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Abstract 

Ferdinand de Saussure, one of the founders of modern Linguistics, described language as 

a system where everything holds together.  Regarding the sounds of language, this has led to the 

current view that the phonology of a language consists of a complex system of relations between 

contrastive phonemes.  In this dissertation, I test whether there are constraints on individual 

phonetic variation from a multivariate perspective due to this system of relations, and how these 

constraints interact with contrast preservation.  Two main views of contrast preservation are 

considered.  The first view is that contrast preservation is merely an outcome of other regular 

phonetic processes that affect multiple consonants simultaneously.  The second view is that 

contrast preservation acts as a constraint on the phonetic realization of phonemes.  To this end, 

two phonetic experiments are performed.  In both experiments, multiple acoustic measures of 

intervocalic consonant strength are taken, and PCA is used for dimensionality reduction, 

resulting in measures of overall consonant strength.  These measures are then analyzed with 

Bayesian linear mixed effects regression (using weakly informative priors and maximal random 

effects structures) in order to obtain distributional information about both populations and 

individual speakers. 

In the first experiment, word-medial intervocalic /s/ and /f/ are compared for Valladolid 

Spanish and Barcelona Catalan.  Both Catalan and Spanish have the fricatives /s/ and /f/, neither 

has /v/ contrasting with /f/, and only Catalan has /z/ contrasting with /s/.  The results show that 

Catalan /s/ is stronger than Spanish /s/, but there is no evidence for a difference between the two 

language’s /f/ strengths, with strong evidence that the magnitude of the difference between 
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Catalan and Spanish /s/ is larger than the magnitude of the difference between Catalan and 

Spanish /f/.  I argue that these results are consistent with a role for contrast preservation as a 

constraint, with Catalan having stronger /s/ than Spanish because lenition of Catalan /s/ causes 

phonetic overlap with a contrasting phoneme, while lenition of Spanish /s/ does not. 

In the second experiment, the simultaneous lenition of Spanish intervocalic /ptk/ and 

/bdg/ in three dialects (Cuzco, Peru; Lima, Peru; and Valladolid, Spain) is examined.  Cuzco is 

found to have the strongest productions for both /ptk/ and /bdg/, Lima the weakest for both, and 

Valladolid in between for both.  That is, the same hierarchy of strength applies in both cases, 

though the evidence for the difference between Valladolid and Lima /ptk/ is considerably weaker 

than the evidence for the other differences.  I argue that the results are consistent with constraints 

on multivariate variation at the dialectal level, but that further research is required to see how 

constraints at the individual level relate to population differences. 

Examining individual variation in both experiments, I find that the degree to which an 

individual speaker lenites /f/ is correlated with the degree to which they lenite /s/, and that the 

degree to which they lenite /ptk/ is correlated with both the degree to which they lenite /bdg/ and 

the degree to which they lenite /sf/.  These correlations represent a significant constraint on 

individual phonetic variation from a multivariate perspective. 

While a connection between individuals’ /ptk/ and /bdg/ lenitions can be explained by 

both the constraint and outcome views of contrast preservation, the correlation between /sf/ and 

/ptk/ and the correlation between /s/ and /f/ lend support to the outcome view, and Catalan 

having stronger /s/ than Spanish but not stronger /f/ lends support to the constraint view.  I argue 

for a framework in which acoustic lenition in a variety of intervocalic consonants may share a 

common articulatory source of lenition, giving rise to constraints on individual phonetic 
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variation that may lead to contrast preservation as an outcome, but where there may additionally 

be a role for contrast preservation as a constraint.  I conclude by discussing the importance of 

further acoustic studies that use the methodologies employed here, and studies that explore the 

articulatory and perceptual implications of the results. 
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Chapter 1. Introduction 

1.1. Goal of this dissertation 

Ferdinand de Saussure, one of the founders of modern Linguistics, described language as 

a system where everything holds together  (Saussure, 1986[1916]). Regarding the sounds of 

language, this has led to the current view that the phonology of a language consists of a complex 

system of relations between contrastive phonemes.  The goal of this dissertation to demonstrate 

that there are constraints on individual phonetic variation from a multivariate perspective due to 

this system of relations, and that these constraints interact with contrast preservation.  In so 

doing, I also make methodological contributions to phonetics by increasing the degree to which 

measures are automated and employing dimensionality reduction on multivariate response 

variables, and to statistical modeling in linguistics through the use of Bayesian mixed effects 

regressions to obtain distributional information about individual speakers.  These methodological 

contributions allow inference to be made on both populations and individuals using all of the 

information available in a dataset. 

In this chapter, I begin in Section 1.2 with a discussion of differing views of contrast 

preservation (contrast preservation as a constraint and as an outcome) and why we might expect 

individual phonetic variation to be constrained from a multivariate perspective.  In Section 1.3, I 

introduce the phonemic inventories for two related Western Romance languages, Spanish and 

Catalan, which serve as the languages of study in this dissertation.  In Section 1.4, I describe the 

motivations for the first experiment, which compares Spanish and Catalan /s/ and /f/ lenition.  In 

Section 1.5, I describe the motivations for the second experiment, which compares /ptk/ and 
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/bdg/ lenition in three dialects of Spanish.  In Section 1.6, I give specific hypotheses concerning 

the results of these experiments. 

In Chapter 2, I discuss the phonetic measurements of consonant strength taken as 

dependent variables, and the factors and covariates included as fixed effects in the analyses.  I 

also discuss the following three phonetic methodological contributions I make in detail: (1) the 

automation of a duration measurement that can apply to any intervocalic consonant; (2) the 

treatment of zero-valued observations and non-zero-valued observations in a continuous fashion 

when a value of zero has meaning; and (3) the use of principal components analysis to reduce the 

dimensionality of multivariate dependent variables rather than running multiple regressions, 

which would inflate the rate of false discoveries. 

In Chapter 3, I describe Bayesian mixed effects regressions, how they differ from the 

frequentist mixed effects regressions commonly used in linguistics, and how continuous 

variables and factors are treated in the regressions.  I also make two major methodological 

contributions to the statistical analysis of linguistic data that I explain in detail: (1) the use of 

Bayesian mixed effects regressions to make probabilistic statements about individuals and the 

differences among them, rather than attempting to make currently widely-used methods fit with 

research questions they cannot adequately answer; and (2) the use of NA values to incorporate all 

available information in a dataset into a single regression.  Mixed effects models have become 

widely used in Linguistics and other language sciences because they yield to better estimates for 

population effects (i.e. fixed effects) and lower Type I error rates when there are repeated 

measures on members of a grouping factor, with the differences between members considered as 

a noise component (e.g. Barr, Levy, Scheepers, & Tily, 2013).  In this dissertation, there are 

hypotheses regarding population effects, but also hypotheses regarding individual variation from 
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a multivariate perspective.  To answer these questions, we need to employ a method that allows 

us to make probabilistic statements about individuals, not just the population.  However, the 

standard frequentist approach to mixed effects models (e.g. lme4) does not allow us to make 

probabilistic statements about individuals in the same way that it allows us to make probabilistic 

statements about the population.  While one may be tempted to simply run separate regressions 

on each individual speaker instead, this ignores that the speaker belongs to the population; better 

estimates are obtained by examining the random effects estimates in a mixed effects model in 

conjunction with the fixed effects.  For this reason I use Bayesian mixed effects regression, 

which does allow such probabilistic statements to be made, representing a novel application of 

these models in Linguistics.  That is, I model the individual variance as a noise component, but 

also examine these components as an object of inquiry.  To obtain the best estimates possible for 

both populations and individuals, in addition to using maximal random effects structures (Barr et 

al., 2013), every attempt should be made to analyze all of the data together; binning data and 

running multiple regressions should be avoided to the greatest extent possible.  To that end (in 

addition to treating 0-valued response variables as part of a continuum and using PCA as 

described in Section 2.5), I introduce the coding of factors as NA in subsets of the data where 

they are not contrastive.  Provided that appropriate contrasts are used, these NA values can be set 

to 0 in the regression’s model matrix, allowing all of the data to be analyzed in one regression, 

with the relevant factors only affecting the fitted values for observations in the subsets where 

they are contrastive. 

In Chapter 4, I present the results for an experiment on Spanish and Catalan /s/ and /f/.  I 

find that Catalan has stronger (i.e. longer, more voiceless) /s/ realizations than Spanish, but the 

languages do not differ in the strength of their /f/ productions.  Spanish and Catalan both have 
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the voiceless fricative phonemes /s/ and /f/, neither has the voiced fricative phoneme /v/, and 

Catalan (but not Spanish) has the voiced fricative phoneme /z/.  In light of this, I argue that the 

results support a role for contrast preservation as a constraint. 

In Chapter 5, I present the results for an experiment on /ptk/ and /bdg/ in the Spanish of 

Valladolid, Spain; Cuzco, Peru; and Lima, Peru.  Both sets of plosive phonemes are subject to 

lenition in the intervocalic environment, with substantial variation across dialects.  I find that the 

same dialectal hierarchy of strength obtains for both the voiceless and voiced plosives: Cuzco > 

Valladolid > Lima; however, the evidence for a difference between Valladolid and Lima /ptk/ is 

substantially weaker than for the other comparisons made.  I argue that these results are 

consistent with the view that constraints on individual multivariate phonetic variation may give 

rise to constraints on dialectal multivariate phonetic variation, but only when overlap between 

speakers of the dialects is small enough.  

In Chapter 6, I compare individual speakers’ average consonant strengths from the two 

experiments.  I find that individuals with relatively stronger /s/ also have relatively stronger /f/, 

that speakers with relatively stronger /ptk/ also have relatively stronger /bdg/, and that speakers 

with relatively stronger /sf/ also have relatively stronger /ptk/.  Additionally, this relationship at 

the individual level is strongest for /ptk/ vs. /bdg/, weaker for /s/ vs. /f/, and weakest for /sf/ vs. 

/ptk/.  I note that these relationship strengths reflect how phonetically similar the sets of 

consonants compared are, and argue that the results offer strong evidence for the existence of 

constraints on individual multivariate phonetic variation. 

And in Chapter 7, I discus all of the results in relation to the hypotheses laid out in this 

chapter (Section 1.6).  Because constraints exist on individual multivariate phonetic variation 

both when neutralization between the phonemes considered is plausible and when neutralization 



5 
 

is implausible, I argue that contrast preservation in many circumstances can be explained as a 

result of other natural phonetic processes.  However, given the population results for the Spanish 

and Catalan /s/ and /f/ experiment, I further argue that there is still a role for contrast preservation 

as a constraint within this framework. 

1.2. Contrast preservation and constraints on individual phonetic variation 

In this dissertation, I examine the phenomenon of contrast preservation, specifically in 

the context of intervocalic consonant lenition.  I follow Lavoie (2001) in defining intervocalic 

consonant lenition as the phonetic process by which consonants become more similar to the 

surrounding vowels due to gestural overlap (e.g. Browman & Goldstein, 1986, 1992) and 

aerodynamic constraints on consonant voicing (e.g. Ohala & Riordan, 1979).  In this framework, 

then, a consonant is stronger when it is more constricted and more voiceless. 

The term contrast preservation is most often associated with the theory that the presence 

of phonological contrasts in a language conditions phonetic outcomes (e.g. if a language has /p/ 

but not /b/, the phonetic implementation of /p/ will be different than in a language with both /p/ 

and /b/).  However, in this dissertation, I will refer to this theory as contrast preservation as a 

constraint, and use the term contrast preservation more generally as the opposite of 

neutralization; that is, regardless of why contrasting phonemes are not neutralized, I will describe 

a system of phonemic contrasts where neutralization is not occurring synchronically, or did not 

occur diachronically, as exhibiting contrast preservation.  Historical examples of contrast 

preservation in this use of the term would thus include both chain shifts (Martinet, 1952), where 

contrasts are maintained, but their phonetic expressions change in tandem (e.g. /p b/ > /b β/), and 

also cases where a system of contrasts remains stable across time.  Under this definition, we can 

then distinguish between phonological theories where contrast preservation is merely an outcome 
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of purely phonetic processes and phonological theories where contrast preservation imposes a 

constraint on phonetic variation. 

I will use the term constraint to describe a probabilistic pressure against a certain 

phonetic outcome.  If the phonetic realization of a phoneme A is in part determined by the 

presence or absence of a phonetically similar contrastive phoneme B, then this would be contrast 

preservation acting as a constraint on A (e.g. if a language with both /p/ and /b/ voices /p/ less 

than a language with /p/ but not /b/, then contrast preservation constrains the phonetic realization 

of /p/).  At the individual level, in a language with /p/, /b/, and /t/, if speakers with relatively 

stronger /p/ realizations also tend to have relatively stronger /b/ and /t/ realizations, this would 

represent a constraint on individual phonetic variation.  That is, while speakers may vary widely 

in the strength of /p/, /b/, and /t/ considered individually, when the three are considered jointly, 

the speaker variation in the multivariate space may be probabilistically constrained.  This use of 

the term constraint is thus different than the use of the term in other theoretical frameworks such 

as Optimality Theory, where constraints are violable and rankable, and theories that posit 

constraints that determine which outcomes are possible and which are not; as I use the term, 

constraints are always probabilistic. 

In Sections 1.2.1 and 1.2.2, respectively, I discuss phonological theories where contrast 

preservation is merely an outcome of purely phonetic processes and phonological theories where 

contrast preservation imposes a constraint on phonetic variation.  In Section 1.2.3, I discuss the 

predictions these two views make and how we can reasonably accept both of them at the same 

time.  In Section 1.2.4, I argue that both of these perspectives imply constraints on individual 

phonetic variation, a possibility that is understudied in phonetics. 
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1.2.1. Contrast preservation as an outcome 

We can explain both contrast preservation and neutralization as occurring due to the 

common articulatory gestures shared by the consonants in question.1  In the case of 

neutralization, the explanation is fairly straightforward: two consonants that differ only in one or 

two respects become more similar to each other in those respects until they are indistinguishable; 

this can be explained by common phonetic reduction phenomena.  In the case of contrast 

preservation, it is at first less obvious that a high degree of articulatory similarity could help 

preserve the contrast between two consonants.  The reason that their similarity can lead to 

contrast preservation is that we find numerous examples of gestural differences and 

manipulations affecting multiple phonemes in a systematic way. 

For example, Torreira and Ernestus (2011) compare intervocalic /ptk/ voicing and vowel 

devoicing between voiceless plosives in Spanish and French, and find that French has both less 

/ptk/ voicing and more vowel devoicing than Spanish.  They argue that this may be indicative of 

a difference in the coarticulatory strategy for voiceless gestures in the two languages.  In other 

words, perfect timing of consonantal closing gestures and voiceless gestures is unlikely in casual 

speech, but languages may differ in the direction in which they tend to overlap these gestures, 

and this affects multiple parts of the phonology. 

Nielsen (2007, 2008, 2011) also finds evidence that manipulation of sub-phonemic 

features affects multiple parts of the phonology in an imitation study using the shadowing 

paradigm (Goldinger, 1998).  Participants first read a list of words aloud, then heard a series of 

words, some of which started with /p/ and had artificially lengthened VOT, and repeated each 

word as quickly as possible upon hearing it (i.e. shadowing), and then re-read the series of 
                                                 
1 The data in this dissertation are all acoustic, not articulatory.  However, the discussion of articulation here offers a 
theoretical motivation for acoustic consequences we may expect to see in intervocalic consonant production, as 
discussed in Chapter 2. 
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words.  The specific words that were shadowed were produced with longer VOT by the 

participants after the shadowing task than they were before; but other words that started with /p/ 

that were not shadowed were also produced with longer VOT, and so were words that started 

with /k/, even though none of the shadowed words had /k/ with lengthened VOT.  Furthermore, 

the degree to which participants lengthened VOT for /k/ was the same as the degree to which 

they lengthened VOT for /p/, indicating that participants manipulated a phonetic gesture that 

impacted more than one phoneme simultaneously. 

Still more evidence for systematic effects of changes in gestural coordination comes from 

articulatory studies on inter-speech postures (i.e. the neutral position of the articulators between 

utterances when preparing to speak).  Research has shown that these postures are articulatory 

targets that differ between languages (Gick, Wilson, Koch, & Cook, 2005), that some bilingual 

speakers use different postures based on which language they are speaking, with speakers who 

only use one posture being perceived as less native-like in at least one of their languages (Wilson 

& Gick, 2014), and that these postures differ between read and spontaneous speech 

(Ramanarayanan et al., 2010).  Thus some of the systematic acoustic differences that we see 

between registers, languages, and (perhaps) individuals could be due to a difference in these 

postures and how they interact with articulation once speech begins. 

Given then that gestural differences can lead to systematic phonetic effects, it can be 

argued that contrast preservation occurs for much the same reason that neutralization occurs: 

because the sounds are similar.  We might expect /p/ and /b/ to be ripe for neutralization (i.e. /p 

b/ > /b/ or /p b/ > /β/) because all that differentiates them is voicing, and intervocalic voicing of 

voiceless plosives is a common phenomenon motivated by gestural overlap.  But we might for 

the same reason expect that they both lenite at the same time due to their sharing a bilabial 
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closing gesture and maintain contrast (i.e. a chain shift /p b/ > /b β/) if what is really being 

lenited is the gesture they share, and the contrast between them is simply relative in this regard.  

Thus we can explain contrast preservation and neutralization in these cases from a purely 

phonetic perspective, motivated by well-known phenomena like gestural overlap and the 

aerodynamic voicing constraint (Browman & Goldstein, 1986, 1992; Gafos, 2002; Ohala & 

Riordan, 1979; Stevens, 2000, pp. 465–468).  Whether neutralization or contrast preservation 

occurs in the presence of lenition, from this perspective, would be probabilistic. 

1.2.2. Contrast preservation as a constraint 

Contrast preservation as a constraint is central to phonological theories in which the 

phonetic realization of a phoneme is conditioned by the other phonemes in the language’s 

inventory (Flemming, 2002; Lubowicz, 2003), though with a slightly different meaning for 

constraint than the one given in Section 1.2.  In dispersion theory, Flemming (2002) proposes 

three constraints whose variable ranking play a role in the maintenance or loss of phonological 

contrasts: (1) a constraint that favors maximizing the number of phonological contrasts; (2) a 

constraint that favors maximizing the acoustic difference between contrasting phonemes; and (3) 

a constraint that favors minimizing articulatory effort.  To see how these constraints may play 

out with intervocalic consonants, consider a language with a voicing contrast between plosives 

/p/ and /b/.  Constraint (2) would disfavor voicing of intervocalic /p/, as this would lessen its 

acoustic distinction from /b/.  Constraint (3) would favor voicing of intervocalic /p/, as this 

would lessen the articulatory effort for the production of /p/ (if we define effort as producing a 

/p/ that is maximally distinct from the surrounding vowels; i.e. a strongly articulated /p/ would 

have full lip closure and be entirely voiceless).  Constraint (1) would favor maintaining the 

distinction between the two phonemes regardless of their phonetic realization.  If the constraints 



10 
 

were ranked (1, 2) > (3), we would expect /p/ and /b/ to maintain their canonical pronunciations; 

if they were ranked (3) > (2) > (1), we would expect /p/ and /b/ to neutralize as /b/ (or perhaps 

/β/); and if they were ranked (1) > (3) > (2), we would expect a chain shift, with /p b/ > /b β/.  

Another prediction of this view of contrast preservation is that a language with both /p/ and /b/, 

with proper constraint rankings, would voice intervocalic /p/ less than a language that had /p/ but 

not /b/. 

Take, as another example, Kirchner’s (1996) analysis of synchronic chain shifts in OT.  

The author argues that synchronic chain shifts can be explained with distance-based faithfulness 

constraints implemented through local conjunction.  For example, to explain why /p/ ~ /b/ chain 

shifts to [b] ~ [β] rather than neutralizing to [β], we could posit constraints favoring lenition in 

voicing and constriction that are out-ranked by a conjoined constraint that disfavors lenition in 

both voicing and constriction at the same time. 

In the constraint framework that I use in this dissertation, we could instead posit that 

contrast preservation acts as a probabilistic constraint on phonetic outcomes.  That is, in general, 

the higher the functional load of a contrast, the more likely it is to be maintained in some fashion 

(whether this be through no lenition at all, or simultaneous lenition); but no contrast is entirely 

guaranteed to be preserved or lost.  Some linguists have argued that the numerous examples of 

neutralization in the literature cast doubt on contrast preservation as a constraint that prevents 

lenition (Hock, 1991, pp. 150–151), arguing that it should only play a role as a repair strategy 

once lenition has begun and causes acoustic overlap (Hock, 1991, pp. 164–166).  Others have 

argued that contrast preservation should not act as a constraint at all because it implies an 

improper teleological role for the speaker (Ohala, 1983).  However, recent diachronic studies 

have shown that the vast majority of lenitions do not result in neutralization (Gurevich, 2004), 
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and that the higher the functional load of a phonological contrast is, the less likely it is to be lost 

(Wedel, Kaplan, & Jackson, 2013).  From a synchronic perspective, support for contrast 

preservation as a constraint comes from a second group of shadowing participants from the same 

experiment described in the previous section (Nielsen, 2007, 2008, 2011).  The second group of 

participants shadowed stimuli that had shortened VOT for /p/ rather than lengthened VOT.  

While lengthening VOT for /p/ in English does not cause phonetic overlap with contrastive 

categories, shortening of VOT leads to overlap with /b/.  For this group of shadowers, the author 

found that they did not imitate the shortened VOT of /p/, which the author argues is due to the 

presence of phonemic /b/.  Thus, overall it seems that there may in fact be a role for contrast 

preservation as a constraint in phonology, and this role is probabilistic (i.e. we can still get 

neutralization, but the probability that we do is to some degree predictable). 

1.2.3. Predictions of contrast preservation as a constraint and as an outcome 

As outlined above, both views of contrast preservation (constraint and outcome) can 

account for known diachronic chain shifts, (unchanged) maintenance of contrasts, and 

neutralization.  The theories are also not mutually exclusive in most respects (i.e. we can posit 

that the same mechanisms underlie multiple types of lenitions and still posit a role for contrast 

preservation as a constraint within this framework).  One important prediction for which the two 

views of contrast preservation differ is with regards to the synchronic phonetic realizations of the 

same consonant in languages where lenition would result in neutralization and languages where 

it would not.  Under the constraint view (or the intermediate view where contrast preservation 

can be merely an outcome, but also a constraint), a language with /s/ and /z/ would be less 

subject to intervocalic voicing of /s/ than a language that has /s/ but not /z/ in order to maintain 

the contrast.  Under the outcome only view, the language that has both /s/ and /z/ would maintain 
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the contrast specifically because its coarticulatory strategies do not lend themselves to the 

phonemes’ neutralization.  To tease these two possibilities apart, in the first experiment in this 

dissertation, Catalan and Spanish are compared for /s/ strength, and also /f/ strength.  As 

described in Sections 1.3.2 and 1.4, Central Catalan has /s f z/ and Spanish has /s f/, with neither 

language having /v/, and there being no evidence that Central Catalan /s/ and /z/ are neutralizing.  

Under the constraint view, we should expect Catalan to have stronger /s/ than Spanish, but 

Catalan and Spanish /f/ to either not differ in strength, or for the magnitude of the difference for 

/s/ to be greater than that for /f/; under the outcome only view, we should expect Catalan to either 

have both stronger /s/ and /f/ than Spanish, or for the two languages to be the same for both 

fricatives. 

1.2.4. Constraints on individual phonetic variation 

Regardless of the perspective we take on neutralization and contrast preservation, we 

should expect to see constraints on individual variation from a multivariate perspective; that is, 

for example, we should expect speakers with relatively weaker /p/’s to have relatively weaker 

/b/’s in a gradient manner.  This correlation, if present, would indicate that the full range of 

possible /p/ and /b/ variation is not found  (i.e. when you plot speakers’ /p/ strengths by their /b/ 

strengths, there are empty areas in the plot, showing a constraint on individual variation from a 

multivariate perspective). 

Under the outcome only view of contrast preservation, we should expect these 

correlations for both chain shift situations and situations where neither a shift nor neutralization 

is occurring. In both cases, we simply extend the reasoning in Section 1.2.1 to individuals.  That 

is, speakers who devoice vowels more ought to voice intervocalic /ptk/ less, as they involve the 

same gesture.  In the case of a consonantal chain shift (or other simultaneous lenitions), lenition 
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in the shared gestures of the consonants would affect both of them simultaneously; e.g. /p/ and 

/b/ are both bilabial consonants, and so a lenition of the bilabial closing gesture would affect both 

of them, and so individuals who lenite this gesture more would lenite both consonants more, not 

just one.  This same reasoning applies to /s/ and /f/ lenition.  If the same glottal voiceless gesture 

underlies both consonants (to some degree), then speaker variation in /s/ strength should be 

correlated with speaker variation in /f/ strength.    We may even expect some degree of 

correlation between a speaker’s /s/ strength and the same speaker’s /p/ strength for similar 

reasons, but perhaps a weaker correlation due to differences in the pressures the aerodynamic 

voicing constraint applies to fricatives and plosives (Stevens, 2000, pp. 465–483). 

Under the constraint view, in the context of chain shifts, the change must be 

simultaneous, such that speakers who participate to a greater degree in the first change A > B 

will also participate to a greater degree in the second change B > C, or else neutralization would 

occur (Carvalho, 2008; Gordon, 2013).  Some evidence for such individual correlations have 

been found in studies on vowels: Gordon (2001) found some evidence of chain shifts at the 

individual level in a study on the Northern Cities vowel shift, but the results were not entirely 

consistent across individuals; and Langstrof (2006), in a study on the New Zealand front vowel 

shift, found that speakers with higher TRAP vowels also had significantly higher DRESS vowels 

and more centralized KIT vowels.  This prediction of individual correlation can also be expected, 

for the same reasons, in cases of stable variation of simultaneous lenitions that result in contrast 

preservation.   

Thus, constraints on individual variation from a multivariate perspective are predicted by 

both views of contrast preservation.  If these constraints exist, understanding them is crucial to 

our understanding of phonology and phonetics, as language at its most fundamental level occurs 
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in individuals; however, studies that test for the existence of these constraints are 

underrepresented in the literature.  Correlation at the individual level (regardless of its theoretical 

motivation) may give rise to the same correlation at the dialectal or language level if the overlap 

between individuals from the different dialects or languages is small enough, but the correlation 

at the individual level may exist even if there is no evidence at the dialectal or language level.  

The opposite, however, does not have sound theoretical grounding: correlation at the dialectal or 

language level should not exist without correlation at the individual level.  In the second 

experiment in this dissertation, the simultaneous lenition of intervocalic /ptk/ and /bdg/ in three 

dialects of Spanish is examined to test this possibility (described in Section 1.5).  In the 

following sections, I describe some basic phonological properties of Spanish and Catalan, the 

two languages studied in this dissertation, and explain how dialectal, language, and individual 

comparisons in their intervocalic consonant lenitions can offer us insight into the role of contrast 

preservation and the existence of constraints on individual variation. 

1.3. Spanish and Catalan 

Spanish and Catalan are two related Western Romance languages; Spanish is spoken 

mainly in Spain and, since the 16th century, in the Americas; Catalan is spoken mainly in 

northeastern Spain, southern France, the Balearic Islands, Andorra, and Sardinia (Hualde, 2005, 

pp. 19–31; Penny, 2002, pp. 20–26; Wheeler, 2005, pp. 1–3).  In this dissertation, data are taken 

from three dialects of Spanish: the standard Iberian dialect as spoken in Valladolid, Spain; 

Spanish as spoken in Lima, Peru; and the Andean dialect as spoken in Cuzco, Peru.  The Catalan 

data are all from speakers of Central Catalan as spoken in Barcelona, Spain, where speakers of 

Catalan are universally bilingual in Spanish as well.  I begin with a general description of the 

languages’ phoneme inventories, and some important historical sound changes that gave rise to 
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the main differences between them.  In the case of Catalan, all phonemic descriptions should be 

understood to be for the standard Central Catalan dialect. 

1.3.1. Vowels 

Catalan has 8 vowel phonemes /i e ɛ ǝ a u o ɔ/; in stressed syllables, /ǝ/ does not occur, 

and in unstressed syllables, only /i ǝ u/ occur, with the stressed to unstressed correspondences 

given in Table 1.1.  When an unstressed high vowel borders another vowel, it becomes a glide, 

allowing for diphthongs and triphthongs (Wheeler, 2005, pp. 24, 37–38, 54–55). 

Table 1.1 Catalan vowel stress alternations. 
Stressed Unstressed 
/i/ /i/ 
/e/ 

/ǝ/ /ɛ/ 
/a/ 
/u/ 

/u/ /o/ 
/ɔ/ 
 

Spanish has five vowel phonemes /i e a o u/ with contrastive syllabic stress (e.g. hablo 

/áblo/ 'I speak' versus habló /abló/ 's/he spoke'); vowels in unstressed syllables are shorter in 

duration, but do not centralize (Nadeu, 2014), and unstressed high vowels in contact with another 

vowel become glides to form diphthongs and triphthongs, with some exceptional hiatuses 

(Hualde, 2005, pp. 52–55).  In the development of Spanish from Western Romance, which had 

the same vowel phonemes as Catalan has in stressed syllables, stressed /ɛ/ and /ɔ/ diphthongized 

to /ie/ and /ue/, respectively, and unstressed /ɛ/ and /ɔ/ neutralized with /e/ and /o/, respectively, 

giving the current vowel system (Penny, 2002, pp. 44–60). 
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1.3.2. Consonants 

The consonant phonemes of Catalan and Spanish are given in Table 1.2 and Table 1.3, 

respectively (Hualde, 2005, p. 53; Wheeler, 2005, p. 11). 

Table 1.2 Catalan consonant phonemes. 
 Labial Dental Alveolar Palatal Velar 
Plosive p  b t  d   k  g 
Affricate   ʦ  ʣ ʧ  ʤ  
Fricative f  s   z ʃ   ʒ  
Nasal m  n ɲ  
Lateral   l ʎ  
Tap   ɾ   
Trill   r   
Approximant    ʝ  
 

Table 1.3 Spanish consonant phonemes. 
 Labial Dental Alveolar Palatal Velar 
Plosive p  b t  d   k  g 
Affricate    ʧ  
Fricative f (θ) s  x 
Nasal m  n ɲ  
Lateral   l (ʎ)  
Tap   ɾ   
Trill   r   
Approximant    ʝ  
 

The main difference between the two consonant inventories is that Catalan has a robust 

voicing distinction for sibilants, while Spanish does not.  In Old Spanish, the sibilant system was 

much more similar to the system that Catalan has today, including /ʦ ʣ s z ʃ z/.  This system 

underwent voicing neutralization in favor of the voiceless consonant, and the dental-alveolar 

affricate deaffricated, leaving a system with three phonemes /s̪ s ʃ/ (Penny, 2002, pp. 96–104).  

In the standard Castilian dialect (including Valladolid), dissimilation in place of articulation 

occurred, yielding the modern day system (/s̪ s ʃ/ > /θ s x/); in other varieties of Spanish, the 

distinction between /s̪/ and /s/ was lost, leaving only two phonemes, either /θ x/ (parts of Spain) 
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or /s x/ (parts of Spain and all of Latin America, including Lima and Cuzco).   Many Spanish 

dialects have also merged /ʎ/ and /ʝ/ as /ʝ/ (including Lima), with speakers in regions in contact 

with a language with phonemic /ʎ/ (including Cuzco) and some older monolingual speakers in 

Spain (including Valladolid) maintaining the distinction. 

1.4. Intervocalic /s/ and /f/ voicing in Catalan and Spanish 

Previous research has found that in Spanish, both intervocalic /s/ (Caravedo, 1990; A. 

Escobar, 1978; Hualde & Prieto, 2014; Torreblanca, 1976; Torreira & Ernestus, 2012) and /f/ 

(Blecua & Rost, 2013; Caravedo, 1990) can variably and gradiently voice in intervocalic 

position.  In the case of /s/, Catalan has a voiced counterpart /z/ while Spanish does not, and in 

the case of /f/, neither language has a phonemically voiced counterpart.2  To my knowledge, no 

study on the voicing of intervocalic Catalan /f/ has been done, and Hualde and Prieto (2014) 

conducted the only phonetic study of intervocalic voicing of Catalan /s/, and compared this with 

Spanish /s/, and also with Catalan /z/.  The authors found that word-medial intervocalic /s/ is 

significantly more likely to be completely voiced in Spanish than in Catalan (5.9% and 2.7%, 

respectively), and that Spanish has shorter /s/ durations than Catalan.  They also found that word-

medial /z/ was at least partially devoiced in 40.6% of cases.  They argue that these results are 

consistent with contrast preservation as a constraint; that is, because there is a phonemic 

opposition between /s/ and /z/ in Catalan, but not Spanish, Catalan has stronger /s/ productions 

than Spanish.  However, as the authors note and as explained in Section 1.3.2, Modern Spanish 

/s/ is the result of neutralization between Old Spanish /s/ and /z/, while Catalan /s/ is historically 

more similar to Old Spanish /s/, and so it may simply be that when the Old Spanish fricatives 

neutralized, the result was somewhere in between the two original distinct phonemes in its 
                                                 
2 Some dialects of Catalan, such as Majorcan, have /v/, but Central Catalan (the dialect under study) does not 
(Wheeler, 2005, p. 13). 
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phonetic realization.  They argue that all of the matched voiceless consonants between the 

languages should be examined in order to test this (/ptksf/).3 

In the first experiment in this dissertation, I take this framework and examine /s/ and /f/ in 

both languages, comparing Valladolid Spanish to Barcelona Catalan.  While the comparison of 

Catalan and Spanish /ptk/ is certainly an interesting comparison, the most direct comparison we 

can make is limiting our scope to the fricatives /s/ and /f/ since, as Hualde and Prieto (2014) note, 

the aerodynamic voicing constraint (Ohala & Riordan, 1979; Stevens, 2000, pp. 465–468) 

behaves quite differently for fricatives and plosives.  Gestural overlap (Browman & Goldstein, 

1986, 1992) causes voiceless plosives to voice, and then constriction is difficult to maintain in 

the presence of voicing, leading to constriction weakening and spirantization.  For fricatives, 

however, while this same gestural overlap exists motivating intervocalic fricative voicing, the 

maintenance of a constriction that creates turbulent airflow makes maintenance of voicing 

difficult, leading to devoicing or constriction weakening for voiced fricatives.  So, while we 

might expect there to be some level of correlation between the voicing of phonemically voiceless 

intervocalic plosives and fricatives since they both involve the implementation of a voiceless 

gesture in a VCV sequence, we would expect the strongest correlation to occur for /s/ and /f/, 

which are the only two voiceless fricatives that the languages share.  If contrast preservation is a 

constraint in its own right, we should expect Catalan /s/ to be more voiceless and longer in 

duration than Spanish /s/, but either no difference between the two languages for /f/, or a 

difference of smaller magnitude.  If, on the other hand, contrast preservation is entirely an 

outcome of language-specific coarticulatory strategy, then we would expect Catalan to have both 

stronger /s/ and /f/ than Spanish.  In either case, we should expect to see a correlation between 

                                                 
3 The languages also share /ʧ/; however, /ʧ/ does not voice in either of the languages, except in Canary Island and 
Cuban Spanish, where it is pronounced as a palatal stop [c] which can voice intervocalically to [Ɉ] (Hualde, 2005, p. 
152; Trujillo, 1980) 
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individuals’ mean /s/ strength and mean /f/ strength if the mechanisms underlying the individual 

variation in their strengths are the same. 

In Catalan, the phonemic contrast between /s/ and /z/ only occurs only in onset position, 

and only word-initially or word-medially, with word-initial /z/ being exceedingly rare (Recasens, 

1993).  In word-final position, the two are neutralized, with voicing determined by the following 

context (Wheeler, 2005, pp. 162–164).  In Spanish, coda /s/ and, in some dialects also word-final 

/s/ even when prevocalic, can variably aspirate or delete entirely (Hualde, 2005, pp. 161–165).  

Limiting the study to intervocalic fricatives, this makes the word-medial intervocalic position the 

best option for comparing Catalan /s/ to Spanish /s/.  Similarly, in the historical development of 

Spanish, word-initial /f/ aspirated to /h/ before vowels (but not before liquids, the glide [w] in 

sequences like /fue/, and some words with glide [j]) and then eventually elided, making word-

initial prevocalic /f/ uncommon in Spanish except in later borrowings from Latin (Penny, 2002, 

pp. 90–94, 103–104), again making the word-medial context the best option for comparison.4  

Additionally, while the aspiration and deletion of /s/ in coda and word-final prevocalic position 

acts as an overt sociolinguistic marker in many dialects of Spanish (see Lipski, 2011), and the 

degree of (de)voicing of Argentine Spanish /ʒ/ also acts as an overt sociolinguistic marker 

(Rohena-Madrazo, 2013), there are no reports that the voicing of word-medial intervocalic /s/ 

and /f/ in Spanish and Catalan does (i.e. phonetic variation in this context is below-the-radar).5  

For these reasons, I limit the fricative analysis to the word-medial intervocalic environment. 

                                                 
4 For example, in the Spanish CREA corpus (Real Academia Española, 2016), word-initial prevocalic /s/ occurs 
10,119,430 times, while word-initial prevocalic /f/ occurs 2,341,520 times. 
5 Davidson (2015) finds that voicing of word-final intervocalic /s/ in the Spanish of Catalan-Spanish bilinguals is 
covertly positively associated with solidarity with the Catalan-speaking community; but this has not been reported 
for word-medial position, where we should not expect it to be the case due to the presence of contrastive /z/ in this 
position, and it has not been reported to be recognized by monolingual speakers of Spanish. 
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1.5. Simultaneous lenition of /ptk/ and /bdg/ in Spanish 

In Spanish, the phonemically voiceless plosives /ptk/ have been classically described as 

plain voiceless plosives (Navarro Tomás, 1977).  However, recent acoustic studies on a variety 

of dialects have cast doubt on this characterization, finding that intervocalic /ptk/ may, with 

varying frequency and to varying degrees, voice and spirantize, making [ptk], [bdg], and [βðɣ] 

all possible pronunciations.  This phenomenon has been documented in Spain (Hualde, Simonet, 

& Nadeu, 2011; Lewis, 2000, 2001; Machuca-Ayuso, 1997; Martínez-Celdrán, 2009; Munday, 

2001; Torreblanca, 1976; Torreira & Ernestus, 2011), the Canary Islands (Oftedal, 1985; 

Trujillo, 1980), the Caribbean (Guitart, 1977), Chile (Figueroa, 2016; Poblete, 1992), Colombia 

(Lewis, 2000, 2001), and Lima, Peru (Caravedo, 1990; Lipski, 1994, pp. 321–322).  This type of 

lenition is cross-linguistically common and has been argued to be phonetically motivated by 

gestural overlap and the aerodynamic voicing constraint (e.g. Browman & Goldstein, 1986, 

1992; Ohala & Riordan, 1979). 

Intervocalic /bdg/ are conventionally realized as approximants [βðɣ] in all dialects by an 

allophonic rule, and in most dialects also after glides and nonhomorganic consonants (Carrasco, 

2008; Carrasco, Hualde, & Simonet, 2012; Hualde, 2005, p. 138).  The degree of constriction of 

these approximants is highly variable, and can lead to complete elision (Carrasco, 2008; 

Carrasco et al., 2012; Cole, Hualde, & Iskarous, 1999; Eddington, 2011; Figueroa, 2016; Hualde, 

Simonet, et al., 2011; Ortega-Llebaria, 2004; Soler & Romero, 1999).  Constriction weakening 

of intervocalic approximants is likely motivated by gestural overlap with the surrounding vowels 

(Browman & Goldstein, 1986, 1992). 

While the allophonic description implies possible overlap between underlyingly voiced 

and voiceless plosives (e.g. mido 'I measure' /mído/  [míðo] vs. mito 'myth' /míto/  [míðo]), 
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the simultaneous lenition of both sets of plosives may allow the contrast to be maintained in 

terms of constriction degree; that is, /d/  [ð] appears to be less constricted than /t/ [ð] 

(Hualde, Simonet, et al., 2011), and no dialect has been reported to have lost contrast between 

the sets.  Additionally, there is substantial dialectal and individual variation in both lenitions 

(Carrasco, 2008; Cepeda, 1991; Lewis, 2000, 2001; Pérez, 2007 among others); but, just as for 

the voicing of intervocalic /s/ and /f/ described in Section 1.4, there are also no reports that 

intervocalic /ptk/ and /bdg/ lenition act as sociolinguistic markers, even though vowel devoicing 

bordering voiceless consonants and pause (which, as discussed below, should be correlated with 

/ptk/ voicing) does in some dialects (e.g. Delforge, 2009, 2012).  This raises the question of 

whether the lenitions are connected; that is, does the degree to which a dialect lenites /ptk/ 

correlate with the degree to which the same dialect lenites /bdg/?  This possibility also raises a 

second more fundamental question regarding the individual: does the degree to which a speaker 

lenites one set of plosives correlate with the degree to which they lenite the other?  It is possible 

that the correlation exists at the level of the individual even if the overlap between dialects is 

great enough for dialectal differences to not show evidence of a correlation.  Furthermore, given 

that previous research finds that, at the population level, the hierarchy of plosive strength by 

place of articulation differs by underlying voicing (i.e. /p/ > /t/ > /k/ but /b/ > /g/ > /d/; e.g. 

Hualde et al. (2011); Torreira and Ernestus (2011); among others), we may expect that the 

correlation at the individual level is not the same for the three places of articulation.  As argued 

in Section 1.2.4, these predictions are consistent with both views of contrast preservation, but 

serve as an excellent test of whether there are constraints on individual multivariate variation. 

To the author's knowledge, no study has tested for a connection between the two lenitions 

at the dialectal or individual level.  The goal of the second experiment in this dissertation is to 
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test whether this relationship exists in order to increase our understanding of lenition and 

variation at the dialectal and individual levels.  To accomplish this, dialects that can be 

reasonably assumed to cover a wide range of the spectrum of lenition need to be examined.  To 

that end, I analyze data from the Spanish spoken in Cuzco, Peru; Lima, Peru; and Valladolid, 

Spain. 

Cuzco is located in the highlands of the Andean region of Peru and, having developed in 

contact with Quechua, has many Spanish-Quechua bilingual speakers (A. M. Escobar, 2011).  

Cuzco Quechua has three vowel phonemes /ɪ ʊ æ/, with /ɪ/ and /ʊ/ having lower allophones [e] 

and [o] in contact with uvular consonants (but not having phonemic status as do Spanish /e/ and 

/o/) and glide allophones [j] and [w] between vowels and in coda position, and the consonants 

given in Table 1.4 (Delforge, 2009; A. Escobar, 1978; Gallagher, 2010; Parker & Weber, 1996; 

Pérez-Silva, Palma, & Araujo, 2008): 

Table 1.4 Cuzco Quechua consonant inventory.  Parentheses indicate the coda allophone of the 
plosives at the same place of articulation. 
 Bilabial Alveolar Palatal Velar Uvular Glottal 
Plosive / Affricate p  p’ ph  t  t’ th ʧ  ʧ ’ ʧh k  k’ kh q  q’ qh  
Fricative (ɸ) s (θ) (ʃ) (x) (χ) h 
Nasal m n ɲ    
Lateral  l ʎ    
Tap  ɾ     
 

Unlike Spanish, Cuzco Quechua has no voiced obstruents, but does have a three-way 

contrast in the voiceless plosive system between plain, aspirated, and ejective plosives in syllable 

onset with a restriction of no more than one non-plain stop per word, and neutralization to 

voiceless fricatives in coda (Gallagher, 2010; Parker & Weber, 1996).  Delforge (2009, 2012) 

finds that unstressed vowels in both bilingual and monolingual Cuzco Spanish can devoice 

between voiceless consonants and before a pause.  While, to the author's knowledge, there are no 
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previous acoustic studies on Cuzco Spanish /ptk/ lenition, vowel-devoicing may imply a 

coarticulatory strategy inconsistent with high degrees of intervocalic /ptk/ voicing (e.g. Torreira 

and Ernestus' (2011) study comparing French and Spanish intervocalic /ptk/ voicing and vowel 

devoicing between two voiceless plosives, as discussed in Section 1.2.1), and so we cannot 

exclude the possibility that in the dialect's development, Quechua may have influenced Spanish 

/ptk/ (but see Hock (1991, pp. 481–485) for an argument against substrate influences).  The 

voiced plosives /bdg/ have been described as resisting lenition in the Andean highlands of Peru 

(Lipski, 1994, pp. 319–320), but as Quechua has no voiced obstruents, there is not an analogous 

argument for substrate influence.  Whereas Cuzco Spanish may have been influenced by 

Quechua in its historical development, the reason it is included in the study is because it appears 

to have particularly strong intervocalic plosives (especially when compared to Lima).  The origin 

of this pattern is not important for the study as bilingualism is not directly relevant, and the 

speakers analyzed are either monolingual speakers of Spanish or Spanish-dominant Quechua 

bilingual speakers (as explained in further detail in Section 2.1.2).  Overall, then, the literature 

suggests that Cuzco Spanish has a relatively lower degree lenition for both /ptk/ and /bdg/. 

Lima is located in coastal Peru, with a different dialect than Cuzco (though the two have 

had increased contact in recent decades; see A. Escobar (1977)).  Caravedo (1990) reports in an 

impressionistic study both voiced approximant realizations of /ptk/ and elided /bdg/ (with /d/ 

having the greatest rate of elision), and Lipski (1994, pp. 321–322) also notes frequent elision of 

both /b/ and /d/, making the Lima dialect likely to represent a relatively greater degree of 

lenition. 

Valladolid, located in northwestern Spain, is considered to have the standard Castilian 

dialect, with realizations of intervocalic /bdg/ that vary from an approximant with considerable 
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constriction to elision, with /d/ being especially susceptible to lenition (Williams, 1987).  

Munday (2001) found that /ptk/ can be partially or fully voiced in conversation, but are more 

resistant to voicing in more formal styles of speech.  Valladolid may thus have a more moderate 

degree of lenition, somewhere between Cuzco and Lima. 

Phonemically, the only differences between the dialects of Cuzco, Lima, and Valladolid 

is that Valladolid maintains the distinction between /θ/ and /s/ while Lima and Cuzco do not, and 

that Cuzco and (variably) Valladolid maintain the distinction between /ʎ/ and /ʝ/ while Lima does 

not (Hualde, 2005, pp. 19–31; Lipski, 1994, pp. 319–322).6  The social pressures on lenition in 

these three dialects may well not be the same (as is the case whenever dialects are compared), 

but they all maintain the same phonemic contrast in plosive voicing between /ptk/ and /bdg/ in 

intervocalic position, and the question the second experiment seeks to answer is whether the 

degree to which one set is lenited is correlated with the other set's degree of lenition. 

1.6. Hypotheses 

If contrast preservation acts as a constraint, we should expect correlations at the 

individual level when neutralization is plausible but not occurring (i.e. Spanish /ptk/ and /bdg/ 

strength), but not necessarily in cases where neutralization is not plausible (i.e. /s/ and /f/ 

strength; /sf/ and /ptk/ strength); and we should expect the presence of phonetically similar 

phonologically contrastive phonemes to condition phonetic outcomes (i.e. Spanish /s/ weaker 

than Catalan /s/, but no difference for Spanish and Catalan /f/).  If contrast preservation can occur 

as an outcome of entirely phonetic processes (i.e. individual correlations result in contrasts not 

being lost), then we should find these correlations not only when neutralization is plausible, but 

                                                 
6 While the distinction between /ʎ/ and /ʝ/ may be maintained in Valladolid for some older speakers, Scarpace, 
Beery, and Hualde (2015) found no evidence for a contrast between the phonemes in the same corpus from which 
the Valladolid speakers in this dissertation are taken. 
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also when phonemes not at risk for neutralization share phonetic features and articulatory 

gestures in common.  Based on the hypothesis that contrast preservation can occur as an 

outcome, but that there is also at least some role for contrast preservation as a constraint on top 

of this, I have the following concrete hypotheses concerning the data. 

Hypothesis 1. Catalan /s/ will be stronger than (Valladolid) Spanish /s/, but Catalan /f/ 

will not be stronger than (Valladolid) Spanish /f/.  I expect this outcome from the perspective 

that the existence or absence of phonological contrast can play an independent role in phonetic 

outcomes, and previous research that finds that Catalan has stronger /s/ productions than Spanish 

(Hualde & Prieto, 2014).  Both Spanish and Catalan have /s/ and /f/, neither has /v/ contrasting 

with /f/, and Catalan has /z/ contrasting with /s/ but Spanish does not.  If the presence of a 

contrastive phoneme can condition the phonetic realization of the phonemes with which it 

contrasts, then we should expect that Catalan /s/ is stronger than Spanish /s/ due to the presence 

of Catalan /z/, but that this pressure should not exist for /f/.  If there is no role for contrast 

preservation as a constraint, we should expect Catalan /s/ and Catalan /f/ to either both be equally 

stronger than Spanish /s/ and /f/, or for the two to be the same in strength in both languages. 

Hypothesis 2.  In Spanish, for both the voiceless plosives /ptk/ and the voiced plosives 

/bdg/, the dialects will show the same strength hierarchy of Cuzco > Valladolid > Lima.  I expect 

this outcome based on the hypothesis that /ptk/ lenition and /bdg/ lenition are connected.  We 

should expect dialects that have stronger /ptk/ to also have stronger /bdg/ as well, and previous 

research on these three dialects imply the most likely hierarchy is Cuzco > Valladolid > Lima.  

This result is expected regardless of whether contrast preservation acts as a constraint or not. 

Hypothesis 3. The degree to which individual speakers of Catalan and Spanish lenite /s/ 

will correlate with the degree to which the same speakers lenite /f/.  I expect this outcome based 
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on previous research that shows that changes in a gesture can affect multiple phonemes that both 

use the gesture.  The contrast preservation as an outcome view implies that such relationships 

between phonemes exist regardless of whether or not neutralization of the phonemes is plausible.  

Thus, while /s/ and /f/ are not at risk of neutralization, they do share common glottal gestures, 

and so we should expect individuals who produce relatively stronger (i.e. longer, more voiceless) 

/s/ to also produce stronger /f/ if there are constraints on individual phonetic variation from a 

multivariate perspective. 

Hypothesis 4. In Spanish, the degree to which individual speakers lenite /ptk/ will 

correlate with the degree to which the same speakers lenite /bdg/, and this relationship may 

differ by place of articulation.  I expect this outcome for the same reasons as Hypothesis 2.  The 

simultaneous lenition of /ptk/ and /bdg/ is predicted to occur under both views of contrast 

preservation at the individual level in a gradient, correlated manner, regardless of whether this is 

to prevent them from neutralizing, because they involve common gestures, or both. 

Hypothesis 5. The degree to which Valladolid speakers lenite voiceless fricatives /sf/ will 

correlate with the degree to which they lenite voiceless plosives /ptk/.  While the consonants /sf/ 

are less similar to /ptk/ than the comparisons in Hypotheses 3 and 4, we should still expect some 

degree of correlation between the two because they are both voiceless consonants.  That is, I 

expect some degree of individual variation in intervocalic /ptk/ lenition to be due to speakers’ 

having an overall tendency to voice (or not) intervocalic voiceless consonants in general. 
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Chapter 2. Phonetic methods 

2.1. Datasets 

2.1.1. Recording conditions 

The Spanish data for Valladolid and Catalan data for Barcelona are taken from the 

Glissando corpus of Spanish and Catalan speech (Garrido et al., 2013).  Recordings were made 

on Marantz PMD670W1B and PMD560 recorders, using a Mackie CR1604-VLZ mixer, at 

sampling frequency of 44 kHz, with the participants wearing a headset wireless Senheisser 

EW100-G2 microphone (Garrido et al., 2013).7  The Spanish data from Cuzco and Lima were 

collected by the author in Peru in the summer of 2014.  Recordings were made using a ZOOM 

H4n recorder and AKG C520 head-worn unidirectional condenser microphone placed 

approximately 2 cm from the right corner of the participant’s mouth at a sampling rate of 44 

kHz.  Recordings were conducted at the participants’ place of work, home, or study before the 

work-day started, which was always a quiet room with no echo.  While no difference in quality 

between the recordings from the three dialects was noticed by the author during segmentation, to 

account for possible small differences in the level of background noise, intensity measurements 

were computed subtracting out the RMS amplitude from a silent interval in each recording to 

ensure their comparability (see Section 2.4). 

                                                 
7 The Glissando recordings took place with both speakers wearing a head-worn microphone and additionally with a 
stationary microphone between them; the head-worn microphone recordings are used to ensure valid intensity 
measurements and comparability with the Cuzco and Lima recordings. 
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2.1.2. Speaker demographics and tasks 

The Glissando corpus contains read speech from 8 trained speakers for both Spanish and 

Catalan (radio news broadcasters and advertising professionals), as well as spontaneous speech 

from these professional speakers and 20 non-professional speakers for both Spanish and Catalan 

(all university students, balanced for sex) participating in task-oriented dialogues and informal 

dialogues, for a total of 56 speakers.  In this study, I use data from the non-professional speakers’ 

task-oriented dialogues.  The task-oriented dialogues consist of three subjects for each pair of 

speakers: travel, transportation and university information.  For example, in the university 

information dialogue, one speaker plays the role of a university administrator and the other 

speaker plays the role of a student requesting information about taking courses abroad.  The 

corpus has been force-aligned at the word, phoneme, and syllable level, but the alignment is too 

imperfect for analysis without manual correction.  In the case of one set of task-oriented 

dialogues in the Spanish sub-corpus (representing the data for one male and one female speaker), 

the forced alignment was too imperfect to reliably locate segments of interest in the audio signal, 

and so these speakers' data were removed, resulting in 18 Spanish speakers in the Valladolid 

dialect, and 20 Catalan speakers from Barcelona, balanced for sex. 

The data for Cuzco and Lima are taken from a read speech task and informal interviews 

conducted by the author, with participants classified demographically based on a questionnaire 

(see Section B.1) filled out prior to recording.8  For the Lima dialect, there were 8 speakers (4 

female), all of whom were monolingual speakers of Spanish born and raised in Lima with 

parents who were also monolingual speakers of Spanish, and all were studying at Pontífica 

Universidad del Perú.  Lima is home to multiple dialects of Spanish (e.g. A. Escobar, 1977), and 
                                                 
8 The Valladolid task-oriented dialogues and Cuzco and Lima interviews are not exactly the same in their level of 
task formality, but do both represent spontaneous speech, and so for the purposes of this dissertation are considered 
comparable tasks. 
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so I make no claim as to any specific dialect these speakers belong to.  Rather, I will simply refer 

to these speakers being representative of the varieties spoken in Lima as the ‘Lima dialect’.  

There were 30 speakers for the Cuzco dialect, split between monolingual speakers of Spanish 

(16) and Spanish-dominant Quechua-bilingual speakers (14).  The bilingual speakers were 

classified as Spanish-dominant based on responding that their parents spoke more Spanish than 

Quechua at home, that they attended school in Spanish, and that they currently used more 

Spanish than Quechua both at home and at work.  The monolingual group was balanced for sex, 

education level (university or secondary), and two age groups (older than 40 years of age or 40 

years of age or younger), with two speakers for each combination of social factors.  The bilingual 

speakers were balanced for these same criteria except there was only one older male speaker who 

attended university and only one older female speaker who did not attend university (see Table 

B.1 for Cuzco participant demographics). 

For the read speech task, words containing word-medial intervocalic /ptk/ and /bdg/ were 

placed into meaningful sentences (three words for each combination of phoneme and three stress 

conditions: in the onset of a stressed syllable, henceforth “tonic”; in the onset of a post-tonic 

syllable, henceforth “post-tonic”; or in between two unstressed vowels, henceforth “unstressed”) 

for a total of 54 planned observations per speaker, and 2,052 planned observations total (see 

Section B.2 for a list of the sentences and planned observations).  For example, the sentence El 

doctor administró la medicina al paciente ‘The doctor gave the medicine to the patient’ contains 

a planned observation of unstressed intervocalic /d/ in the word medicina ‘medicine.’  The task 

was to simply read each sentence aloud two times, and the second reading was analyzed.  In the 

informal interviews, I simply asked open-ended questions about the participants’ work, studies, 

etc. 
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2.1.3. Data distribution 

2.1.3.1. Spanish /ptk/ and /bdg/ 

For the read speech task in Cuzco and Lima, all planned observations of /ptk/ and /bdg/ 

were segmented.  Because there were tens of thousands of possible /ptk/ and /bdg/ observations 

in the spontaneous speech data (Valladolid task-oriented dialogues and Cuzco and Lima 

interviews) and all observations required manual segmentation, stratified random sampling of the 

possible observations obtained by crawling the forced-aligned Valladolid TextGrids and  my 

transcripts of the Cuzco and Lima interviews was performed.9  As the planned observations in 

the read speech task were balanced for each of the three stress conditions described in Section 

2.1.2 (in addition to plosive phoneme identity), the spontaneous speech sampling was stratified 

by plosive phoneme identity and stress condition.  An R script written by the author was used to 

take a stratified random sampling of the content words in the list of possible spontaneous speech 

observations, taking 5 instances in each of the resulting 18 combinations of phone and stress 

(unless fewer than 5 plosives were available for a given combination), for an initial maximum of 

90 plosives per speaker balanced across plosive phoneme and stress (6 plosive phonemes x 3 

stress conditions x 5 tokens).  The distribution of these randomly sampled plosives with respect 

to the other fixed effect factors included in the regression (described in Section 2.3.2.2) was 

examined, and when there were low cell counts for a speaker, additional observations were 

sampled.  The suffix /-ado/ was not used, since it is conventionally deleted in some dialects, and 

the suffixes /-iko/ and /-igo/ were not used, because they may be neutralized for some speakers 

                                                 
9 With simple random sampling, imbalances in the distribution of the consonants of interest would be reflected in the 
distribution of the randomly sampled consonants for analysis.  With stratified random sampling, the possible 
observations are binned based on the category they belong to, and then within each category, the same number of 
observations is randomly sampled, leading to better balance across categories in the sample for analysis.  Also note 
that because the observations are chosen randomly, they are equally likely to come from all parts of the recording 
(i.e. the analyzed observations are not biased towards consonants which occur early or late in the recordings). 
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(Hualde, Simonet, et al., 2011).  Voiced plosives following a glide were also not used, since 

some dialects have fortition in this environment (Carrasco, 2008; Carrasco et al., 2012).  As the 

only plosive that occurs word-finally in non-loan words with any frequency is /d/, and its 

allophony is different from word-initial and word-medial /d/ (Hualde & Eager, 2016), only word-

initial and word-medial positions were considered. 

Tokens that occurred bordering voiceless vowels or that preceded a vowel with creaky 

voice were excluded, as relative intensity measures and voicing measures cannot be reliably 

obtained in these cases.  This resulted in a total of 5281 Spanish plosives for analysis, with 

distribution by phoneme, dialect, and task given in Table 2.1.  The analysis of these 5281 

Spanish /ptk/ and /bdg/ observations will be referred to simply as the “plosive analysis” 

throughout. 

Table 2.1 Distribution of Spanish plosives for analysis.  Numbers in parentheses indicate the 
number of speakers for the dialect. 

Phoneme Valladolid (18) 
Cuzco (30) Lima (8) 
Read Spontaneous Read Spontaneous 

/p/ 228 261 179 72 56 
/t/ 275 266 223 71 67 
/k/ 248 268 218 72 83 
/b/ 258 267 281 72 78 
/d/ 293 270 253 72 72 
/g/ 245 262 124 66 81 
 

2.1.3.2. Spanish and Catalan /s/ and /f/ 

For Spanish and Catalan /s/ and /f/, the task-oriented dialogues for Valladolid and 

Barcelona were used.  Because, as discussed in Section 1.4, word-initial /f/ is rare in Spanish, 

only content words that contained word-medial intervocalic /s/ and /f/ were considered.  The 

forced-aligned TextGrids were crawled to create a list of observations meeting these criteria, and 
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all observations were considered.10  As for the plosives, tokens that occurred bordering voiceless 

vowels or that preceded a vowel with creaky voice were excluded.  This resulted in a total of 

2163 observations for analysis, with counts by language and phoneme given in Table 2.2.  The 

analysis of these 2163 Spanish and Catalan  /s/ and /f/ observations will be referred to simply as 

the “fricative analysis” throughout. 

Table 2.2 Distribution of Spanish and Catalan fricatives for analysis.  Numbers in parentheses 
indicate the number of speakers for the language. 
Phoneme Valladolid Spanish (18) Barcelona Catalan (20) 
/f/ 165 269 
/s/ 765 964 
 

2.2. Dependent variables: acoustic measures of plosive and fricative strength 

2.2.1. Intensity 

Several related relative intensity measures of consonant constriction have been used in 

previous studies on Spanish plosive lenition: the difference between the minimum intensity in 

the consonant and the maximum in the following vowel, the ratio of the consonant minimum and 

vowel maximum, and the maximum velocity of the rise in intensity from the consonant 

minimum to the vowel maximum.  However, as one might expect, these measures are all highly 

positively correlated (r > 0.9; Hualde, Simonet, et al., 2011), and so their analysis needs to be 

carried out in a principled way that does not inflate the rate of false positive discoveries 

(discussed in detail in Section 2.5.2).  In this study, the difference between the minimum 

intensity of the consonant and the maximum intensity in the following vowel measured in dB 

(henceforth “intensity difference”) and maximum consonant to vowel intensity velocity 

measured in dB/ms (henceforth "intensity velocity") are used (Carrasco et al., 2012; Hualde, 

                                                 
10 Foreign toponyms in the tourist dialogue were excluded. 
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Shosted, & Scarpace, 2011; Hualde, Simonet, et al., 2011; Hualde, Simonet, Shosted, & Nadeu, 

2010; Parrell, 2011; Recasens, 2015; among others), with higher values indicating a more 

constricted consonant.  It should also be noted that both of these measures involve taking the 

difference of two logs, meaning that they represent the log of the ratio of the corresponding RMS 

values.  Intensity difference and velocity were taken for plosives /ptk/ and /bdg/, but not for 

fricatives /s/ and /f/, as in the case of fricatives, the minimum intensity of the consonant would 

get higher with stronger constriction, and be very different for /s/ and /f/, as the former is a 

sibilant and the latter is not; additionally, the hypotheses for the fricative analysis are specific to 

voicing. 

2.2.2. Duration 

Previous studies have measured plosive duration based on acoustic landmarks associated 

with closure and release, such as the absence of F2 or presence of a burst, with these landmarks 

not reliably available for approximants, and fricative duration based on the onset and offset of 

aperiodic noise in the waveform and spectrogram (Hualde & Prieto, 2014; Torreira & Ernestus, 

2011; Turk, Nakai, & Sugahara, 2006).  Duration for Spanish approximants has been measured 

based on the manual segmentation of intensity-based criteria (Hualde, Simonet, et al., 2011) by 

placing a marker where the intensity curve begins to decrease from the previous vowel and 

another where it stops increasing to the following vowel.  In this paper, the approximant duration 

measurement is automated (see Section 2.4) and applied to all consonants (/ptk/, /bdg/, and /sf/), 

rather than using a separate F2-based closure-related criterion for /ptk/ that is not applicable to 

/bdg/, and aperiodic noise onset and offset criteria for /sf/, as high vowels can sometimes have 

superimposed frication, making the criteria inconsistently reliable.  In this way, the exact same 

measurement is applied to all consonants, making them comparable.  This has the additional 
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benefit of eliminating the need to identify the exact time of closure for /ptk/, which in Spanish 

may not occur at all and would lead to an unnecessary dichotomization of the voiceless plosives 

into two groups based on whether they achieved full closure (ignoring the truly gradient nature 

of closure reduction in the process).  To be clear, this measure, which I will simply refer to as 

consonant duration, includes portions of the surrounding vowels, which some other measures of 

consonant duration aim to avoid.  This is intentional, and to control for the difference in intrinsic 

vowel durations, preceding and following vowel height are included in all analyses.  Some 

manual segmentation is still required, but the precision required is substantially reduced.  The 

researcher needs only to place boundaries that contain the intensity dip of a consonant without 

containing the surrounding vowel intensity maxima.  From there, the exact location of the 

consonant minimum can be located using the intensity contour, and the preceding and following 

vowel intensity maxima can be located using the first-differentiated intensity contour (i.e. 

intensity velocity curve), searching for the first instance where the velocity changes sign 

(described in greater detail Section 2.4), rather than determining these locations manually. 

2.2.3. Voicing 

The degree of intervocalic /ptk/ voicing has been measured in relation to closure and 

release landmarks in the acoustic signal.  For example, Torreira and Ernestus (2011) measure the 

duration of voicing in the closure of /ptk/ and VOT, and others measure the percentage of the 

consonant’s closure that is voiced (e.g. Hualde, Simonet, et al., 2011; Lewis, 2000).  For Spanish 

and Catalan /sf/, voicing has been measured as the percentage of the fricative that is voiced (e.g. 

Hualde & Prieto, 2014).  In this study, pitch tracking (K. Johnson, 2012, pp. 64–68) is used to 

detect a gap in voicing (Torreira & Ernestus, 2011) within the interval of the consonant's total 

duration as described above.  The duration of this interval, which I will call voiceless duration, 
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measures the total duration of the absence of periodicity in the VCV sequence, regardless of its 

relation to other less reliable acoustic landmarks (i.e. the voiceless period may contain possible 

pre-closure aspiration and VOT for plosives, and voicelessness that occurs before or after the 

onset of uninterrupted aperiodic noise for fricatives).  This measure thus has the same advantages 

as the total consonant duration measure described above, in that no binning of the plosives or 

fricatives into separate groups is required.  The voiceless duration was then divided by the 

consonant’s total duration to obtain the percentage of the consonant that was voiceless, and both 

the durational and percentage measures were considered in analysis (note that the percent 

voiceless will never be exactly 1 since the consonant duration, as measured here, contains 

portions of the surrounding vowels).  Some authors have measured the percentage of a consonant 

that is voiceless using the “fraction of locally unvoiced frames” in Praat’s voice report (Eager, 

2015; Hualde, Eager, & Nadeu, 2015; Hualde & Prieto, 2014), while others have used the pitch 

tracker directly as is done here (e.g. Torreira & Ernestus, 2011).  The measures taken here can 

also be obtained by first taking the percentage of the consonant’s total duration that is voiceless 

using the voice report and then multiplying this percentage by the consonants duration to obtain 

the voiceless duration; the two approaches are based on equivalent aspects of the acoustic signal 

and should not differ substantially in their outcomes. 

2.3. Predictors 

2.3.1. Predictors relevant to the hypotheses 

In the fricative analysis, the main hypotheses to be tested are that Catalan has stronger /s/ 

productions than Spanish, but the languages do not differ in the strength of /f/, and that a 

speaker’s /f/ strength will be correlated with their /s/ strength.  For this reason, the full interaction 

of language (Catalan or Spanish) and fricative phoneme identity (/f/ or /s/) was included.  In the 
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plosive analysis, the main hypotheses are that the dialects will show a strength hierarchy of 

Cuzco > Valladolid > Lima for both /bdg/ and /ptk/, and that a speaker’s voiceless plosive 

strength will be correlated with their voiced plosive strength, with the strength of this 

relationship varying by place of articulation.  For this reason, dialect (Cuzco, Lima, or 

Valladolid), place of articulation (bilabial, dental, or velar), and underlying voicing (voiced or 

voiceless) were included, along with the interaction of dialect and underlying voicing, and the 

interaction of place of articulation and underlying voicing. 

2.3.2. Control predictors 

2.3.2.1. Social factors 

Speaker sex (female or male) was included in both analyses.  For the fricative analysis, 

the interaction of sex and language was included, and for the plosive analysis, the interaction 

between sex and dialect was included.  Within the Cuzco plosive data, age group (older or 

younger), education level (secondary or university), and Quechua bilingualism (yes or no) were 

also included (coding of these factors is detailed in Section 3.4.2).  While the analyses carried 

out in this dissertation are not sociolinguistic in nature, it is still important to include these 

predictors and interactions as controls. 

2.3.2.2. Linguistic factors 

Linguistic factors that have been shown to affect consonant strength in Spanish and 

Catalan included in both analyses were stress (tonic, post-tonic, or unstressed) and preceding and 

following vowel height (high or non-high); for the plosive analysis, position in the word (initial 

or medial) and task (read speech or spontaneous) were also included (Carrasco, 2008; Colantoni 

& Marinescu, 2010; Cole et al., 1999; Delforge, 2009; Hualde, Simonet, et al., 2011; Munday, 

2001; Nadeu, 2014; Soler & Romero, 1999; Torreira & Ernestus, 2011; Williams, 1987; among 
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others).  With regards to the preceding and following vowels, previous research has coded for 

vowel phonemic identity (e.g. for Spanish, a factor with five levels /a/, /e/, /i/, /o/, and /u/).  In 

this study, vowels are coded as high or non-high (/i/ and /u/ being high, and all other vowels in 

both languages being non-high), as height distinctions can be expected to affect all of the 

measures taken: non-high vowels have longer durations, which should lead to longer consonantal 

durations as measured here; voiceless periods tend to be longer bordering high vowels than non-

high vowels; and non-high vowels have higher intensity than high vowels (Delforge, 2009, 2012; 

Torreira & Ernestus, 2011; among others).11  For each of these control factors, the interaction 

with underlying voicing in the plosive analysis and the interaction with language in the fricative 

analysis were included when the descriptive statistics warranted inclusion (described in more 

detail in Chapter 4 and Chapter 5). 

2.3.2.3. Linguistic covariates 

To control for the possible effect of word frequency (Pierrehumbert, 2001), the natural 

logarithm of the number of times a consonant’s word occurred in the CREA corpus (Real 

Academia Española, 2016)  for Spanish and the IEC corpus for Catalan (IEC, 2016) was taken as 

a measure of word frequency, with words not found in the corpora given a value of ln(1) = 0.  

As a final linguistic control, speech rate was measured, as it may affect all five phonetic 

measures of consonant strength taken in this study (intensity difference, intensity velocity, 

duration, voiceless duration, and percent voiceless).  Speech rate was measured using the Praat 

script written by De Jong and Wempe (2009) to measure intensity maxima corresponding to 

syllable nuclei.  The script first locates all intensity maxima over a recording-specific relative 

threshold, then discards those that either are not voiced or do not follow a dip in intensity of at 

                                                 
11 It is possible that low and mid vowels may also differ in this regard, but I leave this to future research. 
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least 2 dB.  The remaining maxima are added to a TextGrid and can be used to measure speech 

rate.  In the case of the voiceless consonants /ptksf/, it seems reasonably clear that a faster speech 

rate will correspond to a weaker consonant.  However, for the voiced plosives /bdg/, the exact 

role of speech rate, regardless of how it is measured, is somewhat unclear given that the plosives 

under study are leniting to the point of elision on a gradient scale.  For a VCV sequence 

containing /b/, /d/, or /g/, if the consonant is weak enough (i.e. has a low enough intensity 

difference), then the two vowels in the sequence will be identified as a single nucleus rather than 

two separate nuclei.  As the strength of the consonant increases to an intensity difference over 2 

dB, then two syllable nuclei are more likely to be counted.  In other words, a relatively greater 

number of syllable nuclei may be positively correlated with plosive strength in this case.12  The 

effect of this measure would thus possibly differ for phonemically voiceless and voiced plosives, 

and so in the Spanish /ptk/ and /bdg/ analysis, its interaction with underlying voicing was 

included.  The role of speech rate is also likely to vary considerably by speaker.  To that end, the 

measure was speaker-normalized (for each speaker, the mean for that speaker was subtracted 

from the speaker's values, and divided by their standard deviation, yielding a measure that 

represents how quickly or slowly a speaker was talking with respect to their own speech rate 

tendencies on unit scale). 

2.3.3. Random effects grouping factors 

In both the plosive and fricative analyses, speaker was considered as a random grouping 

factor.  For the Cuzco and Lima read speech plosives, experimental item was also included as a 

                                                 
12 Even if a researcher used phone-rate and syllable-rate measures with audio files which were fully segmented at the 
phone and syllable level, they would run into the same issue: how do you count the number of phones and syllables 
in a VCV sequence when the consonant is elided?  This will have an effect on the resulting measure, and counting 
the VCV sequence as two syllables begs the question with regards to whether or not speech rate can explain the 
presence of the elision. 
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grouping factor (coding detailed in Section 3.4.2).  Other authors have included word (or similar 

groups) as a random effect grouping factor in spontaneous language production (e.g. Bresnan, 

Cueni, Nikitina, & Baayen, 2007), but in this study it is not included for two reasons: (1) the vast 

majority of words only have one observation, meaning their intercept would be collinear with 

their errors in the model (i.e. there aren’t actually repeated measures on most of them); and (2) 

the sense in which there are repeated measures on words in spontaneous speech is not the same 

as is the case for experimental items (i.e. for the read speech items, the same plosive in the same 

word is occurring in the exact same sentence that was not created by the speaker, but rather by 

the experimenter, and so we can expect that repeated measures on this item will introduce an 

additional variance component).  For all grouping factors, the maximal random effects structure, 

as described in Section 3.2.4, was included. 

2.4. Segmentation and measure extraction 

Segmentation and measure extraction were performed in Praat (Boersma & Weenink, 

2016), using a script written by the author.  De Jong and Wempe's (2009) script was also applied 

to each audio file to produce a TextGrid tier containing points at each syllable nucleus.  For each 

audio file, a cross-correlated pitch object was created, following the Praat manual's 

recommendation that cross-correlation be used in the analysis of voicing rather than auto-

correlation, with a time step of 1 ms.  Sex-specific pitch ranges of 100-300 Hz for female 

speakers and 70-250 Hz for male speakers were used, as these ranges produce values that are not 

significantly different from using speaker-specific ranges (Eager, 2015; Vogel, Maruff, Snyder, 

& Mundt, 2009).  All other parameters were left at their defaults.  The pitch values from each 

pitch object were then written to a table, and a new column was created with the time gap 

between pitch points, obtained by first-differentiating the time stamps of the pitch points. 
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For intensity difference and intensity velocity, using the raw intensity measurements 

would cause the intensity from voicing to raise the minimum intensity in the consonant, causing 

a fully voiced segment and a fully voiceless segment of the same constriction degree to have 

different intensity differences and velocities.  Intensity at very high frequencies may also be 

related to background noise rather than constriction, and so its exclusion is also desirable.  For 

this reason, the raw audio files were filtered with a band-pass filter and von Hann window 

(Hualde, Nadeu, & Simonet, 2010; K. Johnson, 2012, pp. 61–62, 68–71; Recasens, 2015).  

Hualde et al. (2010) use a range of 500 - 10,000 Hz for the band-pass filter, while Recasens 

(2015) uses a range of 250 - 10,000 Hz, arguing that the higher floor of 500 Hz may remove 

intensity associated with F1, which contains important information about constriction.  As the 

goal of the filter's floor is to remove intensity associated with F0 while maintaining intensity 

associated with F1, and these values are both higher for female speakers than for male speakers, 

in this study the floor was set to the sex-specific ceiling used in the creation of the pitch objects; 

that is, the band-pass filter was set to 300 - 10,000 Hz for female speakers and 250 - 10,000 Hz 

for male speakers.  This filtered audio file was then used to create an intensity object with a time 

step of 1 ms.  According to the Praat manual, the minimum pitch setting for the creation of 

intensity objects should be set as high as possible while still being lower than the minimum pitch 

that can be expected from the speaker, thus ensuring that the curve is neither pitch-synchronous 

nor smeared.  For this reason, the minimum pitch was set to 100 Hz for female speakers and 70 

Hz for male speakers (the same as for the cross-correlated pitch objects), making the effective 

analysis window length 8 ms for female speakers and 11.4 ms for male speakers.  The values of 

the audio file in each window are “first squared, then convolved with a Gaussian analysis 

window (Kaiser-20; sidelobes below -190 dB” (Boersma & Weenink, 2016).  The resulting 
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intensity values (in dB) were then written to a table for each audio file.  As an estimation of the 

amount of background noise in each filtered audio file, the intensity during a silent interval was 

taken, and recorded as 10 log10 𝑅𝑅𝑆𝑛𝑛𝑛𝑛𝑛, with the raw values in the intensity tables representing 

10 log10�𝑅𝑅𝑆𝑛𝑠𝑛𝑛𝑠ℎ + 𝑅𝑅𝑆𝑛𝑛𝑛𝑛𝑛� (see K. Johnson (2012, pp. 59–60, 87–88) for details on the 

relationship between RMS and dB).  The noise was then subtracted out of the raw values by first 

converting both to RMS, then subtracting the noise RMS out, and then converting the resulting 

values back to dB.  This is similar to spectral subtraction (Boll, 1979), but as only the total 

intensity in the band-pass filtered signal is being used, the total noise is subtracted from the total 

raw values rather than at separate frequency components.  These adjusted values were then first-

differentiated to create a second column with intensity velocities in dB/ms. 

The filtered audio file was used for segmentation.  For each consonant, on the first tier of 

the TextGrid, boundaries were manually placed at the beginning and end of the word the 

consonant occurred in and the previous word.  On the second tier, boundaries were placed at the 

beginning and end of the VCV sequence, with additional boundaries placed around the minimum 

intensity of the consonant.13  The resulting three intervals were labeled with their phonemic 

identity (the first interval with the preceding vowel's, the second with the consonant’s, and the 

third with the following vowel's), and following each vowel's phonemic label, an s was entered 

to indicate the vowel belonged to a stressed syllable and a u was entered to indicate the vowel 

belonged to an unstressed syllable.  If no evidence of a consonant was present (no dip in the 

intensity contour), the boundaries for the consonant were placed arbitrarily so that the script 

would be able to record phoneme identity, and a point was placed on the third tier within this 

interval and labeled elided.  Silent intervals near each consonant (if any) were segmented on tier 
                                                 
13 In the case that intensity reached a minimum then raised temporarily before falling again to a second minimum (as 
may occur in the case of high burst amplitude and long VOT for plosives, and in most fricatives), both consonant 
minima were ensured to be contained by the boundaries. 
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four and marked as sil.  Finally, the syllable nucleus points from De Jong and Wempe’s (2009) 

script were added as a fifth tier.14 

A Praat script written by the author was then used to compute the acoustic measures of 

consonant strength described in Section 2.2 along with speech rate as described in Section 

2.3.2.3.  The observations’ coding for the factors described in Sections 2.3.2.1 and 2.3.2.2 were 

obtained from interval labels and audio file names.  For non-elided consonants, the script first 

found the minimum intensity value in the frequency-filtered noise-adjusted table within the 

consonant’s segmented interval and placed a point on the third tier at this time (labeled cmin).  

Then, starting from the start point of the plosive interval in the intensity velocity table, the script 

worked backwards in time until the first non-negative velocity was found (representing the 

previous vowel's maximum intensity), recorded the time of this maximum, and added a point to 

the third tier at its time stamp (labeled d1).  Similarly, starting from the end point of the 

consonant interval, the script worked forwards until the first non-positive velocity was found 

(representing the following vowel's maximum intensity), recorded the time at which the 

maximum occurred,  and placed a point in tier three at this time (labeled d2).  For plosives, the 

maximum value in the intensity velocity table that occurred between cmin and d2 was also 

recorded, and a point was added to the third tier at the time at which the maximum velocity 

occurred (labeled vel).  The script then found the pitch points in the pitch table that occurred 

between d1 and d2, and searched for gaps greater than 2 time steps (that is, 2 ms).15  The time 

stamps of the point at the beginning of the gap and of the following pitch point were recorded, 

                                                 
14 The exact locations of the syllable nuclei and the consonant duration markers may be slightly different because 
different criteria are applied in determining their location. 
15 Due to small differences in the exact times of the pitch points, a fully voiced consonant was found to be able to 
have gaps in the table between 1 and 2 ms, while a threshold of 2 ms successfully identified voiceless periods. 
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and points were added to the third tier (labeled vp1 and vp2).16  If no voiceless period was found, 

these points were not placed.  Lastly, points were placed in the second tier 500 ms before and 

after cmin and labeled srw1 and srw2 to create a 1-second speech rate window.  For elided 

consonants, the script only placed points for the speech rate window, centering it at the mid-point 

of the VCV sequence.  If any points overlapped in their exact times (as may be the case for d2 

from one consonant and d1 from the following consonant when two observations occurred near 

one another), the labels were added to a single point and separated with an underscore (e.g. 

d2_d1).  Examples of the resulting segmentations are provided in Figure 2.1 through Figure 2.6. 

In all of the example segmentations, the intervals in tiers one, two, and four are manually 

segmented, the points in tier five are the syllable nuclei detected by De Jong and Wempe’s 

(2009) script, the points in tier three were placed by the author’s script, and the solid black line is 

the intensity contour. 

 

Figure 2.1 Example segmentation of a word-initial tonic /p/. 

                                                 
16 Examination of the results of the script showed that in some cases, for plosives, a double burst (most often for /k/) 
was identified by the pitch tracker as being voiced due to bursts’ temporal spacing, resulting in two voiceless 
periods.  In these cases, the first vp2 point and the second vp1 point were deleted, yielding the desired interval. 
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Figure 2.2 Example segmentation of a voiced approximant realization of a word-initial 
unstressed /b/. 

 

  
Figure 2.3 Example automated segmentation of the 1-second speech rate window centered at the 
consonant minimum intensity for the word-initial unstressed /b/ in Figure 2.2.  In this case, the 

speech rate is 6 nuclei/s. 
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Figure 2.4 Example segmentation of an elided word-medial unstressed /b/. 
 

 

Figure 2.5 Example segmentation of /s/ and /f/, both with voiceless periods. 
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Figure 2.6 Example segmentation of fully voiced /s/ and /f/. 
 

For non-elided consonants, consonant duration was measured as d2 – d1, and voiceless 

duration was measured as vp2 – vp1 if these points were present or zero if they were not present 

(i.e. if the consonant was fully voiced).  The percentage of the consonant that was voiceless was 

then computed by dividing the voiceless duration by the consonant duration (i.e. (vp2 – vp1) / 

(d2 – d1)).  For non-elided plosives, intensity difference was measured as the intensity at cmin 

subtracted from the intensity at d2, and intensity velocity was measured as the velocity at vel.  

For elided consonants, all relevant dependent variables were set to zero.  For all consonants 

(elided or not), the number of nuclei occurring between srw1 and srw2 was recorded, and the 

duration of the window between srw1 and srw2 that did not overlap with silent intervals in tier 

four was recorded.  The number of nuclei was then divided by the non-silent duration to obtain 

the local speech rate measured in nuclei per second (this was then speaker-normalized as 
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described in Section 2.3.2.3 in R).  The phonemic identity of the consonant and the preceding 

and following vowels, the stress condition, the word the plosive occurred in, read speech item 

(from phonemic identity and word, if applicable), and, where relevant, whether the consonant 

was word-medial or word-initial were also extracted from the two manually segmented interval 

tiers, and speaker identifier and demographic information was obtained from the file names.  

These results were then stored in a CSV file.  Log word frequency was then computed as 

described in Section 2.3.2.3 and added to the CSV file. 

2.5. Dependent variable dimensionality reduction 

2.5.1. Dependent variable descriptive statistics 

Descriptive statistics for each measure of plosive strength (percent voiceless, voiceless 

duration, plosive duration, intensity difference, and intensity velocity) by underlying voicing are 

provided in Table 2.3.  Recall that elided tokens were assigned a value of 0 for all measures, and 

non-elided tokens that were fully voiced were assigned a value of 0 for voiceless duration and 

percent voiceless. 

Table 2.3 Descriptive statistics for acoustic measures of plosive strength by underlying voicing. 
Voicing Measure Minimum Median Maximum Mean SD 

Voiced (N = 2694) 

Intensity Difference 0.00 6.27 44.26 8.75 8.59 
Intensity Velocity 0.00 0.21 1.70 0.31 0.33 
Duration 0.00 97.00 262.00 91.30 51.24 
Voiceless Duration 0.00 0.00 66.00 0.58 4.84 
Percent Voiceless 0.00 0.00 0.57 0.01 0.04 

Voiceless (N = 2587) 

Intensity Difference 0.64 36.43 73.95 36.21 9.39 
Intensity Velocity 0.05 1.28 5.56 1.38 0.64 
Duration 50.00 155.00 298.00 157.94 36.66 
Voiceless Duration 0.00 82.00 212.00 79.45 33.01 
Percent Voiceless 0.00 0.52 0.91 0.49 0.17 
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There were no elided tokens of /ptk/ in the dataset, and 15.5% of the /bdg/ tokens were 

elided (Cuzco: 2.8% in read speech and 8.4% in spontaneous speech; Lima: 34.3% in read 

speech and 43.7% in spontaneous speech; Valladolid: 21.1% in spontaneous speech).  

Additionally, 1.8% of the /bdg/ tokens were found to be partially devoiced (Cuzco: 3.9% in read 

speech and 2.3% in spontaneous speech; Lima: none; Valladolid: 0.3% in spontaneous speech), 

and 4.8% of the /ptk/ tokens were fully voiced (Cuzco: 0.6% in read speech and 2.7% in 

spontaneous speech; Lima: 7.0% in read speech and 20.4% in spontaneous speech; Valladolid: 

6.1% in spontaneous speech).  The five acoustic measures are (as should be expected) highly 

positively correlated, as can be seen in Figure 2.7. 

 

Figure 2.7 Scatterplots and sample correlations for acoustic measures of plosive strength. 
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Descriptive statistics for each measure of fricative strength (percent voiceless, voiceless 

duration, and fricative duration) by language and phoneme identity are provided in Table 2.4. 

Table 2.4 Descriptive statistics for acoustic measures of fricative strength by language and 
phoneme. 
Language Fricative Measure Minimum Median Maximum Mean SD 

Catalan 

/f/ 
(N = 269) 

Duration 64.000 143.000 266.000 147.297 33.092 
Voiceless Duration 0.000 72.000 158.000 67.082 33.823 
Percent Voiceless 0.000 0.482 0.790 0.441 0.201 

/s/ 
(N = 964) 

Duration 61.000 154.500 310.000 158.749 37.961 
Voiceless Duration 0.000 78.000 169.000 73.381 36.243 
Percent Voiceless 0.000 0.495 0.797 0.446 0.191 

Spanish 

/f/ 
(N = 165) 

Duration 73.000 142.000 271.000 145.242 35.544 
Voiceless Duration 0.000 73.000 160.000 66.921 35.027 
Percent Voiceless 0.000 0.519 0.794 0.445 0.209 

/s/ 
(N = 765) 

Duration 45.000 139.000 288.000 143.141 32.526 
Voiceless Duration 0.000 71.000 159.000 64.825 35.956 
Percent Voiceless 0.000 0.504 0.780 0.434 0.221 

 

There were no elided fricatives in the dataset.  For Catalan, 12.6% of /f/ were fully voiced 

and 10.4% of /s/ were fully voiced.  For Spanish, 14.5% of /f/ were fully voiced and 16.3% of /s/ 

were fully voiced.  Just as for the plosives, the measures of fricative strength are also highly 

positively correlated, as can be seen in Figure 2.8. 
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Figure 2.8 Scatterplots and sample correlations for acoustic measures of fricative strength. 
 

2.5.2. Principal component analysis 

Analyzing the measures separately introduces a researcher degrees of freedom issue that 

increases the likelihood of a false-positive result (Simmons, Nelson, & Simonsohn, 2011).  In 

addition to this issue, analyzing them separately also misses the overall pattern in the datasets.  A 

better alternative is to use a principled method to reduce the dimensionality of the data such as 

principal component analysis (PCA; see Baayen, 2008; R. A. Johnson & Wichern, 2002).  PCA 

rotates the correlated multidimensional space to create a new set of uncorrelated variables.  It 

starts by finding the linear combination of the variables that has the highest variance (and 

therefore explains the most variance in the data), and applies this transformation to create the 

first principal component (PC1), assigning a score to each observation based on the weight given 

to each variable in the rotation that produced the component (called loadings).  It then repeats 

this process, finding the linear combination of the variables that explains the most of the 

variation that was not explained by PC1, under the constraint that the second component PC2 is 
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orthogonal to PC1 (completely uncorrelated with a sample correlation coefficient of zero).  This 

process continues until there are as many PCs as there are variables in the original dataset, with 

each subsequent PC explaining less of the total variance in the data than the previous PC.  It is 

often the case that the majority of the variance in the original data can be explained with one or 

two PCs.  A standard approach to PCA is that the first n PCs that cumulatively account for 80% 

of the variance in the data can be used to replace the original dataset without much loss of 

information (R. A. Johnson & Wichern, 2002, p. 422).  PCs that account for large amounts of 

variance also tend to have loadings (the weights each variable is multiplied by before summing 

them to create the PC scores) that have an intuitive interpretation that explains overall patterns in 

the data.  For these reasons, PCA was performed on the five acoustic measures of plosive 

strength and on the three acoustic measures of fricative strength, using the prcomp function in 

R, first mean-centering the variables and dividing them by their respective standard deviations to 

put them on unit scale, as PCA is sensitive to differences in variable scaling.  The zero-valued 

tokens (arising from elisions and fully voiced consonants) were included in the analysis for two 

reasons: (1), the zero values are not missing values, but rather the natural end of a continuum that 

provides information to listeners (not hearing a drop in intensity in what is phonemically a VCV 

sequence is an event, and the listener has no way of knowing whether the elision was intentional 

or the result of articulatory undershoot; Ohala (1983)); and (2), the assumptions of the linear 

model are on the residuals, not the raw data.  The results of the PCA on the plosive strength 

measures are presented in Table 2.5 (variable loadings) and Table 2.6 (PC importance), and the 

results of the PCA on the fricative strength measures are presented in Table 2.7 (variable 

loadings) and Table 2.8 (PC importance). 
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Table 2.5 Plosive principal component variable loadings. 
Measure PC1 PC2 PC3 PC4 PC5 
Duration 0.39 0.89 -0.02 0.17 0.16 
Voiceless Duration 0.47 -0.14 -0.49 0.22 -0.69 
Percent Voiceless 0.46 -0.33 -0.44 -0.01 0.69 
Intensity Difference 0.48 -0.01 0.29 -0.82 -0.15 
Intensity Velocity 0.44 -0.28 0.69 0.50 0.02 
 

Table 2.6 Plosive principal component importance measures. 

 PC1 PC2 PC3 PC4 PC5 
Standard Deviation 2.02 0.69 0.60 0.27 0.17 
Proportion of Variance 0.81 0.10 0.07 0.01 0.01 
Cumulative Proportion 0.81 0.91 0.98 0.99 1.00 
 

Table 2.7 Fricative principal component variable loadings. 
Measure PC1 PC2 PC3 
Duration 0.50 -0.80 -0.33 
Voiceless Duration 0.65 0.09 0.75 
Percent Voiceless 0.57 0.59 -0.57 
 

Table 2.8 Fricative principal component importance measures. 

 PC1 PC2 PC3 
Standard Deviation 1.52 0.81 0.14 
Proportion of Variance 0.77 0.22 0.01 
Cumulative Proportion 0.77 0.99 1.00 
 

In both PCAs, the first PC assigns nearly equal positive weights to all acoustic measures, 

giving PC1 the intuitive interpretation of measuring overall consonant strength in each case.  For 

plosives, PC1 accounts for 81% of the variance in the raw data, and for fricatives, PC1 accounts 

for 77% of the variance in the raw data, with subsequent PCs explaining substantially less 

variance, meaning that in both cases the multivariate phonetic space can be reduced to a single 

variance component without a significant loss of information (R. A. Johnson & Wichern, 2002, 
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p. 422).17  For this reason, for both the plosive and fricative datasets, PC1 will be used as the sole 

dependent variable in subsequent analyses. 

 

                                                 
17 For the fricatives, PC1 accounts for slightly less than 80% of the variance, but its loadings indicate that it 
describes the aspects of the data we are interested in, and the cutoff is an approximant guideline. 
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Chapter 3. Statistical methods 

3.1. Introduction 

In the phonetic analyses carried out in this dissertation, all statistics are run in R (R Core 

Team, 2016).  I use Bayesian mixed effects regression to obtain estimates for effects at the 

population level (i.e. the fixed effects), and the individual level (using both the fixed and random 

effects).  In Section 3.2, I discuss the general form of mixed effects regressions and their 

estimation with frequentist methods in lme4, why mixed effects models are necessary, why 

maximal random effects structures should be the default implementation, and the why a Bayesian 

approach to these models allows us to answer research questions that a frequentist approach 

cannot.  This discussion is crucial to understanding why a Bayesian approach better suits the 

research questions, and to understanding the differences in the interpretation of the results as 

compared to methods that linguists are more familiar with.  In Section 3.3, I detail some of the 

basic concepts of Bayesian inference, as well as estimation of Bayesian mixed effects models 

with Markov Chain Monte Carlo.  In Section 3.4, I discuss best statistical practices with respect 

to continuous variable scaling and factor contrasts, and priors that are weakly informative when 

these practices are followed.  In Section 3.5, I explain how regression results will be presented, 

and the differences in interpretation between the results of Bayesian and frequentist regressions.  

In Section 3.6, I conclude with summary remarks on the statistical methods employed throughout 

this dissertation. 
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3.2. Frequentist mixed effects regression 

The statistical notation I use for parameters is slightly different than that of the authors 

cited, so that the same notation can be used throughout.  In quantitative studies, the researcher 

forms a hypothesis, collects data, measures this data in any number of ways, and then uses 

statistics to evaluate to what extent the data support the hypothesis.  The goal of the quantitative 

analysis is to be able to make a probabilistic statement about the hypothesis.  Mathematically, 

what we are interested in is 𝑃(ℎ𝑦𝑦𝑦𝑦ℎ𝑒𝑒𝑒𝑒 | 𝑑𝑑𝑦𝑑), where 𝑃() is a probability function and the 

‘|’ means given or conditioned on, making this statement read “the probability of the hypothesis 

given the data”.  In order to evaluate this probability, the hypothesis and the data need to be 

mapped numerically onto parameters.  A common analysis method (and the one used in this 

dissertation) is linear mixed effects regression, which allows us to model both fixed effects (i.e. 

population level effects) and random effects (i.e. the noise introduced by individual variation 

when there are repeated measures on members of a grouping factor).  When referring to a 

parameter in the model (e.g. the intercept term, the difference between the mean /p/ strengths of 

Cuzco and Lima, etc.), the true parameter (the actual population parameter whose value is by 

definition unknowable; e.g. the true mean duration of intervocalic /p/ in Lima Spanish) will be 

denoted with a Greek or Roman character, and a regression estimate for the parameter will be 

denoted with the same symbol with a hat (e.g. for the true parameter 𝛽, the regression estimate is 

�̂�).  The ‘~’ symbol denotes a probability distribution statement and is followed by the 

abbreviation for a distribution name and the parameters that define that distribution.  For 

example, the normal distribution is defined by its mean and standard deviation, and 𝑥 ~ 𝑁(2, 3) 

reads “x is normally distributed with mean 2 and standard deviation 3”. 
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3.2.1. Ordinary least squares regression and p-values 

In ordinary least squares (OLS) regression (that is, a linear regression with only fixed 

effects estimated with a frequentist approach), the continuous dependent variable 𝑦 is modeled as 

a linear function of a matrix of predictor features 𝑋, with the linear function expressed through a 

coefficient vector 𝛽, and with the errors in the predictions made by the model, 𝜖, being 

independent of one another (i.e. not correlated with one another) and normally distributed with 

mean zero and unknown standard deviation 𝜎𝜖 (Demidenko, 2013, pp. 2–3).  That is, 

𝑦 = 𝑋𝛽 + 𝜖, 𝜖 ~ 𝑁(0,𝜎𝜖)     →      𝑦 ~ 𝑁(𝑋𝛽,𝜎𝜖). 

The regression estimates �̂� are chosen such that 𝜎�𝜖 is minimized.  The variance of each 

element of �̂�, and the covariance of each pair of estimates in �̂�, are contained in the estimated 

covariance matrix Σ�𝛽 (whose true value Σ𝛽 is also unknown).  The estimates for these parameters 

have closed-form solutions (i.e. they are the result of simple matrix algebra).  Letting 𝑦� be the 

predicted values of the dependent variable, 𝑛 be the number of observations (i.e. the number of 

rows in 𝑋 and elements in 𝑦 and 𝜖), and 𝑦 be the number of fixed effects (i.e. the number of 

columns in 𝑋 and elements in 𝛽), we have:18 

�̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑦, 𝑦� = 𝑋�̂�, 𝜖̂ = 𝑦 − 𝑦�, 𝜎�𝜖2 =
∑ 𝜖�̂�

2𝑛
𝑛=1

𝑛 − 𝑦
, Σ�𝛽 = 𝜎�𝜖2(𝑋𝑇𝑋)−1. 

These equations yield a unique solution so long as 𝑋 is full rank (i.e. there is no complete 

collinearity in the predictors; Weisberg (2005, pp. 54–58)).  These estimates are also known as 

maximum likelihood estimates, because they yield the highest possible value for the likelihood 

function, which is simply the joint probability of all of the data for a given set of values for 𝛽, 

written 𝑃(𝑦 | 𝛽).  Thus, in this context, �̂� can be interpreted as “the data are most likely when we 

                                                 
18 𝑋𝑇is the transpose of 𝑋, which can also be written 𝑋′. 
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set 𝛽 equal to �̂�”.  Note, however, that this is not the same as what we set out for, 

𝑃(ℎ𝑦𝑦𝑦𝑦ℎ𝑒𝑒𝑒𝑒 | 𝑑𝑑𝑦𝑑), but rather the reverse: 𝑃(𝑑𝑑𝑦𝑑 | ℎ𝑦𝑦𝑦𝑦ℎ𝑒𝑒𝑒𝑒).  With our current 

estimates �̂�, we cannot actually quantify 𝑃(𝛽 | 𝑦) → 𝑃(ℎ𝑦𝑦𝑦𝑦ℎ𝑒𝑒𝑒𝑒 | 𝑑𝑑𝑦𝑑); that is, we cannot 

obtain a distribution from which we can make probabilistic statements about 𝛽. 

Instead, we can set up a counterfactual statement where we assume a particular true value 

for 𝛽 and assess the probability that we would obtain a �̂� with at least as great a magnitude as 

our OLS �̂�, a procedure known as null hypothesis significance testing (NHST).  Most often what 

is done is to assume that the true value for one element of 𝛽 (say, the 𝑗’th coefficient) is zero: 

𝐻0: 𝛽𝑗 = 0, with the corresponding alternative hypothesis being 𝐻𝐴:𝛽𝑗 ≠ 0.  In this case, if 𝐻0 is 

true, then our estimate �̂�𝑗 has a Student’s t-distribution (which is similar to a normal distribution 

but with more probability in the tails), and we can make a probabilistic statement using this 

distribution (Weisberg, 2005, pp. 31–34, 63, 74).  While the normal distribution is defined by a 

mean parameter and a standard deviation parameter (i.e. 𝑁(𝜇,𝜎)), the non-central t-distribution 

is defined by three parameters: the degrees of freedom 𝜈, center 𝑚, and scale 𝑒.  The 𝜈 parameter 

(which must be positive) determines how heavy the tails are, with lower values indicating 

heavier tails; at 𝜈 = ∞, the t-distribution is the same as the normal distribution; that is, 𝑦(𝜈 =

∞,𝑚, 𝑒) = 𝑁(𝜇 = 𝑚,𝜎 = 𝑒).  When 𝜈 ≤ 1, the tails of the distribution are so heavy that there is 

no mean or variance for the distribution.  When 1 < 𝜈 ≤ 2, the distribution has mean 𝑚, but the 

variance is still ∞, and when 𝜈 > 2, the distribution additionally has standard deviation 

𝑒�𝜈 (𝜈 − 2)⁄ .  To visualize the difference between the two, density plots for the 𝑁(0, 1) and 

𝑦(1, 0, 1) distributions are given in Figure 3.1. 
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Figure 3.1 Comparison of a 𝑁(0, 1) distribution (black) and 𝑦(1, 0, 1) distribution (blue). 
 

For our probabilistic statement, we know that, if in reality 𝛽𝑗 = 0, then we might still get 

a large magnitude for �̂�𝑗 by random chance, and that this random value for �̂�𝑗 has a t-distribution 

with degrees of freedom equal to the sample size minus the number of parameters, center zero, 

and scale equal to the standard error of �̂�𝑗 obtained from Σ�𝛽:   

�̂�𝑗  | 𝛽𝑗 = 0  ~  𝑦 �𝑛 − 𝑦, 0,�Σ𝛽[𝚥,𝚥]��. 

We can standardize this distribution by dividing the estimate by its standard error: 

𝑇 =
�̂�𝑗

�Σ𝛽[𝚥,𝚥]�
    →      𝑇 | 𝛽𝑗 = 0   ~   𝑦(𝑛 − 𝑦, 0, 1). 

Using this distribution, we can find the probability that the absolute value of 𝑇 would be 

at least a big as we found in our data if the true effect of 𝛽𝑗 were zero.  This probability is called 

a p-value.  Consider the concrete values 𝜈 = 20, �̂�𝑗 = 0.5, and �Σ𝛽[𝚥,𝚥]� = 0.2, which give us a 
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value of 𝑇∗ = 2.5 (where 𝑇∗ is the particular value of 𝑇 that we have observed in our data).  In 

Figure 3.2, the plot of a 𝑦(20, 0, 1) distribution is given, with the area under the curve where 

|𝑇| > |𝑇∗| shaded in.  The total area of the two shaded regions is the p-value, which in this case 

is approximately 𝑦 = .011. 

 

Figure 3.2 Visualization of what a frequentist p-value represents.  The density curve is the 
distribution of �̂�𝑗 with its standard error divided out (that is, 𝑇) under 𝐻0:𝛽𝑗 = 0.  The area of the 

shaded regions where the absolute value of 𝑇 is greater than the test statistic 𝑇∗ is the p-value. 
 

This p-value is then used to make a decision of whether to reject the null hypothesis or 

accept it based on a pre-defined 𝛼-level (in linguistics, almost always 𝛼 = .05).  If 𝑦 < 𝛼 (as it is 

in this example), we reject the null hypothesis and argue that the data support the alternative 

hypothesis that 𝛽𝑗 ≠ 0; if we are incorrect in this decision, we have committed a “Type I error” 

(i.e. false positive).  If 𝑦 ≥ 𝛼, we accept (or “fail to reject”) the null hypothesis and argue that we 

don’t have strong evidence that 𝛽𝑗 ≠ 0; if we are incorrect in this decision, we have committed a 

“Type II error” (i.e. a false negative) (Weisberg, 2005, p. 31).  Importantly, the interpretation of 

the p-value is not the probability that our hypothesis is incorrect.  The p-value is only 
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interpretable within the counterfactual statement that we set up.  It tells us “if there were no 

effect, the probability I would get at least this extreme of an estimate is <p-value>”; it does not 

tell us “the probability that there is no effect is <p-value>”.  In other words, the curve in Figure 

3.2 is not the distribution for 𝑃�𝛽𝑗  � 𝑦), but rather the distribution for 𝑃��̂�𝑗  � 𝛽𝑗 = 0) with the 

standard error divided out.  This distinction is important, because in Bayesian regression, we can 

obtain the probability that an effect is positive or negative, as described in Section 3.5.2.  The 

elements just described are what can be found in standard regression output from the lm function 

in R.  The estimate column is �̂�, the standard error column is the square root of the diagonal 

elements of Σ�𝛽, the t value column is 𝑇∗, and the p column is the p-value under the null 

Hypothesis 𝐻0:𝛽𝑗 = 0 for each coefficient. 

3.2.2. Linear mixed effects regression 

An assumption of OLS is that the errors for individual observations are independent of 

one another, and that 𝜎𝜖 is the only source of variance in the dependent variable (Demidenko, 

2013, pp. 2–3).  In any study that involves repeated measures on members of a group (e.g. 

subjects and/or items), these assumptions are violated, as differences among individual members 

of the grouping factor introduce additional variance components, and when these variance 

components are not modeled, the errors for individual group members are correlated.  The 

differences between members of the grouping factor must thus be accounted for in a mixed 

effects model (i.e. one that contains both fixed and random effects).  That is, in addition to 𝛽, Σ𝛽, 

and 𝜎𝜖, we must also estimate the random effects coefficients 𝛾 (i.e. the random intercepts and 

random slopes for individual group members, which are the noise introduced by individual 

variation for the intercept term and any non-intercept term, respectively), which are assumed to 
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be multivariate normally distributed with mean 0 and unknown covariance matrix Σ𝛾.  Letting 𝑍 

be the matrix of the random effects features and 𝑅𝑁 be the multivariate normal distribution, this 

results in the following more complex model (Demidenko, 2013, pp. 5–7): 

𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜖, 𝛾 ~ 𝑅𝑁�0, Σ𝛾�, 𝜖 ~ 𝑁(0,𝜎𝜖)     →     𝑦 ~ 𝑁(𝑋𝛽 + 𝑍𝛾,𝜎𝜖). 

3.2.3. Iterative algorithmic estimation 

In mixed effects models, no closed-form solution exists (i.e. estimation of the parameters 

is not a simple math problem as it is in OLS), and instead the solution is arrived at iteratively.  In 

the R package lme4 (Bates, Maechler, Bolker, & Walker, 2015), which is the package that has 

become standard in linguistics and other language sciences and takes a frequentist approach, the 

estimates of the fixed effects �̂� and the overall error covariance matrix (which contains both the 

random effects covariance matrix Σ�𝛾 and the residual variance 𝜎�𝜖2) are optimized iteratively, and 

the estimation stops when consecutive iterations change very little (i.e. the change in the gradient 

falls below a certain tolerance).  The default in lmer is to use restricted maximum likelihood 

estimation (REML).  Once a solution for �̂�, Σ�𝛾, and 𝜎�𝜖2 is arrived at, Σ�𝛽 is computed (it 

deterministically related to the estimated parameters), and 𝛾� are estimated as ancillary 

parameters (Bates, Maechler, et al., 2015).  There are then several functions in the afex 

(Singmann, Bolker, & Westfall, 2015), pbkrtest (Halekoh & Højsgaard, 2014) and lsmeans 

(Lenth & Hervao, 2015) packages that allow frequentist inference (i.e. p-values as described for 

OLS but with some additional algorithmic estimation required) to be made based on the model.  

There are many different optimization algorithms that can be used with lme4, and also entirely 

different approaches to linear mixed effects model estimation that do not use REML such as 
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Bayesian mixed effects regression, which is used in this dissertation and described in detail in 

Section 3.3. 

3.2.4. Maximal random effects and model identifiability 

Following Barr et al. (2013), I argue that the random effects structure in a mixed effects 

regression should be kept maximal.  The maximal random effects structure is defined by random 

intercepts for the members of a grouping factor (e.g. subjects or items), as well as random slopes 

for any fixed effect that can vary within individual members of the grouping factor (e.g. in an 

analysis of spontaneous speech where F0 and speaker sex are included as fixed effects, speakers 

should have random intercepts and random slopes for F0, but not random slopes for sex, since 

each speaker has more than one value for F0 but only one value for sex).  Some authors argue 

that as the random effects structure becomes more complex, the maximal model becomes 

unidentifiable, and simplification is required (e.g. Bates, Kliegl, Vasishth, & Baayen, 2015).  

However, from a statistical perspective, a linear mixed effects model is identifiable so long as the 

random effect feature matrix is full rank (i.e. there is no collinearity) for at least one random 

effect group member (Demidenko, 2013, pp. 117–120).  Thus, we must be careful to separate 

model identifiability from algorithmic estimability; the former is a theoretical issue and the latter 

is a computational issue. 

The maximal model is only unidentifiable when any of the following do not hold: (1) 𝑋 is 

full rank (i.e. does not contain collinear terms); (2) there are more observations than parameters; 

and (3) 𝑍 is full rank for at least one group member for each grouping factor.  In the case that the 

maximal model is truly unidentifiable, then I argue that a principled dimensionality reduction 

method should be applied to the fixed effects so that a maximal model can be fit.  The reason for 

this is that fitting a less than maximal random effects structure implies prior knowledge on the 
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part of the researcher that the variance in the random slopes for some of the fixed effects is 

exactly zero, which is not reasonable a priori.  If the fixed effects structure the researcher wants 

to model can only be modeled based on this assumption, then the dataset is simply too small or 

too sparse to properly evaluate the researchers’ hypotheses.  If the maximal model is identifiable, 

it is still possible that the algorithm described in Section 3.2.3 will fail to converge to a solution, 

or converge to a statistically invalid solution.  In this case, rather than allowing the algorithm to 

dictate the use of a less than maximal model, I argue that another approach to estimation of the 

maximal model should be taken, such as the Bayesian approach taken in this dissertation and 

described in detail in Section 3.3.  For further discussion and examples of maximal models that 

fail to converge with frequentist estimation, but do converge with Bayesian estimation, see 

Kimball, Shantz, Eager, and Roy (2016). 

3.2.5. Reasons for taking a Bayesian rather than frequentist approach 

For the research questions raised in this dissertation, the random effects are not ancillary 

(as they are in the frequentist approach just described), but rather objects of inquiry.  While 

maximal random effects models give better, more principled estimates of the fixed effects 

parameters, the variation among individual speakers is also crucial to the hypotheses laid out in 

Section 1.6.  For this purpose, mixed effects models also offer better estimates of individual 

variation than running regressions on individuals, as fitting a mixed effects model treats all 

speakers as coming from a common population and estimates individual variation using all of the 

information available in a dataset, and running individual regressions would treat each speaker as 

their own population (which is not a reasonable assumption).  Some previous research in 

sociolinguistics makes use of random intercepts from frequentist mixed effects regressions for 

inference about individual group member variation (e.g. Drager & Hay, 2012).  However, with 
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the standard frequentist approach, there is no p-value associated with the correlation parameters 

in the random effects, and no distributional information for the individual elements of 𝛾� (the 

individual group member behavior), but rather only point estimates.19  For this reason, in this 

dissertation a Bayesian approach to mixed effects model estimation is used, as they include 

estimation of the individual random effects in the model rather than only the covariance matrix, 

and are better suited to answering the questions at hand.  As described in Section 3.5.2, taking a 

Bayesian approach also allows us to move past a NHST approach; that is, rather than making 

probabilistic statements about 𝑃(𝑑𝑑𝑦𝑑 | ℎ𝑦𝑦𝑦𝑦ℎ𝑒𝑒𝑒𝑒), a Bayesian approach allows us to make 

probabilistic statements about 𝑃(ℎ𝑦𝑦𝑦𝑦ℎ𝑒𝑒𝑒𝑒 | 𝑑𝑑𝑦𝑑), which is what we are actually interested 

in, because it gives us distributional information about 𝑃(𝛽 | 𝑦) and 𝑃(𝛾 | 𝑦). 

3.3. Bayesian mixed effects regression 

3.3.1. Bayesian statistics 

In frequentist statistics (e.g. mixed effects regression in lme4), the p-values obtained 

represent the probability of having data that show as extreme or more extreme of an effect as the 

data in the model when the true effect of a parameter is assumed to be exactly zero (null 

hypothesis significance testing).  They are not the probability that an effect is non-zero, nor the 

probability that an alternative hypothesis is correct, as discussed in the previous section (Cowles, 

2013, pp. 52–53).  In Bayesian statistics, the law of total probability is used to obtain what 

researchers often assume frequentist p-values refer to (i.e. the probability of the hypothesis 

conditioned on the data).  Letting 𝜃 = �𝛽, Σ𝛽, 𝛾, Σ𝛾, 𝜎𝜖� (i.e. all of the model parameters 

                                                 
19 In the case of random intercepts, under certain conditions, p-values can be obtained, and a null hypothesis 
significance test can be obtained for the entire covariance matrix (Demidenko, 2013, pp. 133–137), but the 
hypotheses related to the random effects in this dissertation cannot. 
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considered jointly) in a linear mixed effects regression as described in Section 3.2.2, the law of 

total probability gives us (Cowles, 2013, pp. 7–8): 

𝑃(𝜃 | 𝑦) =
𝑃(𝑦 | 𝜃)𝑃(𝜃)

𝑃(𝑦)
, 

where 𝑃(𝑦 | 𝜃) is the likelihood function just as before (the probability of the data given a value 

for the model parameters), 𝑃(𝜃) is the prior probability distribution for the parameters, 𝑃(𝑦) is a 

normalizing constant obtained by integrating over all possible values of the parameters (this is in 

practice not necessary to estimate), and 𝑃(𝜃 | 𝑦) is the posterior distribution of the parameters of 

interest (the probability distribution of the parameters given the data; i.e. what we are actually 

interested in).  The basic idea is that if we can make reasonable a priori assumptions about the 

probability distributions for the parameters in the mixed effects model and express these 

mathematically through 𝑃(𝜃), then we can use the data to update our assumptions through the 

likelihood function 𝑃(𝑦 | 𝜃), resulting in posterior distributions for the parameters (i.e. posterior 

in the sense of distributional information after observing the data), expressed mathematically 

through 𝑃(𝜃 | 𝑦). 

3.3.2. Weakly informative priors 

In this dissertation, I use weakly informative prior distributions for the parameters 

(Gelman, 2006; Gelman, Jakulin, Pittau, & Su, 2008; Stan Development Team, 2016b, pp. 123–

127).  By “weakly informative”, I mean that, before running the regression, we assume the most 

likely scenario is that there are no effects at all (i.e. zero is the most likely value for all of the 

parameters), that larger effect magnitudes are less likely than smaller effect magnitudes (i.e. as 

we move away from zero, the probability of the effect becomes gradiently less likely), and 

positive and negative effects are equally likely (i.e. the distribution is symmetric).  In this 
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section, I discuss the general shape of reasonable weakly informative prior distributions, and 

return to the exact values I set for their parameters in Section 3.4.3, after discussing the 

continuous variable scaling and factor contrasts that make the parameter values reasonable in 

Sections 3.4.1 and 3.4.2.  The alternatives to weakly informative priors are informative priors 

and non-informative priors. With informative priors, the mean for a parameter’s prior is non-

zero; in the absence of an extensive literature offering a reasonable value for an informative 

prior’s mean, this risks biasing the results towards our hypotheses, and so is not done here.  Non-

informative priors treat all possible parameter values as equally likely (similar to frequentist 

approaches); as explained throughout this section, calling this approach “non-informative” is a 

misnomer; they are actually informative in an unreasonable manner. 

For the fixed effects 𝛽, the possible values for the parameters range from −∞ to +∞, so 

we want a distribution that is symmetric around a peak at zero, slopes off in both directions, and 

has tails that extend infinitely.  The t-distribution described in Section 3.2.1 is a very good 

candidate that matches this description.  Setting aside the values for the degrees of freedom 𝜈 and 

scale 𝑒 for now (we will return to the choice for these parameters in Section 3.4.3), we get a prior 

distribution with the shape shown in Figure 3.3 when we center the distribution at zero. 
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Figure 3.3 General shape of a reasonable prior for the fixed effects.  The most likely effect is 
zero, negative and positive effects are equally likely, larger effect magnitudes are less likely than 

smaller effect magnitudes, and all effects are possible. 
 

In this way, we are making a reasonable assumption about what the relative values of the 

fixed effects are likely to be a priori: we expect them to be random noise distributed about zero.  

In a frequentist regression, the distribution is implicitly assumed to be uniform across all possible 

values (i.e. all values for 𝛽 are equally likely; an effect of +100 is just as likely as an effect of +1 

or 0).  This assumption is often referred to as “non-informative”, but is in fact informative in the 

sense that it still makes a claim about the relative prior probability of different possible values for 

a parameter; it is merely the case that these claims are unreasonable.  Another way to think of the 

weakly informative fixed effects prior distribution is that we are assuming that the null 

hypothesis is the most likely scenario absent data, while not actually assuming that it is true in 

our inference (i.e. we also assume that the non-zero values are possible, but less likely in a 

gradient manner as effect magnitude increases).  We then allow the data to inform our posterior 

beliefs given this reasonable prior assumption (i.e. we require the data to show evidence that our 
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prior belief that the parameters are just noise is wrong).  The likelihood function 𝑃(𝑦 | 𝜃) thus 

pulls the posterior 𝑃(𝜃 | 𝑦) toward itself and away from the prior 𝑃(𝜃), and the more data we 

have, the stronger the effect of the likelihood’s pull is (Cowles, 2013).  We do not place a direct 

prior on Σ𝛽, and so our prior for 𝛽 implies no correlation among the fixed effects; however, this 

does not imply that in the posterior they are uncorrelated; we are simply allowing the data to 

determine their correlation.  We apply similar reasoning as we did for 𝛽 to the random effects 

covariance matrix Σ�𝛾, the residual standard error 𝜎𝜖, and the random effect coefficients 𝛾. 

Rather than modeling the random effects covariance matrix Σ𝛾 directly, we decompose it 

into its two components: the vector of standard deviations for each effect, 𝜎𝛾, and the correlation 

matrix for these effects, Ω𝛾; any covariance matrix is uniquely defined by these two components 

(i.e. Σ = diag(𝜎)Ωdiag(𝜎)𝑇), and modeling them separately is more computationally efficient 

(Stan Development Team, 2016b, pp. 326–332); also note that in standard lmer output, these 

two components are presented separately.  In the case of the correlation matrix, Ω𝛾, we want a 

similar distribution as we found for 𝛽, except the range of values needs to be constrained to 

[−1, 1], as values outside of this range are statistically invalid.  That is, we want a distribution 

with the shape shown in Figure 3.4 (we will return to this distribution’s parameterization in 

Section 3.4.3).  In frequentist regression, the distribution for these correlation parameters is, 

again, uniform: the implicit assumption is that two random effects are just as likely to be 

perfectly correlated as they are to be weakly correlated or completely uncorrelated. 
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Figure 3.4 General shape of a reasonable prior for a correlation coefficient.  The most likely 
correlation is no correlation, positive and negative correlations are equally likely, larger 

correlations are less likely than smaller correlations, and all valid parameter values (i.e. [-1, 1]) 
are possible. 

 

For the standard deviations in the random effects, 𝜎𝛾, and the residual standard error, 𝜎𝜖, 

only positive values are possible by definition, so our distribution will not be symmetric about 

zero, but our other requirements (peak at zero and gradient drop off as magnitude increases) are 

still easily met with a half-normal distribution (i.e. the shape is the same as the positive half of 

the normal distribution), as shown in Figure 3.5.  Again, in frequentist regression the implied 

assumption is that all possible values for the standard deviations are equally likely (i.e. uniformly 

distributed from 0 to +∞). 
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Figure 3.5 General shape of a reasonable prior for a standard deviation parameter.  The most 
likely standard deviation is zero, larger standard deviations are less likely than smaller standard 

deviations, and all valid parameter values (i.e. positive values) are possible. 
 

For the random intercepts and slopes themselves, 𝛾, we use the same prior assumption as 

in frequentist regression.  That is, the random effects are multivariate normally distributed with 

mean zero and covariance Σ𝛾: 𝛾 ~ 𝑅𝑁(0, Σ𝛾).  The question that then remains is how to choose 

reasonable numeric values for the parameters of these prior distributions.  This is indeed 

possible, provided that the dependent variable 𝑦 and the predictors 𝑋 and 𝑍 are all transformed to 

be on the same scale, as described in the following section. 

3.4. Scaling, contrasts, and weakly informative prior parameter values 

The scaling and contrast practices described in this section can be implemented with the 

standardize (Eager, 2017b) and nauf (Eager, 2017a) packages in R.  The goal of all of 

these practices is to keep the regression parameters on the same scale, and to ensure that the 

intercept (which is the predicted value of an observation when all other coefficients are 

multiplied by zero) represents the corrected mean (i.e. the predicted value for an observation that 
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is average in every way, holding covariates at their mean values and averaging over group 

differences in factors). 

3.4.1. Continuous variable scaling 

Continuous variables include covariates (i.e. fixed effects that take on continuous values) 

and the dependent variable in linear regression (Weisberg, 2005).  All continuous variables are 

placed on unit scale by subtracting the mean of the variable and dividing by the standard 

deviation of the variable (also sometimes called z-scoring or simply scaling).  The result is that 

the values in the transformed variable have the same relationship to one another as in the 

untransformed variable, but the transformed variable has mean 0 and standard deviation 1.  This 

places all of the regression coefficients for covariates on the same scale, with the regression 

coefficient representing the predicted change in standard deviations of the dependent variable 

associated with a one standard deviation increase in the covariate (i.e. a 1-SD increase in the 

covariate leads to a predicted �̂�-SD change in the dependent variable). 

3.4.1.1. Dependent variables 

For both the plosive and fricative analyses, the acoustic measures were found to be highly 

correlated in Section 2.5, and PCA was performed.  In both cases, higher values of PC1 indicate 

stronger consonants than lower values.  Looking first at plosive PC1, Figure 3.6 and Table 3.1 

provide descriptive statistics for PC1 by underlying voicing, and show that the PCA successfully 

combined the acoustic measures into a continuum of plosive strength that easily distinguishes 

underlyingly voiced plosives from underlyingly voiceless plosives and has good coverage across 

its range of values. 
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Figure 3.6 Density plot of plosive PC1 with verticle lines at the mean for undelrying voiced 
plosives (blue line on left side) and underlyingly voiceless plosives (green line on right side) (left 

panel) and boxplot of plosive PC1 by underlying voicing (right panel). 
 

Table 3.1 Descriptive statistics for plosive PC1 by underlying voicing. 
Voicing N Minimum Median Maximum Mean SD 
Voiced 2694 -2.816 -1.755 1.292 -1.729 0.734 
Voiceless 2587 -2.334 1.870 6.010 1.801 1.172 
 

As can be seen in Figure 3.6, PC1 has two modes, one centered around -1.75 

corresponding to mostly underlyingly voiced plosives and one around +1.75 corresponding to 

mostly underlyingly voiceless plosives.  However, the standard deviations for the two groups are 

very different, with /ptk/ having a standard deviation nearly one and a half times that of /bdg/ 

(Table 3.1).  Even if PC1 were put on unit scale, a one standard deviation increase in scaled PC1 

would mean very different things for voiced and voiceless plosives (i.e. an effect size of +1 in a 

regression on scaled PC1 would mean an increase of 1.72 within-underlying-voicing standard 

deviations for /ptk/ and 2.75 within-underlying-voicing standard deviations for /bdg/).  As the 

goal of the plosive study is to analyze the factors that affect the relative lenition of the two sets 
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of plosives within-speaker and across dialects, the PC1 values for each observation were mean-

centered and scaled according to the observation’s underlying voicing, resulting in a measure 

that I will call “Voicing-Normalized PC1” and abbreviate VNPC1 (i.e. using the values in Table 

3.1, for /bdg,  𝑉𝑁𝑃𝑉1 = (𝑃𝑉1 + 1.729) 0.734⁄ , and for /ptk/, 

𝑉𝑁𝑃𝑉1 = (𝑃𝑉1 − 1.801) 1.172⁄ ).  VNPC1 measures how strong a plosive is given its 

underlying voicing, with zero indicating an average strength, positive values indicating a 

stronger than average plosive, and negative values indicating a weaker than average plosive, with 

magnitude being interpreted in terms of within-underlying-voicing standard deviations.  In a 

regression, this has the effect of removing the main effect of underlying voicing (which is 

already clearly substantial in Figure 3.6 and Table 3.1) and making the interaction of underlying 

voicing with other predictors straightforwardly interpreted.  Thus, VNPC1 will serve as the 

dependent variable for the remainder of the plosive analyses. 

Turning now to fricative PC1, Table 3.2 provides descriptive statistics for PC1 by 

language and fricative phoneme, with corresponding boxplots in Figure 3.7.  The standard 

deviation of fricative PC1 is nearly identical across the four groups, and so PC1 was scaled 

across the entire fricative dataset.  I will refer to this dependent variable as “Normalized PC1” 

and abbreviate it as NPC1. 
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Figure 3.7 Boxplot of fricative PC1 by language and fricative phoneme. 
 

Table 3.2 Descriptive statistics for fricative PC1 by language and fricative phoneme. 
Language Fricative N Minimum Median Maximum Mean SD 

Catalan 
/f/ 269 -3.684 0.138 3.433 -0.085 1.437 
/s/ 964 -3.725 0.431 3.777 0.202 1.519 

Spanish 
/f/ 165 -3.366 0.218 3.725 -0.104 1.501 
/s/ 765 -3.946 0.107 3.666 -0.203 1.536 

 

3.4.1.2. Covariates 

In both the plosive and fricative regressions, there are two covariates: log word frequency 

and speech rate.  Because speech rate was speaker-normalized, it is already on unit scale.  For 

log word frequency, however, this is not the case.  For example, in the plosive data, the mean log 

word frequency is 8.2, the standard deviation is 2.4, and a value of 0 indicates that a word 

occurred only once in the CREA corpus.  If left unscaled, the intercept would represent the 

predicted strength for a plosive whose word is as infrequent as possible, but was produced with 

the speaker’s average speech rate.  While the coefficient for speech rate would represent the 

change in plosive strength for a 1-SD increase in the speaker’s speech rate, the coefficient for log 
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word frequency would represent the change in plosive strength for an increase of 1 log-count, 

which is an increase of 0.42 standard deviations.  By scaling log word frequency, the intercept 

again represents the corrected mean: the predicted strength for a plosive whose word is of 

average frequency, and that was produced with the speaker’s average speech rate; and the 

regression coefficient for log word frequency represents the change in standard deviations of 

plosive strength predicted for a 1-SD increase in log word frequency, making it directly 

comparable to the coefficient for speech rate (i.e. the coefficients are on the same scale).  For the 

plosive regression, log word frequency was scaled for the entire data set.  For the fricative 

dataset, however, the log-counts for Spanish and Catalan come from different corpora (with 

different total numbers of words), and so for the fricative data, log word frequency was scaled 

within language, so that the covariate is on unit scale, and represents how frequent a word is in 

relation to the other words from that corpus in the data. 

3.4.2. Factor contrasts 

Factors are variables that take on a defined set of categorical values called levels rather 

than continuous values.  In regression, a factor with 𝐾 levels is modeled through the use of 

𝐾 − 1 dummy variables (Agresti, 2002; Davis, 2010).  Each level of the factor is assigned a 

value for each dummy variable based on a contrast matrix.  So, for example, a factor with four 

levels has a contrast matrix with four rows (one for each level) and three columns (one for each 

dummy variable), with the values in the cells of the matrix determining the numerical expression 

for the factor levels in the dummy variables.  There are two general types of factors, ordered and 

unordered, whose contrasts are treated differently.  In this dissertation, all factors are unordered. 

Unordered factors take on two or more categorical values that are not intrinsically 

ordered (or have a somewhat ordered interpretation but there are only two categories, as is 
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sometimes the case with factors coded as false vs. true, 0 vs. 1, or no vs. yes).  The factors 

included in the fricative analysis are language, sex, fricative phoneme identity, stress, preceding 

vowel height, and following vowel height.  The factors included in the plosive analysis are 

dialect, sex, underling voicing, place of articulation, stress, preceding vowel height, following 

vowel height, word position, task, age group, education level, and Quechua bilingualism.  For 

unordered factors, the default in R is to use treatment contrasts, where the first level is coded as 0 

for all of the dummy variables, and the remaining levels each have a dummy variable for which 

they are coded +1, and are then coded as 0 for the other dummy variables.  Using stress as an 

example, this would lead to the contrasts in Table 3.3 (recall from Chapter 2 that here stress 

refers to consonants, and so the levels of the factor describe the syllabic stress context). 

Table 3.3 Treatment contrasts for stress. 
Stress Stress, Tonic Stress, Unstressed 
Post-Tonic 0 0 
Tonic 1 0 
Unstressed 0 1 
 

 With treatment contrasts, the intercept loses the interpretation of the corrected mean, 

since when all of the dummy variables in Table 3.3 are multiplied by zero, the resulting value 

corresponds to post-tonic consonants.  To avoid this (and to ensure that the coefficients for the 

dummy variables stay, on average, closer to zero, but without altering the ultimate interpretation 

of the results), sum contrasts are used.  With sum contrasts in R, the first 𝐾 − 1 levels each get a 

dummy variable for which they are coded +1, and then are valued 0 for the other dummy 

variables.  The last level is assigned a value of -1 for all of the dummy variables.  Sum contrasts 

also have additional computational benefits in comparison to treatment contrasts for similar 

reasons as covariate scaling.  For our stress example, this results in the contrast matrix given in 

Table 3.4. 
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Table 3.4 Sum contrasts for stress. 
Stress Stress, Post-Tonic Stress, Tonic 
Post-Tonic 1 0 
Tonic 0 1 
Unstressed -1 -1 
 

 In the regressions in this dissertation, sum contrasts are used for all factors.  With sum 

contrasts, the intercept maintains the interpretation of the corrected mean, since when all of the 

dummy variable coefficients are multiplied by zero, it averages over their effects (note that no 

row in the contrast matrix in Table 3.4 has all zeros, and thus multiplying all of the coefficients 

by zero cannot describe any one level; rather, the mean of the values in each column is zero, and 

so multiplying all of the dummy variable coefficients by zero averages over their effects).  

Another important advantage of using sum contrasts in this dissertation is that it allows for 

observations to be coded as NA (in sociolinguistics this is often referred to as slashing). 

In the context of factors, I use NA to mean “not applicable”, which is conceptually 

different than “not available” or “missing at random”.  The concept applies only to unordered 

factors, and indicates that the factor is simply not meaningful for an observation (either for 

theoretical reasons, or for practical reasons related to the sampling scheme), or that while the 

observation may technically be definable by one of the factor levels, the interpretation of its 

belonging to that group isn't the same. While no factors in the fricative analysis require NA 

coding, several factors in the plosive analysis do.  First and foremost, the social factors of age 

group, education level, and Quechua bilingualism are only contrastive in the subset of the plosive 

data pertaining to Cuzco.  The Lima and Valladolid speakers are all younger, university 

educated, and monolingual speakers of Spanish; however, coding them as such creates 

collinearity in the posterior estimates of these social factors and dialect.  Additionally, in the case 

of Quechua bilingualism, the factor does not have the same interpretation across dialects.  In 
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Cuzco, a monolingual speaker is monolingual in Spanish as opposed to bilingual in Spanish and 

Quechua, while in Valladolid, for example, the interpretation is not the same.  For this reason, 

age group, education level, and Quechua bilingualism were coded as NA for all observations 

pertaining to the Lima and Valladolid dialects.  In addition to these social factors, task and word 

position also require some NA coding.  Due to the imbalanced nature of the data and the 

sampling scheme, task is only contrastive for the Cuzco and Lima subsets, and word position is 

only contrastive for spontaneous speech (in all three dialects), since all of the planned 

observations in the read speech task were word-medial.  For this reason, task was coded as NA 

for all Valladolid observations, and as either “read speech” or “spontaneous speech” for all 

Cuzco and Lima observations, and word position was coded as either “initial” or “medial” for all 

spontaneous speech observations (Valladolid task-oriented dialogues and Cuzco and Lima 

interviews), and as NA in the Cuzco and Lima read speech data. 

For factors with NA values, sum contrasts can be used ignoring the NA values, and then 

afterwards the NA values can be set to zero in the model matrix (i.e. 𝑋 and 𝑍) for all dummy 

variables.  For dialect, age group, education level, and Quechua bilingualism, this results in the 

contrasts in Table 3.5, Table 3.6, and Table 3.7.  For dialect, task, and word position, this results 

in the contrasts in Table 3.8. 

Table 3.5 Contrasts for age group. 
Dialect Age Group Dialect, Cuzco Dialect, Lima Age Group, Older 

Cuzco 
Older 1 0 1 
Younger 1 0 -1 

Lima NA 0 1 0 
Valladolid NA -1 -1 0 
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Table 3.6 Contrasts for education level. 
Dialect Education Level Dialect, Cuzco Dialect, Lima Education Level, Secondary 

Cuzco 
Secondary 1 0 1 
University 1 0 -1 

Lima NA 0 1 0 
Valladolid NA -1 -1 0 
 

Table 3.7 Contrasts for Quechua bilingualism. 
Dialect Quechua Bilingual Dialect, Cuzco Dialect, Lima Quechua Bilingual, Yes 

Cuzco 
Yes 1 0 1 
No 1 0 -1 

Lima NA 0 1 0 
Valladolid NA -1 -1 0 
 

Table 3.8 Contrasts for task and word position. 

Dialect Task Word Position Dialect, 
Cuzco 

Dialect, 
Lima 

Task, 
Read Speech 

Word Position, 
Initial 

Cuzco 
Read NA 1 0 1 0 

Spontaneous 
Initial 1 0 -1 1 
Medial 1 0 -1 -1 

Lima 
Read NA 0 1 1 0 

Spontaneous 
Initial 0 1 -1 1 
Medial 0 1 -1 -1 

Valladolid NA Initial -1 -1 0 1 
Medial -1 -1 0 -1 

 

 This setup allows the regression coefficients to only affect the predicted value for 

observations where the factor is contrastive.  For example, for all Lima and Valladolid 

observations, the coefficient for “Age Group, Older” is multiplied by zero, and it never adds or 

subtracts from their predicted values.  For Cuzco observations, the value obtained by adding 

“Dialect, Cuzco” to the intercept represents the corrected mean for the entire Cuzco dialect, 

averaging over the effect of age group, and the coefficient for “Age Group, Older” represents the 

difference between the predicted value for Cuzco observations pertaining to speakers in the older 
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group and the corrected mean for Cuzco.  Similar logic applies to all other contrasts involving 

NA values.  When examining descriptive statistics in Chapter 5 for a factor that has NA values, 

only the subset of the data where the factor is contrastive is considered, and when generating 

posterior estimates of group differences, care is taken to use contrasts that properly represent the 

relevant subset of the data (all specific contrasts applied are given in Section B.5). 

This same methodology can be extended to the random effects structure, where 

experimental item is only applicable in the read speech task.  In the model matrix for a mixed 

effects regression, the random effects features 𝑍 are represented with a column for each intercept 

or slope for each group member.  These columns are set to 0 for any observation that does not 

pertain to the particular group member, and are set to the same as the fixed effects values for 

observations that do pertain to the group member.  By setting the value for all item effects to 

zero for all spontaneous speech observations, we can allow the item effects to apply only to the 

relevant subset of the data (which is not possible in lme4), as demonstrated in Table 3.9, where 

the random intercept coding and the coding for the random slope for sex are given for different 

combinations of task, dialect, and sex. 
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Table 3.9 Example random effects coding for item. 

Item Task (Dialect) Sex 
Item i01 Item i02 
Intercept Sex, Female Intercept Sex, Female 

i01 Read (Cuzco/Lima) Female 1 1 0 0 
i01 Read (Cuzco/Lima) Male 1 -1 0 0 
NA Spontaneous (Cuzco/Lima) Female 0 0 0 0 
NA Spontaneous (Cuzco/Lima) Male 0 0 0 0 
NA NA (Valladolid) Female 0 0 0 0 
NA NA (Valladolid) Male 0 0 0 0 
i02 Read (Cuzco/Lima) Female 0 0 1 1 
i02 Read (Cuzco/Lima) Male 0 0 1 -1 
NA Spontaneous (Cuzco/Lima) Female 0 0 0 0 
NA Spontaneous (Cuzco/Lima) Male 0 0 0 0 
NA NA (Valladolid) Female 0 0 0 0 
NA NA (Valladolid) Male 0 0 0 0 
 

One final modification is required to contrast coding in order to include a dialect slope 

for item.  Because only a subset of the levels for the dialect factor are applicable in the read 

speech task (when item is not NA, dialect is always either Cuzco or Lima and never Valladolid), 

the dialect contrasts used in the fixed effects cannot be applied to the dialect slope for items.  

Taking only the relevant subset of the fixed effects dialect contrast matrix, we have the item 

dialect slope contrasts in Table 3.10.  These, however, would be collinear with the random item 

intercepts (the item intercept would always be exactly equal to sum of the item slopes “Dialect, 

Cuzco + Dialect, Lima”).  For this reason, sum contrasts were reapplied to dialect within this 

context, as in Table 3.11.  To be clear, the fixed effects contrasts are not altered, but rather only 

the item dialect slope contrasts are altered.  This yields the contrasts in Table 3.12. 

Table 3.10 Item dialect slope contrasts that are collinear with item intercepts. 
Dialect Dialect, Cuzco Dialect, Lima 
Cuzco 1 0 
Lima 0 1 
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Table 3.11 Item dialect slope coding that avoids collinearity with item intercepts. 
Dialect Dialect, Cuzco (Item Coding) 
Cuzco 1 
Lima -1 
 

Table 3.12 Example of fixed and random item effect coding of dialect. 

Item Dialect Task Intercept Dialect, 
Cuzco 

Dialect, 
Lima 

Task, 
Read 
Speech 

i01 
Intercept 

i01 
Dialect, 
Cuzco 

i01 Cuzco Read 1 1 0 1 1 1 
i01 Lima Read 1 0 1 1 1 -1 
NA Cuzco Spontaneous 1 1 0 -1 0 0 
NA Lima Spontaneous 1 0 1 -1 0 0 
NA Valladolid NA 1 -1 -1 0 0 0 
 

The use of NA values for the fixed and random effects makes the code necessary to run 

the model more complicated (though I have created an R package, nauf (Eager, 2017a), which 

can apply the treatment of NA values discussed here automatically), and the interpretation of the 

output also becomes more complex.  However, these contrasts importantly allow all of the data 

to be considered in a single regression.  Otherwise the data would need to be binned and 

analyzed separately, which would ignore, for instance, that both the read speech and interviews 

provide information about the same speaker effects, and that both Cuzco speakers who match the 

Lima and Valladolid speakers demographically and Cuzco speakers who do not match them 

provide information about the Cuzco dialect as a whole.  By running a single regression with NA 

coding, all of the information in the data can be modeled simultaneously, yielding better 

posterior estimates. 
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3.4.3. Weakly informative prior parameter values 

Provided that the guidelines for scaling and contrasts given in Sections 3.4.1 and 3.4.2 are 

followed, then we can express the prior distributions from Section 3.3.2 mathematically in a 

principled way, based on those in Gelman (2006), Gelman et al. (2008), and Stan Development 

Team (2016b, pp. 143–148). The prior 𝛽 ~ 𝑦(5, 0, 2) assigns independent Student’s t-distribution 

priors with center 0, scale 2, and 5 degrees of freedom to each fixed effect coefficient.  A 

probability density plot of this distribution is given in Figure 3.8. 

 

Figure 3.8 Prior density for the fixed effects regression coefficients: 𝛽 ~ 𝑦(5, 0, 2). 
 

This fixed effects t-distribution prior has mean 0 and standard deviation of 2.58, making 

it similar to a normal distribution with mean 0 standard deviation 2.5, but with heavier tails (i.e. 

allowing for larger effects to be more likely than a normal prior would).  When the scaling and 

contrast guidelines laid out in the previous sections are followed, an effect magnitude greater 

than 5 is highly unlikely, but we still want to allow for this possibility.  The reason such a large 

effect is unlikely is that, for linear models, an effect of +5 for a covariate would indicate that an 
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increase of 1 standard deviation in the covariate corresponds to an increase of 5 standard 

deviations in the dependent variable (which would be a huge effect; it would imply that an 

increase in 2 standard deviations results in an increase of 10 standard deviations, etc.).  This 

reasoning also applies to factors, where this effect would correspond to a departure of 5 standard 

deviations from the corrected mean (e.g. Stan Development Team, 2016b, p. 126). 

Moving on to the prior for 𝜎𝜖 (the residual standard error), with a scaled dependent 

variable, an intercept-only model (i.e. just guessing 0 for every observation) would result in a 

residual standard error of 1, with lower values of the standard error indicating a better model fit.  

For this reason, I use a half-normal prior with scale of 0.5, resulting in the distribution shown in 

Figure 3.9. 

 

Figure 3.9 Prior density for residual standard error: 𝜎𝜖  ~ 𝐻𝑁(0, 0.5). 
 

 As mentioned in Section 3.3.2, for the random effects, rather than placing a prior on the 

covariance matrix Σ𝛾 directly, priors are placed on the correlation matrix Ω𝛾 and standard 

deviations 𝜎𝛾, with the covariance matrix Σ𝛾 being a by-product of the two (Stan Development 
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Team, 2016b, pp. 143–148, 326–332).  The standard deviation in the random intercepts is 

assigned a half-normal prior with a scale of 1.5 and the random slopes are assigned a half-normal 

prior with a scale of 1, as it is often the case that the intercepts have more variance than the 

slopes.  Figure 3.10 shows a density plot of these prior distributions. 

 

Figure 3.10 Prior density for random effects standard deviations.  For intercepts (green), 
𝜎𝛾 ~ 𝐻𝑁(0, 1.5) and for slopes (blue), 𝜎𝛾 ~ 𝐻𝑁(0, 1). 

 

 In the regressions carried out in this dissertation, the correlation parameters in Ω𝛾 are not 

directly relevant (or even directly interpretable in the case of factors), but they are important 

because they underlie the correlations of interest (i.e. they will not tell us directly if speakers’ /p/ 

strengths correlate with their /b/ strengths, but they underlie the posterior estimate of the 

correlations of interest).  The 𝐿𝐾𝐿(2) prior (Lewandowski, Kurowicka, & Joe, 2009) on the 

random effect correlation matrix favors zero correlation over positive and negative correlations, 

with positive and negative correlations being equally likely, yielding a distribution that has the 

properties discussed in Section 3.3.2.  The prior is best visualized as the marginal distribution of 
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a single correlation coefficient in the correlation matrix having a symmetric beta prior (adjusted 

to range -1 to +1), as shown in Figure 3.11. 

 

Figure 3.11 Visual approximation of the prior density on a random effects correlation: 
Ω𝛾 ~ 𝐿𝐾𝐿(2). 

 

 The prior on the random intercepts and slopes themselves is then a multivariate normal 

distribution with mean 0 and covariance matrix Σ𝛾 (the same as in lme4), with Σ𝛾 defined by the 

standard deviations 𝜎𝛾 and correlation matrix Ω𝛾.  Using these weakly informative priors, we do 

not bias the results towards our hypothesis, but rather place reasonable constraints on the 

distributions of the model parameters (Gelman et al., 2008).  The more data there is, the less the 

priors matter; that is, the data push the posterior away from the prior and toward the likelihood 

function when there is enough evidence for an effect (Cowles, 2013).  To summarize, then, I fit 

the following model for both the plosive and fricative data: 

𝛽 ~ 𝑦(5, 0, 2), 𝛾 ~ 𝑅𝑁�0, Σ𝛾�, Σ𝛾 = diag�𝜎𝛾�Ω𝛾diag�𝜎𝛾�
𝑇, 

𝜎𝛾0  ~ 𝐻𝑁(0, 1.5), 𝜎𝛾𝑖  ~ 𝐻𝑁(0, 1) 𝑒 > 0, Ωγ ~ 𝐿𝐾𝐿(2), 𝑦� = 𝑋𝛽 + 𝑍𝛾, 

𝜎𝜖  ~ 𝐻𝑁(0, 0.5), 𝑦 ~ 𝑁(𝑦�,𝜎𝜖). 
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3.4.4. Algorithmic estimation of the posterior distribution 

In simple problems, the exact posterior distribution of the parameters can be determined 

(i.e. the distribution 𝑃(𝜃 | 𝑦) has a name and parameters and we can simply use what we know 

about the distribution to make probabilistic statements about the parameters and our hypotheses).  

However, in complex problems like mixed effects regression, the posterior distribution does not 

have a name, and cannot be directly expressed mathematically, and so the posterior distribution 

is estimated algorithmically with Markov Chain Monte Carlo (Cowles, 2013, pp. 111–124). 

3.4.4.1. Monte Carlo estimation 

Given independent and identically distributed (iid) random samples from a distribution, 

the sample characteristics can be used as estimates of the distribution characteristics, which is a 

technique known as Monte Carlo estimation (Caflisch, 1998; Cowles, 2013, pp. 118–120; Geyer, 

2011, pp. 6–7).  For example, we know that a 𝑁(3, 2) distribution has mean 3 and variance 22 = 

4; but say that we didn’t know this.  If we could obtain iid random samples from the distribution, 

then the sample mean and variance would approximate the true mean and variance, with the 

standard error in the estimate of the mean being a function of the variance estimate and the 

sample size.  In R, we can do this by executing the following code (where rnorm gives random 

samples from the normal distribution):20 

 

 

 

 

 

                                                 
20 The numbers are, of course, pseudo-random, but will be referred to as random throughout the dissertation with the 
understanding that they are pseudo-random (Kroese, Taimre, & Zdravko, 2011, pp. 1–20, 44–66). 
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n <- 10000 
x <- rnorm(n, 3, 2) 
mc_mean <- mean(x) 
mc_var <- var(x) 
mc_se_mean <- sqrt(mc_var / n) 
mc_mean 
#> 2.986926 
mc_var 
#> 4.099462 
mc_se_mean 
#> 0.02024713 
 

In this case, our estimate of the mean is 2.987 with a standard error of 0.020, and our 

estimate of the variance is 4.099.  Both of these estimates are close to the true value, and are 

based on a sample size of 10,000.  We could further decrease the error in the estimates by 

increasing the sample size.  Because the numbers are random, the estimates will be slightly 

different each time, but in each case, provided a large enough sample, the estimates are 

reasonable approximations of the true values.  The samples can similarly be used to estimate 

quantiles (e.g. a 95% interval), medians, modes, and any other aspect of the distribution.  While 

in this case the true answers are known, Monte Carlo estimation is particularly useful in high-

dimensional cases (i.e. when there is a large number of parameters to be estimated 

simultaneously) where the true distribution is analytically intractable, as is the case for posterior 

distributions in Bayesian mixed effects regression.  But, in order for this estimation method to be 

applied, a random sample from the distribution must first be obtained.  In Bayesian mixed effects 

regression, these samples are obtained by simulating Markov Chains. 

3.4.4.2. Markov Chains 

A Markov Chain is a vector (or chain) of temporally related random variables where the 

probability distribution of the variable at time 𝑛 + 1 depends only on the value (or state) at time 

𝑛, and not on any previous states, with the initial state at time 𝑛 = 1 having its own distribution 
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(Geyer, 2011, p. 4; Norris, 1997).21  For example, consider the simple Markov Chain graphed in 

Figure 3.12.  The Markov Chain has three states (possible values that it can take) that are 

represented by numbered boxes: 1, 2, and 3.  There are arrows going from every box to every 

box, with the fractions for each arrow representing transition probabilities.  So, for example, if at 

time 𝑛, the Markov Chain is at state 3, then at time 𝑛 + 1, the probability the chain stays at state 

3 is ¼, the probability that it moves to state 2 is ¼, and the probability that it moves to state 1 is 

½.  At time 𝑛 − 1, the chain could have been at any of the three states, and which state it was at 

has no effect on the transition probabilities for moving to time 𝑛 + 1; only the state at time 𝑛 

determines the transition probabilities for the state at time 𝑛 + 1. 

 

Figure 3.12 Example of a simple Markov Chain with three states. 
 

If a Markov Chain meets certain requirements (it is irreducible (Norris, 1997, pp. 10–12), 

positive-recurrent (Norris, 1997, pp. 33–39, 118–121), and aperiodic (Norris, 1997, pp. 40–47)), 

then, regardless of the initial state at time 𝑛 = 1, the chain will converge to a stationary or 

equilibrium distribution 𝜋; that is, given enough time, the overall proportion of time that is spent 

                                                 
21 For the discussion of Markov Chains in this dissertation, it is more convenient to define the chain as starting at 
time 𝑛 = 1, but often when talking about the mathematical definition of a Markov Chain, the initial state time is 
referenced as 𝑛 = 0. 



90 
 

at each state converges to a distribution called the equilibrium distribution (Geyer, 2011, pp. 5–6; 

Norris, 1997, pp. 33–47, 117–123).  If the transition probabilities satisfy the detailed balance 

equations, then Markov Chain is further called reversible (Norris, 1997, pp. 47–51, 123–125).  In 

Markov Chain Monte Carlo, a much more complex Markov Chain than the one given in Figure 

3.12 is simulated, where the state of the Markov Chain is a vector of values for all of the 

parameters in the model (i.e. the fixed and random effects), and the transition probabilities are 

drawn at each step (or iteration) from a proposal distribution that relies on the values of the 

parameters at the current state of the chain (Geyer, 2011). 

3.4.4.3. Markov Chain Monte Carlo 

The goal of Markov Chain Monte Carlo (MCMC) is to set up a reversible Markov Chain 

whose equilibrium distribution 𝜋 is the posterior distribution of the parameters of interest (i.e. 

𝜋 = 𝑃(𝜃 | 𝑦)).  The Markov Chain is given a random initial state (a set of random values for all 

of the parameters being estimated) and then a proposal for a possible next state is randomly 

generated based on the current values of the parameters, and the chain then either stays at the 

current state or moves to the proposed state.  The probability that the chain moves to the 

proposed state is based on the relative probability of the two states as determined by the priors 

and the likelihood function jointly.22  This process is then repeated, treating the new state as if it 

were the initial state, and ignoring the previous state.  The evolution of the chain is simulated for 

a large number of iterations, discarding a number of initial iterations in which the chain may not 

yet have reached the equilibrium distribution (known as burn-in or warm-up iterations), resulting 

                                                 
22 For some MCMC algorithms, such as the Gibbs sampler, all proposals are accepted by design, and for others, such 
as the independence sampler, the proposal distribution does not depend on the current state, but neither of these is 
discussed here; see (Geyer, 2011). 
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in random samples from the posterior distribution 𝑃(𝜃 | 𝑦).  The characteristics of the posterior 

are then estimated by applying Monte Carlo methods to the samples (Geyer, 2011). 

To give the researcher confidence that the equilibrium distribution (i.e. posterior 

distribution) has been reached, multiple chains are run from diffuse starting points (i.e. starting 

points that are not too similar too each other, or else running multiple chains doesn’t really 

increase our confidence; in practice these starting points are usually randomly generated), and 

convergence statistics (described in Section 3.5.1) are applied to determine whether it can be 

reasonably believed that all of the chains reached the same distribution (Gelman & Shirley, 

2011).  However, the samples generated by the Markov Chain are not independent of one 

another (that is, not iid), but rather are temporally auto-correlated within-chain, and so the error 

in the Monte Carlo estimate of the mean for each parameter (as described in Section 3.4.4.1) 

needs to be adjusted by first calculating the effective sample size for that parameter, which 

accounts for this auto-correlation (Geyer, 2011, pp. 8–9).  Holding the sample size constant, the 

greater the auto-correlation in the samples is, the lower the effective sample size is, and the 

higher the Monte Carlo error is.  Thus, when implementing MCMC algorithmically, the goal is 

to minimize the computational time required to get from one sample to an effectively 

independent sample.  To that end, in the studies carried out in this dissertation, Hamiltonian 

Monte Carlo (HMC) with the No-U-Turns Sampler (NUTS) as implemented in Stan is used 

(Carpenter et al., 2017; Hoffman & Gelman, 2014; Neal, 2011). 

HMC differs from other approaches to MCMC in that it makes use of Hamiltonian 

dynamics to simulate the movement of the model about the posterior distribution (Neal, 2011).  

Hamilton’s equations are usually used to describe a particle’s movement in space through time 

given its position and momentum (e.g. an air particle in three-dimensional space has a three-
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dimensional position vector and a three-dimensional momentum vector that change across time 

together).  In Hamiltonian Monte Carlo, the current state of the chain is treated as a position 

vector, and a momentum vector of the same size is randomly generated at each iteration (e.g. if 

we have 100 total parameters combining the fixed and random effects, then we are treating the 

model as a fictional 100-dimensional particle).  Then, given the iteration’s position and randomly 

generated momentum, the evolution of the fictional particle is simulated in discrete time steps to 

reach a new state.  NUTS is a type of HMC that is especially efficient and does not require 

manual tuning of algorithmic parameters; for a detailed description of the algorithm, see 

Hoffman and Gelman (2014).  The advantage of HMC with NUTS is that it tends to produce less 

correlated posterior samples; that is, it is more efficient in achieving effectively independent 

samples of the posterior distribution of the model parameters.  The NUTS algorithm is 

implemented in Stan (Carpenter et al., 2017), a Bayesian modeling language that interfaces with 

R through the rstan package (Stan Development Team, 2016a).  Stan code is provided in 

Sections A.3 and B.6, and is written following the guidelines the Stan language reference manual 

to allow for optimal performance (Stan Development Team, 2016b, pp. 316–341).23 

3.5. Regression output and interpretation 

Throughout this section, I will use the regression output for stress in the plosive 

regression as an example (discussed and interpreted in Chapter 5).  Recall that, as we are 

discussing consonants, stress refers to the syllabic environment (tonic, post-tonic, or unstressed). 

                                                 
23 There are several R packages which allow Bayesian mixed effects regressions to be fit using an lme4-like 
formula and implement weakly informative priors automatically, including rstanarm (Gabry & Goodrich, 2016) 
and brms (Bürkner, in press).  However, these do not allow for NA values to be implemented directly, and so I have 
written my own Stan code. 
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3.5.1. Assessing model convergence 

As with any statistical model, the results of a Bayesian mixed effects regression in Stan 

need to be checked for reasonableness; that is, the convergence of the model needs to be 

assessed.  For each regression in this dissertation, I ran four chains, each with 1000 warm-up 

iterations and 2500 post-warm-up iterations (resulting in 10,000 posterior samples), and with the 

target acceptance rate at the default value of 0.8 (the only algorithmic parameter that may require 

some tuning, but usually does not, and did not in the regressions carried out here).24  I 

implemented the following three convergence checks.  First, I ensured that that there were no 

divergent transitions post-warm-up, which would indicate that the target acceptance rate 

algorithmic parameter needs to be increased (Stan Development Team, 2016b).  Second, I 

ensured that the Gelman-Rubin 𝑅� statistic, which measures the potential scale reduction that 

could be achieved if the chains were allowed to run for more iterations, was under 1.1 for all 

parameters (Gelman & Rubin, 1992).  Third, I examined trace plots to ensure good mixing for 

the chains and posterior density plots to ensure there was no multimodality (Cowles, 2013, pp. 

111–144).  The trace plot and posterior density plot for the regression coefficient “Stress, Post-

Tonic” (i.e. the difference between post-tonic plosives and the corrected mean in terms of 

VNPC1) are provided in Figure 3.13. 

                                                 
24 The target acceptance rate, 𝛿, ranging 0 to 1, exclusive, controls the size of the steps taken in the evolution of the 
Hamiltonian system.  The higher 𝛿 is, the smaller the steps are, and the longer sampling takes.  If 𝛿 is too small, 
divergent transitions can occur, which invalidate the results. 
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Figure 3.13 Trace plot (left panel) and density plot (right panel) of the posterior samples for 
𝛽𝑃𝑛𝑛𝑃−𝑇𝑛𝑛𝑛𝑠. 

 

The trace plot in Figure 3.13 (left panel) shows the path that each of the four Markov 

Chains took for the “Stress, Post-Tonic” fixed effects parameter, superimposed on one another, 

excluding the warm-up iterations.  What we are looking for in this plot is that the chains are 

randomly moving around the same area of the possible parameter values; and they are (i.e. we 

don’t see any evidence that different colors occupy different areas of the plot, and the plot 

overall looks like a fuzzy flat horizontal bar).  The posterior density plot in Figure 3.13 (right 

panel) shows the density of all of the values visited by all four chains in the trace plot, and 

represents our Monte Carlo estimate of the distribution 𝑃(𝛽𝑃𝑛𝑛𝑃−𝑇𝑛𝑛𝑛𝑠 | 𝑦).  This distribution 

does not have a name (i.e. it isn’t normally- or t-distributed, it is 𝑃(𝛽𝑃𝑛𝑛𝑃−𝑇𝑛𝑛𝑛𝑠 | 𝑦)-distributed).  

This density plot represents a very rich source of information that we have about the fixed effects 

parameter, and we can summarize this information using the distributional characteristics of the 

samples themselves to obtain Monte Carlo estimates of the true distributional characteristics of 

𝑃(𝛽𝑃𝑛𝑛𝑃−𝑇𝑛𝑛𝑛𝑠 | 𝑦), as described in the following section. 



95 
 

3.5.2. Fixed effects posterior distribution summaries 

3.5.2.1. Fixed effect parameters 

The regression tables presented in this dissertation are similar in format to regression 

tables used with frequentist methods, but with some important differences in interpretation 

(explanation of the output draws from Cowles (2013)).  Continuing with the plosive stress 

example, I use a subset of Table 5.1 from the results in Chapter 5 to illustrate how the tables are 

interpreted.  Table 3.13 shows the regression output for stress only, along with the intercept. 

Table 3.13 Example fixed effect regression output. 
Fixed Effect Mean SD 2.5% 97.5% Neff P(sign) 
Intercept (Corrected Mean) -0.196 0.051 -0.297 -0.095 3575 > .999 *** 
Stress, Post-Tonic -0.041 0.019 -0.079 -0.002 10000 .982 

*** 
Stress, Tonic 0.219 0.020 0.180 0.257 10000 > .999 
 

 Comparing the columns in Table 3.13 to those from a frequentist regression (in R), the 

posterior Mean is most similar to the estimate, the posterior standard deviation SD is most 

similar to the standard error, the posterior 95% equal-tailed credible interval (2.5% and 97.5% 

columns) is most similar to a 95% confidence interval, and the posterior probability of the sign 

of the mean, P(sign), is most similar to a p-value.  The Neff column is the effective sample size 

of the parameter’s posterior distribution (with a max of 10,000 in this case), as described in 

Section 3.4.4.3.  The 𝑅� statistic is omitted, as when rounded to two decimals, it was exactly 1.00 

for all parameters in all regressions, and the standard error of the mean (as described in Section 

3.4.4.1) is omitted, as it is recoverable from 𝑆𝑆/�𝑁𝑒𝑁𝑁.  As for differences in interpretation, all 

of the output in the Bayesian regression table is based on the sample characteristics of the 10,000 

posterior samples from the Markov Chains.  In Figure 3.14, I show the same density plot from 



96 
 

Figure 3.13 (right panel), but now with the summary statistics visualized.  I then discuss each 

summary statistic in detail. 

 

Figure 3.14 Summary statistics of the posterior distribution of 𝛽𝑃𝑛𝑛𝑃−𝑇𝑛𝑛𝑛𝑠: the blue vertical line 
is the posterior mean; the vertical dotted black lines are one posterior SD on either side of the 
mean; the green bar is the 95% credible interval; and the area under the curve to the left of the 

red bar at zero is P(sign). 
 

The posterior mean is not a (restricted) maximum likelihood estimate of the effect size, 

but rather the expected value of the parameter given the data, obtained by taking the sample 

mean of the posterior samples for each parameter.  There are other options besides the posterior 

mean that can be used as the point estimate of the parameters, such as the posterior median and 

posterior mode.  However, the posterior mean is the most widely used and most directly 

comparable to the frequentist estimate in interpretation because it minimizes a squared error loss 

function with respect to the posterior estimates for the parameter rather than an absolute 

difference loss function (posterior median) or curvature-based loss function (posterior mode) 

(Berger, 1993; Lehmann & Casella, 1998). 
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The posterior standard deviation is the standard deviation of the 10,000 posterior 

samples, not an ancillary estimate generated based on the (restricted) maximum likelihood 

estimate of the random effects covariance matrix.  In frequentist statistics, a 95% confidence 

interval is often misinterpreted along the lines of meaning “there is a 95% probability that the 

true value of the parameter is contained in the interval.”  This, however, is not a correct 

interpretation of a confidence interval.  The correct interpretation is “if the experiment were 

repeated a large number of times and a 95% confidence interval were generated each time, 95% 

of the time the confidence interval would contain the true parameter.”  In Bayesian statistics, the 

95% credible interval has the interpretation often mis-assigned to frequentist confidence 

intervals: given the data, there is a 95% probability that the parameter falls within the interval. 

Similarly, a p-value does not represent the probability that the null hypothesis is correct, 

but rather the probability that an effect as extreme or more extreme than that found in the data by 

(restricted) maximum likelihood estimation would be found assuming that the true effect is zero, 

as discussed in Section 3.2.1.  For a more in-depth discussion of what a frequentist p-value 

means and some common misinterpretations, see Cohen (1994).  The probability of the sign of 

the mean, P(sign), is the proportion of the posterior samples for an estimate that have the same 

sign as the posterior mean.  That is, if the posterior mean is positive, then P(sign) is the 

probability that the effect is positive given the data, and if the posterior mean is negative, then 

P(sign) is the probability that the effect is negative given the data.  The higher the value of 

P(sign), the greater certainty there is for a non-zero effect with the same sign as the posterior 

mean.  While technically the range of P(sign) is 0 to 1, in practice the lower bound is 0.5, with 

values lower than 0.5 only arising in the case of highly skewed or multimodal posterior 

distributions (which would be detected by the convergence checks described in Section 3.5.1).  
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As this probability value describes what researchers often want to know but are unable to obtain 

with frequentist statistics (i.e. the probability of a hypothesis given the data), it is not necessary 

to take a NHST approach to the data, and in this dissertation I do not take such an approach. 

 With a NHST approach, an alpha level is chosen (usually 𝛼 = .05), and then two-tailed 

tests are performed to obtain the probability of the data given the null hypothesis, and an accept 

or reject decision is made with regards to the null hypothesis.  If the null hypothesis is true and is 

not rejected, this is referred to as a Type I error.  If the null hypothesis is false but accepted, this 

is referred to as a Type II error.  As I do not take a NHST approach in this dissertation, instead of 

Type I and Type II errors, we refer to Type S (sign) errors and Type M (magnitude) errors (e.g. 

Gelman & Tuerlinckx, 2000).  A Type S error occurs when we say that we are confident that a 

parameter is positive, but is in fact negative, or vice versa, and a Type M error occurs when we 

say that we are confident that an effect size is large when it is in fact small, or vice versa.  The 

P(sign) estimate is thus the posterior probability that we are not committing a Type S error.  In 

Table 3.13, a Bayesian NHST with 𝛼 = .05 would be declaring effects with P(sign) ≥ .975 

“significant” and effects with P(sign) < .975 “not significant”.  In this dissertation, I will refer to 

this degree of certainty with regards to the effect direction as “strong evidence” for the effect 

direction (denoted ‘***’ in the P(sign) column).  But, rather than rejecting as insignificant all 

other effects, I will discuss them as there being “some evidence” for the effect direction when 

.950 ≤ P(sign) < .975 (denoted ‘**’ in the P(sign) column), “weak evidence” for the effect 

direction when .900 ≤ P(sign) < .950 (denoted ‘*’ in the P(sign) column), and “little evidence” 

for the effect direction when P(sign) < .900 (denoted ‘x’ in the P(sign) column).  In other words, 

while binning the degree of confidence is to some extent necessary for purposes of discussion, 

the actual posterior probability should always be considered in a gradient manner. 



99 
 

3.5.2.2. Group means and pairwise comparisons 

In frequentist statistics, group means for factor levels and pairwise comparisons of the 

groups are performed using least-squares means (e.g. via the lsmeans package (Lenth & 

Hervao, 2015)), with the p-values for the pairwise comparisons adjusted to account for multiple 

comparisons (most often with the Tukey method).  These comparisons are only made if an 

omnibus test first shows that the factor accounted for a significant amount of variance overall, 

which is done by comparing nested models with ANOVA.  With Bayesian inference, there is no 

issue of multiple comparisons in this classical sense (Gelman, Hill, & Yajima, 2012; Gelman & 

Tuerlinckx, 2000), as P(sign) consistently represents the probability of a Type S error across all 

comparisons made.  That is, if, for example, a total of 100 claims of strong evidence for the signs 

of effects are made throughout the dissertation, then we expect on average 2.5 false claims of 

effect sign (Type S errors), regardless of whether or not the claims were for covariates, binary 

factors, or pairwise comparisons for factors with three or more levels.  Continuing with the 

Spanish stress example, the contrasts applied to obtain the group means for the different stress 

categories are given Table 3.14. 

Table 3.14 Example contrasts for posterior group means. 
Stress Contrasts applied to coefficients 
Tonic Intercept (Corrected Mean) + Stress, Tonic 
Post-Tonic Intercept (Corrected Mean) + Stress, Post-Tonic 
Unstressed Intercept (Corrected Mean) - Stress, Tonic - Stress, Post-Tonic 
 

 These contrasts are applied to each posterior sample of the model parameters 

individually, yielding an estimate of the group means for each iteration (in this case, 10,000 

posterior estimates).  These estimates can then be subtracted from one another to obtain an 

estimate for each group difference for each iteration, and inference can be made on the group 

means and pairwise comparisons just as described for the fixed effect parameters in Section 



100 
 

3.5.2.1.  For group means, I report the posterior mean, standard deviation, and 95% credible 

interval, and for pairwise comparisons, I additionally provide the posterior probability of the sign 

of the contrast mean.  For our stress example, these are given in Table 3.15 (also Table 5.4) and 

Table 3.16 (also Table 5.5), respectively. 

Table 3.15 Example output for fixed effect factor group means. 
Stress Mean SD 2.5% 97.5% 
Tonic 0.023 0.052 -0.082 0.126 
Post-Tonic -0.237 0.055 -0.345 -0.127 
Unstressed -0.374 0.056 -0.485 -0.264 
 

Table 3.16 Example output for fixed effect factor pairwise comparisons. 
Contrast Mean SD 2.5% 97.5% P(sign) 
Tonic - Post-Tonic 0.260 0.033 0.195 0.324 > .999 *** 
Tonic - Unstressed 0.397 0.036 0.328 0.467 > .999 *** 
Post-Tonic - Unstressed 0.137 0.036 0.067 0.207 > .999 *** 

3.5.3. Random effects 

3.5.3.1. Standard deviations 

To summarize the posterior distribution of the random effects standard deviations, I use 

the same format as described for the fixed effects in Section 3.5.2.1, except for two alterations.  

First, because standard deviations cannot be negative, P(sign) is meaningless and therefore 

omitted.  Second, because the tail of the posterior distributions of variance components tends to 

be very heavy (which can raise the value of the posterior mean, making it perhaps not the best 

posterior point estimate), I provide the posterior median in addition to the posterior mean.  For 

our stress example, the standard deviation for the random speaker slopes for stress are given in 

Table 3.17 (taken from Table B.2). 
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Table 3.17 Example regression output for random effect standard deviations. 
Random Speaker Effect Mean SD Median 2.5% 97.5% Neff 
Intercept (Corrected Mean) 0.304 0.035 0.301 0.244 0.381 4484 
Stress, Post-Tonic 0.031 0.021 0.029 0.001 0.076 4298 
Stress, Tonic 0.075 0.018 0.075 0.038 0.111 4302 
 

3.5.3.2. Correlations 

The correlation in the random effects can be summarized in the same way as described 

for the fixed effects in Section 3.5.2.1.  However, as discussed in Section 3.4.3, the correlations 

in Ω𝛾 are not directly useful.  I am interested in the correlation between certain quantities 

generated for each subject, such as the correlation between the predicted means of the strength of 

their /k/ and /g/ productions.  This information is not directly expressed in the correlation 

parameters in Ω𝛾.  I therefore generate estimates for such quantities using both the fixed and 

random effects at each iteration of the model, and then generate an estimate for the correlation 

between the quantities at each iteration, in a similar fashion as described for group means and 

pairwise comparisons in Section 3.5.2.2. 

3.6. Conclusion 

Bayesian mixed effects regressions with maximal random effects structures and weakly 

informative priors allow hypotheses concerning individual differences to be tested while still 

making use of all of the information available in the data in a single model.  The estimation of 

these models is done using Markov Chain Monte Carlo (and in this dissertation specifically, 

Hamiltonian Monte Carlo with the No-U-Turns sampler in Stan).  When continuous variables are 

scaled, factors are coded with sum contrasts, and factor NA values are coded as zero, reasonable 

weakly informative priors can be applied.  These weakly informative priors do not bias the 
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results in favor of the hypotheses, but rather place reasonable constraints on the model 

parameters, which can be summarized as follows: (1) the most likely effect is no effect; (2) for 

fixed effects and random effect correlations, positive and negative values are equally likely (for 

standard deviations this is not applicable); (3) effects that are larger in magnitude are gradiently 

less likely than effects that are smaller in magnitude; and (4) effects with a magnitude greater 

than 5 are very unlikely.  Importantly, the data can override the priors when there is strong 

enough evidence in the data, with the posterior approaching the likelihood as the sample size 

increases.  Taking a Bayesian approach to mixed effects regression also allows us to move past a 

null hypothesis significance testing approach, since the posterior distribution of the model gives 

us what we are actually looking for: the probability of our hypothesis given the data. 
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Chapter 4. Spanish and Catalan fricative results 

In this chapter, I present the results of the Bayesian mixed effects regression on 

Valladolid Spanish and Catalan /sf/ NPC1 (normalized PC1, which measures the strength of a 

fricative in terms of duration, voiceless duration, and percent voiceless on unit scale).  The fixed 

effects included in the regression were language, fricative phoneme identity, stress, sex, 

preceding vowel height, following vowel height, log word frequency, speech rate, and the 

interaction of language with each of fricative phoneme identity, stress, sex, preceding vowel 

height, and following vowel height (that is, the interaction of language with all of the factors was 

included based on examining descriptive statistics).  Speaker was included as a random effect 

grouping factor, with the maximal random effects structure, which included random intercepts 

and random slopes for fricative phoneme identity, stress, preceding vowel height, following 

vowel height, log word frequency, and speech rate.  The posterior distribution of the fixed effects 

parameters are given in Table 4.1 (the random speaker effect variances and residual standard 

error are provided in Section A.1).  In Section 4.1, the posterior distribution of the control 

predictors are presented, and in Section 4.2, the posterior distribution of the interaction of 

language and fricative phoneme identity are presented.  For each predictor, descriptive statistics 

and plots are provided along with effect estimates and, when relevant, pairwise comparisons. 
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Table 4.1 Posterior distribution of the fixed effects. 
Fixed Effect Mean SD 2.5% 97.5% Neff P(sign) 
Intercept (Corrected Mean) -0.033 0.067 -0.165 0.099 2770 .692 x 
Language, Catalan 0.075 0.067 -0.057 0.204 2834 .872 x 
Fricative, /f/ 0.015 0.043 -0.070 0.098 5359 .637 x 
Stress, Post-Tonic -0.035 0.037 -0.109 0.038 7315 .830 

*** 
Stress, Tonic 0.151 0.036 0.078 0.222 10000 > .999 
Sex, Female 0.098 0.065 -0.029 0.223 2894 .936 * 
Preceding Vowel, High -0.084 0.026 -0.135 -0.032 10000 .999 *** 
Following Vowel, High 0.100 0.028 0.045 0.155 8250 > .999 *** 
Log Word Frequency -0.054 0.027 -0.110 -0.003 8361 .980 *** 
Speech Rate -0.246 0.021 -0.287 -0.205 10000 > .999 *** 
Language, Catalan : Fricative, /f/ -0.093 0.043 -0.179 -0.008 4727 .986 *** 
Language, Catalan : Stress, Post-Tonic -0.138 0.038 -0.213 -0.063 6940 > .999 

*** 
Language, Catalan : Stress, Tonic 0.039 0.036 -0.032 0.108 10000 .867 
Language, Catalan : Sex, Female 0.012 0.065 -0.117 0.141 2816 .579 x 
Language, Catalan : 
Preceding Vowel, High -0.034 0.026 -0.084 0.018 10000 .905 * 

Language, Catalan : 
Following Vowel, High 0.028 0.029 -0.030 0.084 6713 .826 x 

 

4.1. Control predictors 

4.1.1. Linguistic covariates 

As log word frequency and speaker-normalized speech rate are covariates and are not 

involved in any interactions, the posterior estimate of their effects can be taken directly from 

Table 4.1. 

4.1.1.1. Word frequency 

A scatterplot of NPC1 by normalized log word frequency is provided in Figure 4.1, 

where the sample correlation  is -0.064. 
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Figure 4.1 Scatterplot of NPC1 by normalized log word frequency (𝑟 = −0.064). 
 

The posterior estimate is that a 1-SD increase in log word frequency leads to an estimated 

decrease in NPC1 of 0.054, and we have strong evidence for this effect being negative (P(sign) = 

.980).  That is, the more frequent a word is, the weaker fricatives in the word are predicted to be, 

consistent with previous research on word frequency and lenition (e.g. Pierrehumbert, 2001). 

4.1.1.2. Speech rate 

A scatterplot of NPC1 by speaker-normalized speech rate is provided in Figure 4.2, 

where the sample correlation  is -0.258. 
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Figure 4.2 Scatterplot of NPC1 by speaker-normalized speech rate (𝑟 = −0.258). 
 

The posterior estimate is that a 1-SD increase in speaker-normalized speech rate leads to 

an estimated decrease in NPC1 of 0.246, and we have strong evidence for this effect being 

negative (P(sign) > .999).  This is consistent with previous research on Spanish /s/ lenition where 

speech rate was included as a covariate (Torreira & Ernestus, 2012), and also exactly what we 

would expect the general effect of increased speech rate to be (i.e. increased articulatory 

undershoot leading to acoustically weaker consonants). 

4.1.2. Linguistic factors 

4.1.2.1. Stress 

Descriptive statistics for NPC1 by language and stress are provided in Table 4.2, with 

corresponding boxplots in Figure 4.3. 
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Table 4.2 Descriptive statistics for NPC1 by language and stress. 
Language Stress N Minimum Median Maximum Mean SD 

Catalan 
Tonic 283 -2.263 0.223 2.253 0.112 0.929 
Post-Tonic 351 -2.444 0.087 2.351 -0.039 0.980 
Unstressed 599 -2.417 0.268 2.478 0.159 1.013 

Spanish 
Tonic 214 -2.453 0.150 2.444 -0.008 0.972 
Post-Tonic 399 -2.589 0.210 2.405 -0.061 1.070 
Unstressed 317 -2.480 -0.050 1.994 -0.274 0.919 

 

 

Figure 4.3 Boxplots of NPC1 by stress for Catalan (left panel) and Spanish (right panel) 
fricatives. 

 

There is strong evidence for an interaction between stress and language (maximum 

P(sign) > .999 in Table 4.1).  Posterior group means for NPC1 by language and stress are given 

in Table 4.3, with corresponding pairwise comparisons within language in Table 4.4. 
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Table 4.3 Posterior group means for NPC1 by language and stress. 
Language Stress Mean SD 2.5% 97.5% 

Catalan 
Tonic 0.232 0.106 0.023 0.438 
Post-Tonic -0.131 0.101 -0.327 0.066 
Unstressed 0.025 0.108 -0.189 0.235 

Spanish 
Tonic 0.004 0.115 -0.224 0.227 
Post-Tonic -0.004 0.107 -0.217 0.202 
Unstressed -0.323 0.113 -0.549 -0.103 

 

Table 4.4 Posterior group differences for NPC1 by stress within language. 
Language Contrast Mean SD 2.5% 97.5% P(sign) 

Catalan 
Tonic - Post-Tonic 0.363 0.090 0.185 0.539 > .999 *** 
Tonic - Unstressed 0.207 0.086 0.037 0.375 .992 *** 
Post-Tonic - Unstressed -0.156 0.086 -0.325 0.017 .962 ** 

Spanish 
Tonic - Post-Tonic 0.008 0.088 -0.162 0.181 .538 x 
Tonic - Unstressed 0.327 0.094 0.140 0.511 > .999 *** 
Post-Tonic - Unstressed 0.318 0.100 0.120 0.513 .998 *** 

 

For Catalan fricatives, the posterior estimates show a hierarchy of Tonic > Unstressed > 

Post-Tonic, with strong evidence for fricatives in the onset of a tonic syllable being stronger than 

fricatives in the onset of the post-tonic syllable or between two unstressed vowels, and some 

evidence for the difference between the unstressed and post-tonic conditions.  In Spanish, the 

posterior estimates show a different hierarchy of Tonic, Post-Tonic > Unstressed, with strong 

evidence for fricatives in the unstressed condition being weaker than the other two conditions, 

and little evidence for a difference between the tonic and post-tonic conditions.  This is different 

from the findings of Torreira and Ernestus (2012), who found no significant effect for stress in 

Spanish for intervocalic /s/ voicing; this may be perhaps due to post-tonic fricatives patterning 

with tonic fricatives here, while post-tonic fricatives were classified with unstressed fricatives by 

Torreira and Ernestus (2012). 
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4.1.2.2. Preceding vowel height 

Descriptive statistics for NPC1 by language and preceding vowel height are provided in 

Table 4.5, with corresponding boxplots in Figure 4.4. 

Table 4.5 Descriptive statistics for NPC1 by language and preceding vowel height. 
Language Preceding Vowel N Minimum Median Maximum Mean SD 

Catalan 
Non-High 939 -2.444 0.267 2.478 0.143 0.993 
High 294 -2.417 0.110 1.974 -0.072 0.954 

Spanish 
Non-High 722 -2.589 0.096 2.041 -0.110 0.980 
High 208 -2.363 0.032 2.444 -0.161 1.083 

 

 

Figure 4.4 Boxplots of NPC1 by preceding vowel height for Catalan (left panel) and Spanish 
(right panel) fricatives. 

 

While the descriptive statistics show a possible interaction between preceding vowel 

height and language, there is not strong evidence for this interaction (P(sign) = .905 in Table 

4.1).  For this reason, in Table 4.6, the group means for NPC1 are given by preceding vowel 

height overall (averaging over the interaction term), with corresponding group difference 

estimate in Table 4.7. 
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Table 4.6 Posterior group means for NPC1 by preceding vowel height. 
Preceding Vowel Mean SD 2.5% 97.5% 
High -0.117 0.075 -0.264 0.032 
Non-High 0.051 0.068 -0.084 0.183 
 

Table 4.7 Posterior group differences for NPC1 by preceding vowel height. 
Contrast Mean SD 2.5% 97.5% P(sign) 
High - Non-High -0.167 0.052 -0.270 -0.064 .999 *** 
 

The posterior estimates show a moderate negative effect, with fricatives after a high 

vowel being 0.167 standard deviations weaker than those following a non-high values, and the 

evidence for the direction of this effect is very strong (P(sign) = .999).  This is different from 

Torreira and Ernestus’ (2012) study on Spanish /s/ lenition, where the effect of preceding vowel 

identity was not found to have a significant effect for any measure taken.  The effect of 

preceding vowel height on overall consonant strength is somewhat difficult to predict.  From a 

duration perspective, a preceding high vowel should lead to a shorter consonant duration as 

measured in this study (preceding vowel intensity maximum to following vowel maximum); 

however, when an underlyingly voiceless obstruent voices bordering sonorants, the voicing tends 

to bleed in from the preceding vowel rather than the following vowel (L. Davidson, 2016), and 

this effect should be lesser for high vowels.  For NPC1, which incorporates both of these 

measures, the model is telling us that there is strong evidence that the overall effect of a 

preceding high vowel (vs. non-high vowel) is negative. 

4.1.2.3. Following vowel height 

Descriptive statistics for NPC1 by language and following vowel height are provided in 

Table 4.8, with corresponding boxplots in Figure 4.5. 
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Table 4.8 Descriptive statistics for NPC1 by language and following vowel height. 
Language Following Vowel N Minimum Median Maximum Mean SD 

Catalan 
Non-High 475 -2.272 0.023 2.351 -0.107 0.962 
High 758 -2.444 0.345 2.478 0.216 0.984 

Spanish 
Non-High 605 -2.589 0.107 2.444 -0.113 1.035 
High 325 -2.480 0.026 1.994 -0.137 0.943 

 

 

Figure 4.5 Boxplots of NPC1 by following vowel height for Catalan (left panel) and Spanish 
(right panel) fricatives. 

 

While the descriptive statistics show a possible interaction between following vowel 

height and language, there is little evidence for this interaction (P(sign) = .826 in Table 4.1).  For 

this reason, in Table 4.9, the group means for NPC1 are given by following vowel height overall 

(averaging over the interaction term), with corresponding group difference estimate in Table 4.10 

Table 4.9 Posterior group means for NPC1 by following vowel height. 
Following Vowel Mean SD 2.5% 97.5% 
High 0.067 0.074 -0.080 0.215 
Non-High -0.133 0.070 -0.271 0.006 
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Table 4.10 Posterior group differences for NPC1 by following vowel height. 
Contrast Mean SD 2.5% 97.5% P(sign) 
High - Non-High 0.200 0.056 0.090 0.310 > .999 *** 
 

The posterior estimates show a moderate positive effect, with fricatives after a high 

vowel being 0.200 standard deviations stronger than those following a non-high values, and the 

evidence for the direction of this effect is very strong (P(sign) > .999).  This is different from 

Torreira and Ernestus’ (2012) study on Spanish /s/ lenition, where the effect of following vowel 

identity was not found to have a significant effect for any measure taken.  However, the result 

found here is consistent with a number of studies that find that high vowels are more likely to 

devoice after voiceless consonants than non-high vowels (e.g. Delforge, 2009, 2012; Torreira & 

Ernestus, 2011), which would correspond to a longer voiceless duration and higher percentage of 

the overall consonant duration being voiceless, leading to a higher NPC1. 

4.1.3. Social factor (speaker sex) 

Descriptive statistics for NPC1 by language and sex are provided in Table 4.11, with 

corresponding boxplots in Figure 4.6. 

Table 4.11 Descriptive statistics for NPC1 by language and sex. 
Language Sex N Minimum Median Maximum Mean SD 

Catalan 
Female 602 -2.444 0.288 2.469 0.175 0.990 
Male 631 -2.417 0.176 2.478 0.012 0.980 

Spanish 
Female 468 -2.453 0.129 1.994 -0.080 0.970 
Male 462 -2.589 -0.009 2.444 -0.164 1.036 
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Figure 4.6 Boxplots of NPC1 by sex for Catalan (left panel) and Spanish (right panel) fricatives. 
 

While the descriptive statistics show a possible interaction between speaker sex and 

language, there is little evidence for this interaction (P(sign) = .579 in Table 4.1).  For this 

reason, in Table 4.12, the group means for NPC1 are given by sex overall (averaging over the 

interaction term), with corresponding group difference estimate in Table 4.13. 

Table 4.12 Posterior group means for NPC1 by sex. 
Sex Mean SD 2.5% 97.5% 
Female 0.066 0.093 -0.120 0.248 
Male -0.131 0.093 -0.314 0.053 
 

Table 4.13 Posterior group differences for NPC1 by sex. 
Contrast Mean SD 2.5% 97.5% P(sign) 
Female - Male 0.197 0.131 -0.058 0.447 .936 * 
 

The posterior estimates show a moderate positive effect, with female speakers producing 

fricatives that are 0.197 standard deviations stronger than fricatives produced by male speakers.  

However, we have only weak evidence for this effect (P(sign) = .936). 
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4.2. Language and fricative phoneme identity 

Descriptive statistics for NPC1 by language and fricative phoneme identity are provided 

in Table 4.14, with corresponding boxplots in Figure 4.7. 

Table 4.14 Descriptive statistics for NPC1 by language and phoneme identity. 
Fricative Language N Minimum Median Maximum Mean SD 

/f/ 
Catalan 269 -2.417 0.091 2.253 -0.056 0.943 
Spanish 165 -2.209 0.143 2.444 -0.068 0.985 

/s/ 
Catalan 964 -2.444 0.283 2.478 0.133 0.997 
Spanish 765 -2.589 0.070 2.405 -0.133 1.008 

 

 

Figure 4.7 Boxplots of NPC1 by language for /f/ (left panel) and /s/ (right panel). 
 

There is strong evidence for an interaction between phoneme identity and language 

(P(sign) = .986 in Table 4.1).  Posterior group means for NPC1 by language and phoneme 

identity are given in Table 4.15, with corresponding pairwise comparisons within phoneme 

identity in Table 4.16. 
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Table 4.15 Posterior group means for NPC1 by language and phoneme identity. 
Fricative Language Mean SD 2.5% 97.5% 

/f/ 
Catalan -0.036 0.104 -0.243 0.169 
Spanish 0.000 0.118 -0.233 0.235 

/s/ 
Catalan 0.120 0.112 -0.103 0.342 
Spanish -0.215 0.114 -0.439 0.010 

 

Table 4.16 Posterior group differences for NPC1 by language within phoneme identity. 
Contrast Fricative Mean SD 2.5% 97.5% P(sign) 

Catalan - Spanish 
/f/ -0.036 0.159 -0.351 0.270 .592 x 
/s/ 0.335 0.160 0.022 0.653 .981 *** 

 

The posterior pairwise comparisons show little evidence for a difference between Catalan 

and Spanish /f/ (P(sign) = .592), but strong evidence that Catalan /s/ is stronger than Spanish /s/ 

(P(sign) = .981).  The magnitude of this effect is also stronger than nearly any of the other factors 

included in the regression (the comparison for Catalan Tonic vs. Post-Tonic in Table 4.4 is 

slightly larger at 0.363).  In addition to having strong evidence for Catalan /s/ being stronger than 

Spanish /s/, we also have strong evidence that the magnitude of the difference for /s/ is greater 

than the magnitude of the difference for /f/, as shown in Table 4.17. 

Table 4.17 Posterior estimate for the difference in magnitude for Catalan vs. Spanish /s/ and /f/. 
Contrast Mean SD 2.5% 97.5% P(sign) 
(Catalan /s/ - Spanish /s/) 
- (Catalan /f/ - Spanish /f/) 0.371 0.174 0.032 0.716 0.986 *** 

 

These results strongly support Hypothesis 1 (from Section 1.6: Catalan /s/ will be 

stronger than (Valladolid) Spanish /s/, but Catalan /f/ will not be stronger than (Valladolid) 

Spanish /f/.)  Hualde and Prieto (2014) found that Catalan /s/ was significantly longer than 

Spanish /s/, and argued that this may be indicative of an effect of contrast preservation, but noted 

that comparison of other voiceless segments in the languages was necessary to further support 

the claim.  The results found here are consistent with their findings for /s/, and further show that 
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there is little evidence for a difference in /f/ strengths between the languages, and strong 

evidence that the difference between the languages’ /s/ strengths is larger than the difference 

between their /f/ strengths, consistent with their predictions for /f/.  Given that Spanish and 

Catalan both have /s/ and /f/, neither has /v/, and Catalan has /z/ while Spanish does not, these 

results are consistent with a role for contrast preservation as a constraint in its own right.  That is, 

if Catalan simply had stronger voiceless fricatives in Spanish, we would expect to also find 

evidence that Catalan has stronger /f/ realizations than Spanish, not just stronger /s/ realizations.  

One possible explanation for this asymmetry is that the presence of the contrastive consonant /z/ 

in Catalan constrains the degree to which Catalan /s/ lenites, while this constraint does not exist 

in Spanish. 
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Chapter 5. Spanish plosive results 

In this chapter, I present the results of the Bayesian mixed effects regression on Spanish 

/ptk/ and /bdg/ VNPC1 (voicing-normalized PC1, which measures the strength of a plosive given 

its underlying voicing in terms of duration, voiceless duration, percent voiceless, intensity 

difference, and intensity velocity on unit scale).  The fixed effects included in the regression 

were underlying voicing, place of articulation, stress, word position, preceding vowel height, 

following vowel height, log word frequency, speech rate, task, dialect, sex, age group , education 

level, Quechua bilingualism, the interaction of dialect and sex, and the interaction of underlying 

voicing with each of place of articulation, word position, preceding vowel height, following 

vowel height, speech rate, dialect, sex, and Quechua bilingualism (see Section B.4 for descriptive 

statistics for interactions with underlying voicing that were not included in the model).  Speaker 

and item were included as random effect grouping factors, with maximal random effects 

structures.  For speaker, this included random intercepts and random slopes for underlying 

voicing, place of articulation, stress, word position, preceding vowel height, following vowel 

height, log word frequency, speech rate, task, and the interaction of underlying voicing with each 

place of articulation, word position, preceding vowel height, following vowel height, and speech 

rate.  For item, this included random intercepts and random slopes for speech rate, dialect, sex, 

age group, education level, Quechua bilingualism, and the interaction of dialect and sex.  The 

posterior distribution of the fixed effects parameters are given in Table 5.1 (the random effect 

variances and residual standard error are provided in Section B.3).  In Section 5.1, the posterior 

distributions of the control predictors are presented.  In Section 5.2, the posterior distributions of 



118 
 

the interaction of underlying voicing and place of articulation are presented.  And in Section 5.3, 

the posterior distributions of the interaction of underlying voicing and dialect are presented.  For 

each predictor, descriptive statistics and plots are provided along with effect estimates and, when 

relevant, pairwise comparisons.  
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Table 5.1 Posterior distribution of the fixed effects. 
Fixed Effect Mean SD 2.5% 97.5% Neff P(sign) 
Intercept (Corrected Mean) -0.196 0.051 -0.297 -0.095 3575 > .999 *** 
Voicing, Voiced 0.027 0.034 -0.039 0.093 5329 .784 x 
Place, Biliabial 0.063 0.017 0.030 0.097 10000 > .999 

*** 
Place, Dental -0.064 0.022 -0.106 -0.020 10000 .997 
Stress, Post-Tonic -0.041 0.019 -0.079 -0.002 10000 .982 

*** 
Stress, Tonic 0.219 0.020 0.180 0.257 10000 > .999 
Word Position, Initial 0.085 0.020 0.048 0.125 10000 > .999 *** 
Preceding Vowel, High 0.050 0.016 0.019 0.082 10000 .999 *** 
Following Vowel, High -0.032 0.015 -0.062 -0.002 10000 .981 *** 
Log Word Frequency -0.060 0.013 -0.087 -0.033 10000 > .999 *** 
Speech Rate -0.071 0.012 -0.095 -0.049 10000 > .999 *** 
Task, Read Speech 0.147 0.028 0.092 0.204 6899 > .999 *** 
Dialect, Cuzco 0.610 0.070 0.475 0.749 2610 > .999 

*** 
Dialect, Lima -0.450 0.077 -0.600 -0.296 4843 > .999 
Sex, Female 0.213 0.051 0.113 0.312 3109 > .999 *** 
Age Group, Older 0.011 0.055 -0.096 0.123 4323 .582 x 
Education Level, Secondary 0.013 0.054 -0.096 0.118 4314 .601 x 
Quechua Bilingual, Yes 0.023 0.057 -0.089 0.132 4524 .656 x 
Voicing, Voiced : 
Place, Biliabial -0.071 0.017 -0.105 -0.037 10000 > .999 

*** Voicing, Voiced : 
Place, Dental -0.038 0.022 -0.082 0.007 10000 .953 

Voicing, Voiced : 
Word Position, Initial 0.054 0.017 0.022 0.088 10000 .999 *** 

Voicing, Voiced : 
Preceding Vowel, High 0.013 0.014 -0.014 0.039 10000 .825 x 

Voicing, Voiced : 
Following Vowel, High 0.063 0.015 0.035 0.092 10000 > .999 *** 

Voicing, Voiced : 
Speech Rate 0.128 0.012 0.104 0.151 10000 > .999 *** 

Voicing, Voiced : 
Dialect, Cuzco 0.055 0.045 -0.033 0.144 3466 .896 

*** Voicing, Voiced : 
Dialect, Lima -0.106 0.051 -0.207 -0.005 5256 .980 

Voicing, Voiced : 
Sex, Female -0.052 0.028 -0.106 0.004 4572 .965 ** 

Voicing, Voiced : 
Quechua Bilingual, Yes -0.025 0.037 -0.098 0.046 5087 .756 x 

Dialect, Cuzco : Sex, Female 0.122 0.059 0.003 0.241 3710 .978 
*** 

Dialect, Lima : Sex, Female -0.127 0.078 -0.283 0.027 4218 .951 
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5.1. Control predictors 

5.1.1. Linguistic covariates 

5.1.1.1. Word frequency 

A scatterplot of VNPC1 by normalized log word frequency is provided in Figure 5.1, 

where the sample correlation  is -0.075. 

 

Figure 5.1 Scatterplot of VNPC1 by normalized log word frequency (𝑟 = −0.075). 
 

As log word frequency is a covariate and is not involved in any interactions, the posterior 

estimate of its effect can be taken directly from Table 5.1.  A 1-SD increase in log word 

frequency leads to an estimated decrease in VNPC1 of 0.060, and we have strong evidence for 

this effect being negative (P(sign) > .999).  That is, the more frequent a word is, the weaker 

plosives in the word are predicted to be, consistent with previous research on word frequency 

and lenition (e.g. Pierrehumbert, 2001).  This is also consistent with the results found for Spanish 

and Catalan fricatives in Section 4.1.1.1, with the effect sizes even being nearly the same (-0.054 

vs. -0.060). 
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5.1.1.2. Speech rate 

Scatterplots of VNPC1 by speaker-normalized speech rate are provided separately by 

underlying voicing in Figure 5.2, with a sample correlation of 0.112 for voiced plosives and a 

sample correlation of -0.268 for voiceless plosives. 

 

Figure 5.2 Scatterplots of VNPC1 by speaker-normalized speech rate for underlyingly voiced 
(left panel; 𝑟 = 0.112) and voiceless (right panel; 𝑟 = −0.268) plosives. 

 

The posterior estimate for the interaction of underlying voicing and speech rate in Table 

5.1 shows strong evidence for the interaction (P(sign) > .999).  Table 5.2 provides posterior 

estimates of the effect of a 1-SD increase in speaker-normalized speech rate on VNPC1 by 

underlying voicing. 

Table 5.2 Posterior estimate of the effect of a 1-SD increase in speaker-normalized speech rate 
by underlying voicing. 
Voicing Mean SD 2.5% 97.5% P(sign) 
Voiced 0.057 0.016 0.025 0.087 > .999 *** 
Voiceless -0.199 0.017 -0.233 -0.165 > .999 *** 
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The descriptive statistics show a strong negative relationship between speech rate and 

plosive strength for underlyingly voiceless plosives (as one would expect; also consistent with 

the results for fricatives in Section 4.1.1.2, but with a smaller effect size here), and a weaker 

positive relationship for underlyingly voiced plosives.  The posterior estimates show that these 

relationships hold (with smaller magnitudes), with strong evidence for the effect direction in 

each case.  While the positive relationship between speech rate and voiced plosive strength may 

seem somewhat counterintuitive, this is likely the result of intervocalic voiced plosives in 

Spanish leniting to the point of elision in a gradient manner (as discussed in Section 2.3.2.3).  As 

the intensity difference of the plosive increases, it is more likely that two syllable nuclei will be 

identified for the VCV sequence. 

5.1.2. Linguistic factors 

5.1.2.1. Stress 

Descriptive statistics for plosive strength by stress are provided in Table 5.3, with 

corresponding boxplots in Figure 5.3. 

Table 5.3 Descriptive statistics for VNPC1 by stress. 
Stress N Minimum Median Maximum Mean SD 
Tonic 2007 -3.232 0.226 4.115 0.222 1.029 
Post-Tonic 1629 -3.462 -0.036 3.922 -0.076 0.966 
Unstressed 1645 -3.528 -0.142 3.718 -0.196 0.943 
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Figure 5.3 Boxplots of VNPC1 by stress. 
 

Posterior group means for VNPC1 by stress are given in Table 5.4, with pairwise 

comparisons given in Table 5.5. 

Table 5.4 Posterior group means for VNPC1 by stress. 
Stress Mean SD 2.5% 97.5% 
Tonic 0.023 0.052 -0.082 0.126 
Post-Tonic -0.237 0.055 -0.345 -0.127 
Unstressed -0.374 0.056 -0.485 -0.264 
 

Table 5.5 Posterior group differences for VNPC1 by stress. 
Contrast Mean SD 2.5% 97.5% P(sign) 
Tonic - Post-Tonic 0.260 0.033 0.195 0.324 > .999 *** 
Tonic - Unstressed 0.397 0.036 0.328 0.467 > .999 *** 
Post-Tonic - Unstressed 0.137 0.036 0.067 0.207 > .999 *** 
 

The descriptive statistics show a strength hierarchy by stress of Tonic > Post-Tonic > 

Unstressed.  The posterior pairwise provide strong evidence for the overall hierarchy found in 

the descriptive statistics (P(sign) > .999 for all contrasts).  This is consistent with previous 

research on the effect of Spanish stress on plosive production (e.g. Carrasco et al., 2012; Hualde, 
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Simonet, et al., 2011; Torreira & Ernestus, 2011).  However, the hierarchy found for plosives 

here is different than that found for Spanish fricatives in Section 4.1.2.1, where the trend was still 

the same, but there was very little evidence for a difference between tonic and post-tonic 

fricatives.  These findings support differentiating between the Post-Tonic and Unstressed 

conditions in research on Spanish phonetics, as the treatment of post-tonic consonants may differ 

by consonant type. 

5.1.2.2. Word position 

For the analysis of word position, only the spontaneous speech data are considered 

(Cuzco and Lima interviews and Valladolid task-oriented dialogues), as this is the only case in 

which the factor is contrastive (the read speech task only contained planned observations of 

word-medial plosives and the word position factor was coded as NA for that subset).  Descriptive 

statistics for plosive strength by word position and underlying voicing are provided in Table 5.6, 

with corresponding boxplots in Figure 5.4. 

Table 5.6 Descriptive statistics for VNPC1 by underlying voicing and word position. 
Voicing Word Position N Minimum Median Maximum Mean SD 

Voiced 
Initial 444 -1.481 -0.119 4.115 -0.059 1.026 
Medial 1241 -1.481 -0.271 3.955 -0.241 0.899 

Voiceless 
Initial 722 -3.475 -0.153 2.749 -0.214 0.997 
Medial 855 -3.528 -0.159 2.375 -0.244 1.003 
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Figure 5.4 Boxplots of VNPC1 by word position for underlyingly voiced (left panel) and 
voiceless (right panel) plosives. 

 

There is strong evidence for an interaction between word position and underlying voicing 

(P(sign) = .999 in Table 5.1).  Posterior group means for VNPC1 by word position and 

underlying voicing are given in Table 5.7, with corresponding effect estimates for word position 

within underlying voicing in Table 5.8. 

Table 5.7 Posterior group means for VNPC1 by underlying voicing and word position. 
Voicing Word Position Mean SD 2.5% 97.5% 

Voiced 
Initial -0.129 0.065 -0.253 0.001 
Medial -0.407 0.057 -0.517 -0.296 

Voiceless 
Initial -0.289 0.074 -0.433 -0.145 
Medial -0.352 0.071 -0.489 -0.213 

 

Table 5.8 Posterior group differences for VNPC1 by word position within underlying voicing. 
Voicing Contrast Mean SD 2.5% 97.5% P(sign) 
Voiced Initial - Medial 0.278 0.054 0.174 0.386 > .999 *** 
Voiceless Initial - Medial 0.063 0.049 -0.032 0.161 .899 x 
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For underlyingly voiced plosives, there is strong evidence (P(sign) > .999) that word-

initial plosives are stronger than word-medial plosives, with a moderate effect size of 0.278.  For 

underlyingly voiceless plosives, the effect direction is the same, but much smaller in magnitude 

(0.063), and there is little evidence for the direction of the effect (P(sign) = .899).  The literature 

shows conflicting evidence for an effect of word position on plosive voicing, with some studies 

finding no effect for either set of plosives (e.g. Hualde, Simonet, et al., 2011), and others finding 

an effect for voiced plosives (e.g. Carrasco, 2008).  To my knowledge, no study has found that 

word position has an effect on the strength of /ptk/.  The data presented here show an effect for 

voiced plosives, and possibly a much smaller difference for voiceless plosives.  

5.1.2.3. Preceding vowel height 

Descriptive statistics for plosive strength by preceding vowel height are provided in 

Table 5.9, with corresponding boxplots in Figure 5.5. 

Table 5.9 Descriptive statistics for VNPC1 by underlying voicing and preceding vowel height. 
Voicing Preceding Vowel N Minimum Median Maximum Mean SD 

Voiced 
High 892 -1.481 0.019 3.955 0.038 1.039 
Non-High 1802 -1.481 -0.052 4.115 -0.019 0.980 

Voiceless 
High 769 -3.528 0.182 2.798 0.103 0.998 
Non-High 1818 -3.475 0.024 3.592 -0.043 0.998 
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Figure 5.5 Boxplots of VNPC1 by preceding vowel height for underlyingly voiced (left panel) 
and voiceless (right panel) plosives. 

 

There is little evidence in the data for an interaction between underlying voicing and 

preceding vowel height (P(sign) = .825 in Table 5.1), but strong evidence for the main effect 

(P(sign) = .999 in Table 5.1).  For this reason, in Table 5.10, the interaction term is averaged 

over, and posterior group means are given for preceding high and non-high vowels’ VNPC1 

overall.  Table 5.11 provides the corresponding effect estimate. 

Table 5.10 Posterior group means for VNPC1 by preceding vowel height. 
Preceding Vowel Mean SD 2.5% 97.5% 
High -0.146 0.054 -0.253 -0.040 
Non-High -0.246 0.053 -0.350 -0.142 
 

Table 5.11 Posterior group differences for VNPC1 by preceding vowel height. 
Contrast Mean SD 2.5% 97.5% P(sign) 
High - Non-High 0.100 0.032 0.038 0.164 > .999 *** 
 

There is strong evidence for a small effect of preceding vowel height that does not differ 

in effect magnitude for underlying voiced and voiceless plosives, with plosives following high 
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vowels being stronger than plosives following non-high vowels.  This is different from the effect 

found for fricative NPC1 in Section 4.1.2.2, where a preceding high vowel led to a shorter more 

voiced fricative than a preceding non-high vowel.  This may be because plosive VNPC1 

incorporates intensity-based acoustic measures of consonant constriction, while fricative NPC1 

does not.  Of the five measures that make up VNPC1, we would only expect a preceding high 

vowel to lower overall consonant duration; for voiceless duration and percent voiceless, we 

would expect less voicing bleed-in from a preceding high vowel than non-high vowel, as 

discussed in Section 4.1.2.2; for intensity difference and intensity velocity, we would expect a 

preceding high vowel to lead to less articulatory undershoot since the articulators are closer 

together during the production of a high vowel than a non-high vowel.  Overall then, for VNPC1, 

we have strong evidence for plosives following high vowels being (slightly) stronger than 

plosives following non-high vowels. 

5.1.2.4. Following vowel height 

Descriptive statistics for plosive strength by following vowel height are provided in Table 

5.12, with corresponding boxplots in Figure 5.6. 

Table 5.12 Descriptive statistics for VNPC1 by underlying voicing and following vowel height. 
Voicing Following Vowel N Minimum Median Maximum Mean SD 

Voiced 
High 738 -1.481 0.072 4.115 0.149 1.066 
Non-High 1956 -1.481 -0.068 3.922 -0.056 0.968 

Voiceless 
High 484 -3.232 -0.036 2.375 -0.109 0.902 
Non-High 2103 -3.528 0.082 3.592 0.025 1.020 
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Figure 5.6 Boxplots of VNPC1 by following vowel height for underlyingly voiced (left panel) 
and voiceless (right panel) plosives. 

 

The estimates in Table 5.1 show strong evidence for an interaction between following 

vowel height and underlying voicing (P(sign) > .999), as is also evident in Figure 5.6.  Posterior 

group means for VNPC1 by underlying voicing and following vowel height are given in Table 

5.13, with corresponding pairwise comparisons given in Table 5.14. 

Table 5.13 Posterior group means for VNPC1 by underlying voicing and following vowel height. 
Voicing Following Vowel Mean SD 2.5% 97.5% 

Voiced 
High -0.139 0.059 -0.256 -0.022 
Non-High -0.201 0.054 -0.305 -0.093 

Voiceless 
High -0.318 0.076 -0.468 -0.169 
Non-High -0.128 0.068 -0.261 0.008 

 

Table 5.14 Posterior group differences for VNPC1 by following vowel height within underlying 
voicing. 
Voicing Contrast Mean SD 2.5% 97.5% P(sign) 
Voiced High - Non-High 0.062 0.040 -0.016 0.141 .937 * 
Voiceless High - Non-High -0.190 0.044 -0.275 -0.102 > .999 *** 
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There is strong evidence that voiceless plosives that precede high vowels are moderately 

weaker than voiceless plosives that precede non-high vowels, and weak evidence for an effect in 

the opposite direction with a smaller magnitude for voiced plosives.  As was the case for the 

effect of preceding vowel height, the effect of following vowel height for voiceless plosive 

VNPC1 is the opposite of the effect found for voiceless fricative NPC1 in Section 4.1.2.3.  Here 

there is no clear phonetic explanation, as we would expect the effect of a following high vowel 

on the voicing measures to be similar for voiceless fricatives and voiceless plosives, and the 

effect of a following high vowel on constriction and duration to be similar for voiceless plosives 

and voiced plosives, meaning that if a following high vowel has a positive effect for fricative 

NPC1 and for voiced plosive VNPC1, then we should see a positive effect for voiceless plosives 

as well, but we do not.  Previous research on Spanish consonant lenition that includes the 

surrounding vowels qualities as predictors has not given full descriptive statistics for the effect of 

following vowel height or the estimates from the regressions since they were included as 

controls, so there are no numbers to compare these findings to, and I leave the reasons for this 

unexpected affect aside for future research. 

5.1.2.5. Task 

For the analysis of task, only the word-medial plosives from spontaneous speech from 

Lima and Cuzco and the data from the read speech task were considered, as this is the only case 

where the factor is contrastive (Valladolid speakers only participated in one task and the read 

speech task had no word-initial planned observations).  Descriptive statistics for plosive strength 

by task and underlying voicing are provided in Table 5.15, with corresponding boxplots in 

Figure 5.7. 
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Table 5.15 Descriptive statistics for VNPC1 by task. 
Task N Minimum Median Maximum Mean SD 
Read Speech 2019 -3.034 0.348 3.922 0.341 0.955 
Spontaneous Speech 1071 -3.528 -0.076 3.955 -0.126 1.006 
 

 

Figure 5.7 Boxplots of VNPC1 by task. 
 

Posterior group means for VNPC1 for the read speech task and Cuzco and Lima 

interviews are given in Table 5.16, with the corresponding comparison in Table 5.17. 

Table 5.16 Posterior group means for VNPC1 by task. 
Task Mean SD 2.5% 97.5% 
Read Speech 0.031 0.076 -0.119 0.179 
Spontaneous Speech -0.348 0.067 -0.479 -0.212 
 

Table 5.17 Posterior group differences for VNPC1 by task. 
Contrast Mean SD 2.5% 97.5% P(sign) 
Read - Spontaneous 0.380 0.058 0.264 0.496 > .999 *** 
 

The descriptive statistics show, and the posterior estimates confirm, strong evidence for 

an effect of task: read speech plosives are 0.380 standard deviations stronger than spontaneous 
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speech plosives (P(sign) > .999).  This is consistent with a number of studies on Spanish plosive 

lenition that have examined speech in different tasks (e.g. Hualde, Simonet, et al., 2011; Lewis, 

2000, 2001; Munday, 2001), and we now also have evidence that the effect of task is not merely 

due to a difference in speech rate, since it was also included in the regression. 

5.1.3. Social factors 

5.1.3.1. Cuzco age group, education level, and Quechua bilingualism 

For the analysis of the social factors of age group, education level, and Quechua 

bilingualism, only the data from the Cuzco speakers are considered, as this is the only subset of 

the data where the factor is contrastive.  Descriptive statistics for plosive strength by age group 

are provided in Table 5.18 (with corresponding boxplots in Figure 5.8), descriptive statistics for 

plosive strength by education level are provided in Table 5.19 (with corresponding boxplots in 

Figure 5.9), and descriptive statistics for Quechua bilingualism and underlying voicing are 

provided in Table 5.20 (with corresponding boxplots in Figure 5.10). 

Table 5.18 Descriptive statistics for VNPC1 by age group. 
Age Group N Minimum Median Maximum Mean SD 
Older 1362 -2.690 0.464 4.115 0.466 0.934 
Younger 1510 -2.548 0.330 3.922 0.373 0.844 
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Figure 5.8 Boxplots of VNPC1 by age group. 
 

Table 5.19 Descriptive statistics for VNPC1 by education level. 
Education Level N Minimum Median Maximum Mean SD 
Secondary 1445 -2.636 0.417 3.869 0.433 0.931 
University 1427 -2.690 0.368 4.115 0.401 0.844 
 

 

Figure 5.9 Boxplots of VNPC1 by education level. 
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Table 5.20 Descriptive statistics for VNPC1 by underlying voicing and Quechua bilingualism. 
Voicing Quechua Bilingual N Minimum Median Maximum Mean SD 

Voiced 
Yes 693 -1.481 0.417 3.746 0.463 0.869 
No 764 -1.481 0.397 4.115 0.446 1.013 

Voiceless 
Yes 686 -2.548 0.430 3.285 0.456 0.722 
No 729 -2.690 0.330 3.592 0.307 0.904 

 

 

Figure 5.10 Boxplots of VNPC1 by Quechua bilingualism for underlyingly voiced (left panel) 
and voiceless (right panel) plosives. 

 

The descriptive statistics show essentially no trends for any of the Cuzco-only social 

factors except a small trend for Quechua-bilingual speakers having stronger /ptk/ than 

monolingual Cuzco speakers.  There was little evidence for any of these factors having main 

effects, and also little evidence for an interaction between underlying voicing and Quechua 

bilingualism (of the four relevant estimates in Table 5.1, maximum P(sign) = .756).  That is, at 

least in the data collected for this study in Cuzco, age group, education level, and Quechua 

bilingualism did not prove to be important from a control perspective (as this is not a 
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sociolinguistic study, and the number of speakers in each cell of the full contingency table of 

these factors is small, I will refrain from making a sociolinguistic analysis of these results). 

5.1.3.2. Speaker sex 

As there is not strong evidence for an interaction between sex and underlying voicing 

(P(sign) = .965 in Table 5.1), but there is strong evidence for an interaction between sex and 

dialect (maximum P(sign) = .978 in Table 5.1), I provide descriptive statistics for VNPC1 by sex 

and dialect in Table 5.21, with corresponding boxplots in Figure 5.11 (now considering all of the 

data again). 

Table 5.21 Descriptive statistics for VNPC1 by dialect and sex. 
Dialect Sex N Minimum Median Maximum Mean SD 

Cuzco 
Female 1429 -2.209 0.638 4.115 0.693 0.842 
Male 1443 -2.690 0.133 3.534 0.144 0.850 

Lima 
Female 380 -3.034 -0.473 1.949 -0.535 0.844 
Male 482 -3.528 -0.868 2.706 -0.826 0.936 

Valladolid 
Female 790 -3.265 -0.174 2.749 -0.160 0.816 
Male 757 -3.475 -0.521 2.718 -0.621 0.848 

 

 

Figure 5.11 Boxplots of VNPC1 by dialect and sex. 
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Posterior group means for VNPC1 by sex and dialect are given in Table 5.22, with 

pairwise comparisons for sex within dialect given in Table 5.23. 

Table 5.22 Posterior group means for VNPC1 by dialect and sex. 
Dialect Sex Mean SD 2.5% 97.5% 

Cuzco 
Female 0.749 0.093 0.564 0.931 
Male 0.079 0.087 -0.095 0.245 

Lima 
Female -0.559 0.155 -0.865 -0.253 
Male -0.732 0.156 -1.038 -0.425 

Valladolid 
Female -0.139 0.116 -0.368 0.085 
Male -0.574 0.116 -0.803 -0.349 

 

Table 5.23 Posterior group differences for VNPC1 by sex within dialect. 
Dialect Contrast Mean SD 2.5% 97.5% P(sign) 
Cuzco Female - Male 0.670 0.117 0.436 0.899 > .999 *** 
Lima Female - Male 0.173 0.224 -0.270 0.614 .786 x 
Valladolid Female - Male 0.435 0.147 0.147 0.726 .999 *** 
 

The effect direction for sex is the same in all three dialects: female speakers have 

stronger plosives on average than male speakers.  However, while there is strong evidence for 

this effect in Cuzco and Valladolid, there is little evidence for the effect direction in the Lima 

data.  Additionally, the effect magnitude is substantially larger for Cuzco than for Valladolid, 

and substantially stronger for Valladolid than for Lima. 

5.2. Place of articulation 

Descriptive statistics for plosive strength by place of articulation and underlying voicing 

are provided in Table 5.24, with corresponding boxplots in Figure 5.12. 
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Table 5.24 Descriptive statistics for VNPC1 by underlying voicing and place of articulation. 
Voicing Place N Minimum Median Maximum Mean SD 

Voiced 
Bilabial 956 -1.481 -0.021 3.955 0.001 0.951 
Dental 960 -1.481 -0.175 4.115 -0.057 1.128 
Velar 778 -1.481 0.068 3.922 0.069 0.881 

Voiceless 
Bilabial 796 -3.364 0.217 3.592 0.138 1.022 
Dental 902 -3.239 -0.021 3.124 -0.021 0.963 
Velar 889 -3.528 0.008 2.749 -0.103 1.004 

 

 

Figure 5.12 Boxplots of VNPC1 by place of articulation for underlyingly voiced (left panel) and 
voiceless (right panel) plosives. 

 

There is strong evidence for an interaction between underlying voicing and place of 

articulation (maximum P(sign) > .999 in Table 5.1).  Posterior group means for VNCP1 by 

underlying voicing and place of articulation are provided in Table 5.25, with corresponding 

pairwise comparisons within underlying voicing in Table 5.26. 
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Table 5.25 Posterior group means for VNPC1 by underlying voicing and place of articulation. 
Voicing Place Mean SD 2.5% 97.5% 

Voiced 
Bilabial -0.178 0.058 -0.290 -0.063 
Dental -0.271 0.065 -0.399 -0.143 
Velar -0.060 0.061 -0.179 0.060 

Voiceless 
Bilabial -0.088 0.074 -0.234 0.058 
Dental -0.248 0.075 -0.396 -0.103 
Velar -0.332 0.073 -0.476 -0.187 

 

Table 5.26 Posterior group differences for VNPC1 by place of articulation within underlying 
voicing. 
Voicing Contrast Mean SD 2.5% 97.5% P(sign) 

Voiced 
Bilabial - Dental 0.094 0.045 0.004 0.183 .980 *** 
Bilabial - Velar -0.117 0.050 -0.215 -0.019 .991 *** 
Dental - Velar -0.211 0.064 -0.335 -0.083 .999 *** 

Voiceless 
Bilabial - Dental 0.161 0.046 0.069 0.250 > .999 *** 
Bilabial - Velar 0.244 0.046 0.153 0.334 > .999 *** 
Dental - Velar 0.083 0.053 -0.022 0.186 .940 * 

 

The descriptive statistics show, and the posterior estimates confirm, that the effect of 

place of articulation on plosive strength is not the same for voiceless and voiced plosives.  For 

the voiceless plosives, there is a hierarchy /p/ > /t/ > /k/, with strong evidence for the bilabial 

plosive being stronger than the dental and velar plosives (P(sign) > .999 in both cases), and weak 

evidence for the dental being stronger than the velar (P(sign) = .940).  That is, the further 

backward in the vocal tract the voiceless plosive is articulated, the weaker it is.  This is in line 

with what is predicted by the aerodynamic voicing constraint (Ohala & Riordan, 1979), and also 

with previous research on Spanish that has shown /k/ to be the most likely to lenite (e.g. Hualde, 

Simonet, et al., 2011; Torreira & Ernestus, 2011).  For the voiced plosives, there is a hierarchy 

/b/ > /g/ > /d/, with strong evidence for all group differences (P(sign) ≥ .980 in all cases).  This is 

consistent with previous research on Spanish that has shown /d/ to be the most likely to lenite, 

and delete in the sequence /ado/ in words like /lado/ ‘side’ and the past participle /-ado/ 
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(Caravedo, 1990; Hualde, Simonet, et al., 2011; Lipski, 1994; Williams, 1987; among others), 

and with the historical resilience of Spanish /b/ (intervocalic Western Romance */d/ and */g/ 

were elided in the historical development of Spanish, while */b/ was not, instead merging with 

*/β/ in Old Spanish; Penny (2002)).  The difference between the ranking of the dental and velar 

plosives based on underlying voicing may indicate a difference in the relationship between 

voiceless and voiced plosive strength at the individual level, a possibility that is revisited in the 

analysis of individual differences in Section 6.2. 

5.3. Dialect differences 

For the analysis of dialect, only data from the spontaneous speech data are considered 

(that is, the read speech data from Lima and Cuzco are not considered), and only data from those 

Cuzco speakers who match the Lima and Valladolid speakers demographically are considered 

(younger age group, university educated, and monolingual).25  Descriptive statistics for plosive 

strength by dialect and underlying voicing are provided in Table 5.27, with corresponding 

boxplots in Figure 5.13. 

Table 5.27 Descriptive statistics for VNPC1 by underlying voicing and dialect. 
Voicing Dialect N Minimum Median Maximum Mean SD 

Voiced 
Cuzco 73 -1.481 -0.164 2.723 0.050 1.019 
Lima 231 -1.481 -0.944 1.524 -0.875 0.671 
Valladolid 796 -1.481 -0.371 2.337 -0.383 0.778 

Voiceless 
Cuzco 64 -2.134 -0.031 1.608 -0.074 0.686 
Lima 206 -3.528 -0.898 2.335 -0.933 1.099 
Valladolid 751 -3.475 -0.329 2.749 -0.388 0.945 

 

                                                 
25 While these Cuzco-only social factors had no effect on VNPC1, comparing only the demographically matched 
speakers is more principled; using all of the Cuzco to make the comparison does not change the outcome or 
interpretation (as should be expected). 
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Figure 5.13 Boxplots of VNPC1 by dialect for underlyingly voiced (left panel) and voiceless 
(right panel) plosives. 

 

Posterior group means for VNPC1 by dialect and underlying voicing are given in Table 

5.28, with corresponding pairwise comparisons for dialect within underlying voicing in Table 

5.29. 

Table 5.28 Posterior group means for VNPC1 by underlying voicing and dialect. 
Voicing Dialect Mean SD 2.5% 97.5% 

Voiced 
Cuzco 0.326 0.121 0.081 0.563 
Lima -0.873 0.114 -1.094 -0.648 
Valladolid -0.279 0.094 -0.462 -0.094 

Voiceless 
Cuzco 0.114 0.136 -0.157 0.382 
Lima -0.714 0.144 -0.996 -0.419 
Valladolid -0.435 0.119 -0.670 -0.204 
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Table 5.29 Posterior group differences for VNPC1 by dialect within underlying voicing. 
Voicing Contrast Mean SD 2.5% 97.5% P(sign) 

Voiced 
Cuzco - Lima 1.199 0.161 0.880 1.514 > .999 *** 
Cuzco - Valladolid 0.605 0.161 0.290 0.925 > .999 *** 
Lima - Valladolid -0.594 0.143 -0.876 -0.311 > .999 *** 

Voiceless 
Cuzco - Lima 0.827 0.194 0.436 1.217 > .999 *** 
Cuzco - Valladolid 0.548 0.191 0.177 0.925 .999 *** 
Lima - Valladolid -0.279 0.183 -0.642 0.085 .939 * 

 

The descriptive statistics show the same hierarchy of strength for both /bdg/ and /ptk/: 

Cuzco > Valladolid > Lima.  The posterior estimates show the same hierarchy, with strong 

evidence for all group differences for /bdg/, strong evidence for Cuzco having stronger /ptk/ than 

both Valladolid and Lima, and weak evidence for Valladolid having stronger /ptk/ than Lima.  

The results for Valladolid are consistent with Munday (2001) and Williams (1987), and the 

results for Cuzco and Lima confirm the qualitative observations of Caravedo (1990) and Lipski 

(1994), and add a thorough quantitative analysis of plosive strength to our knowledge of Spanish 

in Peru.  The resistance to intervocalic /ptk/ voicing in Cuzco is also consistent with the findings 

of Torreira and Ernestus (2011), who argue that unstressed vowel devoicing (which Delforge 

(2009, 2012) finds in Cuzco) implies a coarticulatory strategy incompatible with extensive 

intervocalic /ptk/ voicing. 

The results also offer some evidence for Hypothesis 2 (from Section 1.6: In Spanish, for 

both the voiceless plosives /ptk/ and the voiced plosives /bdg/, the dialects will show the same 

strength hierarchy of Cuzco > Valladolid > Lima.).  For /bdg/, the hypothesized hierarchy is 

very clear, with the pairwise comparisons all showing very large effects for which we have 

strong evidence.  For /ptk/, however, while the hierarchy in the posterior group means is the 

same, the pairwise comparisons show smaller magnitudes of difference between the dialects in 

all three comparisons.  And while the evidence for Cuzco having stronger /ptk/ than both 
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Valladolid and Lima is strong, the evidence for Valladolid having stronger /ptk/ than Lima is 

considerably weaker (i.e. we cannot state with confidence that the two are different).  Thus, 

overall the evidence for a correlation between intervocalic /ptk/ lenition and intervocalic /bdg/ 

lenition in Spanish at the dialectal level is not entirely convincing.  However, as discussed in 

Section 1.2.4, we may still expect to see strong evidence for a correlation between the lenitions 

at the individual level, since the reason we would expect to see the correlation at the dialectal 

level is based on correlation at the individual level in combination with a small enough overlap 

between speakers of different dialects.  This possibility is explored in Section 6.2. 
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Chapter 6. Individual variation results 

In this chapter, I examine constraints on individual variation.  In Section 6.1, I compare 

the Valladolid Spanish and Catalan speakers’ posterior estimates for /s/ and /f/ strength by 

language.  In Section 6.2, I compare the Spanish speakers’ posterior estimates for voiced and 

voiceless plosive strength by place of articulation.  And in Section 6.3, I compare the Valladolid 

Spanish speakers’ posterior estimates for /ptk/ and /sf/ strength.  In each case, posterior estimates 

are generated for each speaker and phoneme by applying appropriate contrasts to both the fixed 

and random effects at each iteration of the relevant Bayesian mixed effects regression, averaging 

over the effects of all control predictors.  I then run linear regressions on the speaker estimates at 

each iteration to obtain posterior samples of the relationship between the estimates.  Strong 

evidence for a relationship thus implies a constraint on individual phonetic variation from a 

multivariate perspective. 

6.1. Spanish and Catalan /s/ and /f/ 

Considering now all data from the fricative experiment, boxplots of each speaker’s /s/ 

and /f/ strengths are given in Figure 6.1. 
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Figure 6.1 Boxplots of NPC1 by speaker for /s/ (top panel) and /f/ (bottom panel).  Spanish 
speakers from Valladolid are in blue and Catalan speakers are in black. 

 

Using the Bayesian mixed effects regression from Chapter 4, for each iteration, I 

generated a posterior estimate of each speaker’s mean fricative strength for each of /s/ and /f/, 

resulting in a data frame with a column for the /s/ strength estimates and a column for the /f/ 

strength estimates, and a row for each speaker (for a total of 38 rows).  For each of these data 

frames, an ordinary least squares regression was run on /s/ strength with the full interaction of /f/ 
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strength and language as predictors.  The regression estimates and 𝑅2 at each iteration were 

logged.  The posterior mean for 𝑅2 was .400 (posterior standard deviation .114; 95% credible 

interval [.196, .642]).  The posterior distribution of the regression estimates is given in Table 6.1, 

and Figure 6.2 shows a scatterplot of the posterior mean of the individual estimates with the 

posterior mean regression line. 

Table 6.1 Posterior distribution of the regression on individual speakers' /s/ estimates. 
Fixed Effect Mean SD 2.5% 97.5% P(sign) 
Intercept (Corrected Mean) -0.034 0.043 -0.114 0.055 .796 x 
/f/ Strength 0.648 0.177 0.324 1.022 > .999 *** 
Language, Catalan 0.166 0.042 0.083 0.249 .999 *** 
/f/ Strength : Language, Catalan 0.027 0.118 -0.211 0.257 .594 x 
 

 

Figure 6.2 Scatterplot of /s/ speaker estimates by /f/ speaker estimates with regression lines by 
language. 

 

There is strong evidence for a positive relationship between speakers’ /s/ strength and /f/ 

strength (mean = 0.648, P(sign) > .999).  However, there is little evidence for a difference 

between Spanish and Catalan in the magnitude of this effect (P(sign) = .594).  Knowing 

speakers’ mean /f/ strengths, 40.0% of the variance same speakers’ mean /s/ strength were able 
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to be predicted.  These results offer strong support for Hypothesis 3 (from Section 1.6: The 

degree to which individual speakers of Catalan and Spanish lenite /s/ will correlate with the 

degree to which the same speakers lenite /f/.).  From the perspective of articulatory phonology, 

this should be expected, as both /s/ and /f/ would be defined by a glottal gesture that is voiceless 

and produces enough airflow across the constriction to create turbulent noise.  While /s/ and /f/ 

differ in other important ways that affect their production (e.g. place of articulation, involvement 

of the tongue, and stridency), we are seeing strong evidence that speakers do not manipulate 

independently the degree to which they voice the two consonants intervocalically.  The lack of 

evidence for a difference in the strength of this relationship for Spanish and Catalan is also 

interesting, given that Catalan has, on average, stronger /s/ realizations than Spanish (Section 

4.2).  It would thus seem that Catalan and Spanish differ in the target strength for /s/, but not for 

/f/, and conditioning on these targets speakers deviate in systematic ways. 

6.2. Spanish /ptk/ and /bdg/ 

Considering the /ptk/ and /bdg/ data from all Spanish speakers’ spontaneous speech (that 

is, excluding the read speech data from Cuzco and Lima), boxplots for each speaker’s plosive 

strengths are given in Figure 6.3. 
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Figure 6.3 Boxplots of VNPC1 by speaker for underlyingly voiced (top panel) and voiceless 
(bottom panel) plosives.  Cuzco speakers are in green; Lima speakers are in black; and 

Valladolid speakers are in blue. 
 

A trend is apparent in the boxplots, where speakers who produce relatively stronger 

voiced plosives also produce relatively stronger voiceless plosives.  Using the Bayesian mixed 

effects regression from Chapter 5, for each iteration, I generated a posterior estimate of each 

speaker’s mean plosive strength for each of the six plosive phonemes, resulting in a data frame 

with a column for the voiced plosive strength estimates and a column for the voiceless plosive 
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strength estimates, and a row for each place of articulation for each speaker (for a total of 168 

rows).  For each of these data frames, an ordinary least squares regression was run on voiced 

plosive strength with the full interaction of voiceless strength and place of articulation as 

predictors.  The regression estimates and 𝑅2 at each iteration were logged.  The posterior mean 

for 𝑅2 was .602 (posterior standard deviation .037; 95% credible interval [.528, .674]).  The 

posterior distribution of the regression estimates is given in Table 6.2, the posterior estimate of 

the slope for each place of articulation is given in Table 6.3, and pairwise comparisons of these 

slopes are given in Table 6.4.  Figure 6.4 shows a scatterplot of the posterior mean of the 

individual estimates with the posterior mean regression line. 

Table 6.2 Posterior distribution of the regression on individual speakers’ /bdg/ estimates. 
Fixed Effect Mean SD 2.5% 97.5% P(sign) 
Intercept (Corrected Mean) 0.079 0.029 0.022 0.136 .997 *** 
Voiceless Strength 0.777 0.038 0.704 0.852 > .999 *** 
Place, Bilabial -0.109 0.030 -0.168 -0.048 > .999 

*** 
Place, Dental -0.056 0.032 -0.120 0.008 .959 
Voiceless Strength : Place, Bilabial 0.003 0.023 -0.052 0.042 .630 

*** 
Voiceless Strength : Place, Dental 0.130 0.039 0.055 0.210 > .999 
 

Table 6.3 Posterior slope for individuals' voiceless plosives strength by place of articulation. 
Voiceless Strengh Slope Mean SD 2.5% 97.5% P(sign) 
Bilabial 0.781 0.045 0.691 0.867 > .999 *** 
Dental 0.908 0.057 0.799 1.022 > .999 *** 
Velar 0.644 0.052 0.545 0.748 > .999 *** 
 

Table 6.4 Posterior contrasts for voiceless plosive strength slope by place of articulation. 
Voiceless Strength Slope Contrast Mean SD 2.5% 97.5% P(sign) 
Bilabial - Dental -0.127 0.052 -0.238 -0.035 .996 *** 
Bilabial - Velar 0.137 0.051 0.031 0.232 .993 *** 
Dental - Velar 0.264 0.075 0.121 0.414 > .999 *** 
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Figure 6.4 Scatterplot of voiced plosive speaker estimates by voiceless plosive speaker estimates, 
with regression lines by place of articulation. 

 

As can be seen in Figure 6.4, there is a very strong relationship between a speaker’s mean 

voiced plosive strength and the same speaker’s mean voiceless plosive strength conditioning on 

place of articulation.  As can be seen in Table 6.3, there is strong evidence that the correlation is 

positive for all three places of articulation, and, as can be seen in Table 6.4, there is also strong 

evidence that the strength of the correlation is different for all three places of articulation.  

Knowing the mean strength of the speakers’ /p/, /t/, and /k/ productions, 60.2% of the variance in 

the mean strength of the same speakers’ /b/, /d/, and /g/ productions was able to be predicted.  

The relationship between the two sets of plosives at the level of the individual is strongest for 

dental plosives (0.908), weaker for bilabial plosives (0.781), and weakest for velar plosives 

(0.644). 

These results thus offer very strong support for Hypothesis 4 (from Section 1.6: In 

Spanish, the degree to which individual speakers lenite /ptk/ will correlate with the degree to 

which the same speakers lenite /bdg/, and this relationship may differ by place of articulation.).  
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While the correlation at the individual level is very clear, at the dialectal level the evidence was 

less clear (Section 5.3), reinforcing the importance of examining individuals when dealing with 

questions of systematicity in phonological systems.  The differences in the correlation strength 

by place of articulation at the individual level also offer an explanation for why, a the population 

level, we find a strength hierarchy of /p/ > /t/ > /k/ for voiceless plosives, but a hierarchy of /b/ > 

/g/ > /d/ for voiced plosives.  The correlation between /k/ and /g/ strength is the weakest and the 

correlation between /t/ and /d/ strength is the strongest, which could explain why the ordering of 

the dental and velar plosives is different for the two hierarchies. 

These results are, like the results for fricatives in Section 6.1, consistent with what we 

would expect from articulatory phonology.  Conditioning on place of articulation, the voiced and 

voiceless plosive sets share similar oral gestures, and the results here support the hypothesis that 

the relative magnitude of these gestures (as determined by acoustic evidence at least), is not 

manipulated in an entirely independent manner for different phonemes by the same individual.  

This in turn, then, serves as a good illustration of how contrast preservation can be an outcome 

from purely phonetic processes.  It may well be the case that one speaker weakens /ptk/ to the 

point where they resemble the /bdg/ productions of another speaker, but the reduction in gestural 

magnitude that leads to the speaker’s weak /ptk/ productions is also present in their /bdg/ 

productions, such that for each speaker the two sets remain distinct. 

6.3. Valladolid /ptk/ and /sf/ 

Now considering all data from Valladolid from both experiments, boxplots of /ptk/ and 

/sf/ strength by speaker are given in Figure 6.5. 
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Figure 6.5 Boxplots of voiceless plosive strength (top panel) and voiceless fricative strength 
(bottom panel) by speaker. 

 

I tested for a relationship between the Valladolid speakers’ /ptk/ strength estimates and 

/sf/ strength estimates by using the estimates described in Sections 6.2 and 6.1.  As the posterior 

samples are randomly shuffled when returned by Stan, and 10,000 posterior samples were 

obtained from each regression, they can be used jointly for Monte Carlo inference.  For each 

posterior sample, I created a data frame with a column for average voiceless plosive strength (by 
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averaging over the effect of place of articulation for each speakers’ estimates in the data frames 

described in Section 6.2) and a column for average voiceless fricative strength (by averaging 

over the effect of fricative phoneme identity for each speakers’ estimates in the data frames 

described in Section 6.1), and one row per Valladolid speaker (18 rows total).  For each of these 

data frames, an ordinary least squares regression was run on /ptk/ strength with /sf/ strength as 

the predictor.  The regression estimates and 𝑅2 at each iteration were logged.  The posterior 

mean for 𝑅2 was .114 (posterior standard deviation .074; 95% credible interval [.011, .276]).  

The posterior distribution of the regression estimates is given in Table 6.5, and Figure 6.6 shows 

a scatterplot of the posterior mean of the individual estimates with the posterior mean regression 

line. 

Table 6.5 Posterior distribution of the regression comparing Valladolid speakers' /ptk/ and /sf/ 
estimates. 
Fixed Effect Mean SD 2.5% 97.5% P(sign) 
Intercept (Corrected Mean) -0.363 0.041 -0.442 -0.280 > .999 *** 
Fricative Strength 0.418 0.150 0.137 0.728 .998 *** 
 

 

Figure 6.6 Scatterplot of /ptk/ strength speaker estimates by /sf/ strength speaker estimates with 
regression line. 
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There is strong evidence for a positive relationship between speakers’ /ptk/ strength and 

/sf/ strength (mean = 0.418, P(sign) = .998).  Knowing the speakers’ mean /sf/ strengths, 11.4% 

of the variance same speakers’ mean /ptk/ strengths was able to be predicted.  These results thus 

offer strong support for Hypothesis 5 (from Section 1.6: The degree to which Valladolid 

speakers lenite voiceless fricatives /sf/ will correlate with the degree to which they lenite 

voiceless plosives /ptk/.). 

6.4. Strength of the correlations at the individual level 

While there were no specific hypotheses related to the strength of the relationship at the 

individual level for each of the comparisons made in this chapter, it is interesting to note that we 

were able to explain the most variance when using speakers’ /ptk/ strengths to predict their /bdg/ 

strengths (60.2%), followed by when using speakers’ /f/ strengths to predict their /s/ strengths 

(40.0%), followed by when using speakers’ /sf/ strengths to predict their /ptk/ strengths (11.4%).  

This hierarchy of variance explained matches up with how similar to sets of consonants being 

compared is.  For /ptk/ and /bdg/, conditioning on place of articulation, the consonants differ in 

constriction and voicing, but share the same general oral gestures.  For /s/ and /f/, the consonants 

differ in place of articulation, but both require a glottal gesture that is voiceless but produces 

enough airflow to create turbulent noise.  For /sf/ and /ptk/, the consonants only share in common 

the fact that they are voiceless obstruents; while they both involve a voiceless glottal gesture, 

these gestures are not the same (e.g. Stevens, 2000, pp. 379–380).  Thus, the more similar the 

gestures were between the sets of consonants being compared, the stronger the relationship was. 



154 
 

Chapter 7. Discussion 

7.1. Hypothesis evaluation 

Hypothesis 1. Catalan /s/ will be stronger than (Valladolid) Spanish /s/, but Catalan /f/ 

will not be stronger than (Valladolid) Spanish /f/.  This hypothesis is strongly supported by the 

data (Section 4.2).  Catalan /s/ was found to be 0.335 standard deviations stronger than Spanish 

/s/, with strong evidence for the effect direction (P(sign) = .981).  For /f/, the posterior mean for 

the difference was that Catalan /f/ was 0.036 standard deviations weaker than Spanish /f/, with 

little evidence for this effect direction (P(sign) = .592).  This does not indicate that we have great 

certainty that there is no difference between Catalan and Spanish /f/ strength (the 95% credible 

interval for the difference is [-0.351, 0.270]), but rather that there is a large amount of 

uncertainty for the effect; however, we do have strong evidence that the difference between 

Catalan /s/ and Spanish /s/ is larger than the difference between Catalan /f/ and Spanish /f/ (mean 

0.371; P(sign) = .986). 

Hypothesis 2.  In Spanish, for both the voiceless plosives /ptk/ and the voiced plosives 

/bdg/, the dialects will show the same strength hierarchy of Cuzco > Valladolid > Lima.  This 

hypothesis is partially supported by the data (Section 5.3).  There is strong evidence for this 

hierarchy for /bdg/, with all pairwise dialect comparisons having magnitude greater than or equal 

to 0.594 and P(sign) > .999.  However, for /ptk/, while the posterior means for the pairwise 

comparisons support this strength hierarchy, we only have strong evidence for Cuzco having 

stronger /ptk/ than both Valladolid and Lima, with weak evidence for Valladolid having stronger 

/ptk/ than Lima.  This may be due to the smaller sample size for Lima (only 8 speakers), but may 
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also be due to too much overlap between the speakers of the two dialects.  Additionally, all three 

contrast magnitudes are smaller for /ptk/ than for /bdg/. 

Hypothesis 3. The degree to which individual speakers of Catalan and Spanish lenite /s/ 

will correlate with the degree to which the same speakers lenite /f/.  This hypothesis is strongly 

supported by the data (Section 6.1).  A 1-SD increase in a speaker’s /f/ strength was found to 

correspond to a 0.648-SD increase in their /s/ strength (P(sign) > .999).  There was little evidence 

that this effect was different for Spanish and Catalan speakers (P(sign) = .594), and overall, 

knowing the speakers’ /f/ strengths, 40.0% of the variation in their /s/ strengths was able to be 

predicted. 

Hypothesis 4. In Spanish, the degree to which individual speakers lenite /ptk/ will 

correlate with the degree to which the same speakers lenite /bdg/, and this relationship may 

differ by place of articulation.  This hypothesis is strongly supported by the data (Section 6.2).  

Knowing speakers’ voiceless plosive strengths, 60.2% of the variance in their voiced plosive 

strengths was able to be predicted.  A 1-SD increase in /t/ strength corresponded to a 0.908-SD 

increase in /d/ strength (P(sign) > .999); a 1-SD increase in /p/ strength corresponded to a 0.781-

SD increase in /b/ strength (P(sign) > .999); a 1-SD increase in /k/ strength corresponded to a 

0.644-SD increase in /g/ strength; and there is strong evidence that these slopes differ in 

magnitude (P(sign) ≥ .993 for all pairwise comparisons). 

Hypothesis 5. The degree to which Valladolid speakers lenite voiceless fricatives /sf/ will 

correlate with the degree to which they lenite voiceless plosives /ptk/.  The hypothesis is strongly 

supported by the data (Section 6.3).  A 1-SD increase in the Valladolid speakers’ voiceless 

fricative strengths corresponded to a 0.418-SD increase in their voiceless plosive strengths, with 

11.4% of the variance in their voiceless plosive strengths being able to be predicted. 
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7.2. Contrast preservation and constraints on individual phonetic variation 

The results of the two experiments carried out in this dissertation strongly support the 

hypothesis that individual phonetic variation is constrained from a multivariate perspective.  This 

occurred both when contrast preservation could arguably be acting as a constraint (Spanish /ptk/ 

and /bdg/ comparison), and when contrast preservation cannot be acting as a constraint (Spanish 

and Catalan /s/ and /f/ comparison, and Valladolid /ptk/ and /sf/ comparison).  This lends 

substantial support to the view that contrast preservation can be an outcome.  That is, since these 

correlations at the individual level lead to contrast preservation (i.e. they exist between Spanish 

/ptk/ and /bdg/ and the result is that speakers are not neutralizing), but also exist between 

consonants where there is no risk of neutralization, then in cases where neutralization is a 

possibility, a natural conclusion is that processes that are not motivated by contrast preservation 

as a constraint can produce it anyways. 

However, the results of the fricative experiment also support a role for contrast 

preservation as a constraint.  Catalan and Spanish both have /s/ and /f/, neither have /v/, and only 

Catalan has /z/.  The strength of the relationship between individuals’ /s/ strengths and /f/ 

strengths was not found to differ for the two languages, and there was little evidence for a 

population difference in /f/ strength for the languages, but there was strong evidence for a 

population difference in /s/ strength for the languages, and strong evidence that this difference 

was greater than the difference for /f/.  That is, /s/ and /f/ are just as related in relative strength in 

the two languages, but on average Catalan /s/ is stronger.  This supports a role for contrast 

preservation as a constraint, with the interpretation of the results presented here being that 

Catalan /s/ is stronger than Spanish /s/ because lenition of Catalan /s/ causes phonetic overlap 

with Catalan /z/, while in Spanish, /s/ lenition does not lead to overlap with any contrasting 
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categories.  In the case of the simultaneous lenition of Spanish /ptk/ and /bdg/, we cannot say to 

what extent contrast preservation is acting as a constraint, or whether contrast preservation is 

simply an outcome achieved through lenition of gestures common to the consonants; it could 

also be a bit of both.  Both experiments presented in this dissertation can also serve to give us a 

window into how similar diachronic changes (or lack thereof) occurred. 

The plosive experiment gives us an idea of what diachronic chain shifts may have looked 

like (e.g. the chain shift from Latin to Western Romance, whereby intervocalic geminate 

consonants simplified, non-geminate voiceless consonants voiced, and non-geminate voiced 

consonants spirantized; Penny (2002, pp. 74–84)).  It may be that such changes occurred through 

individuals exhibiting constrained variation in lenition, with the entire system moving together 

due to the same underlying gestural lenitions.  The plosive experiment results also suggest 

focusing on individual variation with respect to phonological change; while the correlation 

between /ptk/ and /bdg/ strength was robust at the individual level, the evidence was less clear 

when examining dialect population differences (i.e. language occurs first and foremost in 

individual speakers). 

The fricative experiment offers a synchronic look at the phenomenon Wedel et al. (2013) 

studied from a diachronic perspective.  The authors found that the higher the functional load of a 

contrast is, the less likely it was to be lost.  If the role for contrast preservation as a constraint 

found in the fricative study is taken to be gradient, then we might expect a correspondence 

between functional load and the phonetic strength of consonants that contrast with a weaker 

counterpart (i.e. in the experiment I looked at no contrast vs. contrast, but we could conduct 

similar experiments where there is a contrast in both languages but the functional load is lower in 

one language than in the other, a possibility that should be explored in future research). 
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Overall, then, the results show the importance of approaching phonology as a complex 

system that occurs first and foremost within individuals.  That is, when we examine a small 

subset of sounds and fail to explore how these sounds are related to each other and to other sets 

of sounds within the individual speaker, we are missing out on information that is crucial to our 

understanding of phonology.  For the three within-individual correlations explored, the more 

similar the sets of sounds were, the more individual variance we were able to explain from a 

multivariate perspective: 60.2% variance explained for /ptk/ and /bdg/, 40.0% variance explained 

for /s/ and /f/, and 11.4% variance explained for /ptk/ and /sf/.  The general picture then is that 

the variance in the production of individual phonemes that we see is indicative of some smaller 

subset of variance components that affect multiple phonemes simultaneously, with the 

relationships between the variance in individual phonemes’ productions being determined by 

how related the phonemes are to one another articulatorily.   

Within this framework, we should also leave room for a possible teleological role for 

contrast preservation (i.e. contrast preservation as a constraint).  Hock (1991, pp. 164–166) 

defines a role for teleology in phonology that consists of repair strategies employed gradually 

over time in reaction to one phoneme encroaching on another phoneme acoustically (as may 

occur in a chain shift).  However, he argues that contrast preservation merely acts as a repair 

strategy, and does not play a role in preventing a change from occurring in the first place (Hock, 

1991, pp. 150–151).  The synchronic results presented in this dissertation for Catalan and 

Spanish /s/ and /f/, and diachronic research by Wedel et al. (2013) who found functional load to 

play a gradient role in the probability that a contrast is lost, suggest that teleology may in fact 

have a role not only in terms of repair strategies when sounds do change, but also in terms of 

preventing sounds from changing in the first place. 
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While the data in the experiments carried out here show clear evidence of constraints on 

individual variation and support an intermediate approach to the issue of contrast preservation, 

they are of course only two datasets.  Further research needs to be done, with more studies 

looking at acoustic correlations with large samples of speakers as was done here.  Even more 

importantly, studies also need to look at these constraints on individual variation from an 

articulatory perspective.  The acoustic data presented here show evidence that the variation we 

see in individuals’ phoneme productions are the result of a smaller interacting subset of variance 

components, and I argue that these are very likely to be tied to articulatory gestures.  Another 

interesting implication of the results presented in this dissertation is that a phonetic phenomenon 

that could in theory affect two phonemes, but where the phenomenon is a sociolinguistic marker 

for only one of the phonemes, we should expect the phenomenon should still be correlated at the 

individual level for the two phonemes, but the variation in the phoneme that is not a 

sociolinguistic marker should not be assigned any social meaning.  As a concrete example, 

consider /ʒ/ and /s/ in Argentine Spanish.  The /ʒ/ phoneme can be variably (and gradiently) 

realized as either [ʒ] or [ʃ], and this is a sociolinguistic marker (Rohena-Madrazo, 2013).  We 

should expect speakers who produce /ʒ/ as relatively more voiceless to also produce /s/ as 

relatively more voiceless, but for the difference in /s/ voicing to not be noticed by speakers in the 

same way as differences in /ʒ/ voicing.  This dissertation has thoroughly laid out widely 

applicable phonetic and statistical methodologies that can be used in such future research. 

7.3. Measure automation and dimensionality reduction 

A phonetic measure for the duration of intervocalic consonants based on the preceding 

and following vowels’ intensity maxima was automated and employed to measure a wide range 

of consonants (plosives, fricatives, and approximants).  In addition to this measure, two voicing 
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measures (one duration-based and one percentage-based) and two relative intensity measures (on 

a difference and one a velocity) were taken.  All of these measures had the advantage of relying 

on minimal amounts of manual segmentation, with only four boundaries being necessary 

(beginning and end of the VCV sequence, and boundaries containing the consonant’s minima if 

not elided); all other durational, voicing, and intensity measures were then able to be 

automatically extracted from the acoustic signal.  

Previous researchers have examined some subset of these measures individually when 

examining /ptk/, /bdg/, or /sf/.  For example, Hualde et al. (2011) measured the percentage of 

/ptk/ closures that were voiced and classified them into two voicing categories (voiceless vs. 

partially or fully voiced), and compared three different intensity-based measurements and a 

duration measurement for /bdg/, voiceless /ptk/, and partially or fully voiced /ptk/, finding 

significant differences in each case, and specifically noting that even when /ptk/ are voiced, they 

are different in their constriction from /bdg/.  As shown in this study, all five measures are highly 

correlated for plosives (Figure 2.7), and a principal component analysis shows that 81% of the 

variance in the five measures can be explained by a single variance component (Table 2.5 and 

Table 2.6) that very successfully separates underlyingly voiceless plosives from underlyingly 

voiced plosives (Figure 3.6 and Table 3.1).  Similarly, for fricatives, the voicing and duration 

measures were found to be correlated (Figure 2.8), and a principal component analysis shows 

that 77% of the variance in the three measures can be explained by a single variance component 

(Table 2.7 and Table 2.8) that gives about equal weights to all three measures of strength. 

Given that these measures are a simplification of the acoustic signal, that they share 

common articulatory origins, that listeners receive all of these inputs at once rather than 

separately, and that the majority of their variance can be explained by a single component, it 
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seems more reasonable that the distinction between /ptk/ and /bdg/ in Spanish and the strength of 

/sf/ in Spanish and Catalan lies not in a single measure of consonant strength, or in several 

measures separately, but rather in the totality of the multivariate space they create.  Using the 

PCA approach also provides a principled way to avoid inflating false discovery rates by running 

multiple regressions on highly correlated measures, which has become an increasing problem in 

many fields of research (Simmons et al., 2011).  This dissertation thus makes a methodological 

contribution that can be employed in the measurement of consonant lenition, and in other areas 

of phonetic research where such high correlations exist as well. 

7.4. Bayesian mixed effects regression and NA coding 

The use of Bayesian mixed effects regression as opposed to a frequentist approach (as is 

more commonly used in linguistics) allowed for full distributional information about individual 

speakers to be obtained, contributing a novel use of these models in the analysis of linguistic 

data.  The Bayesian approach also allowed the strength of evidence in the data for hypotheses to 

be evaluated directly, rather than taking a null hypothesis significance testing approach.  The use 

of NA values to code unordered factors for observations in subsets of the data where the factor is 

not contrastive allowed for each dataset to be modeled in its entirety with a single regression, 

rather than binning the data and running multiple regressions.  In this way, all of the information 

was able to be incorporated at once, providing a further methodological contribution that can be 

used in future linguistic research, especially in observational data where there tends to be a 

greater degree of imbalance. 
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7.5. Conclusion 

Two phonetic experiments were carried out in this dissertation in order to test whether 

individual phonetic variation is constrained from a multivariate perspective, and to test how this 

relates to contrast preservation.  In both experiments, multiple phonetic measures of consonant 

strength were automatically extracted from the acoustic signal, and dimensionality reduction was 

performed with PCA.  A single component was found to be able to explain the vast majority of 

the variance in each case, and Bayesian mixed effects regressions were run on these components 

in order to obtain posterior distributions for population estimates and also for individual 

speakers. 

In the first experiment, word-medial intervocalic /s/ and /f/ were compared for Valladolid 

Spanish and Barcelona Catalan.  The relative strength of /s/ and /f/ were found to be correlated at 

the individual level in both languages, with no evidence that the magnitude of the correlation 

differed by language.  While strong evidence was found for Catalan /s/ being stronger than 

Spanish /s/, and for this difference being much larger than the difference between Catalan /f/ and 

Spanish /f/, little evidence was found for a difference between Spanish and Catalan /f/. 

In the second experiment, the simultaneous lenition of Spanish /ptk/ and /bdg/ in three 

dialects (Cuzco, Lima, and Valladolid) was examined.  While there was very strong evidence for 

voiceless and voiced plosive lenition being correlated at the individual level (and for this 

relationship varying by place of articulation), the evidence for this correlation at the dialectal 

level was considerably weaker.  Valladolid /ptk/ strength and /sf/ strength were further found to 

be correlated at the individual level. 

Overall, the results support the hypothesis that individual phonetic variation is, to some 

extent, constrained.  It was argued that this is likely due to the acoustic lenition of multiple 
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segments sharing a common articulatory source of lenition, which is supported by the 

correlations existing both when neutralization is a possibility (i.e. /ptk/ vs. /bdg/) and when it is 

not a possibility (i.e. /s/ vs. /f/ and /ptk/ vs. /sf/).  Due to presence of correlations in both cases, it 

was argued that the view that contrast preservation can be merely an outcome of other phonetic 

forces is strongly supported.  However, based on the results of the fricative experiment, it was 

argued that within this larger framework (constraints on individual variation and contrast 

preservation as an outcome), there may also be an additional role for contrast preservation as a 

constraint in its own right. 

Future research should look at other situations like the ones studied here from an acoustic 

perspective, as no single study can serve as the sole evidence for a hypothesis.  The phonetic and 

statistical methods employed here should be used to study other chain shifts (including stable 

phonetic variation along a continuum where contrast is maintained) and differences in 

synchronic lenition based on a gradient measure of contrast (e.g. functional load, as opposed to 

here where no contrast was compared to contrast).  The perceptual implications of constraints on 

individual phonetic variation should also be explored.  Specifically, are speakers aware, on some 

level, of the correlation between these different segments?  Can hearing the production of a 

consonant prime the listener for a specific degree of lenition in a seemingly unrelated consonant?  

Finally, studies should examine how the acoustic correlations found in this dissertation relate 

back to articulation. 
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Appendix A. Fricative experiment supplement 

A.1. Regression variance components 

The posterior mean, standard deviation, median, 95% credible interval, and effective 

sample size of each variance component are provided in Table A.1 (speaker effects) and Table 

A.2 (residuals). 

Table A.1 Posterior distribution of the random effect standard deviations for speaker. 
Random Speaker Effect Mean SD Median 2.5% 97.5% Neff 
Intercept (Corrected Mean) 0.363 0.056 0.359 0.268 0.487 3760 
Fricative, /f/ 0.199 0.037 0.197 0.133 0.279 4675 
Stress, Post-Tonic 0.132 0.044 0.132 0.042 0.218 1367 
Stress, Tonic 0.087 0.047 0.086 0.007 0.183 2661 
Preceding Vowel, High 0.044 0.032 0.039 0.002 0.118 3430 
Following Vowel, High 0.090 0.033 0.091 0.018 0.155 1717 
Log Word Frequency 0.104 0.035 0.104 0.032 0.175 3286 
Speech Rate 0.044 0.028 0.041 0.002 0.106 3523 
 

Table A.2 Posterior distribution of the residual standard error. 
Mean SD Median 2.5% 97.5% Neff 
0.834 0.013 0.834 0.808 0.860 10000 
 

A.2. Contrasts for group means 

The following list gives the contrasts applied to the fixed effects coefficient vector at 

each iteration of the Bayesian mixed effects regression to obtain the group mean estimates 

summarized in Sections 4.1 and 4.2.  Contrast estimates were then obtained by simply 

subtracting the estimate vectors from one another. 
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Language, Catalan : Stress, Tonic = Intercept (Corrected Mean) + Language, Catalan + Stress, 
Tonic + Language, Catalan : Stress, Tonic 
 
Language, Catalan : Stress, Post-Tonic = Intercept (Corrected Mean) + Language, Catalan + 
Stress, Post-Tonic + Language, Catalan : Stress, Post-Tonic 
 
Language, Catalan : Stress, Unstressed = Intercept (Corrected Mean) + Language, Catalan - 
Stress, Tonic - Stress, Post-Tonic - Language, Catalan : Stress, Tonic - Language, Catalan : 
Stress, Post-Tonic 
 
Language, Spanish : Stress, Tonic = Intercept (Corrected Mean) - Language, Catalan + Stress, 
Tonic - Language, Catalan : Stress, Tonic 
 
Language, Spanish : Stress, Post-Tonic = Intercept (Corrected Mean) - Language, Catalan + 
Stress, Post-Tonic - Language, Catalan : Stress, Post-Tonic 
 
Language, Spanish : Stress, Unstressed = Intercept (Corrected Mean) - Language, Catalan - 
Stress, Tonic - Stress, Post-Tonic + Language, Catalan : Stress, Tonic + Language, Catalan : 
Stress, Post-Tonic 
 
Preceding Vowel, High = Intercept (Corrected Mean) + Preceding Vowel, High 
 
Preceding Vowel, Non-High = Intercept (Corrected Mean) - Preceding Vowel, High 
 
Following Vowel, High = Intercept (Corrected Mean) + Following Vowel, High 
 
Following Vowel, Non-High = Intercept (Corrected Mean) - Following Vowel, High 
 
Sex, Female = Intercept (Corrected Mean) + Sex, Female 
 
Sex, Male = Intercept (Corrected Mean) - Sex, Female 
 
Language, Catalan : Fricative, /f/ = Intercept (Corrected Mean) + Language, Catalan + Fricative, 
/f/ + Language, Catalan : Fricative, /f/ 
 
Language, Catalan : Fricative, /s/ = Intercept (Corrected Mean) + Language, Catalan - Fricative, 
/f/ - Language, Catalan : Fricative, /f/ 
 
Language, Spanish : Fricative, /f/ = Intercept (Corrected Mean) - Language, Catalan + Fricative, 
/f/ - Language, Catalan : Fricative, /f/ 
 
Language, Spanish : Fricative, /s/ = Intercept (Corrected Mean) - Language, Catalan - Fricative, 
/f/ + Language, Catalan : Fricative, /f/ 
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A.3. Stan code 

functions { 
  matrix vec_to_mat_by_row(int R, int C, vector v){ 
    matrix[R,C] m; 
    for(r in 1:R) m[r] = v[(C*(r-1)+1):(C*r)]'; 
    return m; 
  } 
} 
 
data { 
  int<lower=0> N;  // number of observations 
  int<lower=0> K;  // number of coefficients 
 
  int<lower=0> nz;  // num non-zero elements in model matrix 
  vector[nz] w;  // non-zero elements in model matrix 
  int<lower=0> v[nz];  // column indices for w 
  int<lower=0> u[N+1];  // row-start indices for non-zero elements 
 
  vector[N] y;  // scaled response 
 
  int<lower=0> P;  // number of fixed effects 
  int<lower=0> G;  // number of random effect groups 
  int<lower=0> cindx[G,2];  // coefficient index for random effects 
  int<lower=0> M_1;  // number of speaker members 
  int<lower=0> Q_1;  // number of speaker effects per member 
 
  // (hyper) priors 
  real<lower=0> scale_beta;  // prior scale for betas 
  real<lower=0> nu_beta;  // degrees of freedom for beta t-dist prior 
  real<lower=0> sc_q0;  // prior scale for random intercept sds 
  real<lower=0> sc_qs;  // prior scale for random slope sds 
  real<lower=0> eta_q;  // shape for LKJ prior on random effects correlations 
  real<lower=0> sc_res;  // prior scale for sd of the residuals 
} 
 
parameters { 
  // all parameters sampled on unit scale or with cholesky factors 
  // (as applicable) and reparameterized 
 
  vector[P] beta_raw; 
 
  matrix[Q_1,M_1] gamma_1_raw; 
  vector<lower=0>[Q_1] sigma_1_raw; 
  cholesky_factor_corr[Q_1] omega_1_raw; 
 
  real<lower=0> sigma_res_raw; 
} 
 
transformed parameters { 
  vector<lower=0>[Q_1] sigma_1;  // sd in the speaker effects 
  real<lower=0> sigma_res;  // sd of the residuals 
 
  vector[K] coef;  // all coefficients 
  vector[N] y_hat;  // fitted values 
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  coef[1:P] = scale_beta * beta_raw; 
 
  sigma_1[1] = sc_q0 * sigma_1_raw[1]; 
  sigma_1[2:Q_1] = sc_qs * sigma_1_raw[2:Q_1]; 
  coef[cindx[1,1]:cindx[1,2]] 
    = to_vector(rep_matrix(sigma_1,M_1) 
      .* (omega_1_raw * gamma_1_raw)); 
 
  sigma_res = sc_res * sigma_res_raw; 
 
  y_hat = csr_matrix_times_vector(N,K,w,v,u,coef); 
} 
 
model { 
  beta_raw ~ student_t(nu_beta,0,1); 
 
  to_vector(gamma_1_raw) ~ normal(0,1); 
  sigma_1_raw ~ normal(0,1); 
  omega_1_raw ~ lkj_corr_cholesky(eta_q); 
 
  sigma_res_raw ~ normal(0,1); 
  y ~ normal(y_hat,sigma_res); 
} 
 
generated quantities { 
  vector[N] log_lik;  // log-likelihod 
  vector[P] beta;  // fixed effects 
  matrix[M_1,Q_1] gamma_1;  // speaker effects 
  matrix[Q_1,Q_1] omega_1;  // correlation in the speaker effects 
 
  for(n in 1:N) log_lik[n] = normal_lpdf(y[n] | y_hat[n],sigma_res); 
  beta = coef[1:P]; 
  gamma_1 = vec_to_mat_by_row(M_1,Q_1,coef[cindx[1,1]:cindx[1,2]]); 
  omega_1 = tcrossprod(omega_1_raw); 
} 
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Appendix B. Plosive experiment supplement 

B.1. Demographic questionnaire and Cuzco participant demographics 

The participants from Cuzco and Lima filled out a questionnaire with the following 

questions, with classification of the Cuzco participants along with occupation given in Table B.1: 

1.  ¿Cuántos años tiene usted? 
 

2.  ¿Cuál es su sexo? 
 

3.  ¿En qué trabaja usted? 
 

4.  ¿Cuál es el nivel de educación más alto que usted ha cumplido? 
 

5.  ¿En qué ciudad nació usted? 
 

6.  ¿Ha vivido usted en una ciudad diferente de la ciudad en que vive actualmente?  ¿Cuántos  
      años tenía y por cuánto tiempo vivió allí? 

 
7.  ¿Cuántos años tenía usted cuando se mudó a la ciudad en que vive actualmente? 

 
8.  ¿Qué lenguas habla usted?  ¿Cuántos años tenía usted cuando empezó a aprender cada una y  
      dónde las aprendió (en la escuela, en casa, etc.)? 

 
9.  ¿Qué lenguas habla usted en casa y con qué frecuencia? 

 
10.  ¿Qué lenguas habla usted en el trabajo y con qué frecuencia? 

 
11.  ¿Qué lenguas se hablaban en su casa antes de que empezara usted a asistir a la escuela? 

 
12.  ¿Cuántos años tenía usted cuando empezó a asistir a la escuela?  ¿Dónde asistió a la escuela?   
       ¿Qué lengua(s) se usaban en la escuela? 

 
13.  ¿Qué lenguas hablaban sus padres? 

  
14.  ¿Qué lenguas hablaban sus abuelos? 
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Table B.1 Cuzco participant demographics. 
Speaker Age Quechua Bilingual Age Group Education Level Sex Occupation 
s01 48 No Older University F Teacher 
s02 30 No Younger University F Secretary 
s03 37 Yes Younger Secondary F Gardener 
s04 57 Yes Older University M Teacher 
s05 37 No Younger Secondary F Tourism 
s06 25 No Younger University F Tourism 
s07 29 No Younger University M Teacher 
s08 21 Yes Younger University F Teacher 
s09 50 Yes Older University F Teacher 
s10 34 No Younger University M House Cleaning 
s11 32 Yes Younger University M Tourism 
s12 48 Yes Older University F Small Business 
s13 42 No Older University F Street Vendor 
s14 20 Yes Younger University M Cook 
s15 64 No Older University M Doctor 
s16 65 Yes Older Secondary M Electrician 
s17 44 Yes Older Secondary F Small Business 
s18 46 No Older University M Small Business 
s19 20 No Younger Secondary F Cook 
s20 27 No Younger Secondary M Bank 
s21 53 No Older Secondary F Street Vendor 
s22 30 Yes Younger Secondary M Architecture 
s23 28 No Younger Secondary M Cook 
s24 19 Yes Younger University F Student 
s25 30 Yes Younger Secondary M Tourism 
s26 54 No Older Secondary F Street Vendor 
s27 64 Yes Older Secondary M Small Business 
s28 25 Yes Younger Secondary F Cook 
s29 65 No Older Secondary M Small Business 
s30 47 No Older Secondary M Street Vendor 
 

B.2. Read speech task sentences 

The following is the full list of sentences that the Cuzco and Lima participants read aloud in 

the read speech task, with planned observations analyzed in the Spanish experiment bolded and 
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underlined (there are additional planned observations that occur post-nasal, post-lateral, and in 

coda, but these are not reported on here and are not bolded and underlined below). 

1.  El hombre calvo que vende mangos y mandarinas está en el rincón de la plaza. 
2.  La petición no fue aceptada por el gobierno. 
3.  Las alpacas no te atacarán a menos que las provoques. 
4.  No se puede comparar dos universidades tan diferentes. 
5.  Si quieres hacer un pastel, primero hay que mezclar el azúcar con la mantequilla en un bol y  
     combinar el resto de los ingredientes secos en un bol separado. 
6.  El despacho del abogado es difícil de encontrar porque está en una calle demasiado angosta y  
     angular para carros. 
7.  El doctor administró la medicina al paciente. 
8.  El discurso político arengará al partido para la elección en agosto. 
9.  No es necesario que le pongas sal a una sopa buena. 
10.  Mi hija es muy aventurera, pero también patosa.  Cada día le digo que tenga cuidado. 
11.  Es absurdo mentir y prolongar lo inevitable.  Álvaro, admite que tienes la culpa. 
12.  No me gusta el langostino. 
13.  El adolescente tonto se rompió el tobillo montando en bicicleta. 
14.  “El mundo antiguo” es un término usado para referirse a Europa. 
15.  Según el alcalde, una erupción volcánica destruirá la aldea. 
16.  Los ingredientes principales del guacamole son paltas, tomates y cebollas. 
17.  Marisol colgará una aldaba en la puerta. 
18.  El gobierno a veces sube los impuestos para dar apoyo a la soldadesca durante una guerra. 
19.  Es importante que cambien el ambiente caldeado de la oficina aunque sea difícil. 
20.  El chico simpático silbará mientras va al banco donde sacará cinco soles. 
21.  No le gusta el jugo pulposo. 
22.  Le encanta pasar tiempo cabalgando en el campo. 
23.  No pude ir a la facultad porque había un tronco en el sendero. 
24.  Por favor, no olvide hacer las albóndigas. 
25.  Juan contará el mito del genio malvado atrapado en la lámpara encantada. 
26.  El lenguaje tiene tendencia a cambiar. 
27.  En la milpa los campesinos cultivan maíz. 
28.  Cuidado que no vuelques el florero de ámbar. 
29.  El hombre alto alquila el apartamento con el balcón. 
30.  No absolverán al hombre culpable de vender armas ilegales. 
31.  La semana que viene faltaré tres días de clase. 
32.  El ejército invadió el país. 
33.  Hubo un golpe de estado. 
34.  El estudiante agarró el recibo que le enviaron e hizo un calco para sus archivos. 
35.  El atleta que hace alpinismo saltará sobre la piedra. 
36.  Mi hermana es banquera, pero no le gusta su trabajo. 
37.  El conductor se disculpará por la demora. 
38.  El álbum era popular entre la gente culta. 
39.  El albañil se lastimó la espalda mientras hacía un peldaño.  Tuvimos que llamar una  
       ambulancia.  
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40.  Ana no comulgará con las ideas de Pedro. 
41.  No olvidaré pagar el alquiler.  Lo pagaré cuando pueda. 
42.  El agua del río salpicó a la falda de algodón y ahora se ha reducido. 
43.  Ese perro está tratando de quitarse las pulgas. 
44.  Se amoldará al sueldo de su empleo nuevo. 
45.  El sindicato y el gobierno firmaron varios acuerdos, pero algunos no se han implementado 
46.  todavía. 
47.  El cálculo es difícil porque el ámbito matemático es abstracto. 
48.  Huelga que me lo digas. Necesito alterar el documento. 
49.  La cerveza tiene menos alcohol que el vino. 
50.  El niño delgado brincará por la casa. 
51.  Los dos eventos fueron simultáneos. 
52.  Pon las alcachofas en la sartén y tápala para que no salga el vapor. 
 

B.3. Regression variance components 

The posterior mean, standard deviation, median, 95% credible interval, and effective 

sample size of each variance component are provided in Table B.2 (speaker effects), Table B.3 

(item effects), and Table B.4 (residuals). 

Table B.2 Posterior distribution of the random effect standard deviations for speaker. 
Random Speaker Effect Mean SD Median 2.5% 97.5% Neff 
Intercept (Corrected Mean) 0.304 0.035 0.301 0.244 0.381 4484 
Voicing, Voiced 0.187 0.023 0.185 0.147 0.235 5245 
Place, Biliabial 0.026 0.018 0.023 0.001 0.068 4407 
Place, Dental 0.105 0.017 0.105 0.074 0.142 6739 
Stress, Post-Tonic 0.031 0.021 0.029 0.001 0.076 4298 
Stress, Tonic 0.075 0.018 0.075 0.038 0.111 4302 
Word Position, Initial 0.092 0.021 0.091 0.053 0.133 5390 
Preceding Vowel, High 0.065 0.017 0.065 0.030 0.098 4026 
Following Vowel, High 0.037 0.021 0.037 0.002 0.078 3257 
Log Word Frequency 0.027 0.016 0.026 0.001 0.061 4138 
Speech Rate 0.023 0.015 0.021 0.001 0.056 3433 
Task, Read Speech 0.107 0.019 0.106 0.074 0.148 7412 
Voicing, Voiced : Place, Biliabial 0.031 0.021 0.028 0.001 0.075 4226 
Voicing, Voiced : Place, Dental 0.111 0.019 0.110 0.077 0.150 7041 
Voicing, Voiced : Word Position, Initial 0.061 0.022 0.062 0.014 0.102 4109 
Voicing, Voiced : Preceding Vowel, High 0.015 0.012 0.013 0.001 0.043 5943 
Voicing, Voiced : Following Vowel, High 0.028 0.017 0.026 0.001 0.064 3922 
Voicing, Voiced : Speech Rate 0.027 0.016 0.026 0.001 0.061 3856 
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Table B.3 Posterior distribution of the random effect standard deviations for item. 
Random Item Effect Mean SD Median 2.5% 97.5% Neff 
Intercept (Corrected Mean) 0.212 0.032 0.210 0.154 0.280 5189 
Speech Rate 0.115 0.029 0.115 0.060 0.173 3549 
Dialect, Cuzco (Item Coding) 0.104 0.030 0.104 0.044 0.164 3457 
Sex, Female 0.021 0.016 0.018 0.001 0.058 7572 
Age Group, Older 0.031 0.022 0.027 0.001 0.080 6044 
Education Level, Secondary 0.029 0.022 0.025 0.001 0.080 5063 
Quechua Bilingual, Yes 0.034 0.024 0.031 0.001 0.089 4662 
Dialect, Cuzco (Item Coding) : Sex, Female 0.035 0.023 0.033 0.002 0.084 4836 
 

Table B.4 Posterior distribution of the residual standard error. 
Mean SD Median 2.5% 97.5% Neff 
0.673 0.007 0.673 0.660 0.687 10000 
 

B.4. Additional descriptive statistics 

The following tables give descriptive statistics by underlying voicing for control factors 

that showed no evidence of an interaction with underlying voicing, and were therefore included 

only as fixed effects in the regression on VNPC1. 

Table B.5 Descriptive statistics for VNPC1 by underlying voicing and stress. 
Voicing Stress N Minimum Median Maximum Mean SD 

Voiced 
Tonic 1053 -1.481 0.161 4.115 0.202 1.057 
Post-Tonic 861 -1.481 -0.103 3.922 -0.091 0.947 
Unstressed 780 -1.481 -0.181 3.718 -0.173 0.929 

Voiceless 
Tonic 954 -3.232 0.278 3.592 0.244 0.998 
Post-Tonic 768 -3.462 0.075 3.238 -0.059 0.987 
Unstressed 865 -3.528 -0.112 2.979 -0.218 0.955 

 

Table B.6 Descriptive statistics for VNPC1 by underlying voicing and task. 
Voicing Task N Minimum Median Maximum Mean SD 

Voiced 
Read Speech 1009 -1.481 0.301 3.922 0.323 1.019 
Spontaneous Speech 645 -1.481 -0.143 3.955 -0.132 0.977 

Voiceless 
Read Speech 1010 -3.034 0.396 3.592 0.359 0.888 
Spontaneous Speech 426 -3.528 -0.021 2.330 -0.117 1.050 
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Table B.7 Descriptive statistics for VNPC1 by underlying voicing and age group. 
Voicing Age Group N Minimum Median Maximum Mean SD 

Voiced 
Older 694 -1.481 0.451 4.115 0.508 0.935 
Younger 763 -1.481 0.350 3.922 0.405 0.955 

Voiceless 
Older 668 -2.690 0.487 3.592 0.423 0.932 
Younger 747 -2.548 0.317 3.238 0.340 0.712 

 

Table B.8 Descriptive statistics for VNPC1 by underlying voicing and education level. 
Voicing Education Level N Minimum Median Maximum Mean SD 

Voiced 
Secondary 741 -1.481 0.416 3.869 0.475 0.985 
University 716 -1.481 0.390 4.115 0.433 0.905 

Voiceless 
Secondary 704 -2.636 0.421 3.124 0.389 0.870 
University 711 -2.690 0.357 3.592 0.369 0.776 

 

B.5. Contrasts for group means 

The following list gives the contrasts applied to the fixed effects coefficient vector at 

each iteration of the Bayesian mixed effects regression to obtain the group mean estimates 

summarized in Sections 5.1, 5.2, and 5.3.  Contrast estimates were then obtained by simply 

subtracting the estimate vectors from one another. 

 

Voicing, Voiced : Speech Rate = Speech Rate + Voicing, Voiced : Speech Rate 
 
Voicing, Voiceless : Speech Rate = Speech Rate - Voicing, Voiced : Speech Rate 
 
Stress, Tonic = Intercept (Corrected Mean) + Stress, Tonic 
 
Stress, Post-Tonic = Intercept (Corrected Mean) + Stress, Post-Tonic 
 
Stress, Unstressed = Intercept (Corrected Mean) - Stress, Tonic - Stress, Post-Tonic 
 
Voicing, Voiced : Word Position, Initial = Intercept (Corrected Mean) - 2/3 * Task, Read Speech 
+ Voicing, Voiced + Word Position, Initial + Voicing, Voiced : Word Position, Initial 
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Voicing, Voiced : Word Position, Medial = Intercept (Corrected Mean) - 2/3 * Task, Read 
Speech + Voicing, Voiced - Word Position, Initial - Voicing, Voiced : Word Position, Initial 
 
Voicing, Voiceless : Word Position, Initial = Intercept (Corrected Mean) - 2/3 * Task, Read 
Speech - Voicing, Voiced + Word Position, Initial - Voicing, Voiced : Word Position, Initial 
 
Voicing, Voiceless : Word Position, Medial = Intercept (Corrected Mean) - 2/3 * Task, Read 
Speech - Voicing, Voiced - Word Position, Initial + Voicing, Voiced : Word Position, Initial 
 
Preceding Vowel, High = Intercept (Corrected Mean) + Preceding Vowel, High 
 
Preceding Vowel, Non-High = Intercept (Corrected Mean) - Preceding Vowel, High 
 
Voicing, Voiced : Following Vowel, High = Intercept (Corrected Mean) + Voicing, Voiced + 
Following Vowel, High + Voicing, Voiced : Following Vowel, High 
 
Voicing, Voiced : Following Vowel, Non-High = Intercept (Corrected Mean) + Voicing, Voiced 
- Following Vowel, High - Voicing, Voiced : Following Vowel, High 
 
Voicing, Voiceless : Following Vowel, High = Intercept (Corrected Mean) - Voicing, Voiced + 
Following Vowel, High - Voicing, Voiced : Following Vowel, High 
 
Voicing, Voiceless : Following Vowel, Non-High = Intercept (Corrected Mean) - Voicing, 
Voiced - Following Vowel, High + Voicing, Voiced : Following Vowel, High 
 
Task, Read Speech = Intercept (Corrected Mean) + 1/2 * Dialect, Cuzco + 1/2 * Dialect, Lima + 
Task, Read Speech 
 
Task, Spontaneous Speech = Intercept (Corrected Mean) + 1/2 * Dialect, Cuzco + 1/2 * Dialect, 
Lima - Task, Read Speech 
 
Sex, Female : Dialect, Cuzco = Intercept (Corrected Mean) + Sex, Female + Dialect, Cuzco + 
Sex, Female : Dialect, Cuzco 
 
Sex, Female : Dialect, Lima = Intercept (Corrected Mean) + Sex, Female + Dialect, Lima + Sex, 
Female : Dialect, Lima 
 
Sex, Female : Dialect, Valladolid = Intercept (Corrected Mean) + Sex, Female - Dialect, Cuzco - 
Dialect, Lima - Sex, Female : Dialect, Cuzco - Sex, Female : Dialect, Lima 
 
Sex, Male : Dialect, Cuzco = Intercept (Corrected Mean) - Sex, Female + Dialect, Cuzco - Sex, 
Female : Dialect, Cuzco 
 
Sex, Male : Dialect, Lima = Intercept (Corrected Mean) - Sex, Female + Dialect, Lima - Sex, 
Female : Dialect, Lima 
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Sex, Male : Dialect, Valladolid = Intercept (Corrected Mean) - Sex, Female - Dialect, Cuzco - 
Dialect, Lima + Sex, Female : Dialect, Cuzco + Sex, Female : Dialect, Lima 
 
/b/ (Voicing, Voiced : Place, Bilabial) = Intercept (Corrected Mean) + Voicing, Voiced + Place, 
Bilabial + Voicing, Voiced : Place, Bilabial 
 
/d/ (Voicing, Voiced : Place, Dental) = Intercept (Corrected Mean) + Voicing, Voiced + Place, 
Dental + Voicing, Voiced : Place, Dental 
 
/g/ (Voicing, Voiced : Place, Velar) = Intercept (Corrected Mean) + Voicing, Voiced - Place, 
Bilabial - Place, Dental - Voicing, Voiced : Place, Bilabial - Voicing, Voiced : Place, Dental 
 
/p/ (Voicing, Voiceless : Place, Bilabial) = Intercept (Corrected Mean) - Voicing, Voiced + 
Place, Bilabial - Voicing, Voiced : Place, Bilabial 
 
/t/ (Voicing, Voiceless : Place, Dental) = Intercept (Corrected Mean) - Voicing, Voiced + Place, 
Dental - Voicing, Voiced : Place, Dental 
 
/k/ (Voicing, Voiceless : Place, Velar) = Intercept (Corrected Mean) - Voicing, Voiced - Place, 
Bilabial - Place, Dental + Voicing, Voiced : Place, Bilabial + Voicing, Voiced : Place, Dental 
 
Voicing, Voiced : Dialect, Cuzco = Intercept (Corrected Mean) + Voicing, Voiced + Dialect, 
Cuzco - Age Group, Older - Education Level, Secondary - Quechua Bilingual, Yes + Voicing, 
Voiced : Dialect, Cuzco - Voicing, Voiced : Quechua Bilingual, Yes 
 
Voicing, Voiced : Dialect, Lima = Intercept (Corrected Mean) + Voicing, Voiced + Dialect, 
Lima + Voicing, Voiced : Dialect, Lima 
 
Voicing, Voiced : Dialect, Valladolid = Intercept (Corrected Mean) + Voicing, Voiced - Dialect, 
Cuzco - Dialect, Lima - Voicing, Voiced : Dialect, Cuzco - Voicing, Voiced : Dialect, Lima 
 
Voicing, Voiceless : Dialect, Cuzco = Intercept (Corrected Mean) - Voicing, Voiced + Dialect, 
Cuzco - Age Group, Older - Education Level, Secondary - Quechua Bilingual, Yes - Voicing, 
Voiced : Dialect, Cuzco + Voicing, Voiced : Quechua Bilingual, Yes 
 
Voicing, Voiceless : Dialect, Lima = Intercept (Corrected Mean) - Voicing, Voiced + Dialect, 
Lima - Voicing, Voiced : Dialect, Lima 
 
Voicing, Voiceles : Dialect, Valladolid = Intercept (Corrected Mean) - Voicing, Voiced - 
Dialect, Cuzco - Dialect, Lima + Voicing, Voiced : Dialect, Cuzco + Voicing, Voiced : Dialect, 
Lima 
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B.6. Stan code 

functions { 
  matrix vec_to_mat_by_row(int R, int C, vector v){ 
    matrix[R,C] m; 
    for(r in 1:R) m[r] = v[(C*(r-1)+1):(C*r)]'; 
    return m; 
  } 
} 
 
data { 
  int<lower=0> N;  // number of observations 
  int<lower=0> K;  // number of coefficients 
 
  int<lower=0> nz;  // num non-zero elements in model matrix 
  vector[nz] w;  // non-zero elements in model matrix 
  int<lower=0> v[nz];  // column indices for w 
  int<lower=0> u[N+1];  // row-start indices for non-zero elements 
 
  vector[N] y;  // scaled response 
 
  int<lower=0> P;  // number of fixed effects 
  int<lower=0> G;  // number of random effect groups 
  int<lower=0> cindx[G,2];  // coefficient index for random effects 
  int<lower=0> M_1;  // number of speaker members 
  int<lower=0> Q_1;  // number of speaker effects per member 
  int<lower=0> M_2;  // number of item members 
  int<lower=0> Q_2;  // number of item effects per member 
 
  // (hyper) priors 
  real<lower=0> scale_beta;  // prior scale for betas 
  real<lower=0> nu_beta;  // degrees of freedom for beta t-dist prior 
  real<lower=0> sc_q0;  // prior scale for random intercept sds 
  real<lower=0> sc_qs;  // prior scale for random slope sds 
  real<lower=0> eta_q;  // shape for LKJ prior on random effects correlations 
  real<lower=0> sc_res;  // prior scale for sd of the residuals 
} 
 
parameters { 
  // all parameters sampled on unit scale or with cholesky factors 
  // (as applicable) and reparameterized 
 
  vector[P] beta_raw; 
 
  matrix[Q_1,M_1] gamma_1_raw; 
  vector<lower=0>[Q_1] sigma_1_raw; 
  cholesky_factor_corr[Q_1] omega_1_raw; 
 
  matrix[Q_2,M_2] gamma_2_raw; 
  vector<lower=0>[Q_2] sigma_2_raw; 
  cholesky_factor_corr[Q_2] omega_2_raw; 
 
  real<lower=0> sigma_res_raw; 
} 
 
transformed parameters { 
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  vector<lower=0>[Q_1] sigma_1;  // sd in the speaker effects 
  vector<lower=0>[Q_2] sigma_2;  // sd in the item effects 
  real<lower=0> sigma_res;  // sd of the residuals 
 
  vector[K] coef;  // all coefficients 
  vector[N] y_hat;  // fitted values 
 
  coef[1:P] = scale_beta * beta_raw; 
 
  sigma_1[1] = sc_q0 * sigma_1_raw[1]; 
  sigma_1[2:Q_1] = sc_qs * sigma_1_raw[2:Q_1]; 
  coef[cindx[1,1]:cindx[1,2]] 
    = to_vector(rep_matrix(sigma_1,M_1) 
      .* (omega_1_raw * gamma_1_raw)); 
 
  sigma_2[1] = sc_q0 * sigma_2_raw[1]; 
  sigma_2[2:Q_2] = sc_qs * sigma_2_raw[2:Q_2]; 
  coef[cindx[2,1]:cindx[2,2]] 
    = to_vector(rep_matrix(sigma_2,M_2) 
      .* (omega_2_raw * gamma_2_raw)); 
 
  sigma_res = sc_res * sigma_res_raw; 
 
  y_hat = csr_matrix_times_vector(N,K,w,v,u,coef); 
} 
 
model { 
  beta_raw ~ student_t(nu_beta,0,1); 
 
  to_vector(gamma_1_raw) ~ normal(0,1); 
  sigma_1_raw ~ normal(0,1); 
  omega_1_raw ~ lkj_corr_cholesky(eta_q); 
 
  to_vector(gamma_2_raw) ~ normal(0,1); 
  sigma_2_raw ~ normal(0,1); 
  omega_2_raw ~ lkj_corr_cholesky(eta_q); 
 
  sigma_res_raw ~ normal(0,1); 
  y ~ normal(y_hat,sigma_res); 
} 
 
generated quantities { 
  vector[N] log_lik;  // log-likelihod 
  vector[P] beta;  // fixed effects 
  matrix[M_1,Q_1] gamma_1;  // speaker effects 
  matrix[Q_1,Q_1] omega_1;  // correlation in the speaker effects 
  matrix[M_2,Q_2] gamma_2;  // item effects 
  matrix[Q_2,Q_2] omega_2;  // correlation in the item effects 
 
  for(n in 1:N) log_lik[n] = normal_lpdf(y[n] | y_hat[n],sigma_res); 
  beta = coef[1:P]; 
  gamma_1 = vec_to_mat_by_row(M_1,Q_1,coef[cindx[1,1]:cindx[1,2]]); 
  omega_1 = tcrossprod(omega_1_raw); 
  gamma_2 = vec_to_mat_by_row(M_2,Q_2,coef[cindx[2,1]:cindx[2,2]]); 
  omega_2 = tcrossprod(omega_2_raw); 
} 
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