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Abstract 

Two-dimensional (2D) materials have attracted extensive attention due to their 

unique and remarkable properties, such as the atomically thin body, pristine 

surface free of dangling bonds, tunable bandgap, and reasonably high mobility, 

which make 2D materials promising candidates for novel electronic and 

optoelectronic devices in low power, high performance and flexible 

applications.  

In this thesis, the optical and electrical properties of MoS2/WS2 heterostructures 

grown by chemical vapor deposition (CVD) are studied. By using Raman 

spectra, photoluminescence (PL) spectra and atomic force microscopy (AFM), 

the vertical and lateral MoS2/WS2 structures are identified. The transistors and 

Hall-bar devices based on vertical monolayer-MoS2/monolayer-WS2 

heterostructures are successfully fabricated. The devices show typical n-channel 

characteristics, indicating that MoS2 and WS2 are naturally n-type doped. 

Further investigation of the interlayer coupling on carrier transport and 

distribution is needed in future study. Due to the type II band alignment and 

sharp interface, these vertical and lateral MoS2/WS2 heterostructures can 

potentially be used for tunneling field-effect transistors and high-speed 

photodetectors.  

In addition, the crystal orientation and electronic transport in germanium 

selenide (GeSe) are also studied. The crystallographic direction of the GeSe is 

determined by angle-resolved polarized Raman measurement. The anisotropic 

electronic transport of the GeSe is measured by angle-resolved DC electrical 

conductance. The results indicate that GeSe has a prominent anisotropic 

electronic transport with maximum conductance likely along the armchair 

direction, but further confirmation with repeatable experimental results is 

needed. The anisotropic conductance in GeSe may enable a new series of 

electronic and optoelectronic devices such as plasmonic devices with resonance 
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frequency continuously tunable with light polarization direction, and high-

efficiency thermoelectric devices.   

In summary, the MoS2/WS2 heterostructures and anisotropic electronic transport 

in GeSe have been studied. The knowledge gained in these projects will be 

essential for designing and fabricating novel electronic devices based on these 

materials in the future.  
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Chapter 1 Introduction 

In the past few decades, semiconductor technologies have been advanced 

generation by generation through device scaling. The semiconductor industry is 

touching the 10nm node technology and the prosperous development of modern 

electronic devices drives the scaling down to even smaller dimensions with 

faster speed, reduced cost and lower power consumption. Approaching the end 

of Moore's law, the miniaturization of metal-oxide-semiconductor field-effect-

transistor (MOSFET) is facing severe challenges. Scaling the channel length 

down to sub-10nm regime will cause drain-induced barrier lowering, roll-off of 

the threshold voltage and hot carrier effect, which will substantially degrade the 

performance of the devices. As the scaling approaches its fundamental and 

technical limits, the semiconductor industry calls for innovations that can either 

extend the scaling or go beyond scaling.  

In the context of exploring solutions and developing a new generation of 

electronics (e.g. flexible electronics), researchers have been looking for 

alternative materials and new device configurations [1] to sustain Moore's law 

and replace the dominant position of current Si technology. Among new 

candidate materials, two-dimensional (2D) materials emerged in recent years as 

promising candidates, which may be able to address some of these challenges 

with their unique properties.  

1.1 The Properties of Two-dimensional Materials  

First of all, the atomically thin body in 2D materials [2, 3], as illustrated in 

Figure 1.1, can potentially extend the scaling beyond 10nm technology. For 

planar structure transistors, the characteristic channel scaling length is given by 

λ =             , where tox and ts are the thickness of gate insulator and 

semiconductor, and εox and εs are the permittivity of gate insulator and 

semiconductor [4]. With the atomically thin body down to less than 1nm in 
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single layer of 2D materials, the characteristic length could possibly be scaled 

down to smaller than 5nm. Thus, 2D materials are immune to short channel 

effects and thereby provide a viable path for electronics to sustain Moore's law.  

Moreover, as the atomic structures in Figure 1.1 illustrate, the pristine surface 

with absence of the surface dangling bonds gives 2D materials significant 

advantages of less carrier scattering and interface states over the conventional 

bulk materials, thus leading to potentially higher performance in electrical and 

optical devices based on 2D materials [5].  

2D materials are layered materials with strong in-plane covalent bond and weak 

interlayer van der Waals force. The weak interlayer bonding enables 2D 

materials to be easily exfoliated layer by layer. In addition, as shown in Figure 

1.2 these layered materials can also be stacked up easily to build 

heterostructures in random orders as desired just like playing with Lego blocks. 

What is more, it has been predicted [6] that there are more than a hundred 2D 

materials in nature with diverse materials properties ranging from conductors 

(e.g., graphene), to semiconductors (e.g., transition metal dichalcogenides) to 

insulators (e.g., boron nitride). Thus, they provide diverse platforms to build 

various electronic and optical devices as required in the applications, and the 

issue of lattice mismatch is not a concern in the construction of 2D material 

heterostructures, unlike in bulk material heterostructures [7].  

In addition to the properties above, the sheet-like flexibility enables 2D 

materials to sustain relatively high strains [8, 9] and therefore 2D materials are 

ideal candidate materials for future flexible electronics [10, 11]. The high 

surface-to-volume ratio also gives 2D materials the benefit of sensitive surfaces 

that could be used for highly sensitive sensors [12, 13]. With these unique and 

excellent properties, 2D materials have attracted extensive attention since their 

emergence. In the following, the specific properties and applications of graphene 

and transition metal dichalcogenides will be discussed in detail.  
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1.2 Graphene 

Graphene is the first 2D material that has been extensively studied. In 2001, 

Novoselov and Geim in the UK found that single-layer graphene can be 

mechanically exfoliated from bulk graphite [14]. This gave the researcher access 

to the atomically thin 2D materials in the lab for the first time. Since then, 2D 

materials have attracted intense research interest. Figure 1.3 (a) [15] shows the 

energy dispersion of graphene. Its conduction band meets the valence band at 

the Dirac point and thus the bandgap of graphene is zero. With this unique 

electronic structure graphene has superior electron and hole mobility up to 

15,000 cm
2
/(V•s) [16]. With the remarkably high carrier mobility graphene is 

promising for high-speed radio frequency electronics and plasmonic devices. In 

addition, it was found that graphene only absorbs 2.3% of incident visible light 

[17]. Therefore, graphene exhibits a promising application as a semi-metallic 

material and transparent conductor. Moreover, graphene can be easily and 

continuously tuned to be n-type or p-type without degradation of mobility by 

shifting the Fermi level with changing gate bias [18]. This ambipolar electric 

field effect meets the requirement in various applications that need the materials 

to be semiconducting n-type or p-type with different carrier concentrations.   

However, the absence of bandgap in graphene limits its application in logic 

devices [19]. As Figure 1.4 illustrates, the transfer characteristics of a graphene 

transistor show a very high off-state current around 10 µA with 0.1V drain 

voltage. This high off-state current makes it impossible for graphene-based logic 

devices to turn off. Bilayer graphene has been reported to provide a bandgap, 

but the bandgap is very small (typically less than 0.2eV) [20]. Graphene 

nanoribbons could open up a bandgap due to the quantum confinement and edge 

effects, and it is theoretically and experimentally verified that the gap scales up 

with decreasing width of graphene nanoribbons [21, 22]. However, the mobility 

in graphene nanoribbons is typically significantly degraded, when the width of 

the ribbon reduces due to the edge roughness [23]. Thus, the absence of band 

gap brings challenges in the applications of graphene in logic devices.  
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1.3 Transition Metal Dichalcogenides  

       1.3.1 Material Properties of TMDs 

For the application in logic devices, the channel material must have a sizable 

bandgap to ensure the required on-off current ratio. Beyond graphene, other 2D 

materials, such as transition metal dichalcogenides (TMDs) (e.g., MoS2, WS2, 

MoSe2, etc.), with appreciable bandgap have attracted intense interest in the last 

few years as potential choices for logic devices [24, 25]. Among TMDs, MoS2 

has drawn the most attention. As Figure 1.1 (b) [3] demonstrates, the thickness 

of single layer of MoS2, consisting of one layer of Mo atoms sandwiched by two 

layer of S atoms, is 6.5 Å.  

Figure 1.3 (b) illustrates the evolution of MoS2 band structures from bulk, 

quadrilayer, bilayer and monolayer from left to right [26]. The bulk MoS2 is a 

semiconducting material with an indirect bandgap of 1.2 eV. Its conduction 

band minimum is located at the midpoint along the line of Г-K while its valence 

band maximum is at the Г point, which results in the indirect bandgap. As the 

material is thinned from bulk down to monolayer, the band structures change 

dramatically and the size of bandgap scales up as in Figure 1.5 (a) [27] where 

the monolayer MoS2 has a bandgap of 1.9 eV. The quantum confinement effects 

lead to the transition of indirect-direct bandgap from bulk to monolayer. Due to 

valence band maximum and conduction band minimum seating at the same K-

point, the monolayer has a direct bandgap with which monolayer MoS2 

demonstrates significantly enhanced photoluminescence (PL) as in Figure 1.5 

(b). More importantly, it opens up the possibility of monolayer MoS2 in the 

applications of light emission [28].  

For the applications in digital devices, the sizable bandgap enables MoS2 to have 

an enormous advantage over graphene. As Figure 1.6 demonstrates, the off-state 

current of monolayer MoS2 transistor is around 10 pA, which is one millionth 

the size of a graphene transistor as illustrated in Figure 1.4, although the on/off 

ratio, extracted field-effect mobility and subthreshold swing from the Id-Vg 
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curve of monolayer MoS2 transistor are far from the level that is used for current 

digital applications, which is also a big topic in improving the MoS2 based 

device performance in the research community. With the off-state current of 10 

pA and even smaller, the MoS2 transistor would be turned off and more energy 

efficient.  

In addition, the unique physical, mechanical, electrical, optical, and chemical 

properties of 2D materials can potentially enable novel electronic and photonic 

devices such as vertical tunnel transistors, photodetectors, solar cells, and 

flexible electronics [16, 24, 29], as discussed in the following.   

       1.3.2 TMDs-based Devices 

Electronic Devices 

Theoretical study predicted that the mobility of monolayer MoS2 could reach a 

few thousand cm
2
V

-1
s

-1 
at room temperature and even exceed 100,000 cm

2
V

-1
s

-1 

at low temperature, depending on the charge impurity density and surrounding 

dielectric environment [30, 31]. In experiment, the mobility of MoS2 in different 

layers was measured by using a van der Waals heterostructure and encapsulating 

MoS2 within boron nitride (BN). The study confirmed that the mobility of MoS2 

was limited by extrinsic interfacial impurities and the mobility of six-layer MoS2 

reached 34,000 cm
2
V

-1
s

-1 
at low temperature [32]. The study proves that MoS2 

has potentially have high enough mobility for high-performance electronics, 

although most of the experimental data give a few hundred mobility values or 

even lower [33, 34], mainly limited by dielectric materials, charged impurities 

and contact resistance.  

In ultra-thin-body (UTB) semiconductors, the decreasing body thickness with 

dangling bonds and surface roughness results in carrier scattering and thus 

greatly decreased mobility [5]. However, the pristine surface with the absence of 

dangling bonds in 2D materials is beneficial for reduced interface states and 

carrier scattering. And in FETs with 2D TMDs materials as the channel, the 
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carriers are confined in the atomically thin body of 2D TMDs materials and the 

gate would control the channel uniformly and lead to better gate coupling.  

Moreover, digital electronic devices require a large bandgap, usually greater 

than 1 eV, to achieve high on/off ratios [24]. The bandgaps of 2D TMDs are 

sufficiently large, indicating that electronic devices with 2D TMDs as the 

channels may achieve high on/off ratios.  

Single layer MoS2 field-effect transistors (FETs) have been extensively studied. 

Top-gated single layer MoS2 field-effect transistors demonstrated large on/off 

ratios (~10
8
) and low subthreshold swings (~74 mV/dec) [3] and bottom-gated 

unencapsulated single layer MoS2 field-effect transistors gave moderate mobility 

(> 60 cm
2
V

-1
s

-1 
) at room temperature with on/off ratios of 10

5
, as illustrated in 

Figure 1.7 (a) [35]. In 2015, single layer WS2 FETs sandwiched between BN 

with Al/Au contact were reported to have high mobility of 214 cm
2
V

-1
s

-1 
and 

high on/off ratios of 10
7
 at room temperature [36].  

In MOSFETs, the charge carriers surmount the potential barriers between the 

source and channel by thermal injections and thus the theoretical minimum of 

subthreshold swing (SS) is 60 mV/dec. In contrast, in a tunnel field-effect 

transistor (TFET) the charge carriers inject into the channel by interband 

tunneling which is turned on and off abruptly by gate biasing over the channel 

with steep band bendings [37]. As a consequence, as Figure 1.7 (b) [5] 

illustrates, the SS of TFETs can reach below the theoretical minimum of SS in 

normal FETs and thus TFETs can maintain the same performance and achieve 

the required same on/off ratios with a smaller voltage swing compared to the 

normal FETs. Thus, TFETs are more energy efficient. Recently, a vertical 

heterostructure TEFT, consisting of highly doped germanium as the source and 

bilayer MoS2 as the channel, exhibited an average of 31 mV/dec at room 

temperature [38]. The absence of surface dangling bonds in 2D materials and the 

reduced surface states make 2D materials candidate materials for TEFTs, which 

needs further exploration.   
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Although TMD FETs exhibit encouraging results, there remain many challenges 

in the applications of TMD FETs. One of the major challenges is the high 

contact resistance, which results in reduced drain current [4]. Typical contact 

resistances of 10 kΩ•µm and larger at the source and drain were reported in 

MoS2 FETs [29, 34, 39], arising from the atomically thin body of 2D TMDs. Au 

contacts were reported to make ohmic contacts to MoS2, showing linear 

relations between current and voltage [3, 35]. Theoretically, Au forms a 

Schottky barrier with n-type MoS2 due to higher work function of Au. However, 

the author argued that the atomically thin body of 2D MoS2 enables a narrow 

width of Schottky barrier and thus results in carrier tunneling through the barrier 

and relatively low resistances [34]. However, the ohmic contact from Au is not 

always formed to 2D TMDs, strongly depending on the material quality of 2D 

TMDs, Au deposition conditions and device fabrication processes, in our 

devices that will be discussed in the following chapters. Scandium contacts were 

studied to effectively reduce the contact resistance in 10nm thick exfoliated 

MoS2 flakes and obtain a high effective mobility of 700 cm
2
V

-1
s

-1 
at room 

temperature [34]. Graphene, as a semi-metallic 2D material, was shown to be a 

good contact material for low contact resistances in MoS2 FETs [32, 40]. 

Reduction of contact resistances has become one of the important topics in 2D 

materials and constant efforts and innovative methods, including phase 

engineering [39] and doping [41], have been implemented to eliminate large 

resistances and realize high-performance FETs.  

Optoelectronic Devices  

Monolayer TMDs are appealing for optoelectronic devices due to their direct 

bandgaps in visible light spectrum and strong PL spectrum. Monolayer MoS2 

based photodetectors have been investigated extensively [29, 42, 43].  In 

particular, spatial/temporal photocurrents and electronic transport were studied 

in monolayer MoS2 grown by chemical vapor deposition (CVD) with the 

structure of phototransistor and Hall bar devices [29]. The maximum 

photocurrent occurs when the laser spot is close to the contact and is tunable by 
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the applied drain voltage due to the modulation of the local electric field at the 

Schottky barrier. And the maximum photocurrent at the drain contact is much 

larger than that at the source contact because of higher Schottky barrier at the 

drain contacts extracted from the current-voltage relations at various 

temperatures. The extracted photoresponsivity of the monolayer MoS2 

photodetector is 3.07mA/W. This relatively low photoresponsivity is mainly 

ascribed to the low light absorption of monolayer MoS2.  

Other than photodetectors, explorations of photovoltaics based on 2D TMDs 

have been made due to their direct bandgaps in tunable range (1 eV-2 eV) and 

relatively large earth abundance [44]. Monolayer MoS2 was reported to form 

type II heterojunction with p-type silicon and achieved a remarkable power 

conversion efficiency > 5% [45]. The other types of materials and 

heterojunctions, such as WSe2/MoS2, were also studied for the photovoltaic 

effect [46] and one of the challenges is the low light absorption due to the 

atomically thin body. However, 2D materials exhibit promising applications in 

thin film and flexible photovoltaics and need further investigations.  

Another appealing application of 2D TMDs is flexible light-emitting diodes 

(LEDs) due to their direct bandgaps in monolayer. Electroluminescence (EL) 

was detected in monolayer MoS2 on glass substrates with Schottky junctions 

[47]. A heterojunction of monolayer MoS2 and p-type Si was also observed to 

have light emissions [48]. By utilizing BN as bottom dielectrics lateral p-n 

diodes in monolayer WSe2 emitted brighter electroluminescence due to more 

effective carriers injection than MoS2 [49]. However, novel device structures 

and better surface engineering are needed to improve the low quantum 

efficiency for more efficient light emission.  

Flexible Electronics  

The pursuit of future flexible and transparent electronics has motivated the 

research community to explore candidate materials over a long time. The 

conventional Si can be thinned down for UTB applications [50, 51], but the 



9 
 

carrier scattering and brittle nature pose limitations for current Si technology in 

the practical flexible applications. Organic semiconductors are also promising 

for flexible large area devices, but their relatively poor physical and electrical 

properties limit their performance and applications [52]. 2D materials have 

attracted considerable attention as an ideal candidate material due to their 

excellent mechanical properties [53, 54], large scale growth by CVD [55] and 

easy transfer to varieties of substrates [56], atomic and transparent body, and 

high integration of diverse 2D materials with various functionalities [7].  Thin 

film MoS2 transistors have been fabricated on polyimede substrate, revealing a 

high on/off ratio of 10
5
 and high mobility of 12.5 cm

2
V

-1
s

-1
, and maintaining a 

high performance even with significant bending [57].  Graphene was also 

fabricated on flexible substrate with gate dielectric of HfO2 and metal electrodes 

and gates, and achieved gigahertz frequency power gain with strains up to 1.5% 

[58]. The advancement in 2D materials research has accelerated the 

development of flexible electronics and more research reports have 

demonstrated encouraging results [59-61]. However, the field is still facing 

serious challenges that need to be addressed for the commercialization of 2D 

materials based flexible electronics, such as feasible fabrication processes at low 

cost, development of complementary transistor technology, etc. [11]. 

Sustainable research effort will find solutions and transform the 2D materials 

into practical high-performance flexible electronics in the foreseeable future.   

1.4 Challenges and Research Objective 

The unique and remarkable properties of 2D materials make them promising 

candidates for novel electronic and optoelectronic devices with broad 

applications. However, the investigations of 2D TMDs are still in early stages 

with many challenges. For example, the contact resistance is still a severe issue 

limiting the device performance. And a large-scale materials growth method is 

indispensable for high-quality mass production. Moreover, a feasible processing 

of 2D TMDs compatible with the conventional semiconductor processing is 

essential to produce commercialized products at low cost.  
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In this thesis, the research objective is mainly to study the electrical and optical 

properties of 2D materials and electronic devices based on these materials. In 

chapter 2, the processes of materials preparation, materials characterization and 

devices nanofabrication will be discussed in detail. In chapter 3, the 

investigation of MoS2 and WS2 heterostructures will be discussed. In chapter 4, 

the study of polarized Raman scattering and anisotropic electronic transport of a 

new 2D material, germanium selenide (GeSe), will be presented.  
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1.5 Figures 

 
 

 
 

Figure 1.1 The atomic structures of (a) graphene [2] and (b) MoS2 [3]. 
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Figure 1.2 Forming heterostructures with various 2D materials in random orders [6]. 
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Figure 1.3 Energy dispersion in (a) graphene [15] and (b) MoS2 bulk, quadrilayer, 

bilayer and monolayer from left to right [26].    

a 

b 
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Figure 1.4 The transfer characteristics of graphene transistor, showing high off-state 

current. 
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Figure 1.5 (a) The evolution of bandgap of MoS2 in different thicknesses. (b) 

Photoluminescence spectra of monolayer and bilayer MoS2. [27] 

 

 

a 
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Figure 1.6 The transfer characteristics of monolayer MoS2 transistor, showing low 

off-state current. 
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Figure 1.7 (a) Transfer characteristics of single-layer MoS2 FET. The inset shows the 

device structures. [35] (b) Transfer characteristics of a TFET and a normal FET in 

which the TFET shows a SS smaller than 60 mV/dec while keeping the same on/off 

ratio as the normal FET. [5] 

  

a 
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Chapter 2 Experimental Details 

2.1 Introduction 

Unlike the devices based on conventional 3D or bulk semiconductor materials, 

electronic devices based on 2D materials cannot be processed using the 

conventional semiconductor processing methods due to their unique nature, such 

as their atomically thin body, high sensitivity arising from their high surface-

volume ratio, etc. For example, Si is usually treated by plasma etching after the 

step of photolithography in order to remove the photoresist residual and clean 

the Si surface for good device performance. However, if plasma etching is used 

to treat and clean the surface of 2D materials, they will be damaged severely or 

etched away completely. So far, it is impossible to precisely control the process 

of plasma etching using the conventional semiconductor processing facilities 

with reasonable parameters to clean the surface of 2D materials. Thus, 

alternative and feasible processing methods must be explored specifically for the 

2D materials in order to fabricate high-performance devices and study their 

fundamental properties.  

In this chapter, a complete process, including 2D materials preparation/ 

characterization and device fabrication/characterization, is developed and 

discussed, which lays foundation for the research of 2D materials based 

electronic and optoelectronic devices. The devices based on MoS2 and WS2 

heterostructures in chapter 3 and transistors based on GeSe in chapter 4 are 

investigated using this process.  

2.2 Material Preparation 

2.2.1 Mechanical Exfoliation 

In 2001, single-layer graphene was produced by mechanical exfoliation from 

bulk graphite for the first time using Scotch tape [14] as shown in Figure 2.1(a). 

Since then, mechanical exfoliation has been used as a primary method to 
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produce atomically thin 2D materials from bulk materials. As the name implies, 

mechanical exfoliation is defined as a technique that uses an external force, such 

as micromechanical cleavage using the Scotch tape, to overcome the weak 

interlayer van der Waals force and peel atomic layers apart [62], and then 

achieve atomically thin materials as illustrated in Figure 1.1.  

The general procedure of mechanical exfoliation using Scotch tape is divided 

into two parts. The first step is to thin down the bulk materials by putting them 

onto the Scotch tape and peeling off repeatedly until the thick bulk materials are 

thinned down to some degree as shown in Figure 2.1 (b). The second step is to 

transfer the exfoliated flakes on the tape to the surface of a substrate by sticking 

the tape on the substrate.  A few finished samples are shown in Figure 2.2 and 

2.4. After the transferring of the flakes, optical inspection is used to identify the 

suitable flakes for the subsequent material characterization and device 

fabrication. 

As can be seen in Figure 2.2, there are built-in alignment marks in the form of 

numbers and squares on the substrate, circled in red together with the material 

flakes. Since the flakes in various shapes are transferred and then distributed on 

the surface of substrates in a random order, the alignment marks are needed to 

record the location of the desirable flakes for the subsequent processing. The 

period of the alignment mark arrays is 76 µm and they are repeated over the 

entire surface of the substrates. The numbers indicate the row and column of the 

alignment marks respectively. For example, the numbers of 30 and 29 in Figure 

2.2 surrounded by four square marks indicate the column number is 30 and row 

number is 29.  

Considering the importance of the alignment marks on the substrates for 

identifying flakes, preparation of substrates with these built-in alignment marks 

is a prerequisite step before the micromechanical cleavage and subsequent 

processing. Figure 2.3 demonstrates a process flow of alignment marks 

fabrication on a Si wafer utilizing the dry etching process. It starts with a Si 
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wafer with a layer of SiO2 as shown in Figure 2.3 (a). Using photolithography, 

the patterns on the photomask are transferred to the photoresist (PR) as shown in 

Figure 2.3 (b). And then the Si wafer with the patterned PR is transferred into 

the chamber of a Freon reactive ion etcher which produces high energy and high 

density reactive plasma with an etchant of CF4 gas. The CF4 plasma does not 

have a good selectivity and is able to etch the PR, SiO2 and Si simultaneously, 

and the etching rate ratio for PR, SiO2 and Si is about 2:1:2. Thus, 1.4 µm thick 

PR is good enough to function as the protection layer and enable the plasma to 

etch a well into the Si wafer with steep side-walls to a depth of 0.5 µm -1.0 µm, 

as shown in Figure 2.3 (c). The steep side-walls that are produced by the dry 

etching are critical to an accurate alignment in the subsequent E-beam writing 

step. After desirable etched thickness in Si is achieved, the next step is to 

remove the remaining PR with acetone and SiO2 with diluted hydrofluoric acid 

solution. The bare Si wafer is shown in Figure 2.3 (d) after it is complete. In 

order to use the Si body as a bottom gate for electronic devices, a bottom gate 

dielectric layer is needed on the top of the Si wafer. Thus, a layer of high quality 

SiO2 is grown by dry oxidation on the top of Si body, as shown in Figure 2.3 (e). 

A certain SiO2 thickness (e.g., 90 nm, 280 nm) is required to take advantage of 

the color contrast arising from the effect of light interference on SiO2 to 

recognize the exfoliated material flakes using the optical microscopy [63]. Up to 

this point, the substrate with built-in alignment marks has been completed, and 

the top view of the wafer is shown in Figure 2.3 (f). 

Once the substrate with built-in alignment marks is ready, the mechanical 

exfoliation using Scotch tape can be used to obtain some 2D materials sheets. 

Although this method is widely used to obtain thin and large graphene sheets, it 

has limitations of obtaining thin and large sheets of other 2D materials, such as 

MoS2 and GeSe. With the Scotch tape, too much tape residual usually is left 

over on the substrate, which inevitably results in problems in the process of 

device fabrication and degrades the device performance. The solution to this 

problem is to use an alternative tape, called blue tape as seen in Figure 2.1 (c), 

which comes with less tape residual while maintaining the necessarily large 
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adhesion force to peel the layered materials apart. Moreover, another problem is 

low yield. For this problem, high power O2 plasma is used to pretreat the surface 

of the substrate before transfer. The function of high power O2 plasma is 

believed to make a perfectly clean SiO2 surface and probably induce extra 

electrostatic charges on the surface, which effectively promotes the adhesion 

between materials and SiO2 surface and thus increases the yield in exfoliation. 

Another common problem is that the exfoliated flakes are small in thickness and 

size. In order to obtain desirably thin and large sheets, one needs an improved 

hands-on skill that requires longer time for pulling tapes off the substrate 

extremely slowly in a direction that is almost parallel to the substrate. With these 

significant improvements, the problems are resolved, and thin and large enough 

materials sheets are obtained. As seen in Figure 2.4 (a) a graphene sheet is up to 

30 µm large and Figure 2.4 (b) shows a GeSe sheet up to 40 µm large in a 

thickness of about tens of nanometers.  

In addition to the micromechanical cleavage using tape, there are other 

mechanical exfoliation techniques reported, such as sonication assisted liquid-

phase method [64], ball milling method that utilizes shear force for lateral 

exfoliation [65], fluid dynamics method that utilizes lifting and slippage on the 

tube wall [66], etc. All the techniques are developed to generate a normal force 

or shear force to defeat the weak van der Waals force, and they all have their 

own advantages and disadvantages as discussed in reference [62]. However, the 

various mechanical exfoliation techniques need further improvements, and novel 

methods need to be developed for higher efficiency and large-scale production.  

2.2.2 CVD Growth 

Due to the limitations in mechanical exfoliation techniques, a more feasible and 

mature method is imperative to produce high-quality and large-scale 2D 

materials not only for the purpose of research but also for future practical 

applications. In 2009, Li et al. [67] reported a breakthrough in the growth of 

single layer graphene by CVD. In this work, a large-area single layer graphene 
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was achieved with methane and hydrogen as gas sources and copper foil as 

substrates that were removed later by chemical etching for graphene films 

transfer. This work opened up the large-scale synthesis of graphene by CVD 

with precise control of layers in single crystal on various substrates [68-70].  

In 2012, Lee et al. [55] reported for the first time that large-area single layer 

MoS2 was synthesized successfully by CVD on SiO2/Si substrates with MoO3 

and sulfur powders as precursors and perylene-3,4,9,10-tetracarboxylic acid 

tetrapotassium salt (PTAS) as growth promoters, and figured out that the growth 

was very sensitive to the substrate treatment and growth conditions in CVD 

furnace. Similarly, CVD has been used to synthesize other TMDs. The CVD 

growth of monolayer WS2 in large single crystal domains was reported by 

precise control of growth temperature, time and amount of precursors and the 

grown monolayer WS2 was up to several hundred microns [71, 72]. Moreover, 

TMDs-based heterostructures were successfully synthesized as well. Vertical 

and lateral monolayer-WS2/monolayer-MoS2 heterostructures of high quality 

were achieved by CVD using a one-step vapor phase growth process via growth 

temperature control respectively for MoS2 and WS2, and a strong interlayer 

excionic peak was observed at 1.42 eV by PL spectroscopy that arises from the 

type II band alignment and atomically sharp interfaces in the  WS2/MoS2 

heterostructures [73]. Various other heterostructures, such as WSe2/MoSe2, 

WSe2/MoS2, etc., were also reported [74, 75] so that novel electronics and 

optoelectronics are possibly investigated by taking full advantage of the unique 

properties of TMDs-based heterostructures that will be discussed in chapter 4.  

In addition to the semi-metallic and semiconducting 2D materials, the growth of 

insulating 2D dielectric material, boron nitride (BN), was also realized by CVD, 

which is more challenging. Borazine vapor in nitrogen gas flow was used to 

grow BN in tens of nanometers thickness on polycrytalline nickel substrate [76]. 

Ammonia borane was also used as precursor in Ar/hydrogen gas flow to achieve 

high-quality BN thin films of large size [77].  
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So far, the capability of CVD for growth of diverse 2D materials has been 

demonstrated. However, substantial efforts are needed to develop better 

synthesis methods of 2D materials of higher quality with fewer defects, in larger 

scale and with low cost for future practical applications.  

The MoS2 and WS2/MoS2 heterostructure thin films studied in this thesis were 

synthesized with a CVD setup and recipe similar to that used in reference [55], 

as illustrated in Figure 2.5 (a). The CVD furnace is divided into two zones, 

where sulfur powder is located at the low temperature zone (200°C) while MoO3 

powder is located at the high temperature zone (750°C). The SiO2/Si substrate is 

placed close to or above the MoO3 precursor. Prior to putting the precursors and 

substrate into the furnace, a diluted PTAS solution is spun on the surface of the 

substrate which is then transferred to the furnace after it dries. During the 

synthesis, high purity Ar is flowing as carrier gas that carries the vapor sources 

of S and MoO3 to the substrate, and then MoO3 is reduced chemically by S and 

thus MoS2 films are produced. One crucial procedure prior to growth is to use 

piranha solution to treat the SiO2/Si substrate, which is believed to make the 

surface highly hydrophilic and keep PTAS on the surface uniformly during 

spinning and drying. Since the grown MoS2 films are very sensitive to the 

growth conditions, optimization of growth parameters (e.g, zone temperatures, 

Ar flow rate, growth time, etc.) eventually results in monolayer MoS2 films up 

to 50 µm wide as shown in Figure 2.5 (b) and even continuous monolayer MoS2 

films as shown in Figure 2.5 (c).  

2.3 Materials Characterization 

After the 2D materials are grown successfully, several materials characterization 

techniques are used to characterize the materials and examine surface 

morphology, thickness and quality.  

The most straightforward technique is optical microscopy. As discussed earlier, 

it is able to recognize the thin 2D materials films by color contrast on SiO2 

arising from the effect of light interference [63]. Thus, optical microscopy is 
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usually first used to inspect the thin films on the substrate and get a rough idea 

of the films morphology and size before more accurate and higher resolution 

techniques are conducted. Typical images acquired by optical microscopy are 

shown in Figure 2.1, 2.4, 2.5 (b) and (c).  

The film morphology of the samples in this work is examined using a Hitachi 

S4800 scanning electron microscope (SEM) or an Asylum Research MFP-3D 

atomic force microscope (AFM) with Cr/Pt tips from BudgetSensors 

(TAP300AL). AFM is able to generate images at extremely high resolution and 

examine features at the atomic level, which makes AFM a perfect technique to 

characterize 2D materials. Figure 2.6 shows an AFM image of surface 

morphology of MoS2 films, which can be used to measure the exact thickness of 

the MoS2 films. Moreover, this high-resolution AFM image can also give the 

thickness variation and the distribution of contaminants across the entire surface.  

More importantly, Raman and PL spectroscopy are quick techniques that are 

widely used to examine the exact number of layers of 2D materials. 

Photoluminescence is a process of photon absorption and radiation where the 

materials absorb photons from a light source. The energy of the absorbed 

photons is greater than the bandgap, and then it emits photons with the energy 

not greater than the absorbed photons. In direct bandgap semiconductors, the 

absorbed photons excite electrons and holes, and then the excited electrons and 

holes are able to directly recombine and radiate as photons. However, in indirect 

bandgap semiconductors, the radiative recombination of the excited electrons 

and holes requires the participation of phonons with their relatively large 

momentum to conserve momentum during the process; thus, a process that 

needs the participation of three particles (i.e. electron, holes and phonons) is 

much less likely than what occurs in direct bandgap semiconductors with the 

participation of only two particles. Therefore, PL in direct bandgap 

semiconductors is much more efficient than in indirect bandgap semiconductors.  



25 
 

Thus, this strong and unique feature enables a quick technique with PL spectrum 

to identify the monolayer of MoS2 with a direct bandgap, which is used 

extensively to characterize the material and differentiate the monolayer from 

other thicknesses of MoS2 [26]. As Figure 1.6 (a) illustrates, a strong PL peak is 

only observed in monolayer 2D TMDs, which can be used to distinguish 

monolayer from non-monolayer 2D TMDs.  

More accurately, Raman spectroscopy can also be used to determine the number 

of layers of 2D TMDs. Figure 2.7 (a) diagrams the Raman and Rayleigh 

scattering processes [78]. The mechanism of Raman scattering involves the 

interactions between incident light with a single frequency (e.g., 532 nm laser) 

and the molecules. It results in polarization of the electron cloud around the 

nuclei and creates so-called "virtual states" temporarily, as shown in Figure 2.7 

(a), and the scattered radiation from the molecules is detected to tell the 

difference from the incident radiation. The difference is defined as Raman shift 

and expressed as the following formula: Δω =  
 

  
  

 

  
 , where Δω is the Raman 

shift, λ0 is the wavelength of incident excitation laser, and λ1 is the wavelength 

of scattered radiation. 

As Figure 2.7 (a) (1) illustrates, the Rayleigh scattering is an elastic scattering 

process that does not induce any energy change in photons and light goes back 

to the original state, since it only causes polarization of electron cloud without 

nuclear motion. In contrast, as Figure 2.7 (a) (2) and (3) illustrate, the Raman 

scattering process is an inelastic scattering process that causes nuclear motion 

and there is energy exchange between photon and molecule. One kind of Raman 

scattering is Stokes scattering, which involves an energy transfer from incident 

photon to the molecule. If the energy is transferred from molecule to scattered 

photon, this Raman scattering process is anti-Stokes scattering. Compared to 

Rayleigh scattering, the probability of Raman scattering is very small.  

Since the Raman spectrum provides vibrational information of the phonon 

structure specific to molecules which have unique Raman peaks in Raman 
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spectra, it is used as a fingerprint to identify the molecule and an effective and 

quick technique to differentiate one from others. Figure 2.7 (b) exhibits the 

Raman spectra of MoS2 for various thicknesses from monolayer to bulk with a 

532 nm laser light [79]. Two Raman peaks are observed in various thicknesses 

of MoS2. One corresponds to in-plane E
1

2g mode, located at 384 cm
-1

 and the 

other out-plane A1g mode, located at 408 cm
-1

. And the exact positions of E
1

2g 

mode and A1g mode are functions of MoS2 film thickness. As the MoS2 film 

thickness increases, E
1

2g mode decreases but A1g mode shifts in an opposite 

direction, which originates from the effective restoring forces and long-range 

Coulomb interactions [80]. The noticeable shifts of E
1

2g mode and A1g mode 

make the Raman spectra an excellent indicator of thickness in MoS2 film, which 

also applies to other 2D TMDs, such as WS2, MoSe2, etc.  

The above characterization techniques are frequently used to characterize the 2D 

materials studied in this thesis. Chapters 3 and 4 will discuss specifically the 

characterization of WS2/MoS2 heterostructures and GeSe. In addition to AFM, 

PL and Raman spectroscopy, many other techniques (e.g., TEM, second 

harmonic generation and etc.) are also used to characterize the 2D materials, 

which will not be discussed in this thesis.  

2.4 Device Fabrication  

After a series of materials characterizations, high-quality materials are used to 

fabricate electronic and optoelectronic devices by a nanofabrication process that 

is developed with the conventional semiconductor fabrication facilities and 

discussed as follows. 

Figure 2.8 depicts the process flow of 2D-material based device fabrication.  

The complete fabrication process involves several runs of lithography, either 

photolithography or E-beam lithography. Although these two types of 

lithography have some differences in the specific photoresists, developers and 

facilities, they basically have the same process steps in the flow. E-beam 

lithography will be taken as an example to demonstrate this complete flow. The 
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process starts with 2D material thin films on SiO2/Si substrate as shown in 

Figure 2.8 (a), and the 2D material thin films are obtained from either the 

mechanical exfoliation or the CVD growth. The first step of E-beam lithography 

is to spin a layer of 200 nm thick PMMA (e.g., 950K A4). Then the sample is 

written by electron beam with a dose of 220µC/cm
2
. After development of the 

sample in the solution of 1:3 MIBK: IPA for 120 seconds, the designed pattern 

will be formed in the PMMA on the sample. Figure 2.8 (b) depicts the patterned 

PMMA with 2D material thin films which is partially covered by the layer of 

PMMA coating and partially exposed for next step processing. As depicted in 

Figure 2.8 (c), a step of metallization is done and metal contact is made to the 

2D materials where they are not covered by the PMMA coating. Usually, this 

metal layer consists of 5-10 nm thick Ti and 35nm or thicker Au and the total 

thickness should not be larger than one third of the PMMA thickness so that the 

subsequent lift-off is easy to implement for a well-designed device 

configuration. After metal lift-off in acetone, a bottom-gated MOSFET device 

based 2D materials is completed as depicted in Figure 2.8 (d). At this point, an 

extra run of E-beam lithography patterning and oxygen plasma etching is 

usually needed to cut the 2D material thin films into a rectangular shape with 

designed width and length as the device channel, which is not demonstrated in 

the process flow in Figure 2.8. 

In some cases where the bottom dielectric does not function well or a better gate 

control is needed to form a dual-gate device with a top gate, the fabrication 

process needs to continue for the addition of a top gate. As depicted in Figure 

2.8 (e), a layer of top dielectric about 20 nm thick is deposited on the top of the 

bottom-gated device. Based on the facility feasibility in the cleanroom on 

campus, this dielectric could be ALD-deposited HfO2 or PECVD-deposited 

silicon nitride in high quality. With another run of E-beam lithography 

patterning, metallization and lift-off, the top gate metal applies to the device and 

a complete device is configured as Figure 2.8 (f). Up to this point, the device 

fabrication process is completed and the device is ready for characterizations 

and further analysis.  
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2.5 Device Characterization and Problems 

For the electronic devices, one of the most important characterization tools is 

probe station as shown in Figure 2.9. This probe station system is equipped with 

six probing arms and able to conduct many functions and a variety of electrical 

measurements at various temperatures from 4K to 400K, such as current-voltage 

measurement, capacitance-voltage measurement, Hall-effect measurement, etc. 

All the data of electrical measurements discussed in this thesis are acquired by 

this type of probe station.  

In terms of the device size studied in this thesis, the long channel MOSFET 

equation for calculating drain current is modeled as [81]: 

ID = µCi
 

 
[(VGS - VT)VDS - 

 

 
VDS

2
], 

where ID is the drain current, µ is the carrier mobility, Ci is the gate dielectric 

capacitance per unit area, W and L are the channel width and length, VT is the 

threshold voltage, VGS and VDS are the gate voltage and the drain voltage 

respectively with respect to the grounded source. The field-effect mobility in 

low field for small VDS can be extracted from the above expression as: 

µ = L/(WCiVDS)•(dID/dVGS).  

The subthreshold swing (SS) is defined as: 

SS = [d(log10ID)/(dVGS)]
-1

,  

which represents how much change in gate voltage would result in a decade of 

change in drain current. According to the definition, a smaller SS is favored, 

which denotes a better gate control over the channel. For the conventional 

MOSFETs with thermal injections, the theoretical minimum of subthreshold 

swing (SS) is 60 mV/dec.  

Figure 1.4 demonstrates the transfer characteristic of the bottom-gated graphene 

transistor. Given that L/W is 3, Ci = 1.3*10
-8

 F/cm
2
 is the gate oxide capacitance 
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per unit area for 270 nm thick SiO2 (εr = 3.9), the extracted field-effect mobility 

is around 4300 cm
2
/(V•s).  

Similarly, Figure 1.5 demonstrates the transfer characteristic of the top-gated 

monolayer MoS2 transistor. Given that L/W ≈ 3.5, Ci = 8.6*10
-8

 F/cm
2
 is the 

gate dielectric capacitance per unit area for 20 nm thick HfO2 (εr = 19.5), the 

extracted field-effect mobility is even smaller than 1 cm
2
/(V•s). The ON/OFF 

ratio is about 10
3
 and the subthreshold swing (SS) is astonishingly larger than 

500 mV/dec.  

One key problem that severely degrades the device performance of TMD 

transistors is the high contact resistance. Figure 2.10 (a) illustrates a zoomed-in 

contact with a layer of PMMA residual between metal and the 2D materials. If 

the layer of PMMA residual is thick enough, it will result in an insulating 

contact and malfunctioning device. Even if the layer of PMMA residual is thin, 

it will result in a large contact resistance and thus degrade the device 

performance significantly. One obvious phenomenon from the large contact 

resistance is low drain current in the device, which is often at the level of 

nanoampere (nA). Therefore, it is important to remove the PMMA residual as 

much as possible. Usually, the silicon is cleaned and the photoresist is removed 

by plasma after the photolithography processing. However, if plasma etching is 

used to treat and clean the surface of 2D materials, 2D materials will be 

damaged severely or etched away completely due to the atomically thin body of 

2D materials. It is very difficult to precisely control the process of plasma 

etching using the conventional semiconductor processing facilities with 

reasonable parameters to clean the surface of 2D materials. Alternatively, the 

solution is to adjust the parameters in the E-beam lithography processing, such 

as increased dose to 250-300 µC/cm
2
 and extended development time to 150 

seconds or longer until the distortion in patterns appears. As such, the PMMA 

residual could be removed more thoroughly but at the cost of lowering the 

resolution of the E-beam lithography processing.  
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In addition to the appearance of PMMA residual at the contacts between metal 

and the 2D materials, PMMA residual is also left over on the surface of 2D 

materials due to the acetone treatment which cannot remove the PMMA fully 

[82, 83]. The carrier transport is significantly affected by the PMMA residual 

which brings extrinsic scattering onto the surface of 2D materials and acts as the 

scattering center to reduce the mobility remarkably. Moreover, the subsequent 

top-gate dielectric deposition would make the PMMA residual exist at the 

interface between 2D materials and gate dielectric, and thus the interface states 

would greatly increase, which can result in a shift of threshold voltage. Actually, 

removing PMMA fully from the surface of the 2D materials is challenging. 

However, some approaches can be used to reduce the impact of the PMMA 

residual to some extent. Soaking the samples in warm acetone (e.g., 50 °C) for a 

long time (e.g., 24 hours) is believed to be helpful. More importantly, device 

annealing in forming gas has been proven successful in removing PMMA 

residual from graphene [83]. With the established processes for the device 

nanofabrication, a similar annealing step is developed and added to the process 

flow. The device annealing is performed in the forming gas Ar/H2 (4:1) at 200 

°C for 2 hours before the implementation of top-gate dielectric deposition.  

Another problem that arises from the E-beam lithography processing is shown in 

Figure 2.10 (b). The disconnected metal-lines circled in red result in an open 

circuit in the device. The fine lines in the metal connections are mainly from the 

stitching error due to the E-beam lithography writing system. Instead, the E-

beam lithography writing is executed by patterning one device completely in 

one writing field and avoiding any stitching in the writing filed around the 

effective device area on the substrates.  

Another common problem in devices is large gate leakage current. Figure 2.11 

(a) depicts large gate leakage current over 10 nA and higher. Some devices even 

have a gate leakage current over 1 µA. Generally speaking, a well-designed 

device with high-quality gate dielectric has a reasonable gate leakage current at 

the level of picoampere (pA). Thus, the large leakage current is mainly 
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attributed to the gate dielectric in low quality and the relatively thinner gate 

dielectric in the overlap region between gate and drain/source as the zoomed-in 

inset in Figure 2.11 (b) demonstrates. To solve the problem of large gate leakage 

current, a high-quality and relatively thick gate dielectric can be produced by a 

better deposition system, such as the ALD-deposited HfO2 or PECVD-deposited 

silicon nitride. Moreover, the thickness variation in gate dielectric exacerbates 

the problem from the thinner gate dielectric in the overlap region. The solution 

is to add a seed layer of Al, several nanometers thick, which is then oxidized as 

aluminum oxide. This is followed by the gate dielectric deposition. This 

improvement could result in a more uniform gate dielectric layer with less 

variation in the thickness.  

2.6 Summary  

By continuous troubleshooting, various problems arising from the materials and 

process flow are recognized with the device characterizations and then 

corresponding solutions are explored and executed effectively. Eventually, a 

complete process flow, ranging from materials preparation to device fabrication, 

has been successfully developed and established.  

As a key part of this thesis, this chapter discusses the entire process flow in 

detail. Chapters 3 and 4 are based on this standard process flow to fabricate 

devices and investigate the WS2/MoS2 heterostructures and GeSe, respectively.  
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2.7 Figures 

 

 

 

 

 

Figure 2.1 (a) Scotch tape used for mechanical exfoliation. (b) Material flakes on scotch 

tape. (c) Blue tape for improved mechanical exfoliation to reduce the tape residual 
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Figure 2.2 An optical image of a Si wafer with alignment marks (circled in red) and 

randomly distributed material flakes in top view. 
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Figure 2.3 The process flow of alignment marks fabrication on a Si wafer. 
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Figure 2.4 Optical images of (a) graphene sheet and (b) thin GeSe sheet on SiO2/Si 

substrates obtained by the improved mechanical exfoliation.   
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Figure 2.5 (a) The schematic illustration of CVD setup for MoS2 growth. (b) The CVD 

grown MoS2 in the shape of triangle. (c)  The CVD-grown MoS2 in continuous films.  
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Figure 2.6 The surface morphology of MoS2 films acquired by AFM scanning. 
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Figure 2.7 (a) The diagram of Raman scattering and Rayleigh scattering process [78]. (b) 

Raman spectra of MoS2 for various thicknesses from monolayer to bulk [79]. 
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Figure 2.8 The process flow of 2D-material based device fabrication. (f) The cross view 

of a complete device with 2D material as the channel, HfO2 as the gate dielectric and 

Ti/Au as the metal contacts (not at scale). 
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Figure 2.9 The device characterization system - probe station. 
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Figure 2.10 (a) Contact issue in the device arising from the PMMA residual as the zoon-

in inset demonstrates. (b) Disconnected contacts (circled in red) and open circuit issue in 

the device arising from the fabrication process. 
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Figure 2.11 (a) High gate leakage current which may result from (b) the relatively thin 

gate dielectric in the overlap region between gate and drain/source as the zoon-in inset 

demonstrates.  
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Chapter 3 MoS2 and WS2 Heterostructure 

3.1 Introduction 

As discussed in chapter 1, 2D materials are layered materials bonded by the 

weak van der Waals force. With the absence of surface dangling bonds, 

heterostructures based on 2D materials can be easily formed and stacked up in a 

desirable order to take advantage of each component 2D material.  Thus, they 

offer an appealing platform to build various electronic and optical devices as 

required in the applications, and the issue of lattice mismatch is not a concern in 

the construction of 2D material heterostructures, unlike in bulk material 

heterostructures [7].  

In addition to MoS2, other transition metal dichalcogenides (TMDs), such as 

WS2, MoSe2 and WSe2, were reported to possess similar properties [36, 49, 84]. 

Theoretical simulation predicted that a heterostructure system consisting of 

monolayer MoS2 and monolayer WS2 forms a type II band alignment [85]. 

Figure 3.1 (a) illustrates the type II band alignment where it potentially has an 

interband transition between the valence band of WS2 and the conduction band 

of MoS2 with a reduced energy of around 1.2 eV, smaller than both of the 

bandgap energies in MoS2 and WS2. In experiment, a CVD-grown vertical 

MoS2/WS2 heterostructure was claimed to observe a strong excitonic peak in PL 

for the first time due to the sharp and clean interfaces between MoS2 and WS2, 

suggesting a reduced energy transition in the type II structure [73]. Moreover, 

the atomically sharp interface and type II structure enable a promising 

application for tunneling transistors by utilizing the interband transition and the 

band offset. Positively biasing MoS2 moves the band and triggers the interband 

tunneling as shown in Figure 3.1 (b), and negative differential resistance (NDR) 

was observed in the MoS2/WSe2 heterostructure [86].  

This atomically sharp interface in the heterostructure system also promotes fast 

and efficient carrier separation. MoS2/WS2 heterostructure was reported to 
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observe ultra-fast charge separation, and holes were transferred from the MoS2 

to WS2 in less than 50 femtosecond after the optical excitation took place in the 

top MoS2 layer as shown in Figure 3.2 [87]. Similarly, this ultra-fast carrier 

separation was also observed in MoS2/MoSe2 heterostructure, which leads to the 

formation of indirect exciton [88].  

Thus, the TMD heterostructures with type II band alignments enable promising 

applications for novel electronics and optoelectronics for light harvesting and 

detection, such as tunneling transistors, photodetectors, etc.   

However, the explorations of novel devices based on the TMDs heterostructures 

are still in the early stage. Moreover, the influence of interlayer coupling on 

carrier transport and distribution in the TMDs heterostructure system are not 

clear. This chapter will discuss the identification of MoS2/WS2 heterostructure 

by the characterizations of AFM, Raman and PL and intend to study the 

influence of interlayer coupling from the perspective of a Hall-bar transistor by 

using the MoS2/WS2 heterostructure as the channel.  

3.2 Characterization of WS2/MoS2 Heterostructures  

So far, the TMD heterostructures have been grown successfully by CVD [73, 

75, 89]. Figure 3.3 (a) shows an optical image of MoS2/WS2 heterostructure 

with denoted spots and areas for the subsequent Raman and PL 

characterizations. This MoS2/WS2 heterostructure was grown using a similar 

CVD setup as shown in Figure 2.5 (a) and the exact growth schematic 

illustration can be found in reference [89], where the precursors, MoO3 and 

WO3, were placed in the furnace simultaneously in the high temperature zone 

and successful growth was done by precisely controlling the reactant flux, gas 

flow and temperature.  

Figure 3.3 (a) shows an optical image of a sample with MoS2/WS2 

heterostructure. Raman, PL and AFM were taken at location 1, 2 and 3. As 

shown in Figure 3.3 (b), the Raman spectrum of spot 1 has two Raman peaks at 
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352 cm
-1

 and 418 cm
-1 

that are typical peaks of WS2 [90], suggesting that the 

spot 1 is the material WS2. The Raman spectrum of spot 3 has two Raman peaks 

at 384 cm
-1

 and 408 cm
-1 

that are typical peaks of MoS2 [79], suggesting that the 

spot 3 is the material MoS2. Interestingly, the Raman spectrum of spot 2 has four 

Raman peaks, including both of WS2 and MoS2, which indicates that spot 2 is on 

the MoS2/WS2 vertical heterostructure.  

PL spectra are used to identify the monolayer and non-monolayers in the 

MoS2/WS2 heterostructure. As discussed in chapter 1, PL is a good indicator of 

2D TMDs monolayer and non-monolayers because of the direct bandgap in 

monolayer and indirect bandgaps in non-monolayers. Figure 3.3 (c) shows the 

PL spectra at location 1, 2 and 3. Spot 1 exhibits a strong PL peak at 1.96 eV, 

which corresponds to the bandgap of monolayer WS2 [73]. Spot 3 exhibits a 

strong PL peak at 1.84 eV, which corresponds to the bandgap of monolayer 

MoS2 [27, 73]. However, spot 2 exhibits a negligible PL signal compared to that 

of spot 1 and 3, implying that spot 2 is not monolayer.  

To further investigate the thickness and structures of this MoS2/WS2 

heterostructure system, AFM scanning and line profile measurements are 

performed. Figure 3.4 (a) is an optical image of a sample containing MoS2/WS2 

heterostructure and Figure 3.4 (b) is the corresponding AFM image with line 

profile measurements as denoted in blue (spot 2) and red (spot 3). As shown in 

Figure 3.4 (c), the thickness of variation from the line profile measurement in 

spot 2 gives a clear step of 0.8 nm that is the thickness of monolayer 2D TMDs. 

In combination with the analysis of the PL and Raman spectra, one can see that 

the structure of spot 2 is a vertical monolayer-MoS2/monolayer-WS2 

heterostructure, as illustrated in Figure 3.4 (e). However, there is no obvious 

step in the line profile measurement in spot 3 as shown in Figure 3.4 (d), 

suggesting the number of layers does not change across the interface in spot 3. 

This indicates that spot 3 is a lateral monolayer-MoS2/monolayer-WS2 

heterostructure, as illustrated in Figure 3.4 (f).  
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With the examinations from Raman spectra, PL spectra and AFM scanning, the 

materials and structures of the MoS2/WS2 heterostructure have been precisely 

identified. The next step is to utilize these MoS2/WS2 heterostructures as the 

channel materials to fabricate devices and study the carrier transport and 

distribution in the MoS2/WS2 heterostructures.  

3.3 WS2/MoS2 Heterostructure Devices 

Figure 3.5 (a) shows an optical image of a bottom-gated Hall-bar transistor 

based on a MoS2/WS2 heterostructure. The structure is characterized by the 

same techniques discussed in the last section of this chapter, and it is proven that 

this material is a vertical monolayer-MoS2/monolayer-WS2 heterostructure. 

Figure 3.5 (b) is the schematic illustration of device structure with contacts and 

sensing terminals corresponding to that in Figure 3.5 (a). In addition to the drain 

and source contacts, there are other four pairs of sensing terminals that are 

arranged along the channel with equal spacing between them for the Hall-effect 

measurements. The sensing terminals T1 and T4 are in contact with the bottom 

monolayer WS2 while T2 and T3 with the top monolayer MoS2.  

The MoS2/WS2 heterostructure was grown by CVD and then transferred to the 

SiO2/Si substrate. The device was fabricated by the standard process discussed 

in chapter 2. After the deposition of the top dielectric HfO2 by ALD and top gate 

metal Ti/Au, the top-gated device generates the output characteristics and 

transfer characteristics in Figure 3.6 (a) and (b), respectively. The linear 

relationship between drain current versus drain voltage indicates that the contact 

material Au forms an ohmic contact to WS2, which is consistent with the 

previous report [3]. With positively increasing top gate biasing voltages, the 

device has increasing drain current, i.e., the device is an n-channel transistor. 

The fact that there is no intentional doping in the MoS2/WS2 heterostructure 

indicates that MoS2 and WS2 are naturally n-type doped. Given that the gate 

length-to-width ratio L/W is 3.37, the gate dielectric capacitance per unit area 

for 20 nm thick HfO2 (εr = 19.5) is Ci = 8.63*10
-8

 F/cm
2
, the extracted field-
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effect mobility is about 1 cm
2
/(V•s). The ON/OFF ratio is up to 10

4
 and the 

subthreshold swing (SS) is ~ 500 mV/dec. Those parameters indicate that the 

performance of the MoS2/WS2 heterostructure still needs improvement. 

However, the purpose of this MoS2/WS2 heterostructure device is to investigate 

the fundamental physical properties of MoS2/WS2 heterostructure, such as the 

carrier transport and distribution along the channel under the influence of 

interlayer coupling.  

3.4 Summary 

We systematically characterized the MoS2/WS2 heterostructures grown by CVD 

using Raman spectra, PL spectra and AFM. Vertical and lateral MoS2/WS2 

heterostructures are identified. Vertical monolayer-MoS2/monolayer-WS2 

heterostructures are used to fabricate Hall-bar devices with the process 

developed in chapter 2. In order to study the fundamental physical properties of 

MoS2/WS2 heterostructure under the influence of interlayer coupling, the Hall-

effect measurements using different combinations between the sensing terminals 

need to be done in the further investigations. The unique properties of 2D TMD 

vertical heterostructures can be used for novel electronic and optoelectronic 

devices including high-speed photodetectors and tunneling field-effect 

transistors.   
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3.5 Figures  

 

 

 

 
 

Figure 3.1 (a) A type II band alignment formed by WS2/MoS2 heterostructure. (b) The 

band diagram MoS2/WSe2 heterostructure with illustration of interband tunneling [86].  

 

  

a 
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Figure 3.2 (a) The electron and hole separation resulting from the optical excitation in 

MoS2 with the type II band alignment.  (b) The demonstration of optical excitation in 

MoS2 and electron and hole separation in MoS2/WS2 heterostructure. [87]  

a 

b 
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Figure 3.3 (a) An optical image of MoS2/WS2 heterostructure with denoted spots and 

areas for Raman and PL characterizations. (b) The Raman spectra in spots 1, 2 and 3. 

(c)The PL spectra in spots 1 and 3 with negligible signal in spot 2.  
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Figure 3.4 (a) An optical image of MoS2/WS2 heterostructure the same as Figure 3.3 (a) 

without the denoted labels. (b) An AFM scanning image corresponding to Figure 3.4 (a) 

with line profile measurements as denoted in blue (spot 2) and red (spot 3). (c) The height 

variation from the line profile measurement denoted in the blue arrow. (d) The height 

variation from the line profile measurement denoted in the red arrow. (e) Illustration of 

vertical monolayer-MoS2/monolayer-WS2 heterostructure. (f) Illustration of lateral 

monolayer-MoS2/monolayer-WS2 heterostructure.   
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Figure 3.5 (a) An optical image of a Hall-bar transistor based on a vertical monolayer-

MoS2/monolayer-WS2 heterostructure. The sensing terminals T1 and T4 are in contact 

with the bottom monolayer WS2 while T2 and T3 with the top monolayer MoS2. (b) 

Schematic illustration of the device structure in (a).   

a 

b 
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Figure 3.6 (a) The output characteristics and (b) transfer characteristics of the MoS2/WS2 

heterostructure.   

a 
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Chapter 4 Anisotropic Germanium Selenide 

4.1 Introduction 

Black phosphorus has been a rising star in 2D layered materials since its 

emergence in 2014. A remarkable field-effect transistor with black phosphorus a 

few nanometers thick as the channel material was reported [91], and since then it 

has attracted extensive attention and opened a new era for this long-standing 

elemental material, phosphorus, in a new form as a 2D layered material. The 

black phosphorus field-effect transistor exhibits on/off ratios of 10
5
 and a field 

effect mobility up to 1000 cm
2
/(V•s) at room temperature, enabling this new 

elemental black phosphorus to be promising for nanoelectronic applications 

[91].  

Like other 2D layered materials, black phosphorus has also thickness-dependent 

direct bandgap, ranging from 0.3 eV in bulk to 1.5 eV in monolayer [92, 93], as 

shown in Figure 4.1 (a) [94]. This widely tunable and direct bandgap of black 

phosphorus fills the window gap in bandgap energies between graphene and 2D 

TMDs and makes it a promising candidate for infrared optoelectronic 

applications.   

The 2D layered black phosphorus has an anisotropic crystal structure as shown 

in Figure 4.1 (b) [95]. It is an orthorhombic, buckled honeycomb structure with 

each atom having three neighboring atoms, and the weak van der Waals force 

between layers also enables it to be exfoliated mechanically [95]. It has armchair 

and zigzag edges in two perpendicular directions within one plane. Thus, the 

electrical and optical properties of black phosphorus demonstrate strongly angle-

dependent behaviors due to this in-plane anisotropic structure. Black phosphorus 

was reported to possess a higher Hall mobility for holes in the armchair 

direction with light effective mass, nearly twice the mobility in the zigzag 

direction [96]. The monolayer black phosphorus was observed to have strongly 

anisotropic excitons with a large binding energy [97]. Moreover, it is also found 
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that black phosphorus demonstrated anisotropic property in thermal conduction 

with larger thermal conductivity along the zigzag direction, which is ascribed to 

the anisotropic phonon dispersion and group velocities [98, 99]. 

As a compound semiconductor material, germanium selenide (GeSe) in bulk has 

a similar crystal structure to black phosphorus, as shown in Figure 4.1 (c). As a 

group-IV mono-chalcogenide, GeSe has a distorted rocksalt (d-NaCl) crystal 

structure with eight atoms in a unit cell [100]. The layers of GeSe are bonded by 

van der Waals force in an orthorhombic structure with space group Pnma at 

room temperature [101, 102]. Bulk GeSe was reported to have an indirect band 

gap of 1.07 eV [103] and monolayer GeSe was found to have a direct band gap 

with small effective mass of carriers [102]. Thus, 2D layered GeSe exhibits 

promising applications in photovoltaics, thermoelectrics, and photodetectors 

[104-106]. Similar to black phosphorus, 2D layered GeSe also has anisotropic 

crystal structure. In this project, the dependence of electronic transport on the 

crystal orientation is systematically studied by polarized Raman spectroscopy 

and angle-resolved conductance measurement.  

4.2 Angle-resolved Electrical Conductance 

In order to study the anisotropic conductance of layered GeSe, an electrical 

device is made using the fabrication process with E-beam lithography discussed 

in chapter 2 and angle-resolved DC electrical conductance measurement is 

executed. As seen in Figure 4.2 (a), this device has 6 pairs of electrodes and 

each electrode has a spacing of 30° apart. The pair of electrode T1 is defined as 

the 0° reference line. An electric field is applied across each pair that is 

diagonally positioned and the DC conductance measurement at a certain degree 

with respect to T1 is performed. The layered GeSe shows a p-type electrical 

behavior and the DC conductance measurement is performed with drain voltage 

of 1 V and bottom gate voltage of -5 V at room temperature. As shown in Figure 

4.2 (b), the data points in black are from the electrical measurement while the 
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red line is the fitting. It shows that the maximum conductance is along the T5 

direction and layered GeSe demonstrates anisotropic electrical property.  

4.3 Polarized Raman Spectroscopy 

It has been demonstrated that polarized Raman spectroscopy is an effective and 

quick technique to determine the crystal orientation (i.e., armchair direction and 

zigzag direction) in black phosphorus by taking advantages of polarization-

dependent Ag mode and B2g mode [107, 108]. Similarly, with the anisotropic 

crystal structure the armchair direction and zigzag direction in GeSe can also be 

identified by the polarized Raman spectroscopy.  

The setup of the polarized Raman spectroscopy is illustrated in Figure 4.3 (a). A 

532 nm laser is used as the excitation light source. Firstly, it goes through a 

wave plate before it reaches the layered GeSe flake materials. After that, the 

scattered light goes through a receiver polarizer and then is collected and 

analyzed by a spectrum analyzer, and the polarized Raman spectra are produced. 

Figure 4.3 (b) depicts the indicative directions with an exfoliated GeSe flake that 

corresponds to Figure 4.3 (a). Since the receiver polarizer is fixed and not 

rotational, the scattered light is always pointing along the horizontal direction. 

The wave plate can be rotated and make the incident light polarized with an 

angle Ө, called rotation angle, with respect to the horizontal direction. Initially, 

the wave plate is positioned parallel to the polarizer, i.e., Ө = 0°. Since the 

purpose of this polarized Raman spectroscopy is to determine the armchair 

direction and zigzag direction that are unknown, the armchair direction is 

assumed to have the denoted direction and the angle between armchair and the 

horizontal direction is Φ, called orientation angle. Once the sample is positioned 

for the polarized Raman measurement, the orientation angle Φ is fixed and ready 

for analysis and identification. The perpendicular direction to the armchair is the 

zigzag direction. By rotating the wave plate from 0 to 180 degrees with a 10 

degrees step, the scattered light is analyzed and corresponding angular 

dependent Raman spectra in polar plots are generated as shown in Figure 4.3 (a). 
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Figure 4.4 depicts the Raman spectrum of layered GeSe acquired from 

unpolarized Raman scattering measurement setup. It has clearly typical Raman 

peaks at 83 cm
-1

 and 189 cm
-1

 corresponding to the Ag modes while the peak at 

152 cm
-1

 belongs to the B3g mode, which is consistent with the previous report 

about the bulk GeSe [100].  

In order to identify the crystal orientation, the experimental data is fitted using a 

simple model and the orientation angle Φ is then extracted. For quantitative 

analysis, it is necessary to introduce the unit vectors ei for the incident light and 

es for the scattered light with respect to the assumed armchair direction. As seen 

in Figure 4.4 (b), ei = (0  cos(Ө+Φ)  sin(Ө+Φ)) and es = (0  cosΦ  sinΦ). Since 

GeSe has a D2h space group, the Raman tensors of Ag mode and B3g mode are 

[109]: 

R(Ag) =  
        
        
        

  and R(B3g) =  
        
        
        

 . 

The Raman cross section is written as [110]: 

S ∝ (ei•R•es)
2
,  

where R is the Raman tensor, ei and es are the unit vectors for the incident and 

scattered light, respectively.  

Thus, the Raman scattering intensity can be written as 

I(Ag) = (b•cos(Ө+Φ)•cosΦ+c•sin(Ө+Φ)•sinΦ)
2
, 

I(B3g) = (g•sin(Ө+2Φ))
2
. 

Thus, the Raman scattering intensity of Ag mode and B3g mode are strongly 

dependent on the rotation angle Ө and orientation angle Φ.  

Figure 4.5 (a) illustrates a polar plot of measured and fitted Ag mode (189 cm
-1

) 

and B3g mode (152 cm
-1
) as a function of rotation angle Ө. The solid lines are 
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based on the above Raman scattering intensity calculations. Fitting the Ag mode 

(189 cm
-1

) and B3g mode (152 cm
-1
) simultaneously leads to Φ = 30° 

approximately. Figure 4.5 (b) shows an optical image of the GeSe flake in a 

position during the polarized Raman measurement. The fitted Φ = 30° with 

respect to the horizontal line gives the armchair direction as denoted by the red 

line. The armchair direction nearly overlaps with the direction of T5 which has 

the maximum conductance. However, this conclusion was not confirmed with 

repeatable results from angle-resolved polarized Raman measurements and they 

gave the armchair along other directions rather than the direction of T5. Thus, 

further confirmation with repeatable experimental results is needed. 

4.4 Summary 

Black phosphorus exhibits strongly angle-dependent behaviors in electrical and 

optical properties due to its in-plane anisotropic structure. With crystal structure 

analogous to that of black phosphorus, the anisotropic electrical and optical 

properties of a novel layered material, GeSe, are explored in this chapter.  An 

electrical device with 6 pairs of electrodes spaced at 30° apart is used to study 

the angle-resolved DC electrical conductance, and the maximum conductance is 

along the T5 direction. Polarized Raman spectroscopy is used to determine the 

crystal orientation. The polarized Raman measurement is performed with a 

rotational wave plate for the incident light while keeping the sample and a 

receiver polarizer for the scattered light fixed. By fitting the measured data with 

the calculated results, the armchair direction is identified. The armchair direction 

approximately overlaps with the direction of T5 which has the maximum 

conductance. But this conclusion needs further confirmation with repeatable 

angle-resolved conductance and polarized Raman spectra measurements. The 

anisotropic electrical and optical properties make the newly studied layered 

GeSe materials promising for novel electronic and optoelectronic applications in 

the future.  
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4.5 Figures  

 

 

 

Figure 4.1 (a) The map of bandgap energies of various 2D materials [94]. The bandgap of 

black phosphorus in various thicknesses fills the window gap in bandgap energies 

between graphene and TMDs. (b) The atomic structure of few-layer black phosphorus 

[95]. (c) The atomic structure of germanium selenide, similar to black phosphorus [111]. 

a 

b 
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Figure 4.2 (a) The electrical device with 6 pairs of electrodes for angle-resolved DC 

conductance measurement. (b) The angle-resolved DC conductance at room temperature 

with a 0° reference line along the electrodes T1. The data points are from the 

measurement with a pair of denoted electrodes while the red is the fitting line from 

calculation.   

a 

b 
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Figure 4.3 (a) The schematic setup for polarized Raman spectra measurement. (b) The 

indicative directions with an exfoliated GeSe flake. The scattered light is fixed at the 

horizontal direction. The direction of incident light can be rotated with respect to the 

horizontal direction and the angle between them is denoted as Ө. The armchair and 

zigzag are assumed to have the denoted directions and the angle between armchair and 

the horizontal direction is Φ. 

 

b 

a 
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Figure 4.4 The Raman spectrum of layered GeSe.  
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Figure 4.5 (a) A polar plot of measured and fitted Ag mode (189 cm
-1

) and B3g mode (152 

cm
-1

) as a function of rotation angle Ө. (b) An optical image of the GeSe flake in a 

position during the polarized Raman measurement that is used to figure out the crystal 

orientation. The blue denotes the horizontal line and the red is along the armchair 

direction. The fitted Φ = 30° with respect to the horizontal line denotes the armchair 

direction. 

  

a 
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Chapter 5 Conclusion and Future Work 

Two-dimensional (2D) materials have attracted extensive attention due to their 

unique and remarkable properties, such as atomically thin body, pristine surface 

free of dangling bonds, tunable bandgap, and reasonably high mobility, which 

make 2D materials promising candidates for many electronic and optoelectronic 

devices in low power, high performance and flexible applications.  

In this thesis, a complete process flow, from material preparation/ 

characterization to fabrication/characterization of various electronic and 

optoelectronic devices based on 2D materials, has been developed and 

optimized. Using these techniques, Hall-bar devices and transistors based on 

MoS2/WS2 heterostructures and GeSe have been successfully fabricated and 

characterized.  

The optical and electrical properties of MoS2/WS2 heterostructures grown by 

chemical vapor deposition have been studied. The vertical and lateral MoS2/WS2 

structures are identified by using Raman spectra, PL spectra and AFM. The 

devices show typical n-channel characteristics, indicating that MoS2 and WS2 

are naturally n-type doped. By using the Hall-bar devices, Hall-effect 

measurements need to be done in the future to investigate the influence of 

interlayer coupling on the carrier transport and distribution in the MoS2/WS2 

heterostructures. Due to the type II band alignment and sharp interface, these 

vertical and lateral MoS2/WS2 heterostructures can potentially be used for 

tunneling field-effect transistors and light harvesting and detection, such as 

high-speed photodetectors. Thus, novel electronic and optoelectronic devices 

based on the MoS2/WS2 heterostructures will be explored in the future.  

In addition, the crystal orientation and electronic transport in GeSe have been 

also studied. An electrical device with 6 pairs of electrodes spaced at 30° apart is 

used to study the angle-resolved DC electrical conductance, and the 

crystallographic direction of the GeSe is determined by angle-resolved polarized 
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Raman measurement. The results indicate that GeSe has a prominent anisotropic 

electronic transport with maximum conductance likely along the armchair 

direction, but further confirmation with repeatable experimental results is 

needed. The anisotropic conductance in GeSe may enable a new series of 

electronic and optoelectronic devices such as plasmonic devices with resonance 

frequency continuously tunable with light polarization direction, and high-

efficiency thermoelectric devices. These possibilities will be explored in future 

work.  

In summary, a complete process flow for 2D materials and devices has been 

successfully established, and the MoS2/WS2 heterostructures and the anisotropic 

electronic transport and polarized Raman scattering in GeSe have been studied. 

The research in this thesis can expand knowledge of 2D materials and their 

heterostructures, and provide important information in designing and fabricating 

novel electronic and optoelectronic devices based on these materials.  
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