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ABSTRACT

This thesis is primarily concerned with the smoothing properties of dispersive equations and
systems. Smoothing in this context means that the nonlinear part of the solution flow is of higher
regularity than the initial data. We establish this property, and some of its consequences, for several
equations.

The first part of the thesis studies a periodic coupled Korteweg-de Vries (KdV) system. This
system, known as the Majda-Biello system, displays an interesting dependancy on the coupling
coefficient « linking the two KdV equations. Our main result is that the nonlinear part of the
evolution resides in a smoother space for almost every choice of . The smoothing index depends
on number-theoretic properties of «, which control the behavior of the resonant sets. We then
consider the forced and damped version of the system and obtain similar smoothing estimates.
These estimates are used to show the existence of a global attractor in the energy space. We also
use a modified energy functional to show that when the damping is large, the attractor is trivial.

The next chapter studies the Zakharov and related Klein-Gordon-Schrédinger (KGS) systems
on Euclidean spaces. Again, the main result is that the nonlinear part of the solution is smoother
than the initial data. The proof relies on a new bilinear Bourgain-space estimate, which is proved
using delicate dyadic and angular decompositions of the frequency domain. As an application, we
give a simplified proof of the existence of global attractors for the KGS flow in the energy space for
dimensions two and three. We also use smoothing in conjunction with a high-low decomposition
to show global well-posedness of the KGS evolution on R* below the energy space for sufficiently
small initial data.

In the final portion of the thesis we consider well-posedness and regularity properties of the
“good” Boussinesq equation on the half line. We obtain local existence, uniqueness and continuous
dependence on initial data in low-regularity spaces. We also establish a smoothing result, obtaining
up to half derivative smoothing of the nonlinear term. The results are sharp within the framework

of the restricted norm method that we use and match known results on the full line.
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CHAPTER 1

INTRODUCTION

In the most broad terms, this work studies the dynamics of nonlinear dispersive partial differential
equations (PDE). Linear dispersive equations are characterized by the property that solution com-
ponents of different wavelengths propagate at different speeds. This means that, on unbounded
domains solutions, tend to break apart and decay over time. In the study of nonlinear dispersive
PDE, we seek to exploit this behavior and understand how it interacts with the nonlinear effects.
Specifically, this thesis is concerned largely with smoothing effects of certain dispersive equations
— for some PDE, the nonlinear part of the flow is of higher regularity than the initial data — a
smoothing effect of the nonlinearity.
Consider a PDE of the form
ur = Lu + F(u), (1.1)

where L is a dispersive spatial differential operator and F'(u) is a nonlinear term. The operator £

is of the form ih(D), where D is the operator D = —iV and h is a real-valued order-m polynomial

h(yi, g2, ¥a) = D Ca¥iys® -yt

la|<m
We will be concerned with the solutions in low-regularity Sobolev spaces. In such spaces, one
cannot expect to find classical solutions, but it is possible to study distributional solutions. We say
that u is a strong H® solution if it is in CYHS n CLHZ™™, where m is the order of the differential
operator £, and u satisfies (1.1) in the H*~"™ sense. We frequently use Duhamel’s solution formula

¢
u(z,t) = eug + J eI P (u(x, s)) ds,
0

where et

ug is the solution to the linear problem with initial data wg. This formula, together with
the Contraction Mapping Theorem, is central to many proofs of existence of solutions for PDE. It
will be vital for the smoothing estimates presented in this work since it provides a formula, albeit

an implicit integral one, for the nonlinear part of the flow.



For many such dispersive PDE in high-regularity spaces, there are classical well-posedness
results. As regularity decreases, however, more refined approaches become necessary. In 1993,
Bourgain published his influential restricted-norm papers [19, 20]. The spaces he used, called X*?
spaces, are L?-based, with weights tailored to the dispersion of the equation. Similar weighted
spaces had been used by Beals [9], Rauch and Reed [86], and Klainerman and Machedon [70] in
works on the wave equation. Use of these spaces enabled Bourgain to prove local theory results
at regularities hitherto unattainable. These spaces continue to be important to dispersive PDE
research. In this work, we use X*® spaces extensively — for problems posed on the torus, R, and,
in the last chapter, for an equation on the half-line.

In addition to local well-posedness, it may be possible to obtain global existence of solutions.
The simplest way to achieve this is via a conservation law which yields an a priori bound on the
norm of a solution. Iterating the local theory then gives global existence. In the absence of helpful
conservation laws, other approaches, such as Bourgain’s separation of high and low frequencies [22]
or the I-method of Colliander, Keel, Staffilani, Takaoka, and Tao [28] may yield global results. In
this work, we give a result which shows how smoothing estimates can be used with a separation of
high and low frequencies to obtain global existence.

The first result in this thesis is a smoothing result for the periodic Majda-Biello system (1.2)
of coupled KdV-type equations. This is a physical equation used to model global atmospheric and
oceanic currents [75]. Note that when one models such phenomena, the periodic case is of particular

interest. The system is as follows:

U+ Upge + 2(0v2), =0, z€eT, teR
V¢ + QUzgr + (u0), = 0, (1.2)

(u(-,0),v(-,0)) = (ug,vo) € H*(T) x H*(T).

The well-posedness theory [79] depends heavily on the arithmetic properties of «, particularly a
measure of how well certain paramters ¢ = ¢(«) can be approximated by rationals. This occurs
because for aw € (0,1) — a physically important case — the system exhibits complex resonance
relations, far different than those of a single KdV. The proof of the smoothing estimate uses a

refinement of the method of [40], which combines a normal form transformation (see [8]) with X ®?



space estimates. This process allows us to use the frequency-space oscillation to overcome the
effects of the derivative nonlinearity — the normal forms transformation allows us to quantify the
oscillatory effects. However, the transformation also leads to third-order nonlinearities instead of
quadratic, and appreciably more difficult resonance relations. These challenges are overcome by a
careful analysis of the frequency interactions.

The same smoothing result also holds for the dissipative Majda-Biello system — i.e. the same
system (1.2) with added forcing and damping terms. Using smoothing, we show that for almost
every «, all solutions will eventually enter a compact set which is an invariant under the evolution,
called the global attractor. The existence of such sets has been studied extensively, but proofs of
their existence are often long and technical. The smoothing allows us to give an simple and elegant
proof in this case. Using a modified energy functional, we also show that when the damping is large
in relation to the forcing terms, the attractor is trivial, consisting of only a single function.

In the next chapter, we establish smoothing estimates in higher-dimensional Euclidean spaces
for the Zakharov and Klein-Gordon-Schrédinger (KGS) systems. The Zakharov equation (1.3) is
a model for Langmuir turbulence in plasma [101], and has been extensively studied. The related

KGS system exhibits similar dispersive dynamics, and has applications in particle physics [46].

iug + Au=un, zeR? teR
ng — An = Alul? (1.3)

(u(-,0),n(-,0),n¢(-,0)) = (up,n0,n1) € H* x H" x H" ™1,

Deriving smoothing estimates for these models presents challenges because in R?, one must con-
trol resonant hypersurfaces rather than merely resonant points or lines. The approach extends
the method used in [26] to prove bilinear estimates for a Schrédinger equation on R2. A major
obstacle was the effect of the wave part of the system, which makes the resonances more difficult
to understand and bound. This is overcome by extensive use of Littlewood-Paley and parabolic
decompositions in the frequency space. As applications of the smoothing result, we show a global
well-posedness for the KGS on R?* in regularities below the energy space via Bourgain’s high-low
method. We also provide a simplified proof of the existence of global attractors for the KGS in

dimensions two and three using the smoothing property.



Finally, in the last chapter we show well-posedness and smoothing results for the “good” Boussi-

nesq equation (1.4) on the half-line. The work on this equation is joint with N. Tzirakis.

Ugt — Ugg + Ugzzz + (U)2z =0, xeRT, teRT
w(0,8) = ha(t),  ug(0,) = ha(2), (1.4)

u(x,O) = f(l'), ut(fL‘,O) = ga:(x)

On the full line, local existence has been shown using standard X*? space methods for s > —%

[42], and sharp local existence, using modified X*? spaces, holds for s > —1 [68]. On the half-line,
however, the standard Fourier analytic techniques cannot be directly applied, and much less was
known. We show local existence, uniqueness, and smoothing results for negative Sobolev indices
using the methods of [38, 39]. To do so, we extend the initial data to the full line, and write the
Duhamel formula for the solution on R. We then add a forcing term to this formula to ensure
that the boundary conditions are met. The Contraction Mapping Theorem in X*? space is used
to obtain a solution. The boundary forcing term requires an explicit solution formula for the
linear initial-boundary-value problem, which we derive using Laplace transforms. We then obtain
a number of X*? and Sobolev space estimates to close the contraction argument.

Initial-boundary-value problems present challenges because much of the powerful machinery
which has been developed to study dispersive initial-value problems depends heavily on Fourier
analytic techniques, and it is not clear how these approaches can be generalized to bounded domains.

For relatively smooth data, more classical approaches may prove applicable. For instance, in
1983, Bona and Winther showed well-posedness of a KAV equation on the half-line via a parabolic
regularization argument for initial data in H*(R*) [18]. More recently, Colliander and Kenig [29]
and Holmer [57] adapted the real-line theory of Bourgain [20] and Kenig, Ponce, and Vega [63]
to show well-posedness of the KdV for H _%(RJF) initial data. Their approach involves recasting
the problem as a real line problem with forcing. The forcing is a multiple of the Dirac mass at
x = 0, and is chosen to enforce the boundary condition. This method has also been applied to the
Schrodinger equation [56].

Other recent approaches include Fokas’ unified transform method [44, 54, 45]. Bona, Sun,

and Zhang have also recently published works on the initial-boundary-value problem for dispersive



models, see e.g. [16, 17] for results concerning the KdV and Schrédinger equations. An advantage
of our approach is that we apply X*? space tools — which a priori appear only applicable to R¢ or

T? — to the half-line problem, without the use of a Dirac mass forcing and ensuing technicalities.



CHAPTER 2

NOTATION AND BACKGROUND

2.1 NOTATION

The Fourier sequence of a function u € L(T) is defined by

1 27

Ug u(z)e ** dz  for k € Z.

:%0

We use the corresponding periodic Sobolev spaces H*(T), with their norms given by

s = <k urllez

where (k) = (1 + |k|?)/2. The notation H*(T) indicates the mean-zero counterpart of this space,
ie. HYT) = {ue H*| {u dz = 0}.

The Fourier transform of a Euclidean space function u € L2(R?) is defined similarly:

w(§) = fRd u(z)e™ T dz.

The Euclidean Sobolev spaces H*(R%) have norms given by

lull s = [<€)*@(€)] 2-

We also use the homogeneous space H*(R%), with |ul s = 1E1P0(E)]| L2

tL

The expression e~ "ug will denote the solution to the linear problem u; + Lu = 0 with u(-,0) =

Ay is the linear Schrodinger flow with initial data ug.

ug. Thus, for example, e

We write a < b to indicate that there is an absolute constant C such that a < Cb. The symbol
2 is used similarly. The expression a ~ b means that a < b and a = b. The notation a ~ b is used
to indicate that |a — b| < ¢ for some small ¢ determined by the context. We write a— for a — €

when € > 0 is arbitrary; similarly we write a+ for a + e.



2.2 X%’ THEORY
We now introduce some general X*? space theory. Consider again a PDE of the form

Suppose for the moment that /' = 0, so that the equation is linear. If the initial condition is a

T for some k, we can find a function w(k) such that the wave

i (- 2t821)
(&

is a solution of the linear PDE. This function w is called the dispersion relation for the PDE, and

simple wave e

the equation is called dispersive if w(k)/k is not a constant. For instance, for the Airy equation
Us + Uggr = 0, we find w(k) = k3, so this equation is dispersive, but for the transport equation
ut + uy = 0, the dispersion relation is w(k) = k, so it is not dispersive.

We can also think of the dispersion relation in another way. Taking the Fourier transform in

space and time, we obtain the equation
Tu(¢, 7) = w(§)d.

This means that the Fourier transform of the solution to the linear PDE is supported on the curve
(or hypersurface) 7 = w(&) in frequency space. If the PDE is nonlinear, of course, this is no longer
true. However, one can hope that, for short times at least, the support of the solution in frequency
space remains near this curve. The definition of X*? space is based on this observation. The X *?

norm for functions on R? x R is defined by

[ullxee = IKEXT = w(€)'a(€, )l 2 -

Similarly, for functions on T¢ x R, the norm is defined by

lullces = 1R = wlk) k)l s

Thus the norm is similar to an H® norm, but with an additional weight that inflates the norms of
functions supported far from the 7 = w(§) surface. We will drop the 7 = w(&) subscript and write

only X*® when the dispersion relation is clear from the context. The following alternate definition

7



of the norm can be illuminating. If e** is the linear flow operator corresponding to u; = Lu, the

X 5% norm above can be written as
—tL
Jull s = le™ ul e -

We now address some useful general properties of X*? spaces. This discussion is based on
[94, 50]; proofs and further discussion can be found in these works. To begin, we note that X b is a

Banach space. Using Parseval’s theorem, one can see that that dual of Xjﬁw(g) is X;jff( The

=&’
change in the dispersion relation is due to complex conjugation, which flips signs on the frequency
side.

It’s reasonable to ask how X*° spaces relate to other, more classical, spaces. For instance, if

we prove well-posedness in X*? space, does that say anything about existence in Sobolev spaces?

The answer is often yes, due to the following lemma.

Lemma 2.2.1 ([94]). For b > %, the X* space corresponding to a continuous dispersion relation

w(€) embeds continuously in CPHS.

%, we have existence in CPH? automatically.

Thus if we prove existence in X*° with b >
Sometimes, though, to obtain the estimates necessary for well-posedness, one must work with
b < % An example of this appears in the last chapter of this work, where we must take b < % in
order to complete the well-posedness argument. In such cases some extra effort is required to show
that the solutions are also H?® solutions.

We now outline the estimates necessary to prove well-posedness in X*? spaces. The idea of
X space is that the support of nonlinear solutions remains close to that of the linear solutions.
This is only expected to hold for short times, so in order to use X*° spaces, we multiply by a

time-localization cut-off function n. The well-posedness argument uses the Contraction Mapping

Theorem on the Duhamel operator ® given by
¢
Su(w,t) = n(t)eCug + n(t) f L (¢ T F (u(z, )] dt. (2.1)
0

The first term of ®, the localized linear solution, can be bounded in X spaces using the

following lemma.



Lemma 2.2.2. Suppose ug € H?, and let n be a smooth compactly supported function. Then we

have

In(t)e™ ol xs0 < Juol .

Proof. Notice that

L b N
In(t)e ol xer = [<m = w (€))7 — w(€))EMi0o(E) 1212 = [nlaeluolas-
Since 7 is smooth and compactly supported, its H® norm is certainly finite and we’re done. O
To control the Duhamel integral term, we require the following estimate.

Lemma 2.2.3 ([94]). Let L be a linear differential operator with a real polynomial dispersion

relation. For any b > % and smooth compactly supported function n, we have

t
Hn(t)fo MR (u(, ) At o < 1 (ulz, 1) o0

We also have the following result, which allows us to extract a power of the length of the time
interval. This is important in closing the contraction mapping argument — it allows us to control

the norm by choosing a sufficiently small time interval.

Lemma 2.2.4 ([94]). Let n be a Schwarz function. Then for —% <b-1<V < % and any
0<T <1, we have

[n(t/Tyulxor1 < TPl gow-
Applying these results to (2.1), we have the bound
|@ull 0 < Juolms + TP F(w)] your

for b> % and b—1 < ¥ < 3. To finish the argument, we need an estimate of the form |F(u)| y.w <
HuHi&b The proofs of such estimates can be quite challenging, depending on the specific dispersion
relation and nonlinearity under consideration. However, with such an estimate in hand, we can

close the contraction on a ball {u : |u|x,, < C|ug|ns} by choosing a sufficiently small time 7'.



2.3 USEFUL ESTIMATES

The following special case of the Sobolev embedding theorem will be used at several stages in the

proofs.

Theorem 2.3.1 (Sobolev Embedding [1]). The space H*(R™) is continuously embedded in L™ (R™)

for s > 5. Similarly, H*(T") is continuously embedded in L*(T™) for s > 5.
We also require the Gagliardo-Nirenberg-Sobolev inequality.

Theorem 2.3.2 (Gagliardo-Nirenberg-Sobolev Inequality [77]). Suppose that v € LI(R™) and

D™y e L"(R™). For 1< q,r < o0, we have
| D7 ullre < [D™ulEe|ull e,

where%=%+(%—%)a+l_7a andae[%,l].

If 1 =0, rm < n, and q = o0, we require the additional assumption that either u tends to zero at

n

infinity or uw € L® for some s > 0. If 1 <r <o and m — j — 7' is a non-negative integer, then we

require that o < 1.

The following calculus lemmata will be used frequently in the proofs. See, e.g., the appendix
of [40] for proofs of similar results. For periodic problems, we use the summation estimates; the

integral estimates are used for problems posed on Euclidean spaces.
Lemma 2.3.3. 1. If B =~ >1, then

< <k1 — k2>_’y.

1
zn: <n — k1>5<n — k2>7

2. If B > %, then
Z 1 S
- (n3 +an? 4+ bn + c>f3

L,
with the implicit constant independent of a, b, and c.

Lemma 2.3.4. If 8 =>~v>=0 and §+ v > 1, then we have

f (&~ a>;<x —py S @b esla—b),

10



where

1 if B> 1
ps(c) = {log(1+{c)) ifB=1
S if B < 1.

2.4 NORMAL FORMS

In our study of the coupled KdV system, we employ a normal form transformation. The idea has its
roots in the theory of Poincaré normal forms for ordinary differential equations. This method uses a
sequence of polynomial transformations to eliminate the nonlinearity in the ODE system; see, e.g.,
[6]. The version of the normal forms transformation which we use for our PDE system is similar
to the one introduced by Shatah in [91]. In this work, he uses a transformation to raise the degree
of the nonlinearity of a Klein-Gordon equation on R?, thus rendering the equation susceptible to
analysis by perturbative methods.

For the periodic KdV equation, the normal forms transform method was introduced as an
alternative method to arrive at well-posedness by Babin, Ilyin, and Titi in [8]. Our work using
normal forms to prove a smoothing effect for the Majda-Biello system builds on a similar result of
Erdogan and Tzirakis for the KdV and Zakharov equations [36, 40].

There are several steps to the method. The first is to take a Fourier transform in space. This
results in a system of ordinary differential equations for the Fourier coefficients. Multiplying by a

modulation factor, the system can be reduced to a collection of equation of roughly the form
o = e“'F(v).

In practice, there will be infinitely many v = v and corresponding ODE — one for each frequency
— and the nonlinearity on the right-hand side will depend on all the frequencies. However, this

simple equation is helpful for illustration. Notice that an equation of this form can be written as

iwt iwt
@vz@F,F@J—é F'(v)v

1w 1w
6zwt e?iwt ,
=@[WFMP—WF@F@ =
ezwt 62iwt ,
O |:U 0 F(v)] =~ F(v)F'(v).



In practice, the form of F' is quite complex, and there may be resonances (where w = 0) which
must be treated separately. However, the basic result of the transformation should be apparent —
we’ve increased the power of the nonlinearity from F to F'F’, but gained an w in the denominator.
For the Majda-Biello system, the nonlinearity becomes cubic rather than quadratic, but w is a
cubic polynomial in the frequency variable. This polynomial in the denominator will allow us to

overcome the effect of the derivative on the nonlinearity and obtain a smoothing result.

2.5 GLOBAL ATTRACTORS

A global attractor for a dynamical system has three features — it is compact, it is invariant under
the flow, and it eventually attracts all elements in the phase space. Such sets are of interest in
understanding the long term dynamics of dissipative systems. The concept of a global attractor
dates back to the work of Auslander, Bhatia, and Seibert [7] in the 1960s. Previous researchers
in dynamical systems had considered attracting points, but not larger sets which attracted the
flow [76]. Since they’re compact, and sometimes even finite dimensional, global attractors can be
easier to study than the full infinite-dimensional phase space, while still providing valuable insight
into solution behavior. For instance, in the 1980s Ghidaglia showed the the dissipative periodic
Schrodinger and Korteweg-de Vries equations have global attractors of finite Hausdorff (and fractal)
dimension [48, 49].

The following definitions and results from the study of dissipative PDE in classical dynamical
systems will be vital to our study of global attractors for the damped Majda-Biello system and
Klein-Gordon-Schrédinger systems. In our context, the phase space is the energy space of the
system, i.e. HY(T) x HYT) for the Majda-Biello system and H'(R%) x H'(R?) for the KGS
system. The semigroup operator is the solution flow of the PDE system, which is defined globally

in time. A global attractor is then defined as follows.

Definition 2.5.1 ([95]). A compact subset A of the phase space H is called a global attractor for

the semigroup {U(t)}t=0 if A is invariant under the flow of U and
tlim d(U(t)up, A) = 0 for every ug € H.
—00
We also have the weaker notion of absorbing sets:

12



Definition 2.5.2 ([95]). A bounded subset By of the phase space H is called absorbing if for any
bounded B  H, there exists a time T = T(B) such that U(t)B < By for allt = T.

Notice that though a global attractor is necessarily an absorbing set, an absorbing set need not
be a global attractor.
Our global attractors will be shown to be the w-limit set of the absorbing set By, which is

defined by
w(Bo) = () JU®)Bo.

s=0t=s

An alternative, and perhaps more intuitively understandable definition of the w-limit set is that it
is the set of all points u such that there is a function ug € By and an increasing sequence of times
t, — oo such that U(t,)up converges to u in the phase space. Taking the w-limit set will reduce
the absorbing set, which may be very large, down to its “essential elements”, leaving a compact
invariant set.

We will use the following theorem to show that the w-limit set is indeed a global attractor.

Theorem 2.5.3 ([95]). Let H be a metric space and U(t) be a continuous semigroup from H
to itself for all t = 0. Assume that there is an absorbing set By. If the semigroup {U(t)}i=o is
asymptotically compact, i.e. for every bounded sequence {xy} < H and every sequence ty, — o0, the

set {U (tx)x}g is relatively compact in H, then w(By) is a global attractor.

Given an absorbing set, this theorem reduces the problem of existence of attractors to showing
asymptotic compactness of the flow. However, showing asymptotic compactness is not trivial. Most
arguments in previous works required several steps. First, they used functional analysis arguments
to show the existence of a weakly-convergent subsequence. Then properties of the PDE, such as
decay of an energy functional, are used to upgrade this weak convergence to strong convergence.
The arguments can be complex and technical. They often involving proving estimates on truncated
domains, and then showing that the estimates are independent of the domain size. In this work,
we use smoothing to simplify matters. For the periodic Majda-Biello system, we use the method
introduced in [37], which uses smoothing together with the compact embedding of Sobolev spaces

to provide a brief and elegant proof of the existence of an attractor. In the case of the Klein-
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Gordon-Schrodinger system, we use smoothing to greatly simplify the energy arguments used to

upgrade weak convergence to strong convergence.
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CHAPTER 3

THE PERIODIC MAJDA-BIELLO SYSTEM

3.1 INTRODUCTION

This chapter is concerned with the system (3.1) of coupled KdV-type equations on the torus. The

results here have appeared in [30].

U + Upgy + %(UQ)QC =0, zeT
V¢ + QUzgr + (u0), = 0, (3.1)

(u(-,0),v(-,0)) = (ug,vo) € H*(T) x H*(T).

This system was introduced by Majda and Biello, [75, 12], as a simplified asymptotic model
for the behavior of certain atmospheric Rossby waves. Rossby waves are long atmospheric or
oceanic waves which have significant effects on weather patterns and ocean currents. The system
(3.1) models such waves in the upper atmosphere. In the model, u corresponds to a Rossby wave
with significant energy in the midlatitudes and v corresponds to a Rossby wave confined to the
equatorial region. The system is designed to capture the nonlinear interactions between the waves
under specific physical conditions — such interaction is relevant in both theoretical atmospheric
science and weather prediction. Majda and Biello obtained numerical estimates of 0.899, 0.960,
and 0.980 for the coupling parameter « in the physical cases they considered. We note that in the
case of atmospheric waves, the periodic problem is physically relevant.

Solutions of the Majda-Biello system have momentum conservation. They also satisfy conser-

vation laws at the L? and H'! levels. Specifically, the following quantities are constant:
Elzfu dz Egzjv dz Engu2+v2 do E4=jui+av§*uv2 dx. (3.2)

The last integral above is the Hamiltonian conservation law. However, unlike the KdV, the

system is not completely integrable, even in the relatively simple case o = 1 — it has been shown
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that there are no higher conservation laws [97]. The system scales like the KdV, leading to a critical
Sobolev index of —%.

The original KdV equation u; + tzzr + uu, = 0 is a water wave model introduced in the 19th
century [23, 71]. It has long been studied as a canonical example of a dispersive equation with
derivative nonlinearity. Low-regularity results may be traced back to the work of Bona and Smith,
who used parabolic regularization along with energy inequalities to obtain local well-posedness on

Ror T for s > 2 [15]. Kato used similar methods to push this down to s > 3 on the real line

[62, 61]. This was improved by Kenig, Ponce, and Vega to s > % for the real line problem [65].
Their methods are different, and rely heavily on dispersive decay estimates which fail in the periodic
case. Bourgain’s restricted norm method gave local well-posedness for s > —% on R and s > —% on
T [20, 63]. Using complete integrability methods, Kappeler and Topalov obtained global existence
in H=! on both R and T [60]. We also have normal forms methods to prove L? local (and global)
well-posedness in the periodic setting, due to the work of Babin, Ilyin, and Titi [8], as mentioned
previously.

Coupled KdV-type systems have been extensively studied, see e.g. [53, 5, 73, 88, 3], but little of
the work addresses periodic problems with coupling parameter o # 1 such as appears in (3.1). For
the Majda-Biello system on R, and systems with similar coupling, more is known. For the related
Gear-Grimshaw system [47], a model of gravity waves in stratified fluids, Bona, Ponce, Saut, and
Tom proved local well-posedness results in H*(R) x H*(R) for s > 3 [13]. In [43], the same result
for the Hirota-Satsuma system, another similar coupled KdV system, is proven. In [79], Oh proved
global well-posedness for the Majda-Biello system on R with s > 0.

The well-posedness of (3.1) on T was also studied in [79], and local well-posedness in H*® for s
above a threshold s* established. The value of s* is dependent on the arithmetic properties of «,
leading to well-posedness results of markedly different types depending on the nature of . When
a = 1, the resonant interactions in the system simplify significantly. In this case, the methods
used by Kenig, Ponce, and Vega in [63] to prove the local well-posedness of the KdV equation can
be applied; see [79]. This gives local well-posedness in H ~3 x H™2 for mean zero initial data. A

further argument gives the result for general initial data [79]. Oh also shows that for « < 0 and

a > 4, the resonant interactions are easier to control and the KdV theory can be applied.
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For a € (0,1) U (1,4], the behavior is more complex. Oh used the restricted norm method of
Bourgain [20] to prove local well-posedness in H® x H* for s > min {1, + 1 max{v., v4} + } with
the assumption that the initial data wug is mean zero. The values v, and v, are number-theoretic
parameters which depend on the properties of «; generically v, = v43 = 0 for almost every a.
Introducing these parameters gives control over the resonant sets which arise in Bourgain space
estimates. For any «, local well-posedness extends to global for s > 1 due to conservation of the
Hamiltonian Fj4. This implies that the system is globally well-posed in H® for s > 1 regardless of
the value of a. In [78], global well-posedness for s > s*(a) = % was established using the I-method.
Here again, the threshold value depends on properties of a. In the special case a = 1, global
well-posedness holds for s > —%.

Here we are concerned with the dynamics of solutions to the Majda-Biello system. In the
first part of this chapter, we demonstrate that the difference between the linear evolution and the
nonlinear evolution resides in a higher-regularity space. The result follows from a combination of
the method of normal forms of Babin, Ilyin, and Titi [8] and the restricted norm method. This
approach was first used by Erdogan and Tzirakis in [36, 40] on the KdV and the Zakharov system.
The difficulty in applying their methods to this particular system arises from the complexity of the
resonance relations. The coupling of the equations through « makes the resonances significantly
more complex than those of the KdV and the Zakharov system. Unlike the KdV case, the resonance
equations do not factor neatly, and the coupling interactions are considerably more difficult to
control than those of the Zakharov system.

The normal form transformation eliminates the derivative nonlinearity and replaces it with a

third-order power nonlinearity. Controlling this requires trilinear X*? estimates, in contrast to the

bilinear estimates necessary for well-posedness. The local theory used multipliers of the form

kk)* (k) Cha) ™
(1 — B30 — akHV2(1y — ak3)L/2’

whereas the smoothing results require control over multipliers such as

k(k1 + ko){k)* (k1 )~ *Cho)~*Cks )7°
(k3 — ak1 + k2)® — akd)(T — E3)1=0(r — kY21 — ak3)V/2(m3 — ak§)1/?

For the latter, we want s; > s to obtain smoothing. This means we have no a priori bound on

(kY (k1) 5Cka)y™*(k — k1 — ko)~ 5. Furthermore, the differentiation by parts introduces the term
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k3 — a(ky + ko) — a(k — k1 — k2)? in the denominator. Unlike the bracketed terms which appear in
the local theory multiplier, this can be arbitrarily small. The estimates require precise control of
multiple terms to ensure that the multiplier remains bounded. Depending on the characteristics of
«, we obtain different levels of smoothing, with a gain of up to half a derivative for a # 1. Again,
the results improve if o = 1; the KdV results in [36] can be applied to get a gain of nearly a full
derivative.

In the second part, we consider the behavior of the system when forcing and weak damping

terms are included:

Ut + Ugpy + YU + %(v2)x =f (33)

Ut + QUggr + 00 + (U0)y =g

We take initial data ug, vg € H'; the functions f and g are in H' with mean zero and the coefficients
~v and § are positive. We investigate the long-time dynamics of this equation, and show that for
almost every «, the evolution has a global attractor. For the KdV, global attractors were first
studied by Ghidaglia in H? [49]. Further work by other authors has established the existence below
the L? level; see the discussion and references in [37]. To obtain an attractor for the Madja-Biello
system, we use the method of [37] and [40] along with our smoothing estimate to decompose the
solution into two parts: the linear part which decays over time thanks to the damping terms, and
the nonlinear part. We then apply smoothing estimates to the nonlinear part to show that it
resides in a smoother space. This gives a global attractor for almost every « € (0,1). For a = 1,
the estimates in [37] can be applied directly and one can obtain an L? attractor.

One reason for the interest in global attractors is that they can be finite-dimensional even when
the phase space of the equation is not, making them useful tools in understanding the dynamics of
a system. In the last part of the chapter, we show that the attractor for the Majda-Biello system is
trivial, consisting of a single pair of functions (p,q) € H? x H?, if the damping coefficients J and
are sufficiently large in relation to the forcing terms. This is motivated by the corresponding result
for the forced and damped KdV [25] and for the Zakharov system [34]. We show that for any «, as
long as 7 and ¢ are sufficiently large in relation to | f||z:1 and |g| g1, the time-independent version
of (3.3) has a solution in H'. For values of a at which the system exhibits smoothing, we show that

the solutions to (3.3) converge to this stationary solution in H'. The proof uses a modified version
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of H' conservation law to obtain control over the difference between a solution and the stationary

evolution. We also prove a similar result for the L? attractor in the case av = 1.

3.2 NotTATION & FUNCTION SPACES

The estimates will require the Bourgain spaces corresponding to the u and v evolutions. These are

defined as follows:

b
el o0 = [IKRYT = K2 ur (1) 262
b
[ollzs = [KRYT = ak®Por(r)] 2z
We also define restricted versions of the norms:

= inf |a = inf 5] gen
il gy =, _inf il oo folos = _inf 15]xq0

We write U(t) for the semigroup operator corresponding to the Majda-Biello evolution. The
phase space of this operator is H® x H* for a # 1; when o = 1 we work with the phase space
L? x L2,

The notation >.* indicates summation over all terms for which the denominator of the summand
is nonzero. To simplify calculations, we use the notation O(e) to denote a constant of the form Ce,

where C' may depend on «a, but not on any of the variables in the calculation.

3.3 STATEMENT OF RESULTS

3.3.1 BACKGROUND

To study well-posedness, Oh in [79] used the minimal type index v,, a parameter which quantifies
how “close” the number p is to being rational. Quantities of this type are heavily studied in
the theory of diophantine approximations to irrational numbers. In our case, it is important in

controlling the resonances which arise in estimates.

Definition 3.3.1 ([6], [79]). A number p € R is said to be of type v if there exists K > 0 such that
for all m,n € Z,
=%
L n2+
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The minimal type index of a number p is defined to be

o0 pe@Q
v, =
inf{vr > 0| p is of type v} p¢ Q.

Dirichlet’s approximation theorem implies that v, > 0 for every real number p. Furthermore, it
is known that v, = 0 for almost every p € R [6]. In general, though, determining the minimal type
index of a specific number is difficult. In fact, it is not even known whether there is any p such that
0 < v, < . However, for irrational algebraic numbers we have v, = 0 due to the Thue-Siegel-Roth
theorem [87].

The local theory depends on the minimal type index of certain parameters c1, co, di, and ds
which arise in the resonance equations. The X*? estimates yield resonance equations of the form
k3 — ak? — a(k — k1) and ak® — k — a(k — k1)3. The roots of the former equation are k1 = c;k,

k1 = cok, and k = 0, where

L, V=3+120 1 /3412

as3tT - @73 6

Note that these are the roots of the quadratic 3az? — 3ax + o — 1, so they are algebraic for rational
«. The solutions to the second resonance equation are k1 = dik, k1 = dok, and k1 = 0, where
dy = cfl and dy = cgl. These are the roots of the quadratic (1 — a)z? + 3ax — 3a.

For « outside [0, 4], the roots are not real, meaning that the resonances don’t cause trouble in
the estimates. In this case, the local theory is like that of the KdV. The problem for « € (1, 4] can
be treated in the same way as that for o € (0,1). For simplicity, we state results for a € (0, 1).

To give the local theory precisely, define
Ve = Ve, = Vg, and Vg = max{Vq, , Vd, }-

Theorem 3.3.2 ([79]). Let o€ (0,1). For s > min{1, £ + 1 max{v., vg}+}, the Majda-Biello initial
value problem is locally well-posed in H® x H%. In particular, for any (up,vg) € H* x H?, there

exists T 2 (|lug|gs + |[vo|ms) ™2 such that there is a unique solution (u,v) to (3.1) satisfying
(u,v) € C([=T,T]; Hy(T)) x C([=T,T]; H;(T))
and

e M PR T
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3.3.2 SMOOTHING ESTIMATE

The smoothing result for the nonlinear part of the Majda-Biello evolution is then as follows.

Theorem 3.3.3. Fiz a € (0,1) and s > 5. Consider the solution of (3.1) with initial data
(uo,v0) € H® x H*. Let

1 1

31—s<min{2,s—2,

s—yc,s—yd,Qs—1—Vc,23—1—vd}.

If o= ¢*/(3p(p — q) + ¢*) for some p,q € Z with p > q, we must instead take s* < min{3—,s — 1}.

Then for s; = s + s™, we have

u(t) — e 1%y e CYH?!

v(t) — e 2y e CYHS!.

In particular, for almost every o, the above statements hold with s — s < min{%, s — %}

If there is a growth bound
lu®)lms + lo(@)]as < (1+ [€)7),
then we also have
[w(T) = e~ "% gl res + [0(T) — €T % v | ey < CTH09(5),
where C' = C(s, s1, a, ||uo| gs, ||vo gs)-

Remark 3.3.4. When « is a rational number which cannot be written in the form ¢*/(3p(p—q)+4*)
for some integers p > q, the coefficients ¢; and d; are irrational algebraic numbers, implying that
ve = vg = 0. In this case, the best possible smoothing given by Theorem 8.5.8 is attained. In
contrast, for rationals of the form ¢*/(3p(p — q) + ¢?), the theorem gives no smoothing unless s > 1.
For examples of such rationals, notice that no rational of the form /3%, where £ is not divisible by
3, can be written as ¢*/(3p(p — q) + ¢*). Thus these rationals form a dense subset of [0,1]. The
rationals which are of the form ¢*/(3p(p — q) + ¢*) are also dense.

Remark 3.3.5. For a = 1, the smoothing results for the KdV contained in [36] can be applied to
the system directly as long as we take initial data in H*® x H*. This implies that for any s > —%

the nonlinear part of the evolution is in CYHZ' for s; < min{3s,s + 1}.
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Remark 3.3.6. For s = 1, well-posedness holds for any choice of a. However, the smoothing in
the theorem above is dependent on «, even for large s. It can be shown that the methods used to
prove this smoothing cannot be applied to get smoothing for o such that v. or vq is large and finite,
regardless of the size of s. The problem of obtaining smoothing for all o when s is large remains
open. The difference between the LWP results and the smoothing arises since well-posedness is

proved in X5 spaces, requiring estimates of multipliers such as

k(k®
k3 — ak? — alk — k1)3y1=bkyyo(k — kp)®

For sufficiently large s, the estimates can be completed without a contribution from the resonant

term, i.e., one can estimate (k* — ak? — a(k — k1)3) 2 1. However, the smoothing estimates are

proved using differentiation by parts, which introduces multipliers of the form

Kk
(k)3 — Ozk% — Oz(k — k1)3)1—b<k1>s<k — k1>5 ’

In this case, the denominator can be arbitrarily small, and the estimates cannot be completed without

controlling it in some way.

Smoothing estimates can be used to obtain rough bounds on higher-order Sobolev norms by
an iterative argument. Such bounds are of particular interest since the system is not completely

integrable and no high regularity conservation laws exist.

Corollary 3.3.7. For almost every a € (0,1) and for any s = 1, the global solution of (3.1) with
H* x H* initial data satisfies the growth bound

lu®)lzs + o) < C(L+ ),
where C = C(s, a, |uo|ms, |volms) and C = C(s).

Proof. For s = 1, the solution is bounded in H' for all time by the conservation of the Hamiltonian.
Take « such that v, = v = 0. Assume inductively that the statement of the corollary holds for

some sg = 1. Then for s € (sg, so + %) and initial data in H® x H®, solutions satisfy

_+A3 _ 3
lu(®)| s + v | g < Juol s + |u(t) — e ug| s + |volms + [v(t) — e~ g g
< C(luolas, [voll =) + C(s, 80, @, o || 1120, [vo || rs0 ) £ 6 0.

Repeating this argument, we can obtain the statement of the corollary for any s > 1. O
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Polynomial bounds for higher Sobolev norms of solutions to the KdV equation have been studied
by Bourgain [21] and Staffilani [92]. Their methods use careful X*° space estimates and are much
more refined than the simple induction used to prove Corollary 3.3.7. More recently, Kappeler,
Schaad, and Topalov obtained uniform bounds for KdV solutions in all Sobolev spaces H® with
s = 0 using perturbative expansions of the Fourier coefficients [59]. Their methods used Birkhoff

normal forms, relying on the integrability of the KdV.

3.3.3 EXISTENCE OF A GLOBAL ATTRACTOR

We use smoothing estimates for the dissipative version of the Majda-Biello system to derive the
existence of a global attractor. In the following, U(¢) will denote the evolution operator corre-
sponding to (3.3). Note that the notion of a global attractor is only reasonable when the system
is globally well-posed. For the forced and weakly damped system, global well-posedness holds by
the restricted norm argument of Bourgain using the estimates established in [79]; see [37, Section
2] for a similar argument.

Recall Definitions 2.5.1-2.5.2, which defined global attractors and absorbing sets. Using energy
estimates, we show that the system (3.3) has an absorbing set in H' x H'. Our global attractor
is the w-limit set of the absorbing ball. We use Theorem 2.5.3 to establish this. This theorem
requires asymptotic compactness of the flow, which we will prove using a smoothing estimate for

the dissipative system. This yields the following result.

Theorem 3.3.8. For almost every « € (0, 1), the dissipative Majda-Biello system (3.3) has a global

3

attractor in H' x HY. Moreover, the global attractor is a compact subset of H* x H® for any s < 3.

Remark 3.3.9. For a = 1 and forcing terms in L2, the arguments in [37] immediately yield a

global attractor in L? x L? which is compact in H® x H® for any s < 1.

When the damping terms are sufficiently large in relation to the forcing, the attractor is trivial:

Theorem 3.3.10. Assume min{~y,d} > V%CB, where C' the norm of the embedding H' — L®. If
|l s gl e < (min{’y,é})4/3, the global attractor given by Theorem 4.3.6 consists of a single pair

of functions (p,q) € H*(T) x H?(T).
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Remark 3.3.11. When o = 1 and the forcing terms f and g are in L2, the statement of the

theorem holds if | f| 2, gl z2 « min{~y,d}.

This theorem is proved using a modification of the Hamiltonian conservation law to show that a

solution to (3.3) converges to the solution of the corresponding time-independent system as t — o0.

3.4 PROOF OF THEOREM 3.3.3: SMOOTHING RESULT

To prove the smoothing estimate, we begin by establishing an equivalent formulation of (3.1) via
differentiation by parts. This formulation decomposes the equation into several terms which will

be estimated separately.

Proposition 3.4.1. Assume ug € HS. The system (3.1) can be written in the following form:

8t[e*ik3t(uk + Bl(v,v)k)] = e*"kgt[pl(v,’u)k + Ri(u,v, v)k]

Ot [e‘mkst(vk + Bs(u, v)k)] = g—iak’t [pg(u, v)k + Ra(v,v,0) + Rs(u, u, U)k],

where
Bl(u U)k = —ﬁ i Uk Vky
TR 3_ 13 _ 13
by fTap B0 — Ok — aky
*
Uk, Vk
Ba(u,v) = —k Z - 13 2 .
b ek OF7 — Ky — ok
. *
! (k1 + ko)ug, vg, w
Rl(U,’U,’U))k = —— 1YR2 3
sa k1+ko+ks=k (k1 + k2 — c1k) (k1 + k2 — c2k)
" « P
Ro(u,v,w)g = w (k1 + ko) ug, Vi, Wiy

P e Y ak? — (k1 + k)3 — ak3

*

Z (kz + k?g)ukl Vo Wy

R = ik
3(u7v7w)k ? akd — ki)’ — Oé(kQ + k3)3

k1+ko+ks=k
P1 (U, U)k = _ik(uclk‘vCQk‘)
p2(u,v) = _ik(udlkv(l—dl)k + ukov(l_dQ)k).
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Proof. Taking the spatial Fourier transform of (3.1) yields

) ik
Opup — zk?’uk + 5 Z Vg Uy = 0
k1+hko=F

. 13 . B
Opv, — takvy + ik Z Uy Vy = 0.
k1+ko=k

Change variables by setting my(t) = e * tuy(t) and ng(t) = e " v, (t). Then the system

becomes
—ik 1313 13
Oymy = Z e it(k®—aky ak2)nklnk2
k1+ko=k
. . 3_1.3_ 3
oy, = —ik 2 e tlak kY ak2)mk1nk2.
k1+ko=k

Differentiate the equation for dymy by parts:

(k3 — k3 — k3
k z*l at(e it(k®—aky akQ)nklnkg)

oymy = —
3 _ 3 _ 3
2 ity k® — aky — aks
. 3 3 3
k * e—zt(k‘ —akl—akz)at(nklnkQ) n
- E — RN kNeo ke -
3 _ 3 _ 3 C1 €2

2 ki ATtk k aky — ak;

Rewrite second sum using equation for dyng. Recall that the constants ¢; and ¢y arise from the
solving k% — ak? — aki = 0. The k = 0 solution does not appear in the resonant term since we
assume that ug, and hence u, is mean zero. Furthermore, the resonant term only appears when c¢;
and ¢y are rational and cik is an integer. In particular, ¢, cz € Q only if a = ¢2/(3p(p — q) + ¢°)
for some p, q € Z with p > q.

Using the differential equation, we find that the second sum in dymy is

. - eiit(kgik?iakgiakg)mklnk‘gnk‘S
ik Z (k'l + k2) k3 Oé(k +k )3 OékS
= - 1 2 - 3
k1+ka+k3=k
Z' i —it(k*—ki—aki—akf) . ny ng
= —— (kl + ]{jQ) 1'"K2""R3 )
B katha—k (k1 + kg — c1k) (k1 + ko — c2k)

Moving to the equation for dyn, differentiate by parts again to find

* at(e—it(ak?’—k{’—akg * —it(ak3—k3—ak3)

Yy, g, ) O (Mg, i, e
Oy, = k Z 313 g —k Z — 3 3
k1+ho=k ak® — ki — ok k1+ko=Fk ak® — ki — ak;

—ikmdlkn(l_dl)k — ikmdgkn(l—dz)k'
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Here again, the last terms in the equality only appear when d; and dy are rational and di k, dok € Z.

Using the differential equation, rewrite the second sum in d;ny as

. *
ik —it(akd —ak$—ak3—ak3) (k1 + ko)ni, Mooy Tlky

5 (&
k1+k22+k3—k ak® — (ki + k2)® — ok

*

p—it(ak—ki—k3—akg) (K2 + k3)my, 1,1k

ik .
! akd — 13 — alks + k3)3

k1+ko+ks=k
Collecting all these terms and returning to u and v variables gives the statement of the proposition.

O]

We use the transformed system to get bounds on the norm of the difference between the linear

and nonlinear evolution. First, integrate the new system from 0 to ¢ to obtain

-

w(t) — et (0) = =By (v, v),(t) + By (v, v)5(0)
) + 50 R [Ry (u, v, 0)k () + pr(v,0)(r)] dr
vp(t) — €%ty (0) = —Bay(u,v)i(t) + €%t By(u, v)1,(0)

+ §0 €9 =T) [ Ry (v, 0,0)5(r) + R (u,u,0)(r) + pa(u, v)g(r)] dr.

To control these expressions, we use the following estimates. Propositions 3.4.2 and 3.4.3 are proved

in Section 3.7; Proposition 3.4.4 is immediate from the definitions of p; and po.
Proposition 3.4.2. If s > % and s1 — s < min{l, s — v.}, then
| Br(uw, v) | gzr S ez [0 g -
When o = ¢*/(3p(p — q) + ¢*) for some p,q € Z with p > q, we only require that s — s < 1.
Proposition 3.4.3. Let ue H*. If s > 2 and s1 — s < minf{l, s — vy}, then
| Ba(u, 0) | gzr S ez [0 g -
When o = ¢%/(3p(p — q) + ¢%) for some p,q € Z with p > q, we only need s; — s < min{1,s—}.

Proposition 3.4.4. If sy —s < s—1, then

lpr(u, 0) [ gar S Jullmgloley — and  fpa(u, v)| e < ol [ollag-
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Using Propositions 3.4.2-3.4.4 on the equations found above, write, for s; — s sufficiently small,

[u(t) — e ug| s 5 o) + [0(0) | + f: [o(r)|%; dr
+ Jt e_(t_r)agRl(u,v,v)(r) dr
0 Hy?
lo(t) = =g o < )| lo(®)] s + [1w(0) s [0(0) 115 + Lt lu(r) g o(r) |y dr
+ JZ emt=m)2z [R2(v,v,v)(r) + R3(u,u,v)(r)] dr .
H;

To complete the estimates, we need the following bounds for Ry, R2, and R3. See Section 3.7

for proofs.

Proposition 3.4.5. Let u € H?. Forb— % sufficiently small, s > %, and s1 —s < min{l,2s — 1 —

Vers S — 5,8+ % — v, }, we have
1ot 0, 0) s % ol el g ol

When o = ¢%/(3p(p — q) + ¢%) for p,q € Z with p > q, we only need s; — s < min{l, s — %}

1

Proposition 3.4.6. Forb— % sufficiently small, s > 5, and s; —s < min{2s — 1 —vg,s + % — g},

IRa(a 0, 0)] yoroms <l g ol gyl g

When o = ¢%/(3p(p — q) + ¢%) for p,q € Z with p > q, we only need s; — s < 1.

Proposition 3.4.7. Let u € HS. Forb— % sufficiently small, s > %, and s1 — s < min{%,s —
%,28—1—I/d,8+ % — g},
2
IRs(o, 0,0 g ol ol
When o = ¢*/(3p(p — q) + ¢*) for p,q € Z with p > q, we only need s1 — s < min{3—,s — 3}.
We will use these estimates, the embeddings X7 v XIS o LR HS for b > 1, and the following

standard lemma to complete the proof. Here 7 is a smooth function supported on [—2,2] with n = 1

on [—1,1], and n;s is defined by ns(t) = n(t/9).
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Lemma 3.4.8 ([51]). For be (3,1], we have

t

’n(t) f eEIERE) dr| < [Fl oo
0 Xslab 1,6

1

¢
Hn(t)f e_a(t_r)&gF(r) dr
0

< 1 b—
o SIF L.

Let ¢ be the existence time for the system from the local theory. Then for t € [—4/2,0/2], we

have

. t
f e-(t—r)agRl (w,v,v)(r) dr < |ns(t) f e_(t—r)t?asch (u,v,v)(r) dr
0 0

Hyt LPH!

<

~

t
ns(t) f e IR, (uy0,0)(r) dr
0

2
e S MR 0 oms S Tl

Similarly, from the second equation we find

fo e~ (1% [ Ry(v,v,v)(r) + Ra(u, u,v)(r)] dr

H!

¢
< lis(®) [ R R0, 0)(0) + Ralusw,0)(0)]
0 LPH!
¢
< ng(t)f e at=")% [Ro(v,v,v)(r) + Rg(u,u,v)(r)] dr o
0 Xob

S 1Ba(0,0,0) oy + 1Bs(0t0) | gonps S [0l + el selol o

Thus, collecting these estimates, we have

423
Ju(t) — e "%ug | =

A

¢
lo() s + [v(0) I3, +J lo(r) Iy dr+ Jul s ol a2
0 1,6 .8
t
493
[o(t) — e gl =1 < (t) [as [0 () g + [w(0) ] g 0 (0) a1 +f0 lur) |z |o(r) g dr
3 2
#oln + [l
Combining the estimates for the two equations, we may write
_ 473 —atd3 2
[u(t) = ™% ugll gor + Jo(t) — e o]l o < (Ju(0) 115 + [0(0) 1z )

t 2 3
2
+ (lu®las + [o(t) ) +f0 (I + o)z )+ (Feal oo + ol e )
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We demonstrate the polynomial growth bound and then the continuity. Fix T large. For ¢ <

we have the bound

[u®llas + o) < (1 + )90 < 796,
Then for § ~ T739) and any j < T/5 ~ T'+39(5) we have
[u(i8) — e u((G — 1)3) o1 + [0(8) — e F0((j — 1)8)] gor 5 T,
using the local theory bound

lul sne — + ol o2 < Jul(G = 1)) s + [o((G = 1)6) s s T
1,[(5—1)8.59] a,[(j—1)8,56]

Now let J = T/5 ~ T™39(5) and write

|u(J6) — IUO”Hsl u(j6) —e” Iu((J —1)0)[ 1 < T1+69(s)

HM&

The corresponding estimate for v completes the proof of the growth bound.

To prove continuity, write

up(t) — up(t') = (e*°F — eikgt/)[wc(()) + B1(0,0),(0)] + B1(v,v)i(t') — Bi(v,v)x(t)
+J0t =) Ry (w0, 0)4(7) dr_fo ¢* =) Ry (uy v, 0) (r) dr

/

t . ; /
+J R =) o (v, 0) (1) dr _J e W= py (0, 0)4(r) dr
o 0

T,

The continuity follows by applying the estimates stated previously along with the continuity of w

in H®; see [36]. Continuity of v is proved in the same way.

3.5 PROOF OF EXISTENCE OF GLOBAL ATTRACTORS

We will consider the forced and damped version (3.3) of the Majda-Biello system with ~,d > 0.

For simplicity, take v = d; minor modifications to the calculations extend them to the general case.

The first step is to obtain bounds on the H' norms for the dissipative system. This will imply

the existence of an absorbing set (see Definition 2.5.2). Recall the conservation laws (3.2) for the

original Majda-Biello system. To get a bound in the dissipative case, we study E3 and F4 in the

presence of dissipation.
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Lemma 3.5.1. Solutions to (3.3) satisfy

lu@®lar + lo@®lm < € = Cluol g, ol s [ flar + lglar, v, ).

Proof. In the following manipulations, C' and C are positive constants whose value may change

from one side of an inequality to the other. Recall that F3 = SuQ + v2 dz. Then

OtE3 +2vE3 = 2qu +gv da < 2| f2lulze + 2)g)r2lv] 2 <4 fllzz + l9]r2)V/ Es.

Let F3 = ¢*"'F3. The above inequality gives 0;F3 < 4¢" (|| f| 12 + |g]z2)v/Fs, or

o/ Fs <27 (If 2 + lgl ).

Integrating this inequality and rewriting F3 in terms of v and v norms gives

_ 2 + 2 _
VIO + ol < ey luolf, + ool + 222102 o
< C = Clluolzzs Ioolze: (112 + lglz2). ).

Thus the L? norms of the u and v are bounded in the dissipative case. Next consider E; =
§u? + aw? — uv? dz. First notice that Ey is bounded below due to the bound on |v|z2 and the

embedding H' < L®. To get an upper bound, use the embedding again to write

OtEy+2vE, = Qfoux + gpv, dz — fva + guv dzx + ’yfqu dz

< | flmluelzz + Mgl lvalce + 1 flalvlZe + lglalulz[vlzz + lulm o]z

< C+ C(|uglz2 + |vallz2)-

The constants in second inequality depend on the bounds on |jul/z2 and ||v|z2 and on the value of

| fllz1- Now note that

fusls + s s = Ba + [ a? da < By + Clolfalulin

< By + O(Jug|?s + O)YV2 < (By + C) + Clluga.

The second inequality uses the L? bounds on u and v. Then we have

[orlzz < A/ (el — C/2)% + allup 2, < \/By + € + C2/4 < /TBa] + €,
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and similarly

luzlz2 = €/2 5/ (Juzll2 — €/2)* + allv|2, < V/Ea + C.
L
This implies that |ug|r2 + |vz]r2 < +/|F4| + C. Using this bound with the change of variables

Fy = 2" Ey, we have

0 Fy < e [ce’vt + (Zu/yF4|] .

Then
1— efZ'yt _rt
Bi(t) < € HUEL(0) + O —+ C f e 21=5)  /TE1(5)] ds
0
< E4(O) + C + é“’\/ E4|‘Loo([07t]).

Now take M >» 1, and suppose F, attains the value M. Let t be the first time the value is
attained. Then M < C + C+/M, which is impossible for sufficiently large M. Thus Ej is bounded

above. O

With this lemma, we conclude that solutions of the dissipative Majda-Biello system remain in

a ball, say By, in the space H' x H'. We now show that the w-limit set of the ball,
w(Bo) = (| JU®)B,
5201>s

is a global attractor in the sense of Definition 2.5.1. Lemma 3.5.1 gives the existence of an absorbing
set for (3.3), so by Theorem 2.5.3 we only need prove asymptotic compactness of U(t). To do so,
we use the following general smoothing estimate. Notice that it gives a bound on the nonlinear
evolution minus a correction involving the resonant terms p;. In Theorem 4.3.6, we consider only

the full-measure set of a such that p; = p2 = 0. In this situation, the correction terms vanish.

Theorem 3.5.2. Consider the solution of (3.3) with initial data (ug,v) € H' x H'. Then for any

a < min{l — v, 1 — vy}, we have

t
u(t) — ety — f e(_ai_w(t_r)pl (v,v)(r)dr
0

H1+a

¢
+ |lv(t) — ey — f e(_o‘ag_w(t—r)pg(u, v)(r)dr
0

H1+a

< Cla,y, [ flars lglmrs luoll g ool ar)-
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Proof. Taking the Fourier transform of (3.3) yields
3 ik
Oruy, — ik uy, + yuy, + 5 Z Uy Vky = [
ki1+ko=k

dpvp — kv + Yo + ik 2 Uy Vky = G-
k1+ko=k

. . _ i3 . 3 . _ 1.3
Change variables by setting my, = e ¥y, and ny, = e ¥ 7y, with py(t) = e FHHEf,

and g (t) = ekttt - After the change of variables, the system is
’Lk —it k‘37 k‘37 k3
demp = —— Y e mekimeR)n, ny, + i
k1+ko=k
6tnk = —ik Z (i_it(akg_k%_Olk"g)ﬁlklnk2 + qk.-
k1+ko=k

Then differentiating by parts as before gives the equivalent formulation
0| (e + Bi(w,0)e) | = e H o1 (0,006 + Ruus )i+ Balg o) + fi
at [e—iak3t+'yt (Uk + Bg(u,v)k)] _
e—iak3t+’yt [pQ (U, U)k’ =+ RQ(Ua v, U)k + R3(u7 u, U)k + B2(f7 U)k + BZ(ga U)k + gk]a
where p;, B;, and R; are defined as in Proposition 3.4.1. Integrating from 0 to ¢ yields the equations
ik3t—yt ik3t—yt
up(t) —e Tup(0) = =By (v,v); + € 7 B1 (v, vg)
b
b | (w0 + fi Ba o)+ Brlo g ds
0
vg(t) — efakstdytvk(O) = —Ba(u,v)(t) + emkatqthg(uo, v0)
¢
+ J e(zakg_W)(t_S) [pQ(U, U)k + BQ(fv /U)k + BQ(ua g)k + RQ(’Uv v, U)k + R3(ua u, v)k + gk:| ds.
0
Note that

e(ika*fy)t —1
k3 —

Hsta

T

S [ fll g2

t
j =9 £, ds
0 Hs+a

This, the corresponding estimate for eliak®=7)(t=s)

gi, the estimates used for the previous smoothing
result, and Lemma 3.5.1 give the following estimates for ¢ < §, where § is the existence time from

the local theory:

[ t
u(t) — ey — J e(*aﬂ%*”)(t*”pl (v,v)(r)dr
0

Hlta
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< (a1l Ll ol ol )

t .
v(t) — eIty J e(*aagfw(t*’")pg(u, v)(r)dr
0

Hlta

< (a1 L Ll ol ol ).

This bound extends to large times by breaking the time interval down into d-length pieces. Due
to the dissipation, the norm over the short intervals decays over time so that the sum remains

uniformly bounded. For details of the argument, see Section 6 in [40]. O]

We now show that U, is asymptotically compact, i.e., for any bounded sequence {(u07k,vo7k)}
in H' x H! and sequence of times ¢, — 0, the sequence {U(tk)(u(),k,v(),k)}k has a convergent
subsequence in H'x H'. It suffices to consider sequences {(Uo,k, Uo,k)} which lie within the absorbing
set Byp. By Theorem 3.5.2, for any « such that the resonant terms p; and po are zero (i.e. ¢;,d; ¢ Q),
we have

Utk (uo,k7 /UO,k) = (eitkagiwtk U,k eiatkagifﬂk Uo,k) + Ntk (Uo,k, UO,]{?):

where Ny, (ugk,vo k) is in a ball in H'™® x H'*% Note we can take a = %— for almost every . In

N[ —

the following, we assume a =
By Rellich’s theorem, there is a subsequence of {Nt,c (10,ks Uo,k;)} which converges in H' x H'.

Furthermore

Heftk@i*wtk Uom

_ 3 _ _ _
2 + e 00y < e (Juoml sy + ool ) S €7

converges to zero uniformly as k — oo. Thus Uy, (ug k, vo 1) has a convergent subsequence and Uy is
asymptotically compact.

To show that the attractor is compact in H'*% x H'*¢ it suffices, by Rellich’s theorem, to show
that it is is bounded in H'*%*+¢ x H!*e+€ for some € > 0. To do this, choose € > 0 small so that
the nonlinear part of the solution lies in H'+*@T¢ x H!Ta+¢ e g take e = (3 —a)/2. We show that
the attractor is contained in a closed ball, say B, in this space.

Define V, = m so that the attractor is

N UUB = V-

T=0t=T 7=0
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Using the smoothing result again, elements in V can be broken into two pieces — the linear evolution
which is converging uniformly to zero in H! by the argument above, and the nonlinear evolution
which lives in some ball in H1T¢+e x gltate,

Thus as a subset of H! x H 1 the set V; is contained in a d,-neighborhood N; of a ball B,
in H'*ote x g'+e+e The uniform convergence of the linear parts to zero implies that §, — 0 as

7 — 0. Therefore the attractor is inside B:

3.6 TRIVIAL ATTRACTOR FOR 7, 6 LARGE

In this section, we show that when the damping is large relative to the forcing terms in the dissi-
pative system (3.3), the global attractor consists of a single function, namely the solution to the
time-independent system. We focus on the a # 1 case with a global attractor in H' x H, noting
along the way where the argument differs for & = 1 and the L2 x L2 attractor.

Consider the stationary version of the forced and weakly damped Majda-Biello system:

Prax + VP + 49 = f
(3.4)

Azze +0q+ (PQ)z = 9.

We will take v = § to simplify the notation; the arguments can be applied to the general case
by replacing v by min{~y, d} in the estimates. The first step is to demonstrate the existence of a

solution to (3.4) under certain conditions on 7, f, and g.

Proposition 3.6.1. If ||f||g: < a39%3 and |g|g: <« a¥?4*3, then (3.4) has a unique solution

on a ball in H*(T). The same statement holds if | f| 2 < o'/?y and |g| 2 « /0.

Proof. The proof uses a fixed point argument. To construct the contraction operator, begin by

taking the Fourier transform of the stationary system:

—ik3pr + Yo + (902)k = fr

—iozk:?’q;.C +var + (P9)2)k = gk
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Define Fourier multiplier operators My and Ms as follows:

wy,
v — k3

Wk

Ml:wk»—> MQZWk'—)

v —iak3’

We have [|[Mjw|gs+1 < 72—1/3Hw\|Hs and |[Moaw| gs+1 < WHU’HHS To see this, write

[t &
[Miw] gs+1 = H e P a1 I |wl s
1 k) V2
s S 57 5.
V2B | (y = ik3)1B .. |l 273 |wla

The constant in the last inequality is v/2 and not max{(1/7)"/3,1/2} because we’re working with
mean zero functions. The arguments go through without this assumption, but the power of v will
change slightly. The other estimate is proved in the same way. Now notice that a solution to (3.4)
must satisfy p = M (f — qq,). Substituting this into the evolution equation for ¢, we find that ¢

must satisfy
q = Mz(9 = (pg)z) = M2(9 - (Ma(f - qu)q)m)-

Let T'(q) = M2 (g — (Ma(f — 942)q) ) We will find a fixed point of T'. Estimate T'(q) as follows:

1 1
HT(Q)HH2 < WHQ - (Ml(f - C]C]x)CJ)xHHl < W<9|H1 + HMl(f - QQa:)C]H2>
1
< a1/ <|9”H1 + Mo (f - qq:l:)“H2|q’H2>

1 1
< ez (Iolie + 3510 — )il )

lgll (e 2
041/3"}’2/3 + 041/3’}/4/3 (Hf”Hl + HqHHZ)

A

Now we make the contraction estimate:

| T (w) — T(@)|| g2 = ‘/\/@( M (f = @ig)w — Ma(f — wwm)w)) H

H2

s O51/3 2/3 HMl f = wig)w — My (f —wwgﬁ)wHH2
- m”’”l f = @) (@ = w) + My ((w = @ws + (w = D)a)w]
1 VW U 7) ~ ~
< YRR (“f — Wy | |w — @) g2 + [(w — D)wg | 1 |w] g2 + [ @(w — D) 1 HwHH2>

|0 — o] : :
o (Wl o+ ot + fuwlle + [l el ).
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Thus to close the contraction on a ball {g e H? : |q| 2 < R}, two inequalities must hold:

Igll 1 | flmR+R* R Iflg +3R% 1
ay2B T gmas - Se o wd T aE <

These can be satisfied by taking R = ﬁal/&y%}’ as long as | f|m < %al/&y‘l/?’ and |gllg <

1
o al/244/3,
The proof for the L? statement is similar. The only difference is that one uses the estimates

[Myflrere < Simllflae and [Mag|pee < mmaslglae. =

Remark 3.6.2. If g = 0, the existence of a stationary solution is trivial; the solution is (M1(f),0).

The convergence arguments are also greatly simplified in this case.

We now show that solutions to (3.3) converge to the stationary solution under certain conditions
on f, g, and v, implying that the attractor is trivial. Let (u,v) be a solution of the dissipative
Majda-Biello system (3.3) and define y = v — p and z = v — q. We show that if f and g are small
relative to v, then y and z converge to zero in H' if u,v € H'. Notice that y and z satisfy

Yt + Yzzx + Yy + 22y + (qz)x =0
(3.5)

2t + QZgpy + 72+ (yz)m + (pz + qy)ﬂ? = 0.

Recall that {u? +v? dz and (u2 + av? — wv? dz are conserved for the original Majda-Biello
system. Our estimates will be based on these conservation laws. Recall F3 = Syz + 22 dz. Then

we have

—E3 = —ZJy(vy +(g2)z) + 2(v2 + (pz + qy)z) do

= —2vE3 — 2fqyzx + @Yz + P2 + P22y + qypz + quyz da
1 2

= —2vE3 — 2 | 2q,yz + q(y2). + §pmz dx

= —2vFk3 — J2quz + pe2? dz

N

~2vE3 + palz= 272 + 2lqzlre |yl 2] 2

N

(=27 + Clpl gz + Clq| g2) Es.
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So to ensure that F3 — 0 as t — o0, i.e. that (u,v) — (p,q) in L?, we need C|p| g2 + C|q|m2 < 27.
The contraction argument for the existence of ¢ was carried out in a ball of radius R = ﬁal/ 62/3,

so we have C'|q| g2 < 7 as long as y'/% > ﬁ%l/e Also notice that

C C 9
Clpllzrz < o (f e+ lagzl ) < m(“f”Hl + al2)-
This is bounded by v when C|f|m < @ and 8y > «a. So we have a stationary solution and
L? convergence to it whenever |f| g1, |glm « v¥3 and v > v/C3a/8. The same holds when
|fllz2s lglr2 « v and v > v/ C3«/8, which completes the proof for the o = 1 case.

For the H' convergence, we use a modification of the Hamiltonian integral Fj:
H, = Jyg + azg —yz? — 2qyz — p2? da.

The last two terms are added to make the time derivative well-behaved. Calculating this derivative,
we find

%H4 = -2 Jym (fyyx + (qz)m> dr — 2anx <7zm + (pz + qy)m> dx

+ JzZ (vy + (qz)z) dz + ZJyz (’yz + (pz + qy)x> dx

+ 2fqy (azm +72 + (Y2)e + (P2 + qy)x) dz

+ 2fqz (ymz + vy + 22, + (qz)x) dz + 2 Jpz (azmx + vz + (yz)z + (pz + qy)m) dz
= —2vH, + ’yfyzz dz.

Notice that
[ v o< Wl el < e
by the embedding L® — H'!, the bound on the H' norm of y (which follows from Lemma 3.5.1),

and the decay of the L? norm of z. Here a = —2v + C||p| g2 + C|q| g2 > 0. Thus we have
8t[e27tH4] < e,

Integrating this inequality gives Hy(t) < e~ 7", Furthermore, since |y, + 2[5, — 0 as t —

and the L? norms of p, ¢, y, and z are bounded, we have
’ Jwe 4 200+ 92® el < Lyl |13 + 2almlylzzlelia + ol 213 0 as ¢ = co
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Thus we have

in +az? dr

< |Hy4| + Uyz2 +2qyz + p2® dz| — 0 ast — oo.

This, along with the L? convergence show above, implies that y = u — p and z = v — ¢ converge to

zero in HL.

3.7 PROOFS OF SMOOTHING ESTIMATES

2

. > are much easier than

Before beginning, we note that the proofs for the cases where o = BT R

those for the general cases, and are therefore not explicitly included.

3.7.1 PROOF OF PROPOSITION 3.4.2

By symmetry, it suffices to consider |ki| = |k2|. Then we need to bound

i <k>1+81uklvk2
3 _ 13 _ 1.3
by ok k aky — aks
|k1|=Z | k2] 22
k
Case 1. |k1 — c1k| > § and |k — cok| > §
Note that
|E® — ak? — ak3| = |3ak(ky — c1k) (k1 — c2k)| 2 || - max{|k1 — c1k|, |[k1 — c2k|}

2 k|- (c1 — e2) k| 2 K.

Then using |k1| 2 k, the assumption that s1 — s — 1 < 0, and Young’s inequality, we find

[Ck1)* [0, [C2)®

Biw o)l 5| ) ket

k1+ka=k Ck2)®
[k1|Z k2| 22
k
U, k1) |vg, [(ka YE vilk)?
< ¥ |u, [ 1<>k \>Skz>!< 2) < Jul: 122;
k1+ko=k 2 2 4,
< lullmglvlag Ik e < lulag vl a;.-
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Case 2. |k — c1k| < 3 or |k1 — cok| < &
Assume that |k — c1k| < 2. The other case is parallel. Note that |k1 — c1k| = M, |k| 717V <0

for any ¢y > 0, where v,, is the minimal type index of ¢;. This holds because

M,

k1
|k1 - Clk| = |:I€| ? —C1 = |k|’k|2+m

for any positive €y by definition of the minimal type. Therefore

1
[k — aki — k] = Balk(ky — c1k) (ks — czk)| > BaMq k|27 ((e1 = e2)lk] - )

Z ’]{;‘1_”61_60.

In this region there is only one term in the sum — the one with k; ~ ¢1k and ky ~ (1 — ¢;)k. Using

Cauchy-Schwartz with the fact that |k| ~ |k1| & |ka|, we get for this part of the sum

HBl(U,’l})HH;l < H<k>sl+ucl+eouk1,uk2 ||£i < H<k>(81+ucl+eo)/2uk <k.>(51+11c1+50)/2vk

4 7

< H<k>(81+ucl +eo)/2uk <k>(51+ucl+eo)/2vk

S e vl mg,

G G

where the third inequality holds when s; — s < s —v,.
3.7.2 PROOF OF PROPOSITION 3.4.3

Write

i <k>1+51uk1 Uky

B o< ,
H 2(“7”)“[—]361 Oék'?) . k,i’, _ Oék'g

ki+ko=k
1+k2 gi

Case 1. |l€1 — d1k|, |k31 — d2k‘| > ¢ and |k1| = €|]{J|
In this case, k1| 2 |k2| and

loak3 — k3 — ak3| = |(1 — a)ki (k1 — dik) (k1 — dok)| 2 |kk1).

The argument in Case 1 of the B; estimate gives the bound when s; —s <1 and s > %
Case 2. |ki| < €|k]
Recall that k1 # 0 since v is mean zero and write

k1 = pk for some || € [1/|k|, €].
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Then
lak® — k3 — a(k — k1)?| = |pk?|[3a(l — p) — (1 — )| = k* (3a(l —€) — (1 — ) 2 K>

Apply the argument from Case 1 of the B; proof again to get the bound when s1 —s < 1 and s > %
Case 3. |k1 — dik| < € or |k1 — dak| < €, with |ki| = €|k|

Assume |k; — d1k| < €. The other case is parallel. Note that in this region |k| ~ |ki| ~ |k2|
and the values of k; and ko are determined by k. We need only bound the following sum, where

k1 ~dik and ki + ko = k,

1/2
<Z<k>2(81 +vd, +eo)u%1 UI%g) < H<k>s1+ud1 +60u% H;f H<k>s1 +vd, +€0,U]% H;Qf
k

= H<k>(sl+ljd1 +eo)/2uk <k>(31+1’d1+60)/2vk

o &

< H<k>(81+vazl +eo)/2uk <k>(81+”d1+60)/2vk

4 4

< llullgs vl ms-

The last inequality holds when s; + v4 + €9 < 2s, i.e. when s;1 —s < s — 1.

3.7.3 PROOF OF PROPOSITION 3.4.5

We need to establish

* (k‘l + kg)ukl%wks

& (k‘l + ko — Clk)(kl + ko — Cgk)

S lull s loll gz lwl oz (3.6)
X\lsl,bfl

k1+ka+ks=

Define the following functions

fk,7) = Ry (r = Ky,
gk, 7) = (kY — ak®)! 2,
h(k, ) = kYT — k' Pwy,.

Then (3.6) amounts to showing that

2

*
J D, M f(ki,m)g(ka, m)h(ks, 1) dridmadrs| < If 172290720 10072 (3.7)
> Ti=T Lki=k

L2e2
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where the multiplier M = M (ky, ko, k3, k, 71,72, T3, 7T) is

(k1 + ko) (k)™ (k)™ Cha) ™ *Chg) ™"
(k1 + ko — c1k) (k1 + ko — cok){T — ]€3>1_b<7'1 — /6:1)’>1/2<T2 — ak§’>1/2<73 — ak§’>1/2 ‘

Apply Cauchy-Schwartz in the 71, 70, 73, k1, k2, and ks variables to bound the left-hand side of
(3.7) by

Sup< f 2 M2> J Z F2(k1,71) g% (ka, m2)h? (ks, 73) dridrpdrs

k
" STi=T 2 ki=k D Ti=T D ki=k

Lie}
Using Young’s inequality twice bounds the L'¢' norm above by HfH%%ngH%%ZﬁHh“%%eﬁ' Thus it
suffices to show that the supremum on the left is finite. We can further simplify matters by
repeatedly using the calculus estimate

J‘ldxg<@—%

r {2){x — b)

which holds for 8 € (0,1] (see Lemma 2.3.4), to eliminate the 7 dependence and bound the supre-
mum by

“ i <k>251<k1>72s<k2>728<k _ kl _ k2>f2s‘k1 + k‘g‘Z
P2 oy + ey — crk)2(ky + ky — k) 203 — K2 — ok — ok — ky — kg) 3220

ko ks

or equivalently, using the change of variables kg — n — k1,

Z*: (kY21 (K y=25(n — k1) 2%(n — k)~ 25n?
T (= c1k)?(n — e2k)? (k3 = kf — a(n — k1)? — a(k —n)3)2-2=

1,

We will show that this supremum is finite by considering a number of cases. In the following, to
simplfiy notation we will write 2 — 2b instead of the technically correct 2 — 2b—. Since we take
b= %—i—, this e-difference has no effect on the calculations.

Case 1. k1 =k

In this case, the supremum becomes

* 251—2s8 o —4s,,2
S BP0 = B
kA (n—ck)?(n — cak)?

Case 1.1. kn >0
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Since ¢z < 0, we cancel n? with (n — c2k)? to obtain

* <k‘>251_28<n _ k‘>_45
(n —c1k)?

sup
k

n
If |n — c1k| = €, with e small but fixed, then the supremum is bounded by
sup <k,>251 252 k>74s S sup <k>251_28<(61 _ 1)k'>_2 S sup <k‘>251_28_2,
—ak? T k
which is finite for s; — s < 1. In the first inequality, we used Lemma 2.3.3(a).

If |n — c1k| < €, then there’s only one term in the sum since n ~ ¢;, and we have |n — k| 2 |k|.

Using the minimal type index, the supremum is bounded by

sup <k>231 —65+2+2v¢; +2¢€0 ’

which is finite when s; —s <2s—1 —v,,.
Case 1.2. kn <0

For this case, cancel n? with (n — c1k)? and repeat the argument from Case 1.1.
Case 1.3. kn=0

The supremum is immediately bounded in this case.

Case 2. kn > 0 with k1 # k

In this region, the supremum is bounded by

<k>251<k1> 25<n k)2 — k)2
sup Z — k)23 — & — aln — k)3 — alk — n)3>2*2b'

Case 2.1 |n — c1k| = €|k|

Here the supremum is bounded by

sup <k>231 —2 Z<k1> 23<n—k1> 2s<n k> 2s < sup <k>281 2—2s <o
kl:

for s; —s < 1. This estimate comes from applying Lemma 2.3.3(a) repeatedly.
Case 2.2. € < |n — c1k| < €|k|

Note that |n| € ((c1 — €)|k|, (c1 + €)|k|). Choose € < ¢; — 1 so that |n — k| 2 |k|. The supremum
is then bounded by

sup <k>23172s Z <k1>723<n o k1>f2s < sup <k>281*28 Z <n>723 < sup <k>281748+1‘
k k %
i Inl [
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D[

This is finite when s;1 — s < s —
Case 2.3. |n—c1k| <€
Case 2.3a. |ki],|k1 — n| = €|k|

In this case, the supremum is bounded by

sup <k>251+2+2ucl +2e0—6s Z <k‘3 _ k,ili _ a(n _ ]{21)3 + a(n o ]{3)3>_(2_2b)
k

k1
(n~cik)

< sup <k>251+2+2V61 +2eo—65’

~

which is finite for s; —s < 2s — 1 — v,,. This estimate comes from Lemma 2.3.3(b).
Case 2.3b. |ki| < €lk|

Note that in this case
|k1 —n| = ci|k| — |n — c1k| — k1] > (c1 — €)|k| — €
so that |k1 —n| 2 |k|. Recall k1 # 0 by the mean zero assumption on u, and write
n = c1k + 0 for some |§] < e, k1 = pk for some |u| € [1/|k],€).
Then use the fact that 1 — o = 3aeg (1 — 1) to calculate that

k3 — k3 — a(n —k1)® + a(n — k)3
= |k — k| |k?[(1 — @) (1 + p) + 3acr] + 3ad[1 + p — 2¢1 ]k — 3a6?|

> |k — k| [(Bact + (1 — ) (1 — €))|k| — 3ae(2e1 + € — 1)|k| — 3ae?] 2 |k1 — kl|k|.

Using Lemma 2.3.3(a) again, the supremum is bounded by

3 <k1>—28
sup <k>2s1 +2+2Vc1 +2€9—4s -
K %] ((k = k1)k)y>=2

o <k1>—2$
< sup <k>251-i-2+21/c1 +2e0—4s—(2—2b) - < sup <k‘
k %: (b — ki y2=2b k

>251 +2+2v¢, +2€0—45—2(2—2b)

which is finite when s; —s <s+1—2b— 1.

Case 2.3c. |n — k1| < €lk|
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In this case we have |ki| = |n| — |n — k1| = (c1 — €)|k| — € so that |k1| = |k|. The supremum is

bounded by

sup <k>251+2+2'/°1 +2e9—4s Z <Tl - k1>_2s
& - (k3 — k3 —a(n —k1)3 — a(k —n)3)2-2b"
n~c1k

We may assume, since (k, k1,n) — (—k, —k1, —n) is a symmetry for the supremum, that k; > 0.
Then in our case of kn > 0, we must have k,n > 0, since otherwise |k1 — n| > |n| ~ c1|k|.

Notice that the following three inequalities hold:
k2 4 bk + kD > k2 3an >0, and ki —(n—Fk) = (1—ek—2e
Thus we have
(1 —a)(k* + kky + k3) — 3an(n —n — k) 2 k%,
which implies that
B -k —amn—k)>—alk—n)? 3z |k— k|
The supremum is therefore bounded by

_ - k1>—2$ e @LR
k 281+2+2vc, +2¢0 4s n S k 281+242vc; +2€0 45—6+6b
Sl;ip< p kE I Ry=" sip< ) ,
1

n~c1k

which is finite if 51 —s <s+2—3b—v,.
Case 3. kn <0 and Kk # k

In this case, the supremum can be bounded by

-2y ki)~ (n — ki)™
W B D T R — Ka(n = = (e = n)E

k‘1>0
n

Case 3.1. |n — c2k| = €|k

If s > % and s; — s < 1, the supremum is bounded by

Sl]ip <]€>2$1_28_2 Z <k1>_25<n . k‘1>_28 < Sl;p <k>251—2$—2 < w,

k1>0
n

Case 3.2. € < |n — c2k| < €|k|
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Note that |n| = (|c2| — €)|k| ~ |k|. When s; — s < s — 3, the supremum is bounded by

sup (k)*1 7% YT (b P (n— ki) < sup (BP0 () < o0,
k o g Il K]
n|z

Case 3.3. |n — k| <€
Case 3.3a. |ki|, |k1 — n| = €|k|

As in Case 2.3a, the supremum is finite if 51 —s <25 —1 — 1.
Case 3.3b. |k1| < €lk|

Here |k1 — n| = (Jc2| — €)|k| — €, so |k1 —n| 2 |k|. Write
ki = pk for some |u| € [1/|k],€), n = cok + ¢ for some |0] < e.
Expanding the resonance equation with this notation gives
B — k) —a(n—k)? —a(k —n)?
= |k — k| |pk*(3acs + p(l — @) + 3ad(1 + p — 2¢2)k — 3a6?|
> |k — k1| [(3acs — e(1 — @) — Bae[1 + € — 2¢3]) k| — Bae®] 2 [k — ka|K].

Notice that, depending on «, we may have |ca| « 1, but by choosing € small enough, we can ensure
that
[(3ac — €(1 — a) — 3ae[l + € — 2¢3]) |k| — 3ae?] 2 |K|

to get the last inequality above. Then as in Case 2.3b, the supremum is finite if 51 —s < s+1—-2b—v,,.
Case 3.3c. |k —n| < €lk|

Note |k1| = |n| — |k1 —n| = (|ca| — €)|k| — €, so for € small enough, |ki| = €|k|. Write
n — k1 = pk for some |u| € {0} U [1/|k]|, €], n = cok + 0 for some || < e.
With this notation,

k* — a(n — k1) — a(k —n)?| = |a(c3 — 1°)k* + 3ad(1 — c2)*k* — 3a6*(1 — c2)k + ad®|
> afca® — ) [E|® — 3ae(1 — 2)%k? — 3ae®(1 — o) |k| — ae® = |k,
for € small. Then the supremum is finite for s — s < s + 2 — 3b — v, by the same reasoning as

before.

45



Case 4. kn=0

The bound is immediate in this case.

3.7.4 PROOF OF PROPOSITION 3.4.6

As in the previous proof, it suffices to show that the supremum of the following quantity is finite:

(ky2 s i (kr)™25kay 25k — k1 — ko)™ 2|k + kol?
(Oéki?) — (kil + kg)z — Oé(k? — k1 — k2)3)2<01(k‘3 — ki:f — k’g — (k’ — k1 — k2)3)>272b.

k1,k2
We will work with the equivalent supremum

s1 S <k1>_2s<n - k1>_2s<n — k>_25
b O ) R — R~ R+ B
n#0

which results from changing variables ko — n — ki and canceling a factor of n? from the quotient.
Case 1. k1 =k

In this case, the supremum becomes

* (k —n)y=4s

k 2+2s1—2s )
supdk) T;O (n — dik)2(n — dok)?

Repeat the arguments from Case 1 of the R; estimate to show that the supremum is finite if
s1—s<lands—s1 <2s—yg—1.
Case 2. n— k1 =k

The supremum becomes

* (n —ky=4s

su k 242s1—2s ’
1p <k 7;0 (n — dik)2(n — dok)?2

which is the same as that in Case 1.
Case 3. (k—Fki1)(k+ ki —n)n #0
In this case, the supremum is bounded by

* )~ = k)2 — Ry

k 24251 .
sup k) ; (n — dik)2(n — dok)2{k — kiy2=2(k + ki — 2= 2{ny?=2b
n#0

Case 3.1. kn >0
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Here |n — dok| > k, so the supremum is bounded by

* k1>—28<n _ k,1>—25<n _ k>—25
. k251 < .
bl}ip< > %: (n _ dlk)2<k‘ _ k1>2*2b<k‘ +k — n>2*2b<n>2*2b
n#0

Case 3.1a. |n — dik| = €|k|

In this case we have the bound

sup <k’>281_2 Z<k1>—25<n _ k,1>—25<n _ k‘>_28 < sup <k>281—8—2‘
k k
nlzio
This is finite if 57 — s < 1.

Case 3.1b. € < |n — d1k| < €|k|
Note that |n| € [(d1 — €)|k|, (d1 + €)|k|]. Thus for € small, [n — k| 2 |k|. The supremum is finite

when s1 — s < 3 — 3b:

s k —2s n—k —2s o 9e k —2s
Sl}ip <k>281 25—2+2b 2 <k _< 1> < 1> < Sl’ip <k>2 1—2 4+4b2 < 1>
kl k‘l

k1>2_2b<k + kl _ n>2—2b ~ <k _ k1>2_2b
n#0

< sup <k,>251—2s—6+6b <0
k

~

Case 3.1c. [n —dik| <€

The supremum can be estimated by

<k.1>725<n _ k1>723
/{71>272b<k‘ + kl _ n>272b‘

sup <k>251+2+2ud1 +2e0—25—(2—2b) Z
k = k-
(n~dik)
If all four factors in the summation are of order at least |k|, this is easy to estimate. Furthermore,
if any one factor in the summation is of order « |k|, then the other three factors are all > |k|. This

implies that the sum over ki can always be controlled by a sum of the form
<k>f2(272b)725 Z<m>72s < <k>f2(272b)72s,
m
which means that the supremum is finite whenever
251 + 2+ 2vg, + 2€90 —4s — 3(2 — 2b) < 0,

which holds when s; — s < s+ 1 —vy,.
Case 3.2. kn <0

Cancel (k)? with (n — dik)? and repeat the arguments from Case 3.1.
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3.7.5 PROOF OF PROPOSITION 3.4.7

Decompose Rj3 into two sums based on whether or not ki + k9 is zero:

*
. Uy Uko Vky (k?g + k:g)
Rs(u,v), = ik
3, V) k1+k22+k3_k ak? — k3 — a(ky + k3)?
k1#0
* *
. Uk, Uky Uk (K2 + K3) . Up, Uy (b — k1)
=ik k
Z k1+kzz+:k _p, R =k} — alky + ky)? T k%:o ak? =k} —a(k = k)?
k1+/€2920 '
k1#0
Ed
_ ik Z Uy Uky Vky (]6‘2 + k’g)
o E T Ok — k3 — a(ks + k3)3
k1+ko#0
k1#0
* k— k1 k+ k1
Rk go k| [ak3 ok k) a ik —alkt k1)3}
=1+ 1II

To bound II in X;l’bfl, note that the bracketed sum is equal to

2(1 — a)kt
k‘%(/ﬁ — dlk‘)(/ﬁ — dzk)(k‘l + dllﬁ)(lﬂ + ko)

and by an application of Cauchy-Schwartz and Young’s inequalities, it suffices to show that

* <k1>4—4s

k, 242s1—2s
s%p< ) k§0 (k1 — d1k)2(ky — dok)2(k1 + di1k)2(k1 + dok)

2<OO.

Case 1. £ >0

In this case, |k1 — dokl, |k1 + d1k| > k1, k and the supremum can be estimated by

* <k‘1>2_48

k 2s1—2s .
sup (k) go (k1 — dik)2(ky + dok)?

Case 1.1. |k21 — d1k|, |k‘1 + d2k| > ek
Here we have the estimates |ki| < [(|d1| + e)/e]|k}1 — dik| and k| < [(|d2| + e)/e]|k1 + dak|.
The supremum can thus be bounded by
sup <k>281_28_2 2 <k1>—4s <o
k k1>0

for s1 —s < 1.
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Case 1.2. |k; — dik| = €k, € < |k1 + dak| < €k (or vice versa)
In this case, note that k1 = (d; — €)k and bound the supremum by

sup <k>25172571 Z <k1>f4s+1 < sup <k>2517237174s+2 <o

Whensl—s<23—%.
Case 1.3. |k1 — dik| = €k, |k1 + dak| < € (or vice versa)
There is only one term in the sum in this case since k1 ~ —dsk. The supremum can be bounded

by

sup <k>251 —6S+2+2Vd2 +2e€0 ’
k

which is finite when s1 — s <25 —1 — vg,.

This exhausts the cases with k& > 0 since by choosing € small, we may ensure that |k —dik| < ek
and |k1 + dok| < ek cannot occur simultaneously.
Case 2. £ <0

Note that |k — d1k|, |k1 + d2k| > k1, |k| and proceed as in Case 1. This completes the proof of

the estimate for II.

To complete the proof, we must bound I in X As before, it suffices to show that the
following supremum is finite:

(k)™ ko) ™25k — Ky — ko)™ 25|k — K |?
(k3 — k3 — a(k — k1)3)2akd — k3 — k3 — a(k — ky — ko)3)2—207

Sllip <k_>2+251 Z

k17#0,k2
k1+k2#0

or equivalently

(Y2 — k)2 — Kyl — b
(k1 — dik)2(k1 — dok)2(ak® — k3 — (n — k1)3 — a(k — n)3)2-20"

sup <k‘>2+251 Z
k

k1#0
n#0

Case 1. |k —dik| <eor |k —dok| < e
Assume that |k — d1k| < e. The other case is parallel. Note that

’kl — dzk” = (dl — dQ)‘k| — |/€1 — dlk‘
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so that |k — dak| 2 |k|. Also we have |k; — k| < |k — d1k| + |di — 1||k| < |k|. The supremum may

thus be bounded by

(n —k1)=2%(n — k)=2°
(ak3 — k3 — (n — k1)3 — a(k —n)3)2=20"

sup <k>281+2+21/dl+2€0 —2s Z
n#0
(k1~d1k)
Case 1.1. |n — k1| = €|k, [n — k| = €|k|

In this case, the supremum is bounded by

sup <k>281+2+2ud1+260 6s Z <ak3 k3 (n_ kl) —Oé( ) > (2— 2b

n#0
(k1~d1k)

This is finite when 251 + 2 + 2v4, — 65 <0, i.e. when 57 —s5 <25 —1—1y,.
Case 1.2. |n — k| < €|k

Note that in this region |n — k1| 2 |k| since
|n—k1] (1—d1)|]{7’ |k—n‘—’k1—d1k’>(1—d1—6)|k‘—6.

Write

n —k = pk for some |u| < e, k1 = dik + ¢ for some |d] < e.

Then

lak® — k3 — (n — k1)® — a(k — n)?| = |ok® — (dik + 6)° — [(1 — di + p)k — 0] + apk?|

= |k [ — 1+ 3dy — 3d} + O(e)] + O(e)k* + O()k + O(e?)| = |K).

The supremum is bounded by

Sup <k>231+2+2ud1 +2e0—4s Z <n — k’>_25
n#0 (ak® —k} — (n —k1)3 — a(k —n)3)2-2
(kl"’dlk)

>251+2+2Vd1+260 —4s Z < > 2

2s1+2+2 +2€9—4s—6+6b
<k)3>2 RN T < Sl]ip <k> s1 Vd, +2e0—4s

< sup <k <
k

Y

n#0
for s1 —s <s+4+2—-3b—1y,.
Case 1.3. |n — k1| < €lk|

In this case, |n — k| 2 |k|. Write
n — k = pk for some |u| € [1/|k|, €] k1 — dik = ¢ for some [d| < e.
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Then

lak® — k3 — (n — k1) — a(k —n)3| = |ak® — (dik + 0)% — [(1 — dy + p)k — 6] + ap’k?|

= |la =1+ 3dy — 3d; + O(e)]k* + O(e)k* + O()k + O(e?)| = |K|.

Thus the supremum is finite when 51 —s < s+ 2 —3b—vg,:

>251+2+2ud1 +2¢p—4s Z <7’L - k1>_28 <

>251 +242v4, +2¢0 —4s—6+6b
<]{;3>272b ~

sup (k sup (k
k k

n#0
(k1~d1 k)
Case 2. € < |k — dik| < €|k| or € < |k1 — dak| < €|k|

Assume that € < |k1 — d1k| < €|kl|; the other case is similar. Note that we have |k — k]

and |k1 — dok| 2 |k| so that the supremum is bounded by

su 251 (k) ™25(n — k)25 — k)2
p (k) k|Z>:|k| (k3 — k3 — (n— k1)3 — a(k — n)3)2—2b"
n#0

Case 2.1. |n— k1| = €|k|, |n — k| = €|k

Here the supremum is bounded for s; — s < 2s — %:

k1>72s
k 2s1—4s <
Sup< > |k§|k| <ak3 _ k:f _ (n _ k1)3 _ a(k _ n)3>2—2b
n#0
< sup <k>231 —4s Z <k1> 2s < sup <k>251 —45—2s+1 < o,
|k [Z |kl

Case 2.2. |n — k| < €|k
In this case, notice that |n — k1| = |k1 — k| — |n — k| = (1 — dy — 2¢)|k| 2 |k| and write
n —k = pk for some |u| < e k1 — dik = 'k for some || < e.
Then
|ak® —k§ — (n— k1)? = a(k —n)’| = [K*[a — (di + p')° = (1 = di + p— ) + apr”]|
= [K*[(1 — @) + 3(df — d1) + O(e)]| % [K[>.
Thus the supremum is bounded by

k1)—2s it o ony
sup <k>2$1 —2s Z << 31>>2 = < bl;p <k‘>251 254+1—-3(2—2b)—2s+1 <o
k1|2 [K|

In| <[kl

o1

<Q0.

< ||



if s1—s<s+2—3b.

Case 2.3. |n — k1| < €[k

[y

Here |n — k| 2 |k|, so the supremum can be estimated as follows for 1 — s < s — 5:

[\

k1>72$ o
k 2s1—2s < S k 281 —25—2s+1 < 0.
o k%%mﬂﬁ—ﬁ—wn—hﬁ—aw—nﬁwﬁb o
Case 3. ‘k‘l dlk‘ 6|]{2’ |]€1 dgk‘ 6’]{’

In this case, we need to bound

(k)220 — k)~ %(n — k)% |k — by |?
(ak3 — kiq’ —(n—k1)3 —a(k—n)3)2-2b"

sup (ky2s1—2 2

k1#0
n#0
Case 3.1. |k1| = €|k

Here we have |k — k| < |k1] so that for s; — s < 1, the supremum can be estimated by

Sup <k>251 —2 Z <k‘1> 25<n k‘1> 25<n >—25 < Sl]ip <]€>281_25_2 < o,

k1#0
n#0

Case 3.2. |k1| < €|k|
Here the supremum may be bounded by
k1>72372<n _ k1>725<n _ k>725
k 2s1 < )
sup (k) 2 (k3 — 13 — (n — k)3 — ok — n)3)2-2b

k1#0
n#O

Case 3.2a. |n — k1| < €|k|
Note that we have |n — k| > |k1 — k| — |k1 —n| = (1 — 2¢)|k| and write

k1 = p1k for some |pi| € [1/]k|, €]
n — k1 = pok for some |ua| € [1/|k|, €]

= p1 + p2 where || € [1/]k[, 2¢].

The lower bounds on w1 and ue are positive because of the mean zero assumption on u. The lower

bound on g comes from the fact that n # 0. With this notation,
lak® — kY — (n — k1)® — a(k —n)?| = |uk?||(a — 1)p® + 31 — ) + Bpapo| 2 k7).
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Then the supremum is bounded by

B <k.1>72572 b B
Sl]ip <k‘>251 2s Z <k2>2_2b < Sup <k>251 25—4+4 Z <k‘> 25—2
k1#0 k1#0
In|<|k| In|<|k|
< sup <k‘>281 —2s5—4+4b+1 Z <k‘ > 25—2 < sup <k,>231 —25— 4+4b+1
k1#0

which is finite for s1 — s < 5 — 2b.
Case 3.2b. |n — k| < e|k|
In this case, note that |n — k1| > |k — k1| — |k — n| = (1 — 2¢)|k| 2 |k| and write

k1 = p1k for some |u1| € [1/|k], €], n — k = pok for some |ug| € [0, €].
Then

alk? =k = (n— k1) —alk —n)’| = [E®| | — pf = (1= i1 + p2)® + aps3)|

= k3|11 —a+ O(e)] 2 |k3.

Thus for s1 — s < g — 3b, the supremum is bounded:

s s ky~22 s s— —25—
Sup <k>2 1—2 Z <k§>2 - < sup <k‘>2 1—25—6+4+6b+1 Z <k‘ > 25—2
b e

~

< sup <k>251—2$—6+6b+1 < o,
k
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CHAPTER 4

THE KLEIN-GORDON-SCHRODINGER & ZAKHAROV SYSTEMS ON R¢

4.1 INTRODUCTION

In this work, we derive smoothing estimates for the Klein-Gordon Schrodinger system (KGS) with
Yukawa coupling:
iup + Au=—uv, zeR? teR
vt + (A + 1)v = |ul? (4.1)
(u(-,O),v(-,O),vt(-,O)) — (ug,v0,01) € H® x H" x H™1.
We also consider the closely-related Zakharov system:
iug + Au=un, xzeR? teR
ny — An = Alul? (4.2)
<u(-,0),n(~,0),nt(‘,0)) = (ug,no,n1) € H* x H" x H" L.
The results here have appeared in [31]. The KGS system (4.1) is a model from classical particle
physics, in which u represents a complex nucleon field and v a real meson field [46]. The Zakharov
system (4.2) was introduced in [101] to model Langmuir turbulence in ionized plasma. In it, the
function u represents the envelope of a oscillating electric field while n represents the deviation of

ion density from its average value.

Solutions of the Klein-Gordon-Schrodinger system conserve the mass and the Hamiltonian en-
ergy:
M(u) = |ul 2
Bl v.u) = [Vuls + 5 (JolBa + o3 + [ VolRa) - [ luPods,
Note that the energy space for the KGS system is H' x H! x L?. Similarly, the Zakharov system

has the following conservation laws:

M (u) = ful 2
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~ 1 _
B, ) = [Vl + 5 (Il + 1-2) 2l + [ JufPn o

This law identifies the energy space as H! x L? x HL.

The wellposedness theory for the Zakharov system on Euclidean spaces has been extensively
studied. Sulem and Sulem derived existence results for smooth solutions in dimensions d < 3
[93]. The regularity assumptions and dimension restrictions were weakened in [2, 80, 66, 90]. In
[51], Ginibre, Tsutsumi, and Velo applied Bourgain’s restricted norm method [19] to obtain local
existence results in all dimensions, covering the full subcritical regularity range (excluding the
endpoints) for d > 4. In dimension d = 1, they obtained local existence at the critical regularity
[2xH 3 x H 3. In [58], local ill-posedness results were obtained for some regularities outside the
well-posedness regime established in [51]. In dimensions two and three, the local well-posedness
was obtained in the critical space L? x H ~2x H"3 in [11] and [10] respectively. These results are
sharp in the sense that the data-to-solution map fails to be analytic at lower regularity levels.

In one dimension, the Hamiltonian conservation law upgrades local existence to global for
initial data in H' x L? x (—A)%IP. This result was improved in [83, 82] using Bourgain’s high-low
decomposition [22] method and the I-method [28] respectively. It was lowered further to global
existence in L2 x H~1/2 x H=%/? in [27] using an iteration method relying on the L? conservation of
u. In two and three dimensions, global existence in the energy space follows from the Hamiltonian
conservation as long as |uglz2 is sufficiently small. In two dimensions, global well-posedness for
some regularities below the energy space was obtained in [67] using the I-method.

Unlike the Zakharov, the nonlinearity in the wave part of the Klein-Gordon-Schrodinger system
contains no derivative. Thus we have well-posedness at somewhat lower regularity levels for this
system. For the two-dimensional KGS, local well-posedness holds in H it x H"3 x H _%; see
[85]. The same result, up to endpoints, hold in three dimensions [84]. Local existence in higher
dimensions follows from the estimates derived for the Zakharov in [51].

For the Klein-Gordon-Schrédinger system in dimensions d < 3, global existence in H' x H' x L?
follows from the Hamiltonian conservation law. In three dimensions, global existence somewhat
below the energy was proved using Bourgain’s high-low decomposition method in [81]. This was
improved in [96], where the I-method was used to obtain global existence below the energy for

d < 3. Global existence for the three-dimensional KGS in L? x L? x H~! was obtained in [27],
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again relying on the L? conservation law for u. This was lowered to L? x H ~3x H™3 ford = 2
and to L2 x H 3+t x H 3% for d = 3 in [85]. We also note that global existence for the closely
related wave-Schrodinger system on H® x H” x H"~! for some s,7 < 0 was shown in [4].

This chapter is concerned with the dynamics of solutions to (4.1) and (4.2). The main result
is that the difference between the linear evolution and the nonlinear evolution resides in a higher-
regularity space. This follows from a refinement of the bilinear X local theory estimates, similar
to that contained in [26] for two dimensional nonlinear Schrédinger equations with quadratic non-
linearities. The difficulty in this case is that the addition of a Klein-Gordon or wave equation to the
Schrodinger to obtain (4.1) or (4.2) respectively complicates the resonance relations in the system,
making the estimates more challenging. As in [26], the proof depends on delicate decompositions
of the frequency space to control the nonlinear interactions, with especial care being required near
the resonant sets of the interaction.

In the remainder of the chapter we present some consequences of the smoothing estimate. One
of these is a simplified proof of the existence of a global attractor for the forced and damped Klein-
Gordon-Schrodinger equation in dimensions d = 2,3. This result is known [74], but the existing
proof relies on truncation arguments to obtain the necessary compactness. The truncation step
can be eliminated by the employment of the smoothing effect of the nonlinear flow, significantly
simplifying the argument. Secondly, we show global existence below the energy space for the
four-dimensional Klein-Gordon-Schrodinger system for |ugl|z2 sufficiently small using a variant of
Bourgain’s high-low argument [22]. Similar smoothing estimates have been used with high-low
decomposition method to prove global existence for other equations — see e.g. [33] for results on the
periodic fractional Schrodinger equation. We remark that method of [27] to obtain global existence
for the Klein-Gordon-Schrodinger does not apply; in four dimensions, there is not sufficient slack in
the wave equation estimates to iterate that scheme. The refinement used in [85], which uses X®?
estimates instead of Strichartz space controls, also cannot be directly applied. Smoothing estimates
provide a straightforward proof of the global existence.

The chapter is organized as follows. In Section 4.2, we introduce the function spaces required
for the estimates, and in Section 4.3, we state our results. Sections 4.4, 4.5, and 4.6 contain the

proofs of the main smoothing estimate, the existence of the Klein-Gordon-Schrodinger attractor,
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and global well-posedness in R?* respectively. Finally, in Section 4.7, we prove the main bilinear

estimate.

4.2 NOTATION & FUNCTION SPACES

To prove the desired estimates, we work with transformed versions of the systems (4.1) and (4.2).
Define A = (1— A)Y2. For the Klein-Gordon-Schrédinger system, let v* = v +iA~1v,. Under this

transformation, (4.1) becomes

iug + Au = —1u(vt +v7),

v F Avt = TA 7 ul? (4.3)

(u(-,()),vﬂ-,())) = (ug,vy) e H® x H'.

For the Zakharov system (4.2), we similarly define n* = n +iA~n;. After this transformation,
(4.2) becomes
iug + Au = u(n™ +n"),
mz—r F Ant = FA A F A7 Ren® (4.4)

(u(-,O),ni(-,O),nt(-,O)) — (uo,n) € H® x H',
Notice that we can recover the original function v and n by taking the real part of vt and nt

respectively. The corresponding Bourgain spaces are defined by the norms

Julxes = 66 + 626, 7)z2
Joll gz = K€Y & IEDPa(E 7z

The multiplier for the Klein-Gordon evolution is technically (7 + (¢)) rather than {(r + |¢|), but
(1t £{&) ~ (1t £ |¢]) and using the latter multiplier results in a cleaner exposition. We also define

the time-restricted versions of these norms:

inf |0

HUHX?b: inf ||af xs v v="0,|t|<6

H s,b.
u=a,|t|<6 Xy

HX;,ZZS =
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4.3 STATEMENT OF RESULTS

In the first part of this section, we give the main theorems which demonstrate the smoothing effect
of the nonlinear flow. We then give two results which show some of the implications of smoothing

for the global dynamics of the system. First, we state the theorem for the Zakharov system.

Theorem 4.3.1. Consider the Zakharov evolution (4.4) on R?. If d = 2,3, assume that r > f%

with2s—r>%andr<s<r+1. Then

u(t) — ePug e CLHET

nt(t) — et nt e OLHITP

on the interval of existence as long as « < min{3,7—s+1,7+2—2} and B < min{2s—r—1,s—7r}.

If d = 4, assume r > % and 2s —r > d%Q with r < s <r+ 1. Then the same statement holds if

B <min{2s —r — 9452% s — 1},

The restrictions on r and s are necessary to ensure well-posedness of the equation. The values
« and [ represent the smoothing effect. For instance, in dimensions d = 2,3, for initial data in
H3 x L?, the nonlinear part of the evolution lies in H'~ x H 37, A similar result holds for the

Klein-Gordon-Schrédinger system.

Theorem 4.3.2. Consider the Klein-Gordon-Schrédinger evolution (4.3) on R, If d = 2,3,

assumes>—% andr>—% with?s—r}—% andr —2 < s<r+1. Then we have

u(t) — ePug e CHET

vt (t) — eFtE e O HIP

on the interval of existence as long as o < min{3,r—s+1, 7‘+2—%} and B < min{2s—r+3, s—r+2}.
Ifd = 4, assume r > % and 2s —r > % withr —2 < s <r+1. Then the same statement holds

ifﬁ<min{2s—r—%,s—r+2}.

For the Klein-Gordon-Schrédinger system, the smoothing effect on the wave part is much
stronger than that on the Zakharov because of the lack of derivatives in the nonlinearity. For

instance, in dimensions d = 2,3 and initial data in L? x L?, the nonlinear part is in H 3= x Ha™
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The proof of these results is in Section 4.4. It depends on the following new bilinear estimate for
the Schrédinger nonlinearity, together with the known local theory estimates for the wave equation

nonlinearity.

Proposition 4.3.3. Assume d = 2 and b = %—i— with s, > —%. Then the estimate

luv]xerapr S Julxap]v] o (4.5)

holds for a < min{%, r—s+1,r+2— %} The same result holds with the restricted versions of the

norms.
We also state the estimates for the wave and Klein-Gordon nonlinear terms:

Proposition 4.3.4 ([10, 11, 51]). Let b = 4. Ifd = 2,3, assume s > —1 with 25 — o > 3 and

D=

s>o. Ifd =4, assume2s—a>% and o < s, s =0. Then

[ACul) xoo-1 < Julie-
The same result holds for the restricted versions of the norms.

Proposition 4.3.5 ([51, 85, 84]). Let b = %—i—. If d = 2,3, assume s > —i with 2s — o > —% and

c—2<s. Ifd >4, assume that 2s — o > % and o —2<s,s>=0. Then
—11,,12 2
(AT (ulDl xgr-1 = fullxss- (4.6)
The same result holds for the restricted versions of the norms.

We remark that a half derivative gain is the best that can be hoped for in the Schrodinger
evolution from the use of such bilinear estimates. To see that the bilinear estimate (4.5) fails for
o> %, let & = xp, and 0 = xB,, where

Bi={(61,&, . &m) e R* i e — NI < N7 Jg| < Lfori > 2, |r+ N? <1},

B2:{(§17§27"'7£d7T)ERd+1: |§1|<N717 |£Z’<1fOI'Z>27 |T‘<1}

for some N » 1. Then |jul ys» ~ N*"% and 0] o ~ N~z while @v is roughly N~!yp,, so that
+

[uv| xstab & N*+2=3 . This can only be bounded by ||ul| xs.s[v]| s ~ N*~! when a < 3.
-
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As an application of the smoothing estimate, we study the existence of global attractors for the
dissipative Klein-Gordon-Schrédinger evolution. Proofs generally use the dissipative property to
obtain decay of solutions, followed by a weak-convergence argument to show compactness of the
absorbing set. This second step is particularly challenging on noncompact spaces such as R?, where
proving compactness can be difficult. For the dissipative Klein-Gordon-Schrodinger evolution on
R?, d < 3, the existence of a global attractor was proved in [74]. In the following, we simplify the
proof using our smoothing estimate.

With the addition of damping and forcing terms, the Klein-Gordon-Schrodinger (4.1) system

becomes

iug + Au+iyu = —uwv + f, xeR?
(4.7)

v + (—A + Do + dvy = |ul? + g.

We will be concerned with d = 2,3 and initial data (u(m, 0),v(w,0),vt(x,0)) in the energy space
H' x H' x L? with damping coefficients v, § > 0 and forcing terms f, g € H'. In the following, U (t)
will denote the evolution operator corresponding to (4.7). Note that the notion of a global attractor
is only reasonable when the system is globally well-posed. For the forced and weakly damped
system, global well-posedness holds in the energy space H! x H! x L? by a minor modification of
the nondissipative local theory arguments together with decay of the Hamiltonian energy (see [40]
for details).

Recall Definitions 2.5.1-2.5.2, which defined the global attractor and absorbing set. Using energy
estimates, it can be shown that (4.7) has an absorbing set in the energy space H' x H! x L?. We
will show, using Theorem 2.5.3, that the w-limit set of this absorbing set is a global attractor.
This theorem uses asymptotic compactness of the solution flow, which we will demonstrate using

a smoothing estimate for the dissipative system. We obtain the following result.

Theorem 4.3.6. The Klein-Gordon-Schrédinger evolution in dimensions d = 2,3 has a global

attractor in H' x H' x L? which is compact in H3~ x H3 x H>.

The existence of a global attractor is known [74]. However, the compactness statement appears
to be new. We remark that the existence of a global attractor for the dissipative Zakharov system

(without a mass term) on Euclidean spaces appears to be an interesting open problem. The
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methods we use cannot be applied to the Zakharov because of difficulties in controlling the low-
frequency components of the wave equation. We also remark that our proof method also applies
to (4.7) with forcing f,g € H ~3%. In this case, we obtain a global attractor which is compact in
H2™ x Hz2t x Hzt,

As a second application, we use a variant of the high-low decomposition method together with
the smoothing estimate to obtain global existence for the Klein-Gordon-Schrédinger equation in

four dimensions.

Theorem 4.3.7. The Klein-Gordon-Schrodinger evolution (4.3) is globally well-posed on H® x H"
for s,7 > 9/10 as long as |ug||p2 < v2C1C2, where Cy and Co are the optimal constants in the

four-dimensional L* and L¥? Gagliardo-Nirenberg-Sobolev inequalities respectively.

The constraint on the norm of the wg is necessary to ensure that the energy functional is
positive definite. The optimal constants in the Gagliardo-Nirenburg-Sobolev inequalities have been

established by Weinstein [98]. The proof of this result is in Section 4.6.

4.4 PROOF OF THEOREMS 4.3.1 & 4.3.2: SMOOTHING RESULTS

In this section, we give the proof of the smoothing theorem for the Klein-Gordon-Schrédinger
flow. The proof for the Zakharov equation has the same structure; it is obtained by adding two
derivatives to the wave nonlinearity which appears in the Klein-Gordon-Schrodinger system. Since
the calculations for the Zakharov equation are similar, they are omitted.

Writing the solution to the transformed Klein-Gordon-Schrédinger equation (4.3) in its Duhamel

form yields
. (Y
u(t) — e*Pug = _QJ ett=t)A (u(v+ + v_)) dt’
0
¢
Ui(t) . eiitAUOi _ $J 617?(15715’)‘4 (A—1|u|2> dt’.
0
Let § be the local existence time of the solution. Then on [0, 4] we have

Jul gz + 10 g, < luolzs + o - (48)
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To control the Duhamel integral terms, we use the embeddings X < COH* and X ;’b — C°HT,
which hold for b > %, along with Lemma 2.2.3 for the Schrodinger and Klein-Gordon X*? space
norms, which can be found explicitly in [51]. Using these estimates yields

|u(t) — eimu()HL[ooo’é]Hsm S H’U/UJFHX§+Q,Z;71 + HU'U_HX(?JFQ,bfl

v (6) = 40 gz e < 1Al a0

Using the estimates from Propositions 4.3.3 and 4.3.5, we have

it A + -
[u(®) = " uolugy  prove < ol oo (10l s, + 07 o)

Using the local theory bound (4.8), we conclude
Ju(t) — S ugl

. 2
o5 (8) = ¥ A s < (ol + o )

N 2
v 5 (ol + e lar)

Repeating this process shows that the nonlinear part of the solution remains in H5t® x H"*# for
the full interval of existence.

To prove continuity, write

(u(t) — e*muo) - (u(t +€) — ei(t+6)Auo>

t+e , t ,
- ;L gltre=t)a (u(v+ + v_)> dt’ — ;L e!t=t)A (u(vJr + v_)) dt’

t
_ %(eieA _Id)f

0

) , 1 t+e
i(t—t)A + 4o ry oz
e <u(v +v))dt+2J

6i(t+e—t’)A <u(v+ + U_)> da+
t

The continuity follows by applying the estimates stated previously along with the continuity of

(u,v%) in H® x H"; see [36]. Continuity of the nonlinear part of v is proved in the same way.

4.5 PROOF OF THE EXISTENCE OF A GLOBAL ATTRACTOR

In this section, we use smoothing estimates to simplify the proof of the existence of a global attractor

for the dissipative Klein-Gordon-Schrodinger flow in two and three dimensions. To prove this result,
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we need to establish boundedness and asymptotic compactness of the flow. The boundedness follows
from the energy equation; compactness is the challenging part. To prove this, we use boundedness
to obtain a weakly convergent sequence of solutions. The energy equation is used to upgrade the
weak convergence to strong convergence, yielding the desired compactness. The energy functional
contains cubic terms which can easily be bounded using our smoothing result and the embedding
H3* < [®. In the existing proof, an extensive argument, involving uniform estimates of the
solution restricted to compact sets, is required to control these terms.

First we establish a weak continuity result for the evolution operator which will be needed to
work with the energy equations. A slightly weaker form of the following lemma is in [74, Lemma

3.1).

Lemma 4.5.1. Let d = 2,3. Let §(t) denote the semigroup operator for (4.7), and let L(t) denote
the linear part of the semigroup operator. If (ul, v, wl) — (uo,vo,wo) weakly in H* x H* x L?,

then for any T > 0,

L(#)(ug, vg, wi) — L(t)(uo, vo, wo)  weakly in L*([0,T], H' x H' x L?)

[§(t) — L(t)] (u, vg, wg) — [§(t) — L(t)] (o, vo, wo) weakly in LQ([O,T],H%_ x H3™ x H*).
Furthermore, we have pointwise weak convergence: for any t € [0,T1],

L(t) (ul, vy, wl) — L(t)(ug, v, wo) weakly in  H' x H' x L?

[§(t) — L(t)] (uf, vg, wg) — [§(¢) — L(t)](uo, vo, wo) weakly in H3™ x H% x H>.

Proof. The statements for the linear part of the flow can be verified using the Fourier multiplier
representation of the linear solutions. To work on the nonlinear part, we transform the equation
(4.7). Set f = (1—A)'fand g= (1—-A)"'g. Let & = u+ f and & = v — § with w = av + v;. We

will choose 0 < a « 1 later. This transformation yields

i+ Au+iyva=—(a— f)o+g)+ (A +iv)f
Uy +av +ag =w (4.9)

wt—l—(é—a)w—i-<1+a(a—5)—A)T1=\&—f\Q—a(a—d)g.
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The transformation allows us to replace the H! forcing terms by H? forcing terms, in exchange for
more complex nonlinearities. The introduction of w is convenient for energy calculations.

Consider the homogeneous linear system
ipt + Ap+iyp =10
q+ag=r (4.10)
re+ (0 —a)r + <1+a(a—5)—A)q:0.
In the following, we abuse notation and let L also denote the semigroup associated with this
equation. The nonlinear parts (U, V,W) = (4 — p,? — q,w — r) satisfy
iU + AU +iyU = —(U +p— )V +q+§) + (1 +iy)f
Vi+aV +ag=W (4.11)
Wi+ (6 —a)W + <1+a(a—5)—A)V= U +p—f]? —ala—0)g,
with zero initial data. Just as in Section 4.4, we can use bilinear estimates, together with the
smoothness of f and §, to conclude that (U, V,W) e H3~ x H3 x H?~ for initial data H' x H' x L2
in dimensions d = 2, 3.

We will show that every subsequence of [§(t) — L(¢)](uf,vf, w§) has a further subsequence
which converges weakly to the solution of the KGS, which implies that the full sequence converges
weakly to that solution.

Note that the sequence (u(,vy,wq) is uniformly bounded in the energy space. Denote by
(p™, ¢",r™) the solution to linear system (4.10) with initial data (uf,v{,wg). Let (U™, V"™, W™) be
the nonlinear part of the flow. For the nonlinear part, smoothing estimates along with the uniform

bound on the initial data imply that, for any T > 0,
{(U”, Ve W”)} is bounded in
C([~T,T),H2™ x H* x H>) n CY([-T,T],H 2~ x H> x H'). (4.12)
This has several implications:
(i) The Banach-Alaoglu theorem implies weak*® convergence of a subsequence of
(U™, v, W™} in LP([-T,T),H2~ x H> x H>").
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1
(ii) The Arzela-Ascoli theorem implies that {(U™, V", W")} is precompact in C([-T,T], H,2 X

loc

H* x H, 1_). By interpolation between this and (4.12), we find strongly convergent subse-

loc loc

quence of

{™,v*, W™} in C([—T,T],H%’ x HY " x H2).

loc loc loc

Similar statements hold for the linear parts (p™, ¢",r") in H' x H! x L2. By passing to a further
subsequence, we obtain a sequence, which we still call {(U nvnT, W”)}, which is weak™ convergent
in L®([-T, T],Hgf x H3~ x H?7) and strongly convergent in C ([T, T],HEC_ x HP " x HEY).
Denote the limit by (U, V,W).

To see that the limit is a distributional solution, multiply the equations for (U™, V", W"™) by an
arbitrary test function ¢ € C%([~T,T] x R?), integrate in space and time, and take the limit in n.

For U™, we have
ﬂ[—z‘U@ +UAp+ 17U + qﬁ((U +p—HV+q+3§-(1 +z'»y)f>} dx dt
= Ji_{réoff[_w%t +U"A¢p+inU"¢ + qb((U" +p =NV +¢"+§) - (1 + m)f)] drdt = 0.

The equality is a consequence of the local strong convergence ((ii)) of U™ and V™ and strong local

convergence of p" and ¢" in C([~T,T], H'~). To verify the limit for the nonlinear term, note that
Uf@b[(U” +p" = V" +q"+§) - U+p—HV+q+ §)] dxdt‘

_qus[(U"er"—f)[V"—Vw”—q]+ [U"—U+p"—p](V+Q+§)]dwdt'

<[ ¢l L=, ” [(U”er”—f)[V”—VJrq”—q] + [U”—U+p"—p](v+q+§)] dz dt|,
supp ¢

which decays by local strong convergence. For V" and W", we have

m—wt +0(aV + ag - W)] ddt - lim m—th + (V" + aj - W)} dedt = 0

and
JJ{—W@ ~VA$+ ¢((5 —a)W + (1+a(a— 5))v) - ¢<|U +p+ f2—ala— 5)5,)] da dt

= lim H[W%t - VA + d>((5 —a)W" + (1 +a(a— 5>)V”>
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- ¢<|Un +p" + f|2 —ala — 5)§)]dmdt = 0.

Again, convergence of the nonlinear terms follows from strong local convergence. Thus (U, V, W) is
a distributional solution of (4.11) with (U(0), V' (0),W(0)) = (0,0,0). Furthermore, by the weak*
convergence ((i)), we see that (U, V, W) is in the uniqueness class C([-T,T], H3™ x H x H?7).
Thus (U, V,W) = [§(t) — L(¢)](uo, vo, wo). The weak* convergence ((i)) implies weak convergence
in L2([-T, T],H%_ x H3~ x H?7) as desired since L?([-T,T], H3™ x H3 x H?7) is contained in
the dual of C([-T, T],H%* x H3~ x H?7).

To show pointwise weak convergence, fix a ty € [0,7]. By again applying the Banach-Alaoglu
theorem and passing to a further subsequence if necessary, we can ensure that the convergence de-
scribed above still holds, along with weak H3 x H3~ xH?~ convergence of [§(to)—L(to) ] (ufy, vi}, w),
say to (u*,v*,w*). Recall that we have shown weak* convergence of [§(t) — L(t)](u, v§, w) to
(U, V,W) = [§(t) — L(t)](uo, vo, wo) in C([O,T],H%_ x H3~ x H?7). Thus we have (u*,v*, w*) =
[§(t) — L(t)] (uo, vo, wo). O

In the remainder of this section, we work with the following transformation of (4.7):

iup + Au + iyu = —uv + f
vy +av = w (4.13)

wt—l—(d—a)w—l—(1+a(a—5)—A>v=|u!2+g.

Again, let §(¢) denote the semigroup operator for (4.13), and let L(t) denote the linear flow operator.
The evolution (4.13) has the absorbing ball property in dimensions d = 2,3. For a proof of this,
see [74, Section 2]. Thus to obtain a global attractor, it suffices to prove that the evolution is
asymptotically compact — that is, that for every sequence of initial data {(uf,v{,w)}n in the
energy space with corresponding solutions {(u",v™,w™)},, and every sequence of times ¢,, — o0, the
sequence {(u"(tp),v"(tn), w™(tn))}n has a convergent subsequence in the energy space.

Let (up,vn,wy) € H Lx H' x L? be a sequence of initial data. We may assume that the data lies
within the absorbing ball. Also let ¢,, — o0 be a sequence of times. The Banach-Alaoglu theorem
implies that the sequence §(t,)(tn, vn, wy) has weakly convergent subsequence in H' x H' x L2

Smoothing estimates together with bounds on the initial data imply that the nonlinear parts are
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bounded in H2~ x H3 x H?~. Thus we may choose a subsequence such that these nonlinear parts
§(tn) (tn, Vn, wn) — L(tn) (Un, Un, wy) also converge weakly in H32~ x H3~ x H?~. Since the linear
part decays to zero, these two limits must be equal. Call the limit (u,v,w).

For any T, we can, by passing to a further subsequence, conclude that §(¢, — 1) (up, Un, wp)
converges weakly in H' x H' x L? and that §(t, — T)(un, Vn, wn) — L(tn — T)(tn, vn, wy,) converges
weakly in H3/2~ x H3~ x H*~. Again, dissipative decay of the linear part implies that the two limits
are equal; we denote the limit by (up,vr,wr). Weak continuity of the semigroup (Lemma 4.5.1)
implies that §(7)(ur, vy, wr) = (u,v,w). Note that by a diagonalization argument, we can obtain
such weak convergence of §(t,, — 1) (tp, Un, wy) and §(t, — T) (tn, Vn, wy) — Lty — T) (tn, Un, wy) as
above for a countable set of T' simultaneously, e.g. {T" € N}. This will be important later when we
take T — o0.

The L? law for the evolution of §(t) gives

T
ita)unle = &2 15t~ Tyl —2Rei | @O0 =T+ shu, 1), d.

T
T2 =€ " Jur|z: — ' T, .
8 )ur 3 = T urls — 2Rei [ D iopur, 1), ds
0 2
Combining the two equations yields
H§(tn)un”2L2 - “§(T)UTH%2 = 6727T(H§(tn - T)un”2L2 - HUTH%2>

T
n 2Reif ezv(s—T)<§(s)uT — 8§ty — T + 8)up, f> ds.
0 %

The first term on the right-hand side can be made arbitrarily small by increasing T" since the u,
are uniformly bounded in L?. The second term decays to zero as n — oo by the weak continuity of

§in L?H!. Thus we conclude that

tim sup| [§(tn)un |32 — [§(T)ur|32 | = timsup| 15(ta)unl3> — Jul?:] < 0.
n—00 n—w

With the weak convergence of S(t,)u, to u, this implies that §(¢,)u, — u strongly in L?.
Now consider the full H' x H! x L2 energy equation. Define the energy functional H =

H (ugp,vg,wp)(t) as follows:

H = 2|Vl + (1 -+ ala— 8))I8(2)eol3 + [V8(E)eol3a + [5(twol s
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—2 [ 500l 5t)un dz + 4 [ S5TTu0 da
Then the time derivative dH/d ¢ is given by
43|V (0ol — 20(1+ afa — 8)) 1§00l — 20Tl — 206 — o) (el
+ (4 + 2a) J |§(t)uo|?§(t)vo da — 4y ReffS(t)uod:U +2 JgS(t)wo dx.
This implies that
H (up, v, wp)(tn) — H(up,vp,wp)(T) =1+ T+ 1II+ IV +V,
where

[ = ¢ 20T (H(un,vn,wn)(tn —T) — H(ur, UT;“’T)@))

T
== d(y—a) [ D9800 T+ s)uals — |V8(s)ur3] ds
0
T
—2(5 — 2a) f e%(S*T)[ug(tn — T + s)wy |22 — HS(s)wTuiz] ds
0

T
I = 2(2y — a) f f 22D [§(ty =T + )| *§(tn — T + 8)v0 — [§(s)ur*§(s)or | dzds
0
T
IV = — 4(vy — 2a) Ref e2a(S_T)<§(tn —T + s)up — S(s)ur, f> ds
0 LE
T oa(s—)
V= QL e <§(tn —T + s)w, — S(s)wr, g>L% ds.
The term I is negligible for large T'. For II, weak convergence implies that
lim inf IV§(ty — T + s)un|72 — [VE(s)ur|72 = 0,

liminf [§(t, — T + s)wa[72 — [§(s)wr[72 > 0

for each s, so the lim sup over n of II is nonpositive. Write the integral in III as
T
f JeQa(S—T) [’§(tn —-T+ s)un’2 — |§(s)uT’2]L(tn — T+ s)v,dxds
0
T
+ f feQa(ST) [’§(tn T+ s)un’2 — |§(s)uT’2] [§ — L](tn — T + s)vpdads
0

. JTJGQa(s—T)|§(S)UT|2 [§(tn —T + s)v, — §(S)UT] dz ds.
0
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To see that the first line vanishes in the limit, apply the L? Gagliardo-Nirenberg inequality |[h] s <
HVhHCi/QGHhH(LGQ_d)/G with the fact that L(t, — T + s)v, — 0 uniformly in H'. For the second line,
extract [§ - L] (tn — T + s)vy, in the H3~ <> L® norm and use the strong L? convergence of §(t,)uy,

to §(T)ur and strong continuity of §(s — 7). The last line decays by weak continuity of §(s) since

U The

|§(s)ur|? is an L? function by the Gagliardo-Nirenberg inequality ||h]zs < HVhHZ/thHLQ

remaining terms IV and V vanish in the limit by weak continuity of the semigroup.
Thus we conclude that
lim $Up| H (v, wa) (ta) = H (wr, vr, wr)(T) | = T sup| H (un, v, wa) (ta) = H(u, v,0)(0) | < 0.
n—oo n—a
This, together with the weak convergence of S(t,)(u2, v, w%) to (u,v,w) in H! x H' x L?, implies
that S(t,)(ull, vf, wk) converges strongly to (u,v,w) in H' x H* x L2 This completes the proof

of asymptotic compactness, and thus of the existence of a global attractor.

4.6 PROOF OF GLOBAL EXISTENCE IN R*

In this section, we prove global existence for the Klein-Gordon-Schrédinger system in four dimen-
sions. We work with the form of the equation given in (4.3) in dimension d = 4. In the following,
we drop the + superscripts on n to simplify the notation. Suppose we have (ug,ng) € H® x H" for
some s, > 9/10 with ||ug| 2 small. Fix T large. We wish to show that the solution (u,n) exists
on [0,T]. To do so, we decompose the solution into two parts: one with low-frequency initial data
and one with the complementary high-frequency data. Specifically, recall that A = (1 — A)Y/2 and

write u = ¢ + p and n = 1 + A\, where

i¢r + Ap = —3 Re(1h)¢

iy F Ay = FA7¢|?,

(4.14)

ipe + Ap = —5 Re(A + ¢)p — § Re(N)¢p
2 2 (4.15)
ixt F AN = FA Y u|? F2Re A~
The initial data for these two systems is (¢, 1) = (P<nyuo, P<nyno) and (o, Ao) = (uo—do, no—1o),

where P¢n is the projection onto Fourier modes less than N. We will allow these equations to
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evolve a local-theory time step . Then we add the nonlinear part of (i, \) to (¢,%) and start

again, i.e. evolve (4.14) and (4.15) another local time step with initial data

(é1,41) = (¢(5> + [1(8) = %o, ¥(8) + [A(6) — eWAAO])

(11, A1) = (€% g, eT4N).

To iterate this process, we use smoothing estimates to show that the nonlinear part of (u, ) is in
H' x H' and that relevant norms do not grow too rapidly, so that a uniform time step 6 can be
used to cover [0,T].

We will need the following observations, which hold for sg < s < 1 and rg < r < 1 to carry out

the local theory estimates:

|60l < N'*uof s < N*7° [0l < NY"|nolar < NV (4.16)
ol mrso < N7 ug|lgs < N*°7% Ao mro < N™7"|ngfpr < N7
In the following, we let m = min{s,r} and sp = ro = 3+.

In four dimensions, the relevant nonlinear estimates for the local theory are in [51]. In particular,

from [51, Lemma 3.4], we obtain

6
lunl ey e S Tl oyl e

£,
+

where 6 = min{3, { — (1 - ﬁ)} and k < ¢+ 1 —2¢e. From [51, Lemma 3.5], we have also

- 0
A 1|U|2HX4,7%+5 = HIUIZ\IXH%“ SEA T
+

+
as long as 2k — ¢+ 1 > 0 with 6 = (2k — ¢+ 1)/2 — 2¢/(1 + 2¢). Thus a time step
_9(1— _ —2/ro—
6 5 N7 g (nolleo + I o + ol + g L) ™"
yields local existence for (4.14) in H' x H' on [0, 6] with

H¢HX§,%+ + 9]

X A+ < lldoll gt + Yol g < N1*m7
5

=

and local existence for (4.15) in H*0 x H"™ with

”'MHX;O’%+ + HA”X:O:ﬁJr < HMO”HSO + ||)\0||Hro < Nmax{so—s,ro—r} — N1/2—m+’
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Next write p = e®% g 4+ w(t) and A = eT#4 )\ + 2(t), where w and z are the Duhamel terms
1
w(t) = —3 j lt=s)A [Re(A + )+ Re()\)qﬁ] ds,
0

t . J—
2(t) = f eW—S)A[m—lW T 2ReA_1u¢>] ds.
0

Then for 7o = so = 1+ and m = min{s, r}, we have, using the estimates (4.5) and (4.6) along with

the local theory bounds,

P Y BT Y (YR 7

S é +,0

H

) #1000 I g

< Nmax{sofs,rofr}lem _ N3/272m+
(4.17)
el 1l sy S 1l s (1 g 190,00

< Nmax{sofs,rofr}lem _ N3/272m+.

To iterate, we must ensure that estimates (4.16) and (4.17) remain valid for each time step.
This is immediate for the (i, A) initial data, since it is always simply a linear flow. Thus proving
the requisite bounds amounts to showing that the H' x H! norm of (¢, 1) is bounded by N~ over
each time step. To do so, we use the L? conservation and the Hamiltonian energy. Notice that the

tkdA

initial data for ¢ at time step k is u(kd) — e**% g, and the L? conservation gives |u — e™9% g1, <

|uo|z, (1 + N—%). Thus we have uniform control over |¢||;2. To control the remaining components

of the H' x H' norm, use the Hamiltonian
B(wn) = [ AnfZs +2/Vul3s — 2 [ uf? Re(n) dz.

This is conserved for the flow of (4.14), so we need only check that it does not grow too much
due to the addition of the nonlinear terms. Using the Gagliardo-Nirenberg inequality and Cauchy-
Schwarz, the increment of the energy is bounded as follows, where the norms are all evaluated at

time J:

[E(6(0) + w(8),w* (6) + 2*(5)) — E(6(8), " (9))]
< 1425 g (1425 g2 + 20 An* [ 2) + 2] Vool o (IV el + 2] V] 12 )

+ [V 2]¢ + w2V (6 + w) | 12
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995 g2 (Jwl 2 Vel 2 + 16+ wl 2] Vw2 )

Noting that ||¢ + w2 = |u — e ug|2 < 1 and |w|z2 < 1, this quantity can be controlled by

N3/2=2m+ N1-m o4 for F to remain bounded by N2(=m) e require
N3/272m+N17mN2(17m)/1“0+ < N2(17m)
which holds if m > 9/10. To complete the proof, we need to show that the energy controls the

H' x H' norm at each time step. This depends on the smallness assumption on « in L?. By the

Gagliardo-Nirenberg inequality, we have

Uw%dx

where C7 and Cs are the sharp constants of the following inequalities:

< 18salblzs < C1C3I01 2|V B2Vl 12 < CLO31] L2 T L2l A e,
1/2 1/2
1flzegey < ColV flzzmey 1 flussgsy < Cal FlYogs |V A1 g

By our construction of ¢ and the assumption that |ugl|;2 < v/2/(C1C%), we have at each time step
o] < (1 4+ N~%)4/2/(C1C2). By choosing N large, we also have |¢| ;2 < v/2/(C1C3) at each step.
Choose Cy < 1 so that |¢]2C1C2 < v/2Cy. Then we have

E(¢, %) = |AY|Z2 + 2|VoZ2 — 2v2C0| Vel 12| AV 12 2 [A¥]Z2 + 2| Vul 7.

Thus E(¢,¢) ~ quH?{l + [[¢3, at each time step.

4.7 PROOF OF PROPOSITION 4.3.3: BILINEAR ESTIMATE

By duality, to obtain the smoothing estimate (4.5) it suffices to show that
[ wowdzae = [ @t m)(en, ) dgodro < ful s ol gl -covonios
We introduce the functions f;, which allow us to state the estimate in terms of L? norms:
fL=@ T+ [g)a, fo=(& e, and fs =TI + ¢! .

Using these functions and the convolution structure of uv, the required estimate takes the form

(&o)* (€)™ 62) " fo(€o, 10) f1(61, 1) (625 T2) 2 '
Zfﬂo e RN SoC e R | WL S

> 7mi=0
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We proceed with the proof by breaking the integration region into many components and consid-

ering each separately.

CASE 0. [&],]&] < 1. We ignore the order one multipliers (§o)*T%(&)7*(£2)™" on the left-hand
side of (4.18) and work with

fjjf Jo(&0,70) f1(&1, 1) f2(&2, T2) dé, déy dr dr
X <7—0 B
ZTz

[S0?) 0 + 1€ 1) (72 £ [&2])°

< [ follz2

@o—mw>b11f(h§“71ﬁ(5°_§h ) derdn,

1+ &|2H% 70—71+’€0+€1|>b L2
070

Using Cauchy-Schwartz in d¢; dm and then in d€ydrg, the &, 790 norm in the previous line is

bounded by

1/2
2 2 (o — [€o[*)** d&r dmy
—10—11)d&1 d
U [P, m) 3 (= — &, —7o — 1) d&1 dmy ff JE TN Y ——— |£0+£1|>2b
1/2
sup U (o — 6™ dry déy
~\an (r+ (62 (=m0 — 11 £ [€o + &)
1/2
FH(&, ) f3 (=6 = &1, =70 = ) &y drmi|
Leg.mo
Notice that the L! norm on the last line is (HleHL%THfQQHL%T)l/2 = Hf1HL§,7|‘f2”L§T7 so we need

only show that the supremum is finite. This is simple when || < 1. First use the fact that

{a + by < {a){b) to obtain

J (1o — [€0|*)® =21y + |[&1]*)~%

—10 — 71 % [§o + &)

(10 + 71 — |&|* + [&1]*2
(=10 =71 £ |0 + &)

dTldfl Sj dTldfl.

Apply Lemma 2.3.4 and the fact that the integral is constrained to the region |£;| < 1 to bound

the supremum by

s f Q62 = [€of? + €0 + E1y? 2 dey < 1.

This finishes with the region where all the &; are small. The argument holds in any dimension

and puts no constraints on s, r, or a.
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For the remaining cases, the resonances of the equation play a significant role. To deal with
them, we need a few definitions. Let « denote the angle between & and &. We define the maximum

modulation M as follows, and use the fact that 79 + 7 + =2 = 0 and & + &1 + & = 0 to bound it:

M =max {|ro — |£o[?], |71 + &%), |72 £ |&]]} 2 |6 — & F &

F1

We also need a dyadic decomposition. Let fiMj = fi}{‘ﬂ%Mj} for M7 dyadic so that f; = >, f.Mj.

)

cos o +

Mzw@A

Then from (4.18), it suffices to show that

€. 70) 1M (61, 7) £ (€, 72) dey d&y dry dry
Z ﬂH@>”%@@M%—@W“@+MW@+KW”HMW' (4.19)

dyadlc ZT 0

In the following cases, we drop the Mf superscript to lighten the notation, and implicitly assume
that f; is supported on the dyadic shell |{| ~ M;. This results in estimates which depend on the
M;. To finish the proof, we show in each case that these estimates can be dyadically summed to

yield (4.19).

CASE 1. M = |15 — |&/?|. In this case, we must control

(Mo My Y5 Mo)~ ﬂﬂ <]\J;J>1€0;<721Ji 12117|2T;2<f72‘2(%1?2>’>b d¢; déo dry dro. (4.20)
517

2 Ti=

Recall that M 2 M;Ms|A|. We first consider the nonresonant regions, i.e. where |[A| 2 1.

Case 1.1. My < My ~ M; and |A| 2 1. Estimate the maximum M by M;M;. Decompose the

functions f1 and fo parabolically:

= > f, where  f' = fiX{n+le2=ns01)}

neZ

fo= Y1 f3",  where  f' = foX(rt|esl=mio)-

meZ
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Using this decomposition, controlling the integral in (4.20) amounts to bounding

Dy my? ffff fo(=& — &, 161> £ & —n —m — 6, — 65)
(1)

neZ meZ 0,=0 (421)

x [T =& +n+ 00) f3" (€2, F o] + m + 62) A&y A€o db: dbs.

To do so, recall we’'re assuming My < My ~ Ms, and decompose the supports of f; and fo
into squares (or in higher dimensions, hypercubes) of side length L ~ My. Denote these squares
by {|&1] ~ Mi} = U, Qi and {|& ~ Mo} = |J; R;. Note that since >, = 0 and Mo < My, Mo,
the square R; = Rj(;) is essentially determined by the square ();. Technically, each region Q;

could correspond to up to 3% of the R; regions, but this factor does not harm the estimates. Let

For the moment, consider only the inner d¢; dés integral in (4.21). For fixed 6;, n, and m,
change variables by letting u = —¢&; — & and v = &2 + & —n —m — 01 — 0. We will use u
and v to replace §; and one component of &. Let & = (&;1,&2,.-.,&,q). Computing the Jacobian

matrix for the change of variables in the two-dimensional case gives

WL s deh dhh -t A0
fg ,21 ddg ,22 ddgg ,21 ddg ,22 _ 0 —1 0 —1
dglv,l d21v,2 dg;l dgff,z 200 262 i% i%
52w @ wel oo 01

when we replace &1 and &1 by v and v. The result in the case when we replace 22 instead of & 1
is similar — the one in the final row just moves a column to the left. Computing the determinant

of the Jacobian matrix, we see that

21 gy gy and dudvd@,l—‘z&,ﬂf?’?
&l |€a]

depending on which component of & we retain. In higher dimensions the result is parallel:

&2,
I3

We may assume that M; » 1; Case 0 dealt with the region where all M; are small. Then

dudv d§272 = '25171 F d§1 df?,

dudvdépy---déaj—1dé 1 déa g = ’251,9' + d¢; dée.

we have [£1 ;| ~ M; » 1 for some j. Without loss of generality, assume that |£,1] ~ M;. Let
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7 : R? — R%1 be the projection onto the last d — 1 components. Define

H(u,v,82,83,....&2,4) = flo, (&, —|&]? +n+ 00)f3R, ) (&2, FlE2| +m + 62).

Then the d¢; dés integral in (4.21) is bounded by

> Hf folu, v)H(u,v,&09, .. £2,4) |2

Qi (£2,2,+562,0)em(R;(3))

-1

§2,1
€2

§11F dudvdéen...déo g

<Ml Y | H(u, 0,600, . E4) dbns . déng
Q; IV (62,2,-,82,a)em(R;(3)) Lz,
< L(dfl)/QMl—l HfO“L2 Z HH(u, v, 5272, - ,gQ’d>HL2
Qi U,0,€9 2,15 527(1

— —1/2
LM fol e VIIH G &)z

i

O ol S g, (€l o 00y | (€2 Flea] + ok o)
v Qi 1 2

< ZVPM P ol 17—l +n o+ 00)] 2 175 (€, Fléal + m+ 62)] 1z

The last inequality follows from applying Cauchy-Schwarz to the @; sum. Thus (4.21) is bounded
by

P YD RO | I VAR TR R

neZ meZ 6,~0(1)
< 175 (€0, Fleol +m+ 82)]12.
By Cauchy-Schwarz in 6; and 65, using the fact that §; = O(1), and then in n and m using the
fact that b > %, bound this by

LM fol gz 3y 1A G el o+ 00)liz , 0i-0q)

neZ

x > (my P f5 (€2, Tl +m )l 6.0

meZ

2
L(d—l)/QM;1/2 1—[ HfiHng
i=0

So in this case, the left-hand side of (4.20) is bounded by
<M0>s+a<M1>—s—r—2(1—b)—% L% ~ <M0>s+aMO% <M1>—s—r—2(1—b)—% )
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This is dyadically summable if @ < r + 2 — 4 for b — 5 > 0 sufficiently small.

Case 1.2. My « My~ M; and |A| = 1. In this case, we have My ~ My » 1. Thus M = ||&]? —
6112 F |62l ~ MG

If My » 1, we proceed just as in the previous case. (The restriction M; » 1 is necessary to

ensure that the Jacobian is nonzero.) Break the shells {&y : |£o| & My} and {&; : |&2] ~ Ma} into

squares (or hypercubes) of side length L ~ M; and change variables as in Case 1.1. This results in

the bound

<M0>s+a—r—2(1—b)<M1>—sM1_%L% ~ <M0>s+a—r—2(1—b)<M1>—s+%
for the left-hand side of (4.20), which is dyadically summable s + a < + 1 + min{0, s — 42}, i.e.
when @ < min{r — s + 1,7 — 95}, for b — & sufficiently small.

When M; < 1, we can use an argument similar to that in Case 0. Notice that

fﬂ Jo(&0,70) f1(€1,71) f2 (€2, 72) i, déydry drs
ZTZ

(ri+ 6 £ [&])

J1(61, 1) fo(—60 — &1, —70 — 1)
ol || G e AT

L%+, (€0~ Mo)

Using Cauchy-Schwartz in d¢; dm and then in d€p d7p, the last norm above is bounded by

1/2
+&aH)7
’ - y T - d d jj <T1 d dT
Jfl IO G s e (=10 — 11 £ & + &1|)? 1 dn
|§1]~ M 0 TO(|EO\~M0)
1/2
(1 + [y 2 o

< su dr d — =

\&ol%lf)wo Jf < TO—Tli|§0+§1‘>2b 1d&; Hf1( H 070
70 |&1|~M;

d2 1/2 2 d2
PRI R21YE = M) £ o) fol o

The rough bound on the supremum is obtained as follows. Using Lemma 2.3.4 a) gives

swp [l B en —n £l + P dn dg
€|~ Mo
7o €1 |~ M

< sup ﬂ Q62 £ |60 + &1] — mo)~2 déy < ME.

0,70
|€1|~M1
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In this case, we thus bound the left-hand side of (4.20) by
d
2

<M>s+a r—2(1— b<M> sM

which is summable when s + o <r + 1 for M; <1 as long as b — % is sufficiently small.

Case 1.3. My « My~ M; and |A| 2 1. The same procedure as in Case 1.1 works here, with the

simplification that no decomposition of the integration regions into squares is required. (The
decomposition served to ensure that the projection on the integration region in & onto any axis
had measure at most min{ My, M, My}, which is automatically true when My = min{My, M7, Ms}).

Repeating the change of variables and ensuing argument gives

ﬂf Jo(€0,70) f1(€1, 1) f2(€2, T2)
S50

{11+ [&]2)P(r2 £ (€2))P

da—1 71 2
d¢; déy dr dmy < M2 2 H 1fillzz,
0

Thus the left-hand size of (4.20) can be estimated by
<M>a (1-b)— 2<M2> T'MQ —(1- b)

For My < 1, this sums as long as « < 1. When Ms » 1, the product is summable when

a <1+ min{0,r — %}, i.e. when a < min{l,r — %}.

Case 1.4. Resonance. |A| « 1. Recall that A = cosa + |£22‘|§|1, so when A is small, |&] < [

Thus we assume that |£;1]| » 1, since otherwise all |§;| < 1. That region was addressed in Case 0.

Decompose parabolically as in Case 1.1 and take another dyadic decomposition about the
resonant surface: assume |A| ~ v « 1 dyadic. Then we need to control

Z 1bZ Z<"> *(my~? Jﬂffo —& =&, 6P £ &l —n—m— 61 — 6)

v«l neZ meZ

Beow (4.22)

< [P (Er, —1&)® + n 4 01) £5" (&2, Fla| + m + 02) A&y d€p dby dbs.

To visualize the region of integration, consider a fixed £;. The resonant surface A = 0 in £s-space
is then a slightly distorted version of a hypersphere of radius |£;| centered at —&;. This sphere has

equation |&2|? + 2[&1||€2| cos a = 0, while the actual resonant surface satisfies |€3|2 4 2|&1||€2| cos o F
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Figure 4.1: Integration region in &

62,2

2,1

[0 Resonant curve Integration region

|€2] = 0. The region of integration in & is a shell centered on this curve, with thickness < vM;.

This holds since for a fixed &1 and a fixed angle «,
Acn2w] = |&|e [2\@\(” —cosa) + 1,2|¢1](2v — cos @) + 1],

an interval of length 2v|¢1|. See Figure 4.1 for a plot of this region in R? for & € R*.
Decompose the annulus {|£;]| ~ M;} into two parts — a set B where {1 ;| ~ M; for each i, and

its complement. In two dimensions, this decomposition can be described explicitly by taking

T 3 5t Tm 97 117w 137 157
B = : ~ M =y —, = — ——<5 |-
fer s ot ~an s [3.57) o [5.5) o [757) o [55F))

Notice that the complement of B is simply a rotation of B about the origin. In higher dimensions,
the set B is similar — if we describe the space in hyperspherical coordinates, we require all d — 1

angular variables to be bounded away from multiples of 7/2 — specifically to fall in the intervals

[oF M) given above. The complement of B then consists of

nm d—1
87 8 2

— 1 copies of B, each of which

can be obtained from B by a sequence of 7/4 radian rotations.
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The remainder of this calculation will consider the two-dimensional case. There is no funda-
mental difference in higher dimensions; only much more onerous notation. We perform a rotation
so that (4.22) can be written as a sum of two integrals over B. In the following R, denotes a

rotation by y radians.

ZZ 1b22<n> (my Hﬂfo Tfr —& — &), G £ 6| —n—m— 0, — 02)
6,=0(1

k=0v«l neEZ mez
\A|~1/
&1€B
<1 (R (§1), —[€1]* +n+ 00) f3" (R (€2), Fl6a] + m + 02) A&y Ao by dby.

Now break the d¢; d€» integration into two additional cases: one where for fixed §; and &21, the
projection of the integration region onto the & o axis is length < v M7, and one where for fixed &;
and &2 .2, the projection onto the &3 1 axis is length < vMj. Once again use the change of variables
from Case 1.1: set u = —&; — & and v = |£1]? + |&| —n —m — 01 — 0. In the first region, when the
projection onto the {3 o axis is small, change variables to replace d§; d§s with d¢s 2 dudv. When
the projection onto the &2 axis is small, use d§2 1 du dv.

Following exactly the same steps as in Case 1.1, we bound the (4.22) by

1 1 1

> M)z /MY S L

ve1?
using the fact that b > % In general dimensions, the bound is M, 22. Thus the quantity to be
dyadically summed is

(MY )= My~ MY M 0y

When A is small, there are only two possibilitieS‘ either My ~ My ~ My » 1 or My « MO ~ M.
In the first case, we must sum (Mo)y* =20~ b)+ 452 , which is possible when o« < r+2—9 =r— %.

In the second case, when My = 1 we get (My)*~(1=) <M2>7T+Tf(17b) which sums as long as
a < % + min{0, r — %} = min{Q,r - —} for b— 5 suﬂimently small. When Ms « 1, we estimate
the maximum modulation multiplier by one instead of AM;Ms, and use the argument in Case 1.3

(merely drop the M;(lfb) factors) to get convergence when a < %

CASE 2. M = |1y + |&]?].
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Case 2.1. My « My ~ My and |A| 2 1. When My < 1, the supremum argument in Case 1.2

applies. It gives the multiplier <M0>3+0‘<M1>*5*’"*2(1*b)M0%, which sums when s +r > —1, a con-
dition which is always met when s,7 > —%. When My » 1, decompose the M7 and M, annuli
into squares of scale My and use a change of variables just as in Case 1.1 to get the multiplier
<M0>s+°‘+7<M1> s=r=2(1=8) This sums when max{s + a + 952,0} < s +7 + 1, which holds when
S, > §anda<r—%.

Case 2.2. M; < My~ M; and |A| 2 1. Apply the argument in Case 1.1 to obtain the multiplier
d—1
<MO>5+a—r—2(1—b)—%<M1>—5M1 2 . When M; <1, thissums if a <r — s+ % If My » 1, we need

s+a<min{s — %510} + 7+ 3, ie. o <min{r —s+ 3,r — 2}

Case 2.3. My « My~ M; and |A| 2 1. Proceed as in Case 1.3 to obtain the multiplier

<M >a (1-b)— 2<M2> rM 2 —(1- b)

When M; < 1, this sums as long as a < 1. When My » 1, we require a < 1 + min{r — d%Q,O} =

min{l,r — %}

Case 2.4. Resonance. |A| « 1. The procedure is the same as that in Case 1.4, merely exchang-

ing the roles of (£1,71) and (&2, 72), and yields the same constraints.

CASE 3. M = |1y £ {(&2)|. Here we must control

oyt AU in

27'1
For the 2d case, the estimates in [26] give

1/2 2
jff fo 50)7_0 fl 5177_1>f2(£2¢7—2) d¢ déodrm dm < <IIHII{:]WM) 1_[ HfZHLit
=0
Zﬂ

{10 — [€0]?)P(m1 + [€1]2)P ax{Mo, M1}

However, for some cases the argument relies on the L*L* Strichartz estimate, which does not hold

for d # 2.
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Case 3.1. My < M ~ My and |A| 2 1. In this case, the arguments from [26] can be applied di-

-1 1
rectly to give a multiplier of M;,* M, ?. This means that we must dyadically sum

sta % —s—r—2(1-b)—1
(Mo)* ™My * (M) 2.

1

When My < 1, this sums as long as s +r > —%, a condition which is certainly met for s,r > —3.

When My » 1, we need @ < 7 — %.

Case 3.2. M; « My~ M; and |A| 2 1. Here again the results from [26] can be applied. Doing so
d—1
yields <M0>S+°‘7’"72(17b)7%<M1>_SM1 2. When M; < 1, we require v < r — s + 3. When M; » 1,

d—4

we need s+a—r—2(1—b)— 5 +max{95! —s,0} < 0, which holds when o < r—s+3 and v < r— %5

Case 3.3. My « My~ My and |A| 2 1. When M, < 1, use the supremum argument which ap-
d—1
pears in Case 1.2. This yields <M0>S+O‘_s_(1_b)<M2>_TM2_(1_b)M2 2 . This sums when a < 3 for

b— % > ( sufficiently small. When Ms » 1, decompose the My and M7 annuli into squares of scale
M> and change variables. Unlike the previous cases though, the change of variables here gives a
Jacobian of order My (see [26] for details). Thus we arrive at <M0>5+a_5_(1_b)<M2>7’”+%7(171’).

To sum this dyadically, we need a < & + min{0,r — %} = min{3,r — %}.

Case 3.4. Resonance. |A| « 1. When 1 « My < My ~ My, proceed as in Case 1.4. Dyadically

decompose fy and f; and then change variables by letting u = —& — &1 and v = [&]2 — |&]? —n —

m — 01 — 69. This leads to a Jacobian of

dudvdo = [£o2 + €12/ déodér or  dudvdépa = €01 + &11

dép d¢;.

The result in higher dimensions is similar:

dudvd€p -~ doj—1d&oj+1---déoa = |§2,

déop dé;.

Proceed just as in Case 1.4 to arrive at <Mo>"‘_(1_b)<M2>7T7(17b)+%, which sums when a <
% + min{0, r — %} = min{%,r — %}.
When My < 1, estimate the maximum modulation by 1 instead of by Mf(lfb)M;(lfb)A and

(1-b)

apply the argument from Case 1.3 (again merely removing the M, factors) to conclude summa-

bility when a < %
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CHAPTER 5

THE “GooD” BOUSSINESQ EQUATION ON R™

5.1 INTRODUCTION

In this chapter, we are concerned with the following initial-boundary value problem on the half

line, known as the “good” Boussinesq equation:

Ut — Ugg + Uggza T (uQ):m: =0, ze R+, teRT
w(0,t) = hi(t),  ug(0,t) = ha(t), (5.1)

w(@,0) = f(z),  w(z,0) = go(x).
The work is joint with N. Tzirakis [32]. The data (f, g, h1, h2) will be taken in the space HS(R™) x
H3 Y(RT) x Ht% (RT) x Ht% (RT) with the additional compatibility conditions hy(0) = f(0)
when 3 < sop < 3 and hi(0) = f(0), h2(0) = f/(0) when 3 < so < 3. These compatibility
conditions are necessary since the solutions we are interested in are continuous space-time functions
when s > %

This equation is known as the “good” Boussinesq, in contrast to that with the opposite sign in
front of the fourth derivative, which was derived by Boussinesq [24] as a water wave model. It also
appears as a model of a nonlinear string [102]. This original Boussinesq equation is linearly unstable
because of exponential growth in Fourier modes. The “good” Boussinesq (5.1) has appeared in
studies of shape-memory alloys [41], and has been extensively studied on R and T. Bona and Sachs
showed well-posedness for data (f,g) € H*(R) x H*"'(R) for s > 5 [14]. Linares established well-
posedness for data in L2(R) x H~1(R) [72] using Strichartz estimates and the theory which Kenig,
Ponce and Vega developed for the KdV equation in [65]. Well-posedness in H _i(R) x H _g(R)
was shown in [42], where the restricted norm method of Bourgain (X*° method) was used. The
result in [42] is sharp in the sense that the key bilinear estimate used in the X®° theory fails

for any s < —%. A simple gauge transformation, [69], reduces the “good” Boussinesq equation

into a quadratic nonlinear Schrodinger equation, but it is not clear how one can take advantage
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of this transformation on the half-line. Later in [69] and [68], a modification of the restricted
norm method of Bourgain was introduced. The well-posedness theory was then improved for both
the real line and the torus. In particular, for the real line local well-posedness was established
in H3 x H™>. The well-posedness theory at the H=3 x H™3 level is known to be sharp, [68].
Our result is sharp, up to an endpoint, in the sense that we also obtain local well-posedness in
H‘i+(R—|—) X H_%JF(R—I—), noting that it is not obvious how one can modify the X*° norm and use
an appropriate transformation to simplify the equation in the case of the initial-boundary value
problem.

In this work we continue the program initiated in [38] of establishing the regularity properties
of nonlinear dispersive partial differential equations (PDE) on a half line using the tools that are
available in the case of the real line, where the PDE are fully dispersive. To this end, we extend
the data into the whole line and use Laplace transform methods to set up an equivalent integral
equation (on R x R) for the solution; see (5.5) below. We analyze the integral equation using the
restricted norm method and multilinear L? convolution estimates. To state the main theorem, we

start with a definition.

Definition 5.1.1. We say that the Boussmesq equation (5 1) is locally well-posed in H*(R™) if for
any (f,g,h1,he) € H(RT) x H71(RT) x H i (R ) x H ST (R*) with the additional compatibility
conditions mentioned above, the equation ®(u) = u, where ® is defined by (5.5), has a unique
solution in

2s+1

s,b 017s 0 2
Xp nC/Hy nCyH, *

for some b < % and some sufficiently small T, dependent only on the norms of the initial and

boundary data. Furthermore, the solution depends continuously on the initial and boundary data.

Our main theorem is below. Note that it extends the result in [54], which established well-
posedness for s > % In addition we prove that the nonlinear part of the solution is smoother that
the initial data. As expected the smoothing disappears at the upper endpoint s = 5 but not on the
lower endpoint s = 4, where one can still gain a quarter of a derivative. We consider this as an
indication (along with the smoothing of order s + 5) that the “good” Boussinesq equation should

be well-posed in H _%(R—&—) x H™3 (R+), although a modification of our method will be definitely
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needed to overcome the failure of the bilinear estimates below H 4. The reader can consult [35] for
many examples of dispersive PDE that enjoy nonlinear smoothing properties at regularities equal
to the regularities of the sharp local well-posedness theory. We finally note that the operator W¢

is the linear part of the solution of the equation (5.1), see Section 3 below.

Theorem 5.1.2. For any s € (f%, g), s # %, %, the equation (5.1) is locally well-posed in H*(R™).

Moreover, we have the following smoothing estimate. For a < min{%, s+ %, % — s},
w—Wi(f,g,h, ha) € CPHZ™,
In addition, the solutions are independent of the extensions of the initial data.

To prove the above theorems we rely on a Duhamel formulation of the nonlinear system adapted
to the boundary conditions. This expresses the nonlinear solution as the superposition of the linear
evolutions which incorporate the boundary and the initial data with the nonlinearity. Thus, we
first solve a linear problem by a combination of Fourier and Laplace transforms, [38, 17], after
extending the initial data to the whole line. The idea is then to use the restricted norm method in
the Duhamel formula. The uniqueness of the solutions thus constructed is not immediate since we
do not know that the fixed points of the Duhamel operators have restrictions on the half line which
are independent of the extension of the data. For the case of more regular data the uniqueness
property of the solution is proved in [54]. For less regular data we take advantage of the smoothing
estimate we establish in Theorem 5.1.2 to obtain uniqueness all the way down to the local theory

threshold H _%J’(R—i—) x H _%JF(R—F). We remark that this iteration is successful because the full

1
4

nonlinear estimate we provide remains valid for any s > —%, matching thus the regularity of the
local theory.

As we have already mentioned our result improves the result in [54]. The initial and boundary
value problem (IVBP) for the “good” Boussinesq equation on the half line has also been considered
in [99] and [100]. In the first paper the author obtained local well-posedness for any s > % (having a
different set of boundary data than [54]), while in the second paper the same author obtained local
well-posedness for L? solutions. As far as we know our work is the first result where well-posed

solutions are constructed below the L? space for the “good” Boussinesq equation. At this level of
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regularity, Strichartz type estimates available on the full line are not useful in the construction of
solutions obtained through fixed point theorems.

We now discuss briefly the organization of the chapter. In Section 5.2, we introduce some
notation and the function spaces that we use to obtain the well-posedness of the IBVP. In Section
5.3 we define the notion of the solution. More precisely we set up the integral representation
(Duhamel’s formula) of the nonlinear solution map that we later prove is a contraction in an
appropriate metric space. We obtain the solution as a superposition of a linear and a nonlinear
evolution. The solution of the linear IBVP can be found by a direct application of the Fourier and
the Laplace transform methods. Section 5.4 states the linear and nonlinear a priori estimates that
we use to iterate the solution using the restricted norm method appropriately modified for our needs.
In Section 5.5 we put all the estimates together and show why the solution map is a contraction
thus proving the first part of Theorem 5.1.2. Uniqueness is proved on Section 5.6. Section 5.7 is the
main body of the work, where all the estimates, linear and nonlinear, are established. Finally in
Section 77 we justify the application of the Laplace transform on the half line and the representation

formula for the solution of the linear problem with zero initial data.

5.2 NOTATION & FUNCTION SPACES

We define the one-dimensional Fourier transform by

~

F©) = Fuf(e) = jR ¢~5E £(2) dr.

We set (£) = 4/1+ [£|2. The characteristic function on [0, 00) is denoted by x. Sobolev spaces
H*(R") on the half-line for s > —% are defined by

H*(R") = {g € D(R") : there exists g € H*(R) with gy = g},
gl iy = {151z = 9x = 9.
The restriction s > —% is needed because multiplication with characteristic functions is not defined

for H? distributions when s < —%. We will also use the X spaces corresponding to the Boussinesq

flow. These are defined for functions on the full space R, x R; by the norm

Jullxes = [€©0°(Irl = VeE2+ €8 e, 7)

L3212
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It is helpful to note ([42]) that there exists ¢ such that

1_{a=vb+t?) _

LS @b <c forall a,b>=0,

so the above X*® norm is equivalent to [(£)* (|| — £2>b u(g, T)HLQLT
g-T

The solution to the linear problem wy — Wy + Wagrr = 0 on R with initial data w(z,0) = f(x)

and wy(x,0) = g;(x) will be denoted by

Wh(f(2),9(z)) = Wk f(2) + Whaga(),

where W}%1 and Wzt%,Q are the Fourier multiplier operators with multipliers Re eit\/eTé4 and Im eit\/@(é—i—
£4)71/2 respectively.

Let p € C* be a cut-off function such that p = 1 on [0,00) and suppp < [—1,0). Let n e C*®
be a bump function such that n = 1 on [—1, 1] and suppn < [—2,2]. The notation Dy represents
evaluation at x = 0, i.e.

Do[u(z,t)] = u(0,1).

5.3 STATEMENT OF RESULTS

To obtain solutions of (5.1), we begin by constructing the solution of the linear initial-boundary-

value problem:

Vgt — Vgg + Vgzaezr = 0
U(O’t) =hy (t)v UCC(O’t) = hg(t), (52)
v(@,0) = f(x),  w(z,0)=g(z),

with the compatibility condition hq(0) = f(0) for 1 < s < 2, and the additional condition f'(0) =
h2(0) for % <s< % Denote this solution by W{(f, g, h1,h2). For extensions f¢ and g° to the full

line R of the functions f and g, we may write
WG(f,9,h1,ha) = W§(0,0,h1 — p1, hy — p2) + WE(f¢, g%,

where pi(t) = Do[WE(f, 9] and pa(t) = Do[Wg(fe,9c)],- We thus decompose the solution

operator as a sum of a modified boundary operator, which incorporates zero initial data, and the
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free propagator defined on the whole real line. For x > 0, this solution formula expresses the unique

solution of (5.2). Note that W¢(0,0, hy, hs) is the solution to the following problem:

Vit — VUzz + Upggz = 0
0(0,t) = hi(t),  v.(0,t) = ho(t), (5.3)

v(x,0) =0, ve(x,0) = 0.

We will use the following explicit representation of W{(0,0, hy, ha) extensively. It is proved in
Section 5.8 using a Laplace transform argument. Similar expressions have been derived in [99, 100]

using the Laplace transform and in [54] using Fokas’ unified transform method.

Lemma 5.3.1. Suppose hi and hy are Schwarz functions. The solution to (5.3) on Rt x Rt can

be written in the form v(z,t) = 5=(—A— B + C + D), where
iw <z’w +41+ w2> h <w\/w2 + 1) p(:m/ w? + 1) dw
0 eztwmfx\/m ) _—
B = J_OO NiEE (uu +41+ w2> ho (wx/ w? + 1) ,0(:1:\/w2 + 1) dw
w —
C =J gtV +1—izw (iw +v1+ w2> hy (w\/uﬂ + 1) dw

eitw Vw2 +1l—izw Py
D= iw+1+ w2> h (w\/w2 + 1) dw.
J v1+ CV1+w? ( 2

Here by an abuse of notation, l?l denotes the Fourier transform of xh;.

ztw\/oﬂ 1—zvVw2+
a=f
V1+w?

(5.4)

This explicit form will be used to establish bounds on W¢(0,0, ky, h2) in the subsequent sections.
Notice that the integrals A, B, C, and D are defined on the entire space R, x R; thanks to the
inclusion of the cut-off function p.

It is now clear that the solution to the full initial-boundary-value problem (5.1) satisfies, for

t < T, the equation ®(u) = u, where the operator ® is given by

@ (u(z,t)) = n(t/T)Wr(f°(x),9°(x)) + 77(L‘/T)f0 Wha G(u) dt’

n(t/TYW(0,0,hy — p1 — g1, ha — P2 — g2),

(5.5)

88



with
G(u) = n(t/T)(UQ):c:m (5.6)

p1(t) = n(t/T)Do| Wh(F*(@), g5(@) |:  a1(t) = n(t/T) Do fo Whs Glu)dt'|,
(5.7)

t
pa(t) = n(t/T)Do| Wh(f*(). g5(@) | . a2(t) = n(t/T) Do jo Wi Gy ar'] .

T

In the following, we will use a fixed point argument to obtain a unique solution to ®(u) = u
in a suitable function space on R x R for sufficiently small T. The restriction of v to R* x R is a
distributional solution of (5.1). Furthermore, smooth solutions of ®(u) = u are classical solutions
of (5.1).

The contraction argument is carried out in X*° spaces. To bound the solution to the linear
Boussinesq on R and the Duhamel term, we will use the following estimates from [42]. For any s

and b, we have
InOWg(f,9)Ixs < [l + gl ot (5.8)

Furthermore, for any —% <V <0<b<V +1and 0<T <1, the estimate

< 1-(-b)

o (5.9)

e/ | Wit Gy a

M(G(w))|

Xs,b’

holds, where M is the Fourier multiplier operator defined by /\//l—(7) = (&2 + &Y~V 2¢. for any

—% < b < by < % [35]. Finally, we require the following lemma regarding extensions of H*(R™)

functions. It will be used to bound the explicit linear solution given in Lemma 5.3.1, which is given

in terms of the Fourier transforms of xh;.
Lemma 5.3.2. [38] Assume h € H*(R™).

1. If -1 <s< %, then | x| gsm) < ||h||Hs(R+).

2. If £ <s <3 and h(0) = 0, then Ixhl & ®) < 1Pl as @+)-
5.4 A PRIORI ESTIMATES

To close the contraction argument, we need a number of estimates on the terms in (5.5).
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5.4.1 LINEAR ESTIMATES

First, we give a Kato smoothing inequality, which is proved in Section 5.7.1. Similar results are
2541
stated in [99]. This estimate is necessary to ensure that ®(u) lies in L;’H, * and to control the

terms p; defined in (5.7).

Lemma 5.4.1. For any s,

t
[OWRL DI asn < |F s + gz

T t

t
ORI s 1z + Lol

For the solution to the linear initial-boundary-value problem we have the following estimates,
which are proved in Sections 5.7.2 and 5.7.3. These are used to bound the W{ term in ®(u), and

2s+1
to ensure that this term lies in the desired space CPHS n CYH, *

Lemma 5.4.2. For any compactly supported smooth function n and any s = —% with b < %,

HWE,0, ki, ha)| xse < |Ixha| 2 + | xha| 2s—
[n(®)W5(0,0, b1, ho) x0 < X 1"}1,5%(]1@) Ix QHH%FI(R

2s5+1

Lemma 5.4.3. For any s > —1 and intial data (hy,hs) such that (xhi,xhe) € H 1 (R) x

2s5—1

H 1 (R), we have

WE(0,0,h1,h) € CYHE(R x R)

2541
n(t)WE(0,0,hy, he) € COH, * (R x R).
5.4.2 NONLINEAR ESTIMATES

Lemma 5.4.4. Let M be the Fourier multiplier operator with multiplier (€2 +£&*)~Y2. For s > —%

with a < min{i,s + 3} and 3 —b > 0 sufficiently small, we have
[ M) | xsras S |ulxss|v]xse.

This lemma is proved in Section 5.7.4. The next requirement is to control the Duhamel part of
the correction term. This is accomplished with the following estimate, which is proved in Section

5.7.5.
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Lemma 5.4.5. For % — b > 0 sufficiently small, we have

2s—1
x LooH 4

t
\n@) | Wit Gar
0

t
oar1 T ‘n(t) [f W]t%}t'(; dt/]
LPH, & 0 ’

N[

_ M@+ [ Pxale O IM@E I , - <5<

~

IM@)lxems + [Sxr(&TXIT] = €55 MG (€, 7) ]d§HL2 ifs> 1,

where Q = {|7] « &} n{|¢| 2 1} and R = {|7] » €} u {[¢| < 1}.

It remains to bound the left hand side of the inequality in Lemma 5.4.5. We use Lemma 5.4.4
to control the X*® norms; the other terms are bounded using the following lemmata, which are

proved in Sections 5.7.6 and 5.7.7 respectively.

Lemma 5.4.6. Let Q be the set {|7| < &2} n{|{| 2 1}. For —3 <s+a <3 and0<a <s+ 3,

we have
52
/ &l

Lemma 5.4.7. Let R be the set {|7| » &2} U {|¢| < 1}. For 3 <s+a <3 and a <min{l,s + 1},

2(s+a)

[ [xateie™ TENNE] | < fullesloles.

we have
2(s+a)—3 +a) 3 52

VE + ¢

5.5 LocAL THEORY: PROOF OF THEOREM 5.1.2

| xnte. il - )82 e )

S ulxsolvlxse.
Lg_ Xs Xs

We will first show that the map ® defined in (5.5) has a unique fixed point in X*°. Let f¢ € H*(R)
and g° € H* '(R) be extensions of f and g such that ||f¢|gs@) < | f]gs@+) and |g¢ gs—1(r) <
g frs—1(m+)- Recall that

@ (u(z, 1)) = 0t/ T)Wh(f* (@), o" () + 0t/ T’fo Wi Glu)d (5.10)

+n(t/TYW§ (0,0, hy — p1 — q1, ha — p2 — q2),

where G(u), p;, and ¢; are defined in (5.6)-(5.7). To bound the first summand in ®, apply (5.8) to

obtain

[n(t/TYWg (9,9

o S sy + 19N ms 1) S Nl @+y + 9l s -1y
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For the Duhamel term, we apply (5.9) and Lemma 5.4.4 to obtain

ST M), s € T2l

t
oe/T) [ Wit Gl o
0 ’ Xs.b

Finally, for the W{ term, we apply Lemma 5.4.2 and Lemma 5.3.2 to obtain

In(t/T)YW5(0,0,h1 — p1 — q1, ha — p2 — q2) | o0

S h - _ s + h - - S—
Ix(h1 —p1 6]1)|\Ht2;1(R) [x(h2 — p2 Q2)|\Ht%(R)

<l —m !IHth;l(R+) + HQIHHf%P(Rﬂ + [ he —pzl\Ht%(Rﬂ + quHHth;

(R*)

By Kato smoothing, Lemma 5.4.1, we have

4 4
t t

le”H%H(R) + ||P2HH2571(R) S N mswy + 191 o1y < [f s @y + 9] -1 m+)-
To bound the ¢; norms, we apply Lemma 5.4.5, Lemma 2.2.4, and Lemma 5.4.4, Lemma 5.4.6, and
Lemma 5.4.7 to obtain the bounds
1
s + s § Tiibi u 2 s.be
bl g o+l 2 e

Combining these estimates, we find that

1
[®@)lxse S 1N ers ey + N9l ey + thl\H%(Rﬂ + [1hz| + 27" [uf e

2s—1
. H, T (RY)

¢

This, together with similar estimates for the difference ®(u) — ®(v), yields the existence of a
fixed point of ® for T sufficiently small:

T= T(HfHHS(]Rﬂv lgll £rs=1 e+, thHHtQ%P(RJr)’ ”thHth—rl(Rﬂ)'

Next, we establish continuity in H®. For the W term, this follows from Lemma 5.4.3. The first
term of @, the linear flow on R, can be seen to be continuous from its Fourier multiplier formula.
Continuity of the Duhamel term follows from the embedding X** < CYHS for b > 1 along with
(5.9) and Lemma 5.4.4. The fact that the solution lies in C’gHt¥ follows from Lemma 5.4.3 for

the W{ term, from Kato smoothing (Lemma 5.4.1) for the linear flow on R, and from Lemmata

5.4.5-5.4.7 for the Duhamel term.
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5.6 UNIQUENESS OF SOLUTIONS

In this section, we show that solutions to (5.1) derived in the previous section are unique. For
s > %, uniqueness of C°([0,T], H*(R™)) solutions to (5.1) holds by [54]. The solutions obtained in
the previous section also lie in this space after restriction to € R™. Thus we have uniqueness for
s> 3.

Using the smoothing estimates in Theorem 5.1.2, we can now obtain uniqueness of local solutions
for the full range of Sobolev exponents in the local theory. First consider initial data (f, g, hi, h2) €
HRY) x H7Y(RT) x Ht%(RJF) X H:S‘L;I(RJF) for some s € (0,%). Suppose f¢ and fe are
two H*(R) extensions of f, and g¢ and §¢ are two H* !(R) extensions of g. Let u and @ be
the corresponding solutions of the fixed-point equation for ®. Take a sequence fp € H %J’(R*)
converging to f in H*(R™). Let f¢ and f,ﬁ be H%JF(R) extensions of f; which converge to f¢ and
fe respectively in H"(R) for r < %f. This is possible by Lemma 5.6.1 below. Similarly, obtain a
sequence g in H 7%+(R+) converging to g in H*~!(R"), and extensions g§ and g of g, converging
to g¢ and §°¢ respectively.

Using a contraction argument on the set

{u : HUHX%qt,b < C(kaHH;/“(Rﬂ + HngHI_I/2+(R+) + ”hIHHt1/2+(R+) + HhQHH?Jr(R*'))}

4

o ules < OO ey + Il + Wil s+ 100l i )

we construct H2T solutions of uy, and % of the Boussinesq (5.1) using the extensions (ff, gf) and

( ]?g, gy) respectively. The smoothing estimates give us a time of existence proportional to the data

i th 1 : T = T s s5— h s h s— . B i f

in the lower norm (1 £ 11z ®+)> |9 mrs—1®+ys | 1”Hfﬁ+rl by [ 2|\Ht%(R+)) y uniqueness o
1 ~ . ~

Hz=" solutions, uy and @ are equal on RT x R*. By the fixed-point argument, u;, and % converge

in H~ to w and @ respectively. Thus v = % on R x R*. Iterating this argument, we obtain

uniqueness for s > —%.

Lemma 5.6.1. [39] Fiz —% < s < 3 and k > s. Let pe H*(R") and g € H*(RT). Let p® be an

H* extension of p to R. Then there is an H* extension ¢° of ¢ to R such that
Ip° = ¢“larmy < lp — dlmsmey  forr <s.
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5.7 PROOFS OF ESTIMATES

5.7.1 PROOF OF LEMMA 5.4.1: KATO SMOOTHING

We wish to show that

InOWhG 9 2o < 1F s + lglggs

x Tt

[n()[WE(f,9)] 21 S | flag + gl

It suffices to consider evaluation at x = 0 since Sobolev norms are invariant under translations.

Using the Fourier multiplier form of the linear flow, write

2F; (nWIt,z(f,g))(O, T) = Jﬁ(T —Vw? 4+ wt) f(w) dw + fﬁ(r +Vw? 4+ wt) f(w) dw

~ w ~ ~ w ~

2s+1
On the region where |w| < 1, these terms can easily be bounded in H, * since 1 is a Schwarz

function. When |w| > 1, change variables by setting A = wv/w? + 1. The first two integrals in the

above sum are then of the form
R N 1+ w(A)?
nir £ A flwh))t————dA,
J o7 D) Pl Y
and we wish to bound

2@474-1,\ ~ 1 +w(/\)2
Lhﬂ@> A & A Fle) Yooy 4

L2
Note that the inequality (a + b) < (a)b) implies that for any «, we have (a 4+ bY* < (adl®l(b)e.

Using this, the quantity above is bounded by

‘[ G+ AD
[A|>2

Since 7 is a Schwarz function, we may use Young’s inequality and then change variables back to w

2s

1 f(w()\)) 1 —|—w()\)2

2w(A)2+1

|2s

A+ DY

dA

L2

to bound this quantity by

2s+1 -~ ]. + W()\)2

W feYapet| S Wi

IA|>2

as desired. The remaining integrals, those involving g, can be treated in exactly the same way and

bounded by | g[ zrs-1(r). We obtain the bound on [n(t)[WE(f, 9)]| 221 by the same argument.
L¥H

t
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5.7.2 PROOF OF LEMMA 5.4.2: BOUNDS ON LINEAR SOLUTION

Recall that we wish to establish

[n(OW5(0,0, by, ho)lxen < [xhall 2o+ xho| 2
H, ¥ (R) H & (R

t t
where 2 W{(0,0,h1,hs) = —A — B+ C + D, and the terms A, B, C, and D are given in (5.4).
Notice that

C = L'¢c, where &E(w) = <iw +Vw? + 1) a(w\/aﬂ + 1),
—~ ) 2 —~
D = L'¢p, where ¢p(w) = M—i_ztl—i_l ha (cm/w2 + 1),
w

and L! is the spatial Fourier multiplier operator with multiplier ¢’“V1*+%* The proof of (5.8)

implies that [n(t)Cxss < |¢cllm; and [n(t)D|xss < |ép| ;. Now
o — 2
f (2w? + 1){w)* |y (w\/ w? + 1)’ dw
—a0
© (2 1/2/, \2s
+1 2541
— J (w ) <u2}5>+1 (wVw?+1) 2

—0 {wvw? +1) 2

o T 2

< f <w\/w2 + 1>% hy (w\/ w? + 1) ‘2 2602—:_11 dw
—0 w

where we used the change of variable z = wvw? + 1. Similarly,

H(bDH%{; = JOO M ﬁ;(wx/oﬂ + 1)‘2dw

w?+1

0 2s S—1 [ 2
_ f (w) N ‘hQ(WWH)f%%ldw
—0 (w2 + 1)1/2<w, /w2 + 1>T ws+1

o0
< f (5
—00

Thus we have the desired bounds on C' and D. Now we move on to A and B. Assume first that

léci

hA1<w\/ w? + 1) ‘2 M dw

w? +1

—~ 2
m(z)| dz= Il 2t

o~ 2
ha(2)| dz = xhal| 2ecn

(®)

s=0and b= 1—. Let f(y) = e Yp(y). Then

0 4 ; i 2 -
Az, t) = f (i + V1 +w )e”‘*“‘”2+1 h1 (w\/w2 + 1)f<:):\/ w? + 1) dw,

o w? +1
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A7) = Jw e — v/t 3 1) VI ) R, (f@ve? +1))(€) dw

o w2 +1

= JOO (T — wm) (i + \/1-1-—&12) h1(w\/ w? + 1)f<£/x/w2 + 1) dw.

. w?+1

Since f is a Schwarz function, we have

Fed s —p b o @l

1+82/(w?+1) 14+w?+8&>

Note also that since 7 is a Schwarz function,

(T — wv/w? + 1)] < 7 — w/w? + 1)
<t — (JJ\/LTH>_2<T — f2>_1/2+<w\/m B £2>1/2_'

Therefore, using the bounds for f, those for i, and then moving the £ norm inside the integral,

("4 w1 + 2w?
Al oy 5 =€ [ Jatr - o/l B R R G|
—a0 2
&,
0 2
- B 5 o Jw|V1+2w —~ 5
< J—oo<7_ wyVw? + 1 11w 1 e ’hl(w\/w +1)‘dw B
&,
w\/1+2w2
< J (T —wVw? + >2‘ | 31/ ’hl wV w 1)’dw
12
0 —~ 202 + 1
< J (7 = v/ + 1y /e + VA (wv/w? + 1) “’2+
—0 Vv W
w —~
- a=mv )

oe}
<[ @vmE| =l g,
—0o0
The last line follows from an application of Young’s inequality.

The procedure for B is exactly the same — we drop the factor of w and replace h; with ho in

the integrals above to arrive at a bound of
* 3/2 |7 2
| @ as = i,y )

It remains to obtain bounds on A and B in X2~ for general s. Notice that for any s € N, the

derivative 05 (nA) is

0 \/ 2
n(t)f w (M —:2 _(:1 ) eitwvVwi+l <w\/w27+1> £ (x\/wQ——i-l> (w? + 1)5/2 dw,
—0o0
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with a similar formula for 05 (nB). Since (w?+ 1)%2 < (wvw? + 1)*/2, the desired result follows for
s € N. By interpolation, we obtain the bound for any s > 0.

For s <0, let (0), 12 be the Fourier multiplier operator (¢)~1/2. Then (0, 172 (nA) is equal to

o) JO@ i (i + VWP T) ﬁl(wm)<5>;1/z[f<x 1 1)]dw7

—» w? +1

again with a similar statement for B. Now notice that

Fu <<9>z1/2 [f <x\/u127+1)]> = Fs <[<a>x1/2f] (xm)) © W

Noting the (0, 1/2 f is also a Schwarz function, we proceed just as in the case s = 0. In that
situation, we moved the Lg norm inside the integral and used the fact that HWH 2~

(1 +w?)" 4 < (1 + w?)~ Y4 In this case, we use

' (/w2 + 1)1/ 1

1
‘(1 + w2)VA(1 + @)VA(1 + w? + 2)1/4+

S5
S (raR)n

<£>1/2(1 + w2 +§2)1/2+

L
This bound holds since

1 1
f (1+€2)12(1 4 w? + £2)1/27 dex j EXJwl + IEHH

by Lemma 2.3.4. Then the same argument we used previously yields the bound

o 2
-0
1

We obtain a similar bound for B. Interpolating between the s = —5 and s = 0 estimates completes

dé < (wy™!

the proof.

5.7.3 PROOF OF LEMMA 5.4.3: CONTINUITY OF LINEAR FLOW

Recall that 2 WE(0,0, by, hy) = —A — B + C + D. We start with the claim 4, B e CYH:(R x R).
Note that
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where

 iw(i 1+ w?) ~ ~ 1 o
¢A:zw(2w+m)hl (wm)’ ¢B:Mh2 (w\/z,TH),

w? +1 w?+1

—x

the function f is given by f(z) = e %p(x), and L' is the Fourier multiplier operator with multiplier

i on/2
elwvw +1t' Now

CW2w?+1), 2
lpallzrs = J_OO W<w> ’

EI((,U\/UJQ + 1)‘2dw
D 200 N\28 2 =H 2
:f wHw) {wvw? + 1) 2 ’h1<wm>’2 2w+ 1 dw

—% /w? + 1{wvw? + 1>252+1 w? + 1
0 s - 2

< J {wVw? + 1>2 G hi (w\/cﬂ + 1) ‘2 %2:11 dw
—0 w

—~ 2
_ 2
M) de = Iel? s

:f;@ﬁl

and similarly

2 < 2
loBlE:s < HX@HH%(R)-

Thus, using time continuity of the linear operator L, it suffices to show that the map

f (:(:\/ w? + 1) g(w) dw

is bounded from H?® to H®. Consider first s = 0.

Q0

gHT@=J

—00

Rewrite T'g(x) as follows using the change of variables z = x4/w? + 1:

Tg(x) = JOO f (x\/wz + 1) g(w) dw

;Ojl(m)oo o)z
[ e (Ve ) s (Ve 1) | e a
Then
(Tolis = [ 1) (o) 3 (/o7 = 1) ==L e

and, expanding the L2 norm,

[fo(evemr 1) i = [ awr

a1 )y
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On the region where |y| > 1, the right hand side above is bounded by ﬁHgH%z Since |f(2)|/4/]z|
is in L!, this yields the desired bound. For the case when |y| < 1, go back to the form Tg(z) =

§ f (zvw? + 1) §(w) dw. The region |y| < 1 corresponds to [w| < 1 in this integral. So we consider
the following norm, which we bound by applying Cauchy-Schwarz in w and then using the change
of variables y = £+/1 + w? to replace the integration in x:

U TVt > g(w )d‘*’ X[o,1](w)f <x\/cTH>

2
< lglze

2
2 L
LQ2 T,w

1 1
2 2
- [ — dy dw
lglz- L Trw?ﬁf (y) dy
< |lgl72

This completes the proof that A, B € CPHS for s = 0.

For s > 0, notice that for any s € N, we have

8Tg(z) = fo o (mm + 1) (w? + 1)*2 §(w) dw.

This and interpolation imply the desired bounds for A and B in H_ for positive s.

Also, if we choose p such that { fdz = 0 so that J; 1 f is a Schwarz function, then we have
o1 Tg(x) j 0y 1f am/ w? + 1) (w? +1)7? §(w) dw.

Combining this with the s = 0 result and interpolation, we obtain the bound for s > —1.

Next, recall that

C = L'¢c(z) where e (w) = (iw + Vw? + 1) hy (w\/ w? + 1) :
D =L'¢p(z) where ¢p(w)= i + Vu? + hg (w\/wQ + 1) .

ZE
The CPH? bounds for these terms follow from the continuity of the linear operator F* and the

bounds for ¢ and ¢p which were proved in Lemma 5.4.2.
2s+1

It remains to prove that nW{(0,0, ki, he) is in COH, * . Recall the form of C and D as linear

flows and apply Lemma 5.4.1 to obtain the desired bound for these terms. For A and B, write
A(z,t) ff x w? + ))( ) L'¢a(y) dy,
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B(s.t) = | F (£(aV? 1)) (0) L'om(o) dy

where ¢4 and ¢p are defined as before. Then A is equal to
1 2 2 Yy t - 2 2 t
[ 7 (rsmn@a +22) (Y) Koy dy = [ £ (flsenva? + ) ) Lbaten) d

with a parallel statement for B. By Kato smoothing, Lemma 5.4.1, it suffices to show that the
function F. (f(sgn(z)vz% + 22)) (y) is in L¥L,. It is enough to show that f(sgn(z)vz2 + 22) is
in L°H} since

| Elay = [@lkwlw) ™ dy < I e
To this end, we consider the L? and the H 1 norms separately. For the L? norm, split the integral

into two regions, one where |z| is small, and its complement:

f’f sgn(x z2+x2)‘2dz
- f ‘f(sgn(x)m) ‘2 dz + J ‘f(sgn(x)\/ 22+ x2> ’2 dz.
l2/<1 |2]>1

The first term is bounded since f is bounded. Set y = sgn(z)v/22 + z2 in the second integral to

obtain

[ P
ly2—22|>1 iy —a?
which is bounded since f is a Schwarz function. The same argument serves to bound the derivative

since

d—dz [f(sgn(x)\/m)] =f (sgn(w)\/m)\s/% and \/zQ‘Z—L—mQ 1.

5.7.4 PROOF OF LEMMA 5.4.4: BILINEAR X*® ESTIMATE
By duality, it suffices to show that

UMmmmmkammmfwm (5.11)

for any ¢ € X~ (+2)0 The left-hand side of (5.11) is equal to

U e 5754 (€ r)dedr) = wﬂ =) ff ?’ ™) 3(e.7) dey dry de dr]
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Now define
p(€,7) = & r| — Ve + D’ a(e,7), g(&,7) = (v — /e + D B(¢, 1),
r(€,7) = (&) |7 — /€2 + €5 (e, 7).

The desired bound (5.11) is equivalent to showing that

([ ps 0. mmimtermiate - €.~ myrte ryaer dmagar] < ol lalizy Il

where the multiplier M is

M= EXETFHE )€ —&1)7" _
VE2 + EXT| = E25(m| — DN |T — | = (€ = &1)?)P

There are six possibilities for the signs of 7, 7, and 7 — 71:

(a) m=0,7—71 =0,
(b) 1 >0, 7—7 <0,and 7 >0,
(¢) m=>0,7—7 <0, and 7 <0,
(d) m<0,7—7 <0,
() m<0,7—7>0,and 7 <0,
(f) m<0,7—7 =0,and 7 > 0.

Since L? norms are invariant under reflections, we can use the substitution (7,71) — —(7,71) to
reduce (d), (e), and (f) to (a), (b), and (c) respectively.

Consider first (a). By Cauchy-Schwarz in the £-7 integral, it suffices to show that

HHM(& &1, m)p(6r, 1)a(E — 17 — 1) déy dry

S HPHLEJ HQHLZT'
.

2
Lg,

Using Cauchy-Schwarz and Young’s inequalities, the left-hand side of this is bounded by

1Ml 15(€ (¢ = €17 = )z

£1,71

L%YT

< (swp Mg )IF€,mg(s =m0l
& 171

£1,71,6,7

)
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1/2
(supIatlpz  J1s* g%l
£7T

A

sup |Mfr2 ) fllzz _lglrz -
€ € €
5’7_ 1,71 s T )T

Thus, in Case (a), it suffices to show that

§4<§>23+2a<£1>—25<§ . §1>—25
w || erer e —apen e

is finite. Using the fact that (a){b) = {(a + b), we can eliminate the 7 dependence to obtain

§4<§>2s+2a<£ > 2s<§ €1> 2s
e H (€2 + &1 (m — €1)%(m — 2861 + 1) d€rdn

Applying Lemma 2.3.4 in 7; and observing that £4/(¢2 + £*) < 1, we are reduced to bounding

()P F20&) B — &)
”pf Gle - ¢

&1

We consider several cases.

Case 1. (£)° < (&)%€ —&)*.

This case reduces to bounding

2a
Let

r=6(6—6) = 26 =E++/2+4x and dz = ++/€2 4 4xdf).

Then the supremum above is bounded by

2a 1
WO | e

By [38, Lemma 6.3], this is bounded by
sup P,

which is finite as long as a < %

Case 2. (£) « (& X — &) and s < 0.

Case 2a. |{| < 1.

In this case, we must control {(£;)~4¥72 d¢;, which is possible when s > —%.
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Case 2b. [&]| » [¢] 2 1.
In this case, we arrive at
sup <€>23+2aJ (E) 4572 gy < sup (€)1
3 1€1]> (€] 3
This is finite when a < s + %
Case 2c. (] » |&] » 1.

In this case, we arrive at

sup <§>2a—1+f <£1>—25—1+ d{l-
3 €] €]

Since s < 0, this converges if a < s + %
Case 2d. [&1| ~ [¢].
This is only possible if | — &;| » 1 and [£;| » 1. Thus we need to bound

s%p &* f<€ — )Ty de.

Using Lemma 2.3.4, we see that this can be bounded for s > —% as long as a < s + % This
completes the proof for the combination of 7 signs described in (a).

For the combination of signs described in (b), we follow the same procedure of estimating using
Cauchy-Schwarz and Young’s inequalites, but exchange the role of (£, 7) and (&1, 71). It then suffices

to control

" f ©F ey e )™ (5.12)

€& — )
Case (c¢) can be reduced to the same estimate by performing the change of variables (£1,71) —
(€ =&, 7— 1) and then carrying out the same series of estimates. To bound this supremum (5.12),
we consider similar cases.
Case 17. ()" < (&)™ — &)™
The procedure here is precisely the same as in Case 1.
Case 2°. (&) « (&1 € —&) and s < 0.
Case 2a’. |§] < 1.

1

In this case, we must control {(¢;)?*~2% d¢&;, which is possible when a < 5

Case 2b’. || » [£] =2 1.
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In this case, we arrive at

sup <£1>‘45‘1+J (€)¥ 271t qe < sup (gt Hmax{2e 200}t
& el<léa] &

which is finite if ¢ < s + % and s > —i.
Case 2¢’. [£| » |§] » 1.

In this case, we arrive at

sup <§1>—2$J <£>2a—2+ df < sup <§1>—2s+2a—1+’
&1 |€1>€1] &

which is finite if ¢ < s + %
Case 2d’. [&] ~ [€].

This case only arises if | — &;| » 1 and [£;| » 1. Thus we need to bound
sup (€)™ Jee—eprrgprivag
1

Using Lemma 2.3.4, we see that this can be bounded for —% <s<0anda< % by

sup <€1 >725+max{725,23+2a}71+ )

&1

This is finite for a < % and s > —i. This completes the proof.

5.7.5 PROOF OF LEMMA 5.4.5: KATO SMOOTHING FOR DUHAMEL TERM

Again, it suffices to consider evaluation at x = 0 since a spatial translation of G does not affect the

e —_

magnitude of M(G). At z = 0, we have

Fo(G) (&)t de.

f Wit = - f f LTIV Ve
Also, note that
FAG)&t) = [ Glemar

and

t it(TFA/E2+E4
j G T g _ CTEVER) 1
0 i(T FA/E2+ &Y
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Thus we wish to bound

it _ ity /€244
II \/W ( @ +et)
Let ¥ be a smooth cut-off function such that ¥ = 1 on [—1,1] and ¥ = 0 outside [—2,2]. Let
Y =1— V. Then write

@(6, T)d¢dr.

tita/E24€

()JFt "Gt =t H — Neres T)H(/;;Tgf;%él)@(&m)dsdf

th \IJC 7'—|— 52 54)
\/52754 T+\/W>
+zt@\1,0 T+ §2+£4>

s VERE (- E T E)

=I+IT-1III.

G(¢, ) dedr

G(&, ) dedr

By Taylor expanding, we have
et _ eiitq/£2+£4
(7’ FAVE+ §4>

Therefore || I|| 2541 is bounded by
HT

NG

© k
— itT (_Zt)
=€) k!
k=1

i t | 1 JIQitT (T$ €2+§4>k_1\11<7'$ 524_54) i(f;_ 24 d¢dr HfﬁPl
< <T>2SI1J\II<T$ EH&‘*)%CE ,

Using the Cauchy-Schwarz inequality in 7, this can be bounded by
e N o]
2s+1 T
@ (] @=ae) (| @IS e ) ar
[J ‘T$\/ §2+E4‘<1 ‘7-1, /€2+£4‘<1 52 + 54

1/2
259 M(G)| xs—b
L — s) IM(G) x-
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S [M(G) | xs-o-

The first inequality holds since on the region of interest in I, we have

1 1
~ < .
FFVE+E (- + e

The supremum bound holds since

1 if |7 < 1

2s+1

(r)—2

—2s dg <

~

J‘T$\/§2T§‘1)<l< > <T 2s+1

The latter bound comes from changing variables €2 — z. The right-hand side is finite since the
integrand is of order |7|=*~1/2 over an interval of length ~ 1.

Next consider III. When [£| < 1, we have, using b < %, the bound

ff +Zt\/€2T§4\IIC<T+ & +§4) G(&,m)dedr

Vere(rryere) s
(e VEFE]

sﬂl = \/W‘

— v (r F e+ €T (MG )| dgar

>’M ), )’dng

SH@H/W

< [M(G) oo | — 22200

GV

To control the part of IIT where || > 1, change variables in the & integral by setting z =

< IM(G)] x50

+4/€2 + €4 & +£2. Then, noticing that the integral is an inverse Fourier transform, we obtain the
bound

U (s = 5“54)@(5 r)ded
s T
51 VETE (r /@)

2241 G(£(2),7)]
(1 = 2)[48(2)® + 2¢(2))|

dr

S G
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s |@ J<T—z> z)’T)| O

By Cauchy-Schwarz in the 7 integral, using the fact that b < 5, this is bounded by

w1 |O(E(:),7)
(= (E2 T 6P

2
L‘ z|=2

2 2
L2, ,L2

Changing variables back to &, this is bounded by |M(G)| xs.-», as desired. It remains to bound II.
For II, let R denote the set {|7| » |£?} U {|¢] < 1} and notice that

(1) < xr(E )T — €% + €

and (2s + 1)/4 = 0, so we have the bounds

G(&,7)]
I HHH;S“ J<7‘ T \/52 + &5 \/52 + &4 de L2
(5, g2 G )
< | ntemrt - " Ve s | GEvETEy e

The second term on the last line can be bounded by | M (G)|| xs.» using Cauchy-Schwarz in £ provided
that

5
w | e <

which holds since b < 1/2 and

¢ S R SR S
| e s e e ~ o e

For s < %, we go back to

f G(&,7)|
(rT W +E8) /e + ¢

and estimate using Cauchy-Schwarz in £ to obtain the bound

1 ©*  16EnP v
[J<T> (J <7_ - %52 +€4>2_2b<£>2$ df) ( <7_ - %52 +£4>2b €2y gl d§> dT] )

which can be bounded by |[M(G)| xs,-» as long as

dg

12

= (r7 WV Py
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is finite. To see that this holds for s < %, recall that (7 & /€2 + ¢4) ~ (7 £ £2). Consider [¢| « 1
first. In this case, change variables in the integral by £? — z. Then apply Lemma 2.3.4 to bound

the integral as follows:

Y e s s <
T F 2)“~ 2\st3 .

assuming that b < % and —% <s< % Similarly, if |¢| = 1, again change variables by setting z = &2
and apply Lemma 2.3.4 to obtain <T>S+ ~2+20_ This is finite for b < 1 and s < 1.
For the estimate on the derivative term, the procedure is similar. We break the Duhamel

integral down into three pieces T+ IT — III:
o _
waq;c; dt’ = n(t ﬂzg iiijgig4§2+§4)é<f,r)dgdf
JJ ige" ‘I/C T + W)
VEFE (rT/ere)
JJ igeHVE ! gC <T + W) .
W (rrveE+e)

G(¢,7)dedr

G(&, m)dEdr

The only difference from the previous case is that each term now has a factor of ¢ from the spatial
derivative and we will take fewer time derivatives: % instead of %.

To estimate T, notice that on the region of integration 7 ~ \/W, so the additional |¢| factor
is equivalent to \7‘|1/ 2. This brings us exactly back to the situation addressed above for I.

To estimate I1I, when || < 1, the bounds are identical to those for III. When || » 1, we
change variables as we did for III. The additional factor of ¢ is equivalent to a factor of |z|'/2,
which exactly replaces the lost time derivative, and we are again back to the situation addressed

in bounding III.

% , we have

4 GED 4
<r$¢£2 §4> Ve +e
(5, +| f g 16T
Ve +et (rFVE+EH e+l

Estimating II is a bit more complex. If s >

~ 25—1
I, s < H<T> i

12

<| [ xatemiairl -

L2
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Thus when s > %, we have the bound

IM@lxes + |l 1)Ir] - €7 | MA@ €.

as before. For s < 5, go back to
€] G,

| FFVE+EHVE

On the region where |7| « £2 and [£| = 1, we obtain the bound

- 1 |G, 7)]
where Q = {|7] < |¢]2} n {|¢] 2 1}

On the region where |7| = |£]? or |¢] < 1, we have

d¢

12

N €] G5, 7)l
HHHH%%; S (r T \/52 + &5 \/52 + &4 de L2
g2 |G 7))
< dgj .
s M<T$\/€2 +EH 2+ ¢l Iz

which can be bounded by |MG]||xs,—» as we have already seen. This completes the proof.

5.7.6 PROOF OF LEMMA 5.4.6

We want to show that

2sta)=1 av(g, 1)
(r)y” 1 d¢
HzLove+ et

for % — b > 0 sufficiently small.

S [ulxsolvlxss

Writing the Fourier transform of uv as a convolution, we have
@i, ) = || n)ate - 1.7 - m)derdn,

Let f(&7) = a(& 77| — €3 and g(&,7) = B(&, 7){E)*(| 7| — €*)". Using this and dropping the
factor £2/4/€2 + €4, the desired bound becomes

2<S+a> 1 f(€1,7m)g(§ = &1, 7 —11)(€1)"HE=61)7° -
jj EX|mi| — EDPT — 71| — (€ — &) dederdn (5.13)

\T|<<§2 L2
S HfHLngHgHLng-
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Case 1. sgn(7) = sgn(7 — 7).
Using the Cauchy-Schwarz inequality in the £-&;-71 integral of (5.13), then Cauchy-Schwarz in 7,

and finally Young’s inequality, we obtain the bounds

071, (anime) g€ 1,7 =)l

§:€1,71

L2
1/2

2\

P U M2dgdeidn | [f?xg? HI/Q

l€[z1
7|«

1/2

A

swp [[[ 22agagian | 1712z ol

€121
7| «&?

Where 2(s+a)—1
4

= T,T1) = )
B R Y A C By s o)

Thus, it suffices to show that the supremum above is finite. Using Lemma 2.3.4 in the 71 integral,

along with the assumption that 7 and 7 — 7; have the same sign, we arrive at

n® ~2sg gy
aw ] T L g e

€121

|7]«g?

Since |7 « €% and &7 + (£ — &1)? 2 max{¢7, £}, we have

(T (& + (€= &)*HP ! ~ (max{[¢], |6 )P 2.

Using this, and dropping the {7) term, it suffices to bound

<£1>_28<£ — §1>_25
ff (&2 max{|¢], [€1]})—2 dg d&;.

If |¢] 2 [&1], this is bounded by

H (@256 e — &) dedey < f f (60y~ 250y S0 maxt=250) ¢ g,
€111 1€1151€]

< J<£>123<£>8b<£>max{23,0} d¢,
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which is finite if 1 — 2s — 8b + max{—2s,0} < —1, which holds for s >  —2b, i.e. s > —3 for

2 — b > 0 sufficiently small. If [¢| « |&], we need to bound

Jf<§1>28b48<§>2 deds, < f<§1>28b4s dé;.

which is finite if s > —3 and 5 — b > 0 is sufficiently small.

Case 2. sgn(7y) # sgn(t — 71) and |&1] < [€].

Using Cauchy-Schwarz and Young’s inequalities just as in Case 1 and dropping the (7) term, it

()2 — )2
Sup H ©%r T e(e — ag )y 114

suffices to show that

€11
€1Z[€1 ]

|7]«€?

is finite. Using the change of variables z = £(§ — 2£;) in the & integral, we arrive at

£ — 2/€)72%(E + 2/6)7*
sup J < z</§>>3<7-<iz>2zb/> dz d€.
|| <¢?
7| «&?

Notice that since |z| < &2, we have |¢ + 2/¢| < |€]. This yields

max{—4s,0}
SUP H <<§>>3< T oym dede = J<€>ma"{‘4s’0}<£>‘3<£>2(1‘2"> de,
|2|<€?

|T\<<€2

which is finite for s > —3 and 5 — b > 0 sufficiently small.

Case 3. sgn(71) # sgn(T — 71) and |£] < |&1].
By duality, to establish (5.13), it suffices to show that

(I e 21 16010t — €17 =) o) dgar ey dn| < Iolszl sz oz,
INIISY
where M = M (£,&1,7,71) is defined as in Case 1. Using Cauchy-Schwarz in the &;-71 integrals, it

suffices to show that

|| mMoe-ar-mnyomacar) < iolialolis -
|7|«€?

15le] el 2
1,71
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Using Cauchy-Schwarz in £-7 and then Young’s inequality, the left-hand side of this quantity is
bounded by

IO (1) 19~ 607 = 0O iy |

£1,71

1/2

<|sw [ o agar| gl 1O iglole

&1,71
7| «€?
IIIENIST

Thus it suffices to show the following supremum is finite:

<T> = (6)TBE — )
o |L Gy el
15kl len]

2(9+a) 1

<su &) U : £><17>< ey 64T

|7]«€?

€] «[é1]

—2b—4s Md
$S?1P <€1> J|£<<§1| <§>1_<§>2b §

< Sélp <€1>72b74s<€1>max{0,2(s+a)72b+1+}'
1

If the maximum in the last line is zero, we have a finite bound for s > —3 L if % b > 0 is sufficiently
small. Otherwise we require —4b — 4s + 2(s + a) + 1 < 0, which holds for a < s + % as long as

2 — b > 0 is sufficiently small.

5.7.7 PROOF OF LEMMA 5.4.7

Recall that we want to show that for % <s+a< % and a < min{l, s + %}, we have
2(s+a) -3 52
Ve +¢!

Writing the Fourier transform as a convolution and canceling the £2/4/€2 + ¢4 factor, we need

|| xnte. il - %82 e nlag]

S [ullxselvl xso-
2

to bound

HHJXR & r)rl — T @, m)|IB(E — &1, — m)| dér dny
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_Hmmg, 7l = "5 f(€ m)llg€ — 1,7 — )| déydry dg
<§1>s<§ & (m| — €D —nl— (€ —&)DF 2

F& 1) =& = €2 g€, 1) =D&, TIEX(T| - 3.

where

Using the Cauchy-Schwarz inequality in the &;-71-€ integral, followed by Young’s inequality as in

the proof of Lemma 5.4.6, it suffices to show that

el = e — )™
SuP Jff & {nl-= £%>2b<|7 — |- (E= )2 d&ydr dg

is finite. If 71 and 7 — 7y have the same sign, we apply Lemma 2.3.4 in the 7 integral and obtain

(r| =75 e — ey
sup JJXR(S,T) r| =& + 26 (§ = &))*

If m; and 7 — 7 have different signs, it’s bounded by

N — 2 2s 2s
|| ) €<>AT—£2<E2>§§1><>€% e

where A\ = sgn(7 — 71) = £1. Here we have taken advantage of the fact that we’re confined to the

the bound

(5+a

dé, de. (5.14)

set R to conclude that {|7| — &%) ~ (A1 — £2). Changing variables in the £; integral by &1 — & — &1,

and dropping the A, we obtain

< *52> T )BT
sup H XR(&,7) o= 52 T2 £ dé; de. (5.15)

we use the inequalities

5

When%<s+a<§,

7] =€) < {I7| — € + 281 (€ — &)X XE— &) and
(T—&) s {r—+2(— &)XEXE— &)

in (5.14) and (5.15) respectively. They yield the following bounds for (5.14) and (5.15):

1
5 5 d&idg for (5.14) and
w || e o

@t
p jj (E)2(E — €1y 30 derde for (5.15)-
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Using Lemma 2.3.4, we see that former is finite as long as s+ % —a > 1, which holds when a < s+ %
For the latter, we use Lemma 2.3.4 in the &; integral, using the assumption that a < s + %, to
obtain S<£1>S+a_%_(s+%_“) d&;, which is convergent for a < 1.

When 3 < s+ a < 3, we use the inequality (7 — a){(T — b) % {a — b) to obtain

1
3 d& d¢ from (5.14) and
ff € =¥ — &) 1 o1
1

3 d&r d from (5.15).
Il e —errele — et e (5.15)

In the nonresonant cases, i.e. when |£1],]{ — &1 2 1 for the first equation and when (£, | —&1| 2 1

for the second equation, we have (£1(£—&1)) ~ (§1)(€—&1) and (€(&1 —&)) ~ (£)(&1 —&) respectively.
Thus we have convergence if a < s+ % for the first equation. In the second equation, we use Lemma
2.3.4 to the estimate the & integral. This yields a bound of S<§>%+5_“ d¢, which is convergent if
a<s+ % .

The resonances can be treated simply. In the first equation, when [£;| < 1, we have

jj : 3 dé1d¢ < fl J<£ — &) dedg.
€)?3€ = &)*& (€ — &)y -1

This converges since s > % The remaining resonances can be handled in exactly the same way

— drop two of the three factors, and integrate, using the fact that we’re integrating over a finite

interval in one of the dimensions and that s > % to obtain convergence.

5.8 PROOF OF LEMMA 5.3.1: EXPLICIT LINEAR SOLUTION FORMULA

We begin by recalling a few definitions and properties related to the Laplace transform. For further
information and proofs, see [89]. First, the Laplace transform of a function wu(t) on [0, o) is defined
by
e}
A\ = J e Mu(t) dt.
0
Furthermore, by an integration by parts argument, if u is twice differentiable for ¢t € (0, 0) and u’

converges for some Ay > 0, we have

W(A) = N2\ — A lim u(t) — lim o/(2),

t—0+ t—0+
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for A = Ag or Re X > Ag.

We will also need to invert Laplace transforms. This is possible since if two functions have the
same Laplace transform, they are equal almost everywhere. We have the following Mellin inversion
formula. Suppose that the transform @(\) converges absolutely for some Ag > 0. Then we have the
equality

1 Ao-+i00

u(t) eAF(N) dA.

i b
Taking the Laplace transform in time of (5.3), bearing in mind the zero initial conditions, yields
the equation
A20(@, A) = Vo (@, A) + Vawa(@, A) = 0,
50,0 = Ir(A) 5(0,0) = Fa(A).
The characteristic equation of this ordinary differential equation is A — w? + w* = 0, which has

roots satisfying

Notice that \/ﬁ can be defined analytically on C\[—1/2,1/2] by

1 1/2 A
‘ o )\2 61(91+02+7r)/2,

4

where ¢; = arg(A + 1) and 05 = arg(A — 3). This map sends

(AeC:ReA>0, A¢[0,1/2]} > {AeC:ImA>0, \¢[—1/21/2]}.

. . 1/2 ) : 1/2
S 2 — 2 _i/2 2
’ <2+ ! A) b (2 ! A> ,

where the outermost root in a is defined with a branch cut in the bottom half-plane and the

Let

outermost root in b is defined with a branch cut in the top half-plane.

Then a and b are analytic for A in the closed right half-plane except for the branch cut
[—1/2,1/2]. We also have Rea,Reb < 0 for all A in the closed right half-plane. Since we're
interested in solutions which decay at infinity, we only need concern ourselves with these two roots

of the characteristic equation. Thus, supressing the A dependence of a and b, we have

) = g [ (RO =B e = (4R~ T e .
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Figure 5.1: The contour of integration

By Mellin inversion, we have, for any ¢ > %, the equality

1 c+100 6)\t

ol t) = = (i = o et — (000 - o )= | an

21t Jo—jor @ — b

1 Cc+100 e)\t

- ——(a+b) [(Jﬂ@) —~ %(A))ém - (bhﬁ(x) - ng) e‘””} dA.

- 2 _ 2
21t Jo—ijp @* — b

We can write this as an integral along the imaginary axis plus integrals along a keyhole contour
about the branch cut and integrals along s + iR for s € [0, ¢] with R — o0, as shown in Figure 5.1.
The loop of radius € about the singularity at A = 1/2 can be disregarded since the integrand is at
most order 1/(a® — b?) ~ |\ — 1/2|~%2 & ¢ /2 there, while the length of the contour is order e.

The integration along the lines s + ie for s € [0,1/2 — €] vanishes in the limit as ¢ — 0 — the

integrals along the two lines cancel one another. This happens because a(\) = a(\) and b(\) = b(\).
Thus integration over the two lines s + ie for s € [0,1/2 — €] is equal to twice the imaginary part of
the integral over one of the lines. But the imaginary part of the integrand vanishes as € — 0.

The decay of the integrals along s + iR for s € [0,c¢] as R — o0 is justified as follows. By
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integration by parts, we have the bound

hils = iR)| < B (Iallaer + il + 1912

for s € [0, c]. We also have

la|,|b| < RY? and |a®>—b%|~ R

for A = s + iR with R large. Thus, on these segments the integrand is order at most R~!. Since
the intervals are of finite length, we obtain decay as R — 0.

Thus we change the contour of integration to the imaginary axis, and arrive at

1 300 e)\f —~ —~ - —~ ~ -
vz, t) = il ab [(ahl()\) — hg()\>>€ - (bhl()\) — hg()\))e ] dA
1 300 At

_ — _(a+b) [(&E(A) - %(A))dﬂ - (bE(A) - %(A)) e‘“”} dA

27 ) o a2 — b2
_ore [T iy {<aﬁ{()\) - %(A))dm _ (bﬁ{(A) _ h}(x))&»f] d.

21 0 a2 — b2

Make the change of variables A = iu+/p? + 1. Then d\ = 2\2/“% dy. On the positive imaginary
w
axis
a=—ip and b= —/p?+1,
SO v = %Re(Ao + By + Cy + Dy), where

© itpa/p2+1-z4/p2+1
P

i iu+\/1+u2> hT(u u2+1>du
0 1+ p? (
0 eit,u\/,u2+1—m\/,u2+1< e
- iu+\/1+u2> h2<,u /ﬂ—I—l)du
JO 1+ p?

0
Co = f et i (iu +4/1+ u2> hy (,u w? + 1) dp
0

By =

0 eituq/u2+17izu Py
Dy = <iu+\/1+,u2> ha (/2 +1) dp
0 A/1+u?
For x > 0, this is equivalent to 2mv(x,t) = —A — B + C + D. Here we used the formula

2Rez = z 4+ Z to rewrite the real parts of Ag, By, Cy, and Dy, and added the cut-off function p in

A and B so that the integrals converge for all x.
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