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ABSTRACT

Entity detection is one of the fundamental tasks in Natural Language Pro-

cessing and Information Retrieval. Most existing methods rely on human

annotated data and hand-crafted linguistic features, which makes it hard

to apply the model to an emerging domain. In this paper, we propose a

novel automated entity detection framework, called AutoEntity, that per-

forms automated phrase mining to create entity mention candidates and en-

forces lexico-syntactic rules to select entity mentions from candidates. Our

experiments on real-world datasets in different domains and multiple lan-

guages have demonstrated the effectiveness and robustness of the proposed

method.
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CHAPTER 1

INTRODUCTION

Entity detection is the task of identying a word or phrase as entity mentions

within a text. The extracted entity information can be a great asset for

various tasks such as information extraction [1] and knowledge base (KB)

population [2].

Traditional supervised machine learning methods [3, 4] for entity detection

use fully annotated documents and a variety of linguistic features to train

models. To obtain an effective model for a reasonably large domain-specific

corpus, the amount of manually annotated data will be significant, which can

be costly and time consuming. In addition, such named entity recognition

systems [3, 4] are usually designed for general domains (e.g., news), and so

require extra and expensive adaptation to a new domain.

Rule-based methods [5, 6] start with a small degree of supervision (e.g., a

small set of entities as seeds), create rules from seed entities and use them

to incrementally extract new entity mentions and new rules unrestricted by

specific domains, which can largely reduce the amount of required labeled

data. Rules are typically defined as patterns around the entities, such as

lexico-syntactic surface word patterns [7] and dependency tree patterns [8].

Rule-based systems have dominated the commercial world [9], mainly be-

cause rules are easy to understand, debug and be incorporated with domain

experts. They have also shown superior performance compared to state-

of-the-art machine learning methods on some specific domains [10, 6, 11].

However, it still requires human experts to provide initial seeds and will

suffer from low recall with sparse context.

In this paper, we study the problem of automated entity detection in a

domain-specific corpus: given a domain-specific corpus, we aim to effectively

and efficiently detect entity mentions from that corpus without human la-

beled training data and with minimal linguistic features. We propose a

novel automated entity detection framework AutoEntity in this paper, which
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tries to integrate quality phrase mining together with lexico-syntactic surface

word patterns. Quality phrase mining is the task of automatically extract-

ing salient phrases from a given corpus. A recent study of quality phrase

mining [12], called AutoPhrase, presents a robust and efficient framework to

mine quality phrases from large domain-specific text, with minimal human

efforts and reliance on linguistic analyzers. We apply the methodology in Au-

toPhrase to generate entity mention candidates and create lexico-syntactic

surface word patterns automatically from text using a quality measure close

to the one introduced in [13]. Then we propose a simple but effective greedy

algorithm to enforce learned lexico-syntactic surface word patterns as con-

straints to refine phrase candidates into entity mentions. To further get rid

of additional manual labeling effort, we use external public knowledge bases

to generate seed entities for lexico-syntactic pattern learning. As demon-

strated in our experiments, AutoEntity not only works effectively in multiple

domains like scientific papers, news articles, and discussion forum, but also

supports multiple languages, such as English, Spanish, and Chinese.

The main contributions are as follows:

• We study an important problem, automated entity detection, and an-

alyze its major challenges as above.

• We propose a robust lexico-syntactic surface word pattern guided entity

detection framework.

• We demonstrate the robustness and accuracy of our method and show

improvements over prior methods, with results of experiments con-

ducted on two real-world datasets in different domains (scientific pa-

pers, news articles, and discussion forum) and different languages (En-

glish, Spanish, and Chinese).

The rest of the paper is organized as follows. Section 2 positions our work

relative to existing works. Section 3 defines basic concepts including lexico-

sytactic rules and four requirements of quality phrases. The details of our

method are covered in Section 4. Extensive experiments and case studies are

presented in Section 5. We conclude the study in Section 6.
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CHAPTER 2

RELATED WORK

In this chapter, we make an overview of relevant methods and concepts for

named entity recognition and quality phrase mining. First in Section 2.1, we

introduce studies for named entity recognition and discuss their advantages

as well as disadvantages. In Section 2.2, literature about phrase mining is

introduced to understand what is phrase mining and state-of-the-art phrase

mining algorithms. Then in Section 2.3, we present phrasal segmentation

models, which are used to segment a string of words into a sequence of

phrases.

2.1 Named Entity Recognition

The task of Named Entity Recognition (NER) is to identify token spans

as entity mentions in documents and assign type labels to them. In this

section, various named entity recognition methods are discussed in three

broad categories of machine learning paradigm. In the first part, we discuss

various supervised techniques. Subsequently we move to semi-supervised and

unsupervised techniques. In the end we discuss about the method from deep

learning to solve NER.

2.1.1 Supervised methods

Traditional supervised methods use fully annotated documents and different

linguistic features to train a machine learning model. Hidden Markov Model

is the earliest model applied for solving NER problem by Bikel et al. [14]

for English. Borthwick [15] and Curran [16] applied the Maximum Entropy

Models to the named entity problem. McNamee and Mayfield [17] tackled the

NER problem as binary decision problem and used Support Vector Machines
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as classifiers. McCallum and Li [18] proposed a feature induction method

for Conditional Random Fields (CRF) in NER. Later the Stanford NER also

adopts a CRF classifier [19]. To obtain an effective model, a large annotated

corpus is needed [4] and thus needs heavy human annotation.

2.1.2 Semi-supervised and Unsupervised methods

Semi-supervised learning algorithms typically start with a small set of enti-

ties as seed data set and create more labeled entities using large amount of

unlabeled corpus. Pattern-based bootstrapping [6, 5] learns patterns from

context that identify more entity mentions and new patterns in a bootstrap-

ping cycle but often suffers from low recall and semantic drift.

A major problem of both traditional supervision and semi-supervision is

the requirement of annotated data and a robust set of features. Many lan-

guages do not have annotated corpus available at their disposal. To deal

with lack of annotated text across domains and languages, unsupervised

techniques for NER have been proposed. KNOWITALL is an unsupervised

system proposed by Etzioni et al. [20] that automatically extracts informa-

tion from the web in a domain-independent, and scalable manner.

Recently, distantly supervised methods avoid expensive human labeling by

leveraging type information of entity mentions which are confidently mapped

to entries in knowledge bases. Linked mentions are used to label those un-

linkable ones in different ways, including training a label classifier [21, 22],

and serving as seeds in graph-based label propagation [23, 24].

2.1.3 Deep learning methods

State-of-the-art named entity recognition systems rely heavily on hand-crafted

features and domain-specific knowledge. With the rapid development of deep

learning, several research works have been done on applying deep learning

methods to the NER task. Recent RNN-based approaches include ones by

Lample et al. [25] and Athavale et al. [26]. They both extended a bidirec-

tional LSTM.
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2.2 Quality Phrase Mining

Automated extraction of quality phrases (i.e., multiword semantic units)

from massive, dynamically growing corpora has become ever more critical

due to its value in text analytics of various domains.

As the origin, there have been extensive studies on quality phrase mining

in the Natural Language Processing (NLP) community. By leveraging pre-

defined part-of-speech (POS) rules, one can locate noun phrases as term

candidates in POS tagged documents. Supervised noun phrase chunking

approaches [27, 28, 29] automatically learn rules from annotated documents

to identify noun phrase boundaries. To further boost the precision, more

sophisticated NLP features (e.g., dependency parser) can be applied [30, 31].

The various kinds of language-dependent linguistic processing and expensive

human annotations make it challenging to extend these methods to different

domains and languages.

Data-driven approaches have been proposed to take advantage of frequency

statistics in document collections. Most of them leverage a variety of sta-

tistical measures derived from a corpus to estimate phrase quality. There-

fore, they do not require linguistic features, domain-specific language rules

or large annotations, and can process massive corpora efficiently. In [32],

several indicators from frequency measures have been proposed to extract

concepts from large corpora. Deane [33] proposed a nonparametric, rank-

based heuristic measure over frequency distribution, for measuring the lexical

association for candidate phrasal terms. As a preprocessing step towards top-

ical phrase extraction, ElKishky et al. [34] performed phrase mining based

on frequency and proposed a significant measure for bottom-up phrasal seg-

mentation. Jingbo et al. [35] proposed a framework SegPhrase that extracts

quality phrases integrated with phrasal segmentation. The segmentation-

integrated approach is developed to further rectify the raw frequency scores.

A recent work [12] has extended SegPhrase to work automatically without

any human effort (e.g., setting domain-sensitive thresholds).
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2.3 Phrasal Segmentation

Formally, phrasal segmentation aims to partition a sequence of words into

disjoint subsequences each mapping to a semantic unit, i.e., word or phrase.

In terms of identifying semantic units, existing work includes query segmen-

tation [36, 37], phrase chunking [38, 39, 40], and Chinese word segmentation

[41, 36], following either supervised setting on labeled data, or unsupervised

setting on large corpus. Tan and Pang [42] proposed a generative model in

unsupervised setting with n-gram frequency from a large corpus and used

expectation maximization for computing segment scores. Li et al. [37] ex-

ploited query click-through data and proposed a probabilistic model for query

segmentation.
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CHAPTER 3

PROBLEM DEFINITION

The goal of this paper is to develop an automated entity detection method to

extract entity mentions from a large collection of documents without human

annotations, and with only limited, shallow linguistic analysis. The input

to the automated entity detecting task is a corpus and a knowledge base.

The input corpus is a collection of docuemnts in a particular language and

a specific domain. The output is a list of detected entity mentions in the

corpus. In this section, we briefly introduce basic concepts and components

as preliminaries.

First we give definitions of entity mentions and quality phrases. Note that

in text corpora, a quality phrase is not necessarily to be an entity mention

because there are no syntactic restrictions for phrases (e.g., noun phrases)

while an entity mention has a high probability to be a quality phrase because

an entity mention by itself is a complete semantic unit and meets the four

criteria of quality phrases as introduced below.

Definition 1. An entity mention is defined as a sequence of words that

appear consecutively in text documents which refers to a real-world entity.

Definition 2. A phrase is defined as a sequence of words that appear consec-

utively in text documents, which forms a complete semantic unit in certain

contexts of the given documents.

The phrase quality is defined to be the probability of a word sequence

being a complete semantic unit, which meets the following four criteria [35]:

• Popularity: The frequency of a quality phrase should be beyond certain

threshold in the given document collection.

• Concordance: The collocation of tokens in quality phrases occurs with

significantly higher probability than expected probability assuming in-

dependence.
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• Informativeness: A phrase is informative if it is indicative of a specific

topic or concept.

• Completeness: Long frequent phrases and their subsequences within

those phrases may both satisfy the 3 criteria above. A phrase is deemed

complete when it can be interpreted as a complete semantic unit in

some given document context. Note that a phrase and a subphrase

contained within it, may both be deemed complete, depending on the

context in which they appear. For example, “relational database sys-

tem”, “relational database” and “database system” can all be valid in

certain context.

We follow the approaches in [7, 6] to define lexico-sytactic surface word

patterns. To increase the coverage of rules, we also include POS patterns of

seed entities as valid lexico-sytactic surface word patterns.

Definition 3. A lexico-sytactic surface word pattern is defined as a template

of context words (optional) around a seed entity and POS tags of the seed

entity.

In the initial stage of lexico-sytactic rule learning, we perform entity linking

[43] to automatically generate seed entities.

Definition 4. The Entity Linking task is the task of automatically linking

each named entity mention appearing in a source text document to its unique

entry in a target knowledge base.
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CHAPTER 4

METHODOLOGY

We first present the full procedure of our proposed entity detection framework

AutoEntity. Then we introduce each of them in following subsections.

1. Perform automated phrase mining on a corpus to extract entity mention

candidates. (Section 4.1)

2. Collect seed entity mentions as labels by linking extracted candidate

mentions to the knowledge base and use seed entity mentions to gen-

erate lexico-syntactic rules. (Section 4.2)

3. Apply a lexico-syntactic rule guided phrasal segmentation to extract

entity mentions. (Section 4.3)

Figure 4.1: The overview of AutoEntity.

An illustration for this workflow is shown in Figure 4.1. An complexity anal-

ysis for this framework is given at Section 4.4 to show that its computation

time grows linearly as the corpus size increases.
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4.1 Automatic Phrase Mining

To ensure the extraction of informative and coherent entity mentions, we ap-

ply an automated phrase mining method called AutoPhrase [12] to generate

entity mention candidates. Almost all the state-of-the-art methods require

domain and linguistic experts at certain levels but AutoPhrase requires no

manual efforts and is scalable with massive text corpora.

Figure 4.2: The overview of AutoPhrase.

The AutoPhrase framework is shown in Figure 4.2. To automatically mine

these quality phrases, the first phase of AutoPhrase (see leftmost box in

Figure 4.2) establishes the set of phrase candidates that contains all n-grams

over a minimum support threshold (e.g., 30) in the corpus. Here, this thresh-

old refers to raw frequency of the n-grams calculated by string matching. In

practice, one can also set a phrase length threshold (e.g., 6) to restrict the

number of words in any phrase. Given a phrase candidate w1w2 . . . wn, its

phrase quality is:

Q(w1w2 . . . wn) = p(dw1w2 . . . wnc|w1w2 . . . wn) ∈ [0, 1]

where w1w2 . . . wn refers to the event that these words forms a quality phrase

dw1w2 . . . wnc. Q(·) is defined as the phrase quality estimator. We initialize

Q(·) with statistical features (e.g., inverse document frequency, point-wise

mutual information, and point-wise KL divergence) computed from data.

Note that no POS tag information is used for computing the phrase quality

estimator Q(·). For unigrams, we simply set their phrase quality as 1.

Example 1. A good quality estimator will return Q(this man) ≈ 0 and

Q(international space center) ≈ 1 ,

The second phase of AutoPhrase is to estimate the phrase quality score for

each phrase candidate by positive-only distant training. The positive-only
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distant training is a new technology introduced in AutoPhrase, which utilizes

public knowledge bases to provide a positive phrase pool and a negative

phrase pool. More details could be found in the paper.

Then, to address the completeness criterion, the third phase is a POS-

guided phrasal segmentation, which finds the best segmentation for each

sentence by incorporating POS tag information. It adopts a generative pro-

cess to generate a quality segment given a sequence of words and the corre-

sponding POS tag sequence.

During the last phase, phrase quality re-estimation, related statistical fea-

tures will be re-computed based on the rectified frequency of phrases, which

means the number of times that a phrase becomes a complete semantic unit

in the identified segmentation.

In AutoEntity, we will use the phrase quality estimator Q(·) returned by

AutoPhrase to score the phrase quality of a entity mention candidate.

4.2 Lexico-Syntactic Rule Learning

We learn lexico-syntactic surface word patterns from unlabeled text starting

with seed dictionaries of entities. We refer to a sequence of words that

represents an seed entity as positive examples. We will present the approach

below for learning lexico-syntactic surface word patterns.

Seeding. Entity linking is applied here to map possible entity mentions

in the training corpus to a public knowledge base. After entity linking, we

could collect seed entities as a seed dictionary. Entity mentions that could

be mapped to an entity entry in the knowledge base are considered as seeds.

We then utilize the seed dictionary to tag words in the corpus.

Creating rules. Candidate rules are created using contexts of words in

a window of two to four words before and after a tagged sequence of words.

The target term has a part-of-speech (POS) restriction, which is the POS

tags of the tagged sequence of words. That is, given a token t, a literal rule

r is generated using a context window of width w = 3 around the token and

its POS tags:

r = [w−3w−2w−1POS(t)w+1w+2w+3]

where w±i are the context words of t. Two literal rules are generated for each
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name occurrence of seed entities, one for the left context, and one for the

right. The literal rule r is then generalized by replacing some of the words

in the context window by wildcards. The generalized rules form the set of

candidate rules. Note that each rule matches on only one side of an instance,

the left or the right. To further increase the coverage of rule matching, we

also include the raw POS tag sequence of the labeled token t as a candidate

rule.

Example 2. Suppose we set the context window width to 3, given the seed

entity “America” and sentence: “Tourists visiting the Kennedy Space Center

in Florida, where one of America ’s retired space shuttles...”. We could

extract the following candidate rules {NNP, of NNP, one of NNP, where one

of NNP, NNP ’s, NNP ’s retired, NNP ’s retired space}.

Evaluate rules. For every candidate rule r, we match r against the

training corpus. Wherever the context of r matches, r predicts the occurrence

of possible entity token span. The token span t can be:

• positive example: appears as a entity in the seed dictionary;

• negative example: not included in the seed dictionary.

For each candidate rule r, we compile two lists of tokens matched by r:

the positive, and negative examples, or P (r) and N(r). We then compute

the rule’s confidence:

conf(r) =
|P (r)|

|P (r)|+ |N(r)|

Rules with confidence below a threshold are discarded. The remaining rules

are ranked by:

S(r) = conf(r)× log|P (r)| (4.1)

Thus, to get a positive score, a rule must have at least two distinct token

spans as positive examples, and more positive than negative examples. The

n top-scoring rules are selected as accepted lexico-syntactic rules and plus

their scores are used for further steps in AutoEntity. Domain and language

experts could be involved in this step to further improve the quality of mined

rules.
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4.3 Rule-Guided Phrasal Segmentation

The proposed Rule-Guided Phrasal Segmentation addresses the challenging

of locating all phrase mentions mined in Section 4.1 in the corpus and se-

lect only entity mention phrases guided by lexico-syntactic rules learned in

Section 4.2.

Compared to the POS-Guided Phrasal Segmentation in AutoPhrase [12],

the rule-guided phrasal segmentation addresses the completeness requirement

by incorporating surrounding context and syntactic constraints, instead of

only utilizing POS tags. In addition, lexico-syntactic rules provide shallow,

language-specific, and domain-specific knowledge, which may help boost en-

tity detection accuracy, especially at syntactic constituent boundaries for

that language. Our method adopts a significance score to guide the filter-

ing of non-entity mention phrases. We partition sentences in the corpus

into non-overlapping segments and select segments which meet a significance

threshold as entity mentions.

In order to combine the quality of a phrase and the quality of the rules

matched by the phrase, we define the significance score in the following

way. Given a token span t, we compute its phrase quality Q(t) and fetch

its matched rule set Rt from the accepted lexico-syntactic rule set. We de-

fine the significance score of the phrase as follows:

Score(t) = (Q(t) + s(
∑
r∈Rt

S(r)))/2 (4.2)

More complicated formulas could be applied here to further improve the

performance.

Then we develop an efficient greedy algorithm for the rule-guided phrasal

segmentation as shown in Algorithm 1. The input of the algorithm is a

sequence of words w1w2 . . . wn, accepted lexico-sytactic rules R with a scoring

function S(·), a phrase quality estimator Q(·), the maximum phrase length l,

and a threshold θ for determining whether the phrase should be a valid entity

mention. The output of the algorithm is a list of detected entity mentions.

In the greedy algorithm, we try to partition the sequence of words from

left to right and merge words into phrases once a certain criteria is matched.

At each iteration, the algorithm looks at all possible phrases starting at

current word wi and select the phrase with the maximum significance score as

13



defined in Equation 4.2. If the maximum significance score is larger than the

threshold θe, we will tag this phrase as an entity mention. The pseudocode

of the greedy algorithm is shown in Algorithm 1.

Algorithm 1 PhrasalSegmentationGreedy(w1w2 . . . wn, R, S(·), Q(·), θe)
Require: w1w2 . . . wn, the word sequence; R, S(·), the set of accepted lexico-

sytactic rules and its scoring function; Q(·), the phrase quality estimator;
l, maximum phrase length; θ, a threshold for determining whether the
phrase should be a valid entity mention.

Ensure: entitylist, a list of detected entity mentions.
1: function PhrasalSegmentationGreedy(w1w2 . . . wn, R, S(·), Q(·), thetae)
2: entitylist← []
3: i← 1
4: while i ≤ n do
5: bi ← i
6: for j ∈ {i, . . . ,min(i+ l, n)} do
7: t← wi . . . wj

8: max score← −1
9: Rt ← fetch accepted rules based on R, t

10: score ← calculate significance score using t, Rt, S(·), Q(·) ac-
cording to Equation 4.2

11: if score > max score then
12: max score← score
13: bi ← j
14: end if
15: end for
16: i← bi + 1
17: if max score > θ then
18: entitylist.add(wi . . . wbi)
19: end if
20: end while
21: return entitylist
22: end function

4.4 Complexity Analysis

The time complexity of each component in our framework, i.e., automated

phrase mining, lexico-syntactic rule learning, and phrasal segmentation, is

O(|Ω|) with the assumption that the maximum number of words in a phrase

is a small constant (e.g., l ≤ 6), where |Ω| is the total number of words in

14



the corpus. Therefore, AutoEntity is linear to the corpus size and thus being

very efficient and scalable.
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CHAPTER 5

EXPERIMENTS

In this section, we will apply the proposed method to extract entity mentions

from two text corpora across three different domains (new papers, discussion

forums, and biomedical paper abstracts) and in three languages (English,

Spanish, and Chinese). We compare the proposed method with many other

methods to demonstrate its competitive performance. We first explore the

adaptiveness of the proposed method in different languages. Then we try to

prove the proposed method could be applied to other domains. In the end,

we present case studies.

5.1 Datasets

To validate that the proposed method, AutoEntity, can support multiple

languages and can effectively work in different domains, we use two real-

world datasets in different domains and languages, as shown in Table 5.1:

• KBP[44]: It consists of 90,003 documents of news articles (NW) or dis-

cussion forum (DF) in three languages (English, Spanish, and Chinese).

500 test documents are manually annotated with five target types (per-

son, location, organization, geo-political entity, facility). We will refer

to datasets of each language as KBP-EN for English, KBP-ES for

Spanish and KBP-CN for Chinese.

• PubMed[45]: It consists of 1M sampled PubMed paper abstracts as

training data and 1100 annotated PubMed Abstracts from the CYP

corpus of PennBioIE as test data.
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Datasets KBP-EN KBP-ES KBP-CN PubMed
Language English Spanish Chinese English
Domain NW and DF NW and DF NW and DF Paper abstract
Training documents 29,834 29,832 29,834 1,000,000
Training file size 64M 67M 53M 711M
Test documents 168 168 167 1100
Gold entity mentions 9231 6964 8845 34446

Table 5.1: Statistics of the datasets.

5.2 Compared Methods

We compare AutoEntity with four lines of methods as follows.

• CRF [19]: a CRF classifier, the state-of-the-art entity recognition ap-

proach used in Stanford CoreNLP toolkit. We used the entity linking

results (Section 5.3) as training data to train a binary CRF model,

which predicts whether a token belongs to an entity. We used the

CRFClassifier code in the latest Stanford CoreNLP toolkit 1.

• Pattern [6]: a state-of-the-art pattern-based bootstrapping method

which uses a set of initial seed entities, and then extracts new patterns

and new entity mentions iteratively. We used the linked entities from

entity linking results as initial seed set and extracted new entities in

the whole corpus including both training and testing documents. I also

used the code in the latest Stanford CoreNLP toolkit 2.

• ClusType [24]: a relation phrase based entity recognition method,

which runs data-driven phrase mining to generate entity mention can-

didates and relation phrase candidates, and performs type propagation

with relation phrases and multi-view relation phrase clustering simul-

taneously. We used the code published in GitHub 3.

• AutoPhrase [12]: an automated phrase mining method using robust

positive-only distant training and POS-guided phrasal segmentation.

We used the training corpus to extract quality phrases and learned a

segmentation model. Then we applied the segmentation model to test

1https://stanfordnlp.github.io/CoreNLP/
2https://nlp.stanford.edu/software/patternslearning.html
3https://github.com/shanzhenren/ClusType
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documents with a tuned threshold to extract entity mentions. In this

case, all quality phrases were assumed to be entity mentions. We used

the code published in GitHub 4.

5.3 Experiment Settings

Implementation. The preprocessing includes tokenization, Chinese word

segmentation and POS tagging from Stanford NLP. To avoid human anno-

tation, we expoited external public knowledge base to automatically label

training corpora. We utilized Diffbot API 5, to identify entity mentions from

text and map them to the primary entities at DBpedia. We put linked en-

tity mentions back to training documents and created annotated training

datasets. We used these automatically annotated training corpora for CRF,

Pattern, ClusType and our own method AutoEntity as supervision. In our

own method, we used the AutoPhrase code published in Github 6 to generate

entity mention candidates. The rest of the implementation will be released

and maintained in GitHub after we finish the integration with AutoPhrase.

Parameter Settings. We follow the same parameter setting for AutoPhrase

[12]. We set the minimum support threshold as 30. The maximum number

of words in a phrase is set as 6. We set the entity threshold for AutoEntity

as 1. These are three parameters required by AutoEntity. For fair compar-

ison, the minimum support threshold and the maximum number of words

in a phrase are set the same for ClusType. Other parameters required by

compared methods were set according to the open-source tools or the original

papers.

Evaluation Metrics. Recognizing entity mentions can be seen as a tag-

ging task. For a list of predicted entity mentions, precision is defined as the

number of true entity mentions divided by the number of predicted entity

mentions; recall is defined as the number of true entity mentions divided by

the total number of golden entity mentions. Here evaluation treats an anno-

tation as a set of distinct tuples, and calculates precision and recall between

4https://github.com/shangjingbo1226/AutoPhrase
5https://www.diffbot.com/
6https://github.com/shangjingbo1226/AutoPhrase
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gold (G) and system (S) annotations:

P =
|G ∩ S|
|S|

R =
|G ∩ S|
|G|

We also reported the F1 score for entity detection, which is defined as the

balanced harmonic mean of P and R:

F1 =
2PR

P +R

5.4 Entity Detection in Different Languages

Table 5.2, 5.3 and 5.4 summarize the comparison results on the KBP dataset

for three languages. Overall, AutoEntity outperforms other methods on F1

scores, and achieves competitive precision and recall scores compared to best

baselines. Machine learning based approaches, including CRF and Pattern,

tend to achieve high precision but low recall, while data-driven approaches,

ClusType and AutoPhrase suffer from low precision/high recall.

AutoPhrase performs the best, in terms of recall and F1 scores on both

KBP-EN and KBP-ES datasets. For example, on the KBP-ES dataset, the

F1 score of AutoEntity is about 7.29% higher than the second best method

(AutoPhrase) in relative value. Meanwhile, there is a visible recall gap be-

tween AutoEntity and baselines on KBP-EN and KBP-ES datasets. CRF

and Pattern have very high precisions on both datasets but suffer from low

recalls. For example, on the KBP-ES dataset, AutoEntity achieves a recall

23.9% higher than Pattern in absolute value. This is because context and

syntactic features are sparse and AutoEntity makes use of quality phrases

from AutoPhrase, which has a high coverage of golden entity mentions. On

both datasets, AutoPhrase is very competitive. But the precision of AutoEn-

tity is 8.7% higher than AutoPhrase in absolute value because AutoEntity

takes advantages of lexico-syntactic rules.

Significant advantages can be observed on the KBP-CN dataset. In partic-

ular, AutoEntity obtains a 14.02% improvement in F1 score compared to the

best baseline Pattern, while it maintains close precision to the best baseline
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Pattern and close recall to the best baseline AutoPhrase. Data-driven ap-

proaches like AutoPhrase and ClusType suffer from low precision on Chinese

because Chinese phrases vary and the mined phrases are not constrained to

be noun phrases, which is a necessary condition of entity mentions. This

is the main reason why AutoPhrase and ClusType achieve high recall but

very low precision. AutoEntity utilizes lexico-sytactic rules to overcome this

problem. By averaging the quality scores of both lexico-syntactic rules and

phrases, AutoEntity obtains superior performance.

Method Precision Recall F1
CRF [19] 0.794 0.383 0.517
Pattern [6] 0.605 0.457 0.520
ClusType [24] 0.421 0.500 0.457
AutoPhrase[12] 0.508 0.554 0.530
AutoEntity 0.595 0.571 0.583

Table 5.2: Performance comparison of entity detection on KBP-EN
dataset.

Method Precision Recall F1
CRF [19] 0.802 0.322 0.459
Pattern [6] 0.729 0.337 0.461
ClusType [24] 0.448 0.417 0.432
AutoPhrase[12] 0.428 0.547 0.480
AutoEntity 0.466 0.576 0.515

Table 5.3: Performance comparison of entity detection on KBP-ES
dataset.

Method Precision Recall F1
CRF [19] 0.813 0.311 0.449
Pattern [6] 0.831 0.452 0.585
ClusType [24] 0.276 0.581 0.375
AutoPhrase[12] 0.166 0.598 0.260
AutoEntity 0.781 0.583 0.667

Table 5.4: Performance comparison of entity detection on KBP-CN
dataset.
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5.5 Entity Detection across Domain

We also tested the performance of AutoEntity on a dataset of a different

domain. Table 5.5 summarizes the precision, recall and F1 scores of Au-

toEntity and baselines on PubMed dataset. AutoEntity still achieves the

best F1 score compared to other methods while Pattern achieves the high-

est precision and AutoPhrase achieves the highest recall. AutoEntity tends

to achieve a balance between precision and recall compared to Pattern and

AutoPhrase, which has a bias towards either precision or recall.

Method Precision Recall F1
CRF [19] 0.356 0.395 0.374
Pattern [6] 0.386 0.343 0.363
ClusType [24] 0.279 0.507 0.36
AutoPhrase[12] 0.144 0.692 0.238
AutoEntity 0.309 0.536 0.392

Table 5.5: Performance comparison of entity detection on PubMed
dataset.

5.6 Case Study

We present a few case studies about the output of AutoEntity. Table 5.6

shows two example sentences from KBP-EN and PubMed dataset. AutoEn-

tity extracts all entity mentions in the golden mention set. The false positive

examples are still reasonable because both KBP and PubMed datasets have

a target entity type set which does not cover these false positive examples.

However, they could be considered as entity mentions given a more general

definition of entities.

Extracted quality phrases are shown in Table 5.7 on KBP-EN and KBP-ES

datasets. The top ranked phrases are mostly named entities, which is con-

sistent to our assumption for AutoPhrase that a large proportion of quality

phrases are entity mentions. In fact, we have more than 39K and 54K phrases

with a phrase quality higher than 0.5 on the KBP-EN and KBP-ES datasets

respectively. This ensures the high recall for AutoEntity. Table 5.8 shows

the extracted lexico-syntactic rules on KBP-EN and KBP-CN datasets. Most

of the extracted rules provide reasonable constraints for locating an entity
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Datasets KBP-EN
Text Chinese legend, Chang e is a moon goddess,

accompanied by a Jade Rabbit ...
AutoEntity Chinese, Chang, moon, Jade Rabbit

Datasets PubMed
Text Analysis of inhibition in pathways of

NADP.H2 and NAD.H2 oxidation in
liver tissue microsomes.

AutoEntity inhibition, NADP.H2, NAD.H2, liver, tissue

Table 5.6: Sample output of AutoEntity on KBP-EN and PubMed.

KBP-EN KBP-ES
Rafael Nadal Broadcasting Corporation
Christine Lagarde Adolf Hitler
Santa Clara Morgan Freeman
Walt Disney Harrison Ford
Serena Williams Ana Mato
San Lorenzo Mahatma Gandhi
Mitt Romney Manny Pacquiao
Saddam Hussein Florentino Pérez
Santa Claus Julian Assange
San Marino Golden State Warriors
Pink Floyd Antonis Samaras
Silicon Valley Ink Inc
Silvio Berlusconi Lionel Messi
Tampa Bay Pálvaro Uribe
Jimmy Fallon Christine Lagarde

Table 5.7: Extracted Phrases on KBP-EN and KBP-ES dataset.

mention. We have more than 23K and 31K rules with a quality score higher

than 1 on the KBP-EN and KBP-CN datasets respectively.

5.7 Efficiency Evaluation

To study the time efficiency, we choose the three KBP datasets. Table 5.9

shows the time in seconds for CRF and AutoEntity. AutoEntity achieves

about 8 to 14 times speedup compared to CRF, which demonstrates the

efficiency of our method.
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KBP-EN KBP-CN Translation

in tomorrow ’s NNP NNP NNP NR 北京 NR Beijing
tomorrow ’s NNP NNP NNP NR 快讯 NR newspaper
republic or its NN NR 莫斯科 NR Moscow
NN NN mena reported NR 华盛顿 NR Washington
told NNP NN 原创 作品 NN original works
NNP pay NR 东京 NR Tokyo
, official NN NN NR 难民 NR refugee

communist party of NNP NR 联邦 储备 委员会 NR Federal Reserve Board
in NNP NR 巴黎 NR Paris
NNP world news summary NR 商品 交易所 NR commodities exchange
being sent to NNP NR NN 政治局 NR NN political bureau
premier NNP NNP NR 记者 NR journalist
secretary of state NNP NNP NR 总统 奥巴马 NR President Obama
party of NNP NR 冬奥会 NR Winter Olympics
cooperation with NNP 俄罗斯 总统 NR Russian president NR

Table 5.8: Extracted Rules on KBP-EN and KBP-CN dataset.

Method KBP-EN KBP-ES KBP-CN
CRF 10164.5 12838.1 9765.3
AutoEntity 1237.4 1270.5 694.6

Table 5.9: Time Comparison of CRF and AutoEntity on KBP dataset.
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CHAPTER 6

CONCLUSION

In this paper, we present an automated entity detection framework which per-

forms automated phrase mining integrated with lexico-syntactic rule learn-

ing. A domain-agnostic phrase mining algorithm, AutoPhrase, is applied

for generating entity mention candidates. We create lexico-syntactic surface

word patterns automatically around the context of seed entity mentions,

which are provided by entity linking. By integrating lexico-syntactic sur-

face word patterns with automated phrase mining, the proposed method is

effective in preserving the high recall from automated phrase mining while

achieving reasonable precision by posing learned rules on mention candidates.

Our experiments show that AutoEntity is domain-independent, and outper-

forms other entity detection methods, and supports multiple languages (e.g.,

English, Spanish, and Chinese) effectively. For future work, it is interest-

ing to apply AutoEntity to more languages and perform entity typing on

detected entities.
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