
c© 2017 Arash Khatibi

GENERALIZED SEQUENTIAL ASSIGNMENT PROBLEM

BY

ARASH KHATIBI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Industrial Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

Professor Xin Chen, Chair
Professor Sheldon H. Jacobson, Director of Research
Professor David A. Forsyth
Professor Richard Sowers

ABSTRACT

The Sequential Stochastic Assignment Problem (SSAP) deals with assigning sequentially

arriving tasks with stochastic parameters to workers with fixed success rates. The reward of each

assignment is the product of the worker’s success rate and the task value assigned to the worker.

The objective is to maximize the total expected reward. There has been a surge of interest in

studying sequential assignment problems due to their applications in online matching markets,

asset selling, and organ transplant.

This dissertation studies several variations of SSAP by relaxing the main assumptions. The

first part assumes that the workers’ success rates are random values coming from a known

distribution. This generalization modifies the SSAP from a problem with a single random value

(i.e., the task value) at each stage to an online matching problem with several random parameters

(i.e., the task value and the workers’ success rates). The optimal assignment policy uses backward

induction to first solve smaller subproblems, and then use them to optimally assign tasks to

workers from the first stage. An approximation algorithm is proposed that achieves a fraction of

the optimal reward in a polynomial time.

Assuming that the value of sequentially arriving elements are independently drawn from a

known distribution is unrealistic in many applications. The second part of thesis relaxes this

assumption and uses the well-known Secretary Problem to derive constant-competitive algorithms

for SSAP with tasks having a random arrival order. Several deterministic and randomized

algorithms are proposed and their performance are compared with the maximum offline reward.

These algorithms use the first stages of the problem as a training phase to compute thresholds for

the task values. These thresholds are used to assign tasks to workers after the training phase.

The third part uses the linear programming technique to derive bounds on the performance of

optimal policy for several variations of SSAP. Formulating an online matching problem as a

ii

linear program is a useful tool. In addition to deriving bounds on performance of optimal policies,

the linear programming technique can be used to formulate extensions of the problem as linear

programs by simple changes in the objective function and constraints of the basic formulation.

The linear programming formulation of the incentive compatible problem and the sequential

assignment problem with unknown number of elements are also proposed. The edge-weighted

online bipartite matching problem is used to design assignment policies for each of the

formulated problems.

The last part relaxes the assumption that at most one task must be assigned to each worker in

SSAP. It is assumed that a worker is available for possible future assignments after performing

the previously assigned task. The number of stages that the worker is not available due to a prior

task assignment is referred to as the task duration. This problem is studied under various models

for the task duration. First, it is assumed that the task duration is fixed. Then, assignment policies

are proposed for the problem with a memoryless model for the task duration. The proposed

algorithms are extensions of the optimal algorithm for the sequential assignment problem. They

divide the n-stage assignment process to periods whose lengths are equal to the expected task

duration. Then, they assign tasks to workers in each period by applying the optimal algorithm of

the sequential assignment problem.

iii

To my parents, for their love and support.

iv

ACKNOWLEDGMENTS

I would like to thank my adviser, Professor Sheldon H. Jacobson for his continual guidance and

support. In addition to involving me in interesting research topics, his help in the time of need and

respect for his group members is invaluable.

I am grateful for the time and insightful comments of my PhD final examination committee

members, Professor Xin Chen, Professor David A. Forsyth, and Professor Richard Sowers.

I am thankful to the faculty and staff of the Department of Industrial and Enterprise Systems

Engineering and the Department of Computer Science at University of Illinois. I am very

thankful to Professor Ramavarapu S. Sreenivas, Holly Kizer, Mary Beth A. Kelley, Elaine

Wilson, and Viveka Perera.

I am grateful to the several sources who provided funding throughout my PhD studies. The

research presented in this thesis has been supported in part by the Air Force Office of Scientific

Research (FA9550-15-1-0100). Any opinion, findings, and conclusions or recommendations

expressed in this material are those of the author and do not necessarily reflect the views, official

policy or position of the Air Force Office of Scientific Research. I would also like to thank the

Department of Industrial and Enterprise Systems Engineering and the Department of Computer

Science at University of Illinois who provided funding to me as a teaching assistant.

I would like to extend my sincere gratitude to my labmates, Ge Yu, Hee Youn Kwon, Wenda

Zhang, Rahul Swamy, Shouvik Dutta, Douglas M. King, Estelle Kone, and David Morrison, for

their help during the past six years. Special thanks to Golshid Baharian and Banafsheh Behzad

who helped me in the first days of joining Professor Jacobson’s group and to my dear friend,

Jason Sauppe, for his friendship and company during these years.

I would also like to thank my old friends, Omid Zobeiri, Houshmand Shirani-mehr, Bahram

Ehsandoust, Mahdi Mirhosseini, Alborz Rezazadeh, Amirreza Safaripour, and my brother,

v

Amirreza Khatibi. Special thanks to Aliakbar Daemi for being both a friend and a role model.

Lastly, thanks to my wife, Maryam Kazerooni, for her unconditional support.

vi

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF ABBREVIATIONS . x

CHAPTER 1 INTRODUCTION . 1
1.1 The Optimal Policy of SSAP . 1
1.2 Applications . 3
1.3 Motivation and Contribution . 4
1.4 Outline . 8

CHAPTER 2 LITERATURE REVIEW . 9

CHAPTER 3 DOUBLY STOCHASTIC SEQUENTIAL ASSIGNMENT PROBLEM . . . 14
3.1 Introduction . 14
3.2 Optimal Policies For DSSAP . 16

3.2.1 DSSAP with One Worker . 17
3.2.2 DSSAP with IID Random Success Rates 20

3.3 The DSSAP Algorithms . 24
3.3.1 The DSSAP Algorithm . 24
3.3.2 The DSSAP Ranking Algorithm . 28

3.4 Numerical Experiments . 33
3.4.1 DSSAP with one worker . 33
3.4.2 SSAP with multiple arriving tasks . 35
3.4.3 DSSAP with IID success rates . 35
3.4.4 DSSAP algorithms . 36

3.5 Summary . 37

CHAPTER 4 GENERALIZED SEQUENTIAL ASSIGNMENT PROBLEM 39
4.1 Introduction . 39
4.2 The Secretary Problem and The Sequential Stochastic Assignment 41

4.2.1 The Multiple Choice Problem . 43
4.2.2 Uncertain Employment . 43
4.2.3 Time Discounting . 44
4.2.4 Infinite Problem . 45
4.2.5 Random Number of Elements . 46

vii

4.3 Algorithms for Generalized SSAP Using the Weighted Secretary Problem 47
4.3.1 The Recursive Interval Reservation Algorithm (RIRA) 48
4.3.2 The Determinstic Dividing Algorithm (DDA) 52
4.3.3 The Random Dividing Algorithm . 56

4.4 GSSAP with a time-dependent reward . 62
4.5 SSAP With General Reward Functions . 64
4.6 Summary . 65

CHAPTER 5 THE LINEAR PROGRAMMING TECHNIQUE 67
5.1 Introduction . 67
5.2 Linear Programming Formulation of the Sequential Assignment Problem 69

5.2.1 The Sequential Assignment Problem . 69
5.2.2 The Linear Programming Formulation . 70

5.3 The Optimal Algorithm . 72
5.4 Incentive Compatibility . 74
5.5 The Incentive Compatible Algorithm . 77
5.6 Unknown Number of Elements . 78
5.7 Online Linear Programming Formulation . 80
5.8 Summary . 82

CHAPTER 6 DYNAMIC SEQUENTIAL ASSIGNMENT 84
6.1 Introduction . 84
6.2 Fixed Task Duration . 84
6.3 Geometric Model . 86

6.3.1 Task Distribution Known . 87
6.3.2 Tasks with a Random Arrival Order . 89

6.4 Random Arrival of Tasks . 91
6.5 Summary . 93

CHAPTER 7 CONCLUSION AND FUTURE WORK 95

REFERENCES . 99

viii

LIST OF TABLES

3.1 Summary of the problems discussed in this chapter 16
3.2 Summary of the results . 16
3.3 List of notations used in Chapter 3 . 17
3.4 The performance of the expectation and the optimal policies for DSSAP with

one worker with a uniform success rate (Theorem 2) 34
3.5 The performance of the expectation and the optimal policies for DSSAP with

one worker with a Gamma success rate (Theorem 2) 34
3.6 The performance of ranking the tasks by the expected value and the optimal

policy for the SSAP with multiple arriving tasks (Theorem 4) 35
3.7 The performance of the expectation and Greedy policies for the DSSAP with

IID uniform random success rates (Theorem 5) 36
3.8 The performance of the expectation and the Greedy policies for the DSSAP

with IID exponential random success rates (Theorem 5) 36
3.9 The performance of the DSSAP, the DSSAP Ranking, and the randomized

DSSAP Ranking Algorithms for Uniform task and Gamma random success rates . 37

5.1 List of notations used in Chapter 5 . 70

ix

LIST OF ABBREVIATIONS

CDF Cumulative Distribution Function

DSSAP Doubly Stochastic Sequential Assignment Problem

GSSAP Generalized Sequential Stochastic Assignment Problem

IID Independent and Identically Distributed

LP Linear Programming

PDF Probability Density Function

SSAP Sequential Stochastic Assignment Problem

x

CHAPTER 1

INTRODUCTION

The Sequential Stochastic Assignment Problem (SSAP) assigns sequentially arriving tasks to a

set of workers so as to maximize the expected value of a reward function [19]: There are n

sequentially arriving tasks with random values that must be optimally assigned to n workers with

fixed success rates. Associated with the jth arriving task is a random variable Xj and a value xj ,

which is revealed upon its arrival. The tasks’ associated random variables are assumed to be

independent and identically distributed (IID). The reward of each assignment is the product of

the worker’s success rate and the task value assigned to the worker. The objective is to maximize

the expected sum of the assignment rewards. The number of tasks and the distribution of the

task’s random variable are known. The main challenge is that the decision-maker irrevocably

assigns each arriving task to one of the workers, without knowing the future task values. This

formulation of SSAP is referred to as the SSAP basic formulation throughout this thesis. The

optimal policy for the SSAP is threshold-based. If there are n tasks to be assigned, the task

distribution is used to compute n+ 1 interval thresholds. Each task is then assigned to a worker

based on the interval that the task value is placed [19].

This chapter describes the optimal policy of the basic formulation of SSAP (Section 1.1).

Section 1.2 reviews several applications of SSAP. Chapter 1.3 presents the objective of this

dissertation and briefly describes the contributions. The outline of the remaining chapters is

presented in Section 1.4.

1.1 The Optimal Policy of SSAP

Let xj denote the random value associated with the jth arriving task and pi denote the fixed

success rate of the ith worker. The reward of assigning the jth arriving task to the ith worker is

1

pixj , where xj is the realized value of the jth task. The total expected reward is given by

E[
n∑
j=1

pijxj], (1.1)

where ij denotes the index of the worker assigned to the jth task. The objective is to assign the n

tasks to the n workers such that the total expected reward is maximized. Theorem 1 describes the

optimal assignment policy for the SSAP.

Theorem 1. [19] For each n ≥ 1, there exists numbers

−∞ = a0,n ≤ a1,n ≤ ... ≤ an,n = +∞,

such that whenever there are n workers (with p1 ≤ p2 ≤ ... ≤ pn) to be assigned to n tasks, then

the optimal choice in the initial stage is to use pi if the random variable X1 is contained in the

interval (ai−1,n, ai,n], i = 1, 2, ..., n. The ai,n depend on FX (the CDF of tasks associated

random variable), but do not depend on the {pi}. Furthermore, ai,n is the expected value, in an

(n− 1) stage problem, of the quantity assigned to the ith smallest p (assuming an optimal policy

is being followed), and the total expected reward is given by

n∑
i=1

ai,n+1pi. (1.2)

The constants {ai,n} are computed recursively, as described in Corollary 1. The interval

thresholds depend on the number of tasks and the tasks distribution, but are independent of the

workers’ success rates.

Corollary 1. [19] Define a0,n = −∞ and an,n = +∞. Then

ai,n+1 =

∫ ai,n

ai−1,n

x dFX(x) + ai−1,nFX(ai−1,n) + ai,n(1− FX(ai,n)), (1.3)

for i=1,2,...,n, where −∞.0 and +∞.0 are both defined to be 0.

The proof of the optimality is based on induction and uses Hardy’s Lemma.

2

Lemma 1. (Hardy’s Lemma). If x1 ≤ x2 ≤ ... ≤ xn and y1 ≤ y2 ≤ ... ≤ yn are sequences of

numbers, then

max
(i1,i2,...,in)∈P

n∑
j=1

xijyj =
n∑
j=1

xjyj (1.4)

where P is the set of all permutations of the integers (1, 2, ..., n).

Hardy’s Lemma indicates that the maximum sum is achieved when the largest of the x’s and

y’s are paired, the second largest are paired, and so on until the smallest of them are paired.

The optimal policy of SSAP is threshold-based. This means that a set of thresholds are

computed and tasks are assigned to workers by comparing the task values to thresholds. Since the

task values are drawn from a known distribution, the thresholds are computed prior to the

assignment process. When there is no prior information on task values, there must be a training

phase to compute thresholds, after which the assignment process starts.

1.2 Applications

SSAP is an online matching problem and has applications in several areas such as online

matching markets, organ transplant, and house hunting. Online matching problems have been

extensively studied in recent years due to their application in online advertising.

In an online matching market, a set of sequentially arriving items must be matched to buyers.

Workers in SSAP correspond to buyers (bidders) while the workers’ success rates correspond to

bids. For example, the Adwords market is a large auction where companies bid for keywords.

The objective it to determine what advertisements to display with each query to maximize the

profit [45].

The organ transplant problem seeks to match a set of sequentially arriving donors to patients

such that a reward function, defined based on the probability of successful transplants, is

maximized [59]. Donors in the organ transplant correspond to tasks in the SSAP and patients

correspond to workers. The reward function is defined based on the probability of successful

transplant and the life expectancy following the transplantation.

3

In the house hunting problem, a sequence of offers are made for a set of houses [19]. The

decision maker must either accept or reject each offer to maximize the total profit. Matching

requesters and workers in a crowdsourcing market, such as the Amazon Mechanical Turk, and

assigning passengers to screening devices in an airport are other applications of SSAP

[39, 44, 43].

1.3 Motivation and Contribution

The basic formulation of SSAP is a simple model for most of the described applications. For

example, SSAP assumes that the arriving donors in the organ transplant problem can be modeled

by a single value coming from a known distribution. In an online matching market, SSAP

assumes that at most one item is sold to each bidder and the number of bidders is known prior to

the assignment process.

The objective of this dissertation is to relax the main assumptions in the basic formulation of

SSAP. Fixed workers’ success rates, task values coming from a known distribution, and the

one-time assignment of tasks to any of the workers (i.e., the assumption that at most one task is

assigned to each worker) are three main assumptions of SSAP. Relaxing these three assumptions

is the main contribution of this dissertation. Moreover, several variations of SSAP are formulated

as linear programs and the linear programming technique is used to derive upper bounds on the

performance of any assignment policy.

The first part of this thesis relaxes the assumptions that the workers’ success rates are fixed.

Due to randomness in both the task values and the workers’ success rates, this problem is referred

to as the Doubly Stochastic Sequential Assignment Problem (DSSAP). DSSAP can be considered

as an online matching market where each of the n buyers has a valuation for each of sequentially

arriving elements. The objective is to assign each of the online arriving elements to one buyer

such that the total profit is maximized. First, several special cases of DSSAP are presented and

the optimal policy of each problem is proposed. The optimal policy for DSSAP with one worker

(and n tasks) transforms the randomness from workers to tasks and uses the optimal policy of

SSAP. Then, the Greedy Algorithm is proven to be optimal for DSSAP with IID success rates.

4

The optimal assignment policy for the general case with no assumptions on the success rate

distributions is derived. The optimal algorithm uses backward induction to find the optimal

assignment policy for each subset of workers. Then, the optimal solution of smaller problems is

used to determine the optimal assignment from the first stage. Due to computational complexity

of the optimal policy, an efficient approximation algorithms is proposed. The approximation

algorithm ranks the workers based on their expected success rates and assumes higher assignment

priority for workers with larger expected success rates.

The second part of this dissertation relaxes the assumption that task values are independently

drawn from a given distribution. No prior information on task values is assumed (which is

equivalent to assuming that task values are selected by an adversary). However, it is assumed that

tasks have a random arrival order.

Definition 1. A set of n sequentially arriving values have a random arrival order if the ith

element is the jth largest value with probability 1
n

for i, j = 1, 2, ..., n.

SSAP with no prior information on task values is referred to as the Generalized Sequential

Stochastic Assignment Problem (GSSAP). GSSAP is a generalization of the well-known

Secretary Problem. The Secretary Problem seeks to hire a secretary among a known number of

sequentially arriving candidates in an optimal manner. GSSAP can be considered as a Secretary

Problem where all arriving secretaries are hired and assigned to various positions, with the reward

of each assignment defined as the product of the quality of the secretary and the weight of the

position. The Weighted Secretary Problem is used to design assignment policies for GSSAP. The

reward of an algorithm for an online matching problem without any prior information on the

values of the online elements depends on the input sequence. Therefore, the proposed algorithms

are evaluated by their competitive ratios.

Definition 2. An algorithm is α-competitive if its expected reward is at least 1
α

times the optimal

offline reward, where the optimal offline reward is the maximum reward achieved when all

elements are known in advance.

Several constant competitive algorithms for GSSAP are proposed. Similar to the optimal

policy of SSAP, the proposed algorithms for GSSAP are threshold-based. However, while the

5

interval thresholds of SSAP are computed prior to the assignment process using the task’s

distribution, the GSSAP algorithms use the first stages of the problem as a training phase to learn

task values and compute thresholds. This defines a new question for GSSAP: How to assign the

tasks arriving in the training phase? This dissertation suggests several answers to this question.

The first idea is to assign the first arriving tasks to workers with smallest success rates. The

intuition behind this idea is that you do not lose any of the workers with larger success rates while

learning the task values. The second policy deterministically divides the workers to two sets with

approximately the same quality (i.e., one of the best two workers is assigned to each group, one

of the next two best is assigned to each group, and so on). Then, the tasks in the training phase

are assigned to the first group. This provides the possibility of assigning the tasks with large

values arriving in the training phase to workers with large success rates selected for the first

group. Finally, a randomized algorithm divides the workers to two sets to improve fairness.

However, the cost of providing the possibility of assigning each of the arriving tasks to any of the

n workers is a slight decrease in the achieved reward.

The linear programming technique is a very useful tool in studying online matching problems.

Formulating the sequential assignment problem as a linear program provides the possibility of

deriving bounds on the performance of optimal policies. Moreover, various extensions of the

problem can be modeled by simple changes in the objective function and constraints. The third

part of this dissertation formulates several extensions of the sequential assignment problem as

linear programs. Instead of defining the reward of each assignment as the product of the task

value and the worker’s success rate, the linear programming formulation assumes a binary reward

function: Assigning the ith largest task value to the worker with the ith largest success rate (for

i = 1, 2, ..., n) is referred to as a correct matching. The reward of each correct matching is one

and any other matching yields a zero reward. For example, assigning the third largest task (among

all n tasks) to the worker with the third largest success rate values yields a reward of one while

assigning the largest task to the second largest success rate yields a reward of zero.

The linear programming formulation defines an objective function that provides an upper

bound on the reward achieved by any assignment policy. The constraints of the linear program

ensure that each task is assigned to at most one worker and each worker is assigned to at most one

task. Duality is used to prove that no algorithm can achieve a competitive ratio better than e for

6

the sequential assignment problem. With the binary reward function, the optimal offline reward is

n since the best offline matching assigns each task to the correct worker and yields a reward of

one. Therefore, the competitive ratio of e is equivalent to an optimal objective value of n/e for

the formulated linear program. The Edge-Weighted Online Bipartite Matching Problem is used to

propose the e-competitive algorithm for the sequential assignment problem. The algorithm is

very similar to the assignment policy proposed for GSSAP. However, the length of the training

phase is smaller. Moreover, the algorithm assigns each task to a worker by finding the optimal

offline matching on the set of tasks observed so far. Note that this algorithm is a generalization of

the optimal algorithm of the Secretary Problem, which yields an e-competitive ratio for hiring the

best secretary among a set of n sequentially arriving candidates.

The linear programming formulation of the sequential assignment problem is extended to

formulate two other online matching problems as linear programs. The first one is the incentive

compatible problem that provides fairness by assuming that the probability of assigning each task

to each worker is equal. The linear programming technique is used to prove that no algorithm can

achieve a reward with a lower bound better than 29% of the maximum offline reward. Then, the

optimal algorithm for the sequential assignment problem is extended to present an incentive

compatible algorithm. It is proven that the incentive compatible algorithm guarantees a lower

bound of 27% compared to the optimal offline reward. The sequential assignment problem with

an unknown number of elements is the last online matching problem formulated as a linear

program. It is assumed that the number of elements is selected by an adversary from a given set.

The linear programming formulation shows that no algorithm can achieve a constant competitive

ratio.

Assuming that at most one task is assigned to each worker does not accurately model many

online matching problems. The last part of this thesis assumes that each worker becomes

available for possible future assignments after performing the previously assigned task. The

number of stages that a worker is not available due to the previous assignment is referred to as the

task duration. The problem is studied under several models for task duration and task values.

Assignment policies are proposed for fixed task duration. Then, a random memoryless model that

assumes the task duration follows a geometric distribution is presented. The proposed algorithms

are extensions of the optimal policy of the basic formulation. These algorithms find the optimal

7

offline matching on the observed tasks so far (after the training phase). Then, assign tasks to

workers based on the optimal matching if the worker is available.

1.4 Outline

This dissertation consists of five more chapters. Chapter 2 reviews the existing literature on SSAP

and provides a brief summary of the results on various extensions of the basic formulation.

Chapter 3 relaxes the assumption that the workers’ success rates are fixed and proposes policies

for SSAP with random success rates. Chapter 4 studies the relation between the Secretary

Problem and a variation of SSAP, where there is not prior information on task values. The

Weighted Secretary Problem is used to propose several assignment policies for SSAP with tasks

having a random arrival order. The linear programming formulations of several sequential

assignment problems are presented in Chapter 5 and used to derive bounds on the performance of

optimal policies. Chapter 6 proposes assignment policies for the Dynamic Sequential Assignment

Problem, where more than one task might be assigned to each worker. A summary of the results

and several concluding remarks are presented in Chapter 7.

8

CHAPTER 2

LITERATURE REVIEW

This chapter reviews the SSAP literature. SSAP was first introduced by Derman et al. in 1972

[19]. They formulate the problem as a job assignment problem that can also be applied in house

hunting, where an owner of k identical houses must select among a set of n sequentially arriving

offers. Derman et al. propose the optimal assignment policy and discuss an extension of the

problem with a more general reward function.

Various extensions of the basic formulation SSAP have been studied in the literature. The

objective of these papers is to find the optimal policy for the problem with relaxed assumptions.

Many of these papers focus on the task distribution and either study a more general version of the

problem or assume partial information about the task values is available. For example, Kennedy

[33] removes the independence assumption between the task values. He proposes the optimal

assignment policy for finite and infinite number of tasks. The optimal policy has the same

threshold structure of the optimal policy of the basic formulation. However, the optimal interval

thresholds are random values, depending on the tasks’ associated distribution.

Lee and Jacobson [41] generalize the SSAP by introducing uncertainty into the task value

distribution. They present three estimators for various uncertainty levels and show that

closed-loop policies based on observed task values improve the overall reward.

Albright [3] assumes that several parameters of the task distribution are unknown and the

information on these unknown parameters is updated in a Bayesian manner upon arrival of each

task. He uses the optimal policy of SSAP to derive the optimal policy and presents the explicit

form for several distribution functions.

Derman et al. [20] describe an extension of SSAP as an investment problem and derive the

optimal solution under some assumptions on the reward function. They assume that an

investment opportunity occurs with a fixed probability in each of the N time periods. The

9

expected reward of investing y in each time period is given by P (y), a non-decreasing continuous

function of the investment amount. The objective is to compute the optimal investment at each

opportunity to maximize the total expected profit. Derman et al. derive the structure of the

optimal policy for concave reward functions. Bounds on the optimal value function, asymptotic

results, and the closed-form expression optimal for the optimal value for several special cases are

also presented. They extend the results to a continuous-time model with opportunities arriving as

a Poisson process.

David and Yechiali [18] assume that the sequentially arriving offers must be matched to a set of

candidates. Assigning an offer to a candidate yields a reward of R if they match. Otherwise, a

smaller reward r is achieved. They also assume a fixed discount rate for later stages of the

problem. They derive optimal policies for several variations of the problem with different

assumptions on the parameters and the assignment regime.

Nakai [48] considers the problem as a process observed at some time points, which are the

states of a stationary Markov chain with the states not known explicitly. He uses the Bayes’

theorem to specify a learning process and show that the optimal policy is not always a

threshold-based algorithm.

SSAP formulates the online matching problem as a discrete-time model. The number of stages

is a discrete known value and the reward function is independent of the stage number. Several

papers consider a continuous-time model with a time-dependent reward. For example, Albright

[3] studies the SSAP by assuming that tasks arrive according to a known continuous distribution

and the reward of each assignment (i.e., the product of the task value and the worker’s success

rate) is multiplied by a time-dependent discount function. Albright proposes time-dependent

threshold-based policies for two task arrival models: A non-homogeneous Poisson process with a

continuous intensity function and a renewal process. He computes a threshold yn(t) as a function

of the number of remaining workers n and task’s arrival time t. If a task with value x arrives at

time t and the number of remaining workers is n, then the task is assigned to one of the workers if

x > yn(t).

Albright [4] considers a continuous-time model with workers becoming available after

performing the previous job. He also assumes a cost per unit time for each worker being idle.

Albright uses a queueing model with a limited waiting size to optimize the expected reward based

10

on Markov decision analysis techniques.

Righter [54] considers the problem of allocating resources to activities to maximize the total

expected reward. She assumes that either there is a single random deadline for all activities or

activities have independent random deadlines. Righter shows that similar to the optimal policy of

SSAP, the optimal policy is independent of the activity values if the deadlines are independent.

Using the same framework, Righter [55] studies the effects of allowing the model’s parameters

to be determined by independent Markov processes on the structure of optimal policy. The

model’s parameters include the resource arrival rate and deadline rates, the activity values, and

the variability of the resource distribution. Righter shows that the total reward is increasing and

convex in the activity values, but decreasing and convex in the deadline rates. She proves that if

the variability of the distribution of resource values is increasing, the total reward is increasing.

Righter also derives conditions for monotonicity of the optimal total expected reward in the states

of the Markov processes.

Several papers relax the assumption on the number of tasks. Nikolaev and Jacobson [49] study

an extension of the problem with random number of elements. They assume that the number of

tasks is unknown until after the final arrival. However, they assume that the number of tasks

follows a discrete distribution. Nikolaev and Jacobson define an auxiliary problem with fixed

number of jobs, where the job values are dependent, to propose the optimal policy as an extension

of the optimal policy of SSAP basic formulation. They extend this result to derive the optimal

policy for the case that the number of tasks has an infinite support.

Albright and Derman [2] investigate the limiting behavior of the optimal intervals as the

number of assignments approaches infinity. They derive a simple relation between asymptotic

values of interval thresholds and the tasks’ distribution.

Some researchers have extended the basic SSAP formulation by considering new objectives.

Baharian and Jacobson [10] perform the task assignment under a threshold criterion, which

minimizes the probability that the total reward fails to achieve a given value. Their result is

extended by modeling the problem as a Markov Decision Process in an uncountable state space.

They obtain sufficient conditions for existence of a deterministic Markov optimal policy.

Chun and Sumichrast [16] study a rank-based version of SSAP with the objective to minimize

the sum of weighted ranks of jobs and machines. They propose a rank-based assignment policy

11

that can be used in several areas including machine scheduling, job interview, kidney transplant

problem, and emergency evacuation of patients in a mass-casualty situation.

Baharian and Jacobson [9] study stationary policies for SSAP, which achieve the optimal

expected reward per task as the number of tasks approaches infinity. They first derive the optimal

policy and the convergence rate by assuming IID task values with a known observable

distribution. Then, they address the problem with unobservable task distribution with a hidden

Markov chain.

Baharian and Jacobson [11] combine the results of [9] and [10] to study the limiting behavior

of target-dependent stochastic sequential assignment problem. They address the problem under

both assumptions of observable and unobservable task distribution.

Khatibi et al. [35] study the SSAP with random success rates, which are assumed to take on the

same value during the entire assignment process. They propose several assignment policies for

different uncertainty levels in workers’ success rates.

Feng and Hartman [31] allow the decision maker to hold a number of jobs that may be rejected

or accepted later to study the value of postponing decisions. While this queueing assumption

significantly increases the complexity, they show the existence of threshold-based optimal

policies under mild assumptions.

Nakai [47] assumes that after one period from assigning a task to a worker, the worker is fired

with a fixed probability or remains permanently employed. He also assumes a search cost and a

discount factor for the reward of each assignment.

Bloch and Houy [13] consider the problem of assigning durable objects to agents who live for

two periods. They show that the optimal policy is stationary, favors old agents and is determined

by a selectivity function. They further show that the selectivity function satisfies an iterative

functional differential equation.

Several papers focus on the applications of SSAP. For example, Su and Zenios [59] use a

sequential stochastic assignment model for the Kidney Allocation problem with the reward

defined as the quality-adjusted life expectancy following the transplantation. They divide the

kidney types into different domains based on patient types to propose a partition policy and prove

asymptotic optimality when patients must accept all assigned kidneys. Su and Zenios use an

incentive compatible condition to guarantee that the assignments determined by the policy are not

12

rejected by patients. They use this condition to propose a second policy that reflects the patient

choice in the kidney transplant problem.

David and Levi [17] study a sequential assignment problem in the framework of an online

matching market and propose policies to maximize the total expected discounted revenue. They

show that the optimal assignment is a function of a set of thresholds, which are sorted by the

values of a discrete approximation of the bid-distribution.

13

CHAPTER 3

DOUBLY STOCHASTIC SEQUENTIAL
ASSIGNMENT PROBLEM

3.1 Introduction

This chapter relaxes the assumption that the workers success rates are fixed in SSAP. This

generalization transforms the SSAP from an assignment problem with one random value (the task

value) observed at each stage to a problem with several random values (the task value and the

workers’ success rates) observed at each stage.

The Doubly Stochastic Sequential Assignment Problem (DSSAP) is a generalization of SSAP

with workers’ success rates assumed to be random. Upon a task arrival, the workers’ success rate

values, which are possibly different from those of the previous stages, are observed. Then, the

task is irrevocably assigned to one of the available workers. This procedure is repeated until all

tasks are assigned to workers. The reward of each assignment is the product of the worker’s

success rate and the task value assigned to the worker. The objective is to find a policy that

maximizes the total expected reward. SSAP is a special case of DSSAP, where the workers’

success rates are deterministic.

DSSAP extends the applications of SSAP to many online matching problems, where a set of

(online) sequentially arriving elements must be matched to a set of bidders. The Online Bipartite

Matching is one of the first online matching problems, which deals with matching the vertices in

a bipartite graph [32]: Given a bipartite graph G(U, V,E), the V vertices arrive sequentially, and

the edges incident to a vertex are exposed upon the vertex arrival. The goal is to find an algorithm

that matches each arrived vertex v ∈ V to a vertex u ∈ U such that the size of the matching is

maximized.

In the Edge-Weighted Online Bipartite Matching problem, the vertex set U and the number of

sequentially arriving vertices v ∈ V are initially given [40]. Upon arrival of a vertex v ∈ V , its

14

incident edges and their weights are observed. Then, the arrived vertex v must be irrevocably

matched to one of the vertices of the set U or remain unmatched. The goal is to maximize the

weight of the matched set. The sequentially arriving tasks in the DSSAP correspond to the

sequentially arriving vertex set V in the Edge-Weighted Online Bipartite Matching problem and

the workers in the DSSAP problem correspond to the vertex set U in the Online Bipartite

Matching. The reward of each assignment in the DSSAP, which is defined as the product of the

ith task value and jth worker’s success rate, is the weight of the the edge between ith arriving

vertex of the set V and the jth vertex of the set U . Therefore, the DSSAP is a special case of the

Edge-Weighted Online Bipartite Matching, where each arriving vertex is adjacent to all vertices

that are not previously matched and the edge weights are independently drawn from known

distribution functions: The weight of an edge between the left vertex i and the right vertex j is

defined as the product of the ith task value and the jth worker. While online algorithms for the

Bipartite Matching problem, which assume no prior information on the weights of edges, achieve

a minimum fraction of the optimal offline matching, the optimal algorithm for DSSAP, which

assumes that the task and success rate values are drawn from known distributions, maximizes the

total expected reward.

DSSAP models an online matching market: There are n sequentially arriving items and n

bidders. Upon an item’s arrival, the bid values are observed. Individual bidders specify their bid

as a percentage of the average market value of the objects and these percentages, centralized at a

mean value of 1, are IID realization from bidder specific distributions. Each bidder buys only one

item (and hence, leaves the market once an item is sold to him). The objective is to sell each item

to a bidder such that the total money spent by the bidders is maximized. This is equivalent to an

Adwords problem, where each bidder remains in the market until it gets one item and bids of each

bidder come independently from a known distribution [45]. The sequentially arriving items (or

the sequence of keywords in Adwords) correspond to tasks and the bidders correspond to workers

in DSSAP.

The remainder of this chapter is organized as follows. Section 3.2 analyzes two special cases of

the DSSAP. Section 3.2.1 assumes there is only one worker, which must be optimally assigned to

one of the n sequentially arriving tasks. Section 3.2.2 assumes that all workers’ success rates are

independently drawn from the same distribution (DSSAP with IID success rates). Section 3.3

15

Table 3.1: Summary of the problems discussed in this chapter

Section Assumptions
3.2.1 DSSAP with n tasks and one worker
3.2.2 DSSAP with IID random success rates
3.3 The DSSAP algorithms

Table 3.2: Summary of the results

Theorem number Assumptions and contribution
1 Optimal policy for SSAP (fixed success rates)
2 Optimal policy for DSSAP with n tasks and one worker
3 Optimal policy for SSAP with uncertainty in task distribution
4 Optimal policy for SSAP with multiple tasks arriving at each stage
5 Optimal policy for DSSAP with IID success rates
6 Optimality and running time of DSSAP Algorithm for general case
7 Performance of DSSAP Ranking Algorithm
8 Polynomial running time of DSSAP Ranking Algorithm

proposes an optimal assignment algorithm for DSSAP (hereafter referred to as the DSSAP

Algorithm). Due to the exponential running time of the DSSAP Algorithm, the DSSAP Ranking

Algorithm is proposed. We derive a lower bound on the expected reward achieved by the DSSAP

Ranking Algorithm compared to the optimal expected reward while proving a polynomial

running time. Section 3.4 reports several numerical experiment results to illustrate the average

performance of the proposed policies for several distributions. Section 3.5 provides concluding

remarks and future research directions.

Table 3.1 summarizes the sequential stochastic assignment problems discussed in this chapter

while Table 3.2 provides a brief summary of the theorems. Table 3.3 lists the most common

notations used in the chapter.

3.2 Optimal Policies For DSSAP

This section discusses the DSSAP with the random success rate values observed upon each task

arrival. Section 3.2.1 investigates the DSSAP with one worker. Section 3.2.2 studies the DSSAP

with IID random success rates. In the following sections, the order of operation is that the task

value and the realized values of the random success rates are observed, and the task is assigned to

16

Table 3.3: List of notations used in Chapter 3

Symbol Meaning
X Random variable associated with tasks
x Realized value of a task
FX cdf of random variable X
pi Fixed success rate of worker i
ai,n Optimal interval thresholds for the n-stage problem by Derman’s policy
Q Random variable associated with a worker’s success rate
q Realized value of a worker’s success rate
ci,n Optimal interval thresholds for the n-stage problem for X ×Q
Q(j) Random variable associated with the worker with jth largest expected success rate
c
(j)
i,n Optimal interval thresholds for the n-stage problem for X ×Q(j)

St,i Subset number t with i of the workers success rates
R(St,i) Reward of assigning tasks to workers with success rates in St,i

one of the workers. When the next task arrives, its value and the (possibly) new success rate

values of the remaining workers are observed, and the task is assigned to one of the workers. This

process continues until all tasks are assigned to remaining workers. It is assumed that the cdf of

the task’s and the success rates’ associated random variables are known.

3.2.1 DSSAP with One Worker

Consider the DSSAP with n sequentially arriving tasks and one worker with a random success

rate. The objective is to maximize the expected reward of assigning one of the tasks to the single

worker. Example 1 illustrates DSSAP with one worker.

Example 1. Assume that there are three sequentially arriving tasks with IID random values and

one worker. The worker has a random success rate (or task completion rate) which upon each

task arrival, is generated independent of the previous stages (from a known distribution). The

objective is to assign one of the tasks to the worker such that the expected product value of the

task and the worker’s success rate is maximized. Assume that the task values are 0.4, 0.3, and 0.7,

and the success rate values of the three stages are 0.5, 0.9, and 0.3, respectively. Then, the reward

of assigning the second task to the worker is given by 0.3× 0.9 = 0.27. Note that the task and

success rate values of each stage are only observed if no task is assigned to the worker in a prior

stage. Therefore, upon assignment of the second task to the worker, the decision maker does not

17

have access to the task and success rate values of the next stage.

Theorem 2 describes the optimal policy for DSSAP with one worker.

Theorem 2. Assume there are n sequentially arriving tasks (with values independently drawn

from a given distribution) and one worker with a random success rate to be assigned one of the

tasks. The worker’s success rate takes new values (independently drawn from a given

distribution) upon each task arrival. Let X and Q denote the random variables associated with

the tasks and the success rate, respectively. Then, there exists numbers

−∞ = c0,n ≤ c1,n ≤ ... ≤ cn−1,n ≤ cn,n = +∞

such that the optimal policy in the initial stage is to assign the arriving task to the worker if the

product of the task and the success rate realized values is contained in the interval (cn−1,n, cn,n].

The maximum expected reward is given by cn,n+1. Moreover, the {ci,n} satisfy

ci,n+1 =

∫ ci,n

ci−1,n

y dFY (y) + ci−1,nFY (ci−1,n) + ci,n(1− FY (ci,n)) (3.1)

where c0,n = −∞, cn,n = +∞, and FY (y) is the cdf of Y = X ×Q (the distribution of the

product of tasks and the random success rates).

Proof: Let PI denote the DSSAP with one worker. To find the optimal policy for PI , an

equivalent SSAP (i.e., a sequential stochastic assignment problem with fixed success rates) is

defined: Let PII denote the SSAP with n sequentially arriving tasks with an associated random

variable Y = X ×Q and one worker with a fixed success rate pn = 1 (and n− 1 workers of

success rate zero). Problem PII is a SSAP with fixed success rates with an optimal policy

described in Theorem 1: Assign the first arriving task to the worker with success rate pn = 1 if its

realized value (i.e., the realized value of y = x× q) is contained in (cn−1,n, cn,n], where the

constants {ci,n} are computed using Corollary 1 for the random variable Y . Moreover, the

maximum expected reward is given by cn,n+1.

Induction is used to prove that the optimal policy for PII achieves the maximum total expected

reward for PI : The optimal policy for PI assigns the arriving task in the first stage to the worker if

18

x× q is contained in (cn−1,n, cn,n]. For the case of n = 1, the single arriving task is assigned to

the single worker. To complete the proof, suppose that the optimal policy in the (n− 1)-stage

problem is to assign the first arriving task to the worker if x× q ∈ (cn−2,n−1, cn−1,n−1], which

achieves a total expected reward cn−1,n (the induction assumption). Two mutually exclusive and

collectively exhaustive cases are considered to prove the optimality of the policy for n tasks.

Case 1: Suppose that the product of the first arriving task and the success rate x× q takes a

value in interval (cn−1,n, cn,n], but the task is not assigned to the worker. By the induction

assumption, the maximum total expected reward in the (n− 1)-stage problem is cn−1,n(< x× q).

Therefore, if x× q ∈ (cn−1,n, cn,n], assigning the task to the worker achieves a larger expected

reward than discarding the task.

Case2: Suppose that the first arriving task is assigned to the worker with x× q < cn−1,n.

However, if the task is not assigned to the worker, the maximum total expected reward achieved

in the (n− 1)-stage problem is cn−1,n. Therefore, the optimal policy does not assign the first

arriving task to the worker if the product of the task and the success rate values is not in the

interval (cn−1,n, cn,n].

Therefore, the optimal policy for PI assigns the first arriving task in the n-stage problem to

worker if the task’s realized value is contained in the interval (cn−1,n, cn,n]. The maximum total

expected reward is cn,n+1 by Theorem 1.

The DSSAP with one worker is a full information Secretary Problem with each secretary’s

quality value defined as the product of two random numbers revealed upon the secretary arrival.

While the objective in the Secretary Problem is to maximize the probability of hiring the best

secretary based on an ordinal criterion, the optimal policy of the DSSAP with one worker

maximizes the expected reward.

Theorem 2 provides the optimal policy to hire one applicant (assign one of the sequentially

arriving tasks to a single worker). Extensions of Theorem 2 solve similar problems with different

objectives. For example, if the objective is to maximize the total expected reward of hiring k

secretaries when there are n applicants, the optimal policy is to hire the interviewed applicant if

x× q ∈ (cn−k,n, cn,n] (i.e., the product of the realized values of the success rate and the arriving

task is contained in one of the k largest intervals). Moreover, the total expected reward is given by∑n
i=n−k+1 ci,n+1. This problem is referred to as the K-choice Secretary Problem [8].

19

3.2.2 DSSAP with IID Random Success Rates

This section studies the DSSAP with IID success rates. First, an extension of SSAP with

multiple tasks arriving simultaneously at each stage is discussed. Then, the relation between the

SSAP with multiple tasks and the DSSAP is described. The optimal policy of SSAP with

multiple tasks, which can be derived by small modifications of Derman’s policy, is then used to

derive the optimal policy of the DSSAP with IID success rates.

Suppose that multiple tasks with IID associated random values arrive simultaneously at each

stage in the SSAP and there are workers with fixed success rates to be assigned the tasks. At the

ith stage, n− i+ 1 tasks arrive, with one task selected and assigned to one of the workers. This

process continues until all workers are assigned to tasks. The goal is to maximize the total

expected reward of the assignment. To find the optimal policy, consider the SSAP with

uncertainty in tasks’ distribution. For the sake of self-completeness, the optimal policy of this

problem (proposed by Albright [5]) is briefly discussed.

Let n denote the total number of tasks in the SSAP and assume that there are one or more

unknown parameters in the task’s distribution. These parameters have a prior distribution, which

is updated via Bayes’ rule as successive task values are observed. Let q and qx denote the prior

and posterior distributions, respectively. Then, Theorem 1 can be modified to find the optimal

policy for SSAP with uncertainty in task’s distribution.

Theorem 3. [5] Suppose n X’s remain to be seen and the current prior is q. Then there exist

numbers

−∞ = a0,n ≤ a1,n(qx) ≤ ... ≤ an−1,n(qx) ≤ an,n = +∞

such that if the next X has value x, it is best to assign the worker with the ith smallest success

rate value to this x if and only if ai−1,n(qx) < x ≤ ai,n(qx).These critical numbers do not depend

on the workers’ success rates. Furthermore, before this first X is observed, ai,n+1(q) is the

expected value of the X which, under the optimal policy, will eventually be paired with pi.

Finally, the critical numbers satisfy the recursion

ai,n+1(q) =

∫
A

xdH(x) +

∫
A

ai−1,n(qx)dH(x) +

∫
A

ai,n(qx)dH(x) (3.2)

20

where H is the current marginal distribution of the X’s, A = {x : x ≤ ai−1,n(qx)},

A = {x : ai−1,n(qx) ≤ x ≤ ai,n(qx)}, and A = {x : x > ai,n(qx)}.

Theorem 3 assumes uncertainty in tasks distribution (while there is only one task arriving at

each stage). Theorem 4 describes the optimal policy for SSAP with multiple IID arriving tasks

at each stage by transforming the problem to SSAP with uncertainty in task distribution and using

the result of Theorem 3. It is assumed that the number of arriving tasks (with IID values) at each

stage is equal to the number of remaining workers. One of the arriving tasks at each stage is

selected and assigned to one of the workers.

Theorem 4. For each n ≥ 1, there exists numbers

−∞ = m0,n ≤ m1,n ≤ ... ≤ mn−1,n ≤ mn,n = +∞

such that whenever there are n simultaneously arriving tasks with IID associated random

variables X1, X2, ..., Xn and n workers with fixed success rates p1 ≤ p2 ≤ ... ≤ pn to be

assigned one of the tasks at each stage, then the optimal choice in the initial stage is to assign the

task with the maximum value to the worker with success rate pi if the maximum task value is

contained in (mi−1,n,mi,n]. The maximum total expected reward is given by

n∑
i=1

mi,n+1pi, (3.3)

where the {mi,n} depend on the cdf of the task’s associated random variable, but are

independent of the {pi}. Moreover, the {mi,n} satisfy the following recursion.

mi,n+1 =

∫ mi,n

mi−1,n

yd(F n
X(y)) +

∫ mi−1,n

−∞
mi−1,nd(F n

X(y)) +

∫ +∞

mi,n

mi,nd(F n
X(y)) (3.4)

where FX denotes the cdf of the random variable Xi, i = 1, 2, ..., n.

Proof: Since the tasks are IID, the task with the maximum realized value at each stage must be

assigned to one of the workers. Therefore, the task assigned at each stage has a value coming

from a known distribution, which is the maximum of a set of IID random variables. If FX

21

denotes the cdf of each task’s associated random variable, the cdf of the maximum of n IID

tasks is given by F n
X , which is the current marginal distribution of the tasks’ values. However,

there is an uncertainty in the task’s associated random variable; it is updated from the maximum

of (n− i+ 1) IID random variables at stage i (F n−i+1
X) to the maximum of (n− i) random

variables at stage i+ 1 (F n−i
X). Hence, the problem can be considered as the SSAP with a single

task arriving at each stage with uncertainty in task’s associated random variable. This is an

special case of Theorem 3 with the task’s marginal distribution at stage i (F n−i+1
X) corresponding

to H and the optimal interval thresholds {mi,n} corresponding to {ai,n(qx)} in (3.4).

Let X and Qi denote the random variables associated with the task and the ith worker’s success

rate, respectively. The DSSAP with n IID random success rates is similar to the SSAP with

multiple arriving tasks, discussed in Theorem 4, with tasks’ associated random variable X ×Q

and fixed success rates pi = 1, (i = 1, 2, ..., n). Assigning the task X to one of the workers Q

with IID random success rates in the DSSAP is similar to assigning one of the simultaneously

arriving tasks X ×Q to a worker with fixed success rate 1 in the SSAP with multiple arriving

tasks at each stage. The Greedy algorithm, which assigns the arriving task to the worker with the

maximum realized value, achieves the maximum total expected reward in the DSSAP with IID

random success rates.

Theorem 5. The Greedy algorithm, which assigns the arriving task to the worker with the

maximum success rate value at each stage, achieves the maximum total expected reward in the

DSSAP with IID random success rates. Moreover, the maximum total expected reward is given

by

E[X]× (
n∑
i=1

∫ ∞
−∞

yd(F n−i+1
Q (y))), (3.5)

where E[X] denotes the expected value of the random variable X and FQ denotes the cdf of the

workers’ random success rate.

Proof: The proof has two parts. The first part uses induction to prove that the Greedy algorithm

is optimal. The second part computes the maximum total expected reward achieved by the Greedy

algorithm. For the first part, in the base case of induction (n = 1), the single arriving task is

assigned to the single worker. Assume that the Greedy algorithm is optimal for the (n− 1)-stage

22

problem (the induction assumption). Based on the induction assumption, the optimal policy in

stage i = (2, 3, ..., n) is to assign the task to the worker with the maximum success rate value.

Consider the problem with n tasks. Suppose that QM(i) denotes the maximum of (n− i+ 1)

IID random success rates (i.e., the maximum of the workers success rates at stage i):

QM(i) = max
j∈{1,2,...,n−i+1}

{Qj}

The total expected reward of the Greedy algorithm for the n-stage problem is given by

E[X]× (qM(1) + E[QM(2)] + ...+ E[QM(n)]) (3.6)

where qM(1) is the maximum success rate value at stage one. Contrary to the claim, assume that

the optimal policy assigns the first task to a worker with success rate q(1) (< qM(1)), which

achieves a total expected reward

E[X]× (q(1) + E[QM(2)] + ...+ E[QM(n)]) (3.7)

Since QM(i) (i = 2, 3, ..., n) is the maximum value of (n− i+ 1) IID random variables, it is

independent of the first stage’s choice. Therefore, E[X]× (qM(1)− q(1)) > 0 and the expected

reward achieved by the Greedy algorithm (3.6) is larger than (3.7). This contradicts the claim and

hence, the Greedy algorithm, which assigns the task to the worker with the maximum success rate

value, achieves the maximum total expected reward.

For the second part, the maximum total expected reward achieved by the Greedy algorithm is

computed. In the first part, it is proven that the success rate assigned at the ith stage is the

maximum of the remaining (n− i+ 1) success rates, which are assumed to be IID. The cdf of

the maximum of (n− i+ 1) IID success rates is given by F n−i+1
Q (y). Therefore, the expected

reward of the ith assignment is given by

E[X]× E[QM(i)] = E[X]×
∫ ∞
−∞

yd(F n−i+1
Q (y)) (3.8)

The total expected reward is the sum of the assignment rewards, as given by (3.5).

23

3.3 The DSSAP Algorithms

This section relaxes the assumption of IID random success rates and describes assignment

algorithms for the DSSAP with distinct success rates distributions. There are n sequentially

arriving tasks that must be assigned to n workers with random success rates (which are not

necessarily identically distributed). Upon a task arrival, its value and the value of the workers

success rates are observed. Then, the task is irrevocably assigned to one of the workers. The

workers success rates take new values upon each task arrival. The distributions of the task values

and the workers success rates are known. Example 2 illustrates the general case of DSSAP.

Example 2. Assume that there are two sequentially arriving tasks with IID random values and

two workers. The workers have random success rates (that are not necessarily identically

distributed) which upon each task arrival, are generated independent of the previous stages. The

objective is to assign each task to one worker such that the total expected reward, defined as the

sum of the reward of individual assignments, is maximized. Assume that the task values are given

by 0.4 and 0.5 and worker 1’s success rates at the first and second stages are 0.7 and 0.5,

respectively. Moreover, worker 2’s success rates at the two stages are given by 0.3 and 0.8. Then,

the reward of assigning the first task to worker 1 and the second task to worker 2 is given by

0.4× 0.7 + 0.5× 0.8 = 0.68 while the reward of assigning the first task to worker 2 and the

second task to worker 1 is given by 0.4× 0.3 + 0.5× 0.5 = 0.37.

The optimal assignment policy, which maximizes the total expected reward, is referred to as

the DSSAP Algorithm. Since the DSSAP Algorithm has exponential running time, the DSSAP

Ranking Algorithm that achieves a fraction of the maximum expected reward in a polynomial

running time, is proposed in Section 3.3.2.

3.3.1 The DSSAP Algorithm

The DSSAP Algorithm is a computational approach that uses backward induction to determine

the optimal assignment at each stage. The maximum total expected reward for n tasks is

computed as the sum of the reward of assigning the first arriving task and the maximum total

expected reward of assigning n− 1 tasks to the remaining n− 1 workers. To find the optimal

24

assignment at each stage, the expected reward of assigning the arriving task to each of the

remaining workers is computed and compared to determine the optimal range of task and success

rate values for each assignment. Then, the probability of each of these realizations is computed

and the maximum total expected reward is derived as the weighted sum of the expected rewards.

Algorithm 1 The DSSAP Algorithm
for i=1 to n

St,i =subsets of i workers (with t = 1, 2, ...,
(
n
i

)
)

for all Qj ∈ St,i
R(St,i|first task assigned to Qj) = x× qj + E[RD(St,i − {Qj})]

Pj = Pr[{x, q1, q2, ..., qn} ∈ φSt,i(Qj)]

E[RD(St,i)] =
∑

Qj∈St,i Pj × E[RD(St,i|{x, q1, ..., qn} ∈ φSt,i(Qj)]

end for

end for

The DSSAP Algorithm computes the maximum total expected reward for any subset of i

(= 1, 2, ..., n) workers. Let St,i denote the subset number t with i workers. For example, there are(
n
2

)
subsets of two workers: S1,2 = {Q1, Q2}, S2,2 = {Q1, Q3},..., Sn−1,2 = {Q1, Qn},

Sn,2 = {Q2, Q3},..., S(n2),2
= {Qn−1, Qn}. Let R(St,i|first task assigned to Qj) denote the reward

of assigning tasks to workers St,i if the first arriving task is assigned to worker with success rate

Qj . The DSSAP Algorithm computes the reward of assigning the first arriving task to each

worker Qj ∈ St,i as the sum of the first assignment’s reward and the maximum expected reward

of assigning the i− 1 tasks to the remaining workers in the set

R(St,i|first task assigned to Qj) = x× qj + E[RD(St,i − {Qj})], (3.9)

where E[RD(St,i − {Qj})] is the expected reward achieved by the DSSAP Algorithm when the

set of workers is given by St,i − {Qj}. Then, it compares R(St,i|first task assigned to Qj) for all

{Qj} ∈ St,i to find φSt,i(Qj), the range of task and random success rate values for which

assigning the first task to worker with success rate Qj is optimal (i.e., assigning the first task to

worker with success rates Qj achieves the largest values in (3.9)). The DSSAP Algorithm assigns

25

the first task to worker with success rate Qj if the task and success rate values are in the optimal

range (φSt,i(Qj)). The next step computes the probability (Pj) that the task and random success

rates take values in the optimal range (φSt,i(Qj)) to find the maximum total expected reward.

Theorem 6. The DSSAP Algorithm achieves the maximum total expected reward for the DSSAP

in an exponential running time.

Proof: The proof uses induction on n. For the case of n = 1, the single arriving task is assigned

to the single worker. Assume that the DSSAP Algorithm maximizes the total expected reward for

(n− 1) workers (the induction assumption). Therefore, E[RD(S1,n − {Qj})] (j = 1, 2, ..., n) is

the maximum total expected reward for the DSSAP with n− 1 workers, where

S1,n = {Q1, Q2, ..., Qn} denotes the set of all workers success rates.

Let φSt,i(Qj) denote the range of task and success rate values for which assigning the first

arriving task in the n-stage problem to worker j achieves the maximum total expected reward

(i.e., the maximum value of (x× ql + E[RD(S1,n − {Ql})], with l = 1, 2, ..., n). Hence, if

(x, q1, q2, ..., qn) ∈ φSt,i(Qj), then

x× qj + E[RD(S1,n − {Qj})] = max
Ql∈S1,n

(x× ql + E[RD(S1,n − {Ql})]) (3.10)

If (3.10) holds, the DSSAP Algorithm assigns the first arriving task to the worker with success

rate Qj . For all task and success rate values in the optimal range (φSt,i(Qj)), the expected reward

of assigning the first task to worker Qj is maximum. Therefore,

E[x× qj + E[RD(S1,n − {Qj})]|(x, q1, q2, ..., qn) ∈ φSt,i(Qj)] = max
Ql∈S1,n

(E[x× ql

+E[RD(S1,n − {Ql})]|(x, q1, q2, ..., qn) ∈ φSt,i(Qj)]) (3.11)

Taking expectation of both sides yields:

E[RD(S1,n)] = max
Ql∈S1,n

(E[x× ql + E[RD(S1,n − {Ql})]]) (3.12)

which proves the optimality of the DSSAP Algorithm for n workers.

26

The complexity of the DSSAP Algorithm depends on the number of random success rates with

distinct distributions. When there are n random success rates with distinct distributions, the

number of cases that are recursively considered is
∑n

j=1

(
n
j

)
= 2n − 1. Therefore, the

computational time is exponential.

The DSSAP Algorithm determines the optimal assignment once the task and success rate

values are revealed at each stage, i.e., the optimal intervals are computed before the assignment

process. The optimal policies for the SSAP and the DSSAP with IID success rates are special

cases of the DSSAP Algorithm. When all success rates are fixed, the DSSAP Algorithm gives the

optimal policy for the SSAP (Theorem 1). It also reduces to the optimal policy described in

Theorem 5 when all workers have IID random success rates.

The optimal policy of DSSAP (i.e., the DSSAP Algorithm) uses dynamic programming to

solve the smaller sub-problems (since the optimal assignment at each stage depends on the

assignment of the prior stages). This is similar to the optimal policy of SSAP, whose interval

thresholds are computed recursively using smaller sub-problems. The workers success rates are

fixed in the SSAP. Therefore, using the Hardy’s Lemma, the optimal interval thresholds are

independent of the workers success rates. This is not the case in DSSAP, where by Theorem 2,

the optimal intervals depend on the distribution of the workers success rates. For example, the

optimal policy of a 2-stage DSSAP computes the range of optimal assignment for each of the

workers. If we change one of the workers, the optimal intervals must be computed again by

comparing the expected reward of the possible two assignments. Hence, the factor that

determines the order of computational complexity for the optimal policy is the total number of

subsets of workers. This cannot be reduced without any further assumptions on the distribution of

the random success rates.

In fact, adding a new worker with a distinct success rate requires computing the optimal

thresholds and the maximum expected reward for all new subsets of workers, which doubles the

number of possible subsets (since the new worker’s success rate must be added to all existing

subsets). Therefore, while adding a new worker to SSAP does not change the order of

computational complexity (the computational complexity is only changed from (n− 1)2 to n2),

adding one worker to DSSAP doubles the computational complexity of the optimal policy.

27

3.3.2 The DSSAP Ranking Algorithm

The DSSAP Algorithm achieves the maximum total expected reward, but requires an exponential

running time. This section proposes a polynomial-time algorithm that achieves a fraction of the

maximum expected reward. The DSSAP Ranking Algorithm gives a priority level in task

assignment to each worker by comparing the expected values of the workers’ random success

rates. Assuming that the task and success rate values come from a known distribution, the DSSAP

Ranking Algorithm can be used to achieve an expected reward close to the optimal reward.

The intuition behind the DSSAP Ranking Algorithm is that the computational time can be

decreased by assuming that the higher ranked workers (i.e., the workers with assignment priority)

have a larger effect on the total expected reward. Therefore, if the assignment priority is given to

the workers with larger expected success rates, a reasonable fraction of the maximum total

expected reward is achieved while keeping the computational time polynomial. Note that the

DSSAP Ranking Algorithm achieves a reasonable fraction of the maximum expected reward in a

random setting since it assumes that in expectation, a worker with a larger expected success rate

achieves a larger proportion of the total reward.

The DSSAP Ranking Algorithm ranks the workers by comparing the expected values of their

random success rates and computes the optimal interval thresholds for the product of the task and

each worker’s success rate. Let Q(j) (j = 1, 2, ..., n) denote the success rate of the worker with

the jth largest expected value and c(j)i,n (i = 0, 1, 2, ..., n) denote the interval thresholds in the

n-stage problem for the random variable X ×Q(j), defined as in Corollary 1. Starting from the

worker with the highest priority (i.e., the worker with the largest expected reward value), the

arriving task is assigned to the worker with success rate Q(j) if the realized value of x× q(j) is in

one of the i largest intervals defined by c(j)i,n. Therefore, in the first stage of the n-stage problem,

the arriving task is assigned to the worker with success rate Q(1) if x× q(1) > c
(1)
n−1,n. Otherwise,

the task is assigned to the worker with success rate Q(2) if x× q(2) > c
(2)
n−2,n, and so on. The

DSSAP Ranking Algorithm is formalized as Algorithm 2.

Consider the problem discussed in Theorem 2 as an extension of the secretary problem with the

secretaries’ quality values as the product of two random numbers revealed upon the secretary

arrival. If the goal is to hire k secretaries with the maximum sum of the quality values, the

28

optimal choice in the initial stage is to hire the secretary if the quality value is in one of the k

largest optimal intervals. The DSSAP Ranking Algorithm uses the same method as Theorem 2 to

assign a task to the worker with the jth largest expected value when the assignment’s reward is in

one of the j largest optimal intervals. Theorem 7 proves a lower bound on the total expected

reward achieved by the DSSAP Ranking Algorithm. Note that a constant competitive ratio can

not be derived since based on the problem’s assumptions, the ratio between the expected reward

of the DSSAP Ranking Algorithm and the maximum expected reward depends on the parameters

of the assumed distribution functions.

Algorithm 2 The DSSAP Ranking Algorithm
Rank the workers based on their success rates’ expected value

Compute the optimal interval thresholds for X ×Q(j) (j = 1, 2, ..., n)

Upon arrival of a task with m (= 1, 2, ..., n) remaining workers

for j=1 to m

Let q(j) denote the realized value of the success rate with rank j

if x× q(j) > c
(j)
m−j,m

assign the task to worker with success rate Q(j)

break

end if

end for

Theorem 7. Let S1,n denote the set of n random success rates {Q1, Q2, ..., Qn} and

E[RDR(S1,n)] and E[RD(S1,n)] denote the expected reward achieved by the DSSAP Ranking

Algorithm and the DSSAP Algorithm (in the n-stage problem with workers success rates S1,n),

respectively. Then,
E[RDR(S1,n)]

E[RD(S1,n)]
≥
∑n

j=1 c
(j)
n−j+1,n+1∑n

j=1 c
(j)
n,n+1

(3.13)

where the {c(j)i,k} are the optimal interval thresholds computed by Corollary 1 for random variable

X ×Q(j) and Q(j) is the success rate of the worker with the jth largest expected value.

Proof: The proof has two parts. The first part proves that E[RDR(S1,n)] ≥
∑n

j=1 c
(j)
n−j+1,n+1 and

the second part proves that E[RD(S1,n)] ≤
∑n

j=1 c
(j)
n,n+1, which together prove (3.13).

29

For the first part, a surrogate SSAP is defined for each of the n workers. Then, induction is used

to prove that using the DSSAP Ranking Algorithm, each worker achieves an expected reward at

least as large as the surrogate SSAP. This is used to prove that E[RDR(S1,n)] ≥
∑n

j=1 c
(j)
n−j+1,n+1.

Consider the following SSAP defined for the worker with success rate Q(j): There are n tasks

with values coming from X ×Q(j) that must be assigned to n workers. Assume that the success

rate of worker j is 1 (while the success rates of workers 1, 2, ..., j − 1 is larger than 1 and the

success rates of workers j + 1, j + 2, ..., n is smaller than 1). Define Policy A as follows: The first

task in the n-stage problem is assigned to worker j if and only if x× qj ∈ (c
(j)
n−j,n, c

(j)
n−j+1,n]. If

x× qj > c
(j)
n−j+1,n, then the task is assigned to one of the workers with a success rate larger than

1, and if x× qj ≤ c
(j)
n−j,n, then the task is assigned to a worker with a success rate smaller than 1,

and the process continues in the next stage. By Theorem 1, c(j)n−j+1,n+1 is the expected value, in an

n-stage problem, of the task assigned to the worker with the (n− j + 1)th smallest success rate.

Therefore, the expected reward achieved by worker j (under Policy A) in the SSAP is given by

c
(j)
n−j+1,n+1. Induction is used to prove that the expected reward achieved by the worker with

success rate Q(j) in the DSSAP Ranking Algorithm is at least as large as the expected reward

achieved by worker j with success rate 1 in the SSAP (using Policy A). This proves that the total

expected reward achieved by the DSSAP Ranking Algorithm is at least
∑n

j=1 c
(j)
n−j+1,n+1.

The base case is trivial: In the 1-stage problem, the expected reward achieved by the single

worker using the DSSAP Ranking Algorithm is the same as Policy A. As the induction

assumption, assume that the expected reward achieved by the worker with success rate Q(j) (with

j = 1, 2, ..., n− 1) in the DSSAP Ranking Algorithm for the (n− 1)-stage problem is at least as

large as the expected reward achieved by worker j with success rate 1 under Policy A in the

surrogate SSAP. The expected reward achieved by worker j using the DSSAP Ranking Algorithm

in the n-stage problem is given by

En[RDR(Q(j))] = En[RDR(Q(j)|x× qj > c
(j)
n−j+1,n)]× Pr(x× qj > c

(j)
n−j+1,n)

+En[RDR(Q(j)|c(j)n−j,n < x× qj ≤ c
(j)
n−j+1,n)]× Pr(c(j)n−j,n < x× qj ≤ c

(j)
n−j+1,n)

+En[RDR(Q(j)|x× qj ≤ c
(j)
n−j,n)]× Pr(x× qj ≤ c

(j)
n−j,n), (3.14)

where RDR(Q(j)) denotes the reward achieved by the worker with success rate Q(j) using the

30

DSSAP Ranking Algorithm and En[RDR(Q(j))] denotes the expected reward achieved by this

worker in the n-stage problem. Note that (3.14) is computed by conditioning on the reward of the

first stage. The expected reward achieved by worker j using Policy A in the n-stage SSAP is

given by

En[RA(Q(j))] = En[RA(Q(j)|x× qj > c
(j)
n−j+1,n)]× Pr(x× qj > c

(j)
n−j+1,n)

+En[RA(Q(j)|c(j)n−j,n < x× qj ≤ c
(j)
n−j+1,n)]× Pr(c(j)n−j,n < x× qj ≤ c

(j)
n−j+1,n)

+En[RA(Q(j)|x× qj ≤ c
(j)
n−j,n)]× Pr(x× qj ≤ c

(j)
n−j,n) (3.15)

It is sufficient to prove the following:

En[RDR(Q(j)|x× qj > c
(j)
n−j+1,n)] ≥ En[RA(Q(j)|x× qj > c

(j)
n−j+1,n)],

En[RDR(Q(j)|c(j)n−j,n < x× qj ≤ c
(j)
n−j+1,n)] ≥ En[RA(Q(j)|c(j)n−j,n < x× qj ≤ c

(j)
n−j+1,n)],

En[RDR(Q(j)|x× qj ≤ c
(j)
n−j,n)] ≥ En[RA(Q(j)|x× qj ≤ c

(j)
n−j,n)].

1. If x× qj > c
(j)
n−j+1,n and the DSSAP Ranking Algorithm does not assign the task to the

worker with success rate Q(j) (since the task is assigned to a higher rank worker), then by the

induction assumption, it achieves an expected reward at least as large as Policy A (since in both

problems, the rank of worker j becomes j − 1 in the (n− 1)-stage problem). If the DSSAP

Ranking Algorithm assigns the task to the worker with success rate Q(j), then worker j achieves a

reward larger than c(j)n−j+1,n while the expected reward achieved by worker j using Policy A in the

(n− 1)-stage SSAP is given by c(j)n−j+1,n (This is true since the rank of worker j with success rate

1 in the (n− 1)-stage problem becomes j − 1, and by Theorem 1, the expected reward achieved

by this worker in the (n− 1)-stage SSAP is given by c(j)n−j+1,n).

2. If c(j)n−j,n < x× qj ≤ c
(j)
n−j+1,n and the DSSAP Ranking Algorithm assigns the task to the

worker with success rate Q(j), then both algorithms achieve the same (since the task is also

assigned to the worker in the surrogate SSAP). Otherwise, the DSSAP Ranking Algorithm assigns

the task to a worker of higher rank. Therefore, the rank of the worker with success rate Q(j) in the

(n− 1)-stage DSSAP is reduced to j − 1. By the induction assumption, the expected reward

31

achieved by this worker in the (n− 1)-stage problem is at least as large as the expected reward

achieved by worker j − 1 (with success rate 1) in the (n− 1)-stage SSAP (En−1[RA(Q(j−1))]),

and by Theorem 1, En−1[RA(Q(j−1))] = c
(j)
n−j+1,n. This proves the claim since the expected

reward achieved by worker j in the n-stage SSAP in this case is at most c(j)n−j+1,n.

3. If x× qj ≤ c
(j)
n−j,n, both algorithms assign the task to a worker other than j. While the task is

assigned to a worker with a success rate smaller than worker j in the SSAP, the task is assigned

either to a worker of higher rank or a worker of a lower rank in the DSSAP. Therefore, while the

rank of worker j in the (n− 1)-stage SSAP remains j, the rank of worker with success rate Q(j)

in the (n− 1)-stage DSSAP would be j or better. Therefore, the claim holds by the induction

assumption.

For the second part, consider the DSSAP with n tasks and one worker with success rate Q(j)

(Theorem 2). The maximum expected reward of the DSSAP with one worker is achieved when

the product of the task and the worker’s success rate is in the largest interval, and is given by

c
(j)
n,n+1. Therefore, the maximum expected reward that the worker with success rate Q(j) can

achieve in an n-stage DSSAP is bounded above by c(j)n,n+1 and the maximum total expected

reward is bounded above by
∑n

j=1 c
(j)
n,n+1. Hence, E[RD(S1,n)] ≤

∑n
j=1 c

(j)
n,n+1, which together

with E[RDR(S1,n)] ≥
∑n

j=1 c
(j)
n−j+1,n+1, prove (3.13).

To see how large is the ratio (3.13), consider the case where c(j)i,n+1 is equal for all values of j.

Using Corollary 1 yields E[X ×Q(j)]/c
(j)
n,n+1 for (3.13). This ratio is equal to 0.59 for a U(0, 1)

distribution in a 10-stage problem and approaches 0.5 as n→ +∞.

Note that (3.13) does not provide a tight lower bound for the expected reward achieved by the

DSSAP Ranking Algorithm. The Numerical Experiment Section compares the performance of

the DSSAP Ranking Algorithm with the optimal policy and shows the ratio for several cases.

Computing the optimal interval thresholds is the main factor in determining the running time of

the DSSAP Ranking Algorithm.

Theorem 8. The running time of the DSSAP Ranking Algorithm is O(nlog(n)× n3).

Proof: Computing the optimal interval thresholds requires O(n2) running time, which must be

done for n distinct distributions. Assuming that the expected success rate of each worker is

known, a running time of O(nlog(n)) is required for ranking the success rates expected values.

32

Therefore, the running time of the DSSAP Ranking Algorithm is O(nlog(n)× n3).

Note that if the workers are ranked randomly in the DSSAP Ranking Algorithm, the

probability that worker j (= 1, 2, ..., n) has rank i (= 1, 2, ..., n) in the random ordered set is 1
n

.

The expected reward of assigning a task to worker with the ith highest rank is at least
1
n

∑n
j=1 c

j
n−i+1,n+1 (since the ith highest rank is worker j (= 1, 2, ..., n) with probability 1

n
and the

ith highest rank is assigned a task with a reward value in one of the i largest interval that by

Theorem 7, guarantees a reward of at least cjn−i+1,n+1). Therefore, the total expected reward of

the randomized DSSAP Ranking Algorithm is at least

∑n
j=1

∑n
i=1 c

j
n−i+1,n+1

n

3.4 Numerical Experiments

This section describes several numerical experiments. Each of the experiments reports the results

of 10000 replications that compares the performance of the optimal policy with the expectation

policy.

Definition 3. The expectation policy ranks the workers by comparing their expected success rates

and follows the assignment policy described in Theorem 1 (i.e., instead of fixed success rates pi,

the workers are ranked by the expected success rate values).

3.4.1 DSSAP with one worker

The first experiment illustrates the performance of the optimal policy in Theorem 2. Let n denote

the total number of sequentially arriving tasks (i.e., secretaries) and assume that there is a single

worker with a random success rate, taking new values with each task arrival. The objective is to

find the optimal task to assign to the worker (i.e., hiring the best secretary). Assume that tasks are

distributed IID U(0, 1). The expectation policy computes the optimal interval thresholds {ai,n}

for the uniform distribution and assigns the arriving task to the single worker if the realized value

of the task is contained in (an−1,n, an,n] (since it assumes that there are n− 1 workers with fixed

33

Table 3.4: The performance of the expectation and the optimal policies for DSSAP with one
worker with a uniform success rate (Theorem 2)

Number of tasks (n) (E[Rexp(S1,n)], σexp) (E[Ropt(S1,n)], σopt)
E[Ropt(S1,n)]

E[Rexp(S1,n)]

5 (0.39, 0.25) (0.48, 0.21) 1.24
10 (0.42, 0.26) (0.57, 0.20) 1.36
50 (0.50, 0.28) (0.79, 0.12) 1.61

100 (0.48, 0.28) (0.84, 0.10) 1.75
200 (0.48, 0.29) (0.88, 0.07) 1.84

Table 3.5: The performance of the expectation and the optimal policies for DSSAP with one
worker with a Gamma success rate (Theorem 2)

Number of tasks (n) (E[Rexp(S1,n)], σexp) (E[Ropt(S1,n)], σopt)
E[Ropt(S1,n)]

E[Rexp(S1,n)]

5 (1.51, 1.58) (1.96, 2.05) 1.30
10 (1.64, 1.66) (2.44, 2.42) 1.49
50 (1.90, 1.96) (3.89, 3.40) 2.05

100 (1.93, 2.04) (4.82, 3.82) 2.50
200 (2.04, 2.19) (5.22, 4.19) 2.56

success rates of zero). However, the optimal policy proposed in Theorem 2 computes the product

distribution of the tasks and the random success rate, computes the corresponding interval

thresholds ({ci,n}), and assigns the arriving task to the worker if the task and the success rate’s

product is contained in (cn−1,n, cn,n]. The simulations for both policies are independent. Table 3.4

displays the sample average and sample standard deviation (σ) of the assigned reward for the

expectation policy (denoted by subscript exp) and the optimal policy (denoted by subscript opt),

when the random success rate follows a U(0, 1) distribution. Table 3.5 provides results when the

success rate follows a Gamma (θ = 2, k = 1) distribution (i.e., the shape parameter k and the

scale parameter θ, corresponding to an exponential random variable with mean θ = 2).

As shown in Tables 3.4 and 3.5, the proposed optimal policy results in a larger average reward

than the expectation policy in all experiments. In contrast to the expectation policy, which assigns

a task to the worker based on the task’s realized value, the optimal policy takes the product of the

tasks and success rates values into account. Hence, the total average reward is increased.

Moreover, larger improvements are achieved as the number of tasks increases.

34

Table 3.6: The performance of ranking the tasks by the expected value and the optimal policy for
the SSAP with multiple arriving tasks (Theorem 4)

Number of tasks (n) (E[RC(S1,n)], σC) (E[Ropt(S1,n)], σopt)
E[Ropt(S1,n)]

E[RC(S1,n)]

5 (1.58, 0.64) (1.96, 0.54) 1.24
10 (3.19, 1.00) (4.36, 0.78) 1.37
50 (16.21, 2.56) (24.38, 1.93) 1.50
100 (32.54, 3.74) (49.09, 2.88) 1.51
200 (65.70, 5.21) (99.16, 4.08) 1.51

3.4.2 SSAP with multiple arriving tasks

The next experiment investigates the optimal policy proposed in Theorem 4 (SSAP with multiple

arriving tasks). Assume that n IID U(0, 1) tasks arrive simultaneously and suppose that there are

n workers with fixed success rates to be assigned the tasks. The (fixed) success rate values are

distributed uniformly U(0, 1) and generated once for the experiment (i.e., they are not resampled

for each replication). One of the n arriving tasks is selected and assigned to a worker, and the

procedure with n− 1 tasks and workers continues. The optimal policy computes optimal interval

thresholds ({mi,n}) and assigns the arriving task to the worker with the ith smallest success rate if

the maximum realized value of the tasks is contained in the ith smallest interval (Theorem 4). The

optimal policy is compared with a policy that ranks the arriving tasks based on their expected

values (which is a random selection in this example since all tasks have the same expected value).

The sample average and sample standard deviation of the assigned rewards for this policy are

denoted by (E[RC(S1,n)], σC). The simulations for the different policies are independent. The

results are displayed in Table 3.6. The increase in the sample average reward is between 23% and

51% for various number of workers.

3.4.3 DSSAP with IID success rates

The next experiment illustrates the Greedy policy for the DSSAP with IID success rates

(Theorem 5) and compares its performance with the expectation policy. The tasks are assumed to

follow a U(0, 1) distribution. The optimal policy assigns the arriving task to the worker with the

maximum success rate at each stage. Table 3.7 provides the sample average reward and the

35

Table 3.7: The performance of the expectation and Greedy policies for the DSSAP with IID
uniform random success rates (Theorem 5)

Number of tasks (n) (E[Rexp(S1,n)], σexp) (E[RGreedy(S1,n)], σGreedy)
E[RGreedy(S1,n)]

E[Rexp(S1,n)]

5 (1.26, 0.48) (1.77, 0.52) 1.41
10 (2.48, 0.70) (3.98, 0.80) 1.60
50 (12.47, 1.60) (23.19, 1.96) 1.86
100 (24.90, 2.16) (47.74, 2.82) 1.92
200 (50.04, 3.05) (97.58, 3.82) 1.95

Table 3.8: The performance of the expectation and the Greedy policies for the DSSAP with IID
exponential random success rates (Theorem 5)

Number of tasks (n) (E[Rexp(S1,n)], σexp) (E[RGreedy(S1,n)], σGreedy)
E[RGreedy(S1,n)]

E[Rexp(S1,n)]

5 (5.04, 2.94) (6.97, 3.51) 1.38
10 (10.08, 4.06) (16.10, 5.42) 1.60
50 (49.64, 9.32) (92.29, 13.83) 1.86
100 (100.39, 12.90) (192.00, 19.84) 1.91
200 (199.80, 18.52) (390.25, 28.14) 1.95

sample standard deviation values for U(0, 1) success rates and Table 3.8 provides results for

exponentially distributed random success rates with mean two. The optimal policy results in a

significant improvement in the sample average reward, with larger increase as n increases.

3.4.4 DSSAP algorithms

The last experiment illustrates the DSSAP Algorithm and compares the expected reward of the

DSSAP Algorithm with the DSSAP Ranking and the randomized DSSAP Ranking Algorithms

(which follows the same step as the DSSAP Ranking Algorithm, but ranks the workers

randomly). Note that E[RRand(S1,n)] denotes the sample average reward achieved by the

randomized DSSAP Ranking Algorithm. The tasks are assumed to be IID U(0, 1), and the ith

worker’s success rate is assumed to have a Gamma (θ = i, k = 1) distribution. The simulations

for the different policies are independent. The DSSAP Ranking Algorithm achieves a larger

average reward than the randomized DSSAP Ranking Algorithm, and achieves more than 90% of

the average reward achieved by the DSSAP Algorithm for n = 5 and n = 10 workers (Table 3.9).

Due to the running time of the DSSAP Algorithm, its average reward for larger number of

36

Table 3.9: The performance of the DSSAP, the DSSAP Ranking, and the randomized DSSAP
Ranking Algorithms for Uniform task and Gamma random success rates

n E[RD(S1,n)] E[RDR(S1,n)] E[RRand(S1,n)] E[RDR(S1,n)]

E[RD(S1,n)]

E[RRand(S1,n)]

E[RD(S1,n)]

5 22.76 22.32 18.50 0.98 0.81
10 99.47 94.50 74.92 0.95 0.75
20 - 405.99 301.51 - -
50 - 2808.6 1972.5 - -

100 - 12382 8257.8 - -

workers is not reported. However, the DSSAP Ranking Algorithm can be used for larger number

of workers with the sample average reward values shown in Table 3.9. Note that the value of∑n
j=1 c

(j)
n,n+1 which is an upper bound on the maximum total expected reward (as discussed in

Theorem 7) for n = 5, 10, 20, 50, 100 is 27.30, 134.31, 647.43, 5044.3, 23386, respectively.

3.5 Summary

This chapter introduces the Doubly Stochastic Sequential Assignment Problem (DSSAP), an

extension of the SSAP where the workers’ success rates are random. As a generalization of

SSAP, DSSAP has applications in several areas including online matching markets, revenue

management, asset selling, and organ transplant. The main difference between SSAP and DSSAP

is the number of random parameters observed at each stage of the problem. While the task value

is the only random parameter in SSAP, both task and the workers’ success rates are stochastic in

DSSAP. This makes the problem of finding an optimal assignment policy for DSSAP very

challenging.

Optimal assignment policies for several special cases are proposed. The optimal algorithm for

DSSAP with one worker transforms the randomness in workers’ success rates to task values by

defining a surrogate problem and applies the optimal policy of SSAP to the surrogate problem.

The Greedy Algorithm is proven to be optimal for DSSAP with IID success rates.

The optimal policy for DSSAP with possibly different success rate distributions (referred to as

the DSSAP Algorithm) is a computational approach that uses backward induction to find the

optimal assignment at each stage by first solving smaller subproblems. The DSSAP Algorithm

37

computes the expected reward for each possible assignment in the n-stage problem and hence,

suffers from an exponential running time. The DSSAP Ranking Algorithm is an efficient

approximation algorithm that achieves a fraction of the maximum total expected reward in a

polynomial time. The DSSAP Ranking Algorithm assumes assignment priority for workers with

larger expected success rates. The algorithms assigns the arriving task to the worker with the ith

largest expected success rate if the task is not assigned to a worker with a higher priority, and the

reward achieved by this assignment is in one of the best i intervals computed for the worker. The

proposed policies are illustrated with several numerical experiments.

38

CHAPTER 4

GENERALIZED SEQUENTIAL ASSIGNMENT
PROBLEM

4.1 Introduction

This chapter relaxes the assumption that task values are independently drawn from a known

distribution. SSAP without any prior information on task values is referred to as the Generalized

SSAP (GSSAP). First, the relation between the Secretary Problem and GSSAP is described.

The Secretary Problem finds an optimal policy for selecting the best element among a known

number of sequentially arriving objects [23, 42]. The main challenge in the Secretary Problem is

that the decision-maker must make an irrevocable decision by comparing the relative rank of the

candidates interviewed so far, without any information on the quality of the next (future) arriving

candidates. Similar to the SSAP, the optimal policy of the Secretary Problem has a threshold

structure: A number of candidates are interviewed and the quality of the best interviewed

candidate is set as a threshold. Then, the first candidate with a quality greater than the threshold is

hired. While the optimal thresholds of the SSAP are computed prior to the assignment process

using the distribution of the task values, there is a training phase in the Secretary Problem to set

the threshold since there is no prior information on the secretary quality values.

There are two differences between the SSAP and the Secretary Problem. First, while the

selected elements in the Secretary Problem are equivalent and in terms of an assignment problem,

are assigned to similar positions, each arriving task in the SSAP is assigned to a worker with a

distinct success rate value. SSAP can be considered as a Secretary Problem with n secretaries and

n employers, where the secretaries must be assigned (matched) to the employers such that the

total reward is maximized. Second, while one element or a subset of elements (smaller than the

total number of arriving elements) are selected in the Secretary Problem, the number of

sequentially arriving tasks and available workers are assumed to be equal for the SSAP.

39

Therefore, the assignment process for the SSAP begins with the arrival of the first task and there

is no training phase during which tasks can be discarded. Note that the equal number of tasks

(which are the online elements that arrive sequentially and must be assigned upon arrival) and

workers (which are the offline elements that are known prior to the assignment process) in the

SSAP is the most general case in an online matching problem. If the number of tasks n is larger

than the number of workers m, then n−m auxiliary workers with zero success rate can be

created. If the number of tasks is less than the number of workers, the m− n workers with

smallest success rates can be discarded.

The similarities between the SSAP and the Secretary Problem can be used to propose policies

for one problem using the other problem. In one direction, the SSAP is used to derive optimal

policies for the full information Secretary Problem, where the quality values of the sequentially

arriving elements are independently drawn from a known distribution. In the other direction, the

Secretary Problem is used to generalize the SSAP by relaxing the assumption that task values

come from a known distribution. The Weighted Secretary problem [7] is used to design two

deterministic and one randomized assignment policies for GSSAP, and an assignment policy for

GSSAP with a time-dependent reward function. While the deterministic algorithms provide

slightly better lower bounds on the expected reward, the randomized algorithm is incentive

compatible: It assigns each task to any of the workers with equal probability. This provides

fairness since the sequentially arriving elements do not have an incentive to appear in specific

stages to be assigned to better workers.

As mentioned previously, SSAP has applications in several areas, including the organ

transplant, revenue management, and asset selling problem [59, 35]. While assuming that task

values are independently drawn from a known distribution is useful for applications with a large

historical data set, it is not a realistic assumption in some other applications. This chapter relaxes

this assumption and proposes assignment policies with a guaranteed lower bound on the expected

reward, which can be used in real applications with no prior information on the sequentially

arriving elements. Babaioff et al. [8] present the Secretary Problem as a framework for online

auctions. Considering the GSSAP as a generalization of the Secretary Problem, the GSSAP

studies the problem of matching a set of bidders with a number of available items in an online

auction, where bids correspond to the tasks and items correspond to the workers.

40

The remainder of this chapter is organized as follows. Section 4.2 describes several extensions

of the Secretary Problem and SSAP and discusses the relation between the two problems. Section

4.3 proposes the assignment policies for GSSAP using the Weighted Secretary Problem. Section

4.4 uses the Weighted Discounted Secretary Problem to obtain an algorithm for the GSSAP with

a time-dependent reward function. Section 4.5 briefly discusses the GSSAP with general reward

functions. Section 4.6 provides a summary of the results and concluding comments.

4.2 The Secretary Problem and The Sequential Stochastic
Assignment

There are n sequentially arriving secretaries interviewed one by one in the Secretary Problem.

Once a secretary is interviewed, its relative quality (i.e., the quality compared to secretaries

interviewed in the previous stages) is observed. An irrevocable decision, either to hire or to reject,

is made at each stage. Once rejected, a secretary can not be recalled. Based on the objective and

the assumptions, four different types of the Secretary Problem can be defined: The objective is

maximizing either the probability of hiring the best secretary or the expected quality of the hired

secretary. The quality values are assumed either to come independently from a known distribution

(the full information Secretary Problem) or to have a random arrival order (without any

assumption on the values).

The optimal policy of the Secretary Problem with no assumptions on the quality values and the

objective to maximize the probability of hiring the best secretary divides the arriving elements

into two sets. First, a set of secretaries are interviewed without anyone being hired. These

secretaries are referred to as the training set, with a threshold defined as the quality of the best

secretary in the training set. In the second phase, the first secretary that has a quality above the

threshold is hired. It can be shown that as n→ +∞, the optimal number of secretaries in the

training phase approaches n
e

and the probability of hiring the best secretary approaches 1
e

[25].

The optimal policy of the Secretary Problem with no assumptions on secretaries quality values

and the objective to maximize the expected quality of the hired secretary (or equivalently,

minimize the expected rank of the hired secretary) is of the following form: Hire the rth secretary

41

if their relative rank s (i.e., their rank among the secretaries interviewed so far) satisfies

s ≤ s∗(r), where s∗(r) is a function of the stage number that computes the optimal relative rank.

The intuition is that after a few interviews of not observing a secretary of relative rank 1, the best

secretary has been rejected in the training phase with a large probability. Therefore, since the

objective is to minimize the expected rank of the hired secretary (and not maximizing the

probability of hiring the best secretary), a secretary of relative rank 2 is hired, and so on. [15]

prove that as n→ +∞, the absolute rank of the secretary hired by the optimal policy tends to

∞∏
j=1

(
j + 2

j
)1/j+1 ∼= 3.8695

Enns [24] derives the optimal policy for the full information Secretary Problem with the

objective to maximize the probability of hiring the best secretary and proves that the probability

of obtaining the maximum value is independent of the distribution.

Consider the full information Secretary Problem with the objective to maximize the expected

quality of the hired secretary E[x1], where x1 denotes the quality value of the hired secretary.

This problem is a special case of the SSAP [19]: Assume that n tasks with associated random

values coming independently from a known distribution arrive sequentially, and there is one

worker with a fixed success rate p1 = 1 (and n− 1 workers with success rate of

p2 = p3 = ... = pn = 0) to be assigned one of the tasks [36]. The goal is to maximize the

expected reward of the assignment, which is given by

E[
n∑
j=1

xijpj] = E[xi1p1] = E[xi1], (4.1)

where xi1 denotes the task value assigned to the single available worker. This problem is

equivalent to the full information Secretary Problem since both problems maximize the expected

quality of the selected elements. The optimal policy of SSAP determines the optimal policy for

the Secretary Problem: n optimal intervals are defined using Corollary 1 and the task is assigned

to the worker with success rate p1 = 1 (or equivalently the secretary is hired) if the task

(secretary) value is in the highest interval x ∈ (an−1,n, an,n] (as in Theorem 1).

Several extensions of the Secretary Problem and the SSAP are discussed in Sections 4.2.1 to

42

4.2.5. The optimal policies of the SSAP extensions can be used to find the optimal policy for the

corresponding full information Secretary Problem when the objective is to maximize the expected

quality of the hired secretaries.

4.2.1 The Multiple Choice Problem

The Multiple Choice Secretary Problem selects a subset of k secretaries so as to maximize either

the expected sum of their qualities [38], or the probability of selecting the k best secretaries [27].

Another version of the Multiple Choice Secretary Problem seeks to maximize the probability of

hiring the best secretary among the k choices [57].

The full information Multiple Choice Secretary Problem maximizes E[
∑k

i=1 xi], where k is the

number of secretaries to be hired and xi denotes the quality value of the ith hired secretary. The

optimal policy of the SSAP can be used to maximize the expected sum of the qualities in the full

information Multiple Choice Secretary Problem [36]. Assume that the workers success rates are

pi = 1 for i = 1, 2, ..., k and pi = 0 for i = k + 1, k + 2, ..., n. Then, Theorem 1 determines the

optimal policy for the SSAP that maximizes

E[
n∑
j=1

xijpj] = E[
k∑
j=1

xijpj] = E[
k∑
j=1

xij], (4.2)

which is the same as the objective function of the Multiple Choice Secretary Problem. The

optimal policy hires the arriving secretary if their quality value is in one of the k highest intervals

defined by Corollary 1, x ∈ (an−k,n, an,n], with x denoting the quality value, and n denoting the

total number of candidates.

4.2.2 Uncertain Employment

Smith [58] studies the Secretary Problem with Uncertain Employment, where each secretary

refuses an employment offer with a fixed probability. The objective is to maximize the probability

of hiring the best secretary. Tamaki [60] studies the same problem under two assumptions; one

model assumes that the availability of a secretary is revealed when the employment offer is made

43

and the other model assumes that the availability is revealed only upon secretary arrival. The

optimal policy of the Secretary Problem with Uncertain Employment has a training phase to set a

threshold and a selection phase to hire the first secretary with a value above the threshold [58].

SSAP with random success rates (DSSAP), which is described in the previous chapter, can be

used to solve a problem similar to the full information Secretary Problem with Uncertain

Employment. Assume that the secretary quality values (x) are independently drawn from a

known distribution. Moreover, assume that there is an availability probability (q) revealed upon

each secretary interview, which are also independently drawn from a known distribution. The

objective is to maximize the expected quality of the hired secretary, which is defined as E[x× q]

(since if a secretary with quality x is selected, it has an availability probability of q). This

problem is a special case of the DSSAP with n tasks and one worker with a random success rate

q. The optimal policy computes a threshold using the product distribution of task values and the

random success rate and assigns the first arriving task to the single worker (i.e., hires the first

secretary) in the n-stage problem if x× q ∈ (cn−1,n, cn,n] [35].

4.2.3 Time Discounting

Rasmussen and Pliska [53] study the Secretary Problem with a discount factor α. The reward of

hiring the best secretary if she appears at stage i is given by αi. If the hired secretary is not the

best one, then the achieved reward is zero. Rasmussen and Pliska show that the optimal policy

has a threshold structure: The first r∗ − 1 secretaries are interviewed without hiring anyone.

Then, starting from stage r∗, the first secretary that is better than any previously interviewed ones

is hired. They derive an expression for the optimal value of r∗.

Albright [3] studies the SSAP by assuming that tasks arrive according to a non-homogeneous

Poisson process with a continuous intensity function λ(t), and the reward of assigning the task

with value x at time t to a worker with success rate pi is defined as x× r(t)× pi. The discount

function r(t) is assumed to be a piecewise continuous, non-negative, and non-increasing function

with r(0) = 1. Albright first discusses the problem with p1 = p2 = ... = pn = 1. The optimal

policy when there are n remaining workers defines a set of time-dependent critical curves yi(t),

i = 1, 2, ..., n such that the arriving task is assigned to a worker if x > yn(t). The critical curves

44

satisfy the following integral equation:

r(t)sn(t) =

∫ ∞
t

[λ(τ)r(τ)H(yn(τ)) + λ(τ)F̄ (yn(τ))r(τ)sn−1(τ)]exp(−
∫ τ

t

λ(β)F̄ (yn(β))dβ)dτ,

where sn(t) =
∑n

i=1 yi(t), H(y) =
∫∞
y
xF (dx), and F̄ (y) = 1− F (y). The optimal policy can

be used to maximize the expected sum of the secretary qualities in a full information Discounted

Secretary Problem where the time discounting is a non-increasing function of time. This is a

more general assumption than the Discounted Secretary Problem studied by [53], since the

discount function is a continuous function of time. Assuming that the workers success rates are

p1 = 1 and pi = 0 for i = 2, 3, ..., n, the optimal policy defines a critical curve y1(t) such that the

current secretary is hired if their quality value is larger than y1(t).

4.2.4 Infinite Problem

Gianini and Samuels [29] study the Infinite Secretary Problem. They assume that an infinite

number of secretaries arrive sequentially at IID Uniform (0, 1) times. The relative rank of the

secretaries is observed, with rank 1 denoting the best secretary. They seek a policy to select one

secretary such that the objective, which is defined as a positive increasing function of the actual

rank, is minimized. The optimal policy computes a set of time break points 0 < t1 ≤ t2 ≤ ... ≤ 1

such that the first secretary arriving in the interval [ts, ts+1) is hired if their relative rank is s or

better.

Albright and Derman [2] investigate the limiting behavior of the optimal intervals as the

number of assignments approaches infinity. They show that if the CDF of the task values F is

absolutely continuous and the task’s values have finite means, the optimal interval thresholds of

the infinite SSAP can be computed as

lim
n→∞

a[nπ],n+1 = F−1(π), (4.3)

where 0 < π < 1. Therefore, the optimal policy for the full information Secretary Problem with

infinite number of candidates is to hire the arriving secretary if their quality value falls in the

highest interval computed as (4.3).

45

4.2.5 Random Number of Elements

The Secretary Problem with a random number of candidates assumes that the number of

sequentially arriving candidates is random. Presman and Sonin [52] study the problem with the

objective to maximize the probability of selecting the best element. The optimal policy computes

a set of (possibly) discontinuous stopping points, referred to as islands (i.e., while the optimal

policy of the Secretary Problem hires the first relatively best candidate in stages k, k+ 1, ..., n, the

optimal policy of the Secretary Problem with a random number of candidates is of the form "hire

the first relatively best candidate in stages {k1, k1 + 1, ..., k2} ∪ {k2 + z, k2 + z + 1, ..., k3} ∪ ...",

with z ≥ 0 a constant that depends on the distribution of the number of tasks).

Gianini-Pettitt [30] studies the same problem with the objective to minimize the expected rank

of the selected individual. The optimal policy hires the rth arriving secretary if their relative rank

is less than s(r), where s is a function that depends on the probability distribution of the number

of elements.

Oveis Gharan and Vondrak [51] study the Secretary Problem with an Unknown Number of

Candidates. They show that if the number of elements is selected by an adversary from

{1, 2, ..., N}, then there exists a randomized algorithm that finds the best secretary with

probability no less than 1/(HN−1 + 1), where HK =
∑K

i=1
1
i

is the Kth harmonic number. They

further show that there is no algorithm that hires the best secretary with probability more than

1/HN .

Nikolaev and Jacobson [49] consider SSAP with a random number of tasks. They assume that

the distribution of the number of tasks is known. To find the optimal policy, they define a

surrogate problem as the SSAP with a fixed number of tasks Nmax, where Nmax is the maximum

possible number of tasks. The task values in the surrogate problem (x′) are computed using the

distribution of the number of tasks: If x′j−1 = 0, then x′j = 0. Otherwise, x′j = xj with probability∑Nmax
i=j Pi/

∑Nmax
i=j−1 Pi and x′j = 0 with probability Pj−1/

∑Nmax
i=j−1 Pi. Then, they use the SSAP

with task values coming from not necessarily independent random variables [33] to find the

optimal policy of the surrogate problem, which is used to derive the optimal assignment of the

SSAP with a random number of tasks. The optimal policy has the same structure as the optimal

policy of the SSAP: A set of thresholds are defined recursively and the nth arriving task is

46

assigned to the worker with the mth largest success rate value if the task value (x′n) is contained

in the mth highest interval. Assuming that the distribution and the maximum number of tasks are

known, the optimal policy of the SSAP with p1 = 1 and pi = 0 for i = 2, 3, ..., n, can be used to

find the optimal policy of the full information Secretary Problem with a random number of

candidates.

4.3 Algorithms for Generalized SSAP Using the Weighted
Secretary Problem

This section uses the Weighted Secretary Problem to obtain assignment policies for the

Generalized SSAP (GSSAP) without any prior information on the task values. Babaioff et al. [7]

study the Weighted Secretary Problem, where up to K secretaries are selected and assigned

irrevocably to K positions with weights w1 ≥ w2 ≥ ... ≥ wK such that
∑K

i=1 xiwi is maximized,

where xi is the value of the secretary assigned to position i, and xi = 0 if position i is not filled.

They propose the Interval Reservation Algorithm, which observes the first l = bn
2
c elements

(referred to as the training set) and computes a set of thresholds to assign secretaries to the

positions. The intervals are defined as Ii = (x̂i, x̂i−1) for i > 1 and let I1 = (x̂1,∞), where x̂i is

the ith largest quality value in the training set. Upon arrival of a secretary with value xe from the

remaining n− l secretaries (hereafter called the selection set), the secretary is assigned to

position m with smallest index such that m ≥ me, where me is such that xe ∈ I(me).

To analyze the Interval Reservation Algorithm, Babaioff et al. [7] propose an algorithm,

referred to as Algorithm B, which follows the same steps as the Interval Reservation Algorithm,

but assigns secretary e to position me if the position is not yet filled. Otherwise, secretary e is not

assigned to a position. Note that the expected value achieved by the Interval Reservation

Algorithm is greater than or equal to the one achieved by Algorithm B since each position is

filled in the Interval Reservation Algorithm by a secretary with a value at least as large as the

secretary filling the same position in Algorithm B [7]. Therefore, the competitive ratio achieved

by the Interval Reservation Algorithm is at least as good as the competitive ratio achieved by

Algorithm B. This result is formalized as Lemma 9.

47

Lemma 2. [7] The expected weighted value achieved by the Interval Reservation Algorithm is at

least that achieved by Algorithm B.

Babaioff et al. [7] prove a 4−competitive ratio for Algorithm B. Then, as formalized in

Theorem 9, they conclude that the Interval Reservation Algorithm is 4-competitive.

Theorem 9. [7] Algorithm B is 4-competitive. Therefore, by Lemma 9, the Interval Reservation

Algorithm is 4-competitive.

The Weighted Secretary Problem is equivalent to the SSAP with no prior information on task

values (i.e., the GSSAP), where secretaries correspond to the sequentially arriving tasks and

positions (weights) correspond to workers (success rates). In the GSSAP, the decision-maker

assigns each arriving task to one of the available workers starting at the first stage (i.e., the number

of workers is equal to the number of arriving tasks). Therefore, while the Interval Reservation

Algorithm does not make any assignments in the training phase, an assignment policy for the

GSSAP must start the assignment process from the first stage. Note that discarding a set of tasks

in the GSSAP is not possible for some applications, such as organ transplant [59]. Moreover,

maximizing the number of assignments in the GSSAP is equivalent to maximizing the number of

matchings in an online matching problem, which is necessary for customer satisfaction. Sections

4.3.1, 4.3.2, and 4.3.3 propose three different methods to divide workers into groups recursively

and assign tasks to the workers of each group using the Interval Reservation Algorithm. While

the first two algorithms achieve a 4-competitive ratio, the third algorithm is a 6-competitive

randomized algorithm that assigns each task to any of the workers with equal probability.

4.3.1 The Recursive Interval Reservation Algorithm (RIRA)

The Recursive Interval Reservation Algorithm (RIRA) recursively applies the Interval

Reservation Algorithm to groups of workers: The first group of workers includes the l = bn
2
c

workers with the smallest success rates, which are assigned the tasks of the training set (i.e., the

first l tasks), and the second group includes workers with the n− l largest success rates, which

are assigned tasks in the selection set (i.e., the last n− l tasks). The tasks in the training set are

assigned to the workers by recursively applying the Interval Reservation Algorithm to the training

48

set (i.e., workers of the first group are again divided into two groups, with the first b l
2
c tasks

assigned to the group with the smallest success rates and the last l − b l
2
c tasks assigned to the

group with the largest success rates, and so on). Similar to the Interval Reservation Algorithm,

RIRA assigns the task with a value in the kth highest interval to the worker p(l) if l is the smallest

index such that l ≥ k. If there is no such worker, then the task is assigned to the worker with

success rate p(l) such that l is the largest index with l < k. This guarantees that each task is

assigned to a worker. The intuition behind the Recursive Interval Reservation Algorithm is that

less skilled workers (i.e., workers with smaller success rates) are assigned tasks without a training

data set (or more precisely, with a smaller training set), and more skilled workers, which have a

larger effect on the total reward, are assigned tasks after a (larger) training phase.

The Recursive Interval Reservation Algorithm is formalized as Algorithm 3, with xj denoting

the jth arriving task’s value, and x(i) (p(i)) denoting the ith largest task (success rate) value. There

are s = blog(n)c+ 1 rounds of dividing the workers into two groups and assigning the tasks to

the second group of workers using the thresholds defined by the tasks assigned to the first group.

The first part of the algorithm recursively divides the workers into groups, saved in the rows of

matrix B. The first group of workers A is divided into two groups in the next iteration. The

second group B(j), which includes the workers with the largest success rates, are assigned tasks

in the s− j + 1th round. For example, in the GSSAP with four workers with success rates

p(4) ≤ p(3) ≤ p(2) ≤ p(1), there are s = blog(4)c+ 1 = 3 rounds of dividing the workers. The first

round divides the workers into two groups, with the first group Anew = {p(3), p(4)} (which is

divided in the next iteration), and the second group B(1) = {p(1), p(2)} (which are assigned the

last two tasks). The next round divides Aold (which is Anew of the previous iteration) into two

group, with Anew = {p(4)} and B(2) = {p(3)}. The third round includes the worker with the

smallest success rate B(3) = {p(4)}.

49

Algorithm 3 The Recursive Interval Reservation Algorithm (RIRA)
RIRA (n, P = {pi|i ∈ {1, 2, ..., n}})

Aold = P

s = blog(n)c+ 1

for j=1 to s

m = |Aold|

if m > 1

Anew = {p(i) ∈ Aold|i ∈ {m− bm/2c+ 1,m− bm/2c+ 2, ...,m}}

B(j) = Aold − Anew
Aold = Anew

else

B(j) = Aold

end if

end for

I1 = (−∞,+∞)

for j=1 to s

r = |B(s− j + 1)|

Assign the next r sequentially arriving tasks to workers with success rates p(l) ∈ B(s− j + 1):

if xi ∈ Ik
Assign task i to worker with success rate p(l) with l the smallest index satisfying l ≥ k

if there is no such worker

Assign task i to worker with success rate p(l) with l the largest index satisfying l < k

end if

end if

Update the intervals using the r tasks assigned:

Ik = (x(k), x(k−1)) for k = 1, 2, ..., n+ 1, with x(n+1) = −∞ and x(0) = +∞

end for

The second part of the algorithm assigns the sequentially arriving tasks to the groups of

50

workers obtained in the first part. It updates the optimal intervals using the tasks assigned at each

round. In the above example, B(s) = B(3) = {p(4)} includes one worker, which is assigned the

first arriving task. Then, the interval thresholds are updated using the value of the first arriving

task. However, since B(2) = {p(3)} includes only one worker, the second task is assigned to this

worker. The third round assigns the next two tasks to the workers in B(1) using the thresholds

defined by the first two task values.

Lemma 3. The Recursive Interval Reservation Algorithm achieves a reward strictly larger than

the Interval Reservation Algorithm for K > n− bn
2
c and achieves the same reward for

K ≤ n− bn
2
c, where K is the number of available workers.

Proof: Follows directly from the definition of the Recursive Interval Reservation Algorithm.

Theorem 10. The Recursive Interval Reservation Algorithm is 4-competitive.

Proof: Follows directly from Theorem 9 and Lemma 3.

Lemma 4. The reward achieved by the Recursive Interval Reservation Algorithm for the problem

with n tasks and workers is at least 1
4

∑n
i=n−l+1 x(i)p(i) larger than the reward achieved by the

Interval Reservation Algorithm.

Proof: Let x̂i denote the task assigned to position i and RIRA denote the total reward achieved

by the Interval Reservation Algorithm. Since the Interval Reservation Algorithm observes the

first l secretaries without assigning any of them, the total reward it achieves is given by

RIRA =
n∑
i=1

x̂ip(i) =
n−l∑
i=1

x̂ip(i). (4.4)

Let xi denote the task value assigned to position i and RRIRA denote the total reward achieved by

the Recursive Interval Reservation Algorithm. Then,

RRIRA =
n∑
i=1

xip(i) =
n−l∑
i=1

xip(i)+
n∑

i=n−l+1

xip(i) =
n−l∑
i=1

x̂ip(i)+
n∑

i=n−l+1

xip(i) = RIRA+
n∑

i=n−l+1

xip(i).

(4.5)

Therefore,

RRIRA −RIRA ≥
n∑

i=n−l+1

xip(i). (4.6)

51

Let x∗(j) denote the jth largest task value among the first l tasks (i.e., the training set). By Theorem

9,

n∑
i=n−l+1

xip(i) ≥
1

4

l∑
i=1

x∗(i)p(n−l+i). (4.7)

Since x∗(j) ≥ x(n−l+j) for j = 1, 2, ..., l (i.e., the best task among the first l tasks is at least as good

as the (n− l + 1)th task among all n tasks and so on),

n∑
i=n−l+1

xip(i) ≥
1

4

n∑
i=n−l+1

x(i)p(i), (4.8)

which together with (4.6) completes the proof.

4.3.2 The Determinstic Dividing Algorithm (DDA)

The ith largest task value has the same probability of appearing in the first and second half of the

sequentially arriving tasks in a random arrival model. Therefore, assigning all workers with larger

success rates in the second half of the assignment process decreases the expected number of

assignments, where the ith largest task value is assigned to the ith largest success rate (as in the

optimal offline assignment). Similar to the Recursive Interval Reservation Algorithm, the

Deterministic Dividing Algorithm (DDA) recursively divides the workers into two groups and

applies the Interval Reservation Algorithm to each group. However, while the Recursive Interval

Reservation Algorithm divides the workers into a group with the smallest success rates and a

group with the largest success rates, the Deterministic Dividing Algorithm divides the workers

into two groups of approximately the same success rate values: The tasks in the training set, in

the n−stage problem, are assigned to workers with success rates {p(2k)|2k ∈ {1, 2, ..., n}}, and

the selection set’s tasks are assigned to workers with success rates

{p(2k+1)|2k + 1 ∈ {1, 2, ..., n}}. This policy increases the expected number of assignments,

where the ith largest task and success rate values are matched. Theorem 11 proves that the

Deterministic Dividing Algorithm, which is formally presented as Algorithm 4, is 4-competitive.

Theorem 11. The Deterministic Dividing Algorithm is 4-competitive.

52

Proof: Let p(n) ≤ p(n−1) ≤ ... ≤ p(1) denote the workers success rates and

x(n) ≤ x(n−1) ≤ ... ≤ x(1) denote the task values. The Deterministic Dividing Algorithm assigns

a task to the worker with the largest success rate p(1) exactly in the same manner as the Interval

Reservation Algorithm. Therefore, in expectation, the reward of assigning a task to this worker by

the Deterministic Dividing Algorithm is at least 1
4
x(1)p(1).

The same procedure as in the proof of 4−competitiveness for the Interval Reservation

Algorithm is used to prove that the expected reward that the Deterministic Dividing Algorithm

achieves by assigning a task to each of the other workers is at least 1/4 times the maximum

offline reward. Define Algorithm B in the same way as discussed in Lemma 9: If xj ∈ Ik,

Algorithm B assigns the task to worker with success rate p(k) if and only if the worker has not

already been assigned, and discards the task otherwise [7]. It will be proven that Algorithm B

achieves at least 1/4 of the optimal offline reward. Together with Lemma 9, this result proves that

the expected reward achieved by the Deterministic Dividing Algorithm is at least 1/4 of the

optimal offline reward. The Deterministic Dividing Algorithm assigns a task to the worker with

success rate p(2) in one of stages z = b1
2
bn
2
cc+ 1, b1

2
bn
2
cc+ 2, ..., bn

2
c. Given that the task x(2) or

a task with a larger value (i.e., x(1)) appears in a random order at position z, then with probability
b 1
2
bn
2
cc

z−1 the next most valuable task (i.e., the task with the next largest value) that appeared before

x(2) (or x(1)), appears in the training set (i.e., in one of the stages 1, 2, ..., b1
2
bn
2
cc). Conditioning

on this event, with probability b
1
2
bn
2
cc−1

z−2 the next less valuable task (i.e., the task with the next

smallest value) that appeared before x(2) (or x(1)), appears in the training set. These two events

are sufficient conditions that a task with a value at least as large as x(2) is assigned to the worker

with success rate p(2) by Algorithm B [7]. The probability that the task in position z has a value

at least as large as x(2), is 2
n

(since this is equal to the probability that the task has the value x(1) or

x(2)). Therefore, the probability that the worker with success rate p(2) is assigned to a task with a

value at least as large as x(2) by Algorithm B is given by

bn
2
c∑

z=b 1
2
bn
2
cc+1

2

n
×
b1
2
bn
2
cc(b1

2
bn
2
cc − 1)

(z − 1)(z − 2)
=

2

n
× b1

2
bn

2
cc(b1

2
bn

2
cc − 1)×

bn
2
c∑

z=b 1
2
bn
2
cc+1

(
1

z − 2
− 1

z − 1
)

=
2

n
× b1

2
bn

2
cc(b1

2
bn

2
cc − 1)× (

1

b1
2
bn
2
cc − 1

− 1

bn
2
c − 1

) =
2

n
× b1

2
bn

2
cc ×

bn
2
c − b1

2
bn
2
cc

bn
2
c − 1

,

53

which is at least 1
4
, for n→∞. Therefore, in expectation, the reward achieved by the worker with

success rate p(2) using the Deterministic Dividing Algorithm is at least 1
4

times the reward

achieved by the same worker in the optimal assignment.

Algorithm 4 The Deterministic Dividing Algorithm
DDA (n, P = {pi|i ∈ {1, 2, ..., n}})

Aold = P

s = blog(n)c+ 1

for j=1 to s

m = |Aold|

if m > 1

Anew = {p(i) ∈ Aold|i = 2k}

B(j) = Aold − Anew
Aold = Anew

else

B(j) = Aold

end if

end for

Follow the assignment process as RIRA

To prove that the same competitive ratio holds for the reward achieved by the other workers,

note that x(i)p(i) ≥ x(i+1)p(i+1) for i = 3, 5, 7, Therefore, the reward achieved by the workers

with success rates p(3), p(5), p(7), ..., is at least half of the remaining reward and hence, proving a

2−competitive ratio for the reward achieved by these workers is equivalent to proving a

4−competitive ratio for the total reward achieved by the workers with success rates

p(3), p(4), p(5), ..., p(n).

Consider the worker with success rate p(k) with {k = 2l + 1|2l + 1 ∈ {3, ..., n}}. The

probability that the task in position z has a value at least as large as x(k), is at least 2
n

(since this is

equal to the probability that the task has a value x(k) or x(k+1)). Therefore, following the same

steps as (4.9), for stages z = bn
2
c+ 1, bn

2
c+ 2, ..., n, the probability that the worker with success

54

rate p(k) (k = 3, 5, 7, ...) is assigned to a task with a value at least as large as x(k) is given by

2

n
× bn

2
c ×

n− bn
2
c

n− 1
,

which is at least 1
2

as n→ +∞. Therefore, in expectation, the reward achieved by the workers

with success rate p(3), p(4), p(5), ..., p(n) using the Deterministic Dividing Algorithm is at least 1
4

times the reward achieved by the same workers in the optimal assignment.

Lemma 5 compares the expected reward achieved by the Deterministic Dividing Algorithm

with the minimum expected reward achieved by the Interval Reservation Algorithm. Together

with Lemma 4, this result can be used to compare the lower bound of the reward achieved by the

Deterministic Dividing Algorithm and the Recursive Interval Reservation Algorithm.

Lemma 5. Let E[RDDA] denote the expected reward achieved by the Deterministic Dividing

Algorithm. Then,

E[RDDA]− 1

4

n∑
j=1

x(j)p(j) ≥
1

4

∑
{i=2k+1|k≥1,2k+1∈{1,2,...,n}}

(x(i+1
2

) − x(i))p(i) +
1

4

n∑
i=n−l+1

x(i)p(n),

(4.9)

where 1
4

∑n
j=1 x(j)p(j) is the lower bound of the expected reward achieved by the Interval

Reservation Algorithm.

Proof: Let xij denote the task assigned to the worker with success rate p(j), j = 1, 2, ..., n, by the

Deterministic Dividing Algorithm. Then, the expected reward achieved by the Deterministic

Dividing Algorithm is given by

E[RDDA] =
∑
j

xijp(j) =
∑

{j=2k+1|2k+1∈{1,2,...,n}}

xijp(j) +
∑

{j=2k|2k∈{1,2,...,n}}

xijp(j). (4.10)

A lower bound for each of the two terms in the right hand-side of (4.10) is proven, which are used

to prove (4.9). By Theorem 11,

∑
{j=2k|2k∈{1,2,...,n}}

xijp(j) ≥
1

4

∑
{j=2k|2k∈{1,2,...,n}}

x(j)p(j). (4.11)

The Deterministic Dividing Algorithm uses the Interval Reservation Algorithm to assign tasks to

55

workers with success rates p(1), p(3), ..., p(n−1). In the SSAP with n tasks and workers, the Interval

Reservation Algorithm does not assign any tasks to the workers with the smallest bn
2
c success

rates. To prove a tighter lower bound on the reward that the Deterministic Dividing Algorithm

achieves by assigning tasks to the workers with success rates p(1), p(3), ..., p(n−1), (i.e., the first

term in the right hand-side of (4.10)), define n− (n− bn
2
c) auxiliary workers with success rates

p(n), which increases the set of available workers to n workers with success rates

p(1), p(3), ..., p(n−1), p(n), p(n), ..., p(n),

where the smallest bn
2
c success rates are all equal to p(n). By Thoerem 9,

∑
{j=2k+1|2k+1∈{1,2,...,n}}

xijp(j) ≥
1

4

n−l∑
j=1

x(j)p(2j−1) +
1

4

n∑
i=n−l+1

x(i)p(n). (4.12)

Inserting (4.11) and (4.12) into (4.10),

E[RDDA] =
∑
j

xijp(j) ≥
1

4

∑
{j=2k|2k∈{1,2,...,n}}

x(j)p(j) +
1

4

n−l∑
j=1

x(j)p(2j−1)

+
1

4

n∑
i=n−l+1

x(i)p(n) =
1

4

n∑
j=1

x(j)p(j) +
1

4

∑
{i=2k+1|2k+1∈{1,2,...,n}}

(x(i+1
2

) − x(i))p(i)

+
1

4

n∑
i=n−l+1

x(i)p(n), (4.13)

which completes the proof.

4.3.3 The Random Dividing Algorithm

This section describes an incentive compatible algorithm for GSSAP. The Random Dividing

Algorithm (RDA) randomly orders the workers such that the ith (i = 1, 2, ..., n) largest success

rate has 1
n

probability of being in the jth (j = 1, 2, ..., n) position. It then recursively applies

Algorithm B to groups of workers. Algorithm 7 formalizes this procedure. While the Recursive

Interval Reservation Algorithm and the Deterministic Dividing Algorithm divide the workers into

56

groups deterministically, the Random Dividing Algorithm generates groups of workers randomly.

First, it is proven that the Random Dividing Algorithm is incentive compatible: It assigns each

task to each of the workers with equal probability. Then, it is proven that the Random Dividing

Algorithm is 6-competitive.

Theorem 12. The Random Dividing Algorithm is incentive compatible.

Proof: Let P ∗ = {p∗1, p∗2, ..., p∗n} denote the success rates of randomly ordered workers.

Induction is used to prove that each of the tasks arriving in stages bn/2c+ 1, bn/2c+ 2, ..., n are

assigned to any of the workers with success rates P ∗1 = {p∗bn/2c+1, p
∗
bn/2c+2, ..., p

∗
n} with equal

probability. Since this process is recursively applied and each worker has equal probability of

being in the set P ∗1 , this proves that each task is assigned to each worker with equal probability.

The task arriving at stage bn/2c+ 1 is assigned to the jth worker if the task value is in the jth

interval defined by the first bn/2c tasks. Since the tasks have a random arrival order, the task

value is equally likely to be in any of these intervals. Therefore, the task arriving at stage

bn/2c+ 1 is assigned to any of the workers with success rates {p∗bn/2c+1, p
∗
bn/2c+2, ..., p

∗
n} with

equal probability. As the induction assumption, assume that tasks arriving at stages

bn/2c+ 1, bn/2c+ 2, ..., t− 1 are assigned to any of the workers with success rates

{p∗bn/2c+1, p
∗
bn/2c+2, ..., p

∗
n} with equal probability. The probability that task t is assigned to worker

j is given by the probability that task t is assigned to worker j given that the worker is available at

stage t multiplied by the probability that worker j is available at stage t. By the induction

assumption, since each worker has equal probability of being in the set P ∗1 and each task in stages

bn/2c+ 1, bn/2c+ 2, ..., t− 1 is equally likely to be assigned to any of the workers in the set P ∗1 ,

Pr(worker j is available at stage t) is equal for all workers. Using the random arrival order of the

tasks, task t is assigned to each worker with equal probability.

57

Algorithm 5 The Random Dividing Algorithm (RDA)
RDA (n, P = {pi|i ∈ {1, 2, ..., n}})

Randomly order the workers P ∗ = {p∗1, p∗2, ..., p∗n}

Aold = P ∗

s = blog(n)c+ 1

for j=1 to s

m = |Aold|

if m > 1

Anew = {p(i) ∈ Aold|i ∈ {m− bm/2c+ 1,m− bm/2c+ 2, ...,m}}

B(j) = Aold − Anew
Aold = Anew

else

B(j) = Aold

end if

end for

I1 = (−∞,+∞)

for j=1 to s

r = |B(s− j + 1)|

Assign the next r sequentially arriving tasks to workers with success rates p(l) ∈ B(s− j + 1):

if xi ∈ Ik
Assign task i to worker with success rate p(k) if it is not assigned before

end if

Update the intervals using the r assigned tasks:

Ik = (x(k), x(k−1)) for k = 1, 2, ..., n+ 1, with x(n+1) = −∞ and x(0) = +∞

end for

Lemma 6 proves the lower bound of the reward achieved by the Random Dividing Algorithm

by assigning the last n− bn/2c arriving tasks to workers. Lemma 7 proves that the maximum

reward of the first bn/2c stages is 1/4 of the maximum reward of the n-stage problem. These two

58

results will be used to prove a 6-competitive ratio for the Random Dividing Algorithm in

Theorem 13.

Lemma 6. The expected reward that the Random Dividing Algorithm achieves by assigning the

last n− bn/2c arriving tasks to the workers is at least 1
8

times the maximum total reward.

Proof: Assume that n is an even number. The proof for the case of n odd follows in a similar

manner. The last n/2 tasks are assigned to the randomly selected n/2 workers in the selection set.

Let {p∗1, p∗2, ..., p∗n/2} denote the randomly selected set of workers to be assigned the last n/2

tasks, and let {x∗1, x∗2, ..., x∗n/2} denote the last n/2 tasks, with x∗i the task assigned to the worker

with success rate p∗i by the Random Dividing Algorithm. Then, by Lemma 9,

n/2∑
i=1

x∗i p
∗
i ≥

1

4

n/2∑
i=1

x(i)p
∗
(i), (4.14)

where x(i) is the ith largest task value (among all n tasks) and p∗(i) is the ith largest success rate

value in the set {p∗1, p∗2, ..., p∗n/2}. It must be proven that

E[

n/2∑
i=1

x∗i p
∗
i] ≥

1

8
Rmax, (4.15)

where Rmax =
∑n

i=1 x(i)p(i) is the maximum offline reward. Using (4.14), proving (4.15) is

equivalent to proving that

E[

n/2∑
i=1

x(i)p
∗
(i)] ≥

1

2
Rmax =

1

2

n∑
i=1

x(i)p(i). (4.16)

Since the workers are ordered randomly,

E[p∗(i)] =

n/2+1∑
j=i

(
j−1
i−1

)(
n−j
n/2−i

)(
n
n/2

) p(j), (4.17)

where
(j−1
i−1)(

n−j
n/2−i)

(n
n/2)

is the probability that the ith largest success rate in the randomly selected set of

59

workers is the jth largest success rate among all n workers. Inserting (4.17) into (4.16),

E[

n/2∑
i=1

x(i)p
∗
(i)] =

n/2∑
i=1

x(i)E[p∗(i)] =

n/2∑
i=1

x(i)

n/2+1∑
j=i

(
j−1
i−1

)(
n−j
n/2−i

)(
n
n/2

) p(j). (4.18)

Note that x(i) denotes the ith largest task value and the randomness is in the success rate of the

worker assigned to the ith largest task. The constant factor multiplied by p(j) in (4.18) is given by

j∑
i=1

(
j−1
i−1

)(
n−j
n/2−i

)(
n
n/2

) =

(
n−1
n/2−1

)(
n
n/2

) = 1/2, (4.19)

which completes the proof.

Lemma 7. The maximum expected reward of the first bn/2c stages of the problem (i.e., with the

first bn/2c tasks and the first bn/2c workers in the randomly ordered set) is 1
4

times the maximum

total reward of the n-stage problem.

Proof: Assume that n is an even number. The proof for the case of n odd follows in a similar

manner. Let {p̂1, p̂2, ..., p̂n/2} denote the success rates of the randomly selected set of workers to

be assigned the first n/2 tasks, and let {x̂1, x̂2, ..., x̂n/2} denote the first n/2 tasks. Let x̂(i) denote

the ith largest task value among the first n/2 tasks and p̂(i) is the ith largest success rate in the set

{p̂1, p̂2, ..., p̂n/2}. It must be proven that

E[

n/2∑
i=1

x̂(i)p̂(i)] =
1

4
Rmax =

1

4

n∑
i=1

x(i)p(i), (4.20)

where Rmax =
∑n

i=1 x(i)p(i) is the maximum offline reward. Since the workers and the task are

(independently) ordered randomly,

E[x̂(i)p̂(i)] = E[x̂(i)]E[p̂(i)] =

n/2+1∑
j=i

(
j−1
i−1

)(
n−j
n/2−i

)(
n
n/2

) x(j)

n/2+1∑
j=i

(
j−1
i−1

)(
n−j
n/2−i

)(
n
n/2

) p(j), (4.21)

where
(j−1
i−1)(

n−j
n/2−i)

(n
n/2)

is the probability that the ith largest success rate (task value) in the randomly

selected set of workers (among the first n/2 tasks) is the jth largest success rate (task value)

60

among all n workers (tasks). Inserting (4.21) into (4.20),

E[

n/2∑
i=1

x̂(i)p̂(i)] =

n/2∑
i=1

E[x̂(i)]E[p̂(i)] =

n/2∑
i=1

[

n/2+1∑
j=i

(
j−1
i−1

)(
n−j
n/2−i

)(
n
n/2

) x(j)

n/2+1∑
j=i

(
j−1
i−1

)(
n−j
n/2−i

)(
n
n/2

) p(j)]. (4.22)

Using (4.19), the constant factor multiplied by p(j) (x(j)) in (4.22) is 1/2. Therefore, the constant

factor multiplied by x(j)p(j) is 1/4, which completes the proof.

Note that the result of Lemma 7 is intuitive. The expected reward of the first bn/2c tasks is 1/2

of the expected reward of n tasks since they arrive in a random order. When the workers are also

ordered randomly, the maximum expected reward of the first bn/2c stages become 1/4 of the

maximum reward of the n-stage problem.

Theorem 13. The Random Dividing Algorithm is 6-competitive.

Proof: Let {p∗1, p∗2, ..., p∗lk} denote the success rates of the workers assigned at the kth round with

l(k) = b1
2
...b1

2
bn
2
cc...c (with k multipliers of 1

2
). Let x∗i and xopti denote the values of the tasks

assigned to the worker with success rate p∗i by the Random Dividing Algorithm and the optimal

policy, respectively. Then, by Theorem 9,

lk∑
i=1

x∗i p
∗
i ≥

1

4

lk∑
i=1

xopti pi. (4.23)

Using Lemmas 6, each assignment round achieves 1/8 of the maximum reward of that round, and

using Lemma 7, the maximum reward of each round is 1/4 of the maximum reward of the

previous round. Therefore,

E[RRDA] = E[
∑
lk

lk∑
i=1

x∗i p
∗
i] ≥

1

4
E[
∑
lk

lk∑
i=1

xopti pi] ≥
1

4
(
1

2
+

1

8
+ ...)Rmax, (4.24)

where E[RRDA] denotes the expected reward achieved by the Random Dividing Algorithm, and

Rmax =
∑n

i=1 x(i)p(i) is the maximum offline reward. Therefore, as n→ +∞, the Random

Dividing Algorithm is 6-competitive.

61

4.4 GSSAP with a time-dependent reward

Babaioff et al. [7] study the Discounted Secretary Problem with a general discount function.

They propose an O(logn)-competitive algorithm for the Discounted Secretary Problem and

combine this algorithm with the Interval Reservation Algorithm to propose an

O(log(n))-competitive algorithm for the Weighted Discounted Secretary Problem. GSSAP with a

time-dependent reward is a weighted discounted secretary problem where the number of

sequentially arriving items (i.e., sequentially arriving tasks in GSSAP) is equal to the number of

available positions (i.e., workers in GSSAP). Therefore, the same idea can be used to propose an

O(log(n))-competitive algorithm for the GSSAP with time-dependent reward values.

Let d denote the discount function, and let d(i) and dmax denote the discount value at stage i

and the maximum discount, respectively. Suppose that [n] denotes the set of numbers

{1, 2, ..., n}. The O(log(n))− competitive algorithm for the Weighted Discounted Secretary

Problem selects c ∈ [Θ(log(nK))] uniformly at random (i.e., c is equally likely to be any of the

numbers from 1 to a number belonging to Θ(log(nK))), where K(≤ n) is the number of

available positions. It then runs the Interval Reservation Algorithm in the cth discount class. Note

that f(n) ∈ Θ(g(n)) means that f is bounded both above and below by g asymptotically.

Algorithm 6 The Time-dependent GSSAP Algorithm
Time− dependent GSSAP (n, d(i), P = {pi|i ∈ {1, 2, ..., n}})

m = 0

while n 6= m

Select c ∈ [Θ(log((n−m)2))] uniformly at random

Ic = (2−cdmax, 2
−(c−1)dmax]

T = {j|d(j) ∈ Ic}

m = m+ |T |

L={p(i) ∈ P |i ∈ {1, 2, ...,m}}

Assign the tasks at stages j ∈ T to workers with success rates pi ∈ L using RIRA

P = P − L

62

Theorem 14. [7] There is an O(log(n))-competitive algorithm for the Weighted Discounted

Secretary Problem.

The O(log(n))-competitive algorithm for the Weighted Discounted Secretary Problem selects a

discount class randomly and runs the Interval Reservation Algorithm on the tasks arriving in the

selected discount class. All the tasks in other discount classes and the tasks in the training phase

of the selected discount class are discarded. However, starting from the first stage in GSSAP, each

task must be assigned to one of the workers. The Time-dependent GSSAP Algorithm, which is

formalized as Algorithm 6, achieves an O(log(n))-competitive algorithm while guaranteeing that

each task is assigned to a worker. The Time-dependent GSSAP Algorithm generates a random

number c ∈ [Θ(log(n2))]. Then, it assigns the workers with the m largest success rates to the

tasks in the cth discount class using the Recursive Interval Reservation Algorithm, where m is the

number of tasks in the cth discount class. The remaining n−m tasks are assigned to the

remaining workers by recursively generating random numbers c ∈ Θ[(log((n−m)2))] and

running the Recursive Interval Reservation Algorithm on the cth discount class.

Lemma 8. The Time-dependent GSSAP Algorithm is O(log(n))-competitive.

Proof: Let ci denote the ith generated random number by the Time-dependent GSSAP

Algorithm. The total expected reward achieved by the Time-dependent GSSAP Algorithm is the

sum of the expected rewards achieved at different discount classes and given by

E[RTGSSAP] =
∑
i

E[Rci], (4.25)

where E[RTGSSAP] denotes the expected reward achieved by the Time-dependent GSSAP

Algorithm and E[Rci] is the expected reward achieved by the cthi discount class. The tasks

arriving at stages {j|d(j) ∈ Ic1} are assigned to the workers with the largest c1 success rates. By

Theorem 14, the reward achieved by the discount class c1 (i.e., E[Rc1]) is O(log(n))-competitive.

Since E[RTGSSAP] ≥ E[Rc1], the Time-dependent GSSAP Algorithm is

O(log(n))-competitive.

63

4.5 SSAP With General Reward Functions

The reward of each assignment in the SSAP is defined as the product of the worker’s success rate

and the value of the task assigned to the worker. There are a few papers that assume objectives

other than maximizing the total expected reward for the SSAP. For example, Baharian and

Jacobson [10] perform the task assignment under a threshold criterion, which minimizes the

probability that the total reward fails to achieve a given value.

This section studies the GSSAP with general reward functions. It is assumed that the reward of

each assignment is a function of the worker’s success rate and the relative quality of the task

(compared to the quality of other tasks). Assuming a random arrival order, backward induction is

used to derive the optimal policy that maximizes the total expected reward.

Assume that the reward of each assignment is a known function of the worker’s success rate

and the relative quality of the task: Let R(σi, pj) denote the reward achieved by assigning the ith

arriving task to the worker with success rate pj given that the rank of the ith task among all n

tasks is σi. For example, if the second arriving task has the third largest value among all tasks,

then σ2 = 3. Let Si denote the set of remaining n− i+ 1 success rates at stage i (i.e, the success

rates of the workers that are not assigned to a task in stages 1, 2, ..., i− 1). Let ER∗i (Si) denote

the maximum expected reward achieved at stage i with Si as the set of remaining workers. The

optimal policy assigns the ith task to the worker with success rate pji such that

E[
n∑
i=1

R(σi, pji)] = ER∗1(S1). (4.26)

Let E[R(σi, pj)] denote the expected reward achieved by assigning the current task to the

worker with success rates pj , which is given by

E[R(σi, pj)] =

n−(i−k)∑
σi=k

R(σi, pj)

(
σi−1
k−1

)
×
(
n−σi
i−k

)(
n
i

) , (4.27)

where k denotes the rank of task i among the first i tasks, which is computed by comparing the

relative quality of the ith task with the tasks arrived in stages 1, 2, ..., i− 1. Moreover,
(σi−1
k−1)×(n−σii−k)

(ni)
is the probability that the ith task value is the σthi largest among all n tasks given

64

that it is the kth largest among the first i tasks. Using backward induction, the optimal policy is to

assign the arriving task to the worker that maximizes the expected sum of the assignment reward

and the reward of the following stages. The maximum expected reward at stage i of the problem

is given by

ER∗i (Si) =
1

n− i+ 1

∑
σi

max
pj∈Si

(E[R(σi, pj)] + ER∗i+1(Si − {pj})). (4.28)

Assuming that tasks have a random arrival order (look at Definition ??), the expected reward of

the last assignment (as the base case of the backward induction) is given by

ER∗n(Sn) =
1

n

n∑
i=1

R(i, Sn), (4.29)

where Sn denotes the single worker remaining in the last step. Solving (4.28) recursively by using

(4.29) and (4.27) determines the maximum total expected reward and the optimal assignment at

each stage of the SSAP.

Note that the Secretary Problem with a general utility function, which assumes that the reward

of selecting the ith best item is Ui [25], also uses backward induction to find the optimal decision

at each stage [46]. However, the computational time of the optimal policy for the SSAP with a

general reward function is larger than the Secretary Problem: At stage at i in the SSAP, n− i+ 1

reward values must be compared (to determine which of the remaining n− i+ 1 workers must be

assigned to the task) while in the Secretary Problem, the optimal policy compares only two values

at each stage, which are the expected utility of stopping at the current stage or proceeding to the

next stage without hiring the current candidate.

4.6 Summary

This chapter proposes assignment policies for SSAP with no prior information on task values.

This problem is referred to as the Generalized Sequential Stochastic Assignment Problem

(GSSAP). GSSAP is described as a generalization of the Secretary Problem, where each of the

selected elements is assigned to a distinct position. This relation can be used to derive assignment

65

policies for GSSAP based on the Secretary Problem. Moreover, SSAP can be used to find the

optimal policy for variations of the Secretary Problem when the values of sequentially arriving

elements are independently drawn from a known distribution.

The Weighted Secretary Problem is used to propose assignment policies for GSSAP. The

proposed assignment policies consist of a training phase to compute threshold values. These

thresholds are used in the second phase to assign tasks to workers based on the interval that the

task value is placed. Tasks arriving in the training phase are assigned to workers by recursively

applying the same procedure of defining a training phase to compute thresholds. The relation

between the Secretary Problem and GSSAP is further used to derive an assignment policy for

GSSAP with time-dependent reward function.

66

CHAPTER 5

THE LINEAR PROGRAMMING TECHNIQUE

5.1 Introduction

This chapter presents the linear programming formulation of the sequential assignment problem,

an extension of SSAP, where the reward of assigning the ith (i = 1, 2, ..., n) best task to the ith

best worker is equal to 1 while the reward of any other assignment is zero. The sequential

assignment problem is an online version of the stable marriage problem, where each person’s top

preference is distinct and each person is the top preference of her best choice [26]. In this chapter,

the assignment policies for the sequential assignment problem are evaluated by their competitive

ratios. Moreover, it is assumed that the task values are selected by an adversary while having a

random arrival order.

Formulating a matching problem as a linear program has been used as an effective tool to

derive bounds on the performance of optimal algorithms and model variations of a problem by

changing the objective function and constraints of the basic formulation. The linear programming

technique also reduces the task of finding optimal algorithms to solving a linear program. The

linear programming technique for studying online matching problems can be applied in one of the

following two ways: First, an online matching problem can be formulated as a linear program

with a known objective function and constraints. The objective function bounds the reward

achieved by any assignment policy and the constraints are computed based on the problem’s

assumptions. This method is most appropriate for bounding the performance of optimal

assignment policies. For example, Buchbinder et al. [14] formulate several variants of the

Secretary Problem as linear programs and derives upper bounds on the performance of optimal

algorithms.

Second, an online matching problem can be formulated as an online linear program, where the

67

objective function and the constraint matrix in the linear program are revealed column by column.

Each instance of the online linear program is equivalent to one stage of the online matching

problem. This formulation provides the possibility of directly applying the solution of the linear

program to derive algorithms for the online matching problem (since similar to the matching

problem, the linear program must be solved stage by stage using the observed values in the prior

stages). For example, Devanur and Hayes derive the online linear programming formulation of

matching a set of keywords to available bidders [22]. Agrawal et al. proposes a near-optimal

algorithm for a general class of online problems by defining an online linear program [1].

The main contribution of this chapter is to derive bounds on the performance of optimal

policies for several extensions of the sequential assignment problem using the linear

programming technique. First, duality is used to prove that the optimal policy of the sequential

assignment problem can not achieve an approximation ratio better than e. Then, the linear

programming formulation of several variations of the sequential assignment problem, including

the problem with an unknown number of tasks, and the incentive compatible problem, which

assumes equal assignment probability for each pair, are presented. This paper also describes the

sequential assignment problem as a variation of the Adwords problem, and the online linear

program of Adwords is presented as a framework to study extensions of SSAP [22].

The remainder of this chapter is organized as follows. Section 5.2 proposes the linear

programming formulation of the sequential assignment problem and uses duality to prove that no

algorithm can achieve a competitive ratio better than e. The optimal e-competitive algorithm is

presented in Section 5.3. Section 5.4 derives the linear programming formulation of the incentive

compatible problem, which assumes an equal probability for assigning each task to any of the

workers. Section 5.5 extends the optimal algorithm for the sequential assignment problem to

propose an incentive compatible mechanism. Section 5.6 studies the sequential assignment

problem with an unknown number of tasks using the linear program. Section 5.7 casts the online

linear program of Adwords problem into a new format, which can be used to study a

generalization of the sequential assignment problem. Summary of this chapter and several

concluding remarks are discussed in Section 5.8.

68

5.2 Linear Programming Formulation of the Sequential
Assignment Problem

This section presents the linear programming formulation of the sequential assignment problem.

The linear programming formulation is used to prove an e-competitive ratio for the optimal policy

of the sequential assignment problem. First, the sequential assignment problem is formally

defined in Section 5.2.1. Then, Section 5.2.2 presents the linear programming formulation. Table

5.1 summarizes the mathematical notation used in this chapter.

5.2.1 The Sequential Assignment Problem

There are n sequentially arriving tasks with a random arrival order that must be assigned to n

workers. Assume that the workers are sorted such that worker j has the jth largest success rate.

Let Rij denote the reward of assigning the ith arriving task to worker j. The reward of assigning

the jth (j = 1, 2, ..., n) best task to worker j is assumed to be 1, and the reward of any other

assignment is assumed to be zero. The reward function is formally defined as:

Rij =

1, if xi = x
(n)
(j)

0, otherwise
(5.1)

where i, j = 1, 2, ..., n. Note that xi = x
(n)
(j) means that the ith arriving task is the jth best task

overall (i.e., the ith arriving task has the jth largest value among all n tasks). The main challenge

is that the decision maker must assign a task to one of the workers upon its arrival, with the

relative rank of the task (i.e., the rank of the arriving task among tasks observed so far) as the only

available information.

The Secretary Problem is a special case of the sequential assignment problem with Ri1 = 1 if

xi = x
(n)
(1) for i = 1, 2, ..., n (i.e., the reward of selecting the best secretary is equal to 1). SSAP is

a variation of the sequential assignment problem with Rij = xi × pj (i.e., the reward of assigning

task i to worker j is the product of the task value and the worker’s success rate).

69

Table 5.1: List of notations used in Chapter 5

Symbol Meaning
pr(E) Probability of event E
Yij Binary (decision) variable of assigning the ith arriving task to worker j

pr(Yij = 1) = yij Probability of assigning the ith arriving task to worker j
xi Value of the ith arriving task
x
(i)
(j) jth largest task value among the first i arriving tasks
x
(n)
(j) jth largest task value among all n arriving tasks
Rij Reward of assigning the ith arriving task to worker j

5.2.2 The Linear Programming Formulation

This section proposes a linear programming formulation which provides an upper bound on the

reward achieved by any assignment policy for the sequential assignment problem. Before

presenting the linear programming formulation, the set of admissible policies are introduced as

Definition 4.

Definition 4. An assignment policy for the sequential assignment problem is admissible if the

probability of assigning task i to worker j (denoted by yij) satisfies the following constraints:

n∑
j=1

yij ≤ 1; i = 1, 2, . . . , n

yij ≤ 1−
i−1∑
l=1

ylj; i, j = 1, 2, . . . , n

yij ≥ 0; i, j = 1, 2, . . . , n

The first constraint guarantees that each task is assigned to at most one worker while the

second constraint guarantees that at most one task is assigned to each worker.

Lemma 9 generalizes the linear programming formulation of the Secretary Problem [14] to

formulate the sequential assignment problem as a linear program. While the linear program of the

Secretary Problem has n decision variables, corresponding to the probability of hiring the

secretary at stage i (= 1, 2, ..., n), the linear program of the sequential assignment problem has n2

decision variables, corresponding to the probability of assigning task i to worker j, with

i, j = 1, 2, ..., n.

70

Lemma 9. Let yij denote the probability of assigning the ith arriving task to worker j. Then, the

optimal solution to the following linear program provides an upper bound for the reward

achieved by any assignment policy for the sequential assignment problem.

maximize
1

n

n∑
i=1

n∑
j=1

yij

subject to
n∑
j=1

yij ≤ 1; i = 1, 2, . . . , n.

yij ≤ 1−
i−1∑
l=1

ylj; i, j = 1, 2, . . . , n.

yij ≥ 0; i, j = 1, 2, . . . , n.

Proof: The achieved reward of any assignment policy for the sequential assignment problem is

given by

n∑
i=1

n∑
j=1

pr(Yij = 1|xi = x
(n)
(j))× pr(xi = x

(n)
(j)) =

1

n

n∑
i=1

n∑
j=1

pr(Yij = 1|xi = x
(n)
(j))

≤ 1

n

n∑
i=1

n∑
j=1

pr(Yij = 1) =
1

n

n∑
i=1

n∑
j=1

yij

Therefore, the objective function of the linear program provides an upper bound on the

performance of any assignment policy. The constraints are simply the same as the requirements

of admissible policies, described in Definition 4.

Lemma 9 shows that the formulated linear program provides an upper bound for the optimal

reward achieved by any policy for the sequential assignment problem. The total expected reward

of a policy, which assigns task i to worker j with probability yij , is given by
1
n

∑n
i=1

∑n
j=1 pr(Yij = 1|xi = x

(n)
(j)). Therefore, any assignment policy for which equation

yij = pr(Yij = 1|xi = x
(n)
(j)), achieves a total reward of 1

n

∑n
i=1

∑n
j=1 iyij .

Any assignment policy for the sequential assignment problem satisfies the constraints of the

linear program defined in Lemma 9. Therefore, the set of feasible assignment policies for the

sequential assignment problem is a subset of the solutions of the linear programming formulation.

71

Theorem 15 uses this result to provide an upper bound on the performance of any mechanism for

the sequential assignment problem.

Theorem 15. No algorithm for the sequential assignment problem can achieve a competitive

ratio better than e.

Proof: The dual of the linear program presented in Lemma 9 is given by:

minimize
n∑
i=1

n∑
j=1

dij +
n∑
k=1

d̂k

subject to dij +
n∑

k=i+1

dkj + d̂i ≥
1

n
; i, j = 1, 2, . . . , n.

dij ≥ 0; i, j = 1, 2, . . . , n.

d̂k ≥ 0; k = 1, 2, . . . , n.

Any feasible solution to dual provides an upper bound for the optimal solution of the primal.

Consider the feasible dual solution dij = 0 for 1 ≤ i ≤ n/e, dij = 1
n
(1−

∑n−1
k=i

1
k
) for

n/e < i ≤ n, and d̂k = 0 for k = 1, 2, ..., n. The dual objective value of this solution is n/e,

which proves the claim.

While the Secretary Problem deals with finding only the best element, the sequential

assignment problem seeks to find the optimal matching of all sequentially arriving elements.

However, the upper bound on the approximation ratio of the sequential assignment problem is the

same as the Secretary Problem. Notice the similarity between the linear programming

formulation, the dual problem, and the dual feasible solution of the Secretary Problem [14] and

the sequential assignment problem.

5.3 The Optimal Algorithm

This section uses the Online Bipartite Matching problem to propose the optimal (e-competitive)

algorithm for a generalization of the sequential assignment problem, where the reward of

assigning task i with value xi to a worker with success rate pj is given by xi × pj . The Online

Bipartite Matching problem matches a set of sequentially arriving elements to a set of available

72

entities: Assume a bipartite graph consists of n left vertices and n right vertices. The left vertices

arrive sequentially. Upon each left vertex arrival, the set of adjacent right vertices are revealed,

and the left vertex must be irrevocably assigned to one of the adjacent right vertices. The

objective is to maximize the size of the matching set.

The Edge-Weighted Online Bipartite Matching assumes that each edge between the arriving

left vertex and its adjacent right vertices has a weight, observed upon the left vertex arrival. The

sequentially arriving tasks in the sequential assignment problem correspond to the left vertices in

the Edge-Weighted Online Bipartite Matching while the workers correspond to the right vertices.

Algorithm 7 The Optimal Algorithm
Input: (n, P = {pi|i ∈ {1, 2, ..., n}})

Order the workers {p(1) ≥ p(2) ≥ ... ≥ p(n)}

Divide the workers to two groups PS = {p(1), p(2), ..., p(n−bn/ec)} and PT =

{p(n−bn/ec+1), p(n−bn/ec+2), ..., p(n)}

Observe the first bn/ec tasks

From stage l = bn/ec+ 1, find the optimal matching on {x1, x2, ..., xl} ∪ PS
If the optimal matching assigns xl to pj , assign the task to the worker if the worker is available

Assign the first bn/ec tasks to workers PT by recursively applying the same procedure

A simple variation of the Online Bipartite Matching Algorithm proposed by [34] is used as the

optimal policy for the generalization of the sequential assignment problem. The algorithm

observes the first bn
e
c tasks. Starting from stage l = bn

e
c+ 1, the algorithm finds the best matching

on the set {x1, x2, ..., xl} ∪ PS , where {x1, x2, ..., xl} denotes the set of first l tasks and PS

represents the set of all n− bn/ec workers with the largest success rates. If worker j is assigned

to task l in the optimal matching, the algorithm assigns task l to worker j if the worker is available

(i.e., it is not previously matched to one of the prior tasks). The first bn/ec tasks are assigned to

the bn/ec workers with the smallest success rates by recursively applying the same procedure.

Notice the similarity between the optimal algorithm of the sequential assignment problem and

the Secretary Problem. Both algorithms use the first bn
e
c elements as a training phase. Then,

starting from stage bn
e
c+ 1, the assignment policies assign tasks to workers/hire secretaries based

73

on the optimal matching of the elements observed so far.

Lemma 10. Algorithm 7 is e-competitive for the sequential assignment problem.

The proof is very similar to the proof of the optimality of the algorithm for the Edge-Weighted

Online Bipartite Matching.

5.4 Incentive Compatibility

The linear programming technique reduces the problem of finding assignment policies for

variants of the sequential assignment problem to simply changing the objective function and

constraints of the basic formulation. This section and Section 5.6 provide two examples of

challenging problems that are formulated by a few changes in the linear program presented in

Lemma 9.

This section proposes the linear programming formulation of the incentive compatible

problem, which assumes that the probability of assigning task i to worker j is equal for all

i, j ∈ {1, 2, ..., n}. While many algorithms for the online matching problems have a training

phase and assign the arriving elements to (better) positions after the training phase, the incentive

compatible problem provides fairness: There is no incentive for the sequence of arriving elements

to appear in later stages. The incentive compatible formulation may be applied to online matching

markets, where a bidder might be motivated to bid in later stages to increase its chance of being

matched to a better item.

Lemma 11. Let p denote the probability that task i (= 1, 2, ..., n) is assigned to worker j

(= 1, 2, ..., n) by any incentive compatible mechanism. Let gij denote the probability of assigning

task i to worker j given that task i is jth best overall. Then, p and gij is a feasible solution to the

following linear program. Moreover, the optimal value of the objective function, which provides

an upper bound on the expected reward of any assignment policy for the incentive compatible

problem, is achieved by the assignment probabilities gij = ip for 1 ≤ i ≤ 1
2p

and

gij = 1− (i− 1)p for i > 1
2p

.

74

maximize
1

n

n∑
i=1

n∑
j=1

gij

subject to gij ≤ i× p; i, j = 1, 2, . . . , n.

gij + (i− 1)× p ≤ 1; i, j = 1, 2, . . . , n.

p ≤ 1

n

p, gij ≥ 0; i, j = 1, 2, . . . , n.

Proof: The objective function of the linear program is the same as the basic formulation. For the

first constraint, notice that

p =
1

i

i∑
k=1

pr(Yij = 1|xi = x
(i)
(k)) (5.2)

Moreover, by conditioning on the task’s relative rank,

gij = pr(Yij = 1|xi = x
(n)
(j)) =

i∑
k=1

pr(Yij = 1|xi = x
(n)
(j) ∩ xi = x

(i)
(k))× pr(xi = x

(i)
(k)) (5.3)

However, knowing that the task’s overall rank is j means that the relative rank of the task is at

most min(i, j) (Given the overall rank of the task does not mean that the overall rank is known to

the assignment policy; this only limits the possible values of the task’s relative rank). Therefore,

gij =

min(i,j)∑
k=1

pr(Yij = 1|xi = x
(i)
(k))× pr(xi = x

(i)
(k)) ≤

min(i,j)∑
k=1

pr(Yij = 1|xi = x
(i)
(k))

≤
i∑

k=1

pr(Yij = 1|xi = x
(i)
(k)),

where we have used pr(xi = x
(i)
(k)) ≤ 1 and min(i, j) ≤ i. Together with (5.2), this proves the

first constraint. The second and third constraints guarantee that each task is assigned to at most

one worker and the probability of assigning a task to a worker is not greater than 1/n. The

optimal assignment probabilities gij = ip for 1 ≤ i ≤ 1
2p

and gij = 1− (i− 1)p for i > 1
2p

are

simply the optimal solutions of the linear program.

Note that if the goal is to guarantee that each task is assigned to one of the workers (similar to

the must hire Secretary Problem), only the fourth constraint must be changed to p = 1
n

[14]. The

75

optimal values of the incentive compatible Secretary Problem are given by gi = ip for 1 ≤ i ≤ 1
2p

and gi = 1− (i− 1)p for i > 1
2p

, where gi denotes the probability of hiring the Secretary arriving

at stage i [14]. Here, instead of selecting one secretary, the objective is to maximize the number

of correct matchings (out of n possible pairs). Since all correct matchings are assumed to have the

same reward, the optimal policy is the same for all n pairs: There is a training phase of the same

length to find the optimal task for each worker. As the stage number increases, the probability

that the ith relatively best task (i.e., the ith largest task value so far) is the ith best overall

increases. Therefore, each pair must have the same training phase and the same selection phase to

find the optimal matching.

While Lemma 11 shows that any assignment policy is a feasible solution to the linear program,

the optimal solution of the linear program does not necessarily correspond to an assignment

policy for the incentive compatible sequential assignment problem. Contradiction is used to prove

this result. The probability of assigning task i to worker j is given by

p =
i∑

k=1

pr(Yij = 1|xi = x
(i)
(k))×

1

i
(5.4)

The optimal policy must satisfy

gij = ip = pr(Yij = 1|xi = x
(n)
(j)), (5.5)

for 1 ≤ i ≤ 1
2p

. Given that task i is the jth best task overall, its relative rank (i.e., its rank among

the first i tasks) is between |n− (i+ j)| and min(i, j). Therefore,

pr(Yij = 1|xi = x
(n)
(j)) =

min(i,j)∑
k=|n−(i+j)|

pr(Yij = 1|xi = x
(i)
(k))×

1

r
, (5.6)

where r = min(i, j)− |n− (i+ j)|+ 1. Using (5.5) and (5.6),

ip =

min(i,j)∑
k=|n−(i+j)|

pr(Yij = 1|xi = x
(i)
(k))×

1

r
, (5.7)

76

and hence,

rip =

min(i,j)∑
k=|n−(i+j)|

pr(Yij = 1|xi = x
(i)
(k)), (5.8)

Note that rip ≥ ip and in general, there exists (n, i, j) such that r > 1, and hence,

min(i,j)∑
k=|n−(i+j)|

pr(Yij = 1|xi = x
(i)
(k)) >

i∑
k=1

pr(Yij = 1|xi = x
(i)
(k)), (5.9)

which is a contradiction since the right hand-side includes all the terms of the summation in the

left hand-side. Therefore, while any feasible assignment policy for the incentive compatible

mechanism is a subset of the solutions of the linear programming formulation, every solution of

the linear program does not necessarily correspond to an assignment policy for the incentive

compatible sequential assignment problem.

Lemma 12 uses the linear programming formulation to derive upper bounds on the

performance of any assignment policy for the incentive compatible sequential assignment

problem and the problem with n assignments (which assigns each task to one of the workers).

Lemma 12. There is no incentive compatible policy for the sequential assignment problem which

achieves a competitive ratio better than 1− 1√
2
. Moreover, if the objective is to assign each task

to one of the workers, no assignment policy can achieve a competitive ratio better than 0.25.

The proof follows by finding the optimal objective value of the linear programming

formulations. Note that the same competitive ratios hold for the incentive compatible Secretary

Problem, and the incentive compatible and must-hire Secretary Problem [14].

5.5 The Incentive Compatible Algorithm

This section extends the optimal algorithm proposed in Section 5.3 to propose an incentive

compatible algorithm. The idea is similar to the incentive compatible algorithm proposed in the

previous chapter. The set of workers are randomly divided into two groups. The first bn
e
c tasks

are used as a training phase to assign task to the workers of the second group after the training

phase. The tasks arriving in the training phase are assigned to the first group of workers by

77

recursively applying the same procedure. Note that the proof of incentive compatibility is very

similar to the proof of Theorem 12.

Algorithm 8 The Incentive Compatible Algorithm
Input: (n, P = {pi|i ∈ {1, 2, ..., n}})

Randomly order the workers {p∗1, p∗2, ..., p∗n}

Divide the workers to two groups P ∗S = {p∗1, p∗2, ..., p∗n−bn/ec} and P ∗T =

{p∗n−bn/ec+1, p
∗
n−bn/ec+2, ..., p

∗
n}

Observe the first bn/ec tasks

From stage l = bn/ec+ 1, find the optimal matching on {x1, x2, ..., xl} ∪ PS
If the optimal matching assigns xl to p∗j , assign the task to the worker if the worker is available

Assign the first bn/ec tasks to workers P ∗T by recursively applying the same procedure

Theorem 16. The Incentive Compatible Algorithm is (e+ 1)-competitive for the sequential

assignment problem.

The proof is very similar to the proof of Theorem 13.

5.6 Unknown Number of Elements

One of the main assumptions of the sequential assignment problem, SSAP, and many other online

matching problems, is that the number of arriving elements is known. While designing algorithms

with reasonable competitive ratios requires some prior information on the number of tasks,

assuming a fixed value is unrealistic for many applications. For example, the number of bidders

in an online matching market might change during the assignment process.

The linear programming technique simplifies the challenging problem of bounding the

performance of assignment policies for the sequential assignment problem with uncertainty in the

number of arriving tasks. Oveis gharan and Vondrak (2011) study the Secretary Problem with the

number of elements selected by an Adversary. They use the linear programming formulation of

the Secretary Problem to provide an upper bound on the probability of selecting the best element.

78

Theorem 17. [51] There is no algorithm for the Secretary Problem with the number of elements

selected by an adversary, that returns the best element with probability more than 1
HN

, where

HN =
∑N

i=1
1
i

is th N th harmonic number.

Lemma 13 formulates the sequential assignment problem with an unknown number of tasks as

a linear program using the Secretary Problem.

Lemma 13. Assume that the number of sequentially arriving elements in the sequential

assignment problem is chosen by an adversary from {1, 2, ..., N}, where N is given. Then, the

optimal solution to the following Linear Programming formulation provides an upper bound on

the reward achieved by any assignment policy for the online matching problem.

maximize α

subject to α ≤ 1

n

n∑
i=1

n∑
j=1

iyij n = 1, 2, . . . , N.

yij ≤ 1−
i−1∑
l=1

ylj; i, j = 1, 2, . . . , N.

n∑
j=1

yij ≤ 1; i = 1, 2, . . . , n;n = 1, 2, . . . , N.

yij ≥ 0; i, j = 1, 2, . . . , N.

Proof: The proof follows the same steps as the proof of Lemma 9.

Theorem 18 provides an upper bound on the performance of any assignment policy for the

sequential assignment problem, with the number of tasks selected by an adversary.

Theorem 18. Assume that the number of arriving tasks in the sequential assignment problem is

selected by an adversary from {1, 2, ..., N}, where N is given. Then, there is a randomized

algorithm that finds the perfect matching (i.e., assigns each task to its optimal worker) with

probability at least 1
2(HN−1+1)

. Moreover, no algorithm find the perfect matching with probability

more than 1
HN

.

Proof: Let n denote the (random) number of tasks (and hence, the size of perfect matching).

Proving the first part is equivalent to showing that there is a feasible solution for the linear

79

program (defined by Lemma 13) with objective value at least n
2(HN−1+1)

. Define the probability of

assigning task i to worker j as yij = 1
i(HN−1+1)

for j ≤ i. Consider the following algorithm: If the

ith arriving task is the jth best so far, assign it to worker j with probability iyij

1−
∑i−1
l=1 ylj

. Then,

1

n

n∑
i=1

n∑
j=1

iyij =
1

n

n∑
i=1

i∑
j=1

i× 1

i(HN−1 + 1)
=

n+ 1

2(HN−1 + 1)
(5.10)

Moreover,

yij +
i−1∑
l=1

ylj ≤ iyij +
i−1∑
l=1

ylj =
Hi−1 + 1

HN−1 + 1
≤ 1, (5.11)

proves that the second constraint is satisfied [51] while

n∑
j=1

yij =
i∑

j=1

yij =
1

HN−1 + 1
≤ 1, (5.12)

implies the third constraint. Therefore, (α = n+1
2(HN−1+1)

, yij = 1
i(HN−1+1)

) for i = 1, 2, ..., n, and

j ≤ i provide a feasible solution for the linear program with the objective value larger than
n

2(HN−1+1)
.

For the second part, note that the Secretary Problem is a special case of the sequential

assignment problem, where instead of finding the optimal match for each of the sequentially

arriving elements, the objective is to find only the best element. Therefore, if there is an algorithm

for the sequential assignment problem that finds the perfect matching with probability more than
1
HN

, it can be used to find the best element with the same probability. This contradicts Theorem

17.

5.7 Online Linear Programming Formulation

The previous sections proposed the linear programming formulation of several online matching

problems. This section presents the online linear programming formulation for a generalization

of the sequential assignment problem, where instead of the zero-one reward of the sequential

assignment problem, the reward of assigning a task to a worker is the product of the task value

80

and the worker’s success rate.

Let xj denote the value of the jth arriving task and qj,i denote the success rate of worker i upon

the arrival of the jth task. At stage j, the task value (xj) is observed, the workers’ success rates

(which are possibly different from those of the previous stages) are observed, and the task is

irrevocably assigned to one of the workers. The objective is to maximize the sum of the

assignments’ rewards, defined as the product of the task value and the worker’s success rate.

Since the workers’ success rates are also random, this problem is referred to as the Doubly

Stochastic Sequential Assignment Problem (DSSAP). As described before, the objective function

and the constraints in an online linear program are revealed column by column. The online linear

programming formulation provides the possibility of applying linear programming techniques to

derive assignment policies for an online matching problem.

DSSAP is presented as a special case of the Adwords problem. The Adwords problem seeks to

maximize the revenue of assigning sequentially arriving keywords to competing bidders in a

search engine [22]: There are n bidders with known daily budgets B1, B2, ..., Bn and m

keywords. When keyword j (= 1, 2, ...,m) arrives, the bidders submit their bids, with uij

denoting the bid of bidder i for query j. Then, the search engine must assign the keyword to one

of the bidders such that the total revenue is maximized while the daily budget constraint of each

bidder is satisfied (i.e., the total revenue collected from bidder i must be at most Bi). It is

assumed that the queries have a random arrival order.

There is one difference between DDSAP and Adwords: While each task in the DSSAP is

assigned to at most one worker (and each worker is assigned to at most one task), each bidder in

Adwords can be assigned to multiple queries as long as its daily budget is not spent. Let xi denote

the value of task i, qij denote the success rate of worker j upon arrival of task i, and yij denote the

probability of assigning task i to worker j. Then, the online linear programming formulation of

81

DSSAP is given by

maximize
n∑
i=1

n∑
j=1

xiqijyij

subject to
n∑
j=1

yij ≤ 1; i = 1, 2, . . . , n.

n∑
i=1

yij ≤ 1; j = 1, 2, . . . , n.

yij ≥ 0; i, j = 1, 2, . . . , n.

This is an online linear program, where the objective function is revealed column by column. The

online linear program is a variation of the formulation for Adwords [22] with the bid of bidder j

for query i defined as the reward of assigning task i to worker j (xi × qij) and the daily budget

constraint replaced by
∑n

i=1 yij ≤ 1, which guarantees at most one task is assigned to each

worker.

Theorem 19. [22] Let OPT denote the maximum offline reward of the n-stage problem,

RMax = max
1≤i,j≤n

xi × qij denote the maximum reward value, and λ = max
i,j,j′

qij
qij′

denote the ratio of

the maximum to minimum reward collected from any task. Then, there is a 1
1−ε -competitive

algorithm for all tasks and workers success rates such that

OPT

RMax

≥ Ω(
n2 × log(λ/ε)

ε3
)

5.8 Summary

This chapter proposes the linear programming formulation of the sequential assignment problem,

a variation of SSAP with a reward of one for each correct matching. A correct matching is

defined as matching the ith largest task value to the worker with the ith largest success rate. The

linear programming technique reduces the online matching problems to solving a linear program,

provides a method to compute upper bounds of the reward achieved by the optimal algorithms,

and models variations of the problem by changing the objective function and constraints of the

basic formulation.

The sequential assignment problem with unknown number of elements and the incentive

82

compatible problem are formulated as linear programs and the upper bounds on the performance

of any assignment policy are derived.

83

CHAPTER 6

DYNAMIC SEQUENTIAL ASSIGNMENT

6.1 Introduction

The basic formulation of SSAP assumes that each worker is assigned to at most one task. When a

task is assigned to a worker, the worker will not be available for any future assignments. This

assumption is realistic for some applications of SSAP such as the organ transplant problem.

However, the one-time assignment assumption is not valid for several applications such as online

matching markets and aviation security. The bidders in an online matching market might intend

to buy several items. The security gates in the aviation security problem screen many passengers

in a single day. Therefore, relaxing the one-time assignment assumption would make the model

closer to the real-life problems. This chapter studies a more general problem, where a worker

would become available for future assignments upon performing the previous task. This problem

is referred to as the Dynamic Sequential Assignment Problem.

This chapter studies the Dynamic Sequential Assignment Problem under two models. Both

models assume that the task duration is independent of the task value and the worker performing

the task. Section 6.2 describes the first model, which considers a fixed task duration. Section 6.3

assumes a Geometric model for the task duration. An extension of the problem with random

arrival of tasks is studied in Section 6.4.

6.2 Fixed Task Duration

This section assumes that once a task is assigned to a worker, the worker performs the task in a

fixed duration, which is a discrete value (i.e., can be computed in terms of the number of stages).

The task duration is independent of the task value and the workers’ success rates. For example, if

84

the task’s duration is 3 and a task is assigned to worker j on stage 2, the worker becomes

available for a new assignment at stage 5. The basic formulation of SSAP is a special case of this

generalized model with T = 1.

We first describe the optimal algorithm for the Edge-Weighted Online Bipartite Matching

Problem [34]. We refer to this algorithm as the BM Algorithm. As discussed in the previous

chapter, the BM Algorithm is a generalization of the optimal algorithm for the Secretary Problem,

which uses the first bn/ec stages as a training phase and assigns tasks to workers based on the

optimal (offline) matching on the set of tasks observed so far from stage bn/ec+ 1. Simple

variations of this algorithm are used throughout this paper for variations of the problem.

Algorithm 9 The BM Algorithm [34]
Observe the first bn/ec tasks: {x1, x2, ..., xbn/ec}

From stage l = bn/ec+ 1

Find the optimal matching on {x1, x2, ..., xl} ∪ {p1, p2, ..., pn}

Let pj denote the worker’s success rate assigned to xl in the optimal matching

Assign task l to worker j if the worker is not previously assigned

Theorem 1 proves that the BM Algorithm is e2

e−1 -competitive when the duration of each task is

a fixed known value. Note that the only difference between applying the BM algorithm to this

problem and the Edge-Weighted Online Bipartite Matching Problem is in finding the optimal

matching on the tasks observed so far. While the optimal matching of the Edge-Weighted Online

Bipartite Matching (on the set of tasks observed so far) assigns the ith best task among the first l

tasks to the ith best worker, the optimal matching for the problem with a fixed task duration is as

follows: Find T workers with the largest success rate values. Assign the best l/T tasks observed

so far to the best worker (where l is the number of available tasks). Assign the second best l/T

tasks to the second best worker, and so on. This policy is optimal since we assume that in the

offline setting, the decision maker has access to all tasks and workers, and hence, can adjust the

tasks’ ordering. The optimal policy puts the best l/T tasks on stages 1, T + 1, 2T + 1, ... and

assigns these tasks to the best worker. The other tasks are assigned to the workers in a similar

fashion.

85

Theorem 20. The BM Algorithm is e2

e−1 -competitive for SSAP with random arrival order of tasks

and fixed task duration.

Proof: The proof has the same structure as the proof of e-competitiveness of the BM Algorithm

for the edge-weighted bipartite matching problem. Let OPT denote the maximum offline reward

in the n-stage problem. First, it is proven that if a task is assigned to a worker, the reward of this

matching is at least 1/n of OPT . This is a direct results of the tasks’ random arrival order, as

shown by [34]: The total expected reward of the optimal matching on the tasks observed so far

(i.e., on the set {x1, x2, ..., xl} ∪ {p1, p2, ..., pn}) is at least l/n of the maximum offline reward

over all tasks and workers. The expected reward of matching at stage l is at least 1/l of the

maximum offline reward of matching on the set {x1, x2, ..., xl} ∪ {p1, p2, ..., pn}. Therefore, the

reward of each matching by the algorithm is at least OPT/n.

Next, we prove that the probability that task l is assigned to a worker (i.e., the worker is

available on stage l) converges to 1/e. Assume that the optimal offline matching on the set of

tasks observed so far assigns task l to worker j. The probability that worker j is available on

stage l is equal to the probability that no task is assigned to worker j at stages

i = l− T + 1, l− T + 2, ..., l− 1, which is given by (T−1
T

)T−1 ≥ (1− 1
T

)T and converges to 1/e.

Therefore, the BOM Algorithm achieves an expected reward of OPT
e×n on stage l. Summing over all

possible assignments from stage bn/ec+ 1 to n yields the total expected reward of
e−1
e2
×OPT .

6.3 Geometric Model

Assume that the task duration follows a geometric distribution with parameter r: Once a task is

assigned to the worker, the number of stages that the worker is busy follows a geometric

distribution, with the parameter independent of the task value and the worker’s success rate. This

model is referred to as the Geometric Model. Let X denote the distribution of the task values and

n denote the number of tasks and workers. Without loss of generality, assume that pi ≥ pj for

i ≥ j.

86

6.3.1 Task Distribution Known

Consider stage i+ 1 with n− i remaining tasks. Since there are n sequentially arriving tasks, the

optimal algorithm assigns the remaining n− i tasks to the n− i remaining best workers.

Therefore, if the number of remaining workers at stage i+ 1 is more than n− i, the algorithm

bypasses the workers that are not among the n− i with the largest success rates. However, after

assigning the (i+ 1)th task, the problem can be described as SSAP with random success rates

(referred to as Doubly Stochastic Sequential Assignment Problem or DSSAP) since the workers

success rates in the next stages depend on the random event of previously assigned workers

becoming re-available. Therefore, to find the optimal policy, we define a surrogate DSSAP, where

the assignment problem consists of workers with random success rates.

Similar to the DSSAP, backward induction is used to find the optimal assignment policy. First,

the expected reward of the last stage is computed. Assuming that the best available worker prior

to arrival of the nth task has a success rate of pj , the expected success rate of the worker assigned

to the nth task is given by E[Q1,n(S1)] = r × p1 + r(1− r)× p2 + ...+ (1− r)j−1 × pj , where

Qi,j(Sn−j+1) denotes the (random) success rate of the ith (i = 1, 2, ..., n− j + 1) best worker at

stage j ∈ {1, 2, ..., n} given the set of n− j + 1 best remaining workers Sn−j+1. The expected

reward of the last stage is then given by E[X]E[Q1,n]. Note that in this example Sn−j+1 = {Pj}.

Assume that the two best available workers at stage n− 1 have success rates pi and pj , where

pi ≥ pj . If we assign the (n− 1)th task to the worker with success rate pi, then with probability r

the nth task is assigned to the worker with success rate p1, with probability r(1− r), the task is

assigned to p2, and if no worker with a better success rate becomes available in the last stage

(which happens with probability (1− r)j−1), the task is assigned to the worker with success rate

pj . Similarly, we can compute the expected success rate assigned to the last task if the (n− 1)th

task is assigned to pj .

The optimal algorithm is computationally challenging. Therefore, an efficient approximation

algorithm for the problem is now proposed. Lemma 14 provides an expression for the maximum

expected reward that any policy might achieve for the SSAP with Geometric task duration.

87

Lemma 14. The maximum expected reward is upper bounded by

n∑
i=n−dnre

ai,n+1p1 +

n−dnre∑
i=dnre−d2nre

ai,n+1p2 + ...+

dnre∑
i=1

ai,n+1pd 1
r
e (6.1)

Proof: Consider the SSAP with the workers success rates p1, p2, ..., pd 1
r
e. Assume that there are

dnre workers with each of the mentioned success rates. The maximum expected reward of this

SSAP, which is given by (6.1), provides an upper bound for the problem with Geometric task

duration.

Consider the d1
r
e workers with the best success rates. Divide the n stages to dnre intervals:

One from stage 1 to stage d1
r
e, second one from stage d1

r
e+ 1 to stage 2d1

r
e, and so on. Assign

tasks of each interval to workers by defining interval thresholds based on the optimal policy of

SSAP: If there are k remaining tasks to the end of the current interval, compute the thresholds ai,k

and assign the task to worker j if the task value is in the jth interval and worker j is available.

Theorem 21. The proposed policy achieves an expected reward of at least

1/e× (1− 1/e)× dnre
d 1
r
e∑

i=1

ai,d 1
r
e+1pd 1

r
e−i+1 (6.2)

Proof: First, notice that dnre
∑d 1

r
e

i=1 ai,d 1
r
e+1pd 1

r
e−i+1 is the total expected reward if the workers

are all available at the beginning of each interval of length d1
r
e. Assume that the distance between

any two tasks that must be assigned to the same worker is exactly d1
r
e. Given this, the probability

that the worker becomes available for future assignments (and hence, achieves the same reward as

when all workers are available at the beginning of each interval) is equal to the probability that

the number of stages that a worker is not available is less than its expected value. This probability

is given by
1/r−1∑
i=0

(1− r)i × r = 1− (1− r)1/r, (6.3)

which converges to 1− 1/e.

The probability that the distance (i.e., the number of stages) between two tasks that must be

88

assigned to the same worker is at least d1
r
e is given by

(
d1
r
e − 1

d1
r
e

)d
1
r
e−1 ≥ (1− 1

d1
r
e

)d
1
r
e, (6.4)

which converges to 1/e.

6.3.2 Tasks with a Random Arrival Order

Assume that tasks have a random arrival order. Again, a worker that is assigned to a task would

be available in any of the next stages with probability p. We study the performance of a policy

very similar to the BM Algorithm in this problem.

In contrast to the Secretary Problem, the optimal offline policy of this problem has a random

parameter r. First, we derive an upper bound on the expected reward of the optimal offline policy.

Policy A is not the optimal offline policy, but provides an upper bound on the reward of any

offline policy for this problem.

Algorithm 10 Policy A
Input: Task values X = {x1, x2, ..., xn}, workers success rates P = {p1, p2, ..., pn}, parameter p

Output: Assign the best dnre tasks to p1, the second best dnre tasks to p2, and so on.

Lemma 15. The expected reward of Policy A is given by

EA[X,P, r] =

d 1
r
e∑

i=1

dnre∑
j=1

piX((i−1)×dnre+j) (6.5)

Lemma 16. Policy A provides an upper bound on the expected reward of any offline policy.

Proof: Consider the following problem: Assume that there are n arriving tasks and only one

worker with success rate p(1). Upon assigning a task to the worker, the worker becomes available

in the next stage with probability r. The maximum (offline) expected reward of this problem is

given by p(1) × (X(1) +X(2) + ...+X(dnre)) since in expectation, the worker is available for nr

stages and it is assigned to tasks with best workers in these stages. The right hand-side of (6.6) is

equal to the optimal reward when all the best d1
r
e workers are assigned to the optimal tasks.

89

Next, we define another assignment policy, referred to as Policy B, and compare its

performance to Policy A. Note that Policy B is similar to the optimal policy of the problem

discussed in Theorem 1 when the task duration is fixed. The only difference is that here we

consider a distance equal to the expected task duration between each two tasks that must be

assigned to the same worker.

Algorithm 11 Policy B
Input: Task values X = {x1, x2, ..., xn}, workers success rates P = {p1, p2, ..., pn}, parameter p

Divide tasks to d1
r
e groups, with the first group containing the best dnre tasks, the second group

containing the second best dnre tasks, and so on.

Sort the tasks such that each two tasks of the same group has a distance of d1
r
e (i.e., tasks of the

first group appear at stages 1, 1 + d1
r
e, 1 + 2d1

r
e, ...; tasks of the second group appear at stages

2, 2 + d1
r
e, 2 + 2d1

r
e, ..., and so on.)

Starting from the first stage, assign tasks of the ith group to the worker with the ith largest success

rate if it is available.

Lemma 17. Let EA[X,P, r] (EB[X,P, r]) denote the total expected reward achieved by Policy A

(Policy B) on the set of tasks X , set of workers P , and a Geometric Model with parameters r for

the task duration. Then,

EB[X,P, r] ≥ (1− 1

e
)EA[X,P, r] (6.6)

Proof: The proof is very similar to the proof of the first part of Theorem 21 since in the worst

case, each task is assigned to the worker by Policy B if the task duration is smaller than its

expected value.

Now we define our proposed algorithm for the problem with a random arrival order of tasks

and Geometric task duration. Note that the algorithm is very similar to the BM Algorithm and

hence, is referred to as the BM Algorithm. The only difference is that the algorithm finds a

matching on tasks observed so far by applying Policy B.

90

Algorithm 12 The BM Algorithm for Random Arrival Order of Tasks and Geometric Task Dura-
tion
Observe the first bn/ec tasks: {x1, x2, ..., xbn/ec}

From stage l = bn/ec+ 1

Apply Policy B to {x1, x2, ..., xl} ∪ {p1, p2, ..., pn}

Let pj denote the worker’s success rate assigned to xl by Policy B

Assign task l to worker j if the worker is not previously assigned

Theorem 22. The total expected reward achieved by the BM Algorithm is at least e−1
e2
EB[X,P, r].

Proof: The proof is similar to the proof of Theorem 1. First, it is easy to see that due to the

random arrival order of tasks, each assignment by Policy B achieves an expected reward of
EB [X,P,r]

n
. This means that the expected reward of each stage is at least 1/n of the total expected

reward achieved by Policy B in the n-stage problem. Assume that Policy B assigns task l to

worker j. Now, we should compute the probability that worker j is available on stage l. If the last

task assigned to worker j by the BM Algorithm appeared at stage l − d1
r
e or earlier, then the

probability that the worker is available is (at least) the same for the BM Algorithm and Policy B.

This is true since Policy B orders tasks such that each two tasks that must be assigned to the same

worker has a distance of d1
r
e. The event that the last task assigned to worker j appeared at stage

l − d1
r
e or earlier happens with probability (

d 1
r
e−1
d 1
r
e)d

1
r
e−1, which converges to 1/e. Again,

summing over all possible assignments from stage bn/ec+ 1 to n completes the proof.

6.4 Random Arrival of Tasks

This section extends the results of the previous section to the case that tasks arrive with a certain

probability on each stage. Assume that tasks have a random arrival order. The optimal policy for

this case has a training phase of length n/e and is e-competitive. Now assume that at each time

interval, a task arrives with probability u.

Consider the same assignment policy: Observe the tasks until the stage n/e. Then, use them as

a training phase to assign tasks at stages n/e+ 1 to n. Notice the difference between this policy

and the previous one. Here the number of tasks observed up to stage n/e is a (binomial) random

91

number with and expected value of u× n/e.

Theorem 23. The BM Algorithm is optimal.

Proof: First, note that for optimality, we should prove that the algorithm is e-competitive. Since

the case of u = 1 is a special case of this problem, which is itself a generalization of the Secretary

problem. Therefore, any algorithm with a better competitive ratio, yields a better competitive

ratio for the secretary problem, which is a contradiction. We follow the same steps as the proof of

Lemma 1 in [34].

Let R(xl) denote the reward of assigning the lth arriving task and RM({x1, x2, ..., xl}) denote

the maximum offline reward of assigning the first l tasks to workers. Then, given that a task

arrives at stage l, the expected reward achieved by the task in the offline matching satisfies

E[R(xl)] ≥
E[RM({x1, x2, ..., xl})]

ul

This is a direct result of the random arrival order of tasks. This also yields

E[R({x1, x2, ..., xl})] ≥
l × E[RM({x1, x2, ..., xn})]

n
,

where E[RM({x1, x2, ..., xn})] = OPT is the maximum offline reward of the n-stage problem.

Therefore, given that a task appears at stage l, the expected reward of assigning it is at least 1/un

times the maximum offline reward:

E[R(xl)] ≥
OPT

un

Since a task appears at each stage with probability u, the expected reward of stage u is at least

1/n times the maximum offline reward.

Consider stage k ∈ {dn/ee, dn/ee+ 1, ..., n}. The probability that a task appearing at this

stage is actually assigned to a worker is equal to the probability that the worker determined by the

matching policy is available; i.e., it is not assigned to a task in one of the stages

l = dn/ee, dn/ee+ 1, ..., k − 1. Due to the random arrival order, the probability that a task is

assigned at stage l given that all l tasks appeared is at most 1/l. Now conditioning on the number

92

of tasks appeared at stage l, this probability is given by

l∑
i=1

1

i

(
l − 1

i− 1

)
(1− u)k−iui =

1

l

l∑
i=1

(
l

i

)
(1− u)k−iui ≤ 1

l
(6.7)

The rest of the proof follows in the same way as [34].

Note that Theorem 4 has another simple intuitive proof. In fact, since tasks have a random

arrival order and we assume that each task arrives at each stage with probability u, independent of

other stages, we could incorporate this probability into the random arrival order. Therefore, the

random arrival of tasks does not change anything in optimality of the threshold policy.

6.5 Summary

This chapter proposes assignment policies for a generalization of SSAP, with a worker capable of

performing more than one task. This problem is referred to as Dynamic Sequential Assignment.

The number of stages that a worker is not available due to prior assignment is considered to be the

task duration. SSAP is a special case of the Dynamic Sequential Assignment with a task duration

larger than the number of remaining stages of the problem.

The Dynamic Sequential Assignment relaxes the one-time assignment of the basic formulation

of SSAP and has applications in several areas such as the online matching markets. In an online

matching market, each of the bidders might bid and buy more than one item.

Assignment policies are proposed for two models. The first model assumes a fixed task

duration, independent of the task value and the worker’s success rate. An assignment policy is

proposed and its performance is evaluated. This result is extended to a memoryless model for task

duration. It is assumed that the task duration follows a geometric distribution. Assuming

randomness in task duration makes the analysis of the problem more complex. In particular, the

optimal offline policy becomes computationally challenging. In order to overcome this problem,

an upper bound on the optimal offline reward is computed. Then, an approximation algorithm for

the optimal offline reward is proposed. This algorithm is used to design and analyze an online

assignment policy.

The intuition behind the proposed algorithms is to divide the set of arriving tasks to groups of

93

length equal to the expected task duration. The arriving tasks in each group are then assigned to

workers using a training phase. While the proposed algorithms are analyzed for fixed and

memoryless task duration, similar ideas can be used for more complex models. However, the

competitive ratio depends on the random structure of the task duration and might be a function of

the expected task duration.

94

CHAPTER 7

CONCLUSION AND FUTURE WORK

The Sequential Stochastic Assignment Problem (SSAP) deals with finding policies for matching

a set of online arriving elements to available entities so as to maximize a reward function. The

online arriving elements are referred to as tasks and the entities that are assigned to tasks are

referred to workers. Each task is associated with a specific value, and each worker has a success

rate. The reward of each matching is defined as the product of the task value and the worker’s

success rate. In the basic formulation of SSAP, it is assumed that the number of tasks and workers

are known, the task values are independently drawn from a given distribution, and the workers’

success rates are constant.

This thesis consists of several essays on sequential assignment problems. The first part studies

the Doubly Stochastic Sequential Assignment Problem (DSSAP). DSSAP assumes that the

workers’ success rates are random, taking new values upon each task arrival. While SSAP can be

considered as a generalization of Secretary Problem, where each hired candidate must be

assigned to a distinct position, DSSAP is an Edge-Weighted Online Bipartite Matching Problem.

Due to randomness in task values and the workers’ success rates, DSSAP deals with several

random parameters at each stage of the problem. Therefore, the optimal assignment policy is

computationally challenging with arbitrary success rate distributions. This dissertation studies

several special cases of DSSAP, and then proposes the optimal assignment policy using a

backward induction. An approximation algorithm that achieves a fraction of the optimal reward

in a polynomial time is also proposed. The approximation algorithm is a ranking algorithm that

gives priority to workers with larger expected success rates. This improves the computational

complexity since the expected reward of many possible matchings are not computed when the

task is assigned to a higher priority worker.

The second part of this dissertation studies the Generalized Sequential Stochastic Assignment

95

Problem (GSSAP). GSSAP assumes no prior information on task values. Several constant

competitive algorithms are proposed. With no assumption on task values, an assignment policy

uses the first stages of the problem as a training phase to compute thresholds. Tasks arriving in

the training phase can be assigned to workers by recursively applying the same procedure (i.e.,

defining a new training phase to compute thresholds and then use them to assign tasks to workers).

The linear programming technique formulates the sequential assignment problem as a linear

program and uses this formulation to analyze the performance of assignment policies. The

constraints of the linear program are defined such that each feasible solution of the linear program

corresponds to an algorithm for the online matching problem. Moreover, the objective function

yields an upper bound on the expected reward achieved by any assignment policy. Therefore,

each solution of the linear program provides a bound on the reward achieved by any algorithm for

the sequential assignment problem. Moreover, the linear programming formulation can be used to

analyze extensions of the problem by simple changes in the objective function and constraints.

The Dynamic Sequential Assignment Problem seeks to maximize the total expected reward for

a generalization of SSAP, where each worker might be assigned to several tasks. In many

applications of online matching markets, one side of the market is available for more than one

matching. The Dynamic Sequential Assignment finds assignment policies for such matching

markets by various assumptions on the availability of workers for future assignments. First, it is

assumed that upon assigning a task, the worker would not be available for a fixed time, referred to

as the task duration. Then, this is generalized to a memoryless model, where the task duration

follows a geometric random variable. The proposed algorithms divide the n-stage problem to

several periods, with the length of each period equal to the (expected) task duration. Tasks

arriving in each period of this length are assigned to workers by applying the optimal algorithm of

the n-stage problem. The performance of the proposed algorithms are analyzed by computing the

probability that the distance between any two tasks that must be assigned to the same worker is at

least as large as the expected task duration. Moreover, due to randomness in availability of

workers in the memoryless model, the reward is multiplied by the probability that a worker is

available for a possible assignment. Note that similar ideas can be used for other random

structures for the task duration. However, the ratio of the achieved reward to the optimal offline

reward might be different.

96

Relaxing the assumptions of SSAP generalizes the basic formulation to model the real-world

problems with higher accuracy. For example, DSSAP generalizes SSAP by assuming that the

workers’ success rates might change during the assignment process. GSSAP assumes a random

arrival order of tasks, which is quite realistic in many applications. The Dynamic Sequential

Assignment Problem provides a framework for modeling sequential assignment problems, where

each element might be matched to several entities.

While various online matching problems have been studied, there are many questions to be

addressed in future work. For example, one of the main challenges in SSAP is to design

algorithms for the problem in a continuous-time model. The continuous-time model provides a

more realistic framework for studying online matching markets, where the price of each item is a

function of time. However, assuming that the reward of each assignment is a time-dependent

function makes the problem significantly more complex.

The sequential assignment problem with unknown number of elements is another possible

research direction. This dissertation derives bounds on the performance of assignment policies

for the sequential assignment problem when the number of elements is selected by an adversary

from a given set. Due to the dependence of the size of the training data set on the number of

elements, designing algorithms with reasonable competitive ratio for the problem with limited

information on the number of online arriving elements is very challenging.

Designing matching algorithms for the Dynamic Sequential Assignment with new models for

availability of workers is a future research direction. While similar ideas to those proposed in this

dissertation can be applied to new models, the performance of the proposed algorithms needs to

be analyzed. The Dynamic Sequential Assignment becomes very challenging when the task

duration is a function of the task value and the worker’s success rate. Bounding the performance

of assignment policies for the Dynamic Sequential Assignment Problem using the linear

programming formulation is an interesting application of the linear programming technique.

Moreover, designing algorithms for the problem with/without some assumptions on the relation

between the task duration and value is another research direction.

While the Dynamic Sequential Assignment Problem defines the availability of workers as a

function of the task duration, other models for reassigning workers to tasks can be studied. For

example, a queueing model assumes a capacity for the maximum number of tasks performed by

97

each worker. An algorithm for this model might assign several successive tasks to the same

worker. The objective can be defined as maximizing the total expected reward while satisfying

some constraints on the waiting time of each element.

98

REFERENCES

[1] Agarwal, S. and Zizhuo, W. and Ye, Y. 2014. A Dynamic Near-Optimal Algorithm for Online
Linear Programming. Operations Research. 62 (4). 876–890.

[2] Albright, S. C. and Derman, C. 1972. Asymptotic Optimal Policies for Stochastic Sequential
Assignment Problem. Management Science. 19 (1). 46–51.

[3] Albright, S. C. 1974. Optimal Sequential Assignment with Random Arrival Times.
Management Science. 21 (1). 60–67.

[4] Albright, S. C. 1974. A Markov-Decision-Chain Approach to a Stochastic Assignment
Problem. Operations Research. 22 (1). 61–64.

[5] Albright, S. C. 1977. A Bayesian Approach to a Generalized House Selling Problem.
Management Science. 24 (4). 432–440.

[6] Apostol, T. M. 1967. Calculus, Vol. 1: One-Variable Calculus with an Introduction to Linear
Algebra. John Wiley and Sons, second edition. 978-0-471-00005-1.

[7] Babaioff, M. and Dinitz, M. and Gupta, A. and Immorlica, N. and Talwar, K. 2009. Secretary
Problems: Weights and Discounts. Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms. 1245–1254.

[8] Babaioff, M. and Immorlica, N. and Kempe, D. and Kleinberg, R. 2008. Online Auctions and
Generalized Secretary Problems. ACM SIGecom Exchanges. 7 (2).

[9] Baharian, G. and Jacobson, S. H. 2013. Limiting Behavior of the Stochastic Sequential
Assignment Problem. Naval Research Logistics. 60 (4). 321–330.

[10] Baharian, G. and Jacobson, S. H. 2013. Stochastic Sequential Assignment Problem with
Threshold Criteria. Probability in the Engineering and Informational Sciences. 27 (3).
277–296.

[11] Baharian, G. and Jacobson, S. H. 2014. Limiting behavior of the target-dependent stochastic
sequential assignment problem. Journal of Applied Probability. 51 (4). 943–953.

[12] Bertsimas, D. and Tsitsiklis, J. N. 1997. Introduction to Linear Optimization. Athena
Scientific. ISBN:1886529191.

99

[13] Bloch, F. and Houy, N. 2012. Optimal assignment of durable objects to successive agents.
Economic Theory. 51 (1). 13–33.

[14] Buchbinder, N. and Kamal, J. and Singh, M. 2013. Secretary Problems via Linear
Programming. Mathematics of Operations Research. 39 (1). 190–206.

[15] Chow, Y. S. and Moriguti, S. and Robbins, H. and Samuels, S. M. 1964. Optimal selection
based on relative rank. Israel Journal of Mathematics. 2. 81–90.

[16] Chun, Y. H. and Sumichrast, R. T. 2006. A rank-based approach to the sequential selection
and assignment problem. European Journal of Operational Research. 174 (2). 1338–1344.

[17] David, I. and Levi, O. 2004. A new algorithm for the multi-item exponentially discounted
optimal selection problem. European Journal of Operational Research. 153 (3). 782–789.

[18] David, I. and Yechiali, Y. 1995. One-attribute Sequential Assignment Match Processes in
Discrete Time. Operations Research. 43 (5). 879–884.

[19] Derman, C. and Lieberman, G. J. and Ross, S. M. 1972. A Sequential Stochastic
Assignment Problem. Management Science. 18 (7). 349–355.

[20] Derman, C. and Lieberman, G. J. and Ross, S. M. 1975. A Stochastic Sequential Allocation
Model. Operations Research. 23 (6). 1120–1130.

[21] Derman, C. and Lieberman, G. J. and Ross, S. M. 1979. Adaptive Disposal Models. Naval
Research Logistics Quarterly. 26 (1). 33–40.

[22] Devanur, N. R. and Hayes, T. P. 2009. The Adwords Problem: Online Keyword Matching
with Budgeted Bidders under Random Permutations. Proceedings of the 10th ACM
Conference on Electronic Commerce. 71–78.

[23] Dynkin, E. B. 1963. The Optimum Choice of the Instant for Stopping a Markov Process.
Sov. Math. Dokl. 4.

[24] Enns, E. G. 1970. The optimum strategy for choosing the maximum of N independent
random variables. Unternehmensforschung. 14. 89–96.

[25] Freeman, P. R. 1983. The Secretary Problem and Its Extensions: A Review. International
Statistical Review. 51. 189–206.

[26] Gale, D. and Shapley, L. S. 1962. College Admissions and the Stability of Marriage. The
American Mathematical Monthly. 69 (1). 9–15.

[27] Glasser, K. S. and Holzsager, R. 1983. The d Choice Secretary Problem. Communications in
Statistics. 2 (3). 177–199.

[28] Glen, A. G. and Leemis, L. M. and Drew, J. H. 2004. Computing the Distribution of the
Product of Two Continuous Random Variables. Computational Statistics and Data Analysis.
44 (3). 451–464.

100

[29] Gianini, J. and Samuels, S. M. 1976. The Infinite Secretary Problem. Annals of Probability.
4. 418–432.

[30] Gianini-Pettitt, J. 1979. Optimal Selection Based on Relative Ranks with a Random Number
of Individuals. Adv. Appl. Prob. 11. 720–736.

[31] Feng,T. and Hartman, J. C. 2013. The Sequential Stochastic Assignment Problem with
Postponement Options. Probability in the Engineering and Informational Sciences. 27 (1).
25–51.

[32] Karp, R. M. and Vazirani, U. V. and Vazirani, V. V. 1990. An Optimal Algorithm for On-line
Bipartite Matching. Proceedings of the Twenty-second Annual ACM Symposium on Theory of
Computing. 352–358.

[33] Kennedy, D. P. 1986. Optimal Sequential Assignment. Mathematics of Operations
Research. 11 (4). 619–626.

[34] Kesselheim, T. and Radke, K. and Tonnis, A. and Vocking, B. 2013. An Optimal Online
Algorithm for Weighted Bipartite Matching and Extensions to Combinatorial Auctions.
Algorithms-ESA. 589–600.

[35] Khatibi, A. and Baharian, G. and Kone, E. R. and Jacobson, S.H. 2014. The Sequential
Stochastic Assignment Problem with Random Success Rates. IIE Transactions. 46 (11).
1169–1180.

[36] Khatibi, A. and Jacobson, S. H. 2015. Doubly Stochastic Sequential Assignment Problem.
Naval Research Logistics. 63 (2). 124–137.

[37] Khatibi, A. and Jacobson, S.H. 2015. Generalized Sequential Stochastic Assignment
Problem. Technical Report, University of Illinois.

[38] Kleinberg, R. 2005. A Multiple-choice Secretary Algorithm with Applications to Online
Auctions. Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms. 630–631.

[39] Kittur, A. and Chi, E. H. and Suh, B. 2008. "Crowdsourcing user studies with Mechanical
Turk." Proceedings of the SIGCHI conference on human factors in computing systems.
453–456.

[40] Korula, N. and Pál, M. 2009. Algorithms for Secretary Problems on Graphs and
Hypergraphs. Proceedings of the 36th Internatilonal Colloquium on Automata, Languages
and Programming: Part II. 508–520.

[41] Lee, A. J. and Jacobson, S. H. 2011. Sequential Stochastic Assignment under Uncertainty:
Estimation and Convergence. Statistical Inference for Stochastic Processes. 14 (1). 21–46.

[42] Lindley, D. V. 1961. Dynamic programming and decision theory. Applied Statistics. 10 (1).
39–51.

101

[43] McLay, L.A. and Jacobson, S.H. and Kobza, J.E. 2006. A Multilevel Passenger Screening
Problem for Aviation Security. Naval Research Logistics. 53 (3). 183–197.

[44] McLay, L.A. and Jacobson, S.H. and Nikolaev, A.G. 2009. A Sequential Stochastic
Passenger Screening Problem for Aviation Security. IIE Transactions. 41 (6). 575–591.

[45] Mehta, A. and Saberi, A. and Vazirani, U. and Vazirani, V. 2007. AdWords and Generalized
Online Matching. J. ACM. 54 (5). 1–20.

[46] Mucci, A. G. 1973. Differential Equations and Optimal Choice Problems. Annals of
Statistics. 1 (1). 104–113.

[47] Nakai, T. 1981. Sequential Stochastic Assignment Problem With Rejection. Journal of
Information and Optimization Sciences. 2 (2). 169–180.

[48] Nakai, T. 1986. A Sequential Assignment Problem in a Partially Observable Markov Chain.
Mathematics of Operations Research. 11 (2). 230–240.

[49] Nikolaev, A. G. and Jacobson, S. H. 2010. Stochastic Sequential Decision-making with a
Random Number of Jobs. Operations Research. 58 (4P1). 1023–1027.

[50] Nikolaev, A. G. and Jacobson, S. H. and McLay, L. A. 2007. A Sequential Stochastic
Security System Design Problem for Aviation Security. Transportation Science. 41 (2).
182–194.

[51] Oveis Gharan, S. and Vondrak, J. 2011. On Variants of the Matroid Secretary Problem.
Algorithms–ESA. 335–346.

[52] Presman, E. L. and Sonin, I. M. 1972. The Best Choice Problem For a Random Number of
Objects. Theory of Probability and Its Applications. 17 (4). 657–668.

[53] Rasmussen, W. T. and Pliska, S. R. 1975. Choosing the maximum from a sequence with a
discount function. Applied Mathematics and Optimization. 2. 279–289.

[54] Righter, R. L. 1987. The Stochastic Sequential Assignment Problem with Random
Deadlines. Probability in the Engineering and Informational Sciences. 1 (2). 189–202.

[55] Righter, R. L. 1989. A Resource Allocation Problem in a Random Environment. Operations
Research. 37 (2). 329–338.

[56] Sakaguchi, M. 1983. A Sequential Stochastic Assignment Problem with an Unknown
Number of Jobs. Mathematika Japonica. 29 (2). 141–152.

[57] Sakaguchi, M. 1978. Dowry problems and OLA policies. Rep. Statist. Appl. Res. JUSE. 25.
124–128.

[58] Smith, M. H. A Secretary Problem with Uncertain Employment. Journal of Applied
Probability. 12. 620–624.

102

[59] Su, X. and Zenios, S. A. 2005. Patient Choice in Kidney Allocation: A Sequential
Stochastic Assignment Model. Operations Research. 53 (3). 443–455.

[60] Tamara, M. 1991. A secretary problem with uncertain employment and best choice of
available candidates. Operations Research. 39. 274–284.

103

