
© 2017 by Jianjun Hu. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158321512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

STATISTICAL METHODS FOR LEARNING SPARSE FEATURES

BY

JIANJUN HU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Statistics

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

Professor Feng Liang, Chair
Professor Douglas G. Simpson
Professor Xiaofeng Shao
Professor Xiaohui Chen

Abstract

With the fast development of networking, data storage, and the data collection capacity, big data

are now rapidly expanding in all science and engineering domains. When dealing with such data, it

is appealing if we can extract the hidden sparse structure of the data since sparse structures allow us

to understand and interpret the information better. The aim of this thesis is to develop algorithms

that can extract such hidden sparse structures of the data in the context of both supervised learning

and unsupervised learning.

In chapter 1, this thesis first examines the limitation of the classical Fisher Discriminant Analysis

(FDA), a supervised dimension reduction algorithm for multi-class classification problems. This

limitation has been discussed by Cui (2012), and she has proposed a new objective function in her

thesis, which is named Complementary Dimension Analysis (CDA) since each sequentially added

new dimension boosts the discriminative power of the reduced space. A couple of extensions of CDA

are discussed in this thesis, including sparse CDA (sCDA) in which the reduced subspace involves

only a small fraction of the features, and Local CDA (LCDA) that handles multimodal data more

appropriately by taking the local structure of the data into consideration. A combination of sCDA

and LCDA is shown to work well with real examples and can return sparse directions from data

with subtle local structures.

In chapter 2, this thesis considers the problem of matrix decomposition that arises in many real

applications such as gene repressive identification and context mining. The goal is to retrieve a multi-

layer low-rank sparse decomposition from a high dimensional data matrix. Existing algorithms are all

sequential algorithms, that is, the first layer is estimated, and then remaining layers are estimated

one by one, by conditioning on the previous layers. As discussed in this thesis, such sequential

approaches have some limitations. A new algorithm is proposed to address those limitations, where

all the layers are solved simultaneously instead of sequentially.

The proposed algorithm in chapter 2 is based on a complete data matrix. In many real appli-

ii

cations and cross-validation procedures, one needs to work with a data matrix with missing values.

How to operate the proposed matrix decomposition algorithm when there exist missing values is the

main focus of chapter 3. The proposed solution seems to be slightly different from some existing

work such as penalized matrix decomposition (PMD).

In chapter 4, this thesis considers a Bayesian approach to sparse principal component analysis

(PCA). An efficient algorithm, which is based on a hybrid of Expectation-Maximization (EM) and

Variational-Bayes (VB), is proposed and it can be shown to achieve selection consistency when both

p and n go to infinity. Empirical studies have demonstrated the competitive performance of the

proposed algorithm.

iii

To my beloved parents, for their love and support.

iv

Acknowledgments

This dissertation would never been possible without the support of many people.

I would like to express my sincere gratitude to my advisor Professor Feng Liang. Her guidance

enlightened me with the first glance of research; her innovative ideas inspired me to explore new

research directions perseveringly; her patience and positive attitude helped me overcome the hard

time; her honesty and sense of responsibility taught me to be a better man in my lifetime.

Besides my advisor, I am also grateful to the rest of my thesis committee members: Professors

Douglas Simpson, Xiaofeng Shao and Xiaohui Chen, for their insightful perspectives and suggestions

on my dissertation. Meanwhile, I really appreciate Dr. Na Cui’s contribution on complementary

discriminant analysis algorithm in Chapter 1.

Furthermore, I want to thank Department of Statistics providing me a learning opportunity as

well as a homelike atmosphere. My sincere thanks also go to Professor Yuguo Chen, Annie Qu,

John Marden and Adam Martinsek who offered me orientations and advices during my master and

PhD journey. Truly thanks to faculties Darren Glosemeyer and David Unger for their generous help

on my TA assignments for multiple semesters and to staff Melissa Banks who gave access to useful

information and logistical convenience. I also appreciate the cherish friendship coming from the

fellow students in Statistics and Mathematics departments.

Last but not the least, special thanks should be given to my parents. I always gain confidence

through their selfless love and generous supports when facing difficulties and enjoy the blessed

moments shared with them together.

v

Table of Contents

List of Tables . viii

List of Figures . ix

Chapter 1 Sparse Dimension Reduction . 1
1.1 Introduction . 1
1.2 Sparse CDA . 3

1.2.1 Methodology . 4
1.2.2 Experiments: Toy Data with Noise . 6

1.3 Swiss Roll with Local CDA . 9
1.3.1 Local CDA . 9
1.3.2 Experiment Results . 12

1.4 Penicillium Data . 12
1.5 Discussion . 17

Chapter 2 Sparse Matrix Decomposition: A Regularization Method 18
2.1 Introduction . 18

2.1.1 Limitations . 23
2.2 Multi Layers Sparse Decomposition . 25

2.2.1 Objective Function . 25
2.2.2 A Generic Tool . 25
2.2.3 Choice of Tuning . 28
2.2.4 Algorithm . 30

2.3 Refitting to Control Bias . 30
2.4 Choice of Total Layers Number . 32
2.5 Experiment Study . 32

2.5.1 Toy Example . 32
2.5.2 Food Example . 36

Chapter 3 Sparse Matrix Decomposition with Missing Data 39
3.1 Introduction . 39
3.2 Methodology . 40
3.3 Comparison between two methods . 49
3.4 Simulation . 50

Chapter 4 A Bayesian Algorithm for Sparse Principle Components Analysis . . 53
4.1 Introduction . 53
4.2 Methodology . 58

4.2.1 Model Setting and Priors . 58
4.2.2 A Variational Algorithm . 59

vi

4.2.3 Parameter tuning . 62
4.2.4 Two-stages Method . 64

4.3 Selection and Consistency . 65
4.3.1 Asymptotic consistency when p is fixed . 65
4.3.2 Asymptotic consistency when p →∞ and p/n→ 0 68

4.4 Numerical Results . 69
4.4.1 Three-peaks single principal component . 69
4.4.2 Two sparse principal components . 72
4.4.3 High dimension low sample size setting . 73

Appendix A Supplementary Material for Chapter 1 75
A.1 Proof of Preposition 1.1 . 75
A.2 Proof of Preposition 1.2 . 77

Appendix B Supplementary Material for Chapter 2 78
B.1 Proof of Theorem 2.1 . 78

Appendix C Supplementary Material for Chapter 3 80
C.1 Method dealing with s < n case for M2(r) in Chapter 3 80

Appendix D Supplementary Material for Chapter 4 83
D.1 Derivation of parameter updating of sPCA-VB algorithm 83
D.2 Proof of Theorem 4.1 . 88

References . 90

vii

List of Tables

1.1 The first two directions retrived by applying CDA and sCDA (two cases with different
values of λ1) to toy data example with three extra noise dimensions. 9

1.2 The first two directions retrieved by CDA and sLCDA for swiss roll data with three
extra noise dimensions. 12

1.3 Classification error on testing set for SDA and sCDA. 14
1.4 Non-zero coefficient ID of projection directions for SDA and sCDA with setup 1. 1st

and 2nd represent the first and second retrieved directions. 14
1.5 Non-zero coefficient ID of projection directions for SDA and sCDA with setup 2. 1st

and 2nd represent the first and second retrieved directions. 17

2.1 Food groups in first three layer estimations . 38

3.1 Sparse decomposition solutions using our method corresponding to different missing
patterns on a toy data example. The true signal area is a block formed by column 3
to 6 and row 2 to 5, and data missing happens in column 3 and 4 of the signal block. 52

4.1 ASE with 50 iterations using different PCA methods with and without wavelet pre-
transformation . 71

4.2 Two sparse principal components example with p = 10 and n = 30, 300. Median
angles between estimated v̂1 and v1, v̂2 and v2 in degree, percentage of correctly /
incorrectly identified zero coefficients. 73

4.3 High dimension low sample size example with p = 500 and n = 50. Median angles in
degree between estimated v̂1 and v1, v̂2 and v2, percentage of correctly / incorrectly
identified zero coefficients are calculated for comparison between different methods. . 74

viii

List of Figures

1.1 The toy example with a = (−1, 0, 0), b = (1, 0, 0), c = (0, 5, 5) and d = (0, 0, 10). The
projection of the 3-dimensional data onto Z-axis, XY -plane, X-axis and Y -axis are
shown in (ii), (iii), (iv) and (vi) respectively. 2

1.2 Visualization of the data points in the 2-dim reduced subspace derived by PCA, FDA,
SIR, aPAC, CDA and sCDA for the toy example with noise. 8

1.3 3D plot of the Swiss Roll data. There are three colors representing three different
classes. The Black and Red groups have subclasses far away from each other. Two of
the subclasses in Black group also have a shift along y-axis. 10

1.4 Swiss Roll testing data projected onto the 2-dimension subspace by CDA and sLCDA
with different λ1. CDA cannot separate the data well, and sparse LCDA with λ1 =
0.001 has the best performance to recognize the same group with subclass. 13

1.5 Projected testing data onto a 2 dimension subspace by using SDA with setup 1 and
2 in the 2nd experiment. The top three figures are projected whole, training, and
testing data respectively with setup 1. The bottom three figures are projected whole,
training, and testing data respectively with setup 2. Different groups are represented
by points with different colors and shapes. 15

1.6 Projected testing data onto a 2 dimension subspace by using sCDA with setup 1 and
2 in the 2nd experiment. The top three figures are projected whole, training, and
testing data respectively with setup 1. The bottom three figures are projected whole,
training, and testing data respectively with setup 2. Different groups are represented
by points with different colors and shapes. 16

2.1 Two layer sparse matrix decomposition by sequential approach. A is the two-layers
toy data, B is the first layer explored by PMD sparse matrix decomposition algorithm,
C is the second layer sequentially solved by PMD algorithm. 24

2.2 Comparison between estimation and truth on u1 and v1 for the first scenario: In
figure A, blue lines represent each coefficient value for estimation of u1, red lines
represent each coefficient value for the truth u1; In figure B, blue lines represent each
coefficient value for estimation of v1, red lines represent each coefficient value for the
truth v1. The estimations have the similar sparse structure for both u1 and v1. . . . 33

2.3 Comparison between estimation and truth on u1 and v1 for the second scenario: In
figure A, blue lines represent each coefficient value for estimation of u1, red lines
represent each coefficient value for the truth u1; In figure B, blue lines represent each
coefficient value for estimation of v1, red lines represent each coefficient value for the
truth v1. The estimations have a different sparse structure for both u1 and v1. . . . 34

ix

2.4 Comparison between estimation and truth on u1, v1, u2 and v2 for the third scenario:
In figure A, blue lines represent each coefficient value for estimation of u1, red lines
represent each coefficient value for the truth u1; In figure B, blue lines represent each
coefficient value for estimation of v1, red lines represent each coefficient value for
the truth v1; In figure C, blue lines represent each coefficient value for estimation of
u2, red lines represent each coefficient value for the truth u2; In figure D, blue lines
represent each coefficient value for estimation of v2, red lines represent each coefficient
value for the truth v2; The estimations have the similar sparse structure for both u1:2

and v1:2. 35

3.1 Geometric interpretation of solution under case I. The blue line is a 1/4 unit circle
in 1st quadrant. Green, red and purple lines are ellipses with different centers in 1st

quadrant and different major / minor axis. 44
3.2 Geometric interpretation of Theorem 3.1. The blue line is 1/4 unit circle in 1st

quadrant. Green and red lines are ellipses with different centers in 3rd quadrant and
different major / minor axis. 46

3.3 Geometric interpretation of solution under case III. The blue line is a 1/4 unit circle
in 1st quadrant. Green, red and purple lines are ellipses with different centers in 2nd

quadrant and different major / minor axis. 48

4.1 Single principal component for a step function example. (a) Single component ρ.
(b) Sample principal component by sPCA-VB. (c) Sample principal component by
Standard PCA. (d) Sample principal component by Sparse PCA using sparse degree
392. (e) Sample principal component by wavelet-sPCA-VB. (f) Sample principal
component by AsPCA + thresholding. 70

4.2 Boxplots of ASE with 50 iterations using different PCA methods for three-peak single
principal component example . 72

x

Chapter 1

Sparse Dimension Reduction

1.1 Introduction

The goal of dimension reduction (DR) is to find a compact yet informative representation of the

p-dimensional feature vector X via some transformation. For linear methods, it is equivalent to

finding a projection matrix Vp×m = [v1, · · · , vm], which can extract the key information in X by a

m-dimensional summary matrix VtX where m � p. In the setting of supervised learning such as

classification or regression, the projection V is chosen such that VtX keeps the most discriminative

information of the response variable Y .

Most DR algorithms are formulated as a sequential optimization problem with respect to a

function G(·): after l directions have been retrieved, the (l + 1)th direction is retrieved by solving

vl+1 = arg max
v⊥Ml

G(v), (1.1.1)

where Ml denotes the linear space spanned by the previously l directions: v1, . . . , vl. For example,

in Fisher’s Discriminant Analysis (FDA) (Fisher, 1936), we have G(v) = vtBv, where B is between-

class scatter matrix and the data have been normalized so that the within-class scatter matrix is

an identity matrix. The objective function of FDA is a linear function of the L2 norm of the data,

a feature shared by many other DR algorithms. An advantage of such objective functions is that

the solution is in closed form and can be solved by eigen-decomposition. The drawback, however, is

that the retrieved subspace is suboptimal for multi-class classification or regression problems.

In Cui’s thesis (Cui, 2012), she considered a dataset with four classes located in R3 (see Figure

1.1). The data are generated from a mixture of four Gaussian distributions with a common identity

covariance matrix I3 and different mean vectors located at a, b, c, and d, where d is relatively far

away from the others. The first direction chosen by FDA is roughly the Z-axis, which separates all

1

Figure 1.1: The toy example with a = (−1, 0, 0), b = (1, 0, 0), c = (0, 5, 5) and d = (0, 0, 10). The
projection of the 3-dimensional data onto Z-axis, XY -plane, X-axis and Y -axis are shown in (ii),
(iii), (iv) and (vi) respectively.

the classes except classes a and b. The second direction is the X-axis, however, it still leaves class

a and b mixed together. Alternatively, if Y -axis were chosen as the second direction in the reduced

space, then class a and b could be separated.

Cui (2012) pointed out the objective function used by FDA, as well as any objective function

that is a linear function of the L2-norm of the data, tends to: 1) overemphasize directions that

result in large between-class distances but little improvement over the classification accuracy, and 2)

overlook directions that result in a small margin of between-class distances but a big improvement

over the classification accuracy.

Motivated by some earlier works such as Loog and Haeb-Umbach (2001) and Sugiyama (2006),

Cui (2012) proposed a new objective function which is directly linked to the classification accuracy

of the projected data VtX. Suppose we have a K (K > 2) classes dataset, for any pair of classes, i

and j, the corresponding classification accuracy in the reduced subspace VtX is given by

A(‖Vmij‖2) =
1

2
+

1

2
erf

(
‖Vtmij‖

2
√

2

)
,

where mij denotes the pairwise mean difference between class i and class j, and

erf(x) =
2√
π

∫ x

0

e−t
2

dt

is the normal error function. Then the objective function is defined to be averaged classification

2

accuracy for all pairwise classes,

G(V) =

K∑
i,j=1

pipjA(‖Vtmij‖2)), (1.1.2)

where pi is the prior of class i.

This new objective function, however, cannot be solved by eigen-decomposition to have a closed

form. Cui (2012) derived an efficient Complementary Dimensionality Analysis (CDA) algorithm

that sequentially solves this nonlinear objective function.

Algorithm 1.1 CDA Algorithm

1: Step 1 At the (l+1)th step, given previous l solved directions, v1, . . . , vl, form a p× l projection

matrix Vl = [v1, v2, . . . , vl].

2: Step 2 For any pairwise classes i and j, update

3: (a) mij(l) = Vt
lmij and eij(l) = mij −mij(l).

4: (b) b
(l)
ij = 1

2‖eij(l)‖2

[
erf
(
‖mij‖
2
√

2

)
− erf

(
‖mij(l)‖

2
√

2

)]
.

5: (c) Sl+1 =
∑K
i,j=1 pipjb

(l)
ij eij(l)e

t
ij(l).

6: Step 3 Find the 1st eigen-vector of the matrix Sl+1, and set it to be vl+1.

The key motivation of CDA algorithm is that each sequentially added direction should boost the

discriminative power of the reduced space. Specifically, when retrieving the l+1-th direction vl+1, it

works with an updated objective function Gl+1(v) = vtSl+1v so that the solution vl+1 complements

the previously solved directions v1, · · · , vl in terms of classification accuracy. This is why the new

algorithm is named as Complementary Dimensionality Analysis.

1.2 Sparse CDA

Recall the toy example discussed before, where ideally we would like to project the data onto a

two dimensional subspace, with the first direction being the Z-coordinate and the second being the

X-coordinate. When we apply CDA algorithm on this simulated toy data, however, we always end

up obtaining two directions which are close to, but not exactly, the Z and X coordinates.

In this section, we discuss how to retrieve sparse CDA directions. Here “sparse” means the most

loadings of CDA directions are zero, i.e., the discriminant direction only involves a small fraction of

3

the p features. Such an extension is important for many real applications nowadays, which usually

involve a large dimension of features, therefore it is desirable to have an algorithm that can do both

dimension reduction and variable selection.

1.2.1 Methodology

In CDA algorithm, when retrieving the l+ 1th direction vl+1, we calculate the 1st eigen vector of a

each step updated matrix Sl+1. There have been many works on sparse eigen-vectors on a matrix.

Our work is motived by the ideas in Zou et al. (2006) and Shen and Huang (2008). In our proposed

method, we first establish a connection between eigen-decomposition solution on a data matrix and

an OLS model, and then we achieve sparsity by introducing an L1 penalty on the estimated direction

at each step. We start to review the connection between estimating the 1st eigen-vector and OLS

in the following proposition.

Proposition 1.1. Suppose S is a p× p positive definite matrix with an unique largest eigen value.

Let α, β ∈ Rp and α̂, β̂ are solved through

(α̂, β̂) = arg min
α,β
‖S − αβt‖2F (1.2.1)

subject to ‖α‖2 = 1,

where ‖ ·‖2 is the L2 norm for a vector, and ‖ ·‖F is the Frobenius norm for a matrix. Then α̂= β̂
‖β‖2

are both eigen vector corresponding to S’s largest eigen value.

Proposition 1.1 is proved in the Appendix. To achieve sparsity on the direction β, we add a L1

penalty to the objective function (1.2.1) and the optimization problem becomes

(α̂, β̂) = arg min
α,β
‖S − αβt‖2F + λ‖β‖1 (1.2.2)

subject to ‖α‖2 = 1.

where ‖ · ‖1 stands for the L1 norm for a vector.

Again, this problem does not have a closed form solution. Here, we design a two steps interactive

algorithm to solve α and β. Notice that given β, we can ignore the penalty term and the solution

4

of α is retrieved as

α̂ = arg min
‖α‖2=1

‖S − αβt‖2F .

Using Lagrange multipliers method and take a derivative related to α from ‖S−αβt‖2 +γ(‖α‖22−

1), we have

−2(S − αβt)β + 2γα = 0

−2Sβ + βtβα+ 2γα = 0

Therefore, α = Sβ
βtβ+γ = Sβ

‖Sβ‖2 . When given α, there is no obvious way to find the solution of

β̂ = arg minβ ‖S − αβt‖2 + λ‖β‖1, subject to ‖α‖2 = 1. So we first claim the following proposition,

and the problem can be transformed into an easier form.

Proposition 1.2. For a fixed α with constrain ‖α‖ = 1, the penalized L2 norm minimization

problem for β:

β̂ = arg min
β
‖S − αβt‖2 + λ‖β‖1 (1.2.3)

is equivalent to a penalized regression problem with identity design matrix:

β̂ = arg min
β
‖Stα− β‖2 + λ‖β‖1 (1.2.4)

For proposition 1.2, it shows in the Appendix that we could write ‖S − αβt‖2 = ‖Stα −

β‖2 + φ(α), where φ(α) is a function only related to α. So for a fixed α, the solution β̂ =

arg minβ ‖S − αβt‖2 + λ‖β‖1 is the same as the solution of β̂ = arg minβ ‖Sα− β‖2 + λ‖β‖1. No-

tice that the solution of objective function (1.2.4) is a soft thresholding rule on each element of the

ordinary least square estimator β̂OLS = Sα.

Combining the above discussions, we propose a two steps iteration algorithm for sparse CDA as

following.

5

Algorithm 1.2 Sparse CDA (sCDA) Algorithm

1: Initialization: Use the eigen-vector corresponding to the largest eigen value of Sl as the iteration

starting value for α.

2: Update:

• Given α, the solution for j-th element of β is a soft thresholding of β̂j

βj = (|β̂j | − λ/2)+sign(β̂j),

where β̂j is the j-th element of ordinary least square estimation β̂OLS = Stα.

• Given solved β, update the value of α by α = Sβ
‖Sβ‖2 .

3: Repetition: Repeat the two steps in Update procedure until the solution converges.

4: Normalization: Normalize the sparsity defection, i.e. β = β
‖β‖2 .

In our R implementation of this algorithm, we provide two ways to control the sparsity: set the

λ value, or specify the L0 norm of β, i.e., the number of non-zero coefficients.

1.2.2 Experiments: Toy Data with Noise

We first revisit the toy example in the introduction section. To test the performance of our sparse

CDA algorithm, we add three noise dimensions to make a new R6 toy data. We consider a projected

data onto a 2-dim subspace, if the method works well, the solution should explore those three noise

dimensions with 0 coefficients. We apply 6 different algorithms including our sCDA method on

this data and compare all the results in Figure 1.2. Before we explain the results, here is a short

summary of all the methods we use.

• PCA: Principle component analysis (Jolliffe, 2002) is a well know DR technique seeking the

linear combinations of the original variables such that the derived variables capture maximal

variance.

• FDA: Fisher discriminant analysis (Fisher, 1936) is a popular method utilizing the label

information in finding informative projections.

• aPAC: Approximation pairwise accuracy criterion is a method proposed by Loog and Haeb-

Umbach (2001). They define a new objective function based on a weighted variant of the FDA,

6

and the weights approximate the mean accuracy among all pairs of classes.

• SIR: Sliced inverse regression is a dimension reduction method proposed by Li (1991). It

uses the inverse regression curve to perform a weighted principal component analysis, and the

effective dimension reducing directions are then estimated.

• CDA: Complimentary dimension analysis is proposed in Cui’s thesis (Cui, 2012). It defines

an objective function directly linked to the classification accuracy and it sequentially adds

directions boosting the discriminative power of the reduced space.

• sCDA: This is our new algorithm generalizing from CDA, and it can retrieve sparse CDA

directions.

Then we compare the performance of all the methods in Figure 1.2 by showing the data points

in the 2-dim reduced space derived by these methods. Only CDA and SCDA successfully separates

the four classes in a 2-dimension subspace. PCA, FDA, SIR and aPAC separate class c and d away

from others and leave classes a and b mixed together. PCA can not achieve the final goal since

it is a unsupervised learning method. FDA is not optimal due to the discrepancy between the

objective function and the classification accuracy. aPAC also fails even with the revised objective

function, that is because it does not incorporate the influence of the previously found directions

in their algorithm. CDA borrows the idea from aPAC by reconstructing the objective function

directly linked with the classification accuracy. However, different from aPAC which only keeps the

coefficients same in each step, CDA updates the coefficients in the objective function sequentially

by only considering the complementary directions to previous. This updated coefficients help the

method to avoid digging out directions containing similar information in each step.

Meanwhile, if we take look the details of each direction, CDA cannot ignore noise dimensions

and there are the retrieved two directions are not exactly the ideal Z and X axis. We then apply

sCDA with λ1 = 0.01 and λ1 = 0.0001. The sparsity property guarantees that the estimated two

directions do not contain noise dimensions. Furthermore, the larger λ1 case (λ1 = 0.01) leads to

solution Z and X-axis, which exactly match the ideal projection directions. All the CDA and sCDA

results are shown in Table 1.1.

7

−30 −10 10

−5
5

15

PCA

1st direction

2n
d

di
re

tc
tio

n

0 20 40

−2
5

−1
5

−5
5

FDA

1st direction

2n
d

di
re

tc
tio

n

0 20 40

−5
5

15
25

SIR

1st direction

2n
d

di
re

tc
tio

n

−40 −20 0

−5
5

15
25

aPAC

1st direction

2n
d

di
re

tc
tio

n

−40 −20 0

−5
0

5

CDA

1st direction

2n
d

di
re

tc
tio

n

−40 −20 0

−5
0

5

sCDA (lambda=0.01)

1st direction

2n
d

di
re

tc
tio

n

Figure 1.2: Visualization of the data points in the 2-dim reduced subspace derived by PCA, FDA,
SIR, aPAC, CDA and sCDA for the toy example with noise.

8

CDA sCDA, λ1 = 0.0001 sCDA, λ1 = 0.001 sCDA, λ1 = 0.01
1st Dir 2nd Dir 1st Dir 2nd Dir 1st Dir 2nd Dir 1st Dir 2nd Dir

x 0.1693 0.9738 -0.1618 -1 -0.0459 -1 0 -1
y -0.2408 -0.0672 0.2486 0 0 0 0 0
z -0.9506 0.1842 0.9550 0 0.9989 0 1 0

noise1 -0.0715 0.0627 0 0 0 0 0 0
noise2 -0.0454 0.0843 0 0 0 0 0 0
noise3 0.0494 0.0471 0 0 0 0 0 0

Table 1.1: The first two directions retrived by applying CDA and sCDA (two cases with different
values of λ1) to toy data example with three extra noise dimensions.

1.3 Swiss Roll with Local CDA

In CDA algorithm, we assume that data from each class can be well approximated by a Gaussian

distribution, and the center is used to represent each class in our objective function. However, the

Gaussian assumption may not be satisfied in practice. For example, consider a simple situation

where data from a class following a mixture of Gaussian with two components far away from each

other. Then it is no longer suitable to use the class mean to summarize data, instead, a better

summary should be means for each sub-class. This simple case indicates that when data has a local

structure, we may need to find other way to deal with it. There are already several DR methods

dealing with local structure data, like He and Niyogi (2003) and Sugiyama (2007). In this section, we

introduce an extension of CDA algorithm, called Local CDA (LCDA), which measures the accuracy

based on a local classification rule. When we test LCDA on the R3 Swiss Roll data example (the

class setting is shown in Figure 1.3), we also consider adding extra three noise dimensions to form

a R6 new data.

1.3.1 Local CDA

To deal with data having local structure, we first introduce a new modified data set X̃ = (x̃t1, x̃
t
2, ..., x̃

t
n)t,

in which the ith data point is equal to the corresponding class center, that is,

x̃i = myi , yi ∈ {1, 2, ...,K}

9

Figure 1.3: 3D plot of the Swiss Roll data. There are three colors representing three different classes.
The Black and Red groups have subclasses far away from each other. Two of the subclasses in Black
group also have a shift along y-axis.

Then we can rewrite our objective function (1.1.2), which is a summation of all pairwise classes, as

a summation over pairwise data points for this new data matrix X̃.

G(V) =

K−1∑
k=1

K∑
k′=k+1

pkpk′
[1

2
+

1

2
erf
(√‖Vtmkk′‖2

2
√

2

)]

=
1

n2

K−1∑
k=1

K∑
k′=k+1

nknk′
[1

2
+

1

2
erf
(√‖Vtmkk′‖2

2
√

2

)]

=
1

n2

n−1∑
i=1

n∑
j=i+1

I(yi 6= yj)
[1

2
+

1

2
erf
(√‖Vt(x̃i − x̃j‖2

2
√

2

)]

=
1

n2

n−1∑
i=1

n∑
j=i+1

I(yi 6= yj)
[1

2
+

1

2
g(x̃i − x̃j)

]
.

So we can view our CDA objective function as the pairwise classification error for any two data

points from different classes, but before applying CDA, we denoise the data by moving each data

point to its class center.

Naturally, when data in each class cannot be well-approximated by a Gaussian distribution, the

class mean will not be a good summary for each class. Then we should denoise the data by moving

each data point to its local mean, for example, an average over its k nearest neighbors within its

class, and then apply CDA on this new data set. Our Local CDA (LCDA) algorithm uses each kind

of idea and its steps are summarized in the following procedure.

10

Algorithm 1.3 Local CDA (LCDA) Algorithm

1: For each sample (xi, yi), compute

µ̃i,loc =
1

k

∑
j∈si

xj

where si={j: xj belongs to the k nearest neighbors of xi in group yi }.

2: Calculate the objective function

G(V) =
1

n2

n−1∑
i=1

n∑
j=i+1

I(yi 6= yj)
[1
2

+
1

2
g(µ̃i,loc − µ̃j,loc)

]
.

3: Use the sequential method and linear function approximation to get direction v at each step,

i.e., at step l + 1, write µ̃ij = µ̃i,loc − µ̃j,loc, µ̃ij(l) = Vt
l µ̃ij and ẽij(l) = µ̃ij − µ̃ij(l),

Gl+1(v) = G([Vl, v])

=
1

n2

n−1∑
i=1

n∑
j=i+1

I(yi 6= yj)
[1

2
+

1

2
erf
(√‖[Vl, v]t(µ̃i,loc − µ̃j,loc)‖2

2
√

2

)]

=
1

n2

n−1∑
i=1

n∑
j=i+1

I(yi 6= yj)
[1

2
+

1

2
erf
(√‖Vt

l µ̃ij‖2 + ‖vtµ̃ij‖2

2
√

2

)]

=
1

n2

n−1∑
i=1

n∑
j=i+1

I(yi 6= yj)
[1

2
+

1

2
erf
(√‖µ̃ij(l)‖2 + ‖vtẽij(l)‖2

2
√

2

)]

≈ 1

2n2

n−1∑
i=1

n∑
j=i+1

I(yi 6= yj)
[
a

(l)
ij + b

(l)
ij v

tẽij(l)ẽ
t
ij(l)v

]

v = arg max
v

vtSl+1v, where Sl+1 =
1

2n2

n−1∑
i=1

n∑
j=i+1

I(yi 6= yj)b
(l)
ij ẽij(l)ẽ

t
ij(l)

where b
(l)
ij is solved using similar method in algorithm 1.1, and a

(l)
ij is not relevant since the

matrix Sl+1 at each step only depends on b
(l)
ij .

Similarly to sparse CDA, we can also retrieve a sparse solution for the (l + 1)th direction in

LCDA’s third procedure by adding a L1 penalty after Sl+1 is calculated. We call this method

Sparse LCDA (sLCDA).

11

1.3.2 Experiment Results

Simulation shows CDA does not completely separate three groups with a classification error 0.216

on the projected testing data. As we mentioned before, CDA uses the class mean to summarize the

data and the three black binds in swiss roll are far away from each other although they are assigned

in the same group. Therefore, using the whole group’s mean will misinterpret the structure of the

data. Moreover, CDA also does not have the ability to identify the noise directions so that every

noise dimension has non-zero loadings. We also try sparse LCDA (sLCDA) with penalty parameter

λ1 = 0.00001, 0.0001, and 0.001 to the same data. All the results identify noise directions and larger

λ1 provides sparser direction estimations. Especially for λ1 = 0.001, the two projection directions

are exactly X and Z coordinate. It also convinces us that the testing data is better separated onto

the 2-dim subspace by sLCDA than CDA from Figure 1.4.

CDA sLCDA, λ1 = 0.00001 sLCDA, λ1 = 0.0001 sLCDA, λ1 = 0.001
1st Dir 2nd Dir 1st Dir 2nd Dir 1st Dir 2nd Dir 1st Dir 2nd Dir

x 0.1693 0.9738 -0.9645 0 -0.9997 0 -1 0
y -0.2408 -0.0672 0 -0.4846 0 0 0 0
z -0.9506 0.1842 0.2641 -0.8747 0.0237 -1 0 -1

noise1 -0.0715 0.0627 0 0 0 0 0 0
noise2 -0.0454 0.0843 0 0 0 0 0 0
noise3 0.0494 0.0471 0 0 0 0 0 0

Table 1.2: The first two directions retrieved by CDA and sLCDA for swiss roll data with three extra
noise dimensions.

1.4 Penicillium Data

We now analyze a real high-dimensional data related to three species of Penicillium fungi: Melanoconi-

dium, Polonicum, and Venetum. This data has 36 samples (first 12 are P. Melanoconidium species,

13-24 are P. Polonicum species, and the last 12 are P. Venetum species) with 3754 variables extracted

from multi-spectral images of the three species. The data was analyzed before by Clemmensen et al.

(2011) where they proposed a Sparse Discriminant Analysis (SDA) method.

In our simulation study, we first normalize the data to have unit variance for each feature, and

delete features with all 0’s. Then we divide the data into training (24 samples) and testing (12

samples), and apply our sCDA method on the 24 by 3536 training data matrix to retrieve a 2-

12

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2

111111

1

1
1

1

1

1
1

1
11

1

1
1
1
11
1
1
1

1
1
111
1

1

11

1

1

1

11
11

1

1

1

1

1
1

1

1

1

1
111
1
1
111

1

1

1

1

1

1
1

1
1

1

1

1

1
11

1
1
1
1
1

1

1

111
11

1

1

1

1

1

1

111
11

1

1
1

11
11

1

1

111

1

1

1

11
11
1

1

1

111

1

1
1

1

1
1

1

1

1
11
1

11
1
1

1

1
11
1

1

1

11

1
1

11
1
1
1

11

1
111

11
1

1

1 1
1

1

11
11
1

1
11

11

1
1

1

11
1
1

1

1

1

1

1

11

1

1

1
1
1

1

11
11

1

1

1

1

1

1

1

1

1

1

1
1
1
11

1

1
111

1

11

1

1
11
1
11

1
1
1

1

1

1

1

1
1

1

1

1

1

11
111

11

1 1

1

1

1

1
1
1

1

1

1
1
111

11

1

1

11
1

1

11

1

1

1

11

1

1

1

11
1
1

1

1

1

11

11

1

1

1
111

1

11
1
1111

111

1
11

1
1
11

1

1

11

11
1
11

1
1

11
111

1

1
2

2

2

2

2
22
2

2

2

2

2

2

2

2

2

2

2

2

2
2

2
22

2

2

2

2
2
222

2
2

2

2

2

222

2

2222

2

2

22

2

2
2

2

2222
2

22
2

2

22
2

2
22

22
2
2

2

2
2

2

2
2

2
2

22
2

2
2
2

2

2
2
2
2

22

22

2
2

2

2

2
2
2
2
2

22

2

2

2
2
2
2
2

2
22
22
2
2

2

2
2

2

2

22
2

22

22

2

2
2
22

2

2
2

2

2

2
33
3333

333

3

3
3

3
3

3

33
33
33
3
33

33
3

33
3
3

3

3333
33

3

3

33

3

3

3
3
33

3

3
3

3

3

3
3

33
33
3

3

3

33

3

3

3

3

333
3

3
3

3

33
33

CDA

1st direction

2n
d

di
re

tc
tio

n

−2 −1 0 1 2

−
2

−
1

0
1

1111
111
11
1

1
111111

1
1
1
11

1
11
11
1
1

111111
111111

1
1

1
11
1
1

11
11

11111111
1
11

1
1

11
111
1
11
11111111

1111
11
1
1
1

11111
1111
1
1111

1

11
1
1
1
111
1
1

1111
111

1

1
1
1

1
11
1
111
1
111
1
1
1111

111
1111111
1111111111

11
1
11
1
111
1
1

1
1

111
111
1

11
1

1
11
1

1111
111
1

1
1
1
1111

111

1
1111111111

111
1

1111
1
1

111111
1

1
1111
1
111

11
11111

1

1
1
1
1111
11
11
1

11
111
1
1
1
111
11
111
1111111

1111
11
11

11
11
1

11
1
111111
1
111
1
1111
1111
11111111

11111
11

2222222
2
2222
22
2
2222
2 222222

2
2

22222222
22

2
22
22

2
2
2222
222
2

2
2
22
2222222

222
2
2222

22
2
2222

2
222

222

222
2

2
22

2222
2

22
22222
22

2
222222

222222
2

22222
2
22

2222
2

2222
22222

3
3

3333
3

33
3

33333
33
3

3333
3
33
33333
3
3
33
3
3333
3
3333
33333

333333
33333
3

3
3333

3
3

33333333
33
3

SCDA, lambda=0.00001

1st direction
2n

d
di

re
tc

tio
n

−2 −1 0 1 2

−
2

−
1

0
1

1
111

111
11
1

1
111
111
1
1
1
1
11
11
11
1
1
111111

11
11
11
1

1

1

11
1

1

11
11
1111
1
111
1
11
1
1
11
111
1
11
1
1111111

1111
11

1
1
1

11111
11
11
1
1111

1

11
1
1
1
111
1

1
1111
1
11
1

1
1
1
1
11
1
1
1
1
1
1
1111
1111

111
1111111
11
1
11111
11
11
1
11
1
1
111
1
1
1

111
111
1
11
1

1
111

1111
111
1

1
1
1
1111

111

1
111111

111
1111
1
1
1
11

1

1
1111

1
1

1

1
111
1
1
111

11
11
111

1

1
1
1
1
111
11
1
1
1
11
111
1
1
1
111
11
111
111

1111
1111
11
11

11
11
1
11
1
111111

1
1111
1111
1111
11111111

1111
1
11

2222222

2
2222
2
2
2

2222
2 222222

2
2
22222222

22
2
2
2
2
2
2
2
2222
222
2
2
2
22
2222222

222
2
222222

2
22
2
2

2
222

222

222
2
2
22

22
22

2

22
22222
22
2
222
2
22

222222
2

22
222
2
22
222
2

2
2222
22
222

3
3
3333

3

33

3

33333
33

3
3333
3
33
33
33
33
3
33
3
3333
3
3333
33333
333333

33333
3

3
3333

3

3
33333333

33
3

SCDA, lambda=0.0001

1st direction

2n
d

di
re

tc
tio

n

−2 −1 0 1 2

−
1

0
1

1
111

111
11
1

1
111
111
1
1
1
1
11
11
11
1
1
111111

11
11
11
1

1

1

11
1

1

11
11
1
111
1
111
1
11
1
1
11
111
1
11
1
1111111

1111
11

1
1

1

1111
1
11
11
1
1111

1

11
1
1
1
111
1

1

1111

1
11
1

1
1
1
1
11
1
1
1
1
1
1
1111
1111

1
11
1111111
11
1
11111
11
11
1
11
1
1
111
1

1
1

111
111
1
11
1

1
111

1111
111
1

1
1
1
1111

111

1
111111

111
1111
1
1
1
11

1

1
1111

1
1

1

1
111
1
1
111

11
11
111

1

1
1
1
1
111
11
1
1
1
11
111
1
1
1
111
11
111
1111111

1111
11
11

11
11
1
11
1
111111

1
111
1

1111
1111
11111111

1111
1
11

2222222

2
2222
2
2
2

2
22
2
2 222222

2
2

22222222
22
2
2
2

2
2
2
2
22
22222
2

2
2
22
2222222

222
2
2222

22
2
2
2
2
2

2
222

222

222
2
2
22

22
22

2

22
22222
22

2
222
2
2
2
222222
2

22
222
2
22
222
2

2

2222

22
222

3
3
3333

3

33

3

33
333
33

3
3333333
33
3
333
3
33
3
3333
3
3333
33333
3333

3333333
3

3
3333

3

3
33333333

33
3

SCDA, lambda=0.001

1st direction

2n
d

di
re

tc
tio

n

Figure 1.4: Swiss Roll testing data projected onto the 2-dimension subspace by CDA and sLCDA
with different λ1. CDA cannot separate the data well, and sparse LCDA with λ1 = 0.001 has the
best performance to recognize the same group with subclass.

13

dimension subspace. We repeat this experiment 10 times, each time training and testing sample are

randomly split; the projection matrix is learned through sCDA on training; the testing data’s group

labels are predicted through 1 nearest neighbor(1-NN) between projected training sample with true

label and projected testing sample. We also consider solutions in two different setups: 1. each

projection direction has only one active variable (one non-zero coefficient); 2. each direction has

two active variables. As a comparison, we also apply SDA method introduced by Clemmensen et al.

(2011).

The classification error are summarized in Table 1.3. sCDA nearly has no errors on testing for

all the iterations. And SDA has a worse performance in 2nd iteration of both setups with error rate

0.25. We also plot the the projected data (combination of training and testing) in a 2-dimensional

subspace for the 2nd iteration in Figures 1.5 - 1.6. The projecting plots clearly indicate that our

sCDA method has a better performance than SDA. SDA seems to overfit the training data and fails

to correctly predict one group (three red triangle points) in testing.

iter 1 iter 2 iter 3 iter 4 iter 5 iter 6 iter 7 iter 8 iter 9 iter 10
SDA error (setup I) 0 0.25 0 0 0 0 0.083 0.083 0 0
sCDA error (setup I) 0 0.083 0 0 0 0 0.083 0 0 0

SDA error (setup II) 0 0.25 0 0.167 0 0 0.083 0 0
sCDA error (setup II) 0 0.083 0 0 0 0 0 0 0.083 0

Table 1.3: Classification error on testing set for SDA and sCDA.

Moreover, SDA does not have a stable solution: it could return completely different directions

when training different random samples. Based on the variable selection Tables 1.4 and 1.5, we find

that SDA ends up with many different chosen directions for the first 6 iterations, for both setting 1

and 2. For sCDA, although there is also no guarantee to have the same directions in each iteration,

936 and 1221 will be more possibly picked up as the 1st direction.

iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration 6
SDA active ID(1st) 377 1220 377 420 936 1221
SDA active ID(2nd) 444 3220 444 375 2346 2003

sCDA active ID(1st) 1221 1220 1221 1219 1221 377
sCDA active ID(2nd) 1261 1582 1261 1586 2955 422

Table 1.4: Non-zero coefficient ID of projection directions for SDA and sCDA with setup 1. 1st and
2nd represent the first and second retrieved directions.

14

−8 −6 −4 −2 0 2 4

−
2

0
2

4

(SDA)projected whole data

1st direction

2n
d

di
re

tc
tio

n

−6 −4 −2 0 2 4

−
2

0
2

4

(SDA)projected train data

1st direction

2n
d

di
re

tc
tio

n

−8 −6 −4 −2 0 2 4

−
2

−
1

0
1

2
3

(SDA)projected test data

1st direction

2n
d

di
re

tc
tio

n

−5 0 5

−
2

0
2

4

(SDA)projected whole data

1st direction

2n
d

di
re

tc
tio

n

−8 −6 −4 −2 0 2 4

−
2

0
2

4

(SDA)projected train data

1st direction

2n
d

di
re

tc
tio

n

−5 0 5

−
3

−
2

−
1

0
1

2
3

(SDA)projected test data

1st direction

2n
d

di
re

tc
tio

n

Figure 1.5: Projected testing data onto a 2 dimension subspace by using SDA with setup 1 and
2 in the 2nd experiment. The top three figures are projected whole, training, and testing data
respectively with setup 1. The bottom three figures are projected whole, training, and testing data
respectively with setup 2. Different groups are represented by points with different colors and shapes.

15

−0.1 0.0 0.1 0.2 0.3 0.4

−
0.

3
−

0.
1

0.
1

0.
2

0.
3

(sCDA)projected whole data

1st direction

2n
d

di
re

tc
tio

n

−0.1 0.0 0.1 0.2 0.3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

(sCDA)projected train data

1st direction

2n
d

di
re

tc
tio

n

−0.1 0.0 0.1 0.2 0.3 0.4

−
0.

3
−

0.
1

0.
1

0.
2

0.
3

(sCDA)projected test data

1st direction

2n
d

di
re

tc
tio

n

−0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
1

0.
2

(sCDA)projected whole data

1st direction

2n
d

di
re

tc
tio

n

−0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
1

0.
2

(sCDA)projected train data

1st direction

2n
d

di
re

tc
tio

n

−0.2 0.0 0.2 0.4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

(sCDA)projected test data

1st direction

2n
d

di
re

tc
tio

n

Figure 1.6: Projected testing data onto a 2 dimension subspace by using sCDA with setup 1 and
2 in the 2nd experiment. The top three figures are projected whole, training, and testing data
respectively with setup 1. The bottom three figures are projected whole, training, and testing data
respectively with setup 2. Different groups are represented by points with different colors and shapes.

16

iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration 6
SDA active ID(1st) 444, 2150 200, 467 377, 3396 255, 259 263, 937 422, 2152
SDA active ID(2nd) 377, 2541 468, 937 444, 2151 810, 850 467, 2345 377, 937

sCDA active ID(1st) 936, 1221 1112, 1220 936, 1221 934, 1219 936, 1221 936, 1221
sCDA active ID(2nd) 1588, 3219 1582, 3220 2552,2718 1586, 3108 1588, 2955 2542, 2613

Table 1.5: Non-zero coefficient ID of projection directions for SDA and sCDA with setup 2. 1st and
2nd represent the first and second retrieved directions.

1.5 Discussion

Most DR algorithms are formulated as an optimization problem, with an objective function which

is a linear function of squared L2 norm of between class distance. Minimizing such an objective

function, however, does to lead to directions which can produce good classification results, due to

the discrepancy between classification accuracy and the L2 distance. In this chapter, we reviewed a

new DR algorithm CDA, whose objective function is directly related to the classification accuracy.

There is also an efficient algorithm to retrieve the directions sequentially. The CDA algorithm

can be viewed as a weighted FDA algorithm, where the weights vary from class to class, and got

updated from step to step to quantify the new contribution of a direction to the classification

accuracy, in addition to the previously retrieved directions. This is why it is called Complementary

Dimensionality Analysis, since any newly retrieved direction is making non-redundant contribution

to the classification task.

We then mainly proposed two extensions of CDA algorithm. We extend our algorithm, by using

an L1 penalty, to retrieve sparse directions. This method named sparse CDA (sCDA) can identify

noise directions and make each direction easier to explain. Moreover, the original CDA is derived

based on a Gaussian distribution assumption for data within each class and such an assumption

may fail in practice. Another extension, Local CDA (LCDA), is designed to handle this case.

Furthermore, based on the similar idea of sCDA, our sparse LCDA method starts from LCDA and

it can not only deal with local structure data but also provide sparse solutions to identify noise

directions.

The empirical performances of our algorithms are promising, both in terms of accuracy and

computation speed. Currently, we are trying to explore extensions of our work to other related

areas, such as metric learning, subspace learning and recommendation system.

17

Chapter 2

Sparse Matrix Decomposition: A
Regularization Method

2.1 Introduction

Principal component analysis (PCA) is the foundations for many methods of multivariate analysis.

In quite a few real applications, in order to better understand the complex system, a natural approach

is to break the data down into simpler components. Thus, matrix decomposition / representation

of complex systems and data becomes an inspiring and challenging topic. Several methods were

developed further on such as non-negative matrix factorization (NMF), sparse and low-rank matrix

decomposition (SLRMD) and sparse singular value decomposition (SSVD). These methodologies

usually rely on different assumptions and they are designed for various purposes.

One property for PCA is that the principle component vectors have both positive and negative

coefficients. However, in many data-processing tasks, negative values are meaningless. For instance,

when the columns of the input matrix were word counts from documents, negative values cannot be

properly interpreted into different semantic categories. NMF addresses this issue by adding an non-

negativity constraint on the matrix decomposition. The idea first came from Paatero and Tapper

(1994) and Lee and Seung (1999) also independently introduced the NMF concept on unsupervised

learning. Since the problem is not exactly solvable in general, it is commonly approximated with

numerical methods. Paatero and Tapper (1994) proposed a constrained alternating least squares

(ALS) algorithm to solve the problem, and some successful algorithms are based on alternating non-

negative least squares: include the projected gradient descent methods (Lin (2007a), Lin (2007b)),

the active set method (Kim and Park (2008), Gemulla et al. (2011)) and the optimal gradient method

(Guan et al., 2012), e.t.c. Lee and Seung’s multiplicative update rule also has been a popular method

due to the simplicity of implementation.

Through PCA, the underlying data is approximately rotated on a low-dimensional linear sub-

space. However, the entries of the matrix could often be corrupted by errors or noise, some of the

18

entries could even be missing. Classical PCA fails in this case due to highly sensitive to sparse

errors of high magnitude. This question can be considered as a low-rank matrix recovery problem,

in which it aims to recover a low-rank matrix L from the corrupted data matrix M = L+S. Unlike

the small noise term in classical PCA, the entries in S may have arbitrarily large magnitude as well

as sparse structure. Candès et al. (2011) proposed a Robust Principal Component Analysis (RPCA)

method to solve this problem. Clearly, obtaining the exact solution is NP-hard for arbitrary sparse

and low-rank matrix. Chandrasekaran et al. (2009) proved that with some suitable assumptions, the

recovery for both matrix components was available. Their approach reduced the original problem

to solve a semi-definite programming (SDP) problem. It was also shown in Chandrasekaran et al.

(2011) that the recovery can be achieved via convex relaxation where a L1-norm and a nuclear

norm are used to induce sparse and low-rank structures, respectively. Afterwards, more and more

researchers kept working on the problem of sparse and low-rank matrix decomposition (SLRMD).

Lots of applications also applied to different areas including model selection in statistics, system

identification in engineering and matrix rigidity in computer science.

In term of getting practical results, the applications from SVD and PCA are usually interchange-

able. However, as the size of the data grows larger and larger, statistical inference with SVD and

PCA turns to be very hard without assumptions of strong structure in the data. For instance,

in a large noisy matrix, the significant structure is open concentrated in a small subset, and the

noise can overwhelm the signal to a high level of degree that estimates using SVD or PCA load-

ings could be far away from the truth. And due to the accumulation of noise from the majority of

structureless cells, the classical algorithm will produce estimates with large variances (Shabalin and

Nobel, 2013). Many other research also pointed out the similar issues that in very high dimensional

settings, classical SVD and PCA may have poor statistical properties (Paul (2007), Johnstone and

Lu (2012)). Shen and Huang (2008) used the connection of PCA and SVD of the data matrix and

extracted the PCs through solving a low rank matrix approximation problem. Similarly, in high

dimensional matrix decomposition problems, there usually involve assumptions such as low rank

and sparsity. By imposing sparsity restriction on SVD, it may shave of the noise cells and therefore

dig out the “checkerboard” patterns representing biclustering structure (Lee et al. (2010) and Sill

et al. (2011)). More details to this filed will be introduced later. Moreover, solving sparse solutions

will gain computational benefits since the time cost of computing numerically precise SVD or PCA

solutions is huge. There are more references dealing with sparse PCA as well as SVD solutions

19

on high-dimensional data, including Lu (2002), Zou et al. (2006), Shen et al. (2013), Witten et al.

(2009), Paul and Johnstone (2012), Huang et al. (2012), Ma et al. (2013), and Allen et al. (2014).

In this chapter, we will focus on the last situation above to deal with low rank sparsity ap-

proximation on a matrix. Consider a data matrix A ∈ Rm×n, and we are interested in learning a

multi-layer representation of this matrix,

A ≈
r∑
i=1

diuiv
t
i, (2.1.1)

where ui’s are m-by-1, vi’s are n-by-1 vectors, di > 0 and r ∈ Z+ usually with a small value. Such

a problem may arise in bioinformatics, where the rows correspond to genes, the columns correspond

to samples and Aij ’s are the measured expression levels for the i-th gene in j-th sample. It may

also arise in text mining, where the rows may correspond to documents, the columns correspond to

words, and Aij ’s are the word frequencies appearing in each document. Although both m and n

may be large, we assume the intrinsic structure of the data matrix is of low-dimension as described

in (2.1.1).

Suppose the number of layers r is fixed. Then it is natural to solve ui’s and vi’s by minimizing

the approximation error as follows:

min
rank(Xm×n)=r

‖A−X‖2F , X =

r∑
i=1

diuiv
t
i, (2.1.2)

where ‖ · ‖F denotes the Frobenius norm. It is known from Horn and Johnson (1985) that the

solution is given by the top r components from SVD of A, namely,

A = UDV t =

p∑
i=1

diuiv
t
i,

where p ≤ min(n,m) is the rank of A, Um×p = [u1,u2, ...up]m×p and Vn×p = [v1,v2, ...vp] are

orthogonal matrices, i.e., U tU = V tV = Ip, and Dp×p is a diagonal matrix with K positive values

(i.e., the singular values), d1 ≥ d2 ≥ ... ≥ dK > 0, and dK+1 = · · · = dp = 0. In others words, the

first r components from the SVD decomposition give the best approximation of A in the sense of

the Frobenius norm.

Of interest nowadays is the low-rank approximation with ui’s and vi’s being sparse. The sparsity

20

here leads to a block structure for each layer diuiv
t
i, and it’s due to that only a subset of the columns

and rows have non-zero estimations. Identifying such block structures is appealing for many real

applications. For instance, in gene expression data, such structures may reveal special pathways

that are only present in some sub-populations, or for the word frequency data, such structures may

reveal associations between words that are only present in some topics.

We start with a review on two existing algorithms on sparse rank-one approximation which are

most relevant to our work. Both algorithms can be used to extract more than one layers by applying

the methods sequentially. We will also discuss the limitation of such a sequential approach later.

• Biclustering via Sparse Singular Value Decomposition

Biclustering is an important approach in DNA microararry data. The word refers to the

“simultaneously clustering” of both rows and columns of a data matrix. Using biclustering

method, we can interpret gene features through complicated expression patterns under different

conditions of samples. This type of analysis was first introduced by Hartigan (1972). After

that, Cheng and Church (2000) brought this concept to gene expression data analysis, and Ben-

Dor et al. (1999), Tanay et al. (2002) and Abdullah and Hussain (2006) developed the approach

by linking to graph based models. Lazzeroni and Owen (2002) defined what they called

plaid model to decompose the data into multiple layers through analysis of variance, which

correspond to biclusters. Further on, plenty of research explored singular value decomposition

for visualization of gene expression data (Kluger et al. (2003), Liu et al. (2004)). Based on SVD,

bicluster problem on gene data matrix was transformed into two global clustering problems.

After biclustering, there were distinctive “checkerboard” patterns in data representing which

genes are functionally related.

As high dimensionality rapidly becomes a common feature for the data, it offers additional

statistical challenges in high-dimension or even high-dimension and low sample size setting

where relying on classical analysis may not be suitable. Lee et al. (2010) introduced sparse

singular value decomposition (SSVD) as a tool for biclustering in the new data environment.

It sought a low-rank, “checkerboard” structured matrix approximation to data matrices. To

obtain sparse loadings, they imposed sparsity-inducing penalties on both u and v when dealing

21

with the first layer estimation,

min
u,v,d

(
‖A− duvt‖2F + λ1d‖u‖1 + λ2d‖v‖1

)
(2.1.3)

subject to ‖u‖2 = 1, ‖v‖2 = 1, d > 0

where λ1 and λ2 are tuning parameters that balance the trade of between estimation accuracy

and sparsity level, and ‖ · ‖1 and ‖ · ‖2 denote the L1 and L2 norm, respectively.

• A penalized matrix decomposition, with applications to sparse principal components and canon-

ical correlation analysis

Witten et al. (2009) also defined a rank-one approximation with sparse constraints as a penal-

ized term in the objective function to perform matrix decomposition. The decomposition built

upon a variety of existing matrix decompositions, such as the SVD, the NMF (Lee and Seung

(1999), Lee and Seung (2001)) and the plaid model (Lazzeroni and Owen (2002)). Different

from the objective function in Lee et al. (2010), they put on a penalty directly on u and v,

but not related to the scalar d,

min
u,v,d

‖A− duvt‖2F (2.1.4)

subject to ‖u‖2 = 1, ‖v‖2 = 1, d > 0, ‖u‖1 ≤ c1, ‖v‖1 ≤ c2.

Here, c1 and c2 are tuning parameters equivalent to λ1 and λ2 in (2.1.3). Then they developed

an algorithm that iteratively updated u, v and d until convergence. The formula for updating

u given v is

u =
S(Av,∆)

‖S(Av,∆)‖2
, (2.1.5)

where S(a, c) is the soft-thresholding operator, i.e.,

S(a, c) = sgn(a)(|a| − c)+,

where x+ is equal to x if x > 0 and 0 if x ≤ 0. The way to determine ∆ in (2.1.5) is that ∆ = 0

if it makes ‖u‖1 ≤ c1, otherwise ∆ is chosen to be a positive number such that ‖u‖1 = c1.

22

Moreover, this penalized matrix decomposition (PMD) method also unified the regularized low-

rank matrix approximation approach of Shen and Huang (2008) with the maximum variance

criterion from Jolliffe et al. (2003) and the SPCA method from Zou et al. (2006). Jolliffe et al.

(2003) pointed out a modified principal component technique based on the LASSO (SCoT-

LASS) which was the most simple and natural way to define the notion of sparse principal

components. Unfortunately, the objective function is not convex which leads difficulties in

computations. And the special case in PMD with L1 constraint on columns but not in rows

yields a more efficient solution to SCoTLASS for finding the first sparse principal component.

In addition, when the methodology is applied to a cross-products matrix, it results in the same

method for penalized canonical correlation analysis (CCA) (Parkhomenko et al. (2009)).

However, a drawback of PMD algorithm is that there is no close form solution for ∆. Instead,

the appropriate value for ∆ such that ‖u‖1 = c1 is obtained through the binary search algo-

rithm (Cormen et al., 1990). Part of the algorithm we propose in this chapter is a different

method to solve the same objective function in (2.1.4), and the calculation process is much

easier with closed form solutions related to different values of tuning parameters.

2.1.1 Limitations

With the above mentioned sparse matrix decomposition methods for one layer, it is often suggested

to further decompose a matrix into multiple layers by sequently applying those methods. However,

the sequential decomposition method may not acquire estimation on each layer correspond to the

actual sparse structure. We provide a toy example here to give a better explanation. Suppose we

generate a two-layers data matrix A through

A = d1u1v
t
1 + d2u2v

t
2 + E,

where E = {eij} with eij
iid∼ N(0, 1), u1:2 and v1:2 are sparse R10 vectors taking values as follows,

23

Figure 2.1: Two layer sparse matrix decomposition by sequential approach. A is the two-layers toy
data, B is the first layer explored by PMD sparse matrix decomposition algorithm, C is the second
layer sequentially solved by PMD algorithm.

u1 = (0, 2, 1.5, 3, 2.5, 0, 0, 0, 0, 0)t,

u2 = (0, 0, 0, 0, 2.5, 2.5, 1.5, 2, 0, 0)t,

v1 = (0, 0, 2.5, 2.5, 1.5, 2, 0, 0, 0, 0)t,

v2 = (0, 0, 0, 0, 2, 1.5, 3, 2.5, 0, 0)t,

and d1 = 4 and d2 = 3. If we use 256 pixels to plot the matrix, the top left piece (A) in Figure 2.1

shows the matrix structure.

If we apply PMD method in Witten et al. (2009) to sequentially solve for the top two layers

decomposition of A, the estimation result is provided as part B and C in Figure 2.1. Although

the estimated layers given by PMD are sparse which are different from the results solved by SVD,

and the summation of the first two layers is also pretty closed to the true data, yet the two layers

separately do not catch true structure of A. Results are similar if we apply the algorithms from Lee

et al. (2010). The culprit is the sequential approach. Without the sparsity constraint, the rank-

r approximation problem in (2.1.2) can be solved sequentially through a rank-one approximation

algorithm. That is, if the best rank-one approximation of A is d1u1v
t
1, then d2u2v

t
2 is the best

rank-one approximation of the residual matrix A− d1u1v
t
1, and so on. However, this result will not

hold any more with the sparsity constraint. Therefore, another purpose of this section is to propose

an algorithm that estimate the multiple layers simultaneously, instead of sequentially.

24

2.2 Multi Layers Sparse Decomposition

2.2.1 Objective Function

Let’s propose the problem in the following way. Given a m× n matrix A, we want to find a r layers

sparse decomposition with each layer a rank-one matrix, i.e.,

Am×n ≈
r∑
i=1

diuiv
t
i,

where ui=(ui1, ..., uim) is a L2 norm one vector in Rm, vi=(vi1, ..., vin) is a L2 norm one vector

in Rn and di is a positive scalar for i = 1, 2, ..., r. The “sparse” means that for ui and vi, most

of their loadings equal to zero. We can obtain this property by imposing penalties on u′is and v′is

when solving the estimations. It normally chooses the common L1 penalty, such that the objective

function can be formulated as

(ũ1:r, ṽ1:r, d̃1:r) = arg min

(
‖A−

r∑
i=1

diuiv
t
i‖2F +

r∑
i=1

λi1‖ui‖1 +

r∑
i=1

λi2‖vi‖1
)
, (2.2.1)

subject to ‖ui‖2 = 1, ‖vi‖2 = 1, i = 1 : r, d ≥ 0.

where λi1 and λi2 are all tuning parameters for i = 1, 2, ..., r.

When r = 1, this objective function is different from (2.1.3) as what is used in Lee et al. (2010),

since we put penalty directly on u and v without related to the scalar d. And it is equivalent to the

idea from Witten et al. (2009) as listed in (2.1.4), since there is a one to one mapping between λ1

and c1, λ2 and c2. By using this objective function, we claim that it can be solved in a different way

which there is no need to use the binary search algorithm and thus it’s solution is easier to explain

and understand.

2.2.2 A Generic Tool

The r-layers matrix decomposition problem in (2.2.1) is not easy to solve directly, since it involves 3r

parameters. We choose to iteratively update only one of them at each step, and repeat the procedure

until all the parameters converge, i.e., at a particular step, expect for the ith layer, estimations of

other layers are assumed to be fixed; and within the ith layer, only one parameter among ui, vi

and di is going to be estimated given fixed values of the other two. Therefore, we can transform the

25

objective function (2.2.1) into three generic optimization problems,

ṽi = arg min
‖vi‖2=1

(
‖Y − diuivti‖2F + λ2‖vi‖1

)
(2.2.2)

ũi = arg min
‖ui‖2=1

(
‖Y − diuivti‖2F + λ1‖ui‖1

)
(2.2.3)

d̃i = arg min ‖Y − diuivti‖2F (2.2.4)

where Y = A−
∑
j 6=i

djujv
t
j is the residual for estimating the ith layer. Also as we explained, in (2.2.2),

di and ui are given, in (2.2.3), di and vi are given, in (2.2.4), ui and vi are given respectively. The

first two problems can be considered as the same one and without loss of generality, we provide the

solution of (2.2.2) in the following theorem.

Theorem 2.1. Given Y ∈ Rm×n, u = u0 ∈ Rm with ‖u0‖2 = 1 and d = d0 > 0, let b = Y tu0 =

(b1, ..., bn) ∈ Rn, then the solution of

ṽ = arg min
‖v‖2=1

(
‖Y − d0u0v

t‖2F + λ1‖v‖1
)

(2.2.5)

can be written as

• If λ1−2d0|bj | ≥ 0 for j = 1, 2, ..., n, then vk = 1, vj = 0 for all j 6= k, where k = arg maxk |bk|.

• If ∃ j such that λ1 − 2d0|bj | < 0, let H = {h : λ1 − 2d0|bh| < 0}, then vj = 0 for j 6∈ H and

for j ∈ H, it satisfies

∣∣λ1−2d0|bj |
∣∣

|vj | = c, for a constant c 6= 0∑
j∈H

v2
j = 1

sgn(vj) = sgn(bj)

To combine all the constrains, we have,

ṽ =
S(Y tu0,

λ1

2d0
)

‖S(Y tu0,
λ1

2d0
)‖2

.

26

We provide the proof in the Appendix B. Here is an intuition of the Lemma ??. The problem

(2.2.5) can be rewritten as

ṽ = arg min
‖v‖2=1

‖Y
tu0

d0
− v‖2F +

λ1

d2
0

‖v‖1. (2.2.6)

Without the L2 norm one restriction on v, it’s a Lasso problem with a solution

ṽ = S(
Y tu0

d0
,
λ1

2d2
0

). (2.2.7)

By L2 norm one restriction, we should consider two cases separately, i.e., the positive and negative

sign of
(
|Y tu0| − λ1

d0

)
. If all |Y tu0| − λ2

2d0
< 0, the lasso solution gives S(Y

tu0

d0
, λ1

2d20
) = 0m, but with

‖v‖2 = 1, we should pick one direction (with largest |Y tu0|) with estimation equal to 1, and the

remaining coefficients all equal to 0. If there are some j such that |Y tu0| − λ2

2d0
≥ 0, we need to set

all these directions non-zero but also normalize v to be L2 norm one. This thresholding rule turns

out to the Lasso solution (2.2.7) as well as a normalization process afterwards with L2 norm one,

i.e.,

ṽ =
S(Y

tu0

d0
, λ1

2d20
)

‖S(Y
tu0

d0
, λ1

2d20
)‖2

=
S(Y tu0,

λ1

2d0
)

‖S(Y tu0,
λ1

2d0
)‖2

.

For the remaining optimization problem (2.2.4), if we are given u = u0=(u01, ..., u0m) and v = v0

= (v01, ..., v0n),

d̃ = arg min
d>=0

‖Y − du0v
t
0‖2F

= arg min
d

∑
i

∑
j

(yij − du0iv0j)
2

= arg min
d

∑
i

∑
j

y2
ij − 2d

∑
i

∑
j

yiju0iv0j + d2
∑
i

∑
j

u2
0iv

2
0j

= arg min
d
−2d

∑
i

∑
j

yiju0iv0j + d2.

Taking the first derivative on term −2d
∑
i

∑
j

yiju0iv0j + d2 and setting it to 0, we have

2d̃− 2
∑
i

∑
j

yiju0iv0j = 0

27

and therefore,

d̃ =
∑
i

∑
j

yiju0iv0j .

It’s easy to find out that this solution can be considered as an OLS estimator on d̃ of a linear

model Ymn = dXmn, where Ymn is a Rmn vector including all the elements of Y , and Xmn contains

all the elements of u0v
t
0.

2.2.3 Choice of Tuning

Since ui and vi are all sparse vectors, we can define the degree of sparsity of the vector v as the

number of non-zero elements in v, written as dfv. Therefore, the range of dfv is 1, 2, .., n. For the

generic problem (2.2.2)

ṽi = arg min
‖vi‖2=1

‖Y − diuivti‖2F + λ1‖vi‖1,

the tuning parameter λ1 determines the degree of sparsity of vi. Instead of tuning λ1, we turn to

tune dfvi due to a smaller pool of candidate values. However, given the sparsity degree dfvi , we still

need the value of λ1 to solve vi based on the solution in Lemma ??. And for the same sparsity degree

vi, it corresponds to a range of values of λ1, that is even if the sparsity degree of vi is the same,

the coefficients estimation on non-zero directions of vi can be different with respect to different λ1.

Therefore, we set up the rule that for the same sparsity degree of vi, we always pick the smallest

λ1 as the input to solve vi, and that will penalize less on the sparsity and make estimations more

accurate.

Lee et al. (2010) embeded a BIC criteria into their SSVD algorithm to solve the model fitting

and tune the penalty parameters simultaneously. We borrow their idea to our method, and tune

sparsity degree of ui and vi when solving each generic problem. However, we change their BIC

criteria into a traditional form. Taking (2.2.2) for instance, given di and ui, we define the BIC for

the solution of ṽi with sparse degree dfṽi as

BIC(dfṽi) = −2loglike + dfṽi log(mn)

= −2 log(
1√

2πσ̂2
)mn + 2

‖Y − diuiṽti‖2

2σ̂2
+ dfṽi log(mn)

= constant +mn log(σ̂2) + dfṽi log(mn), (2.2.8)

28

where σ̂2 =
‖Y−diuiṽti‖

2

mn .

Therefore, the tuning flow for sparsity of vi can be summarized as given a sparsity degree

α ∈ {1, 2, ..., n}, we choose the smallest λ1 so that the solution ṽi in (2.2.2) satisfies dfṽi = α. We

calculate different BIC(dfṽi) corresponding to different values of α and get the solution ṽi with the

smallest BIC. Similarly, we can define the BIC criteria for dfũi for generic problem (2.2.3) and apply

the same tuning procedure to receive the estimation of ui.

Now, we introduce our algorithm for updating the i-th layer parameters (di,ui,vi) by nesting a

BIC tuning procedure for dfvi and dfui (λ1 and λ2).

Algorithm 2.1 i-th Layer Updating with Tuning Embedding

1: Initialization Given r − 1 layers estimations (dj ,uj ,vj), j = 1, ..i − 1, i + 1, .., r, let Y =

A−
∑
j 6=i

djujv
t
j , and the i-th layer estimations from previous step are (dold

i , uold
i , vold

i).

2: Update i-th layer

• Step1: Given uold
i and dold

i , update

vnew
i = arg min

‖v‖2=1
‖Y − dold

i uold
i vt‖2F + λv‖v‖1,

where λv is the smallest value of λ1 corresponding to the sparsity degree dfv such that dfv

minimizes the BIC criteria BIC(dfv) defined as (2.2.8).

• Step2: Given vnew
i and dold

i , update

unew
i = arg min

‖u‖2=1
‖Y t − dold

i vnew
i ut‖2F + λu‖u‖1,

where λu is the smallest value of λ2 corresponding to the sparsity degree dfu such that dfu

minimizes the BIC criteria BIC(dfu).

• Step3: Given unew
i and vnew

i , update dnew
i as

dnew
i =

∑
i

∑
j

yiju
new
i vnew

j .

29

2.2.4 Algorithm

With all preparations in previous sections, we can propose our final algorithm. Without loss of

generality, let’s consider the case when r = 2, and the data matrix is supposed to be decomposed as

Am×n ≈ d1u1v
t
1 + d2u2v

t
2,

where u1:2 and v1:2 are all sparse vectors in Rm and Rn respectively. The following algorithm solves

this two-layer sparse decomposition estimation simultaneously, and embeds the parameters tuning

in the iterative procedure.

Algorithm 2.2 Two-Layer Sparse Decomposition with Tuning Embedding

1: Initialization: Apply singular value decomposition on A, get the first two SVD triplets (d1,

u1, v1) and (d2, u2, v2), set (dold
1 , uold

1 , vold
1)=(d1, u1, v1) and (dold

2 , uold
2 , vold

2)=(d2, u2, v2).

2: Update: Update each layer’s parameter with tuning embedding.

• Given the 2nd layer estimation (dold
2 ,uold

2 , vold
2), calculate the residual Y = A −

dold
2 uold

2 (vold
2)t, apply algorithm 2.1 for the 1st layer and get an updated estimation

(dnew
1 ,unew

1 , vnew
1).

• Given the 1st layer estimation (dnew
1 ,unew

1 , vnew
1), calculate the residual Y = A −

dnew
1 unew

1 (vnew
1)t, apply algorithm 2.1 for the 2nd layer and get an updated estimation

(dnew
2 ,unew

2 , vnew
2).

• Refresh (dold
2 ,uold

2 , vold
2) = (dnew

2 ,unew
2 , vnew

2) for another round of update.

3: Repetition: Repeat the three procedures in Update until two layers estimations

dnew
1 unew

1 (vnew
1)t and dnew

2 unew
2 (vnew

2)t converge.

2.3 Refitting to Control Bias

In our algorithm, these is a penalty term in the objective function, even if we could solve the problem

with the true sparsity structure for each layer, the coefficient estimations may still not be accurate.

This issue could affect the overall matrix estimation. Therefore, we propose a refitting procedure

where we re-estimate each layer’s nonzero coefficients given the sparsity structures to control the

estimation bias.

30

Given a r-layer sparse decomposition of A solved by our algorithm,

A ≈
r∑
i=1

d̃iũiṽ
t
i.

Let Aũi be a set of active coefficient index of ũi and Aṽi be a set of active coefficient index of ṽi. We

also define Card(Aũi) = p and Card(Aṽi) = q be the number of index in Aũi and Aṽi respectively.

Then a refitting process for the i-th layer given other layers has the following objective function,

(ûi, v̂i, d̂i) = arg min
ui,vi,di

‖Y − diuivti‖2F (2.3.1)

subject to ‖ui‖2 = 1, ‖vi‖2 = 1, uij = 0 for j ∈ Aui , vij = 0, for j ∈ Avi ,

where Y = A−
∑
j 6=i

d̃jũjṽ
t
j .

Without lost of generality, we can rearrange the elements order in ũi and ṽi such that

ui = (ūi,0), vi = (v̄i,0)

where ūi ∈ Rp and v̄i ∈ Rq contain all the nonzero elements in ũi and ṽi respectively.

Then we can divide Y and d̃iũiṽ
t
i into four blocks,

 Y11 Y12

Y21 Y22

 diūiv̄

t
i 0

0 0

and we only need to deal with the upper left p × q sub-matrix to solve the nonzero elements of ûi

and v̂i in (2.3.1), i..e,

(̂̄ui, ̂̄vi, d̂i) = arg min
ūi,v̄i,di

‖Y11 − diūiv̄ti‖2F (2.3.2)

subject to ‖v̄i‖2 = 1, ‖ūi‖2 = 1

By the property of matrix SVD, the solution for (2.3.2) is the first component of SVD on the

sub-matrix Y11, where ̂̄ui and ̂̄vi equal to the left and right-singular vector, respectively.

Yet, we have not mentioned what values we should use for other layers when refitting the i-th

layer. If
⋂r
i=1Aũi = ∅ and

⋂r
i=1Aṽi = ∅, it does not matter what values we plug in for other

31

layers when we calculate Y = A −
∑
j 6=i

d̃jũjṽ
t
j , since all the layers are non-overlapping. Normally,

this condition does not hold and other layers estimations will affect the refitting solution for the

i-th layer. In this case, we need to iteratively refit each layer by plunging in other layers’ refitted

estimations and stop updating until every layer converges.

2.4 Choice of Total Layers Number

The last parameter we need to tune is the total number of layers r. A natural idea is to compare BIC

which is a trade off between matrix estimation accuracy and parameter degree of complexity. We

use the refitted estimation for each layer to calculate such a BIC value. For a r-layer decomposition,

BICr = −2loglike +

(r∑
i=1

(dfûi + dfv̂i − 1)

)
log(mn)

= −2 log(
1√

2πσ̂2
)mn + 2

‖A−
r∑
i=1

d̂iûiṽ
t
i‖2

2σ̂2
+

(r∑
i=1

(dfûi + dfv̂i − 1)

)
log(mn)

= constant +mn log(σ̂2) +

(r∑
i=1

(dfûi + dfv̂i − 1)

)
log(mn), (2.4.1)

where σ̂2 =
‖A−

r∑
i=1

d̂iûiv̂
t
i‖

2

mn , and (ûi, v̂i, d̂i) is a refitted estimation for i-th layer. To decide the total

number of layers, we find the r with the smallest BIC value,

r̂ = arg min
r

BICr

2.5 Experiment Study

2.5.1 Toy Example

Let’s revisit the toy example used in previous introduction section. The data contains a two-layer

structure and it is generated as

A = d1u1v
t
1 + d2u2v

t
2 + E,

where E = {eij} with eij
iid∼ N(0, 1), u1:2 and v1:2 are sparse R10 vectors taking values as follows,

32

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

element id

co
ef

fie
nt

 v
al

ue
s

1 2 3 4 5 6 7 8 9 10

A

Est.
Truth

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

element id

co
ef

fie
nt

 v
al

ue
s

1 2 3 4 5 6 7 8 9 10

B

Est.
Truth

Figure 2.2: Comparison between estimation and truth on u1 and v1 for the first scenario: In figure
A, blue lines represent each coefficient value for estimation of u1, red lines represent each coefficient
value for the truth u1; In figure B, blue lines represent each coefficient value for estimation of v1,
red lines represent each coefficient value for the truth v1. The estimations have the similar sparse
structure for both u1 and v1.

u1 = (0, 2, 1.5, 3, 2.5, 0, 0, 0, 0, 0)t,

u2 = (0, 0, 0, 0, 2.5, 2.5, 1.5, 2, 0, 0)t,

v1 = (0, 0, 2.5, 2.5, 1.5, 2, 0, 0, 0, 0)t,

v2 = (0, 0, 0, 0, 2, 1.5, 3, 2.5, 0, 0)t,

and scalars d1 = 4 and d2 = 3. We design three scenarios to test the performance of our method.

In the first scenario, we only apply the algorithm on the first layer data with an error matrix, i.e.,

A1 = d1u1v
t
1 + E.

Our estimations have dfũ1
= 4 and dfṽ1

= 5 with

ũ1 = (0, 0.433, 0.323, 0.664, 0.517, 0, 0, 0, 0, 0)t,

ṽ1 = (0, 0, 0.590, 0.586, 0.304, 0.464, 0, 0, 0,−0.016)t.

We can see in Figure 2.2, the estimations pretty match the original first layer data sparsity structure.

The Frobenius norm of the estimation residual ‖A− d̃1ũ1ṽ
t
1‖F is 81.28484.

33

0.
0

0.
2

0.
4

0.
6

element id

co
ef

fie
nt

 v
al

ue
s

1 2 3 4 5 6 7 8 9 10

A

Est.
Truth

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

element id

co
ef

fie
nt

 v
al

ue
s

1 2 3 4 5 6 7 8 9 10

B

Est.
Truth

Figure 2.3: Comparison between estimation and truth on u1 and v1 for the second scenario: In figure
A, blue lines represent each coefficient value for estimation of u1, red lines represent each coefficient
value for the truth u1; In figure B, blue lines represent each coefficient value for estimation of v1,
red lines represent each coefficient value for the truth v1. The estimations have a different sparse
structure for both u1 and v1.

In the second scenario, we apply the algorithm on the whole data matrix A but only retrieve

one layer estimation. This will give us the same estimation on the first layer when we want to

sequentially receive a two-layer decomposition. The solution have dfũ1
= 7 and dfṽ1

= 6, and

ũ1 = (0, 0.340, 0.232, 0.517, 0.681, 0.224, 0.138, 0.174, 0, 0)t,

ṽ1 = (0, 0, 0.450, 0.479, 0.432, 0.511, 0.248, 0.241, 0, 0)t.

As what we expect, Figure 2.3 shows that the estimation patterns for u1 and v1 do not match the

truth. This is the drawback for sequential solving method, i.e., if we only use one layer to estimate

the whole data, the estimation try to keep as much information as possible and it will possibly

ignore the sparse structure. If we continue to solve the second layer estimation based on the residual

A− d̃1ũ1ṽ
t
i, and combine the nonzero elements in ũ1 and ũ2, we find they are between 2nd to 8th.

This matches the overall sparsity structure combining u1 and u2. It’s similar for ṽ1 and ṽ2 together,

where nonzero elements are reflect the truth from 3rd to 8th.

Lastly, we try to retrieve two-layer estimations simultaneously for A. We finally have dfũ1
= 4,

34

0.
0

0.
2

0.
4

0.
6

element id

co
ef

fie
nt

 v
al

ue
s

1 2 3 4 5 6 7 8 9 10

A

Est.
Truth

0.
0

0.
2

0.
4

element id

co
ef

fie
nt

 v
al

ue
s

1 2 3 4 5 6 7 8 9 10

B

Est.
Truth

0.
0

0.
2

0.
4

0.
6

element id

co
ef

fie
nt

 v
al

ue
s

1 2 3 4 5 6 7 8 9 10

C

Est.
Truth

0.
0

0.
2

0.
4

0.
6

element id

co
ef

fie
nt

 v
al

ue
s

1 2 3 4 5 6 7 8 9 10

D

Est.
Truth

Figure 2.4: Comparison between estimation and truth on u1, v1, u2 and v2 for the third scenario:
In figure A, blue lines represent each coefficient value for estimation of u1, red lines represent each
coefficient value for the truth u1; In figure B, blue lines represent each coefficient value for estimation
of v1, red lines represent each coefficient value for the truth v1; In figure C, blue lines represent
each coefficient value for estimation of u2, red lines represent each coefficient value for the truth u2;
In figure D, blue lines represent each coefficient value for estimation of v2, red lines represent each
coefficient value for the truth v2; The estimations have the similar sparse structure for both u1:2

and v1:2.

dfṽ1
= 4, dfũ2

= 5, dfṽ2
= 4 with

ũ1 = (0, 0.429, 0.308, 0.656, 0.539, 0, 0, 0, 0, 0)t,

ṽ1 = (0, 0, 0.572, 0.576, 0.351, 0.466, 0, 0, 0, 0)t,

ũ2 = (0, 0, 0, 0, 0.565, 0.600, 0.376, 0.428,−0.027, 0)t,

ṽ2 = (0, 0, 0, 0, 0.420, 0.328, 0.633, 0.562, 0, 0)t.

The results showed in Figure 2.4 give us a general idea of the estimations accuracy. The sparse

patterns of the estimations are pretty close to the truth and only the sparsity degree for ũ2 is

different from that of u2. The only element not matching the true sparsity is in blue color in ũ2,

35

and it’s magnitude is very close to 0.

One thing to point of that if we repeat the simulation, the random error may effect the result.

For instance, for a different A matrix, we can also have dfũ1
= 4, dfṽ1

= 4, dfũ2
= 6 and dfṽ2

= 5 for

the third scenario, but those elements with different sparsity structure from the truth always have

pretty small magnitude.

2.5.2 Food Example

In this section, we apply our muti-layer sparse decomposition algorithm to food nutritional data

analyzed in Lazzeroni and Owen (2002). Since we can not open the link provided in their paper, we

download the data from another website http://www.invive.com/calorie.html.

The data contains 7 variables for 961 foods, the first 6 are all nutritional measures including fat,

food energy, carbohydrate, protein, cholesterol, and saturated fat. Since all the foods might have

different packing and sizes, we divide all the nutritional values by the 7th variable weight. Moreover,

we follow the similar procedure as Lazzeroni and Owen (2002) by removing first 6 column’s mean.

To test the performance of our method, we first apply SSVD algorithm introduced in Lee et al.

(2010). We use the same adaptive lasso penalty on both u (food aspect) and v (nutrition aspect)

with a common weight parameter γ = 2. We sequentially extract the first three layers for the data

matrix and the results are different from what are shown in the supplementary materials of Lee

et al. (2010). For the first layer, it consists 754 foods and 5 nutritional facts: fat (0.0921), energy

(0.9934), carbohydrate (0.0354), cholesterol (0.0553) and saturated fat (0.0188), where the number

in parentheses are the values of estimated v1. It implies that the first layer mainly contains foods

which are rich of energy. The second layer contains 159 foods and 4 nutritional measures with heavy

emphasis on cholesterol: energy (-0.0690), carbohydrate (-0.0513), protein (0.0231), and cholesterol

(0.9960). For the third layer, there are 220 foods with 5 nutritions involved. Energy (0.4430),

carbohydrate (0.7028) and cholesterol (-0.5024) are the three main variables with largest magnitude

of coefficients.

The results by SSVD are not easy to interpret since there are too many foods in each layer

especially for the first one. This is not surprising since all the layers are extracted sequentially.

When dealing with the first layer, the solution tends to cover as much information as possible which

will include too many foods into this layer.

For our method, we extract the layers simultaneously. The first task is to determine how many

36

layers we need to use. Here, we compare the BIC for using one, two and three layers to estimate

the data matrix. To prevent containing too many foods in each layers, we only allow the sparsity

degree of u less than 400, which means at most 400 foods can be kept in each layer. The BIC values

are 11596.32, 10836.9 and 10613.45, respectively. Therefore, we decide to use three layers.

After refitting each layer with our decomposition method, the first layer consists of 124 foods

and 2 nutritional facts: fat (0.1195), energy (0.9928). The second layer consists of 8 foods with

1 nutritional measure cholesterol. The third layer consists of 20 foods with 1 nutritional measure

energy. Comparing to the results from SSVD, our layers contain much less foods and each layer only

focuses on 1 or 2 major nutritions.

Furthermore, we also want to understand the types of foods in each layers. The first layer still

contains many foods, and we order these foods by magnitude of the values in u1. As Table (2.1)

shown below, we only list the top 34 foods in the first layer with two groups. These two groups can

be treated as liquid oils, and solid oils (butter and margarine). The second layer only contains 8

foods, and all of them are livers and eggs with full of cholesterol. For the third layer, although it

still focuses on the energy measure similar as the first layer, it contains all different foods from first

layer and they are mainly vegetables.

37

F
o
o
d

s
u

1
F

o
o
d

s
u

1

L
a
y
e
r
1
,
g
ro

u
p

1
L

A
R

D
1

C
U

P
0
.1

4
9
7

C
O

R
N

O
IL

1
T

B
S

P
0
.1

4
7
6

O
L

IV
E

O
IL

1
T

B
S

P
0
.1

4
7
6

P
E

A
N

U
T

O
IL

1
T

B
S

P
0
.1

4
7
6

S
A

F
F

L
O

W
E

R
O

IL
1

T
B

S
P

0
.1

4
7
6

S
O

Y
B

E
A

N
-C

O
T

T
O

N
S

E
E

D
O

IL
,

H
Y

D
R

G
N

1
T

B
S

P
0
.1

4
7
6

S
O

Y
B

E
A

N
O

IL
,

H
Y

D
R

O
G

E
N

A
T

E
D

1
T

B
S

P
0
.1

4
7
6

S
U

N
F

L
O

W
E

R
O

IL
1

T
B

S
P

0
.1

4
7
6

F
A

T
S
,

C
O

O
K

IN
G

/V
E

G
E

T
B

L
S

H
O

R
T

E
N

G
1

T
B

S
P

0
.1

4
5
8

L
A

R
D

1
T

B
S

P
0
.1

4
5
8

O
L

IV
E

O
IL

1
C

U
P

0
.1

4
5
7

P
E

A
N

U
T

O
IL

1
C

U
P

0
.1

4
5
7

C
O

R
N

O
IL

1
C

U
P

0
.1

4
5
4

S
A

F
F

L
O

W
E

R
O

IL
1

C
U

P
0
.1

4
5
4

S
O

Y
B

E
A

N
-C

O
T

T
O

N
S

E
E

D
O

IL
,

H
Y

D
R

G
N

1
C

U
P

0
.1

4
5
4

S
O

Y
B

E
A

N
O

IL
,

H
Y

D
R

O
G

E
N

A
T

E
D

1
C

U
P

0
.1

4
5
4

S
U

N
F

L
O

W
E

R
O

IL
1

C
U

P
0
.1

4
5
4

F
A

T
S

,
C

O
O

K
IN

G
/
V

E
G

E
T

B
L

S
H

O
R

T
E

N
G

1
C

U
P

0
.1

4
5
4

L
a
y
e
r
1
,
g
ro

u
p

2
M

A
C

A
D

A
M

IA
N

U
T

S
,

O
IL

R
S

T
D

,
S

A
L
T

E
D

1
O

Z
0
.1

1
0
0

M
A

C
A

D
A

M
IA

N
U

T
S

,
O

IL
R

S
T

D
,

U
N

S
A

L
T

1
O

Z
0
.1

1
0
0

B
U

T
T

E
R

,
S

A
L
T

E
D

1/
2

C
U

P
0
.1

0
8
8

B
U

T
T

E
R

,
U

N
S

A
L
T

E
D

1
/
2

C
U

P
0
.1

0
8
8

M
A

R
G

A
R

IN
E

,
R

E
G

U
L

R
,

H
A

R
D

,
80

%
F
A

T
1
/
2

C
U

P
0
.1

0
8
7

M
A

C
A

D
A

M
IA

N
U

T
S
,

O
IL

R
S

T
D

,
S

A
L
T

E
D

1
C

U
P

0
.1

0
8
6

M
A

C
A

D
A

M
IA

N
U

T
S

,
O

IL
R

S
T

D
,

U
N

S
A

L
T

1
C

U
P

0
.1

0
8
6

M
A

R
G

A
R

IN
E

,
R

E
G

U
L

R
,

S
O

F
T

,
8
0
%

F
A

T
8

O
Z

0
.1

0
8
6

B
U

T
T

E
R

,
S

A
L
T

E
D

1
T

B
S

P
0
.1

0
8
2

B
U

T
T

E
R

,
U

N
S

A
L
T

E
D

1
T

B
S

P
0
.1

0
8
2

M
A

R
G

A
R

IN
E

,
R

E
G

U
L

R
,H

A
R

D
,

80
%

F
A

T
1

T
B

S
P

0
.1

0
8
2

M
A

R
G

A
R

IN
E

,
R

E
G

U
L

R
,

S
O

F
T

,
8
0
%

F
A

T
1

T
B

S
P

0
.1

0
8
2

M
A

Y
O

N
N

A
IS

E
,

R
E

G
U

L
A

R
1

T
B

S
P

0
.1

0
8
2

B
U

T
T

E
R

,
S

A
L
T

E
D

1
P

A
T

0
.1

0
5
1

B
U

T
T

E
R

,
U

N
S

A
L
T

E
D

1
P

A
T

0
.1

0
5
1

M
A

R
G

A
R

IN
E

,
R

E
G

U
L

R
,

H
A

R
D

,
8
0
%

F
A

T
1

P
A

T
0
.1

0
5
1

L
a
y
e
r
2

E
G

G
S

,
R

A
W

,
Y

O
L

K
1

Y
O

L
K

0
.7

2
6
5

C
H

IC
K

E
N

L
IV

E
R

,
C

O
O

K
E

D
1

L
IV

E
R

0
.3

5
7
8

B
E

E
F

L
IV

E
R

,
F

R
IE

D
3

O
Z

0
.2

7
0
4

E
G

G
S

,
C

O
O

K
E

D
,

F
R

IE
D

1
E

G
G

0
.2

5
6
4

E
G

G
S

,
C

O
O

K
E

D
,

H
A

R
D

-C
O

O
K

E
D

1
E

G
G

0
.2

3
7
0

E
G

G
S

,
R

A
W

,
W

H
O

L
E

1
E

G
G

0
.2

3
7
0

E
G

G
S

,
C

O
O

K
E

D
,

P
O

A
C

H
E

D
1

E
G

G
0
.2

3
5
8

E
G

G
S

,
C

O
O

K
E

D
,

S
C

R
A

M
B

L
E

D
/
O

M
E

L
E

T
1

E
G

G
0
.1

9
3
5

L
a
y
e
r
3
,
to

p
1
0

B
E

E
F

B
R

O
T

H
,

B
O

U
L

L
N

,
C

O
N

S
M

,C
N

N
D

1
C

U
P

0
.2

3
0
1

P
IC

K
L

E
S

,
C

U
C

U
M

B
E

R
,

D
IL

L
1

P
IC

K
L

E
0
.2

2
8
6

L
E

T
T

U
C

E
,

C
R

IS
P

H
E

A
D

,
R

A
W

,P
IE

C
E

S
1

C
U

P
0
.2

2
7
1

N
A

T
U

R
E

V
A

L
L

E
Y

G
R

A
N

O
L

A
C

E
R

E
A

L
1

O
Z

0
.2

2
6
4

O
N

IO
N

S
O

U
P

,
D

E
H

Y
D

R
A

T
D

,
P

R
E

P
R

E
D

1
P

K
T

0
.2

2
5
2

C
A

B
B

A
G

E
,

C
H

IN
E

S
E

,
P

A
K

-C
H

O
I,

C
K

D
1

C
U

P
0
.2

2
4
3

L
E

T
T

U
C

E
,

B
U

T
T

E
R

H
E

A
D

,
R

A
W

,
H

E
A

D
1

H
E

A
D

0
.2

2
3
7

A
S

P
A

R
A

G
U

S
,

C
A

N
N

E
D

,
S

P
E

A
R

S
,

N
O

S
A

L
T

4
S

P
E

A
R

S
0
.2

2
3
6

A
S

P
A

R
A

G
U

S
,

C
A

N
N

E
D

,
S

P
E

A
R

S
,

W
/S

A
L
T

4
S

P
E

A
R

S
0
.2

2
3
6

C
E

L
E

R
Y

,
P

A
S

C
A

L
T

Y
P

E
,

R
A

W
,

S
T

A
L

K
1

S
T

A
L

K
0
.2

2
3
6

T
a
b

le
2
.1

:
F

o
o
d

g
ro

u
p

s
in

fi
rs

t
th

re
e

la
y
er

es
ti

m
a
ti

o
n

s

38

Chapter 3

Sparse Matrix Decomposition with
Missing Data

3.1 Introduction

Principal component analysis (PCA) is one of the most commonly used techniques in multivariate

analysis for dimension reduction and feature extraction. It has a wide array of applications, ranging

from image recognition to gene expression microarray analysis. Unfortunately, this method as well

as its base tool singular value decomposition (SVD) require a complete matrix as an input for

analysis. However, due to dramatic advances in science and technology, high-dimensional data are

now routinely collected in most of the the fields, and for diverse reasons we frequently need to deal

with values missing in the data. Witten (2007) mentioned that when some elements of the data

matrix X are missing, those elements could simply be excluded from all computations. Therefore,

they came up a“criterion” which only used the non missing data to perform their penalized matrix

decomposition (PMD). The possibility of computing the PMD in the presence of missing data lead

to a simple and automated method for the selection of the tuning parameters in their PMD. The

basic idea is to tune the penalized parameters via cross validation among different folders of missing

data, i.e., retrieve every estimation based on a incomplete data through the“criterion” and compare

the estimation of the missing values to the truth. However, we find this“criterion” for missing data

in Witten (2007) is only an approximate method without any detailed derivation. In this chapter,

we will propose a concrete solution for PMD with missing data involved, and we also compare the

difference between two solutions when dealing with sparse data matrices. Moreover, a simulation

example is provided to help understand the differences.

39

3.2 Methodology

Consider a data matrix A ∈ Rm×n with some missing elements. Let C = {(i, j) : Aij is missing}

and Cj = {i : (i, j) 6∈ C}. We want to find a one layer matrix decomposition on A focusing on

non-missing elements. The problem can be considered as finding norm one vector u ∈ Rm, v ∈ Rn,

and a scalar d > 0 to estimate A such that it minimizes the Frobenius norm between A and duvt

with respect to non-missing elements, i.e.,

min
‖u‖22=1,‖v‖22=1,d>0

∑
(i,j)∈C

(Aij − duivj)2 (3.2.1)

Moreover, we usually want u and v to be sparse and therefore we add L1 penalty to the objective

function (3.2.1) with tuning parameter λ1 and λ2,

min
‖u‖22=1,‖v‖22=1

(∑
(i,j)∈C

(Aij − duivj)2 + λ1

m∑
i=1

|ui|+ λ2

n∑
j=1

|vj |
)
. (3.2.2)

Directly minimize this objective function is not straightforward. We first consider to solve v

when d and u are given. After that, we continue to solve u given d and updated v, and solve d given

updated v and updated u. We keep doing these three steps until all the u, v and d converge. Since

the updating rule for v and u are symmetric, without loss of generality, in remaining part, we only

focus on minimize the function with respect to v given d > 0 and u, i.e.,

v = arg min
‖v‖22=1

(∑
(i,j)∈C

(Aij − duivj)2 + λ

n∑
j=1

|vj |
)
. (3.2.3)

Let aj =
∑
i∈Cj

u2
i , bj =

∑
i∈Cj

Aijui. Notice that u is a norm one vector, we have aj ∈ [0, 1] for

j = 1 : m. Without loss of generality, we assume there exists s ≤ n such that a1, ..., as > 0 and

as+1 = as+2 = ... = an = 0, and we can rewrite the function in (3.2.1) is

∑
(i,j)∈C

(Aij − duivj)2 = d2
s∑
j=1

ajv
2
j − 2d

s∑
j=1

bjvj − 2d

n∑
j=s+1

∑
i∈Cj

Aijuivj +
∑

(i,j)∈C

A2
ij

= d2
s∑
j=1

aj

(
vj −

bj
daj

)2

− 2d

n∑
j=s+1

∑
i∈Cj

Aijuivj + f(A,u),

40

where f(A,u) =
∑

(i,j)∈C
A2
ij −

s∑
j=1

b2j
aj

is a function of A and u. Since A and u are all given, we treat

f(A,u) as a constant.

Therefore, the minimum value of the objective function (3.2.3) as

min
‖v‖22=1

(∑
(i,j)∈C

(Aij − duivj)2 + λ

n∑
j=1

|vj |
)

= min
‖v‖22=1

[
d2

s∑
j=1

aj

(
vj −

bj
daj

)2

+ λ

s∑
j=1

|vj |
]

+

[
− 2d

n∑
j=s+1

∑
i∈Cj

Aijuivj + λ

n∑
j=s+1

|vj |
]

+ f(A,u)

= min
r∈[0,1]

(
min

s∑
k=1

v2k=r2

[
d2

s∑
j=1

aj

(
vj −

bj
daj

)2

+ λ

s∑
j=1

|vj |
]

+ min
n∑

k=s+1

v2k=1−r2

[
− 2d

n∑
j=s+1

∑
i∈Cj

Aijuivj + λ

n∑
j=s+1

|vj |
])

+ f(A,u) (3.2.4)

= min
r∈[0,1]

(
M1(r) +M2(r)

)
+ f(A,u). (3.2.5)

In (3.2.4), for given r ∈ [0, 1] we treat the first and second terms as two functions M1(r) and

M2(r) with respect to r, and the final minimal value achieves as we minimize M1(r) + M2(r) over

r ∈ [0, 1].

In terms of finding closed form solution of (3.2.5), it’s pretty complicate because solving M1(r)

and M2(r) includes different situations as λ varies. To make things easier, now we assume s = n,

i.e., aj > 0 for all j = 1, 2, ..., n. It helps us get rid of M2(r) as well as r and only

M1(r = 1) = min
n∑
k=1

v2k=1

[
d2

n∑
j=1

aj

(
vj −

bj
daj

)2

+ λ

n∑
j=1

|vj |
]

(3.2.6)

need to be considered. To keep our solution complete, we provide the method solving

M2(r) = min
n∑

k=s+1

v2k=1−r2

(
− 2d

n∑
j=s+1

∑
i∈Cj

Aijuivj + λ

n∑
j=s+1

|vj |
)

in the Appendix C when s < n.

In many situations, it’s common to add a weight matrix Wm×n with each element wij ≥ 0 and

41

∑
ij

wij = nm in (3.2.3). Then the new objective function becomes

min
‖v‖22=1

(∑
i,j

wij
(
Aij − duivj

)2
+ λ

n∑
j=1

|vj |
)
, (3.2.7)

and it is a more general form of equation (3.2.3) since if we set wij = 0 for (i, j) ∈ C and make other

values of wij for (i, j) 6∈ C the same, (3.2.3) and (3.2.7) become the same.

Define new aj and bj as aj =
m∑
i=1

u2
iwij , bj =

m∑
i=1

Aijuiwij , and we can rewrite (3.2.7) as

min
‖v‖22=1

(∑
i,j

wij(Aij − duivj)2 + λ

n∑
j=1

|vj |
)

= min
‖v‖22=1

[
d2

n∑
j=1

aj

(
vj −

bj
daj

)2

+ λ

n∑
j=1

|vj |+ f(A,u)

]
,

if aj > 0 for all j = 1, 2, ..., n. It becomes the same objective function as M1 in (3.2.6). In the

remaining part of this chapter, we focus on finding the closed form solution of M1.

To solve M1, we claim that if v is the solution of M1, then the sign of j-th element vj in v is

determined by the sign of
bj
daj

, i.e., sgn(vj) = sgn(
bj
daj

). This is because if sgn(vj) = −sgn(
bj
daj

),

d2
n∑
j=1

aj

(
vj −

bj
daj

)2

> d2
n∑
j=1

aj

(
vj − (− bj

daj
)

)2

= d2
n∑
j=1

aj

(
(−vj)−

bj
daj

)2

.

It means vj with sgn(vj) = −sgn(
bj
daj

) could not be the j-th element of v which minimizes M1.

Therefore, our claim is proved and we will focus on solving the magnitude of vj and the objective

function with respect to solving this magnitude is

min
‖v‖22=1,vj≥0

(
d2

n∑
j=1

aj
(
vj −

|bj |
daj

)2
+ λ

n∑
j=1

|vj |
)

= min
‖v‖22=1,vj≥0

d2
n∑
j=1

aj

(
vj −

|bj | − λ
2d

daj

)2

. (3.2.8)

The solution for objective function (3.2.8) has three different cases as penalty parameter λ varies.

• Case I: 0 ≤ λ
2d ≤ min

j=1:n
|bj |.

Given Case I’s condition, we have
|bj |− λ

2d

daj
≥ 0, for j = 1, 2, ..., n. If we remove the vj ≥ 0 restriction,

42

the solution still guarantees vj ≥ 0, i.e.,

min
‖v‖22=1,vj≥0

d2
n∑
j=1

aj

(
vj −

|bj | − λ
2d

daj

)2

= min
‖v‖22=1

d2
n∑
j=1

aj

(
vj −

|bj | − λ
2d

daj

)2

. (3.2.9)

This problem can be solved by Lagrange multiplier method. We have the Lagrange function with

Lagrange multiplier α as

d2
n∑
j=1

aj

(
vj −

|bj | − λ
2d

daj

)2

+ α

(n∑
j=1

v2
j − 1

)
.

Taking derivative with respect to vj and α and setting all the equations equal to 0, we have the

solution satisfies

n∑
j=1

v2
j = 1

2d2aj

(
vj −

|bj |− λ
2d

daj

)
+ 2αvj = 0⇔ vj =

d
(
|bj |− λ

2d

)
d2aj+α

, j = 1, 2, ..., n

where α is chosen to make vj > 0 and
n∑
j=1

v2
j = 1. We would like to write vj as vj(α) since its value

is related to α.

Notice that there are at most 2n different α making
n∑
j=1

v2
j (α) = 1. If k = arg minj=1:n d

2aj ,

there exists an unique α > −d2ak, such that
n∑
j=1

v2
j (α) = 1 and vj(α) > 0 for all j = 1, 2, ..., n. This

is the α chosen to solve vj .

We provide a geometric interpretation of Case I in figure 3.1. This is a special two dimensional

case (n = 2) for a easy visualization. When n = 2, equation (3.2.9) becomes

min
v21+v22=1,v1,2≥0

d2
[
a1

(
v1 −

|b1| − λ
2d

da1

)2

+ a2

(
v2 −

|b2| − λ
2d

da2

)2]
. (3.2.10)

With constrains a1, a2 ∈ (0, 1] and
|bi|− λ

2d

dai
> 0 for i = 1, 2, equation (3.2.14) can be considered as

an ellipse with its center (
|b1|− λ

2d

da1
,
|b2|− λ

2d

da2
) in the 1st quadrant of the Cartesian coordinate. Finding

the minimal value with conditions v2
1 + v2

2 = 1 and v1,2 ≥ 0 is equal to magnify the ellipse until it

touches the unit circle line in the 1st quadrant. In Figure 3.1, The blue line is a quarter of unit circle

in 1st quadrant and it represents the the condition v2
1 + v2

2 = 1 and v1,2 ≥ 0. There are other three

concentric ovals in green, red and purple with different centers and major / minor axises. They

43

−0.5 0.0 0.5 1.0 1.5

−
0

.5
0

.0
0

.5
1

.0
1

.5

x

y

Figure 3.1: Geometric interpretation of solution under case I. The blue line is a 1/4 unit circle in
1st quadrant. Green, red and purple lines are ellipses with different centers in 1st quadrant and
different major / minor axis.

stand for values with different combinations of a1,2 and
|b1,2|− λ

2d

da1,2
. We try different centers as well as

different shapes (major / minor axises) for these ellipses. No matter how they change, the ellipse is

guaranteed to meet with the unit circle in 1st quadrant. That is the reason why α should be chosen

to make all vj(α > 0) in the solution.

• Case II: λ
2d ≥ max

j=1:n
|bj |

Case II guarantees that for all j = 1, 2, ..., n,
|bj |− λ

2d

daj
< 0. We can no longer apply the similar method

as Case I, and the following lemma is used to solve this case.

Lemma 3.1. For a1, a2 ≥ 0, c1, c2 ≥ 0, and 0 < r ≤ 1

min
v21+v22=r2,v1,v2≥0

(
a1(v1 + c1)2 + a2(v2 + c2)2

)
= min

(
a1(r + c1)2 + a2c

2
2, a1c

2
1 + a2(r + c2)2

)
.

In other words, the minimal value is chosen at the point (v1, v2) = (r, 0) or (v1, v2) = (0, r).

44

Proof : Without lost of generality, we assume a2 ≥ a1, then

min
v21+v22=r2,v1,v2≥0

a1(v1 + c1)2 + a2(v2 + c2)2

= min
t∈[0,r]

a1(t+ c1)2 + a2(
√
r2 − t2 + c2)2

∆
= min
t∈[0,1]

F (t).

If we take derivative of F (t),

F
′
(t) = 2a1(t+ c1)− 2a2t

√
r2 − t2 + c2√
r2 − t2

= 2(a1 − a2)t− 2a2c2
t√

r2 − t2
+ 2a1c1.

F
′
(t) is a decreasing function, F

′
(0) = 2a1c1 ≥ 0 and F

′
(1−)→ −∞. Thus, there exists a positive

number ε, such that F (t) is non-decreasing between [0, ε], and F (t) is decreasing between [ε, r]. It

indicates that the extreme point (with derivative value equal to 0) can not be a local minimal point

and the overall minimal point between [0, r] should be on the boundary, i.e.,

min
t∈[0,r]

F (t) = min

(
F (0), F (r)

)
.

�

Now we provide the solution for case II in the following theorem.

Theorem 3.1. If λ
2d ≥ max

j=1:n
|bj |, the solution of v = (v1, v2, ..., vn) to minimize

min
‖v‖2=1,vj≥0

d2
n∑
j=1

aj

(
vj −

|bj | − λ
2d

daj

)2

(3.2.11)

can only be chosen among n candidates: vk = 1, vj = 0 for j 6= k and k ∈ {1, 2, ..., n}, i.e., only one

direction of v can take a nonzero value equaling to 1.

Proof : Suppose the solution v = (v̂1, v̂2, ..., v̂n) for (3.2.11) has at least two nonzero directions,

let’s assume v̂1 and v̂2 > 0 with v̂2
1 + v̂2

2 = r2 ∈ (0, 1], and
n∑
i=3

v̂2
j = 1 − r2. Let cj =

−|bj |+ λ
2d

daj
> 0,

45

then

min
‖v‖22=1,vj≥0

d2
n∑
j=1

aj

(
vj −

|bj | − λ
2d

daj

)2

= d2

(
a1

(
v̂1 + c1

)2
+ a2

(
v̂2 + c2

)2)
+ d2

n∑
j=3

aj
(
v̂j + cj

)2
(3.2.12)

> d2 min

(
a1(r + c1)2 + a2c

2
2, a1c

2
1 + a2(r + c2)2

)
+ d2

n∑
j=3

aj
(
v̂j + cj

)2
(3.2.13)

where > holds in (3.2.13) by applying lemma 3.1 on the term a1

(
v̂1 + c1

)2
+a2

(
v̂2 + c2

)2
in (3.2.12).

This is a contradiction with the assumption v̂ = (v̂1, v̂2, ..., v̂n) is the solution for (3.2.11). Therefore,

at most one vj in v can be nonzero. Since ‖v‖22 = 1, there is exactly one direction of v equals to 1

and the remaining coefficient are all equal to 0. �

−4 −3 −2 −1 0 1 2 3

−
4

−
3

−
2

−
1

0
1

2
3

x

y

●

●

−4 −3 −2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

2

x

y

●

●

Figure 3.2: Geometric interpretation of Theorem 3.1. The blue line is 1/4 unit circle in 1st quadrant.
Green and red lines are ellipses with different centers in 3rd quadrant and different major / minor
axis.

Let’s also consider the intuitive idea behind the Theorem 3.1 with a two dimensional case (n = 2).

When n = 2, objective equation (3.2.11) becomes

min
v21+v22=1,v1,2≥0

d2
[
a1

(
v1 −

|b1| − λ
2d

da1

)2

+ a2

(
v2 −

|b2| − λ
2d

da2

)2]
. (3.2.14)

46

With assumptions a1, a2 ∈ (0, 1] and − |bi|−
λ
2d

dai
> 0 for i = 1 and 2, minimizing equation (3.2.14)

under conditions of v2
1 + v2

2 = 1 and v1,2 ≥ 0 is equal to magnify an ellipse with a center in the 3rd

quadrant until it touches the quarter of unit circle line in the 1st quadrant. In Figure 3.2, we show

examples that with same center but different shapes and also ellipses with same shape (same values

of major / minor axises) but different centers. Those ellipses can meet the unit circle in different

places but the meeting points are guaranteed to be either v = (1, 0) or v=(0, 1). That corresponds

the result in the theorem that only one direction of v can take a nonzero value equaling to 1.

In conclusion, if λ
2d ≥ max

j=1:n
|bj |, our solution is to check the object function’s value by plugging

in n different points and find the minimal, i.e.,

min
‖v‖22=1,vj≥0

d2
n∑
j=1

aj

(
vj −

|bj | − λ
2d

daj

)2

= min

(
a1

(
1−
|b1| − λ

2d

da1

)2
+

n∑
j=2

aj
(|bj | − λ

2d

daj

)2
, ..., an

(
1−
|bn| − λ

2d

dan

)2
+

n−1∑
j=1

aj
(|bj | − λ

2d

daj

)2)
.

• Case III: min
j=1:n

|bj | ≤ λ
2d ≤ max

j=1:n
|bj |

Without loss of generality, we assume |bj | is in a non-decreasing order, i.e., b1 ≤ b2 ≤ ... ≤ bn. In

this case, there exists a positive integer s such that λ
2d ≥ |bj | for j = 1, 2, ..., s and λ

2d < |bj | for

j = s+ 1, ..., n. Then, the objective function can be separated into two parts,

min
‖v‖22=1,vj≥0

d2
n∑
j=1

aj

(
vj −

|bj | − λ
2d

daj

)2

= min
‖v‖22=1,vj≥0

[
d2

s∑
j=1

aj

(
vj −

|bj | − λ
2d

daj

)2

+ d2
n∑

j=s+1

aj

(
vj −

|bj | − λ
2d

daj

)2]

= min
r∈[0,1]

(
min

s∑
k=1

v2k=r2,vj≥0

d2
s∑
j=1

aj

[
vj −

|bj | − λ
2d

daj

]2

+ min
n∑

k=s+1

v2k=1−r2,vj≥0

d2
n∑

j=s+1

aj

[
vj −

|bj | − λ
2d

daj

]2)

∆
= min

r∈[0,1]

(
m2(r) +m1(r)

)
.

For any fixed r ∈ [0, 1], we can use the same method in Case I to solve m1(r), and use the

method we deal with Case II to solve m2(r). The final solution is achieved by minimize a function

with respect to r between 0 and 1. Notice that the solution from m2(r) which is Case II, can only

have one non-zero vk, 1 ≤ k ≤ s, and the solution in m1(r) which is Case I, will have all vs+1:n > 0.

With a particular chosen of r in final solution, we can have either n − s or n − s + 1 non-zero

47

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

x

y

Figure 3.3: Geometric interpretation of solution under case III. The blue line is a 1/4 unit circle
in 1st quadrant. Green, red and purple lines are ellipses with different centers in 2nd quadrant and
different major / minor axis.

coefficients in v̂. If we use a two dimensional (n = 2) example in Figure 3.3 to interpret Case III,

we will have a1, a2 ∈ (0, 1], − |b1|−
λ
2d

da1
> 0 and

|b2|− λ
2d

da2
> 0. Obviously, the center of the ellipse is in

the 2nd quadrant. Different solutions are presented given different shapes and centers of the ellipses.

The green and red lines represent the case when v1 = 0 and v2 = 1, i.e., r = 0 and all non-zero

directions come from m1(r) part. The purple line is the solution that v1,2 > 0, i.e., 0 < r < 1 and

all non-zero directions come from m1(r) part except for one direction coming from m2(r). Based on

the geometric plots in Figure 3.3, we find that no matter different locations and shapes of ellipses in

Case III, we will never have a solution with r = 1, that is the case when the solution only has one

non-zero coefficient and it comes from m2(r) part.

48

3.3 Comparison between two methods

In Witten (2007), they proposed an method dealing with missing data with the objective function

defined as

min
‖u‖22=1,‖v‖22=1

∑
(i,j)∈C

(Aij − duivj)2 := max
‖u‖22=1,‖v‖22=1

d

n∑
j=1

Aijuivj (3.3.1)

In fact, this is only an approximate criterion which does not exactly hold for most of the time. Our

method is a solid solution, and we provide a summary of a comparison between these two methods

in the following.

• Case I: 0 ≤ λ
2d ≤ min

j=1:n
|bj |.

Let v̂j be the solution using our method and ṽj be the solution using equation (3.3.1), then we have

v̂j =

d
(
|bj |− λ

2d

)
d2aj+α

, α is chosen to make ‖v̂‖2 = 1

ṽj =
2d|bj |−λ

α , α is chosen to make ‖ṽj‖2 = 1

Both methods have a dense solution, i.e., all the coefficients in v are non-zero. However, the

magnitudes are different that we adjust v̂j according to the missing rate in each column of A. Two

solutions are equal if and only if aj = 1 for all j = 1, 2, ..., n which means there is no missing values

in the data.

• Case II: λ
2d ≥ max

j=1:n
|bj |

In this case, both of the solutions have only one non-zero direction: v̂j = 1 if for all k 6= j

aj
(
1−
|b1| − λ

2d

daj

)2
+

∑
i6=j,i=1:n

ai
(|bi| − λ

2d

dai

)2 ≤ ak(1− |bk| − λ
2d

dak

)2
+

∑
i6=k,i=1:n

ai
(|bi| − λ

2d

dai

)2
,

and ṽj = 1 if

j = arg min
k

2d|bk|.

If aj = 1 for all j = 1, 2, .., n, i.e., there is no missing in data matrix A, we find these two solutions

are equivalent. Otherwise, It happens that two methods could have different choices as non-zero

directions on the same data. We will show an example in the next simulation part.

49

• Case III: min
j=1:n

|bj | ≤ λ
2d ≤ max

j=1:n
|bj |

This is the most common observed case when λ is not too large or too small. ṽj has non-zero

coefficients if λ
2d < |bj |, and ṽj ∝ 2d|bj |−λ. The non-zero coefficients in v̂ contain two parts, for any

j such that λ
2d < |bj |, v̂j is guaranteed to be non-zero, and it is the same as ṽj . However, among all

j that λ
2d ≥ |bj |, there could also be one more direction with non-zero coefficient while it’s 0 for ṽj .

Although the extra non-zero direction is data based which is not always guaranteed, it indicates that

in some cases, our method could dig out additional signal information which is ignored by Witten’s

method.

3.4 Simulation

We design a toy data experiment to test the performance of our solution with respect to different

patterns of data missing. The toy data is generated as

A = du1v
t
1 + E,

where E = {ei,j}
i.i.d.∼ N(0, 1), d = 4 is a scalar, u and v are R10 sparse vectors with 4 non-zero

coefficients,

u =
(
0, 2, 1.5, 3, 2.5, 0, 0, 0, 0, 0

)T
v =

(
0, 0, 2.5, 2.5, 1.5, 2, 0, 0, 0, 0

)T
.

Using this data generation process, if there is no noise term, A is a sparse matrix with signal infor-

mation contained in the block formed by second to fifth row and third to sixth column. We present

an example of a simulated data by adding an error term in the following matrix, and the signal

area is in blue color. Meanwhile, we randomly remove 10% (10 points in red color) of the elements

in A and we treat them as missing. Missing values outside the information block usually have less

impact to the solution, and we mainly focus on testing the relationship between missing values in

the information area and the sparse pattern in solution. Without of lost of generality, we choose the

third and fourth column which corresponding to the solution v̂3 and v̂4 as the target. At the first

stage, there is only one point A5,3 missing in the signal area. If the algorithm works, since most of

50

the information is still complete, the decomposition solution v̂ = (v̂1, v̂2,, v̂10)T could have the

same sparse structure as the actual, i.e., v̂3, v̂4, v̂5, v̂6 are non-zero and the other directions are zero.

−1.11 −0.05 0.45 −0.41 2.71 0.20 −1.19 1.18 2.15 1.99

−0.39 1.0 18.85 20.55 12.52 14.57 −0.13 −2.72 −0.74 −1.64

−1.22 −0.35 14.89 14.86 11.01 11.37 0.48 −0.98 −0.69 0.06

0.46 0.03 29.56 32.22 17.04 25.09 0.43 −0.18 0.86 −0.43

−0.65 −0.31 25.12 25.25 13.98 19.80 −1.32 −0.33 0.23 −1.06

0.23 −0.36 0.00 −0.70 0.59 1.05 −0.39 −0.07 1.81 0.87

−1.26 0.10 −1.01 −0.23 0.55 1.36 −1.06 −0.03 0.19 1.31

0.36 −1.37 0.50 −1.99 −1.37 −0.12 −0.76 0.37 0.84 −1.89

−1.60 0.24 0.06 1.36 1.62 1.94 −2.27 0.20 1.02 0.77

2.17 −0.25 −0.90 −0.80 0.01 0.99 −0.01 −0.80 0.45 1.10

To perform the experiment, we fix α = 3500 which is the Case III in previous discussion. The

algorithm needs an initial value u and d to solve v, and we apply a SVD on the data matrix and

set û to be the first column of U matrix, and set d to the largest singular value. Given û and

d, we calculate the estimation v̂ and compare its sparse structure to the truth. After that, we

increase the number of missing values in third and fourth column of the informative area in A, i.e.,

we keep deleting values in A with an order of A3,4, A2,3, A5,4, A2,4, A3,3, and each time we track the

estimation on v̂ to see how missing pattern will affect the decomposition solution. All the results

are shown in the following Table 3.1.

From Table 3.1, it shows that we can successfully detect the sparse structure of v (non-zero

coefficients v3, v4, v5 and v6) for the first four data missing patterns. The fourth missing pattern

drops values in A5,3, A3,4, A2,3 and A5,4, and it already covers 50% of the information in third and

fourth column. In the next missing case which 70% of signals (A3,4, A5,4 and A2,4) in column 4 and

50% of signals (A5,3 and A2,3) in column 3 are also lost, we still retrieve the true sparse pattern with

r = 0.49. This r value means that the sparse pattern is finally determined through two processes, i.e.,

the first part m1(r) digs out v3, v5 and v6 as signal directions and m2(r) finds the remaining direction

51

Data Missing Pattern True Signal Directions r Non Signal Directions
v̂3 v̂4 v̂5 v̂6 v̂1, v̂2, v̂7, v̂8, v̂9, v̂10

A5,3 0.63 0.66 0.15 0.38 1 all equal to 0
A5,3, A3,4 0.61 0.68 0.14 0.38 1 all equal to 0

A5,3, A3,4, A2,3 0.64 0.66 0.14 0.37 1 all equal to 0
A5,3, A3,4, A2,3, A5,4 0.52 0.76 0.14 0.36 1 all equal to 0

A5,3, A3,4, A2,3, A5,4, A2,4 0.33 0.87 0.13 0.34 0.49 all equal to 0
A5,3, A3,4, A2,3, A5,4, A2,4, A3,3 0.00 0.93 0.13 0.34 0.36 all equal to 0

Table 3.1: Sparse decomposition solutions using our method corresponding to different missing
patterns on a toy data example. The true signal area is a block formed by column 3 to 6 and row 2
to 5, and data missing happens in column 3 and 4 of the signal block.

v4 even that column 4 has only 25% of the information left. If we apply Witten’s approximation

method, it’s the same that v3, v5 and v6 could be recognized as signals, however the v4 direction

will be treated as an error. In the last case, data completeness becomes even worse, and both of the

third and fourth signal columns have 75% missing rate. Witten’s method treat both column 3 and 4

as errors due to little information involved, while our method still consider column 4 as informative

through its solution in m2(r) part.

52

Chapter 4

A Bayesian Algorithm for Sparse
Principle Components Analysis

4.1 Introduction

Principal Component Analysis (PCA) is an important visualization and dimension reduction tool

with a wide range of applications in data visualization, data compression and system identification

(Alter et al. (2001), Prasantha et al. (2007), Huang et al. (2012), Thomasian et al. (1998)). It

projects the data onto the principal subspace spanned by k leading eigenvectors of the population

covariance matrix, and most of the variance in the data is captured by these k modes. However, the

linear combinations found by PCA typically involve all the variables, with non-zero loading, which

can be difficulty to interpret. Moreover, in high dimensional setting where the dimension p can be

much larger than n, classical PCA leads to very poor estimations and statistical properties (Paul

(2007), Johnstone and Lu (2012), Shabalin and Nobel (2013))

To improve the performance of PCA, various proposals have been introduced. Jolliffe (1995) first

proposed rotation techniques helping for interpretation on PCs. Jolliffe and Uddin (2000) claimed

simplified component technique (SCoT) to find linear combinations of variables that maximize a

criterion which contains a trade off between combination variance and simplicity. Vines (2000)

restricted simple components with only integers such as 0, 1 and -1. Meanwhile, sparse PCA

gained a lot of attention in recent years. It aims to find component loadings with many zero

coefficients, thus increasing interpretability of PCs. Methodologies include regularized estimators

based on penalizing, constraining the variance maximization formulation of PCA or thresholding.

Cadima and Jolliffe (1995) first described a simple thresholding approach, which set regular PC

loadings to zero if their absolute values are below a certain threshold. Jolliffe et al. (2003) continually

proposed simplified component technique - LASSO (SCoTLASS), which applied LASSO penalty on

the loadings to deal with the PCA optimization problem. Zou et al. (2006) reformulated PCA as a

regression problem, and achieve PC sparseness by imposing the LASSO penalty on the regression

53

coefficients. d’Aspremont et al. (2007), d’Aspremont et al. (2008) and Vu et al. (2013) developed

convex relaxation techniques that efficiently produce good approximate on the sparse PCA objective

function. Johnstone and Lu (2012), Paul and Johnstone (2012)proposed a two stage procedure based

on diagonal thresholding. Ma et al. (2013), Yuan and Zhang (2013) developed an iterative algorithm

of thresholding.

On the theoretical part, in high dimensional setting, the sample eigenvector is no longer always

a consistent estimator. Sometimes, they can even be nearly orthogonal to the true direction. This

phenomenon has been studied and examined by many researchers when n, p → ∞ with p/n →

c ∈ (0,∞) (Hoyle and Rattray (2004), Lu (2002), Nadler (2008), Onatski (2012), Paul (2007),

Reimann et al. (1996)). Meanwhile, if there exists sparse leading eigenvectors in the data, it is

also possible to consistently estimate them under high dimensional settings through new estimation

conditions. For instance, under the single spiked covariance model assumption, Johnstone and Lu

(2012) provided an algorithm for selecting a subset of coordinates with largest sample variances,

and showed that if PCA is done on the selected subset, consistency is recovered when the leading

eigenvalue is bounded and (log p ∨ n)/n → 0. Under the same single spiked model, if the leading

eigenvector has at most k nonzero loadings, Amini and Wainwright (2008) studied conditions for

consistent recovering the support set of the maximal eigenvector using simple diagonal thresholding

method in Johnstone and Lu (2012) and a semidefinite programming (SDP) relaxation for sparse

PCA in d’Aspremont et al. (2007). Shen et al. (2013) established conditions for consistency of a

sparse PCA method in High Dimension, Low Sample Size (HDLSS) setting, i.e., n is fixed and

p→∞. Paul and Johnstone (2012) proposed an augmented sparse PCA (ASPCA) estimator of the

leading eigenvectors based on a coordinate selection scheme combined with PCA and proved that

their procedure obtains the optimal rate of convergence under a high-dimensional sparse setting.

There are more theoretical works of estimating the leading eigenvectors from a high-dimensional

population covariance, topics in consistency, rates of convergence and minimax risk bounds are

covered in Lounici (2013), Ma et al. (2013), Berthet and Rigollet (2013), Cai et al. (2013), Vu and

Lei (2012), Vu et al. (2013).

If we let the true leading PC to be ρ, identifying the non-zero loading set of ρ defined as I =

{i : ρi 6= 0} can be also considered as a variable selection problem. Variable selection, also know

as feature selection is one of the important topics in statistics. It is used for simplifying models

with easier interpretations and reducing overfitting to enhance generalization. The popular model

54

selection approaches include criteria based selections (Akaike (1973), Mallows (1973), Schwarz et al.

(1978)), penalized regression (Tibshirani (1996), Fan and Li (2001), Fan et al. (2004)) and Bayesian

approaches (Bottolo et al. (2010), Li and Zhang (2010), Stingo and Vannucci (2011)). The Bayesian

variable selection makes inference on posterior, and its advantage is that we can easily incorporate

prior knowledge as well as many sources of variation. A general model usually considers a joint

density of latent variables z = z1:p and data x = x1:n,

p(z, x) = p(z)p(x|z),

where the latent variables help to determine the distribution of the data. The latent variables are

drawn from a prior p(z) and connected to the observations through the likelihood p(x|z). Inference

in a Bayesian model refers to the posterior p(z|x). If p(z) is from Bernoulli distribution as well as the

conjugated posterior, we can then study the inclusion probability of each variable, which provides

more information comparing to a point estimator.

In complex Bayesian models, it is particularly useful to evaluate posterior distributions by Markov

chain Monte Carlo (MCMC) sampling. For decades, there many different MCMC algorithms which

use different techniques for generating the Markov Chain. The most popular ones include the

Metropolis-Hastings (Metropolis et al. (1953), Hastings (1970)) and the Gibbs Sampler (Geman and

Geman (1984)). In Metropolis-Hastings algorithm, items are selected from an arbitrary “proposal”

distribution and are retained according to an acceptance rule. The Gibbs sampler is a special case

in which the proposal distributions are conditional distributions of single components of a vector

parameter. MCMC algorithms then are widely studied, and detailed reviews on related applications

and extensions could be found in Robert (2004). However, Liang et al. (2008) pointed out that

except for special cases such as linear models with carefully chosen priors, Bayesian inference via

MCMC for large scale problems is inefficient. The known difficulties for MCMC in high dimension

models include: 1) it’s difficult to design a Markov chain that efficiently samples the state space

of interest; 2) it’s sensitive to prior choices and the resulting MCMC estimators could have high

variance thus producing less reliable inference and poor forecasts; 3) there are no diagnostics to

guarantee that the MCMC chain has converged.

On the other hand, Variational Bayes (VB) is an another efficient alternative to MCMC for

Bayesian inference (Bishop (2006), Ormerod and Wand (2010)). It is based on approximating

55

the target posterior distribution by a variational distribution and solving it using optimization

techniques. Specifically, suppose the posterior distribution of interest over a set of unobserved

variables Z = {Z1, ..., ZM} given some data X is p(Z|X) ,but it is difficult to draw samples from

it. We propose a variational distribution qv(Z) parameterized by v to approximate p(Z|X). The

distribution qv(Z) is usually restricted to belong to a family of simpler distributions than P (Z|X),

such as exponential family. Meanwhile, it’s intended to make qv(Z) similar to the true posterior

p(Z—X). The similarity between qv(Z) and the target posterior p(Z|X) is measured by dissimilarity

function D(p, q), and the most common chosen function is the Kullback-Leibler divergence (Kullback

and Leibler, 1951). The K-L divergence between two distributions qv(Z) and p(Z|X) is defined as

D
(
qv(Z) ‖ p(Z|X)

)
=

∫
Z

qv(Z) log
qv(Z)

p(Z|X)
dZ = Eq log

qv(Z)

p(Z|X)
= Eq log

qv(Z)

p(Z,X)
+ log p(X)

To find a approximation as close as to the target p(Z—X), we want to minimize the above K-L

divergence. The last term log p(X) is a constant given the data, thus minimizing D
(
qv(Z) ‖ p(Z|X)

)
is equivalent to maximize the equaltion:

L(qv) = Eq log
qv(Z)

p(Z,X)
= Eq log qv(Z)− Eq log p(Z,X).

In practice, with certain assumptions on qv(Z), the optimization in L(qv) can be much more com-

putationally available than the original posterior sampling. In details, the variational distribution

qv(Z) is usually assumed to be factorized over all latent variables, i.e.,

qv(Z) =

M∏
i=1

qi(Zi).

Therefore, it can be proved that the maximization solution for L(qv) is to make each factor qi(Zi)

satisfy

qi(Zi) =
exp

(
Ei 6=j

[
log p(Z,X)

])∫
exp

(
Ei 6=j

[
log p(Z,X)

])
dZi

. (4.1.1)

We usually first initialize all of the qi(Zi) appropriately, and then we cycle through the factors and

replace each in turn with a revised estimate given by equation (4.1.1), using the current estimates for

all of the other factors. The overall objective function is a convex optimization problem and therefore

56

it’s guaranteed that this cycling update procedure converges in the end (Boyd and Vandenberghe,

2004).

These is always a comparison between MCMC and VB algorithms, and therefore it helps to learn

when to use these two algorithm accordingly. The VB algorithm has several desired advantages

compared to the MCMC sampling algorithm. In general, VB is suited to large data sets since it is

typically a much faster, deterministic algorithms, and its convergence can be guaranteed through

the evaluation of the objective function. However, there are also drawbacks of VB algorithm. Unlike

MCMC, several empirical research have shown that variational inference does not necessarily achieve

an arbitrary accuracy (Blei et al. (2006), Braun and McAuliffe (2010), Kucukelbir et al. (2016)).

The reasons could be the gradient descent method used to solve the objective function only finds

local maxima, and global solution is not guaranteed, and we usually put the assumption on the

variational distribution that it can be factorized over parameter space, and this construction is not

always be able well approximate the true posterior distribution. Nevertheless, there are already

justifications on VB’s effectiveness in many different practical fields, such as graphical models for

information retrieval (Jordan, 2004), cluster analysis of gene-expression data (Teschendorff et al.,

2005), and functional magnetic resonance imaging (fMRI) data (Flandin and Penny, 2007).

In this chapter, different from the popular PCA related approaches mentioned above which

mainly focus on penalized likelihood and different kinds of thresholding, we develop a new Bayesian

variable selection method to deal with Sparse PCA problem. The basic idea of our algorithm is

applying Variational Bayes to find the best approximation of the true posterior distribution at each

step through a hybrid of Expectation Maximization (EM) and Variational Bayes (VB) process.

Empirical study shows that it converges very fast. We also study the asymptotic properties of our

algorithm and prove that it achieves selection consistency by ruining algorithm once with certain

assumptions and conditions.

57

4.2 Methodology

4.2.1 Model Setting and Priors

We consider a PCA setting when there is a single principal component. Suppose each data point is

a p-dimensional column vector

xi = ciρ+ ξwi, i = 1, 2, ..., n, (4.2.1)

where ρ = (ρ1, ..., ρp) ∈ Rp is the single component to be estimated, ci
iid∼ N(0, 1), and wi ∼ Np(0, I)

are independent p-dimensional noise vector. We can also write the data in a matrix form

Xn×p = cn×1ρ
T + ξWT ,

where c = (c1, c2, ..., cn)T and Wp×n = [w1, w2, ..., wn] with wi as the ith column.

Given data matrix X, the goal is to identify the non-zero loading set of ρ defined as I = {i : ρi 6=

0}. If the sample covariance matrix Ap×p = 1
nX

TX, we use a Gaussian approximation as a working

likelihood and model A as

Ap×p = uvt + E, (4.2.2)

where Ep×p = {eij} is the error matrix with eij
iid∼ N(0, σ2), and u, v ∈ Rp with ‖v‖2 = 1 for

identifiability.

To derive our variational Bayesian algorithm to select non-zero coefficients in ρ, we put a prior

on v which is uniformly distributed over all vectors with norm-square 1, i.e.,

v ∼ Unif(Sp−1), Unif(Sp−1) = {x ∈ Rp : ‖x‖ = 1}.

For each ui, i = 1, 2, ..., p, we define a binary vector Z = (Z1, ..., Zp), and each Zi is a 0/1 Bernoulli

variable indicating whether ui is nonzero. Zi itself also has a Bernoulli prior,

π(Zi) ∼ Bern(ω), j = 1, 2, ..., p,

58

ω ∼ Beta(s0, t0),

where ω is a hyper-parameter. Given Zi, the prior of ui follows a mixture of two normal distributions,

π(ui|Zi = k) ∼ N(0, akσ
2), k = 0, 1

where a0 and a1 are tuning parameters and a0 usually has a tiny value. In our model setting, we

assume a0 = 0 meaning that if ρi = 0, the prior of ui, π(ui|Zi = 0) is a point mass at 0, and we

write it as δ(ui). Notice that σ2 is contained both in the variance of the prior of ui and the variance

of the error term E in the working likelihood, we put an Inverse Gamma distribution on it,

% =
1

σ2
∼ Gamma(ν0, λ0).

To summarize, we have elicited the model setting and all the prior distributions for the parameter

space H = (u1:p, Z1:p, v1:p, σ
2, ω). Among of them, (u,Z) are variables of interest and Θ = (ω, σ2)

are hyper-parameters. In next section, we will provide an updating rule with VB algorithm to get

all parameters’ posterior distributions.

4.2.2 A Variational Algorithm

It’s pretty normal that in many real application examples, only the sample covariance matrix is

observed instead of the whole data matrix. Therefore, in the retaining part of this chapter, we always

assume only matrix A is available. Let P (u,Z|A) be the posterior distribution of our interested

variables (u,Z), and it does not have a nice analytical solution based on our model and prior setting.

We propose a alternative method to approximate this posterior distribution by a new variational

algorithm. Let Q(u,Z) be the variational distribution, to allow our approximation easy to solve, we

assume that each dimension of (u,Z) is independent, and therefore Q(u,Z) can be factorized by the

product of each dimension’s distribution,

Q(u,Z) =

p∏
i=1

qi(ui, Zi).

59

Furthermore, we also assume that each dimension’s distribution has the same mixture of normal

structure as the prior of ui given Zi, that is

qi(ui, Zi) =
[
αifi(ui)

]Zi[
(1− αi)δ(ui)

]1−Zi
,

where fi(ui) is a arbitrary probability density but could be solved through a optimization process

on the objective function, and αi is the parameter of the Binary distribution for Zi. In order to

make Q(u,Z) as close to the true posterior as possible, we use K-L divergence to define our objective

function, i.e.,

Ω(q1, q2, ..., qp, σ
2, ω,v) = Eq1,q2,...,qp log

Q(u,Z)

P (u,Z,v, σ2, ω|A)
, (4.2.3)

where P (u,Z,v, σ2, ω|A) is the whole posterior distribution including both variables of interest (u,Z)

and hyper-parameters η = (v, σ2, ω). To optimize the objective function, our algorithm iteratively

solves Q and η until the stopping criteria satisfies. It can be considered as a hybrid of Expectation-

Maximization (EM) and Variational-Bayes (VB): for hyper-parameter η, we use a plug -in method

by it’s maximum a posteriori probability (MAP) estimator; for (u,Z), we approximate its posterior

by Q(u,Z).

Now we provide the updating rule of all the parameters for our algorithm, and all the detailed

derivations are provided in the Appendix D.

• Update qi(ui, Zi).

It can be shown that given the MAP estimator (v̂, σ̂2, ω̂), the optimal choice of fi(ui) is a

normal distribution N(µui , σ
2
ui), where

µui =

∑
j=1:p

Aij v̂j

1
a1

+
∑
j=1:p

v̂2
j

=

∑
j=1:p

Aij v̂j

1
a1

+ 1

σ2
ui =

σ̂2

1
a1

+
∑
j=1:p

v̂2
j

=
σ̂2

1
a1

+ 1
,

60

and the parameter of the posterior distribution of Zi, αi = P(Zi = 1) satisfies

log
αi

1− αi
= log

ω̂

1− ω̂
+

µ2
ui

2σ2
ui

− 1

2
log

a1σ
2

σ2
ui

.

In fact, we can also update µui and σ2
ui simultaneously for all the dimensions. Let µu =

(µu1
, ..., µup)t and σ2

u = (σ2
u1
, ..., σ2

up)t, then

µu =
Av̂

1
a1

+ 1

σ2
u =

σ2

1
a1

+ 1
1p×1,

where 1p×1 = (1, 1, ..., 1)t.

• Update vj .

The point estimator v̂ for square-norm 1 vector v satisfies

(
At(EQu)

)
k

v̂k
= c, with a constant c 6= 0∑

k=1:p

v̂2
k = 1

where EQu =
(
α1µu1

, ..., αpµup

)t
, and

(
At(EQu)

)
k

=
∑
i=1:p

αiAikµui represents the k-th ele-

ment of the Rp vector At(EQu).

• Update σ2

σ̂2 =

EQ
∑
i,j

(Aij − uiv̂j)2 + 1
a1

∑
i=1:p

αi(µ
2
ui + σ2

ui) + 2

p2 +
∑
i=1:p

αi + 4
,

where

EQ
∑
i,j

(Aij − uiv̂j)2 = EQ
∑
i,j

A2
ij − 2EQ

∑
i,j

Aijuiv̂j + EQ
∑
i,j

u2
i v̂

2
j

=
∑
i,j

A2
ij − 2

∑
i,j

αiv̂jAijµui +
∑
i,j

αiv̂
2
j (µ2

ui + σ2
ui)

61

• Update ω

ω̂ =

p∑
i=1

αi/p

We iteratively use the above rule to update all the parameters in a order of qi(ui, Zi), v, σ2 and

ω, and after several loops, we need to decide when to stop. We usually refer to the total entropy of

the vector α to check whether the feature selection result converges, i.e.,

H(α) =

p∑
i=1

(
− αi logαi − (1− αi) log(1− αi)

)
.

If the changing rate of entropy H(α) between two iterations is less then a pre-specified value (5% in

our simulation), we will stop. Usually, the updating converges pretty quickly in a few iterations.

4.2.3 Parameter tuning

When we apply the above updating rule to get the posterior non-zero probability for each element

of the principal component, we use 0.5 as the cut off point. It means the i-th coefficient of ρ is

estimated as non-zero if αi > 0.5. Define the non-zero coefficient selection set to be

Î = {i : αi > 0.5},

we apply PCA on a sub-matrix S = AÎ×Î to yield the eigenvector ρ̂S corresponding to the largest

eigenvalue. Then the solution û is considered as the sparse principal component estimation with

each element

ûi =

ρ̂Si , if i ∈ Î

0, if i /∈ Î
.

Notice that αi is solved based on the tuning parameter a1 and therefore, Î and û both depend

on a1, i.e., different chosen value of a1 will lead to a different non-zero coefficient pool defined as

{û(1), ..., û(k)}, and we should provide a method to determine a suitable value of a1.

We consider first provide a range of candidate values for a1, and apply BIC as the criteria to

determine the best choice among all the candidates, i.e., the best solution is chosen to minimize

BIC(û(i)), for i = 1, 2, ..., k. In our simulation study, we set the tuning range for a1 from 0 to 2 with

0.1 as a gap between two contiguous candidates, and we derive the BIC formula below by assuming

62

only the sample covariance matrix A is known,

BIC(û(i)) = −2loglike + dfû(i) log(np)

= np log(σ̂2) + dfû(i) log(np) + C, (4.2.4)

where σ̂2 =
Tr
(
A(I−û(i)û(i)t)

)
p and C is a constant not affecting the choice of û(i).

If we solve multiple sparse principal components problem, i.e., when there are p principal compo-

nents ρ1, ρ2, ..., ρp, we try to solve û1, ..., ûp to estimate ρi respectively, it’s easy to find that all the

ûi are not orthogonal which is different from the ordinary principal component solution. Zou et al.

(2006) pointed out a way to calculated cumulated explained variance for sparse PCA by projecting

the new sparse direction onto the orthogonal complement space of the previous sparse PCs. We can

apply the similar idea to define our generalized BIC criteria. If we denote the projection matrix

for the orthogonal complement space of the previous k − 1 directions by Hk−1, the new covariance

matrix we are dealing with for k-th direction is Ak = Hk−1AH
t
k−1. If we yield a sparse solution û

for covariance matrix Ak, we should also project it onto Hk−1 space to get ûk = Hk−1ûk
‖Hk−1ûk‖ , and BIC

value could be calculated afterwards through

BIC(ûk) = np log
(Tr[(A(I − ûkû

T
k)]

p

)
+ dfûk log(np) + C. (4.2.5)

Once we solve ûk, we should update the new orthogonal complement space with the current k

directions by Hk = Hk−1 − ûkû
T
k , and Hk will be served for solving the k+ 1 sparse PC estimation

ûk+1.

To sum up, we provide the pseudo code for our Variational Bayesian sparse PCA algorithm with

BIC embedding for parameter tuning, and it is named sPCA-VB-BIC for later on usage.

63

Algorithm 4.1 sPCA-VB-BIC

Require: Initialize v̂ = (v̂1, ..., v̂p), σ̂
2, ω̂

1: for a
(k)
1 in tuning candidate pool a

(1)
1 , ..., a

(m)
1 do

2: Repeat

3: for i in 1:p do

4: µui ←
∑
j=1:p

Aij v̂j

1

a
(j)
1

+1

5: σ2
ui ←

σ̂2

1

a
(j)
1

+1

6: αi ← Logit−1
(

log ω̂
1−ω̂ +

µ2
ui

2σ2
ui

− 1
2 log

a
(j)
1 σ2

σ2
ui

)
.

7: end for

8: v̂← At(Equ)
‖At(Equ)‖

9: ω̂ ←
p∑
i=1

αi/p

10: σ̂2 ←
Eq

∑
i,j

(Aij−uiv̂j)2+ 1
a1

∑
i=1:p

αi(µ
2
ui

+σ2
ui

)+2

p2+
∑
i=1:p

αi+4

11: Until H(α) =
p∑
i=1

(
− αi logαi − (1− αi) log(1− αi)

)
converges

12: Calculate û(k) and BIC(û(k))

13: end for

14: K ← arg min
j=1:m

BIC(û(j))

Ensure: û(K)

4.2.4 Two-stages Method

When p is very large, directly applying sPCA-VB-BIC is time consuming. Johnstone and Lu (2009)

proposed an algorithm including a thresholding step which can reduce the number of variables before

embarking on PCA. Here we extend sPCA-VB-BIC algorithm to a two-stage sparse PCA method

with a similar idea:

• First step: Define σ̂2
ν as the diagonal value of the sample covariance matrix A, and we apply

a simple thresholding rule on σ̂2
ν to filter the elements large than a prefixed value,

S = {ν : σ̂2
ν ≥ σ̂2(1 + αn)},

where σ̂2 = median(σ̂2
ν), αn = c

√
log
(

max(p,n)
)

n , and c is a positive constant usually with value

64

larger than
√

12.

• Second step: Let AS = (Ai,j : i, j ∈ S) be the sample covariance matrix of the selected

variables from first step, we apply sPCA-VB-BIC algorithm on the matrix AS to get a sparse

PC estimation ρ̂ν , ν ∈ S. The final estimation for each element of ρ yields to

ρ̂A,ν =

ρ̂v, if ν ∈ S

0, if ν /∈ S

4.3 Selection and Consistency

We talk about the selection consistency of our algorithm in this section. For simplicity, we still use

our single component data generation process (4.2.1) and working likelihood model (4.2.2), and we

assume the principal component has a sparse representation. We establish a consistency property of

our VB algorithm which could capture the sparse pattern under certain conditions. A low dimension

case (p fixed) is first considered and we generate the result to a case which p→∞ and p/n→ 0. In

the latter case setting, we also assume lim inf ‖ρ‖ = % > 0.

4.3.1 Asymptotic consistency when p is fixed

Notice that I denotes the support set of the true principal component ρ, i.e., I = {i : ρi 6= 0}, then

we define Ic = {i : ρi = 0} and k = #{i : ρi 6= 0}. The major rule we use to estimate this support

set is calculating the posterior probability αi = P(Zi = 1|A) through the Logit formula log αi
1−αi in

updating rule of qi(ui, Zi). In algorithm implementation, we always add a truncation step in each

iteration to avoid numerical computation issue, i.e., if log(αi
1−αi) > c or log(αi

1−αi) < −c, we will not

update αi in this iteration since αi is close to either 0 or 1 which are both easy to determine the

value of Zi. Here, c is a large enough positive number, for instance c = 100 in our numerical study.

In the following part, we use a sample dependent value c(n) to be this cutoff. Therefore, we could

define our estimated support set Î = {i : log αi
1−αi ≥ c(n)}. A algorithm has selection consistency

property if it satisfies P(Î = I)→ 1.

Before providing the main theorem, we need to derive several properties. We rely on a single

component model and the true sample covariance matrix A can be written as

65

A =
1

n
XTX =

||c||2

n
ρρT +

ξ

n
(ρcTWT +WcρT) + ξ2WWT

n
.

Its element-wise expectation is equal to

A0 = EA = ρρT + ξ2Ip,

where A0 is the true covariance matrix. The difference of these two matrices is treated as an true

error matrix E = {eij}, which can be decomposed into three parts,

Ẽ = A−A0 =
(||c||2

n
− 1
)
ρρT +

ξ

n
(ρcTWT +WcρT) + ξ2

(WWT

n
− Ip

)
:= B + C +D.

Meanwhile, the true covariance matrix A is modeled by a working likelihood,

Ap×p = uvt + E,

where Ep×p = {eij} is a model based error matrix with eij
iid∼ N(0, σ2). In order to perform a

good estimation of the true model, we need to make an assumption on the working likelihood mode.

We claim the following property for each element in E so that it’s natural to assume the order of

σ2 := σ2(n) ∼ 1
n from now on.

Proposition 4.1. Let Ẽp×p = {ẽij}, then Var(ẽij) = Op(
1
n), ∀i, j.

Proof: Consider three parts in Ẽ separately. For B term, ‖c‖
2

n − 1 = 1
n

∑
i

(c2i − 1), (c2i − 1)’s are

i.i.d. with mean 0 and variance 2. By central limit theorem (CLT),

√
n(
‖c‖2

n
− 1)

D→ N(0, 2).

The dimension p is fixed here, and the (i, j)-th element Bi,j converges to a normal distribution,

√
nBi,j

D→ N(0, 2ρ2
i ρ

2
j).

For C term, conditioned on c, the Rp vector Wc is distributed as Np(0, ‖c‖2Ip), and it leads to

ξ

n
Wc ∼ Np(0,

‖c‖2ξ2

n2
Ip)

D→ Np(0,
ξ2

n
Ip).

66

Therefore, the (i, j)-th element of Ci,j converges to a summation of two normal distributions,

√
nCi,j

D→ N(0, ξ2ρ2
i) + N(0, ξ2ρ2

j).

For the third term D, the (i, j)-th element

Dij =

ξ2

n

n∑
k=1

(w2
ik − 1), if i = j

ξ2

n

n∑
k=1

wikwjk, if i 6= j

where wik is the k-th element of wi
i.i.d∼ Np(0, I). Using CLT,

√
nDij

D→

ξ2N(0, 2), if i = j

ξ2N(0, 1), if i 6= j

Combining three terms, we claim that
√
nẽij =

√
n

(
Bi,j + Ci,j +Di,j

)
converges to a summation

of serval normal distributions and each of them has a finite variance. Therefore, Var(ẽij) = Op(
1
n).

�

Let ρ∗ = ρ/‖ρ‖ be the norm one true leading principle component of A0. This is the eigenvector

corresponding to the largest eigenvalue λ = ‖ρ‖+ ξ2 of A0. When implementing the algorithm, we

usually choose the eigenvector v̂ corresponding to the largest eigenvalue of the sample covariance

matrix A as the initial value for v. Thus, we are interested in how different between the ρ∗ and v̂

because we would like to make the starting point close to the truth. By the perturbation bounds

theorem from Johnstone and Yu (2004), we have the following property.

Proposition 4.2. ‖v̂ − ρ∗‖ = Op(
1√
n

).

Proof: The second largest eigenvalue of A0 is ξ2, and the gap between the first and second

largest eigenvalue equals to δ = ‖ρ‖. Then if ‖Ẽ‖2 ≤ δ
5 = ‖ρ‖

5 , there exists r ∈ Rp−1 such that

∠(ρ∗, v̂) ≤ 4

δ
‖Ẽ‖2

67

and

lim sup ‖Ẽ‖2 ≤ ξ
√
p

n
%+ ξ2(

p

n
+ 2

√
p

n
).

Since 1
2‖v̂− ρ

∗‖ = sin
(

1
2∠(ρ∗, v̂)

)
, when x goes to 0, sin(x) ' x. Therefore, we have

‖v̂− ρ∗‖ = 2 sin
(1

2
∠(ρ∗, v̂)

)
' ∠(ρ∗, v̂) ≤ 4

‖ρ‖
‖Ẽ‖2 = O(

1√
n

)

�

To show our algorithm works for selection consistency, we provide the following Theorem 4.1. It

says if the initial values ω̂, σ̂2(n)andv̂ as well as the tuning parameter a1 are properly chosen, and

we only update all the parameters once, we could have P(Î = I)→ 1, i.e.,

P
(

min
i∈I

log
αi

1− αi
> c(n) and max

i∈Ic
log

αi
1− αi

< −c(n)
)
→ 1

with a certain condition on c(n).

Theorem 4.1. Suppose p is fixed and n → ∞, we set initial values of ω, σ2(n) and v as ω(0) ∈

(0, 1), σ(0)(n) = Op(
1√
n

) and v(0) = v̂. Let c(n) = θ log(a1) where θ ∈ (0, 1/2), if a1 → ∞ and

log(a1) = o(n), we have P(Î = I)→ 1.

The proof relies on Proposition 4.2 and it is provided in the Appendix D.

4.3.2 Asymptotic consistency when p →∞ and p/n→ 0

When p → ∞, we need to consider the order of variance σ2 with respect to p as well. If we check

the element-wise maximum of the true error matrix Ẽ, we have a property mentioned in Lei and Vu

(2015) that for a large enough constant C not related to n and p,

P(max
i,j
|eij | ≥ C

√
log p

n
) ≤ 2p−2.

Therefore, the upper bound order
√

log p
n controls the true error’s magnitude which can be used to

set the order of σ2, i.e., σ = op(
√

log p
n).

The next theorem provides all the initial values and other required conditions to achieve the

selection consistency for p→∞ and p/n→ 0 case. Most of the conditions are similar to the fixed p

68

case except for the minimum signal condition and the order of σ2. In the minimum signal condition,

we also need to consider about a value k which is the total number of true signal elements in ρ.

Theorem 4.2. Suppose p, n → ∞ and p/n → 0, we set initial values of ω, σ2(n) and v as ω(0) ∈

(0, 1) and σ(0)(n) = Op(
√

log p
n), v(0) = v̂. Let c(n) = θ log(a1) where θ ∈ (0, 1/2), if a1 → ∞ and

mini∈I(ρ∗i)2

max(k,log(a1)) log p/n →∞, we have P(Î = I)→ 1.

The proof of Theorem 4.2 is different from Theorem 4.1. We need first consider a special case

when k = 1, i.e., ρ∗ = (1, 0, ..., 0)t. The reason is that we can use a property from Paul (2007) that

v̂2/‖v̂2‖ is distributed uniformly on the unit sphere Sp−2, where v̂ = (v̂1, v̂
t
2)t. This helps us to

understand the performance of the error elements in the sample covariance matrix. Then, we could

apply the consistency result to the common case by an orthogonal transformation.

4.4 Numerical Results

4.4.1 Three-peaks single principal component

Our first synthetic example was designed in Johnstone and Lu (2009). They also provided a sparse

PCA method (AsPCA) including a pre-transformation on the data with a wavelet basis, and we

only compare our method to AsPCA by using the same wavelet basis transformation. Meanwhile,

we also check the result without a transformation by comparing the performance with Sparse PCA

by Zou, Hastie and Tibshirani (2006).

The example contains a three-peak principal component ρ in Rp shown in Figure 4.1 with p =

2048. We set the i-th component of ρ by

ρi = f(i/p) for i = 1, 2, ..., p

where

f(t) ∝ 0.7B
(
1500, 3000

)
(t) + 0.5B

(
1200, 900

)
(t) + 0.5B

(
600, 160

)
(t)

and B
(
a, b
)
(t) is a Beta density with parameter (a, b). We generate n = 1024 data points xi ∈ Rp

by

xi = ciρ+ wi, i = 1, 2, ..., n

69

where ci
iid∼ N(0, 1), and wi ∼ Np(0, I) are independent p-dimensional noise vector. We also scale ρ

to satisfy ‖ρ‖ = 10.

For each element in ρ, we treat it 0 if its absolute value is less than 10−2 and we set the number of

non-zero coefficients to be the true sparse degree for ρ. This sparse degree is used when applying

the Sparse PCA. We also generate a subset of the sample covariance matrix which contains rows

and columns with the true sparse degree id. Then we apply standard PCA on this subset covariance

matrix and the solution is set to be the non-zero coefficients estimation for ρ. And we also set the

estimations to be 0 for the zero loadings in ρ. This is an oracle method using the information not

able to get based on the sample covariance matrix, and we name it sPCA-Oracle only for comparison

purpose.

0 500 1000 1500 2000

0
.0

0
.5

1
.0

1
.5

True PC, p=2048, n=1024

'

0 500 1000 1500 2000

0
.0

0
.5

1
.0

1
.5

sPCA−VB

'

0 500 1000 1500 2000

0
.0

0
.5

1
.0

1
.5

Standard PCA

'

0 500 1000 1500 2000

0
.0

0
.5

1
.0

1
.5

Sparse PCA, sparse degree = 392

'

0 500 1000 1500 2000

0
.0

0
.5

1
.0

1
.5

wavelet−sPCA−VB

'

0 500 1000 1500 2000

0
.0

0
.5

1
.0

1
.5

 AsPCA+thresholding

'

Figure 4.1: Single principal component for a step function example. (a) Single component ρ. (b)
Sample principal component by sPCA-VB. (c) Sample principal component by Standard PCA.
(d) Sample principal component by Sparse PCA using sparse degree 392. (e) Sample principal
component by wavelet-sPCA-VB. (f) Sample principal component by AsPCA + thresholding.

Figure 4.1 provides the estimation ρ̂ by different methods. The sPCA-VB, standard PCA and

Sparse PCA deal with the data without a wavelet transformation, and wavelet-sPCA and ASPCA

involve finding a wavelet basis to make data more sparse before applying a particular algorithm.

Comparing to the true ρ with 392 non-zero coefficients, all methods successfully obtain the three-

70

peaks pattern of the component. Standard PCA is not a sparse method with fluctuations on all

the noise directions. Sparse PCA still can not detect some noise directions given the true degree of

sparsity. sPCA-VB successfully filters out most of the noise terms, and even small values of ρi are

also shrunk to 0. Among all these three methods, sPCA-VB seems to have the best estimation. On

the other hand, for the other two transformation based methods, wavelet-sPCA and AsPCA could

get a even better estimation to the truth. If we use average squared error (ASE)

ASE =
‖ρ̂− ρ‖

p

to measure the estimation accuracy, we provide some numerical results in Table 4.1 and Figure 4.2.

These results are the ASE based on 50 iterations for different methods. Overall, sPCA-VB gives

a better prediction accuracy (smaller ASE) on average than Sparse PCA, standard PCA, and it’s

also not far from the ASE benchmark provided by sPCA-Oracle. Meanwhile, if we apply a wavelet

transformation before using sPCA-VB, our result is also better than that calculated by AsPCA with

and without thresholding.

Non-wavelet Standard PCA Sparse PCA (Zou) sPCA-Oracle sPCA-VB

ASE 6.9e-4 8.7e-4 3.1e-4 3.9e-4

Wavelet wavelet-sPCA-VB AsPCA AsPCA+Threshold

ASE 1.7e-4 4.1e-4 2.3e-4

Table 4.1: ASE with 50 iterations using different PCA methods with and without wavelet pre-
transformation

71

sPCA−VB sPCA−Oracle SPCA (Zou's) PCA AsPCA+threshold wavelet−sPCA−VB

−3
.8

−3
.6

−3
.4

−3
.2

−3
.0

ASE:Three−peaks, 50 iterations

lo
g_

10
(A

SE
)

Figure 4.2: Boxplots of ASE with 50 iterations using different PCA methods for three-peak single
principal component example

4.4.2 Two sparse principal components

Next we consider an example proposed in Shen and Huang (2008). There is an example of a

covariance matrix Σ1 with two sparse leading eigenvectors in R10,

v1 = (1, 1, 1, 1, 0, 0, 0, 0, 0.9, 0.9)T , v2 = (0, 0, 0, 0, 1, 1, 1, 1,−0.3, 0.3)T .

We make Σ1’s 10 eigenvalues equal to 200, 100, 50, 50, 6, 5, 4, 3, 2, 1. Then each data point is a R10

vector generated from N(0,Σ1). We repeat our experiment 100 times with number of data points

n = 30 and 300 respectively for each time. To determine the sparse degree (number of non-zero

coefficients) for estimation v̂1 and v̂2 got through sPCA-VB-BIC, we try 20 different values (0.1, 0.2,

..., 2) as a candidate pool to tune parameter a1. The reports of the performance by our method as

well as the method introduced in Shen and Huang (2008) are shown in Table 4.2. Shen and Huang

(2008) mainly proposed three different methods and their results were similar. We only consider one

of the method sPCA-rSVD-SCAD with cross validation approach to select their tuning parameters.

In Table 4.2, estimation performance is measured by three aspects: the median angles between

the estimation and true eigenvectors, the percentage of correctly / incorrectly identified zero loadings

72

Method v̂1 v̂2

Median Correct Incorrect Median Correct Incorrect
angle (%) (%) angle (%) (%)

n=30
sPCA-rSVD-SCAD-CV 10.68 45.25 2.50 22.40 43.25 12.83

sPCA-VB-BIC 10.14 88.75 0.67 15.15 68.75 17.33
n=300

sPCA-rSVD-SCAD-CV 2.83 74.75 0.00 5.90 57.25 1.33
sPCA-VB-BIC 2.82 100.00 0.00 1.84 99.25 5.5

Table 4.2: Two sparse principal components example with p = 10 and n = 30, 300. Median angles
between estimated v̂1 and v1, v̂2 and v2 in degree, percentage of correctly / incorrectly identified
zero coefficients.

of the true eigenvectors. Overall, both methods have a better performance when n is large. Our

method tends to have a more sparse solution for v̂2 and therefore it has slightly larger incorrect

identified zeros percentage than sPCA-rSVD-SCAD-CV. Moreover, our method has much higher

correctly identified zeros percentage and the median angle for v̂1 and v̂2 are also smaller, especially

for the second direction.

4.4.3 High dimension low sample size setting

In this experiment. we consider a high dimension low sample size case which was also designed in

Shen and Huang (2008). Data matrix Xn×p with n = 50 and p = 500 is generated from N(0,Σ2),

where the covariance matrix Σ2 has two leading sparse eigenvectors in R500

v1i =

 1 i = 1, ..., 10

0 i = 11, ..., 500
, v2i =

 1 i = 11, ..., 20

0 i = 1, ..., 10, 21, ..., 500
,

and both of them have 10 non-zero coefficients. We make Σ2’s first two eigenvalues c1 = 400 and

c2 = 300, and the remaining eigenvalues are all set to 1, i.e., ck = 1 for k = 3, ..., 500. Then we

repeat the experiment 100 times and acquiring the estimation v̂1 and v̂2 through sPCA-VB-BIC

and sPCA-rSVD-SCAD-CV in Shen and Huang (2008) for each time. When implementing our

algorithm, for tuning parameter a1, we still try 20 candidates from 0.1 to 2 with a gap 0.1 between

each two contiguous values. Meanwhile, due to the large value of p, we apply the two-stages method

for our algorithm as well.

In Table 4.3, we compare the results of sPCA-VB-BIC and sPCA-rSVD-SCAD-CV. The perfor-

73

mance metrics are the same as the previous section. Overall, both of the methods have very high

percentages of correctly identified zero loadings for both v̂1 and v̂2. Notice that for the two-stages

methods, the thresholding on the first stage always keeps the first 20 directions which are the true

signals, and the second step will detect the number of non-zero coefficients either 10 or 20 when

estimating v1 and v2 separately. Since c1 and c2 are pretty close in our setting, it could happen

that v̂1 and v̂2 flip in such that v̂1 becomes an estimation of v2. That makes the incorrectly iden-

tified zeros percentage worse than the correctly identified zeros percentage. If we directly apply

sPCA-VB-BIC without thresholding, it also could identify the first 20 directions as non-zero in the

estimation of v̂1 and v̂2 for most of the time. In summary, our sPCA-VB-BIC approach has the

lowest incorrectly identified zeros percentage and slightly highest median angle for the first principal

component estimation. And the most valuable advantage by using two-stages sPCA is to reduce the

computational time a lot without losing high estimation accuracy.

Method v̂1 v̂2

Median Correct Incorrect Median Correct Incorrect
angle (%) (%) angle (%) (%)

sPCA-rSVD-SCAD-CV 2.05 98.85 10.30 1.85 98.88 11.90
sPCA-VB-BIC 4.90 99.03 4.90 1.84 99.19 5.10

sPCA-VB-2stage-BIC 1.44 99.17 7.80 1.74 99.17 7.90

Table 4.3: High dimension low sample size example with p = 500 and n = 50. Median angles in
degree between estimated v̂1 and v1, v̂2 and v2, percentage of correctly / incorrectly identified zero
coefficients are calculated for comparison between different methods.

74

Appendix A

Supplementary Material for
Chapter 1

A.1 Proof of Preposition 1.1

Proof : Let Hα = ααt be the projection matrix onto the α direction, then

‖S − αβt‖2 = ‖
[
Hα + (I −Hα)

]
(S − αβt)‖2

= ‖Hα(S − αβt)‖2 + ‖(I −Hα)(S − αβt)‖2

= ‖ααtS − αβt‖2 + ‖(I −Hα)S‖2 (A.1.1)

Given α, the solution of β comes from minimizing the first term of equation (A.1.1) and that is

ααtS − αβt = 0. So β = Sα. Hence, with β = Sα, solving

arg min
α
‖S − ααtS‖2.

We first write S = UDU t where U = (u1, u2, ..., up) is a p × p orthogonal matrix and u1, u2, ..., up

are not only a basis in Rp but also the eigen vectors of S. Meanwhile D is a p × p diagonal matrix

with λ1, λ2, ..., λp on its diagonal, without lost of generality, we just assume these terms are ordered

and λ1 is the largest one.

Then α can be written as a linear combination of u1, u2, ..., up, i.e., α = a1u1 +a2u2 + ...+apup =

75

Uγ, where γ = (a1, a2, ..., ap)
t. Thus,

‖S − ααtS‖2 = ‖UDU t − UγγtU tUDU t‖2

= ‖UDU t − UγγtDU t‖2

= ‖U(I − γγt)DU t‖2

= ‖(I − γγt)D‖2 (A.1.2)

= ‖
(
λ1(I − γγt)1, λ2(I − γγt)2, ..., λp(I − γγt)p

)
|2 (A.1.3)

=

p∑
i=1

‖λi(I − γγt)i‖2

Notice that we have equation (A.1.2) since L2 norm of a matrix keeps the same by timing orthogonal

matrix. In equation (A.1.3), (I − γγt)i stands for the i-th column of matrix I − γγt. Since

‖λi(I − γγt)i‖2 = ‖λi(ei − aiγ)‖2 (A.1.4)

= λ2
i (ei − aiγ)t(ei − aiγ)

= λ2
i (1− aiγtei − aietiγ + a2

i γ
tγ (A.1.5)

= λ2
i (1− a2

i − a2
i + a2

i)

= λ2
i (1− a2

i)

where in equation (A.1.4), ei = (0, 0, ..., 1, 0, ..., 0)t is a vector in Rp with all elements equal 0 except

for the i-th one. And in equation (A.1.5) we use the fact ‖α‖2 = 1, and ‖a1u1 +a2u2 + ...+apup‖2 =∑p
i=1 a

2
i = γtγ = 1.

Therefore, arg minα ‖S−ααtS‖2 = arg minα
∑p
i=1 λ

2
i (1−a2

i), and it has the minimum value when

all ai = 0 except for a1 = 1 since λ1 is the largest eigen value. Finally, α = a1u1+a2u2+...+apup = u1

which is the eigen vector corresponding to S’s largest eigen value λ1 and β = Sα = UDU tu1 = λ1u1

so that β
‖β‖ = u1.

76

A.2 Proof of Preposition 1.2

Proof : For fixed α0, if we can show ‖S − α0β
t‖2 = ‖Sα0 − β‖2 + φ(α0), where φ(α0) is only a

function of α0, we finish the proof.

‖S − α0β
t‖2 = ‖

[
Hα0

+ (I −Hα0
)
]
(S − α0β

t)‖2

= ‖Hα0
(S − α0β

t)‖2 + ‖(I −Hα0
)(S − α0β

t)‖2

= ‖Hα0S − α0β
t‖2 + ‖(I −Hα0)S‖2

=

p∑
j=1

‖Hα0Sj − βjα0‖2 + ‖(I −Hα0)S‖2 (A.2.1)

=

p∑
j=1

[
‖Hα0

Sj‖2 − 2StjH
t
α0
βjα0 + β2

j ‖α0‖2
]

+ ‖(I −Hα0
)S‖2

= ‖Hα0
S‖2 +

p∑
j=1

[
− 2βjα

t
0Sj + β2

j

]
+ ‖(I −Hα0

)S‖2

=

p∑
j=1

[
(αt0Sj)

2 − 2βjα
t
0Sj + β2

j

]
−

p∑
j=1

(αt0Sj)
2 + ‖S‖2

=

p∑
j=1

(αt0Sj − βj)2 + φ(α0)

= ‖αt0S − βt‖2 + φ(α0)

= ‖Sα0 − β‖2 + φ(α0)

where in equation (A.2.1), Sj is the j-th column of S and βj is the j-th element of vector β. Therefore,

‖S −α0β
t‖2 = ‖Sα0 − β‖2 + φ(α0), where φ(α0) = −

∑p
j=1(αt0Sj)

2 + ‖S‖2 = ‖S‖2 −‖αt0S‖2 is just

a function of α0.

77

Appendix B

Supplementary Material for
Chapter 2

B.1 Proof of Theorem 2.1

Proof : Let K be a Rm×m orthogonal such that KA = (1, 0..., 0)t. Notice that if K is an orthogonal

matrix, ‖KA‖2F = ‖A‖2F. Then given u = u0 and d = d0 > 0, the objective function for solution v is

v̂ = arg min
‖v‖2=1

‖A− d0u0v
t‖2F + λ2‖v‖1

= arg min
‖v‖2=1

‖KA− d0Ku0v
t‖2F + λ2‖v‖1

= arg min
‖v‖2=1

‖B − d011v
t‖2F + λ2

n∑
j=1

|vj |

= arg min
‖v‖2=1

n∑
j=1

(b1j − d0vj)
2 +

n∑
j=1

m∑
i=2

b2ij + λ2

n∑
j=1

|vj |

= arg min
‖v‖2=1

−2d0

n∑
j=1

b1jvj + d2
0

∑
j

v2
j + λ2

n∑
j=1

|vj |

= arg min
‖v‖2=1

−2d0

n∑
j=1

b1jvj + λ2

n∑
j=1

|vj |.

For the last equation above, we know −2d0

n∑
j=1

b1jvj + λ2

n∑
j=1

|vj | ≥
n∑
j=1

(λ2 − 2d0|b1j |)|vj | and the

”=” holds iff b1jvj = |b1j ||vj |, i.e., sign(vj) = sign(b1j), for all j = 1, 2, ..., n. We denote this is the

universal condition 1.

Let’s then talk about two different cases of the lower bound
n∑
j=1

(λ2−2d0|b1j |)|vj |. If λ2−2d0|b1j | ≥

78

0 for all j = 1, 2, ..., n, let k = arg maxk |b1k|,

n∑
j=1

(λ2 − 2d0|b1j |)|vj | ≥
n∑
j=1

(λ2 − 2d0|b1k|)|vj |

= (λ2 − 2d0|b1k|)
n∑
j=1

|vj |

≥ λ2 − 2d0|b1k|,

under the
n∑
j=1

v2
j = 1 condition, the two ”=” both hold if we choose vk = 1 and vj = 0 for all j 6= k.

Here, if k = arg maxk |b1k| is not unique, we can pick any of one and set its coefficient to be 1.

If at least ∃ j such that λ2 − 2d0|b1j | < 0, let H = {h : λ2 − 2d0|b1h| < 0}.

n∑
j=1

(λ2 − 2d0|b1j |)|vj | = −
∑
j∈H

∣∣λ2 − 2d0|b1j |
∣∣|vj |+ ∑

j 6∈H

(λ2 − 2d0|b1j |)|vj |

≥ −
∑
j∈H

∣∣λ2 − 2d0|b1j |
∣∣|vj | (B.1.1)

≥ −
√∑
j∈H

(λ2 − 2d0|b1j |)2 ·
√∑
j∈H
|vj |2 (B.1.2)

≥ −
√∑
j∈H

(λ2 − 2d0|b1j |)2. (B.1.3)

The “=” holds in (2) iff vj = 0 for j 6∈ H, (3) is by the Caucky-Swachz inequality and “=” holds

iff

∣∣λ2−2d0|b1j |
∣∣

|vj | = c, with a constant c 6= 0 for j ∈ H, and “=” holds in (4) iff
∑
j∈H

v2
j = 1. Combining

the universal condition, for the second case, the solution should be the intersection of all the ”=”

hold, and that is

vj = 0, for j 6∈ H∣∣λ2−2d0|b1j |
∣∣

|vj | = c, with a constant c 6= 0, for j ∈ H∑
j∈H

v2
j = 1

sign(vj) = sign(b1j)

�

79

Appendix C

Supplementary Material for
Chapter 3

C.1 Method dealing with s < n case for M2(r) in Chapter 3

For fixed r ∈ [0, 1], we want to solve

M2(r) = min
n∑

k=s+1

v2k=1−r2
−2d

n∑
j=s+1

∑
i∈Cj

Aijuivj + λ

n∑
j=s+1

|vj |.

Let bj =
∑
i∈Cj

Aijui, we write M2(r) as

M2(r) = min
n∑

k=s+1

v2k=1−r2
−2d

n∑
j=s+1

bjvj + λ

n∑
j=s+1

|vj |

= max
n∑

k=s+1

v2k=1−r2
2d

n∑
j=s+1

bjvj − λ
n∑

j=s+1

|vj |

≤ max
n∑

k=s+1

v2k=1−r2

[
2d

n∑
j=s+1

|bj ||vj | − λ
n∑

j=s+1

|vj |
]

(C.1.1)

= max
n∑

k=s+1

v2k=1−r2

[n∑
j=s+1

(
2d|bj | − λ

)
|vj |
]

(C.1.2)

where “=” holds in equation (A.1) if sgn(vj) = sgn(bj).

Similar as dealing with M1(r), we consider three different situations as λ varies in equation (A.2).

• Case I: 0 ≤ λ ≤ min
j=s+1:n

2d|bj |.

80

By Cauchy - Schwartz inequality,

n∑
j=s+1

(
2d|bj | − λ

)
|vj | ≤

√√√√ n∑
j=s+1

(
2d|bj | − λ

)2

·

√√√√ n∑
j=s+1

|vj |2,

and “=” holds iff
2d|bj |−λ
|vj | = α for j = s + 1,, n. Combining other restrictions, the final solution

of vs+1, ..., vn satisfies

sgn(vj) = sgn(bj) j = s+ 1, ..., n

n∑
j=s+1

v2
j = 1− r2

2d|bj |−λ
|vj | = α1 ∈ R j = s+ 1, ..., n

• Case II: min
j=s+1:n

2d|bj | < λ ≤ max
j=s+1:n

2d|bj |.

Suppose ∃ T < n, j = s+ 1, ..., T , we have 2d|bj | > λ, then

n∑
j=s+1

(
2d|bj | − λ

)
|vj | ≤

T∑
j=s+1

(
2d|bj | − λ

)
|vj |,

and “=” holds if vT+1, ..., vn = 0. Similar as case I, we then continue maximize

T∑
j=s+1

(
2d|bj | − λ

)
|vj |

with restriction
T∑

j=s+1

v2
j = 1− r2, and the final solution satisfies

vj = 0 j = T + 1, ..., n

sgn(vj) = sgn(bj) j = s+ 1, ..., T

T∑
j=s+1

v2
j = 1− r2

2d|bj |−λ
|vj | = α2 ∈ R j = s+ 1, ..., T

• Case III: λ > max
j=s+1:n

2d|bj |.

Let M = max
j=s+1:n

2d|bj |, suppose ∃ T < n, for j = s + 1, ..., T we have 2d|bj | = M , then for

81

j = T + 1, ..., n we have 2d|bj | < M < λ.

n∑
j=s+1

(
2d|bj | − λ

)
|vj | ≤ (M − λ)

n∑
j=s+1

|vj |

≤ (M − λ)
√

1− r2.

There are T − s different solutions making the above two “=” hold. Let k be any number in set

{s+1, s+2,..., T},

vj =

√

1− r2 j = k

0 j = 1, 2, ..., n and j 6= k

82

Appendix D

Supplementary Material for
Chapter 4

D.1 Derivation of parameter updating of sPCA-VB

algorithm

The objective function is

Ω(q1, q2, ..., qp, σ
2, ω,v) = Eq1,...,qp log

Q(u,Z)

P (u,Z,v, σ2, ω|A)
, (D.1.1)

and we optimize it by iteratively solving Q and η = (v, σ2, ω).

• Update q(u,Z)

For each i = 1, 2, ..., p, given current solution of hyper-parameters η̂ = (v̂, σ̂2, ω̂) and the distributions

of other q’s, we solve qi(ui, Zi) by minimizing equation (D.1.1). Due to the factorization form of

Q(u,V) =
p∏
i=1

qi(ui, Zi), it is equivalent to minimize

EQ log
qi(ui, Zi)

p(A|H)π(H)

= Eqi(ui,Zi)E
Q
H[−ui,−Zi] log

qi(ui, Zi)

p(A|H)π(H)

= Eqi(ui,Zi)E
Q
H[−ui,−Zi] log

[
αifi(ui)

]Zi[
(1− αi)δ(ui)

]1−Zi[
ω̂ 1√

2πa1σ̂2 exp(− u2
i

2a1σ̂2)
]Zi[

(1− ω̂)δ(ui)
](1−Zi)

−Eqi(ui,Zi)E
Q
H[−ui,−Zi] log

∏
l,j

1√
2πσ̂2

exp

(
− (Al,j − ulv̂j)2

2σ̂2

)

= αiEui|Zi=1 log
αifi(ui)

ω̂ 1√
2πa1σ̂2 exp(− u2

i

2a1σ̂2)
+ (1− αi)Eui|Zi=0 log

1− αi
1− ω̂

+Eqi(ui,Zi)E
Q
H[−ui,−Zi]

∑
l,j

(Al,j − ulv̂j)2

2σ̂2
+ cont.

83

= αiEui|Zi=1 log
αifi(ui)

ω̂ 1√
2πa1σ̂2 exp(− u2

i

2a1σ̂2)
+ (1− αi)Eui|Zi=0 log

1− αi
1− ω̂

+αiEqiui|Zi=1 log exp
(∑
j=1:p

−2Ai,juiv̂j + u2
i v̂

2
j

2σ̂2

)
+ cont. (D.1.2)

= Efiui|Zi=1αi log

fi(ui) exp
(∑
j=1:p

−2Ai,juiv̂j+u
2
i v̂

2
j

2σ̂2

)
exp(− u2

i

2a1σ̂2)
+ cont. (D.1.3)

Minimizing (D.1.3) leads to fi(ui) ∝ exp
(
− u2

i

2a1σ̂2 −
∑
j=1:p

−2Ai,juiv̂j+u
2
i v̂

2
j

2σ̂2

)
, and this is a normal

distribution with mean and variance as

µui =

∑
j=1:n

Aij v̂j

1
a1

+
∑
j=1:n

v̂2
j

=

∑
j=1:n

Aij v̂j

1
a1

+ 1
(D.1.4)

σ2
ui =

σ̂2

1
a1

+
∑
j=1:n

v̂2
j

=
σ̂2

1
a1

+ 1
(D.1.5)

Therefore, if we plug in the distribution fi(ui) into (D.1.2), we have

EQ log
q(ui, Zi)

p(A|H)π(H)

= αiEui|Zi=1 log
αi

1√
2πσ̂2

ui

exp
(
− (ui−µui)

2

2σ̂2
ui

)
ω̂ 1√

2πa1σ̂2 exp(− u2
i

2a1σ̂2)
+ (1− αi) log

1− αi
1− ω̂

+αiEqiui|Zi=1

(∑
j=1:p

−2Ai,juiv̂j + u2
i v̂

2
j

2σ̂2

)
+ cont.

= αi log
αi
ω̂

+ αiEui|Zi=1 log
[√a1σ̂2

σ2
ui

exp
(
− (ui − µui)2

2σ̂2
ui

+
u2
i

2a1σ̂2

)]
+ (1− αi) log

1− αi
1− ω̂

+αiEqiui|Zi=1

(∑
j=1:p

−2Ai,juiv̂j + u2
i v̂

2
j

2σ̂2

)
+ cont. (D.1.6)

To continue minimizing (D.1.6), we can take derivative with respect to αi, and let it equal to 0, we

84

have

(
log

αi
ω̂

+1
)

+
(

log

√
a1σ̂2

σ2
ui

−
σ2
ui

2σ2
ui

+
µ2
ui + σ2

ui

2a1σ̂2

)
−
(

log
1− αi
1− ω̂

+1
)

+
∑
j=1:p

−2Ai,j v̂jµui + (µ2
ui + σ2

ui)v̂
2
j

2σ̂2
= 0,

where we use the fact that Eqiui|Zi=1(ui − µui)2 = σ2
ui and Eqiui|Zi=1u

2
i = µ2

ui + σ2
ui . If we plug the

form of µui and σ2
ui in (D.1.4) and (D.1.5) into the last term above, we have

log
αi
ω̂

+ log

√
a1σ̂2

σ2
ui

− 1

2
+
µ2
ui + σ2

ui

2a1σ̂2
− log

1− αi
1− ω̂

+
−2σ̂2 µ

2
ui

σ2
ui

+ (µ2
ui + σ2

ui)(
σ̂2

σ2
ui

− 1
a1

)

2σ̂2
= 0,

and it turns out to be the logit updating formula for αi, i.e.,

log
αi

1− αi
= log

ω̂

1− ω̂
+

µ2
ui

2σ2
ui

− 1

2
log

a1σ̂
2

σ2
ui

.

• Update v

Given all the distributions of qi(ui, Zi), i = 1, 2, ..., p, part of the hyper-parameters σ̂2 and ω̂, we

can solve v̂ through

v̂ = arg min
v

EQ log
q(u,Z)

p(A|H)π(H)
= arg max

v
EQ log

p(A|H)π(H)

q(u,Z)
= arg max

v
EQ log

[
p(A|H)π(v)

]
.

With the L2 norm one restriction
∑
k=1:p

v2
k = 1, we write

EQ log
[
p(A|H)π(v)

]
= EQ log

∏
i,j

1√
2πσ̂2

e−
(Ai,j−uivj)

2

2σ̂2

= −EQ
∑
i,j

(Ai,j − uivj)2

2σ̂2
+ cont.

= −
∑
i,j

A2
i,j + αi(µ

2
ui + σ2

ui)v
2
j − 2Ai,jαiµuivj

2σ̂2
+ cont.

= −
∑
i,j

(Ai,j − Eqiuivj)2

2σ̂2
−
∑
i,j

Eqiu2
i v

2
j

2σ̂2
+
∑
i,j

(Eqiui)2v2
j

2σ̂2
+ cont.

= −‖A− EQuvt‖2F
2σ̂2

−

∑
i=1:p

(
Eqiu2

i − (Eqiui)2
)

2σ̂2
+ cont.

= −‖A
tEQu− v‖2

2σ̂2
+ g(EQu),

85

where g(EQu) is a function of EQu not involving v. Therefore,

v̂ = arg max
‖v‖2=1

(
− ‖A

tEQu− v‖2

2σ̂2
+ g(EQu)

)
= arg min

‖v‖2=1

‖AtEQu− v‖2

2σ̂2

satisfies
(AtEQu)k

vk
= c, with a constant c 6= 0∑

k=1:p

v2
k = 1

where (AtEQu)k =
∑
i=1:p

Ai,kαiµui is the k-th element of AtEQu.

• Update ω

Given all the distributions of qi(ui, Zi), i = 1, 2, ..., p, part of the hyper-parameters σ̂2 and v̂, we

can solve ω̂ through

ω̂ = arg min
ω

EQ log
q(u,Z)

p(A|H)π(H)
= arg max

ω
EQ log

p(A|H)π(H)

q(u,Z)
= arg max

ω
EQ log

[
p(A|H)π(ω)π(u,Z)

]
.

If we continue simplifying the above equation and taking first derivative with respect to ω, we have

∂

∂ω
EQ log

[
p(A|H)π(ω)π(u,Z)

]
=

∂

∂ω
EQ log

[∏
i,j

1√
2πσ̂2

exp(− (Ai,j − uiv̂j)2

2σ̂2
)
∏
k=1:p

(
ω

1√
2πa1σ̂2

exp(− u2
k

2a1σ̂2
)
)Zk(

(1− ω)δ(uk)
)1−Zk]

=
∂

∂ω

[
EQ

∑
k=1:p

log
(
ωZk(1− ω)1−Zk

)
+ cont

]
=

∂

∂ω

∑
k=1:p

(
αkEuk|Zk=1 logω + (1− ωk)Euk|Zk=0 log(1− ω)

)
=

∂

∂ω

∑
k=1:p

(
αk logω + (1− ωk) log(1− ω)

)
=

1

ω

∑
k=1:p

αk −
1

1− ω
∑
k=1:p

(1− αk) (D.1.7)

Set the last equation (D.1.7) equal to 0, we have the solution ω̂ =
p∑
k=1

αk/p.

86

• Update σ2

Given all the distributions of qi(ui, Zi), i = 1, 2, ..., p, part of the hyper-parameters ω̂ and v̂, we can

solve σ̂2 through

σ̂2 = arg min
σ2

EQ log
q(u,Z)

p(A|H)π(H)
= arg max

σ2
EQ log

p(A|H)π(H)

q(u,Z)
= arg max

σ2
EQ log

[
p(A|H)π(σ2)π(u,Z)

]
.

Further calculating the this equation, we have

EQ log
[
p(A|H)π(σ2)π(u,Z)

]
= EQ log

∏
i,j

1√
2πσ2

e−
(Ai,j−uiv̂j)

2

2σ2 + EQ log
1

Γ(1)
(σ2)−2e−

1
σ2

+EQ log
∏
k=1:p

(
ω̂

1√
2πa1σ2

e
− u2k

2a1σ
2

)Zk(
(1− ω̂)δ(uk)

)1−Zk
+ cont.

= −p2 log
√

2πσ2 − EQ
∑
i,j

(Ai,j − uiv̂j)2

2σ2
− 2 log(σ2)− 1

σ2

+
∑
k=1:p

αkEuk|Zk=1 log
(1√

σ2
e
− u2k

2a1σ
2

)
+
∑
k=1:p

(1− αk)Euk|Zk=0 log
(

(1− ω̂)δ(uk)
)

+ cont.

= −p2 log
√

2πσ2 − EQ
∑
i,j

(Ai,j − uiv̂j)2

2σ2
− 2 log(σ2)− 1

σ2

+
∑
k=1:p

αk

(
− 1

2
log σ2 −

µ2
uk

+ σ2
uk

2a1σ2

)
+ cont. (D.1.8)

Take derivative with respect to σ2 in above equation (D.1.8) and set it equal to 0, we solve σ̂2 as

− p2

2σ2
+

EQ
∑
i,j

(Ai,j − uiv̂j)2

2(σ2)2
− 2

σ2
+

1

(σ2)2
−

∑
k=1:p

αk

2σ2
+

∑
k=1:p

αk(µ2
uk

+ σ2
uk

)

2a1(σ2)2
= 0

⇔
p2 +

∑
k=1:p

αk + 4

2σ2
=

EQ
∑
i,j

(Ai,j − uiv̂j)2 +
∑
k=1:p

αk(µ2
uk

+ σ2
uk

)/a1 + 2

2σ4

⇔ σ̂2 =

EQ
∑
i,j

(Aij − uiv̂j)2 + 1
a1

∑
i=1:p

αi(µ
2
ui + σ2

ui) + 2

p2 +
∑
i=1:p

αi + 4

87

where EQ
∑
i,j

(Aij − uiv̂j)2 can be further calculated as

EQ
∑
i,j

(Aij − uiv̂j)2 = EQ
∑
i,j

A2
ij − 2EQ

∑
i,j

Aijuiv̂j + EQ
∑
i,j

u2
i v̂

2
j

=
∑
i,j

A2
ij − 2

∑
i,j

αiv̂jAijµui +
∑
i,j

αiv̂
2
j (µ2

ui + σ2
ui)

D.2 Proof of Theorem 4.1

Let λ̂ be the largest eigenvalue of sample covariance matrix A, and ‖ρ‖2 +ξ2 is the largest eigenvalue

of true covariance matrix A0, by Weyl’s inequality, λ satisfies

|λ̂− (‖ρ‖2 + ξ2)| ≤ ‖E‖2 ≤ ξ‖ρ‖
√
p

n
+ ξ2(

p

n
+ 2

√
p

n
).

Since p is fixed, and ‖ρ‖2 and ξ are finite, we have λ̂ = Op(1).

Now, let’s take a look at the updating rule for parameter αi. If we set initial value of v(0) = v̂,

ω(0) ∈ (0, 1) and (σ(0))2 ∼ 1
n , one step updating for αi gives us

log
αi

1− αi
= log

ω(0)

1− ω(0)
+
µ2
ui

2σ2
ui

− 1

2
log

a1(σ(0))2

σ2
ui

= log
ω(0)

1− ω(0)
+

(Av(0))2
i

2(1
a1

+ 1)(σ(0))2
− 1

2
log
(

1+a1

)

The key term in the above equation is the order of Av(0) = Av̂ = λ̂v̂. Using proposition 2,

‖v̂− ρ∗‖ = O(1√
n

), thus there exists a constant C not dependent to n, for any i = 1, 2, ..., p

|ρ∗i | − C
1√
n
< |v̂i| < |ρ∗i |+ C

1√
n
.

Therefore, given mini∈I(ρ
∗
i) 6= 0 which is fixed,

min
i∈I

log
αi

1− αi
= log

ω(0)

1− ω(0)
+

(mini∈I λ̂v̂i)
2

2(1
a1

+ 1)(σ(0))2
− 1

2
log
(

1 + a1

)

∼ log
ω(0)

1− ω(0)
+

λ̂2

(
mini∈I |ρ∗i | − C 1√

n

)2

2(1
a1

+ 1) 1
n

− 1

2
log
(

1 + a1

)
∼ nmini∈I(ρ

∗
i)

2

1
a1

+ 1
− log(a1)

∼ n

88

To make mini∈I log αi
1−αi < c(n), one sufficient condition is that c(n) → ∞ and c(n) = o(n), and

c(n) = θ log(a1) with θ ∈ (0, 1/2) also satisfies this condition.

On the other side,

max
i∈Ic

log
αi

1− αi
= log

ω(0)

1− ω(0)
+

(maxi∈Ic λ̂v̂i)
2

2(1
a1

+ 1)(σ(0))2
− 1

2
log(1 + a1)

< log
ω(0)

1− ω(0)
+
λ̂2(|ρ∗k|+ C 1√

n
)2

2(1
a1

+ 1)(σ(0))2
− 1

2
log(1 + a1)

∼
1
n

(1
a1

+ 1) 1
n

− 1

2
log(a1)

∼ −1

2
log(a1)

where we assume maxi∈Ic v̂i = vk, and ρ∗k = 0 due to ρ∗i = 0 for any i ∈ Ic. Thus, it is guaranteed

that if c(n) = θ log(a1) with θ ∈ (0, 1/2), we could also have maxi∈Ic log αi
1−αi < −c(n).

Combining the above two statements, we show that under given initial values of ω, σ2(n) and v,

as well as conditions on c(n), a1 and log(a1),

P
(

min
i∈I

log
αi

1− αi
> c(n) and max

i∈Ic
log

αi
1− αi

< −c(n)
)
→ 1,

which is equivalent to P(Î = I)→ 1.

89

References

Abdullah, A. and Hussain, A. (2006). A new biclustering technique based on crossing minimization.
Neurocomputing, 69(16):1882–1896.

Akaike, H. (1973). Maximum likelihood identification of gaussian autoregressive moving average
models. Biometrika, pages 255–265.

Allen, G. I., Grosenick, L., and Taylor, J. (2014). A generalized least-square matrix decomposition.
Journal of the American Statistical Association, 109(505):145–159.

Alter, O., Brown, P. O., and Botstein, D. (2001). Processing and modeling genome-wide expres-
sion data using singular value decomposition. In BiOS 2001 The International Symposium on
Biomedical Optics, pages 171–186. International Society for Optics and Photonics.

Amini, A. A. and Wainwright, M. J. (2008). High-dimensional analysis of semidefinite relaxations
for sparse principal components. In 2008 IEEE International Symposium on Information Theory,
pages 2454–2458. IEEE.

Ben-Dor, A., Shamir, R., and Yakhini, Z. (1999). Clustering gene expression patterns. Journal of
computational biology, 6(3-4):281–297.

Berthet, Q. and Rigollet, P. (2013). Complexity theoretic lower bounds for sparse principal compo-
nent detection. In COLT, pages 1046–1066.

Bishop, C. M. (2006). Pattern recognition. Machine Learning, 128.

Blei, D. M., Jordan, M. I., et al. (2006). Variational inference for dirichlet process mixtures. Bayesian
analysis, 1(1):121–144.

Bottolo, L., Richardson, S., et al. (2010). Evolutionary stochastic search for bayesian model explo-
ration. Bayesian Analysis, 5(3):583–618.

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

Braun, M. and McAuliffe, J. (2010). Variational inference for large-scale models of discrete choice.
Journal of the American Statistical Association, 105(489):324–335.

Cadima, J. and Jolliffe, I. T. (1995). Loading and correlations in the interpretation of principle
compenents. Journal of Applied Statistics, 22(2):203–214.

Cai, T. T., Ma, Z., Wu, Y., et al. (2013). Sparse pca: Optimal rates and adaptive estimation. The
Annals of Statistics, 41(6):3074–3110.

Candès, E. J., Li, X., Ma, Y., and Wright, J. (2011). Robust principal component analysis? Journal
of the ACM (JACM), 58(3):11.

90

Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Willsky, A. S. (2009). Sparse and low-rank
matrix decompositions. In Communication, Control, and Computing, 2009. Allerton 2009. 47th
Annual Allerton Conference on, pages 962–967. IEEE.

Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Willsky, A. S. (2011). Rank-sparsity incoher-
ence for matrix decomposition. SIAM Journal on Optimization, 21(2):572–596.

Cheng, Y. and Church, G. M. (2000). Biclustering of expression data. In Ismb, volume 8, pages
93–103.

Clemmensen, L., Hastie, T., Witten, D., and Ersboll, B. (2011). Sparse discriminant analysis.
Technometrics, 53(4):406–413.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (1990). Introduction to Algorithms.
MIT Press and McGraw-Hill, 1 edition.

Cui, N. (2012). Contributions to modeling parasite dynamics and dimension reduction. PhD thesis,
University of Illinois at Urbana-Champaign.

d’Aspremont, A., Bach, F., and Ghaoui, L. E. (2008). Optimal solutions for sparse principal com-
ponent analysis. Journal of Machine Learning Research, 9(Jul):1269–1294.

d’Aspremont, A., El Ghaoui, L., Jordan, M. I., and Lanckriet, G. R. (2007). A direct formulation
for sparse pca using semidefinite programming. SIAM review, 49(3):434–448.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American statistical Association, 96(456):1348–1360.

Fan, J., Peng, H., et al. (2004). Nonconcave penalized likelihood with a diverging number of param-
eters. The Annals of Statistics, 32(3):928–961.

Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals of eugenics,
7:179–188.

Flandin, G. and Penny, W. D. (2007). Bayesian fmri data analysis with sparse spatial basis function
priors. NeuroImage, 34(3):1108–1125.

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on pattern analysis and machine intelligence, (6):721–
741.

Gemulla, R., Nijkamp, E., Haas, P. J., and Sismanis, Y. (2011). Large-scale matrix factorization with
distributed stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 69–77. ACM.

Guan, N., Tao, D., Luo, Z., and Yuan, B. (2012). Nenmf: an optimal gradient method for nonnegative
matrix factorization. IEEE Transactions on Signal Processing, 60(6):2882–2898.

Hartigan, J. A. (1972). Direct clustering of a data matrix. Journal of the american statistical
association, 67(337):123–129.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97–109.

He, X. and Niyogi, P. (2003). Locality preserving projections. Advances in Neural Information
Processing Systems, 16:153–160.

91

Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis. Cambridge University Press, Cambridge,
2 edition.

Hoyle, D. C. and Rattray, M. (2004). Principal-component-analysis eigenvalue spectra from data
with symmetry-breaking structure. Physical Review E, 69(2):026124.

Huang, J. Z., Shen, H., and Buja, A. (2012). The analysis of two-way functional data using two-way
regularized singular value decompositions. Journal of the American Statistical Association.

Johnstone, I. M. and Lu, A. Y. (2012). On consistency and sparsity for principal components analysis
in high dimensions. Journal of the American Statistical Association.

Jolliffe, I. T. (1995). Rotation of principal components: choice of normalization constraints. Journal
of Applied Statistics, 22(1):29–35.

Jolliffe, I. T. (2002). Principal Component Analysis. Springer-Verlag, New York, 2 edition.

Jolliffe, I. T., Trendafilov, N. T., and Uddin, M. (2003). A modified principal component technique
based on the lasso. Journal of computational and Graphical Statistics, 12(3):531–547.

Jolliffe, I. T. and Uddin, M. (2000). The simplified component technique: an alternative to rotated
principal components. Journal of Computational and Graphical Statistics, 9(4):689–710.

Jordan, M. I. (2004). Graphical models. Statistical Science, pages 140–155.

Kim, H. and Park, H. (2008). Nonnegative matrix factorization based on alternating nonnegativity
constrained least squares and active set method. SIAM journal on matrix analysis and applica-
tions, 30(2):713–730.

Kluger, Y., Basri, R., Chang, J. T., and Gerstein, M. (2003). Spectral biclustering of microarray
data: coclustering genes and conditions. Genome research, 13(4):703–716.

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. M. (2016). Automatic differen-
tiation variational inference. arXiv preprint arXiv:1603.00788.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals of mathematical
statistics, 22(1):79–86.

Lazzeroni, L. and Owen, A. (2002). Plaid models for gene expression data. Statistica sinica, pages
61–86.

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factoriza-
tion. Nature, 401(6755):788–791.

Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Advances
in neural information processing systems, pages 556–562.

Lee, M., Shen, H., Huang, J. Z., and Marron, J. S. (2010). Biclustering via sparse singular value
decomposition. Biometrics, 66(4):1087–1095.

Li, F. and Zhang, N. R. (2010). Bayesian variable selection in structured high-dimensional co-
variate spaces with applications in genomics. Journal of the American statistical association,
105(491):1202–1214.

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of American Statistical
Association, 86:316–327.

92

Liang, F., Paulo, R., Molina, G., Clyde, M. A., and Berger, J. O. (2008). Mixtures of g priors for
bayesian variable selection. Journal of the American Statistical Association, 103(481):410–423.

Lin, C.-J. (2007a). On the convergence of multiplicative update algorithms for nonnegative matrix
factorization. IEEE Transactions on Neural Networks, 18(6):1589–1596.

Lin, C.-J. (2007b). Projected gradient methods for nonnegative matrix factorization. Neural com-
putation, 19(10):2756–2779.

Liu, J., Yang, J., and Wang, W. (2004). Biclustering in gene expression data by tendency. In
Computational Systems Bioinformatics Conference, 2004. CSB 2004. Proceedings. 2004 IEEE,
pages 182–193. IEEE.

Loog, M. and Haeb-Umbach, R. (2001). Multiclass linear dimension reduction by weighted pairwise
fisher criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(7):762–766.

Lounici, K. (2013). Sparse principal component analysis with missing observations. In High dimen-
sional probability VI, pages 327–356. Springer.

Lu, A. Y. (2002). Sparse principal component analysis for functional data. PhD thesis, Stanford
University.

Ma, Z. et al. (2013). Sparse principal component analysis and iterative thresholding. The Annals of
Statistics, 41(2):772–801.

Mallows, C. L. (1973). Some comments on c p. Technometrics, 15(4):661–675.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation
of state calculations by fast computing machines. The journal of chemical physics, 21(6):1087–
1092.

Nadler, B. (2008). Finite sample approximation results for principal component analysis: A matrix
perturbation approach. The Annals of Statistics, pages 2791–2817.

Onatski, A. (2012). Asymptotics of the principal components estimator of large factor models with
weakly influential factors. Journal of Econometrics, 168(2):244–258.

Ormerod, J. T. and Wand, M. P. (2010). Explaining variational approximations. The American
Statistician, 64(2):140–153.

Paatero, P. and Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values. Environmetrics, 5(2):111–126.

Parkhomenko, E., Tritchler, D., and Beyene, J. (2009). Sparse canonical correlation analysis with ap-
plication to genomic data integration. Statistical Applications in Genetics and Molecular Biology,
8(1):1–34.

Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance
model. Statistica Sinica, pages 1617–1642.

Paul, D. and Johnstone, I. M. (2012). Augmented sparse principal component analysis for high
dimensional data. arXiv preprint arXiv:1202.1242.

Prasantha, H., Shashidhara, H., and Murthy, K. B. (2007). Image compression using svd. In Confer-
ence on Computational Intelligence and Multimedia Applications, 2007. International Conference
on, volume 3, pages 143–145. IEEE.

93

Reimann, P., Van den Broeck, C., and Bex, G. J. (1996). A gaussian scenario for unsupervised
learning. Journal of Physics A: Mathematical and General, 29(13):3521.

Robert, C. P. (2004). Monte carlo methods. Wiley Online Library.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of statistics, 6(2):461–
464.

Shabalin, A. A. and Nobel, A. B. (2013). Reconstruction of a low-rank matrix in the presence of
gaussian noise. Journal of Multivariate Analysis, 118:67–76.

Shen, D., Shen, H., and Marron, J. S. (2013). Consistency of sparse pca in high dimension, low
sample size contexts. Journal of Multivariate Analysis, 115:317–333.

Shen, H. and Huang, J. Z. (2008). Sparse principal component analysis via regularized low rank
matrix approximation. Journal of multivariate analysis, 99(6):1015–1034.

Sill, M., Kaiser, S., Benner, A., and Kopp-Schneider, A. (2011). Robust biclustering by sparse
singular value decomposition incorporating stability selection. Bioinformatics, 27(15):2089–2097.

Stingo, F. C. and Vannucci, M. (2011). Variable selection for discriminant analysis with markov
random field priors for the analysis of microarray data. Bioinformatics, 27(4):495–501.

Sugiyama, M. (2006). Local fisher discriminant analysis for supervised dimensionality reduction.
23rd International Conference on Machine Learning, Pittsburgh, PA.

Sugiyama, M. (2007). Dimensionality reduction of multimodal labeled data by local fisher discrimi-
nant analysis. The Journal of Machine Learning Research, 8:1027–1061.

Tanay, A., Sharan, R., and Shamir, R. (2002). Discovering statistically significant biclusters in gene
expression data. Bioinformatics, 18(suppl 1):S136–S144.

Teschendorff, A. E., Wang, Y., Barbosa-Morais, N. L., Brenton, J. D., and Caldas, C. (2005). A
variational bayesian mixture modelling framework for cluster analysis of gene-expression data.
Bioinformatics, 21(13):3025–3033.

Thomasian, A., Castelli, V., and Li, C.-S. (1998). Clustering and singular value decomposition
for approximate indexing in high dimensional spaces. In Proceedings of the seventh international
conference on Information and knowledge management, pages 201–207. ACM.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of Royal Statistical
Society, Series B, 58:267–288.

Trendafilov, N. T. and Jolliffe, I. T. (2006). Projected gradient approach to the numerical solution
of the scotlass. Computational Statistics & Data Analysis, 50(1):242–253.

Vines, S. (2000). Simple principal components. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 49(4):441–451.

Vu, V. Q., Cho, J., Lei, J., and Rohe, K. (2013). Fantope projection and selection: A near-optimal
convex relaxation of sparse pca. In Advances in neural information processing systems, pages
2670–2678.

Vu, V. Q. and Lei, J. (2012). Minimax rates of estimation for sparse pca in high dimensions. In
AISTATS, volume 15, pages 1278–1286.

94

Witten, D. M., Tibshirani, R., and Hastie, T. (2009). A penalized matrix decomposition, with
applications to sparse principal components and canonical correlation analysis. Biostatistics, 10-
3:515–534.

Yuan, X.-T. and Zhang, T. (2013). Truncated power method for sparse eigenvalue problems. Journal
of Machine Learning Research, 14(Apr):899–925.

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis. Journal of
Computational and Graphical Statistics, 15-2:265–286.

95

