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ABSTRACT

When designing spacecraft trajectories, there exist cases where a trade-off

between time-of-flight and fuel become crucial to the mission design sce-

nario, especially for unmanned missions where longer time-of-flight solutions

can be considered. One effective way to produce longer time of flight solu-

tions is to leverage the natural dynamics of the system, which lends towards

low energy trajectories. The dynamical structures of such systems provide

global transport in multi-body regimes, and therefore avenues to low-cost

solutions in a minimum fuel or ∆v sense. Trajectories using the natural dy-

namics are termed low-energy (LE), and typically include either impulsive

or low-thrust control to navigate from one global transport to the next. The

multi-body model studied in this thesis is the circular restricted three-body

problem (CR3BP) and the dynamical structure of interest are the invariant

manifolds of the Euler-Lagrange points. The construction of LE trajectories

in the CR3BP is most often accomplished by manually finding homoclinic

and/or heteroclinic intersections of invariant manifolds located on specific

Poincaré surfaces of section. Historically, these patch-points are chosen by

hand and used to seed either differential correction, at most yielding a feasible

solution, or a control transcription with nonlinear programming to hopefully

yield a locally optimal solution. Manual selection of these patch-points is

a severe limitation of the current LE trajectory optimization approach and

greatly reduces the chance to identify a globally optimal solution. The fo-

cus of this thesis is to present an automated solution which removes the

bottleneck of characterization and analysis of these intersections of invariant

manifolds. This thesis will demonstrate the application of the functionality

to autonomously detect and characterize intersections of invariant manifolds,

as well as explore the effects of different parameters on performance and gen-

erated solutions.
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CHAPTER 1

INTRODUCTION

Currently, there exists a need for an automated global optimization toolset

for spacecraft trajectory optimization in multi-body problems, where current

methodologies are hindered by a demand for human time and intuition. Such

a toolset has been in development at the University of Illinois at Urbana-

Champaign in the Aerospace Engineering department, and has been applied

to a variety of trajectory cases. [1, 2, 3, 4, 5, 6] This toolset is primarily

driven by a multi-level optimization framework, which has been spearheaded

by Vishwa Shah. [1, 4] To allow for efficient low energy transfers, an algorithm

was produced to allow for the capability to detect and classify intersections of

invariant manifolds. Through this thesis, an algorithm for the detection and

classification of the intersections of invariant manifolds will be presented,

variables relevant to this algorithm will be explored, computational time

considerations will be analyzed and improved, and example trajectory cases

utilizing this algorithm will be demonstrated.

In order to apply the algorithm presented in this thesis, it was necessary

to encompass the functionality of being able to explore the intersections of

invariant manifolds into a larger global optimization framework, which allows

for the exploration of specific mission profiles. When utilizing the presented

algorithm within the framework, we are specifically interested in leveraging

the natural dynamics of the problem, since this structure provides global

transport in multi-body regimes, and therefore avenues to low-cost solutions

in a minimum fuel or ∆v sense. Trajectories using the natural dynamics are

termed low-energy (LE), and typically include either impulsive or low-thrust

control to navigate from one global transport to the next. The multi-body

model considered in this thesis is the planar circular restricted three-body

problem (PCR3BP) and the dynamical structure of interest are the invariant

manifolds of the Euler-Lagrange points. The construction of LE trajectories

in the PCR3BP is most often accomplished by manually finding homoclinic
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and/or heteroclinic intersections of invariant manifolds located on specific

Poincaré surfaces of section. Historically, these patch-points are chosen by

hand and used to seed either differential correction, at most yielding a feasible

solution, or a control transcription with nonlinear programming to hopefully

yield a locally optimal solution. Manual selection of these patch-points is

a severe limitation of the current LE trajectory optimization approach and

greatly reduces the chance to identify a globally optimal solution. The focus

of this work is to present an approach for removing the manual selection

process. The algorithm presented is an efficient and intelligent automated

search process and is able to automatically seed our global optimizers based

on ideal sets of points and therefore perform a rapid global search.

Automated detection of dynamical connections is not new and has been

demonstrated by Dellnitz et al.[7] and Zanzottera et al.[8] The paper by

Dellnitz worked with the planar concentric four body model and used Earth

to Venus transfers as an example. A primary focus of their implementation

was to produce a data set of all the possible states that could be reached in

finite time with approximate control applied to initial states near a prescribed

manifold; a reachable set. The initial and final states then prescribe a map.

An initial guess to the solution of a continuous closed trajectory can then be

found by searching for two maps that have similar boundary conditions (e.g.

two final conditions with similar position and velocity states). Although the

authors did not close the trajectories in the first work mentioned.

To differentiate the work presented in this thesis, we are interested in LE

trajectories using impulsive control and therefore the presented approach

looks for intersections of reachable sets produced by way of the natural dy-

namics. The results of this thesis focus on automated and computationally

efficient ways of finding and categorizing these sets of intersections. The

results of this thesis are meant to work within a global optimization frame-

work and therefore must be very computational efficient. This is in contrast

to the results produced by Dellnitz et al., which was not embedded in an

optimizer. The time to completion for producing an intersection result using

the algorithm presented in this work is significantly faster than the result

demonstrated by Dellnitz.

The paper by Zanzottera is focused on spatial intersections of invariant

manifolds in the Sun-Earth-Moon regimes. In terms of finding dynamical

structure, their paper and this thesis are similar, although the algorithm
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presented is currently restricted to the planar case. Their work was facili-

tated by a dynamical systems tool called Global Analysis of Invariant Objects

(GAIO), which is a suite designed to analyze general dynamical systems. In

Zanzottera, the intersection of invariant manifolds of halo orbits are found.

Categorizing these intersections into subsets is of interest, since special com-

binations imply advantageous initial and final conditions (e.g. ballistic cap-

ture at initial and final states). The algorithm presented in this thesis is

aimed at naturally identifying and categorizing these subsets. It is unclear

if Zanzottera et. al. carry out this additional step, although GAIO most

likely enables this type of analysis. The main difference between this work

and Zanzottera is that this algorithm is geared towards not only autonomous

identification of intersection set, but also categorization and doing so in an

extremely computationally efficient manner.
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CHAPTER 2

BACKGROUND

2.1 The Planar Circular Restricted Three-Body

Problem

The algorithm and results presented in this thesis use the planar circular

restricted three-body model. For this work, a massless body represents the

spacecraft, whose small mass has no meaningful effect on the orbits of any

parent body. The two massive bodies are a primary body and a secondary

body, for example the Sun and Earth respectively. These bodies orbit around

their barycenter and affect the motion of the massless body. Both bodies are

assumed to have zero eccentricity and inclination. The reference frame for

this problem is centered at the barycenter. Additionally, a synodic (rotating)

reference frame is used which is given the same angular velocity as that which

the secondary body rotates about the primary body, which is scaled to be

ω = 1. In this way the bodies in this reference frame are visually seen to be

fixed along the x axis. Given a mass of the primary body to be m1 and a

mass of the secondary body to be m2, the value µ is defined as

µ ≡ m2

m1 +m2

In terms of µ, the states of the primary and secondary in the canonical frame

are: (−µ, 0, 0, 0) and (1−µ, 0, 0, 0). In the canonical frame, the equations of

1This chapter contains previously published material from [2] and [5]. The copyright
owner provides permission to reprint.
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motion for the massless third body are,

ẍ = 2ẏ + x− (1− µ)
x+ µ

r31
− µx− 1 + µ

r32

ÿ = −2ẋ+ y − (1− µ)
y

r31
− µ y

r32

where r1 ≡
√

(x+ µ)2 + y2 and r2 ≡
√

(x− 1 + µ)2 + y2 are the distances of

the massless body from the primary and secondary respectively. Setting the

velocity and acceleration terms to zero yields five stationary solutions that

are called Euler-Lagrange points (see Koon et. al.[9] or Parker[10]). The

locations of these solutions are shown in Figure 2.1. For most applications,

including the systems consider in this thesis, the L1, L2 and L3 points are

unstable fixed points, whereas L4 and L5 are stable. For large values of µ,

the L4 and L5 undergo a bifurcation and also become unstable.

Figure 2.1: Diagram of the PCR3BP, with 5 Euler-Lagrange points
identified.

The co-linear Euler-Lagrange points, L1, L2 and L3, are of special interest,

since their instability gives way to unstable periodic orbits about each point.

In the remainder of this thesis we will focus on the L1 and L2 points. Being

a Hamiltonian system, we have an integral of the motion, which provides a

method for dynamical reduction. It is common to work with what is often
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termed the Energy Integral, given as follows

E ≡ 1

2
(ẋ2 + ẏ2)− 1

2
(x2 + y2)− 1− µ

r1
− µ

r2
− 1

2
(1− µ)µ

In this thesis, we will work with the equivalent Jacobi Integral, given as

C ≡ −2E. It is useful to separate E into kinetic and effective potential

terms, with E = V + U and V and U defined as,

U ≡ −1

2
(x2 + y2)− 1− µ

r1
− µ

r2
− 1

2
(1− µ)µ

V ≡ 1

2
(ẋ2 + ẏ2)

One important feature to note is the ordering in terms of energy of the three

co-linear Euler-Lagrange points; which is the following: C1 > C2 > C3.

C is used to perform dynamical reduction and thus enable comparison of

heteroclinic and homoclinic connections on reduced state spaces.

2.2 Lyapunov Orbits and Invariant Manifolds

Invariant manifolds are dynamical structures which exist about periodic or-

bits in the PCR3BP and are generated within global optimization framework

to be used as dynamical structures to detect low energy trajectories. About

each periodic orbit, there exist both stable and unstable manifolds which

flow both into and out of the periodic orbit respectively.[11, 9] For use in this

work, invariant manifolds are produced by perturbing the spacecraft away

from halo or Lyapunov orbits based upon stability information from the state

transition matrix, and capture how the flow of the spacecraft propagates over

time. In the case of the stable manifold, the flow will tend towards the orig-

inal periodic orbit. Conversely, the flow of the unstable manifold leaves the

periodic orbit when perturbed. These flows caused by perturbations are

captured through the propagation of individual arcs using the three-body

dynamics, whereby the superposition of a variable number of discrete arcs

are necessary to define the boundary region of any given manifold.

While these structures generally tend towards a tube-like shape as they

grow away or towards a periodic orbit, the dynamics of the problem can

generate complex flows. These systems are chaotic, meaning among a variety
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of characteristics that arise when dealing with chaotic systems, that they are

heavily dependant on initial conditions and can diverge significantly over

time. When looking at a visual representation of a manifold, it can be the

case that some portion of the arcs continue on a visually predictable path,

while other arcs break away and flow along wildly varying paths. Many times

this variation can be caused by close approach to one of the planetary bodies

in the PCR3BP, where some arcs can become ejected. The formation of a

tube-like structure by stable (green) and unstable (red) invariant manifolds

can be seen below in Figure 2.2.

Figure 2.2: The propagation of arcs along the unstable (red) and stable
(green) Earth-Moon L2 manifolds. [1]

2.3 Poincaré Surfaces of Sections

A Poincaré surface of section is a useful tool for dynamical reduction and

thus enables analysis on a reduced space. The combination of the PCR3BP

being an autonomous Hamiltonian system coupled with the use of Poincaré

surfaces of section allows an individual to ‘see’ the full complexity of the

dynamics of the PCR3BP. Poincaré surfaces of section can be defined quite

easily, with the only requirement being that the local flow be transversal

to the surface of section; this is often slightly abused in practice. We will

designate Poincaré surfaces of section as Wi where i serves as a label. For

instance see Figure 2.3.

Poincaré surfaces of section are used in this thesis as designated planes
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where we record the intersection of invariant manifolds. Recording these

intersection points of various invariant manifolds and using dimensional re-

duction via constant C, we can search for states that belong to intersecting

manifolds (i.e. homoclinic and heteroclinic intersections). The remainder of

this work will detail methods and an algorithm for efficiently carrying out

this process in an automated fashion. It should be noted that for brevity,

we will loosely refer to the subsets of Poincaré surfaces of section, which cor-

respond to intersections of invariant manifolds, simply as Poincaré sections

themselves. This terminology avoids restating that we are actually looking

for subsets of intersections of Poincaré surfaces of section.

Figure 2.3: Example of locations of Poincaré surfaces of section when they
are located at either the primary (W2) or secondary (W1) in the PCR3BP.
A common Θ1 is 270◦ and a common Θ2 is 0◦.

An example Poincaré section and its generation is described. By starting

at the Sun-Earth L2 Lyapunov orbit with a Jacobi interal C = 3.0008, the

resulting manifold WU,i
2 is propagated until it intersects with the surface.

The surface is located at the Earth in the Sun-Earth synodic frame where

y > 0. The generated Poincaré section can be seen in Figure 2.4.
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Figure 2.4: 200 arcs are propagated along the Sun-Earth L2 unstable
manifold WU,i

2 , and their intersection with the Poincaré surface defines a
bounded region.

2.4 The Hiten Mission

The Hiten mission was executed by the Japanese space agency in 1991. This

mission used a LE transfer with a ballistic capture at the Moon. One side

effect of the LE approach to this mission was that the total ∆v requirement

to complete the transfer was actually less than a standard Hohmann transfer.

The construction and solution of Hiten using a patched three-body approach

is clearly articulated by Koon et al.[12]. To explore the algorithm presented

in this work, generating solutions of a Hiten-like mission would demonstrate

several desirable capabilities: the first being the ability to automatically de-

tect intersections of invariant manifolds from different three-body systems

due to the need for a patched three-body approach, and second being the

automated generation of closed impulsive trajectories using boundary condi-

tions from these intersections, hence applying the algorithm. The goal of this

work is not to re-solve the actual Hiten mission, but instead solve a variant

of what is being termed a Hiten-like trajectory that allows investigation of

the capabilities of the algorithm presented in this thesis.

In this work, we simplify the Hiten mission by targeting a fixed circular

parking orbit at the moon instead of a ballistic capture. This means that

the solutions presented in this thesis are not expected to demonstrate the

9



same low ∆v values as seen in Hiten, but instead should simply demonstrate

the same qualitative concepts while demonstrating the capabilities of the

automated detection of invariant manifolds. Future efforts could extend this

analysis on the true Hiten mission.

The Hiten-like trajectory proposed in this thesis is characterized by a few

distinct steps. First, the spacecraft starts at an Earth parking orbit. An

initial burn is executed so that a solution either travels along or shadows a

Sun-Earth L2 unstable manifold. A second burn is then used to transfer onto

an Earth-Moon L2 stable manifold. The final step is traditionally a ballistic

capture at the Moon, but in this work the spacecraft is inserted into a lunar

parking orbit, which is circular with 1,000km altitude. For the initial Earth

parking orbit, the spacecraft will consider initial circular orbits with ranges

between 800-10,000km.
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CHAPTER 3

ARCHITECTURE

3.1 Global Optimization Framework

As a primary methodology to apply the presented automated invariant man-

ifold intersection detection capability, an optimization framework was em-

ployed which can effectively search parameters of interest on a per mission

basis. This framework has been under development at the University of Illi-

nois at Urbana-Champaign, which uses a genetic algorithms, coupled with a

NLP solver for local optimization, in a hybrid optimal control (HOC) frame-

work to optimize LE transfers[4, 1]. In this section, a basic description of

how this optimization framework operates is presented and shows how this

tool can explore large search spaces to determine optimal solutions to LE

trajectory problems.

The optimization framework employs a two level optimization structure.

Figure 3.1 provides a depiction of the framework. At the outer loop level,

high-level control parameters are selected via a genetic algorithm (GA).

These values are then used to construct local optimization problems at the

inner loop level. It is at the inner loop that a nonlinear programming (NLP)

problem is formed and solved with the NLP solver, which in the case of this

work was chosen to be SNOPT. The objective values for the resulting can-

didate are then evaluated (e.g. time-of-flight, ∆v, or propellant mass used

for the low thrust case) where the GA ranks the results, and produces a new

generation of scenarios. Ideally, this process should emulate evolution in na-

ture, where over sufficient generations more desirable solutions should pass

on their genes to produce candidate trajectories with favorable qualities.

The selected optimization framework uses the Non-dominated Sorting Ge-

1This chapter contains previously published material from [2] and [5]. The copyright
owner provides permission to reprint.
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Figure 3.1: The flow of the automated global optimization framework.

netic Algorithm-II (NSGA-II) solver in its outer loop, which enables the

solution of multi-objective problems. Many GAs are only single objective

which would not be sufficient for this application. This algorithm starts with

a set number of individuals, which make up a population. The effective genes

which make up an individual are randomly selected from a prescribed range

on a per variable basis. After the initial population is set up, this population

is evolved over some number of generations. As the generations progress,

the solutions should improve with respect to any of the specified objective

values. In this work I am only considering two objective problems. At each

generation, there are three processes which take place on the population:

namely crossover, mutation, and selection. Crossover is performed between

two parent individuals, where combinations of their genes are used to pro-

duce two new children individuals. Mutation is performed on some number

of individuals per generation to mix up some randomly selected genes to al-

low for greater diversity in the population. And lastly, selection is performed

between the old and new populations, maintaining elitism, to select a batch

of the best individuals to move forward in the final version of the population

for a given generation.

Within the inner loop, trajectory optimization becomes the primary focus.
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This is accomplished by transcription of an optimal control problem into a

NLP where a solution is generated using SNOPT. The NLP is a general prob-

lem that allows for bounds on the control parameters, nonlinear constraint

functions and nonlinear objective functions.

Lastly, since our problem has multiple objectives, one needs to define what

it means for one solution to be ”better” than another. We use the definitions

of non-dominated solutions and Pareto fronts to resolve this issue. Plotting

Pareto fronts then provides a concise way to understand how one can trade

the objectives in one solution with respect to another. In our case, this

will be a two dimensional plot of ∆v versus time of flight. For further de-

tails regarding the implementation of the optimization framework, see Shah

et.al.[4, 1]

3.2 Utility of Automated Invariant Manifold

Intersection Detection

The three-body problem is an extremely useful model which can be chained

to form approximations to larger systems (e.g. the Jovian system). It is a

chaotic system with natural dynamics that can be leveraged for best seeding

the inner-loop and it is this problem of strategically seeding the inner-loop

that this work can be applied. Specifically, results in this thesis will look at

how to efficiently generate new initial guesses for the boundary conditions

of control phases in the three-body problem. Since we are interested in LE

solutions, this is carried out by finding the intersection of heteroclinic and

homoclinic connections on specific Poincaré surfaces of section. The invariant

manifolds of these connections asymptotically tend toward unstable periodic

orbits at the Euler-Lagrange points forward (stable) or backward (unstable)

in time; details are given in Section 2.1. Generating these initial guesses oc-

curs at the outer-loop level, which may be controlled by a number of global

optimization searches; including algorithms for multi-objective optimization,

which is the focus of Shah et. al.[1]. The efficient generation of initial con-

ditions for LE trajectories with boundary conditions on ‘free’ manifold arcs

(i.e. those that are not meant to patch two separate LE manifold arcs at a

given Poincaré surface of sections) are detailed in Beeson et. al.[3]
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3.2.1 Manifold Sections

By intersecting manifold structures with a plane, a Poincaré surface of section

can be produced to describe the flow of a spacecraft. Since any particular

orbit around a body may take a spacecraft through a given surface multiple

times, sections can be further divided into passes which are differentiated

by the count of intersections with said surface. For the purposes of this

algorithm, there are two cases for any set of points produced on a Poincaré

surface of section within the PCR3BP. In the first case, the points join to

produce some closed and bounded shape, which has some definite interior

area. The other case, which is fairly common especially for multiple passes

or high energies, is that some of the arcs belonging to the manifold diverge

from a tube-like structure. One common way this happens is if some arcs pass

closely to either the primary or the secondary. This creates a significant range

of velocities as the arcs are ejected from the system in various directions. The

end result is that the arcs produce a set of points on the Poincaré surface

which do not bound any internal area. An example of a closed and bounded

set compared to a poorly defined set on a Poincaré surface can be seen in

Figure 3.2.

Figure 3.2: On the left, a closed and bounded ellipsoidal shape is produced
by intersecting the Sun-Earth WS,i

2 manifold with a Poincaré surface of
section. On the right, the same manifold with a higher Jacobi integral
produces a curvature with poorly defined internal area on the same surface.
The well bounded set was produced with a Jacobi integral of C = 3.0008
and the poorly bounded set was produced with a Jacobi integral of
C = 3.0007.

From a functional point of view, the main differences between the two sets

of points seen in Figure 3.2 are a difference of internal area and variation from
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an ellipsoidal structure. Even for cases which are bounded and closed, the

sets of intersection points found on the surface may loop back on themselves

and lose all resemblance to an ellipsoidal shape. The algorithm developed

has been designed to identify these differences from an open ended perspec-

tive. Namely, the algorithm does not make assumptions whether the set of

points captures any internal area or not, nor apriori the shape for which we

are attempting to identify.

To elaborate on the algorithm, let us define ∂U i
j to be the boundary region

of the ith intersection with the Poincaré surface of the jth manifold and let

U i
j be the interior bounded region, which may be an empty set. Additionally

define U
i

j = ∂U i
j ∪ U i

j . By looking at two overlapped Poincaré surfaces U1

(Green) and U2 (Red), each with these two identified subset regions, we can

develop a variety of additional subsets which can be used to seed our opti-

mizers.

Figure 3.3: From left to right: (1) ∂U1 Boundary external to U2: ∂U1 \ U2,
(2) U1 Internal external to U2: U1 \ U2, (3) ∂U1 Boundary Inside U2:
∂U1 ∩ U2, (4) Shared Internal: U1 ∩ U2.

Figure 3.4: From left to right: (5) ∂U2 Boundary external to U1: ∂U2 \ U1,
(6) U2 Internal external to U1: U2 \ U1, (7) ∂U2 Boundary Inside U1:
∂U2 ∩ U1, (8) Intersection: ∂U1 ∩ ∂U2.

Two areas to be identified are found by looking at the unique parts of each

Poincaré section, producing (1) and (5) for the boundary and (2) and (6) for

internal area. The remaining regions are shared by both sets. An especially
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useful region is where the boundaries of both sets intersect, which produces

(8). Additionally of interest is where the internal areas of both sets overlap,

which produces (4). The remaining two regions are where the boundaries of

one set intersect with the internal areas of another, producing (3) and (7).

3.2.2 Utility of Sections

While these subdivisions of the Poincaré sections may seem like simple appli-

cations of set theory to bounded regions, there exists a deeper understanding

and useful application which can be extracted by applying the lens of dy-

namics to this problem. By numerically exploring the spaces inside these

regions, interesting characteristics may be found within the dynamics of the

problem which can be used to achieve specific objectives. To understand

how the dynamics of the problem can be applied, it helps to first reiterate

how these sets of points were produced. By starting at some Lagrange point

in the PCR3BP, a series of trajectories were perturbed away along direc-

tions dictated by stability information from the state transition matrix and

propagated through space until they intersected with a prescribed Poincaré

surface of section. In this particular application, this is done with two sepa-

rate manifolds and/or energies and the results overlaid onto the same surface,

sometimes after the application of a coordinate frame change. These points

on the Poincaré surface therefore represent a snapshot of where a spacecraft

would have been had it been traveling with those given states, and had it

continued to propagate would have either traveled away from or towards the

periodic orbit, depending on if we are discussing a unstable or stable man-

ifold respectively. Therefore, if our states were to exist anywhere on the

boundary region of a particular manifold’s Poincaré section, see Figures 3.3

and 3.4, the spacecraft would maintain the behavior of that manifold. For

example if the Poincaré section was produced from a stable manifold, had

the spacecraft exist anywhere on the boundary, it would flow back onto the

periodic orbit. If the states were to exist inside the internal region of our

Poincaré section, the spacecraft would approach and fly through the periodic

orbit, but not capture onto the periodic orbit. Where the utility of applying

an understanding of the dynamics becomes particularly useful is when tak-

ing into account the combination of two overlapping Poincaré sections. If a
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state inside the shared internal area of both Poincaré sections is chosen, the

spacecraft would then propagate through both periodic orbits, but capture

on neither of them. If a state on the boundary of the first Poincaré section

inside of the internal area of the second section is chosen, then one would see

that the spacecraft propagates through the second periodic orbit and cap-

tures onto the first periodic orbit. It is with these expected behaviors that

mission objectives can be numerically explored using these regions.

3.3 Automated Poincaré Intersection Algorithm

Figure 3.5: Basic algorithm steps.

In this section, the flow of the algorithm and intricacies which have been

considered during development are presented. The overall objective to be

explained is how to take two sets of points generated by intersecting manifolds

with a Poincaré surface of section, and through a series of computations,

produce defined sets or regions, namely (1)-(8) from section 3.2.1. While

each set is defined by simple set notation, the process of identifying the

boundary and internal regions of each Poincaré section independently can be

challenging, as well as handling the many edge cases which arise through the

interesting variety produced through the dynamics of the PCR3BP. Therefore

the main steps in generating the final result are presented in four segments,

see Figure 3.5, for reference purposes.

Detecting Internal Area

The flow of the algorithm starts first with each Poincaré section separately,

and only combines them after sufficient definition of each section has been

established. A Poincaré section supplied to this algorithm has no real con-

straints on the size or shape of the points being provided. One such edge

case arises where it could be that while many arcs were perturbed from the

original periodic orbit, only a few or maybe none at all intersect with the
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Poincaré surface. From this perspective, since the set of these points are

used to define the boundary of some shape, a minimum number of intersec-

tions with the surface for each Poincaré section is imposed, where if either

Poincaré section has less than this amount, the algorithm does not even try

to define the regions. For this work, this value was selectively chosen to be

20 points. While typically 100-300 arcs are perturbed per periodic orbit in

an effort to define a quality boundary region, the case of 20 or less intersec-

tion points happens very rarely. Such a low value for number of intersections

when propagating more than 100 arcs is usually reserved for higher energy

manifolds which can be expected when the genetic algorithm is exploring a

variety of energy options.

Figure 3.6: Coarse internal area found through adaptively sizing a grid.

If a sufficient number of intersection points are supplied for each Poincaré

surface, an adaptively sized grid is produced based upon the bounds of the

supplied points. This grid fits around the intersection points with empty

buffer space on all sides. This buffer space is added because further in the

algorithm it is assumed that the exterior of the grid will be void of intersection

points. The dimensions of the grid squares are chosen based off the distances

between the intersection points. Namely, a list of unique distances sorted

from largest to smallest based on distance from each point to its nearest

neighbor is constructed. One useful characteristic of this approach is that it

is guaranteed to be close to the expected grid sizes necessary to detect internal
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area. The routine begins with the largest distances which would produce the

smallest in number and largest sized grid squares, with progressively higher

resolution grids trialed in the future if the exit condition is not satisfied. This

process is repeated until some internal area is found, where the boundary

region ∂Ui is roughly defined by the region of grid squares which contain

at least one intersection point. At this stage, the characteristic that the

exterior region of the grid being void of points comes into use. By starting

in any corner, grid squares can easily be sorted into three categories. First,

there is the group of all empty grid squares, which are found by finding

all empty squares connected to a corner square, which is guaranteed to be

empty. Then the group which includes all grid squares which contain at least

one intersection point is identified. Once these two groups are defined, the

remaining unassigned grid squares are deemed to be some roughly defined

internal area Ui and the routine is successful in finding internal area for this

set of points. Since some internal area has been found, it can be assumed

that this set of points approximates a closed and bounded set. However, this

defined internal region and boundary region are very coarse, and are only

used in the future to seed additional passes at a higher fidelity solution. An

example of a coarse internal area estimated output can be seen in Figure

3.6. If this routine is successful for both of the provided Poincaré sections,

then the algorithm can delve deeper into defining the targeted regions from

section 3.2.1.

Intersections via Delaunay Triangulation

Now that each Poincaré section has been analyzed individually, for there to

exist an intersection, the meaningful contents of one Poincaré section must

overlap with that of the other. While a grid based method could also be

used for this purpose, it is expensive in the sense of time and memory to

produce another grid prematurely which combines the two sections, just to

find that they do not overlap. To avoid this potentially expensive cost, a

computationally efficient method of detecting intersection is implemented by

producing a Delaunay triangulation for each Poincaré section and then in-

tersecting the two triangulations. This method is both computationally and

memory efficient and scales in complexity based off the number of intersec-

tion points, rather than the size of the respective grids of the two Poincaré
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sections, which could produce many grid squares to be checked. One final

benefit of this algorithm is scalability. The process of intersecting triangles is

something which is very popular in computer graphics, where devices called

graphics processing units, or GPUs, exist which have been designed to per-

form these operations in a way which is parallelized. While the functionality

to perform these intersections on the GPU is not currently implemented, it is

a target for future work and will make for an even faster intersection check.

This will become especially useful when the need arises for large scale dis-

tribution of this algorithm. An example of a set of intersection points after

being triangulated can be seen in Figure 3.7.

Figure 3.7: An example Delaunay Triangulation from a set of 100 points.)

Refining Internal Area

At this stage of the algorithm, a coarse definition of the ∂Ui and Ui sets

for each Poincaré section have been defined, and it has been proven that

the individual Poincaré sections intersect. Now a primary goal is towards

refining the coarse initial estimate for Ui to better define the regions (2), (4),

and (6). This is important since the coarse estimate, an example of which

can be seen in Figure 3.6, can miss significant portions of the internal area

or include unwanted area from the boundary region ∂Ui. Again, the utility

of the adaptively sized grid is employed. Since the original coarse estimates

were stopped after any internal area was found, there is very likely room to

improve this approximation. This is done by independently reducing the grid

sizes in both axis directions until right before the point that the internal and

external area become indistinguishable, or namely that a gap is generated in
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∂Ui that bridges the empty set and Ui. This gap is detected using the same

search implementation that was used to find the empty region for the original

coarse estimate, which relies on the edges of the grid being empty. This

significantly improves the estimate of the internal area, especially near the

boundary region ∂Ui, and analysis of how many steps to take in attempting

to optimize the internal area and the effects on performance can be found in

Section 4.2.

Generate Intersection Regions

Preparations to produce the remaining sets by combination of both Poincaré

sections by this stage have been completed. The next step in generating

the output is to appropriately size a new grid which will be used as it is

a combination of two different sized grids. In the current implementation,

this is chosen to be the smallest of the sizes in both the axis directions from

both independent Poincaré sections in order to produce the highest fidelity

solution without needing to down-sample. This grid is larger in size and

takes longer to search than either of the individual Poincaré section grids

due to not only the small sizing, but also the increased area over which the

intersection is looking.

The main objective is now to produce the ∂U1, ∂U2, and ∂U1∩∂U2 regions.

First, for the set of all points in each Poincaré section, their corresponding

locations on the grid are separately populated. While this was sufficient for

producing a rough estimate while originally detecting internal area, the ac-

curacy of the boundary regions ∂Ui at this point will be significantly lacking.

Due to smaller grid sizes, there may be significant gaps between points which

do not now define the desired closed region expected of the boundary. In or-

der to approximate the entire boundary of closed shapes, a routine to trace

the boundary region has been implemented. For each set, a point is chosen

nearest to the average, or center, of the set to be the starting point P0, and

its nearest neighbor, P1, is found. For P1, we then find the nearest neighbor

P2 excluding the starting point, which looking at the dot product between

the segments [0,P1-P0] and [0,P2-P1], provides a resulting angle. A variety

of P2 options are checked, until one within an acceptable range of angles is

found. A line is drawn between the points P1 and P2 on the grid, adding to

the boundary region of that Poincaré section all grid squares which intersect

21



with the generated line. The resulting acceptable P2 is then selected as the

next point on the boundary to be drawn, where P0 ← P1 and P1 ← P2, and

the search for a new P2 continues. If we cannot find a nearest neighbor which

falls within this angle limit, the angle limit is increased by some delta. This

walk of [P0,P1,P2] is repeated until the nearest neighbor P2 that is found is

the original starting point again, and the boundary region is closed. When

producing these boundary regions for each Poincaré section on the shared

grid space, if the boundary regions ever overlap, then the set of intersection

of the two boundary regions (8) is populated. While this method generates

a boundary region which closely approximates that of the actual boundary

region, it was not used originally when finding internal area because using

the described routine based on the dot product is prone to artifacts. Some-

times sections can be cut off or line segments unexpectedly traced through

the internal area, effectively cutting off entire chunks of the actual set of

points. While methods can be employed in the future to reduce these ar-

tifacts, currently it can produce false positives for boundary regions, which

could potentially produce false positives for internal area, which is highly

undesirable. Now that the two boundary regions ∂Ui have been properly

identified, namely sets (1), (3), (5), and (7), again the external empty set

can be defined by starting in a corner and finding all connected squares which

are not determined to belong to sets (1), (5), or (8). Closed boundary regions

for each of the Poincaré sections allows for easy identification of internal and

external regions, specifically the remainder of regions (2), (4), and (6). Using

the internal areas found in the previous portion of the algorithm, the internal

areas are overlaid onto the grid, where overlapping of U1 and U2 produces

U1 ∩ U2, or set (4). The shared internal area is expanded to encompass its

entire allowable area, only stopping for boundary regions. The same process

is executed for the internal regions of each Poincaré section separately, ex-

cept only stopping for their own boundary regions. In this way, it is straight

forward to identify the remaining subsets.

Edge Cases

At this point there is only one additional topic to consider with respect to the

development of this algorithm, and that is the edge cases which inevitably

arise. The primary edge case which is captured can be seen in Figure 3.8.
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Figure 3.8: Edge case of currently unassigned grid squares represented by
hashed area.

In this particular case, there exists some area which has not yet been

assigned to any set since the empty external set was not able to reach this

region as well as no internal area was assigned either. This case can be easily

tackled by masking in both the Poincaré section frames separately, where

external regions are assigned unique identifiers. By looking at the overlap of

both of these masks at these currently unassigned points, it can be seen that

these points belong to neither set U1 nor U2 and should be included in the

empty external set.

One observation which may come to mind is that these regions only ap-

proximate the actual boundary and internal regions. This may generate

concern if for example one is trying to approach high levels of accuracy in es-

timation. This particular approach generates more of a fuzzy region around

the actual sets which are attempted to be defined. While this may be a

legitimate problem for certain uses of Poincaré sections, in our particular

application, this level of fidelity is more than sufficient as we only require

a small neighborhood to seed initial guesses. By feeding an optimizer with

randomly generated estimates from a fuzzy region, the optimizer is capable

of slightly adjusting the original estimate to focus in on a preferred solution.

By starting in a close enough neighborhood, we give the optimizer a strong

chance to find quality results for trajectories.
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3.4 Applying CUDA in a Global Optimization

Framework

Throughout this thesis, it has been demonstrated that given two sets of

points, each representative of the intersection of an invariant manifold with

a Poincaré surface of section, intersections of these sets of points and iden-

tification of subsets of importance can quickly and reliably be produced[2].

In worst case tests, the time to identification approached 1 second; implying

that in a global optimization framework that this process would no longer

be a bottleneck. However, it was assumed that timing started once a set of

intersection points were provided to the algorithm. Unfortunately it is the

case that this process of producing the actual sets of intersection points is

actually a major timing concern. In a serial implementation, integrating 350

arcs until intersection with a Poincaré surface of section could take tens of

seconds. To compound this problem, this process must be repeated a second

time to produce an intersection set for the second manifold case, adding to

the total time cost, which now significantly outweighs the potential single

second it may take to identify and characterize an intersection. Within this

total time cost, there are two primary time intensive tasks being performed.

First, the states which are perturbed off the invariant manifold must be gen-

erated. By dividing the time along the periodic orbit, in this example, into

350 sections, 350 states are generated at which perturbations can be applied.

At this point, each of the states is serially integrated to detect intersection

with the Poincaré surface of section. Timing analysis of these two time inten-

sive tasks shows that upwards of 70% of the total time is spent subdividing

the periodic orbit, and the remaining time is spent actually integrating the

states. This was identified as a necessary target for speed improvements

when applying the automated intersection detection of invariant manifolds

in a global optimization context where potentially hundreds or thousands

of different invariant manifolds of different energies must be checked by the

GA. To tackle this problem, use of discrete CUDA-enabled GPU devices was

chosen as the target platform for development.

24



3.4.1 CPU vs. GPU Architecture

The speed improvements seen using the GPU for this particular application

are gained due to fundamental architectural differences between the CPU

and the GPU. Current consumer grade CPUs have anywhere from two cores

for a generic laptop processor to eight cores for higher end devices. If an

application has been designed to take advantage of this architecture, for ex-

ample utilizing multithreading or an MPI architecture to actually employ

the capabilities of multiple processors, then speed improvements for paral-

lelized portions of the code can be realized. It has become common, that

on many shared cluster environments, users can access up to 100 or more

processors. When utilizing the GPU as a resource, the number of cores that

can be used becomes significantly larger. For instance, the NVIDIA GTX

570, a GPU which was released in 2010, has a computational capability of

480 CUDA cores. High end graphics cards, such as the NVIDIA GTX 1080

or the NVIDIA Tesla K40 supply the computational capability of 2048 and

2880 CUDA cores respectively. For a single piece of GPU hardware, orders

of magnitude more parallelization capability over what can be realized with

a high end CPU can be found.

There are some considerations which must be discussed, since it is not fair

to directly compare the cores of a CPU and GPU without also discussing

clock speed. In general, the clock speed for a CPU can vary between around

1.2 GHz to 3.4 GHz. In comparison, the GTX 570 operates with a clock

speed of 732 MHz, while the GTX 1080 and Tesla K40 operate with clock

speeds of 1.7 GHz and 745 MHz respectively. In this respect, the CPU domi-

nates. Additionally, when one wishes to mix GPU computations on a process

generally running on the CPU, there is a cost associated with sending data,

in our case the states to be integrated, to the GPU and executing the kernel.

Taking all of these items into consideration, there is a crossover point where

the GPU begins to be the preferred computational device, and is generally

determined by how parallelizable the problem is, how large each batch of pro-

cessing is, and balancing the differences in clock speed and employed cores

between the CPU and GPU.
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3.4.2 Grid and Warp Sizes to Optimize GPU Runtime

GPUs have multiple layers of parallelism within the silicon of the device

which are important to take maximum advantage of the device to optimize

runtime. When executing a CUDA kernel, which is to say executing some

code on a CUDA device, the user may specify a number of grids to be used

and a number of threads per grid to be assigned. To optimize across these

values can be challenging, and is very much dependant on the code being ex-

ecuted on the CUDA-enabled device. To better understand this operational

environment and attempt to maximize performance, an attempt at optimiz-

ing the number of threads per grid was performed, with the results shown

in Figure 3.9. For this test, a simple scaleable and parallelizable integration

scenario was implemented to be executed on the CUDA device. N states

are integrated using the equations of motion from the PCR3BP as quickly as

possible, with each integration being a standalone operation which will run

on its own CUDA core. An N ∗ 4 double array containing the N states to

be integrated is loaded into memory on the CUDA device. A CUDA kernel

which performs the integration routine is executed using a variety of threads

per grid sizes, where the total runtime is recorded for each instance. Thread

sizes are generally recommended to be powers of 2, therefore thread sizes

of T = 2n where n ∈ Z ∩ [0, 9] were used. This provides for grid counts

G = N
2n

+ 1. With these values defined, it can be seen that across integration

amounts, the optimal thread count per grid varied. The actual operation of

how the GPU divides the work load and optimizes its execution time per

thread and per grid to maximize performance for a given grid and threads

per grid count is something which is not easily determined a priori. In the

future, if a specific number of integrations were needed to be performed, this

result could be used. The implication of this result, however, is of great

importance when considering overall runtime efficiency in a larger global op-

timization framework. It can be seen that the optimal runtime approached

0.4 seconds as the number of integrations approached 7000. These optimal

runtime values were determined using the optimal threads per grid count, but

it can be seen that for the least optimal case, the delta of additional increased

runtime ontop of the optimal case would more than double the total runtime.

So using an incorrect grid sizing could increase runtime for 7000 integrations

to nearly 2 seconds. This result motivates the quantification of the optimal
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threads per grid value to make sure the GPU and its internal architecture

are used appropriately to maximize performance of this application.

Figure 3.9: Results from detecting the optimal thread count per block for
the simple integration problem. It is shown that if the wrong thread count
is used, runtime could more than double.

3.4.3 CUDA Streams for Parallel Kernel Execution

To further improve run-time performance, a multiprocessor approach similar

to that developed for the global optimization framework was taken during

development to allow for distribution of computational workload across a

variety of nodes. To accomplish this task, a unique approach to algorithm

and program structure was taken which differentiates execution of the code

from a serial variant. This paradigm is something which was important to

maintain when using CUDA based approaches to improve run-time efficiency.

It is not sufficient to simply have a CUDA enabled device, which a given set

of processors can access as a computational resource. Rather the code that

the CUDA device itself is executing must also be developed to take advantage

of the parallelized structure which the entire framework utilizes.

When executing generic CUDA code from a single processor application,

the host, being the CPU, sends a command to the device, being the CUDA

enabled GPU, to launch a kernel. The flow of this code execution can be
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seen in Figure 3.10.

Figure 3.10: An example execution of a single process program executing a
CUDA kernel.

If the code that the device is executing finishes faster than an equivalent

piece of code that the host variant would run, than a run-time performance

increase will be realized if other potential run-time costs are accounted for

(e.g. when using a CUDA device, great losses are seen in run-time due to

memory allocation and transfer between the host and device). Unfortunately,

running this same execution across a variety of processors results in the device

effectively locking for each individual kernel call. It only starts processing

a new kernel call once the previous one is completed. This behavior can be

seen in Figure 3.11.

Figure 3.11: An example of a multi-process program executing 2 CUDA
kernels, one per process. Notice that the total execution time is delayed due
to the linear processing of the CUDA kernels.

This unfortunately produces a significant loss of performance. Luckily, the

CUDA architecture has envisioned this problem and a solution has been made

available to developers, which has the capability to overcome this problem

and execute a number of kernels in parallel. This functionality is provided

through a structure called a CUDA stream. Streams are effectively inde-

pendent serial execution paths which can be populated with different work,

where streams basically operate independently of one another as long as the
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total resource potential of the device is not reached or shared memory is not

required. In this way, each MPI based processor declares its own stream, and

is able to realize the flow of execution that would be expected, which can be

seen in Figure 3.12.

Figure 3.12: An example of a multi-process program executing 2 CUDA
kernels on separate streams. In this instance, the CUDA device handles the
kernels simultaneously and the program executes in an optimal amount of
time.

This is the effective architecture which was developed for integrating CUDA

enhanced performance into the operation of the optimization framework.

There are a couple pitfalls worth mentioning. First, memory allocation com-

mands are blocking, meaning they force synchronization between the streams.

This forces memory allocation before the real parallel execution is performed.

Additionally, special asynchronous memory copy functions are to be used, as

the standard memory copy functions which are used to move memory be-

tween the host and device also force synchronization. Lastly, all kernel and

memory transfer calls not assigned to a stream are executed on a default

stream. This explains the behavior seen in Figure 3.11, where all the kernel

calls were being placed into the default stream where they were being linearly

executed.
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CHAPTER 4

RESULTS

4.1 Automated Poincaré Preliminary Results

The legend in Figure 4.1 shall be used when visually analyzing results from

this section.

Figure 4.1: The color categorized legend to be used when analyzing
algorithm results. Reference Figures 3.3 and 3.4.

Additionally, the following table is referenced in this section.

Table 4.1: Subset Distribution Across Test Cases

Subset Ideal EM L2 to L1 EM Homoclinic SE L2 to EM L2

1 638 914 1998 1434
2 6295 2456 3767 18023
3 271 388 14 4
4 13503 1752 24 13
5 638 496 2272 124
6 6295 3447 3613 65
7 271 60 15 28
8 6 13 7 4

Table 4.1 shows sizing of grids used in examples to follow.

1This chapter contains previously published material from [2] and [5]. The copyright
owner provides permission to reprint.
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4.1.1 Ideal Case

To begin analysis of how this algorithm performed under a variety of scenar-

ios, a solid baseline and proof-of-concept test was to execute against an ideal

dataset. In the case of the spectrum of possible shapes two manifolds could

produce when intersecting a Poincaré surface of section, the ideal case was

chosen to be the intersection of two circles. The visual result of the algorithm

on this ideal dataset can be seen in Figure 4.2.

Figure 4.2: The result from an ideal dataset of two circles in the arbitrary
[q1,q̇1] frame.

Each set defining a circle was made up of 120 points. The algorithm took

approximately 87 milliseconds to produce the subsets shown in Figure 4.2.

The grid adaptively sized to 221 x 173, providing 38,233 unique grid squares.

The result for the distribution of the different regions can be found in table

4.1 in the Appendix section.

4.1.2 Earth-Moon L2 to L1 Transfer

Another example which demonstrated the utility of automated detection of

Poincaré intersections was to produce an Earth-Moon L2 to L1 transfer. In-

tegrating the Earth-Moon primary unstable L2 manifold WU,i
2 with a Jacobi

integral of C = 3.1720, and backwards integrating the Earth-Moon L1 sec-

ondary stable manifold WS,e
2 with a Jacobi integral of C = 3.1881, there is
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a close spatial alignment of the manifold arcs. In this particular case, 100

arcs were propagated for each manifold. The grid was adaptively sized to

198 x 319 for a total of 63,192 grid squares. Overall, the algorithm took 137

milliseconds to define the regions seen in Figure 4.3.

Figure 4.3: The Poincaré section generated from forward integrating WU,i
2

with a Jacobi integral of C = 3.1720, and backwards integrating WS,e
2 with

a Jacobi integral of C = 3.1881.

The distribution of the classification regions can be found in table 4.1. The

Poincaré surface chosen was located at the moon x = 0.9878 with y > 0. In

particular, the first intersection with the unstable manifold and the fourth

intersection with the stable manifold were used. This produced the result

seen in Figure 4.3 when applied to the automated intersection detection al-

gorithm. The bounded regions of the manifolds nicely overlap showing a

similar matching of the velocities in at least one axis. From this set, points

were randomly generated in the intersection region (8) and resulting states

integrated both back onto the L2 unstable manifold and forward onto the

L1 stable manifold to prove the trajectory matches the mission expectations.

A suitable candidate was found with y = 0.0351 and ẏ = −0.3148. Ad-

ditionally, to close the trajectory, matching of the difference in the Jacobi

integral between the two manifolds was accomplished by adjusting the ve-

locity in the x direction. Where the x velocity from the L2 periodic orbit

was calculated to be ẋ = −0.6099 and to the L1 period orbit was calculated
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as ẋ = −0.5965. This resulted in a modest ∆v of 13.7 m/s, with a single

burn being executed at the location of the Poincaré surface. The transfer

of this mission was determined to take roughly 33 days. While considerably

longer than an impulsive solution to this problem, this transfer embodies the

trade-off to be expected when considering a low energy solution. The fully

propagated trajectory can be seen in Figure 4.4.

Figure 4.4: Propagation of the L2 to L1 transfer both forward and backward
from the Poincaré surface. The blue curves represent the L1 and L2 periodic
orbits with matching Jacobi integrals to the trajectories being propagated.
The transfer time is approximately 33 days with a ∆v of 13.7 m/s.

Additionally, one may notice in Figure 4.4 that the trajectories match

closely to the L2 and L1 periodic orbits, but propagate off after some period

of time. To match the beginning and final states of the mission to some

specific orbit would require additional ∆v, but this example characterizes at

least the low energy transfer portion of the mission design.

4.1.3 Earth-Moon Homoclinic L2 Transfer

There exist cases which are challenging for this algorithm to process. One

such case is characterized in the following proposed Earth-Moon homoclinic

L2 transfer. In this particular case, the Poincaré surface was again posi-

tioned at the moon x = 0.9878 with y > 0. This is in contrast to a more
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standard surface to use for homoclinic transfers at y = 0 with x > 0.9878.

However, the surface chosen produces more interesting Poincaré sections, but

this should not be taken as any type of preferred homoclinic transfer. The

stable and unstable secondary manifolds, WS,e
2 and WU,e

2 respectively, were

integrated with a Jacobi integral of C = 3.1621 from the L2 point. In Figure

4.5, the structure of the Poincaré sections can be seen. Notice the elongated

structures which were formed. This produced a challenge at multiple steps in

the algorithm pipeline. First, to find any initial internal area was challeng-

ing due to the small internal diameter. Additionally, tracing the boundary

proved to be challenging if not enough arcs were propagated. If an insuffi-

cient amount of intersection points are provided when drawing the boundary

region, sections of the boundary region can be cut off and effectively excluded

when the nearest neighbor is found. In this case, each manifold had 350 arcs

which were integrated to produce a more properly defined boundary region.

The grid was adaptively sized to 737 x 836, which produced a grid of 616,132

unique grid squares. While this is an order of magnitude more grid squares

than previous examples, this higher level of accuracy was necessary to cap-

ture some of the finer detail of the intersection of the two boundaries, which

are captured in the popout box inside Figure 4.5. The distribution of grid

squares can be found in table 4.1.

Due to the challenges of defining the internal areas, as well as the signif-

icantly increased amount of grid squares, the algorithm took 0.898 seconds

to complete.

By generating points again inside the intersection region of these two

Poincaré sections, trajectories were plotted both forward onto the stable

manifold, and backwards onto the unstable manifold in an attempt to close

the trajectory back onto the L2 periodic orbit. One such point generated

which achieved this objective was y = 3.5707 and ẏ = −0.9569, where the x

velocity was calculated to be ẋ = 3.1918. The result of this trajectory can

be seen in Figure 4.6. One benefit of this transfer is that it takes effectively

no ∆v to complete, but at the very extreme trade-off of a transfer time of

124 days.
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Figure 4.5: An intersection of the L2 secondary stable and unstable
manifolds. The Jacobi integral was calculated to be C = 3.1621. Each
Poincaré section is comprised of 350 points with the total execution time
taking 0.898 seconds.

Figure 4.6: The final trajectory produced from a set of [y,ẏ] =
[3.5707,−0.9569] randomly generated from the intersection region (8) which
closes a homoclinic transfer.

4.1.4 Patched 3-Body Sun-Earth L2 to Earth-Moon L2

Transfer

To show utility across a variety of scenarios, an application which employed

a patched 3-body technique to transfer from the Sun-Earth L2 to the Earth-
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Moon L2 was developed. In this application, 150 arcs were propagated along

the Sun-Earth unstable L2 manifold WU,i
2 as well as the Earth-Moon stable

L2 manifoldWS,e
2 . The Sun-Earth manifold was propagated with a Jacobi in-

tegral of 3.0007 and the Earth-Moon manifold was propagated with a Jacobi

integral of 3.1621. The Poincaré surfaces were generated in the Sun-Earth

and Earth-Moon frame separately where the surface was defined at the Earth

for y > 0. In the Sun-Earth frame, this provided x = 0.9999 and in the

Earth-Moon frame provided x = −0.0121. At this point, the Earth-Moon

surface intersection points were converted to the Sun-Earth frame such that

they could be compared on an equivalent surface. Processing this combined

surface with the algorithm produced the result seen in Figure 4.7.

Figure 4.7: A patched 3-body intersection of the Sun-Earth WU,i
2 with the

Earth-Moon WS,e
2 . These manifolds were propagated with Jacobi integrals

of C = 3.0007 and C = 3.1621 respectively.

The grid adaptively sized to 198 x 728 for a total of 144,144 grid squares.

To produce these subsets took approximately 158 milliseconds. This particu-

lar case produced a larger grid size than previous cases with a similar number

of intersection points due to the varying sizes of the two Poincaré sections.

Since the algorithm takes the smallest sizes in both axis directions, the sig-

nificantly smaller and more compact set causes the larger set to be covered

by many more grid squares than necessary. The subsets breakdown can be

found in table 4.1. From these regions, the intersection set (8) was queried
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Figure 4.8: Left: Patched 3-body state integrated backward in the
Sun-Earth frame onto the Sun-Earth L2. Right: Patched 3-body state
integrated forward in the Earth-Moon frame onto the Earth-Moon L2.

to produce a [y,ẏ] value which closes a trajectory near both the Sun-Earth

L2 and Earth-Moon L2. A value which meets this criteria was generated

where y = 0.0057 and ẏ = −0.0112. To calculate the x velocity for the

Sun-Earth arc to fall onto the L2 manifold using the Jacobi integral provided

ẋ = −0.0128. However, to find the x velocity for the Earth-Moon arc was

more involved. The set of [x,y,ẏ] in the Sun-Earth frame was transformed

into the Earth-Moon frame, and then the x velocity calculated with respect to

the Earth-Moon manifolds Jacobi integral in the same frame. In the Earth-

Moon frame, this provided y = 2.2350, ẏ = −0.3257, and ẋ = 1.6190. By

integrating these points in the Sun-Earth and Earth-Moon frames indepen-

dently, the results in Figure 4.8 were generated. The full duration for this

transfer was approximately 120 days. Additionally, the maneuver required

to accomplish this transfer at the Poincaré surface resulted in a ∆v of 71.4

m/s.

4.2 Automated Poincaré Parameter Tuning

While the functionality to autonomously detect and use the intersections of

invariant manifolds was produced for this thesis, how to best use two of the

major parameters of this algorithm, namely the number of points defining a

closed region as well as the number of times the algorithm should attempt

to refine the internal area of a bounded region, remains to be explored and
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is the purpose of this section.

First an ideal intersection case is explored in an attempt to potentially bound

the parameters and better understand the algorithm when it will be applied

to more varied cases. The ideal intersection case consists of two intersecting

circles, the number of points making up each circle is varied, while also

varying the amount of steps the algorithm can take in optimizing internal

area of the detected closed region. The demonstration of the results from

this exploration can be seen in Figure 4.9 and 4.10.

Figure 4.9: Execution time is explored for various counts of points for each
set while also varying the amount of times the algorithm can attempt to
optimize the internal area of the detected closed region.

It can be seen in Figure 4.9 that, as expected, execution time increases

as the number of arcs, or points defining each circle, increases. However, we

see that for varying the amount of optimization steps used for refining the

internal area, execution time becomes increasingly disjointed as the number

of arcs increases. To understand this behavior, Figure 4.10 shows that not

until the number of arcs are increased that the opportunity to better refine

the internal area can be taken advantage of. With lesser arcs, the bounded

regions internal area can only be refined up until some point before gaps

in the boundary region are produced. But this comes as a tradeoff, for to

produce more refined internal areas, smaller grid sizes must be used, which

translates into more grid squares which are needed to be characterized and
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Figure 4.10: Total amount of grid squares, or size, of the intersection grid is
presented for various counts of points for each closed region while also
varying the amount of times the algorithm can attempt to optimize the
internal area of the detected closed region.

thus a longer execution time as well as larger memory usage. Typically for

applied problems, an arbitrarily chosen arc count of 350 and optimization

step count of 10 have been used. Now that general trends for these variables

have been established, how these variables effect results produced by the

genetic algorithm and optimization framework at large must be explored.

The results from exploring these variables as applied to the optimization

framework can be seen in Figure 4.11 and 4.12. For these runs the Hiten

inspired Earth to Moon transfer trajectory with manifold to manifold transfer

was used. A total of 48 individuals were executed for 200 generations. This

process was repeated multiple times and the results averaged in an attempt

to minimize bias due to the stochastic searching nature of the optimization

framework.

There is an obvious trend in Figure 4.11 that as the number of arcs is

increased, the amount of time required to complete a generation also increases

linearly. This is due to the integration time required to forward integrate each

arc. However, it can be seen that there are diminishing returns as the number

of arcs is increased on the total number of manifold to manifold intersections

that are detected. With too low of an arc count, some potential bounded
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Figure 4.11: This graph presents the average execution time for one
generation of the genetic algorithm, as well as the average number of
intersections detected from a stochastic run of 200 generations with 48
individuals as the number of manifold arcs defining the boundary region are
increased. These runs held the optimize steps variable constant at 10.

regions are missed due to too few points defining the boundary region. As

the arc count is increased, the algorithm becomes better at detecting these

regions and thus more intersections are detected over the course of the run.

From these results, it can be seen that for optimal performance, at least for

these specific Sun-Earth to Earth-Moon manifold transfers, that 350 arcs

is fully sufficient to explore this space, but 225 arcs could be used with

similar results if execution time were of concern. However, this time delta

between 350 and 225 arcs can be negated by the application of the CUDA

parallelization presented in this thesis. Another important trend can be seen

in Figure 4.12. As the number of optimization steps for refining the detected

internal area is increased, the algorithm produces more fine meshes, which has

already been shown in the ideal intersection case, however, that as the grid

becomes more refined, the optimization framework is able to converge more

individuals over the total number of generations. This is important from the

frameworks perspective as being able to converge individuals more quickly

improves the overall effectiveness of the tool, as the genetic algorithm has

improved knowledge of the design space. Ultimately, using higher optimize

steps is the takeaway from these findings, in addition to the fact that unlike

40



Figure 4.12: This graph presents the average number of converged
individuals as well as the average size of the intersection grid derived from a
stochastic run of 200 generations with 48 individuals as the number of
optimization steps for refining internal area is increased. These runs held
the arc count constant at 350.

the increasing the arc count, increasing the optimize steps does not have a

measurable impact on the average execution time for a generation.

4.3 CUDA Performance Results

4.3.1 CUDA Integration Performance Improvements

This section is dedicated to exploring the computational time difference be-

tween NVIDIA’s Tesla K40M and the Intel Xeon X5650 for integration pur-

poses. In Figure 4.13 the runtime across varying numbers of integrations for

both serial CPU based and parallelized GPU based approaches is presented.

The CPU which was used to produce this plot was the Intel Xeon X5650,

which operates at 2.67 GHz, and the GPU used in this computation was the

NVIDIA Tesla K40M which operates at 740 MHz.

Linear increase in computational time for both the serial and CUDA cases

can be seen. However, we can see that the rate of increase for the serial device

is significantly higher. The parallelized hardware on the CUDA device allows
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Figure 4.13: Factor of speedup for CUDA vs. Serial integrations. It is
shown that improvements top out near 5x speedup.

for significantly more integrations to be calculated simultaneously. Speedup

improves significantly between 10 to about 1,000 integrations. At its peak,

we see close to 5 times speedup in favor of the CUDA device. However,

after about 1,000 integrations the CUDA device saturates and the speedup

factor levels out. Warp and thread sizes were considered when launching

these kernels, and were tuned on a per integration count basis to maintain

maximum performance for each kernel call.

4.3.2 CUDA Manifold Intersection Performance
Improvements

The primary application of CUDA for performance increase was the genera-

tion of the manifold arcs that are used by the automated manifold intersec-

tion portion of the code. This process was discovered to require significantly

more run-time than the actual intersection detection itself. By improving

performance in this area, the expectation is that solving problems such as

the Hiten trajectory, where every evaluation of an individual requires detec-

tion of the intersection of two invariant manifolds and hence the propagation

of many arcs, could be made more efficient.

To quickly populate the algorithm for automated detection, there are two
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areas ripe for parallelization. First, states on the manifold must be gener-

ated, where for each arc a state must be integrated for some amount of time

on the periodic orbit before a perturbation can be applied. This process was

the most time consuming portion which was set out to be parallelized. As

an example, while on average the total amount of time to generate one full

set of 350 manifold arcs was 2.890 seconds, on average 2.322 seconds of this

was required to produce these initial states on the periodic orbit. The second

and only other area focused on for CUDA parallelization in this thesis was

the following step which integrates these perturbed periodic orbit states until

intersection with a Poincaré surface of section. In the timing example used

above, 0.555 seconds was used on average to perform this step. This means

slightly more than 80% of the computation time was spent generating the

perturbed states on the periodic orbit, while 19% of the time was spent inte-

grating to the Poincaré surface of section. To perform an intersection of two

invariant manifolds, this process must be reproduced twice, taking an average

total time of 5.942 seconds to produce both sets, detecting the intersection,

and randomly selecting a state in the region of interest. While these aver-

ages demonstrate an overall picture of the timing, Figure 4.14 demonstrates

just how much variation can be seen in timing for these different stages, in-

forming why averages were used. While these timings appear minimal for a

single manifold intersection case; because the algorithm is being used within

a global optimizer, it will therefore be called potentially thousands of times

attempting to optimize a single trajectory.

Once the CUDA variants of these portions of the code were produced,

the same simulation scenario was performed, with averages again being used

to characterize computational timing performance. One major difference in

this CUDA variant is that, while the generation of the states on the invari-

ant manifold must still be generated separately requiring two CUDA kernel

calls, the integration of the perturbed periodic orbit states onto the Poincaré

surface of section has been merged into one kernel call. Because each state

is integrated on its own CUDA core, this is the effective change of what was

once the performance time cost of 700 integrations in a serial CPU environ-

ment to the effective performance time cost of a single integration in a parallel

CUDA environment. Even with this consolidation, the results do not show

a 700 times speedup. First, there is additional overhead in utilizing CUDA,

for example transfer of memory to the CUDA device, both to and from, as
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Figure 4.14: Comparison of serial vs CUDA based variants of different
portions of the code, characterizing performance gains as achieved through
this work. Part (A) shows the time taken to generate the perturbed states
on the periodic orbit. Part (B) shows the time taken to integrate the
perturbed states onto the Poincaré surface of section. Part (C) shows the
total time to finalize both sets of points from two different manifolds. Part
(D) shows the total time to return a queried state back to the GA for use
by an individual, including detecting intersection of the manifolds.

well as the cost of executing the kernel itself. Another cause for the lesser

speed improvement is that CUDA device is running at a slower clock speed.

The timing results of this CUDA variant showed an average time to generate

the perturbed states on the periodic orbit to be 0.680 seconds, a more than

70% runtime decrease. The integration time for the CUDA variant on aver-

age was shown to be 0.629 seconds, which when compared to the total time

to integrate both sets of manifold arcs on average, at 1.110 seconds, shows

a 43% runtime decrease. Thus the same results which in the serial variant

took 5.942 seconds on average was completed by the CUDA variant in an

average of 2.294 seconds, which is a decrease in runtime of 61%. Just as in

the serial variant, runtime varies depending on the given manifold case to be

calculated. A diagram of the various timing values experienced utilizing the

CUDA variant can be seen in Figure 4.14. In the author’s experience, fur-

ther performance gains could be realized by reducing the amount of branching
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in the CUDA code. Current algorithm implementations for the integrators

used have high reliance on conditional statements, which are believed to be

hurting performance on the GPU. Overall, these significant performance im-

provements show that meaningful gains can be realized with CUDA, and that

the current effort to use CUDA within the optimization framework is an ef-

fective way forward to reduce time to solutions and seeding the automated

invariant manifold intersection detection capability.

4.3.3 Hiten-Like Trajectory Results

Since meaningful performance improvements were realized with CUDA, the

next step forward was to apply the optimization framework towards solving

a problem which requires manifold to manifold transfers, and to determine

where future improvements could be realized. To generate a Hiten-like tra-

jectory, the GA provided a set of initial conditions from which to generate

potential mission candidates which were then evaluated by SNOPT, as de-

scribed in Section 3.1. At the beginning of the mission, the spacecraft was

specified to start in a circular Earth parking orbit at an altitude of 10,000

km. The spacecraft was then specified to perform a burn to transfer from

an Earth parking orbit to connect onto or near a Sun-Earth L2 unstable

interior manifold arc, where the manifold’s energy is a parameter chosen by

the GA. A transfer onto an Earth-Moon L2 stable exterior manifold is then

executed; again the energy as well as the angle of the Moon at time of in-

tersection being defined by the GA. Finally, a transfer to a circular parking

orbit around the Moon at an altitude of 1,000 km was performed. This lunar

circular parking orbit is used in substitution for a ballistic capture, which

the actual Hiten mission executed. This was selected as the final condition

due to easier convergence for the GA, where future iterations could swap in

a ballistic capture.

The algorithm finds the manifold to manifold transfer by detecting a man-

ifold intersection between the Sun-Earth and Earth-Moon manifolds using

the automated manifold intersection algorithm previously described. Once

an intersection is detected, a state in the interior of the Earth-Moon manifold

which is external to the Sun-Earth manifold is selected at random, as such,

this does not guarantee that the states selected are even useful for the mis-
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sion at hand, hence the need for the GA. For further reference, the section

queried for this problem is (6) as shown in Figure 3.4. Additionally, with

the GA also selecting the energies of the manifolds from which to transfer,

as well as the angle of the Moon with respect to the Earth at time of inter-

section, there is a high probability that the manifolds do not even intersect.

Thus it is up to the GA to explore this search space, and effectively discover

values for which the Hiten-like trajectory can be closed. It was found on

a run with 100 generations and 48 individuals, that about one-third of the

candidate individuals trialed actually failed due to the GA defined variables

not defining a manifold to manifold intersection. Lowering the count of these

failed individuals would improve convergence time of the GA, and will be a

major focus going forward. Once a manifold intersection is detected, the ran-

domly generated state is forward integrated in the Earth-Moon frame, and

backward integrated in the Sun-Earth frame, taking into account the change

in velocity due to the manifold transfer.

To explore this Hiten-like trajectory scenario, the GA was launched with

120 individuals. The final total run-time for 100 generations took 3 hours

and 29 minutes. This accounts for the final evaluation and file output which

takes place linearly on the head processor. Due to the multitude of solutions

which are capable of being explored using this technique, a variety of inter-

esting trajectory candidates were produced. The following examples trade off

the two parameters used as objective values in the GA, namely time-of-flight

and ∆v. The first portion of the trajectory is integrated in the Sun-Earth

frame, while the final portion directly after the manifold to manifold trans-

fer is integrated in the Earth-Moon frame, but is transformed back into the

Sun-Earth frame for the trajectories presented below.

It should be noted that the results presented in this section are corrected

with respect to the calculation of the time of flight and are an amended ver-

sion of the results shown in [5].

By plotting candidate solutions objective values, one can produce a trade

front which characterizes the trade-offs of the two objectives. We can see in

Figure 4.18 that as the genetic algorithm advances from generations 50 to

100, the solutions evolve to produce more preferential solutions in both time

of flight and ∆v. However, it should be noted that this front should not be

46



Figure 4.15: One of several Hiten-like trajectory that were solved. The
solution shown takes 240 days and has a required ∆v of 3.869 km/s to
transfer from an Earth parking orbit of 10,000km to a lunar parking orbit
of 1,000km. A manifold to manifold transfer was used which required only
60 m/s of ∆v.

Figure 4.16: One of several Hiten-like trajectory that were solved. The
solution shown takes 303 days and has a required ∆v of 3.612 km/s to
transfer from an Earth parking orbit of 10,000km to a lunar parking orbit
of 1,000km. The manifold to manifold transfer in this trajectory required
256 m/s of ∆v.
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Figure 4.17: One of several Hiten-like trajectory that were solved. The
solution shown takes 300 days and has a required ∆v of 3.179 km/s to
transfer from an Earth parking orbit of 10,000km to a lunar parking orbit
of 1,000km. The manifold to manifold transfer in this trajectory required
356 m/s of ∆v.

Figure 4.18: An example trade front consisting of 48 individuals.
Generations 50 and 100 are shown to demonstrate how the GA evolves
better solutions over time.
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taken as any final or optimized solutions for this Hiten-like or actual Hiten

problem, and are only presented to show the variety of candidates which are

capable of being explored by this optimization framework.

Using the resulting candidates as a baseline for nominal Hiten-like trajec-

tory generation performance, the remaining portion of the results section will

be used to explore the effectiveness of applying the current CUDA-enhanced

Poincaré surface intersection detection to the optimization architecture as a

whole.

4.3.4 Global Optimization Performance Improvements

Significant gains in performance were experienced from the CUDA based

approach utilized in this thesis. The question of how this translated into

improving performance of the optimization architecture at large remains to

be answered. To dive into this question, the flow of the GA must be consid-

ered, with new bottlenecks being identified. For the GA running in an MPI

environment, each individual is expected to be evaluated on its own proces-

sor. Thus, the amount of time to produce a generation of N individuals on

N processors remains fairly constant, where any performance differences are

likely to be seen when performing the competitive stages of the GA, although

this will be minimal for small values of N . With this argument being made,

we can analyze the timing of a single individual and apply the findings to

the GA at large.

On average, the total amount of time for a single generation was found to

be 67.965 seconds. This is much larger then the few seconds being considered

for CUDA optimization. The majority of the run-time was user defined due

to the current implementation of monotonic basin hopping (MBH) in con-

junction with SNOPT to perform the local optimization portion of the inner

loop. It was desirable as a first analysis to produce many closed solutions

which was achieved by providing excess MBH and SNOPT run-times. More

efficient local optimization techniques, such as using analytic derivatives and

improved algorithm implementations, will allow for better run-time of MBH

and SNOPT for these types of problems and still ensure equivalent or im-

proved convergence rates of individuals. Applying the CUDA based approach

ended up saving abut 3.6 seconds per individual per generation. Apply this to
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the 120 individuals for 100 generations from which these case was executed,

and a total of 12 hours of processor time was saved. Another avenue for

future run-time improvements would be due to parallel NLP solvers; none

are currently available on the commercial market, but some initial results

have been shown[13].

With our current method for embedding the automated detection algo-

rithm within the global optimization framework, around one-third of can-

didate individuals fail to find intersections. This is due to the GA provid-

ing poor parameters for manifolds. The Hiten problem implies that giving

more control to the automated detection algorithm in this case will promote

faster convergence of the GA populations. The timing improvements gained

through this approach would then allow for a broader search and improve

the probability of returning viable candidate solutions. Another possibility

for run-time improvement would be to port the entire automated detection

algorithm to a CUDA variant. This could offer interesting capabilities from

a optimization framework perspective. For example, in the Hiten problem

the GA is supplying an energy for each of the potential manifold candidates,

as well as the angle for the Moon in the case of the Earth-Moon manifolds

intersection with the Poincaré surfaces of section. But if the GA instead only

supplied the two energies, and entire sets of potential candidates across an-

gles were simultaneously calculated on the CUDA device, then only potential

results which actually have an intersection would be used. This would effec-

tively remove the possibility of having a wasted individual evaluation based

upon the angle variable. Depending on the computational and memory re-

quirements on the CUDA device, the same concept could be further applied

to one of the energy variables for calculating simultaneous Poincaré inter-

section detections. These concepts will be the focus for future performance

improvements.
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CHAPTER 5

CONCLUSION

This thesis explored the intersection of invariant manifolds as applied to low

energy trajectories from the theoretical perspective, algorithmic implemen-

tation for their detection and classification, as well as application and utility

to trajectories in the three-body problem. The background for the presented

algorithm and its application were reinforced by the exploration of the genera-

tion of invariant manifolds, as well as the Hiten mission and its motivation on

this work. An explanation of the optimization framework which was utilized

to produce trajectory results was presented, and a thorough explanation of

the automated Poincaré intersection capability and algorithm were explored.

Additionally, the need for and pursuit of speed improvements through CUDA

based parallelization were discussed and results presented which shows that

CUDA parallelization is a viable candidate for quickly producing states to

be used to populate Poincaré surfaces of section. Proof of concept results

and tuning of the internal area refinement as well as the number of manifold

arcs utilized for the presented algorithm were discussed and explored. Next

step improvements for this work were also presented in the results, where it

is suggested that for the generation of patched three-body trajectories be-

tween the Sun-Earth and Earth-Moon frames, that the genetic algorithm be

given less control over the angle of the Moon and energies of the invariant

manifolds. In this way, CUDA parallelization for a broad search implementa-

tion should be used to better utilize CPU resources and minimize individuals

which cannot be closed due to bad parameter selection.
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CHAPTER 6

FUTURE WORK

Two main avenues are presented in this section, which are the next step with

respect to future work for this thesis. The first topic to discuss is general

speed improvements for the algorithm. Currently, an equally spaced grid

structure is used to bound the set of the manifold intersections. However,

it can be seen in the preliminary results explored using the algorithm pre-

sented in this thesis that when two manifold intersections of varying grid

sizes are compared, the utilization of this data structure can yield an un-

desirably large set of grid squares, and hence memory usage and processing

requirements for producing results. After implementation of this algorithm

and looking back on its output, there seems to be a better data structure

to capture this space, since there exist areas of high concentration of points,

but also areas with large empty spaces which do not need to be explored

in detail. The data structure which comes to mind is the quadtree. This

data structure has use for a similar purpose in the application of computer

graphics, specifically for terrain rendering optimization. For a given area, the

quadtree subdivides around a point, or for the case of this algorithm a set

of points, turning the starting area into four equivalent smaller areas. This

process is repeated to some depth. This produces the property that accu-

racy around points of interest are of high fidelity, and areas which are lacking

points, which for the cases of this algorithm are perhaps the interior or exte-

rior regions of a manifold intersection, are rendered in significantly less detail.

This would produce the net result of less elements to define a manifold in-

tersection, meaning faster processing times and more efficient memory usage.

Given that the maximum grid size of the algorithm presented in this thesis

was set to be 4096 x 4096, or 212 x 212, this presented a maximum possible

number of grid squares of 16,777,216. Using the quadtree data structure, a

depth of 12 would be needed to ensure the same accuracy as the 4096 x 4096
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Figure 6.1: An example quadtree implementation with 350 points generated
from an Earth-Moon L2 stable exterior manifold which has been
transformed into the Sun-Earth frame. The depth of this quadtree was set
to 12.

grid around the points of interest. In Figure 6.1 an example test of a quadtree

is presented to show the massive amount of memory savings which can be

seen using this data structure. To generate this, a depth of 12 was used. Ad-

ditionally, a set of points similar to those found in this thesis were supplied.

The total runtime to produce this set, without classifications of internal or

external regions, took 68 milliseconds. What is particularly impressive how-

ever, was that instead of more than 16 million elements to define the grid,

only 7861 terminal nodes in the quadtree were needed to produce this result.

While this method requires further testing and development in the future,

this simple example demonstrates the massive savings which could be real-

ized using this data structure to define regions of intersection for invariant

manifolds.

Outside of speed improvements for this algorithm, there is room for ap-

plications to more complex problems than just the CR3BP. Inside a more

complicated 4-body model, or higher fidelity solution, the invariant mani-

folds which are so heavily relied upon in this work do not exist. To expand
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into this regime, the use of dynamical structures called Lagrangian Coher-

ence Structures (LCS) would be useful to be explored. The current imple-

mentation of this algorithm would not be able to tackle exploring the dense

clouds of points which are generated with producing a LCS. But, although

the problem is significantly harder to automate, an algorithm which could

identify regions of interest within the LCS map would be extremely useful as

a mission design tool.
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