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Abstract

The recent proliferation of increasingly capable and affordable mobile devices with a plethora of

on-board and portable sensors that pervade every corner of the world has given rise to the fast

development and wide deployment of mobile crowd sensing (MCS) systems. Nowadays, applications

of MCS systems have covered almost every aspect of people’s everyday living and working, such

as ambient environment monitoring, healthcare, floor plan reconstruction, smart transportation,

indoor localization, and many others.

Despite their tremendous benefits, MCS systems pose great new research challenges, of which,

this thesis targets one important facet, that is, to effectively incentivize (crowd) workers to achieve

maximum participation in MCS systems. Participating in crowd sensing tasks is usually a costly

procedure for individual workers. On one hand, it consumes workers’ resources, such as computing

power, battery, and so forth. On the other hand, a considerable portion of sensing tasks require

the submission of workers’ sensitive and private information, which causes privacy leakage for

participants. Clearly, the power of crowd sensing could not be fully unleashed, unless workers

are properly incentivized to participate via satisfactory rewards that effectively compensate their

participation costs.

Targeting the above challenge, in this thesis, I present a series of novel incentive mechanisms,

which can be utilized to effectively incentivize worker participation in MCS systems. The proposed

mechanisms not only incorporate workers’ quality of information in order to selectively recruit

relatively more reliable workers for sensing, but also preserve workers’ privacy so as to prevent

workers from being disincentivized by excessive privacy leakage. I demonstrate through rigorous

theoretical analyses and extensive simulations that the proposed incentive mechanisms bear many

desirable properties theoretically, and have great potential to be practically applied.
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Chapter 1

Introduction

The recent proliferation of increasingly capable and affordable mobile devices (e.g., smartphones,

smartglasses, smartwatches) with a plethora of on-board and portable sensors (e.g., accelerometer,

compass, gyroscope, GPS, camera) has given rise to the emergence of various people-centric mobile

crowd sensing (MCS) systems [3–5, 7–10, 16, 17, 21, 30, 36, 38, 46, 80, 93, 99, 108]. As opposed to

traditional sensing paradigms which usually leverage professionals and dedicatedly deployed sensors,

MCS systems have enabled unprecedentedly fast and easy collection of large volume of sensory data

from the public crowd.

In a typical MCS system, a central server, which is usually a cloud-based platform, aggregates

and analyzes the sensory data submitted by participating users, namely (crowd) workers, whose

mobile devices collect and may process in certain level the data before submitting them to the

platform. Nowadays, applications of such MCS systems have already pervaded almost every corner

of people’s everyday living and working. Examples include ambient environment (e.g., air quality

[21], geomagnetic field [3], noise level [9]) monitoring, healthcare (e.g., disease trend prediction [5],

drug side effect analysis [7], disease diagnosis [4]), floor plan reconstruction [16, 17, 38], smart

transportation (e.g., pothole detection [30,80], traffic regulator classification [46], fuel-efficient map

construction [36], traffic delay estimation [10, 99]), indoor localization [93, 108], and many others.

In a word, the explosion of applications of MCS systems, though having dramatically improved

people’s living standard, poses new research challenges, which I discuss in great detail in this thesis.

1.1 Motivation and Challenges

Clearly, the power of crowd sensing could not be fully unleashed, unless MCS systems could attract

a sufficient number of crowd workers to participate. However, participating in crowd sensing tasks
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is usually costly for individual workers. On one hand, it consumes workers’ resources, such as

computing power, battery, and so forth. On the other hand, a considerable portion of sensing tasks

require the submission of workers’ sensitive and private information, which causes privacy leakage

for participants. Without satisfactory rewards that properly compensate workers’ participation

costs, they will be rather reluctant to carry out the sensing tasks. Thus, in this thesis, I tackle the

fundamental challenge of designing effective incentive mechanisms in order to achieve maximum

worker participation in MCS systems.

An effective incentive mechanism should take into consideration workers’ quality of information

(QoI), as well as the preservation of workers’ privacy.

• Quality of Information: In real practice, individual workers typically have diverse levels of

reliability. The sensory data provided by less reliable workers may not accurately represent the

real world. The possible reasons include poor sensor quality, lack of sensing effort, incomplete

views of observations, environment and circuit board noise, lack of sensor calibration, and

many others. Inaccurate information could mislead people’s decisions, and eventually result

in invaluable loss. Thus, it is highly necessary that an incentive mechanism incorporates

workers’ QoI, and selectively recruits workers who potentially could provide high quality

sensory data to carry out the sensing tasks.

• Privacy Preservation: For an average crowd worker, participating in crowd sensing tasks

may jeopardize her privacy in various aspects. On one hand, in auction-based incentive

mechanisms, there possibly exist honest-but-curious workers who strictly follow the protocol

of the system, but try to infer information about other workers’ bids, which may oftentimes

contain various types of workers’ private information, including personal interest, knowledge

base, location, and many others. On the other hand, the platform usually publishes the

aggregated sensing results, which are beneficial to the community or society, but can cause

privacy leakage to workers’ data. Clearly, privacy leakage, if not tackled properly, could be a

major factor that disincentivizes worker participation.

In a word, designing QoI aware and privacy-preserving incentive mechanisms that effectively

incentivize worker participation in MCS systems is the challenge that I explore in this thesis.
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1.2 Thesis Statement

Targeting the above challenge, I claim that the following thesis statement is true.

By incorporating workers’ quality of information and preserving their privacy, we can effectively

incentivize worker participation, so as to improve the sensing coverage and sensing quality of mobile

crowd sensing systems.

1.3 Thesis Overview

In this thesis, towards the objective of effectively incentivizing worker participation, I present a

series of incentive mechanisms for MCS systems. In this section, I provide an overview of each

work and explain how they relate to each other.

1.3.1 QoI Aware Incentive Mechanisms for MCS Systems

Let us start with the discussion of QoI awareness, which is a crucial aspect that most of the existing

incentive mechanisms ignore in their designs. Usually, the meaning of QoI varies in different

applications. For example, in MCS systems that require workers to take and submit photos about

a particular object or event [7,8,38], QoI refers to the quality (e.g., resolution, contrast, sharpness)

of uploaded photos, as higher quality photos will help the platform better identify the object or

event. As another example, in ambient environment monitoring systems [3, 9, 21], QoI means a

worker’s estimation accuracy of air quality, geomagnetic field, or noise level at a specific geographic

location. As low quality sensory data could possibly lead to inaccurate aggregated sensing results

or false decisions by the platform, which could eventually result in invaluable loss, QoI is clearly

an important metric that should be considered in an incentive mechanism.

In this work [50], thus, I design QoI aware incentive mechanisms for MCS systems. I consider

workers’ strategic behavior, and design incentive mechanisms based on reverse auction, where the

platform acts as the auctioneer that purchases sensory data from participating workers. Specifically,

the proposed mechanisms yield close-to-optimal social welfare in a computationally efficient manner,

which meanwhile satisfy other crucial desirable properties, namely truthfulness and individual

rationality.
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1.3.2 Incentivizing Multi-Requester Mobile Crowd Sensing

Currently, most of the existing incentive mechanisms, as well as the aforementioned QoI aware

incentive mechanisms proposed in this thesis (in Section 1.3.1), assume that there is only one data

requester who also serves as the platform in the MCS system. In practice, however, there are

usually multiple data requesters competing for human resources, who usually outsource worker

recruiting to third-party platforms (e.g., Amazon Mechanical Turk [1], Clickworker [2]) that have

already gathered a large number of workers.

Therefore, in this work [54], I focus on MCS systems where three parties, including the data

requesters, a platform, as well as a crowd of participating workers co-exist, and develop a novel

incentive mechanism that can decide which worker serves which data requester at what price.

Specifically, I propose a double auction-based incentive mechanism, which involves auctions among

not only the workers, but also the data requesters, and is able to incentivize the participation

of both data requesters and workers. I show through rigorous theoretical analyses that the pro-

posed mechanism bears many desirable properties, including truthfulness, individual rationality,

computational efficiency, as well as non-negative social welfare.

1.3.3 Bid Privacy-Preserving Incentive Mechanism for MCS Systems

In real practice, although the platform is usually considered to be trusted, there usually exist honest-

but-curious workers who strictly follow the protocol of the system, but try to infer information about

other workers’ bids in auction-based incentive mechanisms, including our QoI aware (Section 1.3.1)

and double auction-based (Section 1.3.2) incentive mechanisms, as well as many others.

Usually, the submitted bids contain various types of private and sensitive information about

participating workers. For example, a worker’s bidding task set could imply her personal inter-

ests, knowledge base, and so forth. In geotagging campaigns that provide accurate localization of

physical objects (e.g., automated external defibrillator, pothole, litter), bidding task sets contain

the places workers have visited or will visit, the disclosure of which breaches their location privacy.

Similarly, bidding price could also be utilized to infer a worker’s private information. For example,

the types of mobile devices a worker uses for sensing tasks could possibly be implied from her bid-

ding price, as usually workers tend to bid more if their mobile devices are more expensive. Thus,

4



it is of paramount importance to preserve workers’ bid privacy, so as to prevent them from being

disincentivized by excessive privacy leakage.

To address this problem, in this work [51], I design an auction-based bid privacy-preserving

incentive mechanism for MCS systems. I incorporate the notion of differential privacy [29,77], and

ensure that the change in any worker’s bid will not bring a significant change to our mechanism’s

payments to participating workers. Such design philosophy reduces significantly the probability

that a curious worker could successfully infer other workers’ bids from the different payments she

receives in two rounds of the auction. Apart from privacy preservation, the proposed incentive

mechanism also bears a suite of other desirable properties, including approximate truthfulness,

individual rationality, computational efficiency, as well as yielding a guaranteed approximation

ratio to the platform’s total payment.

1.3.4 Incentivizing Privacy-Preserving Data Aggregation in MCS Systems

Besides the bid privacy discussed in Section 1.3.3, participating workers in MCS systems usually

face, as well, another type of equally possible and severe privacy breach, which is the leakage

of their data privacy. In many MCS applications, the platform usually publishes the aggregated

sensing results, which is oftentimes beneficial to the community or society, but jeopardizes workers’

privacy. Although the platform can be considered to be trusted, there exist adversaries highly

motivated to infer workers’ data, which contain their sensitive and private information, from the

published results. For example, publishing aggregated health data, such as treatment outcomes,

improves people’s awareness about the effects of new drugs and medical devices, but poses threats

to the privacy of participating patients. Therefore, it is entirely necessary for an MCS system to

contain a data perturbation module that preserves workers’ data privacy by carefully perturbing

the aggregated results before they are published.

In real practice, the various modules of an MCS system are far from isolated, but, in fact,

interact with each other, and thus affect each other’s design. Thus, different from most of the

past literature, in this work [53], I propose INCEPTION1, a novel MCS system framework with

an integrated design of the incentive, data aggregation, and data perturbation mechanism. Specif-

1The name INCEPTION comes from INCEtive, Privacy, and data aggregaTION.
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ically, INCEPTION has an auction-based incentive mechanism that selects reliable workers and

compensates their costs for both sensing and privacy leakage, which meanwhile satisfies truthful-

ness and individual rationality, and minimizes the platforms total payment for worker recruiting

with a guaranteed approximation ratio. The data aggregation mechanism of INCEPTION also

incorporates workers’ reliability and generates highly accurate aggregated results. Its data pertur-

bation mechanism ensures satisfactory guarantee for the protection of workers privacy, as well as

the accuracy of the final perturbed results.

1.4 Thesis Organization

In each of the next four chapters, I will elaborate on one of the four aforementioned incentive mech-

anisms, shedding light on its design philosophy, proving its desirable properties, and elaborating

on the results of our extensive simulation. Specifically,

• In Chapter 2, I propose QoI aware incentive mechanisms for MCS systems, which selectively

recruit workers who are more likely to provide high quality data in order to improve the

quality of the final sensing results.

• In Chapter 3, to effectively incentivize participation in MCS systems where three parties,

including the data requesters, a platform, as well as a crowd of participating workers co-exist,

I develop a novel double auction-based incentive mechanism that can decide which worker

serves which data requester at what price.

• In Chapter 4, to prevent workers from being disincentivized by excessive privacy leakage from

their bids in auction-based incentive mechanisms, I propose a bid privacy-preserving incentive

mechanism for MCS systems.

• In Chapter 5, I propose a joint framework with an integrated design of the incentive, data

aggregation, and data perturbation mechanism, which captures the interactive effects among

the different modules in MCS systems.

Finally, Chapter 6 concludes this thesis and provides a discussion of future research.
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Chapter 2

QoI Aware Incentive Mechanisms for

MCS Systems

2.1 Introduction

The ubiquity of human-carried mobile devices (e.g., smartphones, tablets, etc.) with a plethora of

on-board and portable sensors (e.g., accelerometer, compass, camera, etc.) has given rise to the

emergence of various people-centric mobile crowd sensing (MCS) systems [3–5, 7–10, 16, 17, 21, 30,

36,38,46,80,93,99,108]. In a typical MCS system, a cloud-based platform aggregates and analyzes

the sensory data provided by the public crowd instead of professionals and dedicatedly deployed

sensors. The mobile devices of participating users, namely (crowd) workers, collect and may process

in certain level the data before submitting them to the platform.

Such MCS systems hold a wide spectrum of applications including healthcare, ambient envi-

ronment monitoring, smart transportation, indoor localization, etc. For example, MedWatcher [7]

is a US FDA advocated MCS system for post-market medical device surveillance. Participating

workers upload photos of their medical devices to a cloud-based platform using the MedWatcher

mobile application, which help identify visible problems with the devices. The platform aggregates

and analyzes the worker-provided information, sends reports to the FDA and alerts users about

medical device problems. Such a crowdsourcing paradigm enables easier detection of device safety

issues and faster propagation of alerts to device users compared to traditional reporting methods

such as mail or telephone. Moreover, air quality monitoring [21] is another area where MCS sys-

tems obtain their recent popularity. In such systems, crowdsourced air quality data are aggregated

from a large number of people using air quality sensors ported to their smartphones, which help

estimate the city or district level air quality.

Participating in such crowd sensing tasks is usually a costly procedure for individual workers.

On one hand, it consumes workers’ resources, such as computing power, battery and so forth.
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On the other hand, a considerable portion of sensing tasks require the submission of some types

of workers’ sensitive private information, which causes privacy leakage for participating workers.

For example, by uploading the photos of their medical devices, workers reveal the types of their

illnesses. By submitting air quality estimation samples, workers usually reveal information about

their locations. Therefore, without satisfactory rewards that compensate participating costs, work-

ers will be reluctant to carry out the sensing tasks. However, most of the existing MCS systems

are based on voluntary worker participation or lack effective incentive mechanisms.

Aware of the paramount importance of stimulating worker participation, the research com-

munity has recently developed various game-theoretic incentive mechanisms for MCS systems

[20,22,27,28,31–33,35,37,43,44,51,53,54,60,62,71–75,82,91,92,97,98,100,106,107,110–113,115–124].

However, most of the existing mechanisms fail to incorporate one important aspect, that is workers’

quality of information (QoI), into their designs. The meaning of QoI varies in different applica-

tions. For example, in the aforementioned MedWatcher system [7] QoI refers to the quality (e.g.,

resolution, contrast, sharpness, etc.) of uploaded photos. Higher quality ones will help the platform

better identify visible device problems. In air quality monitoring MCS systems [21], QoI means a

worker’s estimation accuracy of air quality. The QoI of every worker could be affected by various

factors, including poor sensor quality, noise, lack of sensor calibration and so forth.

Cloud-based 

Platform

User 2User 1 User 3

Figure 2.1: An example of the MedWatcher MCS system1

1In this example, 3 workers try to upload the photos of the error message ”Er3” on the screens of their blood
glucose meters to the MedWatcher platform. The prices that the 3 workers ask for cost compensation are 100$, 10$
and 1$ respectively.
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To compensate the cost of each worker’s participation, existing incentive mechanisms have

used the worker’s bidding price as an important metric to allocate sensing tasks. However, as

shown in the example in Figure 2.1, QoI is also a major factor that should be considered together

with bidding price. Although worker 1 has the highest quality photo, her high price prohibits

the platform from requesting her data. Furthermore, despite worker 3’s low price the platform

will not be interested in her data either, because her low quality photo could hardly contribute to

identifying the error message ”Er3”. By jointly considering price and QoI, the platform will select

worker 2 with medium price and acceptable photo quality as the data provider. Therefore, our goal

is to design QoI aware incentive mechanisms for MCS systems.

Considering workers’ strategic behaviors and the combinatorial nature of the tasks that every

worker executes, we design incentive mechanisms based on reverse combinatorial auctions, where

the platform acts as the auctioneer that purchases the data from participating workers. Not only

do we study the single-minded scenario where every worker is willing to execute one subset of

tasks, but also we investigate the multi-minded case in which any worker might be interested

in executing multiple subsets of tasks. Similar to the traditional VCG mechanisms [23, 41], our

mechanisms also aim to maximize the social welfare. Mechanism design for combinatorial auctions

is typically challenging in that usually we aim to design a computationally efficient mechanism

with close-to-optimal social welfare in the presence of an NP-hard winner determination problem,

which meanwhile satisfies truthfulness and individual rationality. Addressing all these challenges,

this chapter makes the following contributions.

• Different from most of the previous work, we design QoI aware incentive mechanisms for

MCS systems.

• We use reverse combinatorial auction to design a truthful, individual rational and computa-

tionally efficient incentive mechanism that approximately maximizes the social welfare with

a guaranteed approximation ratio for the single-minded case.

• For the multi-minded reverse combinatorial auction, we design an iterative descending mech-

anism that achieves close-to-optimal social welfare with a guaranteed approximation ratio

while satisfying individual rationality and computational efficiency.
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The rest of the chapter is organized as follows. We introduce the preliminaries in Section 2.2,

and desribe the design of our incentive mechanisms for the single-minded and multi-minded case

in Section 2.3 and 2.4, respectively. Next, we present the results of our extensive simulation in

Section 2.5, and summarize the related work in Section 2.6. Finally, we conclude this chapter in

Section 2.7.

2.2 Preliminaries

In this section, we present an overview of MCS systems, our auction model and design objectives.

2.2.1 System Overview

The MCS system model considered in this chapter consists of a platform residing in the cloud and

a set of N workers, denoted as N = {1, · · · , N}. The workers execute a set of M sensing tasks,

denoted as T = {τ1, · · · , τM} and send their sensory data to the platform. The workflow2 of the

system is described as follows.

1. Firstly, the platform announces the set of sensing tasks, T , to workers.

2. Then, the platform and workers enter the auctioning stage in which the platform acts as the

auctioneer that purchases the sensory data collected by individual workers. Every worker

i ∈ N submits her bid, which is a tuple (Γi, bi) consisting of the set of tasks Γi ⊆ T she wants

to execute and her bidding price bi for executing these tasks.

3. Based on workers’ bids, the platform determines the set of winners, denoted as S ⊆ N and

the payment to all workers, denoted as −→p = {p1, · · · , pN}. Specifically, a loser does not

execute any task and receives zero payment.

4. After the platform receives winners’ sensory data, it gives the payment to the corresponding

winners.

2Note that we are specifically interested in the scenario where all workers and tasks arrive at same time. We leave
the investigation of the online scenario where workers and tasks arrive sequentially in an online manner in our future
work.
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One major difference between this chapter and most of the previous work is that we integrate

workers’ quality of information (QoI), denoted as −→q = {q1, · · · , qN}, into the design of our incentive

mechanisms. Generally speaking, QoI indicates the quality of workers’ sensory data. The definition

of QoI varies in different applications. For example, in the previously mentioned MedWatcher

system [7], QoI refers to the quality (e.g., resolution, contrast, sharpness) of uploaded photos.

Photos with higher quality will help the platform better identify visible problems with medical

devices. In air quality monitoring systems [21], QoI refers to a worker’s estimation accuracy of air

quality. We assume that the platform maintains a historical record of workers’ QoI profile −→q used

as inputs for winner and payment determination. There are many methods for the platform to

compute workers’ QoIs. In the cases where the platform has adequate ground truth data, QoIs can

be obtained by directly computing the deviation of workers’ data from the ground truths. However,

even without ground truths, QoIs can still be effectively inferred from workers’ data by algorithms

such as those proposed in [68–70,78,96,101]. Alternatively, QoIs can be inferred from other factors

(e.g., the price of a worker’s sensors, her experience and reputation for specific sensing tasks) using

methods proposed in previous studies such as [63]. The problem of which method the platform

adopts to compute workers’ QoIs is application dependent and out of the scope of this chapter.

Typically, workers may know some of the factors that affect their QoIs. However, they usually do

not know exactly how QoIs are computed by the platform, and thus do not know the exact values

of their QoIs.

2.2.2 Auction Model

In this chapter, we consider strategic and selfish workers that aim to maximize their own utilities.

The fact that workers bid on subsets of tasks motivates us to use reverse combinatorial auction to

model the problem. In the rest of the chapter, we use bundle to refer to any subset of tasks of T .

Different from traditional forward combinatorial auction [13, 15], in this paper, we formally define

the concept of reverse combinatorial auction that is applied in our problem setting in the following

Definition 1.

Definition 1 (RC Auction). In a reverse combinatorial auction (RC auction), each worker i ∈ N

is interested in a set of Ki ≥ 1 bundles, denoted as Ti = {Γ1
i , · · · ,ΓKi

i }. For any bundle Γ ⊆ T ,
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the worker has a cost function defined in Equation (2.1).

Ci(Γ) =





ci, if ∃Γj
i ∈ Ti s.t. Γ ⊆ Γj

i

+∞, otherwise

. (2.1)

Both Ti and the cost function Ci(·) are worker i’s private information. If Ki = 1 for every worker,

then the auction is defined as a single-minded reverse combinatorial auction (SRC auction). And

it is defined as a multi-minded reverse combinatorial auction (MRC auction), if Ki > 1 for at least

one worker.

In an SRC auction, Ti contains only worker i’s maximum executable task set Γi. That is, Γi

consists of all the sensing tasks that worker i is able to execute. Since she is not capable to carry

out tasks beyond Γi, her cost for any bundle Γ 6⊆ Γi can be equivalently viewed as +∞. Similarly

in an MRC auction, the union of all the bundles in Ti is Γi. That is,
⋃Ki

j=1 Γ
j
i = Γi. If worker i

is a winner of the RC auction, she will be paid pi for executing the corresponding set of sensing

tasks. In contrast, she will not be allocated any sensing task and will receive zero payment if she is

a loser. We present the definitions of the utility of a worker and the profit of the platform formally

in Definition 2 and 3.

Definition 2 (A Worker’s Utility). The utility of any worker i ∈ N is

ui =





pi − ci, if i ∈ S

0, otherwise

. (2.2)

Definition 3 (Platform’s Profit). The profit of the platform given workers’ QoI profile −→q is

u0 = V−→q (S)−
∑

i∈S

pi, (2.3)

where the value function V−→q (·) : 2N → R
+ maps the winner set S to the value that the winners

bring to the platform. Furthermore, V−→q (·) is monotonic in −→q . That is, for any −→q = {q1, · · · , qN}

and −→q ′ = {q′1, · · · , q′N} such that qi ≥ q′i holds ∀i ∈ N , we have V−→q (S) ≥ V−→q ′(S).

Similar to the traditional VCG mechanism design [23, 41], we aim to design mechanisms that
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maximize the social welfare, which is formally defined in Definition 4.

Definition 4 (Social Welfare). The social welfare of the whole MCS system is

usocial = u0 +
∑

i∈N

ui = V−→q (S)−
∑

i∈S

ci. (2.4)

2.2.3 Design Objective

In this chapter, we aim to design dominant-strategy mechanisms in which for every worker there

exists a dominant strategy [83] defined in Definition 5.

Definition 5 (Dominant Strategy). A strategy sti is the dominant strategy for worker i if and

only if for any other strategy st′i and any strategy profile of the other workers, denoted as st−i, the

property ui(sti, st−i) ≥ ui(st
′
i, st−i) holds.

In our SRC auction, each worker submits to the platform a bid (Γi, bi) consisting of her declared

interested bundle Γi and the bidding price bi. Since workers are strategic, it is possible that she

declares a bid that deviates from the true value (Γi, ci). However, one of our goals for the SRC

auction is to design a truthful mechanism defined in Definition 6.

Definition 6 (Truthfulness). An SRC auction is truthful if and only if it is the dominant strategy

for every worker i ∈ N to bid her true value (Γi, ci).

Noticed from Definition 6 that we aim to ensure the truthfulness of both the cost ci and bundle

Γi. Besides truthfulness, another design objective for the SRC auction is to ensure that every worker

receives non-negative utility from participating. Such property is critical in incentive mechanisms

because it ensures that workers will not be disincentivized to participate for receiving negative

utilities. This property is defined as individual rationality in Definition 7.

Definition 7 (Individual Rationality). A mechanism is individual rational (IR) if and only if

ui ≥ 0 is satisfied for every worker i ∈ N .

As mentioned in Section 2.2.2, our mechanism aims to maximize the social welfare. However,

as will be proved in Section 2.3, the problem of maximizing the social welfare in the SRC auction
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is NP-hard. Hence, we aim to design a polynomial-time mechanism that gives us approximately

optimal social welfare with a guaranteed approximation ratio.

In the domain of multi-minded combinatorial auction, requiring truthfulness limits the family

of mechanisms that can be used, as pointed out in [12]. Hence, in our MRC auction, we aim to

design a dominant-strategy mechanism that can still yield a guaranteed approximation ratio to the

optimal social welfare without ensuring truthfulness. In fact, as mentioned in [13], the requirement

of truthfulness is only to obtain close-to-optimal social welfare with strategic worker behaviors, but

not the real essence. Therefore, as long as the approximation ratio is guaranteed when workers play

their dominant strategies, it is justifiable for us to relax the truthfulness requirement. Additionally,

we also require our mechanism to be individual rational and have a polynomial computational

complexity.

Model Dominant Strategy Truthful IR Approx. Ratio Complexity

SRC
√ √ √

Guaranteed Polynomial

MRC
√

×
√

Guaranteed Polynomial

Table 2.1: Summary of design objectives

Authors in [13, 125] address the issue of mechanism design for multi-minded forward combi-

natorial auctions. Their mechanisms cannot ensure that workers have dominant strategies and

cannot be applied to reverse combinatorial auctions. However, in contrast, we are able to design a

dominant-strategy incentive mechanism for the MRC auction in this chapter. We summarize our

design objectives for both the SRC and MRC auctions in Table 2.1.

2.3 SRC Auction

In this section, we introduce the mathematical formulation, mechanism design, an intuitive walk-

though example and the corresponding analysis for the SRC auction.

2.3.1 Mathematical Formulation

In our SRC auction, each worker’s bid (Γi, bi) consists of her declared interested bundle Γi and the

bidding price bi. Although our model is valid for any general value function V−→q (·) that satisfies

Definition 3, to simplify our analysis we assume that V−→q (·) is the sum of the value, vi, contributed
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by every winner i ∈ S. Furthermore, we assume that vi is proportional to the total QoI provided

by this worker. Given workers’ bidding bundle profile
−→
Γ = {Γ1, · · · ,ΓN} and the winner set S,

the platform’s value function V−→q (·) can be represented by Equation (2.5).

V−→q (S) =
∑

i∈S

vi =
∑

i∈S

αqi|Γi|, (2.5)

where α is a coefficient that transforms QoI to monetary reward.

Another aspect that distinguishes this chapter from previous work is that we consider QoI

coverage in the SRC auction. For the task that none of the workers capable to execute it has

adequately high QoI, collective efforts of multiple workers are necessary to ensure sensing quality.

We use Qτj ,
−→q (S) to denote the total QoI that all winners have on task τj ∈ T . Furthermore, we

approximate Qτj ,
−→q (S) as the sum of the QoIs of the winners that execute this task. Therefore,

QoI coverage is equivalent to guaranteeing that every task is executed by workers with sufficient

amount of QoI in total. Based on this additive assumption of QoI, Qτj ,
−→q (S) can be represented by

Equation (2.6).

Qτj ,
−→q (S) =

∑

i:τj∈Γi,i∈S

qi. (2.6)

Since we aim to maximize the social welfare given in Definition 4, the winner determination

and pricing can be decoupled into two separate problems. We formulate the SRC auction winner

determination (SRC-WD) problem as the following integer linear program.

SRC-WD Problem:

max
∑

i∈N

(αqi|Γi| − bi)xi (2.7)

s.t.
∑

i:τj∈Γi,i∈N

qixi ≥ Qj , ∀τj ∈ T (2.8)

xi ∈ {0, 1}, ∀i ∈ N (2.9)

Constants. The SRC-WD problem takes as input constants α, workers’ bid profile
{
(Γ1, b1), · · · , (ΓN , bN )

}
, workers’ QoI profile −→q and tasks’ QoI requirement profile

−→
Q =

{Q1, · · · , QM}.
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Variables. In the SRC-WD problem, we have a set of binary variables {x1, · · · , xN} for every

worker i ∈ N . If worker i is in the winner set S, then xi = 1. Otherwise, xi = 0.

Objective function. Since the platform does not know the true values of workers’ interested

bundles and the corresponding costs,
{
(Γ1, c1), · · · , (ΓN , cN )

}
, the objective function that it directly

tries to maximize is the social welfare based on workers’ bid profile
{
(Γ1, b1), · · · , (ΓN , bN )

}
. We

use −→w = {w1, · · · , wN}, in which wi = αqi|Γi| − bi, to denote the marginal social welfare profile of

all workers based on workers’ bids. Then, we have the objective function
∑

i∈S wi =
∑

i∈S(αqi|Γi|−

bi) =
∑

i∈N (αqi|Γi|−bi)xi. Later in Section 2.3.4, we will show that in our mechanism every worker

in fact bids truthfully. Hence, the objective function is equivalent to the actual social welfare.

Constraints. Constraint (2.8) represents the QoI coverage for every task τj ∈ T , which ensures

that the total QoI of all the winners for this task, calculated as Qτj ,
−→q (S) =

∑
i:τj∈Γi,i∈S

qi =

∑
i:τj∈Γi,i∈N

qixi, is no less than the QoI requirement Qj .

Next, we prove the NP-hardness of the SRC-WD problem.

Theorem 1. The SRC-WD problem is NP-hard.

Proof. In this proof, we demonstrate that the NP-complete minimum weight set cover (MWSC)

problem is polynomial-time reducible to the SRC-WD problem. The reduction starts with an

instance of the MWSC problem consisting of a universe of elements U = {τ1, · · · , τM} and a set of

N sets O = {Γ1, · · · ,ΓN} whose union equals U . Every set Γi ∈ O is associated with a non-negative

weight wi. The MWSC problem is to find the subset of O with the minimum total weight whose

union contains all the elements in U .

Based on the instance of the MWSC problem, we construct an instance of the SRC-WD problem.

Firstly, we transform Γi into Γ′
i such that for every element in Γi there exist li ∈ Z

+ copies of the

same element in Γ′
i. We require that every element τj ∈ U is covered for at least Lj ∈ Z

+ times.

After the reduction, we obtain an instance of the SRC-WD problem in which workers’ QoI profile

is −→q = {l1, · · · , lN}, workers’ bidding bundle profile is
−→
Γ = {Γ1, · · · ,ΓN}, workers’ marginal social

welfare profile is −→w = {−w1, · · · ,−wN} and tasks’ QoI requirement profile is
−→
Q = {L1, · · · , LM}.

Noticed that the SRC-WD problem represents a richer family of problems in which any worker

i’s QoI, qi, and any task j’s QoI requirement, Qj , could take any value in R
+. Furthermore, the

marginal social welfare can take any value in R. Hence, every instance of the MWSC problem
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is polynomial-time reducible to an instance of the SRC-WD problem. The SRC-WD problem is

NP-hard.

2.3.2 Mechanism Design

Because of the NP-hardness of the SRC-WD problem, it is impossible to compute the set of winners

that maximize the social welfare in polynomial time unless P = NP. As a result, we cannot use

the off-the-shelf VCG mechanism [23, 41] since the truthfulness of VCG mechanism requires that

the social welfare is exactly maximized. Therefore, as mentioned in Section 2.2.3, we aim to design

a mechanism that approximately maximizes the social welfare while guaranteeing truthfulness.

Myerson’s characterizations of truthfulness for single-parameter auctions [81] are not directly

applicable in our scenario, because our SRC auction is a double-parameter auction that considers

both bundle and cost truthfulness. Moreover, different from the characterizations of truthfulness for

single-minded forward combinatorial auctions proposed in [15], we describe and prove the necessary

and sufficient conditions for a truthful SRC auction in Lemma 1.

Lemma 1. An SRC auction is truthful if and only if the following two properties hold:

• Monotonicity. Any worker i who wins by bidding (Γi, bi) still wins by bidding any b′i < bi

and any Γ′
i ⊃ Γi given that other workers’ bids are fixed.

• Critical payment. Any winner i with bid (Γi, bi) is paid the supremum of all bidding prices

b′i such that bidding (Γi, b
′
i) still wins, which is defined as worker i’s critical payment.

Proof. It is easily verifiable that a truthful bidder will never receive negative utility. If worker i’s

any untruthful bid (Γi, bi) is losing or Γi 6⊆ Γi, her utility from bidding (Γi, bi) will be non-positive.

Therefore, we only need to consider the case in which (Γi, bi) is winning and Γi ⊆ Γi.

• Because of the property of monotonicity, (Γi, bi) is also a winning bid. Suppose the payment

for bid (Γi, bi) is p and that for bid (Γi, bi) is p. Every bid (Γi, b
′
i) with b′i > p is losing

because p is the worker i’s critical payment given bundle Γi. From monotonicity, bidding

(Γi, b
′
i) is also losing. Therefore, the critical payment for (Γi, bi) is at most that for (Γi, bi),

which means p ≤ p. Hence, the worker will not increase her utility by bidding (Γi, bi) instead

of (Γi, bi).
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• Then, we consider the case in which bidding truthfully (Γi, ci) wins. This bid earns the same

payment p as (Γi, bi). Then her utilities from these two bids will be the same. If bidding

(Γi, ci) loses, then we have ci > p ≥ bi. Hence, bidding (Γi, bi) will receive negative utility.

Therefore, (Γi, bi) will also not increase her utility compared to (Γi, ci).

Thus, we conclude that an SRC auction is truthful if and only if the monotonicity and critical

payment properties hold.

We utilize the rationale provided in Lemma 1 to design a quality of information aware SRC

(QoI-SRC) auction. Specifically, we present the winner determination and pricing mechanisms of

the QoI-SRC auction respectively in Algorithm 1 and 2.

Algorithm 1: QoI-SRC Auction Winner Determination

Input: T , N , −→w , −→q , −→Q ,
−→
Γ ;

Output: S;
// Initialization

1 N− ← ∅, S ← ∅;
// Select non-negative marginal social welfare workers

2 foreach i s.t. wi ≥ 0 do

3 S ← S ∪ {i};
4 N− ← N \ S;
// Calculate residual QoI requirement

5 foreach j s.t. τj ∈ T do

6 Q′
j ← Qj −min{Qj ,

∑
i:τj∈Γi,i∈S

qi};
// Main loop

7 while
∑

j:τj∈T
Q′

j 6= 0 do

// Find the worker with the minimum marginal social welfare effectiveness

8 l = argmini∈N−
|wi|∑

j:τj∈Γi
min{Q′

j ,qi}
;

9 S ← S ∪ {l};
10 N− ← N− \ {l};

// Update residual requirement

11 foreach j s.t. τj ∈ T do

12 Q′
j ← Q′

j −min{Q′
j , ql};

13 return S;

The platform calculates workers’ marginal social welfare profile −→w using workers’ bids
{
(Γ1, b1), · · · , (ΓN , bN )

}
and utilizes −→w as input to the winner determination algorithm shown

in Algorithm 1. Firstly, the platform includes all workers with non-negative marginal social welfare
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into the winner set S (line 2-3). By removing the current winners from N , the platform gets the set

of workers N−with negative marginal social welfare (line 4). Then, the platform calculates tasks’

residual QoI requirement profile
−→
Q ′ by subtracting from

−→
Q the QoI provided by the currently se-

lected winners (line 5-6). The main loop (line 7-12) is executed until every task’s QoI requirement

is satisfied. In the main loop, winner selection is based on marginal social welfare effectiveness

(MSWE), defined as the ratio between the absolute value of worker i’s marginal social welfare |wi|

and her effective QoI contribution
∑

j:τj∈Γi
min{Q′

j , qi}. In every iteration, the worker with the

minimum MSWE among the remaining workers in N− is included into S (line 8-9). After that,

the platform updates N− and tasks’ residual QoI requirement profile
−→
Q ′ (line 10-12).

Algorithm 2: QoI-SRC Auction Pricing

Input: S, α, −→q , −→w ,
−→
Γ ;

Output: −→p ;
// Initialization

1 N+ ← ∅, −→p ← {0, · · · , 0};
// Find non-negative marginal welfare workers

2 foreach i s.t. wi ≥ 0 do

3 N+ ← N+ ∪ {i};
// Main loop

4 foreach i ∈ S do

5 run Algorithm 1 on N \ {i} until ∑j:τj∈Γi
Q′

j = 0;

6 S ′ ← the winner set when step 5 stops;
// Calculate payment

7 if |S ′| < |N+| then
8 pi ← αqi|Γi|;
9 else

10 foreach k ∈ S ′ \ N+ do

11

−→
Q ′ ← tasks’ residual QoI requirement profile when winner k is selected;

12 pi ← max
{
pi, αqi|Γi| − wk

∑
j:τj∈Γi

min{Q′
j ,qi}∑

j:τj∈Γk
min{Q′

j ,qk}

}
;

13 return −→p ;

Algorithm 2 describes the pricing mechanism. It takes the winner set S as input and outputs

the payment profile −→p . Firstly, −→p is initialized as a zero vector (line 1). Then, the platform

includes all workers with non-negative marginal social welfare into N+ (line 2-3). The main loop

(line 4-12) computes the platform’s payment to each winner. For each winner i ∈ S, the winner

determination mechanism in Algorithm 1 is executed with all workers except worker i until the
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QoI requirement of every task in Γi has been satisfied (line 5). We reach the point such that it is

impossible for worker i to be selected as a winner in future iterations of Algorithm 1. Then, the

platform gets the current winner set S ′ (line 6) and computes pi in the following two cases.

• Case 1 (line 7-8). Any winner i belonging to case 1 has wi ≥ 0. Hence, this worker’s critical

payment is the bidding price b′i that satisfies w
′
i = αqi|Γi| − b′i = 0. That is, pi = αqi|Γi|.

• Case 2 (line 10-12). For any winner i belonging to case 2, we go through every worker

k ∈ S ′ \ N+. We calculate worker i’s maximum bidding price b′i to be able to substitute

worker k as the winner. That is, b′i satisfies Equation (2.10).

b′i − αqi|Γi|∑
j:τj∈Γi

min{Q′
j , qi}

=
|wk|∑

j:τj∈Γk
min{Q′

j , qk}
. (2.10)

This means

b′i = αqi|Γi| − wk

∑
j:τj∈Γi

min{Q′
j , qi}∑

j:τj∈Γk
min{Q′

j , qk}
. (2.11)

Finally, the maximum value among all b′i’s is used as the payment to worker i.

2.3.3 Walk-through Example

1 2 3

Users

Tasks

Figure 2.2: Bidding graph of the example

Parameters Value

α 0.1
−→q {0.8, 1.2, 1.2}
−→
b {0.2, 2.6, 2.7}
−→
Q {1.1, 0.8}
−→w {0.4,−0.2,−0.3}

Table 2.2: Parameter setting of the example

In this section, we use a simple toy example to illustrate how the QoI-SRC auction works. In

this example, there are 3 workers N = {1, 2, 3} and 2 tasks T = {τ1, τ2}. In Figure 2.2, an edge

between a worker i and a task τj indicates that τj ∈ Γi. That is, workers’ bidding bundles are

Γ1 = {τ1}, Γ2 = {τ1, τ2} and Γ3 = {τ1, τ2}. Other parameters are shown in Table 2.2. We then

demonstrate the process of the QoI-SRC winner determination and pricing in the following Table

2.3 and 2.4, respectively.
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S −→
Q ′ New Winner Reason

∅ {1.1, 0.8} {1} w1 > 0

{1} {0.3, 0.8} {2} MSWEworker 2 = 0.2
1.1

< MSWEworker 3 = 0.3
1.1

{1, 2} {0, 0} ∅ Q′
1 = Q′

2 = 0 and w3 < 0

Table 2.3: An example of the QoI-SRC auction’s winner determination procedure

Winner S ′ Payment

1 {2} p1 = 0.1× 0.8× 1 + 0.2× 0.8
1.9

≈ 0.164

2 {1, 3} p2 = 0.1× 1.2× 2 + 0.3× 1.1
1.1

≈ 0.540

Table 2.4: An example of QoI-SRC auction’s pricing procedure

2.3.4 Analysis

Firstly, we prove that the QoI-SRC auction is truthful and individual rational in Theorem 2 and 3.

Theorem 2. The QoI-SRC auction is truthful.

Proof. Suppose worker i wins by bidding (Γi, bi). We consider worker i’s any other bid (Γ′
i, b

′
i) such

that b′i < bi or Γ
′
i ⊃ Γi.

• Case 1 (wi ≥ 0). The marginal social welfare for bidding (Γ′
i, b

′
i) is w′

i = αqi|Γ′
i| − b′i >

αqi|Γi| − bi ≥ 0.

• Case 2 (wi < 0). Bidding (Γ′
i, b

′
i) will make w′

i ≥ 0 or decrease the value of worker i’s MSWE.

Hence, worker i is still a winner by bidding (Γ′
i, b

′
i) and the QoI-SRC auction winner determi-

nation algorithm satisfies both bidding bundle and price monotonicity. Furthermore, it is easily

verifiable that the pricing mechanism in Algorithm 2 uses the supremum of bidding prices b′i such

that bidding (Γi, b
′
i) still wins. Hence, from Lemma 1 we conclude that the QoI-SRC auction is

truthful.

Theorem 3. The QoI-SRC auction is individual rational.

Proof. From Theorem 2, we have proved that workers bid truthfully in our QoI-SRC auction.

Hence, any worker i bids its true cost ci. Since every winner i is paid the supremum of bidding

prices given the bundle Γi, we have pi ≥ ci for every winner. Apparently, losers have zero utilities

in our QoI-SRC auction. Therefore, the utility for every worker i satisfies ui ≥ 0 and the QoI-SRC

auction is individual rational.
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Then, we analyze the algorithmic properties of the QoI-SRC auction including its computational

complexity and approximation ratio to the optimal social welfare in Theorem 4 and 5.

Theorem 4. The computational complexity of the QoI-SRC auction is O(N2M).

Proof. The computational complexity of Algorithm 1 is dominated by the main loop, which ter-

minates after N iterations in the worst case. In every iteration, the algorithm goes through every

task τj ∈ T . Hence, the computational complexity of Algorithm 1 is O(NM). Similarly, we

have that the computational complexity of Algorithm 2 is O(N2M). Therefore, we conclude that

computational complexity of the QoI-SRC auction is O(N2M).

Then, we provide our analysis about the approximation ratio of the QoI-SRC auction using

the method similar to the one proposed in [94]. In our following analysis, we use N− to denote

all workers i ∈ N with negative wi and
−→
Q− = {Q−

1 , · · · , Q−
M} to denote tasks’ residual QoI

requirement profile after Algorithm 1 includes all workers with wi ≥ 0 into the winner set. Then,

we normalize the wi for every worker i ∈ N−, such that the normalized marginal social welfare

w′
i =

wi

max
n∈N− wn

> 0. Thus, with only a multiplicative factor change to the objective function, we

formulate the linear program relaxation of the residual SRC-WD problem defined on worker set

N− as the normalized primal linear program P. The dual program is formulated in program D.

P : min
∑

i∈N−

w′
ixi (2.12)

s.t.
∑

i:τj∈Γi,i∈N−

qixi ≥ Q−
j , ∀τj ∈ T (2.13)

0 ≤ xi ≤ 1, ∀i ∈ N− (2.14)

D : max
∑

j:τj∈T

Q−
j yj −

∑

i∈N−

zi (2.15)

s.t.
∑

j:τj∈Γi

qiyj − zi ≤ w′
i, ∀i ∈ N− (2.16)

yj ≥ 0, ∀τj ∈ T (2.17)

zi ≥ 0, ∀i ∈ N− (2.18)
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It is easily verifiable that the |maxi∈N− wi|multiplicative factor difference between the objective

functions of P and the SRC-WD problem does not affect the approximation ratio of Algorithm 1.

Next, we introduce several notations and concepts utilized in our following analysis.

We define any task τj ∈ T as alive at any particular iteration of the main loop in Algorithm

1 if its QoI requirement is not fully satisfied. Furthermore, we define that task τj is covered by

Γi if τj ∈ Γi and τj is alive when worker i is selected. The coverage relationship is represented

as τj � Γi. Then, we define the minimum measure of QoI as ∆q, the unit QoI. Suppose when

worker i is about to be selected, the residual QoI requirement profile is
−→
Q ′ = {Q′

1, · · · , Q′
M} and

Γi is the ijth set that covers τj , the corresponding normalized MSWE in terms of unit QoI can be

represented in Equation (2.19).

W (τj , ij) =
w′
i∆q∑

j:τj∈Γi
min{Q′

j , qi}
. (2.19)

We assume that τj is covered by kj sets and we have W (τj , 1) ≤ · · · ≤W (τj , kj) from Equation

(2.19). Then, we define constants θ = maxi,j qi|Γi|w′
j and m = 1

∆q

∑
j:τj∈T

Q−
j that are used in the

presentation of the following Lemma 2.

Lemma 2. The following assignments of the variables yj and zi for ∀τj ∈ T and ∀i ∈ N− are

feasible to D.





yj =
W (τj , kj)

2θHm∆q
, ∀τj ∈ T

zi =





∑
j:τj�Γi

(
min{Q′

j , qi}
(
W (τj , kj)−W (τj , ij)

))

2θHm∆q
, ∀i ∈ S

0, ∀i 6∈ S

.

Proof. Suppose for any worker i ∈ N−, there are ti tasks in bundle Γi. We reorder these tasks in

the order in which they are fully covered. If worker i is not a winner, we have zi = 0. Suppose

when the last unit QoI of τj is about to be covered, the residual QoI requirement profile is
−→
Q ′′ =

{Q′′
1, · · · , Q′′

M}, then the total residual QoI of all the alive tasks contained by Γi is
∑ti

h=j min{Q′′
h, qi}.

We have that

W (τj , kj) ≤
w′
i∆q∑ti

h=j min{Q′′
h, qi}

.
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Therefore, we have

ti∑

j=1

qiyj − zi ≤
ti∑

j=1

w′
iqi

2θHm

∑ti
h=j min{Q′′

h, qi}
− 0 ≤ w′

i

Hm

(
1 +

1

2
+ · · ·+ 1

m

)
≤ w′

i

If worker i ∈ S, then we assume that when worker i is selected as a winner, t′i tasks in Γi have

already been fully covered. We have

ti∑

j=1

qiyj − zi =

∑ti
j=1 qiW (τj , kj)

2θHm∆q
−
∑ti

j=t′
i
+1 min{Q′

j , qi}
(
W (τj , kj)−W (τj , ij)

)

2θHm∆q

=

∑t′i
j=1 qiW (τj , kj)

2θHm∆q
+

∑ti
j=t′

i
+1 min{Q′

j , qi}W (τj , ij)

2θHm∆q
+

∑ti
j=t′

i
+1

(
qi −min{Q′

j , qi}
)
W (τj , kj)

2θHm∆q

≤

∑t′i
j=1

qiw
′

i∑ti
h=j

min{Q′

h
,qi}

2θHm

+
w′

i

2θHm

+
θ

2θHm

≤ w′
i

Therefore, we arrive at the conclusion that the assignments of yj and zi in Lemma 2 are feasible

to D.

Then in Theorem 5, we present our result regarding the approximation ratio of Algorithm 1.

Theorem 5. Algorithm 1 is a 2θHm-approximation algorithm for the residual SRC-WD problem

defined on worker set N−.

Proof. By substituting the dual assignments given in Lemma 2 into the objective function (2.15),

we have

∑

j:τj∈T

Q−
j yj −

∑

i∈N−

zi =

∑
i∈N−∩S

∑
j:τj�Γi

(
min{Q′

j , qi}
(
W (τj , ij)−W (τj , kj)

))

2θHm∆q
+

∑
j:τj∈T Q−

j W (τj , kj)

2θHm∆q

=

∑
i∈N−∩S

∑
j:τj�Γi

min{Q′
j , qi} w′

i∆q∑
j:τj∈Γi

min{Q′

j
,qi}

2θHm∆q
=

∑
i∈N−∩S w′

i

2θHm

Because D is the dual program of P, we have

∑
i∈N−∩S w′

i

2θHm
≤ OPTD ≤ OPTP ≤ OPTSRC-WD.

Therefore, Algorithm 1 is a 2θHm-approximation algorithm for the residual SRC-WD problem
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defined on worker set N−.

Note that there exists a maxi∈N |Γi| factor in θ, which could be large theoretically, and in worst

case maxi∈N |Γi| = M . However, in practice, a worker typically has a limited capability and interest

in terms of the number of tasks she can and wants to execute. Thus, practically, we have that

maxi∈N ≪ M , which prevents the 2θHm approximation ratio derived in Theorem 5 from growing

excessively large as M increases. Thus far, this the best approximation ratio we have found, and

we leave the proof of its tightness or the derivation of a better one, as well as the calculation of a

lower bound for the ratio, in our future work.

2.4 MRC Auction

In this section, we present the mathematical formulation, mechanism design and the corresponding

analysis for the MRC auction.

2.4.1 Mathematical Formulation

In the MRC auction, we also use the form of the platform’s value function V−→q (·) given in Equation

(2.5). If the platform is given workers’ cost function profile, denote as
−→
C = {C1(·), · · · , CN (·)}, the

MRC auction winner determination (MRC-WD) problem can be formulated as follows.

MRC-WD Problem:

max
∑

i∈N

(
αqi|Γi| − Ci(Γi)

)
xi (2.20)

s.t. Γi ⊆ Γj
i , ∃Γ

j
i ∈ Ti, ∀i ∈ N (2.21)

xi ∈ {0, 1}, ∀i ∈ N (2.22)

The MRC-WD problem takes the parameter α, workers’ QoI profile −→q and workers’ cost func-

tion profile
−→
C as input. It has a set of binary variables {x1, · · · , xn} indicating whether worker i

is selected in the winner set S. That is, if i ∈ S, then xi = 1. Otherwise, xi = 0.

Furthermore, for every worker i, we have a variable Γi indicating the set of sensing tasks that

the platform allocates to this worker. Constraint (2.21) ensures that Γi is the subset of at least
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one bundle Γj
i ∈ Ti. Therefore, the MRC-WD problem aims to find the set of winners S and

the corresponding task allocation profile denoted as
−→
Γ = {Γ1, · · · ,ΓN} that maximize the social

welfare represented by the objective function. We use Γi
max to denote the bundle with the maximum

cardinality in Ti and wi
max = αqi|Γi

max| − ci to denote worker i’s marginal social welfare for Γi
max.

The maximum social welfare is achieved by selecting all workers with positive wi
max as winners and

allocating to every winner i the set of tasks Γi
max.

However, the challenge is that cost function profile
−→
C is not known by the platform and we

still aim to design a mechanism that approximately maximizes the social welfare with a guaranteed

approximation ratio. Then, we present the design of our mechanism in Section 2.4.2 that achieves

this objective while ensuring individual rationality and polynomial computational complexity.

2.4.2 Mechanism Design

Requiring truthfulness in multi-minded combinatorial auctions limits the family of mechanisms

that can be used, as mentioned in [12]. As long as the mechanism can achieve close-to-optimal

social welfare with a guaranteed approximation ratio, it is justifiable for us to relax the truthfulness

requirement, as pointed out in [13]. In Algorithm 3 we describe our design of the iterative descending

dominant-strategy quality of information aware MRC (QoI-MRC) auction which is different from

the mechanisms designed for multi-minded forward combinatorial auctions proposed in [13, 125].

The QoI-MRC auction described in Algorithm 3 consists of a winner determination phase (line

1-18) and a pricing phase (line 19). Every winner i ∈ S will be allocated her bidding bundle Γi and

be paid her bidding price bi of the final iteration of the winner determination phase. We assume

that the platform has the information about the upper bound and lower bound of workers’ costs

denoted as cmax and cmin respectively. The platform initializes every worker i’s bidding bundle

and bidding price as Γi = ∅ and bmax ≥ cmax (line 2). Moreover, the input parameters β > 1 and

ǫ ∈ (0, cmin].

The main loop (line 3-17) is executed until every worker is either a winner or a loser. In every

iteration of the main loop, every worker i such that αqi|Γi| − bi ≥ ǫ is included in the winner set

S (line 5-6). For any worker i that is neither a winner nor a loser in the current iteration, the

Algorithm gives her an option to choose whether she will enlarge her current bidding bundle Γi to
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any bundle Γ′
i that contains Γi (line 8). If after the bundle enlarging αqi|Γ′

i| − bi ≥ ǫ holds, this

worker is included in the winner set (line 11-12). Otherwise, she is given the following two options

to choose from.

Algorithm 3: QoI-MRC Auction

Input: N , bmax, ǫ, α, β,
−→q ;

Output: S, −→p ,
−→
Γ ;

// Winner determination

// Initialize winner and loser sets

1 S ← ∅, L ← ∅;
// Initialize bidding bundles and prices

2

−→
Γ ← {∅, · · · , ∅}, −→Γ ′ ← −→Γ ,

−→
b ← {bmax, · · · , bmax};

// Main loop

3 while S ∪ L 6= N do

4 foreach i ∈ N \ (S ∪ L) do
5 if αqi|Γi| − bi ≥ ǫ then

6 S ← S ∪ {i};
7 else

// Give worker i the option to enlarge her bidding bundle

8 allow worker i to enlarge Γi to any Γ′
i s.t. Γ

′
i ⊇ Γi;

// Update bidding bundle

9 if Γi 6= Γ′
i then

10 Γi ← Γ′
i;

11 if αqi|Γi| − bi ≥ ǫ then

12 S ← S ∪ {i};

13 foreach i ∈ N \ (S ∪ L) do
// Give worker i two options

14 option 1: bi ← bi
β
;

15 option 2: bi ← 0;
16 if bi = 0 then

17 L ← L ∪ {i};

18

−→
Γ ← {Γi ∈

−→
Γ |i ∈ S};

// Pricing

19
−→p ← −→b ;

20 return S, −→p ,
−→
Γ ;

• Option 1 (line 14). By choosing option 1, worker i divides her bidding price bi by β. As

long as she is fully rational, she will choose option 1 rather than option 2 to drop out of

the auction, if bi
β
> ci hold. By doing so, she keeps herself in the auction and makes it still
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possible for her to win in one of the future iterations to receive positive utility.

• Option 2 (line 15). By choosing option 2, the worker i drops out of the auction. If bi
β
≤ ci,

any rational worker i will choose option 2 because it is impossible for her to obtain positive

utility even though she remains in the auction in this case.

Finally, every winner i is allocated her bidding bundle Γi (line 18) and be paid her bidding

price bi (line 19) of the final iteration of the winner determination phase.

2.4.3 Analysis

Although the QoI-MRC auction cannot guarantee truthfulness because workers’ bidding prices

when Algorithm 3 terminates will possibly not be equal to workers’ true costs, we show in the

following Theorem 6 that every worker still has a dominant strategy.

Theorem 6. Every worker i ∈ N has the following dominant strategy in the QoI-MRC auction.

• Worker i enlarges bundle Γi to Γi
max in the first iteration.

• When worker i is given the options to divide her bidding price bi by β or drop out of the

auction, she will always choose the former as long as bi
β
> ci and the latter if bi

β
≤ ci.

Proof. Obviously, any rational worker i will choose to divide her current bidding price bi by β as

long as bi
β
> ci when she is given the two options. By doing so, it is still possible for her to win the

auction and be paid pi > ci. If bi
β
≤ ci, then even if she wins the auction the payment pi will not

be larger than ci. Hence, she will drop out in this case.

Then, we study whether any worker i will enlarge her bundle to some Γ′
i 6= Γi

max in the first

iteration.

• Case 1 (αqi|Γi
max| − bmax > αqi|Γ′

i| − bmax ≥ ǫ). Both Γi
max and Γ′

i will make the worker win

the auction in the first iteration and be paid bmax. We have u(Γi
max) = u(Γ′

i).

• Case 2 (αqi|Γi
max| − bmax ≥ ǫ > αqi|Γ′

i| − bmax). The worker will win and be paid bmax by

enlarging to Γi
max in the first iteration and we have u(Γi

max) = bmax − ci. If she proposes

Γ′
i instead of Γi

max, she will be asked to decrease her bid or drop out in the first iteration.
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Eventually, she could lose or win with being paid b′i < bmax. Her utility could either be

u(Γ′
i) = 0 or u(Γ′

i) = b′i − ci. We have u(Γi
max) > u(Γ′

i).

• Case 3 (ǫ > αqi|Γi
max| − bmax > αqi|Γ′

i| − bmax). Both Γi
max and Γ′

i will make the worker

face the choices of decreasing her bid or dropping out in the first iteration. If eventually she

wins in both cases, then the number of iterations before she wins if she proposes Γi
max will be

smaller than or equal to that of Γ′
i. The payments pi and p′i for the two cases satisfy pi ≥ p′i

and we have u(Γi
max) ≥ u(Γ′

i). If she loses in both cases, then u(Γi
max) = u(Γ′

i) = 0. The last

scenario is that she wins by proposing Γi
max and loses by proposing Γ′

i in the first iteration.

Then, we have u(Γi
max) > 0 = u(Γ′

i).

We have u(Γi
max) ≥ u(Γ′

i) with at least one scenario with strict inequality. Hence, worker i

enlarges bundle Γi to Γi
max in the first iteration. We arrive at the conclusion about any worker’s

dominant strategy stated in Theorem 6.

Theorem 7. The QoI-MRC auction is individual rational.

Proof. When a worker is given the choices to decrease her bid or drops out of the auction, any

worker i will drop out if bi
β
≤ ci. She becomes a loser and obtains ui = 0. The worker only chooses

to divide bi by β if bi
β

> ci, which ensures that her payment pi > ci if she wins. In this case, we

have ui > 0. Therefore, ui ≥ 0 and the QoI-MRC auction is individual rational.

Then, we analyze the algorithmic properties of the QoI-MRC auction including its computa-

tional complexity and approximation ratio in Theorem 8 and 9.

Theorem 8. The computational complexity of the QoI-MRC auction is O(N).

Proof. It is easily verifiable that the main loop of Algorithm 3 terminates after O
(
logβ

bmax
cmin

)
num-

ber of iterations. The computational complexity inside the main loop is O(N). Therefore, the

computational complexity of the QoI-MRC auction is O(N).

In Theorem 9, we present our results about the approximation ratio of the QoI-MRC auction

to the optimal social welfare. We use SOPT to denote the winner set of the optimal solution of the

MRC-WD problem, qmax to denote the maximum QoI in −→q and Γmax to denote the maximum-

cardinality bundle in {Γ1
max, · · · ,ΓN

max}.
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Theorem 9. The approximation ratio of the QoI-MRC auction to the optimal social welfare is

|S|ǫ
|SOPT|(αqmax|Γmax|−cmin)

.

Proof. We use APP to denote the social welfare resulted by the QoI-MRC auction. From Theorem

6, every worker i ∈ N enlarges her bundle to Γi
max in the first iteration. The winner set S output

by Algorithm 3 consists of winners S1 that win in the first iteration and S2 that win in iteration

ri > 1 with bidding price brii . We have

APP =
∑

i∈S

(αqi|Γi
max| − ci) ≥

∑

i∈S1

(αqi|Γi
max| − bmax) +

∑

i∈S2

(αqi|Γi
max| − brii )

≥ |S1|ǫ+ |S2|ǫ = |S|ǫ.

Similarly, the optimal solution OPT is

OPT =
∑

i∈SOPT

(αqi|Γi
max| − ci) ≤ |SOPT|(αqmax|Γmax| − cmin)

=
|SOPT|(αqmax|Γmax| − cmin)

|S|ǫ · |S|ǫ ≤ |SOPT|(αqmax|Γmax| − cmin)

|S|ǫ ·APP.

Therefore, the approximation ratio of the QoI-MRC auction to the optimal social welfare is

|S|ǫ
|SOPT|(αqmax|Γmax|−cmin)

.

2.5 Performance Evaluation

In this section, we introduce the baseline methods, as well as simulation settings and results.

2.5.1 Baseline Method

The first baseline approach is a modified version of the traditional VCG auction [23, 41]. We in-

tegrate the concept of QoI and the QoI coverage constraint defined in Section 2.3 into the VCG

winner determination (VCG-WD) problem. We call the modified VCG auction quality of informa-

tion aware VCG (QoI-VCG) auction, in which the VCG-WD problem is solved optimally and the

VCG pricing mechanism [23,41] is utilized to derive winners’ payments.

Another baseline method is the marginal social welfare greedy (MSW-Greedy) auction. Its

winner determination algorithm firstly includes every worker i with wi ≥ 0 into the winner set.
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Then, it selects the worker with the largest marginal social welfare among the remaining workers in

every iteration until tasks’ QoI requirements are fully satisfied. The pricing mechanism is similar

to Algorithm 2 which essentially pays every winner her supremum bidding price to win given

her current bidding bundle. It is easily verifiable that the MSW-Greedy auction is truthful and

individual rational.

2.5.2 Simulation Settings

Setting α ci qi Qj |Γi| N M

2.I 0.1 [2, 4] [1, 2] [10, 13] [20, 30] [200, 500] 100

2.II 0.1 [4, 8] [2, 4] [10, 13] [20, 30] 300 [300, 600]

Table 2.5: Simulation setting 2.I and 2.II

For our simulation of the SRC auction, we consider the two settings described in Table 2.5. In

setting 2.I, we fix the number of tasks as M = 100 and vary the number of workers from 200 to

500. In setting 2.II, we fix the number of workers as N = 300 and vary the number of tasks from

300 to 600. The parameter α = 0.1 in both settings and the values of ci, qi, |Γi| for any worker

i ∈ N and Qj for any task τj ∈ T are generated uniformly at random from the ranges given in

Table 2.5. Worker i’s maximum executable task set Γi consists of |Γi| tasks selected uniformly at

random from T . Furthermore, the optimal solution to the VCG-WD problem of the QoI-VCG

mechanism is calculated using the GUROBI optimization solver [6].

Setting α bmax ci qi |Γi| N M

2.III 0.2 100 [4, 6] [1, 2] [20, 30] [200, 500] 100

2.IV 0.2 100 [6, 10] [2, 4] [20, 30] 300 [200, 400]

Table 2.6: Simulation setting 2.III and 2.IV

For our simulation of the MRC auction, we consider the two settings described in Table 2.6.

In setting 2.III, we fix the number of tasks as M = 100 and vary the number of workers from 200

to 500. In setting 2.II, we fix the number of workers as N = 300 and vary the number of tasks

from 200 to 400. The parameters α = 0.2 and bmax = 0.2 in both settings and the values of ci,

qi, |Γi| for any worker i ∈ N are generated uniformly at random from the ranges given in Table

2.6. Worker i’s maximum executable task set Γi consists of |Γi| tasks selected uniformly at random

from T . Worker i’s interested bundle set consists of randomly selected subsets of Γi whose union
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is Γi. Note that we leave the study of the values of these paramters in real-world applications in

our future work.

2.5.3 Simulation Results
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Figure 2.3: Social welfare
(setting 2.I)
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Figure 2.4: Social welfare
(setting 2.II)
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Figure 2.5: Social welfare
with varying ǫ (setting 2.III)
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Figure 2.6: Social welfare
with varying ǫ (setting 2.IV)
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Figure 2.7: Social welfare
with varying β (setting 2.III)
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Figure 2.8: Social welfare
with varying β (setting 2.IV)

In Figure 2.3 and 2.4, we compare the social welfare generated by the QoI-VCG auction, the

QoI-SRC auction and the MSW-Greedy auction. The social welfare of the QoI-VCG auction

equals to the optimal solution of the SRC-WD problem. From Figure 2.3 and 2.4, we arrive at the

conclusion that the social welfare of the QoI-SRC auction is close to optimal and far better than

that of the baseline MSW-Greedy auction.

N 200 220 240 260 280 300 320 340

QoI-VCG 10.19 16.06 11.22 11.71 58.64 63.14 79.37 10.51

QoI-SRC 0.019 0.014 0.015 0.015 0.020 0.022 0.018 0.019

N 360 380 400 420 440 460 480 500

QoI-VCG 43.52 93.44 94.25 273.6 52.54 72.26 860.9 2043

QoI-SRC 0.019 0.021 0.021 0.019 0.023 0.021 0.021 0.024

Table 2.7: Execution time (seconds) for setting 2.I

In Table 2.7 and 2.8, we show the comparison of the execution time of the QoI-VCG and QoI-
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SRC auctions. It is obvious from these two tables that the QoI-SRC auction executes in significantly

less time than the QoI-VCG auction. With the increasing of the number of workers and tasks, the

execution time of the QoI-VCG auction gradually becomes so long that makes it infeasible to be

utilized in practice. In contrast, the QoI-SRC auction keeps low execution time regardless of the

growth of the worker and task numbers. The QoI-SRC auction is much more computationally

efficient than the QoI-VCG auction.

M 300 320 340 360 380 400 420 440

QoI-VCG 18.70 1.337 2.715 15.47 21.42 43.38 88.57 224.3

QoI-SRC 0.066 0.076 0.075 0.076 0.073 0.090 0.075 0.077

M 460 480 500 520 540 560 580 600

QoI-VCG 67.85 50.68 183.5 229.3 474.8 751.1 1206 1269

QoI-SRC 0.079 0.117 0.099 0.130 0.111 0.122 0.123 0.147

Table 2.8: Execution time (seconds) for setting 2.II

In Figure 2.5 and 2.6, we compare the social welfare generated by the QoI-MRC auction with

the optimal social welfare in both setting 2.III and 2.IV. We fix the parameter β = 1.01 and vary the

choices of ǫ. From the two figures, we observe that the QoI-MRC auction obtains close-to-optimal

social welfare and it becomes closer to the optimal social welfare when ǫ approaches 0.

In Figure 2.7 and 2.8, we fix the parameter ǫ = 0.01 and vary the choices of β. From these two

figures, we also observe that the QoI-MRC auction obtains close-to-optimal social welfare and as

β approaches 1, it becomes closer to the optimal social welfare.

2.6 Related Work

Game theory has been widely utilized to tackle networking problems such as spectrum sharing

[18,26,47,49,55,125], cooperative communication [19], channel and bandwidth allocation [25,114],

and so forth. Similar to many other problems, when it comes to incentive mechanism design in

MCS systems, game-theoretic models are also frequently adopted by researchers due to their ability

to capture and tackle workers’ strategic behaviors.

Thus far, a series of game-theoretic incentive mechanisms [20, 22, 27, 28, 31–33, 35, 37, 43, 44,

51, 53, 54, 60, 62, 71–75, 82, 91, 92, 97, 98, 100, 106, 107, 110–113, 115–124] have been proposed by

the research community. Among them, one major category [32, 33, 35, 37, 51, 53, 54, 60, 62, 71, 72,

75, 97, 100, 106, 107, 112, 113, 115–118, 120–122, 124] are based on reverse auctions, whereas others
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adopt other game-theoretic models, including Stackelberg game [20, 27, 28, 112, 113], reputation

mechanism [82,110,111,119], peer truth serum [31,91, 92], task selection game [22], contest model

[73, 74], posted price mechanism [43,44, 123], as well as market model [98]. Apart from the shared

goal of incentivizing worker participation, these mechanisms optimize, as well, various system-wide

objectives, including maximizing the social welfare [22,33,37,54,107,119–121,124] or the platform’s

profit [20,27,28,35,62,72–75,82,106,112,113,116–118,123], and minimizing the social cost [32,71]

or the platform’s total payment [43, 44, 51, 53, 60, 100,110,111,115,122,123].

However, a common feature of most of the existing incentive mechanisms is that workers’ QoI

is not incorporated into the designs. In contrast, we consider workers’ QoI, and treat it as a crucial

parameter in our mechanisms, which distinguishes our work with most of the existing ones.

Although some existing incentive mechanisms also consider workers’ QoI, our mechanisms are

different with them in various aspects. One line of prior work [20,60,72–75] explore the relationship

between workers’ QoI and the levels of their sensing effort. These work invariably assume the

existence of a priori known distributions of workers’ sensing costs, whereas we do not make such

assumption. The QoI aware dynamic participant selection protocols proposed in [45, 95] do not

utilize game theoretic frameworks, and thus cannot handle workers’ strategic behavior. Note that

QoI awareness is much more commonly adopted in recent incentive mechanisms [20,35,51,53,54,82,

88,98,100,107,115,116,123] developed after our work [50], which is among the first ones that consider

this issue. Technically, we adopt auction, a branch of game theory that has been extensively studied

by not only economists, but also computer scientists, as the fundamental framework of our incentive

mechanisms. We argue that the various auction models [12, 13, 15, 23, 40, 41, 76, 81] developed over

the past several decades usually cannot meet the specific needs of effectively incentivizing worker

participation in MCS systems, and thus cannot be readily applied in our scenario. On one hand,

none of the existing auctions consider workers’ QoI. On the other hand, in terms of mathematical

formulation, few of them work in problem settings with coverage (like) constraints.

2.7 Conclusion

In this chapter, we design QoI aware incentive mechanisms for MCS systems based on RC auctions.

For the SRC auction, we design a truthful, individual rational and computationally efficient mech-
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anism that approximately maximizes the social welfare with a guaranteed approximation ratio.

For the MRC auction, we design an iterative descending mechanism that achieves close-to-optimal

social welfare with a guaranteed approximation ratio while satisfying individual rationality and

computational efficiency. Also, we validate our theoretical analysis through extensive simulations.
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Chapter 3

Incentivizing Multi-Requester Mobile

Crowd Sensing

3.1 Introduction

As previously mentioned, aware of the paramount importance of stimulating user participation in

MCS systems, a series of incentive mechanisms [20, 22, 27, 28, 31–33, 35, 37, 43–45, 50, 51, 53, 57, 58,

60,62,66,67,71–75,82,86,88,89,91,92,95,97,98,100,106,107,110–113,115–124] have been recently

developed by the research community. However, most of the existing incentive mechanisms assume

that there is only one data requester who also serves as the platform in the MCS system. In

practice, however, there are usually multiple data requesters competing for human resources, who

usually outsource worker recruiting to third-party platforms (e.g., Amazon Mechanical Turk [1],

Clickworker [2]) that have already gathered a large number of workers. Therefore, in this chapter,

we focus on such MCS systems where three parties, including the data requesters, a platform (i.e., a

cloud-based central server), as well as a crowd of participating workers co-exist, and aim to develop

a new incentive mechanism that can decide which worker serves which data requester at what price.

In real practice, the sensory data provided by individual workers are usually quite unreliable

due to various factors (e.g., poor sensor quality, lack of sensor calibration, environment noise).

Hence, in order to cancel out the possible errors from individual workers, it is highly necessary

that the platform utilizes a data aggregation mechanism to properly aggregate their noisy and

even conflicting data. In an MCS system, the incentive and the data aggregation mechanism are

usually not isolated from each other. In fact, the data aggregation mechanism typically interacts

with the incentive mechanism, and thus, affects its design and performance. Intuitively, if the

platform aggregates workers’ data in naive ways (e.g., voting and average) that treat all workers’

data equally, the incentive mechanism does not need to distinguish them with respect to their

reliability. However, a weighted aggregation method that puts higher weights on more reliable
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workers is much more desirable, because it shifts the aggregated results towards the data provided

by the workers with higher reliability. Accordingly, the incentive mechanism should also incorporate

workers’ reliability, and selects workers that are more likely to provide reliable data.

Therefore, different from most of the aforementioned existing work [20,22,27,28,31–33,35,37,43–

45,50,51,53,54,57,58,60,62,66,67,71–75,82,86,88,89,91,92,95,97,98,100,106,107,110–113,115–124],

we propose CENTURION1, a novel integrated framework for multi-requester MCS systems, which

consists of a weighted data aggregation mechanism that considers workers’ diverse reliability in the

calculation of the aggregated results, together with an incentive mechanism that selects workers

who potentially will provide more reliable data. Specifically, CENTURION’s incentive mechanism

is based on double auction [76], which involves auctions among not only the workers, but also the

data requesters, and is able to incentivize the participation of both data requesters and workers.

This chapter makes the following contributions.

• Different from existing work, we propose a novel integrated framework for multi-requester

MCS systems, called CENTURION, consisting of a data aggregation and an incentive mech-

anism. Such an integrated design, which captures the interactive effects between the two

mechanisms, is much more complicated and challenging than designing them separately.

• CENTURION’s double auction-based incentive mechanism is able to incentivize the partic-

ipation of both data requesters and workers, and bears many desirable properties, including

truthfulness, individual rationality, computational efficiency, as well as non-negative social

welfare.

• The data aggregation mechanism of CENTURION takes into consideration workers’ reliabil-

ity, and calculates highly accurate aggregated results.

In the rest of this chapter, we first introduce the preliminaries in Section 3.2. Then, the design

details of CENTURION’s data aggregation and incentive mechanism are described in Section 3.3. In

Section 3.4, we conduct extensive simulations to validate the desirable properties of CENTURION.

Next, we discuss the past literature that are related to this work in Section 3.5. Finally, in Section

3.6, we conclude this chapter.

1The name CENTURION comes from inCENTivizing mUlti-Requester mobIle crOwd seNsing.
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3.2 Preliminaries

In this section, we introduce the system overview, reliability level model, auction model, as well as

the design objectives.

3.2.1 System Overview

CENTURION is an MCS system framework consisting of a cloud-based platform, a set of participat-

ing workers, denoted as W = {w1, · · · , wN}, and a set of requesters, denoted as R = {r1, · · · , rM}.

Each requester rj ∈ R has a sensing task τj to be executed by the workers. The set of all requesters’

tasks is denoted as T = {τ1, · · · , τM}. We are specifically interested in the scenario where T is a

set of M different binary classification tasks that require workers to locally decide the classes of

the events or objects, and report to the platform their local decisions (i.e., the labels of the ob-

served events or objects). Such MCS systems, collecting binary labels from the crowd, constitute

a large portion of the currently deployed MCS systems (e.g., congestion detection systems that

decide whether or not particular road segments are congested [99], geotagging campaigns that tag

whether bumps or potholes exist on specific segments of road surface [30, 80]).
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Figure 3.1: Framework of CENTURION2

Each task τj has a true label lj ∈ {−1,+1}, unknown to the requesters, the platform, and the

workers. If a worker wi is chosen to execute task τj , she will provide to the platform a label li,j .

We define l = [li,j ] ∈ {−1,+1,⊥}N×M as the matrix containing all workers’ labels, where li,j = ⊥

means that task τj is not executed by worker wi. For every task τj , the platform aggregates workers’

2In this figure, circled numbers represent the order of the events.
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labels into an aggregated result, denoted as l̂j , so as to cancel out the errors from individual workers.

The framework of CENTURION is given in Figure 3.1, and we describe its workflow3 as follows.

• Incentive Mechanism. Firstly, in the double auction-based incentive mechanism, each

requester rj submits to the platform a sensing request containing the sensing task τj to be

executed (step 1 ), and a bid aj , the amount she is willing to pay if the task is executed

(step 2 ). Then, the platform announces the set of sensing tasks T to the workers (step 3 ).

After receiving the task set, every worker wi sends to the platform the set of tasks she wants

to execute, denoted as Γi ⊆ T , as well as a bid bi, which is her bidding price for executing

them (step 4 ). Based on received bids, the platform determines the set of winning requesters

SR, the set of winning workers SW , as well as the payment prj charged from every winning

requester rj and the payment pwi paid to every winning worker wi (step 5 ). Note that losing

requesters’ tasks are not executed, and thus, they do not submit any payment. Similarly,

losing workers do not receive any payment, as they do not execute any task.

• Data Aggregation Mechanism. Next, the platform collects the labels submitted by the

winning workers (step 6 ), calculates the aggregated results, and sends them to the winning

requesters (step 7 ).

• Finally, the platform charges prj from winning requester rj (step 8 ), and pays pwi to winning

worker wi (step 9 ).

We denote the requesters’ and workers’ bid profile as a = (a1, · · · , aM ) and b = (b1, · · · , bN ), re-

spectively. Moreover, the requesters’ and workers’ payment profile is denoted as pr = (pr1, · · · , prM )

and pw = (pw1 , · · · , pwN ), respectively.

3.2.2 Reliability Level Model

Before worker wi executes task τj , her label about this task can be regarded as a random variable

Li,j . Then, we define the reliability level of a worker in Definition 8.

3Note that we are specifically interested in the scenario where all workers and requesters arrive at same time. We
leave the investigation of the online scenario where workers and requesters arrive sequentially in an online manner in
our future work.
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Definition 8 (Reliability Level). A worker wi’s reliability level θi,j about task τj is defined as the

probability that she provides a correct label about this task, i.e.,

θi,j = Pr[Li,j = lj ] ∈ [0, 1]. (3.1)

Moreover, we denote the workers’ reliability level matrix as θ = [θi,j ] ∈ [0, 1]N×M .

We assume that the platform knows the reliability level matrix θ a priori, and maintains a

historical record of it. In practice, the platform could obtain θ through various approaches. For

example, as, in many scenarios, workers tend to have similar reliability levels for similar tasks,

the platform could assign to workers some tasks with known labels, and use workers’ labels about

these tasks to estimate their reliability levels for similar tasks as in [87]. In cases where ground

truth labels are not available, θ can still be effectively inferred from workers’ characteristics (e.g.,

the prices of a worker’s sensors, a worker’s experience and reputation for similar tasks) using the

algorithms proposed in [63], or estimated using the labels previously submitted by workers about

similar tasks by the methods in [68–70,78, 96, 101].

3.2.3 Auction Model

In this paper, we consider the scenario where both requesters and workers are strategic and selfish

that aim to maximize their own utilities. Since CENTURION involves auctions among not only

the workers, but also the requesters, we utilize the following double auction for Multi-rEquester

mobiLe crOwd seNsing (MELON double auction), formally defined in Definition 9, as the incentive

mechanism.

Definition 9 (MELON Double Auction). In a double auction for multi-requester mobile crowd

sensing (MELON double auction), each requester rj obtains a value vj, if her task τj is executed,

and bids to the platform aj, the amount she is willing to pay for the execution of her task. Each

worker wi is interested in executing one subset of the tasks, denoted as Γi ⊆ T , and bids to the

platform bi, her bidding price for executing these tasks. Her actual sensing cost for executing all

tasks in Γi is denoted as ci. Both the requesters’ values and workers’ costs are unknown to the

platform.
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Then, we define a requester’s and worker’s utility, as well as the platform’s profit in Definition

10, 11, and 12.

Definition 10 (Requester’s Utility). A requester rj’s utility is defined as

urj =





vj − prj , if rj ∈ SR

0, otherwise

. (3.2)

Definition 11 (Worker’s Utility). A worker wi’s utility is defined as

uwi =





pwi − ci, if wi ∈ SW

0, otherwise

. (3.3)

Definition 12 (Platform’s Profit). The profit of the platform is defined as

u0 =
∑

j:rj∈SR

prj −
∑

i:wi∈SW

pwi . (3.4)

Based on Definition 10, 11, and 12, we define the social welfare of the MCS system in Definition

13.

Definition 13 (Social Welfare). The social welfare of the MCS system is defined as

usocial = u0 +
∑

i:wi∈W

uwi +
∑

j:rj∈R

urj =
∑

j:rj∈SR

vj −
∑

i:wi∈SW

ci. (3.5)

Clearly, the social welfare is the sum of the platform’s profit and all requesters’ and workers’

utilities.

3.2.4 Design Objectives

In this chapter, we aim to ensure that CENTURION bears the following advantageous properties.

Since the requesters are strategic and selfish in our model, it is possible that any requester rj

submits a bid aj that deviates from vj (i.e., her value for task τj). Similarly, any worker wi might

also submit a bid bi that differs from ci (i.e., her cost for executing all tasks in Γi). Thus, one of

our objectives is to design a truthful incentive mechanism defined in Definition 14.
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Definition 14 (Truthfulness). A MELON double auction is truthful if and only if bidding vj and

ci is the dominant strategy for each requester rj and worker wi, i.e., bidding vj and ci maximizes,

respectively, the utility of each requester rj and worker wi, regardless of other requesters’ and

workers’ bids.

By Definition 14, we aim to ensure that both requesters and workers bid truthfully to the

platform. Apart from truthfulness, another desirable property that we aim to achieve is individual

rationality defined in Definition 15.

Definition 15 (Individual Rationality). A MELON double auction is individual rational if and

only if no requesters or workers receive negative utilities, i.e., we have urj ≥ 0, and uwi ≥ 0, for

every requester rj and worker wi, respectively.

Individual rationality is a crucial property to stimulate the participation of both requesters

and workers, because it ensures that the charge to a requester is no larger than her value, and a

worker’s sensing cost is also totally compensated. As mentioned in Section 3.2.1, CENTURION

aggregates workers’ labels to ensure that the aggregated results have satisfactory accuracy, which

is mathematically defined in Definition 16.

Definition 16 (βj-Accuracy). A task τj is executed with βj-accuracy if and only if Pr[L̂j 6= lj ] ≤ βj,

where βj ∈ (0, 1), and L̂j denotes the random variable representing the aggregated result for task

τj.

By Definition 16, βj-accuracy ensures that the aggregated result equals to the true label with

high probability. Note that, for every task τj , βj is a parameter chosen by the platform, and a

smaller βj implies a stronger requirement for the accuracy.

In short, our objectives are to ensure that the proposed CENTURION framework provides

satisfactory accuracy guarantee for the aggregated results of all executed tasks, and incentivizes

the participation of both requesters and workers in a truthful and individual rational manner.

3.3 Design Details

In this section, we present the design details of the incentive and data aggregation mechanism of

CENTURION.
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3.3.1 Data Aggregation Mechanism

In this section, we introduce the design details of CENTURION’s data aggregation mechanism, as

well as the corresponding analyses.

3.3.1.1 Proposed Mechanism

Although the data aggregation mechanism follows the incentive mechanism in CENTURION’s

workflow, we introduce it first, as it affects the design of the incentive mechanism.

In order to capture the effect of workers’ diverse reliability on the calculation of the aggregated

results, CENTURION adopts the following weighted aggregation method. That is, the aggregated

result l̂j for every executed task τj is calculated as

l̂j = sign

(
∑

i:wi∈SW ,τj∈Γi

λi,jli,j

)
, (3.6)

where λi,j > 0 is worker wi’s weight on task τj . Furthermore, the function sign(x) equals to +1, if

x ≥ 0, and −1 otherwise.

Intuitively, higher weights should be assigned to workers who are more likely to submit correct

labels, which makes the aggregated results closer to the labels provided by more reliable workers.

In fact, many state-of-the-art literature [68–70,78,96,101] utilize such weighted aggregation method

to aggregate workers’ data. As the weight λi,j ’s highly affect the accuracy of the aggregated results,

we propose, in the following Algorithm 4, the data aggregation mechanism of CENTURION.

Algorithm 4: Data Aggregation Mechanism

Input: θ, l, Γ, SR, SW ;

Output:
{
l̂j |rj ∈ SR

}
;

1 foreach j s.t. rj ∈ SR do

2 l̂j ← sign
(∑

i:wi∈SW ,τj∈Γi

(
2θi,j − 1

)
li,j

)
;

3 return
{
l̂j |rj ∈ SR

}
;

Algorithm 4 takes as inputs the reliability level matrix θ, the workers’ label matrix l, the profile

of workers’ interested task sets, denoted as Γ = (Γ1, · · · ,ΓN ), the winning requester set SR, and

the winning worker set SW . Note that a large θi,j indicates that a worker wi has a high reliability
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level for task τj , and any worker wi with θi,j ≤ 0.5 will not be selected as a winner by the incentive

mechanism. The aggregated result l̂j for each winning requester rj ’s task τj is calculated (line 1-2)

using Equation (3.6) with the weight

λi,j = 2θi,j − 1, ∀rj ∈ SR, wi ∈ SW , τj ∈ Γi. (3.7)

By Equation (3.7), we have that λi,j , i.e., worker wi’s weight for task τj , increases with θi,j ,

which conforms to our intuition that the higher the probability that worker wi provides a correct

label about task τj , the more her label li,j should be counted in the calculation of the aggregated

result about this task. We provide the formal analysis about the data aggregation mechanism in

Section 3.3.1.2.

3.3.1.2 Analysis

In this section, we firstly analyze Algorithm 4’s guarantee of aggregation accuracy for each executed

task. In the following Lemma 3, we establish an upper bound for the accuracy of the aggregated

result l̂j of each executed task τj compared to its truth label lj .

Lemma 3. For each executed task τj, given the winning worker set SW , the reliability level matrix

θ, as well as workers’ weights λi,j’s on this task, we have that

Pr[L̂j 6= lj ] ≤ exp

(
−
(∑

i:wi∈SW ,τj∈Γi
λi,j(2θi,j − 1)

)2

2
∑

i:wi∈SW ,τj∈Γi
λ2
i,j

)
(3.8)

by aggregating workers’ data according to Equation (3.6).

Proof. We denote Xi,j as the random variable for worker wi’s weighted label about task τj , i.e.,

Xi,j = λi,jlj with probability θi,j , and Xi,j = −λi,jlj with probability 1− θi,j . Then, for each task

τj , we define

Xj =
∑

i:wi∈SW ,τj∈Γi

Xi,j ,

and thus, we have that

E[Xj ] =
∑

i:wi∈SW ,τj∈Γi

E[Xi,j ] =
∑

i:wi∈SW ,τj∈Γi

ljλi,j(2θi,j − 1).
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Based on the Hoeffding bound, we have that

Pr[Xj < 0|lj = +1] = Pr[E[Xj ]−Xj > E[Xj ]|lj = +1] ≤ exp

(
− 2(E[Xj |lj = +1])2∑

i:wi∈SW ,τj∈Γi
(2λi,j)2

)

= exp

(
−
(∑

i:wi∈SW ,τj∈Γi
λi,j(2θi,j − 1)

)2

2
∑

i:wi∈SW ,τj∈Γi
λ2
i,j

)
.

Similarly, we have that

Pr[Xj ≥ 0|lj = −1] ≤ exp

(
−
(∑

i:wi∈SW ,τj∈Γi
λi,j(2θi,j − 1)

)2

2
∑

i:wi∈SW ,τj∈Γi
λ2
i,j

)
.

As the error probability of the aggregated result can be calculated as Pr[L̂j 6= lj ] = Pr[Xj <

0|lj = +1]Pr[lj = +1] + Pr[Xj ≥ 0|lj = −1]Pr[lj = −1], we have that

Pr[L̂j 6= lj ] ≤ exp

(
−
(∑

i:wi∈SW ,τj∈Γi
λi,j(2θi,j − 1)

)2

2
∑

i:wi∈SW ,τj∈Γi
λ2
i,j

)
,

which exactly proves Lemma 3.

Clearly, Lemma 3 gives us an upper bound for the probability Pr[L̂j 6= lj ] for each executed

task τj . Then, in the following Theorem 10, we will prove that this upper bound is minimized by

our data aggregation mechanism proposed Algorithm 4.

Theorem 10. For each executed task τj, the data aggregation mechanism proposed in Algorithm 4

minimizes the upper bound of the probability Pr[L̂j 6= lj ] established in Lemma 3, and ensures that

Pr[L̂j 6= lj ] ≤ exp

(
−
∑

i:wi∈SW ,τj∈Γi
(2θi,j − 1)2

2

)
. (3.9)

Proof. We define the vector λj = [λi,j ] for every executed task τj , which contains every λi,j such

that wi ∈ SW , and τj ∈ Γi. Therefore, minimizing the upper bound of Pr[L̂j 6= lj ] is equivalent to

finding the vector λj that maximizes the function f(λj) defined as

f(λj) =

(∑
i:wi∈SW ,τj∈Γi

λi,j(2θi,j − 1)
)2

∑
i:wi∈SW ,τj∈Γi

λ2
i,j

.
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Based on the Cauchy-Schwarz inequality, we have

f(λj) ≤
(∑

i:wi∈SW ,τj∈Γi
λ2
i,j

)(∑
i:wi∈SW ,τj∈Γi

(2θi,j − 1)2
)

∑
i:wi∈SW ,τj∈Γi

λ2
i,j

=
∑

i:wi∈SW ,τj∈Γi

(2θi,j − 1)2,

and equality is achieved if and only if λi,j ∝ 2θi,j − 1. Thus,

Pr[L̂j 6= lj ] ≤ exp

(
−
∑

i:wi∈SW ,τj∈Γi
(2θi,j − 1)2

2

)
. (3.10)

From Inequality (3.10), in order to minimize the upper bound of Pr[L̂j 6= lj ], we can let

λi,j = 2θi,j − 1, and thus, we have that

Pr[L̂j 6= lj ] ≤ exp

(
−
∑

i:wi∈SW ,τj∈Γi
(2θi,j − 1)2

2

)
,

which exactly proves Theorem 10.

By Theorem 10, we have that the data aggregation mechanism proposed in Algorithm 4 upper

bounds the error probability Pr[L̂j 6= lj ] by exp
(
− 1

2

∑
i:wi∈SW ,τj∈Γi

(2θi,j − 1)2
)
, which in fact is

the minimum value of the upper bound of this probability established in Lemma 3. Next, we derive

Corollary 1, which is directly utilized in our design of the incentive mechanism in Section 3.3.2.

Corollary 1. For every executed task τj, the data aggregation mechanism proposed in Algorithm

4 satisfies that if
∑

i:wi∈SW ,τj∈Γi

(2θi,j − 1)2 ≥ 2 ln

(
1

βj

)
, (3.11)

then Pr[L̂j 6= lj ] ≤ βj, i.e., βj-accuracy is satisfied for this task τj, where βj ∈ (0, 1) is a platform

chosen parameter. Moreover, we define β as the vector (β1, · · · , βM ).

Proof. By setting the upper bound of Pr[L̂j 6= lj ] given in Theorem 10 to be no greater than

βj ∈ (0, 1), we have

exp

(
−
∑

i:wi∈SW ,τj∈Γi
(2θi,j − 1)2

2

)
≤ βj ,

which is equivalent to
∑

i:wi∈SW ,τj∈Γi

(2θi,j − 1)2 ≥ 2 ln

(
1

βj

)
. (3.12)
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Hence, together with Theorem 10, we have that Inequality (3.12) indicates that Pr[L̂j 6= lj ] ≤

βj .

Corollary 1 gives us a sufficient condition, represented by Inequality (3.11), that the set of

winning workers SW selected by the incentive mechanism (proposed in Section 3.3.2) should satisfy

so as to achieve βj-accuracy for each executed task τj .

3.3.2 Incentive Mechanism

Now, we introduce the design details of CENTURION’s incentive mechanism, including its math-

ematical formulation, the hardness proof of the formulated integer program, the proposed mecha-

nism, as well as the corresponding analysis.

3.3.2.1 Mathematical Formulation

As mentioned in Section 3.2.3, CENTURION’s incentive mechanism is based on the MELON double

auction defined in Definition 9. In this chapter, we aim to design a MELON double auction that

maximizes the social welfare, while guaranteeing satisfactory data aggregation accuracy. The formal

mathematical formulation of its winner selection problem is provided in the following MELON

double auction social welfare maximization (MELON-SWM) problem.

MELON-SWM Problem:

max
∑

j:τj∈T

ajyj −
∑

i:wi∈W

bixi (3.13)

s.t.
∑

i:wi∈W,τj∈Γi

(2θi,j − 1)2xi ≥ 2 ln

(
1

βj

)
yj , ∀τj ∈ T (3.14)

xi, yj ∈ {0, 1}, ∀wi ∈ W, τj ∈ T (3.15)

Constants. The MELON-SWM problem takes as inputs the task set T , the worker set W,

the requesters’ and workers’ bid profile a and b, the profile of workers’ interested task sets Γ, the

workers’ reliability level matrix θ, and the β vector.

Variables. On one hand, the MELON-SWM problem has a vector of M binary variables,

denoted as y = (y1, · · · , yM ). Any yj = 1 indicates that task τj will be executed, and thus,
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requester rj is a winning requester (i.e., rj ∈ SR), whereas yj = 0 means rj 6∈ SR. On the other

hand, the problem has another vector of N binary variables, denoted as x = (x1, · · · , xN ), where

xi = 1 indicates that worker wi is a winning worker (i.e., wi ∈ SW), and xi = 0 means wi 6∈ SW .

Objective function. The objective function satisfies that
∑

j:τj∈T
ajyj −

∑
i:wi∈W

bixi =

∑
j:rj∈SR

aj −
∑

i:wi∈SW
bi, which is exactly the social welfare defined in Definition 13 based on the

requesters’ and workers’ bids.

Constraints. For each task τj , Constraint (3.14) naturally holds, if yj = 0. When yj = 1,

it is equivalent to Inequality (3.11) given in Corollary 1, which specifies the condition that the

set of selected winning workers SW should satisfy in order to guarantee βj-accuracy for task τj .

To simplify the presentation, we introduce the following notations, namely qi,j = (2θi,j − 1)2,

q = [qi,j ] ∈ [0, 1]N×M , Qj = 2 ln
(

1
βj

)
, and Q = [Qj ] ∈ [0,+∞)M×1. Thus, Constraint (3.14) can

be simplified as
∑

i:wi∈W,τj∈Γi

qi,jxi ≥ Qjyj , ∀τj ∈ T . (3.16)

Besides, we say a task τj is covered by a solution, if yj = 1.

3.3.2.2 Hardness Proof

We prove the NP-hardness of the MELON-SWM problem by performing a polynomial-time reduc-

tion from the 3SAT(5) problem which is formally defined in Definition 17.

Definition 17 (3SAT(5) Problem). In a 3SAT(5) problem, we are given a set O = {z1, · · · , zn}

of n Boolean variables, and a collection C1, · · · , Cm of m clauses. Each clause is an OR of exactly

three literals, and every literal is either a variable of O or its negation. Moreover, every variable

participates in exactly 5 clauses. Therefore, m = 5n
3 . Given some constant 0 < ǫ < 1, a 3SAT(5)

instance ϕ is a Yes-Instance if there is an assignment to the variables of O satisfying all clauses,

whereas it is a No-Instance (with respect to ǫ), if every assignment to the variables satisfies at most

(1− ǫ)m clauses. An algorithm A distinguishes between the Yes- and No-instances of the problem,

if, given a Yes-Instance, it returns a “YES” answer, and given a No-Instance it returns a “NO”

answer.

Regarding the hardness of the 3SAT(5) problem, we introduce without proof the following
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well-known Lemma 4, which is a consequence of the PCP theorem [11].

Lemma 4. There is some constant 0 < ǫ < 1, such that distinguishing between the Yes- and

No-instances of the 3SAT(5) problem, defined with respect to ǫ, is NP-complete.

Next, we introduce Theorem 11 and 12 that will be utilized to prove the NP-hardness of the

MELON-SWM problem.

Theorem 11. Any 3SAT(5) instance is polynomial-time reducible to an instance of the MELON-

SWM problem.

Proof. The reduction goes as follows. Assume there is a 3SAT(5) instance ϕ on n variables and

m clauses. We define 3 parameters: X = ǫm
100 (0 < ǫ < 1), Y = mnX, and Z = mnY . The exact

values of Y and Z are not important. We just need to ensure Z ≫ Y ≫ X. We construct an

instance of the MELON-SWM problem corresponding to ϕ, by defining the task set T , and the

profile of workers’ interested task sets Γ.

Out of the 8 possible assignments to the variables of some clause Ck ∈ ϕ, exactly one does not

satisfy Ck. Let Ak be the set of the remaining 7 assignments. We define a set of tasks Γ(Ck, α) for

each clause Ck and assignment α ∈ Ak, let Γ = [Γ(Ck, α)] for each clause Ck ∈ ϕ and assignment

α ∈ Ak, set the qi,j value of each worker wi and task τj ∈ Γi as qi,j = 1, and set her bid as

bi = 3 + Y + Z. We also create a dummy worker w0, with q0 = 1, b0 = 0, and Γ0 being her

interested task set. We start with all set Γ(Ck, α)’s being empty, gradually define the tasks, and

specify which sets they belong to. The task set T consists of 4 subsets.

• The 1st subset E1 contains a task τ(zl, γ) for each variable zl ∈ O and assignment γ ∈ {T, F}

to this variable. τ(zl, γ) belongs to each set Γ(Ck, α), such that zl participates in Ck, and

the assignment α to the variables of Ck gives assignment γ to zl. The Qj value of the task τj

corresponding to τ(zl, γ) is set as 5− the number of the clauses containing zl, and the value

vj of this task is set as 5.

• The 2nd subset E2 containsm tasks τ1, · · · , τm. Each τk ∈ E2 belongs to all sets corresponding

to Ck and Ck+1, i.e., τk belongs to all sets {Γ(Ck, α)|α ∈ Ak}∪ {Γ(Ck+1, α
′)|α′ ∈ Ak+1} with

the subscripts being modulo m. The Qk value of each such τk is set as 2, and its value vk is

set as Y .
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• The 3rd subset E3 contains a task τ(Ck) for each clause Ck, and τ(Ck) belongs to set Γ(Ck, α)

for each α ∈ Ak. The Qj value of the task τj corresponding to τ(Ck) is set as 1, and its value

vj is set as Z.

• The 4th subset E4 contains a single task τ∗, whose Qj value is set as 1 and value vj is set as

X. The task τ∗ only belongs to set Γ0.

This finishes the description of the reduction. Clearly, given a 3SAT(5) instance ϕ, we can

construct an instance of the MELON-SWM problem in time polynomial in n.

We now analyze the optimal social welfare for an instance of the MELON-SWM problem that

corresponds to a 3SAT(5) instance ϕ, when ϕ is a Yes- or No-Instance. Note that the following

analysis uses the same reduction as in Theorem 11.

Theorem 12. If the 3SAT(5) instance ϕ is a Yes-Instance, then there is a solution to the resulting

instance of the MELON-SWM problem whose social welfare is X. If ϕ is a No-Instance, then any

solution has social welfare at most 0.

Proof. Let ϕ be a Yes-Instance, and A be an assignment to the variables satisfying all clauses. We

construct a solution S ′ to the MELON-SWM problem. Firstly, we add Γ0 to S ′. Next, for each

clause Ck, we add to S ′ the unique set Γ(Ck, α), where α is the assignment consistent with A.

Then |S ′| = m, and the total cost of all sets is (Y +Z +3)m. We now analyze the number of tasks

covered by S ′, and their values. Clearly, τ∗ is covered by S ′, and it contributes X to the solution

value.

• For each clause Ck ∈ ϕ, the unique task τ(Ck) ∈ E3 is covered. Thus, all tasks in E3 are

covered, and overall they contribute value mZ to the solution.

• Consider some τk ∈ E2. S ′ contains one set corresponding to Ck and Ck+1, respectively.

Since τk belongs to both these sets, and its Qk is 2, it is covered. Thus, all tasks in E2 are

covered, and they contribute value mY to the solution.

• Consider some variable zk ∈ O, and let γk ∈ {T, F} be the assignment to zk under A. If

Ck is any clause containing zk, and Γ(Ck, α) is the set that belongs to S ′, then α gives the
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assignment γk to zk. Thus, for all five clauses containing zk, the corresponding sets chosen

to S ′ contain τ(zk, γk), and this task is covered. So the total number of tasks of E1 covered

by S ′ is n. Each such task contributes value 5, and the total value contributed by the tasks

in E1 is 5n = 3m.

Therefore, the overall social welfare of this solution is X+mZ+mY +3m− (Z+Y +3)m = X.

Assume now that ϕ is a No-Instance, and let S ′ be any solution with positive social welfare.

We can assume that Γ0 ∈ S ′, and task τ∗ is covered by S ′. We then introduce the following

observations. Because of space limit, we place the proofs of these observationas in the technical

report [52].

Observation 1. For every clause Ck of ϕ, at most one of the sets {Γ(Ck, α)|α ∈ Ak} belongs to

S ′, and |S ′| = m.

Observation 2. For every variable zk ∈ O, at most one of the two tasks τ(zk, T ) and τ(zk, F ) is

covered by S ′.

We say that a variable zk ∈ O is bad if neither τ(zk, T ) nor τ(zk, F ) is covered by S ′; otherwise

it is good. We next show that only a small number of the variables are bad.

Observation 3. There are at most ǫn
100 bad variables.

In the next step, we construct the following assignment to the variables of O. If variable zk ∈ O

is good, then there is a unique value γk ∈ {T, F}, such that task τ(zk, γk) is covered by S ′. We

then assign zk the value γk. If zk is bad, we assign it any value arbitrarily. We now make the claim

that the above assignment satisfies more than (1 − ǫ)m clauses. We say that a clause is bad if it

contains a bad variable, and it is good otherwise. Since there are at most ǫn
100 bad variables, and

each variable participates in 5 clauses, the number of bad clauses is at most ǫn
20 ≤ 3ǫm

100 . So there are

more than (1− ǫ)m good clauses. Let Cl be a good clause, and Γ(Cl, α) be the set corresponding

to Cl that belongs to S ′. Then α is an assignment to the variables of Cl that satisfies Cl, and each

variable participating in Cl was assigned a value that is consistent with α. As a result, clause Cl

is satisfied.

To conclude, we have assumed that ϕ is a No-Instance, and showed that, if the MELON-SWM

problem has a solution with non-negative social welfare, there is an assignment to the variables of
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ϕ satisfying more than (1− ǫ)m of its clauses, which is impossible for a No-Instance. Therefore, if

ϕ is a No-Instance, every solution has social welfare at most 0.

Next, we describe Theorem 13 that states the NP-hardness and inapproximability of the

MELON-SWM problem.

Theorem 13. The MELON-SWM problem is NP-hard, and for any factor φ, there is no efficient

φ-approximation algorithm to the MELON-SWM problem.

Proof. Based on Theorem 11, there exists a reduction from any 3SAT(5) problem instance ϕ to an

instance I(ϕ) of the MELON-SWM problem. From Theorem 12, we have that the optimal solution

to I(ϕ) also gives a solution to ϕ. That is, if the optimal social welfare of I(ϕ) is positive, then ϕ is

a Yes-Instance; otherwise, ϕ is a No-Instance. Together with Lemma 4 stating the NP-completeness

of the 3SAT(5) problem, we conclude that the MELON-SWM problem is NP-hard.

In fact, Theorem 11 and 12 give an inapproximability result about the MELON-SWM, as well.

Suppose there is an efficient factor-φ approximation algorithm A for the MELON-SWM problem.

We can use it to distinguish Yes- and No-instances of the 3SAT(5) problem on n ≫ φ variables.

If ϕ is a Yes-Instance, then the algorithm has to return a solution with positive social welfare for

I(ϕ), and if ϕ is a No-Instance, then any solution has social welfare at most 0. So algorithm A

distinguishes the Yes- and the No-instances of 3SAT(5), contradicting Lemma 4.

3.3.2.3 Proposed Mechanism

Theorem 13 not only shows the NP-hardness of the MELON-SWM problem, but also indicates

that there is no efficient algorithm with a guaranteed approximation ratio for it. Therefore, we

relax the requirement of provable approximation ratio, and propose the following MELON double

auction that aims to ensure non-negative social welfare, instead. Its winner selection algorithm is

given in the following Algorithm 5.

Algorithm 5 takes as inputs the task set T , the requester set R, the worker set W, the profile

of workers’ interested task sets Γ, the requesters’ and workers’ bid profile a and b, the q matrix, as

well as the Q vector. Firstly, it initializes the winning requester and worker set as ∅ (line 1). Then,

it calculates a feasible cover, denoted by C, containing the set of workers that make Constraint
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Algorithm 5: MELON Double Auction Winner Selection

Input: T , R, W, Γ, a, b, q, Q;
Output: SR, SW , C;
// Initialization

1 SR ← ∅, SW ← ∅;
// Find a feasible cover

2 C ← FC(T ,Γ,q,Q);
3 foreach j s.t. τj ∈ T do

4 Cj ← {wi|wi ∈ C, τj ∈ Γi};
// Main loop

5 while maxj:rj∈R
(
aj −

∑
i:wi∈Cj

bi
)
≥ 0 do

6 j∗ ← argmaxj:rj∈R
(
aj −

∑
i:wi∈Cj

bi
)
;

7 SR ← SR ∪ {rj∗};
8 R ← R \ {rj∗};
9 SW ← SW ∪ Cj∗ ;

10 foreach j s.t. ri ∈ R do

11 Cj ← Cj \ Cj∗ ;

12 return SR,SW ;

(3.16) feasible for each task τj given that each yj = 1, by calling another algorithm FC which takes

the task set T , the profile of workers’ interested task sets Γ, the q matrix, and the Q vector as

inputs (line 2). Algorithm FC can be easily implemented in time polynomial in M and N . For

example, FC could greedily select each worker wi into the feasible cover in a decreasing order of the

value
∑

j:τj∈Γi
qi,j until all constraints are satisfied. The computational complexity of such FC is

O(N). We assume that FC adopts such a greedy approach in the rest of this chapter. Note that

the specific choice of FC is not important, as long as it returns a feasible cover in polynomial time.

Next, for each task τj , Algorithm 5 chooses from the feasible cover the set of workers Cj whose

interested task sets contain this task (line 3-4).

Based on C, the main loop (line 5-11) of the algorithm selects the set of winning requesters and

workers that give non-negative social welfare. It executes until maxj:rj∈R
(
aj −

∑
i:wi∈Cj

bi
)
, the

maximum marginal social welfare of including a new requester rj and the set of workers Cj into,

respectively, the winning requester and worker set, becomes negative (line 5). In each iteration of

the main loop, the Algorithm finds first the index j∗ of the requester rj∗ that provides the maximum

marginal social welfare (line 6). Next, it includes rj∗ into the winning requester set SR (line 7),

removes rj∗ from the requester set R (line 8), and includes all workers in Cj∗ into the winning
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worker set SW (line 9). The last step of the main loop is to remove all workers in Cj∗ from Cj for

each task τj (line 10). Finally, Algorithm 5 returns the winning requester and worker set SR and

SW (line 12).

Next, we present the pricing algorithm of the MELON double auction in Algorithm 6.

Algorithm 6: MELON Double Auction Pricing

Input: T , R, W, Γ, a, b, q, Q, SR, SW ;
Output: pr, pw;
// Initialization

1 pr ← 0, pw ← 0;
// Pricing for winning requesters

2 foreach j s.t. rj ∈ SR do

3 run Algorithm 5 on R \ {rj} and W;
4 S ′R ←winning requester set when line 3 stops;
5 foreach k s.t. rk ∈ S ′R do

6 prj ← min
{
prj ,
∑

wi∈C′
j
bi + ak −

∑
wi∈C′

k
bi
}
;

7 if C′j = ∅ then
8 prj ← min{prj , 0};

// Pricing for winning workers

9 foreach i s.t. wi ∈ SW do

10 run Algorithm 5 on R and W \ {wi};
11 S ′R ←winning requester set when line 10 stops;
12 foreach k s.t. wi ∈ C′k and rk ∈ S ′R do

13 sort requesters according to the decreasing order of aj −
∑

i:wi∈C′
j
bi;

14 f ←index of the first requester with wi 6∈ C′f ;
15 if rf ∈ S ′R then

16 pwi ← max
{
pwi , ak −

∑
wh∈C

′
k
bh −

(
af −

∑
wh∈C

′
f
bh
)}

;

17 else

18 pwi ← max
{
pwi , ak −

∑
wh∈C

′
k
bh
}
;

19 return pr, pw;

Apart from the same inputs to Algorithm 5, Algorithm 6 also takes as inputs the winning

requester and worker set SR and SW , outputted by Algorithm 5. Firstly, Algorithm 6 initializes

the requesters’ and workers’ payment profile as zero vectors (line 1). Then, it calculates the

payment prj charged from each winning requester (line 2-8). For each rj ∈ SR, Algorithm 5 is

executed on the worker set W and requester set R except requester rj (line 3). Next, it sets S ′R
as the winning requester set when line 3 stops (line 4). For each rk ∈ S ′R, Algorithm 6 finds the
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minimum bid aj,k for requester rj to replace rk as the winner. To achieve this, aj,k should satisfy

aj,k −
∑

wi∈C′
j
bi = ak −

∑
wi∈C′

k
bi, which is equivalent to aj,k =

∑
wi∈C′

j
bi + ak −

∑
wi∈C′

k
bi. Note

that C′1, · · · , C′M denote the sets C1, · · · , CM when the specific requester rk is selected into S ′R. If

C′j is not empty, the minimum value among these aj,k’s is chosen as the payment prj (line 5-6);

otherwise, it is further compared with 0 (line 7-8), since requester rj could win, in this case, as

long as her bid is non-negative.

Next, Algorithm 6 derives the payment pwi to each winning worker wi (line 9-18). Similar to

line 3, Algorithm 5 is executed on the requester set R and worker setW except worker wi (line 10),

and S ′R is set as the winning requester set when line 10 stops (line 11). In the rest of the algorithm,

we also use C′1, · · · , C′M to denote the sets C1, · · · , CM when the specific requester rk is selected into

S ′R. For each set C′k such that wi belongs to C′k and rk belongs to S ′R, the algorithm calculates the

maximum bid bi,k for worker wi to be selected as a winner at this point (line 12-18). The calculation

firstly sorts requesters in the decreasing order of their marginal social welfare, i.e., aj −
∑

i:wi∈C′
j
bi

(line 13), and finds the index f of the first the requester in this order such that wi does not belong

to C′f (line 14). If rf is a winning requester in S ′R, then bi,k should satisfy ak−
(∑

wh∈C
′
k
bh+bi,k

)
=

af −
∑

wh∈C
′
f
bh, which is equivalent to bi,k = ak −

∑
wh∈C

′
k
bh −

(
af −

∑
wh∈C

′
f
bh
)
; otherwise, bi,k

should satisfy ak−
(∑

wh∈C
′
k
bh+ bi,k

)
= 0, which is equivalent to bi,k = ak−

∑
wh∈C

′
k
bh. Then, the

maximum value among these bi,k’s are chosen as the payment pwi (line 15-18). Finally, Algorithm

6 returns the requesters’ and workers’ payment profile pr and pw (line 19).

3.3.2.4 Analysis of the Proposed Mechanism

In this section, we prove several desirable properties of our MELON double auction, described in

Algorithm 5 and 6. Firstly, we show its truthfulness in Theorem 14.

Theorem 14. The proposed MELON double auction is truthful.

Proof. We prove the truthfulness of the MELON double auction by showing that it satisfies the

properties of monotonicity and critical payment.

• Monotonicity. The algorithm FC called by Algorithm 5 is independent of the requesters’ and

workers’ bids, and winners are selected based on a decreasing order of the value aj−
∑

i:wi∈Cj
bi.
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Thus, if a requester rj wins by bidding aj , she will also win the auction by bidding any a′j > aj .

Similarly, if a worker wi wins by bidding bi, she will win the auction, as well, if her bid takes

any value b′i < bi.

• Critical payment. Algorithm 6 in fact pays every winning requester and worker the infimum

and supremum of her bid, respectively, that can make her a winner.

As proved in [15], these two properties make an auction truthful, i.e., each requester rj maxi-

mizes her utility by bidding vj , and each worker wi maximizes her utility by bidding ci. Therefore,

the MELON double auction is truthful.

Next, we show that the proposed MELON double auction satisfies individual rationality in

Theorem 15.

Theorem 15. The proposed MELON double auction is individual rational.

Proof. By Definition 10 and 11, losers of the MELON double auction receive zero utilities. From

Theorem 14, every winning requester rj bids vj , and every winning worker wi bids ci to the platform.

Moreover, they are paid, respectively, the infimum and supremum of the bid for them to win the

auction. Therefore, it is guaranteed that all requesters and workers receive non-negative utilities,

and thus the proposed MELON double auction is individual rational.

In Theorem 16, we prove that the proposed MELON double auction has a polynomial-time

computational complexity.

Theorem 16. The computational complexity of the proposed MELON double auction is O(M3N+

M2N2).

Proof. As mentioned in Section 3.3.1.1, the algorithm FC (line 2) in Algorithm 5 takes a greedy

approach, and has a computational complexity of O(N). Line 3-4 of Algorithm 5 that find the sets

C1, · · · , CM terminate at most after MN steps. Next, the main loop (line 5-11) terminates after

M iterations in worst case. Within each iteration, finding the index of the requester that provides

the maximum marginal social welfare (line 6) takes O(M) time, and updating the sets C1, · · · , CM
takes O(MN) time. Therefore, the computational complexity of the main loop is O(MN), and

56



thus, that of Algorithm 5 is O(M2N) overall. After Algorithm 5, our MELON double auction

executes its pricing algorithm described by Algorithm 6, where the loop for requester pricing (line

1-8) terminates in worst case after M iterations. Clearly, the computational complexity of each

iteration of the loop is dominated by the execution of Algorithm 5 in line 3. Therefore, the

requester pricing (line 1-8) in Algorithm 6 takes O(M3N) time. Following a similar method of

analysis, we can conclude that the worker pricing in Algorithm 6 takes O(M2N2) time. Hence, the

computation complexity of Algorithm 6, as well as that of the overall MELON double auction is

O(M3N +M2N2).

Finally, we show in Theorem 17 that our MELON double auction guarantees non-negative social

welfare, as required.

Theorem 17. The MELON double auction guarantees non-negative social welfare.

Proof. Clearly, in the winner selection algorithm described by Algorithm 5, a requester rj and

the workers in Cj could be selected as winners, only if the corresponding marginal social welfare

aj −
∑

i:wi∈Cj
bi is non-negative (line 5). Thus, as the overall social welfare given by Algorithm 5

is the sum of the aforementioned marginal social welfare of every iteration where new winners are

selected, the MELON double auction guarantees non-negative social welfare.

3.4 Performance Evaluation

In this section, we introduce the baseline methods, simulations settings, as well as simulation results

of the performance evaluation about our proposed CENTURION framework.

3.4.1 Baseline Methods

In our evaluation of the incentive mechanism, the first baseline auction is the Marginal Social

Welfare greedy (MSW-Greedy) double auction. As in Algorithm 5, it also initializes the winner

sets as ∅, executes the algorithm FC to obtain a feasible cover C, and chooses from C the set Cj
containing each worker wi such that τj ∈ Γi for each task τj . Different from the MELON double

auction, it sorts requesters in a decreasing order of their marginal social welfare, i.e., the value

aj −
∑

i:wi∈Cj
bi for each requester rj . Then, it selects the requester rj and the set of workers in
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Cj as winners until the marginal social welfare becomes negative. Its pricing algorithm is the same

as that of the MELON double auction. Clearly, the MSW-Greedy double auction is truthful and

individual rational. Another baseline auction is the one that initiAlizes the feasIble cover C as the

entire woRker set W, which we call AIR double auction. The rest of its winner selection, as well

as the entire pricing algorithm is the same as those of our MELON double auction. It is easily

provable that the AIR double auction is also truthful and individual rational.

Furthermore, we compare our weighted data aggregation mechanism with a mean aggregation

mechanism, which outputs +1 as the aggregated result for a task if the mean of workers’ labels about

this task is non-negative, and outputs −1, otherwise. Another baseline aggregation mechanism that

we consider is the median aggregation that takes the median of workers’ labels about a task as its

aggregated result.

3.4.2 Simulation Settings

Setting vj ci θi,j βj |Γ∗
i | N M

3.I [10, 20] [5, 15] [0, 1] [0.05, 0.1] [15, 20] [90, 150] 60

3.II [10, 20] [5, 15] [0, 1] [0.05, 0.1] [15, 20] 60 [20, 80]

Table 3.1: Simulation setting 3.I and 3.II

The parameter settings in our simulation are given in Table 3.1. Parameters vj , ci, θi,j , βj , and

|Γ∗
i | are sampled uniformly at random from the intervals given in Table 3.1. The worker wi’s true

interested task set Γ∗
i contains |Γ∗

i | tasks randomly selected from the task set T . In setting 3.I, we

fix the number of requesters as 60 and vary the number of workers from 90 to 150, whereas we fix

the number of workers as 60 and vary the number of requesters from 20 to 80 in setting 3.II. Note

that we leave the study of the values of these paramters in real-world scenarios in our future work.

3.4.3 Simulation Results

In Figure 3.2 and 3.3, we compare the social welfare of our MELON double auction with those

of the two baseline auctions. These two figures show that our MELON double auction generates

social welfare far more than the MSW-Greedy and AIR double auction in both setting 3.I and 3.II.

We evaluate CENTURION’s accuracy guarantee in setting 3.I and 3.II with a minor change of

the parameter βj , i.e., βj for each task τj is fixed as 0.05 to simplify presentation. We compare
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Figure 3.2: Social welfare
(setting 3.I)
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Figure 3.3: Social welfare
(setting 3.II)
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Figure 3.4: MAE (setting
3.I)
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Figure 3.5: MAE (setting
3.II)
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Figure 3.6: Error probability
(setting 3.I)
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Figure 3.7: Error probability
(setting 3.II)

the mean absolute error (MAE) for all tasks, which is defined as MAE = 1
M

∑
j:τj∈T

|l̂j − lj |, of

our weighted aggregation mechanism proposed in Algorithm 4 with those of the mean d median

aggregation. The simulation for each combination of worker and requester number is repeated

for 50000 times, and we plot the means and standard deviations of the MAEs in Figure 3.4 and

3.5. From these two figures, we observe that the MAE of our weighted aggregation mechanism is

far less than those of the mean and median aggregation. Then, we show our simulation results

about Pr[|l̂j − lj |], referred to as task τj ’s error probability (EP). After 50000 repetitions of the

simulation for any given combination of worker and requester number, empirical values of the EPs

are calculated, and the means and standard deviations of the empirical EPs are plotted in Figure

3.6 and 3.7. These two figures show that the empirical EPs are less than the required upper bound

βj and far less than those of the mean and median aggregation.

3.5 Related Work

As previously mentioned, a series of incentive mechanisms [20, 22, 27, 28, 31–33, 35, 37, 43–45, 50,

51, 53, 57, 58, 60, 62, 66, 67, 71–75, 82, 86, 88, 89, 91, 92, 95, 97, 98, 100, 106, 107, 110–113, 115–124] have
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recently been developed to serve the objective of incentivizing worker participation in MCS systems.

Different from most of the these prior work which assume that there exists only one data requester,

CENTURION’s incentive mechanism works in MCS systems with multiple data requesters that

compete for human resources. In fact, there do exist several past literature work [32, 89, 98, 106,

107,110,111,115,117,119,123] aiming at designing incentive mechanisms in similar multi-requester

scenarios. However, they do not provide any joint design of the data aggregation and the incentive

mechanism as in this chapter, which is much more challenging than designing the two mechanisms

as isolated modules. Technically, CENTURION’s incentive mechanism is based on the framework

of double auction [14,24,76,102,126]. These existing double auction models typically aim to solve

matching problems, and thus cannot be readily applied in our problem setting with coverage (like)

constraints.

3.6 Conclusion

In this chapter, we propose CENTURION, a novel integrated framework for multi-requester MCS

systems, consisting of a double auction-based incentive mechanism that stimulates the participation

of both requesters and workers, and a data aggregation mechanism that aggregates workers data. Its

incentive mechanism bears many desirable properties including truthfulness, individual rationality,

computational efficiency, as well as non-negative social welfare, and its data aggregation mechanism

generates highly accurate aggregated results.
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Chapter 4

Bid Privacy-Preserving Incentive

Mechanism for MCS Systems

4.1 Introduction

Among the various exsting incentive mecahnisms developed by the research community to stimulate

worker participation, one important catergory adopts the framework of reverse auction [32, 33, 35,

37, 50, 53, 54, 60, 62, 71, 72, 75, 97, 100, 106, 107, 112, 113, 115–118, 120–122, 124]. In these auction-

based mechanisms, a worker submits a bid to the platform containing one or multiple tasks she is

interested in and her bidding price for executing these tasks. Based on workers’ bids, the platform

acting as the auctioneer determines the winners who are assigned to execute the tasks they bid and

the payments paid to the selected winners. Furthermore, designing a truthful auction where every

worker bids to the platform her true interested tasks and the corresponding true task execution

cost is a common objective.

However, all the aforementioned incentive mechanisms [32, 33, 35, 37, 50, 53, 54, 60, 62, 71, 72, 75,

97, 100, 106, 107, 112, 113, 115–118, 120–122, 124] fail to consider the preservation of workers’ bid

privacy. Although the platform is usually considered to be trusted, there exist some honest-but-

curious workers who strictly follow the protocol of the MCS system, but try to infer information

about other workers’ bids. A worker’s bid usually contains her private and sensitive information.

For example, a worker’s bidding task set could imply her personal interests, knowledge base, etc.

In geotagging MCS systems that provide accurate localization of physical objects (e.g., automated

external defibrillator [8], pothole [30,80]), bidding task sets contain the places a worker has visited

or will visit, the disclosure of which breaches her location privacy. Similar to bidding task set, a

worker’s bidding price could also be utilized to infer her sensitive information. For example, bidding

price could imply the type of mobile devices a worker uses for an MCS task, because usually workers

tend to bid more if their mobile devices are more expensive.
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Typically, the change in one worker’s bid has the potential to shift the overall payment pro-

file (i.e., payments to all workers) significantly. It is possible that a curious worker could infer

information about other workers’ bids from the different payments she receives in two rounds of

the auction. To address this issue, we incorporate the notion of differential privacy [29, 77], which

ensures that the change in any worker’s bid will not bring a significant change to the resulting

payment profile. Therefore, different from all existing incentive mechanisms for MCS systems,

we design a differentially private incentive mechanism that protects workers’ bid privacy against

honest-but-curious workers.

Because of workers’ selfish and strategic behavior that aim to maximize their own utilities and

the combinatorial nature of the tasks executed by each worker, we design an incentive mechanism

based on the single-minded reverse combinatorial auction. In our mechanism, every worker bids

on a set of tasks that she is interested to execute. The platform serves as the auctioneer and

determines the winners and the payment profile that minimize its total payment to all the winners.

In sum, this chapter has the following contributions.

• Different from all existing incentive mechanisms for MCS systems, we design a differentially

private incentive mechanism that preserves the privacy of each worker’s bid against the other

honest-but-curious workers.

• Apart from differential privacy, our mechanism also satisfies the desirable economic properties

of approximate truthfulness and individual rationality.

• Algorithmically, our mechanism is computationally efficient and minimizes the platform’s

total payment with a guaranteed approximation ratio.

The rest of the chapter is organized as follows. We introduce the preliminaries in Section 4.2,

and present our formal mathemetical formulation in Section 4.3. Our design details of the bid

privacy-preverving incentive mechanism and the corresponding analyses are desribed in Section 4.4

and 4.5, respectively. In the next step, we present the results of our extensive simulation in Section

4.6, and summarize the related work in Section 4.7. Finally, we give the concludsion of this chapter

in Section 4.8.
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4.2 Preliminaries

In this section, we present an overview of MCS systems, the aggregation method, our auction

model, and design objectives.

4.2.1 System Overview

The MCS system considered in this chapter consists of a cloud-based platform and a set of N

participating workers denoted as N = {w1, · · · , wN}.

In this chapter, we are particularly interested in MCS systems that host a set of K classification

tasks, denoted as T = {τ1, · · · , τK}, namely ones that require workers to locally decide the classes

of the objects or events she has observed, and report her local decisions (i.e., labels of the observed

objects or events) to the platform. Here, we assume that all tasks in T are binary classification

tasks, which constitute a significant portion of the tasks posted on MCS platforms. Examples of

such tasks include tagging whether or not a segment of road surface has potholes or bumps [30,80],

labeling whether or not traffic congestion happens at a specific road segment [99], etc. Each binary

classification task τj ∈ T has a true class label lj , unknown to the platform, which is either +1 or

−1. If worker wi is selected to execute task τj , she will provide a label li,j to the platform.

Currently, a major challenge in designing reliable MCS systems lies in the fact that the sen-

sory data provided by individual workers are usually unreliable due to various reasons including

carelessness, background noise, lack of sensor calibration, poor sensor quality, etc. To overcome

this issue, the platform has to aggregate the labels provided by multiple workers, as this will likely

cancel out the errors of individual workers and infer the true label. We describe the workflow1 of

the MCS system as follows.

• The platform firstly announces the set of binary classification tasks, T , to the workers.

• Then, the workers and the platform start the auctioning stage, where the platform acts as

the auctioneer purchasing the labels provided by the workers. Every worker wi submits her

bid bi = (Γi, ρi), which is a tuple consisting of the set of tasks Γi she wants to execute and her

1Note that we are specifically interested in the scenario where all workers and tasks arrive at same time. We leave
the investigation of the online scenario where workers and tasks arrive sequentially in an online manner in our future
work.
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bidding price ρi for providing labels about these tasks. We use b = (b1, · · · , bN ) to denote

workers’ bid profile.

• Based on workers’ bids, the platform determines the set of winners (denoted as S ⊆ N ) and

the payment pi paid to each worker wi. We use p = (p1, · · · , pN ) to denote workers’ payment

profile.

• After the platform aggregates workers’ labels to infer the true label of every task, it gives the

payment to the corresponding winners.

Every worker wi has a reliability level θi,j ∈ [0, 1] for task τj , which is the probability that the

label li,j provided by worker wi about task τj equals to the true label lj , i.e., Pr[li,j = lj ] = θi,j . We

use the matrix θ = [θi,j ] ∈ [0, 1]N×K to denote the reliability level matrix of all workers. We assume

that the platform maintains a historical record of the reliability level matrix θ utilized as one of the

inputs for winner and payment determination. There are many methods that the platform could

use to estimate θ. In the cases where the platform has access to the true labels of some tasks a

priori, it can assign these tasks to workers in order to estimate θ as in [87]. When ground truth

labels are not available, θ can still be effectively estimated from workers’ previously submitted

data using algorithms such as those in [68–70, 78, 96, 101]. Alternatively, in many applications θ

can be inferred from some explicit characteristics of the workers (e.g., a worker’s reputation and

experience of executing certain types of sensing tasks, the type and price of a worker’s sensors)

using the methods proposed in [63]. The issue of exactly which method is used by the platform to

calculate θ is application dependent and out of the scope of this chapter.

4.2.2 Aggregation Method

In this chapter, we reasonably assume that the platform utlizes a weighted aggregation method to

calculate the aggregated label l̂j for each task τj based on the labels collected from workers. That

is,

l̂j = sign

(
∑

i:wi∈S,τj∈Γi

αi,jli,j

)
, (4.1)

where αi,j is the weight corresponding to the label li,j . In fact, many sophisticated state-of-

the-art data aggregation mechanisms, such as those proposed in [68–70, 78, 96], also adopt the
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weighted aggregation method to calculate the aggregation results. Given the aggregation method,

the platform selects winners so that the aggregation error of each task τj ’s label is upper bounded

by a predefined threshold δj . That is, the platform aims to ensure that Pr[L̂j 6= lj ] ≤ δj holds

for every task τj ∈ T , where L̂j denotes the random variable corresponding to l̂j . We directly

apply with minor adaptation in this chapter the results derived in [54] (Theorem 1 and Corollary

1), formally summarized in Lemma 5, regarding the relationship between the selected winners’

reliability levels and the upper bounds of tasks’ aggregation error.

Lemma 5. If the platform utilizes a weighted aggregation method that calculates each task τj’s

aggregated label l̂j according to Equation (4.1) with αi,j = 2θi,j − 1, and

∑

i:wi∈S,τj∈Γi

(2θi,j − 1)2 ≥ 2 ln

(
1

δj

)
, (4.2)

where δj ∈ (0, 1), then we have that Pr[L̂j 6= lj ] ≤ δj.

We refer to Equation (4.2) as the error bound constraint in the rest of this chapter. Essentially,

Lemma 5 presents a necessary and sufficient condition for Pr[L̂j 6= lj ] ≤ δj to hold for each task

τj ∈ T for a weighted aggregation algorithm. That is, the aggregated label l̂j should be calculated

as l̂j = sign
(∑

i:wi∈S,τj∈Γi
(2θi,j − 1)li,j

)
and the sum of the value (2θi,j − 1)2’s for all winner wi’s

that execute task τj should not be smaller than the threshold 2 ln
(
1
δj

)
. Intuitively, the larger the

value (2θi,j − 1)2 is, the more informative the label li,j will be to the platform. When the value

(2θi,j−1)2 approaches 0, or equivalently θi,j approaches 0.5, the label li,j will be closer to a random

noise.

4.2.3 Auction Model

In the rest of the chapter, we will refer to any subset of tasks of T as a bundle. Since in the

MCS system considered in this chapter every worker bids on one bundle of tasks, we use single-

minded reverse combinatorial auction with heterogeneous cost (hSRC auction), formally defined in

Definition 18, to model the problem.

Definition 18 (hSRC Auction). We define the single-minded reverse combinatorial auction with

heterogeneous cost, namely hSRC auction, as follows. In the hSRC auction, any worker wi has a
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set of Ki possible bidding bundles denoted as Ti = {Γi,1, · · · ,Γi,Ki
}. For providing labels about all

the tasks in each bundle Γi,k ∈ Ti, the worker has a cost ci,k. Furthermore, every worker wi is only

interested in one of the bundles in Ti, denoted as Γ∗
i with cost c∗i .

Noted that the hSRC auction defined in Definition 18 is a generalization of traditional single-

minded combinatorial auctions, such as those in [13, 15]. Typically, in traditional single-minded

combinatorial auctions, all the possible bidding bundles of a worker have the same cost. However,

in our hSRC auction, the cost ci,k’s for every bundle Γi,k ∈ Ti do not necessarily have to be the

same. In MCS systems, workers usually have different costs for executing different bundles, which

makes our definition of hSRC auction more suitable to the problem studied in this chapter. In

Definition 19, we define a worker’s truthful bid.

Definition 19 (Truthful Bid). We define bid b∗i = (Γ∗
i , c

∗
i ) which contains worker wi’s true inter-

ested bundle Γ∗
i and the corresponding cost c∗i as her truthful bid.

In Definition 20 and 21, we present the formal definitions of a worker’s utility and the platform’s

total payment.

Definition 20 (Worker’s Utility). Suppose a worker wi bids Γi,k ∈ Ti in the hSRC auction. If she

is a winner, she will be paid pi by the platform. Otherwise, she will not be allocated any task and

receives zero payment. Therefore, the utility of the worker wi is

ui =





pi − ci,k, if wi ∈ S

0, otherwise

. (4.3)

Definition 21 (Platform’s Payment). The platform’s total payment to all workers given the pay-

ment profile p and the winner set S is

R(p,S) =
∑

i:wi∈S

pi. (4.4)

4.2.4 Design Objective

Since workers are strategic in our hSRC auction, it is possible that a worker could submit a bid

different from the truthful bid defined in Definition 19 in order to obtain more utility. To address
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this problem, one of our goals is to design a truthful mechanism, where every worker maximizes

her utility by bidding her truthful bid regardless of other workers’ bids. In practice, ensuring exact

truthfulness for the hSRC auction is too restrictive. Therefore, we turn to a weaker but more

practical notion of γ-truthfulness in expectation [42, 77], formally defined in Definition 22.

Definition 22 (γ-truthfulness). An hSRC auction is γ-truthful in expectation, or γ-truthful for

short, if and only if for any bid bi 6= b∗i and any bid profile of other workers b−i, there is

E
[
ui(b

∗
i ,b−i)

]
≥ E

[
ui(bi,b−i)

]
− γ, (4.5)

where γ is a small positive constant.

γ-truthfulness ensures that no worker is able to make more than a slight γ gain in her expected

utility by bidding untruthfully. Therefore, we reasonably assume that each worker wi would bid her

truthful bid b∗i , if our hSRC auction satisfies γ-truthfulness. Apart from γ-truthfulness, another

desirable property of our hSRC auction is individual rationality, which implies that no worker has

negative utility. This property is crucial in that it prevents workers from being disincentivized by

receiving negative utilities. We formally define this property in the following Definition 23.

Definition 23 (Individual Rationality). An hSRC auction is individual rational if and only if

ui ≥ 0 holds for every worker wi ∈ N .

Simply paying workers according to the output payment profile of the auction poses threats

to the privacy of workers’ bids. Because the change in one worker’s bid has the potential to shift

the payment profile significantly, it is possible for a curious worker to infer other workers’ bids

from the different payments she receives in two rounds of auction. Therefore, we aim to design a

differentially private mechanism [29,77], formally defined in Definition 24.

Definition 24 (Differential Privacy). We denote the proposed hSRC auction as a function M(·)

that maps an input bid profile b to a payment profile p. Then, M(·) is ǫ-differentially private if

and only if for any possible set of payment profiles A and any two bid profiles b and b′ that differ

in only one bid, we have

Pr
[
M(b) ∈ A

]
≤ exp(ǫ)Pr

[
M(b′) ∈ A

]
, (4.6)
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where ǫ is a small positive constant usually referred to as privacy budget.

Differential privacy ensures that the change in any worker’s bid will not bring a significant

change to the resulting payment profile. Hence, it is difficult for the curious workers to infer

information about other workers’ bids from the outcome (i.e., payment profile) of the mechanism.

In this chapter, to achieve differential privacy we introduce randomization to the outcome of our

mechanism, similar to [77, 127,128].

In short, we aim to design a γ-truthful, individual rational and ǫ-differentially private incentive

mechanism in this chapter.

4.3 Mathematical Formulation

In this section, we present our formal mathematical problem formulation.

In this chapter, we adopt the natural and commonly used optimal single-price payment, as

in [40, 48, 127], as our optimal payment benchmark, because it is within a constant factor of the

payment of any mechanism with price differentiation, as proved in [48]. More detailed discussion

on the optimal benchmark will be provided in Section 4.5. In this chapter, therefore, we aim to

design a single-price mechanism that pays every winner in S according to the same price p.

To simplify our analysis, we assume that the possible values of the cost ci,k for a worker wi to

execute a bundle of tasks Γi,k ∈ Ti forms a finite set C. The smallest and largest element in C is cmin

and cmax respectively. Given the winner set S, for an individual rational single-price mechanism,

the platform’s total payment is minimized if and only if the price p equals to the largest cost of

the workers in S, that is p = maxwi∈S ci,k. This is because otherwise the platform can always

let p = maxwi∈S ci,k and obtain a smaller total payment while maintaining individual rationality.

Therefore, the set P containing all possible prices should satisfy that P ⊆ C. Furthermore, we

define that a price p is feasible if and only if it is possible to select a set of winners S among the

workers with bidding prices ρi ≤ p such that the error bound constraint defined in Equation (4.2)

is satisfied for every task. Then, we define the price set P as the set containing all values in the

set C that are feasible. Thus, obviously we have cmax ∈ P ⊆ C.

Next, we formulate the total payment minimization (TPM) problem as the following optimiza-

tion program.
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TPM Problem:

min
∑

i:wi∈N

pxi (4.7)

s.t.
∑

i:wi∈N ,τj∈Γi

(2θi,j − 1)2xi ≥ 2 ln

(
1

δj

)
, ∀τj ∈ T (4.8)

p− ρixi ≥ 0, ∀wi ∈ N (4.9)

xi ∈ {0, 1}, ∀wi ∈ N , p ∈ P (4.10)

Constants. The TPM problem takes as inputs the price set P, workers’ bid profile b, the

reliability level matrix θ, the vector δ = (δ1, · · · , δK), as well as the task and worker set T and N .

Variables. In the TPM problem, we have a vector of N binary variables x = (x1, · · · , xN ).

For every worker wi ∈ N , there is a binary variable xi indicating whether this worker is selected

as a winner. That is,

xi =





1, if wi ∈ S

0, otherwise

.

Furthermore, another variable in the TPM problem is the price p, which could take any value in

the price set P.

Objective function. Based on the definition of variables x and p,
∑

i:wi∈N
pxi represents the

platform’s total payment to all the winners. Hence, the TPM problem aims to find the vector x

and price p that minimize the platform’s total payment.

Constraints. Constraint (4.8) is exactly the error bound constraint represented by Inequality

(4.2) in Lemma 5, which ensures that the aggregation error of every task τj ∈ T is no larger

than the predefined threshold δj . To simplify presentation, we introduce the following notations.

qi,j = (2θi,j−1)2, Qj = 2 ln
(
1
δj

)
, q = [qi,j ] ∈ [0, 1]N×K andQ = (Q1, · · · , QK), and thus, Constraint

(4.8) can be simplified as the following Inequality (4.11).

∑

i:wi∈N ,τj∈Γi

qi,jxi ≥ Qj , ∀τj ∈ T . (4.11)

Furthermore, Constraint (4.9) ensures that for each worker wi, we have p ≥ ρi, if the worker is a
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winner. This means that any feasible solution to the TPM problem satisfies individual rationality,

if workers submit truthful bids. Apart from Constraint (4.8) and (4.9), we also consider two other

inherent constraints, namely approximate truthfulness and differential privacy for workers’ bids,

which means that the hSRC auction that corresponds to any feasible solution is approximately

truthful and differentially private. Due to the difficulty in mathematically formulating the two

constraints, we take them into consideration without explicitly formulating them, in the TPM

problem.

Next, in Theorem 18, we prove the NP-hardness of the TPM problem.

Theorem 18. The TPM problem is NP-hard.

Proof. Firstly, we transform the TPM problem into a modified TPM problem by fixing the price

p = 1 and relaxing Constraint (4.9), as well as the inherent approximate truthfulness and differential

privacy constraints. Clearly, the modified TPM problem is a special case of the TPM problem.

Thus, we turn to proving the NP-hardness of the modified TPM problem, instead.

We start our proof by introducing an instance of the minimum set cover (MSC) problem with

a universe of K elements U = {τ1, · · · , τK} and a set of N sets H = {Γ1, · · · ,ΓN}. The objective

of the MSC problem is to find the minimum-cardinality subset of H whose union contains all the

elements in U . We construct an instance of the modified TPM problem based on this instance of

the MSC problem. Firstly, we construct Γ′
i from Γi where every τj ∈ Γi has hi,j ∈ Z

+ copies in Γ′
i.

Furthermore, we require that the selected sets cover every τj ∈ U for at least Hj times. Therefore,

we get an instance of the modified TPM problem where q = [hi,j ] ∈ (Z+)N×K , Q = (H1, · · · , HK)

and the bidding bundle profile Γ = (Γ′
1, · · · ,Γ′

N ). In fact, the modified TPM problem represents a

richer family of problems where elements in q and Q can be positive real values. Therefore, every

instance of the NP-complete MSC problem is polynomial-time reducible to the modified TPM

problem. The modified TPM problem, and thus, the original TPM problem, is NP-hard.

4.4 Mechanism Design

Because of the NP-hardness of the TPM problem shown in Theorem 18, even given the price p, it

is impossible to calculate in polynomial time the set of winners that minimize the platform’s total
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payment unless P = NP. Let alone we eventually need to select an optimal price from the price

set P. Therefore, we aim to design a polynomial-time mechanism that gives us an approximately

optimal total payment with a guaranteed approximation ratio to the optimal total payment ROPT.

In addition, we also take into consideration the bid privacy preserving objective when designing

the mechanism. We present our mechanism in Algorithm 7, namely differentially private hSRC

(DP-hSRC) auction, that satisfies all our design objectives.

Algorithm 7 takes as inputs the privacy budget ǫ, the cost upper bound cmax, the worker set N ,

the task set T , the price set P, workers’ bid profile b, the q matrix and the Q vector. It outputs

the winner set S and the payment p paid to each winner. Firstly, it sorts workers according to the

ascending order of their bidding prices such that ρ1 ≤ ρ2 ≤ · · · ≤ ρN (line 1). Then, it initializes

several parameters (line 2-5). It finds the minimum price pmin in P (line 2) and the index imin of

the largest bidding price that does not exceed pmin (line 3). The algorithm constructs an index set

I containing all the integers from imin to N (line 4). Set I contains every worker index i such that

a winner set Si is calculated among the workers with bidding prices that are not larger than ρi. In

the last step of the initialization, the algorithm creates an extra bidding price ρN+1 by adding a

small positive constant δ to cmax (line 5) to ensure that ρN+1 is greater than ∀p ∈ P. The purpose

of creating ρN+1 is to make sure that every price p ∈ P is considered by line 14 and 15 in the main

loop (line 6-15) for exactly once.

After the initialization phase, Algorithm 7 calculates the winner set for every possible price

p ∈ P (line 6-15). Intuitively, we need to calculate the winner set for every given price p ∈ P.

However, for all possible prices between two consecutive bidding prices, that is ∀p ∈ P ∩ [ρi, ρi+1),

the winner sets are the same. Therefore, to reduce the computational complexity and remove its

dependency on the number of possible prices (i.e., |P|), we only need to calculate the winner set for

every price p ∈ {ρimin , ρimin+1, · · · , ρN}. At the beginning of every iteration of the main loop (line

6-15), Algorithm 7 initializes the winner set Si as ∅, the residual Q′ vector as Q and the candidate

winner set N ′ as every worker wk with bidding price ρk that is not larger than ρi (line 7). The

inner loop (line 8-13) is executed until the error bound constraints for all tasks are satisfied, or

equivalently until Q′ = 0K×1. In every iteration of the inner loop (line 8-13), the worker wimax that

provides the most improvement to the feasibility of Constraint 4.8 is selected as the new winner
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(line 9). Hence, wimax is included in Si (line 10) and excluded from N ′ (line 11). After wimax is

selected, the algorithm updates the residual Q′ vector (line 12-13).

Algorithm 7: DP-hSRC Auction

Input: ǫ, cmax, b, q, Q, N , T , P;
Output: S, p;

1 sort workers according to the ascending order of bidding prices such that ρ1 ≤ ρ2 ≤ · · · ≤ ρN ;
// Initialization

2 pmin ← minp∈P p;
3 imin ← argmaxi:ρi≤pmin ρi;
4 I ← {imin, imin + 1, · · · , N};
// Add a small constant δ > 0 to cmax

5 ρN+1 ← cmax + δ;
// Calculates the winner sets

6 foreach i ∈ I do

7 Si ← ∅, Q′ ← Q, N ′ ← {wk|ρk ≤ ρi};
8 while

∑
j:τj∈T

Q′
j 6= 0 do

9 imax = argmaxi:wi∈N ′

∑
j:τj∈Γi

min{Q′
j , qi,j};

10 Si ← Si ∪ {wimax};
11 N ′ ← N ′ \ {wimax};

// Update the residual Q′ vector

12 foreach j s.t. τj ∈ T do

13 Q′
j ← Q′

j −min{Q′
j , qimax,j};

// Assign the same winner set Si to every possible price in [ρi, ρi+1)
14 foreach p ∈ P ∩ [ρi, ρi+1) do
15 S(p)← Si;

16 randomly pick a price p according to the distribution

Pr[p = x] =
exp
(
− ǫx|S(x)|

2Ncmax

)

∑
y∈P exp

(
− ǫy|S(y)|

2Ncmax

) , ∀x ∈ P;

// Obtain the corresponding winner set

17 S ← S(p);
18 return {S, p};

To ensure differential privacy, we introduce randomization to the output price. We extend

the exponential mechanism proposed in [77] and set the probability that the output price p of

Algorithm 7 equals to a price x ∈ P to be proportional to the value exp
(
− ǫx|S(x)|

2Ncmax

)
. That is,

Pr[p = x] ∝ exp

(
− ǫx|S(x)|

2Ncmax

)
, ∀x ∈ P. (4.12)
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One important rationale of setting the probability of every possible price as the form in Equation

(4.12) is that the price resulting in a smaller total payment will have a larger probability to be

sampled. In fact, the probability increases exponentially with the decrease of the total payment

and the distribution is substantially biased towards low total payment prices. Therefore, we can

both achieve differential privacy and a guaranteed approximation to the optimal payment, as will

be proved in Section 4.5. Algorithm 7 normalizes exp
(
− ǫx|S(x)|

2Ncmax

)
and randomly picks a price p

according to the following distribution (line 16) defined in Equation (4.13).

Pr[p = x] =
exp
(
− ǫx|S(x)|

2Ncmax

)

∑
y∈P exp

(
− ǫy|S(y)|

2Ncmax

) , ∀x ∈ P. (4.13)

After a price p is sampled, the winner set S is set to be the one corresponding to p, namely

S(p) (line 17). Finally, it returns the winner set S and the price p (line 18).

4.5 Analysis

In this section, we provide formal theoretical analysis about the desirable properties of our DP-

hSRC auction. First of all, we prove that the DP-hSRC auction is ǫ-differentially private in Theorem

19.

Theorem 19. The DP-hSRC auction is ǫ-differentially private.

Proof. We denote b and b′ as two bid profiles that differ in only one worker’s bid. ∀x ∈ P, we

have

Pr
[

M(b) = x
]

Pr
[

M(b′) = x
] =

exp
(

− ǫx|S(x)|
2Ncmax

)

exp
(

− ǫx|S′(x)|
2Ncmax

) ·
∑

y∈P exp
(

− ǫy|S′(y)|
2Ncmax

)

∑

y∈P exp
(

− ǫy|S(y)|
2Ncmax

) ≤ exp

(

ǫxN

2Ncmax

)

·
∑

y∈P exp
(

− ǫy(|S(y)|−N)
2Ncmax

)

∑

y∈P exp
(

− ǫy|S(y)|
2Ncmax

)

≤ exp

(

ǫ

2

)

·
∑

y∈P exp
(

−ǫy|S(y)|+ǫcmaxN
2Ncmax

)

∑

y∈P exp
(

− ǫy|S(y)|
2Ncmax

) = exp
(

ǫ

2

)

· exp
(

ǫcmaxN

2Ncmax

)

= exp(ǫ),

which is equivalent to that

Pr
[
M(b) = x

]
≤ exp(ǫ)Pr

[
M(b′) = x

]
, ∀x ∈ P. (4.14)
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Therefore, based on Inequality (4.14), we have that

Pr
[
M(b) ∈ A

]
≤ exp(ǫ)Pr

[
M(b′) ∈ A

]
, ∀A ⊆ P,

and we arrive at the conclusion that the DP-hSRC auction is ǫ-differentially private.

We introduce the notation that ∆c = cmax− cmin. Based on Theorem 19, we prove in Theorem

20 that the DP-hSRC auction is ǫ∆c-truthful.

Theorem 20. The DP-hSRC auction is ǫ∆c-truthful.

Proof. Similar to the proof of Theorem 19, we use b and b′ to denote two bid profiles that differ

in only one worker’s bid. An equivalent form of Equation (4.14) proved in Theorem 19 is

Pr
[
M(b) = x

]
≥ exp(−ǫ)Pr

[
M(b′) = x

]
, ∀x ∈ P.

Therefore, the expectation of any worker wi’s utility taken over the output price distribution

of the DP-hSRC auction mechanism M(·) given in Algorithm 7 satisfies that

Ex∼M(b)

[
ui(x)

]
=
∑

x∈P

ui(x)Pr
[
M(b) = x

]
≥
∑

x∈P

ui(x)exp(−ǫ)Pr
[
M(b′) = x

]

= exp(−ǫ)Ex∼M(b′)

[
ui(x)

]
≥ (1− ǫ)Ex∼M(b′)

[
ui(x)

]

= Ex∼M(b′)

[
ui(x)

]
− ǫEx∼M(b′)

[
ui(x)

]
.

Since the maximum price in P is cmax and the minimum possible cost for a worker is cmin, we

have that ui(x) ≤ cmax − cmin, ∀x ∈ P. Therefore, we have

Ex∼M(b′)

[
ui(x)

]
≤ cmax − cmin = ∆c,

and thus,

Ex∼M(b)

[
ui(x)

]
≥ Ex∼M(b′)

[
ui(x)

]
− ǫ∆c.

Therefore, we conclude that the DP-hSRC auction is ǫ∆c-truthful.
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Theorem 20 basically states that the proposed DP-hSRC auction upper bounds a worker’s

gain in her expected utility to bid untruthfully by ǫ∆c. Therefore, we reasonably assume that

each worker would bid truthfully in our DP-hSRC auction. Note that our DP-hSRC auction is

ǫ∆c-truthful in both the bidding bundle and price, namely any worker wi bids her truthful bid

b∗i = (Γ∗
i , c

∗
i ). In Theorem 21, we prove that our DP-hSRC auction is individual rational.

Theorem 21. The DP-hSRC auction is individual rational.

Proof. In every iteration of the main loop in Algorithm 7 (line 6-15), the candidate winner set N ′

is initialized as those workers whose bidding prices (i.e., ρk) are not larger than the given price

p = ρi (line 7). Furthermore, we have proved in Theorem 20 that every worker wk bids truthfully,

i.e., ρk = ck. It means that for any given price p the winners are selected among the workers (i.e.,

wk) such that ck ≤ p. As a consequence, any winner wk’s utility satisfies uk = p − ck ≥ 0 and

any loser’s utility equals to 0. Therefore, we conclude that the DP-hSRC auction is individual

rational.

Next, we provide our analysis about the algorithmic properties of the proposed DP-hSRC

auction regarding the computational complexity and its approximation ratio to the optimal total

payment in Theorem 22 and 23. Firstly, we analyze the computational complexity of our DP-hSRC

auction in the following Theorem 22.

Theorem 22. The computational complexity of the proposed DP-hSRC auction is O(N2K).

Proof. The computational complexity of Algorithm 7 is dominated by the main loop (line 6-15),

which terminates in worst case after N iterations. Furthermore, in every iteration of the inner loop

(line 8-13), one worker is selected as a new winner. Thus, the inner loop also terminates in worst

case after N iterations. Besides, within the inner loop, after a winner is selected the algorithm

updates the Q′
j value for every task τj ∈ T in the worst case. Therefore, the overall computational

complexity of the DP-hSRC auction is O(N2K).

As proved in Theorem 22, our DP-hSRC auction described in Algorithm 7 has polynomial-

time computational complexity depending on the number of workers N and the number of tasks

K. Furthermore, the computational complexity provided in Theorem 22 does not depend on the

cardinality of the possible price set P, namely |P|.
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Given a price p and all the other parameters, we use SOPT(p) to denote the winner set with the

minimum-cardinality such that Constraint (4.8) and (4.9) are satisfied. Thus, the optimal total

payment which we use as the optimal benchmark to compare Algorithm 7’s total payment with in

this chapter, denoted as ROPT, is then calculated as

ROPT = min
p∈P

p|SOPT(p)|. (4.15)

Note that ROPT is in fact the optimal total payment after we relax the approximate truthfulness

and differential privacy constraints, which is clearly smaller than the actual optimal total payment

of the TPM problem. Thus, it is fair to compare the total payment generated by Algorithm 7 with

ROPT.

Before we analyze the approximation ratio between Algorithm 7’s total payment and the optimal

total payment ROPT in Theorem 23, we introduce Lemma 6 which is borrowed from [50] (Theorem

5 in [50]). We define the unit measure of every element in q and Q as ∆q and introduce additionally

the following two notations, i.e., β = maxi:wi∈N
∑

j:τj∈Γi
qi,j and m = 1

∆q

∑
j:τj∈T

Qj .

Lemma 6. Given any price p ∈ P, we have that the cardinality of the winner set returned by the

proposed DP-hSRC auction S(p) and that of the minimum-cardinality winner set SOPT(p) satisfies

that

|S(p)| ≤ 2βHm|SOPT(p)|. (4.16)

The relationship between the cardinality of the two sets S(p) and SOPT(p) given in Lemma 6

is an important intermediary result that will be utilized in the proof of the following Theorem 23,

which shows the approximation ratio of the total payment generated by the DP-hSRC auction to

the optimal total payment.

Theorem 23. We use R(x) to denote the total payment given by Algorithm 7 for any price x ∈ P.

The expected total payment generated by the DP-hSRC auction, denoted by Ex∈P [R(x)], and the

optimal payment ROPT satisfies that

Ex∈P

[
R(x)

]
≤ 2βHmROPT +

6Ncmax

ǫ
ln

(
e+

ǫ|P|βHmROPT

cmin

)
.
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Proof. We use Rmin and Rmax to denote the minimum and maximum total payment generated by

Algorithm 7 and we define the following sets Bt = {x|R(x) > Rmin + t}, Bt = {x|R(x) ≤ Rmin + t}

and B2t = {x|R(x) > Rmin + 2t} for some constant t > 0. Then, we have

Pr[x ∈ B2t] ≤
Pr[x ∈ B2t]
Pr[x ∈ Bt]

=

∑
x∈B2t

exp

(
− ǫR(x)

2Ncmax

)

∑
y∈P exp

(
− ǫR(y)

2Ncmax

)

∑
x∈Bt

exp

(
− ǫR(x)

2Ncmax

)

∑
y∈P exp

(
− ǫR(y)

2Ncmax

)
=

∑
x∈B2t

exp
(
− ǫR(x)

2Ncmax

)

∑
x∈Bt

exp
(
− ǫR(x)

2Ncmax

) ≤
|B2t|exp

(
− ǫ(Rmin+2t)

2Ncmax

)

|Bt|exp
(
− ǫ(Rmin+t)

2Ncmax

)

=
|B2t|
|Bt|

exp

(
− ǫt

2Ncmax

)
.

Then, we can calculate Ex∈P

[
R(x)

]
as follows.

Ex∈P

[
R(x)

]
=
∑

x∈B2t

R(x)Pr[p = x] +
∑

x∈B2t

R(x)Pr[p = x] ≤ Rmin + 2t+Rmax
|B2t|
|Bt|

exp

(
− ǫt

2Ncmax

)

≤ Rmin + 2t+Rmax|P|exp
(
− ǫt

2Ncmax

)
.

Therefore, for any t ≥ ln
(
Rmax|P|

t

)
· 2Ncmax

ǫ
, we have

Ex∈P

[
R(x)

]
≤ Rmin + 3t. (4.17)

If we let t = ln
(
e+ ǫ|P|Rmax

2Ncmax

)
· 2Ncmax

ǫ
≥ 2Ncmax

ǫ
, we have that

ln

(
Rmax|P|

t

)
· 2Ncmax

ǫ
≤ ln

(
e+

Rmax|P|ǫ
2Ncmax

)
· 2Ncmax

ǫ
= t.

Therefore, we can simply let t = ln
(
e+ ǫ|P|Rmax

2Ncmax

)
· 2Ncmax

ǫ
, and substitute t into Equation (4.17).

Then, we have that

Ex∈P

[
R(x)

]
≤ Rmin + ln

(
e+

ǫ|P|Rmax

2Ncmax

)
· 6Ncmax

ǫ
.
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Furthermore, since Rmax ≤ cmax
cmin

NRmin, we have that

Ex∈P

[
R(x)

]
≤ Rmin + ln

(
e+

ǫ|P|Rmin

2cmin

)
· 6Ncmax

ǫ
.

Suppose the optimal total payment ROPT is achieved when the price p = p∗, i.e., ROPT =

p∗|SOPT(p
∗)|. Then, we have

Rmin ≤ p∗|S(p∗)| ≤ 2βHmp∗|SOPT(p
∗)| = 2βHmROPT.

Finally, we arrive at the conclusion that

Ex∈P

[
R(x)

]
≤ 2βHmROPT +

6Ncmax

ǫ
ln

(
e+

ǫ|P|βHmROPT

cmin

)

and we finish the proof of Theorem 23.

Thus far, the approximation ratio derived in Theorem 23 is the best one we have found. We

leave the proof of its tightness or the derivation of a better one, as well as the calculation of a lower

bound for the approximation ratio, in our future work.

4.6 Performance Evaluation

In this section, we present the baseline methods that we use in the simulation, as well as the

simulation settings and results.

4.6.1 Baseline Method

Firstly, we compare the expected total payment of the DP-hSRC auction with the optimal total

payment ROPT. Instead of solving the TPM problem approximately using the method in Algorithm

7 (line 6-15), the exact optimal solution SOPT(p) to the TPM problem given any fixed price p ∈ P

is calculated. Then, the optimal total payment ROPT = minp∈P p|SOPT(p)| is derived by iterating

over every possible price p ∈ P.

Furthermore, we compare our DP-hSRC auction with a baseline auction mechanism. For any

fixed price p ∈ P, the baseline auction selects the workers in N ′ = {wi|ρi ≤ p} as winners according
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to the descending order of the value
∑

j:τj∈Γi
qi,j until the error bound constraints of all tasks are

satisfied. Then, a price p is picked randomly using the same method in Algorithm 7 (line 16). It is

easily verifiable that the baseline auction is also ǫ-differentially private, ǫ∆c-truthful and individual

rational.

4.6.2 Simulation Settings

Setting ǫ cmin cmax |Γ∗
i | θi,j δj N K

4.I 0.1 10 60 [10, 20] [0.1, 0.9] [0.1, 0.2] [80, 140] 30

4.II 0.1 10 60 [10, 20] [0.1, 0.9] [0.1, 0.2] 120 [20, 50]

4.III 0.1 10 60 [50, 150] [0.1, 0.9] [0.1, 0.2] [800, 1400] 200

4.IV 0.1 10 60 [50, 150] [0.1, 0.9] [0.1, 0.2] 1000 [200, 500]

Table 4.1: Simulation setting 4.I-4.IV

In Table 4.1, we present the simulation settings. In setting 4.I, we fix the number of tasks as

30 and vary the number of workers from 80 to 140. The privacy budget ǫ is set to be 0.1 and cmin

and cmax is 10 and 60 respectively. Every worker wi’s cost c
∗
i for her interested bundle Γ∗

i is chosen

uniformly at random from the numbers spaced at the interval of 0.1 in the range [10, 60]. |Γ∗
i |, θi,j ,

and δj are generated uniformly at random from the intervals given in Table 4.1. Furthermore, the

price set P consists of all numbers spaced at the interval of 0.1 in the range [35, 60]. In setting 4.II,

we fix the number of workers as 120 and vary the number of tasks from 20 to 50. All the other

parameters are the same as those in setting 4.I. In setting 4.III and 4.IV, the parameter ǫ, cmin,

cmax, |Γ∗
i |, θi,j , δj , c∗i , and P are generated using the same method as in the previous two settings.

The difference is that we increase the input size of the settings. In setting 4.III, we fix the number

of tasks as 200 and vary the number of workers from 800 to 1400, whereas in setting 4.IV, we fix the

number of workers as 1000 and vary the number of tasks from 200 to 500. Note that we leave the

study of the values of these paramters in real-world scenarios in our future work. Moreover, all the

optimal solutions to the TPM problem are calculated using the GUROBI optimization solver [6].

4.6.3 Simulation Results

In Figure 4.1 and 4.2, for every given worker and task number, we sample a price from the price

distribution derived by the DP-hSRC auction and the baseline auction, respectively, for 10000

times. The corresponding mean and standard deviation of the platform’s total payment calculated
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Figure 4.1: Platform’s total payment (setting
4.I)
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Figure 4.2: Platform’s total payment (setting
4.II)

using these price samples are plotted in Figure 4.1 and 4.2. From these two figures, we observe

that the platform’s average total payment of the DP-hSRC auction is far better than that of the

baseline auction and fairly close to the optimal total payment ROPT. Note that the nonsmoothness

of the curves in Figure 4.1 and 4.2, as well as those in the forthcoming Figure 4.3 and 4.4, is due

to the randomness in generating the problem instances.

N 80 88 96 104 112 120 128 136

DP-hSRC 0.156 0.158 0.157 0.161 0.161 0.156 0.165 0.159

Optimal 6.479 11.86 30.83 410.7 897.1 2337 2310 6139

K 20 24 28 32 36 40 44 48

DP-hSRC 0.152 0.153 0.153 0.158 0.157 0.157 0.160 0.162

Optimal 13.33 44.04 396.4 395.9 539.7 735.5 1188 2661

Table 4.2: Execution time (seconds) for setting 4.I and 4.II

In Table 4.2, we compare the execution time of the DP-hSRC auction and the algorithm that

computes the optimal total payment ROPT. From this table, we can observe that the DP-hSRC

auction executes in significantly less time than the optimal algorithm. Furthermore, the execution

time of the optimal algorithm becomes excessively long with large numbers of tasks and workers

so that it is infeasible in practice. In contrast, regardless of the growth of the number of users and

tasks, the DP-hSRC auction keeps low execution time. Hence, the DP-hSRC auction is much more

computationally efficient than the optimal algorithm.

In Figure 4.3 and 4.4, we consider setting 4.III and IV given in Table 4.1. Setting 4.III and

4.IV have much more numbers of workers and tasks than setting 4.I and 4.II. Under setting 4.III

and 4.IV, the scales of the problem have become so large that make it infeasible for the optimal

algorithm to return the optimal results in reasonable time. In contrast, in Figure 4.3 and 4.4, we
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Figure 4.3: Platform’s total payment (setting
4.III)
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Figure 4.4: Platform’s total payment (setting
4.IV)

demonstrate that our DP-hSRC auction is still able to generate total payment far better than the

baseline auction under setting 4.III and 4.IV.
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Figure 4.5: Trade-off between the platform’s total payment and privacy leakage

In Figure 4.5, we plot the platform’s average total payment and the privacy leackage of the DP-

hSRC auction with the increasing of the privacy budget ǫ. For any fixed ǫ, we define the privacy

leakage of the DP-hSRC auction as follows in Definition 25.

Definition 25 (Privacy Leakage). Suppose the two bid profiles b and b′ that differ in only one

worker’s bid result in price distributions with probability mass functions (PMFs) P and P ′. The

privacy leakage of the two bid profiles is defined as the Kullback-Leibler (KL) divergence [61] of the

two distributions represented as follows.

Privacy Leakage = DKL(P ||P ′) =
∑

x∈P

P (x) ln

(
P (x)

P ′(x)

)
.

The KL divergence captures the statistical difference of the two distributions P and P ′. The
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larger the statistical difference is, the easier the two bid profiles b and b′ will be distinguished and

thus, the more the privacy leakage is. From Figure 4.5, we observe that as the decrease of ǫ, the

privacy leakage decreases. Also, such improvement in privacy protection comes at a cost of the

increased total payment of the platform shown in Figure 4.5. Therefore, Figure 4.5 illustrates the

trade-off between the platform’s total payment and the privacy leakage of the DP-hSRC auction.

4.7 Related Work

As previously mentioned, most of the existing auction-based incentive mechanisms [32,33,35,37,50,

53,54,60,62,71,72,75,97,100,106,107,112,113,115–118,120–122,124] fail to consider the preservation

of workers’ bid privacy. In this chapter, different from most of these past literature, we incorporate

the notion of differential privacy [29,77] and design a differentially private incentive mechanism for

MCS systems that protects workers’ bid privacy.

Although several prior work [53, 66, 67, 71, 86, 97, 103–105] design, as well, privacy-preserving

incentive mechanisms, our work is different from them in various aspects. Similar to our work,

authors in [71] also design a bid privacy-preserving incentive mechanism. However, they con-

sider to alleviate privacy leakage to workers bids from the public winner set, other than from

payments considered in this chapter. Instead of bid privacy, [53, 103–105] focus on protecting

workers’ data privacy. [66, 67, 86] do not adopt game-theoretic methods, and thus cannot tackle

workers’ strategic behavior. Instead, they adopt credit systems [66, 67] and untraceable elec-

tronic currency [86]. Furthermore, the method of encrypting workers’ bids in [97] cannot address

the problem of preventing curious workers from inferring information about other workers’ bids

from the payments they receive. Note that existing models on privacy-preserving mechanism de-

sign [34,39,42,59,77,84,85,109,127,128] cannot be readily applied in our scenario, as they cannot

tackle the coverage (like) constraints in our problem setting.

4.8 Conclusion

In this chapter, motivated by the need for the protection of workers’ privacy in MCS systems,

we develop a differentially private incentive mechanism to incentivize worker participation without
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disclosing their sensitive bid information. The proposed mechanism is based on a novel design

of single-minded reverse combinatorial auction with heterogeneous cost, and thus bears several

advantageous properties including approximate truthfulness, individual rationality, and computa-

tional efficiency. We conduct both theoretical analysis and extensive simulations to show that the

proposed mechanism minimizes the expected total payment with a guaranteed approximation ratio

to the optimal total payment.
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Chapter 5

Incentivize Privacy-Preserving Data

Aggregation in MCS Systems

5.1 Introduction

In real practice, apart from an incentive mechanism, an MCS system usually contains some other

components which interact with the incentive mechanism and thus may affect its performance, such

as data aggregation component that aggregates workers’ data and data perturbation component that

protects workers’ privacy. Therefore, different from the isolated design of the incentive mechanism

in most of the past literature [20,22,27,28,31–33,35,37,43–45,50,51,54,57,58,60,62,66,67,71–75,

82,86,88,89,91,92,95,97,98,100,106,107,110–113,115–124], we capture such interactive effect, and

propose INCEPTION1, a novel MCS system framework with an integrated design of the incentive,

data aggregation, and data perturbation mechanism. Below, we would like to shed some light on

our design philosophy.

On one hand, the design of the incentive mechanism highly depends on how the platform

aggregates workers’ data. The sensory data provided by individual workers are usually not reliable

due to various factors (e.g., poor sensor quality, environment noise, lack of sensor calibration).

Therefore, the platform (i.e., a cloud-based central server) has to properly aggregate workers’

noisy and even conflicting data so as to cancel out the possible errors from individual workers.

Intuitively, if workers’ data are aggregated using naive methods (e.g., average and voting) that

regard all workers equally, the incentive mechanism does not need to view them differently in

terms of their reliability. However, a weighted aggregation scheme that assigns higher weights to

workers with higher reliability is much more favorable in that it makes the aggregated results closer

to the data provided by more reliable workers. Therefore, we propose a weighted data aggregation

mechanism that incorporates workers’ diverse reliability to calculate highly accurate aggregated

1The name INCEPTION comes from INCEtive, Privacy, and data aggregaTION.
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results. Accordingly, we jointly design our incentive mechanism which selects workers who are

more likely to provide reliable data.

On the other hand, the incentive mechanism also needs to consider the leakage of workers’

privacy, because it incurs costs which should be compensated as well. In many MCS applications,

the platform usually publishes the aggregated results, which are oftentimes beneficial to the com-

munity or society, but jeopardizes workers’ privacy. Although the platform can be considered to

be trusted, there exist adversaries highly motivated to infer workers’ data, which contain their

sensitive and private information, from the published results. For example, publishing aggregated

health data, such as treatment outcomes, improves people’s awareness about the effects of new

drugs and medical devices, but poses threats to the privacy of participating patients. Geotagging

campaigns provide timely and accurate localization of physical objects (e.g, automated external

defibrillator, litter, pothole), however, at the risk of leaking workers’ sensitive location information.

A high possibility for excessively large privacy leakage will deter workers from participating in the

first place, even though they are promised to be compensated for their privacy costs. Therefore,

we propose a data perturbation mechanism that reduces workers’ privacy leakage to a reasonable

degree by adding carefully controlled random noises to the original aggregated results, and jointly

design the incentive mechanism that compensates their costs for not only sensing but also the

remaining privacy leakage.

In summary, this chapter makes the following contributions.

• In this chapter, we propose INCEPTION, a novel MCS system framework that integrates an

incentive, a data aggregation, and a data perturbation mechanism. Such an integrated design,

which captures the interactive effects among these mechanisms, is much more challenging than

designing them separately.

• INCEPTION has a reverse auction-based incentive mechanism that selects reliable workers

and compensates their costs for both sensing and privacy leakage, which also satisfies truth-

fulness and individual rationality, and minimizes the platform’s total payment for worker

recruiting with a guaranteed approximation ratio.

• The data aggregation mechanism of INCEPTION also incorporates workers’ reliability and
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generates highly accurate aggregated results.

• Its data perturbation mechanism ensures satisfactory guarantee for the protection of workers’

privacy, as well as the accuracy of the final perturbed results.

The rest of the chapter is organized as follows. We introduce the preliminaries in Section 5.2,

and present the design details of INCEPTION in Section 5.3. Next, we present the results of our

extensive simulation in Section 5.4, and summarize the related work in Section 5.5. Finally, we

conclude this chapter in Section 5.6.

5.2 Preliminaries

In this section, we give an overview of INCEPTION, and describe the task model, reliability level

model, auction model, as well as design objectives.

5.2.1 System Overview

INCEPTION is an MCS system framework consisting of a cloud-based platform and a set of N

participating workers, denoted as N = {w1, · · · , wN}. The platform hosts a set of K sensing tasks,

denoted as T = {τ1, · · · , τK}, where each task τj ∈ T requires workers to locally sense a specific

object or phenomenon, and report the sensory data to the platform. If worker wi is selected to

execute task τj , she will provide her data xi,j to the platform. We define x = [xi,j ] ∈
(
X ∪{⊥}

)N×K

as the matrix containing all workers’ data, where X denotes the range of tasks’ sensory data, and

xi,j = ⊥ means that task τj is not executed by worker wi. To cancel out the errors from individual

workers, for every task τj ∈ T , the platform aggregates workers’ data into an aggregated result,

denoted as xj , which is used as an estimate of the task’s ground truth value x∗j , unknown to both

the platform and the workers.

In our model, the platform publishes the aggregated results (e.g., locations of automated exter-

nal defibrillators, litter, potholes) to the community or society. However, directly publishing them

impairs workers’ privacy. Therefore, the platform publishes the perturbed results after adding ran-

dom noises to the original ones, and ensures ǫ-differential privacy defined in Definition 26 (adapted

from [29]).
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Definition 26 (Differential Privacy). We denote M : (X ∪{⊥}
)N×K → R

K×1 as a mechanism that

maps any input data matrix to a perturbed result vector. Then, the mechanism M is ǫ-differentially

private if and only if for any two data matrices x and x′ that differ in only one entry and any

A ⊆ R
K×1, we have

Pr[M(x) ∈ A] ≤ exp(ǫ)Pr[M(x′) ∈ A], (5.1)

where ǫ is a small positive number usually referred to as privacy budget.

The framework of INCEPTION is illustrated in Figure 5.1, and its workflow2 is described as

follows.
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Figure 5.1: Framework of INCEPTION3

• Firstly, the platform announces the set of sensing tasks T and an upper bound of the privacy

budget ǫ, such as ǫ ≤ 0.5, to workers (step 1 ).

• Incentive Mechanism. Then, the platform starts the reverse auction-based incentive mech-

anism, where it acts as the auctioneer, to purchase data from participating workers, who act

as bidders. Every worker wi submits to the platform her bid bi = (Γi, b
s
i , b

p
i ) which is a triple

containing the set of sensing tasks Γi she wants to execute, as well as her bidding prices for

executing them bsi and unit privacy loss b
p
i (step 2 ). Based on workers’ bids, the platform

determines the set of winners S ⊆ N and the payment pi to every winner wi (step 3 ). Losers

of the auction do not execute tasks and receive no payments. We denote workers’ bid and

payment profile as b = (b1, · · · , bN ) and p = (p1, · · · , pN ), respectively.

2Note that we are specifically interested in the scenario where all workers and tasks arrive at same time. We leave
the investigation of the online scenario where workers and tasks arrive sequentially in an online manner in our future
work.

3In this figure, circled numbers represent the order of the events.
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• Data Aggregation Mechanism. Next, the platform collects winners’ sensory data (step

4 ) and calculates an aggregated result xj for each task τj (step 5 ).

• After collecting workers’ data, the platform pays workers according to p and reveals to them

the exact value of the privacy budget ǫ (step 6 ), such as ǫ = 0.25. The design rationale

for keeping the exact value of ǫ confidential to workers at the bidding stage and revealing it

together with the payments is described in detail in Section 5.3.2.3.

• Data Perturbation Mechanism. Finally, the platform adds random noises to the original

aggregated results and publishes the perturbed ones (step 7 ). We use x̂j to denote the

perturbed result for task τj .

5.2.2 Task Model

In this chapter, we are specifically interested in MCS systems that collect heterogeneous types of

sensory data from participating workers, which are ubiquitous in practice. That is, some of the

tasks held by the platform (e.g., environmental monitoring) require workers to submit continuous

data (e.g., temperature, humidity), whereas others (e.g., geotagging) collect categorical data (e.g.,

whether or not potholes exist on a specific road segment). In the rest of this chapter, we refer to

the former as continuous tasks, and the latter as categorical tasks. Furthermore, we denote Tcon
and Tcat as the set of continuous tasks and categorical tasks, respectively. Obviously, we have that

T = Tcon ∪ Tcat.

Without loss of generality, we assume that, for each continuous task τj ∈ Tcon, the ground

truth x∗j and any worker wi’s data xi,j are normalized values within the range [0, 1]. Furthermore,

we assume that all categorical tasks in Tcat are binary classification tasks with ground truths x∗j ’s

taking values from the set {+1,−1}, which collect binary labels, either +1 or −1, from parcicipating

workers.

5.2.3 Reliability Level Model

Before task τj is executed by worker wi, her data about this task can be regarded as a random

variable Xi,j . Then, we define a worker’s reliability level for a continuous and categorical task,

respectively, in Definition 27 and 28.
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Definition 27 (Reliability Level for Continuous Task). Worker wi’s reliability level θi,j for a

continuous task τj ∈ Tcon is defined as the expected absolute difference between her data and the

ground truth, i.e.,

θi,j = E[|Xi,j − x∗j |] ∈ [0, 1], (5.2)

where the expectation is taken over the randomness of Xi,j.

Definition 28 (Reliability Level for Categorical Task). Worker wi’s reliability level θi,j for a

categorical task τj ∈ Tcat is defined as the probability that she provides a correct label about this

task, i.e.,

θi,j = Pr[Xi,j = x∗j ] ∈ [0, 1]. (5.3)

We use θ = [θi,j ] ∈ [0, 1]N×K to denote the reliability level matrix of all workers. We assume

that the reliability level matrix θ is a priori known to the platform. In practice, the platform

can keep a historical record of θ, which can be obtained by many methods. For example, since a

worker’s reliability levels for similar tasks typically tend to be similar, the platform could assign

some tasks with known ground truths to workers and utilize workers’ sensory data about these tasks

to estimate their reliability levels for similar tasks as in [87]. In scenarios where ground truths are

not available, θ can still be effectively estimated utilizing workers’ previously submitted sensory

data about similar tasks by algorithms proposed in [68–70, 78, 96, 101] or inferred from some of

workers’ characteristics (e.g., a worker’s reputation and experience for similar tasks, the price of a

worker’s sensors) using the methods in [63].

5.2.4 Auction Model

In this chapter, as in most prior work, we assume that workers are selfish and strategic that aim to

maximize their own utilities. We use the term bundle to refer to any subset of the overall task set

T in the rest of this chapter. Since every worker bids on one bundle of tasks in the INCEPTION

framework, we model the incentive mechanism as a single-minded reverse combinatorial auction.

However, different from the traditional combinatorial auction [13,15], we study the scenario where

workers explicitly consider privacy leakage as one of the sources for their costs. Therefore, we

propose the single-minded reverse combinatorial auction with privacy cost (pSRC auction), formally
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defined in Definition 29, as the incentive mechanism.

Definition 29 (pSRC Auction). In a single-minded reverse combinatorial auction with privacy

cost (pSRC auction), each worker wi has only one interested bundle Γ∗
i . Her cost of executing the

bundle of tasks, namely sensing cost, is denoted as csi (unknown to the platform). Additionally, she

has a cost for privacy leakage, namely privacy cost, denoted as C
p
i (ǫ), if ǫ-differential privacy is

guaranteed. Hence, worker wi’s cost function is defined as in Equation (5.4).

Ci(Γ, ǫ) =





csi + C
p
i (ǫ), if Γ ⊆ Γ∗

i

+∞, otherwise

. (5.4)

For the tasks that do not belong to worker wi’s interested bundle Γ∗
i , either she is not able to

execute them or executing these tasks incurs a large cost. Therefore, we assign a +∞ cost to these

tasks in Equation (5.4).

A major difference between the cost function defined in Equation (5.4) and those in prior

work [20,22,27,28,31–33,35,37,43–45,50,51,54,57,58,60,62,66,67,71–75,82,86,88,89,91,92,95,97,

98,100,106,107,110–113,115–124] is that the privacy cost Cp
i (ǫ) is explicitly integrated into it. Such

integration is reasonable and necessary. In an MCS system where the platform utilizes a worker’s

private and sensitive data in a way that incurs privacy leakage, the worker will not be effectively

incentivized to participate unless both her sensing and privacy cost are compensated. For any

worker wi the privacy cost C
p
i (ǫ) is positively correlated with the privacy budget ǫ, because ǫ in

fact captures the amount of privacy leakage of the MCS system. Therefore, we adopt the natural

linear model for privacy cost as in [34,39] where C
p
i (ǫ) = c

p
i ǫ with c

p
i representing worker wi’s cost

for unit privacy leakage. Similar to csi , c
p
i is also unknown to the platform. Next, we define a

worker’s utility in Definition 30.

Definition 30 (Worker’s Utility). Any worker wi’s utility ui is defined as

ui =





pi − csi − c
p
i ǫ, if wi ∈ S

0, otherwise

. (5.5)

Apart from workers’ utilities, we are also interested in the platform’s total payment defined in
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Definition 31.

Definition 31 (Platform’s Total Payment). Given the payment profile p and the winner set S,

the platform’s total payment is P =
∑

i:wi∈S
pi.

5.2.5 Design Objective

In this chapter, we aim to ensure that INCEPTION bears the following desirable properties.

Since workers are strategic in our model, it is possible that any worker wi submits a bid

(Γi, b
s
i , b

p
i ) that deviates from the true value (Γ∗

i , c
s
i , c

p
i ). However, one of our objectives is to design

a truthful incentive mechanism defined in Definition 32.

Definition 32 (Truthfulness). A pSRC auction is truthful if and only if bidding the true value

(Γ∗
i , c

s
i , c

p
i ) is the dominant strategy for each worker wi, i.e., bidding (Γ∗

i , c
s
i , c

p
i ) maximizes each

worker wi’s utility for all possible values of other workers’ bids and the privacy budget ǫ.

By Definition 32, we aim to ensure the truthful bidding of the interested bundle Γ∗
i , the sensing

cost csi , and the cost for unit privacy leakage c
p
i for every worker wi. Apart from truthfulness,

another desirable and necessary property is individual rationality defined in Definition 33.

Definition 33 (Individual Rationality). A pSRC auction is individual rational if and only if no

worker receives negative utility, i.e., we have ui ≥ 0 for each worker wi.

Individual rationality in our pSRC auction means that a worker’s sensing and privacy cost are

both compensated, which is crucial to effectively incentivize worker participation. As mentioned

in Section 5.2.1, we aim to design an MCS system that ensures ǫ-differential privacy. However, the

perturbation added to the aggregated results inevitably impairs their accuracy. Next, we formally

define the concept of (α, β)-accuracy for continuous tasks in Definition 34.

Definition 34 ((α, β)-Accuracy). For two random variables Y1 and Y2 within the range [0, 1], Y1

is (α, β)-accurate to Y2, if and only if Pr[|Y1 − Y2| ≥ α] ≤ β, where α, β ∈ (0, 1). Note that Y2

could also be a constant.

We use X̂j to denote the random variable corresponding to x̂j (i.e., the perturbed result for task

τj). Facing the trade-off between privacy and accuracy, we need to carefully control the amount of
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noises added to the aggregated results and ensure that, for each continuous task τj , X̂j is (α, β)-

accurate to the ground truth x∗j with sufficiently small α and β within (0, 1). That is, we aim

to ensure that the perturbed results of all continuous tasks are fairly close to the ground truths

with high probability. For categorical tasks, we adopt the notion of γ-accuracy, which is formally

defined in Definition 35.

Definition 35 (γ-Accuracy). For two random variables Z1 and Z2 that take values from the set

{+1,−1}, Z1 is γ-accurate to Z2, if and only if Pr[Z1 6= Z2] ≤ γ, where γ ∈ (0, 1). Note that Z2

could also be a constant.

For each categorical task τj , we aim to ensure that the perturbed result X̂j is γ-accurate to the

ground truth x∗j with a sufficiently small γ ∈ (0, 1), which means that the perturbed results of all

categorical tasks are equal to the ground truths with high probability.

In short, our objective is to design a differentially private MCS system that provides satisfactory

accuracy guarantee for the final perturbed results, and incentivizes worker participation in a truthful

and individual rational manner.

5.3 Design Details

In this section, we provide our design details for the incentive, data aggregation, and data pertur-

bation mechanism.

5.3.1 Data Aggregation Mechanism

In this section, we introduce the design details of INCEPTION’s data aggregation mechanism, as

well as the correponding analyses.

5.3.1.1 Proposed Mechanism

Although the data aggregation mechanism comes after the incentive mechanism in the workflow of

INCEPTION, we introduce it first, as it affects the design of the incentive mechanism.

To guarantee that the perturbed results have satisfactory accuracy, the original aggregated

results before perturbation need to be accurate enough in the first place. Therefore, we reasonably
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assume that the platform uses a weighted aggregation method to calculate the aggregated result

xj for each task τj based on workers’ data. That is, given the winner set S determined by the

incentive mechanism, the aggregated result xj of each continuous task τj ∈ Tcon is calculated as

xj =
∑

i:wi∈S,τj∈Γi

λi,jxi,j , (5.6)

where λi,j > 0 is the weight of worker wi on this task with
∑

i:wi∈S,τj∈Γi
λi,j = 1 for every continuous

task τj . Similarly, for each categorical task τj ∈ Tcat, we calculate the aggregated result xj as

xj = sign

(
∑

i:wi∈S,τj∈Γi

λi,jxi,j

)
, (5.7)

where, similar to continuous tasks, λi,j > 0 is worker wi’s weight on this task
∑

i:wi∈S,τj∈Γi
λi,j = 1.

Furthermore, the function sign(z) takes the value +1, when z ≥ 0, and −1 otherwise.

The motivation for utilizing weighted aggregation is to capture the effect of workers’ diverse

reliability levels on the calculation of the aggregated results. Intuitively, we should assign higher

weights to workers whose sensory data are more likely to be close to the ground truths, which

makes the aggregated results closer to the data provided by more reliable workers. In fact, many

state-of-the-art data aggregation methods [69,78] utilize such weighted aggregation to calculate the

aggregated results. Since the accuracy of the aggregated results highly depends on how exactly the

weight λi,j ’s are chosen, we propose the following data aggregation mechanism in Algorithm 8.

Algorithm 8: Data Aggregation Mechanism

Input: α, θ, b, x, S, T , Tcon;
Output: (x1, · · · , xK);

1 foreach j s.t. τj ∈ T do

2 if τj ∈ Tcon then

// Calculate the aggregated result of a continuous task

3 xj ←
∑

i:wi∈S,τj∈Γi

(αj−θi,j)xi,j∑
k:wk∈S,τj∈Γk

(αj−θk,j)
;

4 else

// Calculate the aggregated result of a categorical task

5 xj ← sign
(∑

i:wi∈S,τj∈Γi

(2θi,j−1)xi,j∑
k:wk∈S,τj∈Γk

(2θk,j−1)

)
;

6 return (x1, · · · , xK);
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Besides the reliability level matrix θ, the bid profile b, workers’ data x, the winner set S, as

well as the task and continuous task set, T and Tcon, Algorithm 8 also takes as input a vector

of positive real numbers α, where each element αj corresponds to one continuous task τj . These

αj ’s are parameters chosen by the platform, such that maxi:τj∈Γi
θi,j < αj < 0.5. Note that, for a

continuous task τj , large θi,j indicates low reliability, and any worker wi with θi,j ≥ 0.5 will not

be selected by the incentive mechanism to execute this task. The aggregated result xj of every

continuous task τj ∈ Tcon is calculated (line 3) using Equation (5.6) with the weight

λi,j =
αj − θi,j∑

k:wk∈S,τj∈Γk
(αj − θk,j)

, ∀wi ∈ S, τj ∈ Γi. (5.8)

By Equation (5.8), worker wi’s weight for a continuous task τj , namely λi,j , increases with the

decrease of θi,j . Such a design choice conforms to our intuition that the less the expected deviation

of worker wi’s data compared to the ground truth x∗j , the more xi,j should be counted in the

calculation of the aggregated result xj .

For each categorical task τj ∈ Tcat, we calculate its aggregated result xj (line 5) using Equation

(5.7) with the weight,

λi,j =
2θi,j − 1∑

k:wk∈S,τj∈Γk
(2θk,j − 1)

, ∀wi ∈ S, τj ∈ Γi. (5.9)

Note that large θi,j for a categorical task implies high reliability, and the incentive mechanism will

not select any worker wi with θi,j ≤ 0.5 to execute this task. Following a similar philosophy as

calculating the aggregated result of a continuous task, the data from workers with higher reliability

are counted more in the calculation of a categorical task’s aggregated result, as well. Formal

analysis about the data aggregation mechanism is provided in Section 5.3.1.2.

5.3.1.2 Analysis

In this section, we firstly analyze Algorithm 8’s guarantee of aggregation accuracy for continuous

tasks. In the following Lemma 7, we establish an upper bound for the accuracy of the aggregated

result xj of each continuous task τj ∈ Tcon compared to its ground truth x∗j . In the rest of our

analyses, we use Xj to denote the random variable representing any task τj ’s aggregated result xj .
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Lemma 7. For each continuous task τj ∈ Tcon, given the winner set S, the reliability level matrix

θ, the vector of platform-chosen parameter α, as well as workers’ weights λi,j’s on this task, we

have that

Pr
[∣∣Xj − x∗j

∣∣ ≥ αj

]
≤ exp

(
−

2
(∑

i:wi∈S,τj∈Γi
λi,j(αj − θi,j)

)2
∑

i:wi∈S,τj∈Γi
λ2
i,j

)
(5.10)

by aggregating workers’ data according to Equation (5.6).

Proof. From Equation (5.6), for each continuous task τj , we have that

∣∣Xj − x∗j
∣∣ =

∣∣∣∣
∑

i:wi∈S,τj∈Γi

λi,jXi,j − x∗j

∣∣∣∣ =
∣∣∣∣

∑

i:wi∈S,τj∈Γi

λi,j

(
Xi,j − x∗j

)∣∣∣∣

≤
∑

i:wi∈S,τj∈Γi

∣∣∣∣λi,j

(
Xi,j − x∗j

)∣∣∣∣.

We define a random variable Lj for every continuous task τj as Lj =
∑

i:wi∈S,τj∈Γi

∣∣λi,j(Xi,j −

x∗j )
∣∣, which is the sum of random variables Li,j ’s with Li,j = |λi,j(Xi,j − x∗j )| ∈ [0, λi,j ]. Thus,

E[Lj ] =
∑

i:wi∈S,τj∈Γi

λi,jE
[∣∣Xi,j − x∗j

∣∣] =
∑

i:wi∈S,τj∈Γi

λi,jθi,j .

Therefore, from the Hoeffding bound, we have

Pr
[∣∣Xj − x∗j

∣∣ ≥ αj

]
≤ Pr

[ ∑

i:wi∈S,τj∈Γi

∣∣λi,j

(
Xi,j − x∗j

)∣∣ ≥ αj

]

= Pr[Yj ≥ αj ] = Pr
[
Yj − E[Yj ] > αj − E[Yj ]

]

(Hoeffding bound) ≤ exp

(
− 2

(
αj − E[Yj ]

)2
∑

i:wi∈S,τj∈Γi
λ2
i,j

)

= exp

(
−

2
(
αj −

∑
i:wi∈S,τj∈Γi

λi,jθi,j
)2

∑
i:wi∈S,τj∈Γi

λ2
i,j

)

= exp

(
−

2
(∑

i:wi∈S,τj∈Γi
λi,j(αj − θi,j)

)2
∑

i:wi∈S,τj∈Γi
λ2
i,j

)
,

which exactly proves this lemma.

Clearly, Lemma 7 gives us an upper bound for the probability Pr[|Xj − x∗j | ≥ αj ] for each

continuous task τj ∈ Tcon. Then, in the following Theorem 24, we will prove that this upper bound
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is minimized by our proposed Algorithm 8.

Theorem 24. For each continuous task τj ∈ Tcon, the data aggregation mechanism proposed in

Algorithm 8 minimizes the upper bound of the probability Pr[|Xj − x∗j | ≥ αj ] established in Lemma

7, and ensures that

Pr
[∣∣Xj − x∗j

∣∣ ≥ αj

]
≤ exp

(
− 2

∑

i:wi∈S,τj∈Γi

(αj − θi,j)
2

)
. (5.11)

Proof. For each continuous task τj ∈ Tcon, we denote λj = [λi,j ] as the vector that contains every

λi,j such that wi ∈ S and τj ∈ Γi. Therefore, minimizing the upper bound of Pr[|Xj − x∗j | ≥ αj ]

established in Lemma 7 is equivalent to maximizing the function ϕ(λj) defined as

ϕ(λj) =

(∑
i:wi∈S,τj∈Γi

λi,j(αj − θi,j)
)2

∑
i:wi∈S,τj∈Γi

λ2
i,j

. (5.12)

From the Cauchy-Schwarz inequality, we have that

ϕ(λj) ≤

(∑
i:wi∈S,τj∈Γi

λ2
i,j

)(∑
i:wi∈S,τj∈Γi

(αj − θi,j)
2
)

∑
i:wi∈S,τj∈Γi

λ2
i,j

=
∑

i:wi∈S,τj∈Γi

(αj − θi,j)
2

and ϕ(λj) =
∑

i:wi∈S,τj∈Γi
(αj − θi,j)

2 is achieved when λi,j ∝ αj − θi,j .

Using the fact that
∑

i:wi∈S,τj∈Γi
λi,j = 1, we have

λi,j =
αj − θi,j∑

k:wk∈S,τj∈Γk
(αj − θk,j)

. (5.13)

Therefore, by substituting the expression of λi,j given in Equation (5.13) into Equation (5.12),

we have that

Pr
[∣∣Xj − x∗j

∣∣ ≥ αj

]
≤ exp

(
− 2

∑

i:wi∈S,τj∈Γi

(αj − θi,j)
2

)
,

which is exactly the Equation (5.11) in Theorem 24.

By Theorem 24, for each continuous task τj ∈ Tcon, the data aggregation mechanism proposed in
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Algorithm 8 upper bounds the probability of Pr[|Xj−x∗j | ≥ αj ] by exp
(
−2∑i:wi∈S,τj∈Γi

(αj−θi,j)2
)

which is in fact the minimum value of the upper bound established in Lemma 7 for this probability.

Then, we introduce Corollary 2 which is directly utilized in the design of the incentive mechanism

in Section 5.3.2.

Corollary 2. For each continuous task τj ∈ Tcon, if

∑

i:wi∈S,τj∈Γi

(
αj − θi,j

)2 ≥ 1

2
ln

(
1

βj

)
, (5.14)

then the data aggregation mechanism proposed in Algorithm 8 ensures that Pr[|Xj−x∗j | ≥ αj ] ≤ βj,

where βj ∈ (0, 1) is a parameter chosen by the platform for this task. We use β to denote the

vector, where each element βj corresponds to one continuous task τj.

Proof. Corollary 2 directly follows from Theorem 24. If we let the upper bound of Pr[|Xj−x∗j | ≥ αj ]

guaranteed by Algorithm 8 to be no greater than βj ∈ (0, 1), we have

exp

(
− 2

∑

i:wi∈S,τj∈Γi

(αj − θi,j)
2

)
≤ βj ,

which is equivalent to exactly

∑

i:wi∈S,τj∈Γi

(
αj − θi,j

)2 ≥ 1

2
ln

(
1

βj

)
. (5.15)

Therefore, together with Theorem 24, we know that Inequality (5.15) implies Pr[|Xj − x∗j | ≥

αj ] ≤ βj .

Corollary 2 states that (αj , βj)-accuracy is guaranteed for the aggregated result of every con-

tinuous task τj ∈ Tcon compared to the corresponding ground truth x∗j , if the condition specified by

Inequality (5.14) is satisfied by the set of selected winners S in the incentive mechanism proposed

in Section 5.3.2.

Next, we introduce the results on Algorithm 8’s aggregation accuracy for categorical tasks in

the following Lemma 8, Theorem 25, and Corollary 3, which are adapted from the Theorem 1 and

Corollary 1 in [54].
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Lemma 8. For each categorical task τj ∈ Tcat, given the winner set S, the reliability level matrix

θ, as well as workers’ weights λi,j’s on this task, we have that

Pr[Xj 6= x∗j ] ≤ exp

(
−
(∑

i:wi∈S,τj∈Γi
λi,j(2θi,j − 1)

)2

2
∑

i:wi∈S,τj∈Γi
λ2
i,j

)
(5.16)

by aggregating workers’ data according to Equation (5.7).

Theorem 25. For each categorical task τj ∈ Tcat, the data aggregation mechanism proposed in

Algorithm 8 minimizes the upper bound of the probability Pr[Xj 6= x∗j ] established in Lemma 8, and

ensures that

Pr[Xj 6= x∗j ] ≤ exp

(
−
∑

i:wi∈S,τj∈Γi
(2θi,j − 1)2

2

)
. (5.17)

Corollary 3. For each categorical task τj ∈ Tcat, if

∑

i:wi∈S,τj∈Γi

(2θi,j − 1)2 ≥ 2 ln

(
1

γj

)
, (5.18)

then the data aggregation mechanism proposed in Algorithm 8 ensures that Pr[Xj 6= x∗j ] ≤ γj, where

γj ∈ (0, 1) is a parameter chosen by the platform for this task. We use γ to denote the vector,

where each element γj corresponds to one categorical task τj.

The proofs of Lemma 8, Theorem 25, and Corollary 3 are omitted in this chapter, because

they can be adapted from those of the Theorem 1 and Corollary 1 in [54] with minor changes.

Clearly, they are counterparts of Lemma 7, Theorem 24, and Corollary 2 for categorical tasks, and

collectively ensure that γj-accuracy is guaranteed for the aggregated result of each categorical task

τj ∈ Tcat, as long as Inequality (5.18) is satisfied by the winners selected by the incentive mechanism.

Next, in Section 5.3.2, we introduce the design of INCEPTION’s incentive mechanism, which is

based on the data aggregation mechanism proposed in Algorithm 8.

5.3.2 Incentive Mechanism

In this section, we introduce the mathematical formulation, design details and the analysis of the

proposed incentive mechanism.
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5.3.2.1 Mathematical Formulation

As mentioned in Section 5.2.4, our incentive mechanism is based on the pSRC auction defined in

Definition 29. In this chapter, we aim to design a pSRC auction that minimizes the platform’s total

payment with satisfactory data aggregation accuracy. Such a design choice exactly captures the

objective of most MCS systems, that is to collect high quality data from the crowd with minimum

total expense. The formal mathematical formulation is given in the following pSRC auction total

payment minimization (pSRC-TPM) problem.

pSRC-TPM Problem:

min
∑

i:wi∈N

piyi (5.19)

s.t.
∑

i:wi∈N ,τj∈Γi

(
αj − θi,j

)2
yi ≥

1

2
ln

(
1

βj

)
, ∀τj ∈ Tcon (5.20)

∑

i:wi∈N ,τj∈Γi

(2θi,j − 1)2yi ≥ 2 ln

(
1

γj

)
, ∀τj ∈ Tcat (5.21)

yi ∈ {0, 1}, pi ∈ [0,+∞), ∀wi ∈ N (5.22)

Constants. The pSRC-TPM problem takes as inputs the worker set N , the continuous and

categorical task set Tcon and Tcat, workers’ bid profile b, the reliability level matrix θ, and the β,

α, and γ vector.

Variables. The pSRC-TPM problem has a vector of N binary variables, denoted as y =

(y1, · · · , yN ). The variable yi = 1 indicates that the worker wi is selected as a winner (i.e., wi ∈ S);

otherwise wi 6∈ S. The second vector of variables is the payment profile p = (p1, · · · , pN ), where

every element takes a non-negative real value.

Objective function. The objective function given by
∑

i:wi∈N
piyi =

∑
i:wi∈S

pi is exactly the

total payment made by the platform to all winners.

Constraints. Constraint (5.20) is equivalent to Inequality (5.14) given in Corollary 2, which

specifies the condition that the selected winners should satisfy. By Corollary 2, any feasible solution

y to the pSRC-TPM problem gives a winner set S which ensures that the aggregated result of every

continuous task τj ∈ Tcon is (αj , βj)-accurate to the ground truth x∗j . Similarly, Constraint (5.21)
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is equivalent to Inequality (5.7), which ensures that γj-accuracy for each categorical task τj ∈ Tcat
is satisfied by the winner set S given by any feasible solution y to the pSRC-TPM problem. To

simplify presentation, we introduce the following extra notations. For each worker wi ∈ N and

task τj ∈ T , we define

qi,j =





(αj − θi,j)
2, if τj ∈ Tcon

(2θi,j − 1)2, if τj ∈ Tcat
, (5.23)

and for each task τj ∈ T , we define

Qj =





1

2
ln

(
1

βj

)
, if τj ∈ Tcon

2 ln

(
1

γj

)
, if τj ∈ Tcat

. (5.24)

Furthermore, we define q = [qi,j ] ∈ [0,+∞)N×K and Q = [Qj ] ∈ [0,+∞)K×1. Therefore, Con-

straint (5.20) and (5.21) can be simplified and merged into the following Constraint (5.25).

∑

i:wi∈N ,τj∈Γi

qi,jyi ≥ Qj , ∀τj ∈ T . (5.25)

Besides Constraint (5.20) and (5.21), any feasible solution to the pSRC-TPM problem should also

satisfy two other inherent constraints, namely truthfulness and individual rationality, which means

that the pSRC auction corresponding to the solution is truthful and individual rational. Because of

the difficulty in mathematically formulating the two constraints, we take them into consideration

without explicitly formulating them, in the pSRC-TPM problem.

In Theorem 26, we prove the NP-hardness of the pSRC-TPM problem.

Theorem 26. The pSRC-TPM problem is NP-hard.

Proof. We consider a special case of the pSRC-TPM problem with a constant payment profile p

and the truthfulness and individual rationality constraints relaxed. With constant pi’s, it becomes

a binary linear program (BLP). We prove the NP-hardness of the BLP by a polynomial-time

reduction from the minimum weight set cover (MWSC) problem.

The reduction starts from an instance of the NP-complete MWSC problem with a universe

T = {τ1, · · · , τK} and a set of subsets of T defined as R = {Γ1, · · · ,ΓN}. Each set Γi ∈ R has
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Algorithm 9: pSRC Auction Winner Determination

Input: ǫ, b, q, Q, N , T ;
Output: S;
// Initialization

1 S ← ∅, Q′ ← Q;
// Calculate the winner set S

2 while
∑

j:τj∈T
Q′

j 6= 0 do

// Find the worker with the minimum bidding price effectiveness

3 l = argmini:wi∈N
bsi+b

p
i ǫ∑

j:τj∈Γi
min{Q′

j ,qi,j}
;

4 S ← S ∪ {wl};
5 N ← N \ {wl};

// Update the Q′ vector

6 foreach j s.t. τj ∈ T do

7 Q′
j ← Q′

j −min{Q′
j , ql,j};

8 return S;

a non-negative weight pi. The objective of the MWSC problem is to find the subset of R with

the minimum total weight whose union equals to T . We transform Γi to Γ′
i where each element

τj ∈ Γi has ai,j ∈ Z
+ copies and require each τj to be covered for exactly Aj ∈ Z

+ times. By now,

an instance of the BLP with q = [ai,j ] ∈ (Z+)N×K , Q = [Aj ] ∈ (Z+)K×1, and payment profile

p has been constructed. Actually, a richer family of problems can be represented by the BLP

because elements in q and Q can be any positive real numbers besides positive integers. Hence,

every instance of the MWSC problem is polynomial-time reducible to the BLP, which proves its

NP-hardness. Furthermore, because the BLP is only a special case of the pSRC-TPM problem,

the pSRC-TPM problem is also NP-hard.

5.3.2.2 Proposed Mechanism

Because of the NP-hardness of the pSRC-TPM problem proved in Theorem 26, directly solving

it to obtain the winner set S and the payment profile p is computationally intractable when

the cardinality of N and T become large. Therefore, we propose our own winner determination

and pricing algorithm for the pSRC auction in Algorithm 9 and 10, respectively. The proposed

algorithms are computationally efficient and approximately minimize the platform’s total payment

with a guaranteed approximation ratio.

The inputs of the winner determination algorithm given in Algorithm 9 include the privacy
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Algorithm 10: pSRC Auction Pricing

Input: ǫ, b, q, Q, N , T , S;
Output: p;
// Initialization

1 p← (0, · · · , 0);
2 foreach i s.t. wi ∈ S do

3 run Algorithm 9 on N \ {wi} until
∑

j:τj∈Γi
Q′

j = 0;

4 S ′ ← the winner set when step 3 stops;
// Calculate payment

5 foreach k s.t. wk ∈ S ′ do
6 Q′ ← tasks’ Q′ vector when wk is selected;

7 pi ← max

{
pi, (b

s
k + b

p
kǫ) ·

∑
j:τj∈Γi

min{Q′
j ,qi,j}∑

j:τj∈Γk
min{Q′

j ,qk,j}

}
;

8 return p;

budget ǫ, bid profile b, q matrix, Q vector, worker set N , and task set T . Firstly, it initializes the

winner set S as ∅ and the residual vector of Q, namely Q′, as Q (line 1). Then, the main loop

(line 2-7) calculates the winner set S. It is executed until the winner set S makes the pSRC-TPM

problem feasible (line 2). We define worker wi’s virtual bidding price as bvi = bsi + b
p
i ǫ. In each

iteration, Algorithm 9 finds the worker wl with the minimum bidding price effectiveness (line 3)

defined as the ratio between her virtual bidding price and her contribution to the improvement of

the feasibility of Constraint (5.20). Next, wl is included into the winner set S (line 4) and excluded

from the worker set N (line 5). Finally, the Q′ vector is updated (line 6-7).

Apart from the same inputs taken by Algorithm 9, the pricing algorithm given in Algorithm

10 also uses the winner set S calculated by Algorithm 9. Firstly, it initializes the payment profile

p as a vector of N zeros (line 1). Then, the main loop (line 2-7) calculates the payment to each

winner. For each winner wi ∈ S, Algorithm 9 is executed on the worker set containing all workers

except wi until the point after which wi will never be selected as a winner (line 3). The winner set

at this point is recorded as S ′ (line 4). For each worker wk ∈ S ′, Algorithm 10 calculates worker

wi’s maximum virtual bidding price bvi,k that makes her substitute wk as the winner. To achieve

this, bvi,k should satisfy

bvi,k∑
j:τj∈Γi

min{Q′
j , qi,j}

=
bsk + b

p
kǫ∑

j:τj∈Γk
min{Q′

j , qk,j}
,
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which is equivalent to

bvi,k = (bsk + b
p
kǫ) ·

∑
j:τj∈Γi

min{Q′
j , qi,j}∑

j:τj∈Γk
min{Q′

j , qk,j}
.

Then, the maximum value among these bvi,k’s is chosen as the payment pi to worker wi (line 7).

5.3.2.3 Analysis

Firstly, we analyze the truthfulness of the proposed pSRC auction in Theorem 27.

Theorem 27. The proposed pSRC auction is truthful.

Proof. Firstly, we fix the privacy budget ǫ and assume a worker wi wins the auction by bidding

bi = (Γi, b
s
i , b

p
i ). We show that the pSRC auction satisfies the property of monotonicity and critical

payment in terms of the bidding bundle Γi and virtual bidding price bvi = bsi + b
p
i ǫ.

• Monotonicity. Consider worker wi’s bid b̃i = (Γ̃i, b̃
s
i , b̃

p
i ) with Γ̃i ⊃ Γi and b̃vi = b̃si + b̃

p
i ǫ < bvi .

Algorithm 9 selects winners in an increasing order of the bidding price effectiveness. Hence,

b̃i will also make worker wi a winnner, as it increases her priority of winning compared to bi.

• Critical payment. Algorithm 10 in fact pays every winner the supremum of all virtual

bidding prices that can still make her a winner, namely critical payment.

As proved in [15, 50], the monotonicity and critical payment property make the pSRC auction

truthful in terms of the bidding bundle and the virtual bidding price. That is worker wi maximizes

her utility by bidding Γ∗
i and (bsi , b

p
i ) such that bsi + b

p
i ǫ = csi + c

p
i ǫ. For a fixed ǫ, the worker still has

incentive to bid (bsi , b
p
i ) 6= (csi , c

p
i ). However, since the exact value of ǫ is not revealed to workers in

the bidding process, the only strategy that maximizes her utility under all possible values of ǫ is

to bid bsi = csi and b
p
i = c

p
i . Therefore, the pSRC auction is truthful.

The proposed pSRC auction ensures that truthful bidding is a dominant strategy for every

worker under any possible value of ǫ. As stated in the proof of Theorem 27, it is crucial to keep

the exact value of the privacy budget ǫ confidential to workers in the bidding process to ensure the

truthfulness of a worker’s bidding prices for the costs of sensing and unit privacy leakage, i.e., to

achieve bsi = csi and b
p
i = c

p
i for every worker wi. The reason that the platform firstly announces
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to workers an upper bound of ǫ is to avoid their concerns of the possibility for excessively large

privacy leakage. Next, we analyze the individual rationality of the pSRC auction.

Theorem 28. The pSRC auction is individual rational.

Proof. By Definition 30, losers of the auction receive zero utilities. From Theorem 27, every winner

wi bids to the platform the true value (csi , c
p
i ) and the payment pi to this winner is exactly the

supremum of all virtual bidding prices for her to win the auction. Therefore, it is guaranteed that

pi ≥ csi + c
p
i ǫ, which is equivalent to ui ≥ 0. Hence, the proposed pSRC auction is individual

rational.

In our INCEPTION framework, the platform reveals the exact value of the privacy budget ǫ

when workers receive their payments so that they can evaluate their utilities after participating and

confirm that their utilities are in fact non-negative. Next, we analyze the algorithmic properties of

the pSRC auction.

Theorem 29. The computational complexity of the proposed pSRC auction is O(N3 +N2K).

Proof. The main loop (line 2-7) of Algorithm 9 terminates in worst case after N iterations. In every

iteration, it takes O(N) time to find the worker with the minimum bidding price effectiveness (line

3), and at most K other iterations are needed to update the Q′ vector (line 6-7). Therefore, the

computational complexity of Algorithm 9 is O(N2 +NK).

Furthermore, the computational complexity of Algorithm 10 is O(N3+N2K), because there is

one more layer of loop that executes for N iterations in worst case. In conclusion, the computational

complexity of the pSRC auction is O(N3 +N2K).

Before analyzing the approximation ratio of the platform’s total payment generated by the

pSRC auction to the optimal total payment, we introduce Lemma 9 and 10 that are utilized in

the analysis. The two lemmas are directly related to the pSRC auction social cost minimization

(pSRC-SCM) problem defined as follows.

pSRC-SCM Problem:

min
∑

i:wi∈N

(csi + c
p
i ǫ)yi (5.26)
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s.t.
∑

i:wi∈N ,τj∈Γi

qi,jyi ≥ Qj , ∀τj ∈ T (5.27)

yi ∈ {0, 1}, ∀wi ∈ N (5.28)

The pSRC-SCM problem has the same set of inputs, constraints (including the inherent truth-

fulness and individual rationality constraints), and variables y = {y1, · · · , yN} as the pSRC-TPM

problem. Instead of the platform’s total payment, it minimizes the social cost, i.e.,
∑

i:wi∈S
(csi+c

p
i ǫ),

which is the sum of all winners’ costs.

Lemma 9. The optimal social cost of the pSRC-SCM problem, denoted as COPT, is a lower bound

of the optimal total payment of the pSRC-TPM problem, denoted as POPT.

Proof. Suppose (y∗,p∗) is the optimal solution to the pSRC-TPM problem. We have POPT =

∑
i:wi∈N

p∗i y
∗
i .

Since the pSRC-TPM problem and the pSRC-SCM problem have the same set of constraints,

(y∗,p∗) is also feasible to the pSRC-SCM problem. Furthermore, from individual rationality, we

have p∗i ≥ (csi + c
p
i ǫ)y

∗
i for every worker wi. Therefore, we have

COPT ≤
∑

i:wi∈N

(csi + c
p
i ǫ)y

∗
i ≤

∑

i:wi∈N

p∗i y
∗
i = POPT,

which means that COPT is a lower bound of POPT.

Then, we introduce Lemma 10 which is borrowed from [50] (Theorem 5 in [50]) with

some minor adaptations. Similar to [50], we introduce the following notations including η =

maxi,j:wi∈N ,τj∈T (c
s
i + c

p
i ǫ)qi,j |Γi| and m = 1

∆q

∑
j:τj∈T

Qj where ∆q is the unit measure of elements

in q and Q.

Lemma 10. The social cost generated by Algorithm 9 satisfies 2γHm-approximation to the optimal

social cost, i.e.,
∑

i:wi∈S

(csi + c
p
i ǫ) ≤ 2ηHmCOPT,

where Hm = 1 + 1
2 + · · ·+ 1

m
.

The proof to Lemma 10, which can be found in [50] is omitted in this chapter. We define
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ν = maxi,k:wi,wk∈N
csi+c

p
i ǫ

cs
k
+c

p
k
ǫ
, ρ = 1

∆q
maxi,j:wi∈N ,τj∈T qi,j |Γi|, and introduce the following Theorem 30

regarding the approximation ratio of the proposed pSRC auction in terms of the platform’s total

payment.

Theorem 30. The platform’s total payment generated by the proposed pSRC auction satisfies

2ρνηHm-approximation to the optimal total payment, i.e.,

∑

i:wi∈S

pi ≤ 2ρνηHmPOPT.

Proof. Based on Algorithm 10, for every winner wi there exists some worker wki such that

pi = (cski + c
p
ki
ǫ) ·

∑
j:τj∈Γi

min{Q′
j , qi,j}∑

j:τj∈Γki
min{Q′

j , qki,j}
,

where Q′
j denotes the element corresponding to task τj in the Q′ vector determined on line 6 of

Algorithm 10 when the worker wki is selected as a winner. Therefore, we have

∑

i:wi∈S

pi =
∑

i:wi∈S

(cski + c
p
ki
ǫ) ·

∑
j:τj∈Γi

min{Q′
j , qi,j}∑

j:τj∈Γki
min{Q′

j , qki,j}

≤ max
i:wi∈N

(csi + c
p
i ǫ) ·

(
1

∆q

∑

i:wi∈S

∑

j:τj∈Γi

qi,j

)

≤ |S| max
i:wi∈N

(csi + c
p
i ǫ) ·

(
1

∆q
max

i,j:wi∈N ,τj∈T
qi,j |Γi|

)

= ρ|S| max
i:wi∈N

(csi + c
p
i ǫ).

(5.29)

Furthermore, the social cost satisfies that

∑

i:wi∈S

(csi + c
p
i ǫ) ≥ |S| min

i:wi∈N
(csi + c

p
i ǫ). (5.30)

From Inequality (5.29) and (5.30), and Lemma 9 and 10, we have that

∑

i:wi∈S

pi ≤ ρ

(
max

i,k:wi,wk∈N

csi + c
p
i ǫ

csk + c
p
kǫ

)
∑

i:wi∈S

(csi + c
p
i ǫ)

= ρν
∑

i:wi∈S

(csi + c
p
i ǫ) ≤ 2ρνηHmPOPT.
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Therefore, the proposed pSRC auction satisfies 2ρνηHm-approximation to the optimal total

payment.

Note that there is a maxi∈N |Γi| factor in ρ and η, which could be large theoretically, and in

worst case equals to the number of tasks K. However, practically, as a worker wi typically has

a limited capability and interest in terms of the number of tasks she can and wants to execute,

maxi∈N |Γi| will be far less than K, which prevents the 2ρνηHm approximation ratio proved in

Theorem 30 from growing excessively large, in practice, as K increases. Thus far, this the best

approximation ratio we have found, and we leave the proof of its tightness or the derivation of a

better one, as well as the calculation of a lower bound for the approximation ratio, in our future

work.

5.3.3 Data Perturbation Mechanism

In this section, we introduce the design details of INCEPTION’s data perturbation mechanism, as

well as the corresponding analyses.

5.3.3.1 Proposed Mechanism

As previously mentioned, any adversary curious about workers’ data could try to infer them utilizing

the aggregated results if they are published directly. One example of such an adversary could be

another competing platform hosting similar sensing tasks. The portion of workers’ data inferred

with reasonable accuracy could be utilized by the adversary platform to calculate the results of

its own tasks. In this way, it could reduce the number of workers recruited by itself, and thus its

financial expense for worker recruiting.

To enable such inference, the adversary needs the information about workers’ weights, namely

λi,j ’s, defined in Equation (5.8). That is, it has to know α and θ, which is usually feasible for

the adversary platform. For similar sensing tasks, α is typically a common and standard design

choice across different platforms, and workers’ reliability levels for similar tasks tend to be similar

as well. Therefore, θ can also be effectively estimated or inferred by the adversary platform using

the methods mentioned in Section 5.2.3, such as utilizing workers’ sensory data about similar tasks

collected during its past interactions with them as in [69,78], using some of workers’ characteristics
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(e.g., reputation and experience for similar tasks) as in [63], and many others. To tackle such

inference attack, we propose a novel data perturbation mechanism in Algorithm 11 by tailoring the

Laplace mechanism in [29, 39] to our problem setting.

Algorithm 11: Data Perturbation Mechanism

Input: (x1, · · · , xN ), α, β, T , Tcon, x̃, δ;
Output: (x̂1, · · · , x̂N );

1 foreach j s.t. τj ∈ T do

2 if τj ∈ Tcon then

3 randomly sample a noise nj from Lap
(
0,− αj

lnβj

)
;

4 x̂j ← xj + nj ;

5 else

6 randomly sample a noise nj from Lap
(
0, 1

δj

)
;

7 x̂j ← sign(x̃j + nj);

8 return (x̂1, · · · , x̂N );

Apart from the the vector of the aggregated results (x1, · · · , xN ) output by the data aggregation

mechanism, the task and continuous task set T and Tcon, the same α and β vector as in Algorithm

8, 9, and 10, Algorithm 11 also takes as input the vector x̃, where each element x̃j corresponds to

one categorical task τj ∈ Tcat with

x̃j =
∑

i:wi∈S,τj∈Γi

(2θi,j − 1)xi,j . (5.31)

Clearly, for each categorical task τj ∈ Tcat, x̃j is its intermediate aggregated result before we

convert it to the binary label xj . Although not explicitly described, Algorithm 8 keeps track of

these intermediate results x̃j ’s so that they can be utilized by Algorithm 11. Additionally, the last

input parameter to Algorithm 11 is the vector δ, where each element δj ∈ (0, 1) is a platform-

chosen parameter corresponding to the privacy guarantee of a categorical task τj ∈ Tcat. For

each continuous task τj ∈ Tcon, Algorithm 11 independently samples a random noise nj from the

Laplacian distribution with mean 0 and scaling − αj

lnβj
, denoted as Lap

(
0,− αj

lnβj

)
(line 3), and adds

it to the aggregated result xj (line 4). For each categorical task τj ∈ Tcat, the algorithm randomly

samples a noise from the Laplacian distribution with mean 0 and scaling 1
δj
, denoted as Lap

(
0, 1

δj

)

(line 6), and the perturbed result x̂j of this task is calculated as sign(x̃j + nj) (line 7). Although
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adding Laplacian noise as in [29, 39] is a well-established approach to achieve differential privacy,

the scaling of the Laplacian distribution is application specific and has to be carefully designed to

achieve a desirable trade-off between privacy and data accuracy.

5.3.3.2 Analysis

We firstly analyze Algorithm 11’s accuracy guarantee for continuous tasks.

Theorem 31. For each continuous task τj ∈ Tcon, the data perturbation mechanism given in

Algorithm 11 satisfies

Pr
[∣∣X̂j −Xj

∣∣ ≥ αj

]
= βj . (5.32)

Proof. For each continuous task τj ∈ Tcon, we use Nj to denote the random variable representing

the random noise sampled from the Laplacian distribution Lap
(
0,− αj

lnβj

)
, i.e., Nj ∼ Lap

(
0,− αj

lnβj

)
.

Thus,

Pr
[∣∣X̂j −Xj

∣∣ ≥ αj

]
= Pr

[∣∣Nj

∣∣ ≥ αj

]
= 2Pr

[
Nj ≥ αj

]

= 2

∫ +∞

αj

− lnβj
2αj

exp

(
z lnβj
αj

)
dz = βj ,

which gives us Pr[|X̂j −Xj | ≥ αj ] = βj .

Theorem 31 states that (αj , βj)-accuracy is guaranteed for the perturbed result compared to

the original one before perturbation for every continuous task τj ∈ Tcon. However, our ultimate

goal is to achieve that the perturbed results has satisfactory accuracy compared to ground truths,

which is proved in the following Theorem 32.

Theorem 32. For each continuous task τj ∈ Tcon, the data perturbation mechanism given in

Algorithm 11 satisfies

Pr
[∣∣X̂j − x∗j

∣∣ ≥ 2αj

]
≤ 1− (1− βj)

2. (5.33)

Proof. As discussed in Section 5.3.1 and 5.3.2, the aggregated result for every continuous task

τj ∈ Tcon satisfies that Pr
[∣∣Xj − x∗j

∣∣ ≥ αj

]
≤ βj . From Theorem 31 and the fact that Xj − x∗j and

X̂j −Xj = Nj are two independent random variables, we have

Pr
[∣∣X̂j − x∗j

∣∣ > 2αj

]
≤ Pr

[∣∣X̂j −Xj

∣∣+
∣∣Xj − x∗j

∣∣ > 2αj

]
≤ 1− (1− βj)

2,

109



which gives us Pr[|X̂j − x∗j | ≥ 2αj ] ≤ 1− (1− βj)
2.

Therefore, Theorem 32 gives us that (2αj , 1− (1− βj)
2)-accuracy is satisfied for the perturbed

result of every continuous task τj ∈ Tcon compared to its ground truth. Next, we analyze Algorithm

11’s accuracy guarantee for categorical tasks.

Theorem 33. For each categorical task τj ∈ Tcat, the data perturbation mechanism given in Algo-

rithm 11 satisfies

Pr
[
X̂j 6= x∗j

]
≤ γj + 1

2
. (5.34)

Proof. For each categorical task τj ∈ Tcat, we have that

Pr
[
X̂j 6= x∗j

]
=Pr

[
X̃j +Nj ≥ 0|x∗j = −1

]
Pr
[
x∗j = −1

]
+ Pr

[
X̃j +Nj < 0|x∗j = +1

]
Pr
[
x∗j = +1

]
,

where X̂j denotes the random variable corresponding to x̃j , and Nj denotes the random variable

that represents the random noise sampled from the Laplacian distribution Lap
(
0, 1

γj

)
. Then, we

have that

Pr
[
X̃j +Nj ≥ 0|x∗j = −1

]
≤ 1− Pr

[
X̃j < 0|x∗j = −1

]
Pr
[
Nj < 0

]

< 1− 1− γj

2
=

1 + γj

2
,

where the last inequality is because of Pr
[
X̃j < 0|x∗j = −1

]
> 1 − γj which is an intermediate

result in the proof of Theorem 1 in [54]. Similar, we have that Pr
[
X̃j +Nj < 0|x∗j = +1

]
<

1+γj
2 .

Therefore, we have that

Pr
[
X̂j 6= x∗j

]
≤ γj + 1

2
, (5.35)

which exactly proves this Theorem.

By Theorem 33, we have that the final perturbed result of each categorical task τj ∈ Tcat satisfies

γj-accuracy compared to its ground truth with γj ∈ (0, 1). Next, in Theorem 34, we analyze the

privacy guarantee of the data perturbation mechanism.

Theorem 34. The data perturbation mechanism given in Algorithm 11 satisfies ǫ-differential pri-

vacy, where the privacy budget ǫ = max
{
maxj:τj∈Tcon

(
− lnβj

αj

)
, maxj:τj∈Tcat 2δj

}
.
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Proof. Similar to the proof of Theorem 31 and 33, we use Nj to denote the random variable

corresponding to the random noise nj sampled by Algorithm 11 for each task τj . For any O ⊆ R

and r ∈ R, we use O − r to denote the set {x′ = x − r|x ∈ O}, and x
(i)
j and x̂

(i)
j to denote the

aggregated result for task τj before and after perturbation when one worker wi’s data xi,j changes.

For each continuous task τj ∈ Tcon, we have
∣∣xj − x

(i)
j

∣∣ ≤ 1, and

Pr
[
X̂j ∈ O

]
= Pr

[
Nj ∈ O −Xj

]

=

∫

z∈O−Xj

− lnβj
2αj

exp

( |z| lnβj
αj

)
dz

≤ exp

(
− lnβj

αj

)∫

z∈O−X
(i)
j

− lnβj
2αj

exp

( |z| lnβj
αj

)
dz

= exp

(
− lnβj

αj

)
Pr
[
X̂

(i)
j ∈ O

]
.

For each categorical task τj ∈ Tcat, we use x̃
(i)
j to denote the value of x̃j when one worker wi’s

data xi,j changes, and clearly
∣∣xj − x

(i)
j

∣∣ ≤ 2. Thus, we have that

Pr
[
X̃j +Nj ∈ O

]
= Pr

[
Nj ∈ O − X̃j

]

=

∫

z∈O−X̃j

δj

2
exp

(
− δj |z|

)
dz

≤ exp
(
2δj
) ∫

z∈O−X̃
(i)
j

δj

2
exp

(
− δj |z|

)
dz

= exp
(
2δj
)
Pr
[
X̃

(i)
j +Nj ∈ O

]
.

As O could be any subset of R, we let O = [0,+∞), and get Pr[X̃j +Nj ≥ 0] ≤ exp(2δj)Pr[X̃
(i)
j +

Nj ≥ 0]. Thus, we have that

Pr
[
X̂j = +1

]

Pr
[
X̂

(i)
j = +1

] =
Pr
[
X̃j +Nj ≥ 0

]

Pr
[
X̃

(i)
j +Nj ≥ 0

] ≤ exp(2δj).

Similarly, by letting O = (−∞, 0), we have that

Pr
[
X̂j = −1

]

Pr
[
X̂

(i)
j = −1

] =
Pr
[
X̃j +Nj < 0

]

Pr
[
X̃

(i)
j +Nj < 0

] ≤ exp(2δj).
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Note that the previous analysis focuses on a specific task τj . The overall privacy budget considering

all tasks in T is thus ǫ = max
{
maxj:τj∈Tcon

(
− lnβj

αj

)
, maxj:τj∈Tcat 2δj

}
.

5.3.4 Summary of Design Details

Thus far, we have finished the description of the design details of INCEPTION. Its incentive mech-

anism (Section 5.3.2) selects a set of winners that are more likely to provide reliable data and

determines the payments to compensate their sensing and privacy costs. Meanwhile, it approxi-

mately minimizes the platform’s total payment (Theorem 30), and satisfies computational efficiency

(Theorem 29), truthfulness (Theorem 27), and individual rationality (Theorem 28). Incorporating

workers’ reliability levels, the data aggregation mechanism (Section 5.3.1) provides aggregated re-

sults with high accuracy (Corollary 2 and 3), and the data perturbation mechanism (Section 5.3.3)

adds carefully controlled noises to the aggregated results to achieve differential privacy (Theorem

34), and small degradation of aggregation accuracy (Theorem 31, 32, and 33).

Overall, INCEPTION guarantees max
{
maxj:τj∈Tcon

(
− lnβj

αj

)
, maxj:τj∈Tcat 2δj

}
-differential

privacy, (2αj , 1 − (1 − βj)
2)-accuracy for each continuous task τj ∈ Tcon (Theorem 32), and

γj+1
2 -

accuracy for each categorical task τj ∈ Tcat (Theorem 33). The platform could carefully select the

parameter αj , βj , γj , δj ∈ (0, 1) for every task τj to achieve satisfactory guarantee for aggregation

accuracy and workers’ privacy.

5.4 Performance Evaluation

In this section, we introduce the baseline methods, and simulation settings, as well as results.

5.4.1 Baseline Methods

Ideally we need to compare the proposed pSRC auction with a truthful and individual rational

auction that returns exact optimal solutions to the pSRC-TPM problem. However, because solving

the pSRC-TPM problem is notoriously challenging, we instead use the following VCG auction

[23,41] as one of the baseline methods. The VCG auction solves the pSRC-SCM problem optimally

and pays every winner according to the VCG payment. This choice is reasonable as the optimal

social cost offers a lower bound to the optimal total payment as proved in Lemma 9. Hence, a
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good approximation to the optimal social cost indicates a better approximation to the optimal

total payment.

Another baseline method is the bidding price effectiveness greedy (BPE-Greedy) auction. Ini-

tially, it sorts workers according to an increasing order of their bidding price effectiveness. Winners

are selected in this order until the feasibility of the pSRC-TPM problem is satisfied. Its pricing

mechanism pays every winner her critical payment as Algorithm 10 does. It is easily provable that

the BPE-Greedy auction also satisfies truthfulness and individual rationality.

Furthermore, we compare our weighted data aggregation mechanism with two other baseline

aggregation methods, namely the mean and median aggregation. For each continuous task, the

mean and median aggregation method simply utilizes, respectively, the mean and median of workers’

data as its aggregated result. For each categorical task, the median aggregation method also uses

the median of workers’ data as the tasks’ aggregated result, but the mean aggregation method

firstly calculates the mean of workers’ data about this task, and then takes the sign of the mean

as the aggregated result.

5.4.2 Simulation Settings

For simplicity of presenting our simulation results, in this chapter, we consider setting 5.I-5.IV

in Table 5.1 where the platform hosts only continuous tasks, and setting 5.V-5.VIII where the

platform hosts only categorical tasks. Note that, clearly, our INCEPTION framework is applicable

in the scenario where both continuous and categorical tasks are hosted by the platform.

For each continuous task τj , we generate worker wi’s data about this task, i.e., xi,j , from a

normal distribution with mean µi,j and standard deviation σi,j , truncated within the range [0, 1].

The value of θi,j for each continuous task τj is calculated by platform as

θi,j =
ci,jσi,j√

2π

(
2 exp

(−b2i,j
2σ2

i,j

)
− exp

(−a2i,j
2σ2

i,j

)
− exp

(−
(
1− ai,j

)2

2σ2
i,j

))

+ ci,jbi,j

(
Φ

(−ai,j
σi,j

)
+Φ

(
1− ai,j

σi,j

)
− 2Φ

(−bi,j
σi,j

))
,

where ci,j =
(
Φ
(1−µi,j

σi,j

)
− Φ

(
− µi,j

σi,j

))−1
, bi,j = µi,j − x∗j , ai,j = x∗j + bi,j , and Φ(·) denotes the

c.d.f. of the standard normal distribution. We omit the derivation for θi,j due to space limit. The
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parameter settings for the scenarios with only continuous tasks are given in Table 5.1.

Setting αj , βj csi , c
p
i µi,j , x

∗
j σi,j |Γ∗

i | N K

5.I (0, 0.1] [1, 2] [0, 1] [1, 2] [15, 20] [91, 120] 40

5.II (0, 0.1] [1, 2] [0, 1] [1, 2] [15, 20] 100 [21, 50]

5.III (0, 0.1] [1, 2] [0, 1] [1, 2] [25, 35] [2100, 5000] 500

5.IV (0, 0.1] [1, 2] [0, 1] [1, 2] [25, 35] 1000 [710, 1000]

Table 5.1: Simulation setting 5.I-5.IV (continuous tasks only)

In setting 5.I and 5.II, αj , βj , c
s
i , c

p
i , x

∗
j , µi,j , σi,j , and |Γ∗

i | are generated uniformly at random

from the intervals given in Table 5.1. The bundle Γ∗
i contains |Γ∗

i | tasks randomly chosen from T .

In setting 5.I, we fix the number of tasks as 40 and vary the number of workers from 91 to 120.

In contrast, we fix the number of workers as 100 and vary the number of tasks from 21 to 50 in

setting 5.II. In setting 5.III and 5.IV, αj , βj , c
s
i , c

p
i , x

∗
j , µi,j , σi,j , and |Γ∗

i | are generated in the same

way as in setting 5.I and 5.II from the intervals given in Table 5.1. Different from the previous two

settings, setting 5.III and 5.IV take instances with larger sizes, given in Table 5.1, as inputs. Next,

we give our parameter settings for the scenarios with only categorical tasks in Table 5.2.

Setting γj , δj csi , c
p
i x∗

j θi,j |Γ∗
i | N K

5.V (0, 0.1] [1, 2] {−1,+1} (0, 1) [15, 20] [91, 120] 40

5.VI (0, 0.1] [1, 2] {−1,+1} (0, 1) [15, 20] 100 [21, 50]

5.VII (0, 0.1] [1, 2] {−1,+1} (0, 1) [25, 35] [2100, 5000] 500

5.VIII (0, 0.1] [1, 2] {−1,+1} (0, 1) [25, 35] 1000 [710, 1000]

Table 5.2: Simulation setting 5.V-5.VIII (categorical tasks only)

In setting 5.V and 5.VI, γj , δj , c
s
i , c

p
i , x

∗
j , θi,j , and |Γ∗

i | are generated uniformly at random from

the intervals given in Table 5.2. The bundle Γ∗
i contains |Γ∗

i | tasks randomly chosen from T . In

setting 5.V, we fix the number of tasks as 40 and vary the number of workers from 91 to 120. In

contrast, we fix the number of workers as 100 and vary the number of tasks from 21 to 50 in setting

5.VI. In setting 5.VII and 5.VIII, the parameters γj , δj , c
s
i , c

p
i , x

∗
j , θi,j , and |Γ∗

i | are generated in

the same way as in setting 5.V and 5.VI from the intervals given in Table 5.2. Different from the

previous two settings, setting 5.VII and 5.VIII take instances with larger sizes as inputs. Note that

we leave the study of the values of these paramters in real-world scenarios in our future work. The

optimal solutions to the pSRC-SCM problem are computed using the GUROBI solver [6].
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5.4.3 Simulation Results

Figure 5.2-5.7 show our simulation results on setting 5.I-5.IV with only continuous tasks. Figure

5.2 and 5.3 show that the platform’s total payment of the pSRC auction is far less than that of the

BPE-Greedy auction and close to the optimal social cost given by the VCG auction. As the optimal

social cost lower bounds the optimal total payment, the pSRC auction gives us close-to-optimal

total payment. Next, we compare the execution time of the VCG and the BPE-Greedy auction.
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Figure 5.2: Platform’s total
payment (setting 5.I)
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Figure 5.3: Platform’s total
payment (setting 5.II)
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Figure 5.4: Platform’s total
payment (setting 5.III)
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Figure 5.5: Platform’s total
payment (setting 5.IV)
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Figure 5.6: MAE of data ag-
gregation (continuous tasks)
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Figure 5.7: EP after pertur-
bation (continuous tasks)

From Table 5.3, we observe that the VCG auction has excessively long running time so that

it can hardly be utilized in practice. The running time of the VCG auction lower bounds that of

the auction that gives us the optimal total payment, because solving the pSRC-SCM problem is in

fact easier and faster than solving the pSRC-TPM problem. Hence, calculating the optimal total

payment becomes computationally infeasible in practice. However, the execution time of the pSRC

auction keeps in the order of microsecond, which is much less that of the VCG auction.

In Figure 5.4 and 5.5, we show our simulation results about the platform’s total payment for

setting 5.III and 5.IV with larger-size problem instances where the VCG auction is not able to
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N 91 95 99 103 107 111 115 119

VCG 20.23 79.11 227.5 257.7 308.7 836.4 1199 1537

pSRC 0.008 0.009 0.007 0.008 0.008 0.006 0.007 0.006

K 21 25 29 33 37 41 45 49

VCG 0.300 6.676 13.09 30.60 1063 1160 1330 1677

pSRC 0.003 0.005 0.003 0.007 0.009 0.009 0.003 0.003

Table 5.3: Execution time (seconds) for setting 5.I and 5.II

terminate in reasonable time. We can observe that the proposed pSRC auction still gives us a total

payment far less than that of the BPE-Greedy auction.
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Figure 5.8: Platform’s total
payment (setting 5.V)
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Figure 5.9: Platform’s total
payment (setting 5.VI)
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Figure 5.10: Platform’s total
payment (setting 5.VII)
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Figure 5.11: Platform’s total
payment (setting 5.VIII)
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Figure 5.12: MAE of data ag-
gregation (categorical tasks)
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Figure 5.13: EP after pertur-
bation (categorical tasks)

We evaluate the accuracy guarantee of INCEPTION in setting 5.II with a minor change of the

parameter βj , i.e., βj is fixed as 0.05 for every task τj to simplify presentation. We compare the

mean absolute error (MAE) for all tasks, defined as MAE = 1
K

∑
j:τj∈T

|xj − x∗j |, of the weighted

aggregation mechanism given in Algorithm 8 with those of the mean and median aggregation.

The simulation for each combination of worker and task number is repeated for 10000 times and

the means and standard deviations of the MAEs are plotted. We observe from Figure 5.6 that

the MAE of our weighted aggregation is far less than those of the mean and median aggregation.

Then, we show simulation results regarding Pr[|X̂j − x∗j | ≥ αj ], referred to as the error probability
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(EP) of the perturbed results for task τj . After 10000 repetitions of the simulation for any specific

combination of worker and task number, empirical values for the EPs are calculated and we plot

the means and standard deviations of the empirical EPs over all tasks.

Next, we show our simulation results for setting 5.V-5.VIII with only categorical tasks in Figure

5.8-5.13, which share similar trends as Figure 5.2-5.7. The simulation setting for Figure 5.12 and

5.13 is the same as setting 5.IV except that γj and δj for each task τj are fixed as 0.1. In Figure

5.13, EP is defined as Pr[X̂j 6= x∗j ], whose empirical value is calculated in the same way as that for

a continuous task in Figure 5.7.

N 91 95 99 103 107 111 115 119

VCG 7.397 25.31 115.5 225.6 312.4 517.4 1059 1105

pSRC 0.016 0.018 0.018 0.019 0.020 0.019 0.021 0.024

K 21 25 29 33 37 41 45 49

VCG 5.400 16.33 33.90 500.4 735.9 1050 1100 1507

pSRC 0.016 0.017 0.019 0.019 0.020 0.021 0.023 0.024

Table 5.4: Execution time (seconds) for setting 5.V and 5.VI

Furthermore, we show in Table 5.4 the comparison between the execution time of the VCG

and the BPE-Greedy auction for setting 5.V and 5.VI. Clearly, similar to Table 5.3, Table 5.4 also

shows that execution time of the pSRC auction is much less that of the VCG auction.

5.5 Related Work

As previously mentioned, different from most of the prior work [20, 22, 27, 28, 31–33, 35, 37, 43–45,

50, 51, 54, 57, 58, 60, 62, 66, 67, 71–75, 82, 86, 88, 89, 91, 92, 95, 97, 98, 100, 106, 107, 110–113, 115–124],

we explicitly incorporate workers’ reliability and privacy costs (motivated by [34, 39]) into the

incentive mechanism and provide an integrated design of the incentive, data aggregation, and data

perturbation mechanism.

One line of past literature [56,64,65,79,90,103–105] investigate privacy-preserving data collec-

tion or aggregation in mobile sensing or other various application scenarios. Unlike this chapter,

most of them [56, 64, 65, 79, 90] do not consider the issue of incentives. [103–105] protect work-

ers’ privacy against an untrusted platform, whereas, in this chapter, we consider the platform

as trusted, and preserve workers’ privacy from the adversaries outside the MCS system who try

to infer workers’ data using the publicly available aggregated results. Another set of existing

117



work [51, 66, 67, 71, 86, 97], related but orthogonal to this chapter, studies privacy-preserving in-

centive mechanisms for mobile sensing systems. Instead of data privacy, they protect workers’

anonymity [66, 67, 86] or bid privacy [51, 71, 97] within the incentive mechanisms.

5.6 Conclusion

In this chapter, we propose INCEPTION, a novel MCS system framework that integrates an in-

centive, a data aggregation, and a data perturbation mechanism. Its incentive mechanism selects

reliable workers, and compensates their costs for sensing and privacy leakage, which meanwhile sat-

isfies truthfulness and individual rationality. Its data aggregation mechanism incorporates workers’

reliability to generate highly accurate aggregated results, and its data perturbation mechanism en-

sures satisfactory guarantee for workers’ privacy, as well as the accuracy for the final perturbed

results. The desirable properties of INCEPTION are validated through both theoretical analysis

and extensive simulations.
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Chapter 6

Conclusions and Future Work

In this section, I conclude the thesis by first summarizing the research findings, and then discussing

future research directions.

6.1 Summary

In this thesis, I develop four incentive mechanisms to serve the objective of effectively stimulating

worker participation in MCS systems, with each of them focusing on one or multiple crucial facets,

such as QoI awareness and preservation of workers’ bid or data privacy. Note that although I

focus on MCS systems in this thesis, the various proposed incentive mechanisms could potentially

be utilized to incentivize participation in general-purpose crowdsourcing systems (e.g., Amazon

Mechanical Turk), as well, after minor adaptations.

6.1.1 QoI Aware Incentive Mechanisms for MCS Systems

The first issue that I consider in the design of incentive mechanisms is QoI awareness. As low

quality sensory data could possibly lead to inaccurate aggregated sensing results or false decisions

by the platform, which could eventually result in invaluable loss, QoI is clearly an important metric

that should be considered, but has been ignored by most of the prior work. Therefore, in Chapter

2, I propose QoI aware incentive mechanisms, which adopt reverse auction-based frameworks, and

tackle workers’ strategic behavior. Specifically, the proposed mechanisms yield close-to-optimal

social welfare in a computationally efficient manner, which meanwhile satisfy other crucial desirable

properties, namely truthfulness and individual rationality.
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6.1.2 Incentivizing Multi-Requester Mobile Crowd Sensing

The second issue addressed in this thesis is to effectively incentivize participation in MCS systems,

where three parties, including the data requesters, a platform, as well as a crowd of participating

workers co-exist, which is a different and, in fact, more practical scenario compared to the one

considered in most of the past literature, where there is only one data requester who also serves

as the platform in the MCS system. To achieve this end, in Chapter 3, I propose CENTURION,

a double auction-based incentive mechanism, which involves auctions among not only the workers,

but also the data requesters, and is able to incentivize the participation of both data requesters and

workers. I show through rigorous theoretical analyses that the proposed mechanism bears many

desirable properties, including truthfulness, individual rationality, computational efficiency, as well

as non-negative social welfare.

6.1.3 Bid Privacy-Preserving Incentive Mechanism for MCS Systems

In practice, although the platform is oftentimes considered to be trusted, there usually exist honest-

but-curious workers who strictly follow the protocol of the system, but try to infer information about

other workers’ bids in auction-based incentive mechanisms. Therefore, the third issue considered

in this thesis is to prevent workers from being disincentivized by excessive leakage of bid privacy.

To address this issue, I propose, in Chapter 4, a bid privacy-preserving incentive mechanism for

MCS systems. I incorporate the notion of differential privacy, and ensure that the change in any

worker’s bid will not bring a significant change to the mechanism’s payments to participating

workers. Apart from preserving the privacy of workers’ bids, the proposed mechanism also bears

a suite of other desirable properties, including approximate truthfulness, individual rationality,

computational efficiency, as well as yielding a guaranteed approximation ratio to the platform’s

optimal total payment.

6.1.4 Incentivizing Privacy-Preserving Data Aggregation in MCS Systems

Besides the issue of bid privacy discussed in Chapter 4, participating workers in MCS systems

usually face, as well, another type of equally possible and severe privacy breach, which is the

leakage of their data privacy. Therefore, it is entirely necessary for an MCS system to contain a data
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perturbation module that preserves workers’ data privacy by carefully perturbing the aggregated

results before they are published. In real practice, the various modules of an MCS system are far

from isolated, but, in fact, interact with each other, and thus affect each other’s design.

Thus, with this point in mind, in Chapter 5, I propose INCEPTION, which is the first integrated

framework for MCS systems with an incentive, a data aggregation, and a data perturbation mech-

anism. Specifically, INCEPTION has an auction-based incentive mechanism that selects reliable

workers and compensates their costs for both sensing and privacy leakage, which meanwhile satis-

fies truthfulness and individual rationality, and minimizes the platforms total payment for worker

recruiting with a guaranteed approximation ratio. The data aggregation mechanism of INCEP-

TION also incorporates workers’ reliability and generates highly accurate aggregated results. Its

data perturbation mechanism ensures satisfactory guarantee for the protection of workers privacy,

as well as the accuracy of the final perturbed results.

6.2 Future Research Directions

I envision that applications based on crowd sensing will continue to gain increasingly great popu-

larity in the future, and eventually become integral parts of people’s everyday living and working.

This will bring us great opportunities as well as new challenges. I will continue my exploration

and research efforts, especially in regard to effectively incentivizing worker participation in MCS

systems. Below, I list a few problems I am keenly interested in exploring next.

First, although I focus on designing mechanisms that provide monetary incentives in this thesis,

there exist various types of non-monetary incentives (e.g., the aggregated results of interest to

workers, enhanced quality of service), which could potentially be very useful to incentivize worker

participation. Thus, the first research task that I aim to carry out is to explore the possibility of

incentivizing worker participation in MCS systems more effectively by exploiting both monetary

and non-monetary incentives.

Second, in order to identify truthful values from crowd workers’ noisy or even conflicting sensory

data, truth discovery algorithms [68–70, 78, 96, 101], which jointly estimate workers’ data quality

and the underlying truths through quality-aware data aggregation, have drawn significant attention.

However, the power of truth discovery algorithms could not be fully unleashed in MCS systems,
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unless the platform properly deals with workers’ strategic reduction of their costly sensing effort

(e.g., time, resources, attention), which inevitably deteriorates the quality of their sensory data, and

further impairs the aggregation accuracy. To address this problem, a feasible solution is to utilize

a carefully-designed payment mechanism that offers sufficient amount of payments to incentivize

high-effort sensing from workers, which meanwhile keeps the overall payment below a budget.

Third, in practice, not only is a worker’s QoI typically unknown a priori, but also may the

workers, as well as the deadline-sensitive sensing tasks arrive sequentially in an online manner. In

this case, workers’ QoI has to be estimated over time, as the tasks are allocated, usually with the

lack of ground truths to verify the quality of workers’ sensory data. Therefore, the third research

task that I aim to explore in the future is to integrate QoI estimation into the incentive mechanism,

which enables the platform to learn workers’ QoI over time, and further dynamically adjusts worker

selection, as well as the payments to workers, according to the estimated QoI.

Additionally, there are many other research opportunities waiting for us to explore, such as

boosting the performance of machine learning algorithms (e.g., regression, classification, deep learn-

ing) when data sources are strategic, the detection of and defense against malicious user in crowd

sensing systems, and so forth.

I seek to resolve these challenges through not only independent but also collaborative work using

all kinds of analytic tools such as game theory, algorithm, machine learning, and optimization. I

believe these researches can give rise to and benefit tremendously a whole new range of crowd

sensing-based applications, making our world safer, smarter and better.
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