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ABSTRACT

Data locality is a fundamental issue for data-parallel applications. Consider-

ing MapReduce in Hadoop, the map task scheduling part requires an efficient

algorithm which takes data locality into consideration; otherwise, the system

may become unstable under loads inside the system’s capacity region and

jobs may experience longer completion times which are not of interest. The

data chunk needed for any map task can be in memory, on a local disk, in a

local rack, in the same cluster or even in another data center. Hence, unless

there has been much work on improving the speed of data center networks,

different levels of service rates still exist for a task depending on where its

data chunk is saved and from which server it receives service. Most of the the-

oretical work on load balancing is for systems with two levels of data locality

including the Pandas algorithm by Xie et al. and the JSQ-MW algorithm by

Wang et al., where the former is both throughput and heavy-traffic optimal,

while the latter is only throughput optimal, but heavy-traffic optimal in only

a special traffic load. We show that an extension of the JSQ-MW algorithm

for a system with thee levels of data locality is throughput optimal, but not

heavy-traffic optimal for all loads, only for a special traffic scenario. Further-

more, we show that the Pandas algorithm is not even throughput optimal

for a system with three levels of data locality. We then propose a novel

algorithm, Balanced-Pandas, which is both throughput and heavy-traffic op-

timal. To the best of our knowledge, this is the first theoretical work on

load balancing for a system with more than two levels of data locality. This

is more challenging than two levels of data locality as a dilemma between

performance and throughput emerges.
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CHAPTER 1

INTRODUCTION

Today’s data centers need to keep pace with the explosion of data and pro-

cessing the data [1]. The emergence of large data sets by social networks

such as Facebook [2], Twitter [3], LinkedIn [4], health-care industry, search

engines, and scientific research has pushed researchers to change the archi-

tecture of data centers in order to adapt them with the new needs of fast

processing for large data sets. The architecture of a data center is mainly

determined by the storage and processor units and the way these two units

are connected to each other. The structure of a data center was once de-

picted as in Figure 1.1. The data was stored in a large storage unit, and

whenever the data was needed for a job, it was fetched by the computing

unit. Hence, every time that a chunk of data is needed for a process, it has

to go through the network between storage and computing units. Without

the existence of large data sets in the past, this structure worked well. How-

ever, with the appearance of large data sets, this structure lost its utility

as the network between the two units was not capable of responding to the

real-time applications.

Computing center Storage center

Network

Figure 1.1: Data center architecture when the data communication cost
between the storage and computing centers is affordable.

The objection to the data center architecture described above is that it

is not consistent with the large data set processing applications as all the
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data needed for the process should be transmitted through the network.

Unless there has been a large body of research on increasing the speed of

the network used in data centers, there is still a significantly large delay in

data transmission compared to the service time [5–8]. Therefore, scientists

changed the data center structure as the one depicted in Figure 1.2. Both

the large computing and storage centers are split into smaller units, and

each small computing and storage center is combined with the others that

we name it a server. This way, data is moved to the computing unit and

if an appropriate scheduler is used to assign tasks to servers, then very few

data communication through a network is needed. Assume that there are

M parallel servers in the system. The set of servers is denoted by M =

{1, 2, 3, · · · ,M}.

Rack Rack

Top of Rack Switch

Core Switch

Figure 1.2: The state-of-the-art data center architecture.

A large data set is split into small chunks of ordinary sizes of 64, 128, or

256 megabytes. Each data chunk is stored on the storage of a number of

servers for easier accessibility and fault resilience. If the data set is going to

be processed, different servers process the data chunks stored on them, and

then the results of all the servers are reduced to the final result (MapRe-

duce). Using such an architecture for data centers, the requirement for data

transmission decreases as we try to assign each server to process a task with

the needed data chunk saved on the storage of the server. This concept is

called Near-Data Scheduling as each server prefers processing a data chunk

saved on itself. On the other hand, as we will see in Sections 2.3, 2.4, 3.3,

and 3.4, there are cases where we still need a data chunk to be transmitted
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from one server to another. In order to give the data center such a flexibility,

the servers are not completely isolated from each other. Instead, there are

rack switches on top of servers in the same rack (a rack consists of servers

that are directly connected with each other through a switch called rack

switch). Furthermore, there is a core switch which is connected to all rack

switches. This structure for data centers allows the data chunks to be trans-

mitted from a server to another server inside or outside of the rack where the

data chunk is stored. The system consists of K racks, denoted with the set

K = {1, 2, 3, · · · , K}. A server m belongs to a rack denoted by K(m) ∈ K.

From the new underlying network architecture of data centers, it is obvious

that the transmission of a data chunk between two servers in different racks

on average takes more time other than two servers in the same rack as the

data chunk should pass through three switches rather than one switch.

A task generated by a user requires its own data chunk to be processed.

The data chunk is saved on d servers for security and availability reasons. In

real applications a data chunk is stored on three servers in order that if one

or two of the servers fail to work or become disconnected from the network,

the data chunk needed for the task will still be available in the other servers.

Because of limited storage, the data chunks are usually not replicated on

more than three servers. We define the type of a task by the location where

its data chunk is stored, denoted by L̄ = (m1,m2,m3) where m1,m2, and m3

are the servers storing the corresponding data chunk. Then, the set of all

task types is L = {(m1,m2,m3) ∈M3|m1 < m2 < m3}.
When a server is allocated to a task to process it, the server could have

the data chunk available on its memory, local disk, or the server could not

have the data. In case that the data is not available on the server, the server

requires the data from another server which can be in the same rack, in a

different rack, or even in another data center. Therefore, different levels of

data locality exists in data centers [9]. Most of the theoretical works that

have been done on load balancing (scheduling) for data centers have been

done on two levels of data locality which will be illustrated in more detail

later. The focus of this thesis is scheduling for three levels of data locality,

but algorithms for two levels of data locality will also be discussed in the

previous work found in Sections 2.3 and 2.4.

As a convention, for a task, the three servers which have the data chunk

associated to it ({m|m ∈ L̄}) are called the local servers, and if the task
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receives service from one of these local servers, we say that the task is local to

the server and receives service locally. A task receives service rack-locally from

one of the servers that does not have the data chunk stored on it, but is in the

same rack as the required data is stored in one of its servers. The set of rack-

local servers for a task of type L̄ is L̄k = {m /∈ L̄|∃n ∈ L̄ s.t. K(m) = K(n)}.
Finally, a task receives service remotely if the server giving service not only

does not have the required data, but the data is also not stored in another

server in the same rack of the server. In summary, m ∈ L̄,m ∈ L̄k, and

m ∈ L̄r denote that the server m is a local, rack-local, and remote server to

the task of type L̄, respectively.

We analyze the system in a discrete-time regime, where the time slots are

numbered by t, t ≥ 0, with the following service and task arrival processes:

Service process: Assume that a local service, rack-local service, and remote

service follows geometric distribution with mean 1
α

, 1
β
, and 1

γ
, respectively.

It is clear from the structure of the data centers that because of the fetching

time, it takes on average shortest time for a task to receive service from a

local server, other than a rack-local server, and longest time on a remote

server. Hence, α > β > γ. A server can process at most one task at a

time slot, and the task processing is assumed to be non-preemptive. A task

departs the system at the end of the time slot that the service is completed.

Note that the completion time of a task is not only the service time, but also

the waiting time of the task to be assigned to a server for service.

Arrival process: Task arrival occurs in the beginning of a time slot. The

number of incoming tasks of type L̄ at the beginning of time slot t is denoted

by AL̄(t). The arrival process of different task types are independent of each

other, with E[AL̄(t)] = λL̄. The arrival rate vector of all task types is denoted

by λ = (λL̄ : L̄ ∈ L). We further assume a bounded total number of task

arrival in each time slot.

The load balancing policy (consisting of routing and scheduling defined

later in this section) for a data center decides which task should be assigned

to an idle server for service. The main two optimality criteria for a load

balancing policy (scheduler) are throughput optimality and heavy-traffic op-

timality defined as follows:

• Throughput Optimality: A load balancing algorithm is called to be

throughput optimal if it stabilizes the data center for any arrival rate
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vector strictly within the capacity region.

• Heavy-Traffic Optimality: A load balancing algorithm is said to

be heavy-traffic optimal if it asymptotically minimizes the mean task

completion time as the arrival rate approaches the boundary of the

capacity region.

The load on data centers changes frequently, so as long as the arrival

rate is within the capacity region of the data center, a throughput optimal

scheduler is robust to the changes. In pick loads where the arrival rate is

close to the boundary of the capacity region, a heavy-traffic optimal scheduler

assigns tasks to servers efficiently, hence tasks experience the minimum mean

completion time. Most of the heuristic load balancing algorithms for data

centers have not been studied in theory [8, 10–14]. In this thesis, we will

discuss the literature for scheduling algorithms with theoretical guarantee

for their optimality for two levels of data locality and the affinity scheduling

case. We claim that the extension of algorithms for two levels of data locality

are either not optimal for three levels of data locality or not practical to be

implemented. We will then propose a novel throughput and heavy-traffic

optimal algorithm for three levels of data locality.

Note that the arriving tasks to the system do not get service immediately in

case where all the servers are busy processing other tasks. Therefore, in such

cases that all servers are busy, an incoming task is routed to a queue waiting

for receiving service. Based on the scheduler used in the system, different

queueing structures are needed. For example, only one queue is needed in

order to implement First-Come-First-Served (FCFS ) scheduler for a data

center. For other algorithms fewer, the same or a greater number of queues

as the number of servers may be needed. The queue structure for different

algorithms will be mentioned when the algorithms are illustrated in Chapters

2 and 3.

There are two parts for any load balancing policy (scheduler), routing and

scheduling policies which are described as follows:

• Routing: When a new task arrives at the system, the routing policy

determines which queue it should be routed to in order to wait until it

receives service from a server.
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• Scheduling: When a server becomes idle, and is ready to process a

task, the scheduling policy determines which task receives service from

the idle server.

The capacity region realization of a data center with three levels of data

locality is calculated as follows. Recall the arrival rate vector λ = (λL̄ : L̄ ∈
L). A decomposition of the arrival rate of a task type, λL̄ is (λL̄,m,m ∈M),

where λL̄,m is the arrival rate of task type L̄ that is processed in server m.

Assuming that a server can afford total local, rack-local and remote load of

1, a necessary condition that an arrival rate vector λ is supportable is the

following:

∑
L̄:m∈L̄

λL̄,m
α

+
∑

L̄:m∈L̄k

λL̄,m
β

+
∑

L̄:m∈L̄r

λL̄,m
γ

< 1. (1.1)

Then, an outer bound of the capacity region can be characterized as the

set of arrival rates λ such that there exists a decomposition (λL̄,m,m ∈ M)

satisfying the necessary condition (1.1). The outer bound of the capacity

region denoted by Λ, which will be shown in Section 3.3 that is the same as

the capacity region itself, is formalized as below:

Λ ={λ = (λL̄ : L̄ ∈ L) |

∃λL̄,m ≥ 0,∀L̄ ∈ L,∀m ∈M, s.t.

λL̄ =
M∑
m=1

λL̄,m, ∀L̄ ∈ L,∑
L̄:m∈L̄

λL̄,m
α

+
∑

L̄:m∈L̄k

λL̄,m
β

+
∑

L̄:m∈L̄r

λL̄,m
γ

< 1,∀m}.

(1.2)

Therefore, a linear programming optimization problem should be solved in

order to find Λ.

6



CHAPTER 2

LITERATURE REVIEW

The near-data scheduling problem for the system illustrated in Chapter 1 is a

special case of affinity scheduling [15–19]. In an affinity scheduling problem,

instead of having a number of locality levels, a task of type L̄ can be processed

by server m with rate µL̄,m (in our system model of Chapter 1, µL̄,m can only

be α, β, or γ according to whether server m is local, rack-local, or remote to

the task of type L̄, respectively, but in affinity scheduling problem µL̄,m can

take any non-negative value). In the following, we briefly describe the Fluid

Model Planning and Generalized cµ-rule as the affinity scheduling algorithms

and discuss their shortcomings. Then we explain two algorithms for a system

with two levels of data locality.

2.1 Fluid Model Planning

Harrison and Lopez [17,18] proposed the fluid model planning algorithm for

affinity scheduling problem. The queueing structure needed to implement

this algorithm is to have separate queues for different types of tasks (each

queue is associated to a task type). Then the routing and scheduling policies

are as follows:

• Routing: An incoming task is routed to the queue associated to its

type.

• Scheduling: The arrival rate of each task type is needed to be known

to solve a linear programming optimization and find the basic activities

based on which the servers are assigned to process tasks.

Fluid model planning algorithm is both throughput and heavy-traffic opti-

mal. However, there are two main objections to this algorithm. First, distinct

queues are considered for different task types. In the system model described
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in Chapter 1 each task type has its data chunk stored on three servers out

of a total of M servers. Therefore, there can be
(
M
3

)
different number of

task types. This means that we should have in the order of O(M3) distinct

queues for tasks, where each queue is associated to a task type. However,

in a data center there usually exists thousands of servers, so it is not logi-

cal to define O(M3) number of queues as it makes the underlying network,

scheduling computation, and data base infrastructure complicated. Second,

the arrival rate of each task type is considered to be known to the system for

the scheduling part, but in a real data center the load changes frequently and

is not known as users can have random behavior. As a result, fluid model

planning cannot be used for practical issues, unless it has both optimality

conditions.

2.2 Generalized cµ-Rule

Stolyar and Mandelbaum [16,20] proposed the generalized cµ-rule algorithm.

Similar to the fluid model planning queueing structure, this algorithms also

requires the existence of one queue per task type. In contrast to the fluid

model planning algorithm, the arrival rate of task types are not required

to be known to implement this algorithm. Instead, the generalized cµ-rule

utilizes the MaxWeight procedure for the scheduling part which makes the

algorithm needless of the prior knowledge of the task types’ arrival rates.

Assume the cost rate incurred by the type L̄ tasks is CL̄(QL̄) where QL̄

denotes the number of tasks of type L̄ queued in the corresponding queue.

The cost function should have fairly normal conditions for which we can

mention the following (for more detail refer to [16, 20]): CL̄(.) should be

convex and continuous with CL̄(0) = 0. The derivative of the cost function,

C
′

L̄
(.), should be strictly increasing and continuous with C

′

L̄
(0) = 0. The

routing and scheduling policies of the generalized cµ-rule are as below:

• Routing: An incoming task is routed to the queue associated to its

type.

• Scheduling: An idle server m ∈ M is scheduled to a task of type L̄

in the set below at time slot t:
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ArgMax
L̄

{
C
′

L̄(QL̄(t))µL̄,m

}
. (2.1)

In the system model with three levels of data locality, µL̄,m is α, β, or

γ if the task type L̄ is local, rack-local, or remote to the idle server m,

respectively. Mandelbaum and Stolyar proved that the generalized cµ-rule

asymptotically minimizes both instantaneous and cumulative queueing costs

in heavy traffic [16]. Consider the same cost function for all task types as

CL̄(QL̄) = Qβ+1

L̄
, ∀L̄ ∈ L, where β > 0. The function Qβ+1 satisfies all

the required conditions mentioned for a valid cost function. Therefore, the

generalized cµ-rule asymptotically minimizes the holding cost
∑

L̄Q
β+1

L̄
, and

as the constant β should strictly be greater than zero, this algorithm cannot

minimize
∑

L̄QL̄. Hence, the generalized cµ-rule is not heavy-traffic optimal.

Besides, we still need many queues in the order of cubic number of servers

in order to implement this algorithm which makes the underlying system

complicated and is not practical.

In Sections 2.3 and 2.4, two algorithms for two levels of data locality will be

discussed. In both algorithms, no prior task types’ arrival rate information

is needed to be known. Furthermore, only M queues, one for each server, is

needed for queueing the tasks that are waiting for service. In a system with

two levels of data locality there is no notion of rack structure and rack-local

service, instead there is only a core switch connecting all servers to each

other. A task can only get service locally with rate α from one of the local

servers (m ∈ L̄), or it gets service remotely with rate γ from any other servers

(m /∈ L̄). The capacity region of a system with two levels of data locality is

given in equation (2.2) which can be driven with the same reasoning we had

for a system with three levels of data locality.

Λ ={λ = (λL̄ : L̄ ∈ L) |

∃λL̄,m ≥ 0,∀L̄ ∈ L,∀m ∈M, s.t.

λL̄ =
M∑
m=1

λL̄,m, ∀L̄ ∈ L,∑
L̄:m∈L̄

λL̄,m
α

+
∑
L̄:m/∈L̄

λL̄,m
γ

< 1, ∀m}.

(2.2)
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First, join the shortest queue-MaxWeight (JSQ-MW ) [21] which is a through-

put optimal, but not heavy-traffic optimal algorithm will be discussed. Then

the Priority Algorithm for Near-Data Scheduling (Pandas) algorithm pro-

posed by Xie and Lu [22] which is both throughput and heavy-traffic optimal

will be presented.

2.3 Join the Shortest Queue-MaxWeight (JSQ-MW)

Joining the shortest queue-MaxWeight algorithm proposed by Wang et al.

[21] requires the existence of one queue per server. The length of the m-

th queue at time slot t is denoted by Qm(t). The central scheduler that

maintains all the queue lengths routes the new incoming tasks to a queue

and schedules the idle servers to a task as follows:

• Routing: An arriving task of type L̄ is routed to the shortest queue of

the local servers in the set L̄ (all ties are broken randomly throughout

this paper).

• Scheduling: At time slot t, the idle server m is assigned to process a

task from a queue in the set given in equation (2.3):

arg max
n∈M

{αQn(t)I{n=m}, βQn(t)I{n6=m}}. (2.3)

The JSQ-MW algorithm is proven to be throughput optimal for a system

with two levels of data locality [21]. However, it is not heavy-traffic optimal.

As a definition, if the incoming load routed to a server exceeds the capacity

of the server, the server is called to be a beneficiary server. On the other

hand, if the incoming load routed to a server is less than what the server

can process, the server is called to be a helper. Beneficiaries cannot process

all the tasks routed to their queues, so they get help from helpers (helping

servers).

Wang et al. [21] proved that the JSQ-MW algorithm can minimize the

mean task completion time in a specific traffic scenario as follows. If all the

incoming traffic is local to a set of servers where all of them are beneficiaries,
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and the rest of servers do not receive any traffic load, so to be helpers, the

JSQ-MW algorithm minimizes the mean task completion time.

2.4 Priority Algorithm for Near-Data Scheduling

(Pandas)

To the best of our knowledge, the Pandas algorithm is the only throughput

and heavy-traffic optimal algorithm for a system with two levels of data

locality. Assuming the existence of one queue per server, the routing and

scheduling policies are as follows:

• Routing: An arriving task of type L̄ is routed to the shortest queue

of the local servers in the set L̄.

• Scheduling: As long as there exists a task available in the queue of

the idle server m, it will be assigned to a local task at the m-th queue.

If there is no local task at the m-th queue, the idle server is assigned

to give service to a task in the longest queue of the system (the task in

the longest queue can be local or remote to the idle server).

We can improve the Pandas algorithm by adding the following two features

to the algorithm. First, when an idle server m does not have any tasks queued

in front of it and is assigned to process a task from the longest queue, the

scheduler can assign a local task to server m queued at the longest queue if

available. Second, an idle server m is assigned to serve a remote task from

the longest queue in the system if max
n∈M

Qn >
α
γ

in order to make sure that the

remote task will experience less service time if it gets service from the idle

server, other than waiting at its current queue and receiving service locally.

In Chapter 3, our theoretical analysis of a system with three levels of data

locality will be discussed.
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CHAPTER 3

THREE LEVELS OF DATA LOCALITY

In this chapter we propose our two algorithms: the JSQ-MW algorithm and

the Balanced-Pandas (Weighted-Workload Routing and Priority Scheduling)

algorithm [1]. Our proposed JSQ-MW algorithm is an extension of the algo-

rithm used for two levels of data locality which is throughput optimal, but not

heavy-traffic optimal. We will show that the extension of the JSQ-MW al-

gorithm also minimizes the mean task completion time in specific workloads,

but not all loads. On the other hand, the Balanced-Pandas algorithm is a

novel algorithm proposed by us which is throughput optimal for three levels

of data locality. It is heavy-traffic optimal in the case that β2 > αγ, which

means that the rack-local service is much faster than the remote service. This

condition usually holds in real systems. To the best of our knowledge the

Balanced-Pandas algorithm is the only throughput and heavy-traffic optimal

algorithm proposed for a system with three levels of data locality.

The difficulty of designing an algorithm for a system with three levels of

data locality is illustrated in Section 3.1.

3.1 The Performance versus Throughput Dilemma

Under the Pandas algorithm, each server has a queue maintaining tasks local

to it. The Pandas routing policy balances tasks across their local servers.

An idle server processes local tasks as long as there exists one in its queue;

otherwise, it processes a remote task from the longest queue of the system.

In other words, the Pandas algorithm forces servers to process as many local

tasks as possible, then process remote tasks if they do not have any local tasks

available. Therefore, in a system with three levels of data locality, the Pandas

algorithm has good performance in low and medium loads by maximizing

the number of tasks served locally. However, the Pandas algorithm sacrifices

12



throughput optimality at high loads. The example depicted in Figure 3.1

and the explanation afterward makes the performance versus throughput

dilemma clear.

λ λ

1 2

Rack 1

3 4

Rack 2

1.9λ

Figure 3.1: A system with two racks showing how performance should be
sacrificed in order to achieve throughput optimality.

Assume each of the two racks has two servers as depicted in Figure 3.1.

Three types of tasks receive service from the system as follows: one type of

task with arrival rate λ is only local to the first server, another type with

arrival rate λ is local to both the second and third servers, and the other

type of task with arrival rate 1.9λ is only local to the fourth server. Using

the Pandas algorithm to maximize the number of tasks served locally, the

second type of tasks is split between the second and third servers evenly.

Assuming that local, rack-local, and remote service rates are α = 1, β = 0.9,

and γ = 0.5, respectively, the Pandas algorithm can stabilize the system in

the following region:

1.9λ < α + β(1− 0.5λ

α
) + γ(1− 0.5λ

α
) + γ(1− γ

α
),

which gives λ < 0.9355. However, if the second type of tasks is only routed

to the second server, so the third server does not process any local tasks, but

only processes rack-local tasks, then the system is stable as long as λ < 1

which is a bigger capacity region other than the one for the Pandas algorithm.

Our proposed two algorithms described in Sections 3.3 and 3.4 stabilize the

system in the capacity region given in equation (1.2) without the knowledge

of the tasks’ arrival rates. In the next section, we draw an equivalent capacity

region for a system with rack structure which will be used in the optimality

13



proofs of our proposed algorithms.

3.2 Equivalent Capacity Region

In this section we will show that the outer bound of capacity region proposed

in equation (1.2) is actually the capacity region of a system with three levels

of data locality. In the following lemma, we propose an equivalent capacity

region with the one in equation (1.2) which will be used in our proofs.

Lemma 1 The following set Λ̄ is equivalent to Λ defined in equation (1.2):

Λ̄ ={λ = (λL̄ : L̄ ∈ L) |

∃λL̄,n,m ≥ 0,∀L̄ ∈ L,∀n ∈ L̄,∀m ∈M, s.t.

λL̄ =
∑
n:n∈L̄

M∑
m=1

λL̄,n,m, ∀L̄ ∈ L,

∑
L̄:m∈L̄

∑
n:n∈L̄

λL̄,n,m
α

+
∑

L̄:m∈L̄k

∑
n:n∈L̄

λL̄,n,m
β

+
∑

L̄:m∈L̄r

∑
n:n∈L̄

λL̄,n,m
γ

< 1,∀m},

(3.1)

where λL̄,n,m is the arrival rate of type L̄ tasks that are local to server n, but

are scheduled to be processed at server m. λL̄,n,m is actually the decomposition

of λL̄,m and λL̄,m =
∑

n∈M λL̄,n,m.

proof: In order to prove that Λ̄ = Λ, we show that Λ̄ ⊂ Λ and Λ ⊂ Λ̄.

Λ̄ ⊂ Λ: If λ ∈ Λ̄, there exists a load decomposition {λL̄,n,m} such that it

satisfies all the conditions in (3.1). By defining λL̄,m ≡
∑

n:n∈L̄ λL̄,n,m, it is

clear that this decomposition of λ, that is {λL̄,m} satisfies the conditions in

equation (1.2), so λ ∈ Λ. Hence Λ̄ ⊂ Λ.

Λ ⊂ Λ̄: If λ ∈ Λ, there exists a load decomposition {λL̄,m} such that it

satisfies all the conditions in equation (1.2). By defining λL̄,n,m ≡
λL̄,m
|L̄| , it is

clear that this decomposition of λ, that is {λL̄,n,m} satisfies the conditions in

(3.1), so λ ∈ Λ̄. Hence Λ̄ ⊂ Λ̄.
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3.3 Join the Shortest Queue-MaxWeight (JSQ-MW)

In order to implement the JSQ-MW algorithm, the central scheduler keeps

one queue per server, where the length of m-th queue associated to the m-th

server at time slot t is denoted by Qm(t). The m-th queue only keeps tasks

that are local to the m-th server. Then, the JSQ-MW routing and scheduling

policies are as follows:

• JSQ-MW Routing: An arriving task of type L̄ is routed to its short-

est local queue. That is, the central scheduler inserts the new task

to the shortest queue in the set {Qm|m ∈ L̄}, where ties are broken

randomly.

• JSQ-MW Scheduling: The scheduling decision ηm(t) of an idle server

m at time slot t is chosen from the following set where the ties are

broken randomly. That is, idle server m is scheduled to give service to

a task queued in a queue in the following set:

arg max
n∈M

{αQn(t)I{n=m}, βQn(t)I{K(n)=K(m)}, γQn(t)I{K(n) 6=K(m)}}.

In order to describe the queue evolution of a system with three levels of data

locality using the JSQ-MW algorithm, we define the following terminologies.

Let the number of type L̄ tasks that are routed to the m-th queue at time

slot t be denoted by AL̄,m(t). Then the total number of task arrivals to Qm

at time slot t is as follows:

Am(t) =
∑
L̄:m∈L̄

AL̄,m(t).

Server m provides local, rack-local, and remote services denoted by Slm(t),

Rk
m(t), and Rr

m(t), respectively. Service times are assumed to follow geo-

metric distribution, so Slm(t), Rk
m(t), and Rr

m(t) are Bernoulli random vari-

ables in each time slot as follows: Slm(t) ∼ Bern(αI{ηm(t)=m}), R
k
m(t) ∼

Bern(βI{K(ηm(t))=K(m),ηm(t)6=m}), andRr
m(t) ∼ Bern(γI{K(ηm(t))6=K(m)}). Queue

m can receive local, rack-local, and remote services as follows. The local

service is received from server m which is Slm(t), while rack-local service

can be received from any other servers in the same rack of Qm which we

denote by Skm(t) =
∑

n:K(n)=K(m),n6=mR
k
n(t)I{ηn(t)=m}, and Qm receives re-
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mote services from all servers out of its rack which is denoted by Srm(t) =∑
n:K(n)6=K(m) R

r
n(t)I{ηn(t)=m}. The total number of task departures for Qm at

time slot t is equal to the summation of local, rack-local, and remote services

given to Qm at time slot t which we denote by Sm(t) ≡ Slm(t)+Skm(t)+Srm(t).

Defining Um(t) = max{0, Sm(t)− Am(t)−Qm(t)} as the unused service al-

located to the m-th queue, the queues evolve from one time slot to the next

one as follows:

Qm(t+ 1) = Qm(t) + Am(t)− Sm(t) + Um(t).

Note that the queue length vector Q(t) = (Q1(t), Q2(t), · · · , QM(t)) is not

a Markov chain since given the queue lengths at a time slot, the future of the

queue lengths is not independent from the past. The reason is that given the

queue lengths, we cannot figure out the status of each server in the system.

Therefore, we define the working status of server m at time slot t, fm(t) as

follows:

fm(t) =

−1 if server m is idle

n if server m processes a task from Qn

.

If the m-th server is in idle mode, not processing any tasks, its working

status is equal to −1. Otherwise, if server m processes a local task from

Qm, then fm(t) = m. If server m processes a task from Qn, where n 6= m,

but K(n) = K(m) (K(n) 6= K(m)), it means that it is serving a rack-local

(remote) task and fm(t) = n.

Defining the working status vector f(t) = (f1(t), f2(t), · · · , fM(t)), as the

service times follow geometric distributions, both queue length vector Q(t)

and f(t) together, {Z(t) = (Q(t),f(t)), t ≥ 0}, form an irreducible and

aperiodic Markov chain. The following theorem indicates the capacity region

and throughput optimality of the JSQ-MW algorithm. What we mean by

the system being stabilized is that the queue lengths are bounded in steady

state.

Theorem 1 The JSQ-MW algorithm can stabilize the system with three lev-

els of data locality, as long as the arrival rate vector of the task types is

strictly within the outer bound of the capacity region, Λ. This means that Λ

is the capacity region of the system and the JSQ-MW algorithm is throughput
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optimal.

proof: An extension of the Foster-Lyapunov theorem, where the T -time

slot drift of the Lyapunov function is studied, is used to prove the through-

put optimality of the JSQ-MW algorithm. We choose the function V1(t) =

||Q(t)||2 =
∑M

m=1Q
2
m(t) as the Lyapunov function. Note that this choice

of the Lyapunov function satisfies the requirements of non-negativity, being

equal to zero only at Q(t) = 0̄, and going to infinity as any elements of

Q(t) goes to infinity. In Appendix A.1, we show that as long as the arrival

rate vector of task types is strictly within Λ, under the JSQ-MW algorithm,

there exists an integer T > 0 where the expected T -time slot drift of V1(t)

is negative outside of a bounded region of the state space, and is finite in-

side this bounded region. Therefore, the fact that Λ is the capacity region

of the system and the throughput optimality of the JSQ-MW algorithm are

followed by the extension of the Foster-Lyapunov theorem.

A corollary of Theorem 1 is that the outer bound of capacity region pro-

posed in equation (1.2) is actually the capacity region of a system with three

levels of data locality.

It was mentioned in Section 2.3 that the JSQ-MW algorithm is not heavy-

traffic optimal for two levels of data locality, but minimizes the mean task

completion time at high loads under a specific traffic scenario. We should

also mention that it is very rare that such a traffic load occurs in real-world

applications. In the simulation results in Chapter 4, it would be clear from

the simulation results that the JSQ-MW algorithm is not heavy-traffic opti-

mal for a system with three levels of data locality. In the following, we will

show the traffic scenario in which the JSQ-MW algorithm can minimize the

mean task completion time at high loads for a system with three levels of

data locality.

Under the following three conditions, the JSQ-MW algorithm minimizes

the mean task completion time at high loads:

1. All the incoming traffic concentrates on a subset of racks, so the com-

plement set of racks does not have any incoming local tasks.

2. The racks that receive nonzero incoming local tasks cannot process

their incoming local tasks without getting help from other servers in

the racks with no incoming local task.
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3. The servers in the racks that receive local incoming tasks either have

zero incoming local tasks or are overloaded.

Here we formalize the traffic scenario in which the JSQ-MW algorithm is

heavy-traffic optimal after setting some notations. The set of racks that

receive nonzero local tasks is shown by O, and the racks belonging to this set

are called overloaded racks. The set of all servers that receive nonzero local

tasks is denoted byMl. It is clear that all the servers in the setMl belong to

the racks in the set O. The other set of servers in the overloaded racks that

receive zero local tasks is shown by Mk = {m ∈ M|K(m) ∈ O, and m /∈
Ml}. The set of all other servers not belonging to the overloaded racks

that do not receive any local tasks is denoted by Mr = {m ∈ M|K(m) /∈
O}. Assuming a set of servers S ⊂ Ml, the set of all task types having a

local server in the set S is denoted by N (S) = {L̄ ∈ L|∃m ∈ S, s.t. m ∈
L̄}. Likewise, for a set of racks R ⊂ O, the set of task types that have a

local server in the set R is denoted by N (R) = {L̄ ∈ L|∃m, s.t. K(m) ∈
R, and m ∈ L̄}. Furthermore, the set of servers belonging to a rack in the

set R that receive local incoming tasks (receive zero local task) is denoted

by MR
l = {m ∈Ml|K(m) ∈ R} (MR

k = {m ∈Mk|K(m) ∈ R}).
The heavy-traffic regime is characterized as follows. Any subset of servers

receiving local tasks are overloaded, and any subset of racks receiving lo-

cal tasks are also overloaded. However, the arrival rate vector of task types

should be in the capacity region in order to be supportable, that is,
∑

L̄∈L λL̄ <

|Ml|α+|Mk|β+|Mr|γ. The following three conditions characterize a heavy-

traffic regime with a parameter ε > 0 which is the L1-norm of the difference of

the arrival rate vector and the nearest point on the boundary of the capacity

region to the arrival rate vector.

∀S ⊂Ml,
∑

L̄∈N (S)

λL̄ > |S|α,

∀R ⊂ O,
∑

L̄∈R(S)

λL̄ > |MR
l |α + |MR

k |β,∑
L̄∈L

λL̄ = |Ml|α + |Mk|β + |Mr|γ − ε.

(3.2)

Theorem 2 clarifies the heavy-traffic optimality of the JSQ-MW algorithm.

Theorem 2 The JSQ-MW algorithm minimizes the mean task completion

time in the steady state as long as the task arrival process {Aε
L̄
(t), t ≥ 0}L̄∈L
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with arrival rate vector λε satisfies the conditions in (3.2), where servers are

either overloaded or do not receive any local tasks, and the racks are also

either overloaded or do not receive any local tasks.

proof: The complete proof of Theorem 2 appears in Appendix A.2.

As mentioned, the JSQ-MW algorithm is not heavy-traffic optimal in all

loads. The reason is that if any task is local to helper servers in overloaded

or under-loaded racks, their local queues grow and local tasks receive service

by unnecessary delay. In the next section, we propose our novel algorithm

called Balanced-Pandas, which is both throughput and heavy-traffic optimal.

3.4 Balanced-Pandas

In order to implement the Balanced-Pandas algorithm, the central scheduler

should keep three queues per server since using this algorithm the incoming

tasks are not necessarily routed to the queue of their local server, so we want

to keep track of the local, rack-local and remote tasks routed to a server by

considering different queues for each of them. The tasks routed to server m

which are local (rack-local or remote) to it are queued in the first (second

or third) queue of the server, which is denoted by Ql
m (Qk

m or Qr
m). The

three queue lengths of the m-th server at time slot t are denoted by the

vector notation Q̄m(t) = (Ql
m(t), Qk

m(t), Qr
m(t)), and the central scheduler

maintains the vector of queue lengths Q̄(t) = (Q̄1(t), Q̄2(t), · · · , Q̄M(t)).

As the service time of local, rack-local, and remote tasks follow geometric

distributions with means 1
α
, 1
β
, and 1

γ
, respectively, the mean time needed for

server m to process all the tasks queued at Ql
m, Q

k
m, and Qr

m at time slot t is

as follows:

Wm(t) =
Ql
m(t)

α
+
Qk
m(t)

β
+
Qr
m(t)

γ
.

We call Wm(t) the workload on the m-th server.

Figure 3.2 along with the Balanced-Pandas routing and scheduling policies

presented in the following make the queueing structure and the Balanced-

Pandas algorithm clear.

• Balanced-Pandas Routing (Weighted-Workload Routing): The

routing decision for an incoming task of type L̄ is based on both data
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Figure 3.2: The queueing structure needed for the Balanced-Pandas
algorithm.

locality and the workload on the servers. In order to decide routing for

an incoming task, the workloads of servers local (rack-local or remote)

to the incoming task are each divided by α (β or γ). The task is

routed to the corresponding sub-queue (Ql
m∗ , Q

k
m∗ , or Qr

m∗) of the server

m∗ with the minimum weighted workload. That is, if the incoming

task is local, rack-local, or remote to the server with the minimum

weighted workload, it is routed to the first, second, or third queue,

respectively. Formally speaking, an arriving task of type L̄ is routed to

the corresponding sub-queue of a server in the set below:

arg min
m∈M

{
Wm(t)

α
I{m∈L̄},

Wm(t)

β
I{m∈L̄k},

Wm(t)

γ
I{m∈L̄r}

}
.

• Balanced-Pandas Scheduling (Prioritized Scheduling): As server

m becomes idle at time t−, the central scheduler assigns it to a local

task queued at Ql
m at time slot t, if available. However, if Ql

m(t) = 0,

server m will be assigned to a rack-local task queued at Qk
m, if avail-

able. If both local and rack-local sub-queues of server m are empty,

the server is assigned to process a remote task queued at Qr
m. In other
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words, the highest priority to process a task for an idle server is given

to local, then rack-local, and finally remote tasks queued in front of it.

If all sub-queues of the idle server are empty, the idle server remains

idle until a new task joins any of the sub-queues.

In the following, we will first propose two optimality theorems of the Balanced-

Pandas algorithm, then we will define the notations which will be used in

the proof of these theorems in Appendices A.3 and A.4.

Theorem 3 The Balanced-Pandas algorithm stabilizes a system with three

levels of data locality as long as the arrival rate is strictly inside the capac-

ity region, which means that the Balanced-Pandas algorithm is throughput

optimal.

proof: We use the Foster-Lyapunov theorem to prove the throughput

optimality. We use the l2-norm of the workload vector of servers as the

Lyapunov function:

V3(Z(t)) = ||W (t)||2.

This choice of Lyapunov function is non-negative, is equal to zero just at

W (t) = 0̄, and goes to infinity as any elements of W (t) goes to infinity. We

show that there exists a finite integer T > 0 where the expectation of the

T -time slot drift of the Lyapunov function is negative outside of a bounded

region of the state space, and is positive and finite inside this bounded region.

We should note that in the proof of throughput optimality, we do not use the

fact of using prioritized scheduling. Therefore, to the purpose of throughput

optimality, an idle server can serve any task in its three sub-queues as local,

rack-local and remote tasks decrease the expected workload at the same rate.

The prioritized scheduling is to minimize the mean task completion time

experienced by tasks which will be of interest in heavy-traffic optimality. For

the complete proof refer to Appendix A.3

Theorem 4 As long as β2 > αγ, the Balanced-Pandas algorithm is heavy-

traffic optimal, i.e., minimizes the mean task completion time as the arrival

rate vector of task types approaches the boundary of the capacity region.

proof: For the complete proof look at Appendix A.4.
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In the next three subsections, the queue dynamics when the Balanced-

Pandas algorithm is used, overloaded servers and racks, and ideal load de-

composition will be discussed which will be used in the proofs of Theorems

3 and 4.

3.4.1 Queue Dynamics

Recall that AL̄,m(t) denotes the number of type L̄ tasks that are routed

to the m-th queue, and L̄, L̄k, and L̄r denote the set of local, rack-local

and remote servers to a task of type L̄. Using these definitions, we can

formalize the local, rack-local, and remote tasks routed to the three sub-

queues of the m-th server at time slot t denoted by Alm(t), Akm(t), and Arm(t),

respectively as follows: Alm(t) =
∑

L̄:m∈L̄AL̄,m(t), Akm(t) =
∑

L̄:m∈L̄k AL̄,m(t),

and Arm(t) =
∑

L̄:m∈L̄r AL̄,m(t).

Remembering the Markov chain defined in Section 3.3, the queue dynamics

themselves cannot form a Markov chain alone. Therefore, we define the

working status of server m at time slot t as follows:

fm(t) =



−1 if server m is idle

0 if server m processes a local task from Ql
m

1 if server m processes a rack-local task from Qk
m

2 if server m processes a remote task from Qr
m

.

When server m is done processing a task at time slot t − 1, so its working

status is fm(t−) = −1, the scheduling decision ηm(t) for this server is made

based on both working status of servers f(t) = (f1(t), f2(t), · · · , fM(t)) and

the queue length vector Q̄(t). Note that ηm(t) = fm(t) as long as server m

is busy processing a task, and when the server becomes idle at the end of a

time slot, ηm(t) is determined by the scheduling policy.

As described in Chapter 1, in a system with three levels of data local-

ity the service distributions are as follows. If server m is working on a

local (rack-local, or remote) task at time slot t, the service provided by

the server at time slot t follows a Bernoulli random variable with mean α

(β, or γ) which is denoted by Slm(t) (Skm(t), or Srm(t)). In other words,
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the local (rack-local, or remote) service provided by the m-th server at

time slot t is Slm(t) ∼ Bern(αI{ηm(t)=0}) (Skm(t) ∼ Bern(βI{ηm(t)=1}), or

Srm(t) ∼ Bern(γI{ηm(t)=2})).

Defining the unused service of server m as Um(t) = max{0, Srm(t)−Arm(t)−
Qr
m(t)}, the three sub-queues of server m evolve as follows:

Ql
m(t+ 1) = Ql

m(t) + Alm(t)− Slm(t),

Qk
m(t+ 1) = Qk

m(t) + Akm(t)− Skm(t),

Qr
m(t+ 1) = Qr

m(t) + Arm(t)− Srm(t) + Um(t).

(3.3)

The service times are all geometrically distributed, so the queue length vec-

tor Q̄(t) together with the working status vector of servers f(t) form the

irreducible and aperiodic Markov chain ({Z(t) = (Q̄(t),f(t)), t ≥ 0}).

3.4.2 Overloaded Servers and Racks

Server m is overloaded if it cannot process the local tasks that are routed to it

without the help of other servers, and its local load cannot be distributed with

under-loaded servers by load balancing. In order to describe the overloaded

servers formally, we define the following notation:

ψn =
∑
L̄:n∈L̄

M∑
m=1

λL̄,n,m ∀n ∈M.

ψn is the pseudo-arrival rate of type L̄ tasks routed to server n under the

task types’ arrival rates {λL̄,n,m}. Server n is overloaded under the load

decomposition {λL̄,n,m} if ψn > α. For a subset of servers S ⊂ M, we

define LS as the set of task types only local to servers of the set S, that is,

LS = {L̄ ∈ L|L̄ ⊂ S}. On the other hand, for the same set S, we define

L∗S as the set of task types that are local to at least one server of the set S,

that is, L∗S = {L̄ ∈ L|L̄ ∩ S 6= ∅}. Lemma 2 shows that there exists a load

decomposition under which the truly overloaded set of servers, denoted by

D, do not receive any task type that has at least one local task out of this

set D, that is tasks that are local to a server out of the set D are routed to

under-loaded servers which are out of set D.
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Lemma 2 There exists a load decomposition {λ̃L̄,n,m} for any arrival rate

vector λ ∈ Λ̄ that satisfies the following two conditions [22]:

∑
L̄:m∈L̄

∑
n:n∈L̄

λ̃L̄,n,m
α

+
∑

L̄:m∈L̄k

∑
n:n∈L̄

λ̃L̄,n,m
β

+
∑

L̄:m∈L̄r

∑
n:n∈L̄

λ̃L̄,n,m
γ

< 1,∀m ∈M,

(3.4)

∀n ∈ D = {n ∈M : ψn ≥ α}, λ̃L̄,n,m = 0, ∀L̄ /∈ LD, ∀m ∈M. (3.5)

proof: This lemma is lent from Lemma 2 in [22]. For any arrival rate vec-

tor λ in the capacity region, there exists a load decomposition {λL̄,n,m} that

satisfies (3.4). The proof iteratively refines the load decomposition {λL̄,n,m}
as follows. In each iteration, an appropriate amount of the local load to

both temporary overloaded and under-loaded servers that are routed to over-

loaded servers are moved to under-loaded servers. What we mean by moving

an appropriate amount of local load from an overloaded server to a local

under-loaded server is that we move the shared load until either both servers

become overloaded or under-loaded, or there is no more shared local load be-

tween them to move. By such load movements, the load on the whole system

reduces, so (3.4) still holds for the new load decomposition in each iteration.

We continue the load movements from overloaded servers to under-loaded

ones until there is no more load local to both kinds of servers that are routed

to overloaded servers. We name the ultimate local decomposition {λ̃L̄,n,m}.
For more details refer to the proof provided in the Appendix A, Section 7.1

in [22].

A rack is overloaded if the under-loaded servers in the rack cannot process

the whole extra load on the overloaded servers in the same rack, and the local

load on this rack cannot be distributed on other servers in under-loaded racks

by load balancing. For a subset of racks, R ⊂ K, we define LR as the set

of task types that are only local to the servers in this set of racks, that is,

LR = {L̄ ∈ L|∀m ∈ L̄,K(m) ∈ R}. Formally, rack k is overloaded under a

load decomposition {λL̄,n,m} if the following inequality holds:

∑
m:K(m)=k,ψm≥α

(ψm − α) ≥ β
∑

n:K(n)=k,ψn<α

(1− ψn
α

). (3.6)

The left-hand side of the above inequality is the extra load on overloaded

servers of the overloaded rack k that cannot be served locally, and the right-

hand side is the maximum rack-local service that can be afforded by the
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under-loaded servers in the rack. Therefore, if (3.6) holds for rack k, the rack

is overloaded and needs to receive remote service in order not to overflow.

The following lemma for overloaded racks is an equivalent to Lemma 2 for

overloaded servers.

Lemma 3 Assuming β2 > αγ, there exists a load decomposition {λ̂L̄,n,m}
for any arrival rate vector λ ∈ Λ̄ that satisfies not only conditions (3.4) and

(3.5), but also the following condition. Note that O is the set of overloaded

racks satisfying equation (3.6) under the load decomposition {λ̂L̄,n,m}.

∀n s.t. K(n) ∈ O, λ̂L̄,n,m = 0, ∀L̄ /∈ LO, ∀m ∈M. (3.7)

Analogous to overloaded servers, an overloaded rack only receives task

types that are only local to the servers in the overloaded set of racks.

proof: The proof is similar to proof of Lemma 2. Starting from the load

decomposition {λ̃L̄,n,m} that satisfies both conditions (3.4) and (3.5), the load

local to both overloaded and under-loaded racks that are routed to overloaded

racks are iteratively moved to under-loaded ones. Note that this load can

be moved from beneficiary servers of overloaded racks to beneficiary servers

of under-loaded racks, or from helper servers of overloaded racks to helper

servers of under-loaded racks. By moving the load from under-loaded servers

in overloaded racks to under-loaded servers in under-loaded racks, there is

a possibility that the under-loaded servers in under-loaded racks become

overloaded. By moving ∆ amount of traffic from Ho to Hu (where Hu is

about to become Bu), the added rack-local load on the under-loaded rack is
∆
β

which means that the reduced amount of remote load on the under-loaded

rack is γ∆
β

. On the other hand, be removing ∆ amount of traffic from Ho, Ho

can process additional rack-local traffic of β∆
α

. This load movement reduces

traffic on the whole system in case that β∆
α
> γ∆

β
, which is equivalent to

β2 > αγ. In summary, the condition β2 > αγ dictates that any load local

to both overloaded and under-loaded racks should be routed to the under-

loaded racks regardless of the load on servers. The load movement from an

overloaded rack to an under-loaded one continues until both racks become

overloaded or under-loaded, or no task local to both ones is routed to the

overloaded rack. After load movements, some overloaded racks may become

under-loaded or some under-loaded racks may become overloaded. By such

load movements, the overall load on system reduces and both conditions (3.4)
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and (3.5) hold for the obtained load decomposition. We call the ultimate load

decomposition {λ̂L̄,n,m} that satisfies all the conditions in Lemma 3.

3.4.3 Ideal Load Decomposition

Under an arrival rate vector, servers can be classified into four types: helper

servers in under-loaded racks, beneficiary servers in under-loaded racks, helper

servers in overloaded racks, and beneficiary servers in overloaded racks. The

definition of these four types of servers is as follows:

• Helpers in under-loaded racks (Hu): The set of under-loaded servers

that are in under-loaded racks form the set Hu. The tasks local to this

set of servers all receive service locally. The remaining capacity of this

set of servers is scheduled for processing rack-local and remote tasks.

• Beneficiaries in under-loaded racks (Bu): The set of overloaded servers

that are in under-loaded racks form the set Bu. The tasks local to this

set of servers all receive service locally or rack-locally, but not remotely.

The servers in this set only process local tasks, not rack-local or remote

tasks.

• Helpers in overloaded racks (Ho): The set of under-loaded servers that

are in overloaded racks form the set Ho. The tasks local to this set of

servers all receive service locally. The remaining capacity of this set

of servers is scheduled for processing only rack-local tasks, not remote

tasks.

• Beneficiaries in overloaded racks (Bo): The set of overloaded servers

that are in overloaded racks form the set Bo. The tasks local to this set

of servers receive service locally, rack-locally, or remotely. The servers

in this set only process local tasks, not rack-local or remote tasks.

Figure 3.3 depicts the four types of servers and their load under ideal load

decomposition.

Unless no real helper or beneficiary servers, under-loaded or overloaded

racks exist in a real system, we will use this concept in the heavy-traffic

optimality proof. The following lemma formalizes the definition of four types

of servers.
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Figure 3.3: The four types of servers and their load under the ideal load
decomposition.

Lemma 4 Assuming β2 > αγ, there exists a load decomposition {λ∗
L̄,n,m
} for

any arrival rate vector λ ∈ Λ that satisfies conditions (3.4), (3.5), and (3.7)

in Lemmas 2 and 3, and under this load decomposition any server belongs to

one of the four types described below. Note that O and U stand for the set

of overloaded and under-loaded racks, respectively.

Hu = {n : K(n) ∈ U|ψn < α, and ∀L̄ ∈ L,∀m 6= n, λ∗L̄,n,m = 0},

Bu = {n : K(n) ∈ U|ψn ≥ α, and ∀L̄ ∈ L,∀m 6= n, λ∗L̄,m,n = 0,

and ∀L̄ ∈ L, ∀m s.t. K(m) 6= K(n), λ∗L̄,n,m = 0},

Ho = {n : K(n) ∈ O|ψn < α, and ∀L̄ ∈ L,∀m 6= n, λ∗L̄,n,m = 0,

and ∀L̄ ∈ L,∀m s.t. K(m) 6= K(n), λ∗L̄,m,n = 0},

Bo = {n : K(n) ∈ O|ψn ≥ α, and ∀L̄ ∈ L, ∀m 6= n, λ∗L̄,m,n = 0}.

proof: In order to achieve the ideal load decomposition {λ∗
L̄,n,m
} that

satisfies the conditions in Lemma 4, we start from the load decomposition

{λ̂L̄,n,m} which satisfies conditions (3.4), (3.5), and (3.7). The following four

steps should be taken to achieve the ideal load decomposition:

1. If server n is an under-loaded server in an under-loaded rack, and

λ̂L̄,n,m 6= 0, where m 6= n, we move this load to be scheduled locally

at server n. This way, the local load to the under-loaded servers in

under-loaded racks which were scheduled to be served rack-locally or

remotely will be served locally, so the load on the whole system de-
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creases (the rack-local or remote load on server n may be required to

be rescheduled to other servers with removed load).

2. Under the updated load decomposition in the previous step, we offload

any rack-local or remote load on any overloaded server n in an under-

loaded rack. Hence, server n is only scheduled to process its local load.

This way, there would be empty capacity on the servers that used to

serve the overloaded load of server n. This empty capacity can be used

for the previous rack-local and remote load that were being processed

by server n. On the other hand, if local load to server n receive service

remotely, it can be scheduled to under-loaded servers in the same rack

of server n to receive service rack-locally. All these load movements

reduce the load on the whole system.

3. Under the updated load decomposition in step 2, if the load local to an

under-loaded server n in an overloaded rack receive rack-local or remote

service, we reschedule it to be processed in its local server n (the rack-

local or remote load on server n may be required to be rescheduled

to other servers with removed load). Furthermore, we remove any

remote load on server n to make more space for rack-local load of

overloaded servers in the same rack of server n which used to receive

service remotely. By these load adjustments, the overall load decreases

on the whole system.

4. Under the updated load decomposition of step 3, the rack-local or re-

mote load scheduled to overloaded servers in overloaded racks should

be removed. Instead, local loads to these servers should be assigned to

them. This way, the required remote service of these servers decreases

more than the remote load that was removed from them. Hence, the

overall load on the whole system decreases under this load movement.
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CHAPTER 4

SIMULATION RESULTS

The performances of FCFS scheduler which is the Hadoop’s default sched-

uler, and Hadoop Fair Scheduler (HFS) are studied against the JSQ-MW

algorithm in a system with two levels of data locality in [21]. As FCFS sched-

uler does not take the data locality into account, it performs worst than other

algorithms like the JSQ-MW algorithm, specially at high loads. Hence, per-

formance of FCFS is not given in the analysis. In this chapter, we compare

three algorithms, the Balanced-Pandas algorithm, the JSQ-MaxWeight algo-

rithm, and the Pandas algorithm implemented on a system with three levels

of data locality through simulation. The configuration of the simulated sys-

tem is as follows: we assume a continuous time system consisting of 10 racks

(K = 10), each of which consists of 50 servers, that is M = 500. The task

arrival follows Poisson process, and the service time for a local, rack-local

or remote task follows exponential distribution with rate α = 1, β = 0.9, or

γ = 0.5, respectively. The two times slowdown service for a remote task is

consistent to the measurements in [8]. In our simulation environment, the

three local servers to a task (the task type) is determined at the task’s ar-

rival among a set of servers uniformly at random. The set of servers among

which the local servers are chosen determines the load on the system. We

investigate two traffic scenarios as follows:

1. In this traffic scenario, all the incoming task have their data chunks

stored in three servers that are uniformly selected among the first five

racks. This means that, the incoming load is uniformly distributed

over all the 250 servers in the first five racks. If the mean arrival rate

λ ≡
∑

L̄
λL̄
M

is larger than or equal to 0.5, the first 250 servers in the

first five racks are beneficiaries, and the first five racks are overloaded.

The rest of the servers are helpers, and their five corresponding racks

are under-loaded. The JSQ-MW algorithm achieves heavy-traffic opti-

mality under this specific load. The Balanced-Pandas algorithm is also
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Figure 4.1: The mean task completion time versus the mean arrival rate for
two algorithms, the Balanced-Pandas algorithm and the JSQ-MW
algorithm, under a load that both algorithms minimize the mean task
completion time at high loads.

heavy-traffic optimal in all loads. Therefore, both algorithms achieve

the minimum mean task completion time in this traffic scenario. Figure

4.1 affirms the above statement.

2. Under this load, 20 percent of the arriving tasks have their three local

servers chosen uniformly at random from the first 10 servers of the first

rack, and six percent of the incoming tasks have their three local servers

chosen uniformly at random from the first 25 servers in the second rack.

All the other 74 percent of the incoming tasks have their three local

servers chosen uniformly at random from the rest of 465 servers in the

system. This way, at high loads, the first 10 servers in the first rack

and the 25 first servers in the second rack are beneficiaries, and the rest

of servers are helpers. The first rack is overloaded and the rest of racks

are under-loaded at high loads. Therefore, all four kinds of servers

exist in the system under this traffic scenario at high loads. The mean

task completion time of three algorithms is shown in Figure 4.2. As

Figure 4.2 affirms, the Pandas algorithm is not throughput optimal

as there exists other algorithms that can stabilize the system at higher

loads. Calculating the capacity region, the system is stabilizable as long

as λ < 0.9027. Both the Balanced-Pandas and JSQ-MW algorithms

stabilize the system in this capacity region, but the Pandas algorithm
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Figure 4.2: The mean task completion time versus the mean arrival rate for
three algorithms the Balanced-Pandas, JSQ-MW, and Pandas algorithms
under a general load that all four kinds of servers exist in the system.

makes the system unstable at load λ ≈ 0.83, so the Pandas algorithm

is not throughput optimal. Taking a more careful look at high loads,

Figure 4.3 shows a significant up to fourfold outperformance of the

Balanced-Pandas algorithm compared to the JSQ-MW algorithm. This

fact affirms that the JSQ-MW algorithm is not a heavy-traffic optimal

algorithm.

Figure 4.3: The performance of the JSQ-MW algorithm versus the
Balanced-Pandas algorithm at high loads.
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APPENDIX A

THEOREM PROOFS

A.1 Proof of Theorem 1

We prove that the JSQ-MW algorithm stabilizes the system as long as the

arrival rate vector is strictly inside the outer bound of the capacity region.

This means that the outer bound Λ̄ is the capacity region and the JSQ-MW

algorithm is a throughput optimal algorithm. Assume that λ ∈ Λ̄, then there

exists δ > 0 such that λ(1 + δ) = λ
′ ∈ Λ̄. As λ

′ ∈ Λ̄ there exists a load

decomposition for λ
′
, {λ′

L̄,n,m
}, such that it satisfies the conditions in (3.1)

specifically the following:

∑
L̄:m∈L̄

∑
n:n∈L̄

λ
′

L̄,n,m

α
+
∑

L̄:m∈L̄k

∑
n:n∈L̄

λ
′

L̄,n,m

β
+
∑

L̄:m∈L̄r

∑
n:n∈L̄

λ
′

L̄,n,m

γ
< 1, ∀m.

By our choice of arrival rate vector, we have the following:

{λL̄,n,m, ∀L̄ ∈ L, ∀n,m ∈M} = {
λ
′

L̄,n,m

1 + δ
, ∀L̄ ∈ L, ∀n,m ∈M}.

Hence, we conclude the following:

∑
L̄:m∈L̄

∑
n:n∈L̄

λL̄,n,m
α

+
∑

L̄:m∈L̄k

∑
n:n∈L̄

λL̄,n,m
β

+
∑

L̄:m∈L̄r

∑
n:n∈L̄

λL̄,n,m
γ

<
1

1 + δ
, ∀m.

We define the pseudo arrival rate vector of servers, ψ = (ψ1, ψ2, · · · , ψM), as

follows:

ψn =
∑
L̄:n∈L̄

M∑
m=1

λL̄,n,m, ∀n. (A.1)
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We use ψ as an intermediary to prove this theorem. In the proof, we will

use the following three lemmas where the first two lemmas are analogous to

Lemmas 2 and 3 in [21]. We eliminate the proofs of the first two lemmas

as they mostly do not change for a system with three levels of data locality

other than for a system with two levels of data locality.

Lemma 5 For any arrival rate vector strictly inside the capacity region,

λ ∈ Λ̄, and its corresponding pseudo arrival rate vector of servers ψ defined

in (A.1), under the Joining the Shortest Queue routing policy we have the

following inequality:

E[〈Q(t),A(t)〉 − 〈Q(t),ψ〉|Z(t0)] ≤ 0, ∀t0, and ∀t ≥ t0.

Lemma 6 For any arrival rate vector strictly inside the capacity region,

λ ∈ Λ̄, and its corresponding pseudo arrival rate vector of servers ψ defined

in (A.1), under MaxWeight scheduling policy we have the following inequality:

∀T > T1, and ∀t0,∃T1 > 0 such that,

E
[ t0+T−1∑

t=t0

(
〈Q(t),ψ〉 − 〈Q(t),S(t)〉

)∣∣∣∣Z(t0)

]
≤ −θ1||Q(t0)||1 + c1,

where the constants θ1 > 0 and c1 are independent from Z(t0).

Lemma 7

〈Q(t),U(t)〉 < M2, ∀t.

proof: If Um(t) > 0, then it implies that Qm(t) < M . The reason is

that queue m can receive at most M services at a time slot, so if there

exists any unused services, the queue length should have been less than the

whole services which is M . If Um(t) = 0, then Qm(t)×Um(t) = 0. Therefore,

Qm(t)×Um(t) < M×Um(t). On the other hand it is clear that the summation

of all the unused services in a time slot is less than or equal to the number

of servers, that is
∑

m∈M Um(t) < M . Hence, 〈Q(t),U(t)〉 <
∑

m∈MM ×
Um(t) ≤M2 for any time slot t.

Proof of Theorem 1 mainly starts here. Choosing the Lyapunov function

V1(Z(t)) =
∑

m∈MQ2
m(t) = ||Q(t)||2, it satisfies the conditions in the Foster-

Lyapunov theorem to be non-negative, to be equal to zero only at Q(t) = 0,
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and to go to infinity as any elements of Q(t) goes to infinity. Then the

expected T -time slot drift of the Lyapunov function is as follows:

E[∆V1(Z(t0))]

= E[V1(t0 + T )− V1(t0)|Z(t0)]

= E
[ t0+T−1∑

t=t0

(
V1(t+ 1)− V1(t)

)∣∣∣∣Z(t0)

]

= E
[ t0+T−1∑

t=t0

(
||Q(t+ 1)||2 − ||Q(t)||2

)∣∣∣∣Z(t0)

]

= E
[ t0+T−1∑

t=t0

(
||Q(t) + (A(t)− S(t) +U (t))||2 − ||Q(t)||2

)∣∣∣∣Z(t0)

]

= E
[ t0+T−1∑

t=t0

(
2〈Q(t),A(t)− S(t)〉+ 2〈Q(t),U(t)〉

+ ||A(t)− S(t) +U(t)||2
)∣∣∣∣Z(t0)

]
.

We assumed that the task arrival process at a time slot is bounded with

probability one and it is clear that the provided services and the unused

services are also bounded. Hence, ||A(t) − S(t) +U(t)||2 is bounded. Also

using Lemma 7, we have 2〈Q(t),U(t)〉+ ||A(t)−S(t) +U(t)||2 = c2, where

c2 > 0 is a constant independent of Z(t0). Then for any arrival rate vector

λ ∈ Λ̄ we can use the corresponding ψ defined in (A.1) as an intermidiary

to write the expected Lyapunov function drift as follows:

E[∆V1(Z(t0))]

= E
[ t0+T−1∑

t=t0

(
2〈Q(t),A(t)− S(t)〉

)∣∣∣∣Z(t0)

]
+ c2

= 2E
[ t0+T−1∑

t=t0

(
〈Q(t),A(t)〉 − 〈Q(t),ψ〉

)∣∣∣∣Z(t0)

]

+ 2E
[ t0+T−1∑

t=t0

(
〈Q(t),ψ〉 − 〈Q(t),S(t)〉

)∣∣∣∣Z(t0)

]
+ c2

(a)

≤ −2θ1||Q(t0)||1 + c2,
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where (a) in the last inequality follows from Lemmas 5 and 6. Hence, for

any ε > 0, there exists T ≥ T0 such that for any Z(t0) ∈ Pc, we have

E[V1(Z(t0 + T ))− V1(Z(t0))] ≤ −ε, where P is a finite subset of state spaces

and it is defined as P =

{
Z = (Q,f)

∣∣∣∣||Q||1 ≤ c2+ε
2θ1

}
. It is also obvious that

the expected T -period drift of the Lyapunov function is bounded as long as

Z(t0) ∈ P . Therefore, from the Foster-Lyapunov theorem we conclude that

{Z(t), t ≥ 0} is positive recurrent, which means that the JSQ-MaxWeight

algorithm stabilizes the system under any arrival rate vector λ ∈ Λ̄. This

means that Λ̄ and Λ are both the capacity region of the system.

A.2 Proof of Theorem 2

The proof consists of three parts. First we obtain a lower bound for the

expected queue length. Then, we prove the state space collapse of the queue

lengths. Finally, we use a Lyapunov drift based approach presented in [23]

which uses the state space collapse result to find an upper bound for the

expected queue length. If the lower and upper bounds in the first and last

steps match each other, the algorithm is heavy-traffic optimal in the traffic

load that we considered. We summarize the proof as follows as it is similar

to the proof in [21] for a system with two levels of data locality.

The lower bound on the expected sum of all queue lengths is obtained as

follows. Assume we have a single server with the following arrival and service

processes, respectively:∑
L̄

AεL̄(t),

b1(t) =
∑
i∈Bo

Xi(t) +
∑
j∈Ho

Yj(t) +
∑
n∈Hu

Vn(t),

where {Xi(t) ∼ Bern(α)}i∈Bo , {Yj(t) ∼ Bern(β)}j∈Ho , and {Vn(t) ∼
Bern(γ)}n∈Hu . {Xi}i∈Bo , {Yj}j∈Bu , and {Vn}n∈Hu are independent from each

other and each of them are i.i.d. processes. We define the variances of the ar-

rival and service processes of this single server model as σε1 = var(
∑

L̄A
ε
L̄
(t))

and ν2
1 = var(b1(t)). It is obvious that the queue length of this single

server/single queue model is stochastically smaller than the sum of the queue
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lengths in the original system model with three levels of data locality. Hence,

we have the following lower bound on the expected sum of queue lengths:

E
[ M∑
m=1

Qε
m(t)

]
≥ (σε1)2 + ν2

1 + ε2

2ε
− M

2
.

Therefore, if we let ε go to zero to create the heavy-traffic regime, we have

the following lower bound:

lim inf
ε→0+

εE
[ M∑
m=1

Qε
m(t)

]
≥ σ2

1 + ν2
1

2
. (A.2)

As ε goes to zero, we expect the queue lengths of beneficiary servers to grow

to infinity and have somehow equal lengths. We define the M -dimensional

vector c1 ∈ RM and define the parallel and perpendicular components of Q

with respect to c1 as follows:

c1(m) =


1√
MBo

∀m ∈ Bo

0 else
,

Q|| = 〈c1,Q〉c1,

Q⊥ = Q−Q||.

By taking V2(Z) = ||Q⊥|| as the Lyapunov function, we can show that us-

ing the JSQ-MW scheduling algorithm, the expected drift of this Lyapunov

function is bounded, and becomes negative for sufficiently large Q⊥. There-

fore, we have the following theorem for state space collapse (the proof for the

following theorem is eliminated as it is similar to the corresponding theorem

in [21]).

Theorem 5 There exists finite sequence of numbers {Cr : r ∈ N} such that

E[||Q⊥||r] ≤ Cr, ∀r ∈ N.

We can then use the state space collapse result to prove the following upper

bound for the mean sum of queue lengths:
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E
[ M∑
m=1

Qε
m(t)

]
≤ (σε1)2 + ν2

1

2ε
+Bε,

where Bε = o(1
ε
). Hence, letting ε to go to zero, we have the following upper

bound in the heavy-traffic regime:

lim sup
ε→0+

εE
[ M∑
m=1

Qε
m(t)

]
≤ σ2 + ν2

1

2
.

As the upper bound of the mean sum of queue lengths coincides with the lower

bound under using the JSQ-MW algorithm, this algorithm is heavy-traffic

optimal under the load we specified in Theorem 2 (but it is not heavy-traffic

optimal in all traffic scenarios).

A.3 Proof of Theorem 3

A corollary of Theorem 1 is that Λ is the capacity region of a system with

three levels of data locality. Hence, to prove the throughput optimality of

the Balanced-Pandas algorithm, it is enough to show that this scheduling

algorithm can stabilize the system as long as the arrival rate vector is strictly

inside the capacity region, λ ∈ Λ. For any λ ∈ Λ, there exists δ > 0 such

that λ
′
= λ(1 + δ) ∈ Λ. As λ

′ ∈ Λ, there exists a load decomposition {λ′
L̄,m
}

such that it satisfies the following:

∑
L̄:m∈L̄

λ
′

L̄,m

α
+
∑

L̄:m∈L̄k

λ
′

L̄,m

β
+
∑

L̄:m∈L̄r

λ
′

L̄,m

γ
< 1, ∀m ∈M,

then by our choice of λ
′

to be λ(1 + δ), we have the following:

∑
L̄:m∈L̄

λL̄,m
α

+
∑

L̄:m∈L̄k

λL̄,m
β

+
∑

L̄:m∈L̄r

λL̄,m
γ

<
1

1 + δ
, ∀m ∈M. (A.3)

Define the workload vector of servers, w = (w1, w2, · · · , wM), under the

load decomposition {λL̄,m} as follows:

wm =
∑
L̄:m∈L̄

λL̄,m
α

+
∑

L̄:m∈L̄k

λL̄,m
β

+
∑

L̄:m∈L̄r

λL̄,m
γ

, ∀m ∈M. (A.4)
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The workload on a server evolves as follows:

Wm(t+ 1) =
Ql
m(t+ 1)

α
+
Qk
m(t+ 1)

β
+
Qr
m(t+ 1)

γ

(a)
=
Ql
m(t) + Alm(t)− Slm(t)

α
+
Qk
m(t) + Akm(t)− Skm(t)

β

+
Qr
m(t) + Arm(t)− Srm(t) + Um(t)

γ

= Wm(t) +

(
Alm(t)

α
+
Akm(t)

β
+
Arm(t)

γ

)
−
(
Slm(t)

α
+
Skm(t)

β
+
Srm(t)

γ

)
+
Um(t)

γ
,

where (a) follows from the queue evolution in (3.3). Define the pseudo ar-

rival, service and unused service processes as A = (A1, A2, · · · , AM), S =

(S1, S2, · · · , SM), and Ũ = (Ũ1, Ũ2, · · · , ŨM), respectively, where

Am(t) =
Alm(t)

α
+
Akm(t)

β
+
Arm(t)

γ
, ∀m ∈M,

Sm(t) =
Slm(t)

α
+
Skm(t)

β
+
Srm(t)

γ
, ∀m ∈M,

Ũm(t) =
Um(t)

γ
, ∀m ∈M.

By the above definitions, we can write the dynamics of the queue work-

loads, W = (W1,W2, · · · ,WM), as follows:

W (t+ 1) = W (t) +A(t)− S(t) + Ũ(t). (A.5)

The following three lemmas will be used in the proof of Theorem 3.

Lemma 8

〈W (t), Ũ(t)〉 = 0, ∀t. (A.6)

proof: The expression simplifies as follows:

〈W (t), Ũ(t)〉 =
∑
m

(
Ql
m(t)

α
+
Qk
m(t)

β
+
Qr
m(t)

γ

)
Um(t)

γ
.
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Note that for any server m, if Um(t) = 0, then
(Qlm(t)

α
+Qkm(t)

β
+Qrm(t)

γ

)Um(t)
γ

= 0.

Otherwise, Um(t) > 0 implies that all sub-queues of server m are empty which

again results in Um(t) = 0, then
(Qlm(t)

α
+ Qkm(t)

β
+ Qrm(t)

γ

)Um(t)
γ

= 0. Therefore,

〈W (t), Ũ(t)〉 = 0 for all time slots.

Lemma 9 For any arrival rate vector strictly inside the capacity region,

λ ∈ Λ, and the corresponding workload vector of servers w defined in (A.4),

we have the following inequality by using the Balanced-Pandas algorithm:

E[〈W (t),A(t)〉 − 〈W (t),w〉|Z(t)] ≤ 0, ∀t ≥ 0. (A.7)

proof: We first define the minimum weighted workload for a task type,

L̄ ∈ L as follows:

W ∗
L̄(t) = min

m∈M

{
Wm(t)

α
I{m∈L̄},

Wm(t)

β
I{m∈L̄k},

Wm(t)

γ
I{m∈L̄r}

}
. (A.8)

At the beginning of time slot t, an incoming task of type L̄ is routed to

queue m∗ with the minimum expected workload W ∗
L̄
(t). Therefore, for any

task type L̄ ∈ L we have the following:

Wm(t)

α
≥ W ∗

L̄(t), ∀m ∈ L̄,

Wm(t)

β
≥ W ∗

L̄(t), ∀m ∈ L̄k,

Wm(t)

γ
≥ W ∗

L̄(t), ∀m ∈ L̄r.

(A.9)

In other words, task of type L̄ does not join a server m with weighted work-

load greater than W ∗
L̄
. Then we have the following:
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E
[
〈W (t),A(t)〉|Z(t)

]
= E

[∑
m

Wm(t)

(
Alm(t)

α
+
Akm(t)

β
+
Arm(t)

γ

)∣∣∣∣Z(t)

]
= E

[∑
m

Wm(t)

(
1

α

∑
L̄:m∈L̄

AL̄,m(t) +
1

β

∑
L̄:m∈L̄k

AL̄,m(t)

+
1

γ

∑
L̄:m∈L̄r

AL̄,m(t)

)∣∣∣∣Z(t)

]
(a)
= E

[∑
L̄∈L

( ∑
m:m∈L̄

Wm(t)

α
AL̄,m(t) +

∑
m:m∈L̄k

Wm(t)

β
AL̄,m(t)

+
∑

m:m∈L̄r

Wm(t)

γ
AL̄,m(t)

)∣∣∣∣Z(t)

]
(b)
= E

[∑
L̄∈L

W ∗
L̄(t)AL̄(t)

∣∣∣∣Z(t)

]
=
∑
L̄∈L

W ∗
L̄(t)λL̄,

(A.10)

where (a) is true by changing the order of the summations, and (b) follows

from the Balanced-Pandas routing policy that task of type L̄ is routed to the

queue with the minimum weighted workload, W ∗
L̄
. On the other hand,

E
[
〈W (t),w〉|Z(t)

]
=
∑
m

Wm(t)wm

=
∑
m

Wm(t)

( ∑
L̄:m∈L̄

λL̄,m
α

+
∑

L̄:m∈L̄k

λL̄,m
β

+
∑

L̄:m∈L̄r

λL̄,m
γ

)
(a)
=
∑
L̄∈L

( ∑
m:m∈L̄

Wm(t)

α
λL̄,m +

∑
m:m∈L̄k

Wm(t)

β
λL̄,m +

∑
m:m∈L̄r

Wm(t)

γ
λL̄,m

)
(b)

≥
∑
L̄∈L

∑
m∈M

W ∗
L̄(t)λL̄,m

=
∑
L̄∈L

W ∗
L̄(t)λL̄,

(A.11)

where (a) is true by changing the order of summations, and (b) follows from
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(A.9). Lemma 9 is concluded from expressions (A.10) and (A.11).

Lemma 10 For any arrival rate vector strictly inside the capacity region,

λ ∈ Λ, and the corresponding workload vector of servers w defined in (A.4),

we have the following inequality by using the Balanced-Pandas algorithm:

E[〈W (t),w〉 − 〈W (t),S(t)〉|Z(t)] ≤ −θ2||Q̄(t)||1, ∀t ≥ 0, (A.12)

where the constant θ2 > 0 is independent of Z(t).

proof: Using (A.3), the mean workload vector on servers defined in (A.4)

can be bounded as follows:

wm ≤
1

1 + δ
, ∀m ∈M.

Hence,

E[〈W (t),w〉|Z(t)] =
∑
m

Wm(t)wm ≤
1

1 + δ

∑
m

Wm(t). (A.13)

We also have the following:

E[〈W (t),S(t)〉|Z(t)]

= E
[∑

m

Wm(t)

(
Slm(t)

α
+
Skm(t)

β
+
Srm(t)

γ

)∣∣∣∣Z(t)

]
=
∑
m

Wm(t)E
[
Slm(t)

α
+
Skm(t)

β
+
Srm(t)

γ

∣∣∣∣Z(t)

]

=
∑
m

Wm(t)E
[ 2∑
i=0

E
[
Slm(t)

α
+
Skm(t)

β
+
Srm(t)

γ

∣∣∣∣Z(t), ηm(t) = i

]
|Z(t)

]
=
∑
m

Wm(t)

{
E
[
E
[
Slm(t)

α

∣∣∣∣Z(t), ηm(t) = 0

]
|Z(t)

]
+ E

[
E
[
Skm(t)

β

∣∣∣∣Z(t), ηm(t) = 1

]
|Z(t)

]
+ E

[
E
[
Srm(t)

γ

∣∣∣∣Z(t), ηm(t) = 2

]
|Z(t)

]}
=
∑
m

Wm(t).

(A.14)

Therefore,
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E[〈W (t),w〉 − 〈W (t),S(t)〉|Z(t)]

≤ 1

1 + δ

∑
m

Wm(t)−
∑
m

Wm(t)

= − δ

1 + δ

∑
m

Wm(t)

= − δ

1 + δ

∑
m

(
Ql
m(t)

α
+
Qk
m(t)

β
+
Qr
m(t)

γ

)
≤ − δ

α(1 + δ)

∑
m

(Ql
m(t) +Qk

m(t) +Qr
m(t))

= −θ2||Q̄(t)||1.

Using Lemmas 8, 9, and 10, we prove Theorem 3 as follows. Assume the

Lyapunov function is chosen as

V3(Z(t)) = ||W (t)||2,

then its expected drift is as follows:

E[∆(Z(t))]

= E[V3(t+ 1)− V3(t)|Z(t)]

= E
[
||W (t+ 1)||2 − ||W (t)||2

∣∣∣∣Z(t)

]
(a)
= E

[
||W (t) +A(t)− S(t) + Ũ(t)||2 − ||W (t)||2

∣∣∣∣Z(t)

]
= E

[
2〈W (t),A(t)− S(t)〉+ 2〈W (t), Ũ(t)〉+ ||A(t)− S(t) + Ũ(t)||2

∣∣∣∣Z(t)

]
(b)
= 2E

[
〈W (t),A(t)− S(t)〉

∣∣∣∣Z(t)

]
+ c3

= 2E
[
〈W (t),A(t)〉 − 〈W (t),w〉

∣∣∣∣Z(t)

]
+ 2E

[
〈W (t),w〉 − 〈W (t),S(t)〉

∣∣∣∣Z(t)

]
+ c3

(c)

≤ −2θ2||Q̄(t)||1 + c3,

where (a) follows from (A.5), (b) follows from Lemma 8, and the fact that

A(t), S(t), and Ũ(t) are all bounded, and (c) is true by Lemmas 9 and 10. By
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choosing any positive constant ε > 0, let P =

{
Z = (Q,f)

∣∣∣∣||Q||1 ≤ c3+ε
2θ2

}
,

where P is a bounded subset of the state space. For any Z ∈ P , ∆V3(Z)

is bounded and for any Z ∈ Pc, ∆V3(Z) ≤ −ε. Hence, for any λ ∈ Λ,

the Markov process {Z(t), t ≥ 0} is positive recurrent and the Balanced-

Pandas algorithm makes the system stable, which means that this algorithm

is throughput optimal.

A.4 Proof of Theorem 4

For simplicity, this proof is for the special case where O 6= ∅ and Bu = ∅. For

the general proof refer to [24]. The heavy-traffic optimality is driven through

the following three steps:

1. Establishing the state-space collapse in the heavy traffic regime.

2. Finding a lower bound on the expected sum of the queue lengths as

ε→ 0.

3. Finding an upper bound on the expected sum of the queue lengths as

ε→ 0, which matches the lower bound found in step 2.

In heavy traffic regime, the system collapses to the one-dimensional state

space vector shown in Figure A.1.

Figure A.1: The queue compositions of the four types of servers in the
heavy-traffic regime with α = 1, β = 0.8, γ = 0.5. The workload at four
types of servers maintain the ratio α : β : αγ

β
: γ = 1 : 0.8 : 0.625 : 0.5.
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Note that the prioritized service uniformly bounds the helper subsystem

in heavy-traffic regime. This results in disappearance of local and rack-local

queues of servers in the set Hu and local queues of servers in the set Ho. On

the other hand, the weighted-workload routing policy distributes tasks that

are only local to beneficiary servers in overloaded racks across Bo,Ho, andHu

in the ratio of α : β : γ in terms of server workload. Furthermore, the tasks

only local to servers in the set Bu are just helped rack-locally by servers in

the set Hu, and the weighted-workload scheduling policy maintains the ratio

α : β in terms of workload on beneficiary and helper servers in under-loaded

racks. Hence, the workload is distributed over servers in this proportion:

W l
1 : W k

2 : W l
3 : W r

4 = α : β : αγ
β

: γ.

Denote the local traffic onHu andHo by
∑

L̄∈L∗Hu
λL̄ ≡ Φuα and

∑
L̄∈LHo

λL̄

≡ Φoα, respectively, where L∗Hu = {L̄ : ∃m ∈ Hu s.t. m ∈ L̄}, and

LHo = {L̄ : ∀m ∈ L̄,m ∈ Ho ∪ Bo, and ∃n ∈ Ho s.t. n ∈ L̄}. Then,

the heavy-traffic regime parameterized by ε > 0, where ε shows the distance

of the arrival rate vector from the boundary of the capacity region, is defined

as follows:

∑
L̄∈LBo

λL̄ = α|Bo|+ β(|Ho| − Φo) + γ(|Hu| − Φu)− ε.

Consider the arrival process {A(ε)

L̄
(t)}L̄∈L with arrival rate vector λ(ε).

An assumption is made that the total local load for helpers is fixed, that

is {λL̄ : L̄ ∈ L∗Hu ∪ LHo} is independent of ε. Hence, the variance of

{A(ε)

L̄
(t)}L̄∈L∗Hu∪LHo is independent of ε. On the other hand, the variance

of the number of tasks that are only local to beneficiary servers in over-

loaded racks is denoted by (σ(ε))2 that converges to σ2 as ε ↓ 0, that is

V ar
(∑

L̄∈LBo
AL̄(ε)(t)

)
= (σ(ε))2 ε→0−→ σ2. The system state under the Balanced-

Pandas algorithm when the arrival rate is λ(ε) is denoted by
{

Z(ε)(t) =(
Q̄(ε)(t), f (ε)(t)

)
, t ≥ 0

}
. Then, the Markov chain Z(ε)(t) is positive recur-

rent and has a steady state distribution as long as λ(ε) ∈ Λ. The following

theorem states that local and rack-local queues of Hu and local queues of Ho

are uniformly bounded and the bound is independent of ε.
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Theorem 6 (Helper Queues)

lim
ε↓0

εE

[ ∑
m∈Hu

(
Ql(ε)
m (t) +Qk(ε)

m (t)
)]

= 0,

lim
ε↓0

εE

[∑
m∈Ho

Ql(ε)
m (t)

]
= 0.

The proof of Theorem 6 is given in Section A.4.1.

As the arrival rate vector approaches the boundary of the capacity region,

that is ε ↓ 0, the mean sum of queue lengths approaches infinity in steady

state, that is E
[
||Q̄||

]
= E

[∑
m

(
Ql
m +Qk

m +Qr
m

)]
→∞. By Theorem 6, it

is enough to consider the following to characterize the scaling order of E
[
Q̄
]
:

Φ =
∑
m∈Hu

Qr
m +

∑
m∈Ho

(
Qk
m +Qr

m

)
+
∑
m∈Bo

(
Ql
m +Qk

m +Qr
m

)
.

Define c̃ ∈ RM
+ as follows:

c̃m =


γ, ∀m ∈ Hu

β, ∀m ∈ Ho

α, ∀m ∈ Bo

.

By defining c = c̃
||c̃|| , the parallel and perpendicular components of the steady-

state weighted queue-length vector, W, with respect to vector c are as fol-

lows:

W|| = 〈c,W〉c, W⊥ = W −W||.

The following theorem states that the deviation of W from direction c is

bounded and is independent of the heavy-traffic parameter, ε.

Theorem 7 (State Space Collapse)

There exists a sequence of finite numbers {Cr : r ∈ N} such that for each

positive integer r we have the following:

E [||W⊥||r] ≤ Cr.
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The proof of Theorem 7 is given in Section A.4.2.

Define the service process as follows:

b(ε)(t) =
∑
i∈Bo

Xi(t) +
∑
j∈Ho

Yj(t) +
∑
n∈Hu

Vn(t),

where {Xi(t)}i∈Bo , {Yj(t)}j∈Ho , and {Vn(t)}n∈Hu are independent from each

other and each process is i.i.d. and,
Xi(t) ∼ Bern(α) ∀i ∈ Bo
Yj(t) ∼ Bern(β(1− ρlj)) ∀j ∈ Ho

Vn(t) ∼ Bern(γ(1− ρn)) ∀n ∈ Hu

.

where ρlj is the proportion of time that helper server j gives service to local

tasks in steady state, and ρn is the proportion of time that helper server n

gives service to local and rack-local tasks in steady state. Let V ar
(
b(ε)(t)

)
=(

ν(ε)
)2

that converges to ν2 as ε ↓ 0. Then, we have the following two

theorems.

Theorem 8 (Lower Bound)

E
[
Φ(ε)(t)

]
≥
(
σ(ε)
)2

+
(
ν(ε)
)2

+ ε2

2ε
− M

2
.

Hence,

lim inf
ε↓0

εE
[
Φ(ε)(t)

]
≥ σ2 + ν2

2
.

The proof of Theorem 8 is given in Section A.4.3.

Theorem 9 (Upper Bound)

E
[
Φ(ε)(t)

]
≤
(
σ(ε)
)2

+
(
ν(ε)
)2

2ε
+B(ε),

where B(ε) = o(1
ε
), that is limε↓0 εB

(ε) = 0; hence,

lim sup
ε↓0

εE
[
Φ(ε)(t)

]
≤ σ2 + ν2

2
.

This upper bound matches with the lower bound found in Theorem 8.
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The proof of Theorem 9 is given in Section A.4.4.

Note that,

E

[∑
m

(
Ql(ε)
m (t) +Qk(ε)

m (t) +Qr(ε)
m (t)

)]

= E

[ ∑
m∈Hu

(
Ql(ε)
m (t) +Qk(ε)

m (t)
)

+
∑
m∈Ho

Ql(ε)
m (t)

]
+ E

[
Φ(ε)(t)

]
,

where Theorems 8 and 9 give the coincidence of lower and upper bounds of

the term εE
[
Φ(ε)(t)

]
as ε → 0. Using Theorem 6, the proof of heavy-traffic

optimality is complete and Theorem A.4 is proved.

A.4.1 Proof of Theorem 6

Considering the system in steady state, define the following for any m ∈ Hu,

Q̂m(t) = Ql
m(t) +Qk

m(t),

Âm(t) = Alm(t) + Akm(t),

Ŝm(t) = Slm(t) + Skm(t),

where Q̂ evolves as below:

Q̂(t+ 1) = Q̂(t) + Â(t)− Ŝ(t).

Let F̂m(t) = F l
m(t) + F k

m(t), where the ideal arrival process F(t) is defined

in the proof of Theorem 9. Now we can rewrite the dynamics of Q̂ in the

following way:

Q̂(t+ 1) = Q̂(t) + F̂(t)− Ŝ(t) + Â(t)− F̂(t).

Define the unit vector ch ∈ RMHo
+ as follows:

ch =
1√
MHo

(1, 1, · · · , 1)︸ ︷︷ ︸
MHo

.

The drift of the function ||Q̂||||2 = ||〈ch, Q̂||||2 is zero in steady state, so

47



2E
[
〈ch, Q̂(t)〉〈ch, Ŝ(t)− F̂(t)〉

]
= E

[
〈ch, F̂(t)− Ŝ(t)〉2

]
+ E

[
〈ch, Â(t)− F̂(t)〉2

] (A.15)

+2E
[
〈ch, Q̂(t) + F̂(t)− Ŝ(t)〉〈ch, Â(t)− F̂(t)〉

]
. (A.16)

The definition of the ideal arrival process yields that,

〈ch, F̂(t)〉 =
1√
MHo

∑
m∈Hu

F l
m(t) =

1√
MHo

∑
L̄∈L∗Hu

AL̄(t).

Hence the sum of the ideal arrivals on Hu and the queue lengths are inde-

pendent.

E
[
〈ch, Q̂(t)〉〈ch, Ŝ(t)− F̂(t)〉

]
=

1

MHo
E

[( ∑
m∈Hu

Q̂m(t)

)(∑
m∈Hu

Ŝm(t)

)]
− 1

MHo
E

[ ∑
m∈Hu

Q̂m(t)

] ∑
L̄∈L∗Hu

λL̄


Note that Ŝm(t) = Slm(t) + Skm(t) only depends on the state of the m-th

queue, so

E

[( ∑
m∈Hu

Q̂m(t)

)(∑
m∈Hu

Ŝm(t)

)]

=
∑
m∈Hu

E
[
Ŝm(t)Q̂m(t)

]
+
∑
m∈Hu

E
[
Ŝm(t)

]
E

[ ∑
n∈Hu:n6=m

Q̂n(t)

]

=
∑
m∈Hu

E
[
Ŝm(t)Q̂m(t)

]
+ E

[ ∑
m∈Hu

Ŝm(t)

]
E

[∑
n∈Hu

Q̂n(t)

]
−
∑
m∈Hu

(
E
[
Ŝm(t)

]
E
[
Q̂m(t)

])
.

(A.17)

The following lemma gives a lower bound on term
∑

m∈Hu E
[
Ŝm(t)Q̂m(t)

]
.

For proof of the following lemma, refer to Lemma B.18 in [24].
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Lemma 11 ∑
m∈Hu

E
[
Ŝm(t)Q̂m(t)

]
≥
∑
m∈Hu

αE
[
Q̂m(t)

]
− C1,

where C1 is a constant.

As we are studying the system in steady state, E
[
Q̂m(t+ 1)

]
= E

[
Q̂m(t)

]
,

∀m ∈ Hu, so

E
[
Âm(t)− Ŝm(t)

]
= E

[
Q̂m(t+ 1)− Q̂m(t)

]
= 0,

which results in E
[
Ŝm(t)

]
= E

[
Âm(t)

]
, so

E

[ ∑
m∈Hu

Ŝm(t)

]
E

[∑
n∈Hu

Q̂n(t)

]
−
∑
m∈Hu

(
E
[
Ŝm(t)

]
E
[
Q̂m(t)

])
= E

[ ∑
m∈Hu

Âm(t)

]
E

[∑
n∈Hu

Q̂n(t)

]
−
∑
m∈Hu

(
E
[
Âm(t)

]
E
[
Q̂m(t)

])
= E

[ ∑
m∈Hu

(
Alm(t) + Akm(t)

)]
E

[∑
n∈Hu

Q̂n(t)

]
−
∑
m∈Hu

(
E
[
Alm(t) + Akm(t)

]
E
[
Q̂m(t)

])
(a)

≥ E

[ ∑
m∈Hu

(
Alm(t) + Akm(t)

)]
E

[∑
n∈Hu

Q̂n(t)

]
−
∑
m∈Hu

(
αρ∗hE

[
Q̂m(t)

])
,

where (a) follows from the following lemma. Refer to Lemma B.17 in [24]

for the proof of the following lemma.

Lemma 12

∀m ∈ Ho ∪Hu, ∃ 0 ≤ ρh < 1, where ρh does not depend on ε, s.t.

E
[
Alm
α

]
≤ ρh.

Then we have the following:
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E
[
〈ch, Q̂(t)〉〈ch, Ŝ(t)− F̂(t)〉

]
≥ 1

MHo

{ ∑
m∈Hu

αE
[
Q̂m(t)

]
− C1 + E

[ ∑
m∈Hu

(
Alm(t) + Akm(t)

)]
E

[∑
n∈Hu

Q̂n(t)

]

−
∑
m∈Hu

(
αρ∗hE

[
Q̂m(t)

])
− E

[ ∑
m∈Hu

Q̂m(t)

] ∑
L̄∈L∗Hu

λL̄

}

=
1

MHo

α(1− ρ∗h) + E

[ ∑
m∈Hu

(
Alm(t) + Akm(t)

)]
−
∑

L̄∈L∗Hu

λL̄

E

[ ∑
m∈Hu

Q̂m(t)

]

− C1

MHo
.

The following can be driven from proof of Lemma 17 (or Lemma B.23

in [24]):

∑
L̄∈L∗Hu

λL̄ − E

[ ∑
m∈Hu

(
Alm(t) + Akm(t)

)]

= E
[
AlHuHo + AlHuBo + AkHuHo + AkHoHo + AkHuHu + ArHuBo + ArHuHo + ArHuHu

]
≤ Cε,

(A.18)

where C is a constant that is only a function of α, β, and γ. Furthermore,

the definition of the ideal arrival process yields the following:∑
m∈Hu

F̂m(t) =
∑

L̄∈L∗Hu

λL̄ ≥
∑
m∈Hu

Âm(t).

Then we have the following:

E
[
〈ch, Q̂(t)〉〈ch, Ŝ(t)− F̂(t)

]
≥ 1

MHo
[α(1− ρ∗h)− Cε]E

[ ∑
m∈Hu

Q̂m(t)

]
− C1

MHo
.

(A.19)

The number of arriving tasks and services are bounded, so
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E
[
〈ch, F̂(t)− Ŝ(t)〉2

]
≤ C2, (A.20)

E
[
〈ch, Â(t)− F̂(t)〉2

]
≤ C3, (A.21)

where C2 > 0 and C3 > 0 are constants not depending on ε. Then we have

the following for the term in equation (A.16):

E
[
〈ch, Q̂(t) + F̂(t)− Ŝ(t)〉〈ch, Â(t)− F̂(t)〉

]
= E

[
〈ch, Q̂(t)〉〈ch, Â(t)− F̂(t)〉

]
+ E

[
〈ch, F̂(t)− Ŝ(t)〉〈ch, Â(t)− F̂(t)〉

]
(a)

≤ E
[
〈ch, F̂(t)− Ŝ(t)〉〈ch, Â(t)− F̂(t)〉

]
(b)

≤ C4,

(A.22)

where (a) is true as 〈ch, Â(t) − F̂(t)〉 ≤ 0, and (b) is true as the number of

task arrival is bounded, and C4 is a constant.

From equations (A.16), (A.19), (A.20), (A.21), and (A.22), the following

is derived:

2

MHo
[α(1− ρ∗h)− Cε]E

[ ∑
m∈Hu

Q̂m(t)

]
≤ 2C1

MHo
+ C2 + C3 + 2C4,

so for any 0 < ε <
α(1−ρ∗h)

C
, the following is true:

E

[ ∑
m∈Hu

Q̂m(t)

]
≤ C5

α(1− ρ∗h)− Cε
,

where C5 = C1 + (C2 + C3 + 2C4)
MHo

2
, so

lim
ε↓0

E

[ ∑
m∈Hu

(
Ql(ε)
m (t) +Qk(ε)

m (t)
)]
≤ C5

α(1− ρ∗h)
,

that is equivalent to the following:

lim
ε↓0

εE

[ ∑
m∈Hu

(
Ql(ε)
m (t) +Qk(ε)

m (t)
)]

= 0.

Similarly, we can prove the following:
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lim
ε↓0

εE

[∑
m∈Ho

Ql(ε)
m (t)

]
= 0.

A.4.2 Proof of Theorem 7

The following lemma is given for ideal load decomposition for the case O 6=
∅. For proof of this lemma, refer to Lemma B.19 in [24].

Lemma 13

∃λ0 > 0 not depending on ε, such that:

1. Defining

ωm =
∑
L̄:m∈L̄

λ∗
L̄,m

α
+
∑

L̄:m∈L̄k

λ∗
L̄,m

β
+
∑

L̄:m∈L̄r

λ∗
L̄,m

γ
,

we have the following:

ωm =


1− γε0, ∀m ∈ Hu

1− βε0, ∀m ∈ Ho

1− αε0, ∀m ∈ Bo

,

where ε0 = ε
||ĉ||2 .

2. Denote the set of task types that are only local to Bo by LBo. Then,

∀L̄ ∈ LBo , and ∀m ∈ {i ∈M|i ∈ L̄, or i ∈ Hu, or i ∈ L̄k ∩Ho},

∃κ > 0, independent of ε, such that: λ∗L̄,m =
∑
n∈L̄

λ∗L̄,n,m ≥ κ.

For the evenly loaded scenario, the following three lemmas are used. For

the proof of these lemmas, refer to Lemmas B.20, B.21, and B.22 in [24].

Lemma 14 Using the Balanced-Pandas algorithm, we have the following:

E [〈W(t),A(t)〉 − 〈W,ω〉|Z(t)] ≤ −λmin||W⊥(t)||, ∀t ≥ 0,

where λmin > 0 is a constant not depending on ε.
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Lemma 15 Using the Balanced-Pandas algorithm, we have the following:

E [〈W(t),ω〉 − 〈W(t),S(t)〉|Z(t)] = − ε

||ĉ||
〈c,W〉, ∀t ≥ 0.

Lemma 16

E [〈c,W(t)〉〈c,A(t)− S(t)〉|Z(t)] ≥ − ε

||ĉ||
〈c,W〉, ∀t ≥ 0.

In order to prove Theorem 7, consider the following Lyapunov function:

F (Z) = ||W⊥||.

The drift of this Lyapunov function is given as below:

∆F (Z) ≤ 1

2||W⊥||
(
∆V (Z)−∆V||(Z)

)
,

where ∆V (Z) and ∆V||(Z) are the drifts for Lyapunov functions V (Z) =

||W||2 and V||(Z) = ||W||||2, respectively. Then, we have the following:

E[∆V (Z(t))−∆V||(Z(t))|Z(t)]

≤ 2E[〈W(t),A(t)− S(t)〉 − 〈c,W(t)〉〈c,A(t)− S(t)〉|Z(t)] + C1.

Using Lemmas 14, 15, and 16, we get the following upper bound on

E[∆F (Z(t))|Z(t)] :

E[∆F (Z(t))|Z(t)] ≤ −λ0 +
C

||W⊥(t)||
,

where λ0 > 0 and C > 0 are constants not depending on ε. This last in-

equality satisfies the negative drift condition, so there exists finite series of

constants {C ′r}r∈N such that E
[
||W(ε)

⊥ (t)||r
]
≤ C ′r for any ε ∈ (0,Mα).

A.4.3 Proof of Theorem 8

The lower bound on E
[
Φ(ε)(t)

]
can be driven by constructing a system with a

single server and a single queue with arrival process
{∑

L̄∈LBo
A

(ε)

L̄
(t), t ≥ 0

}
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and service process
{
b(ε)(t) =

∑
i∈Bo Xi(t) +

∑
j∈Ho Yj(t) +

∑
n∈Hu Vn(t),

t ≥ 0
}

. Denote the queue length of the constructed system by Ψ (ε)(t).

By the definitions of Xi, Yj, and Vn, E
[∑

i∈Bo Xi(t)
]
, E
[∑

j∈Ho Yj(t)
]
, and

E
[∑

n∈Hu Vn(t)
]

are the maximum amount of local, rack-local, and remote

services that can be given to
∑

L̄∈LBo
A

(ε)

L̄
(t). Hence, it is obvious that in

steady state Ψ (ε)(t) is stochastically smaller than or equal to Φ(ε)(t). Then

the lower bound on E
[
Φ(ε)(t)

]
is derived by using Lemma 4 in [23].

A.4.4 Proof of Theorem 9

The ideal scheduling, service, and arrival processes are defined as follows:

Ideal Scheduling Decision Process η′(t): Under ideal scheduling, a ben-

eficiary server in an over-loaded rack is only giving service to its local tasks

queued in its local sub-queue, and an idle helper server in an overloaded rack

that has no local tasks in its local sub-queue is only scheduled to give service

to its rack-local tasks queued at its rack-local sub-queue. In other works,

∀m ∈ Bo, η′m(t) = 0,

∀m ∈ Ho, η
′
m(t) = ηm(t) if ηm(t) = 0, and η′m(t) = 1 if fm(t−) = −1, Ql

m(t) = 0

∀m ∈ Hu, η
′
m(t) = ηm(t).

Ideal Service Process D(t):

∀m ∈ Bo, Dl
m(t) = X l

m(t), Dk
m(t) = 0, Dr

m(t) = 0,

where X l
m(t) ∼ Bern(α), and each process X l

m(t) is i.i.d. and is coupled with

Sm(t) as follows: If ηm(t) = 0, X l
m(t) = Slm(t); if ηm(t) = 1, X l

m(t) = 0 when

Skm(t) = 0, and X l
m(t) ∼ Bern(α

β
) when Skm(t) = 1; if ηm(t) = 2, X l

m(t) = 0

when Srm(t) = 0, and X l
m(t) ∼ Bern(α

γ
) when Skm(t) = 1. Furthermore,

∀m ∈ Ho, D
l
m(t) = Slm(t), Dk

m(t) = Y k
m(t), Dr

m(t) = 0,

where Y k
m(t) ∼ Bern(βI{ηm(t) 6=0}) and each process Y k

m(t) is i.i.d. Finally,

∀m ∈ Hu, Dm(t) = Sm(t),

Dl
m(t) = Slm(t), Dk

m(t) = Skm(t), Dr
m(t) = Srm(t).
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Ideal Arrival Process F(t): Ideally, any task type that has a local server

in the set Hu should receive service locally. In other words, ∀L̄ ∈ L∗Hu , task

of type L̄ is routed to one of its local servers in the set Hu. Hence, unwanted

arrivals
∑

m:m/∈L̄,m/∈Hu AL̄,m should be reassigned evenly among their local

servers in Hu. Similarly, ∀L̄ ∈ LHo , the task of type L̄ should ideally be as-

signed to its local servers in Ho, that is unwanted arrivals
∑

m:m/∈L̄,m/∈Ho AL̄,m

should be reassigned evenly among their local servers in Ho. On the other

hand, ∀L̄ ∈ LBo , task of type L̄ should either receive service locally from a

server in Bo, or rack-locally from a server in Ho, or remotely from a server in

Hu. Hence, we reassign tasks so that the above conditions hold in the ideal

case. Then, the dynamics of Q̃ can be written as follows:

Q̃(t+ 1) = Q̃(t) + F̃(t)− D̃(t) + Ṽ(t),

where Ṽ(t) = Ã(t) − F̃(t) + D̃(t) − S̃(t) + Ũ(t). Note that in steady state,

we have the following:

2E
[
〈c, Q̃(t)〉〈c, D̃(t)− F̃(t)〉

]
= E

[
〈c, F̃(t)− D̃(t)〉2

]
+ E

[
〈c, Ṽ(t)〉2

]
+ 2E

[
〈c, Q̃(t) + F̃(t)− D̃(t)〉〈c, Ṽ(t)〉

]
.

(A.23)

On the other hand,

Φ(ε)(t) ≤
∑
m∈Hu

γ
Qr
m

γ
+
∑
m∈Ho

β

(
Qk
m

β
+
Qr
m

γ

)
+
∑
m∈Bo

α

(
Ql
m

α
+
Qk
m

β
+
Qr
m

γ

)
=||c̃||〈c, Q̃〉,

(A.24)

so in order to find an upper bound on E
[
Φ(ε)(t)

]
, we need to find an upper

bound on E
[
〈c, Q̃(t)〉

]
. To this aim, We start by analyzing different terms

in equation (A.23). For simplicity, we omit the superscripts (ε) in the follow-

ing equations temporarily. The definition of ideal arrival process yields the

following:

〈ĉ, F̃(t)〉 =
∑
m∈Bo

α · F
l
m(t)

α
+
∑
m∈Ho

β · F
k
m(t)

β
+
∑
m∈Hu

γ · F
r
m(t)

γ
=
∑
L̄∈LBo

AL̄(t).
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Therefore,

E
[
〈ĉ, F̃(t)〉

]
=
∑
L̄∈LBo

λL̄,

V ar
[
〈ĉ, F̃(t)〉

]
=
(
σ(ε)
)2
.

The definition of ideal service process yields the following:

〈ĉ, D̃(t)〉 =
∑
m∈Bo

α · D
l
m(t)

α
+
∑
m∈Ho

β · D
k
m(t)

β
+
∑
m∈Hu

γ · D
r
m(t)

γ
.

For a server m, define ρlm as the proportion of time in steady state the server

spends on giving local service to the tasks queued in its local sub-queue.

Then we have the following:

E
[
〈ĉ, D̃(t)〉

]
= αMBo +

∑
m∈Ho

β
(
1− ρlm

)
+
∑
m∈Hu

γ
(
1− ρlm

)
,

V ar
[
〈ĉ, D̃(t)〉

]
= α(1− α)MBo +

∑
m∈Ho

β
(
1− ρlm

) [
1− β

(
1− ρlm

)]
+
∑
m∈Hu

γ
(
1− ρlm

) [
1− γ

(
1− ρlm

)]
=
(
ν(ε)
)2
.

Then,

E
[
〈ĉ, D̃(t)〉

]
− E

[
〈ĉ, F̃(t)〉

]
= ε+

∑
m∈Ho

β
(
ρl(ε)m − ρlm

)
+
∑
m∈Hu

γ
(
ρl(ε)m − ρlm

)
= ε+ δ,

where δ =
∑

m∈Ho β
(
ρ
l(ε)
m − ρlm

)
+
∑

m∈Hu γ
(
ρ
l(ε)
m − ρlm

)
≥ 0, and δ → 0 as

ε→ 0. Hence, we have the following for the left-hand side term in equation

(A.23):

E
[
〈c, Q̃(t)〉〈c, D̃(t)− F̃(t)〉

]
=

1

||ĉ||
E
[
〈c, Q̃(t)〉

(
〈ĉ, D̃(t)〉 − 〈ĉ, F̃(t)〉

)]
=
ε+ δ

||ĉ||
E
[
〈c, Q̃(t)〉

]
.

(A.25)

The first term on the right-hand side of equation (A.23) can be simplified
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as follows:

E
[
〈c, F̃(t)− D̃(t)〉2

]
=

1

||ĉ||2

{
V ar

[
〈ĉ, D̃(t)〉

]
+ V ar

[
〈ĉ, F̃(t)〉

]
+
(
E
[
〈c, F̃(t)− D̃(t)〉

])2
}

=
1

||ĉ||2
{(
σ(ε)
)2

+
(
ν(ε)
)2

+ (ε+ δ)2
}
.

(A.26)

The second term on the right-hand side of equation (A.23) is upper bounded

as the following lemma suggests.

Lemma 17

E
[
〈c, Ṽ(t)〉2

]
≤ Cε,

where C is a constant that does not depend on ε.

In order to find an upper bound on the third term on the right-hand side

of equation (A.23), we do the following. The system is in steady state, so

E
[
〈c, F̃(t)− D̃(t) + Ṽ(t)〉

]
= E

[
〈c, Q̃(t+ 1)− Q̃(t)〉

]
= 0,

so

E
[
〈c, Ṽ(t)〉

]
= E

[
〈c, F̃(t)− D̃(t)〉

]
=

ε

Mα
,

then
E
[
〈c, F̃(t)− D̃(t)〉〈c, Ṽ(t)〉

]
≤ E

[
〈c, F̃(t)〉〈c, Ṽ(t)〉

]
≤ CA√

Mα
E
[
〈c, Ṽ(t)〉

]
=

CA

M
√
Mα2

ε,

so we have the following upper bound on the third term on the right-hand

side of equation (A.23):

E
[
〈c, Q̃(t) + F̃(t)− D̃(t)〉〈c, Ṽ(t)〉

]
= E

[
〈c, Q̃(t)〉〈c, Ṽ(t)〉

]
+ E

[
〈c, F̃(t)− D̃(t)〉〈c, Ṽ(t)〉

]
≤ E

[
〈c, Q̃(t)〉〈c, Ṽ(t)〉

]
+

CA

M
√
Mα2

ε.
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We then simplify the term 〈c, Q̃(t)〉〈c, Ṽ(t)〉 as follows:

〈c, Q̃(t)〉〈c, Ṽ(t)〉

= 〈Q̃(t), Ṽ(t)〉 − 〈Q̃⊥(t), Ṽ⊥(t)〉

= 〈Q̃(t), D̃(t)− S̃(t)〉+ 〈Q̃(t), Ã(t)− F̃(t)〉+ 〈Q̃(t), Ṽ(t)〉 − 〈Q̃⊥(t), Ṽ⊥(t)〉.
(A.27)

The following two lemmas give a bound for the first two terms in equation

(A.27).

Lemma 18

E
[
〈Q̃(t), D̃(t)− S̃(t)〉

]
= 0.

Lemma 19

E
[
〈Q̃(t), Ã(t)− F̃(t)〉

]
= o(ε).

For the proof of Lemmas 18 and 19 refer to Lemmas B.24 and B.25 in [24].

By Lemma 8, the third term in equation (A.27) is equal to zero. In order

to find an upper bound for the last term in equation (A.27), we first find an

upper bound on E
[
||Ṽ (t)||2

]
. Using lemma 17, we have the following:

E
[
||Ṽ (t)||2

]
≤ Rε,

where R is a constant not depending on ε. Then we use Cauchy-Schwartz

inequality and the result on state space collapse to find the following bound:

E
[
−〈Q̃⊥(t), Ṽ⊥(t)

]
≤
√

E
[
||Q̃⊥(t)||2

]
E
[
||Ṽ⊥(t)||2

]
≤
√
C ′2Rε.

Hence, we have the following bound on the last term on the right-hand side

of equation (A.23):

E
[
〈c, Q̃(t) + F̃(t)− D̃(t)〉〈c, Ṽ(t)〉

]
≤ CA

M
√
Mα2

ε+
√
C ′2Rε+ o(ε). (A.28)

Using Lemma 17, equations (A.23), (A.25), (A.26), and (A.28) in equation

(A.24) and bringing the superscript (ε) back in the equations, we have the
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following:

2
ε+ δ

||ĉ||
E
[
〈c, Q̃(t)〉

]
≤ 1

||ĉ||2
((
σ(ε)
)2

+
(
ν(ε)
)2

+ (ε+ δ)2
)

+ Cε+
2CA

M
√
Mα2

ε+ 2
√
C ′2Rε+ 2o(ε),

since δ ≥ 0,

2
ε

||ĉ||
E
[
〈c, Q̃(t)〉

]
≤ 1

||ĉ||2
((
σ(ε)
)2

+
(
ν(ε)
)2

+ (ε+ δ)2
)

+ Cε+
2CA

M
√
Mα2

ε+ 2
√
C ′2Rε+ 2o(ε),

so,

||ĉ||E
[
〈c, Q̃(t)〉

]
≤
(
σ(ε)
)2

+
(
ν(ε)
)2

+ (ε+ δ)2

2ε
+

(
C

2
+

CA

M
√
Mα2

)
||ĉ||2 + ||ĉ||2

√
C ′2R

ε
+ o(1).

Note that,

E
[
Φ(ε)(t)

]
= E

[ ∑
m∈Bo

(
Ql(ε)
m (t) +Qk(ε)

m (t) +Qr(ε)
m (t)

)
+
∑
m∈Ho

(
Qk(ε)
m (t) +Qr(ε)

m (t)
)

+
∑
m∈Hu

Qr(ε)
m (t)

]

≤ E

[∑
m∈Bo

α

(
Ql
m

α
+
Qk
m

β
+
Qr
m

γ

)
+
∑
m∈Ho

β

(
Qk
m

β
+
Qr
m

γ

)
+
∑
m∈Hu

γ
Qr
m

γ

]
= E

[
||c̃||〈c, Q̃〉

]
.

Hence,

E
[
Φ(ε)(t)

]
≤
(
σ(ε)
)2

+
(
ν(ε)
)2

+ (ε+ δ)2

2ε
+B(ε),

where B(ε) =
(
C
2

+ CA
M
√
Mα2

)
||ĉ||2 + ||ĉ||2

√
C′2R

ε
+ o(1), i.e., B(ε) = o(1

ε
). This

proves Theorem 9 as ε→ 0.
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