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ABSTRACT

Applications involving quantum physics are becoming an increasingly im-

portant area for electromagnetic engineering. To address practical problems

in these emerging areas, appropriate numerical techniques must be utilized.

However, the unique needs of many of these applications require the develop-

ment of new computational electromagnetic solvers. The A-Φ formulation is

a novel approach that can address many of these needs. This formulation uti-

lizes equations developed in terms of the magnetic vector potential (A) and

electric scalar potential (Φ). The resulting equations overcome many of the

limitations of traditional solvers and are ideal for coupling to quantum me-

chanical calculations. The main novelty of this thesis is the extension of the

A-Φ formulation to two sets of time domain integral equations. These inte-

gral equations are provably stable and constitute robust numerical techniques

that can be utilized in many applications. To validate the proposed time do-

main integral equations, numerical results are presented which demonstrate

the stability and accuracy of the developed methods.
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CHAPTER 1

INTRODUCTION

Traditionally, electromagnetic theory has been mainly described in terms of

electric and magnetic fields, along with the related flux densities. Termed the

E-H formulation, the corresponding equations have been leveraged success-

fully for many years to develop a plethora of electromagnetic-related tech-

nologies that utilize classical physics phenomena [1].

Currently, the ever-improving understanding of quantum physics is leading

to a new age of technology development. For many applications, electromag-

netic theory already has, and will continue to play a key role in the creation

of novel technologies that leverage quantum physics [1]. This includes de-

velopment in areas obviously related to electromagnetics, such as quantum

optics and atom-photon interactions [1–3]. However, electromagnetic theory

is also necessary in less obvious physical applications, for instance, those re-

quiring Casimir force or near-field heat transfer calculations [4–8]. For each

application area, suitable computational electromagnetic solvers are needed

to bridge the gap between analytically solvable systems and those desired to

be numerically analyzed for problems of practical interest.

The diverse set of applications imposes a number of different requirements

on computational electromagnetic solvers to be widely applicable. One ma-

jor requirement for the solvers is to be multi-scale; allowing for an accurate

and efficient solution to be calculated over a wide range of length scales with

respect to the wavelength of the electromagnetic field [1]. Different applica-

tions also require different physical quantities to be calculated. For instance,

in the interaction of a charged particle and an electromagnetic field, A and

Φ are needed in the solution of the Schrödinger equation [9]. Other examples

include: the Maxwell stress tensor in Casimir force calculations; and dyadic

Green’s functions for atom-photon interactions or stimulated emission rate

calculations [1, 5–7,10,11].

To address the growing needs of these and other applications, the A-Φ
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formulation has been developed [1]. This formulates the computational elec-

tromagnetic solvers in terms of the vector and scalar potentials, leading to

equations that are well-posed from very long to short wavelengths. This is

a unique and novel property of the equations, which is not typically realized

in the discretized E-H counterparts [12]. Additionally, the A-Φ formulation

has the benefit of typically being more easily integrated into quantum physics

calculations, where these quantities are deemed more fundamental than E

and H [1, 8]. These properties make computational electromagnetic solvers

developed from the A-Φ formulation ideal candidates for meeting the needs

of emerging applications that rely on quantum physics.

Past work has extended the A-Φ formulation to the following methods:

finite-difference time-domain [9], frequency domain finite element method

[13], and frequency domain integral equations [14]. The focus of this thesis

is to continue this development by extending the A-Φ formulation to time

domain integral equations (TDIEs). These methods are attractive because

they combine the many benefits of time domain methods with those of inte-

gral equations. For instance, time domain methods can perform broadband

simulations and can be applied to a wider class of problems (e.g., nonlinear

problems). Integral equations automatically satisfy the radiation condition

and allow for flexible geometric modeling that only requires surface discretiza-

tions, greatly reducing the number of unknowns. Combining these benefits

of TDIEs with the anticipated properties of the A-Φ formulation is expected

to lead to a computational electromagnetic solver that can be used in many

of the mentioned applications.

Although there is great promise in using TDIEs, certain drawbacks still

exist. The most important issue with TDIEs is a long history of instability.

Decades of work have gone into developing methods which lead to stable

TDIE systems. The current state of the art has largely overcome any issue

with instability for TDIEs using the E-H formulation. However, when imple-

menting a new set of equations that have never been studied before, the same

approaches that worked do not necessarily apply anymore. The quickest way

to overcome this difficulty is to adopt a rigorous mathematical framework

developed for the electric field integral equation [15]. By extending these

results, a set of provably stable A-Φ TDIEs may be derived.

The rest of this thesis is organized as follows. Chapter 2 discusses the

basic process of formulating and solving TDIEs. Included is a detailed dis-
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cussion on how to accurately evaluate the matrix elements for the various

TDIEs. In Chapter 3, the discussion of solving TDIEs is extended to the

low frequency regime. In this regime, the typical E-H formulation TDIEs

become progressively less accurate and less efficient to solve. In addition to

reviewing the common methods for overcoming the break down of the E-H

formulation, in depth discussions on the state of the art for time domain aug-

mented electric field integral equations are discussed. Chapter 4 continues

the discussion of solving TDIEs at low frequencies by proposing a number

of novel integral equations. Included is an initial attempt at implementing

a stable A-Φ TDIE. After the failure of this approach, Chapter 5 adopts

a rigorous mathematical approach to develop provably stable A-Φ TDIEs.

Numerical results are presented which verify the theoretical contributions of

this chapter. Finally, in Chapter 6 conclusions and suggestions for future

work are discussed.
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CHAPTER 2

SOLUTION OF TIME DOMAIN
INTEGRAL EQUATIONS

In this chapter, the formulations of various TDIEs for calculating the scatter-

ing from PEC structures are reviewed. In particular, the time domain electric

field integral equation (EFIE), magnetic field integral equation (MFIE), com-

bined field integral equation (CFIE), and their differentiated counterparts are

discussed. Following this, the marching-on-in-time (MOT) discretization and

solution procedure are discussed in the context of the differentiated EFIE.

The calculation of the matrix elements in the MOT method using a sepa-

rable approximation to the temporal convolution in these integral equations

is discussed in detail. Numerical results are presented which highlight the

capability of these traditional TDIEs for the analysis of broadband transient

scattering from PEC structures.

2.1 Mathematical Formulation

Two methods for deriving TDIEs are presented in this section. The first

approach, which performs the entire formulation directly in the time domain

is used to derive the EFIE. The second approach is used to derive the MFIE,

which utilizes inverse Fourier/Laplace transform techniques on the appro-

priate frequency domain equations to find the corresponding time domain

equations. Finally, the combination of these two equations in the CFIE is

presented.

2.1.1 Time Domain EFIE Derivation

Consider a time-varying electric field incident upon a scattering surface, S.

As an initial condition, it is assumed that the electric field on the surface of

the scatterer is 0 for all t < 0. For a perfect electric conductor (PEC), the
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boundary condition on S is

n̂×Etotal(r, t) = 0, ∀t, r ∈ S, (2.1)

where n̂ is the outward pointing unit normal vector to S. The total electric

field may be decomposed into a sum of two components, the incident field

(Einc) and scattered field (Esc). The incident field is defined as the field

that would be present if there were no scattering object, while the scattered

field is the component of the total field due to the presence of the scattering

object. Substituting this expansion into (2.1) gives

−n̂×Esc(r, t) = n̂×Einc(r, t), ∀t, r ∈ S. (2.2)

To arrive at an integral equation formulation, it is necessary to express Esc

in terms of the scattered magnetic vector potential, Asc, and the scattered

electric scalar potential, Φsc. This gives

n̂×
[ .
Asc(r, t) +∇Φsc(r, t)

]
= n̂×Einc(r, t), (2.3)

where the dot over Asc is used to denote a temporal derivative. To arrive at

the desired integral equations, it is first useful to consider the wave equations

for Asc and Φsc. These are

∇2Asc(r, t)− c−2
..

A(r, t) = −µJ(r, t) (2.4)

∇2Φsc(r, t)− c−2
..

Φ(r, t) = −ε−1ρ(r, t) (2.5)

when the Lorenz gauge is used [1]. In these equations, c is the speed of light,

µ is the permeability, ε is the permittivity, J is the current density, and ρ is

the charge density. Both of these wave equations have well-known solutions

in terms of the time domain Green’s function as

Asc(r, t) =

∫
V

µ
δ
(
t−R/c

)
4πR

∗ J(r′, t)dV ′ (2.6)

Φsc(r, t) =

∫
V

ε−1 δ
(
t−R/c

)
4πR

∗ ρ(r′, t)dV ′, (2.7)

where V is the volume that the sources J and ρ are contained in and ∗
denotes a temporal convolution. Further, R = |r−r′|, where r and r′ are the
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observation and source points, respectively. The notation dV ′ means that

the integration is performed over the primed variables. In future equations,

the retarded time will be simply denoted as τ = t−R/c.
Using (2.6) and (2.7), the potentials in (2.3) may be related to sources on

S, giving

n̂×
∫
S

[
µ
δ(τ)

4πR
∗
.

J(r′, t) +∇ δ(τ)

4πRε
∗ ρ(r′, t)

]
dS ′ = n̂×Einc(r, t). (2.8)

This now represents an integral equation, since the unknown functions to be

solved for, J and ρ, are found inside of an integral. Currently, (2.8) cannot be

solved since it is a single equation with two unknowns. This can be addressed

by using the current continuity equation to reduce the equation to having

only a single unknown, J. Performing this gives the EFIE, which is

n̂×
∫
S

[
µ

.

J(r′, τ)

4πR
−∇

∫ τ

−∞

∇′ · J(r′, t′)

4πRε
dt′
]
dS ′ = n̂×Einc(r, t). (2.9)

The temporal integral in (2.9) is complicated to discretize; so it is common

practice to instead enforce the differentiated EFIE, which is

n̂×
∫
S

[
µ

..

J(r′, τ)

4πR
−∇∇

′ · J(r′, τ)

4πRε

]
dS ′ = n̂×

.

Einc(r, t). (2.10)

In Sections 2.4.2 and 2.4.3, the discretizations of (2.10) and (2.9) are consid-

ered, respectively.

2.1.2 Time Domain MFIE Derivation

The MFIE in the frequency domain is

1

2
J(r, ω) + n̂×P.V.

∫
S

J(r′, ω)×∇e
−jkR

4πR
dS ′ = n̂×Hinc(r, ω), (2.11)

where ω is the angular frequency and k is the wavenumber [16]. The integral

in (2.11) is understood to be taken in the principal value sense. This may be

rewritten as

1

2
J(r, ω)− n̂×P.V.

∫
S

∇×
(

J(r′, ω)
e−jkR

4πR

)
dS ′ = n̂×Hinc(r, ω). (2.12)
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The inverse Fourier/Laplace transform of this equation is

1

2
J(r, t)− n̂×P.V.

∫
S

∇×
(

J(r′, τ)

4πR

)
dS ′ = n̂×Hinc(r, t). (2.13)

The curl operator may be applied to give the time domain MFIE as

1

2
J(r, t)− n̂×P.V.

∫
S

[ .
J(r′, τ)

4πR2c
+

J(r′, τ)

4πR3

]
×R dS ′ = n̂×Hinc(r, t). (2.14)

Since it is common to use the differentiated EFIE, the differentiated MFIE

is also needed so that a differentiated CFIE can be formed. This is easily

calculated to be

1

2

.

J(r, t)− n̂×P.V.

∫
S

[ ..
J(r′, τ)

4πR2c
+

.

J(r′, τ)

4πR3

]
×R dS ′ = n̂×

.

Hinc(r, t). (2.15)

2.1.3 Time Domain CFIE Derivation

The EFIE and MFIE are known to suffer from the problem of interior res-

onance [16]. At resonant frequencies of the scattering object, the integral

operators have a non-trivial null space. If the spectrum of the incident pulse

in the simulation contains one or more of these resonant frequencies, the

simulation can be inaccurate and/or unstable. The well-known solution to

this problem is to use the CFIE, which is a linear combination of the EFIE

and MFIE, i.e.,

(1− α)MFIE− αn̂×EFIE = (1− α)n̂×Hinc(r, t)− αn̂×n̂×Einc(r, t),

(2.16)

where 0 < α < 1, the MFIE is the LHS of (2.14) and the EFIE is the LHS

of (2.9). Typically, α = 1/2 to give equal weighting between the MFIE and

EFIE. The same approach can be used to form the differentiated CFIE from

the differentiated MFIE and EFIE.
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2.2 Marching-on-in-Time Discretization

In order to solve the integral equations derived in Section 2.1, the equa-

tions must be converted into suitable matrix systems. For simplicity, the

discretization of (2.10) is considered first to introduce the basic procedure,

known as the MOT method. The full formulas for all the integral equations

will be given in Section 2.4 after the procedure for evaluating the matrix

elements is discussed.

The first step of the MOT method is to discretize S into a union of trian-

gular patches. Next, the unknown current density is expanded with known

temporal and spatial basis functions that have unknown expansion coeffi-

cients, i.e.,

J(r′, t) =
Ns∑
n=1

Nt∑
j=1

J (j)
n T (j)(t)fn(r′). (2.17)

In (2.17), fn is the spatial basis function associated with the nth interior edge,

T (j)(t) = T (t− j∆t) is the temporal basis function, and J
(j)
n is the expansion

coefficient to be solved for. Additionally, Ns is the total number of interior

edges on S, Nt is the number of time steps the simulation will cover, and ∆t is

the width of each time step. Typically, the spatial basis functions are selected

to be the Rao-Wilton-Glisson (RWG) functions [17]. More options exist for

the temporal discretization, but the most common choices are third-order

Lagrange interpolating functions or quadratic B-spline functions [18,19]. As

will be discussed Section 2.3 and Chapter 5 in this thesis, the proper choice

of temporal basis function is critical to the stability of a TDIE.

To solve for the expansion coefficients in (2.17), a matrix system needs

to be developed. This is done by testing (2.10) temporally and spatially to

arrive at a set of equations. To yield a square matrix system, (2.10) is tested

at each interior edge of S with an RWG function. This process is performed

at each time step, which is equivalent to temporal test functions of the form

δ(t−i∆t). The physical meaning of this process is to require that the incident

electric field and all scattered fields “collected” at the mth RWG function

cancel at each time step. This ensures that the correct boundary condition

is maintained throughout the simulation.
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The matrix system describing this process at an arbitrary time step is

[Z(0)]{J (i)} = {V (i)} −
i−1∑

j=i−jmax

[Z(i−j)]{J (j)}. (2.18)

An element of the matrix [Z(i−j)] may be calculated as

[Z(i−j)]mn =

∫
S

∫
S

[
µ

fm(r) · fn(r′)

4πR

..

T (i−j) +
∇ · fm(r)∇′ · fn(r′)

4πRε
T (i−j)

]
dS ′dS,

(2.19)

where T (i−j) = T
(
(i− j)∆t−R/c

)
. An excitation vector element is given as

{V (i)}m =

∫
S

fm(r) · Einc(r, i∆t)dS. (2.20)

Finally, {J (i)} = {J (i)
1 , J

(i)
2 , . . . J

(i)
Ns
}T . By solving (2.18) at each time step,

the expansion coefficients of (2.17) may be calculated.

A few comments are in order to understand (2.18). First, the matrix [Z(0)]

is extremely sparse and represents the immediate interactions that occur be-

tween nearby basis functions. Similarly, the rest of the matrices are also

sparse and represent the interactions between basis functions after the scat-

tered fields have propagated for a certain number of time steps. Although all

of the matrices are sparse, collectively they still constitute all of the O(N2
s )

interactions expected by an integral equation method. Importantly, the sum-

mation of matrix vector products in (2.18) has a maximum number of terms,

determined by how many time steps it takes for a signal to propagate the

distance corresponding to the maximum separation of any two points on S.

This allows the expansion coefficients at each time step to be calculated based

on the incident field and a finite number of past values of the current density.

Performing this process at each time step constitutes the MOT procedure.

The computational complexity of this procedure is O(NtN
2
s ). Similar to

frequency domain methods, this is a prohibitively high computational com-

plexity for problems of practical interest. Fortunately, fast algorithms have

been developed which can lower this computational complexity. In particular,

the multilevel plane wave time domain method (PWTD) has a computational

complexity of O(NtNslog2Ns). Other fast algorithms exist, however, this is

not the focus of this thesis so they will not be discussed further.
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2.3 Stability of Time Domain Integral Equations

Before delving too deeply into the full details of how to solve TDIEs, it is

useful to discuss the issue of stability. Historically, stability has been one

of the major factors limiting the widespread application of TDIEs. In this

section, a simplified model of the MOT system using linear systems theory

is presented. The goal is to motivate why instability can occur in TDIEs;

while also giving some clues as to what issues should be addressed to lead

to stable systems. It is important to stress that this analysis is not intended

to cover all possible reasons for instability or to be interpreted as a rigorous

presentation.

To begin, consider the linear system block diagram for the MOT system

of (2.18) in Fig. 2.1. Due to the feedback loop, it is clear that this system

can be considered to be like an “infinite impulse response” filter. From linear

system theory, it is immediately understood that stability of such a system

will depend on a number of factors. However, assuming the derivation of the

equations has been performed correctly, it is anticipated for physical reasons

that the equivalent continuous system must be stable. The extension of the

physical stability to the discrete model shown in Fig. 2.1 will then entirely

depend on the calculation of the matrix representation of the different integral

operators.

The calculation of the matrix representation of the integral operators de-

pend on two factors. The first factor is how accurately each matrix element

is calculated. This is a necessary condition for stability, as has been noted

in [15, 20], and is considered in detail in Section 2.4. The second, and more

subtle factor, is the functions used in the discretization of the integral op-

erator (i.e., the basis and testing functions). If incorrect basis and testing

functions are used, the matrix representation of the integral operators can

no longer be expected to inherit the stability assumed for physical reasons

of the continuous equations. In practice, it is usually the temporal basis and

testing functions that will impact the stability the most. This is because the

spatial basis and testing functions are almost always selected correctly in the

literature; making it difficult to gauge how they impact the stability. Deter-

mining the correct basis and testing functions for a given integral operator

is a difficult task, and is considered in detail in Chapter 5.
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Figure 2.1: Block diagram for the MOT system.

2.4 Evaluation of Matrix Elements

One of the necessary (but not sufficient) conditions for a TDIE method to

be stable is the accurate evaluation of the matrix elements [15,20]. Standard

numerical quadrature on integrals such as those contained in (2.19) is inaccu-

rate. This is because the integrals often have discontinuities and shadowing

effects that are a result of the finite velocity of the electromagnetic waves.

This inaccuracy contributes to the instability of TDIEs; so alternative inte-

gration techniques are needed.

There are two main classes of techniques for calculating these integrals:

analytical and numerical. The analytical techniques attempt to calculate as

many of the integrals as is possible analytically. Due to the high complexity

of this process, it is not currently possible to calculate all of the integrals in

this way (and may not be possible). As a result, a number of them must still

be approximated numerically. The most popular of the analytical techniques

are those presented in [20, 21]. The numerical techniques attempt to accu-

rately evaluate the matrix elements while being based purely on numerical

techniques, i.e., no complex analytical expressions need to be computed. The

most successful numerical technique is the one proposed in [22]. This tech-

nique approximates the temporal convolution with the time domain Green’s
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function using a separable expansion. This is a robust technique which may

be used for any spatial basis function or surface discretization. It also ben-

efits from an overall simplicity compared to the analytical methods, making

this numerical method very attractive.

The method used for evaluating matrix elements in this thesis is the sep-

arable approximation to the temporal convolution developed in [22]. This

method is a critical element of how TDIEs are solved in this thesis, so it is

reviewed in detail. The basic concepts of the technique are presented in Sec-

tion 2.4.1. Following this, the application of this technique to the differenti-

ated EFIE and MFIE is discussed in Section 2.4.2. Finally, the modifications

that are needed to discretize the EFIE are presented in Section 2.4.3.

2.4.1 Separable Expansion of the Time Domain Green’s
Function

The time domain Green’s function can be found by taking the inverse Fourier

transform of the appropriate frequency domain Green’s function. In the case

of a homogeneous medium, this gives the time domain Green’s function to

be

g(r, r′, t) =
δ(t−R/c)

4πR
, (2.21)

which has been encountered previously in the solution to the wave equations

presented in Section 2.1.1. In the context of an integral equation, this Green’s

function serves to tie the temporal and spatial variables together, leading to

an overall complication in being able to accurately evaluate the necessary

matrix elements of a MOT implementation.

This complication can be illustrated by considering the example of (2.19).

In short, the time domain Green’s function is extremely ill-posed when

discretized in different ways. First, the instantaneous nature of the delta

function gives rise to a technically infinite bandwidth pulse. This will be

smoothed somewhat through the convolution process, but the end result

is still not bandlimited. Further, when testing with delta functions in the

time domain, as is done in the MOT method, various shadow regions can

be formed over the spatial domains to be integrated. This leads to ma-

trix elements which cannot be accurately evaluated using typical numerical
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Figure 2.2: Geometry illustrating the origin of the various parameters in
the separable expansion of the time domain Green’s function (note: α = 0).

quadrature methods. This lack of accuracy typically leads to numerical in-

stability as the errors are fed back into the system at each time step and grow

rapidly to overpower the desired signal (often called late-time instability, but

can occur before “late”-time).

The key observation of the separable expansion method of [22] is that

the completeness relation for any suitable set of orthogonal functions can be

written in a general form as

∞∑
l=0

alFl(x)Fl(x
′) = δ(x− x′), (2.22)

where Fl is the lth function of the orthogonal set, assumed here to be real-

valued. The preferred orthogonal set for this application comprises Legendre

polynomials, since they already have a convenient support for the expansion

(i.e., they are nonzero for −1 < x < 1).

The important aspect is that the two variables that are intertwined in the

delta function, x and x′, are now separated into a product of two functions.

In the context of TDIEs, one of the variables will depend on time while the

other depends on space. When the delta function is expanded in this way, the

factors that only depend on time can be factored out of the spatial integrals.

This greatly simplifies the accurate numerical evaluation of the integrals, as

will be seen briefly.
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In the context of the time domain Green’s function, this expansion gives

g(r, r′, t) =
1

4πR
δ(t− ζ/c) ∗ δ(t− (R− ζ)/c)

=
1

4πR
δ(t− ζ/c) ∗

∞∑
l=0

alPl(k1t+ k2)Pl(k1(R− ζ)/c+ k2)

≈ 1

4πR
δ(t− ζ/c) ∗

Nh∑
l=0

alPl(k1t+ k2)Pl(k1(R− ζ)/c+ k2),

(2.23)

where Pl is the lth-order Legendre polynomial. Physically, this can be consid-

ered to be filtering the time domain Green’s functions. That is, the infinite

bandwidth delta function has been smoothed so that it may be modeled

better.

A number of comments are still required to explain the different pieces of

(2.23), with the associated geometry shown in Fig. 2.2. First, the presence

of the δ(t − ζ/c) is used to limit the total support that the expansion is

performed over. It does this since ζ is taken to be the largest multiple of

c∆t between an observation (testing) point and the source triangle that the

expansion is desired to cover. Then, k1 and k2 are used to normalize the

arguments of the Legendre polynomials so that

k1α + k2 = −1

k1β + k2 = 1.
(2.24)

In (2.24), α and β denote the temporal support that is covered by the ex-

pansion so that the integrands will be smooth over the entire source triangle.

In practice, α is typically set to zero. Then, β is the smallest integer such

that a sphere with radius βc∆t centered at the observation point will en-

tirely enclose the source triangle. Further, al = k1(2l + 1)/2 and Nh is the

total number of polynomials used in the expansion. Numerical experiments

discussed in [22] suggest that it is suitable to choose Nh = 3β, which is done

for all results presented in this thesis.

When this expansion of the delta function in the time domain Green’s func-

tion is used, the space and time integrals are separated. This leads to spatial

integrals that may be evaluated in a manner similar to frequency domain

methods. For these integrals, the Legendre polynomial plays a similar role

to the exponential in the frequency domain Green’s function. This allows the
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same types of singularity extraction and numerical quadrature techniques to

be used. Additionally, the temporal integrals can be calculated analytically

or through one-dimensional numerical quadrature (preferred method). Fur-

ther details related to the implementation of this method in the context of a

full MOT procedure will be discussed in Sections 2.4.2 and 2.4.3.

2.4.2 Discretization of the Differentiated EFIE and MFIE

To begin, it will be useful to adopt a simple operator notation so that the

differentiated EFIE in (2.10) may be rewritten as

n̂×
.

L
{
J
}

(r, t) = n̂×
.

Einc(r, t), (2.25)

where

.

L
{
J
}

(r, t) =

∫
S

[
µ

..

J(r′, τ)

4πR
−∇∇

′ · J(r′, τ)

4πRε

]
dS ′. (2.26)

To use the separable expansion for the convolution, it is desired to write this

operator before the temporal convolution was evaluated, i.e.,

.

L
{
J
}

(r, t) =

∫
S

[
µ
δ(τ) ∗

..

J(r′, t)

4πR
−∇δ(τ) ∗ ∇′ · J(r′, t)

4πRε

]
dS ′. (2.27)

Using the expansion of the time domain Green’s function presented in

(2.23), the convolution in (2.27) may be expanded. Since the goal is to

evaluate the matrix elements of the discretized operator, the expansion of

the current density is also performed. Showing the results for only a single

set of basis functions gives

.

L
{
fnT

(j)(t)
}

(r, t) ≈∫
S

Nh∑
l=0

al
4π
δ(t− ζ/c) ∗ Pl(k1t+ k2) ∗

[
µ
..

T (j)(t)
Pl
(
k1(R− ζ)/c+ k2

)
R

fn(r′)

− ε−1T (j)(t)∇
Pl
(
k1(R− ζ)/c+ k2

)
R

∇′ · fn(r′)

]
dS ′. (2.28)

For simplicity, the ≈ sign will no longer be used since it is understood that

the finite summation leads to only an approximate calculation of the resulting
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matrix elements.

The next step in the MOT method is to test (2.28) spatially and tempo-

rally. The temporal test function is δ(t− i∆t) and the spatial test function

is fm(r). Using an inner product notation to denote a surface integral with

respect to the unprimed variables, the testing process may be written as

〈
fm(r),

.

L
{
fnT

(j)(t)
}

(r, i∆t)
〉

=

∫
S

∫
S

Nh∑
l=0

al

[
µ
..

ξ
(i−j)
l fm(r) · fn(r′)

+ ε−1ξ
(i−j)
l ∇ · fm(r)∇′ · fn(r′)

]
Pl(R̂)

4πR
dS ′dS, (2.29)

where R̂ = k1(R− ζ)/c+ k2. The temporal convolutions are given by

ξ
(i−j)
l =

∫ ∞
−∞

Pl(k1t
′ + k2)T

(
(i− j)∆t− ζ/c− t′

)
dt′ (2.30)

..

ξ
(i−j)
l =

∫ ∞
−∞

Pl(k1t
′ + k2)

..

T
(
(i− j)∆t− ζ/c− t′

)
dt′. (2.31)

The expression in (2.29) is a single matrix element in (2.18).

There are a few important points to note related to (2.29). The most

important point is that the spatial and temporal integrations have been sep-

arated, allowing each to be evaluated independently. The spatial integrals

are now similar to those encountered in frequency domain integral equation

methods. As a result, the same evaluation techniques and singularity ex-

traction methods are applicable. For this thesis, singularities are extracted

using the formulas in [23]. Another essential point is that all shadowing or

discontinuous behavior has been absorbed into the one-dimensional temporal

integrals. These types of integrals are simple to calculate using standard one-

dimensional quadrature rules. Overall, this allows for the matrix elements

in (2.18) to be calculated accurately, which is necessary for the discretized

TDIEs to yield stable results. A final point is that for a given geometry all

of the possible temporal integrals may be precomputed. This is substantially

more efficient than recomputing all of the temporal integrals each time the

values are needed.

Similar approaches to those just discussed may be used to discretize the

differentiated MFIE. As with the differentiated EFIE, it will again be useful

to introduce an operator notation. This allows the differentiated MFIE to
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be written as

n̂×
.

K
{
J
}

(r, t) = n̂×
.

Hinc(r, t), (2.32)

where

n̂×
.

K
{
J
}

(r, t) =
1

2

.

J(r, t)− n̂×
∫
S

[ ..
J(r′, τ)

4πR2c
+

.

J(r′, τ)

4πR3

]
×R dS ′. (2.33)

Note that for brevity the explicit notation for the second integral to be eval-

uated in a principal value sense has been dropped. It is, of course, still meant

to be evaluated in this sense.

This operator may alternatively be rewritten so that the temporal con-

volution has not yet been evaluated. This gives a more useful form for the

separable expansion to the convolution to be applied. Following the same

steps as shown for the differentiated EFIE leads to a discretized form of the

n̂×
.

K operator as

〈
fm(r), n̂×

.

K
{
fnT

(j)(t)
}

(r, i∆t)
〉

=
1

2

∫
S

.

T
(
(i− j)∆t

)
fm(r) · fn(r′)dS

−
∫
S

∫
S

Nh∑
l=0

al

[ .
ξ

(i−j)
l

4πR3
+

..

ξ
(i−j)
l

4πR2c

]
Pl(R̂)fm(r) · n̂×fn(r′)×R dS ′dS, (2.34)

where

.

ξ
(i−j)
l =

∫ ∞
−∞

Pl(k1t
′ + k2)

.

T
(
(i− j)∆t− ζ/c− t′

)
dt′. (2.35)

With the appropriate matrix elements now derived, the full equations for

the different MOT implementations of the various differentiated TDIEs may

be given. The general form of the matrix system is

[Z
(0)
A ]{J (i)} = {V (i)

A } −
i−1∑

j=i−jmax

[Z
(i−j)
A ]{J (j)}, (2.36)

where A can be either E, M , or C, which denote the differentiated EFIE,
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MFIE, or CFIE, respectively. The matrix elements are then given by

[Z
(i−j)
E ]mn =

〈
fm(r),

.

L
{
fnT

(j)(t)
}

(r, i∆t)
〉

(2.37)

[Z
(i−j)
M ]mn =

〈
fm(r), n̂×

.

K
{
fnT

(j)(t)
}

(r, i∆t)
〉

(2.38)

[Z
(i−j)
C ]mn = α[Z

(i−j)
E ]mn + (1− α)[Z

(i−j)
M ]mn, (2.39)

while the excitation vectors are given by

{V (i)
E }m =

∫
S

fm(r) ·
.

Einc(r, i∆t)dS (2.40)

{V (i)
M }m =

∫
S

fm(r) · n̂×
.

Hinc(r, i∆t)dS (2.41)

{V (i)
C }m = α{V (i)

E }m + (1− α){V (i)
M }m. (2.42)

Note that 0 < α < 1, which is used to form the differentiated CFIE as a

linear combination of the differentiated EFIE and MFIE.

2.4.3 Discretization of the EFIE

Much of the discretization of the EFIE follows directly from the examples

shown in Section 2.4.2. The new concept that must be covered for discretizing

the EFIE is how to handle the temporal integral present in (2.9).

As with the differentiated EFIE and MFIE, an operator notation can be

adopted. This allows the EFIE to be written as

n̂×L
{
J
}

(r, t) = n̂×Einc(r, t), (2.43)

where

L
{
J
}

(r, t) = LV

{
J
}

(r, t) + LS

{
J
}

(r, t) (2.44)

LV

{
J
}

(r, t) =

∫
S

µ

.

J(r′, τ)

4πR
dS ′ (2.45)

LS

{
J
}

(r, t) = −
∫
S

∇
∫ τ

−∞

∇′ · J(r′, t′)

4πRε
dt′dS ′. (2.46)

The LV operator may be discretized easily using the methods shown in Sec-

tion 2.4.2. However, the LS operator is more challenging to discretize, so the

process will be reviewed in detail.

18



A naive discretization of (2.46) will lead to a MOT implementation that

has a higher computational complexity than the traditional O(NtN
2
s ). This

must be avoided for obvious practical reasons, so a recursive calculation

procedure has been developed to calculate portions of the temporal integral

in (2.46) [22].

A simplified example of this can be seen by considering a summation of

integrals,

Nt∑
j=1

∫ t

−∞
J (j)
n T (j)(t′)dt′. (2.47)

A similar summation is required for implementing a discretized version of

the LS operator. For an arbitrary t, this summation can be separated into

two sets. The first set is those integrals for which∫ t

−∞
J (j)
n T (j)(t′)dt′ =

∫ ∞
−∞

J (j)
n T (j)(t′)dt′, (2.48)

while the second set is the integrals for which (2.48) does not apply. At later

time steps, integrals in the first set contribute a constant amount to the full

result. It is inefficient to recalculate the sum of these constant results for

every time step. Instead, a recursive procedure should be used that only

needs to be updated with the values of integrals that are transitioning from

the second set to the first set.

In the context of the EFIE, this type of recursive procedure can be applied.

Consider the tested LS operator with the temporal convolution written using

the separable expansion, i.e.,

〈
fm(r),LS

{
fnT

(j)(t)
}

(r, i∆t)
〉

=

∫
S

∫
S

Nh∑
l=0

alξ̂
(i−j)
l

Pl(R̂)

4πRε
∇ · fm(r)∇′ · fn(r′)dS ′dS. (2.49)

In (2.49), the temporal integrals are accounted for in

ξ̂
(i−j)
l =

∫ ∞
−∞

Pl(k1t
′ + k2)

∫ κ−t′

−∞
T (t′′)dt′′dt′, (2.50)

where κ = (i−j)∆t−ζ/c. Comparing the structure of (2.50) to other similar
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terms, e.g. (2.30), suggests that the integral of the basis function in (2.50)

may be treated similar to the derivatives of the basis function. That is, the

integral of the basis function may be calculated analytically and then eval-

uated at the necessary points for the one-dimensional numerical quadrature

used to expand the outer temporal integral. The difference with (2.50) is

that the support of the integral of the basis function is unbounded. How-

ever, for sufficiently large values κ− t′, the result simply becomes constant.

This suggests that a recursive procedure may be useful in simplifying the

overall computation.

The procedure for calculating the temporal integral in (2.50) can now be

discussed. This procedure will be broken into two parts: one that deals

with the integral when the inner integral over the temporal basis function is

changing and one when the inner integral gives a constant result. For the

first part, the inner integral is still changing because κ− t′ is still within the

support of T . In this region, ξ̂
(i−j)
l may be evaluated similar to ξ

(i−j)
l and

used accordingly in (2.49).

In the second part, the inner integral is constant because κ− t′ is greater

than the support of T . In this situation, the integral becomes much simpler.

This is because the Legendre polynomials are mutually orthogonal between

different orders. As a result, once the inner integral is constant over the

support of Pl, the only Legendre polynomial that needs to be considered is

P0.

To express these ideas mathematically, it will be useful to introduce more

notation. First, it is noted that the support of T is [−∆t, p∆t], where p is

determined by the particular basis function used. Further, as has already

been discussed, the support of Pl is [0, β∆t]. It is now useful to break ξ̂
(i−j)
l

into two expressions,

ξ̃
(i−j)
l =

∫ β∆t

0

Pl(k1t
′ + k2)

∫ κ−t′

−∞
T (t′′)dt′′dt′, for κ− β∆t < p∆t (2.51)

ξ̄
(i−j)
l = δl0β∆t, for κ− β∆t ≥ p∆t, (2.52)

where δl0 is a Kronecker delta function. Note that the second expression has

not completely accounted for the temporal integral of the basis function. This

will be accounted for separately so that the matrix elements may be defined

appropriately. By separating ξ̂
(i−j)
l into two expressions, the LS operator
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must also be separated into two expressions. This is given as

〈
fm(r),LS

{
fnT

(j)(t)
}

(r, i∆t)
〉

=
〈
fm(r),LS′

{
fnT

(j)(t)
}

(r, i∆t)
〉

+
〈
fm(r),LT

{
fnT

(j)(t)
}

(r, i∆t)
〉 ∫ ∞
−∞

T (t′′)dt′′, (2.53)

where

〈
fm(r),LS′

{
fnT

(j)(t)
}

(r, i∆t)
〉

=

∫
S

∫
S

Nh∑
l=0

alξ̃
(i−j)
l

Pl(R̂)

4πRε
∇ · fm(r)∇′ · fn(r′)dS ′dS (2.54)

〈
fm(r),LT

{
fnT

(j)(t)
}

(r, i∆t)
〉

=

∫
S

∫
S

Nh∑
l=0

alξ̄
(i−j)
l

Pl(R̂)

4πRε
∇ · fm(r)∇′ · fn(r′)dS ′dS. (2.55)

A modified MOT system for the EFIE may now be expressed that accounts

for the recursive computation of the temporal integral. This is

[Z
(0)
E′ ]{J

(i)} = {V (i)
E′ } −

i−1∑
j=i−jmax

[Z
(i−j)
E′ ]{J (j)} −

i−p−1∑
j=i−jmax−1

[Z
(i−j)
T ]{C(j+1)}.

(2.56)

The matrix elements may be calculated to be

[Z
(i−j)
E′ ]mn =

〈
fm(r),LV

{
fnT

(j)(t)
}

(r, i∆t) + LS′
{
fnT

(j)(t)
}

(r, i∆t)
〉

(2.57)

[Z
(i−j)
T ]mn =


〈
fm(r),LT

{
fnT

(j)(t)
}

(r, i∆t)
〉
, p ≤ κ/∆t− β ≤ (p+ 1)

0, otherwise,

(2.58)

and the excitation vector elements are

{V (i)
E′ }m =

∫
S

fm(r) · Einc(r, i∆t)dS. (2.59)
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A recursive calculation is used to compute {C(j+1)}, which is given by

{C(j+1)} = {C(j)}+ {J (j)}
∫ ∞
−∞

T (t′′)dt′′, {C(1)} = 0. (2.60)

Extensions of this approach to the MFIE and CFIE follow easily from the

formulas already presented, and so are omitted here.

It is useful to discuss the reason for the definition of (2.58). This is to

avoid calculating portions of the integrals too many times in the recursive

process. The idea is as follows: due to the finite support of the temporal basis

functions, the interaction between any pair of basis and testing functions

will last for a finite amount of time. In the context of the matrix system,

this means that the mn elements will only be filled for a subset of all of

the matrices. If the last interaction between the mn elements for a set of

triangles is given in the third matrix, for instance, than the fourth ZT matrix

is the only one that should be filled.

2.5 Numerical Results

Two simple numerical examples are presented in this section to demonstrate

the validity of the formulations presented throughout this chapter. One ex-

ample uses the differentiated CFIE and the other uses the EFIE.

For all simulations considered, the scatterer is a PEC sphere with a radius

of 1 meter. The incident field is given by a plane wave with a temporal shape

defined by a modulated Gaussian pulse,

Finc(r, t) = F0exp

[
−
(
tr − tp√

2σ

)2]
cos(2πf0tr). (2.61)

In (2.61), Finc should be picked appropriately for the integral equation being

simulated (e.g., Einc for the EFIE). The polarization direction and amplitude

are set by F0, and tr = t−r·k̂/c, where k̂ sets the propagation direction. The

width of the pulse is set by σ = 3/(2πfbw), where fbw defines the bandwidth

of the pulse. Finally, tp = 8σ and f0 is the center frequency of the pulse.

For all simulations, the polarization is in the x̂ direction and the propagation

direction is in the ẑ direction.

For all simulations, the time step is typically selected to be some set
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(a) (b)

Figure 2.3: E-plane bistatic RCS results for a 1 meter radius PEC sphere
using the differentiated CFIE at (a) 100 MHz and (b) 300 MHz.

(a) (b)

Figure 2.4: E-plane bistatic RCS results for a 1 meter radius PEC sphere
using the EFIE at (a) 40 MHz and (b) 80 MHz.

oversampling of the Nyquist frequency. This is typically given as ∆t =

1/
(
s(f0 + fbw)

)
, where s is usually set to 10 or 20.

The first simulation considered uses the differentiated CFIE. The tempo-

ral basis function used is the quadratic B-spline, which is the appropriate

choice for this integral equation [15, 19]. The center frequency is 300 MHz,

the bandwidth is 200 MHz, and the time step is 0.1 ns. The far-field scat-

tering results are calculated by converting the solved for current densities to

the frequency domain and then using standard methods. The bistatic RCS

results for the sphere are calculated using the results from the differentiated

CFIE and the Mie series (analytical solution). The plots of sample results

at 100 and 300 MHz are included in Fig. 2.3.
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The next simulation considered uses the EFIE. The temporal basis function

is a triangle function, which is an appropriate choice for the EFIE [15]. The

center frequency is 40 MHz, the bandwidth is 40 MHz, and the time step

is 0.5 ns. The bistatic RCS results at 40 and 80 MHz are shown in Fig.

2.4. The EFIE has been calculated at a lower frequency than the previous

example to avoid interior resonances of the sphere. It should also be noted

that the EFIE is not accurate at all frequencies for this simulation. This is a

consequence of the low frequency and dense mesh breakdowns of the EFIE,

which will be discussed in detail in Chapter 3.
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CHAPTER 3

SOLUTION OF TIME DOMAIN INTEGRAL
EQUATIONS AT LOW FREQUENCIES

The issues related to solving TDIEs at low frequencies (equivalently, long

wavelengths) are reviewed in this chapter. Additionally, the state of the art

in resolving these issues in the frequency and time domains are discussed.

Numerical examples are presented which demonstrate some of the extreme

effects that can occur due to the time domain low frequency breakdown.

Following this, the time domain augmented electric field integral equation

(A-EFIE) is reviewed in detail. This is one of the more modern approaches to

overcoming the low frequency breakdown of the EFIE; and as will be demon-

strated, there are still needed improvements. The interest in investigating

this approach is that it is similar in some ways to the A-Φ formulation. As

such, it serves as a useful intermediary step to developing and implementing

an A-Φ TDIE.

Since methods in both the frequency domain and time domain will now

be discussed, new abbreviations are needed to avoid confusion. In each case,

the frequency domain EFIE will be abbreviated as FD-EFIE, while the time

domain EFIE will be abbreviated as TD-EFIE. Similar abbreviations will be

used for other integral equations as needed.

3.1 Electric Field Integral Equation at Low

Frequencies

The state of the art in solving low frequency problems in the frequency do-

main and time domain is reviewed. Following this, a more detailed analysis on

the origin of the low frequency and dense mesh breakdowns of the TD-EFIE

is presented. The basics of performing an eigenvalue stability analysis for a

MOT system are introduced before numerical experiments are performed to

clearly show the effects of low frequency breakdown.
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3.1.1 Frequency Domain Approaches

The low frequency and dense mesh breakdowns of the FD-EFIE have been

extensively studied in the frequency domain [24–28]. The occurrence of the

low frequency breakdown is attributed mainly to the disparity in size of

the contributions due to the vector and scalar potential terms of the FD-

EFIE operator [28]. This occurs at low frequencies due to the frequency

dependent scaling of these contributions. A somewhat related phenomenon

is the dense mesh breakdown. This occurs when a number of mesh elements

are electrically small [12, 29, 30]. The end results of the low frequency and

dense mesh breakdowns are a progressively ill-conditioned matrix system and

loss of solution accuracy.

A number of techniques have been proposed to overcome these limita-

tions of the FD-EFIE. One of the most popular approaches is to perform a

quasi-Helmholtz decomposition. This separates the unknown current density

into approximately solenoidal and non-solenoidal contributions, wich sepa-

rately capture the quasi-magnetostatic and quasi-electrostatic physics. This

is performed by calculating loop-star or loop-tree basis functions for a given

geometry and then expanding and testing the unknown current appropriately

with these bases [24–27]. This approach is more difficult to implement than

a traditional FD-EFIE method because of the need to search for these bases.

This can be difficult to perform on complicated geometries, and increases

the complexity of the code. Further, this method does not capture the wave

physics effects of higher frequencies well. This leads back to the original

problem of poor convergence for the iterative solver, or failure to converge at

all [28].

This issue of ill-conditioning for loop-tree decompositions has been ad-

dressed using hierarchical regularization techniques [29]. In this method, a

coarse mesh is produced on the structure to be analyzed. The coarse mesh

is then subdivided into a number of regions (typically using an oct-tree type

subdivision). The different regions are then further subdivided, with finer

and finer meshes created in each region until the structure finally reaches a

mesh appropriate to yield the desired accuracy. The hierarchical regulariza-

tion is then performed as a set of operations on these nested meshes and basis

functions. The overall effect of these operations is to precondition the final

matrix system to allow for the efficient convergence of iterative solvers for
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very complicated geometries [29]. Although this approach has shown good

results, the added complexity of generating the code for this method makes

it not as appealing as a simpler solution to the low frequency or dense mesh

breakdown of the EFIE for many cases.

Another approach to dealing with the dense mesh conditioning problems

is to leverage Calderón identities [30]. These take advantage of the self-

regularizing property of the different integral equation operators. These

methods are not simple to discretize, and require a careful selection of basis

functions to arrive at non-singular Gram matrices. A more detailed dis-

cussion of these methods in the context of TDIEs is presented in the next

section.

A simpler solution that has been found to be widely effective for a number

of complicated geometries is the FD-A-EFIE [28]. This approach uses the

charge density as a second set of unknowns to supplement those of the cur-

rent density. To arrive at a square matrix system, the continuity equation

is added as an additional constraining set of equations. This approach is

effective even when utilizing simple RWG and pulse basis functions for the

current and charge, respectively. This makes it a very attractive technique

that can be easily incorporated with fast algorithms such as the MLFMA.

Additionally, due to the saddle point form of this matrix system, a wide

amount of mathematical literature is available to guide the construction of

simple constraint preconditioners [31]. These can improve the convergence

of the iterative solver as the frequency goes to DC; allowing the method to

be applied over a very wide frequency range.

Another approach that adopts a similar methodology to the FD-A-EFIE

has also been formulated [32]. This method adds a number of other con-

straining equations and modifications to allow for an accurate solution at

even lower frequencies than the FD-A-EFIE. However, this removes the sim-

plicity of the original method that has been so appealing. In particular, the

method of [32] uses the following constraints: it enforces the continuity equa-

tion with the Green’s function as an integral kernel, constrains the normal

component of the magnetic field, utilizes a more complicated BC testing func-

tion, requires solving for the charge density at DC, as well as implements an

iterative diagonal matrix scaling procedure to further improve the condition-

ing. This leads to a more complicated discretization procedure and produces

an over-determined matrix system. Instead of solving in a least-squares sense
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(or some other appropriate method), the authors make the system square by

adding equations that represent separate physical constraints together di-

rectly in the matrix generation process. Although successful in their general

goals, the extra complications of the method to reach increasingly lower fre-

quencies seems to make the applicability of this method only sensible for a

small class of problems.

Recently, a number of integral equations that are based on the vector and

scalar potentials have been proposed as another simple method to solve low

frequency breakdown problems in the frequency domain [1,14]. These share

a very similar matrix structure to the FD-A-EFIE, but under appropriate

preconditioning can achieve faster convergence than the FD-A-EFIE [14].

They have been shown to be both stable at fairly low frequencies and for

dense meshes; and can be easily integrated with fast solvers like the MLFMA.

This suggests that they could prove to be an effective tool after conducting

further research into them for realistic engineering problems.

3.1.2 Time Domain Approaches

Similar to the frequency domain, the traditional TD-EFIE will break down

due to low frequency and dense mesh phenomena [33]. This can be again

seen as a problem partially related to the scaling of the matrix elements

with respect to the time step size. Since the time step is selected as an

oversampling of the Nyquist rate, as the frequency of the problem lowers

the time step naturally becomes larger. Elements that involve temporal

derivatives have an O(1/∆t) or higher dependence on the time step, and

quickly become smaller than other terms in the operator. Although the cause

of the problem is similar to that in the frequency domain, the results of this

problem in the time domain are more severe. In addition to resulting in a

worsening condition number of the matrix system to be solved at each time

step, the solution also becomes unstable with exponentially growing modes

being excited. These modes can quickly overpower the important aspects of

the solution and yield a set of current values that are unusable for calculating

physical parameters of interest, such as the RCS.

To overcome these problems, many of the methods suggested in the fre-

quency domain have been adapted to provide low frequency stable and well-
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conditioned matrix systems in the time domain. One of the earliest ap-

proaches was to use a loop-tree decomposition which could effectively sta-

bilize the matrix system for low frequency problems [33]. This type of de-

composition placed a cap on the condition number of the matrix system.

However, in practice, it was found to still be too high for complex meshes

to yield efficient solutions [34]. A logical step was to adapt the hierarchi-

cal regularization process to the time domain, which was performed in [34].

However, this suffers from the same issues of complexity in implementation

as its frequency domain counterpart, making it not attractive for practi-

cal use. Another more recent method has been proposed that performs the

quasi-Helmholtz decomposition using a combination of projection matrices

and various auxiliary unknowns to achieve stable scaling as the time step is

changed [35]. This has the benefit of not requiring a global search for loop

currents, but increases the coding complexity in other areas. Although the

results appear promising, the results in the literature have not shown the

accuracy of the method at very low frequencies. Further, a more straightfor-

ward method is always preferable.

Another interesting approach is to leverage time domain Calderón iden-

tities [36, 37]. These identities are rooted in the spectral properties of the

different time domain integral operators that are traditionally used. It is

shown in [36] how applying the L operator twice has a self-regularizing prop-

erty (denoted as L2). This is seen by noting the projection properties of

the radiation integrals that are typically used in the equivalence principle

formulation of integral equations. This allows the spectral properties of the

L2 operator to be associated with those of the K operator, which is known to

produce better conditioned systems. Achieving these theoretical properties

are not trivial, however, and require a finely tuned discretization procedure

to yield the desired properties. The details are involved, and can be found

in [36,37].

In addition to the discussion of Calderón identities, [36] gives an excellent

background discussion on the state of the art in TDIEs at the time of publi-

cation. Further, [37] makes the important point that the stability problems

that are found with TDIEs at this point in time are usually no longer related

to inaccurate evaluation of matrix elements. Instead, they argue that the is-

sue lies in the spectral properties and null spaces (or approximate null spaces)

of the operators. This suggests that the success of a particular method heav-
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ily depends on the spectral properties of the operator. However, recent work

shows that the proper choice of basis functions also plays an essential role in

determining stability [15]. This will be discussed in great detail in Chapter

5.

In addition to the variety of techniques already discussed, a TD-A-EFIE

has also been developed [38]. This work also implemented a temporal low

pass filtering method to stabilize the solution. This is one of the earliest

stabilization techniques developed in the history of TDIEs, and is typically

no longer used. This technique is included in their work because, as will be

demonstrated later, the TD-A-EFIE is more prone to instability than the

TD-EFIE. The TD-A-EFIE was further developed in [39–41], with the main

contribution being the extension of the preconditioner proposed in [28] to

the time domain. A further development was performing a temporal integral

of the continuity equation. This requires additional overhead and matrix

storage, so other methods are still of practical interest.

3.2 Time Domain Electric Field Integral Equation Low

Frequency and Dense Mesh Breakdowns

The focus of this section is to demonstrate with numerical examples the

breakdown phenomenon of the TD-EFIE at low frequencies. An eigenvalue

stability analysis will also be introduced to more rigorously demonstrate what

kinds of instabilities are present in the MOT matrix system. Performing this

stability analysis also allows for the presentation of the associated eigenvec-

tors of the unstable modes of the marching system. This will be performed

on the TD-EFIE to verify this analysis approach before it is applied to more

novel integral operators in Chapter 4.

3.2.1 Origin of the Low Frequency and Dense Mesh
Breakdowns

Before presenting the numerical results, the TD-EFIE operator is analyzed

to highlight the origin of the low frequency breakdown. This analysis closely

follows the approach and conclusions presented in [36]. To begin, consider
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again the
.

L operator, reproduced here as

.

L
{
J
}

(r, t) =

∫
S

[
µ

..

J(r′, τ)

4πR
−∇∇

′ · J(r′, τ)

4πRε

]
dS ′. (3.1)

The onset of the low frequency breakdown can be understood by considering

how the two terms of the operator scale as the time step for the discretized

system changes. The two temporal derivatives on the first term (vector

potential contribution) makes it scale as O(1/∆t2) while the second term

(scalar potential contribution) scales as O(1). As ∆t → ∞, implying low

frequency dominance; the vector potential contribution will be swamped by

the scalar potential contribution, leading to ill-conditioning.

Eventually, a full breakdown of the system occurs in the form of unstable

current growth. This occurs due to a projection of the solution onto the null

space of the operator, namely static and linear in time solenoidal currents

(e.g., loop currents). At lower frequencies, these modes are not correctly

modeled or constrained, leading to them becoming unstable. In the language

of the eigenvalue stability analysis, to be introduced in Section 3.2.2, it is

expected to see unstable eigenvalues associated with eigenvectors that are

approximately solenoidal.

At this point, it is also useful to discuss the origin of the dense mesh

breakdown for the TD-EFIE. This is related to the spectral properties of the

continuous operator, as detailed in [36]. The issue is that the L operator has

a discontinuous spectrum, but is compact on the space of solenoidal currents.

This means that there will be two branches of singular values in the spectrum,

one associated with solenoidal currents and one with the complement of this

subspace. The singular values of the solenoidal currents approach zero; with

spatially faster varying solenoidal currents associated with smaller singular

values. Similarly, the singular values of the complement of the solenoidal

current subspace are tending toward infinity; with larger singular values at-

tributed to faster varying currents. This means that as the mesh is refined,

the faster varying currents of the two subspaces may be modeled by the mesh.

This leads to a progressive increase in the condition number as the mesh be-

comes smaller with respect to the wavelength. As pointed out in [36], this

is a property of the operator and cannot be overcome simply by performing

a loop-tree decomposition. Rather, the operator itself must be changed to

overcome these limitations, e.g. through Calderón identities.
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3.2.2 Eigenvalue Stability Analysis

For many years, the stability of TDIEs was proved in a non-rigorous manner.

This was done by simply showing that the solved-for current densities did not

have exponentially growing solutions for many time steps after the incident

field had decayed. Although fine for many practical purposes, this lack of

rigor made it difficult to gain better theoretical understanding of the types

of instabilities and how to overcome them. To address this, an eigenvalue

analysis of the marching system was devised in [42]. This analysis allows a

rigorous test of whether any instability is theoretically possible in the system.

To perform this analysis, an appropriate matrix system must be devised

that relates the past current densities to the future ones. For instance, the

MOT system for (3.1) is given in (2.36). The updated current vector can

be solved for by multiplying by [Z(0)]−1. The summation of matrix-vector

products with the past current vectors can be arranged into a single matrix

describing this entire process. This can be easily assembled, and is

U (i+1)

U (i)

U (i−1)

...

U (i−jmax+3)

U (i−jmax+2)


=



C(1) C(2) . . . C(jmax−1) C(jmax)

I 0 . . . 0 0

0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0





U (i)

U (i−1)

U (i−2)

...

U (i−jmax+2)

U (i−jmax+1)


,

(3.2)

where U (i) is a vector of coefficients for the basis functions appropriate

to the matrix system being analyzed at the ith time step. Additionally,

C(j) = −[Z(0)]−1[Z(j)], where [Z(j)] should be the matrix from the integral

equation being analyzed. The matrix in (3.2) is typically termed the compan-

ion matrix. By solving for the eigenvalues of the companion matrix, it can

be determined whether the MOT system is stable. If any eigenvalues lie out-

side the unit circle on the complex plane, the method will be unstable with

exponentially growing solutions. Further, if any eigenvalue lies on the unit

circle, the method is considered to be marginally stable [37]. These solutions

have polynomial growth, and so are still not technically stable. However,

solutions can still be practical if the growth is slow enough. Naturally, this
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is still undesirable, and so a totally stable system is obviously preferable.

It is also useful to note that because the eigenvalues are being solved for,

the eigenvectors of the system can also be found. This is useful for diagnosing

the kinds of spatial variations that lead to the instability in the marching

system. This will be used in Chapter 4 to assist in determining the flaws of

various integral operators.

3.2.3 Numerical Results

To demonstrate the low frequency breakdown of the differentiated TD-EFIE,

a number of simulations are presented with the central frequency of the

incident pulse progressively lowered. All simulations are performed on the

same mesh of a 1 meter radius sphere. For each simulation, the average

edge length as compared to the maximum frequency in the incident pulse is

presented, along with the time step used. Additionally, the eigenvalues of the

companion matrix are presented to highlight the growth of the instability in

a more rigorous manner than just presenting the unstable current densities.

For each simulation, the changes to the center frequency and bandwidth

change the companion matrix. For instance, each simulation will have dif-

ferent individual [Z(j)] matrices. As a result, the first row of matrices in the

companion matrix will be completely different for each simulation.

The first example is for a center frequency of 1 kHz and a bandwidth

of 500 Hz. This is already in the low frequency breakdown regime, so it is

expected to see eigenvalues outside of the unit circle. The relevant simulation

parameters are presented in the caption of Fig. 3.1. The next set of results,

shown in Fig. 3.2, are for a center frequency of 100 Hz and a bandwidth

of 50 Hz. The eigenvalue spectrum shows that the low frequency instability

is growing, with the eigenvalues now further outside of the unit circle near

the (1, 0i) point. The final example is for a center frequency of 10 Hz and a

bandwidth of 5 Hz, with the results shown in Fig. 3.3. The eigenvalues are

now clearly showing the instability of the method. Further, in the presented

current density it is clear that no usable information can be extracted for

post-processing.

It is important to note that these examples have been shown for some

extreme cases on a very simple geometry. The onset of these effects can be
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(a) (b)

Figure 3.1: Center frequency is 1 kHz and bandwidth is 500 Hz. Average
edge length is 1.359× 10−6λ, ∆t = 33.3 µs: (a) eigenvalues and (b) current.

(a) (b)

Figure 3.2: Center frequency is 100 Hz and bandwidth is 50 Hz. Average
edge length is 1.359× 10−7λ, ∆t = 0.333 ms: (a) eigenvalues and (b)
current.

much earlier on more complicated or multiscale structures [33]. Additionally,

as previously discussed, the effects can also be more subtle. The increasingly

ill-conditioned nature of the matrix system begins at higher frequencies than

those presented here, and makes it impractical to solve for problems of engi-

neering interest.

In addition to looking at the eigenvalues, it is of interest to determine the

spatial structure of the eigenvectors associated with unstable modes. For the

differentiated TD-EFIE, it is anticipated that the unstable eigenvectors will

correspond to approximately solenoidal current densities. This is verified for

a couple unstable modes, with one presented in Fig. 3.4. In addition to the

unstable mode, a stable mode is also shown in Fig. 3.4. This mode can
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(a) (b)

Figure 3.3: Center frequency is 10 Hz and bandwidth is 5 Hz. Average edge
length is 1.359× 10−8λ, ∆t = 3.33 ms: (a) eigenvalues and (b) current.

(a) (b)

Figure 3.4: Eigenvectors for center frequency of 1 kHz simulation: (a)
unstable mode that is approximately solenoidal and (b) stable mode that is
approximately in the complement of the solenoidal current subspace.

be seen to lie in the subspace of current densities that is approximately the

complement of the solenoidal subspace, as expected.

3.3 Time Domain Augmented Electric Field Integral

Equation

The formulation of the FD-A-EFIE and its corresponding constraint pre-

conditioner is briefly reviewed. The formulation is then converted to the

time domain with some basic results presented. From these results, it will

be shown that there exists a stability problem with current implementations
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of the TD-A-EFIE. A number of methods that have been developed to ad-

dress this will be presented and analyzed for the robustness of the proposed

method.

3.3.1 Frequency Domain A-EFIE Formulation

As has been previously mentioned, the A-EFIE has a very similar structure to

the EFIE. The derivation is largely the same, however, the integral operator

for the scalar potential contribution is written in terms of the charge density

on the surface. This equation has two sets of unknowns, one for the current

density and one for the charge density. This requires an additional constraint

equation to lead to a solvable system, for which the continuity equation is

used. This may be expressed in terms of a block matrix system as[
V DTS

D k2
0I

]{
ik0j

c0q

}
=

{
η−1

0 b

0

}
, (3.3)

where j and q are vectors of the expansion coefficients for the current densities

and charge densities, respectively. The scaling of the different coefficients is

important to keep the matrix system stable as the frequency is brought closer

to DC. The different subblock matrices that represent integral operators are

given as

Vmn = µr

∫
Sm

∫
Sn

eikR

4πR
fm(r) · fn(r′)dS ′dS (3.4)

Smn = ε−1
r

∫
Tm

∫
Tn

eikR

4πR
hm(r)hn(r′)dS ′dS, (3.5)

where fm is a normalized RWG function associated with the mth edge that

has a spatial support over Sm [28]. Further, hm is the pulse basis function

(constant on a triangle) associated with the mth triangle, denoted as Tm.

Finally, k = ω/c is the wavenumber. These integral operators correspond to

the vector and scalar potential contributions to the scattered electric field, re-

spectively (after appropriate modification for the scalar term). Additionally,

36



the excitation of the system is

bm =

∫
Sm

fm(r) · Einc(r) dS. (3.6)

Since the testing function on the first equation is actually an RWG, some

bookkeeping must be done to arrive at the appropriate contribution for the

scalar potential term. This is done through the D matrix, which accounts

for the divergence of the RWG functions. Explicitly, D is a Np ×Ne matrix

where Np is the number of triangles and Ne is the number of interior edges.

The matrix is given by

Dmn =


1, patch of hm is the positive part of fn

−1, patch of hm is the negative part of fn

0, otherwise.

(3.7)

To enforce charge neutrality, one charge unknown can be dropped for each

separated surface. This can be accounted for in the matrix system by defining

two mapping matrices that map the reduced vector of charge unknowns to

and from the total vector of charge unknowns. These are denoted as F

(forward) and B (backwards), with more details given in [28]. Inserting

these into the matrix system gives the final system as[
V DTS B

F D k2
0I

]{
ik0j

c0qr

}
=

{
η−1

0 b

0

}
, (3.8)

where qr is the reduced vector of charge unknowns.

As is pointed out in [28], this type of matrix system may be classified

as a saddle point problem [31]. This system can become ill-conditioned for

problems as the frequency goes to DC; but the saddle point theory suggests

an efficient way to form an effective preconditioner. The particular choice is

to use a constraint preconditioner as a right preconditioner. The constraint

preconditioner is picked to be an easier to invert saddle point problem that

shares the same structure as the matrix system trying to be solved. Since the

preconditioner matrix needs to be inverted, it is desirable to have as sparse
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a matrix as possible. The particular matrix picked is

M =

[
Vd

(
F D

)T (
F SdF

T
)

F D k2
0I

]
, (3.9)

where a subscript d is used to denote that only the diagonal elements of the

matrix are used. This matrix notation may be abbreviated to

M =

[
Vd DT

r Srd

Dr k2
0I

]
. (3.10)

The inverse of this block matrix can be found in closed form to be

M−1 =

[
V−1
d 0

0 0

]
+

[
−V−1

d DT
r Srd

I

]
∆−1

[
−DrV

−1
d I

]
, (3.11)

where the Schur complement is

∆ = k2
0I−DrV

−1
d DT

r Srd. (3.12)

The benefit of this matrix inversion process is that instead of needing to

numerically invert the full M matrix, only the smaller Schur complement

must be inverted numerically. Additional details on the formulation of the

FD-A-EFIE and extensive numerical examples for realistic structures can be

found in [28].

3.3.2 Time Domain A-EFIE Formulation

The formulation of the A-EFIE can be easily extended to the time domain

using the methods detailed in Chapter 2. Performing this, and using the

separable approximation for the delta function of the time domain Green’s

38



function, the matrix system to be solved is

[
V(0) DTS(0)B

d(0)F D
.

I(0)

]{(
c0∆t

)−1
j(i)

c0q
(i)
r

}
=

{
η−1

0 b(i)

0

}

−
i−1∑

j=i−jmax

[
V(i−j) DTS(i−j)B

d(i−j)F D
.

I(i−j)

]{(
c0∆t

)−1
j(j)

c0q
(j)
r

}
. (3.13)

The core integral operator subblock matrices are

V(i−j)
mn =

µr∆t

4π

∫
Sm

∫
Sn

Nh∑
l=0

al
.

ξ
(i−j)
l fm(r) · fn(r′)

Pl(R̂)

R
dS ′dS (3.14)

S(i−j)
mn = − 1

4πεr

∫
Tm

∫
Tn

Nh∑
l=0

alξ
(i−j)
l hm(r)hn(r′)

Pl(R̂)

R
dS ′dS. (3.15)

The temporal convolutions have been accounted for in

ξ
(i−j)
l =

∫ ∞
−∞

Pl(k1t
′ + k2)T

(
(i− j)∆t− ζ/c− t′

)
dt′ (3.16)

.

ξ
(i−j)
l =

∫ ∞
−∞

Pl(k1t
′ + k2)

.

T
(
(i− j)∆t− ζ/c− t′

)
dt′, (3.17)

and T is the temporal basis function. The remaining terms to be defined are

.

I(i)
mn =


1

c2
0∆t

.

T
(
i∆t
)
, m = n

0, otherwise,

(3.18)

b(i)
m =

∫
Sm

fm(r) · Einc(r, i∆t)dS, (3.19)

and d(i) = T (i∆t). Note that because of the temporal dependence of the

continuity equation constraint, the bottom blocks of this matrix system are

only non-zero for a very small number of matrices. More details on evaluating

the different matrix elements can be found in Section 2.4.

The different scaling coefficients are arranged so that the scaling of the

matrix elements are [
O
(
1
)

O
(
1
)

O
(
1
)

O
(
(c0∆t)−2

)] . (3.20)
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The reasons for this scaling can be understood by applying the Geršgorin

circle theorem to this matrix to estimate its condition number [14, 34, 43].

In essence, the Geršgorin circle theorem says that for a N×N matrix with

elements vij the eigenvalues lie in the union of disks defined by
centers: vii, i = 1, . . . , N

radii:
N∑
j 6=i

|vij|, i = 1, . . . , N.
(3.21)

That is, all the eigenvalues of the matrix lie in the union of the disks with

center defined by the diagonal element of the row and a radius equal to the

sum of the absolute value of all other elements of the row. By applying this

to the block matrix system, it is seen that there will be two distinct families

of eigenvalues due to the upper and lower blocks of the matrix. Due to the

scaling of the matrix, the eigenvalues associated with the upper part of the

matrix should not change as the time step is adjusted and will lie at some

finite value. Similarly, for the lower blocks of the matrix the centers of the

disks will collapse to the origin as the time step is increased. Importantly,

the radii of the disks will remain constant. This limits the locations of the

eigenvalues, and will keep the condition number fairly flat at low frequencies,

assuming no mesh dependent conditioning effects are occurring. In practice,

for the simple sphere geometries tested it has been found that the condition

number remains at O
(
103
)

from very low frequencies up to the low MHz

range. To further improve the convergence of iterative solvers, the precondi-

tioner shown in (3.11) can be implemented in the time domain [39].

3.3.3 Time Domain A-EFIE Results at Low Frequencies

To highlight the utility of the TD-A-EFIE at low frequencies, a simple nu-

merical example is presented. The results of this are shown in Fig. 3.5. This

example shows the accuracy of the TD-A-EFIE when operating in the low

frequency regime, where the differentiated TD-EFIE breaks down. For this

example, the incident pulse has a center frequency of 100 kHz and a band-

width of 50 kHz. The time step is 0.333 µs, and the average edge length is

1.359× 10−4λ at 150 kHz.
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(a) (b)

Figure 3.5: RCS results for a 1 meter radius sphere at 100 kHz: (a)
differentiated TD-EFIE and (b) TD A-EFIE.

3.4 Time Domain Augmented Electric Field Integral

Equation Stability

The stability of the TD-A-EFIE is reviewed in this section. Numerical exam-

ples are presented which demonstrate that the TD-A-EFIE has worse stabil-

ity than the differentiated TD-EFIE at middle frequencies. Following this, a

number of stabilization approaches that have been proposed are reviewed.

3.4.1 Stability Analysis

Although the TD-A-EFIE is successful at producing accurate results at lower

frequencies than the TD-EFIE, it is not free from issues. Unfortunately,

it has been found that the TD-A-EFIE is not as stable as the TD-EFIE

(or differentiated TD-EFIE) at middle frequencies. To demonstrate this,

an eigenvalue analysis was performed for a simulation on a 1 meter radius

sphere with a center frequency of 80 MHz and a bandwidth of 20 MHz. The

time step is 0.9 ns and the average edge length at 100 MHz is 0.0906λ. The

eigenvalues for the two systems are shown in Fig 3.6; where it is clearly

seen that the TD-A-EFIE is substantially less stable than the differentiated

TD-EFIE.

From the discussions in [37], it is expected that the TD-A-EFIE must have

some type of null space (or approximate null space) at middle frequencies that

is not present in the differentiated TD-EFIE. To further investigate this, a
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(a) (b)

Figure 3.6: Eigenvalues for a center frequency of 80 MHz and a bandwidth
of 20 MHz: (a) differentiated TD-EFIE and (b) TD-A-EFIE.

few of the eigenvectors associated to the most unstable modes are shown in

Fig. 3.7. There is not much structure to these unstable modes, however, it

does appear that they may be related to a buildup of charge on some patches.

It is anticipated that the strong form of the continuity equation is not acting

as a good constraint for the additional unknowns at middle frequencies. This

leads to the presence of unstable modes where the differentiated TD-EFIE

has none, since the continuity equation is enforced by design.

Another simulation at slightly lower frequencies is prepared on the same

mesh to further investigate the change in the unstable eigenvectors as the

frequency is adjusted. In addition to this, the temporal basis function for

the TD-A-EFIE is changed from a quadratic B-spline to a cubic Lagrange

interpolator, which is more typically used in the literature [38]. For this

simulation, the center frequency of the incident pulse is 30 MHz and the

bandwidth is 20 MHz, making the time step 1 ns. The eigenvalues of the

companion matrix are shown in Fig. 3.8. It is seen that the system is more

stable for the larger time step and the higher-order temporal basis function.

However, the system is still not stable, with a number of eigenvalues being

found to lie outside the unit circle.

Once again, the eigenvectors of these unstable modes can be studied to

gain more insight into the flaws of the approach. Sample eigenvectors of the

most unstable modes are shown in Fig. 3.9. It is seen that at the slightly

lower frequency, these eigenvectors have substantially more structure than

the unstable modes at 80 MHz. These vector fields appear to be related to

42



(a) (b)

Figure 3.7: Eigenvectors for sample unstable modes with a center frequency
of 80 MHz and a bandwidth of 20 MHz.

Figure 3.8: Eigenvalues for a center frequency of 30 MHz and a bandwidth
of 20 MHz.

spherical harmonics that will have an approximately zero divergence over the

surface of the sphere. Further unstable modes are investigated, and it is seen

that they in general correspond to modes that will approximately live in the

subspace of solenoidal currents. The conclusion is that the time derivative in

the V(i) operator and the divergence of the current in the continuity equation

leads to a null space of static solenoidal currents. Through the discretization

process, this null space will become larger to encompass approximately static

and solenoidal currents. Since these reside in a null space, or an approximate

null space of the operator, they are not well-constrained by the system and

can lead to exponential growth. This same type of null space also affects the

differentiated TD-EFIE. However, it appears that using the strong form of

43



(a) (b)

Figure 3.9: Eigenvectors for sample unstable modes with a center frequency
of 30 MHz and a bandwidth of 20 MHz.

the continuity equation is leading to a less stable system.

Through the analysis in Chapter 5, it will be shown that the major problem

with the TD-A-EFIE is actually the temporal basis functions being used.

Despite this, there is still a greater amount of numerical instability inherent to

the TD-A-EFIE than the differentiated TD-EFIE or TD-EFIE. It is expected

that the numerical method is more sensitive to stability issues when multiple

unknown functions are used. The reason is that there is more room for

numerical errors to become significant when multiple equations need to be

enforced together.

3.4.2 Time Domain A-EFIE Stabilization Approaches

As was shown in Section 3.4.1, the TD-A-EFIE appears to have worse sta-

bility than the differentiated TD-EFIE at middle frequencies. This occurs

even when using specially made integration techniques to accurately evalu-

ate the matrix elements. In this section, a number of possible stabilization

techniques that have been used in the literature are reviewed to determine

their general applicability to the TD-A-EFIE.

Low-Pass Filtering

One of the original techniques to stabilize the high frequency instability in

traditional TDIEs was to perform a low-pass filtering operation by averaging
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a number of the current densities [44]. This methodology was adopted in [38]

to aid in the stability of the TD-A-EFIE when using third-order Lagrange

interpolating functions for the temporal basis functions. The averaged value

that will be used in the time-marching procedure (once it is available) is

Ũ (j) = 0.25Ũ (j−1) + 0.5U (j) + 0.25U (j+1), (3.22)

where Ũ (j) is the filtered basis coefficient for an arbitrary unknown and U (j)

is the corresponding unfiltered coefficient. This approach is simple to im-

plement, and can extend the range of the problems that may be evaluated,

but does not solve the problem of instability in general. As such, it is not

a preferable approach and has been largely dismissed by most of the more

experienced research groups in the field [21,22,45].

Projection onto Stable Modes

In [46], a method was developed to make an explicit time domain FEM sim-

ulation unconditionally stable. The general concept was to solve an eigen-

value problem based on the system matrix, identify which eigenvectors cor-

responded to stable modes, and then project the solution procedure into

the subspace spanned only by stable modes. In this way, stability could be

ensured while also still being able to meet accuracy specifications.

In [47], the authors claim to have adapted this method to the TDIE frame-

work. From the citations, it is not clear whether this method is being used for

the results presented in [39–41]. However, upon inspection of the method it

does not appear that the authors of [47] have actually accomplished the goal

of replicating [46] for TDIEs. From the description, the proposed method

of [47] actually calculates the expansion coefficients for the first M time steps.

They then treat these vectors as the columns of a matrix, whose SVD they

calculate. The marching system is then projected onto the right singular vec-

tors from the SVD calculation. They claim that this can effectively ensure

the late time stability of the solution, while also lowering the computational

complexity.

From (personal) numerical experiments, it was found that this method

is distinctly different from [46] in a number of ways. First, the proposed

method using an SVD approach does not ensure stability or accuracy. If
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the unstable modes have already been excited in the early time steps than

the right singular vectors of the SVD can still cause this instability in the

reduced order system. Further, there is no clear way defined by the authors to

associate a singular value with whether the mode will be stable or not. This

is in stark contrast with [46], where rigorous guidelines are given to determine

whether an eigenvalue corresponds to a stable mode or not. Finally, it is not

clear how many time steps need to be solved before being able to project

onto the reduced order system to ensure the accuracy of the solution.

This method also does not really improve the computational complexity.

For large systems, the PWTD will still have to be used to calculate the

first M time steps of current. The computational complexity reduction is

marginal, at best, since an SVD will also need to be calculated on a very

tall matrix. This, along with the other flaws of the method, make it not a

practical approach for stabilizing the TD-A-EFIE.

Preconditioning

Since many of the effects that lead to instability in the time domain present

themselves as a progressively more ill-conditioned problem in the frequency

domain, there is some question as to whether preconditioning in the time

domain may help the stability of the system. In [39], the authors propose

a preconditioner for the TD-A-EFIE and claim that the system is highly

stable and accurate (note: they have also made another modification to the

formulation that will be discussed next). The preconditioner used is just a

time domain version of (3.11), which can be implemented easily for small

geometries.

The clearest way to test whether the preconditioner can aid in the stability

of the method is to modify the eigenvalue stability analysis of (3.2) to account

for the preconditioning. For a right preconditioner, the solution to the system

of equations Zx = b is solved iteratively as

ZM−1y = b, (3.23)

where y = Mx. To incorporate this into the eigenvalue analysis, denote

C
(j)
M = −

(
[Z(0)]M−1

)−1
[Z(j)]M−1. Then, the companion matrix for the pre-
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conditioned marching system is

V (i+1)

V (i)

V (i−1)

...

V (i−jmax+3)

V (i−jmax+2)


=



C
(1)
M C

(2)
M . . . C

(jmax−1)
M C

(jmax)
M

I 0 . . . 0 0

0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0





V (i)

V (i−1)

V (i−2)

...

V (i−jmax+2)

V (i−jmax+1)


,

(3.24)

where V (i) = MU (i), using the notation from (3.2). Solving for the eigen-

values of this system and comparing them to the system without precondi-

tioning showed a negligible change in the locations of the eigenvalues. When

the time step is made much smaller than is needed for traditional sampling

choices, the eigenvalues near the center of the complex plane have been seen

to move; however, the unstable eigenvalues remain unaffected. This is il-

lustrated in Fig. 3.10 where the eigenvalues are presented for two different

cases. Both simulations are performed for a center frequency of 1 MHz with

a 500 kHz bandwidth; but the temporal basis functions and time step are

selected differently. For Fig. 3.10(a) a quadratic B-spline basis function is

used with a time step of 3.33 ns, while for Fig. 3.10(b) a triangle basis func-

tion (first-order B-spline) is used with a time step of 0.453 ns. This shows

that the preconditioner, although necessary for improving convergence of the

iterative solver, has no noticeable effect on the stability of the system.

Integrating the Continuity Equation

In [39, 41], the authors suggest that the continuity equation should not be

enforced directly to improve the stability and accuracy of the TD-A-EFIE.

The argument is related to the traditional basis functions used for TDIEs,

which are Lagrange interpolating functions. These do not have continuous

derivatives, so it is suggested that the derivative of the charge temporal basis

function should be avoided. This is because the strong form of the continuity

equation requires evaluating the derivative of the basis function at exactly the

discontinuous point. To avoid this, it is instead suggested that the temporal

integral of the continuity equation should be enforced.
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(a) (b)

Figure 3.10: Eigenvalue stability analysis with and without preconditioning:
(a) quadratic B-spline basis function with ∆t = 3.33 ns; and (b) triangle
basis function with ∆t = 0.453 ns.

In the traditional TD-A-EFIE, the continuity equation in its strong form

only constraints a very small number of the matrices (i.e., the bottom blocks

of the matrices are 0 for most matrices of the marching system). By enforcing

the temporal integral of the continuity equation, the bottom-left block of the

matrices never becomes 0, providing a stronger constraint on the solved-

for current densities. However, because these matrices never become 0, the

history of all past current basis coefficients must be used in the solution of

every time step. A naive implementation of this would lead to an inefficient

MOT system, however, a recursive procedure like that used in the TD-EFIE

can be applied to avoid this.

Appropriate Temporal Basis Functions

From the work of [48], it is suggested that the temporal basis functions for

the current and charge should be selected independently. They state that

any discretization with a temporal basis function that is higher than order 1

for the charge will lead to an unstable result. This conclusion has not been

verified yet, but the suggestion that different basis functions should be used

is the correct approach. This will be discussed in more detail in Chapter 5.
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CHAPTER 4

INITIAL DEVELOPMENT OF A-Φ TIME
DOMAIN INTEGRAL EQUATIONS

As was demonstrated in Chapter 3, there appear to be unresolved stability

problems with the TD-A-EFIE. In this chapter, two novel integral equations

are proposed that attempt to address this. The two integral equations are an

A-Φ TDIE and a modified TD-A-EFIE. The modified TD-A-EFIE is called

the time domain weighted continuity EFIE (TD-WC-EFIE) for reasons that

will be made clear in later sections. This integral equation is proposed based

on physical insight from the A-Φ TDIE discussed.

The goals for both integral equations are to be accurate at low frequen-

cies, while still maintaining stability at middle frequencies. As will be seen

through the results, these goals are not achieved with these integral equa-

tions. However, the results and discussion are still useful in motivating the

approach used in Chapter 5 to overcome these problems. Additionally, only

a simple modification is needed to make the TD-WC-EFIE achieve low fre-

quency accuracy and stability. After doing this, the other properties of the

TD-WC-EFIE make it better to use than the TD-A-EFIE.

4.1 A-Φ Time Domain Integral Equation

Due to the stability issues present in the TD-A-EFIE, alternative integral

equations have been considered. The goal is a method that can achieve

accurate results at low frequencies and still be stable in the middle frequency

regime. From the success of the A-Φ method in the frequency domain at this,

it is anticipated that this formulation will be useful in the time domain [14].

This section briefly reviews the A-Φ formulation in the frequency domain

before presenting the corresponding time domain equations. It is seen from

the eigenvalue stability analysis of this system that the eigenvalues show

a different structure as compared to the TD-A-EFIE system, but do not
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correspond to a stable system themselves. Additionally, the eigenvectors of

this system are inspected to determine what kinds of modes correspond to

unstable ones.

4.1.1 Frequency Domain A-Φ Formulation

The A-Φ formulation for a PEC scatterer may be derived by considering the

extinction theorem and the equivalence principle in the context of the vector

potential wave equation presented in [1]. This yields the following integral

equation,∫
S

[
µg(r, r′, ω)J(r′, ω) +∇′g(r, r′, ω)Σ(r′, ω)

]
dS ′ = −Ainc(r, ω), (4.1)

where Ainc is the incident vector potential, J is the unknown current density,

and Σ is another set of unknowns corresponding to n̂′ ·A [14]. Additionally,

the homogeneous medium Green’s function is

g(r, r′, ω) =
eikR

4πR
, (4.2)

where k = ω/c.

Since two sets of unknowns are being used another constraint equation

must be determined to arrive at a solvable system. This is done by taking

the divergence of (4.1), invoking the Lorenz gauge, and using the defining

equation of the scalar Green’s function for the wave equation. This yields∫
S

[
µg(r, r′, ω)∇′ · J(r′, ω) + k2g(r, r′, ω)Σ(r′, ω)

]
dS ′ = −iωµεΦinc(r, ω),

(4.3)

where Φinc is the incident scalar potential. As is pointed out in [14], the

physical meaning of (4.3) in conjunction with the scalar Huygens’ principle

integral equation is a weak form of the current continuity equation [49]. This

weak form uses the Green’s function as an integral kernel, and is explicitly

written as ∫
S

g(r, r′, ω)
[
∇′ · J(r′, ω)− iωρ(r′, ω)

]
dS ′ = 0, (4.4)
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where ρ is the charge density. More details on the derivations of the governing

differential and integral equations for the A-Φ formulation may be found

in [1, 14].

With the necessary equations now derived, a matrix equation may be

formed by expanding J with normalized RWG functions and Σ with pulse

basis functions (constants on a triangle). Testing may be performed by using

normalized RWG functions for (4.1), and pulse basis functions for (4.3) [28].

This leads to a block matrix system of the following form,[
µrV DTS

SD εrk
2
0S

]{
c−1

0 j

η−1
0 ψ

}
=

{
−η−1

0 α

−ik0εφ

}
, (4.5)

where j is a vector of expansion coefficients for the current density, and ψ is

the same for Σ. The different matrix elements may be calculated as

Vmn =

∫
Sm

∫
Sn

g(r, r′, ω)fm(r) · fn(r′)dS ′dS (4.6)

Smn =

∫
Tm

∫
Tn

g(r, r′, ω)hm(r)hn(r′)dS ′dS, (4.7)

and D is the same connection matrix defined in (3.7) that accounts for the

divergence of the normalized RWG functions. The excitation of the system

is given as

αm =

∫
Sm

fm(r) ·Ainc(r) dS (4.8)

φm =

∫
Sm

hm(r)Φinc(r) dS, (4.9)

where definitions of the forms of Ainc and Φinc for different types of excitations

(e.g., plane wave or NF dipole) can be found in [1, 14]. The development of

a preconditioner and numerical results for this formulation may be found

in [14].
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4.1.2 Time Domain A-Φ Formulation

The equations presented in Section 4.1.1 can be easily converted to the time

domain. This yields the two equations to be solved together as∫
S

[
µ
δ(τ)

4πR
∗ J(r′, t)−∇

(
δ(τ)

4πR
∗ Σ(r′, t)

)]
dS ′ = −Ainc(r, t) (4.10)∫

S

δ(τ)

4πR
∗
[
∇′ · J(r′, t)− ε

..

Σ(r′, t)

]
dS ′ = ε

.

Φinc(r, t), (4.11)

where τ = t − R/c. After using the separable approximation to the delta

function of the time domain Green’s function, the matrix system to be solved

becomes[
µrV

(0) DTS(0)

S(0)D −εrc−2
0

..

S(0)

]{
c−1

0 j(i)

η−1
0 ψ

(i)

}
=

{
−η−1

0 α
(i)

εc−1
0

.

φ(i)

}

−
i−1∑

j=i−jmax

[
µrV

(i−j) DTS(i−j)

S(i−j)D −εrc−2
0

..

S(i−j)

]{
c−1

0 j(j)

η−1
0 ψ

(j)

}
. (4.12)

The different matrix elements are defined as

V(i−j)
mn =

∫
Sm

∫
Sn

Nh∑
l=0

alξ
(i−j)
l fm(r) · fn(r′)

Pl(R̂)

4πR
dS ′dS (4.13)

S(i−j)
mn =

∫
Tm

∫
Tn

Nh∑
l=0

alξ
(i−j)
l hm(r)hn(r′)

Pl(R̂)

4πR
dS ′dS (4.14)

..

S(i−j)
mn =

∫
Tm

∫
Tn

Nh∑
l=0

al
..

ξ
(i−j)
l hm(r)hn(r′)

Pl(R̂)

4πR
dS ′dS, (4.15)

where the temporal integrals are given by

ξ
(i−j)
l =

∫ ∞
−∞

Pl(k1t
′ + k2)T

(
(i− j)∆t− ζ/c− t′

)
dt′ (4.16)

..

ξ
(i−j)
l =

∫ ∞
−∞

Pl(k1t
′ + k2)

..

T
(
(i− j)∆t− ζ/c− t′

)
dt′, (4.17)

with T being the temporal basis function used to expand the unknowns. For

more details on the calculation of these matrix elements, consult Section 2.4.
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(a) (b)

Figure 4.1: RCS results for a 1 meter radius sphere using the TD A-Φ at:
(a) 100 Hz and (b) 200 kHz.

Finally, the excitations may be calculated as

α(i)
m =

∫
Sm

fm(r) ·Ainc(r, i∆t)dS (4.18)

.

φ(i)
m =

∫
Tm

hm(r)
.

Φinc(r, i∆t)dS. (4.19)

4.1.3 Time Domain A-Φ Results

The matrix system of (4.12) has been tested by simulating the scattering

from a sphere for a number of different incident pulse definitions. In each

case, the incident scalar potential has been set to 0 [14]. The temporal basis

function used for all examples is the quadratic B-spline.

From the numerical tests, it is seen that the method is not exhibiting good

accuracy or stability. The problem of accuracy is shown in Fig. 4.1, where the

RCS results from two different simulations are shown. One of the simulations

is for an incident pulse with a center frequency of 100 Hz, a bandwidth of 50

Hz, and with a corresponding time step of 0.333 ms. The second simulation

is for an incident pulse with a center frequency of 200 kHz, a bandwidth of

100 kHz, and with a time step of 0.333 µs. This second simulation was not

stable at late-time after the incident field had effectively decayed to zero.

The RCS results presented were calculated from a Fourier transform of the

current density only over stable time steps. It is evident from Fig. 4.1, that

the approach currently being used is not able to capture the null in the RCS
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Figure 4.2: Eigenvalues stability analysis for the 200 kHz simulation.

(a) (b)

Figure 4.3: Basis coefficients results for a 1 meter radius sphere using the
TD A-Φ for the 200 kHz center frequency simulation: (a) current expansion
coefficient and (b) normal component of the vector potential coefficient.

properly.

The problem of stability is illustrated for the simulation with a center

frequency of 200 kHz and a bandwidth of 100 kHz. The eigenvalues from the

stability analysis are plotted in Fig. 4.2, where it is seen that a number of

eigenvalues lie outside of the unit circle near (-1, 0i). To further investigate

the nature of the instability, sample coefficients for the current and normal

component of the vector potential unknowns are plotted in Fig. 4.3 for the

200 kHz simulation. It is seen that both unknowns are unstable, however, the

normal component of the vector potential shows the classic high frequency

oscillations where the coefficient varies rapidly between each time step.

To further examine the source of the instability for the A-Φ formulation,
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(a) (b)

(c) (d)

Figure 4.4: Sample eigenvectors of unstable modes for a 1 meter radius
sphere using the TD A-Φ for the 200 kHz center frequency simulation with
∆t = 0.333 µs: order is from most unstable to less unstable (a)-(d).

the eigenvectors of a few sample unstable modes are plotted in Fig. 4.4. The

current density is represented by the vector arrows over the sphere, while the

color of the patches corresponds to the value of the normal component of the

vector potential. It is seen that the unstable modes are highly structured,

suggesting that there may be a fundamental problem with the physics of the

formulation. This concept will be further discussed in Chapter 5.

By recalling that the normal component of the vector potential can be

related to a contribution to the charge, it is seen that the currents are flowing

between points of charge buildup on the surface of the sphere. In contrast to

the TD-EFIE and TD-A-EFIE, the current density for the A-Φ formulation

does not show any obvious null space. This is a result of no time derivatives

being applied to the integrals in the V matrix; making the static null space of

solenoidal currents for the TD-EFIE and TD-A-EFIE disappear. However,
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the two time derivatives on the Σ unknowns in the second equation could

produce a null space for static and linearly varying/growing Σ. This would

occur if the Σ unknowns are arranged to produce no contribution from the

S(i) matrix. It is difficult to know physically what the Σ unknowns should be

doing, since they only contribute to a physical quantity such as the charge

in conjunction with the scalar potential, which is not modeled explicitly in

this formulation. As a result, no actions can be currently taken to “fix”

the formulation. The question of how to fix the A-Φ TDIE is considered in

Chapter 5, where a rigorous mathematical framework is used to analyze the

system of equations.

4.2 Weighted Continuity Electric Field Integral

Equation

This section examines a modification to the A-EFIE based on the physical

meaning of (4.3) proposed in [14]. That is, a Green’s function weighted

form of the continuity equation. The idea is that the strong form of the

continuity equation in the time domain may have been a poor constraining

equation. By modifying the continuity equation into an integral form, better

stability properties may be achieved. This new formulation is examined in

the frequency domain and the time domain. It is compared to the original

A-EFIE to determine the benefits, if any, of this new approach. For brevity,

the weighted continuity electric field integral equation will be referred to

as the WC-EFIE. When explicit reference is made to a frequency domain or

time domain implementation, FD-WC-EFIE and TD-WC-EFIE will be used,

respectively.

4.2.1 Frequency Domain WC-EFIE Formulation

The formulation for the WC-EFIE can be performed easily in the frequency

domain. The first equation that represents the traditional L-operator re-

mains the same, while the second equation is modified to be∫
S

g(r, r′, ω)

[
∇′ · J(r′, ω)− iωρ(r′, ω)

]
dS ′ = 0. (4.20)
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This second equation can be discretized by expanding the current with nor-

malized RWG functions, the charge with pulse basis functions, and then

testing with pulse basis functions. Performing this gives the following ma-

trix system to be solved after accounting for the charge neutrality constraint,[
µrV ε−1

r DTSB

FSD k2
0FSB

]{
ik0j

c0qr

}
=

{
η−1

0 b

0

}
. (4.21)

The connection D, forward F, and backward B matrices all have the same

definitions as in the FD-A-EFIE. Similarly, nothing has changed the excita-

tion vector so this may be evaluated in the same way as the FD-A-EFIE.

The integral operator matrices have been adjusted to separate the physical

scaling constants from their definitions. Explicitly, they are

Vmn =

∫
Sm

∫
Sn

g(r, r′, ω) fm(r) · fn(r′)dS ′dS (4.22)

Smn =

∫
Tm

∫
Tn

g(r, r′, ω)hm(r)hn(r′)dS ′dS. (4.23)

It is to be noted that if the charge neutrality mapping matrices were not to

be used, this method could be easily made to produce a symmetric matrix.

This is done by scaling the second constraining equation with ε−1
r . This does

not change the physics of the equation, but simply opens the formulation to

potentially more efficient matrix storage and specialized symmetric matrix

solution methods. In fact, numerical experiments have shown that using a

constraint preconditioner removes the need for the charge neutrality con-

straint. As a result, the FD-WC-EFIE may lead to more efficient algorithms

if the symmetry is exploited. This is not investigated further here, and so all

results and equations are for a system using the charge neutrality constraint.

A constraint preconditioner similar to that used in [14] can be easily devel-

oped for this formulation. The easier to invert matrix with a similar saddle

point form is defined to be

Pc =

[
µrVd ε−1

r DTSdB

FSdD k2
0FSdB

]
, (4.24)

where a subscript of d represents only taking the diagonal elements of the

dense integral operator matrices. This matrix may be inverted using the
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(a) (b)

Figure 4.5: Accuracy comparison for the FD-A-EFIE and the
FD-WC-EFIE for a 1 m radius PEC sphere at: (a) 1 Hz and (b) 10 MHz.

same approach illustrated in (3.11), therefore only requiring the numerical

inversion of the smaller Schur complement matrix. Note that this precondi-

tioner is used as a left preconditioner, while the one in (3.11) is used as a

right preconditioner.

4.2.2 Frequency Domain WC-EFIE Numerical Results

Simulations of a 1 meter radius PEC sphere were conducted at a number of

frequencies using the FD-A-EFIE and the proposed FD-WC-EFIE. Due to

the frequency scaling of the matrix elements, the condition number for both

methods was found to remain approximately constant from 1 Hz to 10 MHz.

The condition number for each method was also found to be identical to the

other, staying at an average value of 2028.49 with the deviation from this

mean on O
(
1
)

as the frequency was raised.

Two examples at opposite ends of the frequencies tested are shown in

Fig. 4.5. Clearly, similar levels of accuracy are seen for the two methods.

These solutions used an LU decomposition to solve the matrix system, with

iterative solvers discussed next. Both simulations are for the same mesh

of a 1 meter radius PEC sphere with an average edge length of 0.2718 m.

This corresponds to an average edge length of 9.067× 10−3λ at 10 MHz and

9.067× 10−10λ at 1 Hz.

Preliminary results using a GMRES-30 (i.e., it restarts at 30 inner itera-

tions) with a residual of 10−8 have been promising. Using the preconditioners
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has shown similar results for both methods, although the FD-WC-EFIE has

been seen to converge to a slightly lower residual in O
(
1
)

less iterations.

More study into the difference of the two methods on a more complicated

scatterer is warranted to see if the FD-WC-EFIE can produce a large enough

improvement in convergence to be considered a better alternative to the FD-

A-EFIE.

4.2.3 Time Domain WC-EFIE Formulation

The promising results in the frequency domain warrant implementing this

method in the time domain to see if it will have better stability than the

TD-A-EFIE. The equations for this approach are presented before discussing

numerical results.

The matrix system of the TD-WC-EFIE shares great similarity with that

of the TD-A-EFIE. The first equation that represents the radiation of the

scattered field through the L operator remains unchanged, while the second

equation is adjusted to the Green’s function weighted form of the continuity

equation. The matrix system to be solved for this approach becomes

[
∆tµrV

(0) −ε−1
r DTS(0)B

FS(0)D
(
∆tc2

0

)−1
F
.

S(0)B

]{(
c0∆t

)−1
j(i)

c0q
(i)
r

}
=

{
η−1

0 b(i)

0

}

−
i−1∑

j=i−jmax

[
∆tµrV

(i−j) −ε−1
r DTS(i−j)B

FS(i−j)D
(
∆tc2

0

)−1
F
.

S(i−j)B

]{(
c0∆t

)−1
j(j)

c0q
(j)
r

}
. (4.25)

The integral operators are defined as

V(i−j)
mn =

∫
Sm

∫
Sn

Nh∑
l=0

al
.

ξ
(i−j)
l fm(r) · fn(r′)

Pl(R̂)

4πR
dS ′dS (4.26)

S(i−j)
mn =

∫
Tm

∫
Tn

Nh∑
l=0

alξ
(i−j)
l hm(r)hn(r′)

Pl(R̂)

4πR
dS ′dS (4.27)

.

S(i−j)
mn =

∫
Tm

∫
Tn

Nh∑
l=0

al
.

ξ
(i−j)
l hm(r)hn(r′)

Pl(R̂)

4πR
dS ′dS, (4.28)
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Figure 4.6: Eigenvalues for the TD-A-EFIE and TD-WC-EFIE.

where the temporal convolutions have been accounted for in

ξ
(i−j)
l =

∫ ∞
−∞

Pl(k1t
′ + k2)T

(
(i− j)∆t− ζ/c− t′

)
dt′ (4.29)

.

ξ
(i−j)
l =

∫ ∞
−∞

Pl(k1t
′ + k2)

.

T
(
(i− j)∆t− ζ/c− t′

)
dt′. (4.30)

All other matrices and vectors in (4.25) are defined in the same way as before

for the TD-A-EFIE in Section 3.3. More details on evaluating the matrix

elements may be found in Section 2.4.

4.2.4 Time Domain WC-EFIE Numerical Results

Numerical results are only presented to compare the stability of the TD-

WC-EFIE and TD-A-EFIE. The accuracy for both methods is good, with

similar results achieved as those in Fig. 4.5. The presented results are for a

simulation with a center frequency of 1 MHz, a bandwidth of 500 kHz, and

a time step of 33.33 ns. The simulations used a quadratic B-spline temporal

basis function.

An eigenvalue stability analysis of the two methods was performed. The

eigenvalues from the stability analysis are shown in Fig. 4.6. It is seen that

the TD-WC-EFIE approach has shifted a number of the eigenvalues further

out of the unit circle, slightly increasing the instability of the method.

Although these results appear to show the TD-WC-EFIE is not useful,
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there are a number of benefits that the TD-WC-EFIE has which the TD-A-

EFIE does not. First, as with the FD-WC-EFIE, the TD-WC-EFIE can be

changed to a symmetric form. Second, there are many temporal basis func-

tions where the TD-WC-EFIE is easier to implement than the TD-A-EFIE.

As an example, the Lagrange interpolating functions only are piecewise-

continuous, making the derivatives piecewise-discontinuous. However, the

TD-A-EFIE requires the evaluation of the derivative of these basis functions

exactly at the discontinuous point. This is ambiguous and can lead to a loss

of accuracy if a correct implementation is not found. The TD-WC-EFIE

has no such complication, since this integral form of the continuity equation

allows the piecewise-discontinuous basis functions to be easily used. This

is also simpler than the approach proposed in [41] that integrates the con-

tinuity equation in time. That approach requires a recursive calculation of

these integrals to not increase the computational complexity of the method.

However, using the Green’s function weighting handles this in an intuitive

and simple manner using matrices that must already be calculated for the L
operator equation.

Through the analysis in Chapter 5, it will be shown how a stable implemen-

tation of the TD-A-EFIE and TD-WC-EFIE can be achieved. Combining

the stability with the other benefits of the TD-WC-EFIE, this method is

likely better than the TD-A-EFIE.
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CHAPTER 5

PROVABLY STABLE A-Φ TIME DOMAIN
INTEGRAL EQUATIONS

The failure of the heuristic methods used for developing the integral equa-

tions in Chapter 4 suggests that a new approach needs to be used. The

approach adopted in this chapter is to use a rigorous functional framework

that was developed to analyze the TD-EFIE. This functional framework may

be extended to develop provably stable A-Φ TDIEs.

In this chapter, the historical context and motivations of the mathematical

framework are discussed. Following this, a number of preliminary concepts

are reviewed before introducing the function spaces that are the subject of

the functional framework. The use of this rigorous mathematical analysis is

then introduced in the context of the TD-EFIE. With all of the necessary

concepts introduced, the extension of the functional framework to a variety of

A-Φ TDIEs is discussed in detail. Following a discussion of how to discretize

these equations, numerical results are presented which highlight the stability

and accuracy of the developed A-Φ TDIEs.

5.1 Stability Proofs of Time Domain Integral

Equations

Throughout the early development of time domain integral equations, it was

quickly realized that many implementations had issues with stability. Sub-

stantial work was done in various communities to try and alleviate these

problems, with varying degrees of success achieved. Common to all of these

methods was an engineering mentality, i.e., attempting to solve the problem

with ad hoc methods without necessarily requiring a complete understand-

ing of the underlying problem. As pointed out in [50], each of these methods

had an absence of mathematical analysis of the underlying integral equations.

This led to the thought that, perhaps, the problem with these methods was
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the omission of some essential feature. The lack of this essential feature could

then make the proposed techniques not well-grounded, leading to the various

problems encountered in practice.

The author of [50] further points out that the problem with the mathe-

matical basis for these integral equations can be seen immediately by looking

at the operators. All the different integral equations involve surface integrals

of terms where the function and some degree of time derivative is required.

Further, the arguments of these functions depend on a mixture of the space

and time variables. This invalidates the consideration of these integrals in

a traditional Fredholm sense; and so invalidates the typical mathematical

framework for determining whether the equations admit a unique solution

that is continuous with respect to the data. This is a fundamental question

that must be answered to be able to properly analyze numerical schemes that

attempt to solve the given equations.

In the interest of answering this, and related questions for the analysis

of TDIEs, a particularly successful mathematical framework was developed.

This functional framework is reviewed in [50] for acoustic problems, with

small discussions related to the extension to electromagnetics. Unfortunately

most of this work is published exclusively in French, and often only in the-

ses that do not appear to be easily accessible online [51]. The work that is

accessible is still often in French, and is written for the mathematical com-

munity rather than engineering readers [52]. Some authors in the engineering

community for electromagnetic TDIEs have invoked the results of this math-

ematical framework. However, the discussion of the concepts are extremely

limited and are largely hearsay since the works being cited are not accessible

to be reviewed [45,48,53,54].

Recently, [15] has given a more thorough discussion of the important results

of [51]. It also presents a methodology for extending these results to other

model equations without requiring a new and full mathematical analysis to

be developed. This approach will be followed in this thesis, where it will be

shown that the results of [15, 51] can be extended to suggest a number of

provably stable A-Φ formulation TDIEs.

Due to the highly mathematical nature of the discussions in this chapter,

it is useful to first recall the simple discussion on the stability of TDIEs

in Section 2.3. There, an analogy was drawn between an “infinite impulse

response” system and the MOT system. It was mentioned that to have a
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stable system, the matrix representation of the continuous integral operators

must be accurately calculated. This encompassed the simple observation that

the integrals must be calculated accurately numerically, which was covered in

detail in Section 2.4. It was also mentioned that for the matrix representation

to inherit the stability of the continuous system required using appropriate

basis and testing functions. In particular, the basis functions need to be in

the domain of the integral operator, while the testing functions need to be

in the dual space of the range of the integral operator [15, 55]. The focus of

this chapter is to rigorously determine the correct integral operators to use

in an A-Φ formulation TDIE, as well as the associated domains and ranges

of the integral operators.

5.2 Functional Framework

The focus of this section is to review the important definitions of the func-

tional framework developed in [51] and reported in [15]. To begin, the state-

ment of the problem and the model equations are briefly recalled to introduce

the notation used throughout this section, which is adapted from that pre-

sented in [15].

5.2.1 Problem Statement

Consider a bounded domain Ωi ⊂ R3 which represents the scatterer of in-

terest, with its closure defined as Ωi. The exterior region is defined as Ωe =

R3 \ Ωi, which is assumed to be a homogeneous region for the current pur-

poses. The unit normal vector, n̂, is defined on the interface S = ∂Ωi = ∂Ωe

and is assumed to point from Ωi to Ωe. For a PEC scatterer, the jump con-

dition requires the tangential component of the electric field to vanish on

the interface with free space. As an initial condition, it is required that the

incident field has not yet reached the scatterer so that the induced current

density J(r, t) is zero ∀t < 0. Provided these conditions are met, the exterior

scattering problem can be formulated as a boundary integral equation, given
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for the TD-EFIE as

−n̂×n̂×
∫
S

[
µ

.

J(r′, τ)

4πR
− ε−1∇

∫ τ

−∞

∇′ · J(r′, t′)

4πR
dt′
]
dS ′ = −n̂×n̂×Einc(r, t),

(5.1)

for (r, t) ∈ S × R+ (R+ means R ≥ 0). Further, τ = t− R/c is the retarded

time where R = |r−r′| and c is the speed of light in the external medium. As

has been discussed previously, the integral in time is challenging to discretize

efficiently so it is common practice in the engineering literature to instead

enforce the time derivative of (5.1), yielding

−n̂×n̂×
∫
S

[
µ

..

J(r′, τ)

4πR
− ε−1∇∇

′ · J(r′, τ)

4πR

]
dS ′ = −n̂×n̂×

.

Einc(r, t). (5.2)

5.2.2 Relevant Sobolev Spaces

To properly investigate the mathematical properties of these integral equa-

tions, the problem must be recast into a variational framework with functions

defined in appropriate function spaces. The function space developed in [51]

is denoted as H s, and will be defined in more detail at the end of this sec-

tion. It will be seen in later sections that this function space will not be

able to cover all the needed functions; however, it does provide most of the

foundation.

Due to the complexity of the problem in the time domain, most of the

analysis is performed by taking a Fourier-Laplace transform of the model

equations. The results found in the Laplace domain can then be related

back to the time domain equations through the use of an inverse transform

and the Paley-Wiener theorem [50]. Further, invoking a form of Parseval’s

theorem for appropriately defined Sobolev spaces allows for finite norms to

be found which are related to the electromagnetic energy, demonstrating the

stability for appropriately selected basis and testing functions. With this in

mind, it is now possible to define the necessary properties of this functional

framework before stating the variational problem to be solved.

To begin, it is useful to review the spatial properties of typical Sobolev

spaces for electromagnetics, as these are needed concepts in defining H s.

The details of these spatial Sobolev spaces are not rigorously defined in [15],
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but discussion related to it may be found in [52, 56]. Following this, the

needed definitions related to the Fourier-Laplace transform can be presented

within the context of TDIEs. Finally, with all the constituent pieces properly

defined, H s can be introduced.

Spatial Sobolev Spaces

The original interest in defining Sobolev spaces in the context of integral

equations was to rigorously define the function spaces that acted as the do-

main and range for different integral operators. Although the most familiar

function space in many areas of physics is the Hilbert space L2, it is quickly

seen that this is not quite the concept needed for the present analysis. This

led to the introduction of Sobolev spaces, which capture the notion that

physical solutions should produce finite energy in any bounded domain. The

core complication is that to calculate the energy of a solution often requires

that the function and its gradient be square integrable (for scalar fields).

This is obviously more restrictive of a space than L2, so the concept of a

Sobolev space is used to explicitly state the formal requirements needed of

any solution to have the desired physical properties.

For the definitions of these function spaces in the external and interior

domains of a scatterer, the concept is a simple integer order Sobolev space.

This requires a function and its derivatives up to order ` be square integrable,

where ` is an integer. This space is denoted as H`(·), where the argument

of the function space can be either Ωi or Ωe. This is a special notation for

Sobolev spaces, which implies that the space is also a Hilbert space and

that the inner product used in any norms is to be the L2 one. For a typical

problem, this becomes H1 in these regions so that the solution will have finite

energy, as desired.

The complication for integral equations comes from determining how to

characterize the boundary values of these functions on S. This was handled

using trace theorems, which result in the creation of a new space known as

H
1
2 (S). The need for this space can be understood by considering a simple

example, for instance, L2. It is well known that L2 “functions” are not

really functions at all, i.e., they do not take on a definite value at each

point. Instead, “functions” in L2 are considered to be equivalence classes of

functions. That is, functions which differ from one another in a special way
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are considered to be the same L2 function. In the case of L2, all properties are

defined in terms of integrals. In a crude sense, functions are then considered

to be in the same equivalence class if they only differ by values that do not

change the result of the integral locally. For instance, a function that is zero

almost everywhere, but takes on finite values at isolated spikes (i.e., only has

a value at a single point) is considered to be equivalent to the zero function

in an L2 sense.

In the case of H
1
2 (S), the same type of problem that occurred for L2

functions occurs when trying to extend definitions of functions in H1(Ωi)

and H1(Ωe) to a surface. This is because a two-dimensional surface in R3 is

similar to isolated points on a one-dimensional line (i.e., it has a measure of

zero). This is a simplified perspective of what the trace theorems are needed

to address [56]. Although an important part of the development of functional

analysis for integral equations, the details of this theory are not needed for

the present purposes. As such, the details will not be discussed any further.

As already alluded to, the space H
1
2 (S) is made up of the boundary values

of the functions in H1(Ωi) and H1(Ωe). The space H
1
2 (S) is a Hilbert space,

and is seen to be smaller than L2, since not all functions in L2 can be extended

into the regions Ωi or Ωe in a way that the necessary components are all

square integrable. The inner product for this space is given in [56]; and

has the feature that in addition to the standard L2 inner product it also

requires the functions to be integrated over a singular kernel of order R−3.

This concept is also extended to the normal derivatives (for scalar fields) of

functions in H1(·), and produces the space H−
1
2 (S). This is actually the dual

space to H
1
2 and has a more complicated norm, which is discussed in [56].

These concepts may be extended to electromagnetic fields, which, for the

energy to be bounded, requires that the function and its curl be square

integrable. This leads to the following definitions of function spaces that will

be of interest for electromagnetic fields.

Definition 1. For a bounded domain D, the spaces H(curl, D) and H(div, D)

are

H(curl, D) :=

{
v ∈ L2(D)3,∇×v ∈ L2(D)3

}
(5.3)

H(div, D) :=

{
v ∈ L2(D)3,∇ · v ∈ L2(D)

}
, (5.4)
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with norms defined respectively as

||v||curl :=

(
||v||2 + ||∇×v||2

) 1
2

(5.5)

||v||div :=

(
||v||2 + ||∇ · v||2

) 1
2

, (5.6)

where the unindexed norms refer to an L2 norm.

Note that the notation L2(D)3 is shorthand for L2(D)×L2(D)×L2(D), i.e.,

all of the components of the vector function v reside in L2(D). Further, this

is a definition that deals only with the spatial aspects of the functions. As a

result, it can be used in either the frequency or time domain.

In source-free regions, the electromagnetic fields are divergence free, which

implies that the appropriate energy space for the fields will be the intersection

of H(curl, D) and H(div, D). The boundary values of these spaces are

v ∈ H(curl, D) =⇒ n̂×v|S ∈ H−
1
2 (S)3 (5.7)

v ∈ H(div, D) =⇒ n̂ · v|S ∈ H−
1
2 (S), (5.8)

where S is still used to denote the interface that the boundary values are

being defined on. Integral equations are mainly concerned with the tangential

fields to a surface (to define the equivalent currents). These tangential fields

also obey Maxwell’s equations, so an additional property can be found. This

is that a surface divergence of tangential fields does not change the spatial

order of smoothness of the fields [56]. This suggests the following definition

of a space that will be used in the definition of H s at the end of this section.

Definition 2. The boundary values of electromagnetic fields on the interface

S between the external and internal regions of a scatterer reside in

H−
1
2 (div, S) :=

{
v ∈ H−

1
2 (S)3, n̂ · v = 0,∇S · v ∈ H−

1
2 (S)

}
, (5.9)

where ∇S· is explicitly noting that the divergence is a surface divergence on

S.The norm for this space is given in [56].

A similar definition may also be made for a curl space [52, 56], but this is

not needed here and so will not be presented. Of particular importance for
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the discretization of the integral operators is that the RWG functions are

members of the space H−
1
2 (div, S).

Fourier-Laplace Transform Definitions

Before discussing the temporal properties of the function space that will

be used in the variational framework of the TDIEs, it is prudent to recall

some relevant definitions for Fourier-Laplace transforms. This is because the

overall complexity of the integral operators makes it easier to derive prop-

erties in the Laplace domain. These results can then be used to bound the

time domain results through Parseval’s theorem. All of these definitions are

taken explicitly from [15] with only minor changes to keep notation consistent

throughout this thesis.

Definition 3. [15] For E a Hilbert space, D′+(E) denotes the space of distri-

butions in R with values in E and zero for all t < 0, and S ′+(E) denotes the

space of tempered distributions in D′+(E). The space of Laplace transformable

functions LT (σ,E) is defined for σ ∈ R with σ > 0 as

LT (σ,E) :=

{
g ∈ D′+(E), e−σtg ∈ S ′+(E)

}
(5.10)

where g(r, t) is a vector function depending on space and time. Similar defi-

nitions are applicable to scalar functions.

This definition is rigorous, but somewhat obstructive to simple understand-

ing. It is saying the following: vector functions will be defined later which

depend on both space and time. The temporal dependence is always consid-

ered to only matter for t > 0. The spatial components of the vector function

will reside in a Hilbert space, denoted as E in this definition. For many func-

tions, the Fourier transform may not exist due to convergence problems. The

Fourier-Laplace transform defines a constant damping parameter, σ, which

is required to make the Fourier-Laplace transform integral converge.

The Fourier-Laplace transform is given in the next definition.

Definition 4. [15] For g ∈ LT (σ,E), the Fourier-Laplace transform is
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defined as

ĝ(r, γ) :=

∫ ∞
−∞

eiγtg(r, t)dt (5.11)

for γ = η + iσ, where i is the imaginary unit: i2 = −1. Similar definitions

are applicable to scalar functions.

The key idea behind these definitions is that because the functions to

be considered are causal, useful analytic properties can be found for the

functions in the Laplace domain. This helps to guarantee that the integral

over the Laplace space for Parseval’s theorem will be finite. There are more

complications related to the proper form of Parseval’s theorem in the Laplace

domain, but these details are extraneous to the current discussion [52].

Spatiotemporal Function Spaces

Having covered the necessary concepts of both spatial and temporal prop-

erties independently, the full spatiotemporal function spaces may now be

defined.

Definition 5. [15] The function space H s for s ∈ R is defined as

H s := Hs
σ

(
R+, H

− 1
2 (div, S)

)
:=

{
g ∈ LT

(
σ,H−

1
2 (div, S)

)
, ||g||2

s,σ,H−
1
2 (div,S)

<∞
} (5.12)

where

||g||2
s,σ,H−

1
2 (div,S)

:=
1

2π

∫ ∞+iσ

−∞+iσ

|γ|2s||ĝ(·, γ)||2
H−

1
2 (div,S)

dγ (5.13)

for σ ∈ R+ : σ > 0.

This definition requires some further discussion to better elucidate its

meaning. It is first recognized that the s index is related to differentiability

in the time domain. The σ parameter is required for the Fourier-Laplace

transform to be well defined (i.e., it determines the damping that will make

the integrals converge). It is further seen that H s is composed only of causal

functions (due to the R+). The spatial component of the functions resides
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in H−
1
2 (div, S), which makes them meaningful functions from the electro-

magnetics point of view. The norm of these functions that is required to

be finite is calculated in the Laplace domain, with Parseval’s theorem al-

lowing the finiteness to also be valid in the temporal domain. The exact

form of the norm is to actually integrate the spatial Sobolev space norm over

all frequency. This is, in effect, requiring that the energy from the electro-

magnetic boundary values be finite at all frequencies in such a way that the

combination of all frequencies together is still finite.

Although the definition is complicated, it is seen that the physical meaning

is reasonable. For the purposes of this thesis, the full power of these defini-

tions is not required. The review of their meaning is important, however, to

better understand the implications on the solution process for the TDIEs of

interest to be studied.

One final point is related to the inner product for H s.

Definition 6. [15] The Hilbert space H s is equipped with a space-time inner

product given by

〈g(r, t),h(r, t)〉σ :=

∫
R
e−2σt

∫
S

g(r, t) · h(r, t)dSdt (5.14)

for g ∈H s and h ∈H −s.

This inner product will be useful in defining the bilinear forms that describe

the variational problem to be solved. Further, it will be instrumental in

understanding the properties of the equations derived in the next sections.

In particular, it allows one to quickly determine the range of the different

integral operators to be discussed in the next sections.

These definitions are appropriate for many of the vector functions that

will be encountered throughout this chapter. However, it is also necessary

for this thesis to have similar definitions for scalar quantities.

Definition 7. The function space Hs for s ∈ R is defined as

Hs := Hs
σ

(
R+, H

− 1
2 (S)

)
:=

{
g ∈ LT

(
σ,H−

1
2 (S)

)
, ||g||2

s,σ,H−
1
2 (S)

<∞
} (5.15)
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where

||g||2
s,σ,H−

1
2 (S)

:=
1

2π

∫ ∞+iσ

−∞+iσ

|γ|2s||ĝ(·, γ)||2
H−

1
2 (S)

dγ (5.16)

for σ ∈ R+ : σ > 0.

Definition 8. The Hilbert space Hs is equipped with a space-time inner prod-

uct given by

〈g(r, t), h(r, t)〉σ :=

∫
R
e−2σt

∫
S

g(r, t)h(r, t)dSdt (5.17)

for g ∈ Hs and h ∈ H−s.

These definitions follow the same form as those for H s, and have the same

type of physical meaning.

5.3 Electric Field Integral Equation Variational

Formulation

With the basic structure of the appropriate function space defined, the vari-

ational problem can now be developed. In [51], the original problem is for-

mulated in terms of the surface current and charge density as unknowns.

This is modified to only use the current density as the unknowns in [15],

since this work was interested in solving the differentiated EFIE at middle

frequencies. For the current purposes of this thesis, it is more useful to have

a formulation that lies somewhere in between these two approaches to better

reflect the actual discretization procedure that will be used. To make this

point clear, the original formulation from [51] will be recalled before making

modifications similar to those proposed in [15] to arrive at a form that will

be useful for the present purposes.

As was alluded to in the last paragraph, the original function space actually

used in [51] considers the current density and charge density as separate

unknowns. This requires a slight modification to the function space presented

in Section 5.2.2.
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Definition 9. [15] For s ∈ R and σ > 0,

H s
ρ,J :=

{(
ρ,J
)
∈ Hs ×H s, ∇ · J +

.
ρ = 0

}
. (5.18)

Note that in this definition, the × symbol is denoting a Cartesian product

between the two function spaces, which are both defined on a two-dimensional

manifold S. A subtle property of this definition that will be useful later is

the relationship between spatial derivatives and the temporal regularity of a

function (i.e., what temporal function space something is in after a spatial

derivative is applied).

Lemma 1. Electromagnetic functions have the property that spatial deriva-

tives such as the gradient, divergence, and curl lower the regularity of the

functions temporally by one degree. That is, if a function is in a temporal

function space of Hs
σ then the spatial derivative of it is in Hs−1

σ .

Proof. The proof for the divergence follows easily from the continuity equa-

tion in Definition 9. Both the charge and current are in the same temporal

function space, so for the continuity equation to make sense requires ∇·J to

have one degree lower temporal regularity than J. Similarly, for Maxwell’s

equations to hold requires that the curl has the same property.

This property for the gradient can be illustrated by considering it in the

context of inner products in H s and Hs. Consider ∇f ∈H s and J′ ∈H −s
ρ,J .

The inner product of these two functions is

〈∇f,J′〉σ = −〈f,∇ · J′〉σ = 〈f, .ρ′〉σ (5.19)

In going from the first equation to the second, Gauss’ theorem is applied and

the integral of the boundary term is seen to be zero. For the final equality

to hold requires that f ∈ Hs+1. This means, that at least in the context

of these inner products, the gradient also affects the temporal regularity of

functions.

The following theorems may now be stated for the TD-EFIE, as given

by [51] and reproduced in [15].
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Theorem 1. [15,51] The EFIE admits the following variation formulation.

∀(Einc×n̂) ∈H
3
2 search for (ρ,J) ∈H

1
2
ρ,J such that ∀(ρ′,J′) ∈H

1
2
ρ,J :

b
(
(ρ,J), (ρ′,J′)

)
=

∫
R
e−2σt

∫
S

(
n̂×(Einc×n̂)

)
·
..

J′(r, t) dSdt, (5.20)

with the bilinear form b defined as

b
(
(ρ,J), (ρ′,J′)

)
=

∫
R
e−2σt

{∫
S

∫
S

[
µ

1

4πR

.

J(r′, τ) ·
..

J′(r, t)

+ ε−1 1

4πR
ρ(r′, τ)

...
ρ ′(r, t)

]
dS ′dS

}
dt. (5.21)

Theorem 2. (Uniqueness, [15,51]) If (Einc×n̂) ∈H
3
2 , then the variational

formulation admits a unique solution (ρ,J) ∈H
1
2
ρ,J.

Theorem 3. (Stability, [15,51]) The following bounds on the solution (ρ,J)

hold:

||ρ|| 1
2
,σ,H−

1
2 (S)
≤ C(S)σ−1||Einc×n̂|| 3

2
,σ,H−

1
2 (div,S)

(5.22)

||J|| 1
2
,σ,H−

1
2 (div,S)

≤ C(S)σ−1||Einc×n̂|| 3
2
,σ,H−

1
2 (div,S)

. (5.23)

The proofs for these theorems should be in [51]. In simple terms, Theorem

2 gives the physical requirements for an incident field to lead to a unique

solution to the variational problem. The important point for Theorem 3 is

that the bounds that hold for the solution are related to the electromagnetic

energy, so that the stability is achieved in a meaningful way. Further, the

requirement on the incident field is not very restrictive. This is because of

physical reasons the incident field is typically smooth, and decays appropri-

ately for the simulation to be conducted over a finite time interval.

It is now desired to rewrite the variational form of the EFIE in a more

suggestive way. This is done to make the discretization choices more explicit.

Lemma 2. The variational formulation of Theorem 1 is equivalent to the

following formulation.
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∀(Einc×n̂) ∈H
3
2 search for (ρ,J) ∈H

1
2
ρ,J such that ∀J′ ∈H

1
2 :

d
(
(ρ,J),J′

)
=

∫
R
e−2σt

∫
S

(
n̂×(Einc(r, t)×n̂)

)
·
..

J′(r, t) dSdt (5.24)

with the bilinear form d defined as

d
(
(ρ,J),J′

)
=

∫
R
e−2σt

{∫
S

∫
S

[
µ

1

4πR

.

J(r′, τ) ·
..

J′(r, t)

− ε−1 1

4πR
ρ(r′, τ)∇ ·

..

J′(r, t)

]
dS ′dS

}
dt. (5.25)

Proof. As was previously noted (ρ′,J′) ∈ H s
ρ,J requires the continuity equa-

tion to hold between ρ′ and J′. This allows the bilinear form b to be rewritten

by eliminating the testing function ρ′ through the continuity equation.

The bilinear form d is more preferable for the later derivations. This is

because the testing function being written exclusively in terms of the current

is how engineering discretizations of the equation are actually performed.

That is, by multiplying an equation by an RWG testing function which can

have a gradient then transferred onto it.

Finally, it is useful to rewrite the bilinear form d as a bounded inner

product that is equivalent to the EFIE variational problem.

Lemma 3. The bilinear form d may be expressed as an inner product. The

equivalence is

d
(
(ρ,J),J′

)
=

〈∫
S

[
µ

.

J(r′, τ)

4πR
+ ε−1∇ρ(r′, τ)

4πR

]
dS ′,

..

J′(r, t)

〉
σ

(5.26)

with (ρ,J) ∈H
1
2
ρ,J and J′ ∈H

1
2 . Similarly, the excitation of the variational

problem of Lemma 2 may be written as∫
R
e−2σt

∫
S

(
n̂×(Einc(r, t)×n̂)

)
·
..

J′(r, t) dSdt

=
〈(
n̂×(Einc(r, t)×n̂)

)
,
..

J′(r, t)
〉
σ

(5.27)

for (Einc×n̂) ∈H
3
2 .
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Proof. The first inner product is found by applying the identity ∇ ·
(
ψF
)

=

ψ
(
∇·F

)
+F·

(
∇ψ
)

to transfer the divergence of the test function to a gradient

of the charge density term. The additional term, which is the divergence

of both quantities, is zero by applying Gauss’ theorem. The second inner

product follows immediately from the definition given in (5.14).

5.4 A-Φ Variational Formulations

The focus of this section is to take the variational formulation of Lemma

3, and modify it to imply different sets of variational problems that are

possible choices of A-Φ systems. The importance of this is that the existence

and stability properties of solutions to the EFIE can then be applied to the

A-Φ systems. As will be seen by the results, the equations and appropriate

basis and test spaces are not obvious from a simple inverse Fourier-Laplace

transform of the equations presented in [1, 14], highlighting the necessity of

this analysis.

5.4.1 Provably Stable A-Φ Formulations

From the discussions in Chapter 4, it is clear that the EFIE will need to

be separated into two equations to derive A-Φ TDIEs. This requires sepa-

rating the equation in Lemma 3 into two equations. By properly adjusting

the Sobolev spaces for the different unknowns, the stability theorem of the

EFIE will be able to be extended to the A-Φ equations individually. First,

another definition of a spatial Sobolev space is required to properly express

the variational problems to follow.

Definition 10. The spatial function space of boundary values of scalar po-

tentials on the interface S between the external and internal regions of a

scatterer reside in

H−
1
2 (∇2, S) :=

{
Φ ∈ H−

1
2 (S),∇2Φ ∈ H−

1
2 (S)

}
. (5.28)

With this definition, the EFIE may now be separated into two equations

that are in terms of A and Φ.
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Theorem 4. The variational problem given in Lemma 3 is equivalent to the

following two variational problems being enforced together.

Differentiated Vector Potential Equivalence Principle:

∀(
.

Ainc × n̂) ∈H
3
2 search for (Π,J) ∈ H 1

2 ×H
1
2 such that ∀J′ ∈H

1
2 :〈∫

S

[
µ

.

J(r′, τ)

4πR
−∇Π(r′, τ)

4πR

]
dS ′,

..

J′(r, t)

〉
σ

=
〈
−
(
n̂×(

.

Ainc(r, t)×n̂)
)
,
..

J′(r, t)
〉
σ
, (5.29)

where Π = n̂′ ·
.

A.

Scalar Huygens’ Principle:

∀Φinc ∈ H
5
2
σ

(
R+, H

− 1
2 (∇2, S)

)
search for n̂′·∇′Φ ∈ H 1

2 such that ∀J′ ∈H
1
2 :〈∫

S

n̂′ · ∇′Φ(r′, τ)

4πR
dS ′,∇ ·

..

J′(r, t)

〉
σ

=
〈
Φinc(r, t),∇ ·

..

J′(r, t)
〉
σ
. (5.30)

Proof. To begin, note that the due to Lemma 3 the full EFIE can be written

as〈∫
S

[
µ

.

J(r′, τ)

4πR
+ ε−1∇ρ(r′, τ)

4πR

]
dS ′,

..

J′(r, t)

〉
σ

=
〈(
n̂×(Einc(r, t)×n̂)

)
,
..

J′(r, t)
〉
σ
. (5.31)

A well-known definition from electromagnetic theory of a surface charge den-

sity in terms of the vector and scalar potentials is

ρ(r′, t) = −ε
[
Π(r′, t) + n̂′ · ∇′Φ(r′, t)

]
. (5.32)

It is noted that because ρ ∈ H 1
2 , for (5.32) to be true in general requires

Π, n̂′ · ∇′Φ ∈ H 1
2 . Expanding the charge unknown in (5.31) gives〈∫

S

[
µ

.

J(r′, τ)

4πR
−∇

(
Π(r′, τ)

4πR
+
n̂′ · ∇′Φ(r′, τ)

4πR

)]
dS ′,

..

J′(r, t)

〉
σ

=
〈(
n̂×(Einc(r, t)×n̂)

)
,
..

J′(r, t)
〉
σ
. (5.33)
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It is useful to expand the LHS into two inner products so that〈∫
S

[
µ

.

J(r′, τ)

4πR
−∇Π(r′, τ)

4πR

]
dS ′,

..

J′(r, t)

〉
σ

−〈∫
S

∇ n̂
′ · ∇′Φ(r′, τ)

4πR
dS ′,

..

J′(r, t)

〉
σ

=
〈(
n̂×(Einc(r, t)×n̂)

)
,
..

J′(r, t)
〉
σ
.

(5.34)

By recalling that the electric field may be defined through the vector and

scalar potentials as

E(r, t) = −
.

A(r, t)−∇Φ(r, t), (5.35)

the inner product on the RHS of (5.34) may be expanded. This gives〈∫
S

[
µ

.

J(r′, τ)

4πR
−∇Π(r′, τ)

4πR

]
dS ′,

..

J′(r, t)

〉
σ

−
〈∫

S

∇ n̂
′ · ∇′Φ(r′, τ)

4πR
dS ′,

..

J′(r, t)

〉
σ

=
〈
−
(
n̂×(

.

Ainc(r, t)×n̂)
)
,
..

J′(r, t)
〉
σ

+
〈
−
(
n̂×(∇Φinc(r, t)×n̂)

)
,
..

J′(r, t)
〉
σ
. (5.36)

The second inner product on the RHS and the second inner product on the

LHS may be rewritten by transferring the gradient onto the testing function,

applying Guass’ theorem, and then noting that the integrals of the boundary

terms are zero. Performing this gives〈∫
S

[
µ

.

J(r′, τ)

4πR
−∇Π(r′, τ)

4πR

]
dS ′,

..

J′(r, t)

〉
σ

+

〈∫
S

n̂′ · ∇′Φ(r′, τ)

4πR
dS ′,∇ ·

..

J′(r, t)

〉
σ

=
〈
−
(
n̂×(

.

Ainc(r, t)×n̂)
)
,
..

J′(r, t)
〉
σ

+
〈
Φinc(r, t),∇ ·

..

J′(r, t)
〉
σ
. (5.37)

At this point, by physical arguments it is possible to separate (5.37) into two

equations as〈∫
S

[
µ

.

J(r′, τ)

4πR
−∇Π(r′, τ)

4πR

]
dS ′,

..

J′(r, t)

〉
σ

=
〈
−
(
n̂×(

.

Ainc(r, t)×n̂)
)
,
..

J′(r, t)
〉
σ

(5.38)
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〈∫
S

n̂′ · ∇′Φ(r′, τ)

4πR
dS ′,∇ ·

..

J′(r, t)

〉
σ

=
〈
Φinc(r, t),∇ ·

..

J′(r, t)
〉
σ
. (5.39)

This is possible since (5.39) is the scalar Huygens’ principle integral equation,

and so these two inner products must equal each other [49].

To conclude the proof, it only remains to explain the Sobolev space that

Φinc is defined in. This is a simple modification, since Einc ∈ H
3
2 im-

plies that ∇Φinc should be selected so that ∇Φinc ∈ H
3
2 . The definition

of H
3
2 requires ∇Φinc to have a divergence that is still in H−

1
2 (S), i.e.

∇2Φinc ∈ H−
1
2 (S). However, from Definition 10 it is seen that requiring

∇Φinc ∈ H
3
2 ⇐⇒ Φinc ∈ H

5
2
σ

(
R+, H

− 1
2 (∇2, S)

)
. The change in the order

of the temporal function space is a result of Lemma 1. This showed the link

between spatial derivatives and the temporal order of differentiability of an

electromagnetic function.

Theorem 5. The variational problems given in Theorem 4 correspond to

stable systems individually.

Proof. This is deduced by exploiting the linearity of integration and the inner

product. First, it is noted that the LHS of (5.31) may be written as〈∫
S

µ

.

J(r′, τ)

4πR
dS ′,

..

J′(r, t)

〉
σ

+

〈∫
S

ε−1∇ρ(r′, τ)

4πR
dS ′,

..

J′(r, t)

〉
σ

. (5.40)

The importance is that both inner products must independently produce

bounded results to equal the bounded RHS of (5.31). By expanding the

charge density in terms of Π and n̂′ ·∇′Φ, similar conclusions can be reached

for the corresponding separated inner products. That is,〈∫
S

ε−1∇Π(r′, τ)

4πR
dS ′,

..

J′(r, t)

〉
σ

<∞ (5.41)〈∫
S

ε−1∇ n̂
′ · ∇′Φ(r′, τ)

4πR
dS ′,

..

J′(r, t)

〉
σ

<∞, (5.42)

given that Π and n̂′ · ∇′Φ are selected from the appropriate Sobolev spaces

stated in Theorem 4. The same arguments can be applied for expanding

the inner product on the RHS of (5.31). As a result, as long as the different

functions are selected in the appropriate Sobolev spaces, the stability theorem

of the EFIE will still apply to the separated problems.

Although the derived variational formulations and stability theorem are a
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useful step forward, inspection of the equations shows that there are three

unknowns (i.e., J, Π, and n̂′ · ∇′Φ) with only two equations. However, the

scalar Huygens’ principle equation of (5.39) can be rewritten to use the same

unknowns as the first equation.

Theorem 6. The variational problems of Theorem 4 are equivalent to the

following two variational problems which only require J and Π to be solved

for.

Differentiated Vector Potential Equivalence Principle:

∀(
.

Ainc × n̂) ∈H
3
2 search for (Π,J) ∈ H 1

2 ×H
1
2 such that ∀J′ ∈H

1
2 :〈∫

S

[
µ

.

J(r′, τ)

4πR
−∇Π(r′, τ)

4πR

]
dS ′,

..

J′(r, t)

〉
σ

=
〈
−
(
n̂×(

.

Ainc(r, t)×n̂)
)
,
..

J′(r, t)
〉
σ
. (5.43)

Scalar Potential Equivalence Principle:

∀Φinc ∈ H
5
2
σ

(
R+, H

− 1
2 (∇2, S)

)
search for (Π,J) ∈ H 1

2 ×H
1
2 such that

∀J′ ∈H
1
2 :〈∫

S

[
ε−1

∫ τ

−∞

∇′ · J(r′, t′)

4πR
dt′ − Π(r′, τ)

4πR

]
dS ′,∇ ·

..

J′(r, t)

〉
σ

=
〈
Φinc(r, t),∇ ·

..

J′(r, t)
〉
σ
. (5.44)

Proof. The first variational problem is identical to that in Theorem 4 so

no changes are needed. The second variational problem may be derived by

making the following changes to the first argument of the first inner product

of (5.39).∫
S

n̂′ · ∇′Φ(r′, τ)

4πR
dS ′ =

∫
S

1

4πR

[
Π(r′, τ) + n̂′ · ∇′Φ(r′, τ)− Π(r′, τ)

]
dS ′

=

∫
S

1

4πR

[
− ε−1ρ(r, τ)− Π(r′, τ)

]
dS ′ (5.45)

=

∫
S

[
ε−1

∫ τ

−∞

∇′ · J(r′, t′)

4πR
dt′ − Π(r′, τ)

4πR

]
dS ′

Substituting this back into (5.39) gives the desired result.

Theorem 7. The variational problems given in Theorem 6 correspond to

stable systems individually.

80



Proof. The argument follows the same approach as that for Theorem 5.

The variational problems of Theorem 6 are useful since they represent a

solvable system. However, it is seen that the temporal test spaces of the two

problems are different. The temporal test space of (5.43) is H
− 3

2
σ while that

of (5.44) is H
− 5

2
σ . This is seen by noting that J′(r, t) ∈ H

1
2 ; it then follows

that
..

J′(r, t) ∈ H − 3
2 and ∇ ·

..

J′(r, t) ∈ H− 5
2 . Unfortunately, this makes the

consistent discretization of these two equations not possible. A consistent

discretization would involve using the same set of temporal basis and testing

functions in a MOT scheme for each equation. More details related to this

concept are discussed in Section 5.5. Since a consistent discretization is not

possible, another set of equations is needed which use the same temporal test

space for both equations.

Before modifying the equations of Theorem 6 to ones that can be dis-

cretized consistently, discussion of how to integrate by parts temporally is

required. This is discussed in more detail in [15], with only the key concepts

reviewed here. The weighting function in the temporal integrals of the in-

ner products in H s and Hs complicates integrating by parts, but the end

results are still what would be expected. Transferring a derivative from the

equations onto the testing function requires that a testing function from one

degree lower function space be used in the subsequent discretization process.

Similarly, when transferring a derivative from the testing function onto the

integral equations, the use of a testing function from one degree higher func-

tion space will be required in the discretization. Subtleties related to the

extra term that arises by differentiating the weighting term can be resolved

in the frequency domain, and are of little interest for actually discretizing

the equations. More details related to this will be discussed in Section 5.5.

The first modifications to the equations of Theorem 6 results in the dif-

ferentiated time domain A-Φ integral equation (abbreviated differentiated

TD-APIE). From these equations, stability theorems may be extended to

the TD-WC-EFIE discussed in Section 4.2.3.

Theorem 8. (Differentiated TD-APIE) The variational problems of Theo-

rem 6 can be modified to utilize the same temporal test space for both equa-

tions.
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Differentiated Vector Potential Equivalence Principle:

∀(
.

Ainc × n̂) ∈H
3
2 search for (Π,J) ∈ H 1

2 ×H
1
2 such that ∀J′ ∈H

1
2 :〈∫

S

[
µ

.

J(r′, τ)

4πR
−∇Π(r′, τ)

4πR

]
dS ′,

..

J′(r, t)

〉
σ

=
〈
−
(
n̂×(

.

Ainc(r, t)×n̂)
)
,
..

J′(r, t)
〉
σ
. (5.46)

Differentiated Scalar Potential Equivalence Principle:

∀
.

Φinc ∈ H
3
2
σ

(
R+, H

− 1
2 (∇2, S)

)
search for (Π,J) ∈ H 1

2 ×H
1
2 such that

∀J′ ∈H
1
2 :〈∫

S

[
ε−1∇′ · J(r′, τ)

4πR
−

.

Π(r′, τ)

4πR

]
dS ′,∇ ·

.

J′(r, t)

〉
σ

=
〈 .
Φinc(r, t),∇ ·

.

J′(r, t)
〉
σ
. (5.47)

Proof. The first variational problem is the same as in Theorem 6, so no

changes are needed. The second variational problem is found by integrating

by parts to transfer one of the time derivatives of the test function onto the

integral equation. As was discussed, this results in the natural change to the

degree of the temporal function space of the excitation. No higher degree of

temporal derivative is required on the expansion functions than was already

acceptable in the original EFIE, making this a valid set of equations. By

recalling the relationship between spatial derivatives and the temporal regu-

larity of functions, it is seen that the temporal test space for both equations

is H
− 3

2
σ , as desired.

Theorem 9. The variational problems of Theorem 8 correspond to stable

systems individually.

Proof. The first variational problem has not changed, so nothing is needed to

be proved. As was mentioned in the proof of Theorem 8, the time derivatives

required in (5.47) are still acceptable for the function spaces defined for all

basis functions. Further, the function spaces for the incident scalar potential

and testing functions have been adjusted according to the discussions on

integrating by parts in [15].

At this point, it is possible to prove that the TD-WC-EFIE introduced in

Section 4.2.3 is a stable system. The reason for the previously seen instability
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was that an incorrect temporal basis and testing scheme was being used.

This will be made more clear when the details of discretizing the variational

problems are discussed in Section 5.5.

Corollary 1. (TD-WC-EFIE) A combination of stable TDIEs can yield the

TD-WC-EFIE; extending the stability theorems to this formulation.

Electric Field Integral Equation:

∀(Einc×n̂) ∈H
3
2 search for (ρ,J) ∈ H 1

2 ×H
1
2 such that ∀J′ ∈H

1
2 :〈∫

S

[
µ

.

J(r′, τ)

4πR
+ ε−1∇ρ(r′, τ)

4πR

]
dS ′,

..

J′(r, t)

〉
σ

=
〈(
n̂×(Einc(r, t)×n̂)

)
,
..

J′(r, t)
〉
σ
. (5.48)

Weighted Continuity Equation:

Search for (ρ,J) ∈ H 1
2 ×H

1
2 such that ∀J′ ∈H

1
2 :〈∫

S

[
∇′ · J(r′, τ)

4πR
+

.
ρ(r′, τ)

4πR

]
dS ′,∇ ·

.

J′(r, t)

〉
σ

= 0. (5.49)

The two equations may be discretized in a consistent manner, allowing for a

well-functioning integral equation system to be implemented.

Proof. The first variational problem is the original EFIE which is known

to be stable. It can be recovered by adding the scalar Huygens’ principle

integral equation of (5.39) to (5.46). This gives〈∫
S

[
µ

.

J(r′, τ)

4πR
−∇Π(r′, τ)

4πR

]
dS ′,

..

J′(r, t)

〉
σ

+〈∫
S

n̂′ · ∇′Φ(r′, τ)

4πR
dS ′,∇ ·

..

J′(r, t)

〉
σ

=
〈
−
(
n̂×(

.

Ainc(r, t)×n̂)
)
,
..

J′(r, t)
〉
σ

+
〈
Φinc(r, t),∇ ·

..

J′(r, t)
〉
σ
. (5.50)

The divergence of the testing function in the inner products from the scalar

Huygens’ principle integral equation can be transferred to a gradient of the

other arguments. This allows the inner products to be combined, yielding〈∫
S

[
µ

.

J(r′, τ)

4πR
−∇ 1

4πR

{
Π(r′, τ) + n̂′ · ∇′Φ(r′, τ)

}]
dS ′,

..

J′(r, t)

〉
σ

=
〈
−
(
n̂×
[ .
Ainc(r, t) +∇Φinc(r, t)

]
×n̂
)
,
..

J′(r, t)
〉
σ
. (5.51)
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Finally, recovery of (5.48) is possible by using the definitions of the surface

charge density and electric field in terms of the vector and scalar potentials,

(5.32) and (5.35), respectively.

The weighted continuity equation can be derived by integrating by parts

temporally in the scalar Huygens’ principle integral equation of (5.39). This

gives〈∫
S

n̂′ · ∇′
.

Φ(r′, τ)

4πR
dS ′,∇ ·

.

J′(r, t)

〉
σ

=
〈 .
Φinc(r, t),∇ ·

.

J′(r, t)
〉
σ
. (5.52)

The inner products on the RHS of (5.52) and (5.47) are now the same.

Substituting the expression on the LHS of (5.52) into (5.47) gives〈∫
S

[
ε−1∇′ · J(r′, τ)

4πR
−

.

Π(r′, τ)

4πR

]
dS ′,∇ ·

.

J′(r, t)

〉
σ

=

〈∫
S

n̂′ · ∇′
.

Φ(r′, τ)

4πR
dS ′,∇ ·

.

J′(r, t)

〉
σ

. (5.53)

Combining the inner products and using the definition of a surface charge

density in (5.32) gives (5.49).

The differentiated TD-APIE and TD-WC-EFIE are simple to implement.

They both result in symmetric matrix equations; allowing specialized storage

and solution algorithms to be used. However, they do suffer from some

drawbacks. First, because they are differentiated the equations exhibit DC

null spaces similar to the TD-EFIE. This does not typically corrupt solutions

at middle frequencies, however, at very low frequencies it may have a more

substantial effect. Further, the integral operators in the TD-APIE calculate

the time derivative of the vector and scalar potentials. For coupling these

methods to quantum mechanical calculations, it may be more desirable to

be able to calculate the vector and scalar potentials directly.

To address the drawbacks of the differentiated TD-APIE, a different mod-

ification to the equations of Theorem 6 can be derived. This gives the time

domain A-Φ integral equation (TD-APIE).

Theorem 10. (TD-APIE) The variational problems of Theorem 6 can be

modified to result in the following A-Φ formulation that utilizes the same

temporal test space for both equations.
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Vector Potential Equivalence Principle:

∀(Ainc×n̂) ∈H
5
2 search for (Π,J) ∈ H 1

2 ×H
1
2 such that ∀J′ ∈H

1
2 :〈∫

S

[
µ

J(r′, τ)

4πR
−∇

∫ τ

−∞

Π(r′, t′)

4πR
dt′
]
dS ′,

...

J′(r, t)

〉
σ

=
〈
−
(
n̂×(Ainc(r, t)×n̂)

)
,
...

J′(r, t)
〉
σ
. (5.54)

Scalar Potential Equivalence Principle:

∀Φinc ∈ H
5
2
σ

(
R+, H

− 1
2 (∇2, S)

)
search for (Π,J) ∈ H 1

2 ×H
1
2 such that

∀J′ ∈H
1
2 :〈∫

S

[
ε−1

∫ τ

−∞

∇′ · J(r′, t′)

4πR
dt′ − Π(r′, τ)

4πR

]
dS ′,∇ ·

..

J′(r, t)

〉
σ

=
〈
Φinc(r, t),∇ ·

..

J′(r, t)
〉
σ
. (5.55)

Proof. The scalar potential equivalence principle is the same as that given in

Theorem 6, so no modifications are needed. The vector potential equivalence

principle is found by integrating by parts temporally. In particular, the

differentiated vector potential equivalence principle of (5.46) is integrated by

parts. The changes in function spaces follows easily from this.

Theorem 11. The variational problems of Theorem 10 correspond to stable

systems individually.

Proof. This result follows easily from past arguments for the stability of the

variational problems. Additionally, this equation requires no time derivatives

so there is no fear of the basis functions not being smooth enough to be

differentiated.

The set of equations to be solved in Theorem 10 still have the benefit

of producing a symmetric matrix system. As desired, these operators also

calculate the vector and scalar potentials as opposed to the time derivatives

of these quantities. The cost of this, however, is that the temporal integrals

must be discretized. This will increase the computation time, but will not

change the asymptotic computational complexity [22]. The temporal test

space of these equations is H
− 5

2
σ , which further complicates the discretization.

More details related to this are discussed in Section 5.5.
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5.4.2 Analysis of Past A-Φ Formulation

The function spaces and variational problems of Section 5.4.1 can now be

used to understand why the original A-Φ formulation discussed in Section

4.1.2 showed such poor stability properties. The original A-Φ formulation was

developed by taking an inverse Fourier-Laplace transform of the equations

presented in [1,14]. The same sets of unknown functions were also used, i.e.,

the current density and the normal component of the vector potential.

The equations for the original A-Φ formulation are

n̂×
∫
S

[
µ

1

4πR
J(r′, τ)−∇ 1

4πR
Σ(r′, τ)

]
dS ′ = Ainc(r, t)×n̂ (5.56)∫

S

[
ε−1 1

4πR
∇′ · J(r′, τ)− 1

4πR

..

Σ(r′, τ)

]
dS ′ =

.

Φinc(r, t), (5.57)

where Σ = n̂′ · A. Extending the analysis of Section 5.4.1 to this set of

equations suggests the following lemma.

Lemma 4. The equivalent variational formulation for the equations studied

in Section 4.1.2 cannot lead to a stable system. The variational formulation

is the following.

Vector Potential Equation:

∀(Ainc×n̂) ∈H
5
2 search for (Σ,J) ∈ H 3

2 ×H
1
2 such that ∀J′ ∈H

1
2 :〈∫

S

[
µ

J(r′, τ)

4πR
−∇Σ(r′, τ)

4πR

]
dS ′,

...

J′(r, t)

〉
σ

=
〈
−
(
n̂×(Ainc(r, t)×n̂)

)
,
...

J′(r, t)
〉
σ
. (5.58)

Scalar Potential Equation:

∀
.

Φinc ∈ H
3
2
σ

(
R+, H

− 1
2 (∇2, S)

)
search for (Σ,J) ∈ H 3

2 ×H
1
2 such that

∀J′ ∈H
1
2 :〈∫

S

[
ε−1∇′ · J(r′, τ)

4πR
−

..

Σ(r′, τ)

4πR

]
dS ′,∇ ·

.

J′(r, t)

〉
σ

=
〈 .
Φinc(r, t),∇ ·

.

J′(r, t)
〉
σ
. (5.59)

Proof. These equations cannot be discretized consistently. The first com-

plication is related to the two unknowns requiring different basis functions.
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Although this is possible to do, it overly complicates the discretization of the

equations. The more significant problem is that the two equations require

different temporal test spaces. Within the MOT discretization framework

this cannot be achieved. As a result, using standard discretization processes

cannot lead to a stable discretization of this system.

The importance of Lemma 4 is seen clearly in the numerical results pro-

duced for this A-Φ formulation in Section 4.1.3. The same temporal basis and

testing functions were used for both unknowns, violating the correct choices

presented in Lemma 4. As a result, this formulation exhibited instability for

a simulation with a center frequency of 200 kHz, which is an extremely poor

result. As will be demonstrated in Section 5.6, the TD-APIE and differen-

tiated TD-APIE from Section 5.4.1 are able to produce stable results at the

same frequencies for which the EFIE is stable. This greatly out-performs the

naive discretization suggested by a simple inverse Fourier-Laplace transform

of the frequency domain equations of [1, 14].

5.5 Discretization of Variational Formulations

The focus of this section is making explicit the steps needed to discretize the

variational problems introduced in Section 5.4. In particular, sample func-

tions from some of the relevant function spaces will be presented to assist

in arriving at a stable discrete scheme. Additionally, the role of the damp-

ing parameter σ in the temporal function spaces will be discussed. Finally,

the discretized equations for the differentiated TD-APIE and TD-APIE are

presented.

5.5.1 General Concepts

As has been previously mentioned, the spatial discretization is relatively

simple since RWG functions are members of the correct function space for

the current density. This makes them the easiest choice for discretizing the

current density, although other functions can be used [15]. For ρ and Π,

the natural choice is a pulse basis function. This is necessary for the differ-

ent matrix systems to be symmetric and also allows for typical singularity
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extraction methods to be applicable.

The temporal basis functions require more care since there are substantially

more choices commonly used compared to the spatial discretization. To give

some examples, sample functions characteristic of some of the relevant spaces

are presented. The most common temporal test function used is the Dirac

delta function. This is a member of the temporal function space H
− 3

2
σ . The

next space is H
− 1

2
σ , with the simplest basis function in this space being a pulse

function (e.g., it is 1 for a single time step and 0 otherwise). A typical function

in the space H
1
2
σ is a triangular function. Finally, an example function in the

space H
3
2
σ is the quadratic B-spline.

From this discussion, it is possible to easily discretize the differentiated

TD-APIE or TD-WC-EFIE. A low-order basis function that can be used is

a triangle function; which can be tested with a delta function. As a result,

the MOT procedure can be used directly for these equations.

Discretizing the TD-APIE is a more difficult task. This is because the

temporal basis space is H
1
2
σ and the temporal test space is H

− 5
2

σ . This means

that the delta function is not a correct testing function, so the MOT pro-

cedure cannot be directly applied to this system. However, it is possible to

form a discrete system using the MOT procedure that is equivalent to us-

ing the correct temporal basis and testing spaces [45, 53]. In particular, the

basis function that should be used in the MOT procedure can be found by

convolving a basis and testing function pair from the correct Sobolev spaces.

Since a function in H
− 5

2
σ would look like the derivative of a delta function,

it is anticipated that a basis function from H
− 1

2
σ could be used in the MOT

procedure. Preliminary results doing this are promising, but more study is

still needed.

There are many more functions that can be used to implement higher-

order schemes. For instance, the temporal basis functions used in [53] are in

H
1
2
σ while the testing functions are in H

− 1
2

σ . These functions work because

these are the correct function spaces for the differentiated EFIE [15]. The

basis and testing functions used in [45] are in H
− 1

2
σ . The scheme in [45]

works because using basis and testing functions in H
− 1

2
σ can be shown to be

discretely equivalent to using a basis function in H
1
2
σ and a testing function

in H
− 3

2
σ . These are the correct spaces for the original EFIE, leading to an

overall stable discretization.

Another point is needed to be made related to the nesting properties of the

88



Figure 5.1: Demonstration of how using too smooth of a basis function can
lead to large error, e, and potentially instability for a TDIE.

Sobolev spaces. As an example, it is clear to see that H
3
2
σ ⊂ H

1
2
σ . Although

this is true, if a variational formulation calls for the basis function to be an

element of H
1
2
σ , it is better to use an element that is in H

1
2
σ but is not in

H
3
2
σ . The reason for this is illustrated in Fig. 5.1. If too smooth of a basis

function is used, the error that may occur for projecting the actual solution

in H
1
2
σ into H

3
2
σ may lead to instability. This is what happened for the TD-

WC-EFIE when a quadratic B-spline basis function was used. Although

not shown here, the same result also applies for the testing spaces. That

is, H
− 3

2
σ ⊂ H

− 5
2

σ ; and so, if the appropriate testing space is H
− 5

2
σ a testing

function from H
− 3

2
σ should not be used. This has been tested numerically

with the TD-APIE. A delta function was used as the testing function (an

element of H
− 3

2
σ ) while a triangle function was used as the basis function (an

element of H
1
2
σ ). The results were unstable, demonstrating the need to use

functions from the largest space possible, as opposed to smaller subspaces.

A final remark for discretizing the variational formulations is required for

the choice of σ. For efficiency reasons, this is selected to be 0. However,

the stability theorems are only technically valid for σ > 0. In practice, it

has been found that if the basis and testing functions are picked from the

correct function spaces and the matrix elements are accurately evaluated,

the methods are stable enough to be widely used [15].
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5.5.2 Discretized Equations for the Differentiated TD-APIE

For practical purposes, it is useful to perform some rescaling of the different

equations in the differentiated TD-APIE. This results in a symmetric matrix

system, as well as gives it a saddle point form similar to the TD-A-EFIE.

The matrix system isµr∆t .V(0) DTS(0)

S(0)D − εr
c20∆t

.

S(0)

{(c0∆t)−1J(i)

η−1
0 ψ

(i)

}
=

{
−η−1

0

.
α(i)

ε
c0∆t

.

φ(i)

}

−
i−1∑

j=i−jmax

µr∆t .V(i−j) DTS(i−j)

S(i−j)D − εr
c20∆t

.

S(i−j)

{(c0∆t)−1J(j)

η−1
0 ψ

(j)

}
. (5.60)

The different matrix elements are defined as

.

V(i−j)
mn =

∫
Sm

∫
Sn

Nh∑
l=0

al
.

ξ
(i−j)
l fm(r) · fn(r′)

Pl(R̂)

4πR
dS ′dS (5.61)

S(i−j)
mn =

∫
Tm

∫
Tn

Nh∑
l=0

alξ
(i−j)
l hm(r)hn(r′)

Pl(R̂)

4πR
dS ′dS (5.62)

.

S(i−j)
mn =

∫
Tm

∫
Tn

Nh∑
l=0

al
.

ξ
(i−j)
l hm(r)hn(r′)

Pl(R̂)

4πR
dS ′dS, (5.63)

where the temporal convolutions are contained in

ξ
(i−j)
l =

∫ ∞
−∞

Pl(k1t
′ + k2)T

(
(i− j)∆t− ζ/c− t′

)
dt′ (5.64)

.

ξ
(i−j)
l =

∫ ∞
−∞

Pl(k1t
′ + k2)

.

T
(
(i− j)∆t− ζ/c− t′

)
dt′. (5.65)

In these equations, fn is an RWG function associated with the nth interior

edge, hn is a pulse basis function associated with the nth triangle, and T is

the temporal basis function. For this set of equations, the temporal basis

function should be from H
1
2
σ while the testing function should be from H

− 3
2

σ .

To satisfy this, a triangle function is used for the basis function and a Dirac

delta function for testing. Other choices can be easily incorporated into
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(5.64) and (5.65) if need be. Finally, the excitations may be calculated as

.
α(i)
m =

∫
Sm

fm(r) ·
.

Ainc(r, i∆t)dS (5.66)

.

φ(i)
m =

∫
Tm

hm(r)
.

Φinc(r, i∆t)dS. (5.67)

5.5.3 Discreized Equations for the TD-APIE

The TD-APIE may be discretized in a manner similar to the TD-EFIE. The

matrix system is

[
µV(0) DT Ŝ(0)

Ŝ(0)D −εS(0)

]{
J(i)

ψ(i)

}
=

{
−α(i)

εφ(i)

}

−
i−1∑

j=i−jmax

[
µV(i−j) DT Ŝ(i−j)

Ŝ(i−j)D −εS(i−j)

]{
J(j)

ψ(j)

}

−
i−p−1∑

i−jmax−1

[
0 DT Ŝ

(i−j)
T

Ŝ
(i−j)
T D 0

]{
C

(j+1)
J

C
(j+1)
ψ

}
. (5.68)

The different matrix elements are defined as

V(i−j)
mn =

∫
Sm

∫
Sn

Nh∑
l=0

alξ
(i−j)
l fm(r) · fn(r′)

Pl(R̂)

4πR
dS ′dS (5.69)

S(i−j)
mn =

∫
Tm

∫
Tn

Nh∑
l=0

alξ
(i−j)
l hm(r)hn(r′)

Pl(R̂)

4πR
dS ′dS (5.70)

Ŝ(i−j)
mn =

∫
Tm

∫
Tn

Nh∑
l=0

alξ̃
(i−j)
l hm(r)hn(r′)

Pl(R̂)

4πR
dS ′dS (5.71)

Ŝ
(i−j)
T,mn =

∫
Tm

∫
Tn

Nh∑
l=0

alξ̄
(i−j)
l hm(r)hn(r′)

Pl(R̂)

4πR
dS ′dS. (5.72)
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The temporal integrals are given by

ξ
(i−j)
l =

∫ ∞
−∞

Pl(k1t
′ + k2)T

(
(i− j)∆t− ζ/c− t′

)
dt′ (5.73)

ξ̃
(i−j)
l =

∫ ∞
−∞

Pl(k1t
′ + k2)

∫ κ−t′

−∞
T (t′′)dt′′dt′, for κ/∆t− β ≤ p (5.74)

ξ̄
(i−j)
l = δl0β∆t, for p ≤ κ/∆t− β ≤ (p+ 1), (5.75)

where κ = (i− j)∆t− ζ/c and the support of T is [−∆t, p∆t]. More details

related to evaluating these matrix elements can be found in Section 2.4. The

vector for the recursive computation is calculated as{
C

(j+1)
J

C
(j+1)
ψ

}
=

{
C

(j)
J

C
(j)
ψ

}
+

{
J(j)

ψ(j)

}∫ ∞
−∞

T (t′′)dt′′,

{
C

(1)
J

C
(1)
ψ

}
=

{
0

0

}
. (5.76)

Finally, the excitations may be calculated as

α(i)
m =

∫
Sm

fm(r) ·Ainc(r, i∆t)dS (5.77)

φ(i)
m =

∫
Tm

hm(r)Φinc(r, i∆t)dS. (5.78)

For this set of equations, the temporal basis functions should be from H
1
2
σ

while the testing function should be from H
− 5

2
σ . As discussed Section 5.5.1,

the MOT procedure cannot be directly applied for these basis and testing

spaces. Instead, it is applied to a basis function from H
− 1

2
σ . In particular, a

pulse basis function is used (i.e. it is constant from [−∆t,∆t]).

5.6 Numerical Results

In this section, a few numerical results are presented to highlight the stability

of the TD-APIE and differentiated TD-APIE. Another simulation is also

performed to demonstrate the accuracy of both formulations when the TD-

EFIE is inaccurate due to low frequency effects.

Eigenvalue stability analyses are shown for two different simulations using

the TD-APIE and differentiated TD-APIE, in Figs. 5.2 and 5.3, respectively.

Modifications to the companion matrix are needed to perform an eigenvalue
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(a) (b)

Figure 5.2: Eigenvalues from the stability analysis for the TD-APIE with
center frequencies of (a) 30 MHz and (b) 80 MHz.

(a) (b)

Figure 5.3: Eigenvalues from the stability analysis for the differentiated
TD-APIE with center frequencies of (a) 30 MHz and (b) 80 MHz.

stability analysis for the TD-APIE, however, details are presented in [22].

Both simulations are for a 1 meter radius PEC sphere that has been used

in past demonstrations. The first simulation has a center frequency of 30

MHz, a bandwidth of 29 MHz, and a time step of 0.847 ns. The second

simulation has a center frequency of 80 MHz, a bandwidth of 20 MHz, and

a time step of 0.5 ns. The eigenvalues demonstrate that both simulations

are stable. This is comparable stability to that seen using the TD-EFIE

or differentiated TD-EFIE, highlighting the improvements of the proposed

method compared to past A-Φ implementations. In similarity with the TD-

EFIE and differentiated TD-EFIE, it is seen that the differentiated TD-APIE

system also has a DC null space corresponding to the group of eigenvalues
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Figure 5.4: Bistatic RCS of a 1 m PEC sphere in the E-plane at 10 MHz.
Calculations are performed with the Mie series, TD-APIE, differentiated
TD-APIE, and TD-EFIE.

near (1, 0i) (in Fig. 5.3).

The TD-APIE system has groups of eigenvalues at (1, 0i) and (-1, 0i),

however, it is not anticipated that these are due to null spaces in the operator.

Instead, it is believed that they are due to the temporal integrals in the

operators. Due to these temoral integrals, it is not possible for the solution

to decay completely to zero. This leads to the eigenvalues on the unit circle.

Similar results for stability have also been achieved with the TD-WC-EFIE

formulation presented in Corollary 1. The results are not presented here for

brevity. It is noted that the discrete system is effectively identical to the

differentiated TD-APIE, making the results redundant.

Another simulation was performed for a 1 meter radius PEC sphere. For all

formulations, the center frequency of the pulse was 40 MHz, the bandwidth

was 40 MHz, and the time step was 0.3125 ns. The RCS results for each

method are shown in Fig. 5.4. The accuracy for both the TD-APIE and

differentiated TD-APIE are good. The TD-EFIE is inaccurate due to the

low frequency breakdown of the operator.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Emerging applications in the realm of quantum physics require the develop-

ment of new computational electromagnetic solvers due to the limitations of

conventional approaches. These limitations were discussed in detail, and a

variety of methods that have been developed to overcome them in both the

frequency and time domains were discussed. One of the particularly promis-

ing approaches discussed was the A-Φ formulation. This method does not

exhibit the same low frequency breakdown phenomena of the traditional ap-

proaches. Further, because the A and Φ are considered more fundamental

quantities in quantum physics, this formulation is ideally suited for coupling

into calculations related to the emerging applications discussed.

The A-Φ formulation has been previously implemented successfully for a

number of different computational methods. To further extend the applica-

bility of this formulation, the goal of this thesis was to develop a set of A-Φ

TDIEs. Initial methods developed from this formulation were found to be

highly unstable. A variety of alternative approaches were discussed to try

and overcome this problem of instability. This thesis culminated in the devel-

opment of a set of provably stable A-Φ TDIEs. This was done by adopting a

rigorous functional framework developed for the TD-EFIE. By extending this

framework, two sets of equations were developed that could be discretized

consistently to yield stable systems. The necessary steps to discretize these

equations were discussed in detail, and numerical results demonstrated the

validity of the theoretical analysis.

There are a few possible directions for future work related to the A-Φ

TDIEs. Although there has been a large amount of theoretical progress

related to the formulation, there is still some needed extensions. The most

pressing result that needs to be further analyzed is related to discretizing the

TD-APIE. In particular, the validity of using basis functions from H
− 1

2
σ and

testing functions from H
− 3

2
σ needs to be determined. Although it seemed to
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work for a pulse basis function, it is still uncertain whether it will also work

for higher-order basis functions. This is important to determine so that the

accuracy of the method can be improved.

Another useful theoretical result would be to extend the stability results

of the A-Φ TDIEs to the TD-MFIE. It is well known within the engineering

literature that the TD-MFIE is easier to stabilize than the TD-EFIE. How-

ever, the mathematical literature seems to not necessarily reflect this, and

discourages the use of equations like the TD-MFIE [50,52]. Since the MFIE

can be derived from the A-Φ equations [14], the functional framework of the

A-Φ TDIEs should be able to be extended to the TD-MFIE. This would be

useful to make explicit the domain and range of the integral operators used

in the TD-MFIE, as well as to close the gap between theory and practice

(i.e., practice shows the equations are stable, but theory does not clearly

show this yet).

An additional development that is needed is to extend this formulation

to penetrable materials. The A-Φ TDIEs presented in this thesis can only

be applied to PEC structures. As with the E-H formulation, penetrable

scatterers require additional unknowns and equations [16]. As a result, more

equations are still needed to be derived to have A-Φ TDIEs that can be

applied to penetrable scatterers. It is likely necessary for many interesting

physics applications to be able to analyze penetrable scatterers. It is hoped

that the functional framework discussed in this thesis can be extended to the

necessary equations for the penetrable material case. This will greatly aid

in determining what equations should be used, and what basis and testing

functions are appropriate.

The next main direction for future work is to begin coupling the A-Φ

TDIEs into multiphysics calculations. One of the easiest multiphysics appli-

cations to use this in would be a Maxwell-Schrödinger system [9]. Another

area that it could be used in would be atom-photon interactions [3,10]. This

requires adjusting the method so that the dyadic Green’s function may be

extracted from the simulation results. Once this has been accomplished, the

time domain results could also be used to determine the changes in the stim-

ulated emission rate for emitters in arbitrary electromagnetic environments

over a broad bandwidth [11].

Another possible application would be for Casimir force calculations [4,

5]. To the author’s knowledge, methods in the time domain for calculating
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the Casimir force have relied on the use of the finite-difference time-domain

method [6, 7]. There are many advantages that can be had by using TDIEs

over finite-difference time-domain codes; making this another interesting area

where the A-Φ TDIEs could be applied.

Once the A-Φ TDIEs have been extended to be able to calculate the

Maxwell stress tensor for the Casimir force calculations, another possible ap-

plication is related to optical tweezers [1]. This application is not necessarily

quantum in nature, but the subwavelength nature of the typical interactions

still makes the E-H formulation a poor approach.

Clearly, this work can still be extended in a large number of exciting direc-

tions. It is hoped that the breadth of possible applications for this method

continues to lead to fruitful work in the future.
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