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Abstract

This dissertation presents a framework for multi-vehicle trajectory generation that enables efficient compu-

tation of sets of feasible, collision-free trajectories for teams of autonomous vehicles executing cooperative

missions with common objectives. Existing methods for multi-vehicle trajectory generation generally rely

on discretization in time or space and, therefore, ensuring safe separation between the paths comes at the

expense of an increase in computational complexity. On the contrary, the proposed framework is based

on a three-dimensional geometric-dynamic approach that uses continuous Bézier curves with Pythagorean

hodographs, a class of polynomial functions with attractive mathematical properties and a collection of

highly efficient computational procedures associated with them. The use of these curves is critical to gener-

ate cooperative trajectories that are guaranteed to satisfy minimum separation distances, a key feature from

a safety standpoint. By the differential flatness property of the dynamic system, the dynamic constraints

can be expressed in terms of the trajectories and, therefore, in terms of Bézier polynomials. This allows the

proposed framework to efficiently evaluate and, hence, observe the dynamic constraints of the vehicles, and

satisfy mission-specific assignments such as simultaneous arrival at predefined locations.

The dissertation also addresses the problem of distributing the computation of the trajectories over

the vehicles, in order to prevent a single point of failure, inherently present in a centralized approach. The

formulated cooperative trajectory-generation framework results in a semi-infinite programming problem, that

falls under the class of nonsmooth optimization problems. The proposed distributed algorithm combines

the bundle method, a widely-used solver for nonsmooth optimization problems, with a distributed nonlinear

programming method. In the latter, a distributed formulation is obtained by introducing local estimates of

the vector of optimization variables and leveraging on a particular structure, imposed on the local minimizer

of an equivalent centralized optimization problem.

ii



Acknowledgments

I am deeply indebted to my advisor Professor Naira Hovakimyan for giving me the opportunity to pursue my

Ph.D. degree under her guidance. This dissertation would not have been possible without her unconditional

support and continuous belief in me, and is the result of her constant pursuit of intellectual rigor and

perfection, while at the same time granting me much freedom in my research.

I would also like to express my gratitude to the other members of my doctoral committee, Professor Petros

G. Voulgaris, Professor Yuliy Baryshnikov, Professor Angelia Nedić, and Professor Srinivasa M. Salapaka, for

their time and invaluable feedback. I would especially like to thank Professor Angelia Nedić for the fruitful

discussions we had on the topic of distributed optimization. My special thanks go to Professor Marko M.

Mäkelä of the University of Turku, Finland, for sharing his implementation of the Multiobjective Proximal

Bundle Method in Fortran/Matlab R©.

Throughout the years in Urbana-Champaign I have met many wonderful people without whom my

Ph.D. journey would not be complete. I would like to thank my past and present officemates, co-authors,

and friends, Dapeng, Evgeny, Zhiyuan, Hui, Jan, Kwang-Ki, Steve, Venanzio, Bilal, Kasey, Javier, Helena,

Niko, Jens, and Nanjun. I am especially grateful to Enric Xargay, for being the person I could always turn

to for in-depth technical discussions, careful proof-reading, and help of any kind, but more importantly, for

being a great friend. I am particularly indebted to Ji Young Kim for her continuous support, encouragement

and care.

Finally, I would like to thank my family, Yoo Chong Choe, Chai Lian Ee, Yuh Meng Choe, and Yuh Huei

Choe, for always giving me their unconditional support. They are the source of inspiration for everything I

embark on in life. This dissertation is dedicated to them.

∗ This work was supported in part by the Air Force Office of Scientific Research, and NASA Langley Research Center.

iii



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Notation, Symbols, and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation behind the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Collision-free Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Dynamic Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 A Computationally Efficient Geometric-Dynamic Approach . . . . . . . . . . . . . . . 9
1.2.4 Distributed Optimization: Nonsmooth Approach . . . . . . . . . . . . . . . . . . . . . 11

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2 General Trajectory-Generation Framework . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Definition of the Timing Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Boundary Conditions and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Flyable trajectories: dynamic constraints of the vehicles . . . . . . . . . . . . . . . . . 19
2.3.2 Feasible trajectories: spatial and temporal separation . . . . . . . . . . . . . . . . . . 23

Chapter 3 Pythagorean Hodograph Bézier Curves . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Pythagorean Hodograph Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Bézier Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 4 Cooperative Trajectory Generation using PH Bézier Curves . . . . . . . . . . . 37
4.1 Quaternion Representation of Spatial PH Bézier Curves . . . . . . . . . . . . . . . . . . . . . 38
4.2 Timing Law as a Bézier Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Set of Constraints in Bézier Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Trajectory Generation: Constrained Optimization . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.1 Fixed-Wing UAVs Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.2 Multirotor UAVs Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 5 Nonsmooth Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1 Nonsmooth Cooperative Trajectory Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Nonsmooth Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Subdifferentials and Subgradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Continuous Maximum Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Nonsmooth Optimization Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1 Unconstrained Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iv



5.3.2 Bundle Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 6 Distributed Nonsmooth Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1 Distributed Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1.2 An Equivalent Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.1.3 Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 A Distributed Bundle Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.2 Feasible Point Descent Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.3 Distributed Direction Finding Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.4 Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.5 Nonconvex Cost Functions and Constraints . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.6 Two-step Information Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Appendix A Quaternion Representation of Spatial PH Bézier Curves . . . . . . . . . . . . 115

Appendix B Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
B.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
B.2 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
B.3 Proof of Theorem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
B.4 Proof of Theorem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.5 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.6 Proof of Theorem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.7 Proof of Theorem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.8 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
B.9 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B.10 Proof of Theorem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
B.11 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
B.12 Proof of Theorem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

v



List of Figures

1.1 Conceptual architecture of the cooperative control framework adopted . . . . . . . . . . . . . 2
1.2 Two-dimensional trajectories for a team of two UAVs using PS optimal control . . . . . . . . 7
1.3 Two-dimensional trajectories for a team of two UAVs using CTG framework . . . . . . . . . . 8

2.1 Definition of the flight-path angle γ(t) and the course angle ψ(t) . . . . . . . . . . . . . . . . 21
2.2 Example of deconfliction through spatial separation . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Example of deconfliction through temporal separation . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Pythagorean Hodograph condition for a curve r(ζ) . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Example of a planar quintic Bézier curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 The minimum distance between two spatial Bézier curves . . . . . . . . . . . . . . . . . . . . 35
3.4 Global minimum and maximum of a Bézier polynomial . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Artist’s impression of a multi-vehicle mission . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Three-dimensional trajectories for a team of three cooperating UAVs for Case I . . . . . . . . 51
4.3 Three-dimensional trajectories for a team of three cooperating UAVs for Case II . . . . . . . 52
4.4 Three-dimensional trajectories for a team of three cooperating UAVs for Case III . . . . . . . 53
4.5 Dynamic constraints and timing laws for Case III . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Three-dimensional trajectories for a team of three cooperating multirotors . . . . . . . . . . . 55
4.7 Dynamic constraints and timing laws for a team of three cooperating multirotors . . . . . . . 56

5.1 Example of a subdifferential ∂f(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Subdifferential of the absolute function f(x) = |x| at x = 0 . . . . . . . . . . . . . . . . . . . 72
5.3 Cutting-plane model of a convex function f(x) . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Three-dimensional trajectories for Case III using a bundle method . . . . . . . . . . . . . . . 77
5.5 Dynamic constraints and timing laws for Case III using a bundle method . . . . . . . . . . . 78

6.1 Example of a communication topology between four agents . . . . . . . . . . . . . . . . . . . 81
6.2 Cutting-plane model of a convex function f(x) using the whole subdifferential at each xℓ . . . 97
6.3 Cutting-plane model of a nonconvex function f(x) using the whole subdifferential at each xℓ 107
6.4 Two-step communication model for the distributed algorithm . . . . . . . . . . . . . . . . . . 110

vi



List of Tables

4.1 Flight conditions and dynamic constraints of the fixed-wing UAVs. . . . . . . . . . . . . . . . 49
4.2 Flight conditions and dynamic constraints of the multirotor UAVs. . . . . . . . . . . . . . . . 50

vii



Notation, Symbols, and Acronyms

t̂ dimensionless time variable for parameterization

x̂ local estimate of the vector x

In n× n identity matrix

1n vector in R
n whose components are all 1

p three-dimensional position

card(S) cardinality of set S

a acceleration

E minimum spatial clearance

J optimization cost function

L Laplacian of the graph G

l Lagrangian function

N number of vehicles

n degree of a Bézier polynomial

nθ degree of the polynomial that describes the timing law

T overall final mission time

t time variable for parametrization

v speed

x vector of optimization variables

viii



conv S convex hull of set S

Greek Symbols

α linearization error of function f

β linearization error of function g

ψ̇ turn-rate

γ flight-path angle

κc curvature

ψ course angle

ρ subgradient of function g

τ step size

τc torsion

θ timing law

Ξ vector of optimization variables for the trajectory-generation framework

ξ subgradient of function f

ζ dimensionless parameter ζ ∈ [0, 1]

Superscripts

i vehicle i

f final

i initial

Subscripts

d desired during the trajectory-generation phase

i vehicle i

ix



Acronyms

DFP direction finding problem

GJK Gilbert-Johnson-Keerthi

KKT Karush-Kuhn-Tucker

PH Pythagorean Hodograph

PS pseudospectral

SIP semi-infinite programming

UAV unmanned aerial vehicle

UxS unmanned systems

Notation

Given a vector-valued function f : Rn → R
m. The Jacobian ∇f(x) is defined as

∇f(x) :=








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Chapter 1

Introduction

1.1 Background

Over the last decade, the use of unmanned systems (UxSs) has experienced an exponential growth, with

applications in military reconnaissance and strike operations, border patrol missions, aerobiological sampling,

forest fire detection, police surveillance, and recovery operations, to name but a few. With the development

of novel algorithms that enable higher levels of autonomy, the type of missions that these UxSs execute

has become increasingly more complex: simple single vehicle applications have evolved to complex multi-

vehicle missions. Therefore, it is anticipated that future operations will require teams of heterogeneous

systems working in cooperation to achieve common objectives, while being able to safely operate and execute

coordinated tasks in highly uncertain areas [1]. The growing complexity of the envisioned mission scenarios

poses several new challenges to the design and integration of UxSs, especially in terms of autonomy and

cooperation.

A key enabling element for the successful realization of these cooperative missions is the availability of a

cooperative control framework, that is conceptually summarized by the block diagram shown in Figure 1.1.

The envisioned architecture offers a solution to the problem of cooperative control of multiple heteroge-

neous autonomous vehicles that must operate under strict spatial and temporal constraints, while ensuring

collision-free maneuvers. The theoretical framework adopted borrows from various disciplines, and integrates

algorithms for trajectory generation, path following, time-critical coordination, and collision avoidance. To-

gether, these techniques yield a control architecture that allows meeting strict performance requirements in

the presence of complex vehicle dynamics, communication constraints, and partial vehicle failures. Successful

results in time-coordinated path following, both theoretical and experimental, are reported in [21,22,104,106]

and references therein, while suitable algorithms for collision avoidance are presented in [20, 21, 64–66].

This dissertation addresses the cooperative trajectory-generation element of the envisioned cooperative

control framework. Every mission, whether single or multi-vehicle, starts with the planning phase, during

which trajectories are generated that meet the mission objectives. In the past, this simply meant planning

1
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Figure 1.1: Conceptual architecture of the cooperative control framework adopted.

trajectories that would take the vehicle(s) along the points of interest. However, in modern-day operation

of (teams of) autonomous vehicles, motion planning has grown considerably in complexity, requiring the

trajectories to meet ever increasing number of constraints. Therefore, there is a growing need for efficient

(cooperative) motion planning strategies that can be implemented onboard the vehicles. A planning al-

gorithm has to work within a complex set of constraints, and (near) real-time generation of trajectories

is desired to allow the vehicles to re-plan their trajectories, if necessary. More than often, the vehicles

carry low power-consumption processors with limited memory in order to save weight for maximum payload

capabilities. Therefore, the planning algorithm has to be computationally efficient.

Many novel approaches to (cooperative) path and trajectory planning have been reported in the literature.

The vast majority of the methods can be classified as either optimal control theory or geometric-dynamic

formulations. Methodologies of the former class find an optimal control input solution for the vehicle that

generates desired trajectories for the states, whereas the geometric-dynamic approaches explicitly find a set

of desired trajectories and rely on an additional onboard controller to track them.

Optimal control theory formulations have the benefit of obtaining a control input that minimizes a

given cost function, while satisfying the dynamic constraints of the vehicles explicitly. However, in general,

it is not possible to find a closed-form solution to the optimal control problem. Many popular approaches

discretize the infinite-dimensional problem, in order to obtain a finite-dimensional problem that can be solved

using various optimization solvers. For example, of special interest is the work that uses pseudospectral (PS)

2



optimal control theory, which has been applied successfully for solving trajectory and maneuver optimization

problems; see, for example, [6, 9, 10, 30, 41] and references therein. Especially as a space technology, it has

become the method of choice, after several high-profile successes, such as the execution of zero-propellant

maneuver to reorient the International Space Station 90 degrees in November 2006 [5, 47].

As the number of vehicles or the duration of the missions increases, the size of the optimization problem

will grow larger and, eventually, the computation of complete trajectories from start to endpoints becomes

intractable and computationally very expensive. Receding horizon control —or Model Predictive Control

(MPC)— aims to overcome this drawback by computing partial trajectories over a limited time horizon and,

therefore, the trajectories are generated gradually over time as the mission unfolds. The work in [83] presents

an MPC-based method for generating trajectories that avoid static and dynamic obstacles. A Sequential

Quadratic Programming solver is used for the real-time implementation. Trajectory generation for multi-

vehicle cooperative missions, based on MPC, is discussed in [73]. Depending on the constraints that are

considered, several works, such as [12] and [84], frame the receding horizon control problem as a Mixed

Integer Linear Programming problem. Lastly, an interesting development in this area is the work reported

in [49], where a distributed cooperation algorithm is presented for problems with external disturbances and

coupled hard state constraints that are non-convex.

Complementary to optimal control strategies are the geometric-dynamic formulations. In general, a

purely geometric approach for the trajectory-generation problem is computationally efficient and requires

only minimum computing power. However, the optimal trajectories may violate the dynamic constraints of

the vehicle, since these are not taken into account during the planning phase. An extension of this class of

methods are the geometric-dynamic formulations that handle dynamic constraints of the vehicles. In [18,

20,53,85,86,94,98], the trajectories are described by Bézier curves and the dynamic constraints are imposed

by bounding differential geometric properties of the path, such as curvature and torsion. As shown in the

next section, this approach is less suitable for generating three-dimensional trajectories. Another interesting

approach is to use the differential flatness property of the system, in order to compute and verify the inverse

dynamics of the vehicle along a given trajectory [2, 67, 68, 107]. A similar approach is followed in [3], where

the trajectory-generation problem for very agile multirotors is considered. A discretized kinematic model of

the vehicles is considered to verify the acceleration and jerk along the generated trajectories. The authors use

sequential convex programming that approximates non-convex constraints by convex counterparts. However,

these approximations may lead to a sequence of over-constrained optimization problems and the algorithms

may fail to find a feasible solution. Hence, the authors of [16] introduce an incremental sequential convex

programming algorithm, where the constraints are added incrementally.

3



Finally, sampling-based search methods using Rapidly-exploring Random Trees algorithms were intro-

duced in [50] and have gained ground in recent years. These motion planners, for example reported in [28,38]

and references therein, are capable of quickly growing sets of feasible paths between vertices that are sampled

from the entire environment.

The majority of motion planning algorithms are executed in a centralized way. This works well for single

vehicle missions, as the vehicle does not require information that is not locally available and, in general, the

resulting optimization problem is of a low order with a few constraints. However, in cooperative missions

involving multiple vehicles, a centralized trajectory-planning approach has several severe drawbacks. First

and foremost, the designated vehicle, tasked to generate the trajectories, becomes the single point of failure

in the cooperative trajectory-generation framework. In the event of a complete loss of this particular vehicle,

a sophisticated succession planning has to be in place, to designate the next vehicle in line to take over the

task of trajectory generation. Nevertheless, it still remains to be seen, whether such a decision can be

made in a timely matter, based on potentially limited information on the actual status of the failing vehicle.

Secondly, in a centralized approach, the vehicle that is planning the trajectories needs to have access to

the information of all vehicles in the network. This poses a heavy burden on the communication network,

especially skewed towards a particular vehicle. And thirdly, the computational load is unevenly distributed

over the number of vehicles, with one vehicle performing the bulk of computations. Hence, for large-scale

multiple-vehicle missions, a distributed cooperative trajectory-generation framework is not only desired but

in fact necessary.

Since every trajectory-generation problem results in an optimization problem, the key to distribution has

to be sought in the field of distributed mulit-agent optimization. Excellent research in the area of distributed

trajectory planning and, in particular, distributed optimization has been reported in the literature, for exam-

ple, the work in [57–62,69–71,77,89–91,97,100]. In general, the global objective function is a combination of

local objective functions that are only known to the corresponding agents. Each individual agent has access

to its own local variables and constraints, and are able to exchange information only with its neighbors in a

communication topology. The authors of [77] propose a simple decentralized algorithm to solve the optimiza-

tion problem based on dual decomposition techniques. First, slack variables are introduced to decouple the

objective function and, subsequently, the dual problem is formulated by dualizing all the constraints except

the dynamic constraints. By doing so, the global (dual) problem can be replaced by a sequence of smaller

problems that can be solved locally by each agent. A similar approach is followed in [97] that requires the

vehicles to have access to all variables, including those local to non-neighboring vehicles. Hence, a multi-hop

communication network is implemented and the algorithm is designed to handle communication delays.

4



A distributed consensus-based algorithm is proposed in [69, 70] to solve the unconstrained optimization

problem, where the global objective function is the sum of local objective functions that are convex but

not necessarily smooth. The algorithm uses subgradients since the objective functions are not necessarily

differentiable. The results for constrained optimization problems are given in [71], where the local variables

are assumed to lie in closed convex sets. The same constrained optimization problem, but with a noisy

communication network, is considered in [90]. An interesting extension of the framework to min-max opti-

mization problems is presented in [89, 91]. Another distributed consensus-like strategy is proposed in [100]

for unconstrained convex optimization problems. The local objective functions in this approach are assumed

to be twice continuously differentiable.

Different from consensus-based approaches is the work reported in [57–62]. The method uses standard

nonlinear programming algorithms to solve (constrained) optimization problems in a distributed way and,

hence, is applicable to a broad class of optimization problems. Nevertheless, the algorithm requires the

problems to be smooth. The authors develop and analyze the proposed algorithm for equality and inequality

constrained optimization problems in [58, 59, 62] and [60, 61], respectively.

1.2 Motivation behind the Approach

Motion planning and trajectory generation for vehicles have been extensively studied and many novel and

mature methods exist in the literature. Every method has its own benefits and limitations, depending on

the class of problems that they are applied to. We motivate our approach by evaluating existing methods of

trajectory generation against the necessary requirements on the trajectory-generation framework, imposed

by the time-critical cooperative multi-vehicle missions that we consider.

1.2.1 Collision-free Trajectories

When dealing with single-vehicle missions, a collision-free trajectory means that the trajectory avoids all

obstacles that are known a priori. In cooperative multi-vehicle missions, it is critical that, besides avoiding

obstacles, the trajectories are deconflicted in space as well, so as to prevent inter-vehicle collisions. Decon-

fliction between trajectories can be guaranteed through spatial separation or temporal separation. Spatial

separation is guaranteed if the minimum distance between any two points on the paths of the ith and jth

vehicle is greater than or equal to the minimum spatial clearance. On the other hand, temporal separation

is ensured if, for any time t, the minimum distance between the ith and jth vehicle is greater than or equal

to the minimum spatial clearance.
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Spatial and temporal separation ensure collision-free trajectories at all times, and the selection of the

minimum spatial clearance is based on the performance of an underlying path-following controller onboard

the vehicles. In addition, spatial deconfliction through temporal separation is also dependent on the perfor-

mance of a necessary time-coordination controller, and on the quality and robustness of the communication

network over which the vehicles exchange information with each other. Since the trajectories are allowed

to intersect, a collision may potentially occur when the communication network is faulty or jammed. On

the contrary, spatial separation results in a more conservative set of trajectories that may require a larger

(air)space, but guarantees minimum spatial clearance at all times, even if the communication network is

temporarily, or even permanently, unavailable.

The type of separation that is ultimately required depends on a variety of factors and considerations, such

as the type of mission, the environment, the quality of the communication network, security requirements

on data transmission, and has to be carefully decided on by the mission planner. Henceforth, the developed

trajectory-generation framework has to be able to work with both types of deconfliction strategies. However,

existing approaches to path planning that discretize the trajectories either in space or in time appear to be less

suitable for guaranteeing spatial deconfliction through spatial separation. When discretizing the trajectories

in one way or another, spatial separation between the trajectories can be ensured at the discretization nodes,

but unfortunately, deconfliction is not guaranteed in between the nodes.

We illustrate this undesirable behavior through a simple example of a two-dimensional trajectory-

generation problem, involving two unmanned aerial vehicles (UAVs) tasked to cooperatively execute a

mission. The trajectories have to guarantee simultaneous arrival of vehicles, be spatially separated and,

moreover, observe the dynamic constraints of the vehicles. This simple trajectory-generation problem can

be solved using PS optimal control theory, a method based on a carefully chosen set of nodes for which the

optimal control problem is solved. Most of the available literature on PS optimal control theory addresses

the optimization of trajectories involving a single vehicle. Within the PS optimal control theory framework,

to the best of our knowledge, only the work in [9] presents a solution to the problem of cooperative trajectory

generation for two vehicles that must execute time-critical, collision-free maneuvers. The results reported in

the paper demonstrate that PS optimal control theory can be used to efficiently generate trajectories that

maintain a minimal separation between the two cooperating vehicles, while at the same time satisfying their

dynamic constraints. However, for the particular problem in [9], the authors impose trajectory deconfliction

through temporal separation, rather than spatial separation that is required in our example.

Figure 1.2 shows the solution to the aforementioned illustrative problem, where we impose deconfliction

through spatial separation, obtained using DIDO [79], a Matlab R© software package for solving PS optimal
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Figure 1.2: Two-dimensional trajectories for a team of two cooperating UAVs using pseudospectral optimal
control theory. Ed is the required minimum spatial clearance. The number of nodes is n = 50.

control problems. It can be seen that at the nodes, denoted by the open circles, the solution is feasible,

since the dynamic constraints (Figure 1.2b), and the minimum spatial separation between the two paths

(Figure 1.2d) are not violated. However, the continuous trajectories are by no means spatially separated as

required, and are in fact intersecting, as shown in Figure 1.2a.

To avoid violation of the minimum separation requirement in between the nodes, the number of nodes

can be increased. However, this considerably affects the spatial and temporal scalability of the method.

For example, if the number of nodes increases proportionally, then the number of deconfliction constraints

alone will increase quadratically. This problem does not limit itself to PS optimal control theory, but is

characteristic to methods that are based on discretization. For instance, the authors of [3] and [16] recognize

this issue as one of the limitations of their approaches, where the trajectories in both methodologies are

discretized in time.

For comparison, the same illustrative two-dimensional trajectory-generation problem is solved using the
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Figure 1.3: Two-dimensional trajectories for a team of two cooperating UAVs using proposed trajectory-
generation framework. Ed is the required minimum spatial clearance.

approach proposed in this dissertation, that does not discretize the trajectories in time nor in space. The

results are presented in Figure 1.3, and it is clear that the solution is indeed feasible. As we shall see in

subsequent chapters, our formulation results in a nonsmooth optimization problem, which can be addressed

by nonsmooth optimization methods, such as bundle methods [48, 56].

1.2.2 Dynamic Constraints

A purely geometric approach for the trajectory-generation problem avoids discretization by fitting a smooth

curve between the two desired endpoints that is subject to constraints with regards to obstacles. Although

these algorithms are very efficient and require only minimum computing power, the optimal trajectories may

violate the dynamic constraints of the vehicle, since these are not taken into account during the planning

phase. Several mixed geometric-dynamic methodologies have been developed, where geometric formulations

also incorporate dynamic constraints. A common practice is to relate the dynamics of the vehicle to differen-
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tial geometric properties of the path. For example, in [53,85,86,94,98] the dynamic constraints are imposed

by bounding differential geometric properties of the path, such as curvature κc and torsion τc. In [18, 20],

collision-free planar trajectories are generated that satisfy the dynamic constraints of the vehicles by means

of bounding the maximum curvature of the path. The results show that this approach works well for the

two-dimensional trajectory-generation problem.

The authors of [85, 86, 98] use a similar notion to extend their framework to three-dimensional trajecto-

ries. In addition to the curvature, bounds are also imposed on the torsion of the spatial path. The main

drawback of using differential geometric properties to satisfy the dynamic constraints becomes evident from

the definitions of both the curvature and the torsion of a three-dimensional curve r(ζ):

κc(ζ) =
‖r′(ζ) × r′′(ζ)‖

‖r′(ζ)‖3
, τc(ζ) =

〈 r′(ζ) × r′′(ζ) , r′′′(ζ) 〉
‖r′(ζ)× r′′(ζ)‖2

,

where r′(ζ), r′′(ζ), and r′′′(ζ) are the first, second, and third derivatives of r(ζ) with respect to ζ, respectively.

It can be observed that the torsion τc is not well-behaved and, in fact, has a singularity for curves where

the curvature κc is (momentarily) zero. These include curves exhibiting inflection points, but also straight

paths (or segments). Therefore, bounding the torsion is overly restrictive and highly undesirable, since that

excludes, among others, the simplest family of curves, namely that of straight lines.

1.2.3 A Computationally Efficient Geometric-Dynamic Approach

This dissertation presents a cooperative trajectory-generation framework that aims to overcome the short-

comings described above and is based on the following key ideas:

i. the desired trajectory is generated for the entire mission without discretizing the trajectory temporally

or spatially;

ii. the dynamic constraints are imposed explicitly and not via differential geometric properties of the

paths;

iii. a specific family of polynomials is used that has favorable geometric and mathematical properties; and

iv. the desired trajectory is decomposed into a geometric and a temporal element.

Hence, we present a framework where trajectories for multiple cooperating vehicles are generated effi-

ciently; moreover, the trajectories can be deconflicted through either temporal or spatial separation. This is

achieved by using a specific family of curves to describe the trajectories, namely Pythagorean Hodograph (PH)
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Bézier curves. The main motivations for using PH Bézier curves, instead of polynomials expressed in the

monomial (or power) basis, are

i. the existence of computationally efficient algorithms to compute, for example, the minimum distance

between two (rational) Bézier curves [14], or the extrema of an explicit (rational) Bézier curve [17];

and

ii. the existence of a closed-form solution for the arc lengths of the paths.

Bézier curves are widely used in computer graphics, animations, and type fonts such as postscript fonts

and true type fonts. The curves were invented by Dr. Pierre Bézier in the early 1960s to aid the engineers

and artists in the shape design of the cars at the Renault company in France. A Bézier curve is completely

determined by a set of control points. The curve starts at the first and ends at the last control point, while the

curve lies completely in the convex hull containing the set of control points. This latter property is extremely

useful when path planning for aircraft systems is considered, as the airspace in which an aircraft is allowed

to maneuver is often allocated and limited by strict boundaries. An example of spatially deconflicted paths

generated for a bounded airspace using Bézier curves can be found in [53]. Enforcing a Pythagorean structure

to the hodograph of a Bézier curve results in a PH Bézier curve and allows for an exact determination of its

arc length.

In [85,86,98], PH Bézier curves were generated for multi-UAV missions with simultaneous times-of-arrival,

such that the paths were of equal lengths while the desired speeds were constant and equal for all UAVs.

Though this is a convenient way to ensure simultaneous arrival and temporal separation, these constraints

on the path lengths and speed profiles are very restrictive. It will become clear that, in our trajectory-

generation framework, the path lengths and the speed profiles are not restricted to such constraints and,

hence, offer greater flexibility. This is achieved by using a timing law that facilitates the decomposition of

a desired trajectory into a geometric and a temporal element. The concept of introducing a timing law in

order to adjust the spatial path and the speed profile independently was first described in [95], and later

applied in [42,96,107]. In [95] a separate reference function was used for the speed profile, whereas in [107],

the speed profile was obtained by integrating the acceleration equation using a predetermined thrust history.

Lastly, the control points of Bézier curves also allow for intuitive (re)design of their shapes. In [64–66], an

algorithm is presented where collision avoidance is achieved through proper relocation of the control points

of the Bézier curves.
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1.2.4 Distributed Optimization: Nonsmooth Approach

The objective of this part of the dissertation is to develop a distributed optimization algorithm that al-

lows to generate trajectories in a distributed fashion within the proposed cooperative trajectory-generation

framework. By using continuous curves to describe the trajectories, our trajectory-generation framework

results in a semi-infinite programming problem. To the best of our knowledge, there do not exist any viable

distributed semi-infinite programming methods to date. Nevertheless, we are able to formulate the semi-

infinite programming as an ordinary (finite-dimensional) nonsmooth optimization problem, for which several

distributed algorithms exist. These techniques are based on the subgradient of a nonsmooth convex function

and, thus, require the problem to be convex.

Since the cooperative trajectory-generation problem is nonsmooth and nonconvex, most of the existing

work on distributed optimization is not applicable in one way or another. Therefore, our proposed ap-

proach uses centralized nonsmooth optimization methods and combines them with existing techniques for

distributing the computations over the vehicles.

1.3 Overview

Within the context of geometric-dynamic approaches, this dissertation presents the formulation of a coop-

erative three-dimensional trajectory-generation framework that uses PH Bézier curves. The setup builds on

the work presented in [18,20], where we addressed the planar case. In these previous works, the trajectories

satisfied the dynamic constraints of the vehicles and, moreover, were deconflicted in space. It was shown that

Bézier curves can reduce the computational load, by exploiting their favorable geometric properties. Besides

extending the previous results to three-dimensional trajectories, we introduce a less conservative approach

in satisfying the dynamic constraints, that does not limit the set of admissible curves that satisfy the spatial

and temporal specifications. Moreover, we also use a different timing law than the one proposed in [18, 20],

which allows to ensure either temporal or spatial separation of the trajectories. Therefore, the approach

presented in this dissertation offers more flexibility in generating collision-free trajectories. To distribute the

trajectory generation over the vehicles, we present a theoretical framework of a distributed solver for nons-

mooth optimization problems, suitable for application to the cooperative trajectory-generation framework.

The dissertation is organized as follows:

Chapter 2 formulates the problem of trajectory generation for multiple vehicles. The timing law is in-

troduced, that decomposes a trajectory into a geometric element and a temporal element. The timing law

allows the speed to be adjusted independently, without altering the spatial paths along which these vehicles
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travel. The chapter also derives the dynamic constraints expressed in terms of the trajectories, by using the

differential flatness property of the vehicle’s dynamics. Finally, the chapter gives a formal expression for the

different types of spatial deconfliction.

Chapter 3 gives a brief overview of Pythagorean Hodograph Bézier curves. These are Bézier curves of

which the hodograph has a Pythagorean structure. First, the properties of generic Pythagorean Hodograph

curves are discussed, followed by a short summary on Bézier curves.

Chapter 4 presents the development of the cooperative trajectory-generation framework, by incorporating

PH Bézier curves into the trajectory-generation framework from Chapter 2. The cooperative trajectory-

generation problem results in a nonconvex constrained optimization problem. Illustrative examples are

shown where desired trajectories are generated for a team of cooperating vehicles that is tasked to execute

a time-critical mission. The numerical results are obtained by employing standard Matlab R© optimization

tools, and are provided to show the feasibility of the proposed approach. The theoretical development of

customized distributed optimizers to efficiently solve the resulting optimization problem is postponed till

Chapter 6.

Chapter 5 characterizes the optimization problem resulting from the cooperative trajectory-generation

framework. It is explained that the constrained optimization is not only nonconvex, but in fact belongs to a

class of nonsmooth optimization problems. Hence, a first step towards a distributed approach in solving the

trajectory-generation problem, is to familiarize with nonsmooth optimization theory. This chapter continues

by providing a short summary on nonsmooth analysis and nonsmooth optimization theory; essential tools

that will be needed in the next chapter on the development of nonsmooth distributed optimization algorithms.

Chapter 6 presents a theoretical framework of a distributed algorithm for solving nonsmooth optimization

problems. The nonsmooth functions are assumed of a particular form, conform those appearing in the

cooperative trajectory-generation framework as discussed in Chapter 4. The approach is based on bundle

methods, widely used to solve nonsmooth optimization problems, in combination with a distributed nonlinear

programming method. The latter uses centralized algorithms, but by leveraging on a structure that is

imposed on the solution of an equivalent problem, the algorithm results in a distributed formulation.

Chapter 7 gives the conclusions and touches on potential extensions of the work presented in this disser-

tation.
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Chapter 2

General Trajectory-Generation

Framework

In this chapter, we formulate the problem of trajectory generation for multiple vehicles and introduce the

timing law that decomposes a trajectory into a geometric element and a temporal element. Subsequently,

mathematical definitions are given of the set of constraints that has to be satisfied in order for the desired

trajectories to be feasible. Following the terminology in [98], trajectories that satisfy the dynamic constraints

of the vehicles are called flyable trajectories. The trajectories are said to be feasible when they are also

deconflicted in space by satisfying additional spatial or temporal separation constraints. Hence, the set

of constraints consists of mission-specific constraints, dynamic constraints of the vehicles, and inter-vehicle

safety distance requirements.

2.1 Problem Formulation

In the three-dimensional trajectory-generation problem, the objective is to generate N feasible trajecto-

ries pd,i(td)

pd,i : [0, t
f
d,i] → R

3 i = 1, 2, . . . , N , (2.1)

where N is the number of vehicles, tfd,i ∈ R
+ are the individual final mission times of the vehicles, and

td ∈ [0, Td ], with Td := max{tfd,1, . . . , tfd,N}, is the time variable used during the trajectory-generation phase.

Note that the mission for vehicle i has terminated for all td > tfd,i. In general, the variable td does not

progress at the same rate as the actual mission (clock) time t if, for example, time coordination among the

vehicles is desired [20]. The feasible trajectories pd,i(td) together minimize a global cost function J(·) and

satisfy boundary conditions, spatial constraints, and temporal constraints. Spatial and temporal constraints

can be mission-specific, such as simultaneous arrival of the vehicles, but can also be related to the dynamics

of the vehicles, for example adhering to the maximum speed and acceleration.

At this point it is important to distinguish clearly between a (spatial) path and a trajectory. A spatial path

is a curve in space, that is parameterized by a (dimensionless) variable defined on an arbitrary interval. A
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spatial path specifies the location of the vehicle, without imposing any temporal specifications. A trajectory

is also a path along which a vehicle travels through space, however, it is defined as a function of time

(Equation (2.1)) and, hence, describes the (desired) position of the vehicle at any point in time. It is clear

that, besides the spatial path, a trajectory also contains information about the (desired) speed profile vd,i

with which the vehicle moves along this path.

Therefore, instead of generating the trajectories explicitly as a function of time, we first decompose

the trajectory into a spatial path, a geometric element with no temporal specifications, and a timing law

associated with this path, that captures the temporal assignments of the trajectory. To this purpose, first,

we introduce a dimensionless parameter ζi. For convenience, we let ζi ∈ [0, 1]; as it will become clear later,

this is a natural choice since we will be working with Bézier curves that are defined on the interval [0, 1].

Then, the following map defines the spatial path pd,i(ζi):

pd,i : [0, 1] → R
3 ζi ∈ [0, 1] , i = 1, 2, . . . , N. (2.2)

Next, in order to reconstruct the spatial trajectory pd,i(td), the dimensionless parameter ζi needs to be

related to the time td. This is provided by the timing law θi(·). The timing law dictates how the variable ζi

for the ith vehicle evolves with the time variable td and, as such, affects the desired rate at which the vehicle

moves along the path. Hence, the timing law offers a means to meet the temporal requirements of the

mission. Let the timing law θi(·) be defined through a dynamic relation of the form

θi(·) =
dζi
dtd

,

where θi(·) is a positive function, smooth in its arguments. This function will be defined in the subsequent

section; however, it is important to note that the timing law θi(·) will be chosen such that an analytical

expression for the function ζi(td) exists. This is highly desirable, as the map ζi(td) will allow us to relate

the time variable td to the parameter ζi, with which the desired position pd,i of the ith vehicle at time td

can be found through the map in Equation (2.2).

Now, the cooperative trajectory-generation problem can be defined as follows in terms of the three-

dimensional spatial paths pd,i and the corresponding timing laws θi(·):

Definition 1 (Cooperative Trajectory-Generation Problem) Find N pairs of

1. three-dimensional spatial paths pd,i(ζi), that are conveniently parameterized by a dimensionless vari-

able ζi ∈ [0, 1], and
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2. corresponding timing laws θi(·), appropriately defined such that the functions ζi(td) can be expressed

analytically,

which together minimize a cost function J(·), satisfy desired boundary conditions, do not violate the dynamic

constraints of each vehicle, ensure that the vehicles maintain a prespecified spatial clearance, and satisfy

predefined mission-specific constraints.

Given the preceding problem formulation, the trajectory-generation framework can be cast into a con-

strained optimization problem where a set of desired trajectories are obtained by minimizing the cost func-

tion J(·). For computational efficiency, we will describe the spatial paths pd,i(·) and timing laws θi(·) by

real polynomials. The optimization problem can be formulated as follows:

min
pd,i∈P
θi∈Θ

i=1,...,N

J(·)

subject to boundary conditions,

dynamic constraints of the vehicles,

mission-specific constraints,

minimum separation constraints,

(2.3)

where the set P is the set of degree n polynomial curves, the set Θ denotes the set of degree nθ polynomial

curves, and J(·) is a given cost function and may include terms related to mission-specific goals. The main

challenge is to solve this multi-vehicle optimization problem in (near) real-time, with a possibility that the

curse of dimensionality phenomena arises as the number of vehicles increases. We present an approach to

reduce the computation time of the trajectory-generation algorithm by exploiting the mathematical and

geometric properties of a particular class of curves, known in the literature as Pythagorean Hodograph

Bézier Curves.

In the remainder of this chapter, we will discuss the timing law and the set of constraints, that together

define the trajectory-generation framework.

2.2 Definition of the Timing Law

The timing law allows us to independently adjust the speed of the vehicles, without altering the spatial

paths along which these vehicles travel. In other words, we can assign different speed profiles vd,i(·) to a

given spatial path pd,i(ζi) by changing the parameters of the timing law. This can be easily illustrated by

15



the expression of the speed profile. The speed profile vd,i(·) can be derived as follows:

vd,i(ζi, θi) =

∥
∥
∥
∥

dpd,i(ζi)

dtd

∥
∥
∥
∥
=

∥
∥
∥
∥

dpd,i(ζi)

dζi

dζi
dtd

∥
∥
∥
∥
= θi(·)

∥
∥p′

d,i(ζi)
∥
∥ , ζi ∈ [0, 1], (2.4)

where ‖·‖ denotes the Euclidean norm and the first parametric derivative of the spatial path pd,i(ζi) is

defined as p′
d,i(ζi) = dpd,i(ζi)/dζi. The last equality is obtained by noting that the timing law is a positive

function, that is, θi(·) > 0. From Equation (2.4) it is clear that, with a timing law other than θi(·) ≡ 1,

the speed profile can be chosen independently from the spatial path pd,i(ζi), in order to meet the temporal

specifications.

In our approach we seek to find a suitable structure and parametrization for the timing law, such that

the temporal constraints are met and an analytical expression for the function ζi(td) exists. Taking into

consideration that the spatial paths pd,i(ζi) are described by polynomials for computational efficiency, from

Equation (2.4) it can be seen that the timing laws θi(·) have to be polynomial functions as well, in order

to maintain the polynomial structure for the speed profiles. However, there are two feasible approaches to

parametrize the timing laws.

First, let the timing law θi(·) be a smooth positive polynomial function of the parameter ζi, that is

θi(ζi) =
dζi
dtd

, ζi ∈ [0, 1] . (2.5)

The functions td,i(ζi) that map the parameter ζi to the time variable td can be found through integration

of (2.5):

td,i(ζi) =

ζi∫

0

1

θi(τ)
dτ. (2.6)

In general, the timing laws θi(ζi) are distinct, and hence, the time functions td,i(ζi) are different for each

vehicle as well. However, the time variable td, which denotes the time at which the mission is progressing, is

a common parameter and available to all vehicles. Therefore, it is desirable to derive an analytical expression

for the map ζi(td), since the trajectories are parameterized by the variable ζi. It can be shown that, with

a proper choice of the timing law, an analytical solution exists for the integral in Equation (2.6). From the

definition of θi(ζi) it follows that td,i(ζi) is a strictly monotonically increasing function, and thus its inverse

function t−1
d,i = ζi(td) exists. Another advantage is that the temporal constraints are explicitly parametrized

by ζi. For example, the desired speed profile, given by Equation (2.4), will be a function of the parameter ζi

only.

A preliminary planar trajectory-generation framework is presented in [18, 20], where the timing law θi
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was chosen as a second degree polynomial in ζi, so that Equation (2.6) allowed for a solution in closed-form

and the inverse function ζi(td) could be derived analytically as well. Following this approach, in combination

with Bézier curves to describe the paths pd,i(ζi) and the timing laws θi(ζi), the results in [18, 20] indicate

that the developed framework is able to generate efficiently a set of collision-free trajectories that satisfy all

boundary conditions and dynamic constraints of the vehicles. However, there are three major drawbacks in

this particular choice of structure for the timing law:

1. The time integral (2.6) admits a closed-form solution td,i(ζi) for a polynomial function θi(ζi) of any

degree nθ ∈ N. However, for nθ > 2 it becomes extremely intractable or even impossible to obtain an

analytical expression for the inverse function ζi(td). Therefore, the only practically feasible choice for

the timing law is a second-degree polynomial. Unfortunately, this leaves the framework with no room

for increasing nθ in scenarios where more free variables are necessary in order to satisfy additional

(temporal) constraints.

2. In the case where nθ = 2, the solutions to the time integral (2.6) are either trigonometric or hyperbolic

functions [18, 20] and, hence, the inverse functions ζi(td) are not polynomials. This poses a problem

when spatial deconfliction has to be ensured through temporal separation, that is the minimum distance

between two points on the paths of the ith and jth vehicle at time td, is greater than or equal to the

minimum spatial clearance E:

min
i,j=1,...,N

i6=j

‖pd,i(ζi(td))− pd,j(ζj(td))‖2 ≥ E2 , ∀ td ∈ [0, tfdij ],

where tfdij = min {tfd,i, tfd,j}. Recalling the fact that the spatial paths pd,i(ζi) are chosen to be polyno-

mials for computational efficiency, the above equation becomes impractical to evaluate if the functions

ζi(td) are not of polynomial form as well.

3. The timing law θ(ζi) has to be strictly positive for the map ζi(td) to exist. This poses a problem for

vehicles that are able to remain stationary, such as hovering multirotors. In these cases, it can be

deduced from Equation (2.4), that θi(·) must be zero, as paths with
∥
∥
∥p′

d,i(ζi)
∥
∥
∥ = 0 exhibit cusps that

are highly undesirable. Hence, in order to accommodate for this class of platforms, the requirement

on the timing law has to be relaxed.

To overcome these three drawbacks, the timing law θi(·) will be defined differently. Let the timing
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law θi(·) be a smooth nonnegative polynomial function of the parameter td, that is

θi(td) =
dζi
dtd

, td ∈ [0, tfd,i] . (2.7)

With the timing law θi(td) defined as in Equation (2.7), the map ζi(td) is given by the integral

ζi(td) =

td∫

0

θi(τ)dτ , (2.8)

where, from the definition of ζi, the functions ζi(td) must satisfy ζi(0) = 0 and ζi(t
f
d,i) = 1. If the timing

laws θi(td) are polynomials of degree nθ, then integrating Equation (2.8) will yield functions ζi(td) that are

polynomials of degree (nθ +1). It is clear, that in this case we are not limited to nθ = 2, in order to express

the functions ζi(td) analytically and, hence, can choose nθ according to the set of constraints that needs to

be satisfied. Moreover, the temporal separation constraint given above reduces to a polynomial since the

compositions (pd,i ◦ζi)(td) and (pd,j ◦ζj)(td) are polynomials of the same degree. Nevertheless, the temporal

separation constraint results in a high-degree polynomial and determining its roots is not straightforward.

We shall see that using Bézier curves to describe the spatial paths and the timing laws significantly simplifies

constructing the composition of functions and reduces the computational load while evaluating the temporal

separation constraint. A similar observation can be made for the temporal constraints, which are equations in

two variables, namely in td (through the timing law θi(td)) and ζi. We can convert the temporal constraints

to (high-degree) polynomials of one single variable td by substituting Equation (2.8).

Considering the favorable properties of describing the timing law by Equation (2.7) instead of Equa-

tion (2.5), the second approach will be adopted in the subsequent development of the three-dimensional

trajectory-generation framework, in contrast to the work described in [18, 20]. Nonetheless, the results re-

ported in [18, 20] are valid and as such the planar trajectory-generation framework presented therein serves

as a feasibility study and baseline for the spatial framework described hereafter.

2.3 Boundary Conditions and Constraints

In the problem of trajectory generation for autonomous vehicles, we typically deal with missions for which

the initial and final conditions on the trajectory, i.e. the boundary conditions, are prespecified. Therefore, in

the following development of the trajectory-generation framework, it is assumed that the positions, speeds
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and course angles of each individual aircraft at the endpoints are prescribed, that is

pd,i(ζi = 0) = pi
i , γi(ζi = 0) = γi

i , ψi(ζi = 0) = ψi
i , vd,i(td,i = 0) = vi

i ,

pd,i(ζi = 1) = pf
i , γi(ζi = 1) = γf

i , ψi(ζi = 1) = ψf
i , vd,i(td,i = tfd,i) = vf

i ,

(2.9)

for i = 1, . . . , N . Here, pi
i, γ

i
i, ψ

i
i, and vi

i are the initial position, flight-path angle, course, and speed,

respectively, while pf
i, γ

f
i, ψ

f
i, and vf

i are the specified quantities at the final endpoint of the trajectory.

Equation (2.9) gives the boundary conditions that need to be satisfied by the generated trajectory for the

ith vehicle. In fact, constructing a smooth curve with given endpoints and derivatives, such as the boundary

conditions given above, is defined as the first-order Hermite interpolation problem [32].

Additionally, a set of generated trajectories has to satisfy mission-specific constraints, for example simul-

taneous arrival at pre-defined destinations or specified lengths of each individual path. When simultaneous

time-of-arrival of the vehicles is required, and the absolute time-of-arrival is not specified, then an additional

constraint is

tfd,i − tfd,j = 0 for i 6= j, i, j = 1, 2, . . . , N. (2.10)

Another mission-specific requirement could be ensuring continuity of the turn-rate ψ̇ at the final point of

the trajectory, if the vehicle has to smoothly transition from the path onto a circular orbit.

As mentioned before, our objective is not solely to satisfy the mission requirements, but, equally impor-

tantly, to generate trajectories that the vehicles are able to follow and, at the same time, are collision-free.

Therefore, the trajectories have to satisfy additional constraints, namely a set of dynamic constraints, and

also requirements regarding the minimum spatial clearance between the paths or the vehicles.

2.3.1 Flyable trajectories: dynamic constraints of the vehicles

Flyable trajectories comply with the dynamic constraints of the vehicles and, therefore, can be closely

followed if the vehicles executing the mission are equipped with autopilots that enable accurate tracking of

the control commands. Trajectories that are not flyable will inevitably result in path-following errors and

may jeopardize the successful completion of the mission or, in the worst case, lead to a loss of a vehicle. In

the case of fixed-wing aircraft, violating the stall speed vmin is a good example of the latter.

In [18,20,86,98] the rotational dynamic constraints are given in terms of intrinsic geometrical properties.

For planar curves, the curvature κc is bounded so as to meet the maximum turn-rate ψ̇max of the vehicle.

This works well for planar trajectories, since there is a direct relation between the maximum turn-rate ψ̇max
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and the maximum allowable curvature κc,max:

κc,max =
1

Rmin

=
ψ̇max

vmax

,

where Rmin is the minimum turn radius, and vmax is the maximum speed of the vehicle. An observation that

one can make is that bounding the curvature is in fact a conservative approach, since a turn at ψ̇max with a

turn radius smaller than Rmin is perfectly fine, if the speed v < vmax. Nevertheless, the results in [18,20] for

planar trajectories justify meeting the dynamic constraints by means of bounding the maximum curvature

of the path.

The authors of [86,98] use a similar notion to extend their framework to spatial trajectories, by introducing

and bounding the torsion τc, additional to the bound on the curvature. Similar arguments hold regarding

the conservatism, however, for spatial curves there is an added complexity to this approach. It is not

straightforward to translate dynamic bounds on the yaw, pitch, and roll dynamics of the vehicle into limits

on the curvature κc and torsion τc. For example, the yaw motion is no longer associated only with the

curvature, but is a coupling of both the curvature and torsion.

The major drawback of using geometric properties to satisfy dynamic constraints is the fact that bounding

the torsion τc excludes, for example, straight lines and curves exhibiting inflection points. This can be seen

as follows. Consider the definitions of both the curvature and the torsion of a curve r(ζ):

κc(ζ) =
‖r′(ζ) × r′′(ζ)‖

‖r′(ζ)‖3 , τc(ζ) =
〈 r′(ζ) × r′′(ζ) , r′′′(ζ) 〉

‖r′(ζ)× r′′(ζ)‖2 ,

where r′(ζ), r′′(ζ), and r′′′(ζ) are the first, second, and third derivative of r(ζ) with respect to ζ, respectively.

For straight paths (or segments) and curves with inflection points, the curvature κc is (momentarily) zero

and, hence, the torsion becomes unbounded. Therefore, by bounding the torsion this family of (simple)

curves is not admissible as a feasible solution.

In our framework, we proceed from the dynamics of the vehicles, and derive bounds that are directly

related to the dynamics and do not suffer from the shortcomings of a purely geometric approach (see

Section 1.2 for details). First, let an inertial reference frame {I} be characterized by the orthonormal

vectors {̂i, ĵ, k̂} (see Figure 2.1). The unit vectors î and ĵ lie in the horizontal plane, while the unit vector k̂

points up vertically in the opposite direction of the gravity vector. Then, the (translational) equations of a
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frame {I}

v(t)

î

ĵ

k̂

ẋ(t)

ẏ(t)

ż(t)

ψ(t)

γ(t)

Figure 2.1: Definition of the flight-path angle γ(t) and the course angle ψ(t).

vehicle, governing the dynamics in this inertial reference frame {I}, are given by:

ẋ = v cos γ cosψ ,

ẏ = v cos γ sinψ ,

ż = v sin γ ,

subject to

vmin ≤ v(t) ≤ vmax , |a(t)| ≤ amax ,

γmin ≤ γ(t) ≤ γmax , |γ̇(t)| ≤ γ̇max , |ψ̇(t)| ≤ ψ̇max , ∀t ≥ 0 ,

(2.11)

where [x(t), y(t), z(t)]
⊤

, v(t), and a(t) are the coordinates, speed, and acceleration, respectively, of the UAV

given in the inertial reference frame {I}, γ(t) denotes the flight-path angle, and ψ(t) represents the course of

the vehicle (see Figure 2.1). The bounds in Equation (2.11) are vehicle-specific and, based on the differential

flatness property [68], can be derived from their dynamics. The conditions in (2.11) prescribe the physical

limitations of the vehicle and, therefore, the generated desired trajectories shall not demand maneuvering

along a path that exceeds these dynamic constraints. Hence, we need to derive expressions for the desired

speed and acceleration profiles as well as for the flight-path angle, rate of change of the flight-path angle,

and the turn rate along the generated trajectory of the ith vehicle, in terms of the spatial paths pd,i(ζi) and

the timing laws θi(td). First, let p′
d,i(ζi) and p′′

d,i(ζi) denote the first and second derivatives of pd,i(ζi) with

respect to ζi, respectively. The flight-path angle γi is a pure geometric property of the spatial path and,
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hence, it is natural to have it parameterized by ζi:

γi(ζi) = arcsin




〈p′

d,i(ζi), k̂ 〉
∥
∥
∥p′

d,i(ζi)
∥
∥
∥



 . (2.12)

The other kinematic properties are of temporal nature and, therefore, we characterize them by the time

variable td. The corresponding expressions are

vd,i(td) = σi(ζi(td)) θi(td) ,

γ̇i(td) =
σi(ζi(td)) 〈p′′

d,i(ζi(td)), k̂ 〉 − σ′
i(ζi(td))〈p′

d,i(ζi(td)), k̂ 〉

σi(ζi(td))
(

〈p′
d,i(ζi(td)), î 〉2 + 〈p′

d,i(ζi(td)), ĵ 〉2
) 1

2

θi(td) ,

ψ̇i(td) =
〈p′

d,i(ζi(td))× p′′
d,i(ζi(td)), k̂ 〉

〈p′
d,i(ζi(td)), î 〉2 + 〈p′

d,i(ζi(td)), ĵ 〉2
θi(td) ,

(2.13)

where

σ′
i(ζi) =

d

dζi

∥
∥p′

d,i(ζi)
∥
∥ =

〈p′
d,i(ζi),p

′′
d,i(ζi) 〉

∥
∥
∥p′

d,i(ζi)
∥
∥
∥

.

The time derivatives of γi(td) and ψi(td) in Equation (2.13) are taken with respect to td. Also notice

that the functions in Equation (2.13) are written as functions of a single parameter td by substituting

Equation (2.8) for the variable ζi. Depending on the vehicle platform for which the trajectories are generated,

the acceleration along the path or the magnitude of the total acceleration can be considered, given by

ap
d,i(td) =

d

dtd
vd,i(td) = σi(ζi(td))θ̇i(td) + σ′

i(ζi(td))θ
2
i (td) , (2.14a)

at
d,i(td) =

∥
∥
∥
∥

d2pd,i(ζi(td))

dt2d

∥
∥
∥
∥
=
∥
∥
∥p

′
d,i(ζi(td))θ̇i(td) + p′′

d,i(ζi(td))θ
2
i (td)

∥
∥
∥ , (2.14b)

respectively. Similarly, the time derivative of θi(td) in Equation (2.14) is taken with respect to td. For

example, if fixed-wing aircraft are considered, then the acceleration along the path (Equation (2.14a)) will

be subject to the maximum available excess thrust. However, in the case of multirotors, for which the thrust

vector can be (nearly) freely directed in the inertial frame due to their inherent agility, it is the magnitude

of the total acceleration (Equation (2.14b)) that is subject to the maximum excess thrust. With this setup,

a trajectory is said to be flyable if the equations in (2.12), (2.13), and (2.14a) (or (2.14b)) meet similar

bounds as in Equation (2.11), which implies that a vehicle is able to follow the trajectory without exceeding

its dynamic constraints, such as the minimum (stall) and maximum speeds, and the maximum turn rate.
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Hence, Equations (2.12), (2.13) and (2.14a) (or (2.14b)) have to satisfy

vd,min ≤ vd,i(td) ≤ vd,max , γmin ≤ γi(ζi) ≤ γmax

|γ̇i(td)| ≤ γ̇max , |ψ̇i(td)| ≤ ψ̇max

|ap
d,i(td)| ≤ ad,max or |at

d,i(td)| ≤ ad,max ,

(2.15)

for all (ζi, td) ∈ [0, 1] × [0, tfd,i]. Note that, 0 < vmin ≤ vd,min < vd,max ≤ vmax and ad,max ≤ amax have to

be satisfied for the trajectories pd,i(ζi(td)) to be flyable. Needless to say that the expressions in Equa-

tions (2.12)-(2.14) can be very complex and result in high-degree polynomials and, because of this, evaluating

Equation (2.15) is not trivial and may be computationally expensive.

Remark 1 Note that, in general, vd,i(td) is the total commanded speed to the autopilot and, therefore,

vd,min = vmin, vd,max = vmax, and ad,max = amax. However, for certain specific missions, such as time-

coordinated missions [22, 39, 63, 104–106], or in particular circumstances, for example in the presence of

uncooperative vehicles [20], the speeds of the vehicles are adjusted from vd,i(td) during the execution of the

mission, as to achieve coordination, or to avert an imminent collision, respectively. In these cases, vd,i(td)

is no longer the total commanded speed and, hence, the more restrictive bounds given in Equation (2.15) are

adopted during the trajectory-generation phase, in order to prevent premature saturation of the total speed

command during mission execution.

2.3.2 Feasible trajectories: spatial and temporal separation

Trajectories of different vehicles have to be spatially deconflicted a priori, in order to avoid collision and

ensure safe simultaneous operation in the airspace. Trajectories that are flyable and safe to fly are called

feasible trajectories. Deconfliction between trajectories can be guaranteed through spatial separation or

temporal separation, where the vehicles are separated in space or time, respectively. Spatial separation is

guaranteed if the minimum distance between any two points on the paths of the ith and jth vehicle is greater

than or equal to the minimum spatial clearance Ed, i.e.

min
i,j=1,...,N

i6=j

‖pd,i(ζi)− pd,j(ζj)‖2 ≥ E2
d , ∀ζi, ζj ∈ [0, 1]. (2.16)

23



On the other hand, temporal separation is ensured if, for any time td, the minimum distance between the

ith and jth vehicle is greater than or equal to the minimum spatial clearance Ed, that is

min
i,j=1,...,N

i6=j

‖pd,i(ζi(td))− pd,j(ζj(td))‖2 ≥ E2
d , ∀td ∈ [0, tfdij ], (2.17)

where tfdij = min {tfd,i, tfd,j}. In Equation (2.17) the paths are allowed to intersect, but the vehicles are time

separated and, hence, do not arrive at the intersection point simultaneously. The generated trajectories

are spatially deconflicted, and form a set of feasible trajectories if and only if they are flyable and either

Equation (2.16) or (2.17) is satisfied. Note that, in Equations (2.16) and (2.17), Ed is larger than the actual

required minimum distance E, so as to allow for path-following errors, or deviations from the desired paths

necessary in order to prevent a potential collision with uncooperative vehicles.

Both deconfliction strategies are illustrated by the following two examples. Figure 2.2 shows two trajec-

tories that are deconflicted through spatial separation. The yellow line in Figure 2.2a indicates the minimum

distance between the two paths, and from Figure 2.2d it can be seen that this minimum distance is greater

than or equal to the required minimum spatial clearance Ed. Note that by definition the temporal separa-

tion is always greater than or equal to the spatial separation and, therefore, the two trajectories are also

sufficiently separated in time. That the converse does not hold, is shown in Figure 2.3. Despite the fact that

the minimum distance between the spatial paths does not meet the required minimum spatial clearance Ed

(see Figure 2.3d), the two trajectories are still considered collision-free, but in temporal sense (Figure 2.3c).

One of the factors that determine the minimum spatial clearanceEd, which can be ensured through spatial

or temporal separation, is the error of an underlying path-following controller onboard the vehicles. In the

case when temporal separation is preferred over spatial separation, the trajectories are allowed to intersect

and, hence, a time-coordination controller is also necessary in order to keep the vehicles sufficiently separated

at all times. However, safe operation is dependent on the quality and robustness of the communication

network over which the vehicles exchange information, and is potentially compromised whenever this network

is faulty or jammed. On the other hand, spatial separation guarantees collision-free trajectories at all

times, even if the communication network is temporarily or permanently unavailable, but results in a more

conservative set of trajectories that may require a larger (air)space. Which deconfliction strategy is used,

depends on numerous factors and considerations, such as the type of mission, the environment, the quality

of the communication network, and security requirements on data transmission during the mission.
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Figure 2.2: Example of deconfliction of two UAV trajectories through spatial separation.
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Figure 2.3: Example of deconfliction of two UAV trajectories through temporal separation.
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Chapter 3

Pythagorean Hodograph Bézier Curves

The cooperative trajectory-generation framework was formulated and set up mathematically in Chapter 2.

The necessary operations involved includes differentiation, integration, and root finding of, generally, high-

degree polynomials and rational functions of polynomials, which may be computationally expensive to per-

form. Additionally, multiplication and determining the composition of two polynomial functions may not be

trivial and, more than often, the resulting high-degree polynomial exhibits undesirable behavior.

Hence, trajectory planning is not a trivial issue. In general, UAVs carry low power-consumption proces-

sors with limited memory in order to save weight to maximize the payload capacity. However, as shown in

Chapter 2, the constraints that have to be satisfied are highly complex, while it is desirable that the tra-

jectories are generated (near) real-time using these onboard processors. Therefore, the trajectory-planning

algorithm has to be computationally efficient. One approach to relieve the computational load, is to seek a

class of curves with geometric properties that can be exploited in satisfying the set of imposed constraints

as described in Section 2.3. One such family of curves, possessing attractive geometric properties, is formed

by the Bézier curves. A Bézier curve is completely determined by a set of control points. The curve starts

at the first and ends at the last control point, while the curve lies completely in the convex hull containing

the set of control points. This latter property is extremely useful when path planning for aircraft systems

is considered, as the airspace in which an aircraft is allowed to maneuver is often allocated and limited by

strict boundaries. An example of spatially deconflicted paths generated for a bounded airspace using Bézier

curves can be found in [53]. Since Bézier curves are polynomials, the set of Bézier curves is closed under the

operations of addition/subtraction, multiplication, and scaling, and is also closed under differentiation and

integration. Computationally efficient algorithms are available to perform these operations on the control

points.

Within the class of polynomial curves, there exists a sub-class of curves of which the components of the

hodographs satisfy a Pythagorean quartuple of polynomials. These are called Pythagorean Hodograph (PH)

curves. The hodograph of a curve is the locus described by the first parametric derivative of the curve [31,37].

PH curves have the attractive property that the speed is a polynomial function of its parameter and, therefore,
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admit an exact measurement of the arc length by simply evaluating a polynomial. This of course reduces

the computational load considerably compared to obtaining the arc lengths of the curves numerically.

In this chapter we introduce the Pythagorean Hodograph Bézier curves that will be used to mathematically

describe the trajectories. These curves are Bézier curves of which the hodographs satisfy the Pythagorean

polynomial quartuple. In this chapter, we give a treatment of these curves separately: first, we give an

overview of the properties and construction of PH curves, followed by a similar discussion for Bézier curves.

In the next chapter we will describe in more detail how PH Bézier curves can be constructed using a

quaternion representation.

3.1 Pythagorean Hodograph Curves

The question that comes first to one’s mind when dealing with curves, and especially with trajectories, is

what is the exact arc length of the curve? It seems like an innocent question, however, from a differential

geometer’s point of view, the answer is not trivial at all. Let s(ζ) be the arc length of a differentiable spatial

curve r(ζ) = [x(ζ), y(ζ), z(ζ)]⊤ and given by:

s(ζ) =

ζ∫

0

‖r′(τ)‖dτ =

ζ∫

0

√

x′ 2(τ) + y′ 2(τ) + z′ 2(τ) dτ , (3.1)

where r′(ζ) = dr(ζ)/dζ = [x′(ζ), y′(ζ), z′(ζ)]⊤ denotes the hodograph of r(ζ). The parametric speed is given

by

‖r′(ζ)‖ =
d

dζ
s(ζ) =

√

x′ 2(ζ) + y′ 2(ζ) + z′ 2(ζ) .

Note that the parametric speed ‖r′(ζ)‖ is not the desired speed profile vd,i(td) from Equation (2.13). In

general, Equation (3.1) does not allow a solution in closed-form since the argument of the square root in the

integrand is a polynomial function and, hence, the integral has to be approximated using numerical methods.

In the ideal case, an analytical expression for Equation (3.1) can be found if ‖r′(ζ)‖ ≡ 1, i.e. the

“unit speed" parametrization and, therefore, the curve is conveniently parameterized by its arc length since

s(ζ) = ζ. Unfortunately, as shown by Theorem 16.1 in [32], such a parametrization is not possible for any

planar (and spatial) curve, other than for straight lines. However, even if a unit speed parametrization

does not exist, there is still an elegant way to simplify Equation (3.1) significantly. For that, we need to

incorporate a priori a Pythagorean structure in the hodograph of r(ζ). To this end, let

x′ 2(ζ) + y′ 2(ζ) + z′ 2(ζ) = σ2(ζ) , (3.2)
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î

ĵ
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Figure 3.1: PH curves have the property that the parametric speed ‖r′(ζ)‖ = σ(ζ) is a polynomial function.

for some polynomial σ(ζ). In other words, we ensure that x′ 2(ζ) + y′ 2(ζ) + z′ 2(ζ) is a perfect square of the

polynomial σ(ζ) (see Figure 3.1). Curves with hodographs satisfying Equation (3.2) are called Pythagorean

Hodograph curves [32]. Substituting Equation (3.2) into (3.1) results in

s(ζ) =

ζ∫

0

σ(τ)dτ,

and the arc length s(ζ) can be found as a closed-form function through a simple integration of polynomial σ(ζ)

of any degree. Theorem 21.1 in [32] states that the Pythagorean condition (3.2) is satisfied if and only if

x′(ζ), y′(ζ), z′(ζ), and σ(ζ) can be expressed in terms of other real polynomials u(ζ), v(ζ), p(ζ) and q(ζ) in

the form

x′(ζ) = u2(ζ) + v2(ζ) − p2(ζ)− q2(ζ) , (3.3a)

y′(ζ) = 2 [u(ζ)q(ζ) + v(ζ)p(ζ)] , (3.3b)

z′(ζ) = 2 [v(ζ)q(ζ) − u(ζ)p(ζ)] , (3.3c)

σ(ζ) = u2(ζ) + v2(ζ) + p2(ζ) + q2(ζ) . (3.3d)

Although Equation (3.3) is a sufficient and necessary condition, constructing PH spatial curves using Equa-

tions (3.3a)-(3.3d) in this form results in a system of nine coupled quadratic equations for twelve real
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unknowns. A more compact system is described in [32, 34–36], based on the quaternion representation of

Equation (3.3), that was first introduced in [19].

A quaternion A = a+ axî+ ay ĵ+ azk̂ comprises of a scalar part a and a vector part a = ax î+ ay ĵ+ azk̂,

and its conjugate A∗ is defined as A∗ = a − ax î − ay ĵ − azk̂. We can also write the quaternion A as

A = |A| U , where |A|2 = AA∗ = a2 + |a|2 is the square of the magnitude of the quaternion A, and U is

the unit quaternion with |U| = 1, defined as U = cos 1
2δ + sin 1

2δ n for some angle δ and unit vector n.

Then, given a pure vector quaternion v and a unit quaternion U , the quaternion product U v U∗ represents

a rotation of v through an angle δ about the unit vector n, and results in a pure vector quaternion.

The first-order Hermite interpolation problem, concerned with the construction of a smooth curve match-

ing given endpoints and derivatives, often yields equations of the following form when formulated in the

quaternion representation:

A îA∗ = c , (3.4)

with c = cx î+ cy ĵ+ czk̂. The one-parameter family of general solutions to Equation (3.4) is given by:

A(φ) =

√

1

2
(1 + λ)|c|

(

− sinφ+ cosφ î +
µ cosφ+ ν sinφ

1 + λ
ĵ+

ν cosφ− µ sinφ

1 + λ
k̂

)

, (3.5)

where (λ, µ, ν) and |c| ∈ R
+ are, respectively, the direction-cosines and the magnitude of the vector c. Next,

consider a quaternion polynomial

A(ζ) = u(ζ) + v(ζ )̂i + p(ζ )̂j + q(ζ)k̂ . (3.6)

Then the following product A(ζ) îA∗(ζ) results in:

A(ζ) îA∗(ζ) =
[
u2(ζ) + v2(ζ) − p2(ζ)− q2(ζ)

]
î

+ 2 [u(ζ)q(ζ) + v(ζ)p(ζ)] ĵ+ 2 [v(ζ)q(ζ) − u(ζ)p(ζ)] k̂ .

(3.7)

Comparing this result with Equation (3.3), we observe that the hodograph r′(ζ) = A(ζ) îA∗(ζ) satisfies

the conditions to be the hodograph of a PH spatial curve r(ζ). Rewriting the spatial hodograph r′(ζ) in

terms of the unit quaternion U(ζ) yields r′(ζ) = |A(ζ)|2 U(ζ) îU∗(ζ). Hence, we can interpret Equation (3.7)

geometrically as generating a spatial hodograph through a continuous family of spatial rotations and scalings

of the basis vector î.

With the above formulation of spatial PH curves in terms of quaternions, and using Bézier curves to

describe the polynomials u(ζ), v(ζ), p(ζ), and q(ζ), we shall see in the next chapter that the construction of
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Pythagorean Hodograph Bézier curves simplifies considerably both in number of equations and unknowns.

PH Bézier curves also provide a closed-form solution for the energy integral, and exact representations of

offset curves at a distance d from the curve for all ζ as rational Bézier curves. The former property allows

the designer to obtain the optimal shape of the curves by minimizing the energy, while the latter results in

offset curves, that are rational Bézier curves themselves and, hence, inherit the nice geometric properties of

the family of Bézier curves.

The efforts in finding an exact measurement of the arc length is not only to satisfy the differential ge-

ometer’s curiosity. In the context of cooperative trajectory generation for multiple vehicles, more than often,

simultaneous time-of-arrival of the vehicles is required. This is practically only feasible if the intersection of

the arrival-time windows of the vehicles is non-empty, where the arrival-time window for the ith vehicle is

defined as:

δtfd,i :=
[
tfdmin,i

, tfdmax,i

]
,

where

tfdmin,i
:=

si
vmax

, tfdmax,i
:=

si
vmin

,

and si is the arc length of the spatial path. Clearly, in order to determine the arrival-time windows, one

needs to compute the exact arc length of the curve. In [104] the arrival margin is derived from arrival-time

windows, and it is argued that this arrival margin plays a key role in providing robustness to the mission

operation at the coordination level.

3.2 Bézier Curves

Next, an overview is given of Bézier curves that are used to mathematically describe the trajectories, i.e. the

spatial paths pd,i(ζi) and the timing laws θi(td). Bézier curves are polynomials over the finite interval [0, 1]

expressed in the Bernstein basis, consisting of Bernstein polynomials:

bnk (ζ) =

(
n

k

)

(1− ζ)n−kζk , ζ ∈ [0, 1] , (3.8)

where n is the degree of the polynomial. The Bernstein polynomials are named after the Russian mathemati-

cian S.N. Bernstein, who published a constructive proof of the Weierstrass Theorem and where this polyno-

mial basis was first introduced. Although the Bernstein polynomial approximation Pn(t) =
∑n
k=0 f

(
k
n

)
bnk (t)

converges to a continuous function f(t) for n→ ∞, this happens at such a slow rate, that many deemed the

Bernstein basis being of no practical use. In fact, P.J. Davis made the following comment in his book [26]:
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“The fact seems to have precluded any numerical application of Bernstein polynomials from

having been made. Perhaps they will find application when the properties of the approximant

in the large are of more importance than the closeness of the approximation.”

And true enough, with the widespread proliferation of computers in the industry, there was a growing need

for a means of intuitively defining and modifying curves and surfaces. This was precisely where the Bernstein

polynomials found their niche. Besides inheriting the simplicity of polynomials, Bézier curves have the extra

advantage of providing “shape handles” [32] in the form of the control points, that allow the designer to shape

the curve or surface intuitively to his or her liking. As such, the Bézier curves have seen their applications

in especially computer aided design, but also in the world of computer games and animations.

In this thesis, we explore the suitability and feasibility of using Bézier curves, and in particular PH Bézier

curves, to describe the flight trajectories mathematically. Expressing the desired flight paths in terms of

Bézier polynomials is attractive, due to numerous favorable geometric properties that these curves exhibit.

A degree n Bézier curve is given by:

r(ζ) =

n∑

k=0

r̄k b
n
k (ζ) , ζ ∈ [0, 1] , (3.9)

where ζ is a dimensionless parameter, the points r̄0, . . . , r̄n ∈ R
m are the control points of the Bézier curve,

and bnk (ζ) are the Bernstein polynomials given in (3.8). It is clear, that for spatial paths the control points r̄k

are in R
3. The set of Bézier polynomials is closed under the arithmetic operations of addition, subtraction,

and multiplication, and under differentiation, integration, and composition. Besides being the coefficients

that completely determine the Bézier polynomial, the control points are also key elements that define the

attractive geometric properties of Bézier curves. One important property that is exploited extensively is

the fact that a Bézier curve lies completely in the convex hull of these control points r̄0, . . . , r̄n. Hence,

the convex hull is a polyhedron (or a polygon for planar curves) with a subset of the control points as its

vertices.

Figure 3.2 shows an example of a quintic planar Bézier curve. The curve here lies completely in the green

dash-dotted polygon. Additionally, a Bézier curve starts at the first control point r̄0 and ends at the last

control point r̄n, and it lies tangent to the control polygon (not to be confused with the convex hull) at these

two end control points. Many operations performed on Bézier curves are computationally efficient, such

as arithmetic operations, differentiation and integration, which in general reduce to recursive algorithms in

terms of the control points. We list a few important properties of Bézier curves that will be extensively used

in our trajectory-generation framework. A more comprehensive list is given in [27, 32, 33]. Let r(ζ) be a
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Figure 3.2: Example of a planar quintic Bézier curve. The Bézier curve is shown by a blue-solid line. The
control points are indicated by red-solid dots. The control polygon is presented with gray-dotted lines, while
the convex hull of the control points is shown by a green dash-dotted polygon. It can be observed that the
Bézier curve lies completely in the convex hull of the control points.

degree n Bézier curve. Then the following properties hold:

1. Derivatives. The first parametric derivative r′(ζ) = dr(ζ)/dζ, is a degree (n − 1) Bézier curve and

its control points h̄k are solely determined by the control points r̄k of the curve:

r′(ζ) = h(ζ) =

n−1∑

k=0

h̄k b
n−1
k (ζ) , ζ ∈ [0, 1] ,

h̄k = n(r̄k+1 − r̄k) for k = 0, . . . , (n− 1).

2. Integrals. Likewise, the indefinite integral of r(ζ) can be found as:

∫

r(ζ)dζ =
n+1∑

k=1

R̄k b
n+1
k (ζ) + c , ζ ∈ [0, 1] ,

R̄k =
1

n+ 1

k−1∑

j=0

r̄j for k = 1, . . . , (n+ 1).

The first control point R̄0 and the integration constant c can be determined from the boundary

conditions at ζ = 0 and ζ = 1, respectively.

3. Degree elevation. The polynomial r(ζ) of true degree n can be expressed as a Bézier polynomial of
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degree (n+ t), for all t > 0:

r(ζ) =

n+t∑

k=0

r̄n+tk bn+tk (ζ) , ζ ∈ [0, 1] ,

r̄n+tk =

min(n,k)
∑

j=max(0,k−t)

(
t

k−j

)(
n
j

)

(
n+t
k

) r̄j for k = 0, . . . , (n+ t) ,

where r̄n+tk are the control points of the elevated Bézier curve.

4. Multiplication. Let s(ζ) be a degree m Bézier curve with control points s̄k ∈ R. Then, control points

c̄k of the product of Bézier curves r(ζ) and s(ζ) are given by:

c̄k =

min(m,k)
∑

j=max(0,k−n)

(
m
j

)(
n
k−j

)

(
m+n
k

) r̄k−j s̄j for k = 0, . . . , (m+ n) .

5. Composition. Let s(ζ) be a degree m Bézier curve with control points s̄k ∈ R. Then, the control

points c̄j of the composition of two Bézier curves (r(ζ) ◦ s(ζ)) are obtained via the values aki,j , where

a0i,0 = r̄i for i = 0, . . . , n, and:

āki,j =
1
(
km
j

)

min(j,km−m)
∑

l=max(0,j−m)

(
km−m

l

)(
m

j − l

)[

(1− s̄j−l) ā
k−1
i,l + s̄j−lā

k−1
i+1,l

]

is used for k = 1, . . . , n, i = 0, . . . , n− k, and j = 0, . . . , km. Then the control points c̄j are given by:

c̄j = ān0,j , j = 0, . . . ,mn .

One computational procedure that is often associated with Bézier curves is the de Casteljau algorithm.

For a degree n Bézier curve and given α ∈ (0, 1), this recursive algorithm computes the point r(α) on

the curve that subdivides the curve into two subsegments for which the union is equivalent to the original

curve, and provides the control points of each of the two (sub) Bézier curves, which are also of degree n

and parameterized over [0, 1]. Moreover, the control points of the two newly formed Bézier curves converge

toward the curve as the subdivision procedure is repeated.

The de Casteljau algorithm is fundamental to many computational procedures applied to Bézier curves,

such as determining the minimum distance between two Bézier curves [14, 15]. The authors in [14] propose

an iterative algorithm to compute the minimum distance between two Bézier curves, where the convex hull

property and the de Casteljau algorithm are cleverly and extensively exploited in combination with the
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Figure 3.3: Two spatial Bézier curves where the minimum distance d is computed in < 40 msec.

Gilbert-Johnson-Keerthi (GJK) distance algorithm [29,40, 52, 99]. The latter is an algorithm that is widely

used in the computer graphics and animation world, to compute the minimum distance between two convex

shapes. This GJK algorithm works flawlessly for Bézier curves, since these are always contained in their

convex hulls. The de Casteljau algorithm continuously subdivides the curves, as to eventually converge to

the points of minimum distance between the curves. The complete algorithm works extremely efficiently

and computes the minimum distance between the two Bézier curves to within the desired tolerance and,

therefore, is not an approximation method. For example, the minimum distance between two spatial Bézier

curves, shown in Figure 3.3, is found in less than 40 msec using an implementation of the algorithm in

Matlab R©.

In the course of the work, the minimum-distance algorithm is modified to efficiently compute the global

minima and maxima of scalar Bézier polynomials. Recall, that the constraints in Equation (2.15) require

computing the global minima and maxima of the dynamic equations given in Equations (2.12) and (2.13).

In Chapter 4, these expressions will be rewritten in terms of Bézier curves. Hence, the modified minimum

distance algorithm allows us to efficiently compute the exact value of the global minima and maxima of

these kinematic expressions. An example of a dynamic constraint, the speed profile vd,i(td), is shown in

Figure 3.4. The global minimum and maximum, including the corresponding time td, are found in less than

40 msec.
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Figure 3.4: Typical speed profile vd,i(td). The maximum and minimum speed is computed in < 40 msec.

Lastly, besides (polynomial) Bézier curves that are described by Equation (3.9), there are also rational

Bézier curves. A degree n rational Bézier curve is given by

r(ζ) =

n∑

k=0

wk r̄k b
n
k (ζ)

n∑

k=0

wk bnk (ζ)
, ζ ∈ [0, 1] ,

where r̄k ∈ R
m are the control points, bnk (ζ) are the familiar Bernstein polynomials, and wk ∈ R are the

weights of the rational Bézier curve. These weights provide an extra degree of freedom for modifying the

shape of the curve. In fact, rational Bézier curves are the only way to describe conic sections, other than

the parabola. Many properties of (polynomial) Bézier curves carry over to rational Bézier curves. Likewise,

computational procedures designed for Bézier curves can be extended for rational Bézier curves, such as

the minimum distance and extremes finding algorithm. This is extremely helpful since, as we shall see in

Chapter 4, many of the expressions in Equations (2.12) and (2.13) can be expressed as rational Bézier curves.

Remark 2 The convex-hull property, on which practically many algorithms and properties hinge, also carries

over to rational Bézier curves if all the weights wk are positive. Hence, the weights have to be chosen carefully

when possible; otherwise, this condition has to be verified and satisfied first, before proceeding with algorithms

that rely on the convex hull property.
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Chapter 4

Cooperative Trajectory Generation using

PH Bézier Curves

The framework for trajectory generation that is presented hereafter combines the favorable geometric prop-

erties of Bézier curves with the Pythagorean property of PH curves. The resulting PH Bézier curves retain

their computational efficiency, while also allowing closed-form functions for the arc length si(ζi). Bézier

curves were used in [53] to generate paths for multiple UAVs in a bounded airspace, while PH Bézier curves

were generated for simultaneous arrival of multiple UAVs in [86]. In the latter work, the trajectories were

generated such that the paths were of equal lengths, while the desired speeds were constant and equal for all

UAVs. As discussed earlier, in our trajectory-generation framework, the arc lengths and the speed profiles

are not restricted to such constraints and, hence, offer greater flexibility. Quintic PH Bézier curves are most

commonly used to generate paths in several works on trajectory generation [85, 86, 94].

In our approach, we also seek to generate quintic PH Bézier curves to describe the spatial paths and use

quadratic Bézier polynomials to represent the timing laws, that is

pd,i(ζi) =
5∑

k=0

p̄i,k b
5
k(ζi) , θi(td) =

2∑

k=0

θ̄i,k b
2
k(td) ,

for i = 1, . . . , N, (ζi, td) ∈ [0, 1] × [0, tfd,i], and where p̄i,k ∈ R
3 and θ̄i,k ∈ R are the control points of the

spatial path pd,i(ζi) and the timing law θi(td), respectively. The choice for working with PH Bézier curves

of degree 5 may seem restrictive, as it limits the class of trajectories that can be generated; however, it

is based on several considerations. First, increasing the degree of the spatial PH Bézier curves offers more

flexibility in satisfying the constraints, but can potentially result in an increased computational cost. Second,

PH Bézier curves of higher degree may exhibit unknown undesirable behavior and characteristics, since they

have not been extensively explored yet. On the contrary, the properties and behavior of the quintic PH Bézier

curves are extensively studied in, for example, [31, 32, 37]. Third, quintic PH Bézier curves are the simplest

PH Bézier curves that allow constructing smooth curves with given endpoints and derivatives [32], where

the latter are boundary conditions that are common to any trajectory-generation problem. The motivation

behind the choice of quadratic Bézier polynomials for the timing laws is elaborated in Section 4.2.

37



4.1 Quaternion Representation of Spatial PH Bézier Curves

As shown in [32], spatial quintic PH Bézier curves can be represented compactly by introducing a quadratic

Bézier (quaternion) polynomial. In our formulation, we take advantage of this result, and represent the

spatial paths pd,i(ζi) by their corresponding Bézier (quaternion) polynomials, which we denote by Ai(ζi)

with control points Āi,k for k = 0, 1, 2. The control points of the spatial path pd,i(ζi), in the form

p̄i,k = p̄xi,k
î+ p̄yi,k ĵ+ p̄zi,k k̂ ,

are related to the control points Āi,k as follows [32]:

p̄i,1 = p̄i,0 +
1

5
Āi,0 î Ā∗

i,0 ,

p̄i,2 = p̄i,1 +
1

10

(

Āi,0 î Ā∗
i,1 + Āi,1 î Ā∗

i,0

)

,

p̄i,3 = p̄i,2 +
1

30

(

Āi,0 î Ā∗
i,2 + 4Āi,1 î Ā∗

i,1 + Āi,2 î Ā∗
i,0

)

,

p̄i,4 = p̄i,3 +
1

10

(

Āi,1 î Ā∗
i,2 + Āi,2 î Ā∗

i,1

)

,

p̄i,5 = p̄i,4 +
1

5
Āi,2 î Ā∗

i,2 ,

(4.1)

where p̄i,0 = pi
i and p̄i,5 = pf

i. Moreover, as shown in Appendix A, the spatial path pd,i(ζi) belongs to a

family of PH Bézier curves characterized by four free parameters: two parameters, denoted here as |d|ii and

|d|fi, corresponding each to the magnitude of a vector, and two angular parameters, denoted as φi,0 and φi,2.

Appendix A provides further insights into these parameters. Here, we only note that, as will become clear

later, these four parameters will be part of the vector of optimization parameters for the ith trajectory. The

timing law, characterized in the next section, will provide additional degrees of freedom to meet the dynamic

and mission-specific constraints as well as the minimum spatial clearance between the vehicles.

4.2 Timing Law as a Bézier Polynomial

In Section 2.2, we defined the timing law θi(td) as (see Equation (2.7)):

θi(td) =
dζi
dtd

, for td ∈ [0, tfd,i] .

To preserve the favorable properties of Bézier curves, it is intuitive to describe the timing law as a Bézier

polynomial. An immediate observation is that the parameter td for vehicle i is defined on [0, tfd,i], whereas
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the dimensionless variable parameterizing Bézier polynomials is defined on [0, 1]. Hence, we introduce the

dimensionless time variable

t̂d,i :=
td

tfd,i
, dt̂d,i =

1

tfd,i
dtd , (4.2)

and re-define the timing law as follows:

θi(t̂d,i) =
dζi

dt̂d,i
, t̂d,i ∈ [0, 1] . (4.3)

The timing law θi(·) is subsequently given by Equation (4.3) instead of Equation (2.7). Note that the

timing law still relates the variable ζi to the time variable td via the normalized time variable t̂d,i. The

function ζi(t̂d,i) is represented by the integral

ζi(t̂d,i) =

t̂d,i∫

0

θi(τ)dτ

and if we assume that θi(t̂d,i) is a Bézier polynomial of degree nθ, then ζi(t̂d,i) will be a degree (nθ + 1)

Bézier polynomial. Using the integration property of Bézier polynomials [32, 33], the corresponding control

points ζ̄i,k can be expressed in terms of the control points θ̄i,k. The first control point ζ̄i,0 = 0 follows from

the fact that ζi(0) = 0, while

ζ̄i,k =
1

nθ + 1

k−1∑

l=0

θ̄i,l for k = 1, . . . , (nθ + 1) .

We note that ζi(1) = 1 and, therefore, ζ̄i,nθ+1 = 1; with this, we can derive an equality constraint in terms

of the control points θ̄i,k that has to be satisfied:

1

nθ + 1

nθ∑

k=0

θ̄i,k = 1 . (4.4)

Next, we observe that the dynamic relation of the parameter ζi with respect to the time variable td is now

given by

dζi
dtd

=
1

tfd,i
θi(t̂d,i) .

Then, the desired speed profile becomes

vd,i(t̂d,i) =
1

tfd,i

∥
∥p′

d,i(ζi(t̂d,i))
∥
∥ θi(t̂d,i) , t̂d,i ∈ [0, 1]
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and, by using the differentiation property of Bézier polynomials [32,33], the initial and final speed conditions

can be written as:

vi
i =

5

tfd,i

∥
∥p̄i,1 − p̄i,0

∥
∥ θ̄i,0 , vf

i =
5

tfd,i

∥
∥p̄i,5 − p̄i,4

∥
∥ θ̄i,nθ

, (4.5)

where θ̄i,0 and θ̄i,nθ
are the first and last control points, respectively, of the timing law Bézier polynomial.

It is obvious that, given the three equalities in Equations (4.4) and (4.5), at least three free parameters

(including tfd,i) are required to solve this system of equations. Therefore, it is necessary that nθ ≥ 2 such

that there remains at least one free parameter for meeting the temporal specifications. As mentioned earlier,

in this framework we decide to work with quadratic Bézier polynomials to describe the timing laws θi(t̂d,i),

that is

θi(t̂d,i) =

2∑

k=0

θ̄i,k b
2
k(t̂d,i) , for i = 1, . . . , N , t̂d,i ∈ [0, 1] . (4.6)

Note that the timing laws are Bézier polynomials that do not have Pythagorean hodographs. With the

timing law defined as in Equation (4.6), it is easy to verify that the function ζi(t̂d,i) can be found as:

ζi(t̂d,i) =

3∑

k=0

ζ̄i,kb
3
k(t̂d,i) ,

ζ̄i,0 = 0 , ζ̄i,1 =
1

3
θ̄i,0 , ζ̄i,2 =

1

3

(
θ̄i,0 + θ̄i,1

)
, ζ̄i,3 = 1 .

Also, with the timing laws defined as a quadratic Bézier polynomial, Equations (4.4) and (4.5) form a

system of three equations with four unknowns. For convenience, we let tfd,i be the free parameter here.

Then, combining the four free parameters that characterize the spatial PH Bézier curve pd,i(ζi), we can

define, for the ith vehicle, a vector of free parameters as Ξi = [ |di
i|,|d

f
i|,φi,0,φi,2,t

f

d,i ]
⊤.

4.3 Set of Constraints in Bézier Form

In this section, we re-formulate the set of constraints that was presented in Section 2.3 in terms of (PH)

Bézier polynomials. In the previous sections, we derived that, if for the ith vehicle the boundary conditions

pd,i(ζi = 0) = pi
i , γi(ζi = 0) = γi

i , ψi(ζi = 0) = ψi
i , vd,i(t̂d,i = 0) = vi

i ,

pd,i(ζi = 1) = pf
i , γi(ζi = 1) = γf

i , ψi(ζi = 1) = ψf
i , vd,i(t̂d,i = 1) = vf

i ,

(4.7)
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and the vector Ξi = [ |di
i|,|d

f
i|,φi,0,φi,2,t

f

d,i ]
⊤

are given, then a quintic PH Bézier curve of the form

pd,i(ζi) =

5∑

k=0

p̄i,kb
5
k(ζi)

can be constructed that interpolates these endpoint conditions. Moreover, if the control points for the timing

law

θi(t̂d,i) =

2∑

k=0

θ̄i,k b
2
k(t̂d,i)

are chosen as follows:

θ̄i,0 =
tfd,iv

i
i

|di
i|
, θ̄i,2 =

tfd,iv
f
i

|df
i|
, θ̄i,1 = 3− θ̄i,0 − θ̄i,2 ,

then the function

ζi(t̂d,i) =

3∑

k=0

ζ̄i,kb
3
k(t̂d,i) ,

with control points

ζ̄i,0 = 0 , ζ̄i,1 =
1

3
θ̄i,0 , ζ̄i,2 =

1

3

(
θ̄i,0 + θ̄i,1

)
, ζ̄i,3 = 1 ,

also satisfies its boundary conditions ζi(0) = 0 and ζi(1) = 1. Hence, for any vector Ξi, we can construct a

pair of quintic spatial PH Bézier curve pd,i(ζi) and timing law θi(t̂d,i) in quadratic Bézier polynomial form,

such that the boundary conditions for pd,i(ζi) and ζi(t̂d,i) are satisfied.

As discussed in Chapter 2, we seek to generate trajectories that are collision-free and meet the dynamic

constraints of the vehicles. The dynamics along the trajectory are given by Equations (2.12)-(2.14) and their

bounds in (2.15). In general, it is possible to preserve the Bézier structure in these equations and take full

advantage of the favorable properties of Bézier curves. For those cases where this is not immediately possible,

we aim to rewrite and transform the equations into Bézier (or rational Bézier) form. Evaluating these

dynamic constraints involves finding the global minima and maxima of high-degree polynomials. However,

as described in Section 3.2 and [17], finding the global minima and maxima of polynomial and rational Bézier

curves is extremely computationally efficient. To begin with, we derive from the above-given spatial path

pd,i(ζi), the first and second derivatives with respect to ζi:

p′
d,i(ζi) = 5

4∑

k=0

(p̄i,k+1 − p̄i,k) b
4
k(ζi) , (4.8a)

p′′
d,i(ζi) = 20

3∑

k=0

(p̄i,k+2 − 2p̄i,k+1 + p̄i,k) b
3
k(ζi) . (4.8b)

Subsequently, as an inherent property of PH Bézier curves, the parametric speed σi(ζi) and its first deriva-
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tive σ′
i(ζi) with respect to ζi are Bézier polynomials as well

σi(ζi) =

4∑

k=0

σ̄i,kb
4
k(ζi) , (4.9a)

σ′
i(ζi) = 4

3∑

k=0

(σ̄i,k+1 − σ̄i,k) b
3
k(ζi) , (4.9b)

where the control points σ̄i,k are functions of Āi,0, Āi,1, and Āi,2:

σ̄i,0 = |Āi,0|2 , σ̄i,1 =
1

2

(
Āi,0Ā∗

i,1 + Āi,1Ā∗
i,0

)
,

σ̄i,2 =
1

6

(
Āi,0Ā∗

i,2 + 4|Āi,1|2 + Āi,2Ā∗
i,0

)
,

σ̄i,3 =
1

2

(
Āi,1Ā∗

i,2 + Āi,2Ā∗
i,1

)
, σ̄i,4 = |Āi,2|2 .

Now, we can use Equations (4.8) and (4.9), along with the expression for the timing law θi(t̂d,i), to formulate

the dynamic equations. Equation (2.12) shows that the flight-path angle γi(ζi) involves an arcsin(·) function,

which clearly is not of the Bézier form. Also, given the fact that the bounds for the flight-path angle are

asymmetric and that γi(ζi) can take negative values, there is a need for a signed quantity with which

an equivalent constraint can be constructed and preferably expressed in Bézier form. Fortunately, this is

achieved by evaluating sin (γi(ζi)) instead of γi(ζi), since firstly, the argument of the arcsin(·) function in

Equation (2.12) is a rational function, which can be rewritten as a rational Bézier curve and, secondly,

the function sin(·) is a strictly monotonically increasing function with the appropriate sign convention on

the interval [− 1
2π,

1
2π]. Here, the assumption is made that − 1

2π < γmin < γmax <
1
2π, which is a valid

assumption, considering the fact that constraints on the flight-path angles are not required when |γi| ≥ 1
2π

are allowed. Hence, Equation (2.12) can be transformed into a standard rational Bézier curve:

sin (γi(ζi)) =
〈p′

d,i(ζi), k̂ 〉
σi(ζi)

=

∑4
k=0 wγsi,kγ̄si,kb

4
k(ζi)

∑4
k=0 wγsi,kb

4
k(ζi)

, (4.10)

where γ̄si,k and wγsi,k are the control points and weights of the rational Bézier curve, respectively. Therefore,

an equivalent constraint for the flight-path angle γi(ζi) can be expressed as follows

sin (γmin) ≤ sin (γi(ζi)) ≤ sin (γmax) .

Given the relation between t̂d,i and td in (4.2), the desired speed profile vd,i in Equation (2.13) can be easily

expressed as a Bézier polynomial, by first finding the composition of functions (p′
d,i ◦ ζi)(t̂d,i) as outlined
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in [27,32,33] and, subsequently, using the multiplication property of Bernstein basis polynomials to determine

the control points of vd,i(t̂d,i):

vd,i(t̂d,i) =
1
tf
d,i

σi(ζi(t̂d,i))θi(t̂d,i)

=
14∑

k=0

v̄di,kb
14
k (t̂d,i) . (4.11)

The acceleration profile along the path ap
d,i(td) given in Equation (2.14a) is defined as the first derivative of

vd,i(td) with respect to td. Hence, using Equation (4.11), we obtain the following Bézier polynomial for the

acceleration profile as function of t̂d,i :

ap
d,i(t̂d,i) =

14

tfd,i

13∑

k=0

(v̄di,k+1 − v̄di,k) b
13
k (t̂d,i)

=

13∑

k=0

ādi,kb
13
k (t̂d,i) . (4.12a)

In general, the equation for the acceleration profile at
d,i(td), as defined in Equation (2.14b), does not permit

a Bézier polynomial form, due to the square root arising from the 2-norm. Hence, in order to obtain a Bézier

polynomial for the framework to work with, the expression for (at
d,i(t̂d,i))

2 is derived and evaluated against

an equivalent bound. By doing so, the following Bézier polynomial is obtained:

(at
d,i(t̂d,i))

2 =
1

(tfd,i)
4
‖p′

d,i(ζi(t̂d,i))θ̇i(t̂d,i) + p′′
d,i(ζi(t̂d,i))θ

2
i (t̂d,i)‖2

=

26∑

k=0

ādi,kb
26
k (t̂d,i) , (4.12b)

where θ̇i(t̂d,i) = dθi(t̂d,i)/dt̂d,i. The equations for γ̇i(td) and ψ̇i(td) in Equation (2.13) can be transformed

into rational Bézier polynomials as well. This can be performed straightforwardly for the turn rate, since

ψ̇i(td) in Equation (2.13) is already a rational function. To evaluate the bounds on the rate of change of the

flight-path angle, we derive the expression for γ̇2i (td) in terms of Bézier polynomials, instead of the rate of

change of the flight-path angle γ̇i(td), due the square root in the denominator of γ̇i(td) in Equation (2.13).

Equivalence of the constraint is achieved, if we assume that the bounds on γ̇i(td) are of symmetric nature.

43



We obtain the following expression for γ̇2i (t̂d,i):

γ̇2i (t̂d,i) =






σi(ζi(t̂d,i))〈p′′
d,i(ζi(t̂d,i)), k̂ 〉 − σ′

i(ζi(t̂d,i))〈p′
d,i(ζi(t̂d,i)), k̂ 〉

σi(ζi(t̂d,i))
(

〈p′
d,i(ζi(t̂d,i)), î 〉2 + 〈p′

d,i(ζi(t̂d,i)), ĵ 〉2
) 1

2

θi(t̂d,i)

tfd,i






2

=

∑48
k=0 wγdi,kγ̄di,kb

48
k (t̂d,i)

∑48
k=0 wγdi,kb

48
k (t̂d,i)

, (4.13)

while ψ̇i(t̂d,i) is given by

ψ̇i(t̂d,i) =
〈p′

d,i(ζi(t̂d,i))× p′′
d,i(ζi(t̂d,i)), k̂ 〉

〈p′
d,i(ζi(t̂d,i)), î 〉2 + 〈p′

d,i(ζi(t̂d,i)), ĵ 〉2
θi(t̂d,i)

tfd,i

=

∑24
k=0 wψdi,kψ̄di,kb

24
k (t̂d,i)

∑24
k=0 wψdi,kb

24
k (t̂d,i)

. (4.14)

In order for the generated trajectories to meet the dynamic constraints of the vehicles, Equations (4.10)-(4.14)

are required to satisfy the following bounds, which are equivalent to the bounds given in (2.15):

vd,min ≤ vd,i(t̂d,i) ≤ vd,max , sin (γmin) ≤ sin (γi(ζi)) ≤ sin (γmax) ,

γ̇2i (t̂d,i) ≤ γ̇2max , |ψ̇i(t̂d,i)| ≤ ψ̇max ,

|ap
d,i(t̂d,i)| ≤ ad,max or (at

d,i(t̂d,i))
2 ≤ a2d,max ,

(4.15)

for all ζi, t̂d,i ∈ [0, 1].

Lastly, a minimum spatial clearance Ed has to be ensured for the generated trajectories to be collision-

free. In Section 2.3, two strategies were presented to guarantee spatial deconfliction between the trajectories.

Spatial separation is guaranteed if and only if the inequality in Equation (2.16) is satisfied. Since the spatial

paths are PH Bézier curves, this inequality can be expressed as:

min
i,j=1,...,N

i6=j

∥
∥
∥
∥
∥

5∑

k=0

p̄i,kb
5
k(ζi)−

5∑

k=0

p̄j,kb
5
k(ζj)

∥
∥
∥
∥
∥

2

≥ E2
d , ∀ζi, ζj ∈ [0, 1]. (4.16)

In the case when temporal separation is preferred over spatial separation, the path pd,i(ζi) has to be re-

parameterized by the time variable t̂d,i. We have seen earlier that this can be performed efficiently since we

are working with Bézier polynomials, and the composition of two Bézier polynomials is a Bézier polynomial.
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It can be easily verified that pd,i(t̂d,i) is a degree 15 spatial PH Bézier curve. Hence, let

pd,i(t̂d,i) =

15∑

k=0

p̃i,kb
15
k (t̂d,i) , ∀t̂d,i ∈ [0, 1] , (4.17)

where p̃i,k are the control points, which can be determined using the recursive algorithm for computing the

control points of the composition of two Bézier polynomials. First, we consider the case that tfd,i = tfd,j = Td

for i, j = 1, . . . , N , i.e. missions where the vehicles arrive simultaneously at their desired destination. Then,

temporal separation between the ith and jth vehicle is defined as

min
i,j=1,...,N

i6=j

∥
∥
∥
∥
∥

15∑

k=0

(p̃i,k − p̃j,k) b
15
k (t̂d)

∥
∥
∥
∥
∥

2

≥ E2
d , ∀t̂d ∈ [0, 1] , (4.18)

where now t̂d = td/Td.

In the general case, when tfd,i 6= tfd,j for i, j = 1, . . . , N and i 6= j, the issue arises that t̂d,i 6= t̂d,j at

time td, since the variables t̂d,i and t̂d,j are normalized by tfd,i and tfd,j, respectively. Consider two trajectories

pd,i(t̂d,i) and pd,j(t̂d,j) for vehicles i and j. Without loss of generality, we assume that tfd,i > tfd,j and, hence,

tfdij := min{tfd,i, tfd,j} = tfd,j. Note that the mission for vehicle j has terminated for all td > tfdij and, thus,

to guarantee temporal separation between vehicles i and j, it is sufficient to satisfy

∥
∥pd,i(t̂d,i)− pd,j(t̂d,j)

∥
∥
2 ≥ E2

d , ∀ td ∈ [0, tfdij ] . (4.19)

Since t̂d,i 6= t̂d,j at time td, Equation (4.19) cannot be evaluated straightforwardly with the available al-

gorithms. However, this can be addressed by subdividing one of the trajectories using the de Casteljau

algorithm. A description of the de Casteljau algorithm can be found in Chapter 3. Because tfd,i > tfd,j, we

use the de Casteljau algorithm to subdivide the trajectory of vehicle i at α = tfdij/t
f
d,i. From the de Castel-

jau algorithm we obtain a Bézier curve pαd,i(t̂
α
d,i) defined on t̂αd,i ∈ [0, 1], which corresponds to the trajectory

segment pd,i(t̂d,i) for td ∈ [0, tfdij ]. If we let t̂αd,i evolve at the same pace as t̂d,j, that is t̂αd,i = t̂d,j , then it can

be shown that

pd,i(t̂d,i) = pαd,i(t̂d,j) , ∀ td ∈ [0, tfdij ] .

This result is proven in Lemma 1 below. First, we state the following Proposition, which is instrumental in

the proof of the Lemma.

Proposition 1 Given a degree n Bézier polynomial r(ζ) =
∑n

k=0 r̄kb
n
k (ζ) and constant α ∈ (0, 1), let

rα(ζα) =
∑n

k=0 r̄
α
k b
n
k(ζ

α) be the Bézier polynomial that identically describes the subsegment of r(ζ) defined
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over ζ ∈ [0, α], resulting from the subdivision of the curve at ζ = α using the de Casteljau algorithm. The

following relation holds

rα(ζα) = r(αζα) , ∀ζα ∈ [0, 1] .

Proof: The proof is given in Appendix B.1. �

Lemma 1 Consider the trajectories pd,i(t̂d,i) and pd,j(t̂d,j) for vehicle i and j, respectively, where t̂d,i , t̂d,j ∈

[0, 1] and, without loss of generality, assume that tfd,i > tfd,j. Letting α = tfdij/t
f
d,i, define pαd,i(t̂

α
d,i) to be the

Bézier curve that identically describes the subsegment of pd,i(t̂d,i) defined over t̂d,i ∈ [0, α], resulting from

the subdivision of the curve at t̂d,i = α using the de Casteljau algorithm. The following relation holds

pd,i(t̂d,i) = pαd,i(t̂d,j) , ∀ td ∈ [0, tfdij ] ,

where tfdij := min{tfd,i, tfd,j} = tfd,j.

Proof: The proof is given in Appendix B.2. �

Hence, using Lemma 1, Equation (4.19) can be rewritten as a function of a single parameterizing variable

as
∥
∥pαd,i(t̂d,j)− pd,j(t̂d,j)

∥
∥
2 ≥ E2

d , ∀ t̂d,j ∈ [0, 1] .

With this result, and noting that the trajectories pd,i(t̂d,i) are given by Equation (4.17), the temporal

separation constraint for the case of N vehicles can now be expressed as

min
i,j=1,...,N

i6=j

∥
∥
∥
∥
∥

15∑

k=0

p̃ij,kb
15
k (t̂dij )

∥
∥
∥
∥
∥

2

≥ E2
d , ∀ t̂dij ∈ [0, 1] , (4.20)

where t̂dij = td/t
f
dij

with tfdij := min {tfd,i, tfd,j}, and

p̃ij,k =







p̃αi,k − p̃j,k , if tfd,i > tfd,j

p̃i,k − p̃αj,k , if tfd,i < tfd,j

.

In the expressions above, p̃αi,k and p̃αj,k are the control points that are obtained from curve subdivision with

the de Casteljau algorithm. Finally, we note that there exist extremely computationally efficient algorithms,

associated with Bézier curves, to evaluate Equations (4.16) and (4.18) (or (4.20)).
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4.4 Trajectory Generation: Constrained Optimization

The constrained optimization problem presented in Equation (2.3) can now be re-formulated for the frame-

work that specifically uses quintic PH Bézier curves to represent the spatial paths, and quadratic Bézier

polynomials for the timing laws:

min
Ξi×...×ΞN

J(·)

subject to dynamic constraints of the vehicles (4.15),

spatial deconfliction ((4.16), (4.18) or (4.20)),

mission-specific constraints,

(4.21)

where Ξi = [ |di
i|,|d

f
i|,φi,0,φi,2,t

f

d,i ]
⊤

represents the vector of optimization parameters for the ith vehicle, and

J(·) is a given objective function. Note that the boundary conditions in (4.7) and the boundary conditions

on the function ζi(t̂d,i) are automatically satisfied and, hence, do not impose extra constraints. Lastly, if

simultaneous time-of-arrival is required, then the additional constraints would be given by Equation (2.10).

However, this can be implemented simpler, by substituting for all tfd,i with Td in the equations of Sec-

tions 4.2 and 4.3.

The resulting constrained optimization problem is nonlinear and nonconvex and, hence, the solutions

are in general suboptimal [13]. The problem belongs to the class of generalized semi-infinite programming

(SIP) problems, which by nature are nonsmooth, since the gradients of the objective function or constraints

may not exist. However, the generalized directional derivative f◦
i (x; d) and the subdifferential ∂fi(x) of

each of the nonsmooth functions fi(x), as defined in [24], have specific structures for this type of problems.

Especially, the subdifferential ∂fi(x) plays an important role in algorithms solving nonsmooth optimization

problems. Algorithms for solving SIP problems can be found in the literature, such as in [76]. However,

they are mostly based on discretization and approximation of the functions.

In our formulation, by virtue of using Bézier curves, we are able to solve the semi-infinite programming

problem as a (finite) nonsmooth problem, for which we can compute the whole subdifferential ∂fi(x) of each

of the nonsmooth functions fi(x). The latter is in general not possible, and existing solvers for nonsmooth

optimization problems rely on approximating the whole subdifferential, such as the bundle methods [4].

In Chapter 5 we will discuss in more detail the theory of nonsmooth optimization, and in Chapter 6 we

formulate a distributed algorithm for our nonsmooth cooperative trajectory-generation problem, where we

exploit the knowledge of the whole subdifferential.
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Initial

position

Desired final

position

Figure 4.1: Artist’s impression of the simulation scenario for a team of three fixed-wing UAVs.

4.5 Simulation Examples

In this section, we demonstrate the efficacy of the cooperative trajectory-generation framework by considering

two simulation examples of teams of multiple UAVs executing a cooperative mission. The cooperative

trajectory-generation framework, as outlined in Sections 4.1-4.3, is implemented in Matlab R© on a desktop

computer with Intel R© CoreTM i5-3470 CPU 3.20GHz, 8GB of RAM and running 64-bit Windows 7. Standard

Matlab R© routines are used to solve the constrained nonlinear programming.

4.5.1 Fixed-Wing UAVs Example

In this example, a simulation scenario will be presented where three fixed-wing UAVs are tasked to converge

to and follow three spatially deconflicted paths and arrive at their final destinations at the same time.

Representative examples of such missions are simultaneous monitoring of multiple targets located at different

positions, and time efficient retrieval of assets after a survey mission. Note that these missions impose only

relative temporal constraints on the arrival of the UAVs.

The simulation scenario is depicted in Figure 4.1. Three fixed-wing UAVs are tasked to arrive at their

respective final positions simultaneously. The initial and final flight conditions (see Table 4.1) are chosen

such that, if the trajectory generation was performed individually rather than cooperatively, the paths would

intersect at a single point where the UAVs collide with each other. We demonstrate that the proposed coop-

erative trajectory-generation framework generates collision-free trajectories by enforcing spatial deconfliction

through spatial or temporal separation of the vehicles.

In the planning phase, we generate a desired trajectory for each UAV so as to cooperatively execute the
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Table 4.1: Flight conditions and dynamic constraints of the fixed-wing UAVs.

UAV 1 UAV 2 UAV 3

p
i

d
[km] (0 , 3.00 , 3.00) (2.60 , −1.50 , 3.00) (−2.60 , −1.50 , 3.00)

vi
d

[m/s] 25 25 25

γi [deg] 0 0 0

ψi [deg] −90 150 30

p
f

d
[km] (0 , −3.00 , 4.00) (−2.60 , 1.50 , 4.00) (2.60 , 1.50 , 4.00)

vf
d

[m/s] 25 25 25

γf [deg] 0 0 0

ψf [deg] −90 150 30

vd,min [m/s] 18 18 18

vd,max [m/s] 32 32 32

ad,max [m/s2] 10 10 10

γmin [deg] −20 −20 −20

γmax [deg] 30 30 30

γ̇max [deg/s] 11.46 11.46 11.46

ψ̇max [deg/s] 11.46 11.46 11.46

mission shown in Figure 4.1. The values for the boundary conditions are given in Table 4.1, along with the

dynamic constraints for each individual aircraft. To show the efficacy of the framework in generating desired

deconflicted trajectories, three different cases are considered. In Case I, no minimum separation constraints

are imposed; Case II guarantees a minimum separation between the vehicles via spatial separation; while

Case III ensures collision-free trajectories through temporal separation. In all three cases, the generated

desired trajectories satisfy the dynamic constraints of the vehicles and also the temporal specifications of

the mission.

Figure 4.2 shows the flight paths for Case I. The separation between the vehicles is presented in Fig-

ure 4.2b and separations between the paths are given in Figures 4.2c-4.2e. Since no deconfliction constraints

are imposed here, by construction of the example, the three generated paths intersect at one point as ex-

pected, and the UAVs arrive at the intersection simultaneously. The collision occurs around td = 150 s

(see Figure 4.2b). Hence, although the generated trajectories are flyable, they are under no circumstances

feasible.

Case II demonstrates the generation of collision-free trajectories through spatial separation, where the

constraints are given in Equation (4.16). The results are presented in Figure 4.3. It can be observed that

the three trajectories are separated both in space as well as in time, since the temporal separation is always

greater than or equal to the spatial separation.

In the third and final case, spatial deconfliction is ensured via temporal separation (Equation (4.20)).

The generated trajectories for this case are given in Figures 4.4 and 4.5. Comparison of Figure 4.4 with

Figure 4.2 shows that the generated spatial paths in both cases do not differ much. However, deconfliction

through temporal separation between the aircraft is ensured in Case III by adjusting the speed profiles of
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Table 4.2: Flight conditions and dynamic constraints of the multirotor UAVs.

UAV 1 UAV 2 UAV 3

pi

d [m] (0, 2.50, 1.00) (5.00, 5.00, 1.00) (3.00, 1.00, 1.00)

vi

d [m/s] 0 0 0

pf

d [m] (45.00, 60.00, 10.00) (45.00, 63.00, 10.00) (45.00, 66.00, 10.00)

vf

d [m/s] 4.00 4.00 4.00

vd,max [m/s] 6.76 6.76 6.76

ad,max [m/s2] 4.28 4.28 4.28

the UAVs along their respective paths. This is an example where the benefit of introducing the timing law

comes to its full right. Here, independent adjustment of the speed profiles from the spatial paths is achieved

through the decoupling of the temporal element from the spatial element of the trajectory by the timing

law. Lastly, from Figure 4.5 it is clear that the generated desired trajectories are flyable, as all dynamic

constraints are satisfied.

4.5.2 Multirotor UAVs Example

In this simulation example, a team of three multirotors, equipped with cameras, are tasked to inspect a

road. The complete simulation can be found in [21]. During the planning phase, a desired trajectory for

each UAV is generated so as to cooperatively execute the transition from vehicle launch to the start of the

road search mission. At their initial holding areas, the UAVs are hovering stationary, and they are required

to arrive at the desired starting point of the road simultaneously. This transition phase is an example of a

typical multi-vehicle cooperative mission. The numerical values for the boundary conditions for this part of

the mission are given in Table 4.2, along with the dynamic constraints for each individual multirotor. The

number of optimization variables is 4N +1, while the number of inequality constraints is 1
2N(N − 1) + 2N .

The latter includes the evaluation of the minimum distance between 1
2N(N − 1) pairs of trajectories. The

computation time taken to generate the set of trajectories for this particular example, where N = 3, is 12.4 s.

Figure 4.6 shows the flight paths for transition phase. The separation between the vehicles is presented in

Figure 4.6b and the separations between the paths are given in Figures 4.6c-4.6e. Recall, that deconfliction

is enforced in this mission by temporal separation. Therefore, although the minimum spatial separations

between the paths are less than the required Ed = 2 meters during the planning phase, as shown in Fig-

ures 4.6c-4.6e, the algorithm ensures that the vehicles are sufficiently separated from each other at any point

in time td (Figure 4.6b). From Figure 4.7 it is clear that the generated desired trajectories do not violate the

maximum permissible speed and total acceleration. Lastly, note that the trajectory-generation framework,

by introducing the timing law, can cope with zero-speed conditions that are characteristic to multirotors.
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Figure 4.2: Three-dimensional trajectories for a team of three cooperating UAVs. Case I: no spatial decon-
fliction is imposed. Computation time is 5.6 s.
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Figure 4.3: Three-dimensional trajectories for a team of three cooperating UAVs. Case II: spatial deconflic-
tion is ensured through spatial separation. Computation time is 16.2 s.
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Figure 4.4: Three-dimensional trajectories for a team of three cooperating UAVs. Case III: spatial decon-
fliction is ensured through temporal separation. Computation time is 14.5 s.
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Figure 4.5: Dynamic constraints and timing laws for a team of three cooperating UAVs. Case III: spatial
deconfliction is ensured through temporal separation.
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Figure 4.6: Three-dimensional trajectories for a team of three cooperating multirotors. Spatial deconfliction
is ensured through temporal separation. The computation time is 12.4 s.
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Figure 4.7: Dynamic constraints and timing laws for a team of three cooperating multirotors. Spatial
deconfliction is ensured through temporal separation.
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Chapter 5

Nonsmooth Optimization

While the previous chapters discussed in detail the formulation of a cooperative trajectory-generation frame-

work, this chapter characterizes the resulting constrained nonlinear optimization problem that is given by

Equation (4.21). The reasons for a deeper understanding of the optimization problem at hand are twofold.

First, it is well-known that every optimization problem can be solved much more efficiently with tailor-made

algorithms than one-size-fits-all solutions. In fact, the standard Matlab R© routines that are used in Chap-

ter 4 are not suitable and, therefore, inefficient for our class of optimization problems. Second, in view of

our quest to distribute the cooperative trajectory-generation framework over the team of vehicles, readily

available optimization software and algorithms cannot be easily used, since they are only designed to be ex-

ecuted in a centralized way. Relevant work on distributed optimization has been reported in the literature;

see, for example, [46, 70, 71, 89] and the references therein. In general, these distributed algorithms are also

only applicable to certain classes of optimization problems and, more than often, our trajectory-generation

framework does not satisfy the underlying assumptions.

Hence, this chapter will focus on the characterization of the centralized optimization problem first.

We shall see in Section 5.1 that the trajectory-generation framework belongs to the class of semi-infinite

programming (SIP) problems, which are nonsmooth, i.e. non-differentiable, by nature. Since in this case, we

cannot apply smooth optimization techniques that are vastly based on the existence of gradients, Sections 5.2

and 5.3 subsequently present the mathematical notions and tools commonly used in nonsmooth analysis and

optimization theory, respectively. The next chapter will propose a distributed algorithm that is suitable for

application to our nonsmooth optimization problem.

5.1 Nonsmooth Cooperative Trajectory Generation

In this section, we discuss the cooperative trajectory-generation problem in more detail from an optimization

point of view. The aim is to determine the mathematical properties, so that the right apparatus can be

used in search of a viable solution to the distributed cooperative trajectory-generation problem. We start
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by restating the (centralized) cooperative trajectory-generation framework as formulated in Chapter 4 and

given by Equation (4.21):

min
Ξi×...×ΞN

J(·)

subject to dynamic constraints of the vehicles (4.15),

spatial deconfliction ((4.16), (4.18) or (4.20)),

mission-specific constraints,

where the vector of optimization variables Ξi completely determines the spatial trajectory for vehicle i, that

is decomposed into a spatial path and a timing law, represented by quintic PH Bézier curves and quadratic

Bézier polynomials, respectively. Now let us take a closer look at the functions determining the constraints.

An example of such a function is the speed profile vd,i(t̂d,i) for vehicle i. We have seen that the speed

profile vd,i(t̂d,i) was expressed as a Bézier polynomial and presented in Equation (4.11) as

vd,i(t̂d,i) =

14∑

k=0

v̄di,kb
14
k (t̂d,i) .

Note that the above notation of the speed profile vd,i(t̂d,i) reflects the speed profile for a given vector Ξ. In

fact, the control points of the cost and constraint Bézier polynomials are functions of the vector Ξ. This is

in essence the objective of the trajectory-generation problem: find an optimal vector Ξ, such that the cost

function J(·) is minimized while the constraints are satisfied. Hence, to gain more insight in the behavior

of these functions, they should be written explicitly as a function of the optimization variable Ξ. As an

example, consider the constraint on the maximum speed shown in Equation (4.15). Then this particular

constraint can be written as

vd,i(Ξ, t̂d,i)− vd,max ≤ 0 .

It is obvious that the above inequality is equivalent to

g(Ξ)− vd,max ≤ 0 ,

where g(Ξ) is defined as

g(Ξ) := max
t̂d,i∈[0,1]

vd,i(Ξ, t̂d,i) .
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In this representation, it is immediately clear that the optimization problem is not as benign as it initially

appeared to be. First, the maximum function sets off all alarm bells as it is non-differentiable and turns

the cooperative trajectory-generation framework into a nonsmooth optimization problem. Second, to make

matters worse, the dimensionless variable t̂d,i is defined on the compact (continuous) interval [0, 1]. Therefore,

in contrast to a case where t̂d,i takes values from a discrete set, the constraint g(Ξ) − vd,max ≤ 0 actually

consists of an infinite number of inequality constraints. These optimization problems are termed semi-

infinite programming (SIP) problems since finitely many variables are subject to infinitely many inequality

constraints [43, 75, 76, 92, 93, 101].

SIP problems commonly arise in optimization-based engineering, for example in worst-case structural or

control systems designs [75]. Therefore, there is an extensive amount of research available in the literature.

Early works are summarized in [43, 93], whereas present day approaches are described in [92, 101]. SIP

problems are hard to solve and, in fact, dealing with nonsmooth functions is not the main difficulty. In

order for a point Ξ to be feasible, each constraint has to be satisfied for all t̂d,i ∈ [0, 1] at Ξ. In other words,

obtaining a local maximum is not sufficient; it is necessary to find the global maximum over t̂d,i ∈ [0, 1] at the

point Ξ. Results in global optimization show that finding a global maximum for nonlinear functions is far

from a trivial task and is definitely computationally expensive. Additionally, the fact that the functions g(Ξ)

are non-differentiable is not making it any easier either. In general, existing algorithms for solving SIP

problems resort to discretizing the set over which the global maxima of the constraint functions have to

be computed. By doing so, the infinitely constrained optimization problem is transformed into a finitely

constrained optimization problem. The latter is known as a finite min-max constrained optimization problem.

An infinite sequence of approximating problems is obtained by refining the discretization at each step and

consistency conditions are derived for which the solutions of the approximating problems converge to the

solution of the original problem. Several works based on this approach can be found in [74, 76, 80–82, 87].

It must be noted, that these algorithms are formulated such that they are to be executed in a centralized

way. To the best of our knowledge, distributed algorithms for solving SIP problems are not reported in the

literature.

In what follows, we will define a generic SIP problem without specifying any particular function from

Chapter 4, for example the speed profile vd,i. Instead we will consider generic (constraint) functions of the

same form and, therefore, impose the same mathematical properties. As a consequence, at least for now, we

will abandon the naming convention for the variables and functions from the previous chapters, and switch

to a more commonly used notation in the field of optimization. For example, the vector of optimization

variables Ξ will be denoted by x, and should not be confused with the x-coordinates of vehicles. Thus,
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consider the following constrained optimization problem:

minimize f(x)

subject to g(x) ≤ 0 ,

(5.1)

where f : Rn → R is locally Lipschitz continuous at x ∈ R
n, that is there exists some ǫ > 0 such that

|f(y)− f(z)| ≤ K‖y − z‖ , for all y, z ∈ B(x; ǫ) ,

with K being the Lipschitz constant and B(x; ǫ) being defined as the open ball with center x and radius ǫ.

The vector-valued function g : Rn → R
m is defined as

g(x) := [ g1(x), . . . , gm(x) ]⊤ ,

with gi : R
n → R locally Lipschitz continuous. Moreover, the functions gi(x) are of the form

gi(x) = max
ζ∈Ẑi

γi(x, ζ) ,

where Ẑi ⊂ R
li . The functions γi : R

n×R
li → R are continuous and their gradients ∇xγi(·, ·) exist and are

continuous. It can be verified that the cooperative trajectory-generation framework, presented in Chapter 4,

falls under the class of SIP optimization problems as described by (5.1). In particular, the functions γi(x, ζ)

in our trajectory-generation framework are expressed as Bézier polynomials. In Chapter 3 we have seen

that the global minima and maxima of Bézier polynomials can be efficiently computed, without resorting

to discretization, using an iterative algorithm that exploits the properties of Bézier polynomials. Therefore,

not only can we evaluate the values of constraints gi at a point x, due to the fact that the global maxima

of each Bézier polynomial γi(x, ζ) are found, we can also perform these computations very efficiently. This

allows us to take a different approach than existing SIP algorithms, that are necessarily based on solving

the nested optimization problems simultaneously. Consider the constraints gi(x) given by

gi(x) = max
ζ∈Ẑi

γi(x, ζ) ,

where we now assume that all ζ̄ ∈ Ẑi for which gi(x) = γi(x, ζ̄), i.e. the maximizers ζ̄ of γi(x, ζ), are

known. Then the constraints gi(x) can be regarded as ‘ordinary’ nonsmooth functions in x, that are non-

differentiable at those points x where the global maximum is attained at multiple distinct values ζ̄. As a
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result, if at each x the set of maximizers for the functions γi(x, ·) are assumed to be known, then the SIP

Problem (5.1) reduces to a finite-dimensional nonsmooth optimization problem. Note that, by assumption

the gradients ∇xγi(x, ζ) for all ζ ∈ Ẑi exist and are continuous in x.

Although less complex compared to SIP problems, (finite-dimensional) nonsmooth optimization problems

are still hard to solve because the notion of gradient, and with that a clear and unique direction of descent,

simply does not exist. Definitely, nonsmooth optimization problems are not new, and many novel algorithms

have been proposed in the literature. They can roughly be categorized as derivative-free algorithms, and

approaches that analytically gather some sort of information regarding the behavior of the function in the

neighborhood of x at which it is non-differentiable. The latter methods are largely based on the general-

ized directional derivative, introduced by Clarke [24]. By Danskin’s Theorem [25], it then follows that the

generalized directional derivative for the type of nonsmooth functions such as the constraints gi(x), can be

analytically determined if the gradients ∇xγi(·, ·) exist and are continuous.

Encouraged by Danskin’s result, we follow the approaches based on the differential properties of non-

smooth functions, and subsequently extend existing (centralized) optimization algorithms to distributed

algorithms that are applicable to the class of problems where the cooperative trajectory-generation frame-

work belongs to. Hence, in the next section we give a brief overview of important results found in differential

calculus of nonsmooth functions, followed by a succinct summary on nonsmooth optimization theory.

5.2 Nonsmooth Analysis

In this section, we will examine the differential properties of a nonconvex function f : Rn → R that is locally

Lipschitz continuous and possibly non-differentiable at x ∈ R
n. We present several notions and concepts that

are required for the understanding and development of algorithms for nonsmooth optimization problems.

The present section and the next are by no means meant to be a thorough and complete discussion, but

merely a brief excerpt from references on this topic, such as [24,56,78]. For this reason, the reader is referred

to these references for the proofs to the theorems given in the following.

5.2.1 Subdifferentials and Subgradients

The classical definition of a directional derivative of a function f at x in the direction d ∈ R
n is defined by

f ′(x; d ) = lim
τ→0

f(x+ τd )− f(x)

τ
. (5.2)
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Note that this is a two-sided directional derivative and if f is differentiable at x, we obtain

f ′(x; d ) = 〈∇f, d 〉 , for all d ∈ R
n .

For a locally Lipschitz continuous function f , this classical directional derivative does not necessarily exist

at some x ∈ R
n. If the Lipschitz continuous function f is convex, then a one-sided directional derivative

exists in every direction d ∈ R
n.

Theorem 1 Let f : Rn → R be a convex function. Then the directional derivative f ′(x; d) exists in every

direction d ∈ R
n and it satisfies

f ′(x; d) = inf
τ>0

f(x+ τ d)− f(x)

τ
. (5.3)

The proof can be found in [56, 78] and is based on the convexity property of the function f . Related to the

directional derivative are the concepts of the subdifferential and subgradient of a convex function f at x,

which play important roles in nonsmooth convex optimization theories.

Definition 2 The subdifferential of a convex function f : Rn → R at x ∈ R
n is the set

∂cf(x) = {ξ ∈ R
n | f(y) ≥ f(x) + ξ⊤(y − x) for all y ∈ R

n} . (5.4)

Each vector ξ ∈ ∂cf(x) is called a subgradient of f at x.

The next theorem gives the relation between the subdifferential ∂cf(x) and the directional derivative f ′(x; d),

and summarizes the properties of the subdifferential. The proof of the theorem is given in [56].

Theorem 2 Let f : Rn → R be convex. Then at every x we have

(i) f ′(x; d) = max {ξ⊤d | ξ ∈ ∂cf(x)} for all d ∈ R
n,

(ii) ∂cf(x) = {ξ ∈ R
n | f ′(x; d) ≥ ξ⊤d } for all d ∈ R

n,

(iii) ∂cf(x) is a nonempty, convex and compact set such that ∂cf(x) ⊂ B(0;K), where K is the Lipschitz

constant of f at x,

(iv) the point-to-set mapping ∂cf(·) : Rn → P(Rn) is upper semicontinuous, i.e., if yi → x and ξi ∈ ∂cf(x)

for each i, then each accumulation point ξ of (ξi) is in ∂cf(x).

Theorem 2 shows that, for convex functions, either the subdifferential or the directional derivative is sufficient

to compute the other.
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Nonsmooth optimization theories for nonconvex Lipschitz continuous functions generally find their origin

in their convex counterparts. We will see in the next section, that nonsmooth convex optimization theories are

based on the notion of the subgradient and subdifferential of a convex function f , as defined by Definition 2

and closely related to the directional derivative f ′(x; d). Unfortunately, the classical directional derivative,

given by Equation (5.2), does not necessarily exist for a locally Lipschitz continuous function, with the

exception of convex nonsmooth functions. The existence of the classical directional derivative is guaranteed,

because the convexity property holds globally for a nonsmooth convex function. This is no longer true for a

nonconvex Lipschitz continuous function, hence, we need an alternative definition of a directional derivative

such that it holds only in the local neighborhood of x. For this reason, the (Clarke) generalized directional

derivative, as proposed by Clarke in [24], is widely used in the field of nonsmooth optimization of nonconvex

functions. The generalized directional derivative is defined as follows.

Definition 3 (Clarke). Let f : R
n → R be a locally Lipschitz continuous function at x ∈ R

n. The

generalized directional derivative of f at x in the direction of d ∈ R
n is defined by

f◦(x; d) = lim sup
y→x
τ↓0

f(y + τ d)− f(y)

τ
. (5.5)

In [24] it is shown that for a function f that is locally Lipschitz at x with constant K, the generalized

directional derivative satisfies

|f◦(x; d)| ≤ K ‖d‖ .

This means that the generalized directional derivative is well-defined and finite for locally Lipschitz contin-

uous functions, and, analogous to Theorem 2, allows for a generalization of the subdifferential ∂f(x) at x

for nonconvex locally Lipschitz continuous functions. The following definition of the subdifferential is given

in [24], where it is termed as generalized gradient.

Definition 4 (Clarke). Let f : Rn → R be a locally Lipschitz continuous function at x ∈ R
n. Then the

subdifferential of f at x is the set ∂f(x) of vectors ξ ∈ R
n such that

∂f(x) = {ξ ∈ R
n | f◦(x; d) ≥ ξ⊤d for all d ∈ R

n} . (5.6)

Each vector ξ ∈ ∂f(x) is called a subgradient of f at x.

The reason why ∂f(x) is called the generalized gradient in [24], becomes clear if f is smooth, i.e. continuously

differentiable. In that case, the subdifferential ∂f(x) reduces to the singleton set {∇f(x)}. Moreover, the
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subdifferential for Lipschitz continuous functions is in fact a generalization of the subdifferential for convex

functions, as shown by the following theorem [56].

Theorem 3 If the function f : Rn → R is convex, then

(i) f ′(x; d) = f◦(x; d) for all d ∈ R
n, and

(ii) ∂cf(x) = ∂f(x).

The next theorem presents some properties of the subdifferential for nonconvex Lipschitz continuous func-

tions. Again, the proof of the theorem can be found in [56].

Theorem 4 Let f : Rn → R be a locally Lipschitz continuous function at x ∈ R
n with a Lipschitz con-

stant K. Then

(i) ∂f(x) is a nonempty, convex and compact set such that ∂f(x) ⊂ B(0;K),

(ii) f◦(x; d) = max {ξ⊤d | ξ ∈ ∂f(x)} for all d ∈ R
n,

(iii) the point-to-set mapping ∂f(·) : Rn → P(Rn) is upper semicontinuous.

A Lipschitz function is differentiable almost everywhere by Rademacher’s Theorem and, hence, the gradient

exists almost everywhere. Let the set Ωf denote the set of points where the function f is not differentiable.

Then the following theorem allows us to compute the subdifferential ∂f(x) of a locally Lipschitz continuous

function f at x ∈ R
n. The proof is presented in [56].

Theorem 5 Let f : Rn → R be a locally Lipschitz continuous function at x ∈ R
n. Then

∂f(x) = conv {ξ ∈ R
n | there exists (xi) ⊂ R

n\Ωf such that xi → x and ∇f(xi) → ξ} .

Figure 5.1 presents an example of a subdifferential of a locally Lipschitz continuous function f(x). The

figure shows the level set f(x) = c and the local minimizer is indicated with x∗. At the point x1, the function

is differentiable and, therefore, the subdifferential ∂f(x1) consists of the single element ∇f(x1). At x2 the

function is non-differentiable and we can use Theorem 5 to find the two subgradients ξ1 and ξ2, and obtain

the subdifferential ∂f(x2) = conv{ξ1, ξ2}. Definitely, Theorem 5 is rather cumbersome to compute the

subdifferential. Rules have been derived to compute the subdifferential of basic standard functions and we

refer, for example, to [24] for a more in-depth overview. Nevertheless, in the following we will extensively

use the maximum function and, hence, we present a theorem that states how to compute the subdifferential

of such a function. First we need the definition of a regular function.
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∂f(x1) = ∇f(x1)

∂f(x2)x2x1

x
∗

ξ1

ξ2

f(x
) =

c

Figure 5.1: Example of a subdifferential ∂f(x). The level set c for a nonconvex function f : R2 → R is drawn
here. The local minimizer is indicated with x∗. The function f is continuously differentiable at x1, while
the gradient fails to exist at x2. Hence, the subdifferential of f at x2 is given by: ∂f(x2) = conv{ξ1, ξ2}.

Definition 5 The function f : Rn → R is said to be regular at x ∈ R
n if for all d ∈ R

n the directional

derivative f ′(x; d ) exists, and

f ′(x; d ) = f◦(x; d ) .

Theorem 6 Let fi : R
n → R be a locally Lipschitz continuous function at x ∈ R

n for each i = 1, . . . ,m.

Then the function f : Rn → R defined by

f(x) := max
i=1,...,m

fi(x)

is locally Lipschitz at x and

∂f(x) ⊂ conv
i∈I(x)

∂fi(x) ,

where I(x) = {i ∈ {1, . . . ,m} | fi(x) = f(x)}. In addition, if fi is regular at x for each i = 1, . . . ,m, then f

is regular at x and

∂f(x) = conv
i∈I(x)

∂fi(x) .

The proof of this theorem can be found in [56].
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5.2.2 Continuous Maximum Functions

Let us recall that nonsmooth constraints gi(x) of the cooperative trajectory-generation framework are locally

Lipschitz continuous functions of the form

gi(x) = max
ζ∈Z̄i

γi(x, ζ) ,

where the functions γi : R
n×R

li → R are continuous and their gradients ∇xγi(·, ·) exist and are continuous.

For these type of functions, Danskin’s Theorem, proven in [25], states that the directional derivative in the

classical sense exists in every direction d ∈ R
n.

Theorem 7 (Danskin). Let F : Rn × Ŷ → R, where Ŷ is a compact topological space, be continuously

differentiable with respect to the first variable. Also, let the function φ(x) and point-to-set map Y (x) be given

as

φ(x) = max
y∈Ŷ

F (x, y) ,

and

Y (x) = {y ∈ Ŷ |F (x, y) = φ(x)} ,

respectively, where Y (x) is the set of maximizers of F (x, y) over y. Then the function φ(x) has, for every x

and d in R
n, a directional derivative at x in the direction of d given by

φ′(x; d) = max
y∈Y (x)

〈 d,∇xF (x, y) 〉 .

Theorem 2.1 in [23] generalizes the results for locally Lipschitz functions F (x, y) by using the definition of

the generalized directional derivative and, additionally, gives the subdifferential of the function φ at x. In

the case when F (x, y) is continuously differentiable, we obtain the following corollary to Theorem 2.1 in [23].

Corollary 1 Let the functions φ(x) and F (x, y) be given as in Theorem 7. Then

(i) φ(x) is locally Lipschitz continuous,

(ii) The generalized directional derivative of φ at x in the direction of d ∈ R
n is given by

φ◦(x; d) = max {ξ⊤d | ξ = ∇xF (x, y) , y ∈ Y (x)} , for all d ∈ R
n ,

where Y (x) = {y ∈ Ŷ |F (x, y) = φ(x)},
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(iii) φ′(x; d) exists and φ′(x; d) = φ◦(x; d),

(iv) The subdifferential of φ at x is found as

∂φ(x) = conv
y∈Y (x)

{∇xF (x, y)} .

Note that Danskin’s Theorem is recovered and that the subdifferential of φ at x can be easily computed by

Corollary 1(iv).

We conclude this section by emphasizing the importance of Corollary 1 in the context of the cooperative

trajectory-generation framework as formulated in Chapter 4. It is shown that with the developed algorithms

for Bézier curves, we can easily determine the set of maximizers Zi(x) for the functions γi(x, ζ), defined as

Zi(x) = {ζ ∈ Ẑi | γi(x, ζ) = gi(x)} .

Basically, these algorithms, in combination with Corollary 1, allow us to efficiently compute the whole

subdifferential of the nonsmooth constraint functions gi(x). In general, determining the entire subdifferential

of a locally Lipschitz continuous function is hard, if not impossible, and existing optimization algorithms,

such as the bundle method, necessarily relax this requirement at the expense of a more complex algorithm.

In fact, the extra steps that are needed to overcome the lack of knowledge over the exact subdifferential,

prevent a distributed formulation of these algorithms. We shall see that by incorporating the knowledge of

the whole subdifferential, we are able to formulate a distributed algorithm to solve the cooperative trajectory-

generation problem.

5.3 Nonsmooth Optimization Theory

The optimization theory of nonsmooth functions is based on the differential properties that were discussed

in the previous section. The subdifferential ∂f(x) of a locally Lipschitz continuous function f plays an

important role in the first-order optimality conditions, while the subgradient ξ ∈ ∂f(x) allows us to construct

a linear approximation of f at x. In fact, the notions of necessary conditions and linear approximations

given hereafter, are analogous to those defined for smooth optimization problems and, hence, they are

generalizations of their well-known counterparts in classical optimization theory. First, we derive results for

the unconstrained nonsmooth optimization problem and, subsequently, discuss the bundle method which is

a popular method for solving nonsmooth optimization problems. The theoretical results for the constrained

case will be presented in the next chapter, where we develop a distributed algorithm to solve our constrained
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nonsmooth optimization problem.

5.3.1 Unconstrained Optimization

Consider an unconstrained nonsmooth optimization problem

minimize
x∈Rn

f(x) ,

where the objective function f : Rn → R is locally Lipschitz continuous at x for all x ∈ R
n. First of all, let

us formally give the definition of minimizers for the above unconstrained optimization problem. Note that

the definitions apply to smooth as well as nonsmooth objective functions f .

Definition 6 A point x∗ ∈ R
n is a global minimum of f if it satisfies

f(x∗) ≤ f(x) , for all x ∈ R
n .

Definition 7 A point x∗ ∈ R
n is a local minimum of f if there exists ǫ > 0 such that

f(x∗) ≤ f(x) , for all x ∈ B(x∗; ǫ) .

The next theorem gives the necessary conditions for an unconstrained optimization problem to attain a local

minimum at x∗. The proof, given in [56,78], follows from the definitions of the subdifferential ∂f and a local

minimum for a locally Lipschitz continuous function f at x∗ (Definitions 4 and 7), and Theorem 4.

Theorem 8 Let f : Rn → R be a locally Lipschitz continuous function at x ∈ R
n. If f attains its local

minimum at x∗, then

(i) 0 ∈ ∂f(x∗), and

(ii) f◦(x∗; d) ≥ 0 for all d ∈ R
n.

It is clear that Theorem 8 is indeed a generalization of the results known from the classical optimization

theory, where the necessary conditions for a local minimizer of a nonconvex function f at x∗ is given by

∇f(x∗) = 0. If the function f is convex, the conditions are sufficient and f attains a global minimum at x∗,

as shown by the following theorem [56].

Theorem 9 If f : Rn → R is a convex function, then the following conditions are equivalent:

(i) f attains its global minimum at x∗,
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(ii) 0 ∈ ∂cf(x
∗), and

(iii) f ′(x∗; d) ≥ 0 for all d ∈ R
n.

Many classical optimization algorithms are based on local approximations of the function f at x. For

example, the steepest descent (gradient) method is derived from the first-order Taylor expansion, while

Newton’s method is a refinement by using second-order information. For a nonsmooth function, these

approximations cannot be defined from the Taylor expansion, simply because the gradient may not exist

at x. Moreover, we have seen that the function behaves differently in the neighborhood of x, depending on

the direction d ∈ R
n in which we are moving away from x. The following definitions capture these difficulties

and define a piecewise linear local approximation of a locally Lipschitz continuous function at x.

Definition 8 Let f : Rn → R be a locally Lipschitz continuous function at y ∈ R
n and let ξ ∈ ∂f(y) be an

aribitrary subgradient. Then the ξ-linearization of f at y is the function f̃ : Rn → R defined by

f̃(x) = f(y) + 〈 ξ, x− y 〉 , for all x ∈ R
n , (5.7)

and the linearization of f at y is the function f̄ : Rn → R such that

f̄(x) = max
ξ∈∂f(y)

f̃(x) , for all x ∈ R
n . (5.8)

Optimization methods are fundamentally based on the principle of moving from a point x, along a direc-

tion d ∈ R
n, such that the function value decreases at x + τ d for some τ > 0. These are so-called descent

methods, i.e for the unconstrained optimization problem they generate a sequence of points {xk} such that

xk ∈ R
n and f(xk+1) < f(xk) for all k = 1, 2, . . .

In order to define how xk is updated, we need to first give the notion of a descent direction d.

Definition 9 The direction d ∈ R
n is called a descent direction for f : Rn → R at xk, if there exists ǫ > 0

such that

f(xk + τd) < f(xk) , for all τ ∈ (0, ǫ ] .

Hence, it is a natural choice to update the current iteration point xk according to

xk+1 = xk + τd .
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Hence, it remains to determine the direction d along which the function f decreases. The next theorem states

conditions for which a direction d is a descent direction for a locally Lipschitz continuous function f(x) and,

more importantly, that a descent direction d for the linearization f̄(x), as given by Definition 8, is in fact

a descent direction for the function f at xk. This latter result allows us to formulate the descent direction

finding problem in terms of the linearization f̄(x) at xk.

Theorem 10 Let f : Rn → R be locally Lipschitz at x. The direction d ∈ R
n is a descent direction for f

at x if any of the following hold:

(i) f◦(x; d) < 0,

(ii) ξ⊤d < 0 for all ξ ∈ ∂f(x), and

(iii) d is a descent direction for f̄ at x.

Proof: The proof is given in Appendix B.3. �

The following theorem tells us how to find a descent direction d for the linearization of locally Lipschitz

continuous function f at x. From Theorem 10(iii) we know that this is also a descent direction for the locally

Lipschitz continuous function f .

Theorem 11 Let f : Rn → R be a locally Lipschitz continuous function at x ∈ R
n and let ξ∗ ∈ ∂f(x) exist

such that ξ∗ = argmin{‖ξ‖ | ξ ∈ ∂f(x)}. Consider the problem

minimize
d∈Rn

f̄(x+ d ) +
1

2
‖d‖2 . (5.9)

Then

(i) Problem (5.9) has a unique solution d∗ ∈ R
n such that d∗ = −ξ∗,

(ii) f◦(x; d∗) = −‖d∗‖2,

(iii) f̄(x+ τ d∗) = f̄(x)− τ ‖ξ∗‖2 for all τ ∈ [0, 1],

(iv) 0 /∈ ∂f(x) if and only if d∗ 6= 0, and

(v) 0 ∈ ∂f(x) if and only if f̄ attains its global minimum at x.

The term 1
2‖d‖2 is added to the objective function, in order to convexify the problem and guarantee a unique

solution for Problem (5.9). Theorem 11 shows that a descent direction d of f̄ (and thus of f) at x, is in fact

the (negative) subgradient ξ ∈ ∂f(x) with the minimum norm. Therefore, if one has knowledge over the

whole subdifferential ∂f at x, one could find a feasible descent direction d by minimizing the norm over all

subgradients ξ contained in the subdifferential. Practically, there are two main issues with this approach:
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1. In general, one does not know the whole subdifferential of a nonsmooth function and, hence, Theorem 11

demands a strict requirement to satisfy. Instead, existing methods for solving nonsmooth optimization

problems require the knowledge of only one arbitrary subgradient ξ of the subdifferential ∂f at x.

2. A natural attempt is to extend gradient-based methods, commonly applied in smooth optimization

theories, to nonsmooth problems by employing the descent direction found through Theorem 11. Un-

fortunately, counter examples in [102, 103] show that an algorithm based on this concept may take

infinitely many steps without significantly decreasing the cost function and, hence, converge to a non-

stationary point. The reason for this phenomenon is due to the fact that the descent direction d as

function of x, generated by such an algorithm, is discontinuous in x [11, 44, 45]. For example, the

absolute function f(x) = |x| is not differentiable at x = 0 (Figure 5.2). For all x > 0 the subdifferen-

tial ∂cf(x) = {1} and for all x < 0 the subdifferential ∂cf(x) = {−1}. At x = 0, the subdifferential is

given by:

∂cf(0) = conv{−1, 1} .

Note that x∗ = 0 is the global minimizer for f(x) by Theorem 9, since 0 ∈ conv{−1, 1}. Clearly, a

sequence of descent directions {dk} generated by Theorem 11 is discontinuous at x = 0.

To tackle this problem, it is necessary to build a certain degree of “foresight” in the subdifferential, so

that it does not change abruptly in the neighborhood of x∗. This can be achieved by considering the

ǫ-subdifferential ∂ǫf(x) instead of the subdifferential ∂f(x). A definition of the ǫ-subdifferential can be

found, for example, in [11]. Nevertheless, it is still too big of a demand, or even bigger, to require the

knowledge of the entire ǫ-subdifferential of a non-differentiable function. Hence, one approach taken in

nonsmooth optimization algorithms, is to approximate this ǫ-subdifferential by collecting a bundle of

subgradients that are computed at each iteration point, the so-called ǫ-steepest descent method [51].

Another variation of the bundle method was introduced in [48]. The approach is based on the classical

cutting plane method, where instead of approximating the ǫ-subdifferential, a convex piecewise linear

approximation of the nonsmooth function is constructed from the linearizations generated with the

subgradients.

Nevertheless, Theorem 11 forms the basis of the many nonsmooth optimization methods. The methods

mainly differ in the approach the direction finding problem is implemented.
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f(x) = |x|

∂cf(0)

ξ1

ξ2

x

f(x)

Figure 5.2: Subdifferential of the absolute function f(x) = |x| at x = 0.

5.3.2 Bundle Methods

Nonsmooth optimization methods that rely on differential information of the functions, can be divided

into subgradient methods and bundle methods. Both classes of methods require that, at each iteration

point, only the objective function value and one subgradient are available. Definitely, these methods are

preferred for problems for which one cannot (easily) determine the whole subdifferential of the nonsmooth

functions, but instead only one subgradient. For example, finite-difference approximations can be used to

determine one subgradient. Subgradient methods, first introduced in [88], are in essence generalizations

of gradient-based methods for smooth optimization problems, where an arbitrary subgradient replaces the

gradient. Convergence is only guaranteed for convex optimization problems and, in combination with its

simplicity, the subgradient method is widely used for these types of problems. Nevertheless, the subgradient

method suffers from poor convergence rates and, unlike in gradient-based methods, the direction opposite

an arbitrary subgradient may not necessarily be a descent direction.

Bundle methods, on the other hand, are developed for convex as well as nonconvex nonsmooth optimiza-

tion problems. Additionally, as we shall see in the next chapter, the method lends itself to a distributed

formulation. Therefore, in the remainder of this section, we give a brief background on the general bun-

dle method by considering a convex unconstrained nonsmooth optimization problem. The intention is to

present a high-level overview of the methods, without cluttering the big picture with too many details. In the

next chapter, we will further discuss the technical details concerning constrained and nonconvex nonsmooth

optimization problems in conjunction with the development of the distributed algorithms.

The bundle method finds its origin in the ǫ-steepest descent method that was introduced in [51]. Many
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variants of the bundle method have been developed ever since. While some are refinements to the original

idea as introduced in [51], others are based on a different approach in applying the common guiding principle

of bundle methods: exploiting the subgradient information from previous iterations by gathering them into

a bundle. The common objective is to obtain a good approximation of the nonsmooth function, especially

in the neighborhood of its local minimum, despite only having limited information on the behavior of the

function at each iteration point. To better understand the idea behind bundle methods, let us consider the

following unconstrained nonsmooth optimization problem

minimize
x∈Rn

f(x) ,

where the objective function f : Rn → R is convex. Bundle methods assume that at every point x ∈ R
n,

the function value f(x) and an arbitrary subgradient ξ from the subdifferential ∂cf(x) can be computed.

The definitions of the subdifferential and subgradient are given in Definition 2. The necessary and sufficient

optimality condition is given in Theorem 9, that is, x∗ ∈ R
n is a global minimizer for the function f , if and

only if

0 ∈ ∂cf(x
∗) .

It is clear that, in order to verify the necessary and sufficient condition, we need to have knowledge over

the subdifferential ∂cf at a point x. However, since at a point x we only have one arbitrary subgradient

of the subdifferential, this condition cannot be checked directly. Bundle methods aim to construct an

approximation of the subdifferential ∂cf at the minimizer x∗ from the bundle of subgradients gathered from

previous iterations. The various bundle methods differ in the way they compute the descent direction d at

each iteration point in order to converge to x∗. The ǫ-steepest descent method [51] computes this descent

direction using an approximation of the ǫ-subdifferential directly and let the parameter ǫ → 0, so that

when x converges to x∗, the ǫ-subdifferential converges to the subdifferential of f at x∗. Other bundle

methods obtain the descent directions from an approximation of the nonsmooth function, based on the

cutting plane model and, therefore, avoid the complexity of choosing an appropriate ǫ at each iteration.

Intuitively, when the iteration points converge to the global minimizer x∗, the resulting cutting plane model

of the nonsmooth function exhibits a close approximation of the ǫ-subdifferential at x∗. Therefore, despite

the different approaches, there is a clear connection between both methods [56].

The distributed algorithms that will be presented in the next chapter, borrow the ideas from the bundle

methods that are based on the cutting plane approach. Hence, we will focus our following discussion on this

branch of bundle methods. Suppose that, in addition to the current iteration point xk, we have a collection
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f(x)

f̂k(x)

f̃k−1(x)

f̃k−2(x)

f̃k−3(x)
f̃k(x)

yk−3

xk = yk

yk−2

yk−1

Figure 5.3: Cutting-plane model of a convex function f : R → R. The black solid line is the function f(x),
the black-dashed lines are the ξj-linearizations f̃j(x) at yj with j ∈ Jk, and the red-dashed line is the

piecewise linear approximation f̂k(x) at the kth iteration.

of previous trial points yj ∈ R
n (from previous iterations) and corresponding subgradients ξj ∈ ∂cf(yj)

for j ∈ Jk, where the index set Jk is a nonempty subset of {1, . . . , k}. Then, at the kth iteration, we

construct a piecewise linear approximation f̂k for all x ∈ R
n as

f̂k(x) = max
j∈Jk

f̃j(x) ,

where f̃j is the ξj-linearization of f at yj as given in Equation (5.7)

f̃j(x) = f(yj) + 〈 ξj , x− yj 〉 .

The piecewise linear approximation f̂k(x) approximates the function from below due to the convexity of f ,

i.e. f̂k(x) is a cutting-plane model of f(x) at the kth iteration. Note that we can rewrite f̃j as follows

f̃j(x) = f(yj) + 〈 ξj , x− yj 〉 ± f(xk)± 〈 ξj , yj − xk 〉 ,

= f(xk) + 〈 ξj , x− xk 〉 − αkj ,

where αkj := f(xk)− f(yj)−〈 ξj, xk − yj 〉 and represents the linearization error at xk of the ξj -linearization

obtained at a previous iteration point yj . Since f(x) is convex, we have that the linearization error αkj ≥ 0 for

all j ∈ Jk. Figure 5.3 shows an example of a cutting-plane model of a convex function f : R → R at the kth

iteration, consisting of four trial points yj , where j ∈ {k− 3, . . . , k}. The function is non-differentiable at yk

and, hence, the ξk-linearization is constructed using an arbitrary subgradient ξk ∈ ∂cf(yk). As a result,
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the linearization f̃k(x) poorly approximates the function f(x) at yk. Lastly, it can be observed that the

piecewise linear approximation f̂k(x) approximates the function f(x) from below.

Next, a descent direction dk ∈ R
n for f̂k at xk is computed by solving the following direction finding

problem

minimize
dk∈Rn

f̂(xk + dk) +
1

2
d⊤
k Mkdk ,

where again a stabilizing term 1/2 d⊤
k Mkdk is added to guarantee the existence of a unique solution dk and

to keep the approximation local. Different approaches exist for the choice of Mk, resulting in various forms

of bundle methods. The direction finding problem will be discussed in more detail in the next chapter. At

this point, suppose we have determined a descent direction dk for the piecewise linear approximation f̂k(x)

at the iteration point xk. We might tend to simply set the next iteration point xk+1 as

xk+1 = xk + τ dk , (5.10)

for a sufficiently small step size τ > 0. Unfortunately, this may result in a non-converging sequence {xk}, as a

descent direction for f̂k(x) might not necessarily be a descent direction for the convex objective function f(x)

at xk. Recall that at each iteration point, only one arbitrary subgradient is used for the construction of the

cutting plane model f̂k(x) and, hence, at a certain iteration k this might be a very poor approximation of

the function f(x). For example, similar to the subgradient method, the direction opposite to any arbitrary

subgradient ξj ∈ ∂cf(yj) might even fail to be a descent direction. Therefore, although bundle methods do

not require the knowledge of the whole subdifferential, it comes at the expense of a more complicated line

search procedure, in order to guarantee global convergence.

The line search procedure is designed such that a next iteration point xk+1 is accepted if the function

value f(xk+1) decreases sufficiently. We give a simplified version of this special line search procedure,

applicable to convex functions f . First, a trial point yk+1 is computed using the descent direction dk found

for f̂k, according to

yk+1 = xk + dk .

Then the procedure proceeds by checking whether

f(yk+1) ≤ f(xk) +mLνk

is satisfied. The parameter mL ∈ (0, 12 ) is the line search parameter, while νk = f̂(yk+1)− f(xk) represents

the predicted descent of f at xk. Hence, the parameter mL specifies a minimum amount of desired descent.
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If the desired descent is met, the line search procedure takes a serious step by setting

xk+1 := yk+1 ,

otherwise a so-called null step is taken, that is

xk+1 := xk .

In both cases, the subgradient ξyk+1
∈ ∂cf(yk+1) is added to the bundle to improve the cutting plane model.

Effectively, if a null step is taken, a new descent direction d for f̂ at xk is determined using an improved

cutting plane model, obtained due to the additional trial point yk+1. The algorithm is terminated if

νk ≥ −ǫs ,

where ǫs > 0 denotes the desired final accuracy tolerance. For a nonconvex locally Lipschitz continuous

function f , the line search procedure becomes more complicated and involves an iteration to determine the

step sizes for updating yk+1 and xk+1. Especially this line search procedure makes it hard to formulate a

distributed bundle method suitable for a team of vehicles. Intuitively, the line search procedure will require

the vehicles to exchange their objective function values and, secondly, will most likely result in a distributed

line search procedure at each iteration k. A more comprehensive overview of the bundle method algorithm

is given in [48, 56].

To end this chapter, Figures 5.4 and 5.5 show the results for Case III of the fixed-wing UAVs simulation

example from Section 4.5.1, obtained by using a bundle method solver instead of the standard Matlab R©

optimization routines. The bundle method solver is a Fortran implementation of the Multiobjective Proximal

Bundle Methods (MPBNGC 2.0)1. In order to integrate this Fortran code with the existing Matlab R©

cooperative trajectory-generation routines, the main routine had to be rewritten in Matlab R© , while wrapper

functions were created for the remaining Fortran subroutines. The results were found to be encouraging

and, in the next chapter, we present a distributed algorithm that is suitable for our nonsmooth optimization

problem, by combining a modified version of the bundle method with existing work in the area of distributed

smooth optimization problems. We also show that we can avoid the line search procedure as, by using the

whole subdifferential at xk, it can be proven that the descent direction for the cutting plane model is also a

descent direction for the function f .

1The Fortran code was kindly provided by Prof. Marko M. Mäkelä of the University of Turku, Finland.
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Figure 5.4: Three-dimensional trajectories for a team of three cooperating UAVs. Case III: spatial decon-
fliction is ensured through temporal separation. A bundle method solver is used to obtain the solution.
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Figure 5.5: Dynamic constraints and timing laws for a team of three cooperating UAVs. Case III: spatial
deconfliction is ensured through temporal separation. A bundle method solver is used to obtain the solution.
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Chapter 6

Distributed Nonsmooth Optimization

Chapter 5 presented a short overview of important notions of nonsmooth analysis, and optimality conditions

for unconstrained nonsmooth optimization problems. A popular method for solving nonsmooth optimiza-

tion problems in a centralized way, namely the bundle method, was also discussed briefly. In this chapter,

we develop a distributed algorithm for solving nonsmooth optimization problems such as the cooperative

trajectory-generation framework from Chapter 4. In Section 6.1, we discuss a distributed nonlinear pro-

gramming method that is applicable to a broad class of smooth optimization problems. Subsequently, in

Section 6.2, a distributed bundle method is derived by combining the distributed nonlinear programming

method with the (centralized) bundle method for nonsmooth optimization problems.

6.1 Distributed Optimization

In this section, we summarize the distributed nonlinear programming methods that are presented in [57–

62]. Results on equality constrained optimization problems are presented in [58, 59, 62], whereas [60, 61]

consider optimization problems with inequality constraints. The approach is based on classical centralized

algorithms that result in a distributed formulation of the algorithm. This renders the approach versatile

and applicable to a broad class of optimization problems, including our nonsmooth trajectory-generation

framework. To illustrate the approach, we consider an equality constrained optimization problem. A more

detailed discussion can be found in [58, 59, 62], including the proofs that are omitted in this section.

6.1.1 Problem Formulation

Consider a team of N vehicles solving the following equality constrained problem

minimize
x∈Rn

f(x)

subject to h(x) = 0 .

(6.1)
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The objective function f : Rn → R is defined as

f(x) :=

N∑

i=1

fi(x) ,

while the vector-valued function h : Rn → R
N is given by

h(x) := [h1(x), . . . , hN(x)]
⊤ ,

where hi : R
n → R and N ≤ n. The following assumptions are made on the functions f(x) and h(x).

Assumption 1 It is assumed that

(i) the functions fi(x) and hi(x) for all i = 1, . . . , N are twice continuously differentiable, and

(ii) vehicle i has knowledge of only functions fi(x) and hi(x).

The communication topology over which the set of N vehicles exchange information, is modeled as an

undirected communication graph G = (V , E), where V = {1, . . . , N} is the set of nodes and E = {eij} is the

set of edges. An edge between two nodes i and j means that vehicles i and j can exchange information. The

set of neighbors of agent i is defined as Ni := { j | eij ∈ E}, and we assume that at each time instant k the

vehicles can synchronously exchange information with their neighbors. The (weighted) Laplacian L ∈ R
N×N

of graph G is defined as:

Lij =







− lij j ∈ Ni ,

∑

j∈Ni

lij j = i ,

0 otherwise ,

(6.2)

where lij are given positive scalars. Next, the communication model satisfies the following assumptions.

Assumption 2 It is assumed that

(i) vehicle i has knowledge of only the scalars lij for j ∈ Ni,

(ii) vehicle i can exchange information only with the vehicles in the set of neighbors defined by Ni, and

(iii) the communication graph G is connected and the Laplacian L is symmetric.

The central idea of the distributed algorithms as described in [57–62], hinges on the properties of the

Laplacian matrix L. Especially the nullspace of the matrix L is the key component of the approach. The

characteristics of the nullspace are summarized in the following proposition.
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Figure 6.1: Example of a communication topology between four agents. The communication graph is
connected and undirected.

Proposition 2 The matrix L defined with respect to a connected graph G satisfies the following properties:

(i) The nullspace of L is given by Null(L) = {γ1N | γ ∈ R}, where 1N ∈ R
N whose components are all 1;

(ii) Let L̃ = L ⊗ In, where In is the n-dimensional identity matrix. Then the nullspace of L̃ is given

by Null(L̃) = {1N ⊗ x |x ∈ R
n}.

An example of a communication topology is given in Figure 6.1. The graph G is undirected and connected,

and the scalars lij are assumed to be all equal to 1. Then the Laplacian L associated with the communication

topology from Figure 6.1, is given by

L =












1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1












, (6.3)

and it can be verified that Proposition 2 holds.

The next assumption on a local minimizer x∗ of Problem (6.1), ensures the existence of unique Lagrange

multipliers associated with the equality constraints h(x).

Assumption 3 The local minimizer x∗ of Problem (6.1) is a regular point of the constraints h(x) = 0, that

is, the gradient vectors ∇h1(x∗),∇h2(x∗), . . . ,∇hN (x∗) are linearly independent.

Using Assumption (3) we can state the first-order necessary conditions for Problem (6.1).

Lemma 2 Let Assumption 3 hold and let x̂∗ be the local minimizer for Problem (6.1). There exists a unique

vector µ∗ such that

∇f⊤(x̂∗) +∇h⊤(x̂∗)µ∗ = 0 . (6.4)
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6.1.2 An Equivalent Optimization Problem

The key step in the novel distributed algorithm that the authors of [57–62] propose, lies in the formulation of

an equivalent optimization problem, from which the solution to the original Problem (6.1) can be obtained.

Moreover, the distributed algorithms are in fact a result of using familiar (classical) centralized algorithms

to solve this equivalent problem. The idea is to introduce local estimates x̂i of the optimization vector x,

where these local estimates are updated onboard each individual vehicle, and force an alignment of these

local estimates towards the local minimizer x∗, i.e. the vehicles together agree on the common solution x∗.

Hence, we first define the vector x̂ := [x̂1
⊤
, . . . , x̂N

⊤
]⊤, where x̂i ∈ R

n. Next, the objective func-

tion F : RnN → R is defined as

F (x̂) :=
N∑

i=1

fi(x̂
i) .

The vector-valued function H : RnN → R
N is given by

H(x̂) := [h1(x̂
1), . . . , hN (x̂N )]⊤ .

The functions fi(x) and hi(x) for all i = 1, . . . , N are given as per Problem (6.1). Lastly, the matrix L̃

is defined as L̃ := L ⊗ In, with In the n-dimensional identity matrix and L given in Equation (6.2). The

nullspace of the matrix L̃ is given in Proposition 2. We formulate the following constrained optimization

problem

minimize
x̂∈RnN

F (x̂)

subject to H(x̂) = 0 ,

L̃x̂ = 0 .

(6.5)

The following result shows the equivalence between Problem (6.1) and Problem (6.5) under Assumptions 1

and 2. Especially, the assumption of a connected graph is fundamental, so that Proposition 2 holds and,

therefore, the equivalence between the two problems follows.

Proposition 3 Let Assumptions 1 and 2 hold. The vector x∗ ∈ R
n is a local minimizer of Problem (6.1) if

and only if x̂∗ = 1N ⊗ x̂∗ is a local minimizer of Problem (6.5).

The proof of Proposition 3 can be found, for example, in [59] and [61]. The equivalence between the

two problems is a result from the fact that the local minimizer x̂∗ for Problem (6.5) has a specific structure

that is imposed by the equality constraint L̃x̂ = 0. For the solution to exhibit this particular structure, it

is important that the assumption of a connected communication topology holds. For example, if there is no
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communication between vehicle 1 and 2 in Figure 6.1, i.e. the communication graph is disconnected, then

[0, γ, γ, γ]⊤ with γ ∈ R also belongs to the nullspace Null(L) and we lose the fundamental structure that a

local minimizer x̂∗ requires to ensure that both problems are equivalent.

Since the local minimizer x̂∗ for Problem (6.1) can be extracted from the local minimizer x̂∗, the aim is to

solve Problem (6.5) instead. Hence, before we present the first-order necessary conditions for Problem (6.5),

we first derive the gradient ∇F (x̂) and Jacobian ∇H(x̂). Due to the introduction of the local estimates x̂i,

∇F (x̂) and ∇H(x̂) have a particular structure, and can be expressed in terms of the gradients ∇fi(x)

and ∇hi(x):

∇F (x̂) =
[
∇f1(x̂1), . . . ,∇fN (x̂N )

]
, ∇H(x̂) =












∇h1(x̂1) 0⊤
n · · · 0⊤

n

0⊤
n ∇h2(x̂2)

...

...
. . .

...

0⊤
n 0⊤

n · · · ∇hN (x̂N )












, (6.6)

where 0n ∈ R
n whose components are all 0. Next, we proceed by deriving the first-order necessary conditions

for Problem (6.5).

Lemma 3 Let Assumptions 1, 2, and 3 hold let and x̂∗ = 1N ⊗ x̂∗ be the local minimizer for Problem (6.5).

There exist unique vectors µ∗ and λ∗ ∈ Range(L̃) such that

∇F⊤(x̂∗) +∇H⊤(x̂∗)µ∗ + L̃⊤λ = 0 , (6.7)

for all λ ∈ {λ∗ + λ⊥ |λ⊥ ∈ Null(L̃⊤)}.

Note that Equation (6.7) holds for any vector λ⊥ ∈ Null(L̃⊤), since L̃⊤λ⊥ = 0 by definition of the nullspace.

Therefore, although λ∗ ∈ Range(L̃) is unique, the vectors λ are not. The Lagrangian function of (6.5) is

defined as

l(x̂,µ,λ) := F (x̂) + µ⊤H(x̂) + λ⊤L̃ x̂ . (6.8)
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6.1.3 Distributed Algorithm

The set of primal-dual equations for Problem (6.5) can be obtained from the Lagrangian function by setting

∇x̂ l(x̂,µ,λ) = 0, ∇µ l(x̂,µ,λ) = 0 and ∇λ l(x̂,µ,λ) = 0:

∇F⊤(x̂) +∇H⊤(x̂)µ+ L̃⊤λ = 0 ,

H(x̂) = 0 ,

L̃ x̂ = 0 .

(6.9)

Since Lemma 3 only provides the necessary conditions, solutions to the primal-dual equations are stationary

points that are not necessarily local minimizers for Problem (6.5). Sufficient conditions must also be checked

to determine whether a stationary point found from Equation (6.9) is indeed a local minimizer.

We can use the first-order Lagrangian method [8, 54], to solve the set of primal-dual equations. The

algorithm to solve Equation (6.9) is given by

x̂k+1 = x̂k − τ
[

∇F⊤(x̂k) +∇H⊤(x̂k)µk + L̃⊤λk

]

,

µk+1 = µk + τ H(x̂k) ,

λk+1 = λk + τ L̃ x̂k ,

(6.10)

for some sufficiently small step size τ > 0. The following theorem states the local convergence properties of

algorithm (6.10). If, under some assumptions on the functions fi(x̂
i) and hi(x̂

i), the initial values are close

enough to a solution of the primal-dual equations (6.9) and a sufficiently small step size τ is used, then the

sequence {x̂k,µk,λk} converges to this solution.

Theorem 12 Let Assumptions 1, 2, and 3 hold and let (x̂∗,µ∗,λ∗) be a local minimizer-Lagrange multipliers

pair of Problem (6.5), where λ∗ ∈ Range(L̃). Assume also that ∇x̂x̂ l(x̂
∗,µ∗,λ∗) is positive definite. Then

there exists τ̄ , such that for all τ ∈ (0, τ̄ ], the set (x̂∗,µ∗,λ∗+Null(L̃⊤)) is an attractor of iteration (6.10) and

if the sequence {x̂k,µk,λk} converges to the set (x̂∗,µ∗,λ∗+Null(L̃⊤)), the rate of convergence of ‖x̂k − x̂∗‖,

‖µk − µ∗‖ and ‖λk − [λ∗ + Null(L̃⊤)]‖ is linear.

Since the matrix L̃ is not full rank, it cannot be guaranteed that the sequence λk converges to the

unique λ∗ ∈ Range(L̃) but rather to a point in the set {λ∗ + Null(L̃⊤)}. Although algorithm (6.10) is

obtained from a classical centralized solver, it in fact results in a distributed formulation. This becomes clear

if we extract the ith n-dimensional component of x̂k and the associated multipliers. Recalling the particular

structures of the gradient ∇F (x̂) and Jacobian ∇H(x̂) from Equation (6.6), it is easy to verify that we
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obtain the following iteration for the ith n-dimensional component of x̂k

x̂ik+1 = x̂ik − τ

[

∇f⊤
i (x̂ik) +∇h⊤i (x̂ik)µi,k +

∑

j∈Ni

(lijλi,k − ljiλj,k)

]

, (6.11a)

µi,k+1 = µi,k + τ hi(x̂
i
k) , (6.11b)

λi,k+1 = λi,k + τ
∑

j∈Ni

lij(x̂
i
k − x̂jk) . (6.11c)

If a priori the step size τ is known to all vehicles, then from Assumptions 1 and 2 it is clear that algo-

rithm (6.11) can be executed by vehicle i, since it has access to all required information, that is either

computed onboard or exchanged with its neighbors j ∈ Ni over the communication network. Note that the

assumption on a symmetric Laplacian L (Assumption 2(iii)) is necessary, as vehicle i requires the knowl-

edge over the scalars lji for j ∈ Ni. Lastly, the following corollary gives the condition under which the

iteration (6.11a) and (6.11b) ensures convergence to a local minimizer of Problem (6.1).

Corollary 2 Let Assumptions 1, 2, and 3 hold and let (x̂∗, µ∗) be a local minimizer-Lagrange multiplier pair

of Problem (6.1). Assume also that ∇2fi(x̂
∗) + µ∗

i ∇2hi(x̂
∗) is positive definite for all i = 1, . . . , N . Then

there exists τ̄ , such that for all τ ∈ (0, τ̄ ], (x̂∗, µ∗) is a point of attraction for iteration (6.11a) and (6.11b),

for all i = 1, . . . , N , and if the sequence {x̂ik, µi,k} converges to (x̂∗, µ∗), the rate of convergence of ‖x̂ik − x̂∗‖

and ‖µi,k − µ∗‖ is linear.

In the next section, we use these results to formulate a distributed algorithm, based on the bundle

method, that is suitable for application to the nonsmooth cooperative trajectory-generation problem.

6.2 A Distributed Bundle Method

In this section, we present a distributed bundle method. We derive a distributed algorithm for solving

nonsmooth constrained optimization problems by combining the distributed nonlinear programming method

that was presented in the previous section, with the bundle method discussed in Chapter 5. Our approach

differs from the previously discussed and existing work in the following ways:

1. Instead of using one arbitrary subgradient from the subdifferential ∂f at x, when constructing the

piecewise linear approximation of the locally Lipschitz continuous function f , we employ the entire

subdifferential ∂f at x;

2. The complicated line search procedure, characteristic of bundle methods, is avoided, since a feasible

descent direction can be determined for the objective function;

85



3. The stopping criterion is more intuitive compared to the one used for classical bundle methods;

4. The distributed algorithms are derived for the dual problem, while the distributed nonlinear program-

ming method from Section 6.1 was developed for the primal problem.

Building upon the unconstrained nonsmooth optimization theory from Section 5.3.1, we will expand on

the theory with results obtained for constrained nonsmooth optimization problems. The presentation will

be interwoven with the derivation of the proposed distributed bundle method. In what follows, multiple

optimization problems are presented that eventually culminate in the formulation of a set of distributed

algorithms for solving the nonsmooth problem at hand. We summarize the different formulations here to

ease the understanding of the discussion presented in the following sections.

1. Problem (P1) is the original centralized problem at hand;

2. Using the techniques discussed in the previous section, we formulate Problem (P2) where essentially

the gradients and Jacobians of the functions and vector-valued functions, respectively, are decoupled.

3. Next, in order to handle the inequality constraints, an improvement function is introduced. Prob-

lem (P3), that is formulated in terms of this improvement function, and in fact not implementable,

allows to analyze the problem for its necessary optimality conditions.

4. Subsequently, an approach based on the feasible point descent method is presented, where the direction

finding problem is formulated in terms of a linearization of the improvement function at the current

iteration point. This approach will not give satisfactory results, as it generates discontinuous descent

directions with respect to the optimization variable.

5. A direction finding problem (DFP1) is reformulated using an alternative linearization of the improve-

ment function, the so-called cutting plane model. It is shown that a feasible descent direction for this

piecewise linear approximation of the improvement function, is in fact a feasible descent direction for

the original objective function.

6. Problem (DFP1) is still a nonsmooth optimization problem and, hence, it is converted into a smooth

direction finding problem (DFP2). This causes coupling of the constraints and the same technique

from Section 6.1 is used to decouple the system. This results in Problem (DFP3).

7. Lastly, the dual problem of (DFP3) is derived and denoted by (DFP4). This is the optimization problem

that is solved using the first-order Lagrangian method, which results in a distributed formulation of a

centralized algorithm.

86



6.2.1 Problem Formulation

We have seen that for a team of N vehicles, we obtain the following nonlinear constrained optimization

problem

(P1) minimize f(x)

subject to g(x) ≤ 0 ,

(6.12)

where g(x) = [ g1(x), . . . , gm(x) ]
⊤ and gi(x) are of the form

gi(x) = max
ζ

γi(x, ζ) , for i = 1, . . . ,m . (6.13)

Recall that the functions γi(x, ζ) are Bézier polynomials in ζ and that gi(x) represent the various constraints,

such as the dynamic and deconfliction constraints. Without loss of generality, and for the sake of simplicity,

we assume that each vehicle has one optimization parameter and one inequality constraint and, hence,

x ∈ R
N and m = N , respectively. In what follows, the optimization problem (P1) is considered to be a

multi-objective optimization problem, i.e. the objective function f(x) is of the form

f(x) = [ f1(x), . . . , fN (x) ]⊤ ,

where each fi(x) corresponds to the cost function of vehicle i. Lastly, we define the feasible set

Ω := {x ∈ R
N | g(x) ≤ 0} ,

and assume that Ω is nonempty. Additionally, we make the following assumptions on the functions fi(x)

and gi(x).

Assumption 4 We assume that

(i) the objective functions fi : R
N → R are of the form

fi(x) = max
ζ

φi(x, ζ) ,

where the functions φi(·, ·) are continuous and their gradients ∇xφi(·, ·) exist and are continuous,

(ii) the functions γi(·, ·) given in Equation (6.13) are continuous and their gradients ∇xγi(·, ·) exist and

are continuous, and

(iii) vehicle i has knowledge of only functions fi(x) and gi(x).
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Then, from Assumption 4 and Corollary 1 in Chapter 5, we know that the functions fi and gi are locally

Lipschitz continuous.

Remark 3 The choice to consider a multi-objective optimization problem, is made in order to formulate

a distributed algorithm based on the bundle method. A collective objective function f(x), defined as the

sum of the individual objective functions fi(x) of the vehicles, causes a coupling between the individual

objective functions fi(x) in the construction of the piecewise linear approximation of the collective objective

function f(x). This coupling can be avoided by constructing individual piecewise linear approximations, a

natural approach of multi-objective bundle methods.

Remark 4 Although Equation (6.13) and Assumption 4(ii) appear to be reasonable if we consider our coop-

erative trajectory-generation framework, Assumption 4(i) on the objective functions fi(x) seems to be overly

restrictive. In fact, continuously differentiable functions and locally Lipschitz continuous fi(x), for which we

can obtain the whole subdifferential (efficiently), are admissible classes of functions within our framework

and, hence, the functions fi(x) do not necessarily need to be of the form as prescribed by Assumption 4(i).

First, we need to define the notion of optimality for the multi-objective optimization problem. The

following definitions characterize different Pareto optima for multi-objective optimization problems and are

given in [55].

Definition 10 A vector x∗ is said to be a global Pareto optimum of (P1), if there does not exist x ∈ Ω such,

that fi(x) ≤ fi(x
∗) for all i = 1, . . . , N and fj(x) < fj(x

∗) for some j. Vector x∗ is said to be a global weak

Pareto optimum of (P1), if there does not exist x ∈ Ω such that fi(x) < fi(x
∗) for all i = 1, . . . , N . Vector

x∗ is a local (weak) Pareto optimum of (P1), if there exists ρ > 0 such that x∗ is a global (weak) Pareto

optimum on B(x∗; ρ) ∩ Ω.

Next, as discussed in Section 6.1, an equivalent optimization problem is formulated, which facilitates the

derivation of a distributed optimization algorithm. To this end, we introduce local estimates x̂i of the vector x

that are computed onboard each vehicle i and let x̂ := [x̂1
⊤
, . . . , x̂N

⊤
]⊤. Then, we define the vector-valued

functions F : RN2 → R
N and G : RN2 → R

N as

F (x̂) :=
[
f1(x̂

1), . . . , fN (x̂N )
]⊤

and

G(x̂) :=
[
g1(x̂

1), . . . , gN (x̂N )
]⊤

,

respectively, where Assumption 4 holds on the functions fi and gi. Now, let us consider the following
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constrained multi-objective optimization problem

(P2) minimize F (x̂)

subject to G(x̂) ≤ 0 ,

L̃x̂ = 0 ,

with L̃ = L⊗ IN . The Laplacian L characterizes the communication graph G, which satisfies Assumption 2

in Section 6.1.1. Finally, the feasible set Ω is defined as Ω := Ωg ∩ ΩL̃, where

Ωg := {x̂ ∈ R
N2 |G(x̂) ≤ 0} ,

ΩL̃ := {x̂ ∈ R
N2 | L̃x̂ = 0} .

Using a similar proposition, given in [60] for inequality constrained optimization problems, as Proposition 3,

we conclude that the multi-objective optimization problem (P2) is equivalent to the optimization problem

at hand and, therefore, if x̂∗ = 1N ⊗ x̂∗ is a Pareto optimal solution for (P2), then x̂∗ is a Pareto optimal

solution to Problem (P1). Hence, we consider optimization Problem (P2) in the derivation of a distributed

optimization algorithm for solving Problem (P1).

Unlike equality constraints, in general, inequality constraints complicate solving constrained optimization

problems. Only active inequality constraints, i.e. gi(x) = 0 at a feasible point x, restrict the domain of

feasibility in the neighborhood of x, while inactive inequality constraints, i.e. gi(x) < 0 at a feasible

point x, have no influence in the neighborhood of x. Therefore, if the set of active constraints at the

optimal solution x∗ is known, then the simple approach would be to append the equality constraints with

this set of active constraints (and discard the remaining inequality constraints), and treat the problem as

an equality constrained optimization problem. Unfortunately, the set of active inequality constraints at

the optimal solution is, in general, unknown beforehand. One approach is to make an initial guess of the

set of active inequality constraints and, as the algorithm progresses, update this set by adding potentially

active inequality constraints while discarding those that are in fact inactive. This is the so-called Active

Set Method [54, 72]. Other popular approaches augment the objective function with terms containing these

inequality constraints and treat the constrained optimization problem as an unconstrained problem. An

example of such methods is the Interior Point Method (or Barrier Method) [54, 72]. Every method has its

advantages and disadvantages and whether one approach is efficient and outperforms the other depends on

the functions gi(x).

Here, we construct an objective function that captures the effects of the inequality constraints of the
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original problem. Let us define the improvement function H : RN2 ×R
N2 → R as

H(x̂; ŷ) := max {fi(x̂i)− fi(ŷ
i) , gi(x̂

i)} , for i = 1, . . . , N , (6.14)

where ŷ := [ ŷ1
⊤
, . . . , ŷN

⊤
]⊤. Note that H(x̂; ŷ) is locally Lipschitz continuous by Theorem 6, since the

functions fi and gi are locally Lipschitz continuous.

Theorem 13 Consider the problem (P2). Suppose that x̂∗ ∈ R
N2

is a local weak Pareto optimal solution

for (P2). Then x̂∗ is a local minimizer of H(· ; x̂∗) over ΩL̃.

Proof: The proof is given in Appendix B.4. �

Note that Theorem 13 gives a necessary condition for x̂∗ to be a local weak Pareto optimum for (P1)

and, hence, the converse may not hold. Suppose that x̂∗ is a local minimizer of H(· ; x̂∗) over ΩL̃, and

that gi(x̂
∗) = 0 for some i = 1, . . . , N . Then, we may have that H(x̂; x̂∗) = 0, while gi(x̂

i) = 0 for

some i = 1, . . . , N and x̂ ∈ B(x̂∗; ρ∗) ∩ ΩL̃, where ρ∗ is the radius associated with x̂∗. Hence, this does not

necessarily exclude that fi(x̂
i)− fi(x̂

∗) < 0 for all i = 1, . . . , N and, therefore, x̂∗ is not a local weak Pareto

optimum for Problem (P2). The next Assumption defines a so-called constraint qualification, so that the

converse of Theorem 13 also holds.

Assumption 5 Suppose that x̂∗ ∈ R
N2

is a local minimizer of H(· ; x̂∗) over ΩL̃. Then we assume that

either gi(x̂
∗) < 0 for all i = 1, . . . , N or gi(x̂

∗) = 0 and 0 /∈ ∂gi(x̂
∗) for some i = 1, . . . , N .

Theorem 14 Let Assumption 5 hold and let x̂∗ ∈ R
N2

be a local minimizer of H(· ; x̂∗) over ΩL̃. Then x̂∗

is a local weak Pareto optimal solution for Problem (P2).

The theorem can be proved along the same lines as Theorem 3.2.3 in [76] and by using Definition 10 for a local

weak Pareto optimum. The constraint qualification prevents that the constraint gi(x̂
i) for all i = 1, . . . , N ,

achieves a maximum that is equal to 0 at a local minimizer x̂∗ of H(· ; x̂∗) over ΩL̃. Theorem 14 allows us

to reformulate the constrained optimization problem (P2) into an equality constrained optimization problem

using the improvement function H(x̂; ŷ):

(P3) minimize H(x̂; x̂∗)

subject to L̃ x̂ = 0 .

Problem (P3), as formulated above, is definitely not implementable as the optimal solution x̂∗ is assumed to

be known. However, it serves as a basis for the development of iterative optimization algorithms and allows
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to derive the necessary optimality conditions for constrained nonsmooth optimization problems. Before we

formulate these necessary conditions, we need the next theorem, which states the necessary conditions for

an optimization problem, subject to a constraint set Ω, to attain a local minimum at x∗. The proof is given

in [56], as well as the definitions of tangent cone TΩ(x
∗) and normal cone NΩ(x

∗).

Theorem 15 If f is locally Lipschitz at x and attains its local minimum over the set Ω ⊂ R
n at x∗ ∈ Ω,

then

0 ∈ ∂f(x∗) + NΩ(x
∗) .

For the constraint set ΩL̃ := {x̂ ∈ R
N2 | L̃ x̂ = 0}, we can characterize its tangent plane at a local

minimizer x̂∗ of Problem (P3).

Proposition 4 The tangent cone to ΩL̃ at x̂∗, denoted by TΩL̃
(x̂∗), is given by

TΩL̃
(x̂∗) = Null(L̃) .

Proof: The proof is given in Appendix B.5. �

Using Theorem 15 and Proposition 4, we can formally state the necessary conditions for Problem (P3)

to attain a local minimum at x̂∗.

Theorem 16 Suppose Problem (P3) satisfies Assumption 5 and let x̂∗ = 1N ⊗ x̂∗ be a local minimizer

of (P3). Then there exists a vector ν ∈ R
N2

such that

0 ∈ ∂H(x̂∗; x̂∗) + L̃⊤ν . (6.15)

Proof: The proof is given in Appendix B.6. �

6.2.2 Feasible Point Descent Method

Section 5.3.1 discussed the descent method, on which many optimization solvers for unconstrained problems

are based. However, for a constrained optimization problem, finding a descent direction d as defined by

Definition 9 is not sufficient, as d may not necessarily be feasible with respect to the feasible set Ω. Hence,

we give a formal definition of a feasible descent direction.

Definition 11 The direction d ∈ R
n is called a feasible descent direction subject to Ω for f : Rn → R at xk,

91



if there exists ǫ > 0 such that

f(xk + τ d) < f(xk) and xk + τ d ∈ Ω , for all τ ∈ (0, ǫ ] .

The key step in feasible point descent methods is to determine the feasible descent direction d as defined by

Definition 11. The optimization problem that is formulated to obtain such a direction is termed the direction

finding problem (DFP). Suppose that d := [d 1⊤ , . . . , dN
⊤
]⊤ is a feasible descent direction subject to ΩL̃

for the improvement function H , given by Equation (6.14), at the current non-optimal iteration point x̂k.

From Definition 11, we know that there exists ǫ > 0 such that

H(x̂k + τ d; x̂k) < H(x̂k; x̂k) and x̂k + τ d ∈ ΩL̃ , for all τ ∈ (0, ǫ ] ,

and note that H(x̂k; x̂k) = 0, since x̂k is feasible subject to Ω. Hence, it is easily verified from the definition

of H(x̂; ŷ), that for i = 1, . . . , N

fi(x̂
i
k + τd i) < fi(x̂

i
k) , for all τ ∈ (0, ǫ ] ,

where x̂+ τ d ∈ Ω. In other words, a feasible descent direction d subject to ΩL̃ of H at x̂k is also a feasible

descent direction subject to Ω of F at x̂k. Thus, we can formulate the DFP in terms of the improvement

function H(x̂; ŷ). Recall that Problem (P1) belongs to the class of nonsmooth optimization problems; in

particular it belongs to the class of semi-infinite programming due the fact that the objective functions fi(x)

and inequality constraints gi(x) consist of continuous maximum functions. Hence, the improvement func-

tion H(x̂; ŷ) is too intractable to formulate an optimization problem with. Instead, we find a piecewise linear

approximation of H(x̂; ŷ) at the current non-optimal iteration point x̂k, and show that if a direction d is a

feasible descent direction for the approximation, then it is a feasible descent direction for the multi-objective

function F at x̂k.

To this end, using Definition 8 from Chapter 5, we first obtain the linearizations for fi(x̂
i) and gi(x̂

i).

We start by defining the ξi-linearization of fi and gi at ŷi:

f̃i(x̂
i) := fi(ŷ

i) + 〈 ξi, x̂i − ŷi 〉 , ξi ∈ ∂fi(ŷ
i) ,

g̃i(x̂
i) := gi(ŷ

i) + 〈 ρi, x̂i − ŷi 〉 , ρi ∈ ∂gi(ŷ
i) .
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The linearizations of fi and gi at ŷi are then, respectively, given by:

f̄i(x̂
i) := max

ξi∈∂fi(ŷi)
f̃i(x̂

i) ,

ḡi(x̂
i) := max

ρi∈∂gi(ŷi)
g̃i(x̂

i) .

(6.16)

Finally, we define the following linear approximation of H(x̂; ŷ) at ŷ:

Ĥ(x̂) := max
i=1,...,N

{ f̄i(x̂i)− fi(ŷ
i) , ḡi(x̂

i) } . (6.17)

The next theorem states that a feasible descent direction d for the approximation Ĥ at x̂k is indeed a feasible

descent direction for the multi-objective function F .

Theorem 17 If the direction d ∈ R
N2

is a descent direction for Ĥ at x̂k ∈ Ω and feasible subject to ΩL̃,

then d is a descent direction for F at x̂k and feasible subject to Ω.

Proof: The proof is given in Appendix B.7. �

Theorem 17 permits us to find a feasible descent direction d at iteration point x̂k for the nonsmooth

optimization problem (P2) in terms of the linear approximation Ĥ(x̂) of the improvement function H at x̂k.

Using this result, the next theorem shows how to obtain such a feasible descent direction by formulating an

optimization problem using this linear approximation. The proof of the theorem can be found in [56].

Theorem 18 At iteration point x̂k, consider the problem

minimize
d

Ĥ(x̂k + d) +
1

2
‖d‖2

subject to x̂k + d ∈ ΩL̃ .

(6.18)

The Problem (6.18) has a unique solution d∗ = −ξ∗, where

ξ∗ = argmin{‖ξ‖ | ξ ∈ ∂Ĥ(x̂k) and x̂k − ξ ∈ ΩL̃} .

The term 1
2‖d‖2 is added to the cost function, in order to convexify the problem and guarantee a unique

solution for Problem (6.18). We now show that the unique solution d∗ is indeed a descent direction for Ĥ

at x̂k. Let d∗, not equal to 0, be the global minimizer to Problem (6.18). Therefore, we have that

Ĥ(x̂k + d∗) + ‖d∗‖2 < Ĥ(x̂k + d) + ‖d‖2 ,
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for all d ∈ R
N2

such that x̂k+d ∈ ΩL̃. Suppose that d∗ is not a descent direction, i.e. Ĥ(x̂k+d∗) ≥ Ĥ(x̂k).

Then, for d = 0 we have

Ĥ(x̂k + 0) + ‖0‖2 < Ĥ(x̂k + d∗) + ‖d∗‖2 ,

which contradicts the fact that d∗ is the global minimizer to Problem (6.18). Therefore, the unique solu-

tion d∗ must be a descent direction of Ĥ at x̂k.

For the same reasons given for Theorem 11, we cannot directly apply Theorem 18 to obtain the feasible

descent direction. Although we can determine the whole subdifferentials of the nonsmooth objective func-

tions fi(x̂
i) and the inequality constraints gi(x̂

i), see Section 5.2.2, we cannot directly use Theorem 18, as

it will render discontinuous feasible descent directions. In what follows, we present a modification to the

bundle method, as described in Section 5.3.2, that uses the whole subdifferential information to construct

a piecewise linear approximation of the improvement function, and that eventually allows for a distributed

formulation.

6.2.3 Distributed Direction Finding Problem

The idea behind the bundle method [48] is to construct a piecewise linear approximation of the improvement

function H(x; y). At iteration point xk, the method assumes that for each nonsmooth function f(x), one can

only determine one subgradient ξ ∈ ∂f(xk) and the function value f(xk). This information about the current

iteration point is stored and added to the bundle that was collected at previous iteration points. Therefore,

this bundle of subgradients grows as the algorithm continues, and information from earlier iteration points

are taken into account in computing the current feasible descent direction dk.

Since we are able to compute the whole subdifferential, we will exploit this extra information and take

a different approach than the classical bundle method as described in Section 5.3.2. We start by defining

the linear approximations of the non-differentiable functions. Again, let x̂k be the current (non-optimal)

iteration point at the kth iteration of the algorithm and suppose a bundle of subdifferentials at (previous)

iteration points x̂ℓ has been collected and stored for ℓ ∈ Ik = {1, . . . , k}. First, recall that the functions fi

and gi are given as

fi(x̂
i) = max

ζ
φi(x̂

i, ζ) ,

gi(x̂
i) = max

ζ
γi(x̂

i, ζ) .
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Then, let the sets of maximizers for φi(x̂
i, ζ) and γi(x̂

i, ζ) at x̂ℓ be defined as

Zfi
ℓ := {ζ̄ ∈ [0, 1] |φi(x̂iℓ, ζ̄) = fi(x̂

i
ℓ)} ,

Zgi
ℓ := {ζ̄ ∈ [0, 1] | γi(x̂iℓ, ζ̄) = gi(x̂

i
ℓ)} ,

and their respective index sets as Ifiℓ := {1, . . . , nfiζ,ℓ} and Igiℓ := {1, . . . , ngiζ,ℓ}, where nfiζ,ℓ := card(Zfi
ℓ ) and

ngiζ,ℓ := card(Zgi
ℓ ), respectively. We collect and store the subdifferentials ∂fi and ∂gi at x̂iℓ for ℓ ∈ Ik, where

we know from Corollary 1 that the subdifferentials can be determined as

∂fi(x̂
i
ℓ) = conv

m∈I
fi
ℓ

{ξiℓ,m} , i = 1, . . . , N , ℓ ∈ Ik ,

∂gi(x̂
i
ℓ) = conv

m∈I
gi
ℓ

{ρiℓ,m} , i = 1, . . . , N , ℓ ∈ Ik ,

where ξiℓ,m and ρiℓ,m, by virtue of introducing the local estimates x̂i, have the following structure

ξiℓ,m = [0⊤
N , . . . , ∇φi(x̂iℓ, ζ̄m)

︸ ︷︷ ︸

ith N−dimensional
component

, . . . ,0⊤
N ] , with ζ̄m ∈ Zfi

ℓ ,

ρiℓ,m = [0⊤
N , . . . , ∇γi(x̂iℓ, ζ̄m)

︸ ︷︷ ︸

ith N−dimensional
component

, . . . ,0⊤
N ] , with ζ̄m ∈ Zgi

ℓ .

(6.19)

Note that the subdifferentials ∂fi(x̂
i
ℓ) and ∂gi(x̂

i
ℓ) are taken with respect to x̂, whereas the gradients

∇φi(x̂iℓ, ζ̄m) and ∇γi(x̂iℓ, ζ̄m) are taken with respect to x̂i.

Next, we define the linearizations of fi and gi at x̂iℓ as

f̄i,ℓ(x̂
i) := fi(x̂

i
ℓ) + f◦

i (x̂
i
ℓ ; x̂

i − x̂iℓ ) , (6.20a)

ḡi,ℓ(x̂
i) := gi(x̂

i
ℓ) + g◦i (x̂

i
ℓ ; x̂

i − x̂iℓ ) , (6.20b)

where, due to the specific structure of the max-functions fi and gi and using Corollary 1, the generalized

directional derivatives can be found as

f◦
i (x̂

i
ℓ ; x̂

i − x̂iℓ) = max
m∈I

fi
ℓ

〈 ξiℓ,m , x̂i − x̂iℓ 〉 ,

g◦i (x̂
i
ℓ ; x̂

i − x̂iℓ) = max
m∈I

gi
ℓ

〈 ρiℓ,m , x̂i − x̂iℓ 〉 .
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Let us define the maps αiℓ,m : RN → R and βiℓ,m : RN → R as

αiℓ,m(x̂
i) = fi(x̂

i)− fi(x̂
i
ℓ)− 〈 ξiℓ,m, x̂i − x̂iℓ 〉 , (6.21a)

βiℓ,m(x̂
i) = gi(x̂

i)− gi(x̂
i
ℓ)− 〈 ρiℓ,m, x̂i − x̂iℓ 〉 , (6.21b)

and denote the linearization errors at x̂i for the ξiℓ,m-and ρiℓ,m-linearization of fi and gi, respectively. They

will be discussed in more detail in Section 6.2.5. Using these linearization errors, we can rewrite Equa-

tions (6.20) as

f̄i,ℓ(x̂
i) = max

m∈I
fi
ℓ

{fi(x̂ik) + 〈 ξiℓ,m, x̂i − x̂ik 〉 − αiℓ,m(x̂
i
k)} ,

ḡi,ℓ(x̂
i) = max

m∈I
gi
ℓ

{gi(x̂ik) + 〈 ρiℓ,m, x̂i − x̂ik 〉 − βiℓ,m(x̂
i
k)} .

Finally, we construct the piecewise linear approximations at the kth iteration as

f̂i,k(x̂
i) := max

ℓ∈Ik

f̄i,ℓ(x̂
i) , (6.23a)

ĝi,k(x̂
i) := max

ℓ∈Ik

ḡi,ℓ(x̂
i) , (6.23b)

and, similarly to Equation (6.17), define the polyhedral approximation of the improvement function H(x̂; ŷ)

as

Ĥk(x̂) := max
i=1,...,N

{ f̂i,k(x̂i)− fi(x̂
i
k) , ĝi,k(x̂

i) } , for all x̂ ∈ R
N2

. (6.24)

The following two lemmas summarize some properties of the piecewise linear approximations f̂i,k(x̂
i), ĝi,k(x̂

i),

and Ĥk(x̂) at the kth iteration.

Lemma 4 Let the functions fi(x̂
i) and gi(x̂

i) be convex, and the piecewise linear approximations f̂i,k(x̂
i)

and ĝi,k(x̂
i) at the kth iteration be defined as in Equation (6.23). Then

f̂i,k(x̂
i
ℓ) = fi(x̂

i
ℓ) ,

ĝi,k(x̂
i
ℓ) = gi(x̂

i
ℓ) ,

for each i = 1, . . . , N and all ℓ ∈ Ik.

Proof: The proof is given in Appendix B.8. �

Lemma 5 Let the piecewise linear approximation Ĥk(x̂) at x̂k be defined as in Equation (6.24). Then the
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Figure 6.2: Cutting-plane model of a convex function f : R → R using the whole subdifferential ∂cf at
each xℓ. The black solid line is the function f(x), the black-dashed lines are the piecewise linear approxima-

tions f̄ℓ(x) at xℓ with ℓ ∈ Ik, and the red-dashed line is the piecewise linear approximation f̂k(x) at the kth
iteration.

function Ĥk(x̂) is convex. If additionally, the functions fi and gi are convex, then the following holds for

the subdifferential ∂Ĥk at x̂k

∂Ĥk(x̂k) = ∂H(x̂k; x̂k) .

Proof: The proof is given in Appendix B.9. �

To understand the difference in constructing the approximations between our approach and the bundle

method, as described in Section 5.3.2, we show in Figure 6.2 the piecewise linear approximation f̂k(x) for the

same convex function f : R → R from Figure 5.3. At the current iteration point xk, the function f is non-

differentiable. In contrast to the bundle method, we use the whole subdifferential ∂cf(xk) to construct the

piecewise linear approximation f̂k(x), that is shown by the red-dashed line. It is apparent, that in Figure 6.2

the approximation lies closer to the function f(x) (black solid line), especially near the neighborhood of xk,

where f(x) is non-differentiable. Hence, a clear benefit over the classical bundle method is that our approach

obtains a more accurate approximation.

The next theorem shows that if the nonsmooth functions fi and gi are convex, then a feasible descent

direction for F can be found through the piecewise linear approximation Ĥk.

Theorem 19 Consider the constrained optimization problem (P2). Let the functions fi and gi be convex.

If the direction dk ∈ R
N2

is a descent direction for Ĥk at x̂k ∈ Ω and feasible subject to ΩL̃, then dk is a

descent direction for F at x̂k and feasible subject to Ω.

Proof: The proof is given in Appendix B.10. �

An important consequence of Theorem 19, is the fact that we are able to avoid the line search procedure,
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since a feasible descent direction dk of Ĥk is also a feasible descent direction for F at x̂k. This claim could

not be made for bundle methods, as by using an arbitrary subgradient of the subdifferential, the descent

direction found for the cutting plane model, may not even be a descent direction for the objective function.

The line search procedure was used to overcome this issue. To see why a line search procedure is undesirable

for a distributed approach, recall that the descent direction dk is defined as dk := [d 1⊤

k , . . . , dN
⊤

k ]⊤, with d ik

being the descent direction for vehicle i. If each vehicle i ran a local line search procedure and obtained a

step size τi, then the resulting descent direction d̃k := [τ1d
1⊤

k , . . . , τNd
N⊤

k ]⊤ would no longer be the desired

descent direction dk. Hence, a common and fixed step size τ is preferable, which, however, would render the

classical bundle method non-convergent.

Note the difference between Theorem 17 and 19. Theorem 17 considers the local neighborhood of x̂k,

while Theorem 19 takes into account the local behavior of the nonsmooth functions at an increasing number

of points x̂ℓ for ℓ ∈ Ik. In other words, more and more information regarding the nonsmooth functions is

accumulated as the set Ik expands. However, Theorem 19 requires the functions fi and gi to be convex,

so that f̂i,k(x̂
i
k) = fi(x̂

i
k) and ĝi,k(x̂

i
k) = gi(x̂

i
k), respectively. This stems from the fact that for a convex

function f we have f̂(x) ≤ f(x) for all x. This property no longer holds for a nonconvex function f since we

may, for example, have that f̂(x) > f(x). In [48] the notion of subgradient locality measures is introduced

to extend the results to nonconvex functions. We shall see that we adopt a similar approach; however, for

the sake of simplicity, in the following we assume that the functions fi and gi are convex and will revisit the

issue with nonconvex functions in Section 6.2.5.

The direction finding problem can now be formulated using Ĥk(x̂) as defined in Equation (6.24), since

a feasible descent direction dk of Ĥk at x̂k, is a descent direction of F at x̂k and feasible subject to Ω. To

this end, consider the following direction finding problem:

(DFP1) minimize
dk

Ĥk(x̂k + dk) +
1

2
‖dk‖2

subject to L̃(x̂k + dk) = 0 .

Notice that L̃ x̂k = 0, since x̂k is a feasible point and, therefore, the equality constraint reduces to L̃dk = 0.

Problem (DFP1) has a unique solution dk, since from Lemma 5 we know that the piecewise linear approx-

imation Ĥk(x̂) is convex, and thus Ĥk(x̂k + dk) +
1
2‖dk‖2 strictly convex, and the fact that the equality

constraints are linear. Then, along the same lines as shown for Problem (6.18), we can conclude that a

solution dk to Problem (DFP1) is indeed a descent direction for Ĥk subject to ΩL̃.

The following theorem gives the necessary condition for Problem (DFP1) to attain a global minimizer

at d∗
k.
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Theorem 20 Let d∗
k be a global minimizer of (DFP1). Then there exists a vector ν ∈ R

N2

such that

0 ∈ ∂Ĥk(x̂k + d∗
k) + d∗

k + L̃⊤ν .

The theorem can be proved along the same lines as Theorem 16, by using the fact that ∂(12‖d∗
k‖2) = d∗

k.

The optimization problem (DFP1) is still nonsmooth since the function Ĥk(x̂) still involves maximum

functions:

minimize
dk

max
i=1,...,N

{ f̂i,k(x̂ik + d ik)− fi(x̂
i
k) , ĝi,k(x̂

i
k + d ik) }+

1

2
‖dk‖2

subject to L̃dk = 0 .

We can transform this optimization problem into a smooth and linearly constrained optimization problem

by introducing an auxiliary variable zk, defined as:

zk := max
i=1,...,N

{ f̂i,k(x̂ik + d ik)− fi(x̂
i
k) , ĝi,k(x̂

i
k + d ik) } .

The optimization problem (DFP1) is then equivalent to:

(DFP2) minimize
(zk,dk)

zk +
1

2
‖dk‖2

subject to − αiℓ,m(x̂ik) + 〈 ξiℓ,m, d ik 〉 − zk ≤ 0 , ∀ i = 1, . . . , N , ℓ ∈ Ik , m ∈ Ifiℓ ,

gi(x̂
i
k)− βiℓ,m(x̂ik) + 〈 ρiℓ,m, d ik 〉 − zk ≤ 0 , ∀ i = 1, . . . , N , ℓ ∈ Ik , m ∈ Igiℓ ,

L̃dk = 0 ,

where the maps αiℓ,m(x̂
i), and βiℓ,m(x̂

i) were defined by Equation (6.21). However, since this auxiliary vari-

able zk appears in all the linear inequality constraints, it also introduces coupling of these constraints. Hence,

Problem (DFP2) cannot be solved in a distributed way. Instead, we define the vector zk := [z1,k, . . . , zN,k]
⊤

and formulate the following optimization problem:

(DFP3) minimize
(zk,dk)

1
N

N∑

i=1

zi,k +
1
2‖dk‖2

subject to − αiℓ,m(x̂ik) + 〈 ξiℓ,m, d ik 〉 − zi,k ≤ 0 , ∀ i = 1, . . . , N , ℓ ∈ Ik , m ∈ Ifiℓ ,

gi(x̂
i
k)− βiℓ,m(x̂ik) + 〈 ρiℓ,m, d ik 〉 − zi,k ≤ 0 , ∀ i = 1, . . . , N , ℓ ∈ Ik , m ∈ Igiℓ ,

L̃dk = 0 ,

Lzk = 0 .
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Proposition 5 (z∗k,d
∗
k) is the global minimizer of (DFP2) if and only if (z∗

k,d
∗
k) is the global minimizer

of (DFP3), where z∗
k := z∗k1N .

Proof: The proof is given in Appendix B.11. �

In order to ease the notation in what follows, we first define a collection of vectors. Let ϑ be, as we shall

see subsequently, the vector of multipliers for Problem (DFP3) and defined as

ϑ := [ϑ⊤1 , . . . , ϑ
⊤
N ]⊤ .

Each ϑi corresponds to the vector of multipliers for vehicle i and is given by

ϑi := [λi
⊤
, µi

⊤
, ν⊤i , ηi ]

⊤ , for i = 1, . . . , N ,

where

λi := [λi
⊤

1 , . . . , λi
⊤

k ]⊤ ,

λiℓ := [λiℓ,1, . . . , λ
i

ℓ,n
fi
ζ,ℓ

]⊤ ,

µi := [µi
⊤

1 , . . . , µi
⊤

k ]⊤ ,

µiℓ := [µiℓ,1, . . . , µ
i
ℓ,n

gi
ζ,ℓ

]⊤ ,

ν := [ν⊤1 , . . . , ν
⊤
N ]⊤ ,

νi := [νi,1, . . . , νi,N ]⊤ ,

η := [η1, . . . , ηN ]⊤ ,

with λiℓ,m , µ
i
ℓ,m , νi,q , ηi ∈ R. Similarly, we define the vector-valued functions αiℓ(x̂

i) and βiℓ(x̂
i) as

αiℓ(x̂
i) :=









αiℓ,1(x̂
i)

...

αi
ℓ,n

fi
ζ,ℓ

(x̂i)









, βiℓ(x̂
i) :=









βiℓ,1(x̂
i)

...

βi
ℓ,n

gi
ζ,ℓ

(x̂i)









,

where αiℓ,m(x̂i) and βiℓ,m(x̂
i) were given in Equation (6.21). Then, using the above notations, the dual
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function Λ(ϑ; x̂k) for (DFP3) is given by

Λ(ϑ; x̂k) = min
(zk,dk)

1
N

N∑

i=1

zi,k +
1
2‖dk‖2 +

N∑

i=1

k∑

ℓ=1

∑

m∈I
fi
ℓ

λiℓ,m

(

−αiℓ,m(x̂ik) + 〈 ξiℓ,m, d ik 〉 − zi,k

)

+
N∑

i=1

k∑

ℓ=1

∑

m∈I
gi
ℓ

µiℓ,m

(

gi(x̂
i
k)− βiℓ,m(x̂

i
k) + 〈 ρiℓ,m, d ik 〉 − zi,k

)

+ ν⊤L̃dk + η⊤L zk ,

(6.25)

and note that λiℓ,m ≥ 0 and µiℓ,m ≥ 0 must hold, since they are the multipliers for the inequality constraints

of (DFP3). Then the necessary conditions are

hi(ϑ) = 0 , for i = 1, . . . , N (6.26)

and

dk +

N∑

i=1

k∑

ℓ=1

∑

m∈I
fi
ℓ

λiℓ,m ξ
i⊤

ℓ,m +

N∑

i=1

k∑

ℓ=1

∑

m∈I
gi
ℓ

µiℓ,m ρ
i⊤

ℓ,m + L̃⊤ν = 0 , (6.27)

where

hi(ϑ) :=
1

N
−

k∑

ℓ=1

∑

m∈I
fi
ℓ

λiℓ,m −
k∑

ℓ=1

∑

m∈I
gi
ℓ

µiℓ,m +
∑

j∈Ni

(lijηi − ljiηj) .

By substituting Equations (6.26) and (6.27) into Equation (6.25), we obtain for the dual function

Λ(ϑ; x̂k) = − 1
2‖

N∑

i=1

k∑

ℓ=1

∑

m∈I
fi
ℓ

λiℓ,m ξ
i⊤

ℓ,m +
N∑

i=1

k∑

ℓ=1

∑

m∈I
gi
ℓ

µiℓ,m ρ
i⊤

ℓ,m + L̃⊤ν ‖2

−
N∑

i=1

k∑

ℓ=1

∑

m∈I
fi
ℓ

λiℓ,mα
i
ℓ,m(x̂ik)−

N∑

i=1

k∑

ℓ=1

∑

m∈I
gi
ℓ

µiℓ,m

(

βiℓ,m(x̂ik)− gi(x̂
i
k)
)

.

The dual problem of (DFP3) can be formulated as follows:

maximize
ϑ

Λ(ϑ; x̂k)

subject to hi(ϑ) = 0 ,

λi ≥ 0 , µi ≥ 0 ,
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for i = 1, . . . , N . Hence, we can find the multipliers ϑ by solving the following optimization problem:

(DFP4) minimize
ϑ

1
2‖

N∑

i=1

k∑

ℓ=1

∑

m∈I
fi
ℓ

λiℓ,m ξ
i⊤

ℓ,m +
N∑

i=1

k∑

ℓ=1

∑

m∈I
gi
ℓ

µiℓ,m ρ
i⊤

ℓ,m + L̃⊤ν ‖2

+
N∑

i=1

k∑

ℓ=1

∑

m∈I
fi
ℓ

λiℓ,mα
i
ℓ,m(x̂ik) +

N∑

i=1

k∑

ℓ=1

∑

m∈I
gi
ℓ

µiℓ,m

(

βiℓ,m(x̂
i
k)− gi(x̂

i
k)
)

subject to hi(ϑ) = 0 ,

λi ≥ 0 , µi ≥ 0 .

Since (DFP4) is the dual problem to the direction finding problem (DFP3), the (optimal) descent direction dk

at the kth iteration can be obtained from the optimal solution of Problem (DFP4). Let ϑ∗ be the optimal

solution of (DFP4) and consider Equation (6.27). Then the descent direction dk can be found as:

dk = −
N∑

i=1

k∑

ℓ=1

∑

m∈I
fi
ℓ

λ∗
i

ℓ,m ξ
i⊤

ℓ,m −
N∑

i=1

k∑

ℓ=1

∑

m∈I
gi
ℓ

µ∗i

ℓ,m ρ
i⊤

ℓ,m − L̃⊤ν∗ . (6.28)

Due to the constraint L̃dk = 0, the descent direction dk must be of the form dk = 1N ⊗ dk with dk ∈ R
N .

In other words, the descent direction d ik for each vehicle is the same for all vehicles.

The direction finding problem (DFP4) is also formulated such that it allows the vehicles to compute the

descent direction dk in a distributed way. The next section presents the proposed distributed algorithm that

can be implemented on each individual vehicle.

Remark 5 In the next section, where the proposed distributed algorithm is presented, it will be shown that

the multipliers λi and µi are computed onboard vehicle i. Hence, the simple bounds on these multipliers,

i.e. λi ≥ 0 and µi ≥ 0, can be implemented locally on vehicle i. Several approaches are available such as the

gradient projection method [54], or by converting the simple bounds into equality constraints by introducing

additional auxiliary variables [7]. Nevertheless, these isolated parts of the implementation will not affect the

development of the distributed algorithm, other than cluttering the discussion with extra variables and/or

multipliers. Hence, in the following they are omitted with the understanding that it must be ensured that the

bounds on the mulitpliers λi and µi still hold.
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6.2.4 Distributed Algorithm

Before we proceed with the derivation of the distributed algorithm, let us first define the vector p as a

function of ϑ:

p(ϑ) :=
N∑

i=1

k∑

ℓ=1

∑

m∈I
fi
ℓ

λiℓ,m ξ
i⊤

ℓ,m +
N∑

i=1

k∑

ℓ=1

∑

m∈I
gi
ℓ

µiℓ,m ρ
i⊤

ℓ,m + L̃⊤ν .

Notice that by specific structure of the subgradients ξiℓ,m and ρiℓ,m, we can write p(ϑ) as

p(ϑ) = [p⊤1 (ϑ), . . . , p
⊤
N (ϑ)]⊤ ,

pi(ϑ) =
k∑

ℓ=1

Φiℓλ
i
ℓ +

k∑

ℓ=1

Γiℓµ
i
ℓ +

∑

j∈Ni

(lijνi − ljiνj) ,

where the matrices Φiℓ and Γiℓ are defined as

Φiℓ :=
[

∇φ⊤i (x̂iℓ, ζ̄1) . . .∇φ⊤i (x̂iℓ, ζ̄nfi
ζ,ℓ

)
]

, with ζ̄m ∈ Zfi
ℓ ,

Γiℓ :=
[

∇γ⊤i (x̂iℓ, ζ̄1) . . .∇γ⊤i (x̂iℓ, ζ̄ngi
ζ,ℓ
)
]

, with ζ̄m ∈ Zgi
ℓ .

Then the cost function J(ϑ; x̂k) of (DFP4) can be written as:

J(ϑ; x̂k) =
1
2‖p(ϑ)‖2 +

N∑

i=1

k∑

ℓ=1

∑

m∈I
fi
ℓ

λiℓ,mα
i
ℓ,m(x̂ik) +

N∑

i=1

k∑

ℓ=1

∑

m∈I
gi
ℓ

µiℓ,m

(

βiℓ,m(x̂
i
k)− gi(x̂

i
k)
)

.

Since the (linearly) constrained quadratic direction finding problem (DFP4) is differentiable, we can derive

the Karush-Kuhn-Tucker (KKT) conditions, and use a first-order method to solve these necessary conditions.

Let the Lagrangian l(ϑ, ω) for (DFP4) be defined as

l(ϑ, ω) := J(ϑ; x̂k) + ω⊤ h(ϑ) ,

where ω are the Lagrange multipliers for the equality constraints h(ϑ) := [h1(ϑ), . . . , hN(ϑ)]
⊤. The KKT

conditions for (DFP4) can be derived from the Lagrangian by setting ∇ϑl(ϑ, ω) = 0 and ∇ωl(ϑ, ω) = 0.

Hence, the KKT conditions are given by

∇J⊤(ϑ; x̂k) +∇h⊤(ϑ)ω = 0 ,

h(ϑ) = 0 .

(6.29)

We can use a simple first-order Lagrangian method that is based on linear approximations of the primal-dual

equations given in (6.29). In this regard, first-order methods are very similar to the steepest descent method.
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For example the first-order Lagrangian method is extensively described in the literature [8, 54], and for our

primal-dual equations we obtain the following algorithm

r+1ϑ = rϑ− τd
(
∇J⊤(ϑ; x̂k) +∇h⊤(ϑ)ω

)
,

r+1ω = rω + τd h(ϑ) ,

(6.30)

for some sufficiently small step size τd > 0 that is known and common to all vehicles, and where r de-

notes the iteration step for the direction finding problem at the current iteration point x̂k. In order for

Equation (6.30) to be implemented in a distributed fashion, it is necessary that the gradient ∇J(ϑ; x̂k)

and Jacobian ∇h(ϑ) exhibit a block structure and, moreover, such that each block can be evaluated on-

board its corresponding vehicle using only partial knowledge of the entire fleet of vehicles. As discussed in

Section 6.1, this decoupled block structure is obtained by introducing the local estimates x̂i. To see this,

recall that ϑi = [λi
⊤
, µi

⊤
, ν⊤i , ηi ]

⊤ corresponds to the vector of multipliers associated with the equality and

inequality constraints of vehicle i. Next, if we derive ∇ϑi
J(ϑ; x̂k) and ∇ϑi

h(ϑ), we can find that

∇λiJ⊤(ϑ; x̂k) =









Φi
⊤

1 pi + αi1(x̂
i
k)

...

Φi
⊤

k pi + αik(x̂
i
k)









,

∇µiJ⊤(ϑ; x̂k) =









Γi
⊤

1 pi + βi1(x̂
i
k)− gi(x̂

i
k)1ngi

ζ,1

...

Γi
⊤

k pi + βik(x̂
i
k)− gi(x̂

i
k)1ngi

ζ,k









,

∇νiJ
⊤(ϑ; x̂k) =

∑

j∈Ni

lij(pi − pj) ,

∇ηiJ
⊤(ϑ; x̂k) = 0 ,

∇λih⊤(ϑ) =






0
n
fi
ζ

, . . . , −1
n
fi
ζ

︸ ︷︷ ︸

ith column

, . . . ,0
n
fi
ζ







∇µih⊤(ϑ) =






0ngi

ζ
, . . . , −1n

gi
ζ

︸ ︷︷ ︸

ith column

, . . . ,0ngi
ζ







∇νih
⊤(ϑ) = 0N×N ,

∇ηih
⊤(ϑ) = e⊤i L ,

(6.31)

where ei denotes the ith unit vector, nfiζ, =
k∑

ℓ=1

nfiζ,ℓ, and ngiζ, =
k∑

ℓ=1

ngiζ,ℓ. It is clear that the gradient ∇J(ϑ; x̂k)

and Jacobian ∇h(ϑ) naturally exhibit the desired block structure, due to the specific form the subgradi-

ents ξiℓ,m and ρiℓ,m take (see Equation (6.19)). Moreover, this decoupled block structure is maintained if

linear methods are used to solve the primal-dual equations. On the contrary, any nonlinear method such

as Newton’s method, may introduce non-zero cross-coupling terms. Therefore, in view of the development

of distributed algorithms, the first-order method as given in Equation (6.30) is preferred over nonlinear

methods, despite its lower rate of convergence.
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Using Equation (6.31), we obtain the following iteration for the ith component of rϑ:

r+1λiℓ =
rλiℓ − τd

(

Φi
⊤

ℓ
rpi + αiℓ(x̂

i
k)− rωi 1nfi

ζ,ℓ

)

, ∀ℓ ∈ Ik ,

r+1µiℓ =
rµiℓ − τd

(

Γi
⊤

ℓ
rpi + βiℓ(x̂

i
k)− gi(x̂

i
k)1ngi

ζ,ℓ
− rωi 1ngi

ζ,ℓ

)

, ∀ℓ ∈ Ik ,

r+1νi =
rνi − τd

∑

j∈Ni

lij(
rpi − rpj) ,

r+1ηi =
rηi − τd

∑

j∈Ni

lij(
rωi − rωj) ,

r+1ωi =
rωi + τd

(

1
N

−
k∑

ℓ=1

1
⊤

n
fi
ζ,ℓ

rλiℓ −
k∑

ℓ=1

1
⊤
n
gi
ζ,ℓ

rµiℓ +
∑

j∈Ni

(lij
rηi − lji

rηj)

)

,

(6.32)

where

rpi =
k∑

ℓ=1

Φiℓ
rλiℓ +

k∑

ℓ=1

Γiℓ
rµiℓ +

∑

j∈Ni

(lij
rνi − lji

rνj) . (6.33)

Algorithm (6.32) corresponds to the local iteration to be executed by vehicle i, and uses only local information

and information from its neighbors j ∈ Ni, namely pj , νj , ηj and ωj. Nevertheless, the algorithm requires

a two-step information exchange between vehicle i and its neighbors, which will be discussed in detail in

Section 6.2.6. Since each vehicle i is executing part of the algorithm (6.30) according to (6.32), we have indeed

derived a distributed formulation of a centralized algorithm for solving the direction finding problem (DFP4).

Theorem 12 states that if the initial values are close enough to a solution (ϑ∗, ω∗) of the primal-dual

equations (6.30) and a sufficiently small step size τd is used, then the sequence {rϑ, rω} converges to this

solution. To ensure convergence, it is required that the Hessian of the Lagrangian ∇2l(ϑ∗, ω∗) is positive

definite. A weaker assumption, but identical for the same class of first-order centralized algorithms, can be

made if instead an augmented version of the Lagrangian is used. This extension is presented in [58, 59, 62].

After the algorithm has converged, i.e. ∇ϑi
J(ϑ; x̂k) = 0 for i = 1, . . . , N , the (optimal) feasible descent

direction d ik for vehicle i at the kth iteration can be determined from the multipliers ϑ∗i using Equation (6.28).

In fact, the descent direction can be directly found from pi, since from Equations (6.28) and (6.33) it follows

that

d ik = −p∗i , (6.34)

where p∗i = pi(ϑ
∗
i ). Note that pi(ϑ) is computed onboard vehicle i at each iteration step r and, hence, the

descent direction d ik can be easily determined using Equation (6.34) after the direction finding algorithm has

converged.
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Finally, using the descent direction d ik, vehicle i updates its local estimate x̂ik according to

x̂ik+1 = x̂ik + τ d ik

for some sufficiently small step size τ > 0 that is known and common to all vehicles. From Theorem 19 we

know that such a step size exists so that d ik is a feasible descent direction for fi(x̂
i) for all i = 1, . . . , N .

Our stopping criterion at iteration k is defined as ‖d ik‖2 = 0. In practical applications, a parameter ǫs > 0

specifies a desired accuracy and the stopping criterion becomes ‖d ik‖2 < ǫs. The next result justifies our

choice of stopping criterion.

Theorem 21 Let Assumption 5 hold on the inequality constraints G(x̂∗). Suppose ‖d ik‖2 = 0 at the kth it-

eration. If x̂k = 1N ⊗xk is a local minimizer to problem (P3), then xk is a local minimizer to Problem (P1).

Proof: The proof is given in Appendix B.12. �

Recall that due to the constraint L̃dk = 0, the descent directions d ik are in fact the same for all vehicles.

Additionally, given that the starting point x̂1 ∈ Ω, we have

x̂k + τ dk ∈ Ω , for all k = 1, 2, . . . ,

and, in particular, x̂k + τ dk ∈ ΩL̃. Hence, at every iteration k the vehicles agree on updated iteration

points x̂ik+1 such that these are equal for all vehicles. It is important to emphasize that the feasible point

descent algorithm requires a feasible starting point x̂1. Generally, finding a feasible starting point x̂1 that

satisfies the equality constraints is nontrivial. However, since the structure of the nullspace of L̃ is known

a priori, a feasible starting point subject to L̃ x̂1 = 0 must be of the form 1N ⊗ x̂1, where x̂1 ∈ R
N is the

common starting point for all vehicles.

6.2.5 Nonconvex Cost Functions and Constraints

In the above derivation of the distributed algorithm to solve Problem (P1), Theorem 19 plays an important

role. It shows that a feasible descent direction for the piecewise linear approximation Ĥk(x̂) of the improve-

ment function H(x̂; ŷ) at x̂k, is a feasible descent direction for F at x̂k. This result allows us to omit the

line search procedure, commonly used in bundle methods (see Section 5.3.2). The theorem assumes that the

locally Lipschitz continuous functions fi and gi are convex, so that the following holds for all x̂k

f̂i,k(x̂
i
k) = fi(x̂

i
k) and ĝi,k(x̂

i
k) = gi(x̂

i
k) .
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f(x)

f̂k(x)

f̄k−1(x)

xk−1

xk−2

xk−3

xk

|αk−1(xk)|

Figure 6.3: Cutting-plane model of a nonconvex function f : R → R using the whole subdifferential ∂f at
each xℓ. The black solid line is the function f(x), the black-dashed line is the linear approximation f̄k−1(x)

at xk−1, and the red-dashed line is the piecewise linear approximation f̂k(x) at the kth iteration.

For nonconvex functions this property may no longer hold. An example is shown in Figure 6.3. The locally

Lipschitz continuous function f : R → R is nonconvex in the neighborhood of xk−1. It is clear, that the

linear approximation f̄k−1(x) obtained at xk−1, shown as a gray-dashed line, lies above f(x) for x = xk.

Recall the functions αiℓ,m(x) and βiℓ,m(x) as defined in Equation (6.21). For this example, we find for αk−1(x)

at xk

αk−1(xk) = f(xk)− f(xk−1)− 〈 ξk−1, xk − xk−1 〉

= f(xk)− f̄k−1(xk)

< 0 .

In essence, the function αk−1(x) denotes the linearization error of f̄k−1(x) at x. For convex functions f , the

linearization error αℓ(x) ≥ 0 for all x, while this may not hold for nonconvex functions f . Hence, following

the approach in [48], let us instead consider the following linear approximation f̄k−1(x)

f̄k−1(x) = f(xk) + 〈 ξk−1, x− xk 〉 − |αk−1(xk)| .

This modified linear approximation f̄k−1(x) is shown with a black-dashed line in Figure 6.3. Effectively, the

original linear approximation has been translated by an amount equal to 2 |αk−1(xk)|, such that the approx-

imation lies below the function f at xk, i.e. f̄k−1(xk) < f(xk). Note that the linear approximation f̄k−1(x)

does no longer go through f(xk−1) and, hence, results in a poorer approximation of the function f at xk−1.

It can be seen from Figure 6.3, that the effect a linear approximation f̄ℓ(x) has on the piecewise linear
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approximation f̂k(x) near xk, depends on the value of αℓ(xk). The larger αℓ(xk) is, the lower the linear

approximation f̄ℓ(x) lies below the function f(x) and, hence, the less weight it carries near xk in the

construction of f̂k(x). For convex functions, the linearization error αℓ(xk) naturally grows as the iteration

point xk moves away from the past iteration points xℓ, i.e. information collected farther away from xk is

less important near xk. This is no longer true for nonconvex functions. And especially information collected

at distant ‘nonconvex parts’ of the functions, we would like to ignore as much as possible, since those

linearizations result in a poor approximation of the nonconvex function. To capture these effects, we use the

distance measures as defined in [48].

Definition 12 The distance measure at each iteration k for x̂iℓ with ℓ ∈ Ik is given by

siℓ,k :=

k−1∑

q=ℓ

‖x̂iq+1 − x̂iq‖ .

Remark 6 Recall that in the classical bundle method, so-called trial points yj are used (see Section 5.3.2).

Since our approach does not need trial points, Definition 12 is equivalent to the definition of the distance

measures as given in [48], if the trial points yj coincide with the iteration points xj, i.e. only serious steps

are taken.

Finally, the subgradient locality measures were introduced in [48] to capture the effects of both negative

linearization errors and obsolete past iteration points of nonconvex functions. Following the approach in [48],

we define the subgradient locality measures α̃iℓ,m and β̃iℓ,m for the nonconvex functions fi and gi, respectively

as follows.

Definition 13 The subgradient locality measures α̃iℓ,m and β̃iℓ,m at each iteration k for x̂iℓ with ℓ ∈ Ik are

given by

α̃iℓ,m(x̂
i
k) := max {|αiℓ,m(x̂ik)|, δfi(siℓ,k)2} ,

β̃iℓ,m(x̂
i
k) := max {|βiℓ,m(x̂ik)|, δgi(siℓ,k)2} ,

where δfi ≥ 0 and δgi ≥ 0 are the distance measure parameters (δfi = 0 if fi is convex and δgi = 0 if gi is

convex).

To account for the nonconvexity effects, we substitute the linearization errors αiℓ,m(x̂
i
k) and βiℓ,m(x̂ik) in

our proposed distributed algorithm (6.32) with the subgradient locality measures α̃iℓ,m(x̂ik) and β̃iℓ,m(x̂ik),

respectively. Lastly, note that by using these subgradient locality measures, Lemma 5 and Theorem 19 hold
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for nonconvex functions fi and gi, since we have for all i = 1, . . . , N

f̄i,ℓ(x̂
i
k) ≤ fi(x̂

i
k) and ḡi,ℓ(x̂

i
k) ≤ gi(x̂

i
k) ,

for all ℓ ∈ Ik and, thus,

f̂i,k(x̂
i
k) = fi(x̂

i
k) and ĝi,k(x̂

i
k) = gi(x̂

i
k) ,

due to the fact that f̄i,k(x̂
i
k) = fi(x̂

i
k) and ḡi,k(x̂

i
k) = gi(x̂

i
k).

6.2.6 Two-step Information Exchange

In order for vehicle i to update its own local variables using the distributed rules given in Equation (6.32),

vehicle i requires information to be exchanged with its neighbors j ∈ Ni. This requires a two-step information

exchange protocol, in contrast to what is common practice for distributed (optimization) algorithms. This

stems from the fact that the vector pj with j ∈ Ni has to be exchanged so as to allow vehicle i to update

its local multipliers νi. However, Equation (6.33) shows that each pi of vehicle i depends on the multipliers

νj of its neighbors. Therefore, the vector pi can only be determined after the multipliers νi have been

communicated over the network and received by the agents. For the distributed update rules given in

Equation (6.32), we propose the following transmission protocol:

Time step r

The agents broadcast the vector rci over the communication network, defined as:

rci :=
[
rν⊤i ,

rηi,
rωi
]⊤

.

Upon receipt of rcj of neighboring agents j ∈ Ni, vehicle i is able to update the multipliers λi, µi, ηi,

and ωi according to the iteration scheme given in Equation (6.32). Moreover, at this time, vehicle i

can also compute rc′i, given by:

rc′i :=
rpi .

Time step r′

Iteration step r will be completed by transmitting the vector rc′i over the network, and the remaining

multiplier νi can be updated upon receipt of rc′j from agents j in the neighborhood of vehicle i.

We illustrate the transmission protocol in Figure 6.4 for the example of four vehicles that was presented in

Figure 6.1. The Laplacian L associated with the communication topology is given in Equation (6.3).
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Figure 6.4: Two-step communication model exchanging ci and c′i among agents.

Remark 7 As the vehicles indirectly require information from vehicles in the network that do not share

a direct communication link, a two-step information exchanged protocol is proposed. Although this is not

common practice for existing distributed (optimization) algorithms, it is still a relaxed requirement compared

to a communication topology that is complete, or a routing protocol that uses multi-hops so that an agent

can send a package of information to any other agent in the network, even if they are not neighbors. The

latter communication protocol is assumed, for example, in [97].
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation consists of two parts that address the distributed cooperative trajectory-generation problem

for multi-vehicle systems. The first part presented the formulation of a centralized cooperative trajectory-

generation framework for generating a set of spatial trajectories for a team of cooperating vehicles that

execute time-critical missions. In contrast to many existing path-planning methods, the proposed approach

does not discretize the trajectories in space nor in time and, hence, guarantees safe collision-free trajectories

where spatial separation of the trajectories is preferred over deconfliction in time. The cooperative trajectory-

generation framework is formulated such that it also allows for a seamless integration with time-critical

cooperative path-following algorithms of a larger cooperative control framework, that together ensure that

the vehicles are able to execute collision-free maneuvers, while meeting the stringent spatial and temporal

specifications of the mission.

In comparison with our earlier work, a new timing law is introduced and the dynamic constraints are

expressed in terms of the trajectories by using the differential flatness property of the dynamic system. More

specifically, by virtue of this differential flatness property, we were able to express the set of constraints in

terms of Bézier and rational Bézier curves, through the use of Pythagorean Hodograph Bézier curves to

describe the trajectories. As a result, the framework has the potential to compute these trajectories in (near)

real-time, as computationally efficient algorithms are developed to evaluate the complex set of constraints.

Consequently, the generated trajectories do not violate the dynamic constraints of the vehicles. In terms

of deconfliction, it is shown that the framework is able to generate collision-free trajectories that are either

spatially or temporally separated.

To show the efficacy of the proposed cooperative trajectory-generation framework, two different simula-

tion examples of typical cooperative missions were presented. In each of the scenarios, a set of collision-free

trajectories for a team of three UAVs was generated that does not violate the dynamics of the vehicles. It is

demonstrated that by modifying the dynamic constraints accordingly, the trajectory-generation framework
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can be used for different types of vehicles as both fixed-wing aircraft and multirotors were considered.

The first part of the dissertation focused on the formulation of the trajectory-generation framework

and development of algorithms to handle the constraints. It was shown that the framework resulted in a

nonconvex constrained optimization problem. In order to obtain preliminary results, standard (smooth)

optimization software was used to solve the centralized optimization problem. The second part of the

dissertation addressed the problem of distributing the trajectory generation over the individual vehicles in

the network. It was shown, that the trajectory-generation framework is in fact a semi-infinite programming

problem, which is inherently nonsmooth. Due to the formulation of the framework in terms of Bézier curves,

the semi-infinite programming problem can be formulated as an ordinary (finite-dimensional) nonsmooth

optimization problem. Moreover, compared to general nonsmooth functions, the use of Bézier curves allows

to determine the whole subdifferential of the nonsmooth functions.

A distributed bundle method was proposed to solve the class of problems the trajectory-generation

framework belongs to. The proposed distributed algorithm is based on existing algorithms for nonsmooth

optimization, in particular the bundle methods, and distributed nonlinear programming methods. By ex-

ploiting the whole subdifferential, the proposed distributed bundle method avoids the complicated line search

procedure, which is necessary for classical bundle methods. Additionally, the stopping criterion for terminat-

ing the algorithm is more intuitive and straightforward, compared to stopping criteria commonly employed

in existing bundle methods.

7.2 Future Work

Cooperative Trajectory Generation: An open question that has not been answered yet for the proposed

trajectory-generation framework is how to provide the optimization solver with a proper guess of the initial

set of (feasible) curves. It was observed, that due to the highly nonlinear functions, the efficiency of the

solvers was very sensitive to this initial guess, and scaling of the variables and objective function. Hence,

obtaining a good initial guess is expected to decrease the computation time considerably.

Current on-going research efforts are on collision avoidance during mission-execution phase through trajec-

tory re-planning, by exploiting the nice properties of Bézier curves that result in computationally efficient

algorithms. However, it might be required during planning phase, to generate collision-free trajectories that

avoid a priori known obstacles in the area of operations, for example, buildings in an urban area. Especially

for very cluttered environments, quintic PH Bézier curves might not suffice due to the lack of degrees of

freedom in shaping the curve. One way is to increase the degree of the PH Bézier curves, risking numeri-
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cal instabilities associated with high degrees of polynomials. A more preferred way is to work with Bézier

splines, i.e creating smooth Bézier curves from multiple individual (PH) Bézier curves. The research will be

on extending the current framework to quintic PH Bézier splines by ensuring smoothness at the joints and

formulating a timing law continuously applicable to all segments, while retaining the PH structure for the

composite curve.

Distributed Nonsmooth Optimization: Immediate future research on the proposed distributed bundle

method should analyze the convergence properties of the proposed algorithms. The emphasis of the work on

the subject of distributed optimization that was presented in this dissertation, was more of exploratory kind,

in search of a feasible approach to generate trajectories cooperatively in a distributed manner. Although

descent methods and the distributed nonlinear programming method are shown to be individually convergent

under certain assumptions, a more in-depth analysis is needed for the proposed combined approach.

The proposed approach did not take into consideration the issue of limited available computer memory

onboard the vehicles. It is unlikely that an unlimited number of subdifferentials can be stored and, hence,

this will cause serious memory storage problems. Also, the size of the direction finding problem will grow

unboundedly and potentially result in an increase in computation time. Moreover, information of past

iteration points that are far apart from the current iteration point, is most likely obsolete and could be

discarded. The subgradient aggregation strategy presented in [48] offers a solution to aggregate the past

subgradients and keep the number of constraints bounded in classical bundle methods. This strategy could

be potentially used for our proposed distributed algorithm. However, recall that the vehicles may not have

knowledge of the subset of iteration points that other vehicles in the network might have aggregated. Hence,

research efforts should be on investigating the effects of storing information of different subsets of past

iteration points by the vehicles and, if necessary, adapt the subgradient aggregation strategy to overcome

this lack of information.

Proximal bundle methods employ a weight that captures the curvature of the nonsmooth function and is

updated at each iteration. This modification improves the convergence rate compared to classical bundle

methods. Along the same lines as before, this modification may be potentially useful if a work-around is

found for the issue of lack of knowledge of the individual weights that are used by the vehicles during each

iteration.

Last but certainly not least, the proposed distributed algorithm should be implemented so that it can

be integrated as part of the distributed cooperative trajectory-generation framework as outlined in this

dissertation.

113



Appendices

114



Appendix A

Quaternion Representation of Spatial

PH Bézier Curves

This appendix is a summary of the results presented in [32], and the interested reader is referred to the

aforementioned reference for a more in-depth discussion on the topic.

A quaternion A = a+ axî+ ay ĵ+ azk̂ comprises of a scalar part a and a vector part a = ax î+ ay ĵ+ azk̂,

and its conjugate A∗ is defined as A∗ = a − ax î − ay ĵ − azk̂. We can also write the quaternion A as

A = |A| U , where |A|2 = AA∗ = a2 + |a|2 is the square of the magnitude of the quaternion A, and U is

the unit quaternion with |U| = 1, defined as U = cos 1
2δ + sin 1

2δ n for some angle δ and unit vector n.

Then, given a pure vector quaternion v and a unit quaternion U , the quaternion product U v U∗, represents

a rotation of v through an angle δ about the unit vector n, and results in a pure vector quaternion.

The first-order Hermite interpolation problem, concerned with the construction of a smooth curve match-

ing given endpoints and derivatives, often yields equations of the following form when formulated in the

quaternion representation:

A îA∗ = c , (A.1)

with c = cx î+ cy ĵ+ czk̂. The one-parameter family of general solutions to (A.1) is given by:

A(φ) =
√

1
2 (1 + λ)|c|

(

− sinφ+ cosφ î + µ cosφ+ν sinφ
1+λ ĵ+ ν cosφ−µ sinφ

1+λ k̂
)

, (A.2)

where (λ, µ, ν) and |c| ∈ R
+ are respectively the direction-cosines and the magnitude of the vector c. Next,

consider a quaternion polynomial

A(ζ) = u(ζ) + v(ζ )̂i + p(ζ )̂j + q(ζ)k̂ . (A.3)

Then, the following product A(ζ) îA∗(ζ) results in

A(ζ) îA∗(ζ) =
[
u2(ζ) + v2(ζ) − p2(ζ)− q2(ζ)

]
î

+ 2 [u(ζ)q(ζ) + v(ζ)p(ζ)] ĵ+ 2 [v(ζ)q(ζ) − u(ζ)p(ζ)] k̂ .

(A.4)
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In our approach, we seek to generate spatial PH Bézier curves of degree 5 to describe the paths pd,i(ζi)

mathematically. It can be shown (see [32]) that Equation (A.4) represents the hodograph of the spatial PH

path

p′
d,i(ζi) = Ai(ζi) îA∗

i (ζi) (A.5)

and, hence, the hodograph p′
d,i(ζi) must be of degree 4. To this end, we let Ai(ζi) be a quadratic Bézier

(quaternion) polynomial:

Ai(ζi) =

2∑

k=0

Āi,kb
2
k(ζi) ,

where the control points Āi,k are quaternions and defined as

Āi,k = ūi,k + v̄i,k î+ p̄i,k ĵ+ q̄i,kk̂ , for k = 0, 1, 2 .

With the above definitions, the quaternion polynomial of Equation (A.3) is recovered, where now ui(ζi),

vi(ζi), pi(ζi), and qi(ζi) are quadratic Bézier polynomials:

ui(ζi) =

2∑

k=0

ūi,kb
2
k(ζi) , vi(ζi) =

2∑

k=0

v̄i,kb
2
k(ζi) , pi(ζi) =

2∑

k=0

p̄i,kb
2
k(ζi) , qi(ζi) =

2∑

k=0

q̄i,kb
2
k(ζi) .

The control points of the spatial path pd,i(ζi), in the form p̄i,k = p̄xi,k
î+ p̄yi,k ĵ+ p̄zi,k k̂, can be obtained by

integrating Equation (A.5):

p̄i,1 = p̄i,0 +
1

5
Āi,0 î Ā∗

i,0 ,

p̄i,2 = p̄i,1 +
1

10

(

Āi,0 î Ā∗
i,1 + Āi,1 î Ā∗

i,0

)

,

p̄i,3 = p̄i,2 +
1

30

(

Āi,0 î Ā∗
i,2 + 4Āi,1 î Ā∗

i,1 + Āi,2 î Ā∗
i,0

)

,

p̄i,4 = p̄i,3 +
1

10

(

Āi,1 î Ā∗
i,2 + Āi,2 î Ā∗

i,1

)

,

p̄i,5 = p̄i,4 +
1

5
Āi,2 î Ā∗

i,2 ,

(A.6)

where p̄i,0 = pi
i and p̄i,5 = pf

i. It is clear that the quintic PH Bézier curve pd,i(ζi) is completely determined

by the three unknowns Āi,k for k = 0, 1, 2. The first-order Hermite interpolation conditions at the endpoints

provide three equations that can be used to solve for the three unknowns Āi,0, Āi,1, and Āi,2. First, let the

derivatives at the initial and final point be given by the vectors di
i and df

i, respectively. Then, the direction-
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cosines (λi, µi, νi) can be expressed in terms of the flight-path angle γi and course ψi at the endpoints:

λii = cos γii cosψ
i
i , λfi = cos γfi cosψ

f
i ,

µi
i = cos γii sinψ

i
i , µf

i = cos γfi sinψ
f
i ,

νii = sin γii , νfi = sin γfi .

The magnitude of the vectors di
i and df

i are denoted by |di
i| ∈ R

+, and |df
i| ∈ R

+, respectively. Note, that

these are not equal to the given initial and final speed vii, and vfi , due to the decoupling through the timing

law θi(td). With these definitions, interpolation of the end-derivatives yields the following two equations:

Āi,0 î Ā∗
i,0 = di

i and Āi,2 î Ā∗
i,2 = df

i .

These two equations are in the form of Equation (A.1) and, hence, the solutions for Āi,0 and Āi,2 are given

by Equation (A.2):

Āi,0(|di
i|, φi,0) =

√
1
2 (1 + λii)|di

i|

×
(

− sinφi,0 + cosφi,0 î+
µi
i cosφi,0+ν

i
i sinφi,0

1+λi
i

ĵ+
νi
i cosφi,0−µ

i
i sinφi,0

1+λi
i

k̂
)

,

(A.7)

Āi,2(|df
i|, φi,2) =

√
1
2 (1 + λfi)|df

i|

×
(

− sinφi,2 + cosφi,2 î+
µf
i cosφi,2+ν

f
i sinφi,2

1+λf
i

ĵ+
νf
i cosφi,2−µ

f
i sinφi,2

1+λf
i

k̂
)

,

(A.8)

where φi,0 and φi,2 are free angular parameters. Contrary to the general solution given by Equation (A.2),

which only has angle φ as a single free parameter, Āi,0 and Āi,2 are also dependent on |di
i|, and |df

i|. These

extra degrees of freedom are a result of the fact that we introduced the timing law in order to capture the

temporal specifications, such as the specified initial and final speeds, separately.

The last unknown Āi,1 can be determined from the endpoint conditions:

1∫

0

Ai(ζi) îA∗
i (ζi)dζi = pf

i − pi
i

=
1

5
Āi,0 î Ā∗

i,0 +
1

10

(

Āi,0 î Ā∗
i,1 + Āi,1 î Ā∗

i,0

)

+
1

30

(

Āi,0 î Ā∗
i,2 + 4Āi,1 î Ā∗

i,1 + Āi,2 î Ā∗
i,0

)

+
1

10

(

Āi,1 î Ā∗
i,2 + Āi,2 î Ā∗

i,1

)

+
1

5
Āi,2 î Ā∗

i,2 .

(A.9)
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Equation (A.9) can be rewritten as

(
3Āi,0 + 4Āi,1 + 3Āi,2

)
î
(
3Āi,0 + 4Āi,1 + 3Āi,2

)∗

= 120
(
pf
i − pi

i

)
− 15

(
di
i + df

i

)
+ 5

(

Āi,0 î Ā∗
i,2 + Āi,2 î Ā∗

i,0

)

= c ,

(A.10)

where c = cx î+ cy ĵ+ czk̂, since the right hand side is a pure vector. Again, the solution to Equation (A.10)

is given by the general solution (A.2), and using Equations (A.7) and (A.8), Āi,1 can be found as

Āi,1(φi,1) =− 3
4

(
Āi,0 + Āi,2

)
+

√
1
2
(1+λc

i
)|c|

4

×
(

− sinφi,1 + cosφi,1 î+
µc
i cosφi,1+ν

c
i sinφi,1

1+λc
i

ĵ+
νc
i cosφi,1−µ

c
i sinφi,1

1+λc
i

k̂
)

,

(A.11)

where (λc
i , µ

c
i , ν

c
i ) and |c| ∈ R

+ are respectively the direction-cosines and the magnitude of the vector c, and

φi,1 is another free angular parameter. However, in [32, 34, 35] it is shown that the shape of the curves are

only dependent on differences of the angles φi,0, φi,1, and φi,2. Hence, without loss of generality we assume

that φi,1 = − 1
2π. Then, in contrast to what is claimed in [32,34,35], we have to let φi,0, φi,2 ∈ [−π, π], such

that the parametrization describes the complete set of spatial PH Bézier curves. Thus, Equation (A.11)

reduces to

Āi,1 = − 3
4

(
Āi,0 + Āi,2

)
+

√
1
2
(1+λc

i
)|c|

4

(

1− νc
i

1+λc
i
ĵ+

µc
i

1+λc
i
k̂

)

.

It is clear that the unknowns Āi,0, Āi,1, and Āi,2 are completely determined by the four parameters |di
i|, |df

i|,

φi,0, and φi,2. Therefore, a four-parameter family of solutions characterizes the spatial quintic PH Bézier

curve that satisfies the first-order Hermite interpolation.
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Appendix B

Proofs

B.1 Proof of Proposition 1

We start by showing that the Bernstein polynomial

bnk (αζ
α) =

(
n

k

)

(1− αζα)
n−k

(αζα)
k

(B.1)

can be rewritten as

bnk (αζ
α) =

n∑

j=k

bjk(α)b
n
j (ζ

α) .

We note that (1− αζα) = (1− ζα) + (1− α) ζα and perform a binomial expansion of (B.1):

bnk (αζ
α) =

(
n
k

)
(1− αζα)

n−k
(αζα)

k

=
(
n
k

)
[(1− ζα) + (1− α) ζα]

n−k
(αζα)

k

=
(
n
k

)
(αζα)k

[(
n−k
0

)
(1− ζα)n−k(1− α)0(ζα)0

+
(
n−k
1

)
(1 − ζα)n−(k+1)(1 − α)1(ζα)1 + . . .

+
(
n−k
n−k

)
(1 − ζα)n−(n)(1− α)n−k(ζα)n−k

]

=
(
n
k

)
[
(
n−k
0

) (nk)
(nk)

(1− ζα)n−k(ζα)k
(kk)
(kk)

(1− α)k−kαk

+
(
n−k
1

) ( n
k+1)
( n
k+1)

(1− ζα)n−(k+1)(ζα)k+1 (
k+1

k )
(k+1

k )
(1− α)(k+1)−kαk + . . . .

+
(
n−k
n−k

) (nn)
(nn)

(1 − ζα)n−(n)(ζα)n
(nk)
(nk)

(1 − α)n−kαk
]

=
(
n
k

)∑n
j=k

(n−k

j−k)
(nj)(

j

k)
bjk(α)b

n
j (ζ

α)

=
∑n

j=k b
j
k(α)b

n
j (ζ

α) .
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Next, given the subdivision point ζ = α, the control points r̄αk of the Bézier polynomial rα(ζα) can be

determined by the de Casteljau algorithm and it is easy to verify that these are given by:

r̄αj =

j
∑

k=0

r̄kb
j
k(α) , j = 0, . . . , n .

Hence, the Bézier polynomial rα(ζα) is given by:

rα(ζα) =
n∑

j=0

j
∑

k=0

r̄kb
j
k(α)b

n
j (ζ

α)

=

0∑

k=0

r̄kb
0
k(α)b

n
0 (ζ

α) + . . .+

n∑

k=0

r̄kb
n
k (α)b

n
n(ζ

α)

= r̄0b
0
0(α)b

n
0 (ζ

α) + . . .+ [r̄0b
n
0 (α)b

n
n(ζ

α) + . . .+ r̄nb
n
n(α)b

n
n(ζ

α)]

= r̄0
[
b00(α)b

n
0 (ζ

α) + . . .+ bn0 (α)b
n
n(ζ

α)
]
+ . . .+ r̄nb

n
n(α)b

n
n(ζ

α)

=
n∑

k=0

r̄k

n∑

j=k

bjk(α)b
n
j (ζ

α)

=
n∑

k=0

r̄kb
n
k (αζ

α)

= r(αζα) ,

which holds for all ζα ∈ [0, 1], and completes the proof. �

B.2 Proof of Lemma 1

Recalling that we let t̂αd,i = t̂d,j and using Proposition 1, we can write

pαd,i(t̂
α
d,i) = pαd,i(t̂d,j) = pd,i(α t̂d,j) .

Then, noting that α t̂d,j = t̂d,i, we obtain

pd,i(α t̂d,j) = pd,i(t̂d,i) , ∀ td ∈ [0, tfdij ] ,

which completes the proof. �
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B.3 Proof of Theorem 10

(i) First, we observe that

lim sup
τ↓0

f(x+ τd) − f(x)

τ
≤ lim sup

y→x
τ↓0

f(y + τd)− f(y)

τ
= f◦(x; d) .

Hence, we obtain

L := lim sup
τ↓0

f(x+ τd) − f(x)

τ
< 0 .

Then there exists δ > 0, such that L + δ < 0. From the definition of the lim sup, there exists ǫ > 0,

such that

f(x+ τd) − f(x)

τ
< L+ δ < 0 , for all τ ∈ (0, ǫ ] .

Therefore, f(x + τd) − f(x) < 0 for all τ ∈ (0, ǫ ], and we conclude that d is a descent direction for f

at x.

(ii) From Theorem 4(ii) we know that

f◦(x; d) = max {ξ⊤d | ξ ∈ ∂f(x)} , for all d ∈ R
n .

Therefore, since f◦(x; d) < 0, it follows that ξ⊤d < 0 for all ξ ∈ ∂f(x).

(iii) Suppose d is a descent direction for f̄ at x. Then there exists ǫ′ > 0 such that

f̄(x + τd) < f̄(x) , for all τ ∈ (0, ǫ′ ] .

From the definition of f̄ at x we obtain

f̄(x+ τd)− f̄(x) = max
ξ∈∂f(x)

{ f(x) + 〈 ξ , τd 〉} − f(x)

= τ max
ξ∈∂f(x)

〈 ξ , d 〉

= τ f◦(x; d)

< 0 , for all τ ∈ (0, ǫ′ ] .

Then, as shown in part i, there exists ǫ ∈ (0, ǫ′ ] such that f(x+ τd)− f(x) < 0 for all τ ∈ (0, ǫ ], which

means that d is a descent direction for f at x. �
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B.4 Proof of Theorem 13

Suppose x̂∗ = 1n ⊗ x̂∗ is a local weak Pareto optimum of (P2). Since x̂∗ ∈ Ω, we have that

fi(x̂
∗)− fi(x̂

∗) = 0 ,

gi(x̂
∗) ≤ 0 ,

for all i = 1, . . . , N and, hence, H(x̂∗; x̂∗) = 0. Next, let ρ > 0 be the radius associated with the local weak

Pareto optimum x̂∗ and let x̂ ∈ B(x̂∗; ρ)∩Ω. Note, by definition of Ω, that x̂ ∈ ΩL̃. We consider two cases:

(i.) gi(x̂
i) ≥ 0 for some i ∈ {1, . . . , N}. Then we have that H(x̂; x̂∗) ≥ 0.

(ii.) gi(x̂
i) ≤ 0 for all i = 1, . . . , N . Then, since x̂∗ is a local weak Pareto optimum, fi(x̂

i)− fi(x̂
∗) ≥ 0 for

some i ∈ {1, . . . , N} and, hence, H(x̂; x̂∗) ≥ 0.

Then, by Definition 7, x̂∗ is a local minimizer for H(· ; x̂∗) on ΩL̃. �.

B.5 Proof of Proposition 4

First, recall that the constraint set ΩL̃ is defined as

ΩL̃ := {x̂ ∈ R
N2 | L̃x̂ = 0} .

The tangent plane TΩL̃
at x̂∗ is defined as the collection of the derivatives at x̂∗ of all differentiable curves x̂(t)

on ΩL̃. Hence, it is clear that TΩL̃
⊂ Null(L̃) since any curve x̂(t) passing through x̂∗ at t = t∗ having

derivative ˙̂x(t∗) such that L̃ ˙̂x(t∗) 6= 0, that is ˙̂x(t∗) /∈ Null(L̃), would not lie on ΩL̃.

To prove that Null(L̃) ⊂ TΩL̃
we must show that if y ∈ Null(L̃) then there is a curve x̂(t) on ΩL̃ passing

through x̂∗ at t = t∗ with derivative ˙̂x(t∗) = y. Let y = 1N ⊗ y for some y ∈ R
N . Then we know

that y ∈ Null(L̃). Next, we define a function s : R → R
N such that lim

t→0

s(t)
t

= 0N , and let s(t) = 1N ⊗ s(t).

We construct the differentiable curve x̂(t) for some interval t ∈ [−a, a] with a > 0 as

x̂(t) =







x̂∗ + ty + s(t) t 6= 0 ,

x̂∗ + ty t = 0 .

Hence, it is clear that the curve lies on ΩL̃ for all t ∈ [−a, a], and that x̂(t∗) = x̂∗ for t∗ = 0. At t∗ the curve

is continuous and ˙̂x(t∗) = y. �
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B.6 Proof of Theorem 16

From Proposition 4 we know that the tangent plane TΩL̃
at x̂∗ is given by

TΩL̃
(x̂∗) = Null(L̃) .

Hence, from the definition of the normal plane NΩL̃
, and the fact that every vector in Null(L̃) is orthogonal

to every vector in Range(L̃⊤), we obtain

NΩL̃
(x̂∗) = Range(L̃⊤) ,

=
{

x̂ | x̂ = L̃⊤ ν , ν ∈ R
N2
}

.

Therefore, if x̂∗ is a local minimizer of (P3), then from Theorem 15 we conclude that there exists a vec-

tor ν ∈ R
N2

such that

0 ∈ ∂Ĥ(x̂∗; x̂∗) + L̃⊤ ν .

This completes the proof. �

B.7 Proof of Theorem 17

Suppose d ∈ R
N2

is a feasible descent direction for Ĥ at x̂k ∈ Ω subject to ΩL̃. Then there exists ǫ > 0

such that

Ĥ(x̂k + τd) < Ĥ(x̂k) = 0 , (B.2)

and

x̂k + τd ∈ ΩL̃ ,

for all τ ∈ (0, ǫ ]. Then, since fi(x̂
i
k) = f̄i(x̂

i
k), it follows from the definition of Ĥ that for i = 1, . . . , N

f̄i(x̂
i
k + τd i)− f̄i(x̂

i
k) < 0 , for all τ ∈ (0, ǫ ] ,

and, as such, direction d i is a descent direction for f̄i at x̂ik. Therefore, by Theorem 10, there exist ǫfi ∈ (0, ǫ ]

such that fi(x̂
i
k + τd i) − fi(x̂

i
k) < 0 for all τ ∈ (0, ǫfi ], which means that d i is a descent direction for fi

at x̂ik and, thus, direction d is a descent direction for F at x̂k.

Now we have to show that the direction d is feasible subject to Ωg. If gi(x̂
i
k) < 0 for some i = 1, . . . , N ,
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then by continuity of gi there exist ǫgi > 0 such that gi(x̂
i
k + τd i) ≤ 0 for all τ ∈ (0, ǫgi ]. If gi(x̂

i
k) = 0 for

some i = 1, . . . , N , then, by Equation (B.2), we have

ḡi(x̂
i
k + τd i) < ḡi(x̂

i
k) = gi(x̂

i
k) = 0 , for all τ ∈ (0, ǫ ] ,

which means that d i is a descent direction for ḡi at x̂ik. Using Theorem 10 we conclude that the direction

d i is also a descent direction for gi at x̂ik and, therefore, there exist ǫgi0 ∈ (0, ǫ ] such that

gi(x̂
i
k + τd i) < gi(x̂

i
k) = 0 , for all τ ∈ (0, ǫgi0 ] .

Let δ := min
i=1,...,N

{ǫfi , ǫgi , ǫgi0 }. Then we have that x̂k + τd ∈ Ω for all τ ∈ (0, δ ] and, hence, d is a feasible

direction subject to Ω. �

B.8 Proof of Lemma 4

From Definition 2 for the subdifferential of a convex function fi, we have that

fi(x̂
i) ≥ fi(x̂

i
ℓ) + 〈 ξiℓ,m, x̂i − x̂iℓ 〉

= fi(x̂
i)− αiℓ,m(x̂i) , for all m ∈ Ifiℓ ,

where the map αiℓ,m(x̂
i) was defined by Equation (6.21). Hence, αiℓ,m(x̂

i) ≥ 0 for all x̂i ∈ R
N and m ∈ Ifiℓ .

Consider ℓ̄ ∈ Ik. Then we find that for all x̂i ∈ R
N

f̂i,k(x̂
i) = max

ℓ∈Ik

f̄i,ℓ(x̂
i)

= max
ℓ∈Ik

max
m∈I

fi
ℓ

{fi(x̂iℓ̄) + 〈 ξiℓ,m, x̂i − x̂i
ℓ̄
〉 − αiℓ,m(x̂

i
ℓ̄
)}

= fi(x̂
i
ℓ̄
) + max

ℓ∈Ik

max
m∈I

fi
ℓ

{〈 ξiℓ,m, x̂i − x̂i
ℓ̄
〉 − αiℓ,m(x̂

i
ℓ̄
)} .

Since αiℓ,m(x̂
i) ≥ 0 for all x̂i ∈ R

N and m ∈ Ifiℓ , we have that αiℓ,m(x̂i
ℓ̄
) ≥ 0 and, in particular from

Equation (6.21), αi
ℓ̄,m

(x̂i
ℓ̄
) = 0. Hence, it follows that f̂i,k(x̂

i
ℓ̄
) = fi(x̂

i
ℓ̄
) for all ℓ̄ ∈ Ik. We can repeat the

same proof for the convex function gi. �
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B.9 Proof of Lemma 5

To prove that Ĥk(x̂) is convex, we first show that the maximum of two convex functions is convex.

Let f1 : Rn → R and f2 : Rn → R be convex, and g : Rn → R be defined as

g(x) := max {f1(x), f2(x)} .

Next, let y, z ∈ R
n and λ ∈ [0, 1]. Since f1(x) is convex, and using the definition of g(x), we obtain

f1(λy + (1− λ)z) ≤ λf1(y) + (1− λ)f1(z)

≤ λg(y) + (1− λ)g(z) .

Similarly, we find

f2(λy + (1− λ)z) ≤ λg(y) + (1− λ)g(z) .

Then we can derive that

g(λy + (1− λ)z) = max {f1(λy + (1− λ)z), f2(λy + (1− λ)z)}

≤ λg(y) + (1− λ)g(z) ,

and, hence, g(x) is a convex function. Lastly, note that Ĥk(x̂) at x̂k is a maximum of a collection of linear

(and convex) functions, and we conclude that Ĥk(x̂) is convex.

For the second part, we first note from Corollary 1 and Definition 5 that the functions fi and gi are

regular. We proceed by deriving the subdifferential for H(x̂; x̂k) at x̂k. From the definition of H(x̂; x̂k), we

have that fi(x̂
i)− fi(x̂

i
k) = 0 for all i = 1, . . . , N at x̂k. Also, since x̂k is feasible subject to Ωg, we also find

that gj(x̂
j
k) ≤ 0 for all j = 1, . . . , N and, therefore, H(x̂k; x̂k) = 0. Next, we define the set J as

J := { j ∈ {1, . . . , N} | gj(x̂jk) = H(x̂k; x̂k)} .

Then from Theorem 6 in Chapter 5 we obtain

∂F (x̂k) = conv
i∈I

{∂fi(x̂ik)} , ∂G(x̂k) = conv
j∈J

{∂gj(x̂jk)} ,

∂H(x̂k; x̂k) = conv {∂F (x̂k) ∪ ∂G(x̂k)} ,

125



where it is clear that I = {1, . . . , N}. The equality follows from the regularity of the functions fi and gi.

From the assumption that fi and gi are convex, and Lemma 4, we know that

f̂i,k(x̂
i
k) = fi(x̂

i
k) ,

ĝj,k(x̂
j
k) = gj(x̂

j
k) .

Hence, from the definition of Ĥk(x̂) and the fact that x̂k is feasible subject to Ωg, we have that Ĥk(x̂k) = 0.

Then, let us define the set Ĵ as

Ĵ := { j ∈ {1, . . . , N} | ĝj,k(x̂jk) = Ĥk(x̂k)} ,

and with the fact that ĝj,k(x̂
j
k) = gj(x̂

j
k) and Ĥk(x̂k) = 0, we conclude that Ĵ = J . Then using Theorem 6

we obtain

∂F̂ (x̂k) = conv
i∈Î

{∂f̂i,k(x̂ik)} , ∂Ĝ(x̂k) = conv
j∈Ĵ

{∂ĝj,(x̂jk)} ,

∂Ĥ(x̂k) = conv{∂F̂ (x̂k) ∪ ∂Ĝ(x̂k)} ,

where Î = {1, . . . , N}. It can be easily verified, that by construction, we have that

∂f̂i,k(x̂
i
k) = ∂fi(x̂

i
k) , for all i = 1, . . . , N ,

∂ĝj,k(x̂
j
k) = ∂gj(x̂

j
k) , for all j = 1, . . . , N .

Hence, we conclude that ∂Ĥ(x̂k) = ∂H(x̂k; x̂k). �

B.10 Proof of Theorem 19

By assumption, the objective functions fi are convex and, therefore, from Lemma 4 we know that

f̂i,k(x̂
i
k) = fi(x̂

i
k) .
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This implies that Ĥk(x̂k) = 0. Now, suppose dk ∈ R
N2

is a descent direction for Ĥk at x̂k ∈ Ω and feasible

subject to ΩL̃. Then there exists ǫ > 0 such that

Ĥk(x̂k + τdk) < Ĥk(x̂k) = 0 , (B.3)

and

x̂k + τdk ∈ ΩL̃ ,

for all τ ∈ (0, ǫ ]. It follows from the definitions of Ĥk and f̂i,k that, for i = 1, . . . , N and ℓ ∈ Ik,

f̂i,k(x̂
i
k + τd ik)− fi(x̂

i
k) < 0 , for all τ ∈ (0, ǫ ]

and, thus,

f̄i,ℓ(x̂
i
k + τd ik)− fi(x̂

i
k) < 0 , for all τ ∈ (0, ǫ ] .

In particular, for ℓ = k we find that

f̄i,k(x̂
i
k + τd ik)− fi(x̂

i
k) = max

m∈I
fi
k

{ fi(x̂ik) + 〈 ξik,m , x̂ik + τd ik − x̂ik 〉 − fi(x̂
i
k) }

= τ max
m∈I

fi
k

〈 ξik,m , d ik 〉

= τf◦
i (x̂

i
k; d

i
k) , for all τ ∈ (0, ǫ ] .

With f̄i,k(x̂
i
k+τd

i
k)−fi(x̂ik) < 0, we obtain f◦

i (x̂
i
k; d

i
k) < 0 for all τ ∈ (0, ǫ ]. Then by Theorem 10 there exist

ǫfi ∈ (0, ǫ ] such that fi(x̂
i
k + τd ik) − fi(x̂

i
k) < 0 for all τ ∈ (0, ǫfi ] and, therefore, dk is a descent direction

for F at x̂k.

Next, we have to show that the direction dk is feasible subject to Ωg. If gi(x̂
i
k) < 0 for some i = 1, . . . , N ,

then by continuity of gi there exist ǫgi > 0 such that gi(x̂
i
k + τd ik) ≤ 0 for all τ ∈ (0, ǫgi ]. If gi(x̂

i
k) = 0 for

some i = 1, . . . , N , then, from the assumption that the inequality constraints gi are convex and Lemma 4,

we obtain

ĝi,k(x̂
i
k) = 0 .

Also, from the definition of ḡi,ℓ(x̂
i), it follows that for ℓ = k we have

ḡi,k(x̂
i
k) = 0 .
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By Equation (B.3), we have

ĝi,k(x̂
i
k + τd ik) < 0 , for all τ ∈ (0, ǫ ] ,

and, therefore, again from the definition of ĝi,k(x̂
i), we find that

ḡi,ℓ(x̂
i
k + τd ik) < 0 , for all τ ∈ (0, ǫ ] .

Hence, for ℓ = k we find that ḡi,k(x̂
i
k+ τd

i
k) < ḡi,k(x̂

i
k), which means that d ik is a descent direction for ḡi,k at

x̂ik. Then by Theorem 10 the direction d ik is also a descent direction for gi at x̂ik and, therefore, there exist

ǫgi0 ∈ (0, ǫ ] such that

gi(x̂
i
k + τd ik) < gi(x̂

i
k) = 0 , for all τ ∈ (0, ǫgi0 ] .

Let δ := min
i=1,...,N

{ǫfi , ǫgi , ǫgi0 }, then we have that x̂k + τdk ∈ Ω for all τ ∈ (0, δ ] and, hence, dk is a feasible

direction subject to Ω. �

B.11 Proof of Proposition 5

Let (z∗
k,d

∗
k) be the global minimizer of (DFP3). As z∗

k satisfies the constraint L z∗
k = 0, we know that z∗

k

lies in the nullspace of L. Since the Laplacian L corresponds to a connected graph, the nullspace of L is

given by

Null(L) = {γ1N | γ ∈ R} (B.4)

and, hence, z∗
k must be of the form z∗

k = z∗k1N for some z∗k ∈ R. Therefore, zi,k = zk for i = 1, . . . , N must

hold for zk to be a candidate minimizer of (DFP3). Consequently, the objective function for (DFP3) can be

found as

1
N

N∑

i=1

zi,k +
1
2‖dk‖2 = zk +

1
2‖dk‖2 ,

where the latter corresponds to the objective function for problem (DFP2). Similarly, it can be verified that

due to the specific structure of zk, the inequality constraints of (DFP3) are equivalent to the inequality

constraints of (DFP2) and, hence, we have recovered the optimization problem (DFP2).

To prove the converse, let (z∗k,d
∗
k) be the global minimizer of (DFP2) and let zk = z∗k1N . Then

since zk ∈ Null(L) by Equation (B.4), the equality constraint L zk = 0 of Problem (DFP3) is satisfied.

The proof can be completed by the same arguments as in the first part, that the objective functions and

inequality constraints for Problems (DFP3) and (DFP2) are equivalent by virtue of the structure of zk. This

completes the proof. �

128



B.12 Proof of Theorem 21

Suppose ‖d ik‖2 = 0 at the kth iteration, or equivalently, d ik = 0. Since d ik is the global minimizer obtained

by vehicle i to the distributed direction finding problem for iteration k, that means that d ∗i

k = d ik. Note

that since dk ∈ ΩL̃, it must hold that dk = 1n ⊗ dk and, hence, dk = d ik for all i = 1, . . . , N . Therefore, we

conclude that d∗
k = 0 is a global minimizer for (DFP1) at iteration k.

Then, from Theorem 20, we know that the following necessary condition holds

0 ∈ ∂Ĥk(x̂k + d∗
k) + d∗

k + L̃⊤ν ,

and with d∗
k = 0 we have at iteration point x̂k + d∗

k = x̂k that

0 ∈ ∂Ĥk(x̂k) + L̃⊤ν .

Lemma 5 tells us further that ∂Ĥk(x̂k) = ∂H(x̂k; x̂k) and the following hold

0 ∈ ∂H(x̂k; x̂k) + L̃⊤ν .

Then, by Theorem 16, the iteration point x̂k satisfies the necessary condition to be a local minimizer

for H(x̂; x̂∗). Lastly, since Assumption 5 holds, then by Theorem 14 and the fact that x̂k = 1N ⊗ xk, where

xk = x̂ik for all i = 1, . . . , N , we conclude that if x̂k is a local minimizer for Problem (P3), then xk is a local

minimizer of Problem (P1). This completes the proof. �
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