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Abstract

This thesis is concerned with the development and applications of controlled interacting particle systems

for nonlinear filtering and global optimization problems. These problems are important in a number of en-

gineering domains. In nonlinear filtering, there is a growing interest to develop geometric approaches for

systems that evolve on matrix Lie groups. Examples include the problem of attitude estimation and motion

tracking in aerospace engineering, robotics and computer vision. In global optimization, the challenges typ-

ically arise from the presence of a large number of local minimizers as well as the computational scalability

of the solution. Gradient-free algorithms are attractive because in many practical situations, evaluating the

gradient of the objective function may be computationally prohibitive.

The thesis comprises two parts that are devoted to theory and applications, respectively. The theoretical

part consists of three chapters that describe methods and algorithms for nonlinear filtering, global optimiza-

tion, and numerical solutions of the Poisson equation that arise in both filtering and optimization.

For the nonlinear filtering problem, the main contribution is to extend the feedback particle filter (FPF)

algorithm to connected matrix Lie groups. In its general form, the FPF is shown to provide an intrinsic

coordinate-free description of the filter that automatically satisfies the manifold constraint. The properties

of the original (Euclidean) FPF, especially the gain-times-error feedback structure, are preserved in the

generalization.

For the global optimization problem, a controlled particle filter algorithm is introduced to numerically

approximate a solution of the global optimization problem. The theoretical significance of this work comes

from its variational aspects: (i) the proposed particle filter is a controlled interacting particle system where

the control input represents the solution of a mean-field type optimal control problem; and (ii) the associated

density transport is shown to be a gradient flow (steepest descent) for the optimal value function, with respect

to the Kullback–Leibler divergence.

For both the nonlinear filtering and optimization problems, the numerical implementation of the pro-
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posed algorithms require a solution of a Poisson equation. Two numerical algorithms are described for this

purpose. In the Galerkin scheme, the gain function is approximated using a set of pre-defined basis func-

tions; In the kernel-based scheme, a numerical solution is obtained by solving a certain fixed-point equation.

Well-posedness results for the Poisson equation are also discussed.

The second part of the thesis contains applications of the proposed algorithms to specific nonlinear

filtering and optimization problems. The FPF is applied to the problem of attitude estimation – a nonlinear

filtering problem on the Lie group SO(3). The formulae of the filter are described using both the rotation

matrix and the quaternion coordinates. A comparison is provided between FPF and the several popular

attitude filters including the multiplicative EKF, the invariant EKF, the unscented Kalman filter, the invariant

ensemble Kalman filter and the bootstrap particle filter. Numerical simulations are presented to illustrate

the comparison.

As a practical application, experimental results for a motion tracking problem are presented. The ob-

jective is to estimate the attitude of a wrist-worn motion sensor based on the motion of the arm. In the

presence of motion, considered here as the swinging motion of the arm, the observability of the sensor at-

titude is shown to improve. The estimation problem is mathematically formulated as a nonlinear filtering

problem on the product Lie group SO(3)× SO(2), and experimental results are described using data from

the gyroscope and the accelerometer installed on the sensor.

For the global optimization problem, the proposed controlled particle filter is compared with several

model-based algorithms that also employ probabilistic models to inform the search of the global minimizer.

Examples of the model-based algorithms include the model reference adaptive search, the cross entropy,

the model-based evolutionary optimization, and two algorithms based on bootstrap particle filtering. Per-

formance comparisons are provided between the control-based and the sampling-based implementation.

Results of Monte-Carlo simulations are described for several benchmark optimization problems.
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Chapter 1

Introduction

This thesis is concerned with particle-based methods and algorithms for the problem of nonlinear filtering

and global optimization. Application of particle-based algorithms for these problems has a rich history. For

the nonlinear filtering problem, the particle filter has been a popular solution approach since its debut in the

mid-1990s [63, 3, 46]. It has been applied to estimation problems that arise in engineering disciplines such as

inertial navigation [67], simultaneous localization and mapping [135], computer vision [84], wireless sensor

networks [83], and fault diagnosis [182]. For the global optimization problem, particle-based algorithms

include the genetic algorithm [62], the particle swarm optimization [91, 196], the ant colony optimization

[45], a class of interacting particle systems [133, 136], and a class of model-based algorithms [75, 79].

Nonlinear filtering and global optimization are closely-related problems with similar models and particle-

based implementations. For example, several recent works cast the global optimization problem as a particle

filtering problem whereby a Bayesian model is used to sequentially guide the search of the optimal solution

[215, 165]. Also, the methods for global optimization have influenced the development of particle filter al-

gorithms, e.g., by incorporating the annealing property that is fundamental for many optimization methods

[59, 136]. For both filtering and optimization, classical particle-based algorithms typically require certain

types of particle interaction mechanisms such as selection, computation of the so-called importance weight,

and re-generation of particles.

The aim of this thesis is to develop a class of controlled particle system algorithms for the nonlinear

filtering and global optimization problems. In the control-based approach advocated in this thesis, each

particle evolves according to a control law that depends on both the particle as well as the entire popula-

tion. There are no additional steps associated with resampling, regeneration or removal of particles. The

control-oriented construction is motivated by the feedback particle filter (FPF) [195, 194] that was originally

developed for nonlinear filtering problems in an Euclidean setting. Additional motivation comes from the

recent development in mean-field control [81, 197] and the optimal transportation theory [183, 31].

1



The contributions of this thesis are as follows: For the nonlinear filtering problem, the FPF algorithm

– originally constructed in the Euclidean space – is extended to matrix Lie groups. Applications of FPF to

attitude estimation and motion tracking are presented along with several numerical studies. For the global

optimization problem, a controlled particle filter algorithm – a gradient-free approach closely related to FPF

– is developed and numerically assessed for several benchmark optimization problems. For both the filtering

and optimization problems, the proposed algorithms are compared with the state-of-the-art algorithms in the

literature.

The remainder of this chapter provides an expanded summary of these contributions. Sec. 1.1 provides

a self-contained summary of background on the basic FPF theory, the mathematical problem statement

involving its extension to matrix Lie groups, a literature review, and an overview of our contributions to this

problem. Sec. 1.2 provides a similar overview for the global optimization problem. The organization of the

thesis appears in Sec. 1.3.

1.1 Nonlinear Filtering on Matrix Lie Groups

1.1.1 Background: Review of the basic feedback particle filter theory

The feedback particle filter was originally developed for the following continuous-time nonlinear filtering

problem in the Euclidean space [194, 193]:

dXt = a(Xt) dt +σ(Xt) dBt , (1.1a)

dZt = h(Xt) dt + dWt , (1.1b)

where Xt ∈ Rd is the hidden state (signal), Zt ∈ Rm is the observation, a(·), h(·), σ(·) are C1 functions

of appropriate dimension, and Bt , Wt are mutually independent standard Wiener processes in Rd and Rm,

respectively. The j-th coordinate of h is denoted as h j, i.e., h = (h1, ...,hm). The stochastic differential

equation (sde) (1.1a) is expressed in its Itô form. The filtering objective is to numerically approximate the

conditional distribution of Xt given the time-history (filtration) of the observations Zt = σ(Zs : s≤ t).

The Euclidean feedback particle filter consists of N controlled stochastic processes {X i
t }N

i=1. The state

2



of the i-th particle X i
t ∈ Rd evolves according to,

dX i
t = a(X i

t ) dt +σ(X i
t ) dBi

t +K(X i
t , t)◦

(
dZt −

h(X i
t )+ ĥt

2
dt
)
, (1.2)

where Bi
t for i = 1, ...,N are mutually independent standard Wiener processes in Rd , K(x, t)∈Rd×m is a gain

function to be solved, and ĥt := E[h(X i
t )|Zt ]. The ◦ after K indicates that the particle sde (1.2) is expressed

in its Stratonovich form. We refer the reader to [60] for a composition of Itô and Stratonovich sdes.

The gain function K(x, t) is obtained by solving a Poisson equation: For j = 1, ...,m, the function φ j is

a solution to the Poisson equation,

−∇ · (ρ(x)∇φ j(x)) = (h j(x)− ĥ j)ρ(x), x ∈ Rd ,∫
φ j(x)ρ(x)dx = 0,

(1.3)

where ρ denotes the conditional density of X i
t given the filtration Zt . The gain function is then given by,

[K]l j =
∂φ j

∂xl
.

The gain function needs to be obtained for each value of time t.

The FPF is an exact algorithm. That is, the posterior distribution (conditioned on the filtration Zt) of X i
t

exactly matches the posterior distribution of Xt , provided that the two distributions are initialized according

to the same prior [194].

Numerical studies and comparisons with FPF have been reported in several papers [194, 175, 17, 164,

205, 168] where FPF was applied to various nonlinear estimation problems. In many of these studies, the

FPF exhibited certain advantages over the conventional bootstrap particle filter (BPF) [3]. For example, the

FPF was shown to avoid the particle degeneracy and sample impoverishment issue encountered in BPF, and

FPF also reduced the simulation variance. The robustness of FPF has been attributed to the error-correction

feedback structure in the particle dynamics (1.2). Indeed, extending the feedback structure to more general

spaces such as matrix Lie groups is a major goal of our work.
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1.1.2 Problem statement: Filtering problem on matrix Lie groups

Throughout the thesis, a matrix Lie group is denoted as G, and its Lie algebra is denoted as G . The focus of

this thesis is on the following continuous-time filtering problem on G,

dXt = Xt V0(Xt) dt +Xt Vα(Xt)◦ dBα
t , (1.4a)

dZt = h(Xt) dt + dWt , (1.4b)

where Xt ∈ G is the hidden state (signal) at time t, Zt ∈ Rm is the observation vector; V0 : G→ G and

Vα : G→ G for α = 1, ...,r are Lie algebra-valued functions; Bα
t and Wt are mutually independent standard

Wiener processes in R and Rm, respectively, and they are also assumed to be independent of the initial state

X0; h : G→ Rm is a given vector-valued nonlinear function. The j-th coordinate of Zt and h are denoted

as Z j
t and h j, respectively (i.e. Zt = (Z1

t , ...,Z
m
t ) and h = (h1, ...,hm)). The sde (1.4a) is expressed in its

Stratonovich form, and the Einstein summation convention for the free index α is used.

The signal model (1.4a) differs from its Euclidean counterpart (1.1a) due to the multiplicative form

of the drift and noise terms. By left multiplication, the Lie algebra is used to generate a vector field that

models state evolution on a Lie group [104]. This construction, expressed in its Stratonovich form, provides

a coordinate-free description of the sde on a Lie group [74, 60, 140].

As in the Euclidean case, the objective of the filtering problem is to numerically approximate the condi-

tional distribution of Xt given the time-history of observations Zt = σ(Zs : s≤ t). The conditional distribu-

tion, denoted as π∗t , acts on a function f : G→ R according to

π
∗
t ( f ) := E[ f (Xt)|Zt ].

1.1.3 Overview of contributions

The main contribution of the thesis is to generalize the feedback particle filter to matrix Lie groups. The

FPF algorithm for the filtering problem (1.4a)-(1.4b) consists of N particles {X i
t }N

i=1 evolving on the Lie

group G,

dX i
t = X i

t V0(X i
t ) dt + X i

t Vα ◦ dBα,i
t︸ ︷︷ ︸

propagation

+X i
t K j(X i

t , t)◦ dI j,i
t︸ ︷︷ ︸

observation update

, (1.5)
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where Bα,i
t for α = 1, ...,r and i = 1, ...,N are mutually independent standard Wiener processes in R, K j ∈ G

for j = 1, ...,m are the gain functions obtained by solving a Poisson equation on G, and the error dI j,i
t ∈ R

is a modified form of the innovation process:

dI j,i
t = dZ j

t −
h j(X i

t )+ ĥ j

2
dt,

for each j = 1, ...,m, and ĥ j := E[h j(X i
t )|Zt ].

The particle dynamics (1.5), expressed in its Stratonovich form, are shown to provide a coordinate-free

description of the filter that automatically satisfies the geometric constraints of the manifold. The filter is

also shown to be exact. That is, in the limit of large number of particles, the empirical distribution of the

particles exactly matches the posterior distribution. In a numerical implementation of FPF, however, the

source of estimation error include: i) the use of only finitely many particles, ii) the discretization of the time

interval, and iii) the error due to approximating the solution of the Poisson equation. Quantification and

analysis of these errors call for future research.

The following is a summary of contributions apart from the theoretical foundation of the FPF on matrix

Lie groups:

• Poisson equation on matrix Lie groups. The FPF algorithm requires numerical approximation of the gain

functions K j(x, t) as a solution to a linear Poisson equation on the Lie group. The Poisson equation for this

case represents an extension of (1.3). An existence-uniqueness result for the solution is described in the Lie

group setting. Two numerical methods are proposed to approximate the solution: i) in the Galerkin method,

the gain function is approximated using a set of pre-defined basis functions; ii) in the kernel-based method, a

numerical solution is obtained by solving a certain fixed-point equation. The two numerical procedures are

described for both general Lie groups as well as special cases such as SO(3) and the Euclidean space. For

the Galerkin method, an error bound of the approximation is obtained for the case when the basis functions

are taken as the eigenfunctions of the weighted Laplacian operator in the Poisson equation.

• Feedback particle filter for attitude estimation. The attitude estimation problem represents the impor-

tant special case where the Lie group is SO(3). For this important special case, the explicit form of FPF

is described with respect to both the rotation matrix and the quaternion coordinates, with the latter being

demonstrated for computational purposes. Furthermore, in the case where the posterior distribution is con-
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centrated, a certain closed-form approximation, referred to as the constant gain approximation, of the gain

function is obtained. With this approximation, evolution equations for the particle mean and the covariance

are also derived and shown to be closely related to the left invariance EKF algorithm proposed in [20].

• Numerical studies. For the attitude estimation problem, the performance of FPF with different gain func-

tion approximation schemes are investigated and compared with several filters in the literature, including

the extended Kalman filters, an unscented Kalman filter, an ensemble Kalman filter and a bootstrap particle

filter. The performance of the filters are assessed by varying the prior distribution and the noise parameters.

The particle filters are also assessed by varying the number of particles used in the filter.

• Feedback particle filter for motion tracking. The application involves tracking the motion of human arm

with a wrist-worn motion sensor equipped with a gyroscope and an accelerometer. The tracking problem is

cast as a filtering problem on the product Lie group SO(3)×SO(2). For this problem, experimental results

with FPF are presented.

1.1.4 Literature review

In recent years, there has been a growing interest in the nonlinear filtering community to develop geomet-

ric approaches for handling constrained systems. In many cases, the constraints are described by smooth

Riemannian manifolds, in particular the matrix Lie groups. Engineering applications of filtering on matrix

Lie groups include: i) attitude estimation of aircrafts [80, 13], ii) localization of mobile robots [9, 72], and

iii) visual tracking of humans and objects [96, 116]. In these applications, the matrix Lie groups of interest

include the special orthogonal group SO(3), the special Euclidean group SE(3), and the special linear group

SL(3).

The mathematical problem of nonlinear filtering of stochastic processes in non-Euclidean spaces has a

rich history; c.f., [51, 139, 146]. More recently, the focus has been on computational approaches to numer-

ically approximate the conditional distribution. Such approaches have been developed, e.g., by extending

the classical extended Kalman filter (EKF) to Lie groups. These extensions have appeared in discrete-time

[22, 203], continuous-time [20, 58], and continuous-discrete-time settings [13, 21]. In particular, a number

of EKF-based filters have been proposed and applied for attitude estimation, e.g., the additive EKF [8] and

the multiplicative EKF [105]. The EKF-based attitude filters require a linearized model of the estimation

error, typically derived using one of the many three-dimensional attitude representations, e.g. the Euler
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angle [7], the rotation vector [145], or the modified Rodrigues parameter [124].

Apart from the EKF, unscented and particle filters for matrix Lie groups and Riemannian manifolds have

also been an active area of research [38, 95, 39, 122, 160, 70]. Typically, particle filters adopt discrete-time

description of the dynamics and are based on importance sampling and resampling numerical procedures.

For the attitude estimation problem, the unscented quaternion estimator [42] and the bootstrap particle filter

[32, 141] have been developed, using one of the attitude representations. Other non-parametric approaches

include the point-mass filter [174] and filters based on certain variational formulations on the Lie groups

[202, 152, 87].

Based on geometric group-theoretic methods for Lie groups, deterministic nonlinear observers have also

been investigated [118, 98, 181]. A class of symmetry-preserving observers have been proposed to exploit

certain invariance properties [19], leading to the invariant EKF [20, 13], the invariant unscented Kalman

filter [41], the invariant ensemble Kalman filter [13], and the invariant particle filter [12] algorithms within

the stochastic filtering framework. A closely related theme is the use of non-commutative harmonic analysis

for characterizing error propagation and Bayesian fusion on Lie groups [37, 186, 191]. More comprehensive

surveys appear in [43, 200].

1.2 Global Optimization

The global optimization problem is

min
x∈Rd

h(x), (1.6)

where h : Rd → R is a real-valued function.

The objective is to develop a particle-based gradient-free algorithm to obtain the global minimizer of

h. Gradient-free algorithms are sought because in many practical situations, evaluating the gradient of the

objective function may be computationally prohibitive.

1.2.1 Background and overview of contributions

The main contribution is to develop the controlled particle filter (CPF) algorithm for the global optimization

problem (1.6).

The CPF is developed based on the following Bayesian approach: Given an everywhere positive initial
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density (prior) p∗0, define the (posterior) density at a positive time t by

p∗(x, t) :=
p∗0(x) exp(−βh(x) t)∫
p∗0(y) exp(−βh(y) t)dy

, (1.7)

where β is a positive constant parameter. Under certain additional technical assumptions on h and p∗0, the

density p∗(x, t) weakly converges to the Dirac delta measure at the global minimizer as time t → ∞. The

Bayesian approach is attractive because it can be implemented recursively: Given a finite time interval [0,T ],

define a discrete-time sequence {t0, t1, t2, . . . , tN̄} of sampling instants with 0 = t0 < t1 < .. . < tN̄ = T and

increments given by ∆tn := tn− tn−1,n = 1, . . . , N̄. The posterior distribution is expressed recursively as:

Initialization: ρ0(x) = p∗0(x),

Update: ρn(x) =
ρn−1(x) exp(−βh(x)∆tn)∫
ρn−1(y) exp(−βh(y)∆tn)dy

, n≥ 1.
(1.8)

Note that at time tn, ρn(x) = p∗(x, tn) by construction.

The Bayesian model (1.7) is not new: Taking time-derivative on both sides, one arrives at the replicator

model used in the model-based evolutionary optimization algorithm [187]. The discretized version (1.8) is

also a closely-related variant of the model used in the model reference adaptive search algorithm [76] and a

particle filtering algorithm for optimization [215].

A conventional particle filter based on sequential importance sampling and resampling (SISR) may be

used to sample from ρn. A particle filter is comprised of N stochastic processes {X i
n : 1 ≤ i ≤ N}, where

X i
n ∈ Rd is the state for the ith particle at iteration n. The SISR particle filter implements the following

recursive steps:

Initialization: X i
0

i.i.d.∼ p∗0,

Update: X i
n

i.i.d.∼
N

∑
i=1

wi
nδX i

n−1
, n≥ 1,

where wi
n ∝ exp(−βh(X i

n−1)∆tn) are referred to as the importance weights and δz denotes the Dirac-delta at

z ∈ Rd . In practice, the importance weights wi
n can potentially suffer from large variance. To address this

problem, several extensions have been described in literature based on consideration of suitable sampling

(proposal) distributions and efficient resampling schemes; cf., [46, 47].

We present an alternative control-based approach to the construction and simulation of the particle
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system for global optimization. In particular, the CPF consists of a controlled interacting particle system

where the dynamics of the ith particle evolves according to

dX i
t

dt
= u(X i

t , t), X i
0 ∼ p∗0, (1.9)

where the control function u(x, t) is obtained by solving the Poisson equation given in (1.3). In terms of the

solution φ(x) of (1.3) (the subscript j in (1.3) is omitted since h is scalar-valued in this case), the control

function at time t is given by

u(x, t) =−β∇φ(x).

The inspiration for controlling a single particle – via the control input u(X i
t , t) in (1.9) – comes from the

mean-field type control formalisms [81, 16, 24, 197], control methods for optimal transportation [183, 30,

31], and the feedback particle filter (FPF) algorithm for nonlinear filtering [195, 194]. One interpretation of

the control input u(X i
t , t) is that it implements the “Bayesian update step” to steer the ensemble {X i

t : 1≤ i≤

N} towards the global minimizer. Structurally, the control-based approach is a significant departure from

the importance sampling based implementation of the Bayes rule in conventional particle filters. It is noted

that there are no additional steps, e.g., associated with resampling, reproduction, death, or birth of particles.

In the language of importance sampling, the particle flow is designed so that the particles automatically have

identical importance weights for all time.

Based on the general framework as described above, specific contributions regarding the CPF algorithm

are as follows:

• Theory. The variational formulation of CPF is presented, including the gradient flow construction of

the Bayesian model (1.7) and the associated mean-field type optimal control problem from which the con-

trol function u(x, t) is obtained. To the best of our knowledge, it is the first derivation/interpretation of a

(Bayesian) particle filter as a solution to an optimal control problem. Numerical algorithms to approximate

the control function are provided. The special case with a quadratic objective function is also considered

where the control function admits a closed-form expression which is affine in the state.

• Numerical studies. The proposed CPF algorithm, together with several model-based methods, are sim-

ulated for benchmark optimization problems. Performance comparisons are provided between the control-

based and the sampling-based implementation of the Bayesian model. The numerical results are obtained
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via Monte-Carlo simulations.

1.2.2 Related work

There are two broad categories of global optimization algorithms: (i) Instance-based algorithms and (ii)

Model-based algorithms; cf., [217]. The instance-based algorithms include simulated annealing [93, 149],

genetic algorithms [62], differential evolution [166], nested partitions methods [158], and various types of

random search [199] and particle swarm [91, 196] algorithms. The optimization is cast as an iterative search

where one seeks to balance the exploration of the state-space with the optimization objective. In [150],

such algorithms are referred to as “local search heuristics”, presumably because they depend upon the local

topological structure of the state-space.

In recent years, the focus has been on model-based algorithms where a reference probabilistic model

– sequence of recursively-defined distributions of the decision variables – informs the search of the global

optimizer. Examples include (i) parametric approaches such as the cross-entropy (CE) [150], the model

reference adaptive search (MRAS) [76], and the model-based evolutionary optimization (MEO) [187]; and

(ii) non-parametric approaches such as estimation of distribution algorithm [99], sequential Monte Carlo

simulated annealing (SMC-SA) [213], and the particle filtering for optimization (PFO) [215]. While non-

parametric approaches typically implement importance sampling and resampling to approximate the refer-

ence model, parametric version of model-based methods approximate the reference model by a prescribed

class of parametric distributions. The latter is also referred to as density projection [214] in particle filter-

ing. Related filtering models for global optimization appear in [114, 113, 130, 165, 59]. Bayesian filtering

approaches to the particle swarm optimization also appear in [89, 134].

Multiple reference models have appeared in model-based methods; see recent surveys [75, 77, 79, 212,

114]. Apart from the Bayesian model used in PFO, other models include the optimal importance sampling

density used in CE, the proportional selection density used in MRAS, the replicator model used in MEO,

and the Boltzmann distribution used in SMC-SA. Many of these models are closely related to the model

used in our algorithm.

System and control approaches, though not model-based, have been employed for global optimization.

The algorithm based on a continuous-time consensus model appears in [128]. The use of stochastic differ-

ential equations with decaying diffusion is presented in [33, 2]. An optimal control problem is constructed
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in [133] to improve parameter tuning of the algorithm therein.

1.3 Outline of the Thesis

The remainder of the thesis is comprised of two parts.

1) Part I covers the theory for both nonlinear filtering on matrix Lie groups and global optimization. Specif-

ically, Chapter 2 contains the basic theory for extending the FPF to matrix Lie groups. The theoretical

foundation of the proposed optimization algorithm is presented in Chapter 3. The major computation

step in these algorithms – approximating the solution of a Poisson equation – is described in Chapter 4.

2) Part II contains applications of the proposed algorithms. The FPF for attitude estimation is developed

in Chapter 3. Experimental results of FPF for the motion tracking problem are recorded in Chapter 6.

Chapter 7 includes numerical studies for the global optimization problem.

All the proofs appear in the appendix.
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Theory
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Chapter 2

Feedback Particle Filter on Matrix Lie Groups ∗

2.1 Introduction

In this chapter, we present an extension of the feedback particle filter (FPF) to matrix Lie groups. Through-

out the chapter, a matrix Lie group is denoted as G, and its Lie algebra is denoted as G . An overview of

matrix Lie groups and related notation is contained in Sec. 2.2.

The mathematical problem involves the following sdes on matrix Lie groups:

dXt = Xt V0(Xt) dt +Xt Vα(Xt)◦ dBα
t , (2.1a)

dZt = h(Xt) dt + dWt , (2.1b)

where Xt ∈ G is the state at time t, Zt ∈ Rm is the observation vector; V0 : G→ G and Vα : G→ G for

α = 1, ...,r are Lie algebra-valued functions on G; Bα
t and Wt are mutually independent standard Wiener

processes in R and Rm, respectively, and they are also assumed to be independent of the initial state X0;

h : G→ Rm is a given vector-valued function. The j-th coordinate of Zt and h are denoted as Z j
t and h j,

respectively (i.e. Zt = (Z1
t , ...,Z

m
t ) and h = (h1, ...,hm)). The sde (2.1a) is expressed in its Stratonovich form,

and the Einstein summation convention for the index α is used.

The objective is to numerically approximate the conditional distribution of Xt given the time-history

(filtration) of observations Zt = σ(Zs : s≤ t). The conditional distribution, denoted as π∗t , acts on a function

f : G→ R according to

π
∗
t ( f ) := E[ f (Xt)|Zt ],

whose time-evolution is described by the Kushner-Stratonovich filtering equation (see Theorem 5.7 in

∗The content of this chapter is related to the publication [208, 210, 209].
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[192]),

π
∗
t ( f ) = π

∗
0 ( f )+

∫ t

0
π
∗
s (L

∗ f )ds+
∫ t

0

(
π
∗
s ( f h)−π

∗
s (h)π

∗
s ( f )

)T (dZs−π
∗
s (h) ds

)
, (2.2)

for all smooth functions f with compact support, where L ∗ f :=V0 · f + 1
2 ∑

r
α=1Vα ·(Vα · f ). The operations

V0 · f and Vα · f are defined in Sec. 2.2.

In this chapter, an algorithmic solution to this problem is presented. The algorithm is based on the

FPF originally proposed in [193, 194, 195] in the Euclidean setting. The main result is to show that the

gain-times-error update formula in the original Euclidean setting carries over to the manifold setting.

The primary challenge in implementing the FPF algorithm arises due to the gain function approxima-

tion. Apart from the numerical schemes that will be presented in Chapter 4, this chapter also considers a

certain special case, namely where the posterior distribution is concentrated. In this case, a closed-form

approximation, referred to as the constant gain approximation, is obtained. With this approximation, evo-

lution equations for the mean and the covariance are also derived and shown to be closely related to the left

invariance EKF algorithm proposed in [20]. Although the derivations for the concentrated distributions are

restricted to the Lie group SO(3), extending the results to general matrix Lie groups is straightforward.

The remainder of this chapter is organized as follows: A review of the relevant Lie group preliminaries is

contained in Sec. 2.2. In Sec. 2.3, the generalization of the FPF algorithm to matrix Lie groups is presented,

including both theory and numerical algorithms.

2.2 Mathematical Preliminaries

2.2.1 Geometry of Matrix Lie Groups

This section includes a brief review of matrix Lie groups based on [104, 68, 34]. The intent is to fix the

notation used in subsequent sections.

The vector space of n× n real matrices is denoted as M(n;R). The general linear group, denoted as

GL(n;R), is the group of n×n real invertible matrices, where the group operations are the matrix multipli-

cation and matrix inversion. The identity element is the identity matrix, denoted as I. A matrix Lie group,

denoted as G, is a closed subgroup of GL(n;R). G is assumed to be connected. The dimension of G is
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denoted as d.

For any x ∈ G, the tangent space at x is denoted as TxG, which is a d-dimensional subspace of M(n;R).

The left translation map associated with x, denoted as Lx : G→ G, is a smooth map defined as

Lx(y) := xy

for all y ∈ G. The differential of Lx evaluated at y is a function denoted as d(Lx) : TxG→ TxyG. For any

V ∈ TyG, the differential is evaluated according to,

d(Lx)y(V ) =
d

dτ

∣∣∣
τ=0

Lx
(
γ(τ)

)
, (2.3)

where γ : R→ G is a smooth curve such that γ(0) = y and γ ′(0) =V .

A vector field on G, denoted as V , is a function of x such that V (x) ∈ TxG. V is further called a

left-invariant vector field if

d(Lx)y(V (y)) = V (xy)

for all x,y ∈ G.

The Lie algebra of G, denoted as G , is the Lie algebra of all smooth left-invariant vector fields on G

with the Lie bracket defined for vector fields (see Chapter 8 of [104]). G is identified with the tangent space

TIG via the following construction: For every left-invariant vector field V ∈ G , there is a unique V ∈ TIG

such that

V (x) = d(Lx)I(V ) (2.4)

for all x ∈ G. With this construction, TIG is considered as a Lie algebra where the Lie bracket is given by

the commutator,

[V,W ] :=VW −WV

for all V,W ∈ TIG. From now on, we will use the notation G and TIG interchangeably.

The exponential map of G is denoted as exp : G → G. For matrix Lie groups, the exponential map is
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given by the matrix exponential:

exp(V ) :=
∞

∑
k=0

1
k!

V k = I +V +
1
2

V 2 + · · · , (2.5)

for V ∈ G . The function γ(τ) := exp(τV ) defines a smooth curve on G such that γ(0) = I and γ ′(0) = V .

Consequently, a left-invariant vector field V , defined in (2.4), is calculated as,

V (x)
(2.3)
=

d
dτ

∣∣∣
τ=0

Lx
(

exp(τ V )
) (2.5)
= xV. (2.6)

The vector space G is equipped with an inner product, denoted as 〈·, ·〉G , and an orthonormal basis

{E1, ...,Ed} such that 〈Ei,E j〉G = δi j. Define a set of left-invariant vector fields {E1, ...,Ed} according to,

En(x)
(2.4)
:= d(Lx)I(En)

(2.6)
:= xEn

for n ∈ {1, ...,d}. Then, {E1, ...,Ed} form a global frame of G, i.e., the set {xE1, ...,xEd} form a basis of

TxG for all x ∈ G. Using these basis of TxG, a vector field V is expressed as,

V (x) = v1(x)xE1 + · · ·+ vd(x)xEd

with vn(x) : G→ R for n = 1, ...,d. We write V (x) = xV (x), where V (x) := v1(x)E1 + · · ·+ vd(x)Ed is an

element of G for each x ∈G. The functions
(
v1(x), ...,vd(x)

)
are referred to as the coordinates of the vector

field V . The construction of vector fields on G is illustrated in Figure 2.1. With a slight abuse of notation,

the action of the vector field V on a function f : G→ R is denoted as,

V · f (x) :=
d

dτ

∣∣∣
τ=0

f
(
x exp(τ V (x))

)
. (2.7)

A choice of the inner product for the tangent space TxG is defined as follows: For V ,W ∈ TxG, the inner

product of V and W is then given by,

〈V ,W 〉 := 〈d(Lx−1)x(V ), d(Lx−1)x(W )〉G = 〈x−1V ,x−1W 〉G .

If V = ∑
d
n=1 vnxEn and W = ∑

d
n=1 wnxEn for an orthonormal basis {E1, ...,Ed} of G , we then have 〈V ,W 〉=
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Figure 2.1: Construction of vector fields on G.

∑
d
n=1 vnwn.

For two vector fields V and W , we define a function 〈V ,W 〉 : G→ R as

〈V ,W 〉(x) := 〈V (x),W (x)〉=
d

∑
n=1

vn(x)wn(x). (2.8)

For a vector field V such that V (x) = xV (x) and V (x) ∈ G , we define the norms,

|V |G (x) :=
√
〈V (x),V (x)〉G , and |V |G(x) :=

√
〈V ,V 〉(x). (2.9)

The vector field, grad( f ), for a differentiable function f : G→ R is defined such that

〈grad( f ),V 〉(x) =V · f (x) (2.10)

holds for all smooth vector fields V . By taking V as E1, ...,Ed , we obtain the coordinates of grad(φ) as(
E1 · f (x), ...,Ed · f (x)

)
, where similar as (2.7),

En · f (x) =
d

dτ

∣∣
τ=0 f

(
x exp(τ En)

)
for n = 1, ...,d.

A measure µ on G is called a (left) Haar measure if µ(xA) = µ(A) for all x ∈G and all Borel set A⊂G,

where xA := {xa : a∈ A} (see Chapter 5 of [57]). Given a vector field V , we define a function divV : G→R

that satisfies

−
∫

G
div(V )(x) f (x)µ(dx) =

∫
G
〈V ,grad( f )〉(x)µ(dx) (2.11)
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for all smooth functions f : G→ R, where µ is the Haar measure. Given an orthonormal basis {E1, ...,Ed}

of G , divV (x) is calculated as,

divV (x) = E1 · v1(x)+ · · ·+Ed · vd(x), (2.12)

where (v1(x), ...,vd(x)) are the coordinates of V .

Example 2.1 (Geometry of SO(3)) The special orthogonal group SO(3) is the group of 3× 3 matrices R

such that RRT = I and det(R) = 1. The Lie algebra so(3) is identified with the 3-dimensional vector space

of skew-symmetric matrices. An inner product is 〈Ω1,Ω2〉so(3) =
1
2 Tr(ΩT

1 Ω2) for Ω1,Ω2 ∈ so(3), and an

orthonormal basis {E1,E2,E3} of so(3) are,

E1 =


0 0 0

0 0 −1

0 1 0

 , E2 =


0 0 1

0 0 0

−1 0 0

 , E3 =


0 −1 0

1 0 0

0 0 0

 . (2.13)

These matrices have the physical interpretation of generating rotations about the three canonical axes in

R3. Here, det(·) and Tr(·) denote the determinant and trace of a matrix, respectively. Given the basis in

(2.13), a vector ω = (ω1,ω2,ω3) ∈ R3 is uniquely mapped to an element in so(3), denoted as

[ω ]× := ω1E1 +ω2E2 +ω3E3. (2.14)

We consider the following function spaces: The vector space of smooth real-valued functions f : G→R

with compact support is denoted as C∞
c (G). For a probability distribution π on G, L2(G;π) denotes the

Hilbert space of functions on G that satisfy π(| f |2) < ∞ ( here π(| f |2) :=
∫

G | f |2 dπ(x), where dπ(x) =

ρ(x)µ(dx), ρ is the density associated with π , and µ denotes the Haar measure on the Lie group ); H1(G;π)

denotes the Hilbert space of functions f such that f and En · f (defined in the weak sense) are all in L2(G;π);

and H1
0 (G;π) := {φ ∈ H1(G;π) |π(φ) = 0}.
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2.2.2 Quaternions

Quaternions provide a computationally efficient coordinate representation for SO(3). A unit quaternion has

the form,

q = (q0, q1, q2, q3) =
(

cos(
θ

2
), ω1 sin(

θ

2
), ω2 sin(

θ

2
), ω3 sin(

θ

2
)
)
, (2.15)

which represents rotation of angle θ about the axis defined by the unit vector (ω1,ω2,ω3). As with SO(3),

the space of quaternions admits a Lie group structure: The identity quaternion is denoted as qI := (1,0,0,0),

the inverse of q is denoted as q−1 := (q0,−q1,−q2,−q3), and the multiplication is defined as,

p⊗q :=

 p0q0− pV ·qV

p0qV +q0 pV + pV ×qV

 ,
where pV = (p1, p2, p3), qV = (q1,q2,q3), and · and× denote the dot product and the cross product between

two vectors.

Given a unit quaternion q, the corresponding rotation matrix R ∈ SO(3) is calculated by,

R =


2q2

0 +2q2
1−1 2(q1q2−q0q3) 2(q1q3 +q0q2)

2(q1q2 +q0q3) 2q2
0 +2q2

2−1 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q2q3 +q0q1) 2q2
0 +2q2

3−1

 . (2.16)

For more comprehensive introduction of quaternions, we refer the reader to [178].

2.2.3 Sdes on matrix Lie groups

The sde (2.1a) is expressed in its Stratonovich form which provides a coordinate-free description of the sde.

The difference between the Stratonovich form and the Itô form is illustrated next with an example of an sde

defined on the unit circle.

Example 2.2 (sde on unit circle, c.f., Example 5.1.4 in [140]) The unit circle S1 is a smooth manifold em-

bedded in R2. It is also identified with the Lie group SO(2). Consider the following Itô sde expressed using
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the Cartesian coordinates,

dX1(t)

dX2(t)

=−1
2

1 0

0 1


X1(t)

X2(t)

 dt +

0 −1

1 0


X1(t)

X2(t)

 dBt , (2.17)

where Bt is the standard Wiener process in R. the solution of (2.17) is (cos(Bt), sin(Bt)), which represents

the Brownian motion on S1. Denote Xt = (X1(t),X2(t))T and define f (Xt) = |Xt |2. The fact that the solution

Xt of (2.17) satisfies the constraint f (Xt)≡ 1 for all t ≥ 0 can be verified directly: Rewrite the sde (2.17) in

a compact form,

dXt = AXt dt +MXt dBt , (2.18)

where according to (2.17), A = −(1/2) I and the matrix M is shown to satisfy MT M = I and XT
t MXt = 0.

Then, applying the Itô’s formula (see Section 4.3.3 in [60]) and the Itô’s rule (i.e., dBt dt = 0, and (dBt)
2 =

dt),

d f (Xt) = (∇ f (Xt))
T dXt +

1
2

dXT
t ∆ f (Xt)dXt

= 2XT
t dXt + dXT

t dXt

= 2XT
t (AXt dt +M Xt dBt)+XT

t MT M Xt dt

=−XT
t Xt dt +0+XT

t Xt dt = 0,

where ∇ f and ∆ f denote the gradient vector and the Hessian matrix of f , respectively. Hence, f (Xt) ≡ 1

for all t > 0 if f (X0) = 1.

The Stratonovich form of (2.17) is obtained as (see Section 4.3.6 in [60] for the conversion formulas

between Itô and Stratonovich sdes),

dX1(t)

dX2(t)

=

0 −1

1 0


X1(t)

X2(t)

◦ dBt . (2.19)

For a Stratonovich sde, the change of variable formula is identical to the ordinary chain rule. Using this

fact, one verifies that d f (Xt) = 0 for the Stratonovich sde (2.19).

Although (2.17) and (2.19) are equivalent (i.e., has the same solution), they have different interpreta-
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tions. The form of the Itô sde depends upon the choice of the coordinate system, e.g., the additional drift term

AXt dt is needed in (2.18) for the solution to satisfy the manifold constraint |Xt |2 = 1. In the Stratonovich sde

(2.19), the right-hand-side represents a tangent vector in S1. In general, the definition of a tangent vector

is coordinate-free, and the solution of the resulting sde automatically satisfies the manifold constraint. The

coordinate-free representation of (2.19) is given by

dXt =V (Xt)◦ dBt ,

where Xt ∈ S1, and V (x) ∈ TxS1.

Analogous examples of Itô sde whose solution is a Brownian motion in the Lie group SO(3) are provided

in Section 20.4 of [34] and also in [143]. Similar as in (2.17), a coordinate-dependent drift term is needed to

satisfy the manifold constraint. The corresponding Stratonovich sde is coordinate-free and admits a similar

form as (2.1a). Itô sdes constructed using the local coordinates of a Riemannian manifold appear in [161].

A comparison of Itô and Stratonovich sdes for manifolds is also presented in [119].

2.2.4 Numerical Integration of sdes on matrix Lie groups

This section describes a numerical integration method for the sde (2.1a). Consider a finite time interval

[0,T ] with an associated discrete-time sequence {t0, t1, t2, . . . , tN̄} of sampling instants with 0 = t0 < t1 <

· · ·< tN̄ = T and uniform increments given by ∆t := tn−tn−1. A numerical simulation algorithm is tabulated

in Algorithm 1. This algorithm is a direct extension of the Euler-Maruyama approximation scheme [94] to

Lie groups, based on the explicit representation of the matrix exponential. Closely related algorithms also

appear in [119, 144] as well as in [122] particularly for implementing a particle filter algorithm.

Higher-order numerical algorithms have recently been developed for matrix Lie groups [120] and the

Stiefel manifold [121]. The algorithm described in Algorithm 1 represents the simplest form of these higher-

order algorithms.

2.3 Feedback Particle Filter on Matrix Lie Groups

This section extends the FPF algorithm to matrix Lie groups, with necessary modifications to the original

framework to account for the manifold structure.
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Algorithm 1 Numerical integration of sde (2.1a)
1: Input: Initial condition X0 ∈ G

2: Assign t = t0

3: Iteration: from t to t +∆t

4: Generate sample ∆Bα
t from N (0,∆t) for α = 1, ...,r

5: Calculate ∆Vt =V0(Xt)∆t +Vα(Xt)∆Bα
t

6: Propagate the state Xt+∆t = Xt exp
(
∆Vt
)

7: Assign t = t +∆t

2.3.1 Particle Dynamics and Control Architecture

The FPF on a matrix Lie group G is a controlled system comprising of N stochastic processes {X i
t }N

i=1 with

X i
t ∈ G. The particles are modeled by the Stratonovich sde,

dX i
t = X i

t
(
V0(X i

t )+u(X i
t , t)
)

dt +X i
t Vα(X i

t )◦ dBα,i
t +X i

t K j(X i
t , t)◦ dZ j

t , (2.20)

where Bα,i
t for α = 1, ...,r and i = 1, ...,N are mutually independent standard Wiener processes in R, and

the Einstein summation convention is used for the free indices α and j. The functions u(x, t), K j(x, t) :

G× [0,T ]→ G are referred to as the control and gain function, respectively, whose coordinates are de-

noted as (u1, ...,ud) and (k1, j, ...,kd, j), for j = 1, ...,m. These functions need to be chosen. The following

admissibility requirement is imposed on u and K j:

Definition 2.1 (Admissible input): The functions u(x, t) and K j(x, t) are admissible if they are Zt−measurable

and E[
(

∑n |un(X i
t , t)|

)
]< ∞, E[∑n |kn, j(X i

t , t)|2]< ∞ for each j = 1, ...,m and for all t.

The conditional distribution of the particle X i
t given Zt is denoted by πt , which acts on a function f

according to

πt( f ) := E[ f (X i
t )|Zt ].

The evolution equation for πt is given by the proposition below. The proof appears in Appendix A.1.

Proposition 2.1 Consider the particle X i
t with dynamics described by (2.20). The forward evolution equa-
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tion of the conditional distribution πt is given by,

πt( f ) = π0( f )+
∫ t

0
πs(L f )ds+

∫ t

0
πs(K j · f )dZ j

s , (2.21)

for any f ∈C∞
c (G), where the operator L is defined as

L f := (V0 +u) · f +
1
2

r

∑
α=1

Vα · (Vα · f )+
1
2

m

∑
j=1

K j · (K j · f ).

Problem statement: There are two types of conditional distributions of interest:

• π∗t : The conditional distribution of Xt given Zt .

• πt : The conditional distribution of X i
t given Zt .

The functions u(x, t), K j(x, t) are said to be exact if πt = π∗t for all t ∈ [0,T ]. Thus, the objective is to choose

u and K j such that, given π0 = π∗0 , the evolution of the two conditional distributions are identical (see (2.2)

and (2.21)).

Solution: The FPF represents the following choice of the gain function K and the control function u:

1) Gain function: The gain function is obtained as follows: For j = 1, ...,m, let φ j ∈ H1(G;πt) be the

solution of a linear Poisson equation:

πt
(
〈grad(φ j),grad(ψ)〉

)
= πt

(
(h j− ĥ j)ψ

)
,

πt(φ j) = 0 (normalization),
(2.22)

for all ψ ∈ H1(G;πt), where ĥ j := πt(h j). The gain function K j ∈ G is then chosen as,

xK j(x, t) = grad(φ j)(x). (2.23)

Given a basis {En}d
n=1 of the Lie algebra G , and noting that (see (2.10))

grad(φ j)(x) = E1 ·φ j(x)Ex
1 + · · ·+Ed ·φ j(x)Ex

d
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where Ex
n = xEn, the coordinates of K j is given by

kn, j(x, t) = En ·φ j(x) , for n = 1, ...,d. (2.24)

2) Control function: The function u is chosen as,

u(x, t) =−1
2

m

∑
j=1

K j(x, t)
(
h j(x)+ ĥ j

)
. (2.25)

Feedback particle filter: Using these choice of u and K, the i-th particle in the FPF has the following

representation:

dX i
t = X i

t V0(X i
t ) dt + X i

t Vα ◦ dBα,i
t︸ ︷︷ ︸

propagation

+X i
t K j(X i

t , t)◦ dI j,i
t︸ ︷︷ ︸

observation update

, (2.26)

where the error dI j,i
t ∈ R is a modified form of the innovation process:

dI j,i
t = dZ j

t −
h j(X i

t )+ ĥ j

2
dt, (2.27)

for each j = 1, ...,m. The i-th particle implements the Bayesian update step – to account for the conditioning

due to the observations – as gain times an error, which is akin to the feedback structure in a classical Kalman

filter.

Note that the Poisson equation (2.22) must be solved for each j = 1, ...,m, and for each time t.

The exactness is asserted in the following theorem. The proof is contained in appendix A.2.

Theorem 2.1 Let π∗t and πt satisfy the forward evolution equations (2.2) and (2.21), respectively. Suppose

that the gain functions K j, j = 1, ...,m, are obtained using (2.22)-(2.23), and the control function u is

obtained using (2.25). Suppose also that these functions are admissible. Then, assuming π0 = π∗0 , we have,

πt( f ) = π
∗
t ( f ),

for all t ∈ [0,T ] and all function f ∈C∞
c (G).

Remark 2.1 In the original Euclidean setting, the FPF has the prettiest – gain times error – representation
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of the update step in the Stratonovich form of the filter (see Remark 1 in [194]). In the Itô form, the filter

includes an additional Wong-Zakai correction term. For sdes on a manifold, it has been shown in Sec. 2.2.3

that the Stratonovich form is invariant to coordinate transformations while the Itô form is not [140]. So,

for the gain times error form of the update step to have an intrinsic coordinate independent form, the

multiplication must necessarily be in the Stratonovich form.

Remark 2.2 The equation (2.22) is the weak form of a Poisson equation. Suppose πt admits an everywhere

positive density, denoted as ρt . Then the strong form of (2.22) is given by the Poisson equation,

∆ρt φ j =−(h j− ĥ j), (2.28)

where ∆ρt φ j := 1
ρt

div
(
ρt grad(φ j)

)
is the weighted Laplacian on the manifold [64], and div(·) is defined

according to (2.11). Multiplying both sides of (2.28) by ψ(x)ρt(x) and integrating by parts, one arrives at

the weak form (2.22).

In the Euclidean case, the gain function was obtained as the gradient of the solution of a Poisson equa-

tion [194]. Remark 2.2 shows that the Euclidean gain function is a special case of the more general Lie

group formula (2.22)-(2.23). For the latter, the definition of divergence and gradient ensures that the Pois-

son equation has a coordinate-free representation. The gain function, expressed as gradient of the solution

of the Poisson equation, is an element of the Lie algebra. This is consistent with the use of Lie algebra to

define vector fields for dynamics evolving on the Lie group.

2.3.2 FPF Algorithm Summary

The numerical algorithm of the FPF on a matrix Lie group is summarized in Algorithm 2. The algorithm

simulates N particles, {X i
t }N

i=1, according to the sde (2.26) with the initial conditions {X i
0}N

i=1 sampled i.i.d.

from a given prior distribution π∗0 . Numerical approximation of the gain function K j is the subject of Chapter

4, where the gain function is approximated using either the Galerkin scheme (see Sec. 4.3 and Algorithm 4)

or the kernel-based scheme (see Sec. 4.4 and Algorithm 5).
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Algorithm 2 Feedback Particle Filter on a matrix Lie group

1: Initialization: Samples {X i
0}N

i=1 i.i.d. from π∗0

2: Assign t = 0

3: Iteration: from t to t +∆t

4: Calculate ĥ(N)
j = 1

N ∑
N
i=1 h j(X i

t ) for j = 1,2, ...,m

5: for i = 1 to N do

6: Generate samples ∆Bα,i
t from N(0,∆t) for α = 1, ...,r

7: Assign ∆U i
t = 0

8: for j = 1 to m do

9: Calculate the error ∆Ii
j,t := ∆Z j,t − 1

2

(
h j(X i

t )+ ĥ(N)
j

)
∆t

10: Calculate gain function K j(X i
t , t) (see Chapter 4)

11: Assign ∆U i
t = ∆U i

t +K j(X i
t , t)∆Ii

j,t

12: end for

13: Calculate ∆V i
t =V0(X i

t )∆t +Vα(X i
t )∆Bα,i

t +∆U i
t

14: Propagate the particle X i
t+∆t = X i

t exp
(
∆V i

t
)

15: end for

16: Return: empirical mean of {X i
t+∆t}N

i=1

17: Assign t = t +∆t

2.4 Feedback Particle Filter with Concentrated Distributions

In its original Euclidean setting [194], the FPF algorithm is shown to represent a generalization of the

Kalman filter in the following sense: Suppose that the signal and the observation models are linear and that

the prior distribution is Gaussian. Then, it is shown that:

1. The gain Kt is a constant for each t whose value equals the Kalman gain;

2. The conditional distribution πt of X i
t is Gaussian whose mean and covariance evolve according to the

Kalman filter.
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For the general nonlinear non-Gaussian case, the gain function Kt is no longer a constant and must be

numerically approximated. However, the conditional expectation of the gain function, E[Kt |Zt ], admits

a closed-form expression which can furthermore be approximated using only the particles. The resulting

approximation is referred to as the constant gain approximation. This approximation reduces to the Kalman

gain in the linear Gaussian case. For the general case, this approximation often suffices in practice particu-

larly so when the conditional distribution is unimodal [194, 17, 164].

On a Riemannian manifold, unfortunately, even the state space does not possess a linear structure.

However, under the additional assumption that the posterior distribution is “concentrated” (see [186]), one

can expect the results to be close to the Euclidean case. In this section, the following is shown for the special

case of concentrated distributions on matrix Lie groups:

1. A closed-form formula for the constant gain approximation is derived and shown to admit the form

of the Kalman gain;

2. The equation for the mean and covariance are derived and shown to be closely related to the continuous-

time left invariant EKF algorithm in [20].

In this section, we restrict our attention to the following filtering problem on the Lie group SO(3),

dRt = Rt Ωt dt +Rt ◦ [σB dBt ]×, (2.29a)

dZt = h(Rt)dt +σW dWt , (2.29b)

where Rt ∈ SO(3) is the hidden state, Ωt ∈ so(3), h : SO(3)→Rm is a given function, Bt and Wt are mutually

independent standard Wiener processes in R3 and Rm, respectively, and σB and σW are positive scalar

parameters. The definition of [ · ]× (see (2.14) in Sec. 2.2.1) indicates that [σB dBt ]× ∈ so(3). The problem

(2.29a)-(2.29b) is also used to model the attitude estimation problem in Chapter 5 (see (5.5a)-(5.5b)).

The restriction to SO(3) is not necessary but leads to a simpler presentation without undue notational

burden. Also, it allows us to make comparisons with the literature on filters for attitude estimation (These

are described in Sec. 5.5 where numerical results for the attitude estimation problem are presented).
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Figure 2.2: Concentrated distribution on G with mean at the identity, where R = exp(ε [χ ]×) is close to the mean.
The random variable χ has a Gaussian distribution in so(3)∼= R3. A concentrated distribution with non-identity
mean is defined using left translation [21].

2.4.1 Constant Gain Approximation of FPF

For the filtering problem (2.29a)-(2.29b) on SO(3), the (strong form) Poisson equation in the feedback

particle filter is given by

∆ρφ j =−
1

σ2
W
(h j− ĥ j) (2.30)

for j = 1, ...,m, where ∆ρφ j =
1
ρ

div
(
ρ grad(φ j)

)
, and ρ denotes the probability density function associated

with the particle distribution π . The dependence on the time t is suppressed in this section (i.e., we express

Rt as R, πt as π , ρt as ρ etc.).

Consider concentrated distribution whereby the random variable R on SO(3) is parametrized as,

R = µ exp(ε [χ ]×),

where χ ∈ so(3) ∼= R3 is a Gaussian random variable with mean 0 and covariance Σ, and ε is a small

parameter. Formally, most of the probability mass of a concentrated distribution is supported in a small

neighborhood of µ , and the analysis pertains to the consideration of the asymptotic limit as ε → 0.

The following proposition provides an approximate formula for the gain in this special case. The proof

appears in Appendix A.3.

Proposition 2.2 Consider the Poisson equation (2.30) where the random variable R = µ exp(ε [χ ]×), and

χ ∈ R3 is a Gaussian random variable with mean 0 and covariance Σ. Suppose σW = ε σW . Let [K j] :
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SO(3)→ R3 denote the coordinates of the gain function K j. Then, in the asymptotic limit as ε → 0,

[K j] =
1

σ
2
W

ΣH j +O(ε),

where H j :=
(
E1 ·h j(µ), E2 ·h j(µ), E3 ·h j(µ)

)
∈ R3 for j = 1, ...,m.

In the attitude estimation problem described in Chapter 5, the observation model h(R) = RT r ∈R3 (i.e.,

m = 3), where r ∈ R3 is a known vector (see the accelerometer and magnetometer model (5.3) and (5.4)).

In this special case, the constant gain approximation is analogous to the Kalman gain.

Corollary 2.1 Consider the Poisson equation (2.30) where the random variable R = µ exp(ε [χ ]×), where

χ ∈R3 is a Gaussian random variable with mean 0 and covariance Σ. Let h j(R) = eT
j RT r for j = 1,2,3. Let

K ∈R3×3 whose columns contain the coordinates of the gain functions K1, K2, K3. Then, in the asymptotic

limit as ε → 0,

K=
1

σ2
W

ΣHT +O(ε), (2.31)

where H := [µT r ]×.

In a numerical implementation, the constant gain approximation is calculated as,

Kc =
1

σ2
W

Σ̂ [ µ̂T r ]T×,

where µ̂ and Σ̂ denote the empirical mean and covariance of the particles {Ri}N
i=1, respectively. The geomet-

ric definition of µ̂ and related numerical algorithms appear in [132, 155]. An algorithm using the quaternion

coordinates of SO(3) is described in Sec. 5.3. The formula of Σ̂ is given by,

Σ̂ =
1

N−1

N

∑
i=1

[ log(µ̂T Ri) ]∨ [ log(µ̂T Ri) ]∨
T
,

where log(·) : SO(3)→ so(3) denotes the matrix logarithm, and for Ω = ω1E1 +ω2E2 +ω3E3 ∈ so(3),

[Ω ]∨ := (ω1,ω2,ω3) ∈ R3 (i.e., [ · ]∨ is the inverse of [ · ]×).
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2.4.2 FPF with Concentrated Distributions

Consider the attitude estimation problem,

dRt = Rt Ωt dt +Rt ◦ [ε σB dBt ]×,

dZt = RT
t r dt + ε σW dWt ,

with initial condition R0 = µ0 exp(ε [χ0 ]×), where µ0 is exactly known and χ0 ∼N (0,Σ0).

Using the constant gain approximation (2.31), the FPF for this problem is given by,

dRi
t = Ri

t Ωt dt +Ri
t ◦ [ε σB dBi

t ]×+Ri
t [Kt ◦ dIi

t ]×, (2.32)

for small ε and small time t ∈ [0, εT ], where Kt := 1
σ 2

W
Σt HT

t is the constant gain, Ht = [µT
t r ]×, and the

error

dIi
t =

h(Ri
t)+ ĥ
2

dt

where h(R) = RT r. The general form of FPF on SO(3) will be presented in Sec. 5.3.

In the following theorem, it is shown that µt and Σt evolve according to the equations that are closely

related to the left invariant EKF. The proof is contained in Appendix A.4.

Theorem 2.2 Consider the FPF (2.32) where Kt is given by the constant gain approximation. Suppose that

over a time horizon [0,εT ], Ri
t = µt exp(ε [χ i

t ]×) where χ i
t ∼N (0,Σt). Then, in the asymptotic limit as

ε → 0, µt and Σt evolve according to the respective sdes,

dµt = µt Ωt dt +µt [ Kt ◦ dIt ]×, (2.33)

dΣt = (At dt− [Kt dIt ]×)Σt +Σt (At dt− [Kt dIt ]×)
T +σ

2
B I dt− 1

σ2
W

ΣtHT
t HtΣt dt, (2.34)

where At =−Ωt and dIt = dZt −µT
t r dt.

The equation for the mean (2.33) is identical to the left invariant EKF [20]. The equation of the co-

variance (2.34) includes additional terms that depend on the innovation process It . Analogous stochastic

terms for updating the covariance, though in a discrete-time setting, have also appeared in [21], where these
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terms are induced by the so-called re-parametrization step in the observation update. Other applications of

concentrated Gaussian distributions for filtering on matrix Lie groups have appeared in [26, 27]. Related

results on error propagation and Bayesian fusion on matrix Lie groups also appear in [186, 35, 191, 10].

2.5 Conclusions

In this chapter, the feedback particle filter was constructed for nonlinear filtering problems on matrix Lie

groups. It was shown that FPF is an intrinsic algorithm that has a coordinate-free representation. The

FPF update formula (2.26) not only provides for a generalization of the Kalman filter to the nonlinear non-

Gaussian case but also that the generalization carries over to nonlinear spaces such as the matrix Lie groups.

For the Lie group SO(3), The special case with concentrated Gaussian posterior distributions was also

considered. A constant gain approximation of the Poisson equation was derived. The resulting filter equa-

tions, represented by the evolution of the conditional mean and covariance, are closely related to the left

invariant EKF. This result is analogous to the fact that the original (Euclidean) FPF reduces to the classical

Kalman filter for a linear Gaussian filtering problem.

Future research directions related to filtering on manifolds include the following:

1) Extension of FPF when the observation Zt also evolves on a manifold. A geometric framework has

recently been developed in [153, 139] that transform the problem to the Euclidean space. An EKF

algorithm with discrete-time group-valued observations also appears in [21].

2) Finite-dimensional filters on matrix Lie groups and the simplification of the gain function in this case.

This is equivalent as seeking a Lie group analogue of the well-known Beneš filter [15].

3) Extension of FPF to filtering problems defined in other matrix manifolds, such as the Stiefel manifold

and the Grassmann manifold [54]. These manifolds have important applications in signal processing

problems, e.g., subspace estimation of signals [162, 163].
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Chapter 3

A Controlled Particle Filter for Global Optimization
∗

3.1 Introduction

We consider the global optimization problem:

min
x∈Rd

h(x),

where h : Rd → R is a real-valued function. This chapter is concerned with gradient-free simulation-based

algorithms to obtain the global minimizer, denoted as

x̄ = arg min
x∈Rd

h(x).

It is assumed that such a minimizer exists and is unique.

As described in Sec. 1.2.1, a Bayesian approach to solve the problem is as follows: Given an everywhere

positive initial density (prior) p∗0, define the (posterior) density at a positive time t by

p∗(x, t) :=
p∗0(x) exp(−βh(x) t)∫
p∗0(y) exp(−βh(y) t)dy

, (3.1)

where β is a positive constant parameter. Under certain additional technical assumptions on h and p∗0, the

density p∗(x, t) weakly converges to the Dirac delta measure at x̄ as time t → ∞ (See Appendix B.4). The

Bayesian approach is attractive because it can be implemented recursively: Consider a finite time interval

[0,T ] with an associated discrete-time sequence {t0, t1, t2, . . . , tN̄} of sampling instants, with 0 = t0 < t1 <

.. . < tN̄ = T , and increments given by ∆tn := tn− tn−1,n = 1, . . . , N̄. The posterior distribution is expressed

∗The content of this chapter is related to the publication [207, 204].
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recursively as:

Initialization: ρ0(x) = p∗0(x),

Update: ρn(x) =
ρn−1(x) exp(−βh(x)∆tn)∫
ρn−1(y) exp(−βh(y)∆tn)dy

, n≥ 1,
(3.2)

such that, at time tn, ρn(x) = p∗(x, tn) by construction.

A conventional particle filter based on sequential importance sampling and resampling (SISR) may be

used to sample from ρn. A particle filter is comprised of N stochastic processes {X i
n : 1 ≤ i ≤ N}, where

X i
n ∈ Rd is the state for the ith particle at iteration n. The SISR particle filter implements the following

recursive steps:

Initialization: X i
0

i.i.d.∼ p∗0,

Update: X i
n

i.i.d.∼
N

∑
i=1

wi
nδX i

n−1
, n≥ 1,

(3.3)

where wi
n ∝ exp(−βh(X i

n−1)∆tn) are referred to as the importance weights and δz denotes the Dirac-delta at

z ∈ Rd . In practice, the importance weights wi
n can potentially suffer from large variance. To address this

problem, several extensions have been described in literature based on consideration of suitable sampling

(proposal) distributions and efficient resampling schemes; cf., [46, 47].

The use of probabilistic models to derive recursive sampling algorithms is by now a standard solution

approach to the global optimization problem: The model (3.1) appears in [187], and its recursive form (3.2)

can be regarded as a closely related variant of the models in [76, 215]. Importance sampling type schemes,

of the form (3.3), based on these and more general (stochastic) models appear in [215, 213, 113, 114, 165].

In this chapter, we present an alternate control-based approach – referred to as the controlled particle

filter – to the construction and simulation of the particle filter for global optimization. In our approach,

the particle filter is a controlled interacting particle system where the dynamics of the ith particle evolve

according to
dX i

t

dt
= u(X i

t , t), X i
0 ∼ p∗0, (3.4)

where the control function u(x, t) is obtained by solving a weighted Poisson equation:

−∇ · (ρ(x)∇φ(x)) = (h(x)− ĥ)ρ(x), x ∈ Rd ,∫
φ(x)ρ(x)dx = 0,

(3.5)
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where ĥ :=
∫

h(x)ρ(x)dx, ∇ and ∇· denote the gradient and the divergence operators, respectively, and at

time t, ρ(x) = p(x, t) denotes the density of X i
t
†. In terms of the solution φ(x) of (3.5), the control function

at time t is given by

u(x, t) =−β∇φ(x). (3.6)

Note that the control function u is vector-valued (with dimension d×1) and it needs to be obtained for each

value of time t. The basic results on existence and uniqueness of ∇φ will be discussed in Sec. 4.2. These

results require additional assumptions on the prior p∗0 and the function h. These assumptions appear at the

end of this section. The Poisson equation (3.5) also appears in the feedback particle filter [195] and other

related algorithms [148, 44] for nonlinear filtering in the Euclidean space.

The contributions of this chapter are as follows:

• Variational formulation: A time-stepping procedure is introduced consisting of successive minimization

problems in the space of probability densities. The construction shows the density transport (3.1) may be

regarded as a gradient flow, or a steepest descent, for the expected value of the function h, with respect to

the Kullback–Leibler divergence. More significantly, the construction is used to motivate a mean-field type

optimal control problem. The control law (3.4)-(3.6) for the proposed particle filter represents the solution to

this problem. The Poisson equation (3.5) is derived from the first-order analysis of the Bellman’s optimality

principle. For a discussion on the importance of the variational aspects of nonlinear filtering, see [131]

and [100].

• Quadratic Gaussian cases: For a quadratic objective function h and a Gaussian prior p∗0, the solution

of the Bayes’ model (3.1) is Gaussian with explicit expressions for its mean and covariance. The partial

differential equation (pde) (3.5) admits a closed-form solution, and the resulting control law is shown to

be affine in the decision variables. This affine control law is also used as an approximation of the control

function for the general (non-quadratic) case.

• Parametric cases: The quadratic Gaussian problem is an example of the more general parametric case

†Although this chapter is limited to Rd , the proposed algorithm is applicable to global optimization problems on differential
manifolds, e.g., matrix Lie groups (For an intrinsic form of the Poisson equation, see Chapter 4). For domains with boundary, the
pde (1.3) is accompanied by a Neumann boundary condition:

∇φ(x) ·n(x) = 0

for all x on the boundary of the domain where n(x) is a unit normal vector at the boundary point x.
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where the density is of a (known) parametrized form. The gradient flow in the parameter space is derived

from an optimal control problem that is analogous to the general non-parametric case. The parametric

models in this chapter are related to the stochastic approximation type model-based algorithms [78] and the

natural gradient algorithm [90].

The two sets of theoretical results in this chapter – the non-parametric results in Sec. 3.2.1 and the

parametric results in Sec. 3.2.3 – represent the control counterparts of the non-parametric and the parametric

model-based algorithms (see Sec. 1.2.2 for a brief survey of model-based algorithms and Sec. 7.2 for their

numerical procedures). The variational analysis serves to provide the connection between these as well as

suggest systematic approaches for approximation of the optimal control law (3.6).

The outline of the remainder of this chapter is as follows: The variational aspects of the filter – including

the non-parametric and parametric cases – appears in Sec. 3.2. All the proofs are contained in the Appendix.

Notation: The Euclidean space Rd is equipped with the Borel σ -algebra denoted as B(Rd). The space of

Borel probability measures on Rd with finite second moment is denoted as P:

P
.
=

{
ρ : Rd → [0,∞)meas. density

∣∣∣ ∫ |x|2ρ(x)dx < ∞

}
.

The density for a Gaussian random variable with mean m and variance Σ is denoted as N (m,Σ). For

vectors x,y ∈ Rd , the dot product is denoted as x · y and |x| :=
√

x · x; xT denotes the transpose of the

vector. Similarly, for a matrix K, KT denotes the matrix transpose, and K� 0 denotes positive-definiteness.

For l,k ∈ Z+ (natural numbers), the tensor notation δlk is used to denote the identity matrix (δlk = 1 if

l = k and 0 otherwise). Ck is used to denote the space of k-times continuously differentiable functions on

Rd . For a function f , ∇ f = ∂ f
∂xi

is used to denote the gradient vector, and D2 f = ∂ 2 f
∂xi∂x j

is used to denote

the Hessian matrix. L∞ denotes the space of bounded functions on Rd with associated norm denoted as

‖ · ‖∞. L2(Rd ;ρ) is the Hilbert space of square integrable functions on Rd equipped with the inner-product,〈
φ ,ψ

〉
:=
∫

φ(x)ψ(x)ρ(x)dx. The associated norm is denoted as ‖φ‖2
2 :=

〈
φ ,φ

〉
. The space H1(Rd ;ρ)

is the space of square integrable functions φ whose derivative (defined in the weak sense) is in L2(Rd ;ρ).

For a function φ ∈ L2(Rd ;ρ), φ̂ :=
∫

φ(x)ρ(x)dx denotes the mean. L2
0 and H1

0 denote the co-dimension 1

subspaces of functions whose mean is zero.

Assumptions: The following assumptions are made throughout the chapter:
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Assumption 3.1 The prior probability density function p∗0 ∈P and is of the form p∗0(x) = e−V0(x) where

V0 ∈C2, D2V0 ∈ L∞, and

liminf
|x|→∞

∇V0(x) ·
x
|x|

= ∞.

Assumption 3.2 The function h ∈C2∩L2(Rd ; p∗0) with D2h ∈ L∞ and

liminf
|x|→∞

∇h(x) · x
|x|

>−∞.

Assumption 3.3 The function h has a unique minimizer x̄ ∈ Rd with minimum value h(x̄) =: h̄. Outside

some compact set D⊂ Rd , ∃ r > 0 such that

h(x)> h̄+ r ∀ x ∈ Rd \D.

Remark 3.1 Assumptions 3.1 and 3.2 are important to prove existence, uniqueness and regularity of the

solutions of the Poisson equation (see [100]). Assumptions 3.1 holds for density with Gaussian tails. As-

sumption 3.3 is used to obtain weak convergence of p∗(x, t) to Dirac delta at x̄. The uniqueness of the

minimizer x̄ can be relaxed to obtain weaker conclusions on convergence (See Appendix B.4).

3.2 Variational Formulation

3.2.1 Non-parametric case

A variational formulation of the Bayes recursion (3.2) is the following time-stepping procedure: For the

discrete-time sequence {t0, t1, t2, . . . , tN̄} with increments ∆tn := tn− tn−1 (see Sec. 3.1), set ρ0 = p∗0 ∈P

and recursively define {ρn}N̄
n=1 ⊂P by taking ρn ∈P to minimize the functional

I(ρ|ρn−1) :=
1

∆tn
D(ρ | ρn−1)+β

∫
h(x)ρ(x)dx, (3.7)

where D denotes the relative entropy or Kullback–Leibler divergence,

D(ρ | ρn−1) :=
∫

ρ(x) ln
(

ρ(x)
ρn−1(x)

)
dx.

36



The proof that ρn, as defined in (3.2), is in fact the minimizer is straightforward: By Jensen’s formula,

I(ρ|ρn−1) ≥ − ln(
∫

ρn−1(y)exp(−h(y)∆tn)dy) with equality if and only if ρ = ρn. Although the optimizer

is known, a careful look at the first order optimality equations associated with ρn leads to i) the replicator

dynamics pde for the gradient flow (in Theorem 3.1), and ii) the proposed particle filter algorithm for

approximation of the posterior (in Theorems 3.2 and 3.3).

The sequence of minimizers {ρn}N̄
n=0 is used to construct, via interpolation, a density function ρ(N̄)(x, t)

for t ∈ [0,T ]: Define ρ(N̄)(x, t) by setting

ρ
(N̄)(x, t) := ρn(x), for t ∈ [tn, tn+1)

for n = 0,1,2, . . . , N̄−1. The proof of the following theorem appears in Appendix B.1.

Theorem 3.1 (Gradient flow) In the limit as N̄→ ∞ the density ρ(N̄)(x, t) converges pointwise to the den-

sity ρ(x, t) which is a weak solution of of the following replicator dynamics pde:

∂ρ

∂ t
(x, t) =−β (h(x)− ĥt)ρ(x, t), ρ(x,0) = p∗0(x). (3.8)

To construct the particle filter, the key idea is to view the gradient flow time-stepping procedure as a

dynamic programming (DP) recursion from time tn−1→ tn:

ρn = argmin
ρ(u)∈P

1
∆tn

D(ρ(u)|ρn−1)︸ ︷︷ ︸
control cost

+V (ρ(u)),

where V (ρ(u)) := β
∫

ρ(u)(x)h(x)dx is the cost-to-go. The notation ρ(u) for density corresponds to the

following construction: Consider the differential equation

dX i
t

dt
= u(X i

t , t)

and denote the associated flow from tn−1→ tn as x 7→ sn(x). Under suitable assumptions on u (Lipschitz in x

and continuous in t), the flow map sn is a well-defined diffeomorphism on Rd and ρ(u) := s#
n (ρn−1), where
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s#
n denotes the push-forward operator. The push-forward of a probability density ρ by a smooth map s is

defined through the change-of-variables formula

∫
f (x)[s#(ρ)](x)dx =

∫
f (s(x))ρ(x)dx

for all continuous and bounded test functions f .

Via a formal but straightforward calculation, in the asymptotic limit as ∆tn → 0, the control cost is

expressed in terms of the control u as

1
∆tn

D(ρ(u)|ρn−1) =
∆tn
2

∫ ∣∣∣∣ 1
ρn−1

∇ · (ρn−1u)
∣∣∣∣2 ρn−1 dx+o(∆tn). (3.9)

These considerations help motivate the following optimal control problem:

Minimize:
u

J(u) =
∫ T

0
L(ρt ,ut)dt +β

∫
h(x)ρT (x)dx

Constraint:
∂ρt

∂ t
+∇ · (ρtut) = 0, ρ0(x) = p∗0(x),

(3.10)

where the Lagrangian is defined as

L(ρ,u) :=
1
2

∫
Rd

∣∣∣∣ 1
ρ(x)

∇ · (ρ(x)u(x))
∣∣∣∣2 ρ(x) dx +

β 2

2

∫
Rd
|h(x)− ĥ|2 ρ(x) dx,

where ĥ :=
∫

h(x)ρ(x)dx.

The Hamiltonian is defined as

H(ρ,q,u) := L(ρ,u)−
∫

q(x)∇ · (ρ(x)u(x)) dx (3.11)

where q is referred to as the momentum (or co-state).

Suppose ρt ∈P is the density at time t. The value function is defined as

V (ρ, t) := inf
u

[∫ T

t
L(ρs,us)ds+β

∫
hρT dx

]
. (3.12)

The value function is a functional on the space of densities. For a fixed ρ ∈P and time t ∈ [0,T ), the
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(Gâteaux) derivative of V is a function on Rd , and an element of the function space L2(Rd ;ρ). This function

is denoted as ∂V
∂ρ

(ρ, t)(x) for x ∈ Rd . Additional details appear in the Appendix B.2 where the following

Theorem is proved.

Theorem 3.2 (Finite-horizon optimal control) Consider the optimal control problem (3.10) with the value

function defined in (3.12). Then V solves the following DP equation:

∂V
∂ t

(ρ, t)+ inf
u∈L2

H(ρ,
∂V
∂ρ

(ρ, t),u) = 0, t ∈ [0,T ),

V (ρ,T ) = β

∫
h(x)ρ(x)dx.

The solution of the DP equation is given by

V (ρ, t) = β

∫
Rd

h(x)ρ(x)dx,

and the associated optimal control is a solution of the following pde:

1
ρ(x)

∇ · (ρ(x)u(x)) = β (h(x)− ĥ), ∀ x ∈ Rd . (3.13)

It is also useful to consider the following infinite-horizon version of the optimal control problem:

Minimize:
u

J(u) =
∫

∞

0
L(ρt ,ut)dt

Constraints:


∂ρt
∂ t +∇ · (ρtut) = 0, ρ0(x) = p∗0(x),

lim
t→∞

∫
h(x)ρt(x) = h(x̄).

(3.14)

For this problem, the value function is defined as

V (ρ) = inf
u

J(u). (3.15)

The solution is given by the following Theorem whose proof appears in Appendix B.2:

Theorem 3.3 (Infinite-horizon optimal control) Consider the infinite horizon optimal control problem

39



(3.14) with the value function defined in (3.15). The value function is given by

V (ρ) = β

∫
Rd

h(x)ρ(x)dx−βh(x̄)

and the associated optimal control law is a solution of the pde (3.13).

The particle filter algorithm (3.4)-(3.6) in Sec. 3.1 is obtained by additionally requiring the solution u

of (3.13) to be of the gradient form. One of the advantages of doing so is that the optimizing control law,

obtained instead as solution of (3.5), is uniquely defined (See Theorem 4.1 in Sec. 4.2). In part, this choice

is guided by the L2 optimality of the gradient form solution (The proof appears in the Appendix B.2):

Lemma 3.1 (L2 optimality) Consider the pde (3.13) where ρ and h satisfy Assumptions (A1)-(A2). The

general solution is given by

u =−β∇φ + v,

where φ is the solution of (3.5), v solves ∇ · (ρv) = 0, and

‖u‖2
2 = β

2‖∇φ‖2
2 +‖v‖2

2.

That is, u =−β∇φ is the minimum L2-norm solution of (3.13).

Remark 3.2 In Appendix B.3, the Pontryagin’s minimum principle of optimal control is used to express the

particle filter (3.4)-(3.6) in its Hamilton’s form:

dX i
t

dt
= u(X i

t , t), X i
0 ∼ p∗0

0≡ H(p(·, t),βh,u(·, t)) = min
v∈L2

H(p(·, t),βh,v)

The Poisson equation (3.5) is simply the first order optimality condition to obtain a minimizing control.

Under this optimal control, the density p(x, t) is the optimal trajectory. The associated optimal trajectory

for the momentum (co-state) is a constant equal to its terminal value βh(x).

The following theorem shows that the particle filter implements the Bayes’ transport of the density, and
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establishes the asymptotic convergence for the density (The proof appears in the Appendix (B.4)). We recall

the notation for the two types of density in our analysis:

1. p(x, t): Defines the density of X i
t .

2. p∗(x, t): The Bayes’ density given by (3.1).

Theorem 3.4 (Bayes’ exactness and convergence) Consider the particle filter (3.4)-(3.6). If p( · ,0) =

p∗( · ,0), we have for all t ≥ 0,

p( · , t) = p∗( · , t).

As t→ ∞,
∫

h(x)p(x, t)dx decreases monotonically to h(x̄) and X i
t → x̄ in probability.

The hard part of implementing the controlled particle filter is solving the Poisson equation (3.5). For

the quadratic Gaussian case – where the objective function h is quadratic and the prior p∗0 is Gaussian – the

solution can be obtained in an explicit form. This is the subject of the Sec. 3.2.2. In the quadratic Gaussian

case, the infinite-dimensional particle filter can be replaced by a finite-dimensional filter involving only

the mean and the variance of the Gaussian density. The simplification arises because the density admits a

parameterized form. A more general version of this result – finite-dimensional filters for general class of

parametrized densities – is the subject of Sec. 3.2.3. For the general case where a parametric form of density

is not available, numerical algorithms for approximating the control function solution appear in Chapter 4.

Remark 3.3 In the construction of the time-stepping procedure (3.7), we considered a gradient flow with

respect to the divergence metric. In the optimal transportation literature, the Wasserstein metric is widely

used. In the conference version of this chapter [204], it is shown that the limiting density with the Wasser-

stein metric evolves according to the Liouville equation [24]:

∂ρ

∂ t
(x, t) = ∇ · (ρ(x, t)∇h(x)).

The particle filter is the gradient descent algorithm:

dX i
t

dt
=−∇h(X i

t ).
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The divergence metric is chosen here because of the Bayesian nature of the resulting solution.

3.2.2 Quadratic Gaussian case

For the quadratic Gaussian problem, the solution of the Poisson equation can be obtained in an explicit form

as described in the following Lemma. The proof appears in the Appendix B.5.

Lemma 3.2 Consider the Poisson equation (3.5). Suppose the objective function h is a quadratic function

such that h(x)→ ∞ as |x| → ∞ and the density ρ is a Gaussian with mean m and variance Σ. Then the

control function

u(x) =−β∇φ(x) =−βK(x−m)−βb, (3.16)

where the affine constant vector

b =
∫

x(h(x)− ĥ)ρ(x)dx, (3.17)

and the gain matrix K= KT � 0 is the solution of the Lyapunov equation:

ΣK+KΣ =
∫
(x−m)(x−m)T (h(x)− ĥ)ρ(x)dx. (3.18)

Using an affine control law (3.16), it is straightforward to verify that p(x, t) = p∗(x, t) is a Gaussian

whose mean mt → x̄ and variance Σt → 0. The proofs of the following Proposition and the Corollary appear

in the Appendix B.5:

Proposition 3.1 Consider the particle filter (3.4) with the affine control law (3.16). Suppose the objective

function h is a quadratic function such that h(x)→ ∞ as |x| → ∞ and the prior density p∗0 is a Gaussian

with mean m0 and variance Σ0. Then the posterior density p is a Gaussian whose mean mt and variance Σt

evolve according to
dmt

dt
=−βE

[
X i

t (h(X
i
t )− ĥt)

]
,

dΣt

dt
=−βE

[
(X i

t −mt)(X i
t −mt)

T (h(X i
t )− ĥt)

]
,

(3.19)

where ĥt := E[h(X i
t )].
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Corollary 3.1 Under the hypothesis of Proposition 3.1, with an explicit form for quadratic objective func-

tion h(x) = 1
2 (x− x̄)T H(x− x̄)+ c where H = HT � 0, the expectations on the righthand-side of (3.19) are

computed in closed-form and the resulting evolution is given by

dmt

dt
= βΣtH(x̄−mt), (3.20a)

dΣt

dt
=−βΣtHΣt , (3.20b)

whose explicit solution is given by

mt = m0 +Σ0S−1
t (x̄−m0),

Σt = Σ0−Σ0S−1
t Σ0,

(3.21)

where St := 1
β t H−1 +Σ0 for t > 0. In particular, mt → x̄ and Σt → 0.

In practice, the affine control law (3.16) is implemented as:

dX i
t

dt
=−βK

(N)
t (X i

t −m(N)
t )−βb(N)

t =: ui
t , (3.22)

where the terms are approximated empirically from the particle ensemble {X i
t }N

i=1. The algorithm appears

in Algorithm 3 (the dependence on time t is suppressed). An alternative construction of the affine control

law is presented in Example 4.3 in Sec. 4.3.1.

As N → ∞, the approximations become exact and (3.16) represents the mean-field limit of the finite-

N control in (3.22). Consequently, the empirical distribution of the ensemble approximates the posterior

distribution (density) p∗(x, t).

Remark 3.4 The finite-dimensional system (3.19) is the optimization counterpart of the Kalman filter. Like-

wise the particle filter (3.22) is the counterpart of the ensemble Kalman filter [56]. While the affine control

law (3.16) is optimal for the quadratic Gaussian case, it can be implemented for more general non-quadratic

non-Gaussian settings - as long as the various approximations in Algorithm 3 can be obtained at each step.

The situation is analogous to the filtering setup where the Kalman filter is often used as an approximate

algorithm even in nonlinear non-Gaussian settings.
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Algorithm 3 Affine approximation of the control function

1: Input: {X i}N
i=1, parameter β

2: Calculate m(N) := 1
N ∑

N
i=1 X i,

3: Calculate Σ(N) := 1
N ∑

N
i=1
(
X i−m(N)

)(
X i−m(N)

)T

4: Calculate ĥ(N) := 1
N ∑

N
i=1 h(X i)

5: Calculate b(N) := 1
N ∑

N
i=1 X i

(
h(X i)− ĥ(N)

)
6: Calculate

C(N) :=
1
N

N

∑
i=1

(
X i−m(N)

)(
X i−m(N)

)T (
h(X i)− ĥ(N)

)

7: Calculate K(N) by solving Σ(N)K(N)+K(N)Σ(N) =C(N)

8: Calculate ui =−βK(N)(X i−m(N))−βb(N)

9: Output: {ui}N
i=1

3.2.3 Parametric case

Consider next the case where the density has a known parametric form,

p(x, t) =% (x;θt), (3.23)

where θt ∈ RM is the parameter vector. For example, in the quadratic Gaussian problem, % is a Gaussian

with parameters mt and Σt .

For the parametric density % (x;ϑ), ∂

∂ϑ
(log % (x;ϑ)) is a M×1 column vector whose kth entry,

[
∂

∂ϑ
(log % (x;ϑ))

]
k
=

∂

∂ϑk
(log % (x;ϑ)) ,

for k = 1, . . . ,M.

The Fisher information matrix is a M×M matrix:

G(ϑ) :=
∫

∂

∂ϑ
(log % (x;ϑ))

[
∂

∂ϑ
(log % (x;ϑ))

]T

% (x;ϑ)dx. (3.24)

By construction, G(ϑ) is symmetric and positive semidefinite. In the following, it is furthermore assumed
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that G(ϑ) is strictly positive definite, and thus invertible, for all ϑ ∈ RM.

In terms of the parameter,

e(ϑ) :=
∫

h(x) % (x;ϑ)dx,

and its gradient is a M×1 column vector:

∇e(ϑ) =
∫

h(x)
∂

∂ϑ
(log % (x;ϑ)) % (x;ϑ)dx. (3.25)

We are now prepared to describe the induced evolution for the parameter vector θt . The proof of the

following proposition appears in the Appendix B.6.

Proposition 3.2 Consider the particle filter (3.4)-(3.6). Suppose the density admits the parametric form (3.23)

whose Fisher information matrix, defined in (3.24), is assumed to be invertible. Then the parameter vector

θt is a solution of the following ordinary differential equation,

dθt

dt
=−βG−1

(θt)
∇e(θt). (3.26)

Remark 3.5 The filter (3.26) is referred to as the natural gradient; cf., [90]. There are several variational

interpretations:

(i) The filter can be obtained via a time stepping procedure, analogous to (3.7). The sequence {θn}N
n=1 is

inductively defined as a minimizer of the function,

I(θ |θn−1) :=
[

1
∆tn

D(% (·;θ)| % (·;θn−1))+βe(θ)
]
.

On taking the limit as ∆tn→ 0, one arrives at the filter (3.26).

(ii) The optimal control interpretation of (3.26) is based on the Pontryagin’s minimum principle (see also

Remark 3.2). For the finite-dimensional problem, the Hamiltonian

H(θ ,q,u) = L(θ ,u)+q ·u,
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where q ∈ RM is the momentum. With θ̇ = u, the counterpart of (3.9) is

1
∆tn

D(%(u) (·;θ)| % (·;θn−1)) =
1
2

uT G(θ)u+o(∆tn).

With 1
2 uT G(θ)u as the control cost component in the Lagrangian, the first order optimality condition gives

G(θ)u =−q=−β∇e(θ),

where we have used the fact that βe(θ) is the value function. Note that it was not necessary to write the

explicit form of the Lagrangian to obtain the optimal control.

(iii) Finally, the filter (3.26) represents the gradient flow (in RM) for the objective function e(θ) with

respect to the Riemannian metric
〈
v,w
〉

θ
= vT G(θ)w for all v,w ∈ RM.

Example 3.1 In the quadratic Gaussian case, the natural gradient algorithm (3.26) with parameters mt

and Σt reduces to (3.19).

Remark 3.6 While the systems (3.26) and (3.19) are finite-dimensional, the righthand-sides will still need

to be approximated empirically. The convergence properties of a class of related algorithms is studied using

a stochastic approximation framework in [78].

The stochastic approximation is not necessary if the problem admits a certain affine structure in the

parameters:

Example 3.2 Suppose the density is of the following exponential parametric form:

% (x;ϑ) =
exp(ϑ ·ψ(x))∫
exp(ϑ ·ψ(y))dy

,

where ϑ ∈ RM, and ψ(x) := (ψ1(x),ψ2(x), . . . ,ψM(x)) is a given set of linearly independent (basis) func-

tions, expressed here as a vector. Furthermore, suppose h is expressed as a linear combination of these

functions:

h(x) = α ·ψ(x),
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where α ∈ RM.

The elements of the Fisher information matrix (3.24) and the gradient (3.25) are given by the respective

formulae:

[G]lk(θ) =
∫
(ψl(x)− ψ̂l)(ψk(x)− ψ̂k) % (x;θ)dx,

[∇e]k(θ) =
∫
(α ·ψ(x)) (ψk(x)− ψ̂k) % (x;θ)dx,

where ψ̂k :=
∫

ψk(x) % (x;θ)dx. The ode (3.26) simplifies to

dθt

dt
=−βα.

Although interesting, there do not appear to be any non-trivial examples where the affine structure applies.

3.3 Conclusions

In this chapter, a controlled particle filter was introduced as an algorithmic solution to the global optimiza-

tion problem. The main conclusions are as follows:

1) Two types of variational interpretations were provided for the filter: (i) the density transport was shown

to be a gradient flow for the expected value of the objective function; (ii) the control law was shown to

be a solution of a mean-field type optimal control problem.

2) For the special case of quadratic objective function and Gaussian prior distribution, closed-form formulae

for the optimal control law were obtained and shown to be closely related to the ensemble Kalman filter

for the linear Gaussian filtering problem.

3) Comparison with other types of non-parametric and parametric algorithms were discussed.

There are a number of possible directions for future research:

1) Characteristic conditions on the objective function h (e.g., convexity) such that the affine control law

yields the optimal solution.

2) Convergence analysis of the finite-N system (3.22) for the quadratic Gaussian problem.
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Chapter 4

Poisson equation on Matrix Lie groups ∗

4.1 Introduction

Certain Poisson equations appear in both the feedback particle filter on matrix Lie groups (equation (2.22)

and (2.28) in Chapter 2) and the controlled particle filter in the Euclidean space (equation (3.5) in Chapter 3).

This chapter concerns the well-posedness of the Poisson equation and numerical methods to approximate

its solution. The majority of the numerical algorithms in this chapter are described for matrix Lie groups.

Specialization of these algorithms to the Euclidean space is straightforward and will be discussed as needed.

Recall from Sec. 2.3.1 that the (weak form) Poisson equation in the feedback particle filter on a matrix

Lie group is given by,

π
(
〈grad(φ),grad(ψ)〉

)
= π

(
(h− ĥ)ψ

)
,

π(φ) = 0 (normalization),
(4.1)

for all ψ ∈ H1(G;π), where the solution φ ∈ H1
0 (G;π), h : G→ R is a given function, and π denotes the

particle distribution. The strong form of this Poisson equation is given by,

∆ρφ =−(h− ĥ), (4.2)

where ∆ρ := 1
ρ

div
(
ρ grad(φ)

)
denotes the weighted Laplacian operator, and ρ denotes the density function

associated with π . Compared with its general form (2.22), the explicit dependence on j and t is suppressed

in the Poisson equation (4.1) since the equations for each j = 1, ...,m are uncoupled and the time t is fixed.

The numerical problem of gain function approximation is as follows: Given samples {X1, ...,X i, ...,XN}

drawn i.i.d. from the distribution π , approximate the solution {K(X1), ...,K(X i), ...,K(XN)}, where accord-

∗The content of this chapter is related to the publication [208, 209].
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ing to (2.23),

X iK(X i) = grad(φ)(X i)

for i = 1, ...,N. The density function of ρ is not explicitly known.

Two numerical schemes for approximating the solution of (4.2) are described in this chapter:

1) Galerkin algorithm:

The Galerkin solution is the best least square approximation of the solution φ of (4.1) in a finite-

dimensional subspace of the function space H1
0 (G;π). The subspace is defined as a span of a prescribed

set of basis functions. Numerically, the algorithm entails solving a matrix equation where the entries of

the matrices are approximated empirically using the particles.

2) Kernel-based algorithm:

In the kernel-based algorithm, the solution φ of (4.2) is equivalently expressed as a solution of a fixed-

point problem defined in terms of the semigroup et∆ρ of the weighted Laplacian ∆ρ . In a numerical

implementation, the semigroup is approximated as a Markov matrix defined on the discrete graph asso-

ciated with the particles {X i}N
i=1. The entries of the Markov matrix are approximated empirically using

the particles.

The remainder of this chapter is organized as follows: In Sec. 4.2, the well-posedness results of the

Poisson equation are presented. In Sec. 4.3, the Galerkin scheme is described, together with formulae

for basis functions for SO(3) and the Euclidean space. Sec. 4.4 contains the numerical procedure for the

kernel-based gain function approximation. Related approaches are discussed in Sec. 4.5.

4.2 Well-posedness and Admissibility of the Gain

The admissibility of the gain function solution, i.e., E[
(

∑n |un(X i)|
)
]<∞ and E[∑n |kn, j(X i)|2]<∞, requires

a well-posedness analysis of the Poisson equation. Similar as in the original Euclidean setting [194], we

make the following assumptions:

Assumption 4.1 The function h ∈ L2(G;π).
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Assumption 4.2 The distribution π admits a uniform spectral gap (or Poincaré inequality) with constant λ̄

(Sec. 4.2 in [6]): That is, for a function φ ∈ H1
0 (G;π),

π
(
|φ |2

)
≤ 1

λ̄
π
(
|grad(φ)|2G

)
. (4.3)

The proof of the following well-posedness theorem appears in Appendix C.1. The proof is nearly

identical to the proof presented in [194] for the Euclidean case.

Theorem 4.1 Under Assumption 4.1 and Assumption 4.2, the Poisson equation (2.22) possesses a unique

solution φ ∈ H1
0 (G;π), satisfying

π
(
|grad(φ)|2G

)
≤ 1

λ̄
π
(
|h− ĥ|2

)
. (4.4)

For this solution, one has the following bounds,

π
(
|K|2G

)
≤ 1

λ̄
π
(
|h− ĥ|2

)
, (4.5)

π
( d

∑
n=1
|un|

)
≤C π

(
|h|2
)
, (4.6)

where the constant C depends on λ̄ . That is, the resulting gain and control functions are admissible accord-

ing to Definition 2.1.

The norms | · |G and | · |G are defined in (2.9) in Sec. 2.2.

Remark 4.1 (Remark on Assumptions A1-A2) Suppose the Lie group G is compact, e.g., SO(3). In this

case, if π has an everywhere positive density ρ , then Assumption 4.1 and 4.2 automatically hold. For non

compact manifolds, e.g., SE(3), the assumptions hold if the density ρ has a Gaussian tail (see Remark 2

in [194]).

The main challenge to implement the FPF algorithm is to approximate the gain function solution. Since

the problem (2.22) is linear, the approximation involves constructing a matrix problem to obtain the approx-

imate solution. In the following two sections, two numerical schemes for the approximation are presented.
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4.3 Galerkin Gain Function Approximation

In a Galerkin approach, the solution φ is approximated as,

φ
(L) :=

L

∑
l=1

κl ψl,

where {ψl}L
l=1 ⊂ H1

0 (G;π) is a given (assumed) set of basis functions on G. Denote S := span{ψ1, ...,ψL}.

The finite-dimensional approximation of the Poisson equation (2.22) is to choose coefficients {κl}L
l=1 such

that,

π
(
〈grad(φ (L)),grad(ψ)〉

)
= π

(
(h− ĥ)ψ

)
, (4.7)

for all ψ ∈ H1(G;π). On taking ψ = ψ1, ...,ψL, (4.7) is compactly written as a linear matrix equation,

Aκ = b, (4.8)

where κ := (κ1, . . . ,κL), and the entries of the L×L matrix A and the L×1 vector b are defined as,

Akl = π
(
〈grad(ψl),grad(ψk)〉

)
,

bk = π
(
(h− ĥ)ψk

)
,

In numerical implementations with a finite set of particles {X i}N
i=1 sampled from the distribution π , the

empirical approximation of (4.8) is denoted as

A(N)
κ
(N) = b(N),

where the entries of A(N) and b(N) are given by,

A(N)
kl =

1
N

N

∑
i=1
〈grad(ψl),grad(ψk)〉(X i)

(2.8)
=

1
N

N

∑
i=1

d

∑
n=1

(En ·ψl)(X i)(En ·ψk)(X i),

b(N)
k =

1
N

N

∑
i=1

(h(X i)− ĥ(N))ψk(X i),
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Algorithm 4 Galerkin gain function approximation

1: Input: Particles {X i}N
i=1 sampled i.i.d. from π , basis functions {ψl}L

l=1

2: Calculate ĥ(N) = 1
N ∑

N
i=1 h(X i)

3: for k = 1 to L do

4: Calculate b(N)
k = 1

N ∑
N
i=1
(
h(X i)− ĥ(N)

)
ψk(X i)

5: for l = 1 to L do

6: Calculate A(N)
kl = 1

N ∑
N
i=1 ∑

d
n=1(En ·ψl)(X i)(En ·ψk)(X i)

7: end for

8: end for

9: Solve the matrix equation A(N)κ(N) = b(N), with A(N) = [A(N)
kl ], b(N) = [b(N)

k ]

10: Calculate k
(L,N)
n (X i) = ∑

L
l=1 κ

(N)
l En ·ψl(X i), for n = 1, ...,d

11: Return: Coordinates
{(

k
(L,N)
n (X1), ...,k

(L,N)
n (XN)

)}d
n=1

where ĥ(N) := 1
N ∑

N
i=1 h(X i). The solution φ is then empirically approximated by the function

φ
(L,N) :=

L

∑
l=1

κ
(N)
l ψl,

and the gain function K is empirically approximated by the function K(L,N) ∈ G whose coordinates with

respect to a basis {En}d
n=1 of G are given by

k
(L,N)
n =

L

∑
l=1

κ
(N)
l En ·ψl, n = 1, ...,d.

The numerical procedure of the Galerkin gain function approximation is tabulated in Algorithm 4.

On a compact Lie group where the density ρ is everywhere positive, the following proposition provides

error bounds of the Galerkin approximation for the special case where the basis functions are chosen to be

the eigenfunctions of the weighted Laplacian ∆ρ . The proof appears in Appendix C.2. In the proposition

statement and proof, the following notation is used: For two functions φ ,ψ : G→ R, their inner product

in L2(G;π) is defined as 〈φ ,ψ〉 := π(φψ) =
∫

G φ(x)ψ(x)ρ(x) dx, and the induced norm ‖φ‖2 :=
√
〈φ ,φ〉.

Let the gradient vector field grad(φ)(x) = xK(x) where K(x) ∈ G . Define ‖grad(φ)‖G :=
√

π(|grad(φ)|2G).
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Define also ‖K‖G :=
√

π(|K|2G ). The norms | · |G and | · |G are defined in Sec. 2.2.1, where the definition

(2.8) also implies ‖K‖G = ‖grad(φ)‖G due to the correspondence between grad(φ) and K.

Proposition 4.1 Consider the empirical Galerkin approximation of the Poisson equation (4.2) on the space

S := span{e1,e2, . . . ,eL}, where the basis functions of S consist of the first L eigenfunctions of ∆ρ . Fix L<∞.

Suppose the Lie group G is compact and the density ρ is everywhere positive. Then there exists a unique

solution for the matrix equation (4.8), and there is a sequence of random variables {εN} such that

‖K−K(L,N)‖G ≤
1√
λL
‖h̃−ΠSh̃‖2 + εN , (4.9)

where εN → 0 as N→ ∞ a.s, h̃ := h− ĥ, and ΠSh̃ := ∑
L
l=1〈el, h̃〉el is the projection of h̃ onto S.

Remark 4.2 (Variational interpretation) Suppose φ is the exact solution of the weak form of the Poisson

equation (2.22). The Galerkin solution φ (L) is the optimal least-square approximation of φ in S⊂H1
0 (G;ρ),

i.e,

φ
(L) = arg min

ψ∈S
‖grad(φ)−grad(ψ)‖G,

where grad(φ)−grad(ψ) is understood as a vector field defined as

(grad(φ)−grad(ψ))(x) := grad(φ)(x)−grad(ψ)(x) ∈ TxG

for all x ∈ G. The Galerkin approximation (4.7) is simply the statement of the projection theorem (see

Theorem 0.3.3 in [23]).

Note that both the Poisson equation (4.2) as well as its Galerkin finite-dimensional approximation (4.8)

are coordinate-free representations. Particle-based approximation of the solution (4.8) can be carried out for

any choice of coordinates. Certain coordinates may offer computational advantages, e.g., quaternions for

SO(3).

The non-trivial step in the Galerkin approximation is the choice of the basis function. In general, this

choice is problem dependent. For matrix Lie groups, one choice is to use the Fourier basis. This is illustrated

by two examples below.
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Example 4.1 (Basis functions on SO(2)) The Lie group SO(2) is identified with the unit circle S1. Using

the angle coordinate θ ∈ S1, the simplest choice of the basis functions are the Fourier basis, e.g.,

ψ1(θ) = sin(θ), ψ2(θ) = cos(θ). (4.10)

Note that these two basis functions are the eigenfunctions of the Laplacian on SO(2), associated with its

smallest non-zero eigenvalue.

Example 4.2 (Basis functions on SO(3)) For the rotation group SO(3), the Fourier basis are the eigen-

functions of the Laplace-Beltrami operator on the manifold defined as ∆φ := div(grad(φ)) [97]. These

functions are also associated with the irreducible unitary representation of SO(3) [36]. Given its impor-

tance in applications, the eigenfunctions associated with the smallest eigenvalue for SO(3) are tabulated in

Appendix C.3. Also included is a brief overview of the derivation of these basis functions.

4.3.1 Basis functions in the Euclidean space

Recall that the Poisson equation for the global optimization algorithm in the Euclidean space is given by,

(see equation (3.5)),

−∇ · (ρ(x)∇φ(x)) = (h(x)− ĥ)ρ(x), x ∈ Rd ,∫
φ(x)ρ(x)dx = 0,

whose weak form is obtained as,

∫
∇φ(x) ·∇ψ(x)ρ(x)dx =

∫
(h(x)− ĥ)ψ(x)ρ(x)dx, (4.11)

for all ψ ∈ H1(Rd ;ρ). The control function is given by u(x) =−∇φ(x).

The following examples provide certain choice of basis functions in the Euclidean space. These may

be used for approximating the control function for solving the global optimization problem presented in

Chapter 3:

Example 4.3 Two types of approximations follow from consideration of first order and second order poly-

nomials as basis functions:
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1) The constant approximation is obtained by taking basis functions as ψl(x) = xl for l = 1, . . . ,d. With this

choice, A is the identity matrix and the control function is a constant vector:

u(x) =−βb =−β

∫
x(h(x)− ĥ)ρ(x)dx,

where A and b are defined as in (4.8).

2) The affine approximation is obtained by taking the basis functions as quadratic polynomials, ψl(x) = xl

for l = 1, . . . ,d and ψlk(x) = (xl−ml)(xk−mk) for 1 ≤ l ≤ k ≤ d, where m :=
∫

xρ(x)dx is the mean.

In this case,

u(x) =−βK(x−m)−βb,

and direct calculations show that the matrix equation (4.8) leads to the same equations for K and b as

given by (3.18) and (3.17). Hence, the Galerkin method provides an alternative way to calculate the

affine control law. Note that the Galerkin derivation of the affine control law does not require that the

density be Gaussian or the objective function be quadratic. This is consistent with the observations in

Remark 3.4.

Example 4.4 One choice for the basis functions is the Fourier basis functions, e.g.,

{
sin
(2πxk

T

)
, cos

(2πxk

T

)
, 1≤ k ≤ d

}
.

Example 4.5 With a single basis function ψ(x) = h(x), the approximate Galerkin solution is

φ(x) =
∫
(h(x)− ĥ)2ρ(x)dx∫
|∇h(x)|2ρ(x)dx

h(x).

Using an empirical approximation, the finite-N system (3.4) is the gradient-descent algorithm:

dX i
t

dt
=−β

∑
N
i=1(h(X

i
t )− ĥ(N))2

∑
N
i=1 |∇h(X i

t )|2
∇h(X i

t ).

Remark 4.3 There is no general guideline for choosing a proper set of basis functions. The basis can

be defined either globally or locally. The spectral Galerkin method [156] uses the Fourier basis or the
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various orthogonal polynomials (e.g., Hermite, Chebyshev, Laguerre polynomials) that are defined over the

entire domain. A class of meshless Galerkin methods [109], in contrast, employ the moving least square

construction [108] where a basis function typically has only a compact support centered at a nodal point.

Such local approximation has given rise to the reproducing kernel particle method [115], the partition of

unity method [49], the meshless local Petrov-Galerkin method [4], and the meshless Galerkin method using

radial basis functions [190, 48]. Some meshless methods have recently been applied to numerically solving

pdes on 3D surfaces that arise in certain computer vision applications [110, 107]. Galerkin approximation

methods on spheres with localized kernel basis function appear in [101, 138].

4.4 Kernel-based Gain Function Approximation

In this section, we present the kernel-based method whose attractive feature is that it does not involve

selection of basis functions. In the numerical results presented in Chapter 5 and 7, this approach is also

shown to be very effective. The original development of the kernel-based method in the Euclidean space

is presented in [170, 169], The implementation specifically for the global optimization problem appears in

[207].

In a kernel-based method, the unknown function φ(x) – solution of the strong form Poisson equation

(4.2) – is approximated by its values at the particles {X i}N
i=1:

Φ :=
(
φ(X1),φ(X2), . . . ,φ(XN)

)
∈ RN .

In terms of Φ , the Poisson equation (4.2) is approximated as a finite-dimensional fixed-point problem,

Φ = T (ε,N)
Φ + εH(N), (4.12)

on the co-dimension 1 subspace of normalized (i.e., mean zero) vectors, where ε is a small positive param-

eter, H(N) :=
(
h(X1)− ĥ(N),h(X2)− ĥ(N), ...,h(XN)− ĥ(N)

)
∈ RN , and T (ε,N) ∈ RN×N is a Markov matrix

that is assembled from the ensemble {X i}N
i=1. It is shown in [169] that:

1) The Markov matrix T (ε,N) is a strict contraction on the subspace, and thus

2) the finite-dimensional problem (4.12) admits a unique normalized solution Φ ,
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3) this solution can be obtained by successive approximations, and

4) Φ approximates the true solution φ as ε → 0 and N→ ∞.

For the manifold, the (i, j)th element of the N×N matrix T (ε,N) is constructed as,

T (ε,N)
i j =

k̃(ε)(X i,X j)

∑
N
l=1 k̃(ε)(X i,X l)

, (4.13)

where the kernel k̃(ε) : G×G→ R is given by,

k̃(ε)(X i,X j) =
k(ε)(X i,X j)√

1
N ∑

N
l=1 k(ε)(X i,X l)

√
1
N ∑

N
l=1 k(ε)(X j,X l)

, (4.14)

and k(ε) is the Gaussian kernel,

k(ε)(X i,X j) :=
1

(4πε)d/2 exp
(
− ζ 2(X i,X j)

4ε

)
, (4.15)

where d is the dimension of G, and ζ : G×G → R denotes a distance metric on G induced from the

Euclidean space in which G is smoothly embedded (see Assumption 19 in [71]).

Remark 4.4 The justification of the fixed-point problem (4.12) is as follows: The weighted Laplacian is the

infinitesimal generator of a Markov semigroup, denoted as eε ∆ρ ; c.f., [6]. In terms of this semigroup, the

Poisson equation (4.2) is equivalently expressed as the following fixed-point problem,

φ = eε ∆ρ φ +
∫

ε

0
es∆ρ (h− ĥ) ds, (4.16)

for fixed ε > 0. If the distribution π admits a spectral gap (i.e., (4.3) holds for some λ̄ > 0), then eε∆ρ is a

contraction on L2
0(G;π) and a unique solution exists by the contracting mapping theorem.

In the limit as ε → 0 and N→ ∞, eε ∆ρ is approximated by an operator T (ε) defined as:

T (ε) f (x) =
1

n(ε)(x)

∫
G

k̃(ε)(x,y) f (y)ρ(y)dy,

where n(ε)(x) =
∫

G k̃(ε)(x,y)ρ(y)dy is a normalization factor chosen such that T (ε)1 = 1 (see Proposition 3
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in [40]). The fixed-point problem (4.16) is thus approximated as,

φ
(ε) = T (ε)

φ
(ε)+ ε(h− ĥ), (4.17)

where
∫

ε

0 es∆ρ (h− ĥ)ds ≈ ε(h− ĥ) for small ε > 0. In the limit as N → ∞, the fixed-point problem (4.12)

represents a finite-dimensional approximation of (4.17), with T (ε,N) representing a finite-dimensional ap-

proximation of the semigroup eε ∆ρ .

The coordinates of the gain function kn = En · φ for n = 1, ...,d are obtained by taking an explicit

derivative of (4.17). The numerical procedure to obtain kn is summarized below:

1) Define the vector

H̃n :=
(
En ·h(X1), En ·h(X2), ..., En ·h(XN)

)
,

and define the N×N matrix Z̃n whose elements are given by,

(Z̃n)i j := En ·ζ 2(X i,X j),

where En ·ζ 2(x,y) := d
dτ

∣∣
τ=0ζ 2

(
x exp(τEn),y

)
for x,y ∈ G.

2) Define the N×N matrix,

Sn := T (ε,N) ∗ Z̃n,

where ∗ denotes the Hadamard (element-wise) product of two matrices, i.e., (Sn)i j = (T (ε,N))i j (Z̃n)i j.

3) Define ϒn :=
(
kn(X1), kn(X2), ..., kn(XN)

)
∈ RN . Then,

ϒn = ε H̃n−
1

4ε

[
SnΦ− (Sn1)∗ (T (ε,N)

Φ)
]
, (4.18)

where 1 = (1,1, ...,1) ∈ RN , and ∗ denotes the element-wise product of two vectors.

The numerical procedure of the kernel-based gain function approximation is tabulated in Algorithm 5.

The choice of distance metric ζ 2(x,y) depends on the manifold. Two examples are given below:
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Algorithm 5 Kernel-based gain function approximation

1: Input: Particles {X i}N
i=1 sampled i.i.d. from π , parameters ε , K

2: Calculate ĥ(N) = 1
N ∑

N
i=1 h(X i)

3: Calculate H(N)
i = h(X i)− ĥ(N) for i = 1, ...,N

4: Calculate k(ε)(X i,X j), k̃(ε)(X i,X j) by (4.15), (4.14) for all i, j

5: Calculate T (ε,N)
i j according to (4.13) for all i, j

6: Assign initial condition Φ0

7: for k = 0 to K−1 do

8: Calculate Φk+1 = T (ε,N)Φk + εH(N), with T (ε,N) = [T (ε,N)
i j ]

9: Assign Φk+1 = Φk+1− 1
N ∑

N
i=1(Φk+1)i

10: end for

11: Calculate ϒn =
(
kn(X1), ...,kn(XN)

)
for n = 1, ...,d according to (4.18) with Φ = ΦK

12: Return: Coordinates
{(

kn(X1), ...,kn(XN)
)}d

n=1

Example 4.6 (Distance metric in SO(3)) On the Lie group SO(3), d = 3, and the distance metric is given

by (see [82]),

ζ
2(R1,R2) = |R1−R2|2F ,

for R1,R2 ∈ SO(3), where | · |F is the Frobenius norm of a matrix. This metric is induced from the Euclidean

space R9, where the smooth embedding i : SO(3)→ R9 is defined as i(R) = (R11,R12, ...,R33). Using the

basis of so(3) given by (2.13), we have

En · (ζ 2)(Ri,R j) =−2Tr(RiEnR j), n = 1,2,3.

Example 4.7 (Distance metric in Rd) In the Euclidean space Rd , the distance metric is the conventional

Euclidean distance,

ζ
2(X i,X j) = |X i−X j|2

for X i,X j ∈ Rd . This is used in the kernel-based control function approximation for the controlled particle

filter algorithm presented in Chapter 3.
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An example of the distance metric on the product Lie group SO(3)×SO(2) is given in Sec. 6.4.3 for the

motion tracking application with FPF.

4.5 Related Approximation Methods

The gain function approximation is a hard problem. The Galerkin algorithm represents a straightforward

solution where the hard part is to select the basis functions. A number of papers have considered related

approaches: i) the use of proper orthogonal decomposition (POD) to select basis functions in [18]; ii) a

continuation scheme in [129]; and iii) certain probabilistic approaches involving dynamic programming in

[147]. We expect that many of these approaches can be also generalized to the manifold setting.

Kernel-based approaches have received considerable attention in machine learning applications includ-

ing dimensionality reduction [40, 14], spectral clustering [184], and other unsupervised learning models

[177]. The semigroup associated with the weighted Laplacian operator has also been intensively studied

[65, 28].

Apart from the Galerkin and the kernel-based numerical schemes, the meshless collocation method has

been widely used for numerical approximations [211, 73, 185] and recently also extended to certain manifold

[102]. However, the collocation method typically requires an explicit expression of the differential operator

in the (strong form) pde, hence not suitable for the Poisson equation (4.2) where the density function ρ is

unknown in general. It is noted that both the Galerkin and the kernel-based method described in this chapter

are completely adapted to data. That is, no explicit computation of the density is ever required. Instead, one

only needs to either evaluate a given set of basis functions at the particles, or construct a weighted graph

using the particles.

4.6 Conclusions

In this chapter, we discussed algorithms for numerical solutions of the Poisson equation in the feedback

particle filter. In the Lie group setting, the well-posedness results were presented, and two algorithms were

described to numerically approximate the gain function:

1) In the Galerkin gain function approximation, the solution is approximated via a projection onto the

subspace spanned by a prescribed set of basis functions. Numerically, the algorithm entails solving a
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finite-dimensional linear matrix equation.

2) In the kernel-based gain function approximation, the solution is obtained via a Markov approximation of

the semigroup.

Both the Galerkin and the kernel-based scheme are shown to respect the intrinsic geometry of the mani-

fold, and are completely adapted to data. Numerical procedures to obtain the approximations were provided,

including examples on important Lie groups such as SO(3) as well as the Euclidean space Rd .
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Part II

Applications
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Chapter 5

Attitude Estimation with Feedback Particle Filter ∗

5.1 Introduction

This chapter is concerned with the problem of attitude estimation, modeled here as a continuous-time non-

linear filtering problem on the Lie group SO(3). For this important special case, the explicit form of the

feedback particle filter is described with respect to both the rotation matrix and the quaternion coordinates,

with the latter being demonstrated for computational purposes.

Apart from theory, a comparison is provided between FPF and the several popular attitude filters includ-

ing the multiplicative EKF, the invariant EKF, the unscented Kalman filter, the invariant ensemble Kalman

filter and the bootstrap particle filter (BPF). Numerical algorithms of these filters are described in a self-

contained manner. The comparison is illustrated by two numerical studies: (i) an attitude estimation problem

on SO(3), and (ii) a filtering problem with a bimodal prior distribution supported on the subgroup SO(2).

For the attitude estimation problem, the filters are assessed with respect to their averaged estimation

error and simulation variance across multiple Monte-Carlo runs. Their performance is also investigated by

varying the prior distribution, the process noise, the observation noise, as well as the number of particles

used in particle filters. The particle filters are also compared in terms of their computational complexity.

For the filtering problem with support on SO(2), a static process model is considered such that the

posterior density admits a closed-form Bayes’ formula. The filters are simulated with a bimodal initial

distribution. FPF and BPF are compared regarding their capability of handling non-Gaussian posterior

distributions. The kernel-based gain function approximation in FPF is also investigated.

Numerical studies that contain comparisons of state-of-the-art attitude filters and attitude observers also

appear in several Ph.D. theses [200, 85, 11, 117] as well as research papers [86, 13, 25].

The remainder of this chapter is organized as follows: The mathematical formulation of the attitude
∗The content of this chapter is related to the publication [208, 209].
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estimation problem is presented in Sec. 5.2. The feedback particle filter algorithm for attitude estimation is

described in Sec. 5.3. Sec. 5.4 provides a self-contained description of the attitude filters that are considered

in the numerical studies. Simulation results for the attitude estimation problem on SO(3) and the problem

on the subgroup SO(2) appear in Sec. 5.5 and Sec. 5.6, respectively.

5.2 Problem Formulation

Process model: A kinematic model of rigid body is given by,

dRt = Rt Ωt dt +Rt ◦ [σB dBt ]×, (5.1)

where Rt ∈ SO(3) is the orientation of the rigid body at time t, expressed with respect to an inertial frame;

Ωt = [ωt ]× where ωt ∈ R3 represents the angular velocity expressed in the body frame; Bt is a standard

Wiener process in R3, and σB is a positive scalar. Both Ωt and [σB dBt ]× are elements of the Lie algebra

so(3) (see (2.14) for the definition of [ · ]×).

Using the quaternion coordinates, (5.1) is written as,

dqt =
1
2

qt ⊗ (ωt dt +σB dBt), (5.2)

where, by a slight abuse of notation, ωt ∈ R3 is interpreted as a quaternion (0,ωt), and dBt is interpreted

similarly. The sde (5.2) is also interpreted in the Stratonovich sense.

Accelerometer: In the absence of translational motion, the accelerometer is modeled as (see [118]),

dZg
t =−RT

t rg dt +σW dW g
t , (5.3)

where rg ∈ R3 is the unit vector in the inertial frame aligned with the gravity, W g
t is a standard Wiener

process in R3, and a parameter σW is used to scale the observation noise.

Magnetometer: The model of the magnetometer is of a similar form (see [118]),

dZb
t = RT

t rb dt +σW dW b
t , (5.4)
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where rb ∈ R3 is the unit vector in the inertial frame aligned with the local magnetic field, and W b
t is a

standard Wiener process in R3.

In terms of the process and observation models (5.1)-(5.4), the nonlinear filtering problem for attitude

estimation is succinctly expressed as,

dRt = Rt Ωt dt +Rt ◦ [σB dBt ]×, (5.5a)

dZt = h(Rt)dt +σW dWt , (5.5b)

where h : SO(3)→ R6 is a given function whose j-th coordinate is denoted as h j, and Wt is a standard

Wiener process in R6. Note that (5.5b) encapsulates the sensor models given in (5.3) and (5.4) within a

single equation. It is assumed that Bt and Wt are mutually independent, and both are independent of the

initial condition R0.

Remark 5.1 There are a number of simplifying assumptions implicit in the model defined in (5.5a)-(5.5b).

In practice, ωt needs to be estimated from noisy gyroscope measurements and there is translational motion

as well. This requires additional models which are easily incorporated within the proposed filtering frame-

work. The purpose here is to elucidate the geometric aspects of the FPF in the simplest possible setting of

SO(3). More practical FPF-based filters that also incorporate models for translational motion, measure-

ments of ωt from gyroscope, effects of translational motion on accelerometer, and effects of sensor bias are

subject of separate publication.

5.3 FPF for Attitude Estimation

Following the general framework of FPF described in Sec. 2.3, the dynamics of the i-th particle is defined

by,

dRi
t = Ri

t Ωt dt +Ri
t ◦ [σB dBi

t ]×+Ri
t [K(R

i
t , t)◦ dIi

t ]×, (5.6)

where Bi
t for i = 1, ...,N are mutually independent standard Wiener processes in R3. The error dIi

t ∈ R6 is

given by,

dIi
t = dZt −

1
2
(
h(Ri

t)+ ĥ
)

dt.
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Algorithm 6 Feedback Particle Filter for attitude estimation

1: Initialization: Samples {qi
0}N

i=1 i.i.d. from π∗0

2: Assign t = 0

3: Iteration: from t to t +∆t

4: Calculate ĥ(N) = 1
N ∑

N
i=1 h(qi

t)

5: for i = 1 to N do

6: Generate a sample, ∆Bi
t , from N

(
0,(∆t)I

)
7: Calculate the error ∆Ii

t := ∆Zt − 1
2

(
h(qi

t)+ ĥ(N)
)

∆t

8: Calculate gain function K(qi
t , t) using Galerkin or kernel-based scheme (see Chapter 4)

9: Calculate ∆ν i
t = ωt ∆t +σB ∆Bi

t +K(qi
t , t)∆Ii

t

10: Propagate the particle qi
t according to (see [178], and | · | denotes the Euclidean norm in R3)

qi
t+∆t = qi

t ⊗

 cos
(
|∆ν i

t |/2
)

∆ν i
t

|∆ν i
t |

sin
(
|∆ν i

t |/2
)


11: end for

12: Define matrix Q = 1
N ∑

N
i=1 qi

t+∆tq
i T
t+∆t

13: Return: empirical mean of {qi
t+∆t}N

i=1, i.e., the unit eigenvector of Q associated with its largest eigen-

value

14: Assign t = t +∆t

The gain function K is a 3×6 matrix whose entries are obtained as follows: For j = 1,2, ...,6, the j-th

column of K contains the coordinates of the vector-field grad(φ j), where the function φ j ∈ H1(SO(3);πt) is

a solution to the Poisson equation,

πt
(
〈grad(φ j),grad(ψ)〉

)
=

1
σ2

W
πt
(
(h j− ĥ j)ψ

)
,

πt(φ j) = 0 (normalization),

(5.7)

for all ψ ∈ H1(SO(3);π).
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For numerical purposes, it is convenient to express the FPF with respect to the quaternion coordinates.

In this coordinate representation, the dynamics of the i-th particle is given by,

dqi
t =

1
2

qi
t ⊗ dν

i
t , (5.8)

where qi
t is the quaternion state of the i-th particle, and ν i

t ∈ R3 evolves according to,

dν
i
t = ωt dt + dBi

t +K(qi
t , t)◦

(
dZt −

h(qi
t)+ ĥ
2

dt
)
, (5.9)

where K(q, t) = K(R(q), t) and h(q) = h(R(q)), with R = R(q) given by the formula (2.16).

The FPF algorithm is numerically implemented using the quaternion coordinates, and is described in

Algorithm 6. The algorithm simulates N particles, {qi
t}N

i=1, according to the sde’s (5.8) and (5.9), with the

initial conditions {qi
0}N

i=1 sampled i.i.d. from a given prior distribution π∗0 . The gain function is approxi-

mated using either the Galerkin scheme (see Sec. 4.3) with the basis functions given in Appendix C.3, or

the kernel-based scheme (see Sec. 4.4).

Given a particle set {qi
t}N

i=1, its empirical mean is obtained as the eigenvector (with norm 1) of the 4×4

matrix Q = 1
N ∑

N
i=1 qi

tq
i T
t corresponding to its largest eigenvalue [125].

5.4 Review of Some Attitude Filters

This section presents detailed algorithms for the attitude filters that are simulated for the comparison in

Sec. 5.5. The following attitude estimation problem is considered,

dqt =
1
2

qt ⊗
(
ωt dt +σB dBt

)
, (5.10a)

dZt = R(qt)
T r dt +σW dWt , (5.10b)

where r ∈ R3 denotes a generic reference vector. The simplified observation model (5.10b) avoids undue

notations in the description of the filters. A more realistic model with both gravity and magnetic field

observed is used in Sec. 5.5 for numerical simulations.

Most of the filters presented in this section are discrete-time filters. They require a discrete-time filtering
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model that is chosen to be consistent with the continuous-time model (5.10a)-(5.10b). For the discrete-time

filters, the sampled observations, denoted as {Yn}, are made at discrete times {tn}, whose model is formally

expressed as Yn := ∆Ztn
∆t = R(qtn)

T r +W ∆
n where {W ∆

n } are i.i.d. with the distribution N (0, σ2
W

∆t I), and ∆t

denotes the time step. Such a model leads to the correct scaling between the continuous and the discrete-

time filter implementations.

The multiplicative EKF, unscented quaternion estimator and bootstrap particle filter use one of the three-

dimensional parametrization of SO(3), e.g., the Euler angle, the rotation vector, and the Rodrigues param-

eter, to represent the attitude estimation error. The filter is then implemented as an EKF on a subset of R3.

The subset is referred to as the parameter space. In our numerical studies, the modified Rodrigues parameter

(MRP) is used. Conversion between an error MRP x and an error quaternion δq is given by [124],

δq(x) =
1

16+ |x|2

16−|x|2

8x

 , x(δq) =
4

1+δq0


δq1

δq2

δq3

 , (5.11)

where notationally δq = (δq0,δq1,δq2,δq3).

All the filters are implemented using the quaternion coordinates. For discrete-time filters, the posterior

filter estimate at time tn is denoted as q̂n. The filter estimate after the propagation step between tn−1 and

tn is denoted as q̂′n. For Kalman-type filters, the associated covariance matrices are denoted as Σn and Σ′n,

respectively. Each filter is described for one iteration that maps q̂n−1 to q̂n and Σn−1 to Σn.

5.4.1 Multiplicative EKF

The MEKF algorithm is described in [124, 178]. The linearized model of the estimation error, represented

using the MRP, is given by,

dxt =−[ωt ]× xt dt−σB dBt , (5.12)

where xt denotes the error MRP at time t. Such a linearization is reasonable when |xt | and σB are both

sufficiently small. The MEKF then follows the classical EKF based on the linearized model (5.12) defined

in R3. The detailed algorithm is presented below.

Input: Current quaternion estimate q̂n−1 and Σn−1. The estimate of error MRP is x̂n−1 = 0.
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Propagation:

q̂′n = q̂n−1⊗ exp(ωn−1∆t), (5.13)

Σ
′
n = ΦΣn−1Φ

T +Q, (5.14)

where by slight abuse of notation,

exp(ω) :=

 cos
(
|ω|/2

)
ω

|ω| sin
(
|ω|/2

)


for ω ∈ R3, and ωn := ωtn . The matrix Φ and Q are given by

Φ = I− [ωn−1 ]×∆t , Q = (σ2
B ∆t) I.

Update: The observation update is first carried out for the error MRP:

x̂n = Kn In,

Kn = Σ
′
n HT

n S−1
n ,

Sn = Hn Σ
′
n HT

n +R,

Σ̃n = (I−Kn Hn)Σ
′
n,

where In = Yn−R(q̂′n)
T r, Hn = [R(q̂′n)

T r ]×, and R = (σ2
W/∆t) I.

Reset: The update of error MRP is then incorporated in the quaternion estimate in a multiplicative way:

q̂n = q̂′n⊗δq(x̂n), (5.15)

Σn = Gn Σ̃n GT
n , (5.16)

where Gn = I− 1
2 [Kn In ]×, and δq(x̂n) is calculated by (5.11). The multiplicative nature of the formula

(5.15) is the reason for calling this filter the multiplicative EKF.

The reset step is included such that x̂n is reset to zero at each time step. This is analogous to the “re-

linearization” step in a classical EKF [88] and also coincides with the “re-parametrization” step in the EKF

algorithm proposed in [21]. While the reset step is implicit and trivial in a Euclidean EKF, it explicitly
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modifies the updated covariance (see (5.16)) in a Lie group setting due to the multiplicative nature of the

update formula (5.15).

Remark 5.2 The formula (5.14) for covariance propagation is obtained by discretizing the continuous-

time error model (5.12). O((∆t)2) terms are neglected in both Φ and Q. For higher-order terms in these

matrices, c.f., [178]. For the sake of consistency, all the filters discussed in this section use the same order

of numerical approximation. �

5.4.2 Unscented Quaternion Estimator

The unscented quaternion estimator (USQUE) is described in [42]. The estimation error is parameterized

using the MRP, and sigma points are employed to represent the error distribution. A conventional unscented

Kalman filter is then implemented in the parameter space. The number of sigma points is L = 2d+1 where

d = 3 is the dimensional of the MRP. The detailed algorithm is presented below.

Input: Current quaternion estimate q̂n−1 and Σn−1. The error estimate in MRP is x̂n−1 = 0.

Sigma points generation:

i) Generate L sigma points of error MRP {xn−1(l)}L−1
l=0 ∈ R3 from Σn−1,

xn−1(0) = x̂n−1 = 0, {xn−1(l)}L−1
l=1 = 2d columns of ±

√
(d +λ )Σn−1,

where λ is a tuning parameter. It is recommended in [42] that λ = 1. In practice, the square root of a

positive definite matrix is computed using the Cholesky decomposition.

ii) Convert error MRP xn−1(l) to error quaternion δqn−1(l),

δqn−1(0) = qI, δqn−1(l) = δq(xn−1(l)) using (5.11) for l = 1, ...,L−1.

where qI denotes the identity quaternion, i.e., qI = (1,0,0,0).

iii) Generate quaternion sigma points {qn−1(l)}L−1
l=0 ,

qn−1(0) = q̂n−1, qn−1(l) = q̂n−1⊗δqn−1(l).
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Propagation:

i) Propagate quaternion sigma points according to the process model,

q′n(l) = qn−1(l)⊗ exp(ωn−1 ∆t), ∀ l.

ii) Calculate propagated error quaternion,

δq′n(0) = qI, δq′n(l) =
(
q′n(0)

)−1⊗q′n(l).

iii) Calculate propagated error MRP,

x′n(0) = 0, x′n(l) = x(δq′n(l)) (see (5.11)).

iv) Calculate propagated mean x̂′n and covariance Σ′n from the sigma points {x′n(l)}L−1
l=0 using (5.17) and

(5.18) below. Additionally, process noise matrix Q = 1
2(σ

2
B∆t)I is added to Σ′n.

Given a set of sigma points {x(l)}L−1
l=0 ∈Rd , their mean (weighted average) and covariance are calculated

as,

x̂ =
1

d +λ

(
λ x(0)+

1
2

L−1

∑
l=1

x(l)
)
, (5.17)

Σ =
1

d +λ

(
λ (x(0)− x̂)(x(0)− x̂)T +

1
2

L−1

∑
l=1

(x(l)− x̂)(x(l)− x̂)T
)
. (5.18)

Update:

i) Calculate predicted observation of each sigma point,

yn(l) = R(q′n(l))
T r, ∀ l,

whose covariance, denoted as Σ̃
yy
n , is calculated using (5.18).

ii) Calculate the cross-correlation matrix Σ
xy
n from the two sets of sigma points {x̂′n}L−1

l=0 and {yn}L−1
l=0 . The

formula is analogous to (5.18).
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iii) Calculate the gain matrix

Kn = Σ
xy
n Σ

yy
n
−1,

where Σ
yy
n = Σ̃

yy
n +(σ2

W/∆t) I.

iv) Calculate the innovation error

In = Yn− yn(0).

v) Update the error MRP estimate,

x̂n = Kn In.

vi) Update the covariance matrix,

Σn = Σn−1−Kn Σ
yy
n KT

n .

vii) Update quaternion estimate,

q̂n = q̂′n⊗δq(x̂n).

Reset: Reset x̂n = 0. The covariance matrix is unchanged after reset in USQUE.

5.4.3 Bootstrap Particle Filter

The bootstrap particle filter (BPF) is described in [32]. The estimation error is parameterized using the

MRP, and N particles are employed to represent the error distribution. A conventional particle filter is

then implemented in the parameter space based on importance sampling and resampling . The algorithm is

presented below.

Input: Current quaternion estimate q̂n−1 and quaternion particles {qi
n−1}N

i=1.

Propagation: Propagate the quaternion estimate and particles according to the process model,

q̂′n = q̂n−1⊗ exp(ωn−1 ∆t), q′in = qi
n−1⊗ exp(ωn−1 ∆t +Bi

n) ∀ i,

where the process noise {Bi
n}N

i=1 are i.i.d. samples from N (0,(σ2
B∆t)I).

Update:
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i) Calculate error quaternion particles,

δ q̃i
n =

(
q̂′n
)−1⊗q′in .

ii) Calculate error MRP particles {x̃i
n}N

i=1 from {δ q̃i
n}N

i=1 using formula (5.11).

iii) Calculate weights,

wi
n ∝ exp

{
− 1

2
(Yn−R(q′in)

T r)T R−1(Yn−R(q′in)
T r)
}
,

where R =
(
σ2

W/∆t
)

I.

iv) Calculate the mean error MRP x̂n = ∑i wi
nx̃i

n

v) Calculate the updated quaternion estimate,

q̂n = q̂′n⊗δq(x̂n).

vi) Resample to obtain uniformly weighted error MRP particles {xi
n}N

i=1 from {x̃i
n}N

i=1. The resampling

procedure follows Algorithm 2 presented in [3].

vii) Perturb the new error MRP particles,

xi
n← xi

n +ν
i
n, ν

i
n ∼N (0,σ2

Σn),

where Σn =
1

N−1 ∑i xi
n xiT

n , and σ is a small tuning parameter.

viii) Update the quaternion particles,

qi
n = q′in⊗δq(xi

n).

For problems with large initialization error and concentrated likelihood functions, only a few particles

have significant weights wi
n after a few steps. Since resampling eliminates the majority of particles with

very small weight, the particle filter quickly loses particle diversity. The perturbation in Step vii) above may

alleviate this issue. Additionally, the progressive correction technique is applied in [32], which splits the

likelihood function as a product of several “wider” likelihood functions, and then sequentially implements
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the update (Step i) to viii) above) due to each split likelihood. Detailed procedure for doing this is provided

in [32] and Chapter 12 of [46].

5.4.4 Left invariant EKF

The left invariant EKF (LIEKF) is a continuous-time filter on SO(3) whose equation is given by,

dq̂t =
1
2

q̂t ⊗ (ωt dt +Kt dIt),

where q̂t denotes the quaternion estimate at time t, dIt = dZt − R(q̂t)
T r, and Kt =

1
σ2

W
ΣtHT

t with Ht =

[R(q̂t)
T r ]×.

The equation of the covariance is given by the Riccati equation,

dΣt

dt
= AtΣt +ΣtAT

t +σ
2
BI− 1

σ2
W

ΣtHT
t HtΣt .

For additional details, c.f., [20].

The connection between LIEKF and the feedback particle filter with concentrate distributions was dis-

cussed in Sec. 2.4.2.

5.4.5 Invariant EKF

The invariant EKF (IEKF) is a discrete-time filter proposed in [13]. The IEKF is originally developed to

solve a slightly different attitude estimation problem,

dqt =
1
2

qt ⊗ωt dt +
1
2
(σB dBt)⊗qt , (5.19a)

dZt = R(qt)
T (r+σW dWt), (5.19b)

where both the process and observation noise are defined in the inertial frame instead of the body frame.

However, the noise defined in two frames are statistically equivalent if the noise is isotropic (see [13] for

a definition of isotropic noise). The noise in the filtering problem (5.10a)-(5.10b) is isotropic and rotation-

invariant since the components of the noise are mutually independent and have equal variance.

The detailed algorithm is presented below:
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Input: Current quaternion estimate q̂n−1 and Σn−1. The error estimate ên−1 = 0.

Propagation:

q̂′n = q̂n−1⊗ exp(ωn−1∆t),

Σ
′
n = Σn−1 +

(
σ

2
B∆t
)
I,

The propagation step is identical to MEKF.

Update: The observation update is carried out for the Lie-algebraic error as follows,

ên = Kn In,

Kn = Σ
′
n HT S−1

n ,

Sn = H Σ
′
n HT +(σ2

W/∆t)I,

where H = [r ]×, and the innovation In = R(q̂′n)Yn− r is modeled in the inertial frame. The update in the

error estimate is then incorporated in the quaternion estimate in a multiplicative way:

q̂n = δq(ên)⊗ q̂′n, (5.20)

Σn = (I−Kn H)Σ
′
n,

where δq(ên) = exp(ên). The Lie-algebraic error is used in IEKF since it leads to an intrinsic construction

of the filter, and the error dynamics exhibits certain invariance property. This is a key difference between

IEKF and MEKF.

5.4.6 Invariant Ensemble Kalman Filter

Whereas the MEKF and IEKF algorithms compute the gain by linearizing the error model, the invariant

ensemble Kalman filter (IEnKF) employs an ensemble of random samples whose empirical covariance is

used for gain computation.

The detailed algorithm is presented below:

Input: Current quaternion estimate q̂n−1 and error samples {η i
n−1}N

i=1.
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Gain computation:

i) Propagate the error samples,

η
′ i
n = exp(Bi

n)⊗η
i
n−1,

where {Bi
n} are i.i.d. and drawn from N (0,(σ2

B∆t)I).

ii) Calculate predicted observation for each sample,

yi
n = R(η ′ in )

T r+W i
n,

where {W i
n} are i.i.d. and drawn from N (0,(σ2

W/∆t)I).

iii) Calculate empirical covariance,

Σn =
1
N

N

∑
i=1

log(η ′ in ) log(η ′ in )
T ,

where the calculation of log(·) is remarked at the end of the algorithm.

iv) Calculate the empirical covariance of the observation noise,

Rn =
1
N

N

∑
i=1

yi
n yiT

n .

v) Calculate the gain,

Kn = Σn HT S−1
n ,

where Sn = H Σn HT +Rn and H = [r ]×.

vi) Update the error samples (with the predicted observations {yi
n}),

η
i
n = η

′ i
n ⊗ exp

(
−Kn (yi

n− r)
)
.
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Filter estimate:

(Propagation) q̂′n = q̂n−1⊗ exp(ωn−1 ∆t),

(Observation update) q̂n = exp
(
Kn(R(q̂′n)Yn− r)

)
⊗ q̂′n.

Remark 5.3 The function log : S3 → R3 converts a quaternion to the corresponding rotation vector: Let

q = (q0, q1, q2, q3), and define θ = 2 arccos(|q0|) ∈ [0,π]. Then,

log(q) =
θ

sin(θ

2 )
(q1, q2, q3),

when θ 6= 0. Clearly, log(q) = (0,0,0) when θ = 0.

Remark 5.4 (Invariance properties) The invariant filters exploit certain invariance or symmetry proper-

ties of the Lie group. A process on the Lie group is called invariant if it is unchanged when a chosen group

action is applied to the state and the control input (e.g., the angular velocity ωt in (5.10a)). Similarly, an

observation model is called equivariant if it is unchanged under a chosen group action applied to the state,

the external input (e.g., the reference vector r in (5.10b)) and the output variables. In particular, the left- and

right-invariance are distinguished by the left and right multiplication when the group action is applied. The

estimation error is also defined differently, with ηt := q̂−1
t ⊗qt for the left-invariant filter, and ηt := qt⊗ q̂−1

t

for the right-invariant filter. More detailed explanation of the left and right-invariance and the resulting

properties of the filters is contained in [20, 13].

A prominent feature of the right-invariant filters is that the resulting error dynamics do not depend on

the actual trajectory of the filter estimate nor the input angular velocity. Consequently, right-invariant filters

may converge on a wider range of trajectories. Computationally, the gain can be conveniently computed

off-line. In the subsequent numerical studies, only right-invariant filters, i.e., IEKF and IEnKF, are included

since they were found to slightly outperform the left invariant filter.
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5.5 Numerical Results for Attitude Estimation

For the attitude estimation problem, consider the following model with observations from both the ac-

celerometer and magnetometer (see (5.3) and (5.4)),

dqt =
1
2

qt ⊗
(
ωt dt +σB dBt

)
, (5.21a)

dZt =

−R(qt)
T 0

0 R(qt)
T


rg

rb

 dt +σW dWt , (5.21b)

where the model for angular velocity is taken from [200],

ωt =
(

sin
(2π

15
t
)
, − sin

(2π

18
t +

π

20
)
, cos

(2π

17
t
))

,

and rg = (0,0,1), rb = (1/
√

2,0,1/
√

2) are assumed to be aligned with the gravity and the local magnetic

field, respectively.

This section presents various simulation results that compare the attitude filters in Sec. 5.4 with the

proposed feedback particle filters. These filters are listed as below:

1) MEKF: the multiplicative EKF algorithm described in [124, 178] using the modified Rodrigues param-

eter (MRP).

2) USQUE: the unscented quaternion estimator described in [42] also using the MRP.

3) BPF: the bootstrap particle filter described in [32] also using the MRP. The progressive correction tech-

nique is applied with 20 splits of the likelihood function during the initial transient phase of the filter.

The perturbation parameter σ = 0.1 (see Step vii) in the update step of BPF).

4) IEKF: the invariant EKF algorithm described in [13].

5) IEnKF: the invariant ensemble Kalman filter described in [13].

6) FPF-G: the FPF using the Galerkin gain function approximation: Algorithm 4 in Sec. 4.3 with the nine

basis functions in Table C.1 in Appendix C.3.
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7) FPF-K: the FPF using the kernel-based gain function approximation: Algorithm 5 in Sec. 4.4 with the

parameter ε = 1.

8) FPF-C: the FPF using the constant gain approximation described in Sec. 2.4.

The performance metric is evaluated in terms of the rotation angle error defined as follows: Let qt

and q̂t denote the true and estimated attitude, respectively, at time t. The estimation error is defined as

δqt := q̂−1
t ⊗ qt and the rotation angle error δϕt := 2arccos(|δq0

t |) ∈ [0,π], where δq0
t denotes the first

component of δqt .

In an experiment, each filter is simulated over M independent Monte Carlo runs. For the j-th Monte

Carlo run, δϕ
j

t denotes the rotation angle error as a function of time. The time-averaged error for the j-th

run is defined as,

〈δϕ
j〉T :=

1
T

∫ T

0
δϕ

j
t dt, (5.22)

and the time-averaged error of the M runs is defined as,

〈δ̂ϕ〉T :=
1
M

M

∑
j=1
〈δϕ

j
t 〉T . (5.23)

The average error of the M Monte Carlo runs as a function of time is defined according to,

δ̂ϕ t :=
1
M

M

∑
j=1

δϕ
j

t , (5.24)

The simulation parameters are as follows: The simulations are carried out over a finite time-horizon

t ∈ [0,T ] with fixed time step ∆t. The filters are all initialized with a Gaussian distribution, denoted as

N (q0,Σ0), with mean q0 and Σ0 = σ2
0 I is a diagonal matrix representing the variance in each axis of

the Lie algebra. For the BPF and FPF implementation, the initial set of particles are sampled from this

distribution as follows: First, {vi}N
i=1 are sampled i.i.d. from the Gaussian distribution N (0,Σ0) in R3.

Next, the particles {qi
0}N

i=1 are obtained by,

qi
0 = q0⊗

 cos
(
|ν i|/2

)
ν i

|ν i| sin
(
|ν i|/2

)
 .

The IEnKF also uses the same set of initial particles as the BPF and FPF.
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In numerical simulations, it was observed that the continuous-time filters, especially the FPF-G, are

susceptible to numerical instabilities due to high gain during the initial transients. The instability in FPF-

G is exacerbated by possible ill-conditioning of the matrix A in constructing the Galerkin approximation

(see Algorithm 4). In order to mitigate the numerical issues observed during the implementation of the

FPF-G algorithm, the discrete time-step during the initial transients is further sub-divided. Specifically, for

t < Tf , the time interval [ t, t +∆t ] is uniformly divided into N f sub-intervals. The update step in the FPF

(specifically Line 4 – Line 11 in Algorithm 6) is implemented on each sub-interval by replacing ∆Zt with

∆Zt
N f

and ∆t with ∆t
N f

. The sub-dividing technique has the same effect of “widening” the likelihood function

as obtained by the progressive correction in BPF (see Sec. 5.4.3).

To provide a fair comparison, the same set of observations are used for all the continuous-time and the

discrete-time algorithms. The particle-based filters use the same set of initial particles.

The nominal parameter values are chosen as: T = 2, ∆t = 0.01, N = 100, M = 100, Tf = 0.2, N f = 100.

The choice of Tf and N f may vary according to the severity of numerical issues encountered in practice.

The simulation results are discussed next:

1. The average error δ̂ϕ t as a function of the initial uncertainty: Figure 5.1 depicts the average error

δ̂ϕ t (see (5.24)) of the filters over M = 100 simulation runs, with two choices of initial variance:

(a) Σ0 = 0.52362I and (b) Σ0 = 1.04722I. The two cases correspond to a standard deviation of 30◦

and 60◦, respectively. For the two priors, the mean is the same, given by identity quaternion qI =

(1,0,0,0). For case (a), the target is initialized by sampling from the prior distribution. For case (b),

the target is initialized with a fixed attitude – rotation of 180◦ about the axis (3,1,4). These parameters

indicate large estimation error initially for case (b).

The results depicted in Figure 5.1 show that the performance is nearly identical across filters for

case (a) when the initial uncertainty is small, except that the BPF has slightly higher error due to

the additional diffusion after the resampling step. For case (b) when the initial uncertainty is large,

the particle-based filters (IEnKF, BPF and FPF) exhibit superior performance compared to the EKFs

and the unscented filter. The differences are exhibited in the speed of convergence of the estimate to

the target with the particle-based filters converging quickly compared to the EKFs and the unscented

filter.
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(a) Initial distribution with σ0 = 30◦ (b) Initial distribution with σ0 = 60◦

Figure 5.1: Comparison of the average error δ̂ϕ t for two prior distributions.

(a) Initial distribution with σ0 = 30◦ (b) Initial distribution with σ0 = 60◦

Figure 5.2: Statistical analysis of filter performance: The bars indicate the mean and the lines indicate the ±1
standard deviation of {〈δϕ j〉T}M

j=1 across M = 100 Monte-Carlo runs

As the results in Figure 5.1 are averaged over multiple Monte-Carlo runs, statistical analysis was

also carried out to assess the variability in performance across runs. The results of this analysis are

presented in Figure 5.2, which depicts the mean and standard deviation of {〈δϕ j〉T}M
j=1 (see (5.22)).

Apart from poorer performance on average, the EKFs and the unscented filter also exhibit a greater

variability in performance across the Monte-Carlo runs. For some trajectories, these filters exhibit

slow convergence because the gain becomes very small. The particle-based filters all exhibit superior

error performance, except that the FPF with constant gain approximation exhibit larger simulation

variance as the concentrated distribution assumption is violated in case (b).

2. The time-averaged error 〈δ̂ϕ〉T as a function of the process noise: In this simulation, the process

noise σB ∈ {0.05, 0.2, 0.5, 1.0} for fixed σW = 0.05236 and prior distribution according to case (b)

in Figure 5.1. Figure 5.3 (a) depicts the time-averaged error 〈δ̂ϕ〉T (see (5.23)) across filters as the
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(a) (b)

Figure 5.3: Time-averaged error 〈δ̂ϕ〉T of filters as a function of σB and σW . The value of σW is converted to the
standard deviation (in degree) of the corresponding discrete-time observation model.

process noise parameter is varied. One would have expected the error to decrease monotonically with

the σB value reduced. The fact that such is not the case for the EKFs and the unscented filter indicates

that the relatively poor performance of these filters for small values of process noise is an artifact of

the linearization assumption that lead to overly small gains. These small gains adversely affect the

filter performance during the initial transients.

3. The time-averaged error 〈δ̂ϕ〉T as a function of the observation noise: In this simulation, the

observation noise parameter σW ∈ {0.01745, 0.03491, 0.05236, 0.08727} for fixed σB = 0.2 and prior

distribution according to case (b) in Figure 5.1. The σW parameter values correspond to the choice of

the standard deviation of 10◦, 20◦, 30◦ and 50◦ in the discrete-time model. Figure 5.3 (b) depicts the

time-averaged error 〈δ̂ϕ〉T . As expected, the error deteriorates as the observation noise increases. The

particle filters not only continue to exhibit better performance but also the performance deterioration

is more graceful for larger values of σW .

4. The time-averaged error 〈δ̂ϕ〉T as a function of N: In this simulation, N ∈ {20,50,100,200}

in the particle filters, for a fixed σB = 0.2, σW = 0.05236, and prior distribution according to case

(b) in Figure 5.1. Figure 5.4 (a) depicts the time-averaged error 〈δ̂ϕ〉T . For all the particle-based

filters, N = 50 particles is seen to be sufficient. For fewer than 50 particles, the BPF exhibits severe

performance deterioration due to large approximation error in the importance sampling. Other filters

exhibit slight performance deterioration as insufficient number of particles leads to issues in the gain

computation.
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(a) (b)

Figure 5.4: (a): Time-averaged error 〈δ̂ϕ〉T , and (b): mean computational time of a single propagation-update step,
both as a function of the number of particles N.

5. Computational times as a function of N: In this simulation, N ∈ {20,50,100,200,500}. The mean

computational time (per propagation-update step of the algorithm, averaged over 100 Monte Carlo

runs) is depicted as a function of N in Figure 5.4 (b). The O(N) and O(N2) lines are included to

aid the comparison. The computational cost of particle filters scale linearly with N except the kernel

method which scales quadratically. For online computations, both FPF-G and FPF-C have lower

computational burden compared with IEnKF and BPF. However, for the IEnKF algorithm, the gain

computation – which contributes to most of the computation load – can be implemented offline [13].

The experiments were conducted on a platform with an Intel i3-2120 3.3GHz CPU.

5.6 Filtering with a Bimodal Distribution

In this section, we consider the following static model:

dqt =
1
2

qt ⊗ωt dt,

where ωt = (0,0,0). The prior distribution is assumed to be supported on the subgroup SO(2), parametrized

by the angle θ ∈ [−π,π). Its density is denoted as ρ∗0 (θ). An arbitrary element in SO(2) is represented as

q =
(

cos(θ

2 ), 0, 0, sin(θ

2 )
)
.
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Figure 5.5: Density evolution of FPF-K on SO(2) with bimodal distribution. The particle distributions are
represented by histograms and are also compared with the exact posterior (5.25) (solid line) and the MEKF solution
(dashed line). The FPF-K can handle general non-Gaussian posteriors.

The observation model is of the following form:

dZt = h(θt) dt +σW dWt ,

where h(θ) =
(

cos(θ),−sin(θ)
)
, and Wt is a standard Wiener process in R2.

Since the process is static, the density of the posterior distribution has a closed-form Bayes’ formula:

ρ
∗(θ , t) = (const.) exp

( 1
σ2

W
hT (θ)Zt −

1
2σ2

W
|h(θ)|2 t

)
ρ
∗
0 (θ). (5.25)

For the numerical results described next, the FPF is simulated according to (5.8) and (5.9):

dqi
t =

1
2

qi
t ⊗
[
K(qi

t , t)◦
(

dZt −
h(qi

t)+ ĥ
2

dt
)]
,

where qi
0 are sampled i.i.d. from the prior ρ∗0 .

The simulation parameters are as follows: The prior is a mixture of two Gaussians, N
(
− µ0,σ

2
0
)

and N
(
µ0,σ

2
0
)
, with equal weights, where µ0 = 90◦ and σ0 = 30◦. The observation noise parameter

σW = 0.12, and the unknown state is initialized as q0 = (1/
√

2, 0, 0, 1/
√

2), which corresponds to θ0 = 90◦.

The simulations are carried out over t ∈ [0,0.2] with a fixed time step ∆t = 0.01. The following filters are

simulated for a comparison:
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Figure 5.6: Density evolution of BPF on SO(2) with bimodal initial distribution. The particle distributions are
represented by histograms and are also compared with the exact posterior (5.25) (solid line) and the MEKF solution
(dashed line). The BPF fails to capture the bimodal posterior at t = 0.01.

1) MEKF with a Gaussian prior N (0◦,60◦).

2) BPF with N = 100 and σ = 0.1.

3) FPF-K with N = 100 and ε = 0.2.

The modified Rodrigues parameter in MEKF and BPF is replaced by the angle parameter θ . The same

initial particles are used in BPF and FPF-K.

Figure 5.5 depicts the results of one simulation run that include the exact posterior (see (5.25)), the

histogram of the particles of FPF-K, and the MEKF solution. Figure 5.6 depicts the corresponding simu-

lation results produced by BPF. This example shows that the FPF-K algorithm can easily handle a general

class of non-Gaussian distributions. In particular, at t = 0.01, the BPF fails to capture the bimodal posterior

due to the importance sampling and resampling procedure that immediately eliminates particles with low

importance weight.

A further investigation of the gain computation is provided in Figure 5.7 and 5.8, where the kernel-based

gain approximation in FPF-K is plotted at selected time instants. The two gains depicted in the respective

figures correspond to the two observations h1(θ) = cos(θ) and h2(θ) = −sin(θ). The FPF-K is seen to

reasonably approximate the exact gain function.

The exact gain functions are obtained analytically as follows: Using the angle parametrization, the
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Figure 5.7: Kernel-based gain approximation on SO(2), corresponding to the observation h1(θ) = cos(θ). The blue
dots depict the gain function approximation evaluated at the particles.

Poisson equation (2.28) restricted to SO(2) is given by,

∂

∂θ

(
ρ(θ)

∂φ j

∂θ
(θ)
)
=−

(
h j(θ)− ĥ j

)
ρ(θ), j = 1,2,

where ĥ j :=
∫

π

−π
h j(θ) dθ , and the gain function K j(θ) =

∂φ j
∂θ

(θ). The explicit formulas for K j is given by,

K j(θ) =
1

σ2
W

1
ρ(θ)

(
C−

∫
θ

−π

ρ(ϕ)
(
h j(ϕ)− ĥ j

)
dϕ

)
, (5.26)

where the constant C is determined by the periodicity condition φ(−π) = φ(π) and is given by

C =

∫
π

−π

1
ρ(α)

∫
α

−π
ρ(β )

(
h j(β )− ĥ j

)
dβ dα∫

π

−π

1
ρ(α) dα

.
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Figure 5.8: Kernel-based gain approximation on SO(2), corresponding to the observation h2(θ) =−sin(θ). The blue
dots depict the gain function approximation evaluated at the particles.

5.7 Conclusions

In this chapter, the feedback particle filter was applied to the problem of attitude estimation – modeled as a

continuous-time filtering problem on the Lie group SO(3). The FPF was described using both the rotation

matrix and the quaternion coordinates.

Numerical studies of the FPF and several state-of-the-art attitude filters were carried out for an atti-

tude estimation problem on SO(3), as well as a filtering problem on the subgroup SO(2). For the attitude

estimation problem, it was shown that:

1) The particle-based filters, including the IEnKF, BPF and FPF, exhibited superior estimation accuracy

and simulation variance compared to the EKFs and the unscented filter. This was particularly true in the

presence of large uncertainty in the prior distribution. In this case, the linearization assumption in the

EKF no longer holds, which can result in a large estimation error.

2) Among the particle filters, the FPF with kernel-based gain function approximation (FPF-K) exhibited
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superior accuracy when the number of particles is small, whereas the performance of the BPF severely

deteriorated as the number of particles is reduced. The computational complexity of the FPF -K is

approximately quadratic in the number of particles N, while the complexity of the other particle-based

filters scales linearly with N.

For the filtering problem on SO(2) with a bimodal initial distribution, it was shown that:

1) The feedback particle filter is better suited to capture general non-Gaussian posterior compared to the

MEKF and the BPF, and

2) the kernel-based scheme provided a good approximation of the gain function, leading to accurate poste-

rior computation.

It is the subject of ongoing and future work to compare the FPF with more attitude filters in the literature,

such as the Kalman filter with norm constraints on SO(3) [203, 58], the invariant UKF [41], and the filters

based on a variational construction [87, 202], just to name a few. Particularly for the filtering problems on

SO(2), the PHD filter [126], the wrapped Kalman filter [127], and the minimum-energy filter [201] have

appeared recently. In addition, the feedback particle filter may also be tested with filtering problems where

translational motion and sensor bias are involved.
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Chapter 6

Attitude Estimation of a Wearable Motion Sensor ∗

6.1 Introduction

This chapter is concerned with the problem of human motion tracking using body-worn sensors where the

attitude (orientation) of the sensor must also be jointly estimated. The motivation for the problem comes

from applications where sensors are embedded in apparel worn by the user, e.g., an activity tracker worn on

the wrist. A body-worn sensor has a nominal location and orientation based on the apparel it is embedded in.

However, there is often some degree of uncertainty, e.g., a wrist worn sensor may be worn interchangeably

on the two wrists, or the piece of clothing may slip. Since the measurements are often recorded in the sensor

body coordinate, changes in sensor orientation can cause the signals to transform via a rotation group.

The specific problem considered in this chapter involves the arm motion with wrist-worn inertial sensors

that contain a 3-axis gyroscope and a 3-axis accelerometer. In the absence of motion, with the arm in its

natural resting state, the attitude of the motion sensor is unobservable because the accelerometer’s measure-

ment of gravity vector alone can not distinguish between configurations of the sensor obtained by rotating

the sensor around the wrist. In the presence of motion, considered here to be the swinging motion of the

arm, the observability is shown to improve. The problem is mathematically formulated as a continuous-time

filtering problem on the product Lie group SO(3)×SO(2), where SO(3) captures the attitude of the motion

sensor, and SO(2) captures the phase of the periodic swing motion. The feedback particle filter algorithm

is explicitly constructed in this setting, including a kernel-based gain function approximation scheme. Ex-

perimental results with real sensor data are provided to illustrate the tracking performance of the proposed

filter.

Tracking of human motion using body-worn motion sensors (e.g., accelerometer and gyroscope) is a

problem of substantial current interest due to its importance to a wide range of applications, e.g., activity

∗The content of this chapter is related to the publication [206].
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tracking [157, 173], medical rehabilitation [216, 92], virtual reality [189, 180] etc. A number of avant

garde motion tracking products are reviewed in the March ’16 issue of the IEEE Spectrum magazine. These

products “[embedded with] minuscule chips help to count steps, track calories burned, and monitor heart-

rate [111].” Companies such as Under Armour are developing ‘smart clothing’ products that they expect to

launch in a few years [61]. Smart Health is widely regarded as a key driver of these products. According

to the Economist magazine, “[These products] may even provide a glimpse of the future of health care, in

which a greater emphasis is placed on monitoring, using a variety of gizmos, to prevent disease, prolong

lives and reduce medical costs [53].”

In almost all the cases of practical interest, the mathematical models of human motion involve matrix

Lie groups such as the special orthogonal group SO(3) and the special Euclidean group SE(3). The associ-

ated estimation/filtering problem therefore require consideration of the geometry of the non-Euclidean state

space involving nonlinear dynamic and measurement models and non-Gaussian probability distributions.

In many ways, these problems have an old and rich history specifically with applications in aerospace and

target tracking [43]. In other ways, these problems are new: In contrast to an aircraft or a missile, humans

exhibit far richer dynamic sets of behaviors which are computationally prohibitive to model a priori. This

necessitates new paradigms and architectures for modeling and inference.

The proposed solution has three steps:

•Modeling: Mathematically, the motion dynamics are modeled on the product Lie group SO(3)×SO(2).

This leads to coupled dynamics whereby the attitude of the wrist-worn sensor is coupled to the swinging

motion of the arm. The measurement models for the gyroscope and the accelerometer are related to both

the attitude and the (assumed) kinematic model of the motion.

• Feedback particle filter: The problem is to jointly estimate the motion of the arm and the attitude

of the wrist-worn motion sensor. This problem is formulated as a continuous-time filtering problem on

SO(3)×SO(2). The explicit form of the filter is described with respect to both the rotation matrix and the

quaternion coordinates. A kernel-based approximation scheme is used to solve for the gain function on this

product manifold.

• Experiments. The modeling and the inference algorithms are demonstrated in an experimental environ-

ment using a wrist-worn motion sensor. The tracking performance is assessed in terms of the attitude of the

sensor and the relative sensor rotation on the wrist. An observability issue is briefly discussed for the arm
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swing motion. Experimental results help illustrate the performance of the filter with real sensor data.

A number of authors have investigated the attitude estimation problem in the context of motion: Al-

gorithmic approaches to solving this problem include the extended Kalman filter [167, 172, 198], the un-

scented Kalman filter [5, 55], and the bootstrap particle filter [171]. These filters are typically formulated in

a discrete-time setting, and the intrinsic geometry of the underlying matrix Lie group is often not explicitly

considered. For a more comprehensive review of attitude filters, c.f., [43].

An important theme in motion tracking applications pertains to the modeling of inertial sensors. Typ-

ically, the gyroscope measurements are incorporated in the filter propagation step [112, 198]. The ac-

celerometer measurements are used to provide an estimate of the gravity vector typically for static or slow

motion [118]. In problems involving dynamic and fast motion, the external acceleration needs to be distin-

guished from the gravity. A vector selection method that compares the true measurements with the gravity

appears in [151]. In [112, 103], the external acceleration is incorporated in the system state with an assumed

temporal model. A method closely related to our approach appears in [137], where the external acceleration

is explicitly calculated using a kinematic model of the motion.

The remainder of this chapter is organized as follows: A brief overview of the product Lie group SO(3)×

SO(2) is included in Sec. 6.2. The modeling framework and the estimation algorithms appears in Sec. 6.3

and Sec. 6.4, respectively. The experiment results are contained in Sec. 6.5.

6.2 Preliminaries: Geometry of SO(3)×SO(2)

An element X of G := SO(3)× SO(2) is written as X = (R,S), where R ∈ SO(3) and S ∈ SO(2). The

projection maps are defined as,

P1 : G→ SO(3), P1(X) = R,

P2 : G→ SO(2), P2(X) = S.

The Lie algebra of G, denoted as G , is a four-dimensional vector space that is identified with so(3)⊕
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so(2) (see Proposition 3.14 in [104]). A basis {Ẽ1, Ẽ2, Ẽ3, Ẽ4} of G is defined such that,

En = dP1(Ẽn) for n = 1,2,3,

E = dP2(Ẽ4),

where {E1, E2, E3} is the orthonormal basis of so(3) (see (2.13)), E is the basis of so(2), and dP1, dP2

denote the differential of the projection maps at the identity element of G.

For a function f : G→ R, the coordinates of grad( f ), evaluated at (R,S), are obtained as,

Ẽn · f (R,S) = En · f (R,S) for n = 1,2,3,

Ẽ4 · f (R,S) = E · f (R,S),
(6.1)

where En · f (R,S) := d
dτ

∣∣
τ=0 f

(
R exp(τ En), S

)
for n = 1,2,3, and E · f (R,S) := d

dτ

∣∣
τ=0 f

(
R, S exp(τ E)

)
.

6.3 Modeling

This section describes the modeling paradigm for the motion tracking problem, whereby the motion is

considered to be the arm swing. The objective is to formulate the motion tracking as a continuous-time

filtering problem on the product SO(3)×SO(2).

6.3.1 Kinematics Model of Arm Swing

The inertial frame, represented as the x− y− z coordinate system, is fixed at the shoulder. The arm swings

in the x− y plane in a quasi-periodic manner. The motion is modeled via the time-evolution of and angle

θt (see Figure 6.1). The motion sensor is worn on the wrist, and x′− y′− z′ are the axes of the body frame

attached to the sensor. It is assumed that the arm swings in a plane, remains straight, and that the length

of the arm, denoted as L, is known. Therefore, the position of the motion sensor, expressed in the inertial

frame, is uniquely described by the angle θt .

The model for the arm angle θt is parametrized in terms of a phase variable,

θt = f (ϕt ;λ ), (6.2)
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where ϕt ∈ S1 is referred to as the phase of the swing motion, and λ denotes model parameters.

Example: The sinusoidal model of the arm swing is of the form,

f (ϕt ;θm,θ0) = θm sin(ϕt)+θ0, (6.3)

where the parameter θm determines the amplitude of the arm swing, and the parameter θ0 models the asym-

metry in the arm swing with respect to the inertial frame: The maximum swing angle is typically larger

during the forward portion of the arm swing. �

The phase ϕt is modeled as a noisy oscillator,

dϕt = ω dt +σ
s
B dBs

t , mod 2π, (6.4)

where the constant ω represents the frequency of the arm motion, Bs
t is a standard Wiener process in R,

and σ s
B is a positive scalar. The process noise is used to model the random variability in the motion. The

oscillator model has been employed for modeling periodic motions, e.g., gaits [176].

For the purpose of formulating and solving the filtering problem in Sec. 6.4, it is convenient to identify

S1 with the Lie group SO(2). The equivalent process model of (6.4) in SO(2) is given by,

dSt = St(ω E)dt +StE ◦ (σ s
B dBs

t ), (6.5)

where St ∈ SO(2) is represented using ϕt as,

St =

cos(ϕt) −sin(ϕt)

sin(ϕt) cos(ϕt)

 , (6.6)

and

E =

0 −1

1 0


denotes a basis of the Lie algebra so(2).

The parameters in the swing model are listed in Table 6.1.
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Figure 6.1: Illustration of arm swing

Table 6.1: Model parameters

θt angle of swing at time t ϕt phase variable at time t
θm model parameter θ0 model parameter
ω frequency of swing L arm length

6.3.2 Sensor Model

Kinematic model of the attitude: The angular velocity of the motion sensor, expressed in the inertial

frame, is denoted as Ωt ∈ R3. For the planar arm swing model described in Sec. 6.3.1, Ωt = (0,0, θ̇t). The

kinematic model of the sensor is given by,

dRt = [Ωt ]×Rt dt +Rt ◦ [σ r
B dBr

t ]×, (6.7)

where Rt ∈ SO(3) denotes the attitude of the sensor at time t, with respect to the inertial frame; Br
t is a

standard Wiener process in R3, accounting for random effects that cause small variation in sensor attitude.

The motion sensor is equipped with a gyroscope and an accelerometer, whose models are described as

follows:

Gyroscope: A gyroscope measures the angular velocity of the sensor in the sensor body frame. It is modeled

as,

dZg
t = RT

t Ωt dt +σW dW g
t , (6.8)

where Zg
t denotes the gyroscope observation at time t, W g

t is a standard Wiener process in R3, and σW is a

positive scalar.

Accelerometer: An accelerometer measures the specific acceleration (that is, the external acceleration
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minus the gravity) in the body frame of the sensor [106]. For a prescribed θt , the specific acceleration is

easily obtained, expressed with respect to the x− y− z inertial frame as,

At =
(
θ̈t L cos(θt)− θ̇

2
t L sin(θt),

θ̈t L sin(θt)+ θ̇
2
t L cos(θt)+g, 0

)
, (6.9)

where θ̈t L and θ̇ 2
t L represent the magnitude of the tangential and the centripedal acceleration, respectively

(see Figure 6.1).

The model for the accelerometer is simply obtained by transforming the vector At to the sensor body

frame,

dZa
t = RT

t At dt +σW dW a
t . (6.10)

One difficulty arises because θt is not directly prescribed but must be estimated from the measurements.

The difficulty is circumvented by assuming the following models for θ̇t and θ̈t in terms of the phase variable

ϕt :

θ̇t := ω θm cos(ϕt), (6.11)

θ̈t :=−ω
2

θm sin(ϕt). (6.12)

These models are used in defining the acceleration vector At in (6.9), which is subsequently used for the

accelerometer model (6.10). Finally, W a
t in (6.10) is the observation noise modeled here as a standard

Wiener process in R3, which is furthermore assumed to be independent of the process noise.

Remark 6.1 The gyroscope model (6.8) and the accelerometer model (6.10) have the general form,

dZ(·)
t = RT

t rt dt +σW dW (·)
t ,

where rt ∈ R3 is a time-varying reference vector in the inertial frame. Such a model is somewhat different

from the standard model in attitude estimation, where the reference vector is a known time-independent

constant vector (e.g., the gravity and the (local) magnetic field [118]). Attitude observers that handles

time-varying reference vectors appear in [66, 179].
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In a typical attitude estimation problem, at least two reference vectors are required to ensure observ-

ability and used in the filter update [123]. In our approach, the gyroscope is modeled such that it measures

a reference vector, namely the angular velocity vector Ωt . This new usage of gyroscope is different from a

typical attitude filter where the gyroscope measurements are incorporated in the propagation step. �

6.4 Estimation

6.4.1 Filtering Problem

The filtering problem is to jointly estimate the attitude of the motion sensor and the phase of the arm swing.

The state space G is a four-dimensional product Lie group SO(3)× SO(2). Using (6.7), (6.5) and (6.8),

(6.10), the signal and the observation models are,

Signal:

 dRt = [Ωt ]×Rt dt +Rt ◦ [σ r
B dBr

t ]×,

dSt = St(ω E)dt +StE ◦ (σ s
B dBs

t ),

Observation: dZt = h(Rt ,St)dt +σW dWt ,

where h : G→ R6 encapsulates the sensor models given in (6.8) and (6.10) within a single vector-valued

function, and Br
t , Bs

t ,Wt are mutually independent standard Wiener processes of appropriate dimension.

The filtering objective is to numerically approximate the conditional distribution of (Rt ,St) given the

observation history Zt = σ(Zs : s≤ t).

6.4.2 FPF Algorithm

Analogous to its construction for the attitude estimation problem on SO(3) (see Sec. 5.3), the FPF is com-

prised of N stochastic processes {(Ri
t , Si

t)}N
i=1 that evolve on G. The particles evolve according to the sdes,

dRi
t = [Ωi

t ]×Ri
t dt +Ri

t ◦ [σ r
B dBr,i

t ]×+Ri
t [K

r(Ri
t ,S

i
t , t)◦ dIi

t ]×, (6.13a)

dSi
t = Si

t(ω
i E)dt +Si

tE ◦ (σ s
B dBs,i

t )+Si
tE
(
Ks(Ri

t ,S
i
t , t)◦ dIi

t
)
. (6.13b)

For the sake of self-contained exposition, models for each of the sdes is summarized next:
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1) ω i are sampled i.i.d. from a uniform distribution on the interval [ω0− 2π γ, ω0 + 2π γ ] for certain ω0

and γ . The variability of ω i is used to capture the uncertainty in the actual frequency of the motion.

2) Ωi
t = (0, 0, θ̇ i

t ), where θ̇ i
t = ω i θm cos(ϕ i

t ) according to (6.11). Here, ϕ i
t denotes the phase of the i-th

particle, and it is related to Si
t by (6.6).

3) Br,i
t and Bs,i

t for i= 1, ...,N are mutually independent standard Wiener processes in R3 and R, respectively.

4) Kr : G× [0,T ]→R3×6 and Ks : G× [0,T ]→R1×6 denote the gain functions. By slight abuse of notation,

their vertical concatenation is denoted as K := (Kr, Ks) ∈ R4×6.

5) The innovation process Ii
t ∈ R6 is defined as,

dIi
t = dZt −

h(Ri
t ,S

i
t)+ ĥt

2
dt,

where ĥt := πt(h), and πt denotes the conditional distribution of X i
t := (Ri

t ,S
i
t). In a numerical imple-

mentation, ĥt ≈ 1
N ∑

N
i=1 h(Ri

t ,S
i
t) =: ĥ(N)

t .

The gain functions K is obtained as follows: For j = 1,2, ...,6, the j-th column of K contains the

coordinates of the vector-field grad(φ j), where the function φ j is a solution to the Poisson equation,

πt
(
〈grad(φ j),grad(ψ)〉

)
=

1
σ2

W
πt
(
(h j− ĥ j)ψ

)
,

πt(φ j) = 0 (normalization),

(6.14)

for all test functions ψ .

6.4.3 Numerical implementation

The FPF algorithm is numerically implemented using the quaternion coordinates. In these coordinates, the

sdes (6.13a)-(6.13b) are expressed as,

dqr,i
t =

1
2

qr,i
t ⊗ dν

r,i
t , (6.15a)

dqs,i
t =

1
2

qs,i
t ⊗ dν

s,i
t , (6.15b)
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where (qr,i
t ,qs,i

t ) is the quaternion representation of the i-th particle, and ν
r,i
t , ν

s,i
t ∈ R3 evolve according to,

dν
r,i = R(qr,i

t )T
Ωt dt +σ

r
B dBr,i

t +Kr(qr,i
t ,qs,i

t , t)◦ dIi
t ,

dν
s,i = [ω i dt +σ

s
B dBs,i

t +Ks(qr,i
t ,qs,i

t , t)◦ dIi
t ]
∨,

where [ω ]∨ := (0, 0, ω) ∈ R3 for ω ∈ R, and R(q) converts a quaternion to its associated rotation matrix

(c.f., formula (2.16)).

Algorithm 7 Feedback particle filter for motion tracking

1: initialization: Samples {(qr,i
0 ,qs,i

0 )}N
i=1 i.i.d. from π∗0

2: Assign t = 0

3: iteration: from t to t +∆t

4: Calculate ĥ(N)
t = 1

N ∑
N
i=1 h(qr,i

t ,qs,i
t )

5: for i = 1 to N do

6: Generate a sample, ∆Br,i
t , from N

(
0,(∆t)I

)
7: Generate a sample, ∆Bs,i

t , from N
(
0,∆t

)
8: Calculate the error ∆Ii

t := ∆Zt − 1
2

(
h(qr,i

t ,qs,i
t ))+ ĥ(N)

t
)

∆t

9: Calculate gain function K(qr,i
t ,qs,i

t ) using the kernel-based scheme (see Sec. 6.4.3)

10: Calculate ∆ν
r,i
t = Ωt ∆t +σ r

B ∆Br,i
t +Kr(qr,i

t ,qs,i
t )∆Ii

t

11: Calculate ∆ν
s,i
t = [ω i ∆t +σ s

B ∆Bs,i
t +Ks(qr,i

t ,qs,i
t )∆Ii

t ]
∨

12: Propagate the particle qr,i
t according to (see [178], and | · | denotes the Euclidean norm in R3)

qr,i
t+∆t = qr,i

t ⊗

 cos
(
|∆ν

r,i
t |/2

)
∆ν

r,i
t

|∆ν
r,i
t |

sin
(
|∆ν

r,i
t |/2

)


13: Propagate the particle qs,i
t similarly

14: end for

15: return: empirical mean of {(qr,i
t+∆t ,q

s,i
t+∆t)}N

i=1 (see Line 13 in Algorithm 6)

16: Assign t = t +∆t

The FPF algorithm using the quaternion coordinates is described in Algorithm 7. The algorithm sim-
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ulates N particles, {(qr,i
t ,qs,i

t )}N
i=1, according to the sde’s (6.15a) and (6.15b), with the initial conditions

{(qr,i
0 ,qs,i

0 )}N
i=1 sampled i.i.d. from a given prior distribution π∗0 supported on SO(3)×SO(2).

Gain function approximation: In the experimental results to be presented in Sec. 6.5, the FPF is im-

plemented using the kernel-based gain function approximation whose numerical procedure is described in

Sec. 4.4. The kernel function is defined as,

k(ε)(X i,X j) :=
1

(4πε)d/2 exp
(
− ζ 2(X i,X j)

4ε

)
, (6.17)

where d = 4 for the product Lie group G = SO(3)× SO(2), and ζ : G×G→ R denotes a distance metric

on G. One choice of the distance metric is,

ζ
2(X i,X j) = |Ri−R j|2F +

1
2
|Si−S j|2F , (6.18)

where | · |F is the Frobenius norm of a matrix. This metric is induced from the Euclidean distance metric

defined in R9×R2 in which G is smoothly embedded. Note that the time index t is omitted.

The gain function is denoted as K= (k1, ...,k4) with coordinates kn = Ẽn ·φ , where {Ẽ1, Ẽ2, Ẽ3, Ẽ4} is

the basis of the Lie algebra of G. The formulae of kn are obtained similarly as the formula (4.18) in Sec. 4.4,

Ẽn ·φ(X i) = ε Ẽn ·h(X i)− 1
4ε

[(
MnΦ

)
i−
(
Mn1

)
i

(
T (ε,N)

Φ
)

i

]
,

for n = 1, ...,4, where 1 = (1,1, ...,1) ∈ RN , and the entries of the N×N matrix Mn are calculated as,

(Mn)i j = T (ε,N)
i j Ẽn ·ζ 2(X i,X j),

and the elements of the Markov matrix T (ε,N) are given by (4.13). The derivative of ζ 2 is taken with

respect to its first argument. For the metric defined by (6.18), the explicit expressions of Ẽn ·ζ 2 are obtained

following the formula (6.1) in Sec. 6.2:

Ẽn ·ζ 2(X i,X j) =−2Tr(RiEnR j), for n = 1,2,3,

Ẽ4 ·ζ 2(X i,X j) =−Tr(SiES j).
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Figure 6.2: The InvenSense chip.

(a) (b) (c)

Figure 6.3: Sensor orientation on the wrist: (a) Nominal orientation; (b) Rotation of 90◦ clockwise about the wrist
(−90◦ around x′-axis); (c) Rotation of 90◦ counter-clockwise about the wrist (90◦ around x′-axis).

6.5 Experiments

6.5.1 Experimental Testbed

The experiments were carried out with the InvenSense MP MPU-9150 chip (see Figure 6.2). The InvenSense

hardware includes a 3-axis gyroscope and a 3-axis accelerometer and also provides a USB and Bluetooth

connectivity back to a host computer. For the experiments, the InvenSense chip is used as the wearable

device, worn on the user’s wrist. The nominal orientation of the sensor faces outwards but the sensor

orientation may change, typically rotate around the wrist. Figure 6.3 depicts the nominal sensor orientation

as well as some variations.

One of the motivations of the present study is to use the dynamic motion of arm swing to better estimate

the sensor orientation. Note that, in the absence of motion, the accelerometer only measures the (downward)

gravity vector. Any rotation of the sensor around the wrist will yield the same accelerometer reading.

Hence, in the absence of motion, the problem is not observable. The experimental results presented next

demonstrate that the observability is improved by using dynamic information from the sensor while the user

is performing arm swing.
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Table 6.2: Experiment parameters

Model
θm θ0 L g σ r

B σ s
B σW

30◦ 10◦ 0.6 9.8 0.2 0.2 0.4

FPF
N ω0 γ ε ∆t Initial dist.
50 1.8π 0.5 0.5 0.02 Uniform

6.5.2 Filter Parameters

While the arm swing is performed, the measurements from the 3-axis gyroscope and 3-axis accelerometer

were sampled at a fixed sampling rate of 50 Hz. Figure 6.5 depicts the raw sensor measurements in the six

sensor axes from a single experiment run.

The sensor measurements were processed by the FPF algorithm. Table 6.2 tabulates the filter parameters

used: The model parameters θm, θ0 and ω0 were chosen based on an offline assessment of the natural arm

swing. For example, the frequency ω0 was chosen to be close to the natural frequency of a rigid rod of

length L with uniform mass distribution. The uncertainty in these model parameters is modeled by choosing

relatively large values of process noise parameters σ r
B,σ

s
B and the frequency de-tuning parameter γ . The

observation noise parameter σW is chosen based on assessment of various sources of the sensor noise. This

parameter affects the convergence speed of the filter. In numerical implementation of the filter, too small

a choice of the parameter σW can lead to numerical instabilities on account of large gain values during the

initial transients. Finally, ε is a parameter required by the by the kernel-based gain function approximation.

Once the numerical parameter values have been selected, the FPF sde is simulated using the numerical

algorithm described in Algorithm 7. The particles in FPF are initially sampled i.i.d. from the uniform

distribution on the compact Lie group SO(3)×SO(2). In the quaternion coordinates, the uniform sampling

scheme is taken from [159]. A fixed discrete time-step equal to the sampling time-step ∆t = 1
50 seconds is

used for numerical integration.

6.5.3 Performance Metric

During each experiment run, the user wears the motion sensor in a fixed orientation. Denote qt and q̂t as

the ground-truth and the estimated attitude, respectively. Denote δqt := q̂−1
t ⊗qt . The performance metric

is defined as δαt = 2arccos(|δq0
t |) ∈ [0◦,180◦], where δq0

t is the first component of δqt . Physically, the

metric δαt represents rotation angle between the ground truth and the estimated attitude.
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(a) “fictitious” motion (swinging backward) (b) actual motion (swinging forward)

Figure 6.4: In the case of a symmetric model of the arm swing, the two sensor orientations and swing patterns, as
depicted in (a) and (b) respectively, yield the same sensor measurements. The sensor orientation differs by 180◦ for
the two motion patterns.

6.5.4 Experimental Results

In an experimental run, referred to as Experiment-1, the user performed arm swing with the sensor orien-

tation chosen to be a rotation of (approximately) 90◦ clockwise from the nominal orientation (see Figure

6.3 (b)). The tracking results for the FPF are illustrated in Figure 6.5. The experimentally obtained sensor

measurements from the gyroscope and the accelerometer are depicted, together with the prediction ĥ(N)
t

computed using the FPF (see Line 4 in Algorithm 7). It is seen that the predictions closely follow the

measurements, indicating that the filter estimates of attitude and phase both converge.

6.5.5 Observability Issue

In the case of a symmetric model of the arm swing, i.e., θ0 = 0 in the model (6.3), the following two sensor

orientations and swing patterns yield the same sensor measurements:

1) The forward swing motion (see Figure 6.4 (b)) with the sensor orientation depicted in Figure 6.3(b);

2) The backward swing motion (see Figure 6.4 (a)) with the sensor orientation depicted in Figure 6.3 (c).

The sensor orientation differs from case 1) by 180◦.
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Figure 6.5: Sensor measurements and FPF prediction ĥ(N)
t in Experiment-1. ĥ(N)

t closely follows the measurements.

Figure 6.6: Sensor measurements and FPF prediction ĥ(N)
t in Experiment-2. The results are nearly identical with the

case depicted in Figure 6.5.
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(a) Estimation error of the sensor attitude (b) Estimated sensor rotation on the wrist

Figure 6.7: FPF may converge to two equilibria. The FPF in Experiment-1 (orange lines) converges to the true sensor
attitude (see (a)), which is a rotation of −90◦ from the nominal orientation around the wrist (see (b)); The FPF in
Experiment-2 (blue dashed lines) converges to an attitude with 180◦ error.

In our experiments, the asymmetry was found to be small, θ0 = 10◦. As a result, the filter sometimes

converged to the out-of-phase equilibria whereby the error is 180◦. Figure 6.6 depicts the results of another

independent experimental run, referred to as Experiment-2. Figure 6.5 and Figure 6.6 show that both the

sensor measurements and FPF predictions are nearly identical in the two experiments. However, as de-

picted in Figure 6.7 (a), the FPF in Experiment-1 converges to the true sensor attitude, whereas the FPF in

Experiment-2 converges to an attitude with error of 180◦. Equivalently, as shown in Figure 6.7 (b), the two

FPFs converge to sensor orientations that correspond to rotation by −90◦ and 90◦, respectively, from the

nominal orientation around the wrist. Detailed analysis of the loss of observability and strategies to mitigate

it is a subject of continuing work.

6.6 Conclusions

In this chapter, we presented experimental results for the problem of jointly estimating the motion of a

swinging arm and the attitude of the motion sensor. The conclusions are as follows:

1) The presence of dynamic arm motion serves to improve the overall observability of the sensor attitude.

However, for a symmetric motion, two configurations (where the sensor is rotated by 180◦) cannot be

distinguished.
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2) A new modeling paradigm was proposed. The accelerometer was modeled without simplifications and

approximations that have appeared in the literature. A phase variable was introduced to capture period-

icity of the motion.

3) The feedback particle filter was shown to easily handle the highly nonlinear aspects of dynamics and

sensing that arise in motion tracking applications even as simple as arm swing. Using a kernel-based gain

function approximation, the FPF achieved satisfactory tracking performance with moderate computation

load and a degree of robustness against model uncertainties.

There are several directions for future work on this problem:

1) In a realistic setting, it will be important to include additional degrees of freedom, e.g., due to bending

and twisting of the arm. It will be useful to investigate the influence of these types of motion modalities.

2) A comparison of the FPF with other filters, e.g., the EKF and the bootstrap particle filter, will be useful

to provide insights as for why the feedback structure in the FPF may be advantageous in the presence of

severe nonlinearities.

3) For real-time implementations, it will be important to develop more computationally efficient algorithms

for the gain function approximation.
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Chapter 7

Numerical Results for the Global Optimization
Problem ∗

7.1 Introduction

In this chapter, results of numerical experiments are described for some benchmark global optimization

problems. For these problems, performance comparison results between the controlled particle filter and

other state-of-the-art model-based algorithms are also presented.

The remainder of this chapter is organized as follows: Sec. 7.2 provides a summary of several model-

based algorithms for global optimization. The intent is to describe, in a self-contained manner, both the

model as well as the particle update rules for each of these algorithms. Sec. 7.3 contains results of numerical

experiments for the quadratic function h(x) = 1
2 |x|

2. The quadratic function is considered because the

optimal solution is known in closed-form (see Sec. 3.2.2). Performance comparisons are described, using

Monte-Carlo simulations as a function of the problem dimension and the number of particles. Sec. 7.4

contains simulation results for a one-dimensional double-well potential which represents the simplest non-

convex function with multiple (two in this case) local minimizers. Sec. 7.5 includes a comparison for

other benchmark problems, including the Ackley function, the Griewank function, the Pintér’s function, the

Salomon function, the Rastrigin function, and the Trigonometric function.

7.2 Review of Model-based Algorithms

In a model-based optimization algorithm, the search of the global minimizer is guided by a (prescribed)

reference model – a sequence of probability densities that asymptotically assigns all of its probability mass

to the global minimizer. The reference model is denoted as {p∗n(x)} where n = 1,2, ... are the discrete-time

indices. The optimal solution is obtained by sampling from p∗n. However, since the objective function h is

∗The content of this chapter is related to the publication [207, 204].
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Table 7.1: Comparison of some model-based optimization algorithms

Algorithm Reference model Model update Parametric

MRAS p∗n+1(x) ∝ p∗n(x)φ(h(x))1{h(x)≤γn}
Importance sampling
+ Density projection

yes

CE p∗n+1(x) ∝ q(x,θn)φ(h(x))1{h(x)≤γn}
Importance sampling
+ Density projection

yes

MEO Replicator: dp∗t
dt (x) =−(h(x)− ĥt) p∗t (x)

Importance sampling
+ Density projection

yes

PFO p∗n+1(x) ∝ p∗n(x)φ(yn−h(x))
Importance sampling

+ Resampling
no

SMC-SA Boltzmann: p∗n(x) ∝ exp(−h(x)/Tn)
Importance sampling
+ Resampling + SA

no

SISR p∗n+1(x) ∝ p∗n(x) exp(−βh(x)∆tn)
Importance sampling

+ Resampling
no

CPF
p∗t (x) ∝ p∗0(x) exp(−βh(x) t))
(same as replicator if β = 1)

Optimal control
without resampling

no

used in defining p∗n, the problem of sampling directly from the reference model is not straightforward.

This section reviews several model-based algorithms (see Table 7.1). Broadly, there are two types of

model-based algorithms: (i) parametric algorithms and (ii) non-parametric algorithms. Parametric algo-

rithms include the cross-entropy (CE) algorithm, the model reference adaptive search (MRAS) algorithm

and the model-based evolutionary optimization (MEO) algorithm. Non-parametric algorithms include the

particle filter optimization (PFO) algorithm, the sequential Monte-Carlo simulated annealing (SMC-SA),

and the sequential importance sampling and resampling (SISR) algorithm.

The non-parametric algorithms employ the importance sampling and resampling procedure to sample

from the reference model. The numerical procedure mirrors the Bayes’ update step in the particle filter

[3]. In a parametric algorithm, the difficulty of sampling from an arbitrary distribution is circumvented by

sampling from a surrogate density model that best approximates p∗n for each n. The surrogate model is

typically chosen from a family of parametric densities, denoted as q(x;θn), where {θn}n∈N ⊂Θ denotes the

sequence of parameters in a given parameter space Θ ⊂ Rd . A popular choice for q(x;θn) is the Gaussian

density function.

The primary difference among the algorithms is the choice of the reference model which leads to dif-

ferent importance sampling formulae for the non-parametric algorithms and parameter update formulae for

the parametric algorithms. The various reference models are tabulated in Table 7.1.

107



7.2.1 Model Reference Adaptive Search (MRAS)

MRAS is a parametric model-based algorithm. The reference model is of the following general form:

p∗n+1(x) :=
p∗n(x)φ(h(x))1{h(x)≤γn}∫
p∗n(y)φ(h(y))1{h(y)≤γn} dy

(7.1)

with a given prior density p∗0(x). The surrogate density q(x;θn) is Gaussian with parameters θn = (µn,Σn)

as the mean and covariance:

q(x;θn) =
1

(2π)d/2|Σn|
exp
(
− 1

2
(x−µn)

T
Σ
−1
n (x−µn)

)
. (7.2)

The terms in the model (7.1) are explained next:

1) The function φ(·) is chosen such that the reference model is biased towards region with lower function

values. Typically, φ is taken to be some non-increasing non-negative function of its argument, e.g.,

φ(z) = 1. In the numerical studies reported in this thesis, an exponential function is used for φ ,

φ(h(x)) = e−r h(x),

where r > 0 is a tuning parameter.

2) The indicator 1{h(x)≤γn} is used to further restrict the search within the region where the function value

is below a threshold. The sequence of threshold {γn} is specified according to the sequence of surrogate

model {q(·;θn)}, e.g.,

γn := inf {γ : Pθn(h(X)≤ γ)≥ ζ}, (7.3)

where ζ ∈ (0,1] is a prescribed parameter, and Pθn(·) denotes the probability with respect to the density

q(·,θn).

The explicit solution of (7.1) is given by,

p∗n+1(x) ∝ p∗0(x)φ(h(x))n+1 1{h(x)≤γn}, (7.4)

where {γn} is a non-increasing sequence.
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The MRAS algorithm is described next. At the end of the (n− 1)-th time step, one has a collection of

particles {X i
n}N

i=1 sampled i.i.d. from the density q(·;θn) with uniform weight. For the n-th time step, the

objective is to estimate a new parameter, θn+1, and generate new samples from the density q(·;θn+1). This

is carried out by iterating the following two steps:

1) Calculation of importance weights: The importance sampling procedure is used to approximate the

reference model p∗n+1 given the samples {X i
n}N

i=1 from the surrogate model q(·;θn) which is viewed as

the proposal density, and the importance weight of each particle is calculated as,

wi
n ∝

p∗n+1(X
i
n)

q(X i
n;θn)

(7.4)
∝

p∗0(X
i
n)

q(X i
n;θn)

φ(h(X i
n))

n+1 1{h(X i
n)≤γn},

N

∑
i=1

wi
n = 1. (7.5)

The empirical approximation of the reference model p∗n+1 is represented as

p̂∗n+1(x) :=
N

∑
i=1

wi
nδ (x−X i

n). (7.6)

2) Parameter estimation: A popular algorithm for estimating the new parameter θn+1 is via density pro-

jection, i.e., minimizing the Kullback-Leibler (K-L) divergence between p̂∗n+1 and q(·;θn+1). By the

definition of the K-L divergence,

θn+1 = arg min
θ∈Θ

D
(

p̂∗n+1|q(x;θ)
)

= arg min
θ∈Θ

∫
p̂∗n+1(x) log

( p̂∗n+1(x)
q(x;θ)

)
dx

= arg max
θ∈Θ

∫
p̂∗n+1(x) logq(x;θ) dx

(7.6)
= arg max

θ∈Θ

N

∑
i=1

wi
n logq(X i

n;θ) (7.7)

Note that only the samples satisfying h(X i
n)≤ γn have non-zero weights and contribute to the parameter

update.

In the Gaussian case, the solution of (7.7) can be obtained in closed-form. For example, when q(·;θ) is
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Gaussian as given in (7.2), the solution is given by,

µn+1 =
N

∑
i=1

wi
nX i

n,

Σn+1 =
N

∑
i=1

wi
n(X

i
n−µn+1)(X i

n−µn+1)
T .

The derivation appears in Appendix D.1. These formulae also appear in [76].

The numerical procedure of the MRAS algorithm is tabulated in Algorithm 8; see also [76]. Note that

the sequence {γn}n≥0 is guaranteed to be non-increasing, and a smoothing parameter ν is introduced to

“dampen” the parameter update (see Line 12). A modified version of MRAS is also described in [76] where

the parameter ζ and the sample size are both adaptive.

Remark 7.1 If φ(h(x)) = e−β h(x)∆tn is used, where ∆tn is the time step, the reference model of MRAS

becomes,

p∗n+1(x) =
p∗n(x) exp(−β h(x)∆tn)1{h(X)≤γn}∫
p∗n(y) exp(−β h(y)∆tn)1{h(X)≤γn} dy

, (7.8)

with a given prior p∗0. Without the factor 1{h(X)≤γn}, this model is identical to the Bayes’ model used in the

controlled particle filter algorithm (see (3.2)).

7.2.2 Cross-entropy (CE)

The reference model in the CE algorithm is closely related to the model in the MRAS algorithm:

p∗n+1(x) :=
q(x;θn)φ(h(x))1{h(x)≤γn}∫
q(y;θn)φ(h(y))1{h(y)≤γn} dy

, (7.9)

where the definitions of q(·;θn), φ(·) and 1{h(x)≤γn} are identical to the case with the MRAS algorithm.

The CE algorithm follows the same numerical procedure as MRAS at each time step. However, com-

pared with the model (7.1) used in MRAS, the density p∗n is replaced with the surrogate model q(·;θn) in

(7.9). Correspondingly, the importance weights in the CE algorithm becomes (see (7.5)),

wi
n ∝

p∗n+1(X
i
n)

q(X i
n;θn)

(7.9)
∝ φ(h(X i

n))1{h(X i
n)≤γn},

N

∑
i=1

wi
n = 1.
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Algorithm 8 MRAS numerical algorithm

1: Input: Initial distribution q(x;θ0), parameters ζ ∈ (0,1], ε̄ ∈ (0,1), ν ∈ [0,1]

2: Iteration n (n≥ 0):

3: Sample {X i
n}N

i=1 i.i.d. from q(x;θn)

4: Calculate γ̃n := h(dζ Ne), where h(k) is the k-th smallest element in h :=
(
h(X i

n), ...,h(X
N
n )
)
, and dae is

the smallest integer greater than a

5: if n = 0 or γ̃n ≤ γn−1− ε̄ then

6: Assign γn = γ̃n

7: else

8: Assign γn = γn−1

9: end if

10: Calculate importance weights,

wi
n ∝

p∗0(X
i
n)

q(X i
n;θn)

φ(h(X i
n))

n+1 1{h(X i
n)≤γn},

N

∑
i=1

wi
n = 1

11: Update the model parameter,

θ̃n+1 := arg max
θ∈Θ

N

∑
i=1

wi
n log q(X i

n;θ)

12: Assign θn+1 = ν θ̃n+1 +(1−ν)θn

13: Assign n = n+1 if the stopping rule is not satisfied; otherwise terminate

The numerical procedure for the CE algorithm is tabulated in Algorithm 9; see also [150, 76].

7.2.3 Model-based Evolutionary Optimization (MEO)

The reference model in MEO evolves according to the replicator dynamics,

dp∗t
dt

(x) =−(h(x)− ĥt) p∗t (x), (7.10)
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Algorithm 9 CE numerical algorithm

1: Input: Initial distribution q(x;θ0), parameter ζ ∈ (0,1]

2: Iteration n (n≥ 0):

3: Sample {X i
n}N

i=1 i.i.d. from q(x;θn)

4: Calculate γn := h(dζ Ne), where h(k) is the k-th smallest element in h :=
(
h(X i

n), ...,h(X
N
n )
)
, and dae

denotes the smallest integer greater than a

5: Calculate importance weights,

wi
n ∝ φ(h(X i

n))1{h(X i
n)≤γn},

N

∑
i=1

wi
n = 1

6: Update the model parameter,

θn+1 := arg max
θ∈Θ

N

∑
i=1

wi
n log q(X i

n;θ)

7: Assign n = n+1 if the stopping rule is not satisfied; otherwise terminate

where ĥt :=
∫

h(x) p∗t (x) dx. In a sampling-based implementation, the density is approximated as p∗t (x) ≈

∑
N
i=1 wi

tδ (x−X i
t ), and the corresponding odes for the weights are obtained as,

dwi
t

dt
=−

(
h(X i

t )− ĥ(N)
t
)

wi
t , i = 1, ...,N, (7.11)

where ĥ(N)
t := ∑

N
i=1 wi

t h(X i
t ). Denoting ∆tn as the step size, the discrete-time system for the weight update

in MEO is given by,

wi
n+1 = wi

n−
(
h(X i

n)− ĥ(N)
n
)

wi
n ∆tn,

The normalization ∑
N
i=1 wi

n+1 = 1 automatically holds. The reference model p∗n+1 is then approximated as

p̂∗n+1 ≈
N

∑
i=1

wi
n+1δ (x−X i

n).

The parameter estimation is obtained by density projection as in the MRAS and CE algorithms. The

formula was given by (7.7).

The numerical procedure of the MEO algorithm is tabulated in Algorithm 10; see also [187].
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Algorithm 10 MEO numerical algorithm

1: Input: Initial distribution q(x;θ0), parameter ζ ∈ (0,1]

2: Iteration n (n≥ 0):

3: Sample {X i
n}N

i=1 i.i.d. from q(x,θn) with equal weights wi
n = 1/N, ∀i

4: Calculate ĥ(N)
n = 1

N ∑
N
i=1 h(X i

n)

5: Calculate importance weights,

wi
n+1 = wi

n−
(
h(X i

n)− ĥ(N)
n
)

wi
n ∆tn,

6: Update the model parameter,

θn+1 := arg max
θ∈Θ

N

∑
i=1

wi
n+1 log q(X i

n;θ)

7: Assign n = n+1 if the stopping rule is not satisfied; otherwise terminate

7.2.4 Particle Filtering for Optimization (PFO)

A particle filtering framework for global optimization was introduced in [215]. The PFO explicitly casts the

global optimization problem as a filtering problem with the following state-space mode:

Xn+1 = Xn +Bn,

Yn+1 = h(Xn+1)+Wn+1,

for n∈N, where {Bn}n≥1 and {Wn}n≥1 are mutually independent sequence of random variables that are also

independent of X0. The hidden state {Xn}n∈N can be viewed as a perturbed random process which converges

to the global minimizer x̄ as the perturbation Bn gradually reduces to zero [215].

The reference model is given by the Bayes’ rule,

(Prediction) p∗n+1|n(x) =
∫

Kn(x|xn) p∗n(xn) dxn,

(Update) p∗n+1(x) =
p∗n+1|n(x)φ(Yn+1−h(x))∫
p∗n+1|n(z)φ(Yn+1−h(z)) dz

,
(7.12)

where the transition kernel Kn(·|·) and the function φ(·) specify the distribution of the random processes Bn

and Wn, respectively.
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Algorithm 11 PFO framework

1: Input: Initial samples {X i
0}N

i=1
i.i.d.∼ p∗0(x), kernel functions {Kn(·|·)}n∈N, function φ(·)

2: Iteration n (n≥ 0):

3: Sample X̃ i
n+1 ∼ Kn(·|X i

n) for i = 1, ...,N

4: Observation generation: Take Yn+1 to be a sample function value according to certain rule. If n≥ 1 and

Yn+1 > Yn, then set Yn+1 = Yn

5: Bayes’ update: Calculate importance weights,

wi
n+1 ∝ φ(Yn+1−h(X̃ i

n+1)),
N

∑
i=1

wi
n+1 = 1

6: Resampling: Generate samples {X i
n+1}N

i=1 from {X̃ i
n+1}N

i=1 using resampling with replacement; c.f., [3]

7: Assign n = n+1 if the stopping rule is not satisfied; otherwise terminate

The implementation of the PFO algorithm is identical to a bootstrap particle filter [3], and a non-

increasing sequence of observations {Yn}n≥0 need to be generated using the samples. The numerical proce-

dure of PFO is tabulated in Algorithm 11; see also [215].

Remark 7.2 If the observation Yn+1 := min(h(X̃1
n+1), ...,h(X̃

N
n+1)), the function φ(z) = eβ z∆tn , and Bn =

0,∀n ∈ N, the update formula in the Bayes’ model of PFO becomes,

p∗n+1(x) =
p∗n(x) exp(−β (h(x)−Yn+1)∆tn)∫
p∗n(z) exp(−β (h(z)−Yn+1)∆tn) dz

, (7.13)

which is closely related to the reference model (7.8) used in MRAS. The difference here is the presence

of a fictitious observation Yn+1. Whereas the MRAS, CE and MEO algorithms generate samples from a

parametric distribution, PFO is non-parametric and uses the resampling procedure to obtain new samples

instead of the density projection.
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Algorithm 12 SMC-SA numerical algorithm

1: Input: Initial samples {X i
0}N

i=1
i.i.d.∼ p∗0(x), cooling schedule {Tn}n∈N, kernel functions {Kn(·|·)}n∈N

2: Iteration n (n≥ 0):

3: Importance update: Calculate importance weights,

wi
0 ∝ exp(−h(X i

0)/T0)/p∗0(X
i
0),

wi
n ∝ exp

(
h(X i

n−1)(1/Tn−1−1/Tn)
)
, n≥ 1,

N

∑
i=1

wi
n = 1

4: Resampling: Generate samples {X̃ i
n}N

i=1 from {X i
n−1}N

i=1 using resampling with replacement

5: for i = 1, ...,N do

6: Generate Y i
n ∼ Kn(y|X̃ i

n)

7: Calculate acceptance probability

ζ
i
n = min

{
exp
(
(h(X̃ i

n)−h(Y i
n))/Tn

)
, 1
}

8: Accept/Reject

X i
n =


Y i

n, w.p. ζ i
n

X̃ i
n, w.p. 1−ζ i

n

9: end for

10: Assign n = n+1 if the stopping rule is not satisfied; otherwise terminate

7.2.5 Sequential Monte-Carlo Simulated Annealing (SMC-SA)

The SMC-SA algorithm, proposed recently in [213], combines importance sampling with the simulated

annealing (SA) ideas [93]. The reference model is the Boltzmann distribution,

p∗n(x) =
exp(−h(x)/Tn)∫
exp(−h(y)/Tn) dy

, (7.14)

where the non-increasing real-valued sequence {Tn}n≥0 is a prescribed cooling schedule. The SMC-SA

algorithm approximates the Boltzmann model (7.14) using an importance sampling procedure followed by

a classical SA procedure for each sample independently. The numerical procedure of the SMC-SA algorithm
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Algorithm 13 SISR numerical algorithm

1: Input: Initial samples {X i
0}N

i=1
i.i.d.∼ p∗0(x), kernel functions {Kn(·|·)}n∈N

2: Iteration n (n≥ 0):

3: Bayes’ update: Calculate the weights,

wi
n ∝ exp

(
−β h(X i

n)∆tn
)
,

N

∑
i=1

wi
n = 1

4: Resampling: Generate samples {X̃ i
n}N

i=1 from {X i
n}N

i=1 using resampling with replacement

5: Diffusion: Sample X i
n+1 ∼ Kn(·|X̃ i

n) for i = 1, ...,N

6: Assign n = n+1 if the stopping rule is not satisfied; otherwise terminate

is tabulated in Algorithm 12; see also [213].

The following cooling schedule is used in [213],

Tn =
|h∗n|

log(n+1)
,

where h∗n denotes the best function value found by the algorithm up to the n-th time step.

7.2.6 Sequential Importance Sampling and Resampling (SISR)

SISR is a non-parametric algorithm based on importance sampling and resampling. The reference model is

the Bayes’ model (3.2),

p∗n+1(x) =
p∗n(x) exp(−β h(x)∆tn)∫
p∗n(y) exp(−β h(y)∆tn) dy

, (7.15)

where ∆tn = tn+1− tn is the time step. The numerical procedure of the SISR algorithm is described in

Sec. 3.1 and also tabulated in Algorithm 13.

7.3 Simulation Results – Quadratic Function

In this section, we describe simulation results for the quadratic function,

h(x) =
1
2
|x|2.
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Results of numerical experiments with the following algorithms is described except for CPF-G and CPF-K.

These two algorithms will be studied in Sec. 7.4 and Sec. 7.5 for non-quadratic problems.

1) MRAS: the model reference adaptive search algorithm described in [76] and Algorithm 8.

2) CE: the cross-entropy algorithm described in [150] and Algorithm 9.

3) MEO: the model-based evolutionary optimization algorithm described in [187] and Algorithm 10.

4) PFO: the particle filtering optimization algorithm described in [215] and Algorithm 11.

5) SISR: the sequential importance sampling and resampling algorithm described in Algorithm 13.

6) CPF-A: the controlled particle filter algorithm with the affine control law described in Table 3 in Sec. 3.2.2.

7) CPF-G: the controlled particle filter algorithm with the Galerkin control law described in Table 4 in

Sec. 4.3.

8) CPF-K: the controlled particle filter algorithm with the kernel-based control law described in Table 5 in

Sec. 4.4.

The simulation parameters are as follows: The simulations are carried out over a finite time-horizon

[0,T ] with T = 1, a fixed time step ∆t = 0.001, and the parameter β = 1. The algorithms are initialized with

the same samples drawn i.i.d. from the Gaussian distribution N (m0,Σ0), where m0 = (10, ...,10) ∈Rd and

Σ0 = diag(52, ...,52). The parameters used in these algorithms are as follows:

1) Reference models: The reference models (7.8), (7.9), (7.10), (7.13), and (7.15) are used for the MRAS,

CE, MEO, PFO, and SISR algorithms, respectively. The reference models used in these algorithms are

closely related.

2) Diffusion kernel: The diffusion kernel {Kn(·|·)}n∈N used in PFO and SISR is chosen as Gaussians. That

is, at the n-th time step,

Kn(x|x′) ∝ exp
(
− 1

2
(x− x′)T

Σ̃
−1
n (x− x′)

)
, (7.16)

where Σ̃n = diag(σ̃2
n , ..., σ̃

2
n ), and {σ̃n}n∈N is a decaying sequence σ̃n = σ̃0κn [212]. κ = 0.95 is used

in all the simulations. The choice of σ̃0 may depend on the dimension of the problem as well as the
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Figure 7.1: Simulation results of CPF-A with h(x) = 1
2 x2. Trajectories of N = 500 particles is depicted as dots in the

background. The solid line is the mean mt obtained using the exact formula (3.21) and the dashed line is its empirical
estimate obtained using the particles. The shaded region depicts the ±1 standard deviation bound.

initial condition. For the quadratic function considered in this section, σ̃0 = 0.1 for d < 5, and σ̃0 = 0.5

otherwise. Large value of σ̃0 may prevent undesirable premature convergence.

3) The MRAS, CE and MEO algorithms are simulated without the factor 1{h(x)≤γn} in their reference mod-

els. Even thought it was observed that including this term may expedite the search and lead to superior

convergence speed, the intent here is to compare the parametric and non-parametric algorithms with

consistent reference models.

4) For the CPF-A algorithm, an Euler discretization is used to numerically integrate the ode (3.4) with

β = 1.

Figure 7.1 depicts a typical simulation result of CPF-A for d = 1 and N = 500. The empirical mean

m(N)
t is seen to closely match its mean-field limit mt obtained using the exact formula (3.21).

The performance of the algorithms is compared based on J = 100 independent Monte-Carlo (M.C.)

runs. The performance metrics are the M.C. average and variance of the empirical mean at the terminal time

T . The M.C. average and variance of the terminal empirical mean are defined as,

M.C. average: m̂(N)
T :=

1
J

J

∑
j=1

m(N)
T, j ,

M.C. variance: Var(m(N)
T ) :=

1
J

J

∑
j=1
|m(N)

T, j − m̂(N)
T |

2,
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(a) m̂(N)
T v.s. N (b) Var(m(N)

T ) v.s. N

Figure 7.2: m̂(N)
T and Var(m(N)

T ) as a function of the number of particles N.

(a) m̂(N)
T v.s. d (b) Var(m(N)

T ) v.s. d

Figure 7.3: m̂(N)
T and Var(m(N)

T ) as a function of dimension d.

where m(N)
T, j denotes the empirical mean of the particles at terminal time for the j-th M.C. run.

The simulation results for the quadratic function is presented next:

1) m̂(N)
T and Var(m(N)

T ) as a function of N: In this simulation, the number of particles varies in the range

N ∈ {50,100,200,500,1000}, for a fixed dimension d = 2. Figure 7.2 depicts the M.C. average and

variance. As expected, both m̂(N)
T and Var(m(N)

T ) decrease with N for all the algorithms.

2) m̂(N)
T and Var(m(N)

T ) as a function of d: In this simulation, the dimension d ∈ {1,2,5,10}, for a fixed

number of particles N = 500. Figure 7.3 depicts the M.C. average and variance. Whereas the paramet-

ric algorithms (CE, MRAS, MEO) continue to exhibit robust performance, non-parametric algorithms

(PFO, SISR, CPF-A) are strongly susceptible to the increase in dimension. Such a drastic performance
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(a) Computational time v.s. N (b) Computational time v.s. d

Figure 7.4: Computational time per iteration as a function of the number of particles N (part (a)) and dimension d
(part (b)).

deterioration suggests that more particles are required for high-dimensional problems.

In both Figure 7.2 and Figure 7.3, the MRAS consistently performs the best and its simulation variance is

the smallest for all choice of d simulated here. For all values of N and moderate values of d, the control-

based algorithm CPF-A exhibits less error and simulation variance compared with the sampling-based

non-parametric algorithms.

3) Computational time as a function of N: The mean computational time (per iteration of the algorithm,

averaged over 500 Monte Carlo runs) is depicted in Figure 7.4 (a) as a function of N. The CPF-K is also

included to assess its computational complexity. In addition, the O(N) and O(N2) lines are plotted to aid

the comparison. The plot shows that the computational time scales linearly with N for all the algorithms

except CPF-K which scales quadratically. The MRAS has relatively higher computational cost due to

the more intricate importance weight calculation (see (7.5)) than the other model-based algorithms.

4) Computational time as a function of d: The mean computational time (per iteration of the algorithm,

averaged over 500 Monte Carlo runs) is depicted in Figure 7.4 (b) as a function of d. For all the al-

gorithms except CPF-A, the computational time is nearly independent of d. The exceptionally high

computational cost of CPF-A for high dimensions is due to the affine control scheme in which the num-

ber of second-order polynomial basis functions scales quadratically with d.

The experiments in 3) and 4) were conducted on a platform with an Intel i3-2120 3.3GHz CPU.
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Figure 7.5: Double-well potential.

7.4 Simulation Results – Double-well Potential

In this section, we describe simulation results for the double-well potential

h(x) = (x−2)2(x+2)2− x
2
.

The function is depicted in Figure 7.5.

The simulations are conducted over a finite time-horizon [0,T ] with T = 10 and a fixed time step

∆t = 0.01. For each of the simulations, N = 500 particles are used. The initial particles X i
0 are sampled

i.i.d. from a mixture of two Gaussians, N (−2, 0.62) and N (2, 0.62), with equal weights. The Gaussian

diffusion kernel given in (7.16) is used in PFO and SISR where σ̃n = σ̃0rn with σ̃0 = 0.1 and κ = 0.95. An

Euler discretization is used for numerical integration in the CPF algorithms with β = 1. For the Galerkin

approximation, the basis functions are
{

x, cos
(2π

10 x
)
, sin

(2π

10 x
)}

. For the kernel approximation, the pa-

rameter ε = 0.5.

The CPF algorithm with the three types of control laws (i.e., the affine, Galerkin and kernel-based

control laws) are depicted in Figure 7.6 (g)-(i). The kernel-based control law leads to a more graceful

transient behavior than the other two control laws. The affine control law is unable to merge the two mode

in the posterior distribution, and the Galerkin control law may suffer from numerical instability on account

of ill-conditioning of the matrix A (see Table 4). This can lead to relatively large values of control requiring

small time-steps for numerical integration.

Figure 7.7 depicts a comparison of ĥ(N)
t = 1

N ∑i h(X i
t ) with the three types of control laws. With the

optimal control, Theorem 3.4 shows that ĥt decreases monotonically as a function of time. This was indeed
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.6: Particle trajectories of the algorithms for the Double-well potential.
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Figure 7.7: Comparison of ĥ(N)
t with the three types of approximate control laws. The global minimum value h̄ is

also plotted at the bottom.

Table 7.2: M.C. average and std. dev. of empirical error at terminal time, M.C. std. dev. in the parenthesis.

MRAS CE MEO
3.15e-3 (2.31e-3) 5.88e-2 (4.16e-2) 1.68e-1 (6.55e-1)

SMC-SA PFO SISR
3.61e-3 (2.50e-3) 4.65e-3 (4.10e-3) 4.95e-3 (3.66e-3)

CPF-A CPF-G CPF-K
8.67e-3 (2.27e-3) 6.845e-3 (1.89e-2) 1.20e-1 (4.03e-3)

found to be the case with the kernel-based algorithm but not so with the other two. Even though the particles

in all three cases eventually converge to the correct equilibrium (see Figure 7.6 (g)-(i)), the approximate

nature of the control can lead to a transient growth of ĥ(N)
t .

Other model-based algorithms are depicted in Figure 7.6 (a) - (f). It is observed that the non-parametric

algorithms such as PFO, SISR and CPF-K handle bi-modal distributions better than the Gaussian-based

parametric algorithms (MRAS, CE, MEO) during the initial transient phase of the search. Among the

parametric algorithms, the MRAS eventually settles at the global minimizer while CE and MEO exhibit

fluctuations around the global minimizer. This indicates that the reference model and the associated weight

calculation in MRAS are advantageous over those in CE and MEO. The SMC-SA algorithm described in

Sec. 7.2.5 is also included in the comparison.

Monte-Carlo simulations are carried out to assess the empirical error of the algorithms at the terminal

time T . Let m(N)
T, j denotes the empirical mean of the particles at time T for the j-th M.C. run. The M.C.
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average and standard deviation (std. dev.) of the terminal empirical error are then defined as,

ê(N)
T :=

1
J

J

∑
j=1

e(N)
T, j , (7.18a)

Std. dev.(e(N)
T ) :=

√√√√1
J

J

∑
j=1

∣∣e(N)
T, j − ê(N)

T

∣∣2, (7.18b)

where e(N)
T, j := |m(N)

T, j − x̄|. For each algorithm, the two metrics obtained from 100 independent M.C. runs

are tabulated in Table 7.2. It is seen that the MEO has the largest score in both metrics. The CPF-K also

exhibits larger M.C. average of the error due to a relatively large value of ε used in the simulation which

slows down the asymptotic convergence. Adaptively setting the value of ε requires further investigation.

7.5 Simulation Results – Benchmark Problems

In this section, we present performance comparison results of the optimization algorithms for six benchmark

optimization problems listed as below. Numerical results for these problems appear in recent publications,

e.g., [76, 78, 1].

1) Ackley function,

h(x) =−20 exp
{
−0.02

√
|x|2
d

}
− exp

{1
d

d

∑
k=1

cos(2πxk)
}
+20+ e,

where the global minimizer x̄ = (0, ...,0), and h̄ := h(x̄) = 0.

2) Griewank function,

h(x) =
1

4000
|x|2−

d

∏
k=1

cos
( xk√

k

)
+1,

where x̄ = (0, ...,0), and h̄ = 0.

3) Pintér’s function,

h1(x) =
d

∑
k=1

kx2
n +20

d

∑
k=1

k sin2 (xk−1 sin(xk)− xk + sin(xk+1)
)

+
d

∑
k=1

k log10
(
1+ k(x2

k−1−2xk +3xk+1− cos(xk)+1)2),
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where x̄ = (0, ...,0), and h̄ = 0.

4) Rastrigin function,

h2(x) = |x|2−10
d

∑
k=1

cos(2πxk)+10d,

where x̄ = (0, ...,0), and h̄ = 0.

5) Salomon function,

h4(x) = 1− cos(2π|x|)+0.1|x|,

where x̄ = (0, ...,0), and h̄ = 0.

6) Trigonometric function,

h5(x) =
d

∑
k=1

[
8sin2(7(xk−0.9)2)+6sin2(14(xk−0.9)2)+(xk−0.9)2],

where x̄ = (0.9, ...,0.9), and h̄ = 0.

These functions are non-convex and possess multiple local minimizers. Their graphs are depicted in

Figure 7.8 for d = 2.

Table 7.3: Time horizon and time step for simulating each problem

Ackley Griewank Pintér’s Rastrigin Salomon Trigonometric
T 50 100 0.05 0.05 50 0.05
∆t 0.1 0.1 0.0001 0.0001 0.1 0.0001

The simulations parameters are as follows:

1) Time horizon: The simulations are carried out over a finite time-horizon [0,T ] with a fixed time step

∆t. The choice of T and ∆t may vary for different problems, as tabulated in Table 7.3. For the Pintér’s,

Rastrigin, and Trigonometric function, smaller ∆t is used to prevent numerical instability due to large

function values. The values of T and ∆t are determined upon case-by-case based preliminary experi-

ments.

2) Initial condition: For all the problems, the algorithms are initialized with the Gaussian distribution

N (µ0,Σ0), where the mean µ0 ∈ Rd is randomly selected from the uniform distribution on [−50,50]d ,
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and the covariance Σ0 ∈ Rd×d is a diagonal matrix with all the diagonal elements chosen as 500. Same

initialization scheme and parameters were used in the numerical studies presented in [76, 213].

3) Algorithm parameters: The MRAS, CE and MEO algorithms are simulated without the factor 1{h(x)≤γn}

in their reference model. The Gaussian diffusion kernel (see the formula (7.16)) is used for simulating

PFO and SISR with Σ̃n = diag(σ̃2
n , ..., σ̃

2
n ), and a decaying sequence σ̃n = σ̃0κn with σ̃0 = 5 and κ = 0.95.

A large value of σ̃0 is used to increase “coverage” of the search. All the CPF algorithms are simulated

with β = 1. The CPF-G algorithm uses the following basis functions,

{
xk, cos

(2πxk

T

)
, sin

(2πxk

T

)
, k = 1, ...,d

}

with T = 400. The parameter ε in the CPF-K algorithm is adaptive: At each time step, ε is chosen as

the largest empirical covariance of the current particle set among all the directions. It was observed that

too small a value of ε easily led to numerical instability. More judicious choice of the basis functions in

CPF-G as well as the parameter ε in CPF-K is the subject of future research.

The algorithms are assessed based on J = 100 independent Monte-Carlo (M.C.) runs. Figure 7.9 depicts

the M.C. average of the empirical error as a function of time t for all the problems and all the algorithms.

Let m(N)
t, j denotes the empirical mean of the particles at time t for the j-th M.C. run. The M.C. average of

the empirical error at time t is then defined as,

ê(N)
t :=

1
J

J

∑
j=1

∣∣m(N)
t, j − x̄

∣∣. (7.19)

It is seen from Figure 7.9 that:

1) Except for the Salomon function, the CPF-K algorithm exhibits the the lowest error within the allocated

computation budget. Improvement over the affine and Galerkin control law is also observed.

2) Except for the Salomon function, the CPF algorithms will potentially continue to search for better solu-

tions after the terminal time T , whereas the CE and MEO stop the search very early at local minimizers.

The MRAS also suffers from such early stagnation for the Ackley and the Griewank function.

3) The MRAS algorithm may exhibit numerical instability during both the transient phase (e.g., for the
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(a) Ackley function (b) Griewank function

(c) Pintér’s function (d) Rastrigin function

(e) Salomon function (f) Trigonometric function

Figure 7.8: Plots of some benchmark objective functions in 2D.
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(a) Ackley function (b) Griewank function

(c) Pintér’s function (d) Rastrigin function

(e) Salomon function (f) Trigonometric function

Figure 7.9: M.C. average of the empirical error ê(N)
t as a function of t.
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Table 7.4: Monte-Carlo average and std. dev. of |m(N)
T, j − x̄| (Part I)

Ackley Griewank Pintér’s
MRAS 9.55e-1 (9.80e-1) 2.07e1 (8.30e0) 1.14e0 (8.23e-1)

CE 6.55e-1 (4.77e-1) 1.94e1 (7.14e0) 3.96e0 (1.98e0)
MEO 8.31e-1 (4.70e-1) 1.93e1 (5.87e0) 6.41e0 (3.08e0)
PFO 3.65e-1 (1.18e-1) 8.53e0 (2.91e0) 7.58e-1 (3.60e-1)
SISR 3.53e-1 (1.13e-1) 8.51e0 (2.70e0) 2.96e0 (1.17e0)

CPF-A 3.00e-1 (8.99e-2) 4.29e0 (1.91e0) 1.14e0 (9.27e-1)
CPF-G 3.71e-1 (1.53e-1) 4.52e0 (1.60e0) 1.45e0 (8.26e-1)
CPF-K 2.91e-1 (1.15e-1) 2.60e0 (7.75e-1) 6.57e-1 (2.64e-1)

Table 7.5: Monte-Carlo average and std. dev. of |m(N)
T, j − x̄| (Part II)

Rastrigin Salomon Trigonometric
MRAS 1.38e0 (3.35e-1) 7.34e-1 (5.06e-1) 1.33e0 (3.03e-1)

CE 7.29e0 (3.60e0) 1.34e0 (6.38e-1) 7.50e0 (3.20e0)
MEO 9.63e0 (4.24e0) 1.73e0 (1.04e0) 9.54e0 (4.12e0)
PFO 1.12e0 (4.03e-1) 5.58e-1 (1.77e-1) 1.16e0 (3.46e-1)
SISR 1.08e0 (3.57e-1) 5.34e-1 (1.90e-1) 4.32e0 (1.50e0)

CPF-A 2.34e0 (1.37e0) 6.31e-1 (2.21e-1) 2.55e0 (1.72e0)
CPF-G 2.60e0 (9.97-1) 8.09e-1 (4.45e-1) 2.59e0 (9.78e-1)
CPF-K 6.74e-1 (2.39e-1) 8.14e-1 (2.67e-1) 6.84e-1 (2.53e-1)

Ackley and Salomon function) and the asymptotic phase (e.g., for the Pintér’s function). This is likely

due to the randomness in the density projection step and the associated weigh calculation of the particles

(see formula (7.5)).

4) The PFO and SISR algorithms perform identically except for the Pintér’s and Trigonometric function.

For all the problems, particularly the Griewank function, these two algorithms converge fast initially due

to the strong diffusion noise added to expedites the search. However, strong diffusion may also adversely

affect the asymptotic convergence rate, as shown in the cases with the Griewank, the Rastrigin and the

Trigonometric functions.

5) The Griewank function is challenging due to the fact that the global minimum value is very close to

the multiple local minimum values around it. While the parametric and the importance sampling-based

algorithms eventually stagnates at a local minimum, the CPF algorithms are capable of continuing the

search towards areas closer to the global minimizer.
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The M.C. average and standard deviation of the empirical error at the terminal time T is tabulated

in Table 7.4 and Table 7.5. These metrics are calculated according to (7.18a)-(7.18b). For most of the

problems, the CE and the MEO algorithms exhibit relatively larger error and simulation variance, whereas

the CPF-K algorithm performs the best with the lowest error and simulation variance. The importance

sampling-based algorithms (PFO and SISR) and the other CPF algorithms (CPF-A and CPF-G) exhibit

similar error patterns.

7.6 Conclusions

Numerical studies of the controlled particle filter (CPF) algorithm as well as several model-based algo-

rithms were carried out for multiple global optimization problems, including a quadratic function, a one-

dimensional Double-well potential, and six benchmark optimization problems of dimension five.

The conclusions are as follows:

1. For the quadratic Gaussian case, the MRAS algorithm exhibited the best accuracy and robustness with

the increase of dimension. Among the other algorithms, the CPF algorithm with the affine control

law provided more accurate approximation of the Gaussian posterior. However, the computation

complexity of CPF-A scales quadratically with the dimension.

2. For the benchmark optimization problems, the algorithms were assessed based on Monte-Carlo sim-

ulations. For most of the test problems, the CPF algorithms exhibited higher potential to prevent

premature convergence. The CPF algorithm with the kernel-based control law exhibited the lowest

error and simulation variance among all the algorithms.

It is the subject of ongoing and future work to compare the FPF with more global optimization algo-

rithms, e.g., the SMC-SA algorithm (see Sec. 7.2.5), the particle swarm optimization algorithm [91], and

the consensus-based algorithm [128]. It is also desirable to pursue deeper theoretical analysis of these algo-

rithms for certain type of problems, e.g., the quadratic problem and the more general convex optimization

problems.
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Appendix A

Proof for Chapter 2

A.1 Proof of Proposition 2.1

For any function f ∈C∞
c (G), f (X i

t ) is a continuous semimartingale that satisfies [74],

d f (X i
t ) = (V0 +u) · f (X i

t )dt +Vα · f (X i
t )◦ dBα,i

t +K j · f (X i
t )◦ dZ j

t . (A.1)

For the ease of taking the expectation, we convert (A.1) to its Itô form (see Theorem 1.2 in [188]): For

real-valued continuous semi-martingales A,B,C,

A◦ dB = AdB+
1
2

dAdB, (A.2)

(A◦ dB)dC = A(dBdC). (A.3)

For the second term on the right hand side of (A.1), taking A in (A.2) to be Vα · f (X i
t ) and B to be Bα,i

t ,

Vα · f (X i
t )◦ dBα,i

t =Vα · f (X i
t )dBα,i

t +
1
2

d(Vα · f )(X i
t )dBα,i

t . (A.4)

Replacing f by Vα · f in (A.1),

d(Vα · f ) = (V0 +u) · (Vα · f )dt +Vβ · (Vα · f )◦ dBβ ,i
t +K j · (Vα · f )◦ dZ j

t .

Using (A.3) and Itô’s rule (dBα,i
t dBβ ,i

t = δα,β dt, dBα,i
t dt = 0, and dBα,i

t dZ j
t = 0 for all α,β , j),

d(Vα · f )(X i
t )dBα,i

t =
r

∑
α=1

Vα · (Vα · f )(X i
t )dt,

132



which when substituted in (A.4) yields,

Vα · f (X i
t )◦ dBα,i

t =Vα · f (X i
t )dBα,i

t +
1
2

r

∑
α=1

Vα · (Vα · f )(X i
t )dt.

The third term on the right hand side of (A.1) is similarly converted. The Itô form of (A.1) is then given

by,

d f (X i
t ) = L f (X i

t ) dt +Vα · f (X i
t )dBα,i

t +K j · f (X i
t , t)dZ j

t ,

where the operator L is defined by,

L f := (V0 +u) · f +
1
2

r

∑
α=1

Vα · (Vα · f )+
1
2

m

∑
j=1

K j · (K j · f ).

In its integral form,

f (X i
t ) = f (X i

0)+
∫ t

0
L f (X i

s)ds+
∫ t

0
Vα · f (X i

s)dBα,i
s +

∫ t

0
K j · f (X i

s)dZ j
s .

By taking conditional expectation on both sides, interchanging expectation and integration (see Lemma 5.4

in [192]) and noting the fact that Bα,i
t is a Wiener process,

πt( f ) = π0( f )+
∫ t

0
πs(L f )ds+

∫ t

0
πs(K j · f )dZ j

s ,

which is the desired formula (2.21). �

A.2 Proof of Theorem 2.1

Using (2.2) and (2.21) and the expressions for the operators L ∗ and L , it suffices to show that,

πs(u · f )ds+
1
2

m

∑
j=1

πs
(
K j · (K j · f )

)
ds+πs(K j · f )dZ j

s

=
m

∑
j=1

(
πs( f h j)−πs(h j)πs( f )

)(
dZ j

s −πs(h j)ds
)

(A.5)

for all 0≤ s≤ t and all f ∈C∞
c (G).
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On taking ψ = f in (2.22) and using the formula (2.10) with V = K j and V = grad(φ j),

πs
(
K j · f

)
= πs

(
〈grad(φ j),grad( f )〉

)
= πs

(
(h j−πs(h j)) f

)
. (A.6)

Using the expression (2.25) for the control function and noting that ĥ j = πs(h j),

u · f =−1
2

m

∑
j=1

(
h j−πs(h j)

)(
K j · f

)
−

m

∑
j=1

πs(h j)
(
K j · f

)
.

Using (A.6) repeatedly then leads to,

πs(u · f ) = − 1
2

m

∑
j=1

πs
(
K j · (K j · f )

)
−

m

∑
j=1

πs(h j)πs
(
(h j−πs(h j)) f

)
. (A.7)

The desired equality (A.5) is now verified by substituting in (A.6) and (A.7). �

A.3 Proof of Proposition 2.2

Given a basis {E1, E2, E3} of the Lie algebra so(3), the strong form Poisson equation (2.30) is expressed as,

3

∑
n=1

En ·
(
ρ kn, j

)
=− 1

σ2
W
(h j− ĥ j)ρ, (A.8)

where we used the formula (2.12) of div(·), and the relation grad(φ j)(x) = xK j(x). For n = 1,2,3, kn, j :

SO(3)→ R, and [K j] = (k1, j, k2, j, k3, j).

Since χ ∼N (0,Σ), R = µ exp(ε [χ ]×), the density ρ is of the form [10],

ρ(R) =C(R) exp
(
− 1

2
[

log(µT R)
]∨T

Σ
−1[ log(µT R)

]∨)
,

where C(R)≈ 1/
√

(2π)3|Σ| (i.e., a constant) when the distribution is concentrated [186], and Σ := ε2 Σ. By

definition,

En ·ρ =
d

dτ

∣∣∣
τ=0

ρ
(
R exp(τ En)

)
=

d
dτ

∣∣∣
τ=0

1√
(2π)3|Σ|

exp
(
− 1

2
[

log(µT R exp(τ En))
]∨T

Σ
−1[ log(µT R exp(τ En))

]∨)
. (A.9)
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Furthermore,

[
log(µT R exp(τ En))

]∨
=
[

log
(

exp(ε [χ ]×) exp([τen ]×)
)]∨

= ε χ + τen +
τ

2
ε [χ ]× en +

τ

12
ε

2 [χ ]2× en−
τ

720
ε

4 [χ ]4×en +O(τ2)

= ε χ + τ M en +O(τ2),

where M = I+ 1
2 ε[χ ]×+

1
12 ε2[χ ]2×− 1

720 ε4[χ ]4× = I+O(ε), {e1, e2, e3} denote the canonical basis of R3,

and the second equality above used the Baker-Campbell-Hausdorff (BCH) formula to expand the logarithm

of the product of two matrix exponentials (see Chapter 3 of [68]). Substituting this result into (A.9), we

obtain,

En ·ρ =−1
ε

χ
T

Σ
−1M en ρ. (A.10)

Using (A.10), the left-hand-side of (A.8) is expanded as follows,

3

∑
n=1

En ·
(
ρ kn, j

)
=

3

∑
n=1

(
En ·ρ

)
kn, j +ρ

3

∑
n=1

En ·kn, j =−
1
ε

χ
T

Σ
−1M [K j]ρ +ρ

3

∑
n=1

En ·kn, j.

The Taylor expansion of h j is given by,

h j(R) = h j(µ)+ ε χ
T H j +O(ε2),

where H j :=
(
E1 ·h j(µ), E2 ·h j(µ), E3 ·h j(µ)

)
∈ R3. Using the fact that π(χ) = 0, we have ĥ j = π(h j) =

h j(µ)+O(ε2), leading to h j− ĥ j = ε χT H j +O(ε2). Hence, (A.8) becomes,

−χ
T

Σ
−1M [K j]+ ε

3

∑
n=1

En ·kn, j =−
1

σ
2
W

χ
T H j +O(ε).

In the asymptotic limit as ε → 0, [K j] =
1

σ
2
W

ΣH j +O(ε). �
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A.4 Proof of Theorem 2.2

Under the constant gain approximation, the FPF is given by (see (2.32)),

dRi
t = Ri

t Ωt dt +Ri
t ◦ [ε σB dBi

t ]×+Ri
t [Kt ◦ dIi

t ]×, (A.11)

where Kt := 1
σ 2

W
Σt HT

t and Ht = [µT
t r ]×. A concentrated distribution is assumed, i.e.,

Ri
t = µt exp(ε [χ i

t ]×) = µt + ε µt [χ
i
t ]×+O(ε2), (A.12)

where χ i
t ∼N (0,Σt).

The evolution equation for the mean µt and covariance Σt are derived using a perturbation analysis

approach. We begin by simplifying the modified form of the innovation error,

dIi
t = dZt −

RiT
t r+πt(RiT

t r)
2

dt = dZt −
RiT

t r+µT
t r

2
dt +O(ε2)

= dIt −
RiT

t r−µT
t r

2
dt +O(ε2) = dIt −

exp(−ε [χ i
t ]×)µT

t r−µT
t r

2
dt +O(ε2) (A.13)

= dIt +
1
2

ε [χ i
t ]×µ

T
t r dt +O(ε2) = dIt −

1
2

ε Ht χ
i
t dt +O(ε2), (A.14)

where dIt = dZt − µT
t r dt, and we used the fact that πt(RiT

t r) = µT
t r +O(ε2) due to the representation

(A.12).

On substituting (A.12) and (A.14) into the FPF (A.11) and matching terms, the O(1) balance gives,

dµt = µt Ωt dt +µt [Kt ◦ dIt ]×. (A.15)

The O(ε) balance gives,

d(µt [χ
i
t ]×) = µt [χ

i
t ]×Ωt dt +σB µt [ dBi

t ]×+µt [χ
i
t ]×[Kt ◦ dIt ]×−

1
2

µt [Kt Ht χ
i
t ]× dt.

Using the formula (A.15), this is simplified to obtain the following equation of χ i
t , expressed in its Itô form:

dχ
i
t =At χ

i
t dt +σB dBi

t −
1
2
Kt Ht χ

i
t dt− [Kt dIt ]× χ

i
t +O(ε2), (A.16)
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where At =−Ωt .

Define Γi
t := χ i

t χ iT
t . Using the Itô’s lemma,

dΓ
i
t = dχ

i
t χ

iT
t +χ

i
t d(χ iT

t )+ dχ
i
t d(χ iT

t )

=
(
At dt− [Kt dIt ]×

)
Γ

i
t +Γ

i
t
(
At dt− [Kt dIt ]×

)T
+σB

(
dBi

t χ
iT
t +χ

i
t dBiT

t
)
+σ

2
B I dt

− 1
2
(
Kt Ht Γ

i
t +Γ

i
t HT

t KT
t
)

dt +O(ε2).

By definition, Σt = πt(Γ
i
t). Taking the conditional expectation on both sides and using the formula of Kt ,

dΣt =
(
At dt− [Kt dIt ]×

)
Σt +Σt

(
At dt− [Kt dIt ]×

)T
+σ

2
B I dt− 1

σ2
W

ΣtHT
t HtΣt dt,

where O(ε2) terms have been ignored. �
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Appendix B

Proof for Chapter 3

B.1 Gradient Flow

Proof of Theorem 3.1: As ∆tn ↓ 0, ρ(N̄)(x, t)→ p∗(x, t), the posterior density defined in (3.1). By direct

substitution, it is verified that p∗ is a solution of the replicator pde (3.8).

In the conference version of Chapter 3 (see [204]), the replicator pde is derived based on variational

analysis. The main steps of the variational proof are as follows:

(i) By taking the first variation of the functional (3.7), the minimizer ρn is shown to satisfy the E-L equation:

∫
ρn

ρn−1
∇ · (ρn−1 ς)dx−∆tn β

∫
∇h · ςρn dx = 0, (B.1)

for each vector field ς ∈ L2(Rd ;ρn−1).

(ii) Given any C1 smooth and compactly supported (test) function f , let ξn ∈ L2(Rd ;ρn−1) be the solution of

∇ · (ρn−1ξn) = ( f − f̂n−1)ρn−1, (B.2)

where f̂n−1 :=
∫

f ρn−1 dx. Then, using the E-L equation (B.1),

f̂n− f̂n−1 = ∆tn β

∫
∇h ·ξnρn dx,

and upon summing,

f̂N̄ = f̂0 +β

N̄

∑
n=1

∆tn
∫

∇h ·ξnρn dx. (B.3)
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(iii) Integrating by parts and using (B.2),

∫
∇h ·ξnρn dx =−

∫
h( f − f̂n−1)ρn−1 dx+En,

where the error term En = O(∆tn). Equation (B.3) thus becomes

f̂N̄ = f̂0−β

N̄

∑
n=1

∆tn
∫

h( f − f̂n−1)ρn−1 dx+
N̄

∑
n=1

∆tnEn.

(iv) On taking the limit as ∆tn ↓ 0, the limiting density p∗(x, t) satisfies

f̂t = f̂0−β

∫ t

0

∫
h(x)( f (x)− f̂s)p∗(x,s)dxds

= f̂0−β

∫ t

0

∫
(h(x)− ĥs) f (x)p∗(x,s)dxds (B.4)

for all test functions f , showing that p∗(x, t) is a weak solution of the replicator pde (3.8). For additional

details on these calculations, see [204].

B.2 Optimal Control

Preliminaries: Consider a functional E : P→R mapping densities to real numbers. For a fixed ρ ∈P , the

(Gâteaux) derivative of E is a real-valued function on Rd , and an element of the function space L2(Rd ;ρ)

[16]. This function is denoted as ∂E
∂ρ

(ρ, t)(x) for x ∈ Rd , and defined as follows:

d
dt

E(ρt)

∣∣∣∣
t=0

=−
∫
Rd

∂E
∂ρ

(ρ)(x)∇ · (ρ(x)u(x))dx,

where ρt is a path in P such that ∂ρt
∂ t = −∇ · (ρtu) with ρ0 = ρ , and u is any arbitrary vector-field on Rd .

Similarly, ∂ 2E
∂ρ2 (ρ) ∈ L2(Rd×Rd) is the second (Gâteaux) derivative of the functional E if

d
dt

∂E
∂ρ

(ρt)(x)
∣∣∣∣
t=0

=−
∫
Rd

∂ 2E
∂ρ2 (ρ)(x,y)∇ · (ρ(y)u(y))dy.

The optimal control problems (3.10) and (3.14) are examples of the mean-field type control problem

introduced in [16]. The notation and the methodology for the following proofs is based in part on [16].
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Proof of Theorem 3.2: The value function V (ρ, t), defined in (3.12), is the solution of the DP equation (i.e.,

the HJB equation):
∂V
∂ t

(ρ, t)+ inf
u∈L2

H(ρ,
∂V
∂ρ

(ρ, t),u) = 0, t ∈ [0,T ),

V (ρ,T ) = β

∫
h(x)ρ(x)dx.

(B.5)

In the following, we use the notation

Θ = Θ(ρ, t)(x) :=
∂V
∂ρ

(ρ, t)(x).

For a fixed ρ ∈P and t ∈ [0,T ), Θ is a function on Rd .

A necessary condition is obtained by considering the first variation of H. Suppose u is a minimizing

control function. Then u satisfies the first order optimality condition:

d
dε

H(ρ,Θ,u+ εv)
∣∣∣∣
ε=0

= 0,

where v is an arbitrary vector field on Rd . Explicitly,

∫
∇(− 1

ρ
∇ · (ρu)+Θ) · v ρ dx = 0,

or in its strong form

− 1
ρ

∇ · (ρu)+Θ = (constant).

Multiplying both sides by ρ and integrating yields the value of the constant as
∫

Θ(ρ, t)(x)ρ(x)dx=: Θ̂(ρ, t).

Therefore, the minimizing control solves the pde

1
ρ

∇ · (ρu) = Θ− Θ̂.

On substituting the optimal control law into (B.5), the HJB equation for the value function is given by

∂V
∂ t

(ρ, t)+
β 2

2

∫
|h− ĥ|2ρ dx− 1

2

∫
|Θ(ρ, t)− Θ̂(ρ, t)|2ρ dx = 0, t ∈ [0,T ),

V (ρ,T ) = β

∫
h(x)ρ(x)dx.
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The equation involves both V and Θ. One obtains the so-called master equation (see [16]) involving only Θ

by differentiating with respect to ρ

∂Θ

∂ t
(ρ, t)(x)+

β 2

2
|h(x)− ĥ|2− 1

2
|Θ(ρ, t)(x)− Θ̂(ρ, t)|2

−
∫
(Θ(ρ, t)(y)− Θ̂(ρ, t))

∂Θ

∂ρ
(ρ, t)(y,x)ρ(y)dy = 0, t ∈ [0,T ),

Θ(ρ,T ) = βh.

It is easily verified that Θ(ρ, t) = βh solves the master equation. The corresponding value function V (ρ, t) =

β
∫

hρ dx.

Sufficiency: The proof that the proposed control law is a minimizer is as follows. Consider any arbitrary

control law vt with the resulting density ρt . Taking the time derivative of −β
∫

hρt dx:

−β
d
dt

∫
hρt dx = β

∫
h ∇ · (ρtvt)dx

=
∫

β (h− ĥt) (
1
ρt

∇ · (ρtvt)) ρt dx

≤
∫ (

β 2

2
|h− ĥ|2 + 1

2

∣∣∣∣ 1
ρt

∇ · (ρtvt)

∣∣∣∣2
)

ρt dx

= L(ρt ,vt).

On integrating both sides with respect to time,

β

∫
Rd

hρ0 dx ≤
∫ T

0
L(ρt ,vt)dt + β

∫
Rd

hρT dx,

where the equality holds with vt = ut (defined as solution of (3.13)). Therefore,

J(u) = β

∫
hρ0 dx≤ J(v).

This also confirms that V (ρ, t) = β
∫

hρ dx is the value function, and completes the proof of Theorem 3.2.

�

The analysis for the infinite horizon optimal control problem (3.14) is similar and described next.

Proof of Theorem 3.3: The infinite-horizon value function V ∞(ρ) := infu
∫

∞

0 L(ρt ,ut)dt is a solution of the
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DP equation:

inf
u∈L2

H(ρ,Θ∞(ρ),u) = 0, (B.6)

where Θ∞(ρ) := ∂V ∞

∂ρ
(ρ). By carrying out the first order analysis in an identical manner, it is readily verified

that:

(i) A minimizing control u is a solution of the pde (3.13);

(ii) V ∞(ρ) = β
∫

hρ dx−βh(x̄) is a solution of the DP equation (B.6).

The sufficiency also follows similarly. With any arbitrary control vt ,

β

∫
Rd

hρ0 dx≤
∫

∞

0
L(ρt ,vt)dt +β limsup

t→∞

∫
Rd

hρt dx,

with equality if vt = ut solves the pde (3.13). Using the boundary condition, limsupt→∞

∫
hρt dx = h(x̄),

J(u) = β

∫
hρ0 dx−βh(x̄)≤ J(v).

�

Proof of Lemma 3.1: Suppose φ is the unique solution of the Poisson equation (3.5) (Theorem 4.1 in

Chapter 4 and Theorem 2.2 in [100]). Then u = −β∇φ is a particular solution of the pde (3.13). The

general solution is then given by u = v−β∇φ where v is a null solution, i.e., ∇ ·(ρv) = 0. The L2 optimality

of the gradient solution follows from the simple calculation:

∫
|u|2ρ dx =

∫
β

2|∇φ |2ρ dx+
∫
|v|2ρ dx−2β

∫
v ·∇φρ dx

= β
2‖∇φ‖2

2 +‖v‖2
2,

because
∫

∇φ · vρ dx =−
∫

φ∇ · (ρv)dx = 0. �

B.3 Hamiltonian Formulation

The Hamiltonian H is defined in (3.11). Suppose ut is the optimal control and ρt is the corresponding optimal

trajectory. Denote the trajectory for the momentum (co-state) as qt . Using the Pontryagin’s minimum
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principle, (ρt ,qt) satisfy the following Hamilton’s equations:

∂ρt

∂ t
=

∂H

∂q
(ρt ,qt ,ut), ρ0 = p∗0,

∂qt

∂ t
=−∂H

∂ρ
(ρt ,qt ,ut), qT =

∂

∂ρ

(
β

∫
h(x)ρ(x)dx

)
,

0 = H(ρt ,qt ,ut) = min
v∈L2

H(ρt ,qt ,v).

The calculus of variation argument in the proof of Theorem 3.2 shows that the minimizing control ut

solves the first order optimality equation

1
ρt

∇ · (ρtut) = qt − q̂t , (B.7)

where q̂t :=
∫
qt(x)ρt(x)dx.

The explicit form of the Hamilton’s equations are obtained by explicitly evaluating the derivatives along

the optimal trajectory:

∂H

∂q
(ρt ,qt ,ut) =−∇ · (ρtut),

∂H

∂ρ
(ρt ,qt ,ut) =

β 2

2
(h− ĥt)

2− 1
2
(qt − q̂t)

2.

It is easy to verify that qt ≡ βh(x) satisfies both the boundary condition and the evolution equation for

the momentum. This results in a simpler form of the Hamilton’s equations:

∂ρt

∂ t
=−∇ · (ρtut),

0 = H(ρt ,βh,ut) = min
v∈L2

H(ρt ,βh,v).

In a particle filter implementation, the minimizing control ut = −∇φ is obtained by solving the first

order optimality equation (B.7) with qt = βh.

B.4 Exactness and Convergence

Before proving the Theorem 3.4, we state and prove the following technical Lemma:
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Lemma B.1 Suppose the prior density p∗0(x) satisfies Assumption 3.1 and the objective function h(x) satis-

fies Assumption 3.2. Then for each fixed time t ≥ 0:

(i) The posterior density p∗(x, t), defined according to (3.1), admits a spectral bound;

(ii) The objective function h ∈ L2(Rd ; p∗(·, t)).

Proof B.1 Define Vt(x) := − log p∗(x, t) = V0(x)+ tβh(x)+ γt where γt := log(
∫

e−V0(y)−th(y) dy). It is di-

rectly verified that Vt ∈C2 with D2Vt ∈ L∞ and liminf|x|→∞ ∇Vt(x) · x
|x| = ∞. Therefore, the density p∗(x, t)

admits a spectral bound [Thm 4.6.3 in [6]]. The function h is square-integrable because

∫
|h(x)|2 p∗(x, t)dx≤ e−β th̄−γt

∫
|h(x)|2e−V0(x) dx < ∞.

�

Proof of Theorem 3.4: Given any C1 smooth and compactly supported (test) function f , using the elemen-

tary chain rule,

d f (X i
t ) =−β∇φ(X i

t ) ·∇ f (X i
t ).

On integrating and taking expectations,

E[ f (X i
t )] = E[ f (X i

0)]−β

∫ t

0
E[∇φ(X i

s) ·∇ f (X i
s)]ds

= E[ f (X i
0)]−β

∫ t

0
E[(h(X i

s)− ĥs) f (X i
s)]ds, (B.8)

which is the weak form of the replicator pde (3.8). Note that the weak form of the Poisson equation (4.11)

is used to obtain the second equality. Since the test function f is arbitrary, we conclude that the evolution of

p and p∗ are identical by comparing the equations (B.4) and (B.8). That the control function is well-defined

for each time follows from Theorem 4.1 based on apriori estimate of h and the spectral bound in Lemma B.1

for p = p∗.

The convergence proof is presented next. The proof here is somewhat more general than needed to prove

the Theorem. For a function h, we define the minimizing set:

A0 := {x ∈ Rd | h(x) = h̄},
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where it is recalled that h̄ = infx∈Rd h(x). In the following it is shown that for any open neighborhood U of

A0,

liminf
t→∞

∫
U

p(x, t)dx = 1. (B.9)

It then follows that X i
t converges in distribution where the limiting distribution is supported on A0 [Thm.

3.2.5 in [52]]. If the minimizer is unique (i.e., A0 = {x̄}), X i
t converges to x̄ in probability.

The key to prove the convergence is the following property of the function h:

(P1): For each δ > 0, ∃ ε > 0 such that:

|h(x)− h̄| ≤ ε ⇒ dist(x,A0)≤ δ ∀x ∈ Rd ,

where dist(x,A0) denotes the Euclidean distance of point x from set A0. If the minimizer x̄ is unique, it

equals |x− x̄|.

Any lower semi-continuous function satisfying Assumption 3.3 also satisfies the property (P1): Suppose

{xn} is a sequence such that h(xn)→ h̄. Then {xn} is compact because h(x)> h̄+ r outside some compact

set. Therefore, the limit set is non-empty and because h is lower semi-continuous, for any limit point z,

h̄≤ h(z)≤ liminfxn→z h(xn) = h̄. That is, z ∈ A0.

The proof for (B.9) is based on construction of a Lyapunov function: Denote Aε := {x ∈ Rd | h(x) ≤

h̄ + ε} where ε > 0. By property (P1), given any open neighborhood U containing A0, ∃ ε > 0 such

that Aε ⊂U . A candidate Lyapunov function VAε
(µ) := −β−1 log(µ(Aε)) is defined for measure µ with

everywhere positive density. By construction VAε
(µ)≥ 0 with equality iff µ(Aε) = 1.

Let µt be the probability measure associated with p(x, t), i.e, µt(B) :=
∫

B p(x, t)dx for all Borel measur-

able set B⊂ Rd . Since p(x, t) is a solution of the replicator pde,

d
dt

VAε
(µt) =

d
dt

[
− 1

β
log(µt(Aε))

]
=

1
µt(Aε)

∫
Aε

(h(x)− ĥt)dµt(x)

= (1−µt(Aε))

(∫
Aε

hdµt

µt(Aε)
−
∫

Ac
ε
hdµt

µt(Ac
ε)

)
≤ 0
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with equality iff µt(Aε) = 1.

For the objective function h, a direct calculation also shows:

d
dt

∫
h(x)p(x, t)dx =−β

∫
h(x)(h(x)− ĥt)p(x, t)dx

=−β

∫
(h(x)− ĥ)2 p(x, t)dx≤ 0,

with equality iff h = ĥ almost everywhere (with respect to the measure µt). �

B.5 Quadratic Gaussian Case

Proof of Lemma 3.2: We are interested in obtaining an explicit solution of the Poisson equation,

−∇ · (ρ(x)∇φ(x)) = (h(x)− ĥ)ρ(x). (B.10)

Consider the solution ansatz:

∇φ(x) = K(x−m)+b, (B.11)

where the matrix K= KT ∈ Rd×d and the vector b ∈ Rd are determined as follows:

(i) Multiply both sides of (B.10) by vector x and integrate (element-by-element) by parts to obtain

b =
∫

x(h(x)− ĥ)ρ(x)dx. (B.12)

(ii) Multiply both sides of (B.10) by matrix (x−m)(x−m)T and integrate by parts to obtain

ΣK+KΣ =
∫
(x−m)(x−m)T (h(x)− ĥ)ρ(x)dx. (B.13)

We have thusfar not used the fact that the density ρ is Gaussian and the function h is quadratic. In the

following, it is shown that the solution thus defined in fact solves the pde (B.10) under these conditions.

A radially unbounded quadratic function is of the general form:

h(x) =
1
2
(x− x̄)T H(x− x̄)+ c
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where the matrix H = HT � 0 and c is some constant. For a Gaussian density ρ with mean m and variance

Σ� 0, the integrals are explicitly evaluated to obtain

b =
∫

x(h(x)− ĥ)ρ(x)dx = ΣH(m− x̄), (B.14a)

ΣK+KΣ =
∫
(x−m)(x−m)T (h(x)− ĥ)ρ(x)dx = ΣHΣ. (B.14b)

A unique positive-definite symmetric solution K exists for the Lyapunov equation (B.14b) because Σ � 0

and ΣHΣ� 0 [50].

On substituting the solution (B.11) into the Poisson equation (B.10) and dividing through by ρ , the two

sides are:

− 1
ρ

∇ · (ρ∇φ) = (x−m)T
Σ
−1(K(x−m)+b)− tr(K),

h− ĥ =
1
2
(x− x̄)T H(x− x̄)− 1

2
(m− x̄)T H(m− x̄)− 1

2
tr(HΣ).

where tr(·) denotes the matrix trace. Using formulae (B.14a)-(B.14b) for b and K, the two sides are seen to

be equal. �

Proof of Proposition 3.1: Using the affine control law (3.16), the particle filter is a linear system with a

Gaussian prior:
dX i

t

dt
=−βKt(X i

t −mt)−βbt , X i
0 ∼N (m0,Σ0). (B.15)

Therefore, the density of X i
t is Gaussian for all t > 0. The evolution of the mean is obtained by taking an

expectation of both sides of the ode (B.15):

d
dt
E[X i

t ] =−βbt =−βE[X i
t (h(X

i
t )− ĥt)],

where (3.17) is used to obtain the second equality. The equation for the variance Σt of X i
t is similarly

obtained:

dΣt

dt
=−β (KtΣt +ΣtKt)

=−βE
[
(X i

t −mt)(X i
t −mt)

T (h(X i
t )− ĥt)

]
,
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where (3.18) has been used. �

Proof of Corollary 3.1: The closed-form odes (3.20a) and (3.20b) are obtained by using explicit formu-

lae (B.14a) and (B.14b) for b and K, respectively. The explicit formulae of mt and Σt (3.21) are obtained by

inspecting the Bayes’ model (3.1) that yields a Gaussian distribution at any time t when h takes the assumed

quadratic form. Direct calculation shows that the solution (3.21) solves the odes (3.20a) and (3.20b). �

B.6 Parametric Case

Proof of Theorem 3.2: The natural gradient ode (3.26) is obtained by applying the chain rule. In its

parameterized form, the density p(x, t) =% (x;θt) evolves according to the replicator pde:

∂ %

∂ t
(x;θt) =−β (h(x)− ĥt) % (x;θt).

Now, using the chain rule,

∂ %

∂ t
(x,θt) =% (x,θt)

[
∂

∂ϑ
(log % (x;θt))

]T dθt

dt
,

where ∂

∂ϑ
(log %) and dθt

dt are both M×1 column vectors. Therefore, the replicator pde is given by

[
∂

∂ϑ
(log % (x;θt))

]T dθt

dt
% (x;θt) =−β (h(x)− ĥt) % (x;θt).

Multiplying both sides by the column vector ∂

∂ϑ
(log %), integrating over the domain, and using the defini-

tions (3.24) of the Fisher information matrix G and (3.25) for ∇e, one obtains

G(θt)
dθt

dt
=−β∇e(θt).

The ode (3.26) is obtained because G is assumed invertible. �
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Appendix C

Proof for Chapter 4

C.1 Proof of Theorem 4.1

Define the inner product on H1
0 (G;π),

〈φ ,ψ〉H := π
(
〈grad(φ),grad(ψ)〉

)
.

On account of the Poincaré inequality (4.3), the norm defined by the inner product 〈·, ·〉H is equivalent to

the standard norm in H1(G;π).

Consider the Poisson equation (4.1). Using (4.3) and Assumption 4.1,

|π
(
(h− ĥ)ψ

)
|2 ≤ π

(
|h− ĥ|2

)
π
(
|ψ|2

)
≤C π

(
|grad(ψ)|2

)
,

where C is a constant. That is, the integral on the right-hand-side of (2.22) is a bounded linear functional

for ψ ∈ H1
0 (G;π).

It then follows from the Riesz representation theorem (Section 2.4 in [23]) that there exists a unique

φ ∈ H1
0 (G;π) such that

〈φ ,ψ〉H = π
(
(h− ĥ)ψ

)
for all ψ ∈ H1

0 (G;π). In addition, this formula also holds if any constant is added to ψ , thus it holds for all

ψ ∈ H1(G;π). That is, the Poisson equation (2.22) has a unique solution.

Let φ be a weak solution of the Poisson equation (2.22). On taking ψ = φ and using the Poincaré
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inequality, we have,

π
(
|grad(φ)|2G

)
= π

(
(h− ĥ)φ

)
≤
(

π
(
|h− ĥ|2

)) 1
2
(

π
(
|φ |2

)) 1
2

≤
(

π
(
|h− ĥ|2

)) 1
2
( 1

λ̄
π
(
|grad(φ)|2G

)) 1
2
,

and the estimate (4.4) follows.

By the definition of the gain function grad(φ)(x)= xK(x) (see (2.23)) and the fact that |K|G = |grad(φ)|G,

the bound (4.5) is simply an equivalent form of the estimate (4.4).

The bound (4.6) is obtained as follows: Using the definition (2.25) of the control function u,

π
(
∑
n
|un|
)
=

1
2

π
(
∑
n
|kn||h+ ĥ|

)
≤
(

π
(
|(h+ ĥ)|2

)
π
((

∑
n
|kn|
)2)) 1

2

≤C
(

π
(
|(h+ ĥ)|2

)
π
(
∑
n
|kn|2

)) 1
2

=C
(

π
(
|(h+ ĥ)|2

)
π
(
|K|2G

)) 1
2

(4.5)
≤ C

(
π
(
|(h+ ĥ)|2

)
π
(
|(h− ĥ)|2

)) 1
2

≤C π
(
|h|2
)
,

where the Cauchy-Schwarz inequality is used in the second and third inequality, and the definition |K|2G =

∑n |kn|2 is also used where (k1, ...,kd) are the coordinates of K. The constant C is generic in the proof. �

C.2 Galerkin Approximation Error

Spectral representation: Under Assumption that the Lie group is compact and the density is everywhere

positive, the spectrum of −∆ρ is known to be discrete with an ordered sequence of eigenvalues 0 = λ0 <

λ1 ≤ λ2 ≤ . . . and associated eigenfunctions {el}∞
l=1 that form a complete orthonormal basis of L2(G,π)
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[154, 29]. As a result, for k, l ∈ Z+:

〈ek,el〉= δkl, π
(
〈grad(ek),grad(el)〉

)
= λk δkl, (C.1)

where the second equation follows from integration by parts and using the first equation. The trivial eigen-

value λ0 = 0 with associated eigenfunction e0(x) = 1. On the subspace of zero-mean functions, the spectral

representation yields: For φ ∈ L2
0(Rd ,ρ),

−∆ρφ(x) =
∞

∑
l=1

λl〈el,φ〉el(x). (C.2)

Proof of Proposition 4.1: The property (C.1) of the basis implies that A = diag(λ1, ...,λL). Hence, the

matrix equation (4.8) has a unique solution.

To prove the error bound, by the triangle inequality,

‖K−K(L,N)‖G ≤ ‖K−K(L)‖G︸ ︷︷ ︸
bias

+ ‖K(L)−K(L,N)‖G .

The estimates for the bias and for the error due to the empirical approximation are as below. In the remainder

of the proof, denote h̃ := h− ĥ.

Bias: Using the spectral representation (C.2), because h̃ ∈ L2
0,

φ =−∆
−1
ρ (h̃) =

∞

∑
l=1

1
λl
〈el, h̃〉el.

With basis functions as eigenfunctions, φ (L) = ∑
L
l=1 κlel . Substituting this into the weak form (4.7) and

letting ψ be the eigenfunctions {el}L
l=1, we obtain

φ
(L) =

L

∑
l=1

1
λl
〈el, h̃〉el.
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Therefore, using the definition of inner product (2.8),

‖K−K(L)‖2
G = ‖grad(φ)−grad(φ (L))‖2

G =
∞

∑
l=L+1

1
λ 2

l
|〈el, h̃〉|2‖grad(el)‖2

G

=
∞

∑
l=L+1

1
λ 2

l
|〈el, h̃〉|2λl ≤

1
λL
‖h̃−ΠS h̃‖2

2,

where ΠS h̃(x) := ∑
L
l=1〈el, h̃〉el(x) denotes the projection of h̃ onto S.

Empirical error: Suppose {X i}N
i=1 are drawn i.i.d. from the distribution π . The empirical solution is

obtained as:

φ
(L,N)(x) =

L

∑
l=1

1
λl

(
1
N

N

∑
i=1

el(X i)h̃(X i)

)
el(x),

and the error,

φ
(L)(x)−φ

(L,N)(x) =
L

∑
l=1

1
λl

z(N)
l el(x),

where z(N)
l := 〈el, h̃〉− 1

N ∑
N
i=1 el(X i)h̃(X i). Therefore,

‖K(L)−K(L,N)‖2
G =

L

∑
l=1

1
λl
|z(N)

l |
2 =: ε

2
N , (C.3)

where π(〈grad(ek),grad(el)〉 = λkδkl is used to simplify the cross-terms. Finally, by applying the Law of

Large Numbers (LLN) for the random variable z(N)
l , εN

a.s.→ 0 as N→ ∞. The LLN applies because

E[|el(X i)h̃(X i)|]≤ ‖el‖2 ‖h̃‖2 = ‖h̃‖2 < ∞,

where ‖h̃‖2 < ∞ due to Assumption 4.1. This completes the proof of (4.9).

Variance: Under additional restrictions on h, one can obtain sharper estimates. For example, taking the

expectation of both sides of (C.3) with respect to the joint distribution of the i.i.d. samples {X i}N
i=1,

E[‖K(L)−K(L,N)‖2
G ] =

L

∑
l=1

E[|z(N)
l |2]
λl

.
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Now, E[|z(N)
l |2] =

Var(el(X i)h̃(X i))
N . Therefore, supposing h̃ ∈ L∞,

E[‖K(L)−K(L,N)‖2
G ]≤

‖h̃‖2
∞

N

L

∑
l=1

1
λl
,

because Var(el(X i))≤ π(e2
l ) = 1.

In summary, for bounded functions h,

E[‖K−K(L,N)‖G ] ≤
‖h̃−ΠSh̃‖2√

λL︸ ︷︷ ︸
bias

+
‖h̃‖∞√

N

√
L

∑
l=1

1
λl︸ ︷︷ ︸

variance

. �

C.3 Basis Functions on SO(3)

The eigenfunctions of the Laplacian on SO(3) are determined by the matrix elements of the irreducible

unitary representations of SO(3) (see Sec. 9.3 in [37]). The eigenfunctions associated with the smallest

non-zero eigenvalue are tabulated in Table C.1, expressed using both the rotation matrix and the quaternion.

In order to compute the matrix A in the Galerkin gain function approximation, the formulae for E1 ·ψl, E2 ·

ψl and E3 ·ψl are also provided, where {E1, E2, E3} denote the basis of so(3) given by (2.13).

A detailed derivation of the basis functions in Table C.1 is provided in [37], [69], and is briefly summa-

rized as follows: The complete set of irreducible unitary representations of SO(3) is given by the matrices

{Dl}l∈N, where each Dl is a (2l + 1)× (2l + 1) matrix whose elements, Dl
k,m, are called the Wigner D-

functions of degree l and orders k and m (−l ≤ k,m ≤ l). By the Peter-Weyl theorem, the entire set of

Wigner D-functions constitute the orthogonal basis of L2(SO(3)). In addition, for each l, the (2l +1)2 ele-

ments of Dl form the complete set of orthogonal basis for the eigenspace of the Laplacian operator on SO(3)

associated with the eigenvalue λl = l(l +1), i.e., −∆Dl
k,m = l(l +1)Dl

k,m.

Using the ZXZ Euler angles (α,β ,γ) (spin, nutation, and precession angle), the Wigner D-functions of

degree l have the explicit expression,

Dl
k,m(α,β ,γ) = Pl

k,m
(

cos(β )
)

e−i(kα+mγ), (C.4)
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Table C.1: Basis functions on SO(3)

expression in R expression in q E1· E2· E3·
ψ1 R33 2(q2

0 +q2
3)−1 2(−q0q1−q2q3) 2(−q0q2 +q1q3) 0

ψ2 R13 2(q0q2 +q1q3) 2(q0q3−q1q2) 2(q2
0 +q2

1)−1 0
ψ3 −R23 2(q0q1−q2q3) 2(q2

0 +q2
2)−1 2(−q0q3−q1q2) 0

ψ4 R31 2(−q0q2 +q1q3) 0 −2(q2
0 +q2

3)+1 2(q0q1 +q2q3)

ψ5 R32 2(q0q1 +q2q3) 2(q2
0 +q2

3)−1 0 2(q0q2−q1q3)

ψ6 (1/2)(R21−R12) 2q0q3 −q0q2−q1q3 q0q1−q2q3 q2
0−q2

3
ψ7 (1/2)(R11 +R22) q2

0−q2
3 −q0q1 +q2q3 −q0q2−q1q3 −2q0q3

ψ8 (1/2)(R21 +R12) 2q1q2 q0q2 +q1q3 q0q1−q2q3 q2
2−q2

1
ψ9 (1/2)(R11−R22) q2

1−q2
2 q0q1−q2q3 −q0q2−q1q3 2q1q2

where the polynomials Pl
k,m are given by (here t = cos(β )),

Pl
k,m(t) =C (1− t)−

m−k
2 (1+ t)−

m+k
2

d l−m

dt l−m

(
(1− t)l−k (1+ t)l+k),

with constant

C =
(−1)l−k im−k

2 l (l− k)!

√
(l− k)!(l +m)!
(l + k)!(l−m)!

.

Note that the pair of Wigner D-functions Dl
k,m and Dl

−k,−m gives rise to the pair of basis functions,

Pl
k,m
(

cos(β )
)

sin(kα +mγ), Pl
k,m
(

cos(β )
)

cos(kα +mγ).

The nine basis functions in Table C.1 are then obtained by letting l = 1, evaluating the polynomials P1
k,m

(k,m ∈ {−1,0,1}), and expressing the basis functions using the rotation matrix according to the conversion

formula,

R(α,β ,γ) =


cα cγ − sα cβ sγ −cα sγ − sα cβ cγ sα sβ

sα cγ + cα cβ sγ −sα sγ + cα cβ cγ −cα sβ

sβ sγ sβ cγ cβ

 ,
where sα := sin(α), cα := cos(α), and the same notation is used for β and γ .

The Galerkin scheme can also be attempted using a subset of the basis functions in Table C.1 and their

combinations. For example, the basis {ψ1, ψ2, ..., ψ7} produce the following four basis,

ϕ1 = 2q0 q1, ϕ2 = 2q0 q2, ϕ3 = 2q0 q3, ϕ4 = 2q2
0−1.
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Indeed, ϕ1 = 1
2(ψ3 +ψ5), ϕ2 = 1

2(ψ2−ψ4), ϕ3 = ψ6, and ϕ4 = 1
2 ψ1 +ψ7− 1

2 . Using the definition of

quaternion (2.15), these four basis functions are also written as,

ψ1 = ω1 sin(θ), ψ2 = ω2 sin(θ), ψ3 = ω3 sin(θ), ψ4 = cos(θ),

which form a natural extension of the basis functions on SO(2) given by (4.10). �
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Appendix D

Proof for Chapter 7

D.1 Density Projection for Gaussians

Recall that, given the samples {X i
n}N

i=1 at the n-th time step, the parameter update using the density projection

entails solving the following optimization problem with respect to the parameter θ ,

θn+1 := arg max
θ∈Θ

N

∑
i=1

wi
n log q(X i

n;θ), (D.1)

where

wi
n ∝

p∗n+1(X
i
n)

q(X i
n;θn)

,
N

∑
i=1

wi
n = 1.

When the density q(x;θ) is chosen as Gaussian, i.e.,

q(x;θ) =
1

(2π)d/2|Σ|
exp
(
− 1

2
(x−µ)T

Σ
−1(x−µ)

)
,

closed-form solution of (D.1) for the updated mean µn+1 and covariance Σn+1 can be obtained as follows:

The objective function in (D.1) is expanded as,

l(θ) :=
N

∑
i=1

wi
n log q(X i

n;θ)

=−1
2

N

∑
i=1

wi
n log(|Σ|)− 1

2

N

∑
i=1

wi
n(X

i
n−µ)T

Σ
−1(X i

n−µ)+ (const.) (D.2)

Since the objective function is quadratic, the optimal solution of µn and Σn is obtained by solving the first-

order condition:
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1) The derivative of l(θ) with respect to µ is given by,

∂ l(θ)
∂ µ

=
N

∑
i=1

wi
n Σ
−1(X i

n−µn).

Setting ∂ l(θ)
∂ µ

= 0, we obtain

µn+1 =
N

∑
i=1

wi
n X i

n.

2) We calculate the derivative of l(θ) with respect to Σ−1. First,

∂ log(|Σ|)
∂Σ−1 =−∂ log(|Σ−1|)

∂Σ−1 =−Σ, (D.3)

where we used the fact that |A|= 1/|A−1| and ∂ log(|A|)
∂A = A−T for an invertible matrix A. Secondly,

∂
[
(X i

n−µn+1)
T Σ−1(X i

n−µn+1)
]

∂Σ−1

=
∂
[
Tr
(
(X i

n−µn+1)
T Σ−1(X i

n−µn+1)
)]

∂Σ−1

=
∂
[
Tr
(
Σ−1(X i

n−µn+1)(X i
n−µn+1)

T
)]

∂Σ−1

=(X i
n−µn+1)(X i

n−µn+1)
T , (D.4)

where we used the fact that Tr(AB) = Tr(BA) and ∂ (Tr(AB))
∂A = BT for two matrices A and B. Using the

formulas (D.2), (D.3) and (D.4), we obtain,

∂ l(θ)
∂Σ−1 =

1
2

N

∑
i=1

wi
n Σ− 1

2

N

∑
i=1

wi
n(X

i
n−µn+1)(X i

n−µn+1)
T .

Setting ∂ l(θ)
∂Σ−1 = 0, we obtain,

Σn+1 =
N

∑
i=1

wi
n (X

i
n−µn+1)(X i

n−µn+1)
T .

The derivation in this section is similar to obtaining the maximum likelihood estimation for Gaussian

distributions. The formulae for the relevant matrix derivatives can be found in [142]. �
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[127] I. Marković, J. Ćesić, and I. Petrović. On wrapping the Kalman filter and estimating with the SO(2)
group. In Proc. 19th Int. Conf. Inform. Fusion (FUSION), pages 2245–2250, 2016.

[128] S. Martin, R. Pinnau, C. Totzeck, and O. Tse. A consensus-based model for global optimization and
its mean-field limit. arXiv preprint:1604.05648, 2016.

[129] Y. Matsuura, R. Ohata, K. Nakakuki, and R. Hirokawa. Suboptimal gain functions of feedback
particle filter derived from continuation method. In AIAA Guid. Nav. Control Conf., 2016.
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