
c© 2017 by Shiguang Wang.

ON INFORMATION FILTERING IN SOCIAL SENSING

BY

SHIGUANG WANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

Professor Tarek F. Abdelzaher, Chair
Professor Marco Caccamo
Professor Jiawei Han
Doctor Lance Kaplan, US Army Research Labs

Abstract

For decades, from the invention of Sensor Networks, people envisioned a global sensing platform

with millions of sensors deployed globally. The platform has finally become real recently with

the advent of multiple online social network services where humans act as sensors and the social

networks act as sensor networks, a practice named Social Sensing. Social sensing was born with

the advances of high-level semantics sensing (since humans are the “sensors” with texts or photos

as the sensing data) and (almost) zero-cost real-time data infrastructure, which makes this new

sensing paradigm very promising in multiple real-world applications including disaster response

and global event discovery. However, its global scale results in a massive amount of data generated

and collected in applications that far exceeds normal people’s cognitive capability of information

consumption, thus we desire a system that can filter the massive sensing data and delivers only

information and intelligence to the users with a human-consumable amount.

In this thesis, I focus on designing an information filtering system for social sensing; specif-

ically, I focus on three levels of information filtering. In the first level, we focus on untruthful

information removal, also known as fact-finding, where the challenge lies in the unknown reliability

of each individual social sensor (i.e. human) a prior. In the second level, we focus on event-level

information summary, also known as event detection, where the challenge lies in de-multiplexing

different event instances and fusing social events detected in multiple social networks that previ-

ous approaches do not perform well. In the third level, we focus on information-maximizing data

delivery to social sensing users, especially on redundancy removal by diversifying the information

feed, where the challenge lies in algorithm design that not only works well empirically but also

has a theoretical performance guarantee. We address the above challenges by algorithm design

and system implementation and real-world data evaluations verify the efficiency of our proposed

solutions.

ii

To my father Zhe Wang, and my mother Yaqin Wang

iii

Acknowledgments

First and formost, I would like to sincerely thank my thesis advisor, Professor Tarek F. Abdelzaher,

for his great guidance, continuous support, and persistent encouragement through my PhD study.

This thesis would not even be possible without him. It was his inspiring guidance and discussions

that led me through the challenges that I encountered. Tarek also encouraged me to be a leader

not a follower, and himself is an excellent example of a leader. The thesis topic, social sensing, was

actually proposed from him! He also provided lots of opportuniies to practice my leadership, such

as conference presentations and supervision master students. I have grown tremendously with the

practices and become more self-confident being a leader. He will be my lifetime role model.

Next, I would like to thank Professor Jiawei Han, Professor Marco Caccamo, and Dr. Lance

Kaplan for serving in my PhD thesis committee. It is my honor to have chances to work with such

great scholars and researchers. Their constructive suggestions and comments improved this thesis

significantly. I would like to specially thank Dr. Lance Kaplan for his valuable feedbacks on many

of my papers.

I would also like to extend my gratitude to the professors, researchers, and colleagues who

helped me on this thesis. They are Professor Hengchang Liu, Professor Lu Su, Professor Dong

Wang, Yong Yang, Shen Li, Shaohan Hu, Tanvir Amin, Yunlong Gao, Hongwei Wang, Prasanna

Giridar, Yiran Zhao, Shuochao Yao, Huajia Shao.

I would also like to thank Philips Research North America, and Facebook for providing three

awesome internships. These internships help me taste the flavor of industrial research and en-

gineering, and finally convinced me to go to industry to apply my knowledge making real-world

impact.

Finally, and most importantly, I would like to thank my family. My father Zhe Wang and my

mother Yaqin Wang brought me to the earth and taught me how to be a man. They always stand

iv

by my side and quietly support me both emotionally and moneytarily. My wife Zongjie Zhang gave

up her everything in China, friends, relatives and her family, to accompany with me in the US. She

has been taking care of my everything in life during my PhD without a single word of complaint.

I deeply appreciate all her contributions to my family. And my sweet daughter Annie Jiani Wang

and my bright son Aiden Haolin Wang just brought sunshine to my pale PhD life. Playing with

them were simply fun. My family is my life-long motivation of fighting.

v

Table of Contents

List of Tables . ix

List of Figures . x

Chapter 1 Introduction . 1
1.1 Motivation and Challenges . 2
1.2 Thesis Overview . 4

1.2.1 Untruthful Data Removal . 4
1.2.2 Event-level Data Summarization . 5
1.2.3 Information-Maximizing Data Delivery . 6

1.3 Thesis Organization . 7

I Untruthful Information Removal . 8

Chapter 2 Fact-finding with Time-Varying System State 9
2.1 Problem Formulation . 11
2.2 Computing Trajectory Probabilities . 15

2.2.1 Independent State Change . 15
2.2.2 Markov Model . 15

2.3 Dynamic State Estimation . 16
2.3.1 Deriving a Crowd-sensing State Trajectory Estimator 16
2.3.2 The EM-VTC Algorithm . 18

2.4 Accuracy Guarantees . 18
2.4.1 Confidence Interval of Source Reliability . 18

2.5 Multivalued Variable Extension . 20
2.6 Evaluation . 22

2.6.1 Simulation Study . 22
2.6.2 A Real-world Case Study . 27

2.7 Related Work . 30
2.8 Conclusions . 32
2.9 Derivations . 33

2.9.1 Deriving the E-step . 33
2.9.2 Deriving the M-step . 34
2.9.3 Deriving Cramer-Rao Lower Bound . 34

vi

Chapter 3 Fact-finding with Interdependent Variables 37
3.1 Problem Formulation . 39

3.1.1 Modeling Interdependent Event Variables . 40
3.1.2 Categorized Source Reliability . 41
3.1.3 Problem Definition . 42

3.2 Generalization of Previous Models . 44
3.3 Estimating the States of Interdependent Variables 46

3.3.1 Defining Estimator Parameters and Likelihood Function 46
3.3.2 The EM Algorithm . 49

3.4 Evaluation . 49
3.5 Related Work . 57
3.6 Conclusion . 58

II Event-level Data Summarization. 59

Chapter 4 Event Detection and Demultiplexing in Social Spaces 60
4.1 Problem Statement . 63
4.2 The Design of StoryLine . 64

4.2.1 Design Intuitions . 65
4.2.2 Discriminative Keyword Pair Selection . 67
4.2.3 The Consolidation Algorithm . 69
4.2.4 Event Tracking . 70

4.3 System Implementation . 71
4.4 Evaluation . 72

4.4.1 Twitter Datasets . 72
4.4.2 Event Signature Consolidation . 73
4.4.3 Event Demultiplexing . 74
4.4.4 Case Study – Real-time Earthquake Detection 77
4.4.5 Case Study – Nepal Earthquake Tracking . 78

4.5 Related Work . 79
4.6 Conclusions . 82

Chapter 5 Event Tracking by Integrating Twitter and Instagram 84
5.1 Problem Definition and System Design . 85

5.1.1 Problem Formulation . 85
5.1.2 System Architecture and Design . 86
5.1.3 Event Detection . 87
5.1.4 Event Fusion . 88
5.1.5 Event Tracking and Summary . 89

5.2 Evaluation . 90
5.2.1 Datasets from Twitter and Instagram . 90
5.2.2 Methodology and Results . 90

5.3 Related Work . 93
5.3.1 Event Detection using Twitter . 94
5.3.2 Event Detection using Instagram . 95

5.4 Conclusions . 96

vii

III Information-Maximizing Delivery . 97

Chapter 6 Coverage-based Information-Maximizing Data Delivery 98
6.1 State of the Art . 100
6.2 System Design . 101

6.2.1 System Model . 101
6.2.2 Programming Framework . 102

6.3 Information-maximizing Prioritization . 103
6.3.1 Information Coverage . 103
6.3.2 Problem Definition . 104
6.3.3 Greedy Algorithm . 106
6.3.4 Transmission Protocol Design . 107

6.4 Evaluation . 110
6.4.1 Experimental Setup and Methodology . 111
6.4.2 Overhead of Minerva . 111
6.4.3 Large-scale Trace-based Evaluation Results 116

6.5 Conclusions . 117

Chapter 7 Tree-based Information-Maximizing Data Delivery 118
7.1 The Information Funnel . 120

7.1.1 The Basic Abstraction . 120
7.1.2 Data Ordering Challenges . 121
7.1.3 Optimal Transmission Order . 122
7.1.4 An Example . 124
7.1.5 Receiver Feedback . 125
7.1.6 The Algorithm . 125
7.1.7 Variable Object Length and Differentiated Service 127
7.1.8 System Design and Implementation . 128

7.2 Evaluation . 130
7.2.1 Methodology . 130
7.2.2 Evaluation Results . 131

7.3 Related Work . 134
7.4 Conclusions . 135
7.5 Math Proofs . 135

Chapter 8 Conclusion and Future Work . 139
8.1 Summary . 139

8.1.1 Untruthful Information Removal Module . 139
8.1.2 Event-level Information Summarization . 140
8.1.3 Information-Maximizing Delivery . 140

8.2 Future Research Directions . 140

References . 142

viii

List of Tables

2.1 Percentage of sample points falling out of the corresponding confidence interval for
different estimators. 27

2.2 Estimation error in parking case study . 30

3.1 The summary of notations . 43

4.1 Prevalence of geotags in tweets and events . 74
4.2 Event detection precision comparison . 75
4.3 Real-time earthquake detection summary . 77
4.4 Nepal earthquake tracking summary . 78

5.1 Statistics of collected datasets . 91
5.2 Precision and recall . 91
5.3 Demultiplexing quality and detection redundancy . 92
5.4 Segment of a tracked event instance of Delhi protest 94

6.1 Overhead of Minerva . 113

7.1 Overhead study results . 132
7.2 Coverage study results . 132
7.3 Coverage study with variable data size . 133

ix

List of Figures

1.1 Contrast illustration of traditional broadcasting network and social network. 2

2.1 An example of CPS system with humans in the loop. 11
2.2 Performance as the number of sources varies. 23
2.3 Performance as the talkative factor si of sources varies. 23
2.4 Performance as the source reliability ti varies. 23
2.5 Performance as the state transit probability varies. 25
2.6 Variable value estimation performance as the number of history time-slots being

considered varies. 26
2.7 Performance bounds of EM-VTC in terms of confidence intervals. 26
2.8 The ground truth of the availability of parking spots. 29
2.9 The performance of variable state estimation. 29

3.1 Model connections with previous work. 45
3.2 An illustration of the Bayesian network. 48
3.3 Performance as the number of sources varies. 52
3.4 Performance as the source reliability varies. 52
3.5 Performance as the source talkativeness varies. 52
3.6 Performance as the number of edges in the Bayesian network varies. 54
3.7 Performance as the number of event categories varies. 54
3.8 Performance as the number event variables varies. 54
3.9 Computation time comparison with fixed node degree. 56
3.10 Computation time comparison with fixed number of nodes. 56

4.1 The Social sensing modality and its analogy with physical sensing 61
4.2 Illustration of the non-overlapping sliding window and the overlapping sliding win-

dow (with 50% overlapping). 70
4.3 Event tracking system architecture . 71
4.4 The consolidation error rate. 73
4.5 The purity pie charts. 76
4.6 Tweets with location information. 82

5.1 Event tracking system architecture . 86
5.2 CDF of empirical Beta expectation comparison . 86
5.3 Sliding window . 90
5.4 F1 score comparison with varied ground truth of total number of events 92

6.1 System model . 101

x

6.2 Programming framework . 101
6.3 Illustration of coverage and marginal coverage with 2 features. 101
6.4 Transmission protocol illustration. 107
6.5 tdrive data used in simulation . 112
6.6 Performance of Minerva with different coverage intervals and 1/β values in phone-

based experiments with synthetic data. 114
6.7 Performance of Minerva with different coverage intervals in large-scale real-world

GPS trace simulations. 115

7.1 An example . 124
7.2 Information funnel structure . 128
7.3 Performance of information funnel. 133

xi

Chapter 1

Introduction

Social Sensing is a novel sensing paradigm using humans as sensors and using social networks

as sensor networks [130]. The proliferation of mobile computing devices in the possession of the

average individual and the omnipresent Internet access via 3G/4G/LTE, as well as the globally

covered online social network services, like Twitter and Instagram, have granted people the ability

and freedom to post anything in anywhere and anytime. The social media posts about world

physical events can be viewed as “sensing data”, and the people who posted them actually act as

“sensors”, which derives the new sensing paradigm. Thus, the social networks can be viewed as

the global sensor networks.

Compared with traditional sensing paradigm with physical sensor nodes, social sensing that

directly exploits humans as sensors advances in two main aspects: 1) the sensor data, i.e. human

posts of photos and texts, in social sensing is usually of high-level semantics whereas, in traditional

physical sensor networks, data is just time series, 2) the novel paradigm is of zero-cost infrastructure

even for global deployment thanks to the omnipresent access to online social network services

whereas traditional sensor networks have huge monetary cost even in some mid-sized deployment

of tens or hundreds of nodes, considering that each physical sensor costs about tens of US dollars.

Maintenance of social sensing is also of little overhead compared with the traditional sensor network

where the energy constraint of each individual sensor node is always one of the biggest challenges.

With such advantages, recently social sensing has been actively studied and making the huge social

impact especially in disaster response [102, 120, 140]. Social Sensing also becomes a vital part of

the Cyber-Physical Systems (CPS) [75, 101, 110] for data collection and enabled a promising type

of CPS, namely Humans-in-the-loop CPS [104].

Although with the advantages, social sensing has intrinsic challenges that we need to address,

which motivates the thesis, as elaborated below.

1

1.1 Motivation and Challenges

With the online social network services platform, nowadays, each individual could be a data source

broadcasting to a bunch of audiences (or data consumers), which is sharply distinct from the

traditional scenario where one a few news media sites are broadcasting. With a simplified analysis,

the message volume has grown from O(N) as in traditional broadcasting scenarios where N is the

number of data consumers to O(N2) as in social networks since each individual could be both a

data source and a data consumer, as illustrated in Fig. 1.1. As a consequence, the biggest challenge

User 1

User 2

User 3

User 4

User N

User 1

User 2

User 3

User 4

User N

(a) Traditional broadcasting (b) Social network

Figure 1.1: Contrast illustration of traditional broadcasting network and social network.

in social sensing is that the massive data volume has far exceeded the capacity of each individual’s

cognitive information consumption ability. Therefore, we need to filter the social sensing data and

only deliver useful information and intelligence to the users, which is the motivation of this thesis.

Specifically, this thesis studies and proposes three levels of information filtering, each for one aspect

of social sensing data. The motivations and challenges of the filtering are presented respectively as

follows:

• Untruthful Data Removal: The advent of online social network services empowers people

the freedom to publish their observations with little regulation. One direct consequence is

the untruthful data in online social media including rumors and other untruthfulness. With

the purpose of high data quality, one challenge of social sensing is to remove the untruthful

information, a practice usually termed as fact-finding. Multiple previous research efforts of

fact-finding were proposed [124, 127, 130], however, they only considered the case that the

system state is static and the underlying variables are independent. In practical, especially

2

in Cyber-Physical System applications, the system state is usually time-varying and the

underlying variables are interdependent, where none of the previous solutions would work.

• Event-level Data Summarization: Feeding individual posts (like tweets in Twitter) to

social sensing users would not very helpful for their high-level decision making because in-

formation organization is a huge overhead for normal individual users. Delivering event-level

summarization would greatly reduce the information organization overhead, because, intu-

itively, people are usually interested in physical events. Furthermore, the users are also

interested in how each event instance evolves along the time. Furthermore, we prefer an

unsupervised approach since the overhead of acquiring data labels is massive, and language-

agnostic for application generality. Therefore, how to detect physical events from the massive

social sensing data and track the development of individual event instances across time in an

unsupervised fashion without understanding language semantics comprise the challenges in

this level of filtering.

• Information-Maximization Data Delivery: Sometimes even with our first two levels of

filtering the data volume might also be too large to be consumed by some user when s/he

has some resource constraints like lacking time to read all 50 events detected but only being

able to read 5 of them. Therefore, when delivering data to users, we need to consider which

piece of information should be delivered first. Different ranking schemes would have different

values of utility under some application scenario. In this thesis, we consider one scenario,

where the users would prefer diversifying the information delivered. The rationale behind this

application scenario is that the more diversified information delivery will more quickly provide

users “big picture”, which is similar to what the outline does in a book. The challenge of this

level of filtering lies in the theoretical analysis of the performance of diversified information

delivery.

This thesis addresses the above challenges by designing a systematic information filtering system

that is overviewed in the next section.

3

1.2 Thesis Overview

This thesis proposes a suite of multi-level information filtering tools for social sensing applications

towards the objective of delivering the most informative content from massive data that is consum-

able upon individual user’s cognitive capacity. In this section, we overview each filtering module

and their organization in the proposed system.

1.2.1 Untruthful Data Removal

Fact finding aims at removal untruthful data and has been studied in many recent literature, and

it is the first level of information filtering module in our proposed system. However, as discussed

in previous section, we observed that for the cases that the system state is time-varying or the

underlying variables are inter-dependent, there is few work. Since in some social sensing applica-

tions, especially in Cyber-Physical Systems, it is common that time-varying system state and/or

interdependent variables hold, we need new solutions of fact finding that would work bearing these

practical assumptions.

Fact-finding with Time-varying System State

In our work [141], we proposed a solution aiming at addressing fact-finding with time-varying

system state, in human-in-the-loop Cyber-Physical Systems. Here, not only do we assume that the

error distribution of data sources is unknown but also that each human sensor has its own possibly

different error distribution. Given the above assumptions, we rigorously estimate data reliability

in social-sensing, hence enabling their exploitation as state estimator in CPS feedback loops. We

first consider applications where state is described by a number of binary variables, then extend

the approach trivially to multivalued variables. Evaluation results, using both simulation and a

real-life case-study, demonstrate the accuracy of the approach.

Fact-finding with Interdependent Variables

In our work [140], we proposed a solution aiming at address fact-finding with underlying inter-

dependent variables. We extends past social sensing literature by offering a scalable approach for

exploiting dependencies between observed variables to increase fact-finding accuracy. Prior work

4

assumed that reported facts are independent or incurred exponential complexity when dependen-

cies were present. In contrast, this paper presents the first scalable approach for accommodating

dependency graphs between observed states. The approach is tested using real-life data collected

in the aftermath of hurricane Sandy on availability of gas, food and medical supplies, as well as

extensive simulations. Evaluation shows that combining expected correlation graphs (of outages)

with reported observations of unknown reliability, results in a much more reliable reconstruction

of ground truth from the noisy social sensing data. We also show that correlation graphs can help

test hypothesis regarding underlying causes, when different hypotheses are associated with different

correlation patterns.

1.2.2 Event-level Data Summarization

After the first level of filtering that we have determined the true claims versus false claims, thus all

the untruthful data would be filtered out. However, feeding a bunch of individual pieces of data

(e.g. 1000 tweets) is not efficient for users consumption, since the information organization (usually

clustering) overhead would be very high for normal users. Since intuitively the unit of people’s

focus is event, we want to provide a service that organizes data into event-level and filters out the

non-event information, which in practice is also named event detection. Furthermore, we want to

also summarize the development of each event instance by event tracking in social space. These

are the focuses of this level of information filtering.

We develop a service, called StoryLine [137], on top of social media content, exploiting humans

as “sensors”. The service detects and tracks physical urban events of interest to the user, such as car

accidents, infrastructure damage (in the aftermath of a natural disaster), or instances of civil unrest.

It offers an interface to client-side software that allows browsing such events in real time, as well as

an interface for software applications to a structured representation of the events and their related

statistics. The service embodies novel algorithm for real-time detection, de-multiplexing, and

tracking of physical events using social media data. In our evaluation with Twitter feeds, we show

that our service outperforms two state-of-the-art baselines in event detection and demultiplexing.

We also conduct two case-studies to show the effectiveness of the real-time event detection capability

and event tracking performance of our system.

5

We further extends the Storyline service by considering both Twitter tweets and Instagram

picture posts [136]. Empirical data suggests that event detection from Instagram streams errs on

the false-negative side due to the relative sparsity of Instagram data (compared to Twitter data),

whereas event detection from Twitter can suffer from false-positives, at least if not paired with

careful analysis of tweet content. To tackle both problems sumultaneously, we design a unified

unsupervised algorithm that fuses events detected originally on Twitter (called T-events), that

occur in adjacent periods, in an attempt to comobine the benefits of both sources while eliminating

their individual disadvantages. We evaluate the proposed framework with real data crawled from

Twitter and Instagram. The results indicate that our algorithm significantlly improves tracking

accuracy compared to baselines.

1.2.3 Information-Maximizing Data Delivery

After the second level of information filtering, instead of individual data pieces, we got a bunch

of event summaries, which should be much easier for normal users to consume. However, it is

possible that users have other constraints, like limited reading time, that prevents them consuming

all the event summaries, which requests a data prioritization scheme that always delivers the

most informative data first. In this thesis, we define information maximization as the redundancy

minimization, and the rationale behind the definition is from the observation that in Cyber-Physical

and sensing applications, where data objects are collected from the physical world, typically exhibit

significant redundancy in collected data which calls for data diversification to reduce redundancy.

Miverva [139], an information-centric programming paradigm and toolkit was introduced for

social sensing. It proposes an information maximizing data deliver scheme under the assumption

that each data item has a coverage of some information space and theoretically proves the optimality

of the proposed algorithm. Information Funnel [135] system is designed for the tree-structured social

sensing data where each data object has a hierarchical name where the length of the comon prefix

between two names is a rough measure of similarity between the corresponding objects, and the

proposed prioritization algorithm achieves information-maximizing data delivery using policies that

diversify the transmitted names. Note that the idea of diversifying data transmission fit seamlessly

with a novel networking paradigm called Named-Data Networking [64], therefore, we exploit it in

6

designing our application-level transport protocol in data delivery.

1.3 Thesis Organization

In summary, the aforementioned three levels of filtering modules form an information filtering sys-

tem with the input of raw social sensing data and the output of information-maximizing prioritized

event-level truthful data summaries. The thesis will elaborate on each module in great details,

shedding light on its design philosophy, algorithm design and analysis, and system implementation.

Specifically,

• Part I is about untruthful information removal. In Chapter 2, we address the fact-finding

problem with time-varying system state, and in Chapter 3, we address the problem with

inter-dependent variables. For each problem, we propose an Expectation-Maximization (EM)

algorithm respectively that jointly learns the reliability of each individual source and the

truthfulness of each variable.

• Part II is about event-level information summary. In Chapter 4, we propose an unsupervised

solution for event de-multiplexing and tracking with Twitter data. Our evaluations with real-

world data demonstrate the better efficiency of our proposed solution compared with state-

of-the-art. In Chapter 5, we further extend the event tracking scheme by considering fusing

both Twitter and Instagram for better precision and recall, and our real-data evaluations

corroborate our claim.

• Part III is about information-maximizing delivery. In Chapter 6, we proposed a prioritization

scheme based on an assumption of coverage-based information space, and prove the optimality

of the proposed algorithm analytically. In Chapter 7, we proposed a prioritization scheme

on tree-structured information space, and prove the optimality of the proposed algorithm in

theory.

Finally, Chapter 8 concludes this thesis and provides a discussion of future research.

7

Part I

Untruthful Information Removal

8

Chapter 2

Fact-finding with Time-Varying
System State

In this chapter, we address the challenge of untruthful data removal in social sensing with time-

varying system states, which usually holds in Cyber-Physical Systems (CPS). Modern CPS appli-

cations increasingly operate in social spaces, where humans play an important part in the overall

system. Hence, future applications should increasingly be engineered with an understanding of the

humans in the loop. In this chapter, we focus on the role of humans as sensors in CPS systems; a

practice that is commonly known as social-sensing or crowd-sensig. Humans act as sensors when

they contribute data (either direcltly or via sensors they own) that a CPS application can use.

For example, drivers may contribute data on the state of traffic congestion at various locales, and

survivors may contribute data on damage in the aftermath of a natural disaster. A challenge in

this context is that data sources may be unreliable. In fact, the reliability of individual observers

in crowd-sensing applications is generally not known.

A common thread in CPS research focuses on reliability of cyber-physical systems. Most re-

search focused on two aspects of CPS reliability; namely, correctness of temporal behavior and

correctness of software function. In order for crowd-sensing to become a viable component in CPS

feedback loops, one needs to understand correctness of collected observations as well. We call this

latter challenge the data reliability challenge, to complement the challenges of timing reliability

and software reliability mentioned above.

Consider a CPS application that uses crowd-sensing to collect data about a physical environ-

ment. The data reliability challenge refers to designing a state estimator that takes raw unreliable

crowd-sensing data as input and outputs reliable estimates of the underlying physical state of the

environment, as well as appropriate error bounds. Building optimal state estimators from noisy

inputs is an old topic in estimation theory and embedded systems. Much like our work, past

research often assumed that sources are unreliable and the noise model is not known. However,

9

in the case of physical sensors, prior research usually assumed that errors of different sensors are

drawn from the same distribution (or from a small set of different distributions). In contrast, we

assume that each source is unique. Hence, each source has its own error distribution. None of these

distributions is known.

In this chapter, we also assume that the state of the observed environment changes over time.

Hence, when conflicting observations arrive, it is not clear whether one is wrong, or whether the

ground truth changed between observations. Had the reliability of different observation sources

been known, it would have been easy to statistically fuse them, but since error distributions are

both unknown and unique to each source, reconciling conflicts is a bigger problem. This work

is the first to offer a rigorous estimation-theoretic approach for state estimation in crowd-sensing

applications, where (i) observers have unknown reliability (ii) the error distribution is unique to

each observer, and (iii) the observed physical events have time-varying state. It extends prior

work by the authors, that solved the problem in the restricted special case when physical state is

immutable [126,127,131]. Note that, this restriction is not suited for most cyber-physical systems.

One way to accommodate state changes is to cut time into small observation windows and

consider only one observation window at a time, during which state can be assumed constant. One

can then apply the former static approach [131] independently within each window. Unfortunately,

this reduces the number of observations that can be considered within a given window, making it

harder to assess their veracity. A much better approach is to take into account the model of state

evolution from one window to the next and reduce trust in observations that are less consistent

with that model. Unlike traditional estimation problems, where a model of observation noise is also

available, in crowd-sensing, observations can come from different sources whose reliability (i.e., noise

model) is not known. Hence, it is hard to tell genuine state changes from incorrect reports. Our

contribution lies in taking a model of state evolution into account such that a maximum likelihood

estimate can be arrived at, that jointly estimates the reliability of individual observations and the

reliability of individual sources, taking only a dynamic model of the underlying observed system

as input.

We analytically derive an error bound for the above estimator, by computing the Cramer-Rao

lower bound [28] that bounds estimator variance and hence derive confidence intervals. We then

10

Figure 2.1: An example of CPS system with humans in the loop.

evaluate our algorithm through simulations and a real-world crowd-sensing application in which

sources report the availability of street parking spots on a university campus. We show that our

algorithm outperforms prior state-of-the-art solutions in both event state estimation accuracy and

source reliability estimation accuracy.

The rest of the chapter is organized as follows. Our problem is formulated in Section 2.1.

Section 2.2 describes how a dynamic system model is converted to an input for our maximum

likelihood estimator. We describe our algorithm in Section 2.3 and its analysis in Section 2.4. We

extend our algorithm to the general multivalued case in Section 2.5. Our solution is evaluated in

Section 2.6. Section 2.7 reviews the related work. Finally, we conclude the chapter in Section 2.8.

2.1 Problem Formulation

Consider a CPS application that uses a crowd-sensing subsystem to estimate the state of a phys-

ical environment that changes dynamically over time. An example of such a system is shown in

Figure 2.1. It is desired to develop the appropriate state estimator that converts raw noisy crowd-

sensing data, from sources of unknown reliability, into state estimates of quantified reliability and

error bounds.

We model the physical environment by a set of measured variables, C, whose values constitute

the system state we want to estimate. We consider applications where the state of interest varies

over time (i.e., the values of these variables change dynamically).

11

We focus, in this chapter, on the harder case, where state variables are binary. While it may

appear to be restrictive, this particular case is more computationally challenging because state,

in this case, does not have “inertia”. In continuous systems, such inertia leads to a smooth state

evolution that can be leveraged to eliminate outliers, extrapolate trends, and suppress noise. A

binary variable, in contrast, can change between the two extremes of its range (0 and 1) at any

time. Hence, removing incorrect measurements, predicting correct values, and eliminating noise

become harder problems. Indeed we show that solutions to the binary case can easily generalize to

the multivalued-state case.

One should also note that exploring systems of binary states is more than just a step towards

understanding more general state representations. Binary state is a versatile abstraction. It can

indicate, for example, presence or absence of arbitrary conditions, symptoms, features, or alarms in

specified locations of the monitored system. More importantly, given the general lack of reliability

of human observers in crowd-sensing scenarios, tasking humans with making simple binary observa-

tions makes more sense from the perspective of minimizing opportunities for human error. Hence,

the authors conjecture that crowd-sensing will likely gravitate to an application space where binary

variables are the commonly measured state, assuming that the algorithmic estimation challenge is

solved, which is the purpose of this work.

We denote the set of data sources by S. Time is slotted, such that all the reports generated

within time-slot k are timestamped with k. Data is available from multiple time slots. We use

a 3D matrix SC to summarize the reports, where SCi,j,k = v means that the source i reports

(claims) that variable j has value v in the k-th time-slot. SC is called the source-claim matrix in

this chapter.

In a system with time-varying states, we need to account for state transitions. We aim at a

general formulation that is able to support a wide range of crowd-sensing applications. Similarly

to what’s done in multi-target tracking and hypothesis testing, we translate the dynamic or state

transition model of a variable into the joint probability of any given sequence of observed values over

a finite time horizon. A different probability is computed for each possible sequence. For example,

assuming that a variable has three possible values, a, b, c, and that the finite time horizon has two

time-slots, we have 32 = 9 possible sequences (or trajectory hypotheses), each has a probability

12

that is computable from the dynamic system model.

In general, suppose that a variable j has q possible values and we consider a window of H

time-slots, then we must consider qH hypotheses on its possible trajectory. The probability of each

hypothesis can be computed from the dynamic state transition model. We call these probabilities

the trajectory probability vector for variable j. Combining the trajectory probability vectors of

all variables, we thus have a trajectory probability matrix denoted by P. Note that, the trajectory

probability matrix represents prior beliefs that can be computed in advance from the system model.

It remains to combine those prior beliefs with received claims of different observers who report

values of some variables in some time slots.

It is not hard to see that the size of P increases exponentially in H, which prevents us from

considering a long history. Fortunately, we only need a relatively short history to estimate current

system state within reasonable accuracy as shown in the evaluation, Section 2.6. As per our

evaluation results, considering the past 5 time-slots leads to a reasonably accurate estimation

on the current state, and considering more history actually results in very small increments in

estimation accuracy. This is because that the older state has less influence on the current state,

and thus can be omitted without much loss of estimation accuracy. Therefore, our state transition

formulation is both general and computationally feasible in practical settings.

Let us denote the two possible values of each binary state variable in our model by T and F ,

respectively. (In Section 2.3, we generalize our model to the multivalued case.) Since in crowd-

sensing, participants report state at will, and in no systematic fashion, in the binary case, three

values become possible in the source-claim matrix SC, namely, T , F , or U , where U represents

unknown, meaning “lack of reports”. The default value of the source-claim matrix SC is U , which

means that we do not assume a default system state.

In contrast to much prior work on state estimation from unreliable sources, we assume not

only that source error distribution is not known, but also that each source has a different error

distribution. In the case of binary signals, one can summarize the error distribution by a single

value, ti, denoting the reliability of source i. It is defined as the probability that when i claims that

variable j has value v at time j, it is indeed of value v at that time. Hence, the probability of error

is 1− ti. (For multivalued signals, the above is only a partial specification of the error probability

13

distribution since it does not mention how the probability of error is split across possible error

values.) Let Cj,k denote the value of variable j in time-slot k, and SCi,j,k denote the value of

variable j that source i reports in time-slot k. The reliability of source i can be formally defined

as ti = Pr (Cj,k = v|SCi,j,k = v). Let’s use a short notation Cvj,k for Cj,k = v, and SCvi,j,k for

SCi,j,k = v, then the source reliability is:

ti = Pr
(
Cvj,k|SCvi,j,k

)
.

Let Ti,v denote the probability that source i reports that variable j is in state v given that the

variable is really in state v at that time. Let Fi,v denote the probability that source i reports that

variable j is in state v̄ given that j is in state v. Formally, Ti,v and Fi,v are defined as

Ti,v = Pr
(
SCvi,j,k|Cvj,k

)
, Fi,v = Pr

(
SC v̄i,j,k|Cvj,k

)
.

Note that, Ti,v +Fi,v ≤ 1, since it is also possible that the source i does not report the value of the

variable. Let u denote the “Unknown” value in the source-claim matrix SC, we have:

1− Ti,v − Fi,v = Pr
(
SCui,j,k|Cvj,k

)
.

We denote the prior probability that a source i makes a claim by si, and denote the prior probability

that any variable at any time is in state v by dv. By the Bayesian theorem, we have:

Ti,v = ti · si/dv, Fi,v = (1− ti) · si/dv. (2.1)

Our problem can be formulated as follows: Given the source-claim matrix SC for the past H

time-slots, and given the trajectory probability matrix P, jointly estimate both the reliability of each

source in S, and the current state of each variable in C.

14

2.2 Computing Trajectory Probabilities

Before describing our solution to the above problem, in this section, we use two examples (with

different state transition models) to illustrate how a trajectory probability matrix P is computed.

2.2.1 Independent State Change

We first start with a simple state transition model where the value of each variable is independent

from that of the other variables as well as its history values. For simplicity, we consider binary

variables. The multivalued case can be generalized trivially. In this system, two parameters are

enough to model state: (1) Pt, the probability that a variable is in state T , and (2) Pf , the

probability that a variable is in state F .

Given a value sequence of a variable, we can compute the joint probability of all elements of

the sequence easily. For example, the joint probability of a value sequence TTF is simply P 2
t Pf .

Therefore, if we use the last H time-slots to estimate the current system state, we can define

the trajectory probability matrix P using 2H joint probabilities; each joint probability is for one

possible sequence of length H.

2.2.2 Markov Model

We now consider a system whose state transitions follows a Markov model, in which current state

(the values of the variables in the system) is determined only by its last state. For simplicity, again,

in this example, the variables are binary. The multivalued variables can be easily generalized. In a

Markov model with binary variables, two transition probabilities are enough to describe the system

dynamics: (1) Ptf , the probability that a variable changes its current state from T to F (in the

next time-slot), and (2) Pft, the probability that a variable changes its state from F to T . The

probability that a variable remains in the T state in the next time-slot (Ptt) can be easily computed

by Ptt = 1− Ptf . Similarly, Pff = 1− Pft.

Given a state trajectory, and the probability of its initial T state P 0
t or F state P 0

f (such

that P 0
t + P 0

f = 1), we can easily compute its probability. For example, if the trajectory is TTF

the joint probability of the state sequence is P 0
t · Ptt · Ptf , where Ptt and Ptf are the transition

probabilities. Therefore, if we exploit the last H time-slot to estimate the current system state, in

15

this model, the trajectory probability matrix P can be computed using the joint probabilities of

2H state combinations, where each of the joint probabilities can be easily computed as illustrated

above.

The above examples are selected for the ease of illustration. For evaluating trajectory proba-

bilities in the presence of more complex system dynamics, please refer to hypothesis testing and

target tracking literature.

2.3 Dynamic State Estimation

In this section we describe our state estimator for crowd-sensing applications. We adopt a

maximum-likelihood estimation framework, and restate the problem as one of finding the set

of (i) source reliability values, and (ii) trajectories of state variables that jointly maximize the

likelihood of our observations (i.e., received claims). This problem is then solved using the

Expectation-Maximization framework [30]. We call the resulting algorithm EM-VTC (Expectation-

Maximization algorithm for the time-Varying ground Truth case with Conflicting claims).

2.3.1 Deriving a Crowd-sensing State Trajectory Estimator

Expectation-Maximization (EM) [30] is a machine learning algorithm to find the maximum like-

lihood estimates of parameters in a statistical model when the likelihood function contains latent

variables. To apply the EM algorithm, we need to define the likelihood function L(θ;x, Z)1, where

θ is the parameter vector to be estimated, x is the vector of the observed data, and Z is the vector

of the latent variables. After defining the likelihood function, EM iteratively applies two steps

called the E-step and the M-step until they converge to a solution that computes the values of both

the parameter vector and the latent vriables. The mathematical formulation of these iterations is

given below:

• E-step: Given the current (estimated) parameter vector and the observed data, compute the

1In this chapter, we use capital letters for random variables, such as Z, and use small letters for the values of
random variables, such as z.

16

expectation of the latent variables.

Q(θ|θ(n)) = EZ|x,θ(n) [logL(θ;x, Z)]. (2.2)

• M-step: Find the parameters that maximize the Q function defined in the E-step, and use

these parameters for the next iteration.

θ(n+1) = arg max
θ
Q(θ|θ(n)) (2.3)

We introduce a latent variable zj,k for each state variable j in time-slot k to denote its estimated

value in that time-slot. We use vector zj to denote the estimated time-series of state variable j

in the last H time-slots, where H is a parameter of the algorithm as described in Section 2.1.

We use Zj,k to denote the random variable corresponding to zj,k, and the Zj,k’s, ∀j ∈ C and

k ∈ {1, 2, · · · , H}, constitute the random matrix Z. We define x to be the 3-dimension source-

claim matrix SC, where xj is the matrix of reported observations of variable j from all sources in

S of all of the H time-slots. Note that, the matrix may be sparse (i.e., containing a lot of “U”

values) since many sources will not have observed many variables. We define the parameter set θ

to be {(Ti,v, Fi,v)|∀i ∈ S, v ∈ {True, False}}, where Ti,v and Fi,v is defined in Equation (2.1).

The likelihood of receiving the claims reported by all sources in a crowd-sensing application

becomes as follows:

L(θ;x, Z) =
∏
j∈C

p(xj , Zj |θ) =
∏
j∈C

{ ∑
zj∈ΛH

p(xj , zj |θ) · 1{Zj=zj}

}

=
∏
j∈C

{ ∑
zj∈ΛH

p(zj)1{Zj=zj} ·
∏
i∈S

H∏
k=1

αi,j,k

} (2.4)

where Λ = {T, F}, ΛH denotes the Cartesian product2 of the set Λ itself for H times, and 1{x}

is an indicator function whose value is 1 only if x is true otherwise 0. Please note that p(zj) is

the input (prior) trajectory probability vector (the j-th row of the trajectory probability matrix

P), which is independent of the parameters θ. Therefore, p(zj) = p(zj |θ). The αi,j,k is defined as

2For example, if A = {1, 2} and B = {a, b}, the Cartesian product of A and B is A×B = {(1, a), (1, b), (2, a), (2, b)}.

17

follows:

∀v ∈ Λ, αi,j,k =

Ti,v if zj,k = v, SCi,j,k = v

Fi,v if zj,k = v, SCi,j,k = v̄

1− Ti,v − Fi,v if zj,k = v, SCi,j,k = u

(2.5)

where u denotes the “Unknown” value U in the source-claim matrix SC.

The derivations of the E-step and M-step are in the last section. In the next subsection, we

present our algorithm in pseudo code.

2.3.2 The EM-VTC Algorithm

The pseudo code of our EM-VTC algorithm is shown in Algorithm 1. The inputs of our algorithm

are the source-claim matrix SC with H time-slots, where H is a fixed parameter, and the trajectory

probability matrix P that is learned from history data. Both the source reliability and the estimated

variable value in the current time-slot are returned by the algorithm. We estimate the source

reliability using Equation (2.1), where svi can be calculated from the source-claim matrix SC, dv

can be computed by
∑

j∈C
∑H

k=1 Z
c
v(j, k), and T ci,v and F ci,v are calculated after the EM iterations

are converged.

2.4 Accuracy Guarantees

After developing the EM-VTC algorithm, the next natural question is: How accurate is its esti-

mation results? In this section, we answer the above question by first deriving the Cramer-Rao

lower bound (CRLB) for the EM-VTC algorithm and then deriving a confidence interval based on

the CRLB. In statistics, the CRLB represents a lower bound on the estimation variance of a deter-

ministic parameter [28]. Note that the CRLB derived here is assuming there are enough sources

participating in the crowd-sensing application therefore the truth of the variables are known with

full accuracy, thus the CRLB is asymptotic. The derivation of the CRLB is in the last section.

2.4.1 Confidence Interval of Source Reliability

In this subsection, we derive a confidence interval of source reliability based on the obtained (asymp-

totic) CRLB (in the last section). Maximum likelihood estimators exhibit several nice properties,

18

Algorithm 1 EM-VTC: Exepctation-Maximization Algorithm with Time-Varying Variables

Input: The source-claim matrix SC in the latest H time-slots, and the trajectory probability
matrix P.
Output: The estimated values of variables in the current time-slot, and the estimated reliability
of each source.

Initialize θ(0) by setting Ti,v and Fi,v to random values between 0 and 0.5
n← 0
repeat

for Each j ∈ C, each k ∈ {1, 2, · · · , H}, and each v in {T, F} do

Compute Z
(n)
v (j, k) based on Equation (2.11)

end for
for Each i ∈ S and each v in {T, F} do

Compute T ∗i,v anf F ∗i,v based on Equation (2.10)
end for
n← n+ 1

until θ∗ and θ(n) converge

Zcv(j, k) is the converged value of Z
(n)
v (j, k), and T ci,v is the converged value of T

(n)
i,v , F ci,v is that

of F
(n)
i,v , for every i ∈ S, j ∈ C, k ∈ {1, 2, · · · , H} and v ∈ {T, F}.

for Each j ∈ C do
if ZcT (j, 1) > ZcF (j, 1) then

Variable j is assigned T in the current time-slot
else

Variable j is assigned F in the current time-slot
end if

end for
for Each i ∈ S do

Compute source i’s reliability ti by Equation (2.1)
end for

one of which is asymptotic normality that the MLE estimator is asymptotically distributed in

Gaussian as the data size is large enough [24]:

(θ̂MLE − θ0)→D N(0, J−1(θ̂MLE)) (2.6)

where J is the Fisher information matrix as defined in Equation (2.13), θ0 and θ̂MLE are the ground

truth and MLE of the parameter θ respectively. In other words, as the data size growing up, the

difference between the true value and the MLE of the parameters follows normal distribution with

mean 0, and covariance matrix given by the CRLB J−1(θ̂MLE).

The variance of estimation error on parameter Ti,T is J−1(θ̂MLE)i,i. We know that the reliability

of source i is ti = dT

sTi
Ti,T by Equation 2.1. Therefore, by the ∆-method [24], we have the variance of

19

reliability estimation error equals to (d
T

sTi
)2J−1(θ̂MLE)i,i. We denote this variance by Vi. Therefore,

the confidence interval to quantify the source reliability ti is given as follows:

(t̂MLE
i − cp ·

√
Vi, t̂

MLE
i + cp ·

√
Vi) (2.7)

where cp is the standard score of the confidence level p. For example, for the 95% confidence level,

cp = 1.96.

2.5 Multivalued Variable Extension

In this section, we extend our EM-VTC algorithm from the binary case to a general multivalued

case, where each variable has q (≥ 2) possible values. Although Wang et al. [129] designed an EM

algorithm that takes multivalued variables for the static state case, we found that their algorithm

is not suitable in the time-varying state case. The main reason is that the time complexity of each

EM iteration in their algorithm is O(qH), if the last H time-slots are considered in estimating the

current system state. Please note that the EM iterations are the major time-consuming part of an

algorithm under the EM framework. Therefore, for a large q, the heavy computational overhead

of their algorithm makes it not practically applicable, especially in time sensitive systems. One of

our goal is to time-efficiently extend our binary solution for the multivalued case. Specifically, we

require a solution in the q-valued case in which the time complexity of each EM iteration grows no

faster than linearly in q compared with the binary solution.

The pseudo code is shown in Algorithm 2. Our high-level idea is to reduce the multivalued

case to a binary case. Suppose that in the multivalued case the value set Λ = {λ1, λ2, · · · , λq}. We

first construct q new binary variables for each q-nary variable (line 1 to line 3). Next, we construct

the source-claim matrix SCbm for the binary variables corresponding to each q-nary variable m

based on the SC (line 4 to line 12). We then construct the trajectory probability matrix Pbm for

the constructed binary variables corresponding to each multivalued variable m from the trajectory

probability matrix P that is an input of our algorithm (line 13 to line 20). The combinations of

SCbm and Pbm are denoted as SCb and Pb respectively. Next, we apply Algorithm 1 with inputs

SCb and Pb to get the source reliability and the converged ZcT value of each of the binary variables

20

Algorithm 2 EM-VTC for multivalued variables
Input: The source-claim matrix SC in the last H time-slots, the trajectory probability matrix P
Output: The estimation of source reliability and the current variable values

1: for Each q-nary variable j ∈ C do
2: Construct q binary variables j1, j2, · · · , jq, such that ji = T if j = λi and F otherwise.
3: end for
4: Allocate the memory for the source-claim matrix SCb

m for the new binary variables corresponding to each q-nary
variable m. Totally, allocate SCb with size |S| × q · |C|, and initiate SCb with the “Unknown” value U .

5: for Each i ∈ S, j ∈ C, k ∈ {1, 2, · · · , H} do
6: if SCi,j,k = λm then
7: SCb

i,jm,k ← T
8: for Each m′ ∈ {1, · · · ,m− 1,m+ 1, · · · , q} do
9: SCb

i,jm′ ,k ← F
10: end for
11: end if
12: end for
13: Allocate the memory for the trajectory probability matrix Pb

m for the new binary variables corresponding to each
q-nary variable m. Totally, allocate Pb with size 2H × q, and initiate Pb by 0.

14: for Each q-nary variable j ∈ C, each value λm ∈ Λ do
15: for Each element γ of Pj do
16: . (Comment: γ is some combination of H q-nary values, and Pj is a column vector.)
17: Compute the corresponding combination of H binary values of variable jm and the index γb in Pb

jm .
18: Pb

jm ← P
b
jm + Pj .

19: end for
20: end for
21: Use Algorithm 1 with SCb and Pb to get the source reliability ti for each i ∈ S and Zc

T (jm, 1) for each j ∈ C,m ∈
{1, · · · , q}

22: for Each j ∈ C do
23: m← arg maxq

m=1 Z
c
T (jm, 1)

24: Variable j is assigned with value λm.
25: end for

(line 21). Please note that here we do not estimate the state of each binary variable, but only

exploit the converged ZcT values. Finally, we assign each of the q-nary variables with the value

whose corresponding binary variable has the highest ZcT value among all the binary variables

corresponding to the q-nary variable (line 22 to line 25).

Please note that here the time complexity for constructing the trajectory probability matrix for

the binary variables is O(qH+1), and this procedure is executed only once. With the constructed

trajectory probability matrix Pb and the source-claim matrix SCb, each EM iteration in Algorithm 1

has the time complexity O(q · 2H). Therefore, we observe that the computational complexity for

the multivalued case increases almost linearly in the number of possible values that each variable

can take (i.e. q).

21

2.6 Evaluation

In this section, we evaluate the performance of our algorithm compared with other state-of-the-art

solutions and a simple baseline algorithm. We first study the performance in a simulation study,

then we evaluate our algorithm in a real-world crowd-sensing application.

2.6.1 Simulation Study

Methodology

We build a crowd-sensing simulator in Matlab R2013b. In the simulation, 200 binary variables

are created whose initial values are assigned randomly. Each variable represents a physical event

with state T or F . The initial value of each variable is distributed uniformly at random (i.e., with

probability 0.5 the value is assigned to T and 0.5 it is assigned to F). For transition probabilities, we

assume a two state Markov model. That is, the value of each variable in one time-slot depends only

on its value in the preceding one. There are only two states, T and F . The transition probability

from T to T is Ptt, and from F to F is Pff . These two parameters are enough to determine the

other two transition probabilities in the Markov model. While we could have considered more

complex and realistic systems, our goal from considering the two-state Markov model was to help

understand the fundamental performance trends of our state estimator as a function of parameters

of the system model. Results for more complex models would have been harder to interpret due to

the multitude of confounding factors at play.

For the sources, the simulator also choose a reliability ti for each source i. We set the reliability of

each source randomly distributed in [0.5, 1). In the simulation, each source is assigned a probability

of making claims, si, meaning the probability that a source reports an observation. The higher the

si is, the more “talkative” the source is.

The default values of the parameters are as follows: the number of sources is 30, the expected

source reliability E(ti) = 0.6, the factor si = 0.6, the number of history time-slots to be considered

H = 5, the state transition probabilities Ptt = Pff = 0.5, and the initial ground bias dTj = 0.5

denoting the probability that a variable is assigned T initially.

We compare our algorithm EM-VTC with two state-of-the-art algorithms proposed in [131]

22

(a) Variable state estimation

(b) Source reliability estimation

Figure 2.2: Performance as the
number of sources varies.

(a) Variable state estimation

(b) Source reliability estimation

Figure 2.3: Performance as the
talkative factor si of sources
varies.

(a) Variable state estimation

(b) Source reliability estimation

Figure 2.4: Performance as the
source reliability ti varies.

and [129]. The algorithm proposed in [131] does not consider state changes. It assumes that the

default physical state of each variable is “F”, allowing sources to report only “T” values of the

observed variables. The algorithm proposed in [129] extends the above algorithm by considering

conflicting claims (i.e., both “T” and “F” values). However, it still assumes that system state

is immutable. For each of the two algorithm, we further consider two cases: (1) Applying the

algorithm with the data in the current time-slot, and (2) Applying the algorithm with the data in

the last H time-slots. The algorithm in [131] is denoted by EM-R1 when it is fed with the data

of the current time-slot, and by EM-Rall when it is fed with the data of the last H time-slots.

The algorithm in [129] is denoted by EM-C1 when used in the current time-slot, and by EM-Call

when used in the last H time-slots.

We also compare our algorithm to a simple baseline algorithm Voting. Voting estimates the

variable to be equal to the majority vote (i.e., most frequently reported value at the time). Each

simulation runs 100 times and each result is averaged on the 100 executions.

23

Evaluation Results

In Figure 2.2, we evaluate the performance of our algorithm as the number of sources varies from

20 to 100. Other parameters are set to the default values. From Figure 2.2(a), we can observe that

the false estimation rate of our algorithm EM-VTC is the smallest among all the algorithms. The

EM-Call and EM-Rall algorithms are the worst in estimating the variable values, since they do

not consider the fact that the physical state of each variable changes in time. Without considering

the time-varying states, it is very unlikely to correctly estimate the source reliability, as shown

in Figure 2.2(b). The reason is that the reports from a 100% reliable source might look “self-

conflicting” to EM-Call and EM-Rall in a system with time-varying states, because they assume

the system state is immutable. Therefore, the EM-Call and EM-Rall assigns a relatively low

reliability to the 100% reliable source.

EM-C1 and EM-R1 performs worse than EM-VTC, because they use only the data in the

current time-slot, while the EM-VTC algorithm uses all the data in the last H time-slots. With

more data, the source reliability can be learned better as shown in Figure 2.2(b), which in turn

results a better estimation of variable values. EM-C1 outperforms than EM-R1, because EM-R1

does not distinguish “Unknown” from “False”, thus EM-R1 gives the F state a higher weight (so

higher false negative rate).

We can also observe from Figure 2.2, as the number of sources increases, the estimation of

EM-VTC becomes better and better. The reason is that more sources means potentially less

“Unknown” values in the source-claim matrix SC. Therefore, estimation becomes more accurate.

Figure 2.3 shows the performance as the factor si (probability of reporting) varies from 0.2 to

0.8. Other parameters are set to the default values. As si increases, the estimation error of EM-

VTC becomes smaller as shown in Figure 2.3(a). With less unknown values in the source-claim

matrix, the EM algorithm can jointly estimate the source reliability (Figure 2.3(b)) and variable

value (Figure 2.3(a)) more accurately. In Figure 2.3, we show that EM-VTC outperforms all the

baselines in source reliability estimation as well.

Figure 2.4 shows the performance as the expected source reliability E(ti) changes from 0.5 to

0.9. As the expected reliability increases, our algorithm performs better. When the expected source

reliability is 0.5, the sources essentially make random reports, offering no information. Therefore,

24

error rate is around 50%. However, when source reliability increases, our EM-VTC algorithm

outperforms all the others. When the source reliability is 90%, our algorithm actually estimates

the values of variables 100% correctly.

(a) Variable state estimation
as Pff varies

(b) Source reliability estima-
tion as Pff varies

(c) Variable state estimation
as Ptt, Pff vary

(d) Source reliability estima-
tion as Ptt, Pff vary

Figure 2.5: Performance as the state transit probability varies.

In Figure 2.5(a) and (b), we evaluate how the single-sided system dynamics affect the perfor-

mance of our algorithm. In this experiment, the probability of staying in one state, Ptt, is fixed at

0.5, and the probability of staying in the other Pff varies from 0.1 to 0.9, emulating how “sticky”

that state is. Figure 2.5(a) and (b) shows that our algorithm consistently performs the best no

matter what value that Pff takes in terms of both the variable value estimation and the source

reliability estimation.

In Figure 2.5(c) and (d), we set Ptt = Pff and vary both from 0.1 to 0.9. The other parameters

are set to the default values. Please note that since the initial ground bias dTj is set to 0.5, in this

simulation the expected number of the T variables and the expected number of the F variables will

always be the same, although the switching frequency changes. Again, our algorithm consistently

performs the best.

In Figure 2.6, we evaluate the performance of our EM-VTC algorithm when the number of time-

slots, H, in the sliding window considered for prediction varies from 1 to 10. Here we compare

EM-VTC with EM-C1 that only considers the current time-slot. As shown in Figure 2.6, when

25

Figure 2.6: Variable value estimation performance as the number of history time-slots being con-
sidered varies.

we consider more history, the estimation is more accurate. However, the marginal increase in the

estimation accuracy decreases.

(a) CI for source reliability estimation (b) CI of false negatives for variable
value estimation

(c) CI of false positives for variable
value estimation

Figure 2.7: Performance bounds of EM-VTC in terms of confidence intervals.

In Figure 2.7 we study the performance bounds of our EM-VTC algorithm in terms of the

confidence intervals (CI), which aims at validating our derived CRLB. In this experiment, we set

the number of sources to 40, and the rest of the parameters to their default values. The area

between the red solid lines is a 90% confidence interval of the estimators, and that between the

blue dashed lines is a 95% confidence interval. The confidence intervals are computed from the

CRLB as derived in Section 2.4. From CRLB, we can compute the variances of the false positive

Fi,F (V ar(FMLE
i,F)) and false negative Fi,T (V ar(FMLE

i,T)) respectively. By Equation 2.6, the 90%

confidence interval for the false negative is FMLE
i,T ± 1.65V ar(FMLE

i,T), and the 95% confidence

interval for the false negative is FMLE
i,T ± 1.96V ar(FMLE

i,T). We can also compute the confidence

intervals for the source reliability estimator. Please note that a 90% confidence interval means that

26

no more than 10% of the sample points are outside the confidence interval with high probability,

while a 90% confidence interval means that no more than 5% of the sample points are not included

in that interval with high probability.

From Figure 2.7(a), we observe that 3 sample points are out of the 90% CI, which validates our

confidence interval since we allow no more than 4 points out of the 90% CI. For the 95% CI, all

points are within it, which validates our confidence interval again.

In Figure 2.7(b), 1 points falls out of the 90% CI and no points falls out of the 95% CI. In

Figure 2.7(c), 3 points fall out of the 90% CI and no points falls out of the 95% CI. Therefore, our

confidence intervals are computed correctly, which also validates the derived CRLB.

We also run the above simulation for 100 times, and compute the average percentage of “bad”

sample points among the whole sample, where “bad” sample points means the points fall out of

the corresponding confidence interval. The results are shown in the Table 2.1, which also validates

our confidence intervals and thus the derived CRLB.

Table 2.1: Percentage of sample points falling out of the corresponding confidence interval for
different estimators.

Reliability False negative False positive
90% CI 0.0648 0.0807 0.0865
95% CI 0.0093 0.0138 0.0158

2.6.2 A Real-world Case Study

In this subsection, we study the performance of our algorithm through a real-world crowd-sensing

application that aims at assisting drivers to find the available street parking spots nearby. Recent

work on assisting drivers in street parking relies on pre-deployed infrastructures (e.g. smart meters

with communication capability to a remote center server [92]), or relies on special sensors to be

embedded on cars (e.g. ultrasonic sensor on the side of a car [90]). We want to test whether a

zero-infrastructural overhead crowd-sensing approach can be used in this application with the help

of our algorithm.

In this case study, we recorded the availabilities of metered parking spots on two streets near

the department of Computer Science at University of Illinois Urbana-Champaign for 8 days (from

27

April 11th, 2014 to April 18th, 2014) using webcams. 30 participants were involved in this case

study to report the availabilities of the parking spots on the two streets from 2pm to 6pm on April

18th, 2014, and 2833 reports were collected. We deliberately picked the period from 2pm to 6pm is

because in this period of time the availability of parking spots around the department of Computer

Science has some clear time-varying pattern; students drive to attend the afternoon classes, and

leave school for dinner around 5pm, then some of them drive back to school for self studies after

dinner. The time-varying ground truth of the parking availability is shown in Figure 2.8.

We first define the time-slot, and define the availability (occupied/avaiable) of a parking spot

corresponding the slotted time. We partition the time into slots such that each time-slot is 10 min-

utes. Therefore, during our experiment on April 18th, there are 24 time-slots totally. Each parking

spot is assigned with a corresponding variable with values T (representing that it is occupied)

and F (representing that it is available). There are totally 15 parking spots in our experiment,

therefore 15 variables are defined. In each time-slot, if more than half of the time a parking spot

is occupied and the corresponding variable is assigned T , else the parking spot is defined free and

the corresponding variable is assigned F .

Next, we define the source-claim matrix SC, and the trajectory probability matrix P that are

the inputs of our algorithm. Each report from the participants is associated with the time-slot

during which it is generated. Both the sources and the events (variables) are indexed by integers.

Therefore, we can naturally define the source-claim matrix SC to contain all the reports. In our

case study, we only consider past two time-slots when estimating the variable values in the current

time-slot, which means that the H is set 2 here. The state transition is modeled by the trajectory

probability matrix P where each element is a joint probability of the current value and the last

time-slot value of a variable. The joint probabilities are learned from history data between 2pm

and 6pm from April 11th to April 17th. Please note that we did not use the data on April 18th

to learn the trajectory probability matrix. In this case study, we set all the variable share the

same trajectory probability matrix P. Please note that this is not exactly accurate, since different

variables might have different dynamics behaviors. However, our evaluation results show that our

EM-VTC algorithm still achieves an accurate estimation under this imperfect setting.

We compare with 4 baseline algorithms: (1) EM-C1 as described in the previous subsection,

28

(2) EM-R1 that is also described previous, (3) Voting, and (4) History where we only use the

state in the last time-slot to estimate the current state for each variable. The experiment works

in a “sliding-window” style: We start from estimating the variable values of the second time-slot

(2:10pm-2:20pm) using the data (the source reports) in the first time-slot and the second time-slot,

then move on to estimate the system state in the third time-slot (2:20pm-2:30pm) using data from

the second and the third time-slots, and so on.

The ground truth is shown in Figure 2.8. From Figure 2.8, we can observe that the system

state (the availability of parking spots) did change overtime. During the dinner time (from 5:00pm

to 6:00pm), the system state changes more frequently than that during the working time (before

5:00pm).

Figure 2.8: The ground truth of the availability of parking spots.

Figure 2.9: The performance of variable state estimation.

The estimation results are presented in Figure 2.9. In the figure, the x-axis represents the time-

slots that are indexed using integers, and the y-axis is the estimation error. The red bar shows

the estimation error of our EM-VTC algorithm. From Figure 2.9, we hardly observe the red bars,

29

which shows that our solution in most of the time has zero estimation errors. The average errors

are summarized in Table 2.2.

Table 2.2: Estimation error in parking case study
Algorithm EM-VTC EM-C1 EM-R1 Voting History
Est. Error 0.0319 0.1855 0.2261 0.2203 0.1420

Please note that the EM-C1 and EM-R1 algorithms perform worse than the History heuristic

that using the variable value in the last time-slot to estimate its current value, which is because

that our parking data has high correlation between the last time-slot and the current time-slot as

shown in Figure 2.8, and that those two algorithms only use the data in the current time-slot which

is not enough to estimate the system state with high accuracy. Our algorithm uses more data and

considers the system state trajectory, therefore performs the best.

2.7 Related Work

Reliability is a critical requirement for cyber-physical systems [75]. Much prior research focused on

temporal and functional reliability of CPS applications. For example, Eidson et al. [32] presented

a programming model called PTIDES for the reliable timing control of the cyber-physical systems.

Clarke et al. [27] applied formal analysis technique on autonomous transportation control for cars,

trains, and aircraft. Faza et al. [35] suggested the use of software fault injection combined with

physical failures in identifying integrated cyber-physical failure scenarios for the smart grid. Sha

et al. [106] developed a hybrid approach that combines fault-tolerant architectures with formal

verification to support the design of safe and robust cyber-physical systems. Different from prior

efforts, this chapter addresses the data reliability challenge that arises in cyber-physical systems

operating in social spaces, where significant amounts of data are collected from the “crowd”. In

this scenario, the “crowd” functions as a noisy sensor of large amounts of physical states. A state

estimator is needed to optimally recover reliable data and accurately estimate error bounds.

The work is motivated by human-in-the-loop cyber-physical systems; a challenging and promis-

ing class of CPS [104]. Many examples of such systems appear in recent literature, where humans

plays important roles in feedback loops, such as operator, load, disturbance, or controlled plant.

For example, Lu et al. developed a smart thermostat system to monitor the occupancy and sleep

30

pattern of the residents and turned off the HVAC when not needed [86]. Huang et al. designed a

mathematical model to determine the insulin injection by closely monitoring glucose level when it

reaches a threshold, a key challenge to design an artificial pancreas [59]. Our work is complementary

to the efforts mentioned above in that we investigate the role of humans as sensors. Hence, we are

interested in addressing the reliability challenge that ensues when data is obtained from unvetted

sources, where the reliability of data sources is unknown and the states of observed variables may

evolve over time.

Our work is related to the system state estimation problem with unreliable sensors in CPS.

Sinopoli et al. designed a discrete Kalman filter to estimate the system state when the sensor

reports were intermittent [109]. Ishwar et al. estimated the states of the sink node with noisy

sensor nodes in WSNs [62]. Mathematical tools were proposed by Schenato et al. to control and

estimate the states of physical systems on top of a lossy network [103]. Masazade et al. proposed

a probabilistic transmission scheme to near-optimally estimate the system parameter in WSN

with sensing noises [89]. However, the sensor error is either assumed known [89], or generated

from a common distribution with known parameters [62, 103, 109]. In contrast, in crowd-sensing

applications, not only do we assume that the error distribution is unknown but also that each

(human) sensor has its own possibly different error distribution. Therefore, none of the prior work

is applicable in crowd-sensing.

The importance of crowd-sensing as a possible data input in cyber-physical systems is attributed

to the proliferation of mobile sensors owned by individuals (e.g., smart phones) and the pervasive

Internet connectivity. Hence, humans can be sensor carriers [73] (e.g., opportunistic sensing),

sensor operators [23], or sensor themselves [127]. Wang et al. proposed data prioritizing schemes

to maximize the data coverage in an information space [139] and to maximize the collected data

diversity [134,135] for crowd-sensing applications. An early overview of crowd-sensing applications

is described in [7]. Examples of early systems include CenWits [58], CarTel [61], BikeNet [34], and

CabSense [105].

Recently, the problem of fact-finding, which refers to ascertaining correctness of data from

sources of unknown reliability , has drawn significant attention. It has been studied extensively

in the data mining and machine learning communities. One of the earliest efforts is Hubs and

31

Authorities [70] that presented a basic fact-finder where the belief in a claim and the truthfulness

of a source are jointly computed in a simple iterative fashion. Later on, Yin et al. introduced

TruthFinder as an unsupervised fact-finder for trust analysis on a providers-facts network [152].

Pasternack et al. extended the fact-finder framework by incorporating prior knowledge into the

analysis and proposed several extended algorithms: Average.Log, Investment, and Pooled Invest-

ment [97]. Su et al. proposed supervised learning frameworks to improve the quality of aggregated

decision in sensing systems [111–113]. Additional efforts were spent in order to enhance the basic

fact-finding framework by incorporating analysis on properties or dependencies within claims or

sources.

The above work is heuristic in nature; it does not offer optimality properties and does not

allow computation of error bounds. The latter is an important requirement for a state estimator

in CPS applications. Towards an optimal solution, Wang et al., proposed a Maximum Likelihood

Estimation (MLE) framework [129,131] that offers a joint estimation on source reliability and claim

correctness based on a set of general simplifying assumptions. In their following work, Wang et al.

further extended the framework to handle streaming data [125] and source dependencies [127]. The

approach was compared to several of the aforementioned fact-finders and was shown to outperform

them in estimation accuracy, while also offering error bounds. However, their work is unsuited for

CPS, since it did not consider the evolving event states which is common in CPS applications.

The algorithms proposed in this chapter extend the above MLE based framework by being

the first to study the state estimation problem (with unknown source reliability) in crowd-sensing

applications with time-varying system states. We further derive a Cramer-Rao lower bound for the

resulting novel maximum likelihood estimator.

2.8 Conclusions

In this chapter, we developed a state estimator for crowd-sensing applications, where humans act

as data sources reporting observed variables in a dynamic environment. We demonstrated how a

model of environmental dynamics can significantly enhance our ability to estimate correct state

even though the reliability of observers is not known. We also analytically studied its performance

by deriving a Cramer-Rao lower bound for our estimator. Our solution was evaluated using both

32

simulations and a real-world crowd-sensing application. The results show that the solution out-

performs prior approaches that do not properly account for differences in source reliability (e.g.,

voting) or do not properly leverage knowledge of the system model.

2.9 Derivations

In this section, we provide the details of the math derivations.

2.9.1 Deriving the E-step

We plug-in the likelihood function, given by Equation (2.4), into Equation (2.2) to derive the

E-step.

Q(θ|θ(n)) = EZ|x,θ(n) [logL(θ;x, Z)]

=
∑
j∈C

EZj |xj ,θ(n)

[
log
{ ∑
zj∈ΛH

p(zj)1{Zj=zj}
∏
i∈S

H∏
k=1

αi,j,k

}]

=
∑
j=∈C

∑
zj∈ΛH

p(zj |xj , θ(n))

{
log p(zj) +

∑
i∈S

H∑
k=1

logαi,j,k

} (2.8)

, where

p(zj |xj , θ(n)) =
p(xj , zj |θ(n))

p(xj |θ(n))

=
p(xj |zj , θ(n)) · p(zj |θ(n))∑

zj∈ΛH p(xj |zj , θ(n)) · p(zj |θ(n))

=
p(zj)

∏
i∈S
∏H
k=1 α

(n)
i,j,k∑

zj∈ΛH p(zj)
∏
i∈S
∏H
k=1 α

(n)
i,j,k

.

(2.9)

Please note that in the Q function, the parameters are embedded into the αi,j,k that is as-

signed different values under different (i, j, k) settings as defined in Equation (2.5). Also note that

p(zj |xj , θ(n)) is a constant with respect to θ.

33

2.9.2 Deriving the M-step

In the M-step, we set the partial derivatives of the Q function to 0 to get the θ∗ that maximizes

the value of Q. That is by solving ∂
∂Ti,v

Q = 0, and ∂
∂Fi,v

Q = 0, we can get T ∗i,v and F ∗i,v, for each

i ∈ S and v ∈ {T, F}.

T ∗i,v =

∑
j∈C
∑

k:SCi,j,k=v Z
(n)
v (j, k)∑

j∈C
∑H

k=1 Z
(n)
v (j, k)

F ∗i,v =

∑
j∈C
∑

k:SCi,j,k=v̄ Z
(n)
v (j, k)∑

j∈C
∑H

k=1 Z
(n)
v (j, k)

(2.10)

, where Z
(n)
v (j, k) is defined as:

Z(n)
v (j, k) =

∑
zj :zj,k=v

p(zj |xj , θ(n)). (2.11)

The parameter θ∗ is used in our EM-VTC algorithm as shown in Algorithm 1.

2.9.3 Deriving Cramer-Rao Lower Bound

By definition, CRLB is the inverse of the Fisher information matrix J(θ), where J(θ) =

EX [∇θ log p(X|θ)∇Hθ log p(X|θ)]. Here matrix XH is the conjugate transpose of matrix X. The

CRLB derived in this subsection is asymptotic by assuming that the values of variables are cor-

rectly estimated by the EM algorithm. This assumption is valid when the number of sources is

high, as shown in [128]. The loglikehood function under this assumption is `em(θ;x), as defined in

34

Equation (2.12).

`em(θ;x) =
∑
j∈C

H∑
k=1

{
1{zj,k=T}

(∑
i∈S

(
1{xi,j,k=T} log Ti,T

+ 1{xi,j,k=F} logFi,T + 1{xi,j,k=U} log(1− Ti,T − Fi,T)
))

+ 1{zj,k=F}

(∑
i∈S

(
1{xi,j,k=F} log Ti,F + 1{xi,j,k=T} logFi,F

+ 1{xi,j,k=U} log(1− Ti,F − Fi,F)
))}

.

(2.12)

We compute the Fisher information matrix from its definition, similar as [128]. The parameters

in the loglikelihood is order such that the Ti,T ’s come first, then Ti,F ’s, following by Fi,T ’s, and

finally Fi,F ’s. Let denote the number of sources by M , so M = |S|. So, we have 4M parameters in

total, and the size of the Fisher information matrix is 4M × 4M . Let’s denote the n-th parameter

by θn. For example, when n ≤ M , θn = Ti,T where i = n, and when n ∈ [M + 1, 2M], θn = Ti,F

where i = n−M , so on. We denote the total number of variables by N , i.e., N = |C|. Let J(θ)m,n

denote the element in the m-th row and j-th column of the Fisher information matrix J(θ). The

35

Fisher information is defined in Equation (2.13).

J(θ)m,n =

−E[∂2

∂θm∂θn
`em] = 0 m 6= n

−E[∂2

∂T 2
i,T
`em]

0 < m = n ≤M,

where i = n

−E[∂2

∂T 2
i,F
`em]

M < m = n ≤ 2M,

where i = n−M

−E[∂2

∂F 2
i,T
`em]

2M < m = n ≤ 3M,

where i = n− 2M

−E[∂2

∂F 2
i,F
`em]

3M < m = n ≤ 4M,

where i = n− 3M

=

0 m 6= n

dT ·N ·H(1−Fi,T)
Ti,T (1−Ti,T−Fi,T)

0 < m = n ≤M,

where i = n

dF ·N ·H(1−Fi,F)
Ti,F (1−Ti,F−Fi,F)

M < m = n ≤ 2M,

where i = n−M

dT ·N ·H(1−Ti,T)
Fi,T (1−Ti,T−Fi,T)

2M < m = n ≤ 3M,

where i = n− 2M

dF ·N ·H(1−Ti,F)
Fi,F (1−Ti,F−Fi,F)

3M < m = n ≤ 4M,

where i = n− 3M

(2.13)

The Fisher information matrix J(θ) is actually diagonal. Therefore, the CRLB defined by J−1(θ)

can be computed efficiently by inversing each non-zero element in J(θ).

Note that the CRLB should be computed by the actual ground truth value of the parameters.

However, in real-world applications, due to lack of the ground truth of those parameters, we feed

the maximum likelihood estimations of the parameters to approximate the CRLB, i.e. CRLB is

J−1(θ̂MLE).

36

Chapter 3

Fact-finding with Interdependent
Variables

This chapter extends prior work by offering scalable algorithms for exploiting known dependency

graphs between observed variables to improve the quality of ground truth estimation for social

sensing applications.

Consider, for example, post-disaster scenarios, where significant portions of a city’s infrastruc-

ture are disrupted. Communication resources are scarce, rumors abound, and means to verify

reported observations are not readily available. Survivors report to a central unit the locations of

damage and outages, so that help may be sent. Some reports are accurate, but much misinforma-

tion exists as well. Not knowing the individual sources in advance, it may be hard to tell which

reports are more reliable. Simply counting the number of reports that agree on the facts (called

voting in prior literature) is not always a good measure of fact correctness, as different sources may

have different reliability. Hence, a different weight should be associated with each report (or vote),

but that weight is not known in advance.

Prior work of the authors addressed the above problem when the reported observations are

independent [131] and considered the case where second-hand observations were reported by other

than the original sources [127]. In work that comes closest to this work, an algorithm was presented

for the case, where the reported variables are correlated [126]. Unfortunately, the computational

and representational complexity of the correlation was exponential in the number of correlated

variables. Hence, in practice, it was not feasible to consider more than a small number of correlated

variables at a time.

In sharp contrast to the above results, in this chapter, we consider the case where reported

variables have non-trivial dependency graphs. For example, upon the occurrence of a natural or

man-made disaster, flooding, traffic conditions, outages, or structural damage in different parts

of a city may be correlated at large scale. Furthermore, the structure of the correlations might

37

be partially known. Areas of the same low elevation may get flooded together. Nearby parts of

the same main road may see correlated traffic conditions. Buildings on the same power line may

suffer correlated power outages. Gas stations that have the same supplier might have correlated

availability of gas. Correlations (e.g., among failures) can also shed light on the root cause. For

example, in a situation where a supply line simultaneously feeds several consumers, a failure in the

line will result in correlated failures at the downstream consumers. If the topology of the supply

lines is known, so is the correlation structure among expected consumer failures. If consumers build

products that need multiple suppliers, knowing the pattern of the corelated consumer failures can

give strong evidence as to which one of the suppliers may have failed.

Clearly, if the aforementioned correlation structure is not known, we cannot use this approach.

Scenarios where correlations structures are not known can be addressed using prior work that

simply views the underlying variables as uncorrelated [131]. This chapter offers performance and

accuracy improvements in the special (but important) case, where hypotheses regarding possible

correlations are indeed available. Exploiting such correlations reduces problem dimensionality,

allowing us to infer the state of points of interest more accurately and in a more computationally

efficient manner.

What complicates the problem (in social sensing scenarios) is that actual state of the under-

lying physical system is not accurately known. All we have are reports from sources of unknown

reliability. This chapter develops the first scalable algorithm that takes advantage of the structure

of correlations between (large numbers of) observed variables to better reconstruct ground truth

from reports of such unreliable sources. We show that our algorithm has better accuracy than prior

schemes such as voting and maximum likelihood schemes based on independent observations [131].

It also significantly outperforms, in terms of scalability, previous work that is exponential in de-

pendency structures [127].

The general idea behind the scalability of the new scheme lies in exploiting conditional inde-

pendence, when one catalyst independently causes each of multiple consequences to occur. Iden-

tification of such conditional independence relations significantly simplifies reasoning about the

joint correlations between observed values, thus simplifying the exploitation of such correlations in

state estimation algorithms. Although previous work [126] considers correlated variables in social

38

sensing applications, it does not exploit conditional independence. The computational complexity

of the previous solution increases exponentially in the number of correlated variables, which makes

it applicable only to applications with a small number of such variables. By modeling the struc-

tural correlations of variables as a Bayesian network and exploiting conditional independence, our

algorithm is more computationally efficient. Its computational complexity depends on the size of

the largest clique (i.e., complete sub-graph) in the Bayesian network, while the complexity of the

previous solution [126] depends on the total number of nodes in the Bayesian network making the

latter intractable for applications with a large number of correlated variables.

The rest of the chapter is organized as follows. We formulate our problem in Section 3.1. In

Section 3.2, we argue that our solution is general and can be applied to solve previous social sensing

challenges by showing that all the previous models are special cases of our Bayesian model. We

propose our solution in Section 3.3 and evaluate our algorithm in Section 3.4. A literature review

is presented in Section 3.5. The chapter concludes in Section 3.6.

3.1 Problem Formulation

Social sensing differs from sensing paradigms that use in-field physical sensors (e.g. Wireless Net-

worked Sensing [100]) in that it exploits sensors in social spaces. Examples include sensor-rich

mobile devices like smartphones, tablets, and other wearables, as well as using humans as sensors.

The involvement of humans in the sensing process enables an application to directly sense variables

with higher-level semantics than what traditional sensors may measure. However, unlike physical

devices, which are usually reliable or have the same error distribution, the reliability of human

sources is more heterogeneous and may be unknown a priori. This source reliability challenge in

social-sensing systems was recently articulated by Wang et al. [131]. Solutions that estimate source

reliability were improved in follow-up publications [126,127,141].

In recent work, the authors modeled human sources as binary sensors, reporting events of

interest. The rationale behind the binary model is that humans are much better at categorizing

classes of observations than at estimating precise values. For example, it is much easier to tell

whether a room is warm or not than to tell its exact temperature. Binary variables can be easily

extended to multivalued ones [141], which makes the binary model versatile. In this paper, we

39

adopt the binary model and assume that a group of human sources, denoted by S, participate in a

sensing application to report values of binary variables, we call the event variables. For example,

they may report the existence or absence of gas at a set of gas stations after a hurricane. These

variables are collectively denoted by C. The goal of this paper is to jointly estimate both the source

reliability values and ground-truth measured variable values, given only the string of noisy reports.

In contrast to prior work, we assume that the underlying variables are structurally correlated at

scale. The question addressed in this paper is how to incorporate knowledge of these correlations

into the analysis.

3.1.1 Modeling Interdependent Event Variables

In previous work, event variables were either assumed to be independent [127, 131] or were parti-

tioned into groups of small size [126,141] with no dependencies among groups. Solution complexity

grew exponentially with the maximum group size. In practice, it is not uncommon that all or a

large portion of event variables are interdependent. For example, in an application that monitors

traffic conditions in a city, pertinent variables might denote weather conditions (e.g., snowy or

rainy weather), local entertainment events that impact traffic (e.g., football games or concerts),

road surface conditions (e.g., potholes on road surfaces), and traffic speed, among others. These

variables are correlated. Bad weather results in slow traffic. So do the local entertainment events

and bad road surfaces. Traffic congestion on one road segment might cause congestion on another

road segment. The pervasive dependencies among variables make previous work (e.g., Wang et

al. [126]) inapplicable due to intractability, thus calling for a better model to handle them. This

paper is the first to study the reliable social-sensing problem with interdependent variables, at

scale.

Our solutions are based on the insight that although independence is uncommon in real appli-

cations, conditional independence does often arise. As stated in [88], dependencies usually expose

some structure in reality. The dependency structure encodes conditional independence, that can

be leveraged to greatly simplify the estimation of values of variables. In the previous application

example, given that the weather is snowy, the resulting traffic congestion on two road segments

can be assumed to be conditionally independent. Both are caused by snowy weather but neither

40

is affecting the other (assuming they are sufficiently far apart). However, without knowing the

state of the weather, we are not able to assume that congestion on both segments is independent.

Measuring congestion on those segments, it will tend to be correlated (in the presence of snow

events).

In this paper, we model dependencies among variables by a Bayesian network [94]. The un-

derlying structure of a Bayesian network is a directed acyclic graph (DAG) in which each node

V corresponds to a variable, v, and each arc U → V denotes a conditional dependence such that

the value of variable v is dependent on the value of u. The Bayesian network is a natural way to

model causal relations between variables. Since Bayesian networks are well-established tools for

statistical inference, we can leverage prior results to solve our reliable social-sensing problem.

Of course, in some cases, the underlying dependences can form a complete graph in which any

pair of variables are directly interdependent. In this extreme situation, there would be no efficient

inference algorithm with computational complexity inferior to Θ(2N), where N denotes the total

number of variables (i.e., |C|). All inferences should be made by considering the joint distribution

of all variables. However, as stated in [88], the complete graph structure does not often happen in

real applications, and so we are not interested in this extreme case.

3.1.2 Categorized Source Reliability

Although previous work in social sensing assumes that sources have different reliability, for a specific

source, its reliability is assumed to be fixed (e.g., [126, 127, 131]. This fixed-reliability assumption

does not hold in many practical scenarios. For example, a diabetic person who is in need of insulin

might be a better source to ask about pharmacies that remained open after a natural disaster,

than a person who is not in need of medication. The same diabetic person might not be a good

source to ask about gas stations that are open, if the person does not own a car. In the above

scenario, if we assume that a single source has the same reliability in reporting all types of variables,

the performance of estimating the ground truth of these variables might be degraded. To make

the source reliability model more practical, and thus the estimation more accurate, we assume

that source reliability differs depending on the variable reported. Measured variables are classified

into different categories. Source reliability is computed separately for each category. We call it

41

categorized source reliability.

With the categorized-source-reliability model, the reliability of each source is represented by a

vector (where each element is corresponding to the reliability for some reported category of variabls,

rather than a scalar as in previous work. Please note that the previous reliability model is a special

case of our model as a single-element vector.

3.1.3 Problem Definition

Next, we formally define our reliable social-sensing problem with interdependent variable at scale.

We denote the j-th measured variable by Cj , and Cj is assumed to be binary. More specifically,

Cj ∈ {T, F} where T represents True (e.g., “Yes, the room is warm”), and F represents False

(e.g., “No, the room is not warm”). One can think of each variable as the output of a different

application-specific True/False predicate about physical world state. Each variable Cj belongs to

some category `, denoted by `Cj . We use L to denote the category set.

In social-sensing, a source reports the values of variables. We call those reports, claims. We

use a matrix SC to represent the claims made by all sources S about all variables C. We call it

the source-claim matrix. In the source-claim matrix, an element SCi,j = v means that the source

Si claims that the value of variable Cj is v. It is also possible that a source does not claim any

value for some variable, in which case the corresponding item in the source-claim matrix SCi,j is

assigned value U (short for “Unknown”) meaning that the source did not report anything about

this variable. Therefore, in the source-claim matrix, SC, each item SCi,j has three possible values

T , F and U .

We define the reliability of source Si in reporting values of variables of category ` as the

probability that variables belonging to that category indeed have the values that the source claims

they do. In other words, it is the probability that `Cj = v, given that SCi,j = v. In the following,

we shall use the short notation Xv to denote that the variable X is of value v (i.e., X = v). Let `ti

denote the reliability of source Si in reporting values of variables of category `. We formally define

the source reliability as follows:

`ti = Pr
(
`Cvj |SCvi,j

)
. (3.1)

Let `T vi denote the probability that source Si reports the value of variable `Cj correctly. In

42

Table 3.1: The summary of notations

Set of sources S
Set of variables C

Binary variable, j Cj
Variable X of category ` `X

Binary value set {T, F}
Source-claim matrix SC

Source reliability `ti = Pr
(
`Cvj |SCvi,j

)
Correctness probability `T vi = Pr

(
SCvi,j |`Cvj

)
Error probability `F vi = Pr

(
SC v̄i,j |`Cvj

)

other words, the probability that Si reports value v for variable `Cj given that its value is really v.

Furthermore, let `F vi denote the probability of an incorrect report by Si. In other words, it is the

probability that Si reports that `Cj has value v̄ given that its value is v. Here x̄ is the complement

of x (T̄ = F and F̄ = T). `T vi and `F vi are formally defined below:

`T vi = Pr
(
SCvi,j |`Cvj

)
, `F vi = Pr

(
SC v̄i,j |`Cvj

)
. (3.2)

Note that, `T vi + `F vi ≤ 1, since it is possible that the source Si does not report anything of a

variable. Therefore, we have:

1− `T vi − `F vi = Pr
(
SCUi,j |`Cvj

)
. (3.3)

We denote the prior probability that source Si makes a positive claim (i.e., claims a value T) by sTi

and denote the prior probability that source Si makes a negative claim (i.e., claims a value F) by

sFi . We denote the prior probability that variable Cj is of value v by dv. By the Bayesian theorem,

we have:

`T vi =
`ti · svi
`d
v , `F vi =

(1− `ti) · sv̄i
`d
v . (3.4)

Table 3.1 summarizes the introduced notations.

The dependencies between variables are given by a Bayesian network. In the underlying depen-

dency structure of the Bayesian network (i.e., a DAG, denoted by G), each vertex Vj corresponds

to a variable Cj , and each arc Vj → Vk corresponds to a causal relation between variables Cj and

43

Ck in which the value of Ck is dependent on that of Cj . For any variable Cj , we use par(Cj) to

denote the set of variables on whom the value of Cj directly depends (i.e., not including transitive

dependencies). Since the causal relation is encoded in the Bayesian network, G, there is an arc

from each node denoting a variable in par(Cj) to the node denoting Cj in G. Please note that each

node Vj in the Bayesian network is associated with a probability function that takes, as input, a

particular set of values of par(Cj), and gives, as output, the probability of Cj being true. In other

words, given the Bayesian network, we know the conditional probability Pr
(
`Cj

v|par(Cj)
)

for any

event variable Cj . We assume that the Bayesian network is known from application context (e.g.,

we might have a map that says which outlet depends on which suppliers), or can be empirically

learned from historic data by the algorithms such as those introduced in [94]. Hence, our estimation

algorithm assumes that the Bayesian network is an input.

Finally, we formulate our reliable social-sensing problem as follows: Given a source-claim ma-

trix SC, a category label ` for each reported variable, and a Bayesian network G, encoding the

dependencies among variables, how to jointly estimate both the reliability of each source and the

true value of each variable in a computationally efficient way? Here an algorithm is defined as

efficient if its time complexity is sub-linear to the exponential (i.e., o(2|G|) for a Bayesian network

that is not a complete graph, where |G| is the total number of nodes in the Bayesian network.

3.2 Generalization of Previous Models

Before we propose our estimation algorithm, in this section, we show that our social-sensing model

is more general than those proposed in our previous work [126, 127, 131, 141]. In other words, the

social-sensing models proposed by the previous work are all special cases of ours. Therefore, thanks

to the general model, the estimation algorithm proposed in our work can be directly applied to any

of the problems defined in the previous work.

First, we show that the model proposed by Wang et al. [131] is a special case of our model.

In their model, both the event variables and the sources were assumed independent. Thus, the

structure of a Bayesian network for this model is just a DAG with arcs only connecting the event

variable and its corresponding claims from the sources, as shown in Figure 3.1(a).

In [126], the model was extended to consider physical constraints of the sources (i.e., a variable

44

Figure 3.1: Model connections with previous work.

might not be observed by some source), as well as correlated variables that fall into a bunch

of independent groups. The structure of a Bayesian network for this model has disjoint cliques

(complete sub-graphs) where each clique has a constant number of nodes, as shown in Figure 3.1(b).

In this figure, there are two cliques; one has two nodes and the other has three. Furthermore, since

the physical constraints of the sources are considered, there are some variable that can only be

observed by a subset of sources. Therefore, in the corresponding Bayesian network, if the variable

is not observed by some source, then there is no arc between them in the DAG (such as the

rightmost one that is observed only by the red source and the orange source).

Source dependencies were considered in [127], where a claim made by a source can either be

original or be re-tweeted from some other source. The variables are assumed independent. The

corresponding Bayesian network for this model is shown as in Figure 3.1(c). If a source i is

dependent on some other source j, which means that the claim made by j actually affects that

made by i as shown in Figure 3.1(c). In Figure 3.1(c), the black source is dependent on the red

source, therefore there is an arc from the red node to the black node for each event variable. The

arc from the SCj· to SCi· is enough to model this dependence.

Recently, Wang et al. [141] further extended the previous model by considering time-varying

ground truth, in which the value of each variable could vary over time. They proved that given the

evolving trajectory of each variable, by considering a sliding window of past states, the estimation

result is greatly improved compared with estimators that only consider the current state. Their

model can be represented by a dynamic Bayesian network with time-varying dependency structures.

Figure 3.1(d) gives an example of a Bayesian network representation of their model. Here, we omit

45

the vertices corresponding to claims made by sources SCi,j . In the figure, the variable nodes with

the same color are corresponding to a variable in different time-slots. The evolving trajectory of

each variable can be represented by some dependency structure among all its history states, as

shown in Figure 3.1(d).

The above examples illustrate how previous models can be special cases of our model. Therefore,

once we solved the problem with the general model, using the same algorithm, we are able to solve

all the previous problems as defined in [126,127,131,141]. We propose our estimation algorithm in

the following section.

3.3 Estimating the States of Interdependent Variables

In this section, we describe our ground truth estimation algorithm for social-sensing applications

with the interdependent variables at scale. Our algorithm follows the Expectation-Maximization

(EM) framework [30] that jointly estimates (1) the reliability of each source, and (2) the ground

truth value of each reported variable. Here we assume that sources independently make claims; for

dependent sources, we can apply the algorithm proposed in [127]. We call the proposed algorithm

EM-CAT (EM algorithm with CATegory-specific source reliability.

3.3.1 Defining Estimator Parameters and Likelihood Function

EM is a classical machine-learning algorithm to find the maximum-likelihood estimates of param-

eters in a statistical model, when the likelihood function contains latent variables [30]. To apply

the EM algorithm, we first need to define the likelihood function L(θ;x, Z), where θ is the param-

eter vector, x denotes the observed data, and Z denotes the latent variables. The EM algorithm

iteratively refines the parameters by the following formula until they converge:

θ(n+1) = arg max
θ
EZ|x,θ(n) [logL(θ;x, Z)] (3.5)

The above computation can be further partitioned into an E-step that computes the conditional

expectation of the latent variable vector Z (i.e., Q(θ) = EZ|x,θn [logL(θ;x, Z)]), and an M-step

that finds the parameters θ that maximize the expectation (i.e., θ(n+1) = arg maxθQ(θ)). In our

46

problem, we define the parameter vector θ as:

θ = {(`T vi , F vi)|∀i ∈ S, v ∈ Λ, ` ∈ L}

where Λ = {T, F} denotes the set of binary values and L is the set of event categories. The data

x is defined as the observations in the source-claim matrix SC, and the latent variable vector Z is

defined as the values of the event variables.

After defining θ, x and Z, the likelihood function is derived as follows:

L(θ;x, Z) = Pr (x, Z|θ) = Pr (Z|θ) Pr (x|Z; θ)

= Pr (Z1, · · · , ZN) · Pr (x1, · · · , xN |Z1, · · · , ZN ; θ) .
(3.6)

Here N = |C| is the number of event variables, and xj denotes all the claims made by the sources

about the j-th variable. In Equation (3.6), Pr (Z|θ) = Pr (Z) because the joint probability of the

event variables Pr (Z) is independent from the parameters θ.

Next, we are going to simplify the likelihood function by proving that for any event variables

j1 and j2, xj1 and xj2 are conditionally independent given the latent variables Z. We use X ⊥⊥ Y

to denote that X and Y are independent, and similarly X ⊥⊥ Y |Z to denote that X and Y are

conditionally independent given Z. Before proving xj1 ⊥⊥ xj2 |Z, we first introduce the definition of

d-separation.

Definition 1 (d-separation). Let G be a Bayesian network, and X1
 · · ·
 Xn be a trail in G.

Let Z be a subset of the observed variables. The trail X1
 · · ·
 Xn
1 is active given Z if

• Whenever we have a V-structure Xi−1 → Xi ← Xi+1 in the trail, then Xi or one of its

descendants are in Z, and

• no other node along the trail is in Z.

If for any trail between X1 and Xn is not active, then X1 and Xn are d-separated in G by Z [71].

Here a trail between X1 and Xn is an undirected path that is computed by simply ignoring

the directions of the directed edges in the Bayesian network G. Note that if X1 or Xn is in Z,

1We use X → Y to denote the directed edge (arc) that points from X to Y in G, and X
 Y to denote the arc
that connects X and Y whose direction, however, is not of interest.

47

the trail is not active. Next, we introduce a classical lemma showing that the d-separation implies

conditional independence.

Lemma 1. If Xi and Xj are d-separated in the Bayesian network G given Z, then Xi ⊥⊥ Xj |Z [71]

.

Now we are ready to prove that xj1 and xj2 are conditionally independent given the latent

variables Z for any j1, j2 ∈ C in Theorem 1.

Theorem 1. For any pair of event variables j1 and j2, xj1 and xj2 are conditionally independent

given the latent variables Z, i.e., ∀j1, j2 ∈ C, xj1 ⊥⊥ xj2 |Z.

Proof. To prove the theorem, we first need to define the causal relationship between a claim SCi,j

and the value Cj of event j. Obviously, the value Cj of the event is independent of how a source

claims it, but the claim SCi,j made by a source does rely on the value Cj of event j. Therefore, it

is clear this causal relationship between SCi,j and Cj should be modeled by an arc from Zj to xi,j

in the Bayesian network, as illustrated in Figure 3.2. Here we do not distinguish the variable Zj

and its corresponding vertex in G, and the same for xi,j and its corresponding vertex.

Figure 3.2: An illustration of the Bayesian network.

Therefore, for any pair of xi1,j1 and xi2,j2 , and for whatever event dependency graph G of the

event variables, we can find two vertices Zj1 and Zj2 in G such that all the trails have the same

structure: xi1,j1 ← Zj1
 · · ·
 Zj2 → xi2,j2 , as shown in Figure 3.2. Since Zj1 and Zj2 are

in Z = {Z1, · · · , ZN}, and by Definition 1, we know that xi1,j1 and xi2,j2 are d-separated by Z.

Please note that this d-separation is valid for any pair of sources i1 and i2, thus xi ⊥⊥ xj |Z by

Lemma 1.

By Theorem 1 and the independent source assumption, the likelihood function in (3.6) can be

48

simplified as:

L(θ;x, Z) = Pr (Z1, · · · , ZN)
∏
j∈C
∏
i∈S Pr (xi,j |Zj ; θ) . (3.7)

3.3.2 The EM Algorithm

Given the likelihood function, following (3.5), we can derive the EM algorithm. We omit the

detailed mathematical derivations here since it is a standard procedure, and directly show the final

results of how to update the parameters θ = {`T vi , `F vi |∀i ∈ S, v ∈ Λ, ` ∈ L} in (3.8).

`T vi
(n+1)

=

∑
j∈`Cv

i
Pr(Zj=v|x;θ(n))∑

j∈`C Pr(Zj=v|x;θ(n))
,

`F vi
(n+1)

=

∑
j∈`Cv̄

i
Pr(Zj=v|x;θ(n))∑

j∈`C Pr(Zj=v|x;θ(n))
.

(3.8)

In (3.8), θ(n) denotes the parameters in the n-th iteration of the EM algorithm, `C denotes the set

of event variables with label `, and `Cvi is a subset of `C with each element that the source i claims

its value being v (i.e. `Cvi = {j|SCi,j = v, L(j) = `}, where L(j) denotes the label of event variable

j).

In Equation (3.8), the key step for refining the parameters is to compute Pr
(
Zj = v|x; θ(n)

)
for each j ∈ C and v ∈ Λ. Once we have computed this value, the rest of the computation

for updating the parameters becomes trivial. Since we are using a Bayesian network to encode

the dependences between variables, we know the conditional probability for each variable given a

particular set of values of its parent variables. These are given as an input of our algorithm. Hence,

we can compute Pr
(
Zj = v|x; θ(n)

)
, the marginal probability of variable Zj given the evidence x.

Similarly, Pr
(
Zj = v|x; θ(n)

)
can be computed. The pseudocode of our estimation algorithm is

given in Algorithm 3.

3.4 Evaluation

In this section, we study the performance of our EM-CAT algorithm through extensive simulations.

While empirical data is always better, such data often constitutes isolated points in a large space

of possible conditions. The simulation, in contrast, can extensively test the performance of our

algorithm under very different conditions that are impractical to cover exhaustively in an empirical

49

Algorithm 3 EM-CAT: Expectation-Maximization Algorithm with Category-specific Source Re-
liability
Input: The source-claim matrix SC, the Bayesian network G, and event category ` ∈ L for each event
j ∈ C.
Output: The estimated variable values, and the reliability vector of each source.

1: Initialize θ(0) with random values between 0 and 0.5.
2: n← 0
3: repeat
4: n← n+ 1
5: for Each j ∈ C, each v ∈ Λ do
6: Compute Pr

(
Zj = v|x; θ(n)

)
from the Bayesian network G.

7: end for
8: for Each i ∈ S, each v ∈ Λ and each label ` ∈ L do

9: Compute `T v
i
(n)

and `F v
i
(n)

from (3.8)
10: end for
11: until θ(n) and θ(n−1) converge
12: for Each j ∈ C and v ∈ Λ do
13: Z(j, v)← Pr

(
Zj |x; θ(n)

)
.

14: if Z(j, T) > Z(j, F) then
15: Assign variable j with value T
16: else
17: Assign variable j with value F
18: end if
19: end for
20: for Each i ∈ S, each category ` ∈ L do
21: Compute its reliability `ti from (3.4)
22: end for

manner. Evaluation results show that the new algorithm offers better estimation accuracy compared

to other state-of-the-art solutions.

Methodology

We simulated 100 interdependent binary variables. The underlying dependency graph is a random

DAG that changes in each simulation run. The Bayesian network is created with the dependency

structure defined by the DAG and parameters randomly generated using the toolbox. The expected

ground truth for all variables is set to 0.5 (i.e., with probability 0.5, the variable will be True). The

actual (marginal) probability distribution for each variable is defined by the Bayesian network.

The ground truth values of variables are generated based on the Bayesian network in a

topologically-sorted order. That is, we wait to generate the value of variable v until the values

of all of its parents, par(v), have been generated. Therefore, the ground truth value distribution of

our variables follows the Bayesian network. Each event variable is also assigned a label ` randomly

50

from a label set L to simulate the event category.

The simulator randomly assigns a reliability vector for each source. We randomly select a set

of the sources to be “experts” at some category. Hence, for each, we choose a category, `, and give

the source a high reliability value in reporting variables of that category. The other values in the

reliability vector are assigned lower values, making the average reliability of each source roughly

the same. We use ti to denote the average reliability of source Si. In the simulation, ti is in the

range (0.5, 1). We also simulate the “talkativeness” of the sources, which denotes the probability

that a source would make a claim, denoted by si.

The source-claim matrix SC is then generated according to the reliability vector of each source,

ti, and the talkativeness of each source, si. For each source Si and each event variable Cj , we

first decide whether the source will make a claim about the variable by flipping a biased coin with

probability si that the source will claim something. If it does not claim, then SCi,j = Unknown,

otherwise we generate the value of SCi,j based on T vi and F vi which can be computed from the

reliability vector of the source.

The source-claim matrix SC is the evidence x in the Bayesian network. To include the claim

nodes in the Bayesian network, we extend the DAG such that for each vertex Vj in the DAG

G we create one vertex V ′j and add an arc (Vj , V
′
j) to G. We tried to add one vertex Vi,j for

each xi,j and directly set the parameters of Vi,j to the corresponding T vi and F vi in the parameter

vector θ(n). This implementation is straightforward. However, it adds too many extra (that is

|S| × |C|) vertices to the Bayesian network, which greatly slows down the inference computation.

Therefore, in our implementation, we just add one vertex V ′j for each variable Vj in G, and set the

evidence (the observed value) of V ′j to False (which means Pr
(
V ′j = False|Vj

)
= p(xj |Zj ; θ(n)) =∏

i∈S p(xi,j |Zj ; θ(n))). In this implementation, we only double the size of the DAG, which makes

the inference computation of the Bayesian network much more efficient.

The default values of the simulation parameters are as follows: the number of sources is 40, the

expected source (average) reliability ti is 0.6, the talkativeness of the source si is 0.6. The number

of event variables is set to 100, and we randomly generate the Bayesian network parameters such

that, in expectation, the probability that each variable is True, is set to 0.5. The number of edges

in the Bayesian network is 100. There are 2 categories by default.

51

(a) Variable State Estimation

(b) Source Reliability Estimation

Figure 3.3: Performance as the
number of sources varies.

(a) Variable State Estimation

(b) Source Reliability Estimation

Figure 3.4: Performance as the
source reliability varies.

(a) Variable State Estimation

(b) Source Reliability Estimation

Figure 3.5: Performance as the
source talkativeness varies.

We compare our algorithm to the algorithm proposed in [131] and two intermediate extensions

towards the current solution. We also include a simple baseline. We use EM-CAT to denote our

algorithm, and EM-REG to denote the algorithm proposed in [131]. Note that, EM-REG assumes

that variables are independent, and all the variables share the same category (i.e., it assumes that

there is only one category). The first extension of EM-REG is to add the Bayesian dependency

structure to the event variables. We call this extension EM-T (EM algorithm with sTructed

variables). The second extension of EM-REG is to consider event categories, that is called EM-C.

The simple baseline algorithm is just voting, and is denoted by VOTING. VOTING estimates

each variable to be equal to the majority vote. Each simulation runs 100 times and each result is

averaged over the 100 executions.

Evaluation Results

Figure 3.3 shows the performance of our EM-CAT algorithm as the number of sources varies from

20 to 80. In Figure 3.3(a), we observe that our EM-CAT algorithm has the lowest estimation error,

52

and EM-T and EM-C work better than the regular EM algorithm which is better than simple

baseline voting. The reason is that when the underlying event variables follow some dependency

structure, exploiting this piece of information will result a better estimator. EM-CAT also considers

the category-specific reliability of each source. For each event category, EM-CAT will always select

the sources with higher reliability for the category. Therefore, it achieves higher accuracy. Please

note that as the number of sources increases, the accuracy of all the estimators increases. More

data sources will result in more data. Therefore, the accuracy of the learning algorithm will be

improved.

Figure 3.3(b) shows the error in estimating source reliability. Both the EM-CAT and EM-C are

better in estimating source reliability than the other two algorithms. The reason is that the other

algorithms ignore event categories. Thus, the information regarding differences in source reliability

across different categories of observations is not exploited.

Figure 3.4 shows the performance of the estimators as a function of source reliability. From

the figure, we observe that with more reliable sources, the accuracy of the estimators is greatly

improved. Even the voting can result in very reliable estimates when source reliability is 0.9 or

above (i.e., 90% of their reports are true). Among all the estimators, our new EM-CAT is the best

at both estimating the ground truth values of reported variables and the reliability of sources.

Figure 3.5 explores the effect of “talkativeness,” si, of the sources on estimation accuracy. As

mentioned earlier, the talkativeness of a source denotes the probability that the source will make

a claim regarding some variable. In the experiment, talkativeness is varied from 0.4 to 0.8. With

higher talkativeness, we have more data. This is the reason why accuracy of the estimators improves

as si increases. Again, our EM-CAT algorithm is the best among all the estimators.

In Figure 3.6, we study the performance of the estimators when the number of edges in the

dependency structure (a DAG) varies. A larger number of edges in the DAG means more depen-

dencies among variables. Figure 3.6 shows that performance of the state estimators does not change

much with the number of dependencies. The reason could be that the parameters of the Bayesian

network are generated uniformly at random in (0, 1). Therefore, in expectation, the bias of the

ground truth is around 0.5. However, if the bias of the ground truth is skewed, we will observe a

difference among different dependency structures, since the value of a variable will be affected more

53

(a) Variable State Estimation

(b) Source Reliability Estimation

Figure 3.6: Performance as the
number of edges in the Bayesian
network varies.

(a) Variable State Estimation

(b) Source Reliability Estimation

Figure 3.7: Performance as
the number of event categories
varies.

(a) Variable State Estimation

(b) Source Reliability Estimation

Figure 3.8: Performance as the
number event variables varies.

by its depended variables. Our algorithm is the best among all the algorithms since we exploit the

dependency structure of the variables. Although the accuracy of estimators does not vary much as

the structure changes, exploiting this information leads to a more accurate state estimator.

We study the performance of the estimators as the number of category labels varies from 2

to 5 in Figure 3.7. From Figure 3.7(a), we observe that as the number of labels increases, the

performance of EM-CAT becomes worse. This is because we end up with fewer and fewer data

in each category. With fewer data, the parameters of the estimator cannot be learned accurately.

Therefore the performance of estimation degrades. This figure suggests that when the data size is

small, it is better to ignore category, but with a large data size, it would be better to exploit it.

Figure 3.8, we study the performance of the estimators as the number of variables varies from

80 to 110. From the figure, we observe that the accuracy of the estimators improves as the number

of variables increases. The reason is that we have more data to learn the estimation parameters

more accurately. Actually, the voting algorithm does not vary much, since in voting each source has

the same weight as the others. Therefore, even when the number of variables increases, the weight

54

of the sources does not change, leaving performance the same. Again, our algorithm EM-CAT is

the best among all the algorithms in both the estimation of ground truth values of variables and

estimation of source reliability.

Next, we study the scalability of our EM-CAT algorithm. We mainly compare our algorithm

with the algorithm proposed in [126]. Their algorithm considers the full joint distribution of all

the correlated variables.

We compare three inference algorithms: 1. the junction tree algorithm (JTree), 2. the

variable elimination algorithm (VarElim), and 3. the method used in [126], i.e., inference

with the full joint distribution (Total). Please note that all the three algorithms compute

the exact inference probility of the Bayesian network, there are also algorithms that compute the

approximate inference probability [71] which compromises the inference accuracy but has a better

computational complexity.

In Figure 3.9, we fixed the expected node degrees to be 2, and varied the number of nodes in the

Bayesian network from 10 to 25. Note that, the y-axis is in log-scale. From Figure 3.9, we clearly

observe that the computation time of the Total algorithm increases exponentially as the number

of nodes increase linearly. The computation time of both the JTree algorithm and the VarElim

algorithm grows in a much less rapid way. The time complexity of both the algorithms actually

depends on the size of the largest clique (the complete sub-graph in the Bayesian network); since

the expected node degree is 2, it is possible that the resulting graph has a clique of size n, where

n is less than the total number of nodes N in the Bayesian network. As the total number of nodes

N increases, the gap between n and N will also increase as shown in the Figure 3.9. The JTree

algorithm is more efficient than the VarElim algorithm, since it maintains a data structure which

can simultaneously update the potential of local cliques but the the VarElim algorithm eliminates

the variables sequentially. Furthermore, the time complexity of the VarElim algorithm also depends

on the order of the variables to eliminate. It is NP-hard to find the optimal order based on which

the VarElim algorithm eliminates the variables. When the total number of nodes N is 25, we can

observe that the Total algorithm needs 20 seconds in average, while VarElim needs 2 seconds and

JTree needs only 0.2 seconds in average. We can use JTree algorithm in our EM-VTC algorithm

for the Bayesian inference computation, compared with the previous solution that does not exploit

55

the dependence structure of the variables [126] (i.e. using the Total algorithm), it is not hard to

observe how scalable our algorithm is as the number of total variables varies.

Figure 3.9: Computation time comparison with fixed node degree.

Figure 3.10: Computation time comparison with fixed number of nodes.

Figure 3.10 shows the CPU time of the three inference algorithm when the number of nodes is

fixed at 24 but the expected degree of each node varies from 1 to 3. From the figure, we can observe

that the CPU time of the VarElim algorithm increases as the number of node degree increases.

This is because that with a larger node degree, the chance that the VarElim algorithm selects a

bad variable eliminating order become larger. Thus, the time complexity of VarElim increases.

However, the time complexity of the JTree algorithm only depends on the size of each local clique,

when the node degree is small such as less than 3 the complexity of JTree actually changes very little

which does not show in Figure 3.10. Figure 3.10 shows the scalability of our algorithm compared

with previous solution [126] as the expected node degree varies in the Bayesian network.

56

3.5 Related Work

Inferring the structure of Bayesian Network is, in general, an NP-complete problem [25]. In order to

learn a Bayesian Network in a tractable way, various algorithms are proposed. There are mainly two

categories of approaches, score-based and constraint-based [116]. The former one tries to search for

the optimum structure based on goodness-of-fit. The latter one utilizes conditional independence

to build the network. Depending on the different data types and relationships, various hypothesis

tests are available. For continuous data, if the relationship among variables is believed to be linear,

tests based on Pearson’s correlation are widely used. Asymptotic χ2 tests can also be used to

test independence between two continuous variables [66]. In cases of categorical variables, one of

the most classical tests is Pearson’s χ2 test [10]. It works on the contingency table and tests if

paired observations from two categorical variables are independent. In addition, likelihood-ratio

statistic (or G2) can also be used on either categorical or continuous variables; Jonckheere’s trend

test provides an independence test on ordinal variables [68]. Although in some cases separate test

statistics can be used by different tests, they usually provide the same conclusions. If two variables

are conditionally dependent, an edge between these two variables should be drawn in the Bayesian

Network.

The problem studied in this chapter bears some resemblance to the fact-finding problem that

has been studied extensively in recent years. The goal of fact-finding, generally speaking, is to

ascertain correctness of data from sources of unknown reliability . As one of the earliest efforts

in this domain, Hubs and Authorities [70] presented a basic fact-finder, where the belief in a

claim and the truthfulness of a source are computed in a simple iterative fashion. Later on, Yin

et al. introduced TruthFinder as an unsupervised fact-finder for trust analysis on a providers-

facts network [152]. Pasternack et al. extended the fact-finder framework by incorporating prior

knowledge into the analysis and proposed several extended algorithms: Average.Log, Investment,

and Pooled Investment [97]. Su et al. proposed semi-supervised learning frameworks to improve

the quality of aggregated decisions in distributed sensing systems [111, 112]. Towards a joint

estimation on source reliability and claim correctness, Wang et al. [127, 131] and Li et al. [79, 114]

proposed expectation maximization and coordinate descent methods to deal with deterministic and

probabilistic claims, respectively. Though yielding good performance in many cases, none of these

57

approaches considers situations where the variables in question have wide-spread dependencies. To

address this problem, Wang et al. [126, 141] further extended their framework to handle limited

dependencies. However, their algorithm has exponential computational complexity in the number of

correlated variables, and thus can only be applied in scenarios where the number of dependencies is

small. In contrast to their work, we consider a model for more general scenarios where a considerable

number of dependencies exists among the variables reported by the unreliable sources.

3.6 Conclusion

In this chapter, we addressed the reliable crowd-sensing problem with interdependent variables.

Crowd-sensing is a novel sensing paradigm in which human sources are treated as sensors. The

challenge is that the reliability of sources is unknown in advance. Recently, several efforts tried

to address this reliability challenge by formulating the problem given different source and event

models. However, they did not address the problem when the reported variables are interdependent

at large scale. In this chapter, dependencies between reported variables were formulated as a

Bayesian network. We demonstrated that our formulation is more general than previous work;

previous models being special cases of ours. Evaluation results showed that our EM-CAT algorithm

outperforms the state-of-the-art solutions.

58

Part II

Event-level Data Summarization

59

Chapter 4

Event Detection and Demultiplexing
in Social Spaces

In this chapter, we propose a event detection framework named StoryLine that summarizes social

sensing data in event-level. StoryLine is a novel social sensing (back-end) service that exploits

real-time content posted on social media to detect, demultiplex, and track instances of physical

events of interest to the user. The user may specify the category of events of interest, such as car

accidents, road closures, concerts, or urban protests. The current version of the tool uses Twitter.

It is intended to complement services that collect data from physical sensors. We leverage the

intuition that Twitter posts (and, by implication, possibly similar microblogging media) can be

exploited as a novel sensing modality , not unlike acoustic sensing, vibration sensing, or magnetic

sensing. The analogy is straightforward as illustrated in Figure 4.1. Much the way physical objects

induce distinguishable signals in their physical environment that can be detected by observing

the physical medium, socially-relevant events (such as car accidents, attacks, natural disasters,

parades, or protests) induce distinguishable signals in their social environment that can be detected

by observing the social medium. The chapter develops an IoT service that exploits this social

modality of sensing, motivated by the proliferation of users who post in real-time to describe their

surrounding world. The service offers a client-side interface and a programmers interface to browse

and retrieve detected events, receive alerts when certain events occur, and compute historical

statistics.

StoryLine makes a fundamental contribution to event detection literature on Twitter; namely,

to the authors’ knowledge, it is the first chapter that distinguishes between concurrent instances of

a user-specified category of events (which we call event demultiplexing) in a manner that (i) does

not need location information and (ii) is entirely unsupervised (i.e., does not need prior training or

remote supervision techniques). None of the prior work offers event demultiplexing that has both

of the above properties.

60

Figure 4.1: The Social sensing modality and its analogy with physical sensing

Demultiplexing is essential to our IoT service, where a city planner, for example, might want

to know statistics of events occurrence over time, which implies knowing how many events (say,

car accidents) occured. Not relying on location metadata means we can identify more events, since

more than 98% of tweets are not geotagged [115, 142]. Not using language features and related

training means the service can be deployed internationally at little or no additional cost, regardless

of local language. It will demultiplex events described in most languages1 (although will not be

able to merge descriptions of the same event across different languages).

The idea that social media posts collectively constitute a form of sensing is not new. It dates

back to the beginning of the decade. In their pioneering work, Sakaki et al. [102] proposed an

algorithm to detect and track natural disasters, such as earthquakes and hurricanes. The work

exploited the spatio-temporal footprint of media posts to detect and localize events. Since then, a

large volume of literature on event detection was published. Surveys of these techniques recently

appeared both for Twitter-based detection specifically [16], and for detection from social media in

general [46].

Work on Twitter-based event detection generally falls into three categories. First, some algo-

rithms do detection but not demultiplexing [9, 49, 77, 96]. Demultiplexing is a somewhat different

problem from mere detection in that one needs to distinguish one concurrent event instance (e.g.,

a car accident) from another. An algorithm that does not do demultiplexing can detect, for ex-

ample that a major traffic accident occurred, and can separate traffic accidents from other types

of events, such as floods, but cannot easily differentiate between two concurrent traffic accidents.

1Since we still rely on white space as word/token separators, it will not work well for languages with no spaces
like Chinese.

61

Many chapter in this category do a form of burst detection and text-similarity-based clustering on

tweets. Hence, for instance, tweets containing words related to traffic accidents end up in the same

cluster (but can include descriptions of multiple accidents).

A second category of work does demultiplexing (separation of concurrent events of the same

type) by clustering tweets based on time and location [19, 80, 123]. They often use some notion

of coherence (increased frequency of keywords that are semantically related) at a given location

as an indicator that an event occured at that location [158]. Unfortunately, on Twitter, less than

2% of tweets are geotagged [115, 142], so this approach can easily miss small events. While user

account registration information commonly includes location (about 25% of accounts have it), it is

course-grained (city-scale only), and hence cannot help distinguish different local events.

Finally, previous researches indeed do demultiplexing without location metadata [115, 142].

However, they use natural-language processing or machine learning, and thus are language-specific

and/or need prior training. For example, some use shallow analysis of text to identify location

keywords (e.g., references to specific streets, cities, or landmarks) [45, 55, 115, 142], and cluster

tweets based on locations referred to in the text. In contrast, our approach is unsupervised and

hence does not require classifier training [65, 102, 149, 159], bootstrapping [13], or significant pre-

processing [21,121].

This chapter thus opens up a new category of event detection methods that can demultiplex

events, without use of location information, in an entirely unsupervised NLP-free fashion. We

demonstrate the effectiveness and efficiency of our algorithm in the evaluation section by comparing

with state-of-the-art baselines using four real Twitter feeds.

The rest of this chapter is organized as follows. We define our problem more formally in

Section 4.1. We propose our solution to unsupervised event detection, demultiplexing, and tracking

in Section 4.2. The implementation of the resulting service is described in Section 4.3 and its

evaluation is presented in Section 4.4. We discuss the related work in Section 4.5 and conclude the

chapter in Section 4.6.

62

4.1 Problem Statement

The purpose of StoryLine is to do for Twitter posts what back-end aggregation/fusion services do

for crowd-sourced sensor data with the purpose of detecting and tracking physical events in urban

spaces. We envision services like StoryLine complementing more traditional sensor data fusion

services in IoT applications. Towards that end, StoryLine represents the monitored environment

as a set of event instances, each given by an instance identifier, a general class label, and an

observation summary that accumulates chronologically sorted posts (namely, Twitter messages,

called tweets) regarding the event instance. While StoryLine stores the demultiplexed stream of

tweets that describes each event instance, this stream – the story – is not interpreted by the service.

New events may be generated over time and old events are eventually removed. Each event has

a finite lifespan during which the event is said to be ongoing . For the purposes of this chapter, an

event instance is broadly defined as an incident, independently observable by multiple humans within

limited time and space. The term “independently observable” suggests that retweets be ignored,

as they do not constitute independent observations. The term “multiple humans” suggests that a

threshold could be used on the rate of reported observations, below which an event is of no interest

for the purposes of this chapter. Finally, “limited time and space” suggests that an event has a

start time, an end time, and a location trajectory. Event locations described by a single point

in space constitute a special case of a trajectory. Hence, vehicular traffic accidents, shootings,

demonstrations, rallies, funeral processions, insurgent attacks, bombings, and sports events, are

different examples that satisfy the definition of events used in this chapter.

In this chapter, we restrict our attention to the problem of demultiplexing of different instances

of the same (user-specified) event category, together with related instance detection and instance

tracking algorithms. To do so, we look for co-occurrence surprises; that is, spikes in keywords

that do not commonly co-occur. An information gain metric is derived to detect such spikes in

an unsupervised fashion. For example, in description of car accidents, a particular car accident

involving a drunk driver who ran over a dog on a bridge, might be described by tweets containing

such keywords as “drunk” and “dog”. These words do not commonly co-occur in the same microblog

post. Hence, if such an uncommon combination of words spikes today in the context of tweets about

car accidents, it is an indication that a new event instance occurred. We show in the chapter that

63

co-occurrence surprise leads to better demultiplexing of event instances than techniques based on

finding spikes in semantically related or commonly co-occurring words (e.g., “car accident”).

In our problem, StoryLine discretizes time into slots, and abstracts the current state of the

monitored environment at any discrete time instant, k, by a dynamically evolving set of ongoing

event instances E(k), where an event instance Ei has a detection (or start) time, Si, and a finish

time, Fi. We say that Ei ∈ E(k) for Si ≤ k ≤ Fi. Each event instance is further associated with a

chronologically sorted list of all timestamped tweets that describe it up to the current time, called

its cumulative observation summary, Summaryi [k].

The social medium is said to emit a signal. The signal emitted in slot k (i.e., the slot ending at

time instant, k) is the body of text emitted on the social medium in slot k. In the case of Twitter,

this would be the set of tweets time-stamped in slot k. Our service uses the Twitter programming

API to collect tweets in real time as they are emitted. The signal emitted on the social medium in

slot k is denoted Signal(k). Given the stream, Signal(k), the problem addressed in this chapter

is to determine for each time slot, k, (i) the set of ongoing event instances, E(k), and (ii) the

observation summary, Summaryi[k], for each event instance, Ei ∈ E(k).

4.2 The Design of StoryLine

In this section, we present informal intuitions, followed by descriptions of our unsupervised detec-

tion, demultiplexing and tracking algorithms. To use StoryLine, the user issues a StoryLine query

such as “traffic” and “accident”.2 This query is like a subscription to a newsfeed that filters content

specific to the query terms. A process is started that repeatedly uses Twitter API to obtain the

latest tweets (subject to Twitter rate limits) that contain the specified keywords (i.e., match the

filter). The resulting real-time stream of arriving tweets is then demultiplexed to separate descrip-

tions of different events (e.g., different accidents), which is the focus of the discussion below. The

process continues indefinitely until terminated by the user. At any given time, multiple such queries

may be ongoing, depending on the categories of events that the user is interested in following. In

principle, other work in current literature can be used to help the user select appropriate keywords

2The query terms are presumably expressed in the user’s language and hence are language-specific. The point we
made earlier, however, is that none of our processing mechanisms use any language assumptions. Hence, they work
regardless of the language in which the user expresses the query.

64

for each query to better filter the desired event category. A substantial amount of work, for exam-

ple, exists on topic modeling [157] that can be leveraged for help with topic-specific queries. This

help is outside the scope of our work. In this chapter, we start at the point where a query has been

formulated and a stream of tweets matching the query filter has started arriving, and needs to be

demultiplexed.

4.2.1 Design Intuitions

Perhaps the most important contribution of our demultiplexing approach is its simplicity . It is

indeed based on a very simple intuition. The intuition underlying the approach lies in a sparsity

argument ; specifically, we find the simplest sparse feature space in which (by virtue of sparsity)

event instances are sufficiently separated. To illustrate what this means, consider the lexicon of

commonly used words in a language, such as English. Such a domain may contain around 10, 000

words. We may want to distinguish 1000s of concurrent event instances, each described by multiple

characteristic words. In this case, the set of event instances populate the space of words rather

densely. (That is to say, there may be partial overlap between sets of words commonly used in

describing different event instances.) The same is not true, however, of word pairs (i.e., the “second

power” or Cartesian product of the lexical domain). In a language of 10, 000 words, there are 100

million possible word pairs. This is several orders of magnitude larger than the number of event

instances we might need to demultiplex within any given time slot. Hence, within a given time slot,

the set of word pairs that characterize ongoing event instances populate very sparsely the feature

space of all possible word pairs. The probability of overlap (i.e., different event instances being

characterized by the same word pair) is negligible.3 Two caveats must be understood regarding

our sparsity observation.

First, the validity of the sparsity observation in the feature space of keyword pairs hinges on the

lack of strong correlations between keywords used in the chosen pairs. The probability of seeing

two words, W1 and W2, on the medium is P (W1,W2) = P (W1)P (W2|W1). If these words often

come together as a single term, such as “Dodgers Stadium” or “Angela Merkel”, the probability

3In a prior literature [43], an empirical study was conducted analyzing tweets about car accidents in three major
California cities. The study indeed showed that 2-keyword signatures tend to uniquely distinguish different car
accidents. The above general argument presents a signal-sparsity justification of this phenomenon.

65

P (W2|W1) may be close to 1 and thus, P (W1,W2) ≈ P (W1). In other words, the term should be

considered as a single keyword. Hence, we remove from consideration keywords pairs, where the

individual keywords co-occur with a much higher probability than the product of the probabilities

of their occurrence individually. With that simple filtering, we ensure lack of strong correlations

between keywords in a pair.

Second, sparsity ensures that if two event instances are different, their discriminative keyword

pairs are different with high probability. The inverse is not always true. Given two different

discriminative keyword pairs, they may or may not be of two different event instances. This will be

the case, for example, if the event instance has more than two high frequency keywords, allowing

for multiple alternative subsets of two keywords to uniquely characterize the event. Such subsets

would have to be consolidated.

As tweets arrive, new spikes in keyword pairs are detected and “bins” are associated with spiking

pairs, called discriminative pairs. Thereafter, subsequent tweets are inspected for discriminative

keyword pairs they contain and placed into the corresponding bins. The words in the pair may

apprear in any order within the tweet and need not be contiguous. A tweet may be placed in mul-

tiple bins if it contains multiple discriminative keyword pairs. Note that, identifying discriminative

keyword pairs is not a quadratic problem in the number of words or tweets in a time slot. This

is because the only candidate pairs are those that occur together somewhere in a tweet. Hence,

the problem is quadratic in the number of words in a tweet, but linear in the number of tweets

in a timeslot. Since tweets are of short bounded size, the former component can be bounded by

a manageable constant. Accorrdingly, computationally efficient solutions (linear in the number of

tweets) are possible. Importantly, no prior training is needed.

Two questions remain. First, how are discriminative keyword pairs selected? Second, how to

consolidate bins pertaining to the same event instance? (The latter is needed because an event

instance may give rise to multiple discriminative keyword pairs.) These questions are addressed

below.

66

4.2.2 Discriminative Keyword Pair Selection

Information gain is a common measure for detecting discriminative features that we leverage here.

When a new event occurs, keyword pairs characteristic to that event will be present disproportion-

ately in the current window compared to the previous one. We thus compute information gain of

a keyword pair in a window as the amount of information gained in distinguishing this window

from previous windows if we were told whether or not the given keyword pair occurred in that

window. Clearly, pairs that occur more disproportionately in the current window offer more infor-

mation gain. These are pairs of words that do not normally co-occur . Hence, information gain is

a measure of co-occurrence surprise.

Let Xj denote the event whether a tweet contains the keyword pair sj , where Xj = 1 means it

contains sj and Xj = 0 denotes it does not. For simplicity, we omit the script j when it is clear

from the context. Let Yk denote the event whether a tweet is posted in the current time slot k,

where Yk = 1 means it is posted in the current time slot, and Yk = 0 means it is posted in the

previous time slot k− 1. Again, we omit the script k for simplicity. The tuple (X,Y) thus denotes

whether a tweet contains the keyword pair sj , and whether it is posted in the current time slot

k. It can have four distinct values (0, 0), (0, 1), (1, 0), (1, 1) that have the straighforward physical

meaning respectively.

H(W) dentoes the entropy of the variable W and is defined as:

H(W) = −
∑
w∈W

p(w) log p(w),

where W is the value set of variable W .

More specifically, let there be wk distinct tweets emitted in window k, and wk−1 distinct tweets

emitted in window k − 1. Hence, the probability of a tweet (taken at random from the tweets in

either window) to be present in the current window, k, is p(k) = wk/(wk + wk−1). Similarly, the

probability of a tweet (taken at random from the tweets in either window) to be present in the

previous window, k − 1, is p(k − 1) = wk−1/(wk + wk−1).

Let some keyword pair, sj , be present in wjk distinct tweets in window k, and wjk−1 distinct

tweets in window k − 1. Hence, the probability of a tweet that contains the pair sj (taken at

67

random from those containing that pair in either window) to be from the current window, k, is

pj(k) = wjk/(w
j
k + wjk−1). Similarly, the probability of a tweet that contains si (taken at random

from those containing that pair in either window) to be from the previous window, k − 1, is

pj(k − 1) = wjk−1/(w
j
k + wjk−1).

Let the entropy of the variable referring to window identity, Y , be denoted H(Y), where Y is

either k or k − 1. By definition, H(Y) is given by:

H(Y) = −p(k)log2p(k)− p(k − 1)log2p(k − 1)

= − wk
(wk + wk−1)

log2
wk

(wk + wk−1)

− wk−1

(wk + wk−1)
log2

wk−1

(wk + wk−1)
(4.1)

Similarly, the conditional entropy of Y , given that we know whether pair sj occurred, is denoted

H(Y |sj). By definition, H(Y |sj) is given by:

H(Y |si) = −pi(k)log2pi(k)− pi(k − 1)log2pi(k − 1)

= −
wik

(wik + wik−1)
log2

wik
(wik + wik−1)

−
wik−1

(wik + wik−1)
log2

wik−1

(wik + wik−1)
(4.2)

Finally, the information gain, IGj , associated with pair sj , is given by:

IGj = H(Y)−H(Y |sj) (4.3)

Equation (4.3) can be used to compute information gain for each keyword pair, sj , in each time slot

k. In computing information gain we do not count retweets, since they do not offer additional first-

hand information on events. This helps remove rumors, opinion tweets and slogans that propagate

primarily by retweeting, as opposed to descriptions of independently observable events. Only the

keyword pairs with information gain greater than a threshold would be selected as discriminative

keyword pairs.

68

The above discussion focused on detection of discriminative keyword pairs; those with high

information gain. Remember that high information gain indicates that the words in the pair do

not normally co-occur. We show that this insight allows us to find new event instances.

Besides detecting new discriminative pairs in the current window, the system also continues

demultiplexing based on discriminative pairs found in previous windows. Those correspond to

events detected earlier. Therefore, in each time slot k, we first inherit all discriminative keyword

pairs used in the previous slot whose clusters were still growing, (i.e., the cumulative number of

tweet containing that pair by time slot k− 1 is greater than that by slot k− 2). We then augment

that inherited set with new keyword pairs found discriminative in the current window.

4.2.3 The Consolidation Algorithm

Events may contain more than one discriminative keyword pair. Therefore, it is important to be

able to consolidate different bins when their tweets are about the same event. Consider the set of

discriminative keyword pairs used in slot k. Each such pair, sj , is associated with a bin of tweets, Cj ,

in which the pair occurs. Our approach for consolidating bins referring to the same physical event

lies in detecting similarity between their respective data clusters. In our drunk driver example,

presented earlier, a cluster of tweets about an accident involving a drunk driver killing a dog

on a bridge might be distinguished by discriminative keyword pairs (“drunk”, “dog”), (“drunk”,

“bridge”) and (“bridge”, “dog”). Each pair might end-up associated with a bin that contains

largely the same tweets. A distance metric can thus be defined between content of different bins

based on the statistical distribution of words in the bins. The distance between two bins will decide

if they are about the same event. Four common distance metrics between statistical distributions

of words are compared. Namely, the Jaccard Distance, the Term Frequency Difference Ratio, the

Cosine Similarity Distance, and the KL Divergence. For the detailed definitions of the distance

functions, please refer to the appendix.

We observed that Jaccard distance performs consistently the best among the four, and is also

the simplest metric since it is the only one that does not consider word frequency (this empirical

comparison is shown in the evaluation section). Interestingly, the metric that depends most heavily

on the distribution of words, the KL divergence metric, performed the worst. The reason, we

69

believe, is that the tweet clusters (the individual bins) are small enough that it is inaccurate to

estimate the true probability of each keyword solely based on its frequency of occurrence in a bin.

Hence, the more we depend on having to know a true probability distribution, the less accurate is

the resulting consolidation.

Another benefit of applying the Jaccard distance is that the resulting consolidation threshold

was found to be largely insensitive to the different types of events, due to its simplicity and dis-

creteness. Other lexical distance functions do not have this property. Hence, in our system, we use

the Jaccard distance for bin consolidation and pre-configure the threshold as a static parameter .

New installations of the system need no further “training”. The result of consolidation in slot k is

the set of event instances, E(k), where each event Ei ∈ E(k) is associated with a set of tweets.

4.2.4 Event Tracking

Event tracking extends the consolidation algorithm in a straightforward manner by applying bin

consolidation across successive time slots. That is, after consolidating the bins in the current time

slot k, we consolidate the bins between the time slot k and k − 1. One challenge in event tracking

is that the event signature, defined by the corresponding consolidated keywords, might evolve due

to the evolution of the event and thus the way people describe it.

To catch that change, we use an overlapping sliding window. It smoothes out the changes in the

lexical frequency distribution of fast developing events over time, as illustrated in Figure 4.2. With

overlapped windows, some part of the event signature remains the same across the two slots. (Note

that, the compared slots are overlapping here as in Figure 4.2.) Therefore, by selecting a proper

overlap, we can track the event smoothly and be able to consolidate relevant clusters properly, even

as its signature changes gradually over time.

Non-overlapping

Overlapping

Window Len

Slide Len

Figure 4.2: Illustration of the non-overlapping sliding window and the overlapping sliding window
(with 50% overlapping).

70

4.3 System Implementation

In this section, we present the architecture of our social event tracking system as shown in Figure 4.3.

The targeted social medium of our system is Twitter [4]. The system is implemented in Python27

and integrated into an existing social sensing tool, Apollo 4, developed by a subset of the authors.

StoryLine provides four interfaces, Create, Pull, Kill, and Stats. Create enables the user

to start an event-tracking task, and Pull enables the user to get the real-time event tracking

results. The key parameters of Create are (i) a list of keywords for crawling tweets, for example

[protests, confrontation], and (3) a user-customized window length (with default value of 24

hours). After the user creates a tracking task, a task ID is returned, which is used in Pull to get

the real-time tracking results and in Kill to terminate the existing tracking task. Finally, Stats

allows retrieval of a set of statistics about the event type, such as the frequency of occurrence of

event instances over time.

Stream Tweets Crawler

F
il
te

ri
n
g

Event
Detection

(Signature

Detection &

Consolidation)

Event
Tracking

Localization

User Application

T
w

it
te

r

Figure 4.3: Event tracking system architecture

Once the tracking task is created, the crawling parameters are passed to the crawler that uses

the Twitter API to crawl tweets that satisfy the conditions defined in the parameters in real time.

For the tweets returned, we first filter out the redundant tweets, such as the retweets, and then

the filtered tweets are fed to our event detection module, where the event signature detection and

consolidation are performed. The text clusters are then passed to the event-tracking module. When

the user calls the Pull function with the task ID, the most recent tracking results are returned

encoded using the JSON format. An optional localization module is included (to pin the events on

a map, for example, by Giridhar et al. [45]), but it is not relevant to this chapter. Please note that

unless the user calls Kill, the tracking task keeps working.

4http://apollo3.cs.illinois.edu

71

4.4 Evaluation

In this section, we report the experience of using our tool on event detection and tracking on four

datasets crawled from Twitter. We first describe the statistical details of the four datasets, and

then discuss the performance of our event signature consolidation for the selected Jaccard distance

metric. Next, we study the performance of event detection compared with the state-of-the-art

baselines. Finally, we conduct two case studies of Earthquake events and show the real-time event

detection capability and event tracking performance of our proposed StoryLine system.

4.4.1 Twitter Datasets

For repeatability, we collected four data sets from Twitter using the API described in the previous

section. These were then replayed as the feeds used in the subsequent experiments to enable fair

comparisons across multiple algorithms and conditions. We summarize data collected by the four

tasks we created, labeled by (i) Disaster, (ii) Protest, (iii) Traffic, and (iv) Armed Conflict below.

• Disaster The dataset is collected with keywords “disaster”, “humanitarian”, “earthquake”.

In this dataset, 1, 800, 952 tweets were collected after filtered out retweets, and the time span

is from Apr. 19th 19:41:08 UTC, 2015 to Feb. 03rd 06:07:15 UTC, 2016.

• Protest The dataset is collected with keywords “protest”, “confrontation”. In this dataset,

1, 211, 920 tweets were collected after filtered out retweets, and the time span is from Oct. 16th

05:41:02 UTC, 2015 to Feb. 01st 11:15:43 UTC, 2016.

• Chicago Traffic The keywords used here include “traffic”, “accident”, “chicago”. And all

tweets in the Chicago area were also collected in this dataset. In this dataset, 8, 013, 649

tweets were collected after filtered out retweets, and the time span is from May. 15th 13:58:09

UTC, 2015 to Feb. 19th 17:33:43 UTC, 2016.

• Armed Conflict The keywords used here include “rebels”, “attack”, “bombing”. In this

dataset, 2, 739, 363 tweets were collected after filtered out retweets, and the time span is

from Oct. 16th 05:52:28 UTC, 2015 to Mar. 07th 02:27:03 UTC, 2016.

In the evaluation, each dataset is fed into our StoryLine system in real-time (i.e., we discretize

72

the time into slots and in each slot the tool only considers the current data or that of the past slots

but never in the future). Here, each time slot (i.e. window) spans 6 hours, and slides 1 hours in

each step.

4.4.2 Event Signature Consolidation

We test the performance of event signature consolidation based on each of the four lexical frequency

domain distance functions introduced earlier, namely Jaccard distance (Jaccard), Term Frequency

Difference Ratio (Tfreq), Cosine Distance (Cosine), and KL Divergence (KL). The consolidation

error rate is defined as the ratio between the number of incorrectly grouped 2-keyword signature

pairs to the total number of signature pairs. Note that, a 2-keyword signature pair is said to be

incorrectly grouped if two signatures corresponding to the same event are put into different groups

or if two signatures corresponding to different events are put into the same group. Ground truth

labeling is done manually.

Figure 4.4 shows the results, from which we observe that the Jaccard distance function con-

sistently performs the best for all the four datasets, which corroborates our selection of Jaccard

distance as the lexical frequency domain distance in Section 4.2.3. The error rate of signature

Datasets

Disaster Protest Traffic War

E
rr

o
r

R
at

e

0

0.1

0.2

0.3

Cosine

Tfreq

Jaccard

KL

Traffic

×10
-3

0

5

Figure 4.4: The consolidation error rate.

consolidation for the Traffic dataset is the smallest among the four datasets. This is because traffic

accidents have a relatively small social media footprint. Often a single 2-keyword signature is as-

sociated with the traffic event, therefore only a very small amount of consolidation occurs for this

specific event class. We expect that urban events of interest to IoT applications will mostly have

small footprints. Examples may be urban fires, shootings, traffic accidents, or road closures. It

is therefore encouraging to see that the algorithm is better at detecting and demultiplexing such

73

small-footprint events. The error rate of consolidation of Jaccard for the war dataset is less than

4%. For the protest dataset and the disaster dataset, the error rates are 14% and 20%, respectively.

4.4.3 Event Demultiplexing

In this subsection, we first eliminate geotagging-based demultiplexing techniques based on recall.

We then include in the comparison those techniques that do not need location information, illus-

trating an advantage in precision and purity of demultiplexing (i.e., correct separation of instances).

Table 4.1 shows the percentage of tweets in our data sets that are geo-tagged. We also cluster

the tweets into events and show the number of event clusters that carry zero, one, or more geo-

tagged tweets. We consider fine-grained events here. For example, a war event might refer to a

cluster of tweets discussing a single explosion. The table clearly shows that dependence on location

information can render most of the events invisible, as they contain no geotagged tweets.

Table 4.1: Prevalence of geotags in tweets and events

Metric Traffic Disaster Protest
Armed
Conflict

Total tweets 8013649 1800952 1211920 2739363

Geotagged tweets
726663
(9%)

6068
(0.33%)

2323
(0.19%)

6381
(0.23%)

Events with no Geotagged tweet 90.7% 99.4% 99.6% 99.6%
Events with 1 Geotagged tweet 3.9% 0.5% 0.4% 0.4%

Events with multiple Geotagged tweets 5.4% 0.05% 0 0

Next, we study the precision of event detection and demultiplexing in our StoryLine system.

We compare our StoryLine with the following baselines:

1. ET [96]: In this work, an event is detected using common bi-grams, where the bi-grams are

selected from among adjacent pairs of tokens, which is an example of techniques that do

not demultiplex well. The reason is that in looking for adjacent bi-grams that have a high

chance of co-occurence (for example, “traffic alert” or “crime scene”) one often ends up with

bi-grams characteristic of a whole category of events. In contrast, in our solution, we look

for unusual (i.e., rarely co-occurring) pairs of keywords. Results will confirm that those are

more characteristic of an event instance.

2. TopicModel [74]: This work proposes an online variation of LDA (Latent Dirichlet Alloca-

74

tion) [18], a famous topic modelling technique. Events are defined and detected by a topic

model. This work is a representative event detection solution based on training a text coher-

ence metric (around a topic).

3. GeoTag : In this baseline, we only consider the geo-tagged tweets, and cluster them by physical

Euclidean distance. If two tweets are posted within 30 miles, then we cluster them together.

A limit is imposed on cluster size to prevent formation of geographically diffuse clusters. This

baseline is an example of demultiplexing approaches based on location information.

We randomly selected one week data from our dataset, and compare the precision of event de-

tection/demultiplexing. Here, precision is defined by the ratio between the number of true events

output by the algorithm and the total number of events output by the algorithm. Note that, some

of the text that the algorithm bins as a separate event might in fact be a false positive. For ex-

ample, tweets such as “Can you recommend anyone for this #job?” or “these rumors about louis

coming to chicago are making me stressed” do not constitute legitimate (geo-)events as defined in

this chapter.

Table 4.2: Event detection precision comparison

Algorithm Traffic
Disas-

ter
Protest

Armed
Con-
flict

StoryLine
72.55% 76.92%

80.95%
88.24%

ET 57.14% 36.36%
86.36%

61.90%

TopicModel 55.10% 60.87% 65.22% 69.57%
GeoTag 66.67% 23.33% 47.37% 41.38%

Table 4.2 summarizes the precision results of all the algorithms. From this table, we can observe

that our algorithm has the highest average performance rank of 1.25 (i.e. it ranks first in Traffic,

Disaster, and Armed Conflict datasets and second in Protest dataset), whereas ET has average

performance rank of 2.5, TopicModel has 2.75 and GeoTag has only 3.5. In the Protest dataset,

most of the events are related to some protests. The number of tweets increases greatly when the

protest starts, and at the same time, the total number of tweets also increases. Therefore, the

increase of the percentage of the event related tweets and the total tweets is not that significant,

75

Chicago traffic dataset

Storyline

72%

14%

6%

8%

ET

28%

21%

10%

41%

TopicModel
14%

46%

25%

14%

1 2-3 4-5 >5

Disaster dataset
Storyline

83%

4%

8%
4%

ET

42%

33%

8%

17%

TopicModel

28%

50%

11%

11%

Protest dataset
Storyline

98%

< 1%< 1%< 1%
ET

72%

17%

6%
6%

TopicModel
8%

49%

42%

< 1%

Armed conflict dataset
Storyline

90%

5%
5%< 1%

ET

50%

12%

23%

15%

TopicModel
< 1%

25%

49%

25%

Figure 4.5: The purity pie charts.

thus some true events were not detected by our information gain based approach. But some noisy

events were not affected, thus the precision of our algorithm is not the best. ET is based on the

absolute increase of the number of event related tweets, therefore, it beats our algorithm. We also

notice that geo-tagging does not perform well. We therefore drop it from further comparison.

Figure 4.5 shows the results of purity comparisons for the remaining algorithms, for all the

datasets. Purity is a measure of demultiplexing quality into different event instances. Sometimes,

the algorithm will output one event that might contain multiple instances. For example, three

instances of traffic accidents were output by the TopicModel algorithm: (1) “I 70 now reporting 2

INJURY ACCIDENTS near OH 37”, (2) “When things go BOOM on the US 60 @ArizonaDOT

#12News”, and (3) “@WKYTTraffic tracking an ongoing closure along I-75 near the TN stateline.”

The purity is defined by a vector, that is the percentage of output events that contain only (1)

76

one event instance, (2) two to three instances, (3) four to five instances and (4) greater than five

instances. Ground truth is labelled manually by two different people and conflicts are resolved by

a third one.

From the pie charts, we clearly observe that our algorithm has the highest percentage of output

events that only contain one instance, which shows that our algorithm does better at demultiplexing

event instances compared with the baselines.

4.4.4 Case Study – Real-time Earthquake Detection

In this subsection, we conduct a case study to evaluate the delay in event detection. Here, we

select Earthquake events because it is easy to find out the exact (ground-truth) time at which they

occurred.

Table 4.3: Real-time earthquake detection summary
Earthquake Location Happened Time Detection Time Delay
Midoro, Philippines 10/19/2015 13:50 10/19/2015 18:26 4:16

Vanuatu 10/20/15 21:52 10/21/2015 02:40 4:48
Afghanistan 10/26/15 09:09 10/26/15 10:17 1:08

Molucca islands 01/11/16 16:38 01/11/16, 20:41 4:03
Afghanistan 01/12/16 20:05 01/12/16 22:59 2:54

Alberta, Canada 01/12/16 17:30 01/12/16 22:59 5:29
Urakawa, Japan 01/14/16 03:30 01/14/16 04:09 0:39

Alaska 01/24/16 10:30 01/24/16 11:37 1:07
Morocco 01/25/16 04:22 01/25/16 10:44 6:22
Taiwan 02/06/16 19:57 02/06/16 21:39 1:42

Fiji 02/06/16 01:39 02/06/16 02:41 1:02
Indonesia 02/12/16 10:02 02/12/16 13:28 3:26
Oklahoma 02/13/16 17:07 02/13/16 22:37 5:30

NewZealand 02/14/16 00:13 02/14/16 04:38 4:25
Wasco, CA 02/24/16 00:02 02/24/16 00:37 0:35
Antarctica 02/23/16 18:08 02/24/16 00:37 6:29

Cebu, Phillipine 03/01/16 14:52 03/01/16 17:14 2:22
Sumatra, Indonesia 03/02/16 12:49 03/02/16 14:19 1:30

Table 4.3 shows a summary of the ground-truth occurrence time and detection time (in UTC)

of recent earthquake event instances. From the table, we observe that for most of the instances, our

algorithm can detect it within 4 hours. For earthquakes occurring in regions with large numbers

of active Twitter users, like Japan and California, we can detect earthquakes within 1 hour. (Note

that our window sliding length is just 1 hour, so 1 hour is the smallest delay feasible in this

configuration.) The results confirm utility of the system for detection of urban events.

77

4.4.5 Case Study – Nepal Earthquake Tracking

Finally, we conduct a case study of the Nepal earthquake to help the readers intuitively understand

the performance of the tracking functionality of our StoryLine system. The result is summarized

in Table 4.4. An earthquake happened on April 24th 2015 that resulted on the death of more than

8, 000 people in Nepal. The event was detected due to the rise of tweets with new high-information-

gain keyword pairs on the social medium. New keyword pairs were associated with the same event

as it evolved. The table shows detected keyword pairs and example tweets from their clusters.

Table 4.4: Nepal earthquake tracking summary

Date
New Detected

Keywords
Sample Tweets

04/25/2015
nepal,

earthquake,
death

Powerful magnitude-7.8 earthquake that rocked Nepal triggered an avalanche on Mount Ever-
est http://t.co/MULEuWhx3Q http://t.co/QeRKg8QgYp
RT @BBCBreaking: At least 876 killed in Nepal #earthquake; deaths also reported in India,
Tibet & Bangladesh http://t.co/3BTo9l1QZ4 http://2̆026

04/26/2015
help,

nepalearthquake

RT @cnnbrk: At least 2,263 people have died in Nepal from massive #NepalEarthquake and
aftershocks, official says. http://t.co/hCyjO7YyS7
Anyone with information about my son Joseph Patrick please help #NepalEarthquake
#Pray4Joe http://t.co/X2Kn7mOtRO http://t.co2̆026

04/27/2015

surges,
devastation,

drone,
thankyoupm,

donations

Nepal #earthquake: Death toll surges to 3,218; four aftershocks felt in last 12 hours
http://t.co/Njvru9k2kQ
@cnni: New drone footage shows the extent of devastation from the #NepalEarthquake:
http://t.co/7PiPjayQZ1https://t.co/phIGRkYoZQ
#ThankYouPM for massive rescue and relief operation by India in Nepal after #earthquake
Nepal Earthquake: Facebook to Match Donations Made for Victims http://t.co/aLooadYNxj
Free Submission http://t.co/J90dT2qnXb

04/28/2015
salute2indianforces,
koirala, sanjay,
humanitarian

Thank you very much Indin Forces for being with us.It means alot.... #Salute2IndianForces
CNN’s Dr. Sanjay Gupta performs surgery on girl in Nepal: CNN’s Dr. Sanjay Gupta
performed a life-saving... http://t.co/4EtmH28EwC #tcot
Live: Nepal earthquake kills 4,352, PM Sushil Koirala says death toll could reach 10,000: A
high-intensity ear... http://t.co/A68VtR6hWK

04/29/2015
survivor,hours,
hospital, field,

miracle

Nepal earthquake survivor drank urine while trapped for 82 hours http://t.co/v9DHM5Jhnf
#worldnews
That is amazing, Nepal Army rescued a 4-month kid alive after 22 hours!
::http://t.co/KzJPJeZDCx https://t.co/HvTkvS0Ba0 via @sharethis
RT @haaretzcom: Nepal earthquake updates / Israeli field hospital opens, to treat 200 people
per day http://t.co/PMwRlRT6YO http://t.co/s9i

04/30/2015
pakistan, serves,
masala, teenage,

lydia

Pakistan serves ‘beef masala’ to earthquake-hit Nepal via /r/worldnews
http://t.co/GoFJO09mJP
Teenage boy pulled out of rubble alive five days after Nepal earthquake
http://t.co/0kiAigYE7M #telegraph #news
Lydia Ko donating earnings to Nepal relief effort: The 18-year-old Ko, ranked No. 1 in the
world, successfully... http://t.co/2nquCITqJa

From the table, we observe that in the beginning of the earthquake, media posts focused more on

the earthquake itself using keywords such as “earthquake” and “death” in tweets. As the earthquake

developed, people switched their attention to relief efforts, using keywords such as “donations” and

78

“humanitarian”. Later, the discussion focused on survivors, using keywords such as “survivor” and

“hospital”. Neither the original occurrence of the event nor any of the above keyword pairs was

known to our algorithms in advance. They were detected automatically and associated with the

same event based on discussed distance metrics. The example shows the capability of our algorithm

to tracking real-world events as they evolve.

4.5 Related Work

The idea of using social networks as sensor networks was discussed in recent literature [127, 131].

While much work focused on analysis of reliability of crowd-sourced observations, this work exploits

social media (specifically, Twitter) to build an IoT service for event detection, demultiplexing, and

tracking.

Event detection in social spaces is an active research topic in information retrieval. Some early

work includes Allan et al. [13], in which they proposed an online event detection and tracking

algorithm. Their algorithm exploits features based on term frequency (TF) and inverse document

frequency (IDF), such that if the feature score for a new term is above a predefined threshold

then a new event or topic is found. Some recent literature exploits TF-IDF-like features includes

Shamma et al. [107] and Benharus et al. [17]. Shamma et al. [107] proposed a peakiness score to

identify words that are salient in some time window that were used to detect new events. Since

unigrams may not always be sufficient to describe complex events, Benharus et al. [17] proposed

a different normalized frequency metric called the trending score for identifying event related n-

grams instead of unigrams. These approaches are good at identifying event categories and topic.

However, as shown in the evaluation, they are less efficient at separating individual event instances.

Our work is also related to the text stream clustering literature [8]. An example is work utilizing

optimizations of k-means algorithms to cluster data streams, as proposed by Ordonez [95] and

Zhong [162]. However, theirs need prior knowledge (such as the k), which is not always available

in social streams for event detection and de-multiplexing. Our approach, in contrast, depends on

detecting co-occurrence surprise; that is to say, new frequently co-occurring words in tweets that

did not previously co-occur. Moreover, our calculations are conducted based on only two adjacent

time windows, which is much more efficient than the TF-IDF approach that needs to consider the

79

whole (or a large portion of) corpus.

Topic modeling is another common approach for event detection [53, 74, 163]. Lau et al. [74]

proposed an online variation of Latent Dirichlet Allocation (LDA) [18]. In LDA, each topic is

modeled as a multinomial distribution of words in a volcabulary, and each document is modeled as

a multinomial distribution of k topics, where k is a predifined parameter denoting the total amount

of topics. And these two classes of multinomial distributions have two Dirichlet priors respectively.

(Dirichlet prior is chosen due to the fact that it is the conjugate prior of the multinomial distribu-

tion.) The idea in Lau et al. [74] is incrementally updating the priors in each time window based

on previous calculated parameters, and maintaining the one-to-one correpondence of the topics in

the current time window and the last one. If there is a sudden change in the topic word distri-

bution, then a new event is supposed to have occurred, where the distance of the distributions is

measured by the Jensen-Shannon divergence. Hu et al. [53] proposed ET-LDA (joint Event and

Tweets LDA) that exploits a search engine and aligns tweets with corresponding text of events

provided by traditional media. They showed that results are greatly improved. Zhou et al. [163]

further expand LDA with time and location of the tweets, and proposed a new graphical model

called location-time constrained topic (LTT). In their approach, the tweet content, timestamps

and geo-tags are all considered. As with TF-IDF based approaches, the topic modeling based

approaches also suffer when multiple event instances occur in parallel. Futhermore, on Twitter

(which is our focus), reliance on geotags is not sufficient to distinguish different event instances due

to the relative scarcity of geotagged tweets.

Previous work also exploits the features (metadata) of tweets in event detection. Chierichetti

et al. [26] proposed an event detection algorithm that is purely based on communication pattern

analysis in the tweet stream. In their solution, events are detected based only on tweet and

retweet counts, via logistic regression. They also provide a model of communication to explain

the rationale behind event detection. Similarly, Aggarwal and Subbian [9] considered the social

network topology and proposed a clustering solution for event detection. The rationale behind such

techniques is based on distinguishing shared human interests; namely, clustering text with similar

retweet/communication patterns will isolate events with shared community interest. However, in

such approaches, events that trigger a similar community response (such as different terror attacks

80

in nearby locations, or different assaults on police in nearby towns) cannot be easily demultiplexed.

An entirely different line of event detection and demultiplexing techniques focus on location-

based (or more generally, spatio-temporal) features [19, 80, 123]. These approaches use different

forms of clustering by location metadata contained in tweets, which is indeed an effective means of

separation of event instances if the location metadata is sufficiently fine-grained. Unfortunately, less

than 2% of tweets are geotagged [115, 142]. While location of other tweets can be estimated from

the registered account location of the source, the account metadata carries only city-level location

information, which is not sufficiently fine-grained for demultiplexing events at sub-city scale, such

as traffic accidents. An interesting approach in the category of location-based event detection

techniques is Geoburst [158]. It floats a circle of a pre-specified radius and computes a measure of

coherence of tweets originating within the circle. Coherence measures semantic distances between

words used in these tweets. When coherence spikes (indicating shorter distances) an event is said

to be detected. The rationale is that event occurrence focuses the discussion around fewer topics

related to the event, leading to increased coherence of local tweets. Liang et al. [81] exploit a noise

filtering approach for event detection and demultiplexing, where the temporal and spatial frequency

of each token is treated as a signal and a band-pass filter is applied to filter out background noise as

well as separate different event signals within a given locale. In contrast to the above approaches,

ours does not depend on using location metadata.

Finally, like us, some recent papers indeed propose demultiplexing schemes that do not use

location metadata [45, 55, 115, 142]. Instead, they use language-specific features to distinguish

events. A common example of such processing is isolation of location keywords within the text of

the tweets [45, 115, 142], then clustering by the extracted location information. To appreciate the

disadvantage of these techniques, the reader is invited to extract the location information from

each of the sentences in Figure 4.6. Our point is: an approach that does not depend on having

language-specific extraction rules is much easier to port across languages, which is a big advantage

when considering an international medium, such as Twitter.

Our technique, in fact, often finds location keywords automatically as part of the detected

signature keyword pairs. Imortantly, however, it does so based on statistical analysis alone, and

not linguistic analysis of data. Unlike other event detection techniques that rely on clustering [9,

81

A Multilingual Approach

 Το γαλλικό πλήρωμα αναγκάστηκε σε προσγείωση
στην Αθήνα, στην πορεία τους προς τη Μόσχα

 フランスの乗組員は、モスクワへ向かう途中、アテ
ネの緊急着陸を余儀なくされた

 واضطر الطاقم الفرنسیة إلى الھبوط اضطراریا في أثینا في طریقھا إلى
موسكو

 l�� च चालक दल मा�ो के िलए अपने रा�े पर एथ�स म� एक
आपात ल�िडंग करने के िलए मजबूर िकया गया

Figure 4.6: Tweets with location information.

49,77,96,107,145], ours looks for frequent pairs that did not usually co-occur. In contrast, much of

the prior work looks for burstiness of keywords that are semantically related or frequently co-occur

is some context, as a way of detecting events that feature the indicated semantics or context. This

distinction, as we have shown, makes our solution better at event demultiplexing, which is the main

contribution of the work.

Finally, target detection and tracking with physical sensors have been extensively studied in

other communities such as sensor networks [48, 82, 150]. A particularly relevant sensor model is

that of binary sensors [15], since it closely corresponds to twitter posts that either indicate an event

or not. We hope that such literature will inform event detection and demultiplexing algorithms on

Twitter.

4.6 Conclusions

In this chapter, we presented a novel service for IoT applications that augments physical sensor data

aggregation and fusion with social media data processing for purposes of physical event detection

and demultiplexing. We argued that the social modality of sensing is not unlike other sensing

modalities, such as magnetic, acoustic, or seismic. In each case, a useful practice is to transform the

signal received from the environment into an appropriate feature domain, and then perform signal

processing on that domain. This chapter described an exercise in applying the above approach to

Twitter text. A specific contribution was the development of an event demultiplexing algorithm

that allows separation of (text pertaining to) different instances of a given user-defined category

of urban events (e.g., car accidents) in a manner that (i) is entirely unsupervised and (ii) needs

no location information. In turn, this separation allows computing various statistics about the

82

events in question, such as their frequency over time. Evaluation results show that the approach is

successful at detecting, demultiplexing, and tracking physical events. The success of the approach

is analytically attributed to a sparsity argument that enables one to use a very simple feature space

to demultiplex instances of events.

The chapter is an example of IoT services that go beyond physical sensing. Indeed, in future

applications, such as smart cities, data from physical sensors will be fused with data from social

media in order to better understand events in the city. Such physical and social fusion offers

interesting directions for future work. The chapter is a first step towards the envisioned novel

cyber-physical architectures. The authors are in the process of investigating follow-up ideas that

jointly exploit combinations of physical sensors and social media.

83

Chapter 5

Event Tracking by Integrating
Twitter and Instagram

In this chapter, we investigate the problem of tracking events in physical spaces with the help of

data shared on social networks by users observing them. As per the recent statistics [3,5], Twitter

has 317 million monthly active users and more than 500 million uploaded tweets per day. Instagram

has 600 million monthly active users and more than 80 million uploaded images per day. With

the constant increase in users and content, these social networks are becoming a great source of

crowdsourced information.

This work contributes to literature on event detection from social media. Specifically, we

investigate the degree to which event detection can be improved by fusing data from Twitter and

Instagram. The fusion operation itself is separable from the individual event detection techniques

used in each network. While, in this workshop publication, we demonstrate a proof of concept by

fusing outputs of two specific detection techniques, in principle, we aim at a fusion algorithm that

is independent of per-network detection specifics.

One robust observation across several Twitter-based detection techniques, compared by the

authors [137], is that it is difficult to filter out false positives. This might be attributed to the

vast number of posted tweets, which increases the likelihood of formation of spurious clusters,

not representative of actual physical events. Instagram, on the other hand, has sparser content,

which leads to a much higher precision (when clustered for event detection), although a lower

recall [44]. That is to say, clusters of pictures detected from Instagram posts are generally indicative

of real geo-events, although (due to the smaller number of posts) more events are missed. To

improve Instagram recall, recent work proposed techniques for corroborating Instagram pictures

using Twitter data to distinguish one-off irrelevant pictures from those related to actively discussed

events.1 The approach allows detection of events with smaller support in Instagram, but does not

1This work is currently under submission and can be accessed via the link http://hdl.handle.net/2142/95127 [42].

84

detect events that have no Instagram presence.

In contrast, this chapter aims at fusing events from Twitter and Instagram in a manner that

chooses the best of both sets. Importantly, it includes events with representation on only one of

the two networks (i.e., those on Twitter only or Instagram only), as long as they are sufficiently

supported. We show that the approach offers a better trade-off between precision and recall. Note

that, events discussed on social media are not a flat structure. Rather, they can be split into

sub-events or aggregated into larger events. For example, social media users might discuss specific

demonstrations at different locations. They might also refer to the larger context that brings

about these protests, and to different individual incidents that occurred during one demonstration.

By combining clusters from both Instagram and Twitter one has a higher chance of uncovering

such event linkages, hence consolidating valid threads (tracks) of events over time, and eliminating

poorly supported events outside such threads.

The rest of this chapter or organized as follows. In Section 5.1 we present the problem formu-

lation and the design of our approach. The evaluation is discussed in Section 5.2. Related work is

described in Section 5.3. Finally, conclusions are presented in Section 5.4.

5.1 Problem Definition and System Design

In this section, we first define our problem of event tracking integrating Instagram and Twitter

data, then we overview our system architecture and design, and introduce each of the system

modules in detail.

5.1.1 Problem Formulation

We study the problem of integrating Twitter and Instagram to detect physical events and to track

them as they evolve. Our goal is to do so online, using a language-agnostic, unsupervised approach.

Following previous work [137], time is discretized into slots called windows. Each event instance,

Ei, has a detection (or start) time, and a termination (or finish) time. The event is said to be

ongoing between these two times. Each event instance is further associated with a chronologically

sorted list of timestamped tweets and Instagraph photos that describe it up to the current time.

We restrict our attention to approaches that do not analyze content of tweets or images. This

85

is because we want our detection and tracking system to be generally applicable regardless of

language. Also, due to the heavy cost of human labelling of text and pictures, an unsupervised

approach is desired.

We define our problem as follows: given the stream of tweets on Twitter and photo posts on

Instagram in window k, for each k

• determine the set of ongoing event instances at time k, and

• identify the set of tweets and images related to each event instance.

T-Event

Detection

(Info Gain)

I-Event

Detection

(EM)

Event

Fusion

Event

Tracking

Event

Summary

T-Event

Filtering

Figure 5.1: Event tracking system architecture

x

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
(x

)

0

0.2

0.4

0.6

0.8

1
Beta Expectation (Empirical) CDF

True Events

False Positives

Figure 5.2: CDF of empirical Beta ex-
pectation comparison

5.1.2 System Architecture and Design

The system architecture is illustrated in Figure 5.1, where the boxes denote system components

and arrows denote data flows. The input of the system comprises the data crawled from Twitter

and Instagram, and the output comprises tweets and images associated with every event instance.

We continuously crawl Twitter text and Instagram photo posts and feed the data to our system,

say once per hour. In the system, we have two event detectors, the T-detector and I-detector,

respectively. The T-detector detects events from Twitter data using a recently proposed detection

algorithm [137]. The I-detector detects events from Instagram. We use an enhanced version [42]

that corroborates detected potential Instagram events using tweets with similar tags. The events

detected by the T-detector are called T-events (or T-buckets), and those detected by the I-detector

are called I-events (or I-buckets). Both the T-events and I-events are fed into the fusion module,

where we correlate their buckets. The fused events are then fed into the tracking module, where

we track these events over time in an online fashion by consolidating buckets of same events over

86

time. Finally, we display a summary of current and past events on demand. Next, we describe

each of the system modules in detail.

5.1.3 Event Detection

The T-detector, in our system, was first introduced in the Storyline paper [137]. The high-level

idea is that, in each window, we detect patterns of keywords that occur with disproportionately

high frequency compared to the previous window, which translates into high information gain.

Evaluation of Storyline [137] demonstrates that this detector does better than other Twitter-based

techniques at event demultiplexing. Furthermore, the Storyline detector can be applied online to

streaming data, is unsupervisded, and does not require analysis of text.

Since we aim to design a fusion technique that is independent of the specifics of individual

detectors, we introduce an independent filtering module after the T-detector to remove false pos-

itives. The idea behind the filtering module is that real events tend to focus discussion around a

narrower scope of topics, leading to a skew in the distribution of keywords in tweets related to the

discussed event. A smaller number of keywords get more frequently mentioned, followed by a tail

of infrequent keywords. In contrast, when discussion is not focused, the distribution of keywords

is much more evenly spread.

To exploit the above intuition, for each token in the tweet cluster returned by the Twitter-

based detector (the T-bucket), we calculate the fractions (empirical probability) of tweets in the

cluster containing the token. We then fit the empirical probability distribution of tokens to a Beta

distribution, and compute its parameters, α and β. These parameters are then used to detect false

positives based on an appropriate threshold.

In order to determine the best threshold, we manually labeled 700 detected events with true

event or false positive. The mean values of the Beta parameters for true events were α = 0.2104

and β = 0.3987, and those for false positives were α = 0.4025 and β = 394.6. These values clearly

indicate that for true events, there is a subset of tokens that appear in a large potion of tweets

in the event cluster, but for false positives, the tokens are distributed much more “evenly” across

tweets in each event cluster. To find a single threshold, we further plot the CDF of the expectation

of the fitted Beta distributions for both the true events and false positives, shown in Figure 5.2.

87

From the figure, we observe that the expected value of the Beta distribution is a good feature to

separate the true events from false positives, as they differ significantly in this feature. Accordingly,

we set the threshold to 0.03; if the Beta expectation is greater than this threshold, the bucket is

classified as a true event. Otherwise, it is classified as a false positive. Note that, this classifier can

work with the output of any tweet clustering scheme.

Our I-detector uses Instagram to detect events, as described in recent work [42]. We use a

detector that (1) clusters Instagram photo posts that are co-located in the same proximity and are

within a short period of time, and (2) tries to find supporting tweets on Twitter by correlating their

hashtags and locations (converting Instagram geotags into street addresses and looking for tweets

with corresponding keywords). If we are able to find supporting tweets for a cluster, then we claim

successful detection of one (Twitter-corroborated) Instagram event. Please note that the supporting

tweets here are not necessarily from some T-bucket(s) that generated by the T-detector. In essence,

this approach embeds its own false-positive elimination by seeking corroboration with Twitter. It

can be used on top of any other I-detector that returns images related to potential detected events.

Note that, the approach returns only those events that have representation in Instagram data.

Hence, it returns considerably fewer events compared with the T-detector, although the precision

is higher.

Next, we present a fusion algorithm that combines I-events and T-events in a manner that

attains both high precision and high recall.

5.1.4 Event Fusion

The fusion algorithm uses the I-buckets and T-buckets as input. Note that, we have both the

tweets and photo metadata in the I-buckets. As mentioned above, if a different I-detector is

used that returns only buckets of photo metadata, we can always use the approach in [42] to

corroborate these buckets with tweets, thereby augmenting them with related tweets. The effect of

such corroboration is to reduce false positives (such as “selfies” and other images not corresponding

to events of interest).

Next, we create a bipartite graph BG = {I, T, E}, where each node i ∈ I is corresponding to

an I-bucket, and each node t ∈ T is corresponding to a T-bucket. When the similarity in tweets

88

Algorithm 4 Fusion I-bucket and T-bucket

Input: I-buckets and T-buckets in window k, threshold τbucket
Output: The fusioned buckets.

1: Build the bipartite graph BG with empty edge set E
2: for Each pair of I-bucket i and T-bucket t do
3: if The similarity scrore is beyond τbucket then
4: E ← E + (i, t)
5: end if
6: end for
7: for Each node i ∈ I do
8: Merge each node t ∈ T s.t. (i, t) ∈ E, and denote the merged node as mt

9: Update E such that ∀(j, t) ∈ E,∀t ∈ {mt}, E ← E + (j,mt)
10: Remove every original T-nodes t in any merged node mt and remove all edges incident

with it, i.e. ∀t ∈ {mt}, T ← T − t, E ← E \ {(., t)}
11: end for
12: for Each node t ∈ T do
13: Merge each node i ∈ I s.t. (i, t) ∈ E, and denote the merged node as mi

14: Remove every original I-nodes i in any merged node mi and remove all edges incident with
it, i.e. ∀i ∈ {mi}, I ← I − i, E ← E \ {(i, .)}

15: end for . (Now bipartite graph BG becomes a match, that is ∀i0 ∈ I at most one t ∈ T s.t.
(i0, t) ∈ E and ∀t0 ∈ T at most one i ∈ I s.t. (i, t0) ∈ E)

16: Merge the matched pairs, and output the merged buckets and individual I- or T-buckets

between an I-bucket, i, and a T-bucket, t, is beyond a similarity threshold τbucket, we add an edge

(i, t) to E. The similarity of two buckets is defined by the Jaccard distance between the tweet text

tokens of them2. Here, the threshold τbucket denotes whether we want to merge the I-bucket and

T-bucket (if similarity above it) or not (otherwise). Hence, for any edge ei,t ∈ E, we merge the

corresponding I-bucket i and T-bucket t. We summarize the fusion procedure in Algorithm 4. The

time complexity of the algorithm is determined by the size of the bipartite graph, therefore, it is

O(MN +M +N) = O(MN) where M = |I| and N = |T |.

5.1.5 Event Tracking and Summary

The event fusion algorithm is then extended to event tracking in a straightforward manner; instead

of correlating I-buckets and T-buckets in the same window k as done in the event fusion module,

in tracking, we correlate buckets detected in window k and those detected in the previous window

k− 1, merging those with a high Jaccard similarity. The unified buckets fusion algorithm for both

the event fusion module and tracking module simplifies the system implementation and improves

2Note that I-buckets have associated tweets.

89

the system maintainability. Inspired by Storyline [137], we use a sliding window, such that windows

k and k−1 overlap as illustrated in Figure 5.3. In a typical configuration, a window of size 6 hours

slides 1 hour at a time.

Sliding Window

Window Len

Sliding Len

Figure 5.3: Sliding window

The output of merged buckets after fusion and tracking generates larger clusters. Each such

cluster is associated with a unique ID. Buckets associated with a given ID can be displayed on

demand, forming a chronological list of tweets and images that describe event evolution.

5.2 Evaluation

In this section, we first introduce the real-world dataset used in the evaluation and then discuss

the evaluation methdology and results.

5.2.1 Datasets from Twitter and Instagram

In order to evaluate the performance of our algorithm, we collected real world datasets using

Twitter and Instagram on protest events. We used the query word “protest” to crawl data from

both social networks. Twitter provides an API to collect all tweets containing the query word. For

Instagram, we used the web service picodash.com to collect all the Instagram images containing

the query word as an image tag. The data was collected for a period of one month in February

2016, totalling 295, 643 tweets from Twitter and 5, 688 photo posts from Instagram. The weekly

statistics of the data are shown in Table 5.1.

5.2.2 Methodology and Results

We evaluate two aspects of performance of our event tracking system that correspond to our two

major contributions; (1) event detection by the fusion module and (2) event tracking, respectively.

The baselines in the evaluation are underlying detectors used separately; that is to say, the event

90

Table 5.1: Statistics of collected datasets

Week Index
#Tweets

#Instagram
posts

Feb 2016
Week 1

77001 1377

Feb 2016
Week 2

78334 1424

Feb 2016
Week 3

75639 1489

Feb 2016
Week 4

64669 1398

detector that exploits Twitter data (called “Twitter”) [137], and the detector that finds (Twitter-

corroborated) Instagram events (called “Instagram”) [42].

Event Detection by Fusion

Table 5.2 summarizes the precision and recall of all three algorithms at event detection during a

randomly selected period of 7 days, where we manually labeled all ground truth. More precisely,

since we do not know exactly how many events occurred that might have not been reflected in either

data set, we abuse recall by referring to the absolute number of true events detected. From the

table, as expected, we observe that the Instagram algorithm has the highest precision but lowest

recall, whereas the Twitter algorithm has the lowest precision.

Table 5.2: Precision and recall

Algorithm Total# events Precision Recall

Instagram 54 87.037% 47
Twitter 174 63.218% 110
Fusion 211 70.616% 149

We also investigate the F1 score for all algorithms, as shown in Figure 5.4. Since, we do not know

the ground-truth total number of true events that occurred in each window (to properly compute

recall), we plot the F1 score for different values of such total on the x-axis. From Figure 5.4, we

observe that although the Instagram algorithm has the highest precision, its F1 score is consistently

the lowest due to its poor recall. In contrast, our fusion-based solution has the highest F1 score,

which means that it offers the best trade-off between precision and recall compared to the baselines.

91

Total Number of Physical Events

150 200 250 300

F
1

 S
co

re

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Instagram

Twitter

Fusion

Figure 5.4: F1 score comparison with varied ground truth of total number of events

Next, we study the performance of demultiplexing (i.e., proper separation of different event

instances). Ideal demultiplexing requires that an event detector output a separate event bucket for

each event instance. Hence, the number of different events mentioned in tweets in any one bucket

should be exactly 1. Accordingly, we use the average number of events (mentioned) per bucket as

the metric to evaluate quality of demultiplexing.

We also prefer an event detector that outputs only one bucket for each true physical event.

Such a detector has no redundant detections. We use the metric of the number of buckets per

detected true event to evaluate redundancy. Note that, for both metrics, the closer to 1 the better

in demultiplexing quality and detection redundancy.

Table 5.3: Demultiplexing quality and detection redundancy

Metric Instagram Twitter Fusion

#events per bucket 1.078 1.290 1.194

#buckets per event 1.28 1.35 1.24

The results are summarized in Table 5.3. It shows that our solution has the best performance

in terms of reducing redundancy. The intuition behind it is that our solution fuses I-buckets and T-

buckets. It is possible that two T-buckets corresponding to the same physical event are correlated

with the same I-bucket. They would thus be merged by our fusion algorithm thereby reducing

redundancy in event detection. Same argument goes for the I-buckets as well. The Instagram

approach remains the best at demultiplexing quality. This is attributed to the location-centric

nature of Instagram clusters. A cluster of images from the same location is more likely to describe

a single event.

92

Event Tracking

For event tracking, we empirically observed that running the tracking algorithm on top of the

I-buckets alone does not consolidate images of the same event over different windows. This might

be because image tags on Instagram are chosen by users in a more independent fashion than the

wording of tweets on Twitter. In order to observe the evolution of some event instance, we thus

cannot exploit Instagram in isolation. Rather, we must also exploit Twitter.

In this section, we use a case study to showcase the performance of our event tracking. Table 5.4

shows a segment from a tracked event of Delhi protest that sabotaged water supplies for more than

10 million people. In the beginning of this event, people tended to tweet more about the fact,

that is Delhi water supplies were sabotaged. The protest later became violent, and India sent

soldiers to the area of protest. Next, the impact of this protest was estimated (that more than 10

million people in India were without water), and finally the protest terminated. There were also

after-effects that we truncated due to page limits. Without the tracking capability, we could not

be able to automattically stitch together the progression of this event. Table 5.4 also shows one I-

bucket for this event and it was fused with a corresponding T-bucket. The case study demonstrates

the effectiveness of our tracking solution and the feasibility of automatically merging posts from

Twitter and Instagram about the same events.

5.3 Related Work

Event detection is an extremely popular research topic in the social network community. Much prior

to the rise of social media, detection of objects with physical sensors has been studied extensively

in the sensor network community [48, 82, 150]. The social sensing field in particular tries to tackle

problems related to detection, localization, and tracking the events that occur in a physical space

over a period of time. In the following subsections we briefly describe the contributions made in

this field using the two popular social networks.

93

Table 5.4: Segment of a tracked event instance of Delhi protest

Window
ID

Tweets Sample
Bucket
Type

1

VIDEO: Delhi water supplies sabotaged by protest

No water left in Delhi due to Jat protest, schools closed, rationing
begins due to CASTE. . .

T-bucket

2 Water rationed as India caste protest toll rises T-bucket

3

Caste violence . . . violent protest had briefly shut down the water
supply in New Delhi.

. . . that Jat started protest, they destroyed munak canal, no water for
Delhi

T-bucket

4
Heaven help us all. Upper caste protest in Delhi leads to death and
destruction. . .

T-bucket

5

India Sends Soldiers To Area Of Caste Protest, water cut off in New
Delhi

Caste Protests Near Delhi Close Roads and Restrict #Water Supply:
Though the Indian Army

T-bucket

6 RT @fakingnews: Fed up Delhi youth start a protest against protests T-bucket

7
More than 10 million people in #India’s capital are without water
despite the army regaining control of its key water source after protest

T-bucket

8
Haryana State in India Proposes New Caste Status in Bid
to Quell Protests

Jats protest leaves millions in New Delhi without water

Fusion
bucket

9
Deal reached to end Jat protests in India’s Haryana state; roadblocks
to be cleared, protest leader and police say

T-bucket

5.3.1 Event Detection using Twitter

Event detection is one category that has been widely explored with the help of Twitter. Topic

modeling is a common approach for event detection [53,74,163]. Lau et al. [74] proposed an online

variation of Latent Dirichlet Allocation (LDA) [18]. In LDA, each topic is modeled as a multinomial

distribution of words in a volcabulary, and each document is modeled as a multinomial distribution

of k topics, where k is a predifined parameter denoting the total amount of topics. And these

two classes of multinomial distributions have two Dirichlet priors respectively. The idea in Lau et

al. [74] is incrementally updating the priors in each time window based on the previous calculated

94

parameters, and maintaining the one-to-one correpondence of the topics in the current time window

and the last one. If there is a sudden change in the topic word distribution, then a new event is

supposed to be detected, where the distance of the distributions is measured by the Jensen-Shannon

divergence. Hu et al. [53] proposed ET-LDA (joint Event and Tweets LDA) that exploits a search

engine aligns tweets with the corresponding texts of events provided by traditional media, and they

showed the results greatly improved. Zhou et al. [163] further expand LDA with time and location

of the tweets, and proposed a new graphical model called location-time constrained topic (LTT).

In their approach, the tweet content, timestamps and geo-tags are all considered. However, the

topic modeling-based approaches usually suffer in the senario that multiple event instances happen

in parallel, even when they exploit meta data of the tweets like timestamps and geo-tags [11].

There have also been a few works in determining the reliability of the texts as well as the sources

posting information on Twitter. In [127,131] the authors have focused on the data reliability issue

to find the true information from the noisy crowd data. The benefits of using humans directly as

sensors include the capability of sensing information in high semantics in real time, which is not

possible for physical sensors. However, due to the freedom of posting (almost) any content on social

networks, the crowd data is usually very noisy containing rumors, partial information, or polarized

viewpoints, which introduces the data reliability issue in social sensing. Wang et al. [127,131] and

a more recent work [140] proposed variant EM based algorithms to address the data reliability

challenge by jointly estimating the data authenticity and source reliability. Tracking of events

using Twitter was recently explored in [137] where real world datasets have been analyzed to find

the evolution of subevents in time and space.

5.3.2 Event Detection using Instagram

Instagram has emerged as a popular platform among researchers to analyze social networks from

a crowdsensing point of view due to an explosive growth in the number of users. In [51], the

authors have conducted a study to use Instagram as a social media visualization tool to identify

cultural dynamics in major cities. The study particularly zoomed into the city of Tel Aviv, Israel,

for a period of two weeks collecting images shared on important national event days. In [54],

an analysis was presented to identify different types of users on Instagram and the categories of

95

pictures they take. The work characterized Instagram based on eight categories of pictures shared

by five distinct types of users. Prior work [108] also described an approach capable of identifying

important tourist attractions (POIs) with the help of Instagram. The focus of that work was

to identify locations that are extensively visited by tourists. The authors of [52] described the

implementation of a system capable of detecting events using geo-tagged data from networks that

include Instagram. Their method determines a burst of keywords (tags) within a time interval,

which is then modeled by Gaussians, and events are detected based on mapping the bursts. A very

recent work [44] explores the techniques to detect and localize events in urban spaces. This work

proposes an algorithm that focuses on using the distribution properties of the pictures related to

an event in the time domain along with geo-coordinates to do an adaptive clustering followed by

false positive elimination. There are a few other event detection techniques using Instagram but

to our best knowledge no work has been done to track evolving events.

Contrary to all the related work, in this work we try to demonstrate the capability of jointly

using Twitter and Instagram to not only detect events but also develop a deeper understanding

on how these events evolve over a period of time. The combination of data from two different

social networks results in better corroboration thus giving a higher precision over the baseline

techniques.

5.4 Conclusions

We proposed an online event tracking system that integrates Twitter and Instagram data using an

unsupervised approach that does not rely on language-specific features. Real-world data evalua-

tion results demonstrate the effectiveness of the proposed system in event detection and tracking.

Specifically, compared with two state-of-the-art baselines, our solution offers a better trade-off be-

tween precision and recall, lower instances of redundant event detection, and better monitoring of

event evolution over time.

96

Part III

Information-Maximizing Delivery

97

Chapter 6

Coverage-based
Information-Maximizing Data
Delivery

This chapter introduces Minerva; a novel publish-subscribe-based programming system for opti-

mizing information throughput in social sensing applications. Social sensing refers to the act of

crowd-sourcing sensor data collection to volunteer participants in exchange for offering data ser-

vices of interest. A common example is the collection and sharing of traffic speed data by drivers

on different streets for purposes of computing speed maps that help plan individuals’ commute.

We argue that development of social sensing applications calls for an information-centric pro-

gramming paradigm in that the underlying run-time support is geared at maximizing information

flow . This, as we show below, is not the same as maximizing data throughput . Social sensing

applications fit a publish-subscribe model, where the sources involved in data collection are the

publishers and the service that computes the quantities of interest is the subscriber.1 Sources

are typically mobile, such as phones or cars, and opportunistic WiFi offloading is used to reduce

the cost of data upload (most data plans now charge for 3G/4G data upload, which makes it an

unattractive choice for the sensing application). Hence, information propagates from one partici-

pant to another when they meet, and is uploaded to the subscriber when a participant has a free

upload opportunity. Importantly, unlike the traditional publish-subscribe model, where publishers

are independent, social sensing applications typically exhibit information overlap among sources.

For example, vehicles waiting in the same traffic jam may collect very similar observations about

traffic. Redundancy in data collection thus leads to inefficiency, which motivates a system that

can recognize and eliminate the redundancy. Such a system would maximize information flow, as

opposed to mere data throughput.

The main contribution of Minerva lies in its information-maximizing data prioritization scheme.

1The service also makes the computed results available, but this is done using standard dissemination techniques
and is not the focus of this chapter.

98

It transmits publishers’ data in an order that maximizes information flow. Hence, if data transfer

is interrupted before all data are transmitted, a notion of information coverage is maximized for

the given transfer size. The scheme is suitable for mobile environments where connectivity between

nodes may be interrupted due to the nodes’ mobility patterns and limited battery capacities.

We show that without knowing the data transmission time in advance, which is the common

case, no prioritization scheme can guarantee the optimal information throughput. Instead, an

approximation bound is derived that is achieved by our prioritization algorithm, making it provably

near-optimal.

From an API perspective, Minerva separates application-specific components from application-

independent components. We recognize that information is a measure that may mean different

things to different applications. To keep the information-maximization support in Minerva as

application-independent as possible, we ask the programmer to define only one application-specific

function per collected content type; namely, a map function, which takes a data object as operand

and returns its position in a virtual space, called the information space, where objects that are

closer to each other have more information overlap. When two Minerva nodes meet, they exchange

content in an order that maximizes coverage in the information space.

An example map function could be one that places objects (that constitute sensor readings)

in a space whose dimensions are the location and time of data capture. Hence, sensor readings

at closer locations and times would be closer in the virtual space (which designates that such

readings are more redundant). In general, other features may be considered as dimensions of

information space. For example, in an application that measures temperature in campus buildings,

a more meaningful set of features to consider might be time, building name, and room number.

Hence, readings from the same time, the same building, and the same room number would be more

redundant that readings from different times, different buildings or different room numbers. The

map function would then map such measurements to a space where feature similarity translates

into proximity. Once a map function is defined, information maximization, informally, becomes a

problem of selecting points that are far enough apart in the information space, so that they are not

redundant. The design of a good map function is an important application-specific problem. To

keep the discussion in this chapter application-independent, we assume that a good map function,

99

for the application at hand, has already been designed and consider how to use it in order to

implement an information-maximizing publish-subscribe service.

Minerva is implemented on top of the recently proposed Named Data Networking (NDN) frame-

work [63]; a network paradigm where data objects are given unique names in a hierarchical name

space (reminiscent of a UNIX directory structure), allowing the network to retrieve them by name.

By giving collected data objects descriptive names (that encode the features of interest), we allow

the map function to be a function of object names only. Hence, Minerva only needs to know data

objects names in order to determine, with help of the map function, an information-maximizing

transmission order.2

We evaluate Minerva using two smart-phone-based experiments as well as a large-scale simu-

lation using the T-Drive dataset collected by Microsoft Research Asia (MSRA) [155]. Evaluation

results demonstrate that our prioritization algorithm outperforms other candidates in terms of

completeness of information delivered.

The remainder of this chapter is organized as follows. We compare our work with the state of

the art in Section 6.1 and present the system design in Section 6.2. We formulate and solve our

problem of maximizing information coverage in Section 6.3. The implementation and evaluation for

our proposed solution are discussed in Section 6.4. Finally, we conclude the chapter in Section 6.5.

6.1 State of the Art

Social sensing attracted much attention in the research community since it was introduced in

Burke et al. [22]. Examples of early services include CenWits [56], CarTel [57], BikeNet [33],

PoolView [38], and GreenGPS [37]. Application-specific redundancy-eliminating sensing services,

such as PhotoNet [118] and CARE [143], were proposed in earlier social sensing literature. In con-

trast, our work is the first to offer a general application-independent architecture that maximizes

information coverage, while allowing customization (via the map function) to the specific applica-

tion. We further design a novel data prioritization algorithm that is proven to maximize coverage

subject to an approximation bound. The work is broadly related to the area of Information Centric

2The only element of NDN used by Minerva is that data has hierarchical names. In principle, Minerva can run
on top of any system that offers a hierarchical, globally unique naming scheme.

100

Networking (ICN), investigated in recent years [40,41,117].

Liu et al. proposed a QoS-heterogeneous prioritization algorithm [84], to allow data packets

with deadlines to be transmitted first in order to increase the possibility of offloading them faster.

Previous efforts exist on redundancy elimination in networks including application-level [146] and

packet level [14] techniques. Their work only try to eliminate redundant data, but do not consider

the information carried in the data. For example, if two files have the very similar content, such

as traffic speed measurements of the same street block at the same time, but different names, their

work will consider these two files as different ones. However, these two files actually are redundant

in information. Our work focus on eliminating redundancy in information.

We exploit the Named Data Networking (NDN) framework because it offers significant simpli-

fications in the implementation of information-centric programming. NDN is recently proposed as

a future Internet architecture, introduced by Van Jacobson [63, 160]. Since then, several papers

investigated aspects of this framework such as suitability to ad hoc networking [91] and naming for

mobile environments [133]. Our work is the first in proposing a programming API for social sensing

applications that uses the NDN framework to simplify the maximization of information coverage.

6.2 System Design

This section describes the detailed system design. We first present the system model for social

sensing applications, then explain the programming framework based on this model.

6.2.1 System Model

Figure 6.1: System model

MapNaming

PE

Application

Mineva

NDN Send/Recv

Callback Lib API

Pub Sub

Figure 6.2: Programming
framework

A B

C

Figure 6.3: Illustration of cov-
erage and marginal coverage
with 2 features.

Figure 6.1 depicts the system model for our proposed social sensing applications. Mobile devices

participate in these applications by generating and sharing sensory data, which are stored locally

101

and uploaded to a backend server via opportunistic WiFi offloading. Hence mobile devices serve

as publishers, and the backend server acts as the subscriber. Opportunistic peer-to-peer communi-

cation might also be enabled to allow information to transparently propagate from one participant

to another when they meet, in hopes of finding an offloading opportunity to the server faster. We

adopt the NDN framework [63], thus data generated by users are identified by descriptive names.

6.2.2 Programming Framework

The programming support in Miverva is straightforward. Minerva provides a publish and a sub-

scribe interface. Additionally, the application provides a callback function (one per content type),

called map(), that takes as operand the name of a content object of a particular type and returns

the corresponding position and coverage in a virtual information space. The position and coverage

of a data point are used to compute its priority in transmission that maximizes information cover-

age in a resource-constrained environment. Objects are transmitted in the order of largest increase

in marginal coverage as discussed in detail in Section 6.3.

As shown in Figure 6.2, an operational system would consist of three different layers: the

application layer, the Minerva layer, and the network layer.

The application layer would take care of application-specific functions, such as content naming

and publishing. Maintaining uniqueness of names is an application-specific concern not addressed

in this chapter. A fully specified name refers to a unique item. Names can also be partially specified

to designate a collection of items that share a common name prefix. In Minerva, publishers and

subscribers refer to content collections by name when expressing availability of or interest in content.

In general, applications that use our publish-subscribe system own “subdirectories” in the

global name space. For example, an application called GreenGPS might own the subdirectory

“/root/GreenGPS”. The application might publish multiple types of content. Each part could

start with “/root/GreenGPS/content-type”. Following the content type in the name comes a

listing of content attributes of relevance to the map function. A type-specific map function can

therefore parse the name to determine the attributes, and compute the coordinates of the object

in virtual space accordingly. For example, an object might be called “/root/GreenGPS/content-

type/location/time/filename”, where the location and time are the features of the data object.

102

In addition to the publish and subscribe functions, Minerva internally has a core function, PE,

short for Prioritization Engine. PE reflects our optimization algorithm described in Section 6.3 to

compute priorities for data objects such that they are transmitted in an order that contributes to

maximum coverage.

The underlying network layer provides the communication functions across a network. In our

implementation, we use NDN as the underlying network layer. Our solution does not require any

changes to the standard NDN library (developed by PARC). Thus, it is general enough to be

compatible with other existing NDN applications.

In the next section, we describe in detail the prioritization algorithm.

6.3 Information-maximizing Prioritization

In this section, we first introduce the definition of information coverage and formulate the infor-

mation coverage maximizing problem. Then, we present the design and analysis of our algorithm.

6.3.1 Information Coverage

Data collected in social sensing applications are not independent; they exhibit correlations as

discussed in the introduction. For the purpose of theoretical problem formulation, we assume that

each data point covers a region in the information space, referred to as the data coverage region,

defined below.

Definition 2 (Data Coverage). Suppose that there are k features of the data collected in a social

sensing application. The Cartesian product3 of domains of the k features forms a k-D information

space. Any data point X with coordinates 〈x1, x2, · · · , xk〉 covers an interval Ij centered at xj on

the j-th dimension, where 1 ≤ j ≤ k. The coverage of X is CX = I1× I2× · · · × Ik, where × is the

Cartesian product.

Please note that data of different applications might have different coverage intervals. Given

a particular application, the notion of coverage is usually clear. For example, when measuring

temperature in a corn field, the “coverage” in the time dimension might be, say, 10-20 minutes,

3The Cartesian product of two sets A and B is a set C, such that C = {〈x, y〉 | x ∈ A, y ∈ B}. Similarly, we can
define the Cartesian product of k sets.

103

since weather does not noticably change in such a short time. Similarly, coverage in space might

be 200-300 meters, since these distances are small enough not to dramatically affect temperature.

Hence, given a temperature measurement at some time and location it can be assumed to remain

valid for the entire coverage interval (in space and in time).

By Definition 2, the coverage of a data point is a k-D box as illustrated in Fig. 6.3. The

coverage of a dataset S is defined as CS =
⋃
S∈S CS . The coverage of the intersection (resp. union)

of two datasets S1,S2 is defined as CS1∩S2 = CS1 ∩ CS2 (resp. CS∪S2 = CS1 ∪ CS2).

We define the marginal coverage of a data point X w.r.t. a dataset S in Definition 3.

Definition 3 (Marginal Coverage). The marginal coverage of a data point X w.r.t. a dataset S is

the region in the information space covered by X but not covered by S, i.e., MCX|S = CX −C{X}∩S.

As illustrated in Fig. 6.3, the area surrounded by the dashed red line is the marginal coverage

of data point C w.r.t. the dataset {A,B}. By definition, MCX|∅ = CX .

We define the value of the coverage of a data point in Definition 4.

Definition 4 (Coverage Value). The coverage value of a data point X in a k-D information space

is the size of its k-D coverage region, defined as V(CX) =
∏k
i=1 Ii, where Ii is the coverage interval

in the ith dimension as in Definition 2.

For example, if k = 2, the value of the coverage of a data point is simply the area of its coverage

region in the information space. Similarly, definitions of the coverage value of a dataset and the

marginal coverage value of a data point w.r.t. a dataset follow.

6.3.2 Problem Definition

A common goal of social sensing is to gather information that is as complete as possible. One trivial

solution is that when a connection is established between two participants they sync all data, and

when connecting to the backend server, a participant offloads its entire local data. However, due

to the mobility and resource constraints (e.g., energy), it is not always possible to sync or offload

the entire dataset in a single transmission. Thus, in each transmission session, we aim to maximize

104

the marginal information coverage value of the subset of data that can be transmitted, referred to

as the MaxInfo problem.

In the rest of this chapter, we shall assume that all data objects of the same type are of the

same size. This is a common assumption in sensing applications. For example, in the context of

a particular navigation application, all GPS readings have the same format and size. Similarly, in

the context of a particular environmental sensing application, all temperature and humidity, mea-

surements have the same format and size. In general, if the data format for sensory measurements

is fixed, then all data records have the same size. This assumption simplifies terminology, allowing

us to represent connection duration by a corresponding number of transmitted objects. It can be

easily generalized to arbitrary object sizes simply by weighting each object by its size. Assuming

same size objects, the the MaxInfo problem is formulated as follows:

Problem 1 (MaxInfo). Suppose that there is a dataset S1 (resp. S2) on the data receiver (resp.

the data provider). MaxInfo is to determine an order based on which the receiver should pull data

from the provider such that for any data transmission size the receiver’s information coverage is

maximized. In other words, let R ⊂ S2 with cardinality n is the dataset pulled by the order, then

∀n,∀T, |R| = |T| = n,V(CS1∪R) ≥ V(CS1∪T).

Unfortunately, the unpredictability of the duration of each transmission session makes it im-

possible to find an order that is optimal for any n, which can be proved by a counter example as

illustrated in Fig. 6.3. When n = 1, the optimal order is to select data object B first, since its

coverage value is the highest. When n = 2, the optimal order is to select data objects A and C first,

which conflicts with the optimal order when n = 1. Hence, we need to quantify the best one can

do to approximate the optimal MaxInfo solution when one does not know connection duration in

advance.

We first define the optimal solution OPT for MaxInfo to be an offline coverage-maximizing

solution that assumes knowledge of the cardinality n in advance. It will constitute a theoretical

upper bound, since such knowledge is generally not available online. Note that, as illustrated above,

OPT may return different optimal orders for different values of n. Let us define the approximation

ratio of an online solution A as follows:

105

Definition 5 (Approximation Ratio). Consider a dataset S1 (resp. S2) on the data requester mr

(resp. the data provider mp). Let solution A of MaxInfo represent a fixed priority order for data

object to pull from mp. Let An ⊂ S2 denote the subset of data transmitted from mp with cardinality

n during the transmission session. Let OPTn denote the subset output by OPT with n known in

advance. The approximation ratio of A is

τ = min
∀n,0≤n≤|S2|

V(CS1∪An)

V(CS1∪OPTn)
.

Please note that for any fixed n, when S1 = ∅,the MaxInfo is exactly the weighted Max

n-Cover problem [36].

Theorem 2. [36] If Max n-Cover can be constructively approximated in polynomial time within

a ratio of (1− 1/e+ ε) for some ε > 0, then NP ⊂ TIME(pO(log log p)), where p is the cardinality

of the set (as |S2| in Definition 5).

Theorem 2 directly implies that achieving a better approximation ratio than (1 − 1/e) for

MaxInfo is NP -hard. Thus, we have the following Corollary.

Corollary 1 (Approximation Bound for MaxInfo). Achieving approximation ratio (1 − 1/e +

ε),∀ε > 0 for MaxInfo is NP -hard.

6.3.3 Greedy Algorithm

In this section, we outline our prioritization algorithm. The idea of the algorithm is to give higher

transmission priority to data with larger marginal coverage value w.r.t. the dataset at the receiver

side.

We now prove that the approximation ratio of Algorithm 5 is (1− 1
e).

Lemma 2. For any n ≤ |S2|, if R is the set of the first n elements of the queue output by

Algorithm 5, we have

V(CS1∪R) ≥ (1− 1/e) · V(CS1∪R′),∀R′, |R′| = |R| = n,

where S1 (resp. S2) is the dataset at the data receiver (resp. provider) side.

106

Algorithm 5 Prioritization Algorithm

Input: Two sets S1 and S2

Output: An order of elements in S2

1: Set T← S1

2: FIFO Queue Q ← {}
3: while S2 6= ∅ do
4: X ← arg maxX∈S2 V(MCX|T)
5: T← T ∪ {X}, S2 ← S2 − {X} , Q.inqueue(X)
6: end while
7: Return Q

The proof of Lemma 2 is similar as that in [36], except that in [36] S1 = ∅. Hence, we do not

repeat the proof here. Lemma 2 directly implies the following theorem.

Theorem 3 (Approximation Ratio). The coverage value of the transmitted set based on the order

output by Algorithm 5 is a (1− 1/e)-approximation of MaxInfo.

Note that the apprximation ratio matches the approximation bound in Corollary 1.

6.3.4 Transmission Protocol Design

0. Transmission Establishment

1. Asking for meta data

2. Reply with meta data

Data receiver Data provider

 Asking for data 1

Reply with data 1

 Asking for data 2

Reply with data 2

...

...

Offline

 preparation

Meta data

transmission

Online ordering

computation

Data

transmission

Stage (0)

Stage (1)

Stage (2)

Stage (3)

Figure 6.4: Transmission protocol illustration.

In this section, we present the transmission protocol, as illustrated in Fig. 6.4. Since we target

mobile platforms, the transmission is occurs in a disruption-tolerant (DTN) fashion; a device shares

its data with a peer or offloads to a backend server when the corresponding connection is established.

Thus, each transmission session (in which case we say the device is online) is followed by an idle

session (when we say the device offline).

107

Each transmission session consists of three stages; (1) meta data transmission, (2) online or-

dering, and (3) data transmission. Stages (1) and (2) are the transmission overhead. Metadata,

here, refers to the (information space) coordinates of data objects available at each node. In an

NDN-based implementation, these coordinates can be computed from data names (using the map

function). Hence, in our implementation, metadata refers to data object names. The idea being

that data object names are generally much shorter than the data objects themselves. Hence, it

makes sense to exchange the names first, then let each node specifically request from the other the

named data objects it deems complementary (i.e., not redundant with) its own.

Before transmission, an offline preparation operation that generates the meta data needs to be

carried out to reduce the overhead of the online ordering computation. We now present the offline

preparation algorithm and online prioritization algorithm in detail as follows.

Offline Preparation

The offline preparation stage outputs a meta data file which contains a list of data names as well

as the overlap set of each heavily informative data point as described below. (The overlap set of

data X contains any data Y s.t. CY ∩ CX 6= ∅.)

Consider two data points X and Y . If the coverage of X greatly overlaps with that of Y , then

after X has been transmitted, Y carries little extra information. Thus, we introduce a constant

threshold β > 1, such that, when the distance between X and Y is smaller than 1
β we only need

to consider one of them (w.l.o.g., say X) in the online prioritization algorithm. The other is put

in the lowest priority bin for transmission. We apply this rule repeatedly until no more points can

be assigned lowest priority. The surviving points (not assigned lowest priority) are called heavily

informative data points. Note in particular that if X has no neighbors Y whose distance from X is

smaller than 1
β , then X will never be assigned lowest priority and is therefore a heavily informative

data point. The heavily informative dataset contains all the data points like X.

Our offline preparation algorithm determines for each new data point whether or not it is heavily

informative. If it is heavily informative, it adds the point to the metadata file to be exchanged

on contact with another node. It is incremental in the sense that when new data points arrive,

we do not need to redo the preparation for old data. The psuedocode for the offline preparation

108

algorithm is presented below.

Algorithm 6 Preparation Algorithm

Input: Existing dataset S, existing meta data file, newly arrived dataset T
Output: Updated meta data file

1: From meta data, get the heavily informative dataset H of S
2: Sort H based on the lexicographical order of data coordinates in the k-D information space
3: D← ∅, N← ∅
4: for ∀S ∈ T do
5: Use binary search to find its overlap set OS ⊆ H
6: if ∃E ∈ OS , s.t. S ' E then
7: D← D ∪ {S},T← T− {S}, continue
8: end if
9: Add S to the overlap set of any element in OS

10: Insert S into H s.t. H remains sorted
11: N← N ∪ {S}
12: end for
13: Add the name following by the overlap set of each data in N to the front of the meta data file
14: Append names of data in D to the end of meta data file
15: Return the meta data file

In our online ordering stage, we only need to consider the heavily informative dataset. The

parameter β controls the cardinality of the set of highly informative data. The smaller β is, the

smaller the cardinality of this set. In practice, we can use β as a knob to trade-off the accuracy

and the time efficiency in the online prioritization as discussed below.

Online Prioritization

Online prioritization is described in Algorithm 7. After metadata (i.e., names of heavily informative

objects) have been exchanged, the receiver calculates the marginal coverage value of each data

object in the highly informative set obtained from the data provider , and puts the these values into

a max heap. Then, it sends a request for the data object D poped from the max heap, and at the

same time updates the marginal coverage value of each data object in the overlap set of D and do

the standard heapify. This process continues until the max heap is empty, then, if the connection

is still up, the receiver starts to pull data that not in the highly informative set in FIFO order.

109

Algorithm 7 Online Prioritization Algorithm

Input: The highly informative dataset S1 on the receiver side which is sorted based on the
lexicographical order of data coordinates in the k-D information space, meta data from the data
provider
Output: The transmission order (represented by a FIFO queue Q)

1: Initiate a Max-heap H that stores and sorts data points according to their associated values
2: for Each heavily informative S in S2 do
3: Use binary search to get its overlap set T ⊆ S1

4: Calculate vS = V(MCS|T)
5: H.add(S, vS)
6: end for
7: Initiate a FIFO queue Q
8: while H 6= ∅ do
9: X ← H.popMax()

10: . At the same time send request X to the data provider.
11: Q.enque(X)
12: For each data S in X’s overlap set OX , update vS = V(MCS|T∪Q), and update the heap H
13: end while
14: Append all other data in S2 to Q
15: Return Q

Overhead Analysis

The time complexity of Algorithm 7 is O(m log n + mn
k−1
k + mβk logm), where n is the number

of highly informative data in S1, m is the number of highly informative data in S2, and βk is the

size bound of a overlap set as stated in the offline preparation section. In the worst case, n = |S1|

and m = |S2|, however both of them are related to the parameter β. Thus β serves as a knob

to trade-off prioritization accuracy and computational efficiency in our algorithm. We will further

study the parameter β in the overhead evaluation.

6.4 Evaluation

In this section, we study the performance of Minerva. We first describe the experimental setup and

evaluation methodology of Minerva for both real-phone based experiments and simulations using

the T-Drive dataset collected by MSRA [6]. Then we present evaluation results.

110

6.4.1 Experimental Setup and Methodology

Minerva is designed for social sensing applications with resource constraints. Thus, we need to

evaluate two aspects of the system: (i) the overhead of data prioritization, and (ii) the application

performance, measured in terms of application-level metrics; namely, information coverage. The

following methodology was used for evaluation:

• Data prioritization overhead: In order to measure overhead under a wide set of workloads,

we generate synthetic load (i.e., synthetic data to be transmitted) that can be easily param-

eterized to represent a large set of relevant properties. These properties include the size of

the data set, the dimensionality of the data, and the degree to which the data is redundant.

We then test the overhoad of prioritizing such data on real phones.

• Application-level performance: In order to evaluate application-level performance metrics

(namely, coverage), we find an actual data trace of a participatory sensing application. We

then compare coverage when Minerva is used and when other data transmission schemes are

used, given a simplified network simulator.

To accomplish the above, we implemented Minerva on Google Galaxy Nexus smartphones [2],

equipped with a 1.2 GHz dual-core CPU, 1GB RAM, and 802a/b/n Wifi radio with Android

OS 4.1. Minerva is implemented using the Java language on top of PARC’s CCNx prototype

software [1]. The overhead study is conducted in an outdoor environment on real phones. The

application performance study uses a real-world taxi trace dataset, the T-Drive dataset [6,154,155],

which contains the GPS trajectories of 10, 357 taxi cabs during the period from February 2nd to

February 8th, 2008 in Beijing. The total number of points in this dataset is about 15 million and

the total distance of the trajectories is around 9 million kilometers. The trajectories covered are

shown in Figure 6.5.

6.4.2 Overhead of Minerva

A key goal in the overhead study is to understand the overhead of data prioritization (which

includes the overhead of metadata transmission for purposes of computing priorities) for a wide set

of workloads. Hence, synthetic data is used. In this study, workload generation does not attempt

111

Figure 6.5: tdrive data used in simulation

to mimic characteristics of any specific application. Rather, it attempts to investigate overhead

under a broad range of conditions that affect it. These include, the size of the data set (in terms

of the number of objects), the dimensionaity of data, and the degree of redundancy among data

items.

To explore the effect of data dimensionality, we generate data by (uniformly) sampling from a

k-dimensional box of unit size in the information space, where k is a configurable parameter that

represents the number of features (i.e., information space dimensions) considered in the Minerva

prioritization algorithm. We use a unit box and uniform sampling because it allows us to easily

control the degree of data redundancy by tuning the value of coverage interval associated with

individual data points. We focus on overhead only (as opposed to the time it takes to send the

data objects). Hence, we measure the overhead of sending metadata and computing priorities only.

At the of this overhead all objects are properly prioritized and ready for transmission. The results

of the overhead study are shown in Table 6.1.

The data set parameters considered in the table are (1) the number of features, (2) the number

of data points, (3) the coverage interval per point (and hence degree of redundancy of data),

and (4) the value of 1/β as defined in Section 6.3. The more data points are considered, the

more computation is needed for data prioritization. Similarly, the larger the coverage interval of

individual data points, the higher the redundancy (or the probability that two data points overlap in

coverage), and hence the higher the computation overhead of redundancy-minimizing prioritization.

The value of 1/β is a parameter of our algorithm that indicates its tolerance of imprecision in

redundancy minimization. The higher the 1/β, the more approximate the prioritization, and the

112

lower the data prioritization overhead, as discussed in Section 6.3. Rows 1-12 of Table 6.1 show

the total time in metadata exchange and prioritization between two android phones that have the

same amount of data points on both phones. Rows 13-16 show the corresponding overhead when

an android phone uploads data to a backend server with a 3.10GHz CPU and 8GB RAM.

Table 6.1: Overhead of Minerva

index
dataset features

(# dim, # points, interval, 1/β)
overhead(s)

1 2 , 250 , 0.05 , 0.1 0.321± 0.165
2 2 , 500 , 0.05 , 0.1 0.837± 0.208
3 2 , 750 , 0.05 , 0.1 3.070± 1.240
4 2 , 1000 , 0.05 , 0.1 7.205± 2.579

5 2 , 500, 0.01, 0.1, 0.339± 0.071
6 2 , 500 , 0.03 , 0.1 0.582± 0.104
7 2 , 500 , 0.05 , 0.1 0.837± 0.208
8 2 , 500 , 0.07 , 0.1 1.667± 0.320

9 2 , 500 , 0.05 , 0.15 0.700± 0.140
10 2 , 500 , 0.05 , 0.2 0.626± 0.145

11 3 , 500, 0.05 , 0.1 0.257± 0.093
12 4 , 500, 0.05 , 0.1 0.204± 0.040

13 2, (10000, 500), 0.01, 0.1 0.076± 0.044
14 2, (100000, 500), 0.01, 0.1 1.152± 0.093
15 2, (1000000, 500), 0.01, 0.1 4.773± 0.537
16 2, (1000000, 500), 0.01, 0.2 0.727± 0.104

17 Wifi connection establish time 2.002± 0.106

From the table, we observe that the overheads increase as the number of data points increase

(rows 1-4) or as the coverage interval increases (rows 5-8), but decrease as 1/β increases (rows

9-10), which corroborates expectations. When the number of data points is 1000 on both phones

(row 4), Minerva takes about seven seconds to prioritize and all objects, which is unacceptable.

The overhead drops off sharply with size of the data set (rows 1-3). With 500 objects (row 2), the

overhead is less than one second, which is tolerable. Measurements reported in the next section

show that one can send roughly 250K bytes during that time. Hence, if objects are 250K bytes

long, the overhead of prioritizing 500 objects is roughly equal to the transmission time of one

object. In other words, the prioritization overhead is acceptable as long as the individual objects

are sufficiently long.

The effect of the number of features on overhead is shown in row 11 and 12 in the table. It can be

seen that the overhead decreases in higher-dimensional spaces (all else being equal), because for the

113

same number of data points and the same coverage interval, higher dimensionality means a sparser

space, and hence less redundancy, and less overhead for resundancy-minimizing prioritization.

The overheads when data is offloaded from a mobile device to the backend server are shown in

Row 13 to 16. The number of data points is set to 500 on the participant side, and the number

of data points on server side is set to be 10, 000, 100, 000, and 1, 000, 000. We observe that as the

number of data points increases on the server side, the overhead grows. We can also observe that

the slope of overhead increase becomes smaller when the number of data points at the server side

becomes larger. The reason is that the coverage improvement grows submodularly; when the server

already got a large enough amount of data, the probability that a new data point is redundant is

close to 1.

0 2 4 6 8

x 10
4

0

0.2

0.4

0.6

0.8

1

Time (ms)

In
fo

 C
o
v
e
ra

g
e
 I
m

p
ro

v
e
m

e
n
t

Minerva_0.05

Minerva_0.1
Minerva_0.15

Minerva_0.2
Dist

Fifo

(a) Coverage interval 0.063

0 2 4 6 8

x 10
4

0

0.2

0.4

0.6

0.8

1

Time (ms)

In
fo

 C
o
v
e
ra

g
e
 I
m

p
ro

v
e
m

e
n
t

Minerva_0.05

Minerva_0.1
Minerva_0.15

Minerva_0.2
Dist

Fifo

(b) Coverage interval 0.077

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

Time (ms)

In
fo

 C
o

v
e

ra
g

e
 I

m
p

ro
v
e

m
e

n
t

Minerva_0.05

Minerva_0.1
Minerva_0.15

Minerva_0.2
Dist

Fifo

(c) Coverage interval 0.089

Figure 6.6: Performance of Minerva with different coverage intervals and 1/β values in phone-based
experiments with synthetic data.

114

Next, we study (in Fig. 6.6) the coverage achieved with Minerva transmissions between two

smartphones using the synthetic data. The number of data points is set to 500 on both phones,

and the coverage interval is set to be 0.063, 0.077, and 0.089 (thus, in expectation, one data point

overlaps with 2, 3, and 4 other points respectively). For each interval value, we plot the coverage

improvement using Minerva (with 1/β ∈ {0.05, 0.1, 0.15, 0.2}), Dist (a distance-based data selection

algorithm used in PhotoNet [118]) and FIFO. The x-axis is the time in milliseconds that starts

right after the connection is established. The y-axis denotes the normalized information coverage

at the receiver side, where a coverage of 1 is equivalent to transmitting all sender data. Remember

that the objective of prioritization with Minerva is maximize the coverage of transmitted data (i.e.,

achieve close to 1 coverage as early as possible during transmission).

From Fig. 6.6, we observe that Minerva outperforms the other algorithms in general in that

it achieves higher coverage earlier on. The larger the coverage interval of individual objects, the

better Minerva performs. From the figure, to get 80% coverage, Minerva uses 10 (8 and 5 resp.)

seconds for a coverage interval of 0.063 (0.077 and 0.089 resp.). Dist uses around 20 seconds to

achieve 80% coverage, while FIFO takes more than 50 seconds. Minerva coverage also decreases

somewhat with increased 1/β due to the approximation involved.

6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Time (Hour)

In
fo

 C
o
v
e
r
a
g
e
 I

m
p

r
o
v
e
m

e
n

t

Minerva

Distance

FIFO

Random

6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Time (Hour)

In
fo

 C
o
v
e
r
a
g
e
 I

m
p

r
o
v
e
m

e
n

t

Minerva

Distance

FIFO

Random

(a) Coverage interval 50m (b) Coverage interval 100m

6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Time (Hour)

In
fo

 C
o
v
e
r
a
g
e
 I

m
p

r
o
v
e
m

e
n

t

Minerva

Distance

FIFO

Random

50 100 500
0

0.2

0.4

0.6

0.8

1

Interval Length (m)

In
fo

 C
o
v
e
r
a
g
e
 I

m
p

r
o
v
e
m

e
n

t

Minerva

Distance

FIFO

Random

(c) Coverage interval 500m (d) Final coverage improvement

Figure 6.7: Performance of Minerva with different coverage intervals in large-scale real-world GPS
trace simulations.

115

6.4.3 Large-scale Trace-based Evaluation Results

In order to test application-level performance with Minerva in large-scale applications, we emulate

a hypothetical real-time street view application. This application applies social sensing in a future

where vehicles are equipped with cameras. Participants are requested to send pictures from their

car’s cameras to the base station when they encounter an access point. These pictures are then

used on the server to provide a real-time view of city streets on demand.

In this evaluation, we run simulations on real taxi traces in Beijing (the T-Drive dataset). We

consider data within the area from latitude 39.5oN to 40.5oN and from longitude 116oE to 117oE,

where most data resides. In the simulation, we assume that there are two sinks that collect data

for the backend server as indicated by the two stars in Fig. 6.5. They are located in two relatively

busy roads, where cars can have a higher chance of offloading their data. Cars are assumed not to

share data with each other. In our simulation, if the distance between a car and a sink is smaller

than 200 meters, we assume that the car can offload data. We assume that each data point (a

picture) is 1M bytes long.

We determine the transmission duration of each car by examining its speed when it enters the

transmission range of a sink; the speed can be estimated from the time and location information

of the latest GPS samples.

In order to obtain a realistic WiFi transmission rate, we conduct a small experiment where we

use a smartphone to send a long file over Wifi in an outdoor environment to a desktop in our lab.

The average data transmission rate is found to be approximately 250KB per second, and is set

accordingly in the simulation.

In our simulations, we consider two features per data sample, the latitude and the longitude.

The coverage interval for each data point is set to 50, 100, and 500 meters respectively in subsequent

simulations. We simulate for 10 hours’ data (1,500,000 points) and assume at the very beginning

the server does not have any data.

The results are shown in Fig. 6.7. From Fig. 6.7, we observe that at the beginning of data

collection, the four algorithms compared yield similar performance. Minerva is slightly worse than

the others due to its overhead. After collecting data for one hour, Minerva begins to outperform the

others. The reason is that Minerva is designed for eliminating redundant data. At the beginning,

116

there is little redundancy since the server has only a limited amount of data. Hence, the overhead

is not paying off in terms of application-level metrics. As more data is collected, more redundancy

is exploited by Minerva. Eventually, Minerva outperforms all other algorithms in terms of attained

coverage. Note that the slope of the coverage curves changes over the course of the day (where the

x-axis is time of day). This is because more data is collected during rush hour, roughly between

6-8am and 4-6pm. In summary, evaluation shows that redundancy-minimizing data prioritization

has promise in terms of improving coverage of the physical environment in social sensing. However,

overhead remains an issue, which reduces applicability except where sensed objects are sufficiently

large (e.g., multimedia objects).

6.5 Conclusions

In this chapter, we presented Minerva; an information-centric programming paradigm and toolkit

for social sensing. Minerva is geared for social sensing applications, where different sources (par-

ticipants sharing sensor data) often overlap in information they share, which distinguishes them

from a regular publish-subscribe system where publishers are independent. One contribution in

this chapter lies in an algorithm for maximizing information delivery from publishers to subscribers

taking into account the non-independent nature of content. We analytically prove that our trans-

mission prioritization scheme is within a constant approximation ratio from a “clairvoyant” optimal

solution. We develop a programming toolkit to embody our prioritization scheme. The scheme

is implemented over NDN. To the best of our knowledge, this is the first work that leverages the

benefits of NDN in maximizing information coverage for social sensing applications. Evaluation

results show that our algorithm outperforms other candidates in terms of information coverage for

large data objects.

117

Chapter 7

Tree-based Information-Maximizing
Data Delivery

The expanding proliferation of sensors available in social spaces (such as smartphone sensors, cam-

eras, and GPS devices) and the exponential growth in digital data generated in recent years, far

outstrip the human capacity to consume the resulting information. This trend suggests that an

important category of future networked applications and services will focus around information

sampling to bridge the widening gap between data generation rate and human consumption capac-

ity.

Current transport abstractions, such as reliable transmission in TCP, offer pipes where each

bit of input must be delivered at the output. In the future, driven by information overload, a

new higher-level abstraction will become increasingly important: namely, one that offers at the

output a representative sampling of information at the input, thereby reducing the large body of

input to a readily consumable size. For wider applicability, this sub-sampling must be done in

an application-independent manner. Nevertheless, it must do better than random selection. The

information funnel implements such an abstraction.

The information funnel is targeted for scenarios, where resource constraints (e.g. limited trans-

mission bandwidth or constrained power) or efficiency considerations prevent transmission of all

collected data. In these scenarios, with limited number of data objects can be transmitted, the

information funnel tries to sample a representative subset of the data objects that maximizes the

information utility by minimizing data redundancy. Much prior work on data collection in sensor

networks addressed the challenge of optimal data selection (based on different application-level

metrics) (e.g. [85]), that judiciously chooses the best data objects to transmit when transmission

of all data is impossible or undesirable. Unlike ours, such protocols are application specific, as

they use application-specific information and optimize application-specific performance metrics.

Therefore, their work is not general; it will have a poor performance or even not work in a different

118

application.

We also distinguish ourselves from work on sampling theory that determines how to sub-sample

time series data in ways that generically minimize a measure of loss(e.g. [50] [83]). In contrast to

these approaches, and in seeking a general service, we do not impose any specific requirements on

the underlying data type. For example, the collected data may constitute images, text, or sound

clips, as opposed to numeric data types.

The chapter complements the aforementioned literature by exploring the potential and limita-

tions of application-independent maximization of delivered information utility (that is to minimize

delivered redundant data). By application-independent, we mean that the solution does not use

any application-specific knowledge or semantics. It only uses the hierarchical data names, treated

as bit strings with no semantic interpretation. This is a major difference from sampling theory

that requires understanding the application-specific semantics of data objects.

We exploit the named-data networking (NDN) paradigm [64] as an enabler for information

utility maximization. NDN is originated because of the fact that people care more about what

data they received but not where they get the data. Therefore, NDN names data objects, not

hosts, which distinguishes it from the mainstream communication paradigm based on TCP/IP.

In NDN, the information consumer (e.g., the data collection point) sends interests in information

objects described by a given name prefix. Objects that match the specified prefix are returned in

response to the respective interests. The information funnel is implemented on top of NDN as a

thin layer that decides on the order of data transmission.

The chapter investigates (and confirms) the hypothesis that by giving data objects hierarchical

names, where the length of the common prefix between two names is a rough measure of similarity

between the corresponding objects, information-maximizing ordering can be achieved using policies

that diversify the transmitted names. Here the similarity between two data objects refers to the

possibility that the value of one can be approximated by the other’s. Our service is geared for social

sensing applications in which a receiver (such as a remote back-end server) acts as a collection point

for a group of (typically mobile) nodes that report data from the physical environment. Often the

nodes are disconnected and come only into sporadic contact with the collection point. The data

collected usually carries much overlap. For example if data names encode location and time of

119

data collection, the more similar the names are, the more likely the overlap between the named

measurements and the less is their aggregate utility. A data collection protocol that diversifies

the collected names will tend to maximize information utility as well. It remains to show how

exactly names should be diversified in the presence of resource constraints, which is the topic of

this chapter.

The rest of the chapter is organized as follows. Section 7.1 presents our notion of optimality and

suggests heuristics with near-optimal behavior. Section 7.2 presents evaluation results. Section 7.3

reviews related work. The chapter concludes with Section 7.4.

7.1 The Information Funnel

Social sensing applications share in common the fact that they (i) collect data objects from one

or more (typically mobile) sources, (ii) do not need all sender data to operate correctly, and (iii)

perceive a quality of information wherein receiving more data on the same “topic” has diminishing

return. For example, to estimate the current speed of traffic on city streets, it is sufficient to obtain

representative speed measurements from a subset of vehicles. More data will have diminishing

return. Similarly, in a disaster-response application where first-responders pictorially document

damage and report it to a rescue site, only a few pictures of each problem spot are needed to

understand the situation. More pictures have diminishing return. This motivates the information

funnel abstraction, described below. We discuss challenges in implementing it and define a notion

of optimality. Finally, we present its design and implementation on top of a named-data-networking

stack.

7.1.1 The Basic Abstraction

The information funnel targets applications that implement persistent data collection tasks. We

require that data objects have a hierarchical name space. A funnel is associated with a name prefix

in that space (analogous to a path prefix in a UNIX directory tree), defining the subtree in which

data of interest to the application resides. Content that belongs to the subtree starting with that

prefix is the target of collection. Senders publish content under appropriate names. If those names

fall within the target subtree, the corresponding objects become targets for collection.

120

For example, in an urban traffic speed monitoring application, the name space might look

something like this: /ndn/app/city/street/block/speed. The collection point creates a funnel

(defined by the name prefix of the above tree, say /ndn/app) to populate this space with data

from senders. The design of the name space is up to the application developer. In applications

where mobile entities share a physical environment in which they measure some quantity, such

as cars measuring traffic speed, the name space might associate names with parts of the physical

environment (e.g., street blocks). In this case, mobile sensors will assign data names depending on

what part of the environment they are sensing. In applications where sensors are fixed, such as

security cameras in rooms, data names may be associated with sensor IDs.

An important goal of our design is to accommodate mobility and disconnected operation. Hence,

we assume that the normal state of senders is “offline”. For example, mobile sensors may not have

connectivity until they meet an access point. Smart phone users may disallow an application from

using their 3G/4G data plan quota. First responders in a post-disaster scenario may communicate

only using short-range radios, and thus be disconnected unless in close proximity, because other

communication infrastructure is out of power or destroyed.

In general, at a given time, the receiver has a partially populated content tree. When a sender

has a transmission opportunity (e.g., encounters an access point), the receiver needs to be updated

on any new data the sender has, under that tree, that the receiver has not yet received. Two

interesting questions arise: how to inform the sender efficiently of data gaps at the receiver, and

in what order should such missing data objects be sent? Below, we first describe the underlying

challenges, then define a notion of optimality and present our algorithm.

7.1.2 Data Ordering Challenges

To implement an update between a sender and the receiver of the funnel, the trivial solution is to

have each sender collect data under /ndn/app and forward it when possible to the receiver. Once

data is delivered, it can be discarded at the sender locally or marked as delivered. This solution

works well when senders populate non-overlapping parts of the content tree, and when they do

not exchange their collected data among themselves for uploading to the server. In this case,

each sender can easily tell which of its data does not yet reside on the receiver. In social sensing

121

applications, many senders may report data on the same event. Hence, sending all of one’s newly

collected data to the receiver may be suboptimal because the receiver may have already received

that (or similar) content from another sender. The receiver needs to tell the sender (either exactly

or approximately) what information it already has.

Summarizing the receiver’s information state to the sender is easy when data has a linear order

(e.g., “I have all data up to time-stamp X”). This, unfortunately, is not true in our case. Two

factors compound our problem. First, the receiver may have only partial data that populates the

name space sparsely. Hence, many gaps exist in data coverage, making their exact enumeration

hard. Second, the receiver may not know the totality of data generated under a given name subtree.

For example, in our vehicular sensing application, a receiver can never tell that it has “all data

from Main Street” because it does not know how many vehicles drove on Main Street that may not

have uploaded their data yet. Hence, there is no easy way to prune subtrees from consideration on

account of completeness.

Another question is regarding the order in which a sender should send the data that its receiver

is missing. If the sender sends such data in the order it was collected, the receiver may receive a

lot of data from one branch of the name space and no data from other branches, resulting in a very

unbalanced coverage of content. Instead, it is better to diversify by sending a sampling of data

from each branch. The need for diversification calls for a definition of optimal information utility

to guide the data ordering algorithm, as formulated below.

7.1.3 Optimal Transmission Order

Consider the problem where a sender must order a set of data objects for transmission to a receiver

(that fall within the content space of the funnel). An optimal transmission order is sought, where

the utility of the transmitted data to the receiver is maximized. In this section, we formulate this

problem more carefully and describe our solution. We initially assume that all objects have the

same size and the same importance (weight). In subsequent sections, these assumptions will be

removed.

A primary design objective is to keep the formulation as simple as possible, since quantities such

as data utility are notoriously hard to compute exactly. Clearly, if utilities are set subjectively or

122

arbitrarily, then optimizing them does not make much sense. To render the problem of finding an

optimal transmission order meaningful, we must seek an approach that makes minimal assumptions

about utility curves. For example, we explicitly stay away from schemes that require computing

absolute utility values for data objects, since those are subjective.

Instead, we assume that the following two properties hold regarding the marginal utility of data

objects at different parts of the content tree:

The hierarchical similarity property The hierarchical name space is designed such that

items that share a longer name prefix (measured in the number of tree levels) are more simi-

lar. By similarity, we mean that one can approximately be substituted by the other. For exam-

ple, speeds at /app/urbana/main/1200 and /app/urbana/main/1000 are more similar than speeds at

/app/urbana/main/1200 and /app/urbana/green/1100 since the former pair shares a longer common

prefix. A corollary is that the marginal utility of a data object increases with the decreasing length

of the longest common prefix between itself and any of the previously collected items. This is be-

cause the smaller that prefix, the less substitutable the item is by any of the ones already collected,

thus the higher marginal utility it has.

The diminishing return property The marginal utility of adding a data object to a name

subspace is diminishing; adding the first item to /ndn/app/urbana/main has a larger marginal utility

than adding the second item, which in turn has a larger marginal utility than adding the third one,

and so on.

The hierarchical similarity assumption implies that, at each step, the optimal transmission order

must pick the data object whose maximum common prefix (with all previously collected ones) is

shortest. If there is a tie between two (or more) such items, the diminishing return assumption

implies that we pick the one that has the least populated prefix. In other words, we count how many

data objects were collected under each prefix, then pick the one whose prefix has the smaller count.

We call it the occupancy count of the prefix. If there is a tie again, we break the tie by picking the

item on the left-most branch (which is the one with the most recent timestamp assuming branches

are chronologically sorted).

More formally, let `i(J) denote the longest common name prefix of a data object i with respect

123

to a data set J , |`i(J)| denote its length, and `i(J) denote its occupancy count. We denote the

marginal utility of a data object i with respect to a data set J as U(i|J). Given any two data

objects, i and j, and a data set J , we can compare the marginal utilities of the two data objects

as follows.

Marginal utility comparison rules:

• If |`i(J)| < |`j(J)|, then U(i|J) > U(j|J),

• Otherwise, if |`i(J)| = |`j(J)| and `i(J) < `j(J), then U(i|J) > U(j|J),

• Else (i.e., if |`i(J)| = |`j(J)| and `i(J) = `j(J)), U(i|J) = U(j|J).

An optimal transmission order is one that maximizes the marginal utility, for every count k

of transmitted objects, over all ways of picking k objects for transmission. A greedy solution is

to transmit the object with the minimum |`i(J)|. In case of a tie, transmit the object with the

minimum `i(J). In case of a a second tie, break the tie arbitrarily (e.g., transmit the left-most

child). In the following section, we illustrate our idea through an example and discuss optimality.

7.1.4 An Example

An example of the proposed algorithm is shown in Figure 7.1. The square boxes indicate data

objects at the leaves of the content tree. The circles are intermediate nodes (directories) in the

name space.

A2A1

M1 G1 G2 P1U1 U2 U3

main
prospect

speeds

champaign

alerts

urbana

green
university

/ndn/map

Figure 7.1: An example

Let the receiver have no data objects initially. There is a tie between all the items in that none

share a common prefix with what the receiver has, and the name space has zero occupancy count.

Picking the left-most branch, we send item M1 first. Next, the items that minimize the longest the

common prefix with M1 are A1 and A2. Their longest common prefix with previous items (i.e., M1)

is the same; namely, /ndn/map, which has zero occupancy count. The tie is broken by following

124

the leftmost branch (i.e., send A1). The next items that minimize the longest common prefix with

those transmitted earlier are P1 and A2. Their respective longest common prefixes with earlier

items are /ndn/map/speeds and /ndn/map/alerts. Tying on occupancy count (namely, one item was

transmitted under each prefix), the leftmost item (i.e., P1) is transmitted next. Following that,

A2 minimizes the longest common prefix and is transmitted next. The next items that minimize

the longest common prefix with those transmitted earlier are G1, G2, U1, U2, and U3. They tie on

occupancy of their prefixes and so the leftmost one is transmitted (i.e., G1). Next, items U1, U2,

and U3 tie and U1 is transmitted. It can be seen that, following the above logic, we then transmit

G2, U2, and U3 in that order.

7.1.5 Receiver Feedback

In the previous section, we have not addressed the case where the receiver already has a partially

populated name space. To accommodate this scenario, when a sender comes in contact with the

receiver, the receiver first sends the sender a packet that contains occupancy counts of all prefixes

up to a configurable tree level n. The sender will initiate the occupancy number of the name

tree based on the receiver’s feedback. The initialization will cause transmission to favor data

that resides in prefixes that the receiver has less (or no) data from. Consider again the example

shown in Figure 7.1. Assume that the receiver already has items G0 and P0 that reside at the

same prefixes as G1 and P1, respectively. The transmission order will be A1, then A2 (minimizing

longest common prefix with previously collected items and favoring the prefix with lowest occupancy

count), followed by M1 and P1 (since they are the next to minimize the longest common prefix with

previously collected items), then U1, G1, U2, G2 and U3 (tie on longest common prefix, so round

robin on occupancy count).

7.1.6 The Algorithm

In this section, we present the prioritization algorithm and prove its optimality. Its time complexity

analysis is in the appendix. At the first look of the above tree traversal, it seems that our algorithm

is just a simple breadth-first traversal, with round robin. However, after a careful examination,

the breadth-first traversal does not always give the optimal prioritization by the marginal utility

125

comparison rules; it only guarantees optimality when all the data nodes (leaves) reside at the same

tree level. We implement the algorithm in a recursive fashion, as shown in Algorithm 8.

Algorithm 8 The prioritization algorithm
Input: The application root name prefix R, the named data set I of the sender, the occupancy tree T of the
receiver
Output: A prioritized order of object names

1: Return Pri(R, I, T)
2:

3: procedure Pri(name prefix P, data set I, occupancy tree T)
4: if P is leaf node then
5: Return the corresponding data object I.get(P)
6: end if
7: order = [] . Initiate an empty list of lists
8: for Each branch b of P do
9: order.append(Pri(P/b, I, T)

10: end for
11: result = [] . Initiate an empty list
12: while order is not empty do:
13: S = MinChild(order, T)
14: e = LeastOccupancy(S, T)
15: result.append(e)
16: UpdateOccupancy(e, T)
17: if result[e.setIndex] is empty then
18: result.pop(e.setIndex)
19: end if
20: end while
21: Return result
22: end procedure

In this algorithm, the input parameters include the application root name prefix R under which

all the application data resides in the name space, the data set at the sender side I, and the

occupancy tree T summarizing the name space occupancy at the receiver side. The algorithm

calculates the prioritization order for each node at each level in the name tree in a bottom-up

fashion. To compute the prioritization order of an inner node in the name tree, it “merges” the

prioritization results of all its children nodes in a prioritized order. The merge process has three

steps: (1) finding the data objects having the least common prefix with respect to the data set on

the receiver side and assign highest priority to them (in the procedure MinChild), (2) balancing

the occupancy tree at the receiver side by finding the data object residing at the name tree branch

with least occupancy number (in the procedure LeastOccupancy) , and (3) update the occupancy

number of the occupancy tree T (by the procedure UpdateOccupancy). The return of Algorithm 8

is the prioritized order of the data objects at the sender side.

126

Theorem 4. By marginal utility comparison rules in Section 7.1.3, Algorithm 8 returns the optimal

prioritization order of the data objects at the sender side when data objects have the same size and

weight.

The proof of Theorem 4 is in the appendix. Please note that the optimality of Algorithm 8

holds without assumption on the number of data objects transmitted in one transmission session. In

other words, for any k data objects transmitted in one transmission session Algorithm 8 is optimal,

where k is no greater than the total number of data objects at the sender side.

7.1.7 Variable Object Length and Differentiated Service

In the above discussion, we assumed that all objects have the same length. In general, objects

in some parts of the tree might be longer than others. For example, one branch might contain

images with high quality (i.e. high resolution), whereas another contains images with low quality.

To balance data collection from different branches, rather than maintaining a collected occupancy

count for different prefixes, we maintain the number of collected bytes. Hence, when an object is

selected, the occupancy count of its ancestor nodes in the name space is incremented by its length,

as opposed to by one in UpdateOccupancy (see Algorithm 8). The approach will balance the

bytes collected instead of objects. Besides the difference in balancing occupancy compared with

the uniform data size, in this variable data object size case, we also want to transmit the data

objects with the highest marginal utility “density”, which means that in the MinChild procedure,

if two data objects under the same name prefix have the same marginal utility (i.e. the same

length of the common name prefixes), the one with smaller size will be selected to transmit first.

By modifying Algorithm 8, we can guarantee that the output prioritization order of the procedure

Pri is in decreasing order of the data marginal utility density. However, due to the occupancy

balancing of Algorithm 8, the property of decreasing marginal utility density is not guaranteed of

the final returned prioritization order as shown in Theorem 6 in the appendix.

Finally, we can offer some prefixes preference over others by specifying a transmission weight,

wp for each prefix p. Accordingly, the function UpdateOccupancy in Algorithm 8 updates the

occupancy count by the total bytes transmitted divided by the weight of the prefix. Hence, prefixes

with higher weights will grow their (weighted) occupancy count at a slower rate resulting in an

127

amount of received content that is proportional to the weight of the prefix.

7.1.8 System Design and Implementation

The system contains three layers as shown in Fig. 7.2; (1) the application layer, (2) the information

funnel layer, and (3) the NDN layer. The application layer contains all the application specific

tasks, such as sensing and naming the data objects. The information funnel layer is designed for

the generalized application-independent information-maximizing transmission. This novel design

of separating application specific tasks from application independent tasks greatly simplifies the

application development for both the sensing application on mobile devices (the clients) and the

data collection application running on the backend server. In the rest of this section, we first

introduce the APIs provided by the information funnel layer to the applications on both the mobile

devices and the backend server respectively. Then we present how the information funnel layer

interacts with the NDN layer.

Storage Prioritization

Information Funnel

NDN Layer

Data flow

Control flow
(1) & (2)

(3)

(4)

Application
NamingSensor

Figure 7.2: Information funnel structure

For mobile sensing applications, the funnel layer provides three APIs. The first one is Create-

FunnelSource() to start the client funnel thread for the information-maximizing data transmission.

This API takes two parameters, the name prefix of the funnel and the device ID. The client funnel

thread first allocates the funnel repo to cache the data objects under the name prefix of the funnel,

and it actively probes the WiFi connection status. Once the connection is built, the thread initi-

ates the data transmission in the prioritized order, which will be discussed later. Another API is

PutToFunnel() to put data objects to the funnel repo. Its parameters are the funnel prefix, the

data name, and the data object pointer. This function checks the name of the data object and only

put the data with the funnel name prefix to the repo. The third API is ReleaseFunnelSource()

for removing the funnel and recycling the resources to the OS. It takes only one parameter which

is the name prefix of the funnel.

128

For the backend server application, the funnel layer also provides three APIs. All the three APIs

only take one parameter, the name prefix of the funnel. The first API is CreateFunnelSink() to

allocate a local repo and start a thread called server funnel thread with a name prefix, the second

one is ExtractFromFunnel() to extract data objects from repo to the above server application,

and the third one is ReleaseFunnelSink() to remove the funnel and recycle the OS resource.

After introducing the funnel APIs to the application layer, we present how the funnel inter-

acts with the NDN layer for information-maximizing data transmission. The client funnel thread

running on the mobile device actively probes the WiFi connection status. Once the WiFi con-

nection is setup, it broadcasts an interest packet with the funnel name prefix. For example,

/ndn/uiuc/maps/[ID]/[timestamp]/summary, where ID is the device ID and timestamp is the current

local time. If the server funnel thread is created under the same name prefix, say /ndn/uiuc/maps,

then the server responds with a data packet that contains the local occupancy tree of the name

space (summarized to some level) as defined in Algorithm 8. Meanwhile, the sever funnel thread

sends an interest packet with name /ndn/uiuc/maps/[ID]/[new timestamp]/list to ask for the pri-

oritized name list, where ID is the mobile device ID and new timestamp is the server local time.

After the client receives the occupancy summary of the server, it runs Algorithm 8 to prioritize

the cached data objects in the repo and generate a name list. Upon receiving the interest packet

/ndn/uiuc/maps/[ID]/[new timestamp]/list from the server, the client funnel thread responds with

a data packet of the name list. Then, the server fetches the data objects one-by-one according to

the list.

Note that we add timestamp to the interests that are either sent by client asking for the server

occupancy tree or sent by the server requesting the name list. The timestamp guarantees that

those interests finally reach the end node rather than some intermediate cache. Although the in-

net caching design of NDN accelerates the data transmission (for example, data dissemination from

a content provider to content consumers), in our application we need those requests reach the end

nodes because the state of either the server or the mobile device probably has already changed

since last communication, thus the cached data probably be meaningless. However, the interests

requesting data objects do not contain timestamp. With the assumption that the application will

name different data objects differently, the funnel can use the NDN in-net caching to accelerate

129

the data transmission.

7.2 Evaluation

In this section, we study the performance of our algorithm to maximize the marginal information

utility. We first introduce our methodology for the evaluation, and then evaluate the performance

of the information funnel.

7.2.1 Methodology

We evaluate two aspects of the system: (1) the overhead of the prioritization, and (2) its perfor-

mance by comparing with other state-of-the-art solutions. To measure the overhead in practical

scenarios, we implement the information funnel on Google Galaxy Nexus phones [2]. Each phone

is equipped with a 1.2 GHz dual-core CPU, 1GB RAM, and running Android OS 4.1. The infor-

mation funnel is implemented using the Java programming language on top of the PARC’s CCNx

prototype software [1]. The data set used in the evaluation is the T-Drive data set [155] collected

by MSRA. We use the taxi traces in the urban area of Beijing, China, with GPS coordinates from

latitude 39.5oN to 40.5oN and from longitude 116oE to 117oE, where most data points reside.

In the evaluation, we assume the social sensing application provides a hypothetical service called

“city view everyday”, which is an improved version of the Google street view, where the user can

see up-to-date street changes day-by-day as recorded by cameras in cars on street. This social

sensing application needs to collect data objects (i.e. pictures) continuously from participants (i.e.

cars).

To study the prioritization performance of the information funnel, we run a simulation on the

T-Drive data set with assumptions that:

1. There are two WiFi sinks (gateways to one central server) to collect data that are located on

two busy streets as shown in Fig 7.3(c),

2. The coverage range of each WiFi gateway is 100 meters,

3. The pictures are 100KB each,

130

4. The WiFi bandwidth is from 700Kbps to 1Mbps, which is estimated using the campus WiFi

network, and

5. The speed of each cab is from 40km/h to 80km/h, which is estimated from the street speed

limits of Beijing.

We simulate for 10 hours during which 50,000 data objects are collected by cabs (of which only

15% are uploaded to the server) and we assume that at the very beginning of the simulation the

server does not have any data.

The area in the simulation is partitioned into 400 tiles, and each tile is further partitioned

into 16 cells. The name of each data object (picture) is following the structure defined as

/citysense/tile idx/cell idx/filename. So there are two possible levels of summary for the

occupancy tree at the receiver (the central server) side.

We compare the performance of the Information Funnel with three baseline algorithms: (1)

FIFO, which transmits the data objects in the fifo order of their time stamps, (2) Distance-

based prioritization algorithm in PhotoNet [119] which always transmits the data object with the

longest minimum distance from the data objects at the receiver side first, and (3) Coverage-based

prioritization in Minerva [138], which always transmits the data object with the largest marginal

coverage, where the side length of the coverage area of each data object defined to be 100 meters and

we consider the information space is 2D. (Please refer to Minerva [138] for the detailed explanation

of the configuration.) In the following section, we present the evaluation results of the information

funnel, and we henceforth call the algorithm used in the information funnel as the “name-based”

algorithm.

7.2.2 Evaluation Results

The computational overhead of data ordering results are shown in Table 7.1. The prioritization

computation of the Information Funnel is on a Google Galaxy Nexus phone, because it is a client-

side algorithm, while the computations of the distance-based and coverage-based algorithms are

on a desktop with a 3.2GHz Intel i5 quad-core CPU, because they are designed to run on the

data collection server. The average, maximum, and 80th percentile overheads are shown in the

table, where the 80th percentile means that in 80% of the transmission sessions the computation

131

time is no more than this value. In the table, we also compare different levels of receiver feedback,

denoted by X (as in Named-based(X)), where X = 0 means no feedback, and X = 1 (resp. X = 2)

means the receiver summarizes the occupancy of the top one level (resp. two levels) of its name

tree of all the local data objects under the funnel’s prefix. Note how the computational overhead

introduced by data ordering in the named-based algorithm is much less than that introduced

by distance-based and coverage-based algorithms. This is because the previous algorithms were

quadratic in the number of items to prioritize, where ours is in the order of O(n log n) (Theorem 5

in appendix). Considering that the WiFi connection time is around 2 seconds, the computational

overhead introduced by the Information Funnel is negligible.

Table 7.1: Overhead study results
Algorithm avg(ms) max(ms) 80%(ms)

Name-based(0) 0.000 0.001 0.000
Name-based(1) 0.310 7.491 0.180
Name-based(2) 0.315 7.658 0.189
Distance-based 14.212 609.992 6.441
Coverage-based 14.418 369.931 7.286

Fig. 7.3 shows coverage performance of the algorithms, where we consider a cell of the map

covered if at least one picture was uploaded from there. Please note that more uniform distribution

of points in the figure implies a larger coverage. From Fig. 7.3, we clearly observe that FIFO is

the worst algorithm, since the data collected by it covers the smallest area, and the distance-based

and coverage-based algorithms performs better than FIFO, whereas our name-based algorithm is

the best (covers the largest area).

Table 7.2: Coverage study results
Algorithm tile cover. cell cover.

Name-based(2) 100% 95.54%
Name-based(1) 100% 94.23%

FIFO 85.96% 68.90%
Distance-based 94.74% 78.74%
Coverage-based 98.25% 89.76%

The actual percentage of cells (and tiles) covered by the compared algorithms is shown in

Table 7.2. Note that, our algorithm maximizes both metrics.

Fig. 7.3(f) illustrates the impact of our differentiated service extension, where we assign a higher

132

0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

2

1

(a) Name-based(2) (b) Name-based(1) (c) FIFO

0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

(d) Distance-based (e) Coverage-based (f) Name-based (weighted)

Figure 7.3: Performance of information funnel.

weight to the area [0.35, 0.4]× [0.4, 0.45], identified by the blue rectangle. Compared to Fig. 7.3(a)

where the data has the same weight, we clearly observe that more data (more red) is collected

within this rectangle than in Fig. 7.3(a).

Table 7.3: Coverage study with variable data size
Algorithm tile cover. cell cover.

Name-based(2) 100% 95.41%
Name-based(1) 100% 93.70%

FIFO 85.09% 68.50%
Distance-based 93.86% 78.22%
Coverage-based 97.37% 88.45%

Next, we study the coverage performance of the algorithms with variable data sizes. In this

experiment, we randomly assign data objects sizes ranging from 100KB to 200KB. Please note

that in our simulation, we first generate the random data size and then run the simulation, which

guarantees that all the algorithms run on the same data set. The coverage performance is shown

in Table 7.3. Note that, our algorithm maximizes both metrics.

The evaluation shows that named-data networking can be leveraged for efficient automatic

coverage (and hence, information utility) maximization simply by giving data hierarchical names,

where length of the common prefix grows with data similarity.

133

7.3 Related Work

Cyber-physical and sensing applications, where data objects are collected from the physical world,

typically exhibit significant redundancy in collected data. This calls for prioritizing data collection

in a way that reduces redundancy received. The problem was recently described by the authors in

PhotoNet [119], where a picture-collection service was developed for disaster-response applications

that maximize situation-awareness. Dron et. al. [31] proposed a novel caching design aiming to

maximize the information utility. Another illustration of such redundancy was covered in Car-

Speak [72], where autonomous vehicles share cloud-point data for obstacle avoidance. In these

papers, application-specific data prioritization policies were described that aim at improving an

information utility metric.

Our work points out one aspect of application utility maximization (for data originating in

the physical environment) that can be broadly generalized independently of other application de-

tails. Namely, within the scope of a query, received information is maximized when redundancy is

minimized, since redundancy reduces information content. Hence, it makes sense to dedicate such

information-maximization to a layer that is independent of and supports the specific application.

NDN enables the development of such a layer. One big benefit of NDN is that data has name,

which makes the designing and implementing some kinds of applications easier, like the dataset

synchronization [164]. Specifically, if data names can approximately denote similarity between

objects, information maximizing data ordering (e.g., in data transmission across bottlenecks) can

be done in a completely generic fashion by applying a breadth-first traversal algorithm to the

subtree of an application’s name space that falls within the scope of the query. This work focuses

on persistent queries, where the relevant name-space subtree is expressed as a name prefix associated

with the information funnel.

Our work is related to general efforts that attempt to handle network resource constraints in

an efficient manner. Prior literature explores how to efficiently transfer (spatially, temporally or

spatio-temporally) correlated data samples over multi-hop networks to a sink. Usually, one of two

approaches is adopted: either compress samples to reduce redundancy or select a small subset

of nodes to aggregate samples before sending them to the sink. A few notable examples of the

first approach include Cristescu et al. [29], Pattem et al. [98] and Vuran et al. [122]. The sec-

134

ond approach includes schemes such as selecting an energy-efficient correlation-dominating set [50],

clustering based on correlations [83], clustering based aggregation [87], routing through a set of

mobile sinks [147], sensor data dissemination for mobile users [93] and distributed data collection

by localized coding [156]. In [85], authors propose distance entropy as a metric to formalize commu-

nication cost for collecting correlated data. While the above work focused on time-series data, some

more recent work [67,119,144] focuses on more complex data types (such as pictures). In contrast

to the above literature, this work focuses on generic prioritization policies based on named-data

networking.

Several approaches were considered for efficient data collection in intermittently connected net-

works and DTNs. These include interest profiles [39], cooperative sensing [161], vehicular data

collection [132], publish/subscribe methods [78,153], and subscription of channels [20,76]. In [151],

the authors studied caching, where nodes cache data based on popularity, such that future queries

can be answered with less delay. Some research efforts [60, 99] improve data accessibility from

infrastructure networks such as WiFi Access Points [60] or the Internet [99]. Our work is comple-

mentary in that we focus on maximizing information utility by minimizing redundancy in collected

data. Specifically, we do so by designing an appropriate name space in the context of named-data

networking.

7.4 Conclusions

In this paper, we introduced the information funnel, a data collection scheme that leverages the

ability to name data (as in named-data networking) to offer information-maximizing content de-

livery for resource constrained social sensing applications. Our evaluation shows that our scheme

increases the information coverage compared with the state-of-the-art solutions, while offering a

very low overhead.

7.5 Math Proofs

Lemma 3. Algorithm 8 always schedule the data objects with least common name prefix with respect

to the data set on the receiver side plus the data set already scheduled on the sender side.

135

Proof. In Algorithm 8, the procedure MinChild always returns the data objects with the shortest

common name prefix with respect to the data objects at the receiver side in each iteration. The

procedure UpdateOccupancy guarantees that the occupancy tree of the receiver side is updated

by adding the data object currently is scheduled. Therefore, the lemma holds.

Lemma 4. When data objects to be scheduled share the same length of the common name prefix

with respect to the data set on the receiver side plus the data set already scheduled on the sender

side, Algorithm 8 always populates the name tree in a balanced fashion to schedule the data object

whose name prefix has the least occupancy.

Proof. This lemma is guaranteed to hold by the procedure LeastOccupancy in Algorithm 8. The

input of this procedure is the output data set of MinChild such that data objects have the same

length of common name prefix with respect to the data set on the receiver side union the data set

already scheduled on the sender side. The output of this procedure is the data object residing at

the least populated name prefix branch. Therefore, the lemma holds.

Theorem 1: By marginal utility comparison rules in Section 7.1.3, Algorithm 8 returns the

optimal prioritization order of the data objects at the sender side when data objects have the

same size and weight. (This optimality holds without assumption on the number of data objects

transmitted in one transmission session. In other words, for any k data objects transmitted in one

transmission session Algorithm 8 is optimal, where k is no greater than the total number of data

objects at the sender side.)

Proof. Since data objects are assumed to have the same size, in one transmission session, the

number of data objects can be transmitted is the same for any prioritization. Let’s denote this

number n. Furthermore, the assumption that data objects have the same weight implies that the

marginal information utility of the data objects only depends on the data names.

By Lemma 1, Lemma 2 and the marginal utility comparison rules in Section 7.1.3, we know

that Algorithm 8 prioritizes the data objects in the non-increasing order of the marginal utilities.

We claim that:

Claim: Given n numbers {m1,m2, · · · ,mn} and two permutations P and Q. P permutes those

numbers in the non-increasing order and Q permutes in an arbitrary order. For any 0 ≤ k ≤ n,

136

∑Pk
i=P0

mi ≥
∑Qk

i=Q0
mi, where Pi (Qi resp.) means the i-th number based on the permutation P

(Q resp.).

Proof of Claim: Suppose that
∑Pk

i=P0
mi <

∑Qk
i=Q0

mi. Then there must exist some number

mt that in the first k elements by the Q permutation but not in that by the P permutation and

mt > mPj for some 0 ≤ j ≤ k. Therefore, we got a contradiction with that P permutes the numbers

in the non-increasing order. Therefore,
∑Pk

i=P0
mi ≥

∑Qk
i=Q0

mi.

The above claim actually proves that our prioritization is optimal, since it permutes data

objects in the non-increasing order of information utility. And the optimality is guaranteed for any

number k of data objects transmitted in one transmission session, where k is no greater than the

total number of data objects at the sender side by the above claim.

Theorem 5. The time complexity of Algorithm 8 is O(n log n + H2n), where H is the height of

the name tree composed of the names of data objects to be transmitted. When H = O(1), the time

complexity is O(n log n), the best complexity bound for sorting based on comparison.

Proof. The time complexity of MinChild and LeastOccupancy is O(log(∆)), where ∆ is the

maximum number of children of every node in the name tree, i.e., ∆ := maxv∈tree |v.child|. The

time complexity of UpdateOccupancy is O(H), where H is the height of the name tree. For

each level in the name tree, the time complexity of the while loop is O(n(log ∆ + H)), thus the

total time complexity of Algorithm 8 is O(H ·n(log ∆+H)) = O(n log n+H2n), since n = O(∆H),

which completes the proof.

Consider the fact that H << n in practical, we have the time complexity of Algorithm 8 is

O(n log2 n) if H = O(log n), or O(n log n) if H = O(1), which means the time complexity of our

algorithm is almost the same as the sorting algorithm.

Theorem 6. Compared with the optimal offline algorithm satisfying the hierarchical similarity

property and deminishing return property, in one transmission session, the approximation ratio of

Algorithm 8 in the general case is N
N+δ , where N is the total number of packets transmitted in the

transmission session by Algorithm 8 and δ = bLmax
Lmin
c, Lmax (resp. Lmin) is the size of the largest

(resp. smallest) data object.

137

Proof. The optimality requires the two properties must be satisfied, which means the occupancy

should be well balanced in the name tree. By Theorem 4, Algorithm 8 balances the occupancy in

the name tree optimally in the uniform data size case, which can be generalized straightforward in

the variable data size case. Thus, all the data objects transmitted by using Algorithm 8 should be

transmitted using the optimal algorithm. Otherwise, the occupancy balancing is violated.

In the worst case, using Algorithm 8 we can waste Lmax − ε transmittable bytes by scheduling

a largest data object in the end of the transmission session. However, we can use those bytes to

transmit several small data objects. So the number of packets transmitted by the optimal algorithm

is at most N + bLmax/Lminc = N + δ, which proves the theorem.

138

Chapter 8

Conclusion and Future Work

8.1 Summary

The thesis proposes an information filtering framework for social sensing on text-based data that

delivers the most informative data to the users in a consumable volume. Due to the high costs of

data labeling, we believe the supervised approach that requires huge amount of labels would be

non-scalable for the massive data of social sensing, therefore, we chose unsupervised approaches.

Furthermore, we do not intend to confine the system only being able to process texts of some specific

language but rather design a general system applicable to a wide range of languages, therefore our

framework is language-agnostic that is it does not exploit language semantics. With the above

objectives, we design a three-level information filtering framework, as follows.

8.1.1 Untruthful Information Removal Module

The first module targets on untruthful information removal, a practice also known as fact-finding.

We extend the previous fact-finding approaches by considering two constraints that widely hold

in certain types of social sensing applications, especially in human-in-the-loop Cyber-Physical Sys-

tems. The first constraint is time-varying system state that the ground truth of the system state

(represented by the binary values of all variables in the system) is not static which the previous

work assumed. The second constraint is inter-dependent variables where, unlike previous work that

assumed the variables are independent, we assume their dependency can be modeled as a Bayesian

network. For both constraints, we propose Expectation-Maximization algorithms respectively that

simultaneously learn the reliability of individual human sensors and the binary value of each vari-

able (i.e. true or false), and demonstrate the effeciency of the proposed solutions with real-world

data evaluations.

139

8.1.2 Event-level Information Summarization

Instead of feeding social sensing users with individual text messages, it makes more sense to cluster

them for each physical event. Therefore, our information filtering system requires a summarization

module that can automatically cluster individual text messages into event-based clusters, a practice

also known as event detection. Being different from prior work, ours focuses on de-multiplexing

event instances. We propose an unsupervised and time-window-based approach that extracts a

bunch of potential signatures of different event instances based on information gain, and cluster

the text messages with the detected signatures, then it consolidates the clusters of the same physical

event on a normal text distance metric. Experiments with real data crawled from Twitter verifies

that our work performs better in event de-multiplexing compred with the state-of-the-art. We also

extend our consolidation algorithm with a sliding-window for tracking one event instance across

time, and show the efficiency of event tracking on a bunch of case studies.

8.1.3 Information-Maximizing Delivery

The third filtering module applies when we are ready to feed the event-level summaries to the

users. Here we define information maximization as redundancy minimization, with the rationale

that the users would not like to read redundant or similar feeds. Uddin et al. [120] proposed a

distance-based diversifying scheme that always prioritizes the data item with largest distance of

the delivered items in some information space, which we can also apply in our system. However,

the proposed approach, although handy to use, is merely heuristic and does not have any analytical

performance guarantee. We propose two prioritization schemes that under some assumptions are

theoretically optimal.

8.2 Future Research Directions

One direction would be social noise removal. Besides physical events, a large body of the social

network posts are about people’s opinions, such as expressing one’s happiness/sadness or showing

the viewpoints about something, etc. Those opinion posts are not of interest in social sensing

because we only care about physical events here. We term those opinion posts in social networks as

140

the social noises. Intuitively, the social noises are all from some individual’s mind but not observable

by others before posting whereas the physical events are observable by multiple individual people

at the same time. Therefore, in hypothesis, there would be some underlying post-repost structural

differences between the social noises and physical event posts, for example, the post-repost structure

is tree-like for social noises whereas forest-like for physical event posts. A good future work is to

explore this structural difference and propose some unsupervised solution to remove social noises.

Another direction would be filtering for other types of posts in social media, like photos and

videos. The thesis only filters text posts, while leaves other types for future work. Deep learning

might be a good tool here for photo and video content abstraction or description. One potention

solution is to apply deep learning technique to describe the contents in photos/videos in texts, then

apply the system framework proposed in the thesis for information filtering.

141

References

[1] CCNx prototype software. http://www.ccnx.org.

[2] Google galaxy nexus. http://www.google.com/nexus.

[3] Instagram statistics. http://expandedramblings.com/index.php/important-instagram-stats/.

[4] Twitter inc. http://www.twitter.com.

[5] Twitter statistics. https://www.omnicoreagency.com/twitter-statistics/.

[6] User guide of t-drive data. http://research.microsoft.com
/pubs/152883/User guide T-drive.pdf.

[7] T. Abdelzaher, Y. Anokwa, P. Boda, J. A. Burke, D. Estrin, L. Guibas, A. Kansal, S. Madden,
and J. Reich. Mobiscopes for human spaces. Center for Embedded Network Sensing, 2007.

[8] C. C. Aggarwal. A survey of stream clustering algorithms., 2013.

[9] C. C. Aggarwal and K. Subbian. Event detection in social streams. In SDM, volume 12,
pages 624–635. SIAM, 2012.

[10] A. Agresti. An introduction to categorical data analysis, volume 135. Wiley New York, 1996.

[11] L. M. Aiello, G. Petkos, C. Martin, D. Corney, S. Papadopoulos, R. Skraba, A. Goker,
I. Kompatsiaris, and A. Jaimes. Sensing trending topics in twitter. Multimedia, IEEE
Transactions on, 15(6):1268–1282, 2013.

[12] All hazards consortium. http://www.ahcusa.org/.

[13] J. Allan, R. Papka, and V. Lavrenko. On-line new event detection and tracking. In SIGIR.
ACM, 1998.

[14] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker. Packet caches on routers:
the implications of universal redundant traffic elimination. In ACM SIGCOMM Computer
Communication Review, volume 38, pages 219–230. ACM, 2008.

[15] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus. Tracking a moving
object with a binary sensor network. In SenSys. ACM, 2003.

[16] F. Atefeh and W. Khreich. A survey of techniques for event detection in twitter. Comput.
Intell., 31(1):132–164, Feb. 2015.

142

[17] J. Benhardus and J. Kalita. Streaming trend detection in twitter. International Journal of
Web Based Communities, 9(1):122–139, 2013.

[18] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal of machine
Learning research, 3:993–1022, 2003.

[19] A. Boettcher and D. Lee. Eventradar: A real-time local event detection scheme using twitter
stream. In Proceedings of the 2012 IEEE International Conference on Green Computing
and Communications, GREENCOM ’12, pages 358–367, Washington, DC, USA, 2012. IEEE
Computer Society.

[20] C. Boldrini, M. Conti, and A. Passarella. ContentPlace: social-aware data dissemination in
opportunistic networks. In Proc. of MSWiM, 2008.

[21] M. Brenner and E. Izquierdo. Social event detection and retrieval in collaborative photo
collections. In Proceedings of the 2nd ACM International Conference on Multimedia Retrieval,
page 21. ACM, 2012.

[22] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M. Srivastava.
Participatory sensing. 2006.

[23] J. A. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M. B. Srivas-
tava. Participatory sensing. 2006.

[24] G. Casella and R. L. Berger. Statistical inference, volume 70. Duxbury Press Belmont, CA,
1990.

[25] D. M. Chickering. Learning bayesian networks is np-complete. In Learning from data, pages
121–130. Springer, 1996.

[26] F. Chierichetti, J. M. Kleinberg, R. Kumar, M. Mahdian, and S. Pandey. Event detection
via communication pattern analysis. In ICWSM, 2014.

[27] E. M. Clarke, B. Krogh, A. Platzer, and R. Rajkumar. Analysis and veri cation challenges
for cyber-physical transportation systems. In National Workshop for Research on High-
confidence Transportation Cyber-Physical Systems: Automotive, Aviation & Rail, 2008.

[28] H. Cramér. Mathematical methods of statistics, volume 9. Princeton university press, 1999.

[29] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer. Network correlated data
gathering with explicit communication: Np-completeness and algorithms. IEEE/ACM Trans.
Netw., 14:41–54, 2006.

[30] A. P. Dempster, N. M. Laird, D. B. Rubin, et al. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal statistical Society, 39(1):1–38, 1977.

[31] W. Dron, A. Leung, M. Uddin, S. Wang, T. Abdelzaher, R. Govindan, and J. Hancock.
Information-maximizing caching in ad hoc networks with named data networking. In Network
Science Workshop (NSW), 2013 IEEE 2nd, pages 90–93. IEEE, 2013.

[32] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou. Distributed real-time software
for cyber–physical systems. Proceedings of the IEEE, 100(1):45–59, 2012.

143

[33] S. Eisenman, E. Miluzzo, N. Lane, R. Peterson, G. Ahn, and A. Campbell. Bikenet: A
mobile sensing system for cyclist experience mapping. ACM Transactions on Sensor Networks
(TOSN), 6(1):6, 2009.

[34] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn, and A. T. Campbell.
Bikenet: A mobile sensing system for cyclist experience mapping. ACM Transactions on
Sensor Networks (TOSN), 6(1):6, 2009.

[35] A. Faza, S. Sedigh, and B. McMillin. Integrated cyber-physical fault injection for reliability
analysis of the smart grid. In Computer Safety, Reliability, and Security, pages 277–290.
Springer, 2010.

[36] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

[37] R. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. Abdelzaher. Greengps: A participatory
sensing fuel-efficient maps application. In Proceedings of the 8th international conference on
Mobile systems, applications, and services, pages 151–164. ACM, 2010.

[38] R. Ganti, N. Pham, Y. Tsai, and T. Abdelzaher. Poolview: stream privacy for grassroots
participatory sensing. In Proceedings of the 6th ACM conference on Embedded network sensor
systems, pages 281–294. ACM, 2008.

[39] W. Gao and G. Cao. User-centric data dissemination in disruption tolerant networks. In
Proc. of IEEE Infocom, 2011.

[40] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker. Naming in content-
oriented architectures. In Proc of SIGCOMM Workshop on ICN, 2011.

[41] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox. Information-
centric networking: seeing the forest for the trees. In Proceedings of the 10th ACM Workshop
on Hot Topics in Networks, page 1. ACM, 2011.

[42] P. Giridhar, T. Abdelzaher, and L. Kaplan. Social fusion: Integrating twitter and instagram
for event monitoring. In UIUC tech report, 2017.

[43] P. Giridhar, M. T. Amin, T. Abdelzaher, L. Kaplan, J. George, and R. Ganti. Clarisense:
Clarifying sensor anomalies using social network feeds. In PERCOM Workshops. IEEE, 2014.

[44] P. Giridhar, S. Wang, T. Abdelzaher, R. Ganti, L. Kaplan, and J. George. On localizing
urban events with instagram. In IEEE Infocom, Atlanta, GA, May 2017, 2017.

[45] P. Giridhar, S. Wang, T. F. Abdelzaher, J. George, L. Kaplan, and R. Ganti. Joint localization
of events and sources in social networks. In Proceedings of the 2015 International Conference
on Distributed Computing in Sensor Systems, DCOSS ’15, pages 179–188, Washington, DC,
USA, 2015. IEEE Computer Society.

[46] A. Goswami and A. Kumar. A survey of event detection techniques in online social networks.
Social Network Analysis and Mining, 6(1):107, 2016.

144

[47] S. Gu, C. Pan, H. Liu, S. Li, S. Hu, L. Su, S. Wang, D. Wang, T. Amin, R. Govindan, G. Ag-
garwal, R. Ganti, M. Srivatsa, A. Barnoy, P. Terlecky, and T. Abdelzaher. Data extrapolation
in social sensing for disaster response. In Proceedings of the 10th IEEE International Con-
ference on Distributed Computing in Sensor Systems. IEEE Press, 2014.

[48] C. Gui and P. Mohapatra. Power conservation and quality of surveillance in target tracking
sensor networks. In MobiCom. ACM, 2004.

[49] A. Guille and C. Favre. Mention-anomaly-based event detection and tracking in twitter. In
Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM Interna-
tional Conference on, pages 375–382. IEEE, 2014.

[50] H. Gupta, V. Navda, S. Das, and V.Chowdhary. Efficient gathering of correlated data in
sensor networks. In Proc. of MobiHoc, 2005.

[51] N. Hochman and L. Manovich. Zooming into an instagram city: Reading the local through
social media. First Monday, 18(7), 2013.

[52] P. Houdyer, A. Zimmerman, M. Kaytoue, M. Plantevit, J. Mitchell, and C. Robardet.
Gazouille: Detecting and illustrating local events from geolocalized social media streams.
In Machine Learning and Knowledge Discovery in Databases, pages 276–280. Springer, 2015.

[53] Y. Hu, A. John, D. D. Seligmann, and F. Wang. What were the tweets about? topical
associations between public events and twitter feeds. In ICWSM, 2012.

[54] Y. Hu, L. Manikonda, S. Kambhampati, et al. What we instagram: A first analysis of
instagram photo content and user types. Proceedings of ICWSM. AAAI, 2014.

[55] T. Hua, F. Chen, L. Zhao, C.-T. Lu, and N. Ramakrishnan. Automatic targeted-domain
spatiotemporal event detection in twitter. Geoinformatica, 20(4):765–795, Oct. 2016.

[56] J. Huang, S. Amjad, and S. Mishra. Cenwits: a sensor-based loosely coupled search and
rescue system using witnesses. In Proceedings of the 3rd international conference on Embedded
networked sensor systems, pages 180–191. ACM, 2005.

[57] J. Huang, S. Amjad, and S. Mishra. Cenwits: a sensor-based loosely coupled search and
rescue system using witnesses. In Proceedings of the 3rd international conference on Embedded
networked sensor systems, pages 180–191. ACM, 2005.

[58] J.-H. Huang, S. Amjad, and S. Mishra. Cenwits: a sensor-based loosely coupled search and
rescue system using witnesses. In SenSys, 2005.

[59] M. Huang, J. Li, X. Song, and H. Guo. Modeling impulsive injections of insulin: Towards
artificial pancreas. SIAM Journal on Applied Mathematics, 72(5):1524–1548, 2012.

[60] Y. Huang, Y. Gao, K. Nahrstedt, and W. He. Optimizing file retrieval in delay-tolerant
content distribution community. In Proc. of ICDCS, pages 308–316, 2009.

[61] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih, H. Balakrishnan,
and S. Madden. Cartel: a distributed mobile sensor computing system. In SenSys, 2006.

145

[62] P. Ishwar, R. Puri, K. Ramchandran, and S. S. Pradhan. On rate-constrained distributed
estimation in unreliable sensor networks. Selected Areas in Communications, IEEE Journal
on, 23(4):765–775, 2005.

[63] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and R. Braynard. Networking
named content. In Proceedings of the 5th international conference on Emerging networking
experiments and technologies, pages 1–12. ACM, 2009.

[64] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Bray-
nard. Networking named content. In Proc. of the 5th international conference on Emerging
networking experiments and technologies, CoNEXT ’09, New York, NY, USA, 2009. ACM.

[65] M. Jäger, C. Knoll, F. Hamprecht, et al. Weakly supervised learning of a classifier for unusual
event detection. Image Processing, IEEE Transactions on, 17(9):1700–1708, 2008.

[66] R. I. Jennrich. An asymptotic χ2 test for the equality of two correlation matrices. Journal
of the American Statistical Association, 65(330):904–912, 1970.

[67] Y. Jiang, X. Xu, P. Terlecky, T. Abdelzaher, A. Bar-Noy, and R. Govindan. Mediascope:
selective on-demand media retrieval from mobile devices. In Proceedings of the 12th interna-
tional conference on Information processing in sensor networks, pages 289–300. ACM, 2013.

[68] A. R. Jonckheere. A distribution-free k-sample test against ordered alternatives. Biometrika,
pages 133–145, 1954.

[69] Kevin Murphy. Bayes Net Toolbox for Matlab. https://code.google.com/p/bnt/.

[70] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM
(JACM), 46(5):604–632, 1999.

[71] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

[72] S. Kumar, L. Shi, N. Ahmed, S. Gil, D. Katabi, and D. Rus. Carspeak: a content-centric
network for autonomous driving. In Proceedings of the ACM SIGCOMM 2012 conference
on Applications, technologies, architectures, and protocols for computer communication, SIG-
COMM ’12, pages 259–270, New York, NY, USA, 2012. ACM.

[73] N. D. Lane, S. B. Eisenman, M. Musolesi, E. Miluzzo, and A. T. Campbell. Urban sensing
systems: opportunistic or participatory? In HotMobile, 2008.

[74] J. H. Lau, N. Collier, and T. Baldwin. On-line trend analysis with topic models:\# twitter
trends detection topic model online. In COLING, pages 1519–1534, 2012.

[75] E. A. Lee. Cyber physical systems: Design challenges. In ISORC, 2008.

[76] V. Lenders, G. Karlsson, and M. May. Wireless ad hoc podcasting. In Proc. of IEEE SECON,
pages 273–283, 2007.

[77] C. Li, A. Sun, and A. Datta. Twevent: segment-based event detection from tweets. In
Proceedings of the 21st ACM international conference on Information and knowledge man-
agement, pages 155–164. ACM, 2012.

146

[78] F. Li and J. Wu. MOPS: Providing content-based service in disruption-tolerant networks. In
Proc. of ICDCS, 2009.

[79] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han. Resolving conflicts in heterogeneous
data by truth discovery and source reliability estimation. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, pages 1187–1198. ACM, 2014.

[80] R. Li, K. H. Lei, R. Khadiwala, and K. C.-C. Chang. Tedas: A twitter-based event detection
and analysis system. In Proceedings of the 2012 IEEE 28th International Conference on
Data Engineering, ICDE ’12, pages 1273–1276, Washington, DC, USA, 2012. IEEE Computer
Society.

[81] Y. Liang, J. Caverlee, and C. Cao. A noise-filtering approach for spatio-temporal event
detection in social media. In Advances in Information Retrieval, pages 233–244. Springer,
2015.

[82] C.-Y. Lin, W.-C. Peng, and Y.-C. Tseng. Efficient in-network moving object tracking in
wireless sensor networks. IEEE TMC, 5(8):1044–1056, 2006.

[83] C. Liu, K. Wu, , and J. Pei. An energy-efficient data collection framework for wireless
sensor networks by exploiting spatiotemporal correlation. IEEE Trans. Parallel Distrib. Syst.,
18:1011–1023, 2007.

[84] H. Liu, A. Srinivasan, K. Whitehouse, and J. Stankovic. Mélange: Supporting heterogeneous
qos requirements in delay tolerant sensor networks. In Networked Sensing Systems (INSS),
2010 Seventh International Conference on, pages 93–96. IEEE, 2010.

[85] J. Liu, M. Adler, D. Towsley, and C. Zhang. On optimal communication cost for gathering
correlated data through wireless sensor networks. In Proc. of MobiCom, 2006.

[86] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic, E. Field, and K. White-
house. The smart thermostat: using occupancy sensors to save energy in homes. In SenSys,
2010.

[87] Y. Ma, Y. Guo, X. Tian, and M. Ghanem. Distributed clustering-based aggregation algorithm
for spatial correlated sensor networks. Sensors Journal, IEEE, 11(3):641–648, 2011.

[88] Mark Paskin. A short course on graphical models. http://ai.stanford.edu/ paskin/gm-short-
course/.

[89] E. Masazade, R. Niu, P. K. Varshney, and M. Keskinoz. A probabilistic transmission scheme
for distributed estimation in wireless sensor networks. In Information Sciences and Systems
(CISS), 2010 44th Annual Conference on, pages 1–6. IEEE, 2010.

[90] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue, M. Gruteser, and
W. Trappe. Parknet: drive-by sensing of road-side parking statistics. In MobiSys, 2010.

[91] M. Meisel, V. Pappas, and L. Zhang. Ad hoc networking via named data. In Proceedings of
the fifth ACM international workshop on Mobility in the evolving internet architecture, pages
3–8. ACM, 2010.

[92] S. Nawaz, C. Efstratiou, and C. Mascolo. Parksense: a smartphone based sensing system for
on-street parking. In MobiCom, 2013.

147

[93] E. Ngai, M. B. Srivastava, and J. Liu. Context-aware sensor data dissemination for mobile
users in remote areas. In INFOCOM, 2012 Proceedings IEEE, pages 2711–2715. IEEE, 2012.

[94] T. D. Nielsen and F. V. Jensen. Bayesian networks and decision graphs. Springer, 2009.

[95] C. Ordonez. Clustering binary data streams with k-means. In ACM SIGMOD workshop.
ACM, 2003.

[96] R. Parikh and K. Karlapalem. Et: events from tweets. In Proceedings of the 22nd international
conference on World Wide Web companion, pages 613–620. International World Wide Web
Conferences Steering Committee, 2013.

[97] J. Pasternack and D. Roth. Knowing what to believe (when you already know something).
In COLING, 2010.

[98] S. Pattem, B. Krishnamachari, and R. Govindan. The impact of spatial correlation on routing
with compression in wireless sensor networks. ACM Trans. Sensor Networks, 4:24–33, 2008.

[99] M. J. Pitkanen and J. Ott. Redundancy and distributed caching in mobile DTNs. In Mo-
biArch, 2007.

[100] C. S. Raghavendra, K. M. Sivalingam, and T. Znati. Wireless sensor networks. Springer,
2004.

[101] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems: the next com-
puting revolution. In Proceedings of the 47th Design Automation Conference (DAC), pages
731–736. ACM, 2010.

[102] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter users: Real-time event
detection by social sensors. In WWW, 2010.

[103] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry. Foundations of control
and estimation over lossy networks. Proceedings of the IEEE, 95(1):163–187, 2007.

[104] G. Schirner, D. Erdogmus, K. Chowdhury, and T. Padir. The future of human-in-the-loop
cyber-physical systems. Computer, 46(1):36–45, 2013.

[105] Sense Networks. Cab Sense. http://www.cabsense.com.

[106] L. Sha and J. Meseguer. Design of complex cyber physical systems with formalized architec-
tural patterns. In Software-Intensive Systems and New Computing Paradigms, pages 92–100.
Springer, 2008.

[107] D. A. Shamma, L. Kennedy, and E. F. Churchill. Peaks and persistence: modeling the
shape of microblog conversations. In Proceedings of the ACM 2011 conference on Computer
supported cooperative work, pages 355–358. ACM, 2011.

[108] T. Silva, P. de Melo, J. Almeida, J. Salles, and A. Loureiro. A picture of instagram is worth
more than a thousand words: Workload characterization and application. In 2013 IEEE
DCOSS, pages 123–132, May 2013.

[109] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry.
Kalman filtering with intermittent observations. Automatic Control, IEEE Transactions on,
49(9):1453–1464, 2004.

148

[110] J. A. Stankovic, I. Lee, A. Mok, and R. Rajkumar. Opportunities and obligations for physical
computing systems. Computer, 38(11):23–31, 2005.

[111] L. Su, J. Gao, Y. Yang, T. F. Abdelzaher, B. Ding, and J. Han. Hierarchical aggregate
classification with limited supervision for data reduction in wireless sensor networks. In
Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, pages 40–
53. ACM, 2011.

[112] L. Su, S. Hu, S. Li, F. Liang, J. Gao, T. F. Abdelzaher, and J. Han. Quality of information
based data selection and transmission in wireless sensor networks. In RTSS, pages 327–338,
2012.

[113] L. Su, Q. Li, S. Hu, S. Wang, J. Gao, H. Liu, T. Abdelzaher, J. Han, X. Liu, Y. Gao, and
L. Kaplan. Generalized decision aggregation in distributed sensing systems. In Real-Time
Systems Symposium (RTSS), 2014 IEEE 35th. IEEE, 2014.

[114] L. Su, Q. Li, S. Hu, S. Wang, J. Gao, H. Liu, T. Abdelzaher, J. Han, X. Liu, Y. Gao, and
L. Kaplan. Generalized decision aggregation in distributed sensing systems. In Real-Time
Systems Symposium (RTSS), 2014.

[115] I. Tien, A. Musaev, D. Benas, and C. Pu. Detection of damage and failure events of critical
public infrastructure using social sensor big data. In Proceedings of International Conference
on Internet of Things and Big Data, April 2016.

[116] I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing bayesian network
structure learning algorithm. Machine learning, 65(1):31–78, 2006.

[117] G. Tyson, N. Sastry, I. Rimac, R. Cuevas, and A. Mauthe. A survey of mobility in
information-centric networks: challenges and research directions. In Proceedings of the 1st
ACM workshop on Emerging Name-Oriented Mobile Networking Design-Architecture, Algo-
rithms, and Applications, pages 1–6. ACM, 2012.

[118] M. Uddin, H. Wang, F. Saremi, G. Qi, T. Abdelzaher, and T. Huang. Photonet: A similarity-
aware picture delivery service for situation awareness. In Real-Time Systems Symposium
(RTSS), 2011 IEEE 32nd, pages 317–326. IEEE, 2011.

[119] M. Uddin, H. Wang, F. Saremi, G.-J. Qi, T. Abdelzaher, and T. Huang. PhotoNet: a
similarity-aware picture delivery service for situation awareness. In Proc. of IEEE RTSS,
2011.

[120] M. Y. S. Uddin, H. Wang, F. Saremi, G.-J. Qi, T. Abdelzaher, and T. Huang. Photonet:
a similarity-aware picture delivery service for situation awareness. In Real-Time Systems
Symposium (RTSS), 2011 IEEE 32nd, pages 317–326. IEEE, 2011.

[121] K. N. Vavliakis, A. L. Symeonidis, and P. A. Mitkas. Event identification in web social media
through named entity recognition and topic modeling. Data & Knowledge Engineering, 88:1–
24, 2013.

[122] M. Vuran, O. Akan, and I. Akyildiz. Spatio-temporal correlation: theory and applications
for wireless sensor networks. Computer Networks, 45:245–259, 2004.

149

[123] M. Walther and M. Kaisser. Geo-spatial event detection in the twitter stream. In Proceedings
of the 35th European Conference on Advances in Information Retrieval, ECIR’13, pages 356–
367, Berlin, Heidelberg, 2013. Springer-Verlag.

[124] D. Wang, T. Abdelzaher, H. Ahmadi, J. Pasternack, D. Roth, M. Gupta, J. Han, O. Fatemieh,
H. Le, and C. C. Aggarwal. On bayesian interpretation of fact-finding in information networks.
In FUSION, 2011.

[125] D. Wang, T. Abdelzaher, L. Kaplan, and C. C. Aggarwal. Recursive fact-finding: A streaming
approach to truth estimation in crowdsourcing applications. In ICDCS, 2013.

[126] D. Wang, T. Abdelzaher, L. Kaplan, R. Ganti, S. Hu, and H. Liu. Exploitation of physical
constraints for reliable social sensing. In RTSS, 2013.

[127] D. Wang, T. Amin, S. Li, T. A. L. Kaplan, S. G. C. Pan, H. Liu, C. Aggrawal, R. Ganti,
X. Wang, P. Mohapatra, B. Szymanski, and H. Le. Humans as sensors: An estimation
theoretic perspective. In IPSN, 2014.

[128] D. Wang, L. Kaplan, T. Abdelzaher, and C. C. Aggarwal. On scalability and robustness
limitations of real and asymptotic confidence bounds in social sensing. In SECON, 2012.

[129] D. Wang, L. Kaplan, and T. F. Abdelzaher. Maximum likelihood analysis of conflicting
observations in social sensing. ACM Transactions on Sensor Networks (TOSN), 10(2):30,
2014.

[130] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher. On truth discovery in social sensing: a
maximum likelihood estimation approach. In IPSN, pages 233–244. ACM, 2012.

[131] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher. On truth discovery in social sensing: a
maximum likelihood estimation approach. In IPSN, 2012.

[132] J. Wang, R. Wakikawa, and L. Zhang. Dmnd: Collecting data from mobiles using named
data. In Vehicular Networking Conference (VNC), 2010 IEEE, pages 49–56. IEEE, 2010.

[133] L. Wang, R. Wakikawa, R. Kuntz, R. Vuyyuru, and L. Zhang. Data naming in vehicle-to-
vehicle communications.

[134] S. Wang, T. Abdelzaher, S. Gajendran, A. Herga, S. Kulkarni, S. Li, H. Liu, C. Suresh,
A. Sreenath, W. Dron, et al. Poster abstract: information-maximizing data collection in
social sensing using named-data. In Proceedings of the 13th international symposium on
Information processing in sensor networks, pages 303–304. IEEE Press, 2014.

[135] S. Wang, T. Abdelzaher, S. Gajendran, A. Herga, S. Kulkarni, S. Li, H. Liu, C. Suresh,
A. Sreenath, H. Wang, W. Dron, A. Leung, R. Govindan, and J. Hancock. The information
funnel: Exploiting named data for information-maximizing data collection. In Proceedings of
the 10th IEEE International Conference on Distributed Computing in Sensor Systems. IEEE
Press, 2014.

[136] S. Wang, P. Giridhar, L. Kaplan, and T. Abdelzaher. Unsupervised event tracking by inte-
grating twitter and instagram. In Proceedings of the 2nd International Workshop on Social
Sensing. ACM, 2017.

150

[137] S. Wang, P. Giridhar, H. Wang, L. Kaplan, T. Pham, A. Yener, and T. Abdelzaher. Storyline:
On physical event demultiplexing and tracking in social spaces. In IoTDI, 2017.

[138] S. Wang, S. Hu, S. Li, H. Liu, M. Uddin, and T. Abdelzaher. Minerva: Information-centric
programming for social sensing. In Proc. of IEEE ICCCN, 2013.

[139] S. Wang, S. Hu, S. Li, H. Liu, M. Y. S. Uddin, and T. Abdelzaher. Minerva: Information-
centric programming for social sensing. In Computer Communications and Networks (IC-
CCN), 2013 22nd International Conference on, pages 1–9. IEEE, 2013.

[140] S. Wang, L. Su, S. Li, S. Hu, T. Amin, H. Wang, S. Yao, L. Kaplan, and T. Abdelzaher.
Scalable social sensing of interdependent phenomena. In Proceedings of the 14th International
Conference on Information Processing in Sensor Networks, pages 202–213. ACM, 2015.

[141] S. Wang, D. Wang, L. Su, L. Kaplan, and T. Abdelzaher. Towards cyber-physical systems
in social spaces: The data reliability challenge. In Real-Time Systems Symposium (RTSS),
2014.

[142] K. Watanabe, M. Ochi, M. Okabe, and R. Onai. Jasmine: A real-time local-event detection
system based on geolocation information propagated to microblogs. In Proceedings of the
20th ACM International Conference on Information and Knowledge Management, CIKM
’11, pages 2541–2544, New York, NY, USA, 2011. ACM.

[143] U. Weinsberg, A. Balachandran, N. Taft, G. Iannaccone, V. Sekar, and S. Seshan. Care:
Content aware redundancy elimination for disaster communications on damaged networks.
Arxiv preprint arXiv:1206.1815, 2012.

[144] U. Weinsberg, Q. Li, N. Taft, A. Balachandran, V. Sekar, G. Iannaccone, and S. Seshan.
Care: content aware redundancy elimination for challenged networks. In Proceedings of the
11th ACM Workshop on Hot Topics in Networks, pages 127–132. ACM, 2012.

[145] J. Weng and B.-S. Lee. Event detection in twitter. ICWSM, 11:401–408, 2011.

[146] A. Wolman, M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy. On the scale and
performance of cooperative web proxy caching. ACM SIGOPS Operating Systems Review,
33(5):16–31, 1999.

[147] X. Xu, J. Luo, and Q. Zhang. Delay tolerant event collection in sensor networks with mobile
sink. In Proc. of INFOCOM, 2010.

[148] D. Yang, G. Xue, X. Fang, and J. Tang. Crowdsourcing to smartphones: incentive mechanism
design for mobile phone sensing. In Proceedings of the 18th annual international conference
on Mobile computing and networking (MobiCom), pages 173–184. ACM, 2012.

[149] Y. Yang, J. G. Carbonell, R. D. Brown, T. Pierce, B. T. Archibald, and X. Liu. Learning
approaches for detecting and tracking news events. IEEE Intelligent Systems, (4):32–43,
1999.

[150] Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor net-
works. ACM Sigmod Record, 31(3):9–18, 2002.

[151] L. Yin and G. Cao. Supporting cooperative caching in ad hoc networks. IEEE Trans. on
Mobile Computing, 5, 2011.

151

[152] X. Yin, J. Han, and P. S. Yu. Truth discovery with multiple conflicting information providers
on the web. Knowledge and Data Engineering, IEEE Transactions on, 20(6):796–808, 2008.

[153] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft. A socio-aware overlay for publish/subscribe
communication in delay tolerant networks. In Proc. of MSWiM, 2007.

[154] J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with knowledge from the physical world. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 316–324. ACM, 2011.

[155] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-drive: driving
directions based on taxi trajectories. In Proceedings of the 18th SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 99–108. ACM, 2010.

[156] K. Yuan, B. Li, and B. Liang. A distributed framework for correlated data gathering in
sensor networks. IEEE Trans. Veh. Technol., 57:578–593, 2008.

[157] C. Zhai and S. Massung. Text Data Management and Analysis: A Practical Introduction to
Information Retrieval and Text Mining. Association for Computing Machinery and Morgan
& Claypool, New York, NY, USA, 2016.

[158] C. Zhang, G. Zhou, Q. Yuan, H. Zhuang, Y. Zheng, L. M. Kaplan, S. Wang, and J. Han.
Geoburst: Real-time local event detection in geo-tagged tweet streams. In Proceedings of
the 39th International ACM SIGIR conference on Research and Development in Information
Retrieval, SIGIR 2016, Pisa, Italy, July 17-21, 2016, pages 513–522, 2016.

[159] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan. Semi-supervised adapted hmms for
unusual event detection. In IEEE CVPR. IEEE, 2005.

[160] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. Thornton, D. Smetters, B. Zhang, G. Tsudik,
D. Massey, C. Papadopoulos, et al. Named data networking (ndn) project. Technical report,
PARC, Tech. report ndn-0001, 2010.

[161] D. Zhao, H. Ma, and S. Tang. Coupon: Cooperatively building sensing maps in mobile
opportunistic networks. In Mobile Ad-Hoc and Sensor Systems (MASS), 2013 IEEE 10th
International Conference on, pages 295–303. IEEE, 2013.

[162] S. Zhong. Efficient streaming text clustering. Neural Networks, 18(5):790–798, 2005.

[163] X. Zhou and L. Chen. Event detection over twitter social media streams. The VLDB journal,
23(3):381–400, 2014.

[164] Z. Zhu and A. Afanasyev. Let’s chronosync: Decentralized dataset state synchronization
in named data networking. In Proceedings of the 21st IEEE International Conference on
Network Protocols (ICNP 2013), 2013.

152

