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Abstract  

 

The development of smart grids facilitates the deployment of phasor 

measurement units (PMUs) to improve the system stability and reliability. The growing 

installation of PMUs provides grid operators wide-area situational awareness while 

introducing additional vulnerabilities to power systems from the cyber security point of 

view. Thus, not only the online method to handle such vulnerabilities real-time but also 

the corresponding power system simulation environments with appropriate time-

fidelity are needed. This thesis presents two major works: an interactive, extensible 

environment for power system simulation and a real-time malicious PMU data 

detection method. The first part introduces such an environment that operates with 

power system models in the PMU time frame, including data visualization and 

interactive control action capabilities. The flexible and extensible capabilities are 

demonstrated by interfacing with a synchrophasor communication network simulation, 

which is a testbed for developing real-time PMU data related applications.  The second 

part proposes an online method to detect ongoing contingencies in the system and 
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malicious data attack on its underlying synchrophasor communication network.  To do 

so, the principal component analysis is applied to leverage the spatial and temporal 

correlations among the PMU data, and the method is implemented in the 

synchrophasor network simulation for data collection and tests. Pattern match and data 

reconstruction are proposed to identify incident types and find their most possible 

locations. The thesis illustrates the extensibility of the interactive simulation 

environment and the effectiveness of the proposed method with a 150 buses case. 
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CHAPTER 1 

INTRODUCTION 

 

As the smart grid moves forward, there is a need for flexible and interactive 

power system simulation environments in which new ideas for grid communication, 

control, analytics and visualization can be prototyped. A nice description of the role 

simulators can play in smart grid development is presented in [1]. Power systems have 

a long history of interactive simulation environments, with key distinctions often 

associated with the simulation time frame of the associated underlying dynamics. In 

this thesis, an interactive environment for simulating power system dynamics on what 

we will call the PMU time frame (power system cycles and slower) is first presented, 

along with a synchrophasor network simulation add-on application to illustrate its 

extensibility.    

The second part of this thesis addresses the problem of detecting bad data 

injection on PMU data stream by applying a principal component analysis (PCA) based 
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method. An online detection strategy is proposed to detect the anomalies in the PMU 

data with capability to distinguish the malicious data from either event or contingency 

data. The PCA-based method is utilized to find the patterns underlying the system-

wide dynamic behaviors and consequently identify the anomaly behaviors. The 

proposed scheme is implemented into the real-time synchrophasor network simulation 

for experiment data collection and tests, and proved to have capabilities to determine 

and locate the existence of adversary as well as contingencies with fast response time.  

 

  



3 
 

 

CHAPTER 2  

BACKGROUND 

 

 
Figure 1: Power System Time Frames 

Power system simulation environments with appropriate time-fidelity are 

needed to enable rapid testing of new smart grid technologies. In order to put this in 

context, Figure 1 (derived from Fig. 1.2 of [2]) shows the wide variety of time frames 

that might need to be considered in developing simulations for smart grid applications. 

However, in order to make the simulation computationally tractable and to simplify the 

modeling, the time frame of interest needs to be considered. Dynamics significantly 
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faster than the time frame of interest can be represented by algebraic constraints and 

those significantly slower can be considered constant.  

The first interactive digital simulations were operator training simulators (OTSs) 

with [3] providing an early example. With this approach, the power system was 

assumed to have a uniform, but not constant, frequency. Dynamics with time frames 

longer than about one second were considered, such as generator boiler-turbine 

governors and automatic generation control, but the network equations were solved 

using a power flow. As the name implies, OTSs were often used to train operators. 

Slightly longer-term simulations, which used a constant frequency power flow 

assumption, were used to teach students and nontechnical professionals about the 

operation of the power grid, with [4] providing an example. Such packages often ran 

substantially faster than real-time to teach concepts such as loop flow and 

interconnected operation. Because of the lack of dynamics, they could efficiently solve 

interconnect size systems with tens of thousands of buses. On an even longer time 

frame, [5] was used to teach market operations, working with a discrete, often one hour 

simulation step-size. In such market simulations, the power flow was often not 

explicitly solved.  

All of the preceding methods assume that even a large network can be modeled 

as algebraic constraints, with speed of light considerations ignored. To represent very 
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fast dynamics, such as for lightning propagation, switching surges and hardware-in-

the-loop, simulations based on the electromagnetic transients approach of [6] have been 

developed. In this approach, the transmission lines are modeled with the differential 

equations associated with the voltage and current relationships in inductors and 

capacitors. By using trapezoidal integration techniques, the models reduce to a network 

of coupled current sources and shunt resistances in which transmission line 

propagation delays can be considered explicitly. However, with simulation step sizes of 

microseconds they are often limited to smaller systems, unless large amounts of parallel 

computation are used.  

The interactive simulation environment presented here sits between the 

extremely short time frame of [6] and the uniform frequency model of [3]. That is, 

simulating the system with a step size on the order of ¼ or ½ cycles (e.g., 0.004 

seconds). In power systems this is known as transient stability time frame, but since it 

corresponds to the sampling frequency of PMUs, a complementary name is the PMU 

time frame. Another example of such a simulation package is presented in [7].   

In this time frame, the dynamics of the generator machines, exciters, governors 

and stabilizers can be represented, along with dynamic models for the load (such as for 

induction motors). Hence during disturbances, each bus has a unique frequency, yet the 

transmission network equations are still represented as algebraic constraints. This time 
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frame also allows for the detailed modeling of the interaction of the power system with 

its underlying communication and control systems [8], [9], [10], [11]. Cyber security 

issues in the communication system can also be considered [12].  

As a significant feature of the “smarter” grid, the growing deployment of phasor 

measurement units (PMUs) improves the system stability and reliability. Featured with 

precise time synchronization and high sampling rate, PMU data holds great promise to 

increase the wide-area situational awareness of grid operators and regional reliability 

coordinators [13]. Additionally, the availability of PMU data enables novel solutions in 

many power system fields, such as state estimation, optimal power flow, and dynamic 

security assessment [14]. As more PMU data are collected and more applications are 

developed, its influence on the current and future smart grids has become greater.  

However, the critical infrastructures are usually targeted by malicious attackers and 

terrorists. Especially in recent years, there is a trend that more attackers attempt to hack 

power grids and their control systems. As a result of the high importance of the power 

system monitoring and control system, PMU and its data add to the vulnerability of 

grids in the face of malicious attackers who seek to disrupt operators’ judgement by, for 

example, decreasing the reliability of the power system, or even causing damage to 

equipment and economic losses. For example, if malicious data are injected into one 

operating PMU or phasor data concentrator (PDC) by hackers, the malicious data will 

be collected by the regional PDC/EMS and potentially spread over many subsystems, 
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like EMS and control systems. Thus, there is an urgent need to improve the cyber 

security in power systems, by detecting the malicious attack on PMU data and 

preventing attackers from disrupting the critical infrastructure.   

There are many studies on PMU data security in the literature. In [15] and [16], 

attackers with information about the grid configuration have been proved to be able to 

inject arbitrary errors into certain state variables without being detected by the bad data 

processing techniques embedded in the phasor devices. A detection mechanism using 

the estimated transmission line parameters as the discriminant was proposed in [15]. 

This mechanism applies PMU data to estimate the line parameters in the grid, and then 

those estimated parameter values are compared against their nominal values to find 

any significant, unusual statistical variation(s), which may indicate a malicious data 

injection. Authors in [17] and [18] utilize the characteristics of state estimation to detect 

the malicious PMU data. Reference [18] models the cyber attack inside the system 

estimation using the Expectation-Maximization algorithm to find missing data and to 

optimize intractable likelihood function. An analytical model for the cumulative sum 

algorithm is developed in [19], which has a shorter decision delay and more accurate 

decision compared to the conventional state-estimation-based bad data detection 

method. Some machine learning techniques are also proposed to detect anomalies in 

PMU data [20], [21]. In this thesis, we focus on the computational efficiency of the 
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detection method and its capability to distinguish the malicious data from the 

contingency data.  

Attackers with some power-related knowledge may exploit information about 

the PMU data format to modify the data in such a way that it has the standard structure 

and passes the cyclic redundancy check (CRC). According to PMU industry standard 

[22], all frames transmitted from PMUs follow the structure shown in Figure 2. CRC-

CCITT is used in these frames to verify whether each message has been corrupted or 

not. Though CRC-CCITT has proved to perform extremely well in enhancing the error 

pattern coverage and burst error detection capability, and in decreasing the probability 

of an undetected error [22], attackers can easily generate the two-byte cyclic 

redundancy codes by following the associated encoding rules, which enables the 

corrupted data to pass the CRC. 

 
Figure 2: Example of Frame Transmission Order 

In references [23] and [24], the concept of the time delay of a malicious data is 

introduced, and the specific algorithms are developed to find the desynchronization 

pattern. Reference [25] presents PMU errors like the time-skew and the mislabeling of 

flagged bits, which may introduce the similar desynchronization pattern in phasors. 
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However, as shown in Figure 2, the second of century (SOC) and the fraction-of-second 

can be constant while only measurement data are changed. In this thesis, we assume 

that the bad data injection did not modify the measurement time tags from 

synchrophasors. 

The second part of this thesis addresses the problem of detecting bad data 

injection from PMUs by applying a principal component analysis (PCA) based method. 

An online detection strategy is proposed to detect the anomalies in the PMU data with 

capability to distinguish the malicious data from either event or contingency data. The 

PCA-based method is utilized to find the patterns underlying the system-wide dynamic 

behaviors and consequently identify the anomaly behaviors. The proposed scheme is 

able to determine and locate the existence of an adversary as well as contingencies with 

fast response time and low computational complexity. After being trained by extensive 

experiment results, a classifier is then applied to enable the method to distinguish 

between the bad data and contingency data with high accuracy. 
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CHAPTER 3  

PMU Timeframe Interactive Simulation  

 

While changes to the grid are resulting in more concern about dynamic issues in 

power system operation, the widespread deployment of PMUs is greatly increasing 

knowledge about power system dynamics in this PMU time frame, and allowing for the 

possibility of more closed-loop control. Hence, there is a need for smart grid 

prototyping and teaching environments modeling these power system dynamics.  

In order to avoid the complexity and cost of writing a transient stability 

simulation from scratch, in an approach similar to what was presented in [10], the 

dynamics simulation environment described here (abbreviated as DS) utilizes a 

commercial transient stability package as its simulation engine [26]. This provides the 

advantages of allowing it to, 1) represent the hundreds of different power system 

dynamics models commonly found in actual transient stability cases, 2) import and 

export case models in industry standard formats, and 3) efficiently solve large power 
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system cases. This is in contrast to the approach of [1], which develops a short-term 

dynamics simulation program with a restricted set of models.  

The DS can be configured to run in real-time, or either faster or slower than real-

time, while solving the power system dynamic models on the PMU time frame, subject 

to computational limitations. A modest PC can solve systems with several thousand 

buses in real-time, and can simulate the small systems described here at speeds of 

several times real-time if desired.     

The DS is designed to function in two complimentary modes. First, it can be used 

as a stand-alone, interactive power system simulation environment. Hence it is very 

similar to the interactive power flow simulation package of [4]. Second, the stand-alone 

mode of the DS can be augmented to allow it to also function as a simulation engine 

server as part of a coupled simulation environment. As is described later in the thesis, 

the DS is able to communicate with other packages using either the C37.118.2 protocol 

[22] or the PowerWorld DS protocol (PWDSP), which allows for interactive control. The 

advantage of the C37.118.2 protocol is it allows the DS to be immediately connected to 

existing packages that utilize this protocol. However, C37.118.2 is not designed for 

interactive control. Rather, interactive control of the DS is accomplished using the 

PWDSP. Hence, the DS provides for an extensible environment that can be used to 



12 
 

simulate both the power system with its dynamics and the communication and control 

systems, such as from [8].  

 
Figure 3: 42 Bus System One-line with Voltage Contour 

When used in either stand-alone or server mode, the DS is set up to directly open 

and simulate existing power system transient stability cases, with a strong focus on 

power visualization. As an example of the stand-alone mode, Figure 3 shows the one-

line diagram for a fictitious 345/138 kV, 42 bus system in which the per unit voltage 

magnitudes are represented using a color contour [27]. During an interactive 

simulation, the one-line contour can be updated at a user-selected rate of up to about 10 

Hz (depending on contour resolution and machine speed), allowing for good 

visualization of power system voltage effects. By varying this rate, it is possible to 
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compare how a one-line might respond when driven by PMU data, versus one driven 

by SCADA data in which the refresh rate would be once every few seconds. 

Another feature of the DS is the ability to display strip-charts of a wide variety of 

system quantities. Figure 4 demonstrates this functionality on a scenario that takes the 

Figure 2 case, and over the course of 40 seconds models the impact of a tornado moving 

through a substation, sequentially opening three 345 kV transmission lines, and taking a 

500 MW wind farm off-line. In Figure 4, both strip-charts are displaying one minute of 

data, with the top chart showing the system frequency and the bottom one showing 

several of the bus voltage magnitudes. This scenario is set up as sort of a game in which, 

as the simulation progresses in real time, the goal for the user is to interactively modify 

the system by control actions such as shedding load, to prevent a voltage collapse. The 

system oscillations in the PMU time frame are shown in the strip-charts. When the 

contour is set to refresh at rates of more than several times a second, the system-wide 

impacts of these oscillations can be visualized.   
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Figure 4: 42 Bus Case with Several Lines Outaged 

In the stand-alone mode the system can be monitored and controlled either using 

the previously mentioned one-lines, or through a variety of tabular displays. Figure 5 

shows an example using the 150 bus, 500/230 kV entirely synthetic case from [28]. The 

figure illustrates a system one-line using a contour to show the substation voltages, a 

strip-chart showing the system frequency, a tabular display showing all the system 

generators, and a generator dialog. The dialog can be used to both monitor the 

generator and issue controls including changing the exciter setpoint voltage or the 

governor MW setpoint.   
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Figure 5: Interactive Control with 150 Bus Case 

As noted earlier, when running as a simulation server the DS can communicate 

using either the C37.118.2 protocol or the PWDSP. C37.118.2 is described in [22], and is 

intended primarily for a one-way transfer of simulation values from the DS to clients. 

Currently the DS is set up such that each electrical substation is considered as a separate 

C37.118.2 PMU.  

In contrast, the PWDSP allows two-way communication to clients, which may be 

other simulations. The PWDSP has three major classes of functionality. First, it has 

dictionary commands that allow the clients to request information about the DS power 

system model structure. For example, clients can ask for a description of the model 
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structure. In response, the DS returns information about the 21 different object types it 

uses to represent the power system. Example object types include buses, generators, 

loads, and ac transmission lines. This allows a client to connect to the DS without a 

priori knowledge about the particular model.  

Second, the PWDSP has commands shown in Table 1 that allow clients to request 

simulation values. For example, at a specified rate a client may request all of the per 

unit voltage magnitudes and angles. Recognizing that clients will commonly be 

requesting the same sets of values, field sets can be defined by the client and stored on 

the DS to avoid the communication overhead associated with requesting the same 

values. 

Table 1: Interactive Commands Supported by DS 

Object Commands 

Generator(s) 

1. OPEN 
2. CLOSE 
1. SET Exciter_Setpoint xxx pu 
2. Set Power xxx MW 

Load(s) 1. OPEN 
2. CLOSE 

Shunt(s) 1. OPEN 
2. CLOSE 

Branch(s) 

1. OPEN BOTH 
2. OPEN NEAR 
3. OPEN FAR 
4. CLOSE BOTH 
5. CLOSE NEAR 
6. CLOSE FAR 
7. BYPASS 
8. NOTBYPASS 

LineShunt(s) 1. OPEN 
2. CLOSE 
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Third, the PWDSP supports commands that modify the underlying power 

system model. Example commands include opening loads and ac transmission lines, or 

changing generator setpoints. Eventually all commands used internally by the 

underlying commercial transient stability engine will be supported. Commands sent by 

the client are specified to occur at a particular time in the simulation, with a common 

option to be immediately executed. An example usage of the DS and the PWDSP for 

cyber security research is described next. 

 

  



18 
 

 

CHAPTER 4 

Synchrophasor Network Simulation 

 

One application of the DS is to provide a PMU time frame power system 

simulation as part of a coupled simulation of the power system with some of its cyber 

infrastructure [29]. This chapter presents a toolkit of a coupled simulation that consists 

of three parts: 1) the DS, 2) a synchrophasor network simulation, and 3) a real-time 

data-sharing and coordination mechanism. The synchrophasor network simulation is 

built for supporting applications on malicious data attack detection, and it includes 

models of phasor measurement units (PMUs), phasor data concentrators (PDCs), and a 

control center. Communication is done using IEEE C37.118.2-2011 protocol [22] from 

the DS to the PMUs and then onto the PDCs, and finally to a control center simulation, 

and using the PWDSP between the control center simulation and the DS for real-time 

control. This is illustrated in Figure 6. The components of the synchrophasor simulation 

environment are introduced below. In addition, a cyber security case is set up to 
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demonstrate the interactive simulation of the power system and the cyber 

infrastructure. 

 
Figure 6: The Interactive Simulation Framework 

4.1 PMU Simulator 

The first model represents virtual PMUs that comply with the IEEE standard 

C37.118.1-2011 [30]. In order to inject the malicious data into the PMU data streams, a 

“hack module” is integrated into the PMU simulator that enables users to choose the 

cyber-attack events for the selected PMU. This PMU simulator generates multiple 
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virtual PMUs, which can have output data rates of up to 120 messages/second. Each 

PMU is assigned a communication port. The architecture of the PMU simulator is 

shown in Figure 7.  

 
Figure 7: The PMU Simulator Architecture 

At startup, each PMU simulator sends a dictionary command to the DS to obtain 

information about the model topology. Upon reception of a valid dictionary packet, the 
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packet is decoded and the user interface is updated with the case information. The 

information obtained for the selected substation is then sent to the PMU generator to 

build the C37.118.2 configuration frame [22]. Once the configuration frame is ready, the 

PMU generator is able to accept the request command for the data frame. Similar to the 

initial procedure used to obtain the model dictionary, the data packet from the DS is 

first decoded, and then the data corresponding to the selected substations/buses will be 

sent to the PMU. The hack module is situated between the router and PMU generator, 

such that the parameters of a data frame can be modified prior to sending out from the 

router. Data modification is done according to the malicious data option selected by the 

user. 

In order to generate multiple PMUs for the case, synchronized multi-threads are 

used in building the simulation. This ensures users not having to run multiple instances 

of simulators if several PMUs are needed in the system. Instead, the simulator generates 

as many threads as the number of PMUs. Individual communication ports are then 

assigned to each PMU for their connection to the PDC simulator. This multi-threaded 

design supports the optional individual latency for each PMU. 

4.2 PDC Simulator 

Like the PMU simulator, the PDC simulator has a hack module that enables the 

data from PDCs to be injected with the malicious data in the simulation. The PDC 
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simulator concentrates the IEEE C37.118.2-2011-formatted data streams from the 

selected PMU simulators and other data sources specified by the user. It buffers the 

data stream and waits for a certain time (σ) to receive measurements from all connected 

PMUs. Multi-threads have also been implemented in the PDC simulator. When the PDC 

is ready to transmit, it aggregates all the data from the selected PMUs into a single data 

frame, generates a new time tag for this frame, and outputs at rates up to 120 

messages/second. Algorithm 1 illustrates the process of generating the data packets in 

the PDC simulator. 
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As is the case with the PMU simulator, the malicious data module is integrated 

after the data aggregation, such that the parameters of the newly generated data frame 

Algorithm 1   Multi-thread PDC Simulator Algorithm 

Input:  D - Data streams from all connected PMUs; T- Algorithm start time;  Ϭ - Waiting 
period; H - Hacked PMU index list 

Output:  PDC data packet 

1. For d in D 

2.        Receive d and record the index i of d  

3.        Decode d                                                

4.        IF d.time within [T- Ϭ, T]      

5.           IF i within H   

6.              d.data = H.type × d.data 

7.           END IF   

8.           Put d.data into O[i] 

9. ELIF d.time < T- Ϭ 

10.            Check d.buffer                                 

11.             IF d.buffer > 0 

12.                 Go back to Step 2 

13.             ELSE 

14.                  Put Empty into O[i] 

15.             END IF 

16. END IF         

17. END 

18. While True 

19.            IF current-time >= T +  Ϭ 

20.                  Send out O 

21.                  Break 

22.           END IF 

23. END 
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can be modified prior to being sent out. Different types of bad data can be achieved by 

changing the malicious data option and parameters in the user interface. 

4.3 Control Center Simulator 

The control center simulator is designed to receive streams from multiple PDC 

simulators (and other synchrophasor data sources), and to utilize visualization and 

analysis tools to help users detect anomalous behaviors in the power system and/or its 

associated synchrophasor communication infrastructure. Users are able to use 

command functions, through the connection with the DS, to control the underlying 

power simulation.  

The control center simulator comprises five blocks. First, an “operation block” is 

used to connect to the PDC simulators and the DS. Second, the “dictionary block” 

shows the details of the running case. Third, the “data visualization block” plots the 

PMU data and updates the data table. Forth, a “map block” shows the geographic 

information of the power system and the synchrophasor network. Last, an analysis 

block is available to be integrated with online analysis/detection methods. As shown in 

Figure 8, the geographic map of the given power system case and the sychrophasor 

network is generated in the map block. 
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Figure 8: The Control Center Simulator Interface 

4.4 Case Demonstration 

A case study demonstrating the working of the coupled simulation toolkit is 

implemented. A malicious data injection at a single PMU/PDC in the previously 

mentioned 150 bus case [28] is presented. Prior to the bad data injection, initialization of 

the interactive simulation is carried out. The steps used for these activities, and the 

built-in function elements are described below. 

1) Interactive simulation initialization 
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1. Open DS to load the 150 bus case. Start the server function in the DS. The 

server port is 5557. 

2. Open the PMU Simulator program. Specify the selected buses (10, 11, 15, 

18, 23, 50, 82, 88) in the PMU Placement field. Click on the interface “Start” button. A 

port range of 5558-5565 is assigned to these PMUs for connection to the PDC. 

3. Open the PDC Simulator program. Specify port numbers 5558-5565 to 

connect to all 8 PMUs. Here, we also place a PDC in Substation 56, and set its port 

number to 5566. The PDC is placed in the system and connects to the 8 PMUs. 

4. Open the Control Center Simulator program. Connect to both PDC and 

DS through the port 5566 and 5557. Click on the “Initialize” button to receive and 

decode the dictionary packet from the DS. Afterwards, click on the “Start” button to 

receive data frames from the PDC. Figure 9 shows the procedure of the initialized 

coupled simulation and the interface of each component in the toolkit. 
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Figure 9: Interactive Simulation Demonstration 

2) Noise injection at a single PMU 

The process of injecting noise requires switching to the PMU simulator program. 

In the “Advance” tab, select the options “FreqHz” and “Random” in the combo boxes. 

Type the number into the bus field. Random noise injection in the data begins once the 

“Start” button is clicked.  

Currently three types of malicious data injection have been integrated into the 

hackable PMU/PDC Simulator. First, the phasor’s magnitude/angle/frequency can be 

added with a specified deviation or a random noise. Second, a time drifting can be 
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injected into the bytes for the time information and phasors to lead to the mis-

synchronization of the packets. Third, the data output can be locked so that the phasor 

values will be constant with only time updated.  

In this case, data generated by PMU 1, located at Bus 10, is sent over a 

communication network to the PDC located in Substation 56. The data are then 

forwarded to the control center. During its transmission, the data pass the PMU/PDC 

routers and the communication links, and the PMU router is compromised by the cyber 

attacker. The attacker aims to use a Gaussian noise data injection [31], [32] to 

manipulate the frequency data that may contaminate the data received by the PDC and 

consequently affect the frequency monitoring in the control center. 

To evaluate the effect of the malicious data injection in this coupled simulation, 

the data stored in all PMUs and the data received by the control center and ready for 

the frequency monitoring have been extracted and compared. As shown in Figure 10, 

significant noise is observed in the control center (Figure 10b) when compared to the 

frequency data stored in the PMU (Figure 10a), which illustrates three points: 1) the 

noise data are injected into the router of PMU 1, thus no noise is found in the data 

stored in the selected PMU, 2) the noise data from the PMU 1 router has been 

aggregated by the PDC and then forwarded to the control center, and 3) the frequency 

monitoring in the control center will be affected by the noise injection, and hence the 
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accuracy of state estimation is likely to be affected, which may leads to the economic 

losses of utilities. 

 
Figure 10: Effect of Noise Injection on the PMU Network 
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CHAPTER 5 

PCA Based Real-time Detection Scheme 

 

In order to process the synchrophasor data streams to identify the malicious data 

and find out the possible injection locations, a PCA based online detection scheme is 

proposed in this chapter. Basic concepts of bad data injection model and PCA method 

are presented. 

5.1 Bad Data Injection 

As described in [25], a PMU measures phasors and frequency and packs the 

measurement with an accurate time stamp, which is synchronized using the Global 

Positioning System (GPS). With PMUs installed over the grid, all measurements are 

obtained in the same sampling rate. Those grid-wide time-aligned data are collected by 

the regional PDC and are available for the state estimator. Compared to the classical 

state estimation methods that use active and reactive power measurements as input, 
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state estimation using the time-aligned PMU data can provide accurate snapshots of the 

power system conditions in a higher frequency.  

With the importance of state estimation, malicious data (or fake data) could 

result in serious mistakes, like erroneous operation decision, or even blackout. PMU 

data can be corrupted if the PMU is attacked or any component (like routers) of the 

underlying communication network is hacked [33]. We denote ∈ ℝ ×  as the set of 

PMU measurements with  to be number of PMU channels (i.e. voltage, current or 

frequency) and M to be the number of time instants considered. For X, we also define 

each column by = [ , , … , , , … , , ]  and each row by =

[ , , … , , , … , , ], with each index {m, n} indicating that the data are measured by 

PMU channel n at time instant m. 

The bad data injection can be formed in the following equation: 

 = +  (1) 

where D denotes the injected data matrix, which has the same row and column size as 

X, and P denotes the corrupted data matrix that will be used in state estimation. For any 

nonzero ∈ , it represents the malicious data were injected into PMU channel i at 

time instant j.   
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5.2 PCA Procedure 

In order to capture a large amount of  the variation in the data as possible, PCA 

is used to process the aggregated data. First, P is normalized using (2) and (3): 

 μ =
1

,  (2) 

 z , = ,  (3) 

Then we rescale each coordinate to make sure that different attributes (includes data at 

different time instants) are treated on the same scale: 

 σ =
1

( , )  (4) 

 s , = , /  (5) 

After normalization, we choose a direction u so that the data are projected onto the 

direction corresponding to u, where the variances of the projected data are maximized. 

For a given unit vector u and a point , the projected point on u is given by . To 

maximize the variance of the projections, we choose a unit-length u so as to maximize: 

 1
( ) =

1
 

(6) 
                                    = (

1
)  
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Thus, to project the data into a k-dimensional subspace (k<n), we choose , … ,  to be 

the top k eigenvectors of ∑ = ∑ . To reconstruct the data in the new basis, we 

need to compute the corresponding vector: 

 ( ) = ...
∈ ℝ  (7) 

5.3 Scheme Design 

As illustrated in [34], PCA obtains the new, orthogonal direction onto which the 

data set projection has the largest distribution in the remaining subspace. This results in 

the elimination of redundancy, thus preserving only the unique variations. In other 

words, if several data sets share the same scaled dynamics, only one projection can be 

found after the PCA process. Here we could anticipate the PCA result under three 

different conditions:  

 For the case without bad data injection and contingencies, there is a strong 

spatial-temporal correlation in the measurement matrix, so that the 

corresponding eigenvalue λ  should be significantly larger than the rest, 

indicating that the first eigenvector υ  represents the most significant 

dynamic pattern. 
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 For the case without bad data injection but contingencies, other patterns 

may be triggered and unveiled by PCA due to the existence of the 

contingencies. The eigenvalues should have significant and representative 

changes when different contingencies occur in the system. 

 For the case with bad data injection but without contingencies, new 

patterns may be introduced into the measurements. The changes in the 

eigenvalues may be less significant compared to the ones in contingency 

cases if a few PMU/PDCs are under attack. The attack on any type of 

measurement data (voltage magnitude, voltage angle or frequency) will 

not affect the eigenvalues of the uncorrupted measurement(s). 

The three cases follow the basic spatial and temporal correlations, while the 

introduction of contingencies and bad data injection also generates new patterns into 

the measurements. Thus, to determine whether the system is having contingencies or 

experiencing data attack, we obtain and analyze the PCA results from several pre-

defined cases. Based on the pattern found in each type of cases, a classifier is set up to 

determine whether the system is experiencing actual bad data injection. 

Furthermore, the new projection provided by PCA shows the dynamic behavior 

of each observed bus. Buses with anomalous dynamic behaviors will be highlighted if 

the system is determined to have contingencies or data attack. In order to find these 
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anomalous buses, a 1-D clustering is integrated into the method. Figure 11 shows the 

procedures of the entire PCA-based scheme. 

 
Figure 11: Flowchart of the PCA-based Scheme  
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CHAPTER 6 

Implementation and Case Study 

 

In this chapter, the proposed scheme is implemented in the synchrophasor 

network simulation environment, and it is tested online with different cases either 

having bad data, contingencies or both. To demonstrate the capability of the proposed 

method, we use the IEEE-118 network [35] to build the study samples, and we test it in 

a synthetic 150-bus case [28]. Several cases are discussed in detail for illustration. 

6.1 Pattern Extraction 

The eigenvalues obtained in the training cases (without any system event) are 

small and indistinguishable. Hence, we use the logarithmic values of each eigenvalue to 

better distinguish the pattern differences. 

6.1.1 Base Case 

This is the IEEE 118-bus system without contingencies and data attack. The 

measurement data series in this base case has some tiny fluctuations, but generally the 
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system is running smoothly. By computing the voltage magnitude matrix, voltage angle 

matrix and frequency matrix using 40-instant window size and a PMU reporting rate of 

30 frames per second, the range of the change of  is shown in Table 2. 

Table 2 Range of  in the Base Case 
 Δlog ( ) Δlog ( ) Δlog ( ) 

Vpu (-0.038, 0.051) (-0.082, 0.105) (0, 0.013) 

Angle (-0.212, 0.009) (-0.096, 0.109) (-0.217, 0.216) 

Freq (-0.054, 0.024) (-0.029, 0.141) (-0.16, 0.045) 

 

6.1.2 Contingency Case 

Different contingency scenarios are defined for the 118-bus case. Here we use a 

case with a transmission line fault to illustrate how we find the patterns.  
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Figure 12: Histogram of the Eigenvalues 

As shown in Figure 12, few eigenvalues change significantly when the pre-

defined contingency occurs in the system. Note that when the synchrophasor data from 

PDCs are received, the client computes the eigenvectors and eigenvalues, and compares 

with the results from last instant. The eigenvalues  and  increases significantly in 

the voltage angle matrix, however they remain relatively constant in the voltage 

magnitude matrix. The three eigenvalues in the frequency matrix are increasing gently 

compared to the other two matrixes. Focusing on the instance when contingency 

occurred, we found that all significant eigenvalues , ,  of the angle matrix and the 
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∗ of the voltage magnitude matrix are rising at that time instant, and all of them are 

out of the normal range, which is given in the Table 2; thus this pattern is considered to 

be a contingency signal when performing the proposed detection method. 

6.1.3 Bad Data Injection Case 

Bad data injection exists with unusual behaviors, and is illustrated in [36]. Figure 

13 shows the changing of the eigenvalues when a five-instant (0.1667 s) bad data is 

injected into the frequency data of the PMU data packet during instances 41 to 45. As a 

result, the first significant eigenvalue of the frequency matrix increases from -3.73 to       

-2.23 at the instance when bad data are introduced, while the third eigenvalue changes 

from -7.60 to -4.50. 

These significant changes are considered as patterns for the bad data injection on 

frequency data. The patterns from other bad data injection cases are collected and a 

classifier based on these patterns is utilized to detect the anomalous behaviors in the 

synchrophasor data stream. 
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Figure 13: Comparison between First Three Eigenvalues with and without Bad Data 

Injection 

6.2 Finding Possible Incident Location(s) 

After recognizing the incident type which occurs in the system, the incident 

location is always desired. Assuming  is an incident-free measurement matrix at time 
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instant  and from  we obtain the partial eigenvector matrix ∗ . Then we can 

reconstruct the data in the new projection (sub-space) if n eigenvectors corresponding to 

the n principal significant eigenvalues are selected: 

 = ∗ ∗ ∗ ∗  (8) 

The n significant eigenvectors reflect the dominance of the patterns in . As shown in 

Figure 14(a), the difference between the original matrix and the reconstructed matrix is 

relatively small, implying that the eigenvectors extract the most dominant variance of 

the data matrix. At time instant  ( > ),  is updated with the bad data. The bad 

data pattern is not included in the eigenvalues of , consequently the reconstruction 

data  cannot perfectly represent the last update data  in . In Figure 14(b), the 

difference between  and  shows that the unit 50 is likely being corrupted at that 

time instant, because the point of unit 50 is far away from other points. 
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Figure 14: Difference between Reconstructed and Original Data 

6.3 Case Study 

The proposed approach is tested using the real-time data from the 

synchrophasor network simulation environment. Two contingency cases (a 

transmission line fault and a three-phase fault) and malicious data injection on three 

types of measurement (voltage magnitude, angle and frequency) in a PMU data stream 

are used to test the performance of the method. The test results are shown in Table 3. 

Contingencies and bad data injections are successfully detected, with the average 

response time is 0.0124 s, which satisfies the online detection requirement for a 30-60 fps 

data reporting rate. All incident locations are found after the incident type is 

recognized. 
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Table 3 Test Results with Different Incidents 

 
Eigenvalues  

Incident ∆log ( ) ∆log ( ) ∆log ( ) ∆log ( ) ∆log ( ) ∆log ( ) ∆log ( ) ∆log ( ) ∆log ( ) Window Detected 

TLF* 4.0966 0.9402 0.1399 1.2984 0.4406 2.5119 0.4085 0.9865 1.8159 40 Yes (0.0126s) 

TPF* -0.0616 -2.1458 -0.7343 1.6729 0.6236 2.6122 1.3737 1.0849 1.9697 40 Yes (0.0120s) 

BDV* 0.1007 0.166 0.5228 0 0 0 0 0 0 40 Yes (0.0123s) 

BDA* 0 0 0 0.0011 -0.0515 0.1707 0 0 0 40 Yes (0.0128s) 

BDF* 0 0 0 0 0 0 1.14 0.9123 2.7633 40 Yes (0.0121s) 

*TLF: transmission line fault; TPF: three phase fault; BDV/A/F: bad data injection on voltage/angle/frequency 
** A bigger size version is attached in the Appendix A 
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CHAPTER 7 

Conclusion 

 

This thesis presents an interactive simulation package that can be used for either 

stand-alone PMU timescale simulations, or as a simulation engine that can be used for 

either multi-user simulations, and/or as part of a coupled simulation environment. 

Based on the real-time data output features of this package, a synchrophasor 

communication network simulation is developed so that many synchrophasor or PMU 

related researches can be carried out on this co-simulation platform. By showing the 

procedure of building the PMU network for the UIUC-150 bus case, the extensibility of 

the interactive simulation package has been efficiently proved. 

In the second part, based on the interactive simulation environment and the 

synchrophasor network simulation, an online PCA-based method is developed for 

processing the synchrophasor data stream to detect the anomaly behaviors of power 

systems including contingency and bad data injection on the PMU data stream. By 

integrating the method into the Control Center simulator of the synchrophasor network 
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simualtion, the proposed method is proved to effectively recognize the incident type by 

pattern match and find the most possible incident location by comparing the 

reconstruction data with the original data, with a fast response time to satisfy the 

requirement for the real-time detection. 
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