with the external world for data transfer, remote

management, update, etc. Hence, as shown in Figure 6.2, the framework allows users to directly access into the NCE

through, for example, a port forwarding mechanism provided by the VMM. However, there exist some communication

channels that need to be managed by the SCE – the ground control and the remote controller.

108

GCS

Controller

Controller/App

Switch

NCE
SCE

Hidden Channel

Telemetry
Analyzer

Radio
Transceiver

(e.g., Switch to SCE and Return to Home)

Monitors NCE’s Telemetry Data

Figure 6.5: Telemetry virtualization creates a hidden communication channel between the SCE and the GCS.

The ground control application utilizes a radio communication channel to establish a telemetry transfer between the

ground control station (GCS) and a vehicle. The telemetry data, such as the GPS location and sensor measurement, can

be monitored at the GCS. It can also use telemetry to dynamically control the vehicle by sending commands for setting

new waypoints, landing, arming, etc. However, this communication channel can be exploited by an adversary who

can simply disconnect the channel by disabling the radio driver. Hence, we virtualize the telemetry communication

channel as done for the sensor and actuator.

The key benefit of this mechanism is that it can create a hidden communication channel for the SCE, as illustrated

in Figure 6.5. For example, the GCS can send a special command to the SCE, e.g., switching to the SCE and returning

to the home, which is filtered by the telemetry analyzer (part of the telemetry I/O proxy) that inspects every incoming

message. These hidden messages are not relayed to the NCE. We take advantage of this mechanism as a solution

to drone hijacking scenario presented in Section 6.4.1; upon a detection of a hijacking attempt, the GCS commands

the SCE to switch to the host control mode and to return to where it is launched. We can use the same mechanism

to reboot the virtual machine (after the control is switched to the SCE) from the GCS when a suspicious behavior is

observed. Note that an attacker can send these special commands. Hence, such commands should be chosen carefully

in such a way that a successful attempt cannot lead to a safety hazard.

A hand-held remote controller (see Figure 6.12 in Section 6.4) is used by a human pilot to wire-lessly fly a vehicle.

The flight controller on the vehicle is responsible for computation of PWM inputs to motor units to achieve the desired

attitude set by the controller stick movements. The communication is also carried via a radio link (e.g., 2.4 GHz).

It is virtualized in the same fashion as the telemetry radio, and we can also create a hidden channel. For instance,

in our prototype implementation, we bind one of the switches of the remote controller with the function that tells the

VirtualDrone to switch to the SCE. The pilot uses this function to manually control the vehicle when the NCE-driven

vehicle shows abnormal behavior.

109

Security & Safety Monitor

Geo-fence

Sensor Data
(IMU, GPS, Battery, …)

Telemetry Command
from GCS

Telemetry Report
from NCE

Actuation Command
from NCE

Attitude Error
from SCEVMI Fake Report

Detector

Safety
Monitor

Command to SCE
(Switch, RTL, …)

Figure 6.6: Example configuration of the security and safety monitor.

6.2.4 Security and Safety Monitoring

Figure 6.6 shows an example configuration of the security and safety monitor and data flow, based on the prototype

implementation presented in Section 6.3. Notice from the figure (and also from Figure 6.3) that the monitor receives

sensor data for analysis. Because the data are fetched from the trusted environment, the monitor is guaranteed to use

the true measurement for a safety analysis. Hence, we can detect attacks that, for example, try to put the vehicle

in an open-loop state or to set wrong control parameters. In our prototype quadcopter, we analyze the attitude (i.e.,

roll, pitch, and yaw) errors, which are bounded in normal conditions, to detect an unsafe physical state. One can also

implement a control-theoretic analysis [148, 83]. The monitor also analyzes the actuation outputs from the NCE, as

shown in Figure 6.4, to prevent potential safety violations. For example, the monitor can upper-bound on the motor

outputs to prevent motor failure due to the attacker’s attempt to apply abrupt voltage changes. The monitor can also

check if it receives actuation commands from the NCE at the defined frequency – abnormal patterns could be an

indicator of a potential security breach. In order to handle physical attacks to the sensors, one can also implement a

sensor attack detection technique [106, 102, 108] using the true measurements available in the SCE.

The SCE also inspects communications between the NCE and the external world. The telemetry analyzer, shown

in Figure 6.5, intercepts radio telemetry messages to and from the NCE and provides them to the monitoring module

for analysis. Using this mechanism, one can detect an attacker that, for example, sends out fabricated messages (e.g.,

flight path report replayed or generated by a software-in-the-loop simulation) in an attempt to misinform the ground

control station about the true physical and logical states.

The monitoring module can also host critical safety measures that otherwise would run at the same layer as

untrustworthy applications. For instance, geo-fencing typically runs as a part of an autopilot software. An attacker

can simply disable it or modify the configuration to fly the vehicle into a no-fly-zone. Since this type of function does

not require external interaction, it can run in the SCE using the true sensor measurements (e.g., GPS location).

Virtualization also enables the use of virtualization-based security measures, for instance, virtual machine intro-

spection (VMI) [65]. The monitoring module in the SCE can implement various VMI techniques to monitor the

110

Navio+
(Sensor board)

Raspberry PI 2
(Quad-core ARM, Linux)

GPS

Telemetry
Radio (915MHz) Radio Receiver for

Remote Control (2.4GHz)

Figure 6.7: Quadcopter prototype implementation with Raspberry Pi 2 and Navio+ sensor boards.

behavior of the applications and the guest OS running in the NCE. For example, through interfaces provided by the

VMM, the module can continuously check the integrity of the kernel code and/or its critical data structures (e.g., in-

terrupt vector table, process and module lists) for detection of rootkits, and inspect network connections and packets

for detection of backdoors, and so on. Upon a detection, the framework may switch to the SCE as a preventive ac-

tion, from which moment comprehensive security analyses (e.g., deep memory scan, rebooting VMs) can take place

without losing control of the vehicle.

6.3 Implementation

In this section, we present the implementation details for our prototype of the VirtualDrone framework on a quad-

copter drone, shown in Figure 6.7, running an open-source autopilot on an embedded computing board.

6.3.1 Quadcopter Control

We built a quadcopter (shown in Figure 6.7) as our experimental platform. A quadcopter is a mechanically simple

aerial vehicle which has four independent fixed-pitch propellers arranged in a cross type configuration and are driven

by four brushless motors (motor-prop units). The motor-prop units generate four independent thrust vectors which pro-

vide lift. By precisely spinning the four motor-prop units at specific speeds, different orientations and flight maneuvers

of the quadcopter can be achieved, e.g., to hover, fly forward/backward or left/right, and yaw. Quadcopters are aerody-

namically unstable and their actuators, i.e., the motor-prop units, must be controlled directly by an on-board computer

for stable flight. To maintain an accurate estimate of the vehicle’s orientation and position, an Inertial Measurement

Unit (IMU) sensor must be used to provide real-time attitude and acceleration data for the on-board computer. The

flight maneuver commands may be supplied by input from a human operator using a radio controller (RC) or by the

on-board computer which may compute the correct input according to a pre-programmed flight mission.

111

Table 6.1: Details about the VirtualDrone Prototype Implementation.
Component Description
Sensor Board Navio+
Platform Raspberry PI 2 Model B
Host Processor ARM Cortex-A7 Quad Core @ 900 MHz
Host Memory 1 GB
Host OS Linux 3.18
VMM QEMU Linaro v2.3.50
VM ARM Versatile Express A15, 256 MB
Guest OS Linux 4.3

6.3.2 System Implementation

We implemented the VirtualDrone framework on a Raspberry PI 2 Model B (RPI2) board [20], as depicted in Fig-

ure 6.8. Table 6.1 lists the details about the implementation. It has a quad-core ARM Cortex-A7 CPU, each core of

which runs at 900 MHz, and has a main memory of 1 GB. The processor features the ARM Architecture Virtualization

Extension [3]. It enables running VMs with unmodified guest OS using KVM (Kernel-based Virtual Machine).

On the host, we run Linux 3.18. No modification was made to the kernel, except that we enabled virtualization

with KVM in the configuration. On top of the host OS, we run unmodified QEMU v2.3 [19], an open-source virtual

machine monitor. As explained in Section 6.2.2, QEMU, i.e., the VMM, is our trusted computing base (TCB). We

created one VM1 that emulates an ARM Versatile Express A15 board [25] (which runs a Cortex-A15 CPU, the same

ARMv7 architecture as Cortex-A7) and assigned one of the four cores of the processor exclusively to the virtual

machine. In the virtual machine, we run unmodified Linux 4.3.

We use QEMU’s port forwarding mechanism to open an SSH (Secure Shell) port on the virtual machine, through

which a user logs in to launch, update, manage services and applications. More ports can be open to the virtual

machine using the port forwarding mechanism.

In our prototype, we chose to use Linux as the host OS. However, it is desirable to use a formally verified OS

(e.g., [67]) on the host instead of such a general-purpose, monolithic kernel. Our choice of Linux is to minimize

engineering efforts to port VMM, autopilot, and sensor and actuator device drivers to a new OS. Our implementation

did not require any modifications to the host OS, VMM, and guest OS.

6.3.3 Autopilot

We stack Navio+ sensor board [10] on top of the Raspberry PI 2 (as shown in Figures 6.7 and 6.8) to provide various

sensor data for flight control. The NCE (i.e., the virtual machine) runs the open-source ArduPilot (a.k.a. APM) [2]

autopilot suite as the flight control software for our quadcopter drone. APM combines sensor data and RC flight

1It is more desirable to run multiple virtual machines that host applications requiring different levels of criticality.

112

Security & Safety Monitor

Virtual Machine (QEMU)

Linux

Hardware

ArduPilot

IMU Barometer

Compass

Motors RC

DMASPI I2C

Virtual Sensors
& Actuators &

Communication

Linux

ArduPilot

I/O Proxies

Host User Space

ADC

KVM

HW

AppApp

Net

Network

Po
rt-

Fo
rw

ar
di

ng
I

C
R

G
A

M

N
av

io
+

GPS
Telemetry

Radio

Serial

App

B

TSo
ck

et

Se
ria

lP
or

t

WiFi

Figure 6.8: VirtualDrone implementation on the prototype.

Table 6.2: The rate and amount of data transfer between the secure and normal environments.
Component Direction Rate Size

IMU Host→ VM 200 Hz 14 bytes
Barometer Host→ VM 25 Hz 4 byte
Compass Host→ VM 50 Hz 24 bytes

ADC Host→ VM 1.67 Hz 5 bytes
GPS Host→ VM 5 Hz Max 1K bytes

Motor Output VM→ Host 200 Hz 16 bytes
RC Input Host→ VM 55 Hz 16 bytes
Telemetry Host↔ VM Vary Vary

maneuver commands to compute correct inputs for the four motor-prop units, which are sent by the actuator ports

of the Navio+ board. APM is capable of maintaining the quadcopter’s global position provided that a kind of global

position estimation of the vehicle can be achieved (e.g., via GPS).

As shown in Figure 6.8, we run one instance of APM in the SCE (i.e., the host). The Simplex architecture

suggests the use of a robust controller for the safety controller in order to handle and recover from physical failures.

For demonstration purposes, we chose to use the APM’s default PID controller as the trusted controller. In a production

implementation, however, a high-assurance controller would be used.

6.3.4 Virtualization

Sensors: The I/O proxy, shown in Figures 6.3 and 6.8, runs one feeder thread for each sensor. Each sensor retrieves

a new sample at a fixed frequency. Each feeder thread then sends the newly available data to the virtual machine

113

using a host-guest communication channel. The following describes how the sensors are virtualized in our prototype

implementation, which are also summarized in Table 6.2

• Inertial Measurement Unit (MPU9250): The device driver running on the host retrieves a raw IMU data (14

bytes) every 1 ms through SPI. However, every 5th sample is actually used for control (hence, the effective

control frequency is 200 Hz). The data includes a 3-axis gyroscope and 3-axis accelerometer values.

• Barometer (MS5611): This sensor measures the barometric pressure and temperature. The driver runs a state

machine that operates at a frequency of 25 Hz. A raw data (24 bits) retrieved from the sensor through I2C is

converted to either pressure or temperature value depending on the state (8 bits). Hence, total 32 bits of data is

fed to the virtual machine.

• Compass (AK8963): It measures terrestrial magnetism in the 3 axes at a frequency of 50 Hz using I2C. Total 24

bytes (including per-axis calibration factor) of raw data are fed to the NCE.

• Analog-to-Digital Converter (ADS1115): It measures the voltages on 6 ADC channels. It reads each channel

every 600 ms through I2C. Hence, at a frequency of 1.67 Hz, a data of 40 bit (8 bit for channel ID and 32 bit for

sampled data) is transferred to the virtual machine.

• GPS (u-blox NEO-M8): It provides the current longitude, latitude, and altitude of the vehicle, the time infor-

mation (current millisecond time of week), etc. The driver reads UBX protocol messages from the u-blox GPS

receiver through SPI, parses each one, and then obtains the above information. The parsing is stateful, and a

after-parsing data can be at most 1K bytes. It is fed to the NCE at the frequency of 5 Hz.

Actuator: For the motor actuation, the virtual controller in the NCE sends the PWM values (for the four motors) to

the host, as explained in Section 6.2.3. Actuations are performed at the frequency of the main control loop (i.e., 200

Hz).

Radio Control Input: A remote control via radio link is used to manually control (arm/disarm, flight maneuver) the

quadcopter. The raw input pulses are retrieved through DMA (Direct Memory Access) at 1,666 Hz. About every 18

ms (i.e., 55 Hz), a new set of PWM values representing the stick and switch movements (total 8 channels) becomes

available. As done for the sensors mentioned above, the I/O proxy runs an RC feeding thread. However, instead of

feeding the raw pulse data, we send the processed data, i.e., the PWMs, in order to avoid the overhead due to feeding

the raw data at such a high frequency (1,666 Hz).

Host-Guest Communication: We use QEMU’s virtio-serial2 for data transfer between the host (i.e., I/O proxy
2https://fedoraproject.org/wiki/Features/VirtioSerial

114

https://fedoraproject.org/wiki/Features/VirtioSerial

threads) and guest systems. It creates virtual serial ports in the guest, each of which is mapped to a character device

such as Unix domain socket, pipe, TCP/UDP port, etc. in the host side. We created eight virtual serial ports for the

components listed in Table 6.2. The I/O proxy threads in the SCE use eight Unix domain sockets to communicate

with the virtual machine. One may use other types of host-guest communication mechanisms such as shared memory.

In our implementation, we aimed to utilize an existing infrastructure that does not require any modification or insertion

to the stock QEMU. The virtio-serial is adequate enough to handle the low-speed, low-volume data transfer for

sensor/actuator/communication virtualization. We assume virtio-serial is trustworthy as it is part of QEMU, the

TCB.

Virtual Telemetry: The APM uses a serial port (UART) for telemetry radio transceiver.3 Hence, the NCE-side APM

does not need any addition/modification for the virtual telemetry. The SCE-side APM reads/sends telemetry data

from/to the real UART port, performs a filtering (as described in Figure 6.5), and relays to/from the virtual machine

using the virtual-serial port mechanism explained above. The APM uses MAVLink protocol (Micro Air Vehicle

Communication Protocol).4 MAVLink contains all interface functions to control the vehicle, monitor states, change

parameters, etc. Each MAVLink message’s size and frequency vary depending on the message type. The messages

typically have small size (the maximum is 263 bytes) and low frequency (a few Hz).

6.4 Experiments

We now present case studies that demonstrate how the VirtualDrone framework can detect and prevent various types

of security and safety violations.

6.4.1 Case Study

To demonstrate the effectiveness and versatility of our framework, we consider the following five scenarios. Note

that we are not proposing new detection/mitigation solutions for the use cases presented here. Each scenario could

be handled in many different ways. For instance, hijacking can be easily defeated by a simple authentication of the

communication. We instead intend to demonstrate how an integrated platform, i.e., the VirtualDrone framework, can

defend against various attack scenarios that would otherwise have been handled separately with potentially conflicting

requirements. We also note that these attacks can occur in a number of different forms. In this work, we consider a

pessimistic scenario; the attacker can know the HW/SW configuration and even gain a root access to the NCE.

3Our prototype copter also supports WiFi, and APM’s telemetry can be transferred through UDP or TCP as well. The APM abstracts these away
by treating them as UART communication.

4http://qgroundcontrol.org/mavlink/start

115

http://qgroundcontrol.org/mavlink/start

Time (s)
50 55 60 65 70 75 80 85

R
ol

l,
Pi

tc
h,

 Y
aw

 E
rro

rs

-25,000

-20,000

-15,000

-10,000

-5,000

0

5,000

10,000

15,000

20,000

25,000
Roll
Pitch
Yaw

Time (s)
50 55 60 65 70 75 80 85

R
C

 In
pu

t (
PW

M
s)

800

1000

1200

1400

1600

1800

2000

2200
Roll
Pitch
Throttle
Yaw

Drone hit
the ground

Switched to SCE

Figure 6.9: The roll, pitch, yaw errors (top) measured during the drone’s extreme movements. The bottom plot shows
the roll, pitch, throttle, and yaw targets set by the pilot using the remote controller. The errors (especially the pitch
error in this particular experiment) grow beyond the threshold when the drone hit the ground.

Attacks on Safety

An adversary can launch an attack on the safety of a vehicle by, for example, degrading the availability of critical

sensors (e.g., IMU) or actuators, or the control performance (e.g., by changing PID gains). The worst-case scenario,

from the vehicle’s safety perspective, is when the attacker disables the flight controller while the vehicle is flying. This

immediately leads the system to an open-loop state, which will cause the vehicle to crash. To demonstrate this type of

attack, we consider an extreme scenario in which the flight controller is killed by an attacker. The attacker can launch

this attack by, for example, entering through a backdoor, replacing the control program with one that self-crashes, or

installing a rootkit. We do not assume specific scenario of how it is launched. We implemented a Linux kernel module

that (i) finds the APM autopilot process from the kernel’s process list and then (ii) kills the process. The attacker could

achieve the same goal by causing the virtual machine to crash.

There could be several ways to detect this type of attack. One may use a heartbeat mechanism, which however can

be circumvented by an attacker that impersonates the flight controller. Instead, we take advantage of the SCE’s ability

116

86.5 87 87.5 88 88.5 89 89.5 90 90.5 91
Time (s)

-10000
-7500
-5000
-2500

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000

R
ol

l,
Pi

tc
h,

 Y
aw

 E
rro

rs

Roll
Pitch
Yaw

86.5 87 87.5 88 88.5 89 89.5 90 90.5 91
Time (s)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

M
ot

or
 o

ut
pu

t (
PW

M
s)

Motor[0]
Motor[1]
Motor[2]
Motor[3]

Open-loop

Kill ArduPilot
process

Safety
Violation

Normal Control Mode
(NCE)

Secure Control Mode
(SCE)

Figure 6.10: The motor outputs (top) and the roll, pitch, yaw errors (bottom) measured at the SCE. The attacker in
NCE kills the flight controller, which leads the copter to an open-loop state. The SCE takes the control when the
errors grow beyond the thresholds, after which the copter is stabilized.

to monitor the true physical state of the vehicle. We use the attitude control performance measured at the SCE.5 At

each control loop, the SCE-side controller calculates the errors of the rate control on the pitch, roll, and yaw of the

copter. During a stable flight, the rate errors are bounded, as shown in Figure 6.9, because the flight controller is

active to minimize the rate errors. In case of an open-loop state, the flight controller cannot work to minimize the rate

errors. Due to the fact that a multirotor system is naturally an unstable flight platform, the rate errors will increase

quickly beyond the normal bound. Therefore, a properly chosen threshold of rate errors can be used in detection of

flight safety violations. Hence, the security and safety monitoring module in the SCE continuously checks if the errors

grow beyond the threshold. This approach can also detect other types of attacks that degrade flight performance. Upon

a safety violation, the framework switches to the secure control mode.

Figure 6.10 shows the results of this experiment. While the drone was in the virtual control mode, the attacker

5The APM uses a double-loop PID/P control to stabilize the quadcopter. The Angle loop, a.k.a. the outer loop, controls the attitude of the
vehicle. The Angle loop utilizes a P control to achieve the desired attitude by outputting a desired angular speed, i.e. the angular speed setpoint, to
the Rate loop, a.k.a. the inner loop. The Angle loop’s output, i.e. the angular speed setpoint, is proportional to the difference between the target
angle value set by the pilot (or autopilot when in autonomous flight mode) and the measured angle value from the IMU sensor. The Rate loop
controls the attitude rates of the aircraft. The Rate loop continuously calculates an error value as the difference between the angular speed setpoint
and the measured angular speed from the IMU sensor. A PID control is utilized in Rate loop to minimize the error over time by outputting PWM
signals to control motors.

117

Time (s)
162 164 166 168 170 172 174

R
ol

l,
Pi

tc
h,

 Y
aw

 E
rro

rs

-20,000

-10,000

0

10,000

20,000

30,000

40,000

50,000

60,000
Roll
Pitch
Yaw

Normal
Control Mode

(NCE)

Change
Proportional

Gain

Secure Control Mode
(SCE)

Figure 6.11: The roll, pitch, yaw errors when the proportional gain of the attitude controller is set to an abnormally
high value. The safety module switches to the host control mode immediately upon the detection of the unstable
physical state.

activated the rootkit mentioned above at time around 88.8 sec, at which moment the APM process running in the VM

is killed. The top plot in Figure 6.10 shows the motor outputs (4 channels) from the motor driver in the SCE. As we

can see, the drone was in an open-loop state for about 300 ms. The bottom plot shows the attitude errors also measured

at the SCE. The drone becomes unstable (i.e., the errors are far away from zero) for a moment because no actuation

is applied to the motors during the open-loop period. Upon the detection of the violation on the errors (at time around

89.1 sec), the control is switched to the SCE from which moment the control loop is closed and the drone returns to a

stable state.

For the thresholds on the errors, we used±20, 000 (rad/sec) for roll and pitch, and±10, 000 (rad/sec) for yaw. The

switching logic activates when the violation happens three times consecutively. We obtained these bounds on the errors

by measuring from both normal and extreme movements of the prototype drone. The top plot in Figure 6.9 shows

those errors measured during the drone’s extreme movements and the bottom plot shows how the pilot created the

movements. The result indicates that the errors are well bounded even when the drone experiences such movements.

The pilot intentionally made the drone hit the ground at time between 75 sec and 76 sec, after which the control is

switched to the SCE. We did not attempt to find optimal thresholds. The smaller the threshold is, the easier it is for

the SCE to recover to a stable state. However, at the same time, it could create more false positives.

We also tested a scenario when the control parameters are modified during flight. Figure 6.11 shows the attitude

control errors when this happens. At time around 164.3 sec, a MAVLink message was sent via radio to change the

proportional gain (180 times bigger than the original value) of the attitude controller. As can be seen, the drone became

unstable immediately. The safety module detected the large roll errors, after which the SCE took the control.

118

G

T

A

W

T

A

W

A

G

T

Hijack

Ground Control Station

Launching Point

Attacker

Hijacked Drone

Attacker

Figure 6.12: The attacker (‘A’) tries to hijack the drone flying along the normal path and to send it to a new waypoint
(‘W’). The attacker uses the same telemetry radio as the GCS and the drone, and unmodified APM Planner GCS.

Hijacking

It has been demonstrated that it is possible to hijack a drone by exploiting the MAVLink protocol [30]. The idea is

to send a command that sets a new flight plan through the telemetry channel. The telemetry radio pair of the drone

and the ground control station (GCS) distinguish themselves from others by their unique NetID6 and the frequency

band. Hence, by using the same NetID and radio band and running the same firmware (which decodes the MAVLink

packets) as the target vehicle, the attacker can send any MAVLink messages to the target.

To demonstrate this attack scenario, we used three telemetry radio (i.e., for the GCS, the drone, and the attacker)

that utilize the same frequency band (915 MHz) and same default configuration. Since the out-of-the-box default

NetIDs are same, the attacker’s telemetry radio did not need any firmware modification.7 Figure 6.12 describes the

hijacking scenario. The drone takes off at the launching point (marked as ‘T’) and communicates with the GCS located

at ‘G’. The pilot flies the drone along the normal path. The attacker, located at ‘A’, then launches its ground control

application. Then, it sends a new waypoint plan to the drone, which will send it to the location marked as ‘W’. The

attacker did not need to modify the GCS program (the stock APM Planner 2.08 with default settings). Figure 6.13(a)

shows the flight trajectory of the drone when it was successfully hijacked by the attacker.

6We use radio that run the SiK firmware (https://github.com/Dronecode/SiK). In the SiK firmware, every aerial vehicle and ground
station have assigned NetIDs. A NetID pair is used to simulate the binding of a specific ground station and a specific aerial vehicle.

7It is possible to find out the NetID used between the GCS and a target vehicle by modifying the firmware [30]. An attacker can even disable the
NetID-pair checking routine in the SiK firmware source code to intercept any MAVlink messages via a radio system running at a known frequency
band.

8http://ardupilot.org/planner2/index.html

119

https://github.com/Dronecode/SiK
http://ardupilot.org/planner2/index.html

G G

T T

A A

W W

(a) Without VirtualDrone (b) With VirtualDrone

Figure 6.13: (a) The flight trajectory of the drone hijacked by the attacker. It is sent to new location ‘W’ set by the
attacker. (b) The attacker’s attempt to hijack the drone is detected by the GCS. Upon the detection, the GCS sends
a special command to the SCE, which switches the control mode to the SCE and directs the drone to where it was
launched.

While the drone itself cannot detect such a hijack attempt, the GCS can detect it because of unexpected message

exchange initiated by the attacker. In order for a GCS to set waypoints for a vehicle, a series of MAVLink messages

are exchanged. Figure 6.14(a) shows the MAVLink waypoint protocol.9 The GCS first sends MISSION COUNT(N)

to the vehicle where N represents the number of waypoints that it will set. The vehicle prepares for receiving the N

waypoints, and then requests for each waypoint by sending MISSION REQUEST(i) until all the waypoint locations

are received.

Note that both the legitimate GCS and the attacker need to follow this protocol to set any waypoints. From the

vehicle’s perspective, the initialization requests (i.e., MISSION COUNT(N)) from them are indistinguishable. That

is, the vehicle itself cannot detect suspicious requests for a route change. However, the fact that the attacker can receive

messages from the vehicle means that the legitimate GCS can also hear what the vehicle responds to the attacker’s

request. As Figure 6.14(b) shows the legitimate GCS can detect the attacker’s update on the vehicle’s waypoints when

it receives unexpected MISSION REQUEST messages as it did not initialize the message exchange. Due to such

stateful communication, the MAVLink protocol enables detecting other types of suspicious attempts (e.g., changing

control parameters) as well.

Hence, we used MAVProxy10 as the legitimate GCS and added the functionality that detects such unexpected mes-

sages. Upon a detection, the GCS commands the drone to return to where it was launched, as shown in Figure 6.13(b).

9http://qgroundcontrol.org/mavlink/waypoint_protocol
10https://github.com/ArduPilot/MAVProxy

120

http://qgroundcontrol.org/mavlink/waypoint_protocol
https://github.com/ArduPilot/MAVProxy

(a) Legitimate

Tim
e

Vehicle GCS

…

Attacker

…

Unexpected!

Tim
e

VehicleGCS

…

(b) Hijacking attempt

Figure 6.14: (a) MAVLink messages exchanged between the GCS and the vehicle for waypoint setup. (b) The legiti-
mate GCS can detect the attacker’s update on the vehicles route as the vehicle’s responses are unexpected.

This takes advantage of the VirtualDrone’s virtual telemetry explained in Section 6.2.3; the SCE’s telemetry proxy

enables a hidden communication channel between the GCS and the SCE, through which the former sends the drone

a pre-defined set of special commands. In this scenario, the command from the GCS overrides the NCE’s abnormal

operation by switching the drone to the secure control mode. Note that the attacker might be able to send the same

special command. However, what it can do at worst is to send the drone back to the home.

As explained in Section 6.2.4, the virtual telemetry also enables the SCE to detect if the NCE is trying to deceive

the ground station. For example, after a successful hijacking, the attacker may report fake GPS location (by replaying

or by generating from a software simulator) to the GCS so that it looks as if it is flying on the planned path when it

is not. The telemetry analyzer, however, can detect such attempts by analyzing each outgoing MAVLink packet and

comparing against the true location retrieved from the GPS receiver, which is also implemented on our prototype.

Disabling Safety Functions

Autopilot programs also support critical failsafe mechanisms that are activated under certain conditions such as losing

radio communication signal or low-battery. It is in fact easy to corrupt such a safety-critical measure because typically

it can be enabled/disabled remotely through a telemetry command (hence, an attacker can send a command via radio,

as done in the hijacking scenario). Moreover, such a mechanism is often implemented as a part of autopilot that runs

at the user-level. Hence, an attacker who has gained a root access can easily corrupt it by modifying the configuration

file or the in-memory values.

121

Waypoint 3
Waypoint 2

Waypoint 4

Geo-fence
enabled

Figure 6.15: The waypoint list and geo-fence enable flag
stored in the memory of APM process. An attacker who
gained a root-level access can modify these memory values
to disable the geo-fence and then send the drone to a new
location.

Figure 6.16: The rootkit that disables the geo-
fence and modifies the flight plan by manipulating
the APM’s memory.

In this case study, the attacker corrupts the geo-fence mechanism. Geo-fence employs positioning data such as

GPS signal or local radio-frequency identifiers to set up a virtual boundary to prevent the vehicle entering a prohibited

zone. The vehicle position is monitored at all times such that before the vehicle enters a no-fly zone, the system could

act accordingly to prevent a geo-fence violation. Corruption of the geo-fence can result in a catastrophic result; an

attacker may disable the geo-fencing and induce the vehicle to fly into a congested airspace such as takeoff pathways

for mid-air collision.

To demonstrate this type of attack, we developed a rootkit that finds the APM process, disables the geo-fence

during a flight, and finally sends it into a no-fly zone by modifying the corresponding values in the memory – (i) the flag

that enables/disables the geo-fencing and (ii) the list of waypoints. These are loaded from the APM configuration file

(/var/APM/ArduCopter.stg) on its startup and buffered in the memory. One can change these values remotely

through radio, which however is easy to prevent since radio communication can be monitored easily. Modifying the

buffered values in the memory is difficult to prevent especially if the attacker has gained a root access. The memory

locations of these data can be easily found if the source code or the executable binary is available. Figure 6.15 shows

the memory dump of the waypoint list and geo-fence enable flag.

Our quadcopter drone was planned to fly through a path (0-1-2-3) in an autonomous mode as shown in Figure 6.17.

During the flight, the attacker logged into the system (the NCE) through WiFi and launched the rootkit when the drone

was flying toward Waypoint 2. Figure 6.16 shows how these values are modified by the rootkit. The new Waypoint

122

No-fly zone

Original Path

Figure 6.17: Attacker disables the geo-fence and modifies Waypoint 3 so that the drone flies into a no-fly zone. Such
a safety-critical function can be protected by running in the SCE.

3 set by the rootkit is located inside a no-fly zone. Because the rootkit has already disabled the geo-fence, the drone

consequently flied into the no-fly zone, deviating from the original path, as shown in Figure 6.17.

The SCE of VirtualDrone provides a protected layer at which safety-critical functions like geo-fence can be

placed. We implemented a simple geo-fence module in the security and safety monitoring module in the SCE. It

continuously monitors the current GPS coordinate and checks it against the list of no-fly zones also stored at the SCE

layer. Upon a violation, a pre-defined action is taken. In our implementation, the SCE takes back the control from the

NCE and returns to where it was launched, as done for the hijacking scenario presented earlier.

Side-channel

The virtualization of sensor, actuator, and communication allows for hiding certain types of information from the

NCE. One of the examples is the RSSI (Received Signal Strength Indication) that indicates the link quality between

a pair of radio transmitter and receiver. We especially consider a scenario in which an attacker tries to estimate the

location of the GCS by observing the RSSI measured between the vehicle and the GCS. Due to signal attenuation, the

radio signal is stronger as the vehicle is closer to the GCS. Hence, one can correlate the RSSI with the GPS coordinate.

Figure 6.18 illustrates such a possibility of side-channel. The graphs in the figure represents the RSSI (between

the drone and the GCS) and the GPS coordinate (latitude and longitude) measured while the drone flies through a path

123

T

1

2

3

4

G

Lat: 40.1626060
Lng: -88.3074907

0 20 40 60 80 100 120 140 160 180
Time (s)

100

120

140

160

180

R
SS

I

0 20 40 60 80 100 120 140 160 180
Time (s)

40.1615

40.162

40.1625

40.163

40.1635

La
tit

ud
e

0 20 40 60 80 100 120 140 160 180
Time (s)

-88.309

-88.308

-88.307

-88.306

Lo
ng

itu
de

Figure 6.18: The drone flies through T-1-2-3-4-1. The graphs represent the RSSI (top), the latitude (middle), and the
longitude (bottom). An attacker can estimate the location of the GCS by correlating the RSSI and the GPS information.

(T-1-2-3-4-1). If the attacker is able to obtain these RSSI information, he/she can estimate the location (or a region) of

the GCS by finding when the RSSI is high. The results show quite accurate estimation of the true GCS location (shown

in the map). A complex algorithm will allow for further narrowing down the location. The VirtualDrone framework

eliminates this possibility by not providing the RSSI information to the NCE. Note that RSSI is needed only for the

SCE (e.g., switches to the SCE and then performs a pre-defined operation such as return-to-home when RSSI is low

due to the loss of telemetry link). Furthermore, because of the telemetry virtualization, the NCE cannot even know

if the telemetry is communicated through a radio channel or a network (e.g., WiFi). In case of the network-based

telemetry, the SCE can even hide the IP address of the GCS.

Virtual Machine Introspection

Many rootkits modify critical kernel data structures to intercept sensitive data, hide malicious processes or files, etc.

Although an installation or invocation of rootkit does not immediately harm the system’s safety, it is desirable to

switch to the secure control mode as a preventive action. For a demonstration, we implemented a security module

that checks the integrity of the system call table of the guest OS. For this, we chose to utilize an existing interface

provided by QEMU, namely the QEMU Machine Protocol (QMP). It allows host-side applications to communicate with

or control a running QEMU VM. We created a QMP Unix socket to which our security module can connect. During the

initialization of the VM, the module dumps the system call table and stores this initial state in memory. From then on,

the module regularly dumps the current table and compares it against the one obtained initially. Using this technique,

124

bzip (SPEC) gobmk (SPEC) povray (SPEC) APM

A
v
e

ra
g

e
 r

a
ti
o

 o
f

e
x
e

c
u

ti
o

n
 t

im
e

s
 (

V
M

 v
s
 H

o
s
t)

0

0.25

0.5

0.75

1

1.25

1.5

Figure 6.19: Average ratio of execution time when running on VM to the case of the host.

we were able to detect a known rootkit, modhide1 [17], that hijacks open system call to hide itself from the kernel

module list.

Note that we are not proposing new rootkit detection methods here. We instead intend to demonstrate how the

VirtualDrone framework can handle such a stealthy security violation. One can use a rich set of library for virtual

machine introspection such as LibVMI [15].

6.4.2 Discussion

Sensor Attack

The VirtualDrone framework cannot handle physical manipulations on the sensors such as GPS spoofing. These

types of attacks are called sensor attack or false data injection attack, and typically tackled by control-theoretic

approaches [106, 102, 108]. The requirement, however, is that the methods themselves should be protected from

cyber-attacks. Hence, one can implement such a technique on the SCE layer, specifically in the security and safety

monitoring module, as it can see the true (but potentially physically manipulated) sensor measurements.

Timing Analysis

Virtualization typically imposes performance overhead, which may degrade the flight control performance. Hence, we

measured the execution times of the APM when it runs directly on the host (using the stock APM) and on the virtual

machine. Figure 6.19 shows the result. As a reference, we ran three benchmark applications randomly chosen from

the SPEC2006 benchmark suite [72] and measured the execution times on the VM and the host. We executed each of

125

Time (sec)
0 20 40 60 80 100 120 140 160 180

V
o

lt
a

g
e

 (
v
)

10.5

11

11.5

12
Without VirtualDrone
With VirtualDrone

Figure 6.20: Voltage drop at the battery for 3-minutes of hovering with and without the VirtualDrone framework.

the benchmarks 10 times for each setup. Each benchmark takes minutes to execute once. For the APM, we measured

10,000 execution times. As can be seen from the left three bars in the plot, the average increases in the execution

times due to virtualization are around 20 − 35%. However, the result of APM shows that its execution time actually

decreases (about 17%) when running on the VM. This was mainly because it does not perform any real I/O directly

with the sensors and actuators. Hence, the main control loop is less interfered with I/O threads whose only task is to

read from virtual serial ports through which sensor data are fed by the SCE. The overheads could have been much

higher if the hardware-assisted virtualization (KVM) were not available.

Power Consumption

Since UAS typically runs on battery power, we compare the power consumption of the prototype drone with and

without the VirtualDrone framework. In order to compare the power consumption in a controlled environment (e.g.,

eliminating varying disturbance due to wind), we flew the drone indoors, hovering it at a fixed position. We flew the

drone for about 3 minutes with the same fully-charged battery and measured the voltage drops during the flight.11 We

flew the drone without the VirtualDrone framework first, and then with the VirtualDrone framework.

Figure 6.20 shows the voltage drop at the battery for 3 minutes. The results show that the VirtualDrone does not

impose overhead on the power consumption. This is because the majority of the power is consumed by the motors

to lift the copter. The power consumption by RPI2 board and the Navio+ sensors cannot exceed 5 Watts which is the

upper bound of the power supply by the power module. That is, the power consumption by any on-board computing

cannot be more than 5 Watts. We calculated the average power of the 3-minutes of flights, and it ranged between

11It could fly longer, but we limited the time in order to avoid over-discharge of the battery.

126

114 Watts and 118 Watts in both cases.12 Hence, the power consumption by any on-board computing in flight can be

ignored. Due to the fact that the upper bound of power consumption by computing is two orders of magnitude smaller

than that of the motors, we conclude that the power consumption overhead of running the VirtualDrone is negligible.

6.5 Conclusion

In this chapter, we presented the VirtualDrone framework as a solution to increasing security threats to unmanned

aerial systems. The use of this framework allows system designers (or users) to run advanced flight applications in an

untrustworthy software environment. Our prototype implementation requires a minimal effort to build the framework

on an off-the-shelf computing board with open-source software stack. Through case studies, we demonstrated that

the framework provides an integrated platform to handle various security threats that would otherwise have required

potentially conflicting requirements. The framework also provides an experimental platform on which one can im-

plement and evaluate the cyber-space behavior monitoring and intrusion/anomaly detection techniques (e.g., timing,

memory, etc.) presented in the previous chapters.

Nevertheless, there still remains challenges for practical use of the framework. We used a full-featured autopilot

for both the normal and safety controllers in the current implementation, simply for a demonstration purpose only. It

is desirable to run a fully-verified control software in the SCE. Hence, integrating a high-assurance controller into the

VirtualDrone framework would be an interesting extension.

12Even though the pilot tried to stabilize the drone at the fixed location in both flights, the manual control inevitably cause variances in drone
movements. This could cause variances in the power consumption.

127

Chapter 7

Conclusion and Future Work

In this thesis, we presented hardware and software architectures for secure and dependable cyber-physical systems.

Through certain modifications at the processor architecture and operating system levels, these frameworks not only

make the process of monitoring application-level or system-wide behaviors efficient, but also enable trusted moni-

toring. Based on these architectures, we demonstrated novel uses of statistical learning techniques to model normal

behaviors of CPS and to detect malicious activities. We also developed a virtualization-based attack-resilient architec-

ture for safety-critical CPS.

As future CPS continues to expand the frontiers of automation, more challenges to security and safety will be

emerging. The results presented in this dissertation open up interesting research problems for future study. One re-

search direction could be a multi-dimensional behavior analysis. Each of the behavior monitoring techniques proposed

in this dissertation looked at a certain behavior signal separately. The advances in modern computing technology en-

able adversaries to use sophisticated learning techniques to mimic such a low-dimensional cyber-space behavior. By

combining multiple behavior signals, e.g., timing behavior with system call frequency distribution as briefly discussed

in Section 4.5.5, we can significantly limit what attackers can do because it becomes much more difficult for them to

stay within the normal behavior boundaries defined by the high-dimensional behavioral space. Similarly, we can also

incorporate physical environmental factors into cyber-space behavior and vice versa. The physical behavior, although

driven by the cyber component, is governed by the law of physics. Hence, by learning how physical behavior should

react to particular dynamics of the cyber component, or vice versa, we can (a) detect a compromised state of the cyber

component from physical behavior observation, and also (b) predict the physical consequence of a cyber-space be-

havior. This can enforce a strong security invariant on the system because the cyber and physical behaviors should be

mutually-consistent, therefore significantly thwarting the attacker’s attempt to imitate mutually-consistent behavior.

Cyber-physical systems are becoming more autonomous. They learn from environment, make intelligent deci-

sions, and change their actions as the environment changes. Because of this self-modifying behavior, defining their

normal behavior models now becomes much more difficult, if not impossible. In the current practices, we collect

observational data by running the target system in normal situations, apply a learning technique, and then draw an

empirical boundary of the normal behaviors. This will not work, especially for autonomous CPS, because a security

128

decision is made solely based on such empirical evidences. Hence, we need a systematic way to define their normal

behavior boundaries. In the physical world, the law of physics and control theories enable deriving a mathematical

model of normal physical behavior, i.e., safety envelopes (or stability envelopes). For future CPS, we need such a

mechanism that can tell us whether the current cyber-space state is within secure boundaries. Having such a mathe-

matical behavior model makes it possible to draw a sharp boundary between normal and malicious cyber-space states,

and to detect zero-day attacks through a mathematical reasoning process, not based on unclear empirical evidences.

To realize this, however, system techniques are crucial, because cyber-space behaviors rarely follow precise models,

as opposed to physical-space behavior that follow the law of physics. Hence, it is a necessary direction of research

to develop system techniques that turn true cyber-space behaviors into ones that can be mathematically modeled and

represented. For example, let us consider the timing behavior model presented in Section 2.3. The timing behaviors of

(even) real-time applications cannot be modeled by a precise statistical model as discussed. This necessitated a thresh-

old test based on an empirical probability distribution of execution times. However, through an architectural support or

a run-time level instrumentation and control, or an advanced compiler technique, we can turn such a complex temporal

behavior into one that can be represented by a parametric statistics, for example, a Gaussian distribution. With such

a precise mathematical behavior model, the detection process now becomes, for example, a statistical hypothesis test,

not a threshold test. Furthermore, this will help reduce false classifications such as false positives or negatives, which

are costly in cyber-physical systems.

Another interesting line of research is to make system behaviors more sensitive to security attacks. One way could

be randomizing or modulating normal behaviors in a provable way, e.g., scheduling randomization [160]. We can also

embed certain signatures in system behaviors, i.e., behavior watermarking, with the help of architecture or operating

system supports. With these increased uncertainties, attackers will have to cope with the increased system dynamics.

This will require attackers to use more resources such as time and memory to learn the system, find vulnerabilities,

and launch attacks, which increases the level of complexity for would-be attackers and also the chance to detect such

suspicious behavior. Lastly, it is also important to devise metrics to be able to quantify the security or privacy of a

given system design, application sets, particular configuration, and so on.

129

References

[1] AMBA Specifications. http://www.arm.com/products/system-ip/amba-specifications.
php.

[2] ArduPilot Autopilot Suite. http://www.ardupilot.org/.

[3] ARM Architecture virtualization extension. https://www.arm.com/products/processors/
technologies/virtualization-extensions.php.

[4] ARM Cortex-A9 Processor. http://www.arm.com/products/processors/cortex-a/
cortex-a9.php.

[5] Autosar 4.0. http://www.autosar.org/index.php?p=3&up=1&uup=0.

[6] BCM2836 ARM-local peripherals. https://www.raspberrypi.org/documentation/
hardware/raspberrypi/bcm2836/QA7_rev3.4.pdf.

[7] Buildroot. http://git.buildroot.net/buildroot/.

[8] e500mc Core Reference Manual. http://cache.freescale.com/files/32bit/doc/ref_
manual/E500MCRM.pdf.

[9] EEMBC AutoBench Suite. http://www.eembc.org.

[10] Emlid NAVIO+. https://docs.emlid.com/navio/.

[11] Freescale QorIQ P4080 Processor. http://www.freescale.com/webapp/sps/site/prod_
summary.jsp?code=P4080.

[12] Freescale’s Embedded Hypervisor for QorIQ P4 Series Communications Platform. http:
//cache.freescale.com/files/32bit/doc/white_paper/EMBEDDED_HYPERVISOR.
pdf?fsrch=1&sr=2.

[13] Hijacking system calls with loadable kernel modules. http://r00tkit.me/?p=46.

[14] LEON3 Processor. http://www.gaisler.com/index.php/products/processors/leon3.

[15] LibVMI. http://libvmi.com/.

[16] Linux/ARM shellcode - Disable ASLR Security. http://shell-storm.org/shellcode/files/
shellcode-669.php.

[17] modhide1 Rootkit. http://packetstormsecurity.com/files/favorite/24880/.

[18] Motion. http://www.lavrsen.dk/foswiki/bin/view/Motion/WebHome.

[19] QEMU. http://wiki.qemu.org/.

[20] Raspberry PI 2 Model B. https://www.raspberrypi.org/products/
raspberry-pi-2-model-b/.

130

http://www.arm.com/products/system-ip/amba-specifications.php
http://www.arm.com/products/system-ip/amba-specifications.php
http://www.ardupilot.org/
https://www.arm.com/products/processors/technologies/virtualization-extensions.php
https://www.arm.com/products/processors/technologies/virtualization-extensions.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.autosar.org/index.php?p=3&up=1&uup=0
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/QA7_rev3.4.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/QA7_rev3.4.pdf
http://git.buildroot.net/buildroot/
http://cache.freescale.com/files/32bit/doc/ref_manual/E500MCRM.pdf
http://cache.freescale.com/files/32bit/doc/ref_manual/E500MCRM.pdf
http://www.eembc.org
https://docs.emlid.com/navio/
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4080
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4080
http://cache.freescale.com/files/32bit/doc/white_paper/EMBEDDED_HYPERVISOR.pdf?fsrch=1&sr=2
http://cache.freescale.com/files/32bit/doc/white_paper/EMBEDDED_HYPERVISOR.pdf?fsrch=1&sr=2
http://cache.freescale.com/files/32bit/doc/white_paper/EMBEDDED_HYPERVISOR.pdf?fsrch=1&sr=2
http://r00tkit.me/?p=46
http://www.gaisler.com/index.php/products/processors/leon3
http://libvmi.com/
http://shell-storm.org/shellcode/files/shellcode-669.php
http://shell-storm.org/shellcode/files/shellcode-669.php
http://packetstormsecurity.com/files/favorite/24880/
http://www.lavrsen.dk/foswiki/bin/view/Motion/WebHome
http://wiki.qemu.org/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

[21] SANS Institute - Kernel Rootkits. http://www.sans.org/reading-room/whitepapers/
threats/kernel-rootkits-449.

[22] Simulink. http://www.mathworks.com/products/simulink.

[23] SNARE: System iNtrusion Analysis and Reporting Environments. http://http://www.
intersectalliance.com/.

[24] Suterusu Rootkit. http://poppopret.org/2013/01/07.

[25] Versatile Express Product Family. http://www.arm.com/products/tools/
development-boards/versatile-express.

[26] Xilinx Zynq-7000 All Programmable SoC ZC702 Evaluation Kit. http://www.xilinx.com/
products/boards-and-kits/ek-z7-zc702-g.html.

[27] Cyber-attack concerns raised over Boeing 787 chip’s ’back door’. The Guardian, May 2012. https://www.
theguardian.com/technology/2012/may/29/cyber-attack-concerns-boeing-chip.

[28] 3DR’s Solo Drone Boasts Dual Linux Computers Running Dronecode, Apr 2015. https://www.linux.
com/news/3drs-solo-drone-boasts-dual-linux-computers-running-dronecode.

[29] A hacker developed Maldrone, the first malware for drones. Security Affairs, Jan 2015. http:
//securityaffairs.co/wordpress/32767/hacking/maldrone-malware-for-drones.
html.

[30] Hijacking drones with a mavlink exploit. Oct 2015. http://diydrones.com/profiles/blogs/
hijacking-quadcopters-with-a-mavlink-exploit.

[31] Jeep Hacking 101. IEEE Spectrum, Aug 2015. http://spectrum.ieee.org/cars-that-think/
transportation/systems/jeep-hacking-101.

[32] Qualcomm Goes Ubuntu for Drone Reference Platform, Sep 2015. https://www.linux.com/news/
qualcomm-goes-ubuntu-drone-reference-platform.

[33] Watch GPS Attacks That Can Kill DJI Drones Or Bypass White House Ban. Forbes, Aug 2015. http:
//www.forbes.com/sites/thomasbrewster/2015/08/08/qihoo-hacks-drone-gps/
#26431a2853fe.

[34] Intel Aero Compute Board, 2016. http://www.intel.com/content/www/us/en/
technology-innovation/aerial-technology-overview.html.

[35] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity principles, implementations, and
applications. ACM Trans. Inf. Syst. Secur., 13(1):4:1–4:40, Nov. 2009.

[36] A. Aiyer, K. P. Pyun, Y. zong Huang, D. B. OBrien, and R. M. Gray. Lloyd clustering of gauss mixture models
for image compression and classification. Signal Processing: Image Communication, 20(5):459 – 485, 2005.

[37] T. W. Anderson and D. A. Darling. Asymptotic theory of certain ”goodness of fit” criteria based on stochastic
processes. The Annals of Mathematical Statistics, 23(2):193–212, 1952.

[38] A. Arnaud and I. Puaut. Dynamic instruction cache locking in hard real-time systems. In Proceedings of the
International Conference on Real-Time and Network Systems, May 2006.

[39] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and W. Shen. Hypervision across
worlds: Real-time kernel protection from the arm trustzone secure world. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, 2014.

[40] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal analysis of network traffic anomalies. In Proceedings of
the ACM SIGCOMM Workshop on Internet Measurment, 2002.

131

http://www.sans.org/reading-room/whitepapers/threats/kernel-rootkits-449
http://www.sans.org/reading-room/whitepapers/threats/kernel-rootkits-449
http://www.mathworks.com/products/simulink
http://http://www.intersectalliance.com/
http://http://www.intersectalliance.com/
http://poppopret.org/2013/01/07
http://www.arm.com/products/tools/development-boards/versatile-express
http://www.arm.com/products/tools/development-boards/versatile-express
http://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
http://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
https://www.theguardian.com/technology/2012/may/29/cyber-attack-concerns-boeing-chip
https://www.theguardian.com/technology/2012/may/29/cyber-attack-concerns-boeing-chip
https://www.linux.com/news/3drs-solo-drone-boasts-dual-linux-computers-running-dronecode
https://www.linux.com/news/3drs-solo-drone-boasts-dual-linux-computers-running-dronecode
http://securityaffairs.co/wordpress/32767/hacking/maldrone-malware-for-drones.html
http://securityaffairs.co/wordpress/32767/hacking/maldrone-malware-for-drones.html
http://securityaffairs.co/wordpress/32767/hacking/maldrone-malware-for-drones.html
http://diydrones.com/profiles/blogs/hijacking-quadcopters-with-a-mavlink-exploit
http://diydrones.com/profiles/blogs/hijacking-quadcopters-with-a-mavlink-exploit
http://spectrum.ieee.org/cars-that-think/transportation/systems/jeep-hacking-101
http://spectrum.ieee.org/cars-that-think/transportation/systems/jeep-hacking-101
https://www.linux.com/news/qualcomm-goes-ubuntu-drone-reference-platform
https://www.linux.com/news/qualcomm-goes-ubuntu-drone-reference-platform
http://www.forbes.com/sites/thomasbrewster/2015/08/08/qihoo-hacks-drone-gps/#26431a2853fe
http://www.forbes.com/sites/thomasbrewster/2015/08/08/qihoo-hacks-drone-gps/#26431a2853fe
http://www.forbes.com/sites/thomasbrewster/2015/08/08/qihoo-hacks-drone-gps/#26431a2853fe
http://www.intel.com/content/www/us/en/technology-innovation/aerial-technology-overview.html
http://www.intel.com/content/www/us/en/technology-innovation/aerial-technology-overview.html

[41] C. Beecks, A. Ivanescu, S. Kirchhoff, and T. Seidl. Modeling image similarity by gaussian mixture models
and the signature quadratic form distance. In Proceedings of the IEEE International Conference on Computer
Vision, 2011.

[42] R. Begleiter, R. El-yaniv, and G. Yona. On prediction using variable order markov models. Journal of Artificial
Intelligence Research, 22:385–421, 2004.

[43] J. Bigham, D. Gamez, and N. Lu. Safeguarding scada systems with anomaly detection. In Proceedings of the
International Workshop on Mathematical Methods, Models and Architectures for Computer Network Security,
2003.

[44] D. M. Blei. Probabilistic topic models. Commun. ACM, 55(4):77–84, Apr. 2012.

[45] S. Bratus, M. E. Locasto, A. Ramaswamy, and S. W. Smith. Vm-based security overkill: A lament for applied
systems security research. In Proceedings of the Workshop on New Security Paradigms, pages 51–60, 2010.

[46] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: Behavior-based malware detection system for
android. In Proceedings of the ACM Workshop on Security and Privacy in Smartphones and Mobile Devices,
2011.

[47] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete sequences: A survey. IEEE Trans. on
Knowl. and Data Eng., 24(5):823–839, 2012.

[48] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. C. Mowry, R. Teodorescu, A. Ailamaki, L. Fix, G. R. Ganger,
B. Lin, and S. W. Schlosser. Log-based architectures for general-purpose monitoring of deployed code. In
Proceedings of the workshop on Architectural and system support for improving software dependability, 2006.

[49] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C. Mowry, V. Ramachandran, O. Ruwase,
M. Ryan, and E. Vlachos. Flexible hardware acceleration for instruction-grain program monitoring. In Pro-
ceedings of the International Symposium on Computer Architecture, 2008.

[50] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and A. Valdes. Using Model-based Intrusion
Detection for SCADA Networks. In Proceedings of the SCADA Security Scientific Symposium, 2007.

[51] J. Choi and E. Amir. Lifted relational variational inference. In Proceedings of the Conference on Uncertainty
in Artificial Intelligence, 2012.

[52] J. Criswell, N. Dautenhahn, and V. Adve. Kcofi: Complete control-flow integrity for commodity operating
system kernels. In Proceedings of the IEEE Symposium on Security and Privacy, 2014.

[53] J. Criswell, N. Dautenhahn, and V. Adve. Virtual ghost: Protecting applications from hostile operating sys-
tems. In Proceedings of International Conference on Architectural Support for Programming Languages and
Operating Systems, 2014.

[54] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society, Series B, 39(1):1–38, 1977.

[55] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh. Flexible and efficient instruction-grained run-time
monitoring using on-chip reconfigurable fabric. In Proceedings of the IEEE/ACM International Symposium on
Microarchitecture, pages 137–148, 2010.

[56] D. E. Denning. An intrusion-detection model. IEEE Trans. Softw. Eng., 13(2):222–232, Feb. 1987.

[57] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee. Tappan zee (north) bridge: mining memory accesses for
introspection. In Proceedings of the ACM Conference on Computer Communications Security, 2013.

[58] P. Düssel, C. Gehl, P. Laskov, J.-U. Buß er, C. Störmann, and J. Kästner. Cyber-critical infrastructure protection
using real-time payload-based anomaly detection. In Proceedings of the International Conference on Critical
Information Infrastructures Security, 2010.

132

[59] D. Eastlake, 3rd and P. Jones. Us secure hash algorithm 1 (sha1), 2001.

[60] V. A. Epanechnikov. Non-parametric estimation of a multivariate probability density. Theory Probab. Appl,
14(1):153–158, 1969.

[61] E. Eskin. Modeling system calls for intrusion detection with dynamic window sizes. In Proceedings of DARPA
Information Survivabilty Conference and Exposition II, 2001.

[62] M. A. T. Figueiredo and A. Jain. Unsupervised learning of finite mixture models. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 24(3):381–396, 2002.

[63] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for unix processes. In Proceedings
of the IEEE Symposium on Security and Privacy, 1996.

[64] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner. Embedded system design: modeling, synthesis and
verification. Springer Science & Business Media, 2009.

[65] T. Garfinkel and M. Rosenblum. A virtual machine introspection based architecture for intrusion detection. In
Proceedings of Network and Distributed Systems Security Symposium, 2003.

[66] I. Garitano, R. Uribeetxeberria, and U. Zurutuza. A review of scada anomaly detection systems. volume 87 of
Advances in Soft Computing, pages 357–366, 2011.

[67] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, and D. Costanzo. Certikos: An extensible architecture
for building certified concurrent os kernels. In Proceedings of the USENIX Conference on Operating Systems
Design and Implementation, 2016.

[68] Y. Gu, A. McCallum, and D. Towsley. Detecting anomalies in network traffic using maximum entropy estima-
tion. In Proceedings of the ACM SIGCOMM Conference on Internet Measurement, 2005.

[69] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. Mibench: A free,
commercially representative embedded benchmark suite. In Proceedings of the IEEE Annual Workshop on
Workload Characterization, 2001.

[70] D. Hadiosmanović, D. Bolzoni, S. Etalle, and P. H. Hartel. Challenges and opportunities in securing industrial
control systems. In Proceedings of the IEEE Workshop on Complexity in Engineering, 2012.

[71] M. Handley, V. Paxson, and C. Kreibich. Network intrusion detection: evasion, traffic normalization, and
end-to-end protocol semantics. In Proceedings of the conference on USENIX Security Symposium, 2001.

[72] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Comput. Archit. News, 34(4):1–17, Sept.
2006.

[73] J. L. Henning. SPEC CPU2006 memory footprint. SIGARCH Comput. Archit. News, 35(1):84–89, Mar. 2007.

[74] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Comput.,
18(7):1527–1554, 2006.

[75] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Practical taint-based protection using demand
emulation. In Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer Systems, 2006.

[76] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of system calls. J. Comput.
Secur., 6(3):151–180, 1998.

[77] W. Hu, Y. Liao, and V. R. Vemuri. Robust anomaly detection using support vector machines. In Proceedings
of the International Conference on Machine Learning, 2003.

[78] W.-M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E.
Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery. The superblock: an effective technique for vliw
and superscalar compilation. J. Supercomput., 7:229–248, 1993.

133

[79] D. Jang, H. Lee, M. Kim, D. Kim, D. Kim, and B. B. Kang. Atra: Address translation redirection attack against
hardware-based external monitors. In Proceedings of the ACM Conference on Computer and Communications
Security, 2014.

[80] A. Y. Javaid, W. Sun, V. K. Devabhaktuni, and M. Alam. Cyber security threat analysis and modeling of
an unmanned aerial vehicle system. In Proceedings of the IEEE Conference on Technologies for Homeland
Security, 2012.

[81] S. Jha, K. Tan, and R. A. Maxion. Markov chains, classifiers, and intrusion detection. In Proceedings of the
IEEE workshop on Computer Security Foundations, 2001.

[82] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through vmm-based ”out-of-the-box” semantic view
reconstruction. In Proceedings of the ACM Conference on Computer and Communications Security, 2007.

[83] T. T. Johnson, S. Bak, M. Caccamo, and L. Sha. Real-time reachability for verified simplex design. ACM Trans.
Embed. Comput. Syst., 15(2):26:1–26:27, Feb. 2016.

[84] I. Jolliffe. Principal Component Analysis. Springer Series in Statistics, 2002.

[85] M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of bandwidth selection for density estimation.
Journal of the American Statistical Association, 91(433):401–407, 1996.

[86] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Antfarm: Tracking processes in a virtual machine
environment. In Proceedings of the USENIX Annual Technical Conference, 2006.

[87] H. Kannan, M. Dalton, and C. Kozyrakis. Decoupling dynamic information flow tracking with a dedicated
coprocessor. In Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks,
pages 105–114, 2009.

[88] A. J. Kerns, D. P. Shepard, J. A. Bhatti, , and T. E. Humphreys. Unmanned Aircraft Capture and Control Via
GPS Spoofing. Journal of Field Robotics, 31, 2014.

[89] E. M. Knorr and R. T. Ng. A unified notion of outliers: Properties and computation. In Proceedings of the
International Conference on Knowledge Discovery and Data Mining, 1997.

[90] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan. Trustlite: A security architecture for tiny embedded
devices. In Proceedings of the European Conference on Computer Systems, 2014.

[91] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, and S. Savage. Experimental security analysis of a modern automobile. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 447–462, 2010.

[92] Y. Kwon, A. M. Dunn, M. Z. Lee, O. S. Hofmann, Y. Xu, and E. Witchel. Sego: Pervasive trusted metadata
for efficiently verified untrusted system services. In Proceedings of International Conference on Architectural
Support for Programming Languages and Operating Systems, 2016.

[93] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A. Lee. Predictable programming on a precision
timed architecture. In Proceedings of International Conference on Compilers, Architecture, and Synthesis from
Embedded Systems, 2008.

[94] A. Likas, N. Vlassis, and J. J. Verbeek. The global k-means clustering algorithm. Pattern Recognition, 36(2):451
– 461, 2003.

[95] J. Liu, W. Huang, B. Abali, and D. K. Panda. High performance vmm-bypass i/o in virtual machines. In
Proceedings of the USENIX Annual Technical Conference, 2006.

[96] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129–137, Mar.
1982.

134

[97] F. Maggi, M. Matteucci, and S. Zanero. Detecting intrusions through system call sequence and argument
analysis. IEEE Transactions on Dependable and Secure Computing, 7(4):381–395, 2010.

[98] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hllberg, J. Hgberg, F. Larsson, A. Moestedt,
and B. Werner. Simics: A full system simulation platform. IEEE Computer, 35(2):50–58, 2002.

[99] P. C. Mahalanobis. On the generalized distance in statistics. Proceedings of the National Institute of Sciences
(Calcutta), 2:49–55, 1936.

[100] C. Marceau. Characterizing the behavior of a program using multiple-length n-grams. In Proceedings of the
workshop on New security paradigms, 2000.

[101] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. Trustvisor: Efficient tcb reduction
and attestation. In Proceedings of the IEEE Symposium on Security and Privacy, 2010.

[102] Y. Mo and B. Sinopoli. Secure estimation in the presence of integrity attacks. IEEE Transactions on Automatic
Control, 60(4):1145–1151, 2015.

[103] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo. S3A: Secure system simplex architecture
for enhanced security and robustness of cyber-physical systems. In Proceedings of the ACM International
Conference on High Confidence Networked Systems, 2013.

[104] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel. Anomalous system call detection. ACM Trans. Inf. Syst. Secur.,
9(1):61–93, Feb. 2006.

[105] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens, B. Preneel, I. Verbauwhede, and
F. Piessens. Sancus: Low-cost trustworthy extensible networked devices with a zero-software trusted computing
base. In Proceedings of the USENIX Conference on Security, 2013.

[106] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, I. Lee, and G. J. Pappas. Robustness of attack-resilient
state estimators. In Proceedings of the ACM/IEEE International Conference on Cyber-Physical Systems, 2014.

[107] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero. Hardware support for wcet analysis of hard
real-time multicore systems. In Proceedings of IEEE/ACM International Symposium on Computer Architecture,
2009.

[108] J. Park, R. Ivanov, J. Weimer, M. Pajic, and I. Lee. Sensor attack detection in the presence of transient faults.
In Proceedings of the ACM/IEEE International Conference on Cyber-Physical Systems, 2015.

[109] P. Parkinson. Safety, security and multicore. In Proceedings of Safety-Critical Systems Symposium, 2011.

[110] G. Parmer and R. Wes. Hijack: Taking control of cots systems for real-time user-level services. In Proceedings
of the IEEE Real-Time and Embedded Technology and Applications Symposium, 2007.

[111] E. Parzen. On estimation of a probability density function and mode. The Annals of Mathematical Statistics,
33(3):1065–1076, 1962.

[112] B. D. Payne, M. Carbone, and W. Lee. Secure and flexible monitoring of virtual machines. In Proceedings of
Annual Computer Security Applications Conference, 2007.

[113] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An architecture for secure active monitoring using
virtualization. In Proceedings of the IEEE Symposium on Security and Privacy, 2008.

[114] S. Peisert, M. Bishop, S. Karin, and K. Marzullo. Analysis of computer intrusions using sequences of function
calls. IEEE Trans. Dependable Secur. Comput., 4(2):137–150, 2007.

[115] G. Pék, A. Lanzi, A. Srivastava, D. Balzarotti, A. Francillon, and C. Neumann. On the feasibility of software
attacks on commodity virtual machine monitors via direct device assignment. In Proceedings of the ACM
Symposium on Information, Computer and Communications Security, 2014.

135

[116] A. G. Pennington, J. D. Strunk, J. L. Griffin, C. A. N. Soules, G. R. Goodson, and G. R. Ganger. Storage-based
intrusion detection: Watching storage activity for suspicious behavior. In Proceedings of the Conference on
USENIX Security Symposium, 2003.

[117] H. Permuter, J. Francos, and I. Jermyn. A study of gaussian mixture models of color and texture features for
image classification and segmentation. Pattern Recognition, 39(4):695 – 706, 2006.

[118] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Arbaugh. Copilot - a coprocessor-based kernel runtime
integrity monitor. In Proceedings of the Conference on USENIX Security Symposium, 2004.

[119] N. L. Petroni, Jr. and M. Hicks. Automated detection of persistent kernel control-flow attacks. In Proceedings
of the ACM Conference on Computer and Communications Security, 2007.

[120] J. Pfoh, C. Schneider, and C. Eckert. Nitro: hardware-based system call tracing for virtual machines. In
Proceedings of the International conference on Advances in information and computer security, 2011.

[121] plaguez. Weakening the linux kernel. Phrack, 8(52), 1998.

[122] J.-S. Pleban, R. Band, and R. Creutzburg. Hacking and securing the ar.drone 2.0 quadcopter: investigations
for improving the security of a toy. In Proceedings of the SPIE Mobile Devices and Multimedia: Enabling
Technologies, Algorithms, and Applications, 2014.

[123] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. Design and implementation of a tcg-based integrity measure-
ment architecture. In Proceedings of the USENIX Security Symposium, 2004.

[124] M. Salem, M. Crowley, and S. Fischmeister. Anomaly detection using inter-arrival curves for real-time systems.
In Proceedings of the Euromicro Conference on Real-Time Systems, 2016.

[125] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using arm trustzone to build a trusted language runtime for mobile
applications. In Proceedings of the ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, 2014.

[126] M. Schoeberl and P. Puschner. Is chip-multiprocessing the end of real-time scheduling? In Proceedings of
International Workshop on Worst-Case Execution Time (WCET) Analysis, 2009.

[127] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: A tiny hypervisor to provide lifetime kernel code integrity
for commodity oses. In Proceedings of the ACM Symposium on Operating Systems Principles, 2007.

[128] L. Sha. Using simplicity to control complexity. IEEE Softw., 18(4):20–28, 2001.

[129] H. Shacham. The geometry of innocent flesh on the bone: return-into-libc without function calls (on the x86).
In Proceedings of the ACM Conference on Computer and Communications Security, 2007.

[130] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-vm monitoring using hardware virtualization. In
Proceedings of the ACM Conference on Computer and Communications Security, 2009.

[131] D. Shepard, J. Bhatti, and T. Humphreys. Drone hack: Spoofing attack demonstration on a civilian unmanned
aerial vehicle. GPS World, Aug 2012.

[132] W. Shi, H.-H. S. Lee, L. Falk, and M. Ghosh. An integrated framework for dependable and revivable architec-
tures using multicore processors. In Proceedings of the International Symposium on Computer Architecture,
2006.

[133] C. Sinclair, L. Pierce, and S. Matzner. An application of machine learning to network intrusion detection. In
Proceedings of the Computer Security Applications Conference, 1999.

[134] L. Sirovich and M. Kirby. Low-dimensional procedure for the characterization of human faces. Journal of the
Optical Society of America A, 4(3):519–524, 1987.

[135] R. Sommer and V. Paxson. Outside the closed world: On using machine learning for network intrusion detec-
tion. In Proceedings of the IEEE Symposium on Security and Privacy, 2010.

136

[136] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim. Rocking drones with intentional sound
noise on gyroscopic sensors. In Proceedings of the USENIX Conference on Security Symposium, 2015.

[137] C. SPARC International, Inc. The SPARC Architecture Manual: Version 8. Prentice-Hall, Inc., 1992.

[138] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu. Process out-grafting: An efficient ”out-of-vm” approach for
fine-grained process execution monitoring. In Proceedings of the ACM Conference on Computer and Commu-
nications Security, 2011.

[139] R. Strackx, F. Piessens, and B. Preneel. Efficient isolation of trusted subsystems in embedded systems. In
Security and Privacy in Communication Networks, volume 50 of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, pages 344–361. 2010.

[140] P. Sun, S. Chawla, and B. Arunasalam. Mining for outliers in sequential databases. In the SIAM International
Conference on Data Mining, 2006.

[141] J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Eliminating the hypervisor attack surface for a more secure
cloud. In Proceedings of the ACM Conference on Computer and Communications Security, 2011.

[142] H. Teso. Aicraft hacking. In Proceedings of the Annual HITB Security Conference in Europe, 2013.

[143] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun. On the requirements for successful gps
spoofing attacks. In Proceedings of the ACM Conference on Computer and Communications Security, 2011.

[144] M. Turk and A. Pentland. Face recognition using eigenfaces. In Proceedings of the IEEE Coference on Com-
puter Vision and Pattern Recognition, 1991.

[145] US-CERT. ICSA-10-272-01: Primary stuxnet indicators. Aug. 2010.

[146] A. Valdes and S. Cheung. Communication pattern anomaly detection in process control system. In IEEE
International Conference on Technologies for Homeland Security, 2009.

[147] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems. In Proceedings of the ACM
conference on Computer and communications security, 2002.

[148] X. Wang, N. Hovakimyan, and L. Sha. L1simplex: Fault-tolerant control of cyber-physical systems. In Pro-
ceedings of the ACM/IEEE International Conference on Cyber-Physical Systems, 2013.

[149] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel rootkits with lightweight hook protection. In
Proceedings of the ACM Conference on Computer and Communications Security, 2009.

[150] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusion using system calls: alternative data models.
In Proceedings of the IEEE Symposium on Security and Privacy, 1999.

[151] J. Wei, B. Payne, J. Giffin, and C. Pu. Soft-timer driven transient kernel control flow attacks and defense. In
Proceedings of the Annual Computer Security Applications Conference, 2008.

[152] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83, 1945.

[153] P. Wilson, A. Frey, T. Mihm, D. Kershaw, and T. Alves. Implementing embedded security on dual-virtual-cpu
systems. IEEE Des. Test, 24(6):582–591, Nov. 2007.

[154] R. Wojtczuk. Subverting the xen hypervisor - xen 0wning trilogy part i. Black Hat USA, 2008.

[155] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Capturing system-wide information flow for
malware detection and analysis. In Proceedings of the ACM Conference on Computer and Communications
Security, 2007.

[156] M.-K. Yoon, M. Christodorescu, L. Sha, and S. Mohan. The DragonBeam Framework: Hardware-protected
security modules for in-place intrusion detection. In Proceedings of the ACM International Systems and Storage
Conference, 2016.

137

[157] M.-K. Yoon and G. Ciocarlie. Communication pattern monitoring: Improving the utility of anomaly detection
for industrial control systems. In NDSS Workshop on Security of Emerging Networking Technologies, 2014.

[158] M.-K. Yoon, J.-E. Kim, and L. Sha. Optimizing tunable wcet with shared resource allocation and arbitration in
hard real-time multicore systems. In Proceedings of the IEEE Real-Time Systems Symposium, 2011.

[159] M.-K. Yoon, B. Liu, N. Hovakimyan, and L. Sha. VirtualDrone: Virtual sensing, actuation, and communication
for attack-resilient unmanned aerial systems. In Proceedings of the ACM/IEEE International Conference on
Cyber-Physical Systems, 2017.

[160] M.-K. Yoon, S. Mohan, C.-Y. Chen, and L. Sha. TaskShuffler: A schedule randomization protocol for obfusca-
tion against timing inference attacks in real-time systems. In Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium, 2016.

[161] M.-K. Yoon, S. Mohan, J. Choi, M. Christodorescu, and L. Sha. Learning execution contexts from system call
distribution for anomaly detection in smart embedded system. In Proceedings of the ACM/IEEE International
Conference on Internet-of-Things Design and Implementation, 2017.

[162] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha. SecureCore: A multicore-based intrusion detection
architecture for real-time embedded systems. In Proceedings of the IEEE Real-Time and Embedded Technology
and Applications Symposium, 2013.

[163] M.-K. Yoon, S. Mohan, J. Choi, and L. Sha. Memory Heat Map: Anomaly detection in real-time embedded
systems using memory behavior. In Proceedings of the ACM/EDAC/IEEE Design Automation Conference,
2015.

[164] M. M. Z. Zadeh, M. Salem, N. Kumar, G. Cutulenco, and S. Fischmeister. SiPTA: Signal processing for
trace-based anomaly detection. In Proceedings of the International Conference on Embedded Software, 2014.

[165] Y. Zhou, X. Wang, Y. Chen, and Z. Wang. Armlock: Hardware-based fault isolation for arm. In Proceedings
of the ACM SIGSAC Conference on Computer and Communications Security, 2014.

[166] B. Zhu and S. Sastry. SCADA-specific Intrusion Detection/Prevention Systems: A Survey and Taxonomy. In
Proceedings of the 1st Workshop on Secure Control Systems, 2010.

[167] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource contention in multicore proces-
sors via scheduling. In Proceedings of International Conference on Architectural Support for Programming
Languages and Operating Systems, 2010.

[168] C. Zimmer, B. Bhatt, F. Mueller, and S. Mohan. Time-based intrusion detection in cyber-physical systems. In
Proceedings of the ACM/IEEE International Conference on Cyber-Physical Systems, 2010.

138

	Chapter 1 Introduction
	Overview of Research
	Research Goal and Challenges
	Summary of Solutions

	Background and Related Work
	Security Attacks to CPS
	Simplex Architecture
	Behavior-based Intrusion Detection
	Hardware-based Security Measures
	Virtual Machine Introspection

	Chapter 2 SecureCore: A Multicore-based Intrusion Detection Architecture for Real-Time Embedded Systems
	Introduction
	Assumptions
	Motivation

	SecureCore Architecture
	High-Level Architecture
	Design Considerations
	Timing Trace Module (TTM)

	Gaussian Kernel Density Estimation for Execution Time-Based Intrusion Detection
	Overview
	Trace Tree
	Profiling Block Execution Time Using Gaussian Kernel Density Estimation
	Intrusion Detection Using Execution Time Profiles

	Implementation
	System Implementation
	Application Model

	Result and Discussion
	Early Detection of an Intrusion
	Intrusion Detection Accuracy
	Limitations and Possible Improvements

	Conclusion

	Chapter 3 Memory Heat Map: Anomaly Detection in Real-Time Embedded Systems Using Memory Behavior
	Introduction
	The Memory Heat Map
	Monitoring Kernel Memory Space
	Overall Process
	Assumptions

	Monitoring Memory Heat Maps
	Memometer

	Learning Memory Heat Maps
	Definitions and Overall Learning Process
	Eigenmemory
	Finding MHM Patterns

	Evaluation
	Prototype Implementation
	Training
	Anomaly Detection
	Analysis Time
	Limitation

	Conclusion

	Chapter 4 Learning Execution Contexts from System Call Distribution for Anomaly Detection in Smart Embedded Systems
	Introduction
	Overview
	Attacks against Sequence-based Approach
	Adversary Model
	Assumptions

	Anomaly Detection Using Execution Contexts Learned from System Call Distributions
	Definitions
	Learning Single Execution Context
	Learning Multiple Execution Contexts
	Reduced SCFD

	Evaluation Framework
	Target Application
	System Implementation
	Attack Scenarios

	Evaluation Results
	Sequence-based Security Analysis
	SCFD Training
	Accuracy
	Time Complexity
	Limitations and Discussion

	Conclusion

	Chapter 5 The DragonBeam Framework: Hardware-Protected Security Modules for In-Place Intrusion Detection
	Introduction
	Threat Model and Assumptions

	Overview
	High-level Architecture
	Sample Use Cases
	Requirements and Challenges

	Detailed Architecture
	DragonBeam Framework Operations
	SKM Registration
	Secure Memory and Access Control
	Heartbeat and SKM Integrity Check
	Secure Memory for SecMan and Secure Stack

	Security Guarantees of the DragonBeam Framework
	Implementation
	System Configuration
	Secure Memory Implementation
	Software Configuration

	Evaluation
	Implementation of Detection Mechanisms
	Performance Evaluation
	Hardware Costs
	Extension to Multiple Monitored Cores
	Limitations

	Conclusion

	Chapter 6 VirtualDrone: Virtual Sensing, Actuation, and Communication for Attack-Resilient Unmanned Aerial Systems
	Introduction
	VirtualDrone Framework
	High-level Framework
	Assumptions and Adversary Model
	Virtual Sensing, Actuation, and Communication
	Security and Safety Monitoring

	Implementation
	Quadcopter Control
	System Implementation
	Autopilot
	Virtualization

	Experiments
	Case Study
	Discussion

	Conclusion

	Chapter 7 Conclusion and Future Work
	References

