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Abstract

This thesis explores three main topics in the application of ergodic theory and dynamical systems

to equidistribution and spacing statistics in number theory. The first is concerned with utilizing

the ergodic properties of the horocycle flow in SL(2,R) to study the spacing statistics of Farey

fractions. For a given finite index subgroup H ⊆ SL(2,Z), we use a process developed by Fisher

and Schmidt to lift a cross section of the horocycle flow on SL(2,R)/SL(2,Z) found by Athreya

and Cheung to the finite cover SL(2,R)/H of SL(2,R)/SL(2,Z). We then use the properties of this

section to prove the existence of the limiting gap distribution of various subsets of Farey fractions.

Additionally, to each of these subsets of fractions, we extend solutions by Xiong and Zaharescu,

and independently Boca, to a Diophantine approximation problem of Erdős, Szüsz, and Turán.

The latter two topics of this thesis establish properties of the Farey map F by analyzing the

transfer operators of F and the Gauss map G, well known maps of the unit interval relating to

continued fractions. We first prove an equidistribution result for the periodic points of the Farey

map using a connection between continued fractions and the geodesic flow in SL(2,Z)\SL(2,R)

illuminated by Series. Specifically, we expand a cross section of the geodesic flow given by Series

to produce another section whose first return map under the geodesic flow is a double cover of the

natural extension of the Farey map. We then use this cross section to extend the correspondence

between the closed geodesics on the modular surface and the periodic points of G to include the

periodic points of F . Then, analogous to the work of Pollicott, we find the limiting distribution

of the periodic points of F when they are ordered according to the length of their corresponding

closed geodesics through the analysis of the transfer operator of G.

Lastly, we provide effective asymptotic results for the equidistribution of sets of the form

F−n([α, β]), where [α, β] ⊆ (0, 1], and, as a corollary, certain weighted subsets of the Stern-Brocot

sequence. To do so, we employ mostly basic properties of the transfer operator of the Farey map
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and an application of Freud’s effective version of Karamata’s Tauberian theorem. This strengthens

previous work of Kesseböhmer and Stratmann, who first established the equidistribution results

utilizing infinite ergodic theory.
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Chapter 1

Introduction

The central theme of this thesis is the study of the distribution of certain sequences and sets of

number theoretical interest. In this introduction, we begin by defining the central equidistribution

and spacing statistics notions we use. We then give an overview of the thesis, outlining the number

theoretical concepts on which we focus and our main results.

1.1 Equidistribution and spacing statistics

Let X be a metric space, (An)n be an increasing sequence of finite subsets of X, and p be a

probability measure on X. We say that (An)n equidistributes with respect to the measure p if

lim
n→∞

#(An ∩B)

#An
= p(B) for all B ⊆ X Borel such that p(∂B) = 0.

A useful equivalent condition given by the Portmanteau theorem [11, Theorem 2.1] is that

lim
n→∞

1

#An

∑
x∈An

f(x) =

∫
X
f dp for all bounded continuous functions f : X → R.

Intuitively, this means that the density of An in X increasingly resembles the measure p as n grows.

In cases where the subsets An are weighted so that each element x ∈ An has a weight wx ∈ R, we

then say that the weighted sequence (An)n equidistributes with respect to p if

lim
n→∞

∑
x∈An wxf(x)∑
x∈An wx

=

∫
X
f dp.

In every circumstance, the set X we deal with is or can easily be identified with a subset of Euclidean

space.
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We also wish to consider a notion of equidistribution for infinite subsets of the space X. We

consider this notion in Chapter 5 in the specific case where X = [0, 1] and the measure p is the

Lebesgue measure, which we denote throughout this thesis as λ. We say that a sequence of Borel

subsets (Bn)n of [0, 1] equidistributes in [0, 1] if

lim
n→∞

1

λ(Bn)

∫
Bn

f dλ =

∫
[0,1]

f dλ for all f ∈ C([0, 1]).

We also consider a situation of an equidistributing sequence of one dimensional subsets in a three

dimensional space, which we detail in Chapter 2.

In Chapter 2, we additionally study the finer spacing statistics of our sequences of finite subsets

of R, namely the limiting gap distribution. For a given finite subset A = {x0 ≤ x1 ≤ · · · ≤ xN}

of R, we define the gap distribution measure of A to be the finitely supported probability measure

νA on [0,∞) such that

νA([0, ξ]) :=
1

N
#{j ∈ [1, N ] : N(xj − xj−1) ≤ ξ(xN − x0)}, ξ ≥ 0.

Then for a sequence (An)n of finite subsets of R, we call the weak* limit of (νAn)n, if it exists, the

limiting gap measure of (An)n. We refer to the distribution of this measure as the limiting gap

distribution of (An)n. Roughly speaking, the limiting gap distribution estimates the distribution of

how big the gaps between consecutive elements of An are when they are normalized by the average

gap length.

Another even finer statistic we look at is the limiting h-spacing distribution. For h ∈ N and the

set A as above, let vA,i,h = (xi+j−xi+j−1)hj=1 ∈ Rh for i ∈ {1, . . . , N −h}. We define the h-spacing

distribution measure of A to be the finitely supported probability measure νA,h on [0,∞)h such

that

νA,h

 h∏
j=1

[0, ξj ]

 :=
1

N
#

xi ∈ A : NvA,i,h ∈
h∏
j=1

[0, ξj(xN − x0)]

 .

We then call the weak* limit of (νAn,h)n, if it exists, the limiting h-spacing measure of (An)n. This

measure captures the distribution of h consecutive normalized gaps in An as n→∞.
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1.2 Homogeneous dynamics and Farey fractions

The Farey sequence of order Q ∈ N is the set F(Q) of fractions a
q ∈ [0, 1] such that gcd(a, q) = 1

and q ≤ Q. A well known application of Möbius inversion proves the effective equidistribution

of sequence (F(Q))Q in [0, 1] with respect to the Lebesgue measure as Q → ∞. Also, various

properties regarding the fine scale spacing statistics of (F(Q))Q have been studied. For instance,

Hall [30], Augustin et al. [9], and Boca and Zaharescu [17], established the limiting gap distribution,

the limiting h-spacing distribution, and the correlations of (F(Q))Q, respectively.

Additionally, certain subsets of Farey fractions have been considered. For instance, let FQ,d ⊆

F(Q) be the set of fractions a
q with gcd(q, d) = 1 and F̃Q,` ⊆ F(Q) be the set of a

q with ` - a.

Then the number of pairs
(
a
q ,

a′

q′

)
of consecutive fractions in FQ,d with fixed a′q− aq′ = k has been

estimated by Badziahin and Haynes [10]; the pair correlation function of the sequence (FQ,dQ)Q

was shown to exist by Xiong and Zaharescu [69], where dQ varies with Q subject to the constraints

dQ1 | dQ2 as Q1 < Q2 and dQ � Qlog logQ/4; and the limiting gap distribution for the sequences

(FQ,d)Q and (F̃Q,`)Q were shown to exist for fixed d and ` by Boca, Spiegelhalter, and the author

[16].

Recently, Athreya and Cheung [7] realized the horocycle flow, that is, the left multiplication of

the group 
 1 0

−s 1

 : s ∈ R

 ,

on SL(2,R)/SL(2,Z), as a suspension flow over the BCZ map introduced by Boca, Cobeli, and

Zaharescu [14] in their study of Farey fractions. Athreya and Cheung used this connection and

the equidistribution of horocycles in SL(2,R)/SL(2,Z) to rederive the limiting gap distribution

and other properties of Farey fractions. The process used in [7] to obtain these results was later

generalized in [5] to explain the gap distributions of various different sequences. Also, recent work

of Fisher and Schmidt [26] was concerned with lifting cross sections of the geodesic flow on the

unit tangent bundle of the modular surface to a finite cover, with the primary aim of obtaining

statistical properties of continued fractions.

In Chapter 2, we use the process in [26] to explicitly lift, for every finite index subgroup

H ⊆ SL(2,Z), the section of the horocycle flow discovered in [7] to the cover SL(2,R)/H of
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SL(2,R)/SL(2,Z). As one application, we prove the existence of the limiting gap distribution of

certain subsets of Farey fractions following the ideas in [7] and the more general framework of [5,

Theorem 2.5]. We additionally obtain results on the h-spacings and numerators of differences of

these subsets. A given subset we consider is determined by a finite index subgroup H ⊆ SL(2,Z),

and corresponds to a cross section of SL(2,Z)/H obtained by intersecting the lift of the section

in [7] with certain sheets of the cover SL(2,R)/H → SL(2,R)/SL(2,Z). As a second application,

we establish, for each of the aforementioned subsets of Farey fractions, the existence of the lim-

iting Lebesgue measure of the real numbers in [0, 1] that are in some sense well approximated by

elements in the subset and having large denominators. This solves an analogue of a Diophantine

approximation problem posed by Erdős, Szüsz, and Turán [20]. These results have been published

in [35].

This stream of research was inspired by the significant works of Elkies and McMullen [19]

and of Marklof and Strömbergsson [55]. In the first work, the equidistribution of horocycles in the

space ASL(2,R)/ASL(2,Z) of unimodular lattice translates in R2 was utilized to determine the gap

distribution of the sequence ({
√
n})n, where {x} = x− bxc denotes the fractional part; and in the

second, the equidistribution of unipotent flows in the higher dimensional spaces SL(d,Z)\SL(d,R)

and ASL(d,Z)\ASL(d,R) (d ≥ 2) was used to prove the existence of the limiting distribution of

the free path length in the Boltzmann-Grad limit of the periodic Lorentz gas.

1.3 Dynamics and continued fractions

Chapters 3–5 of this thesis are concerned with the regular continued fractions of the form

[a1, a2, a3, . . .] :=
1

a1 +
1

a2 +
1

a3 +
.. .
.

(aj ∈ N)

In particular, our central object of study is the Farey map F , and we also make significant use of

the Gauss map G, which is a speed up of F . Both F and G are dynamical systems on the unit
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interval to itself which have been studied in connection to continued fractions due to the equalities

F ([a1, a2, . . .]) =


[a1 − 1, a2, . . .] if a1 ≥ 2

[a2, a3, . . .] if a1 = 1

and G([a1, a2, . . .]) = [a2, a3, . . .].

The primary angle through which we study F is via the transfer operators of F and G. The

transfer operator can be defined for a dynamical system T : X → X on a measure space (X, p),

where p is a σ-finite measure (which is not necessarily finite) satisfying p◦T−1 � p, as the operator

T̂ : L1(p)→ L1(p) such that

∫
A
T̂ f dp =

∫
T−1(A)

f dp for any A ⊆ X measurable and f ∈ L1(p).

Equivalently,

∫
(T̂ f) · g dp =

∫
f · (g ◦ T ) dp for any f ∈ L1(p) and g ∈ L∞(p);

so the transfer operator of T is the dual of the Koopman operator f 7→ f ◦ T .

We also touch on the natural extensions of the Farey and Gauss maps. The natural extension of

a dynamical system, defined originally by Rohlin [61] for probability spaces and extended by Silva

[64] to σ-finite spaces, is a minimal invertible dynamical system which has the original system as

a factor. Due to the nature of F and G as shift maps on continued fractions, the construction of

their natural extensions is intuitive, and can be thought of as two-sided shift operators on continued

fraction digits.

We cover more details on some of the basic properties of continued fractions, the Gauss and

Farey maps, and their natural extensions and transfer operators in Chapter 3.

In Chapter 4, we study the distribution of the periodic points of F . To do so, we rely on a

connection, first noticed by Artin [4] and later lucidly explained by Series [63], between continued

fractions and geodesics in the modular surface. Notably, Series found a cross section of the geodesic
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flow in the tangent bundle of the modular surface, or equivalently, the right action of the group


 et/2 0

0 e−t/2

 : t ∈ R


on SL(2,Z)\SL(2,R); and the section’s first return map is a double cover of the natural extension

of G. This connection gives rise to a correspondence between the periodic orbits of G, consisting

of the periodic continued fractions, and the primitive closed geodesics in SL(2,Z)\SL(2,R).

Utilizing this relationship and the work of Mayer [56] on the transfer operator of G, Pollicott

[59] determined the limiting distribution of the periodic points of G when ordered according to the

length of their corresponding closed geodesics. He then utilized this result to prove the equidis-

tribution of the geodesics themselves. Using Pollicott’s technique, Kelmer [45] proved analogous

equidistribution results for closed geodesics in the modular surface with a specified linking number,

as well as their corresponding periodic continued fractions.

The goal of Chapter 4 is to extend the work of Series and Pollicott to encompass the Farey map.

We first enlarge Series’ cross section of the geodesic flow to yield another section forming a double

cover of the natural extension of F . This allows us to extend the correspondence between closed

geodesics and periodic continued fractions to include the periodic points of F . We then utilize the

work of Pollicott to establish the equidistribution of the periodic points of F , and of its natural

extension, according to their respective invariant measures.

The focus of Chapter 5 is the distribution of the preimages of the form F−n([α, β]) through the

analysis of the transfer operator of F . This study was inspired by the work of Kesseböhmer and

Stratmann [49] who, confirming a conjecture of Fiala and Kleban [25], proved that the Lebesgue

measure λ(Cn) of the sum-level set for continued fractions

Cn := F−(n−1)

([
1

2
, 1

])
=

{
[a1, a2, . . .] ∈ [0, 1] :

k∑
i=1

ai = n for some k ∈ N

}

approaches 0 as n→∞, and furthermore obtained an asymptotic formula for the decay rate. Then

in [48], they more generally established, for any subinterval [α, β] ⊆ (0, 1], the asymptotic decay

rate of the Lebesgue measures of the preimages (F−n([α, β])))n, in addition to the equidistribution

6



of the preimages with respect to the Lebesgue measure. As a corollary, they also provide an

equidistribution result for certain weighted subsets of the Stern-Brocot sequence which can be

obtained as preimages of the form F−n
(
v
w

)
with v

w ∈ Q. To prove these results, Kesseböhmer and

Stratmann applied powerful results in infinite ergodic theory to the transfer operator of F with

respect to the infinite invariant measure dx
x .

In Chapter 5, we obtain effective versions of the results of Kesseböhmer and Stratmann on

the equidistribution of both the preimages (F−n([α, β]))n and the subsets of the Stern-Brocot

sequence. For our proof, we establish estimates involving the sums of the iterates of the transfer

operator of F , and examine more carefully some of the results underlying the machinery used in

[49, 48]. Notably, we incorporate Freud’s work [27] that provides an effective version of Karamata’s

Tauberian theorem, an important result utilized in infinite ergodic theory. This work builds upon

the author’s publication [34].

Throughout this thesis, we make frequent use of asymptotic notation, which we explain here.

We write f(x) = O(g(x)), or equivalently f(x)� g(x), as x→∞ if there exist constants M,N > 0

such that |f(x)| ≤ M |g(x)| for all x ≥ N . The expression f(x) = Oc1,...,cm(g(x)), or equivalently

f(x)�c1,...,cm g(x), means the same thing, though in this case the constants M and N depend on

c1, . . . , cm. Also, we write f(x) ∼ g(x) as x→∞ if limx→∞
f(x)
g(x) = 1.

7



Chapter 2

The horocycle flow in SL(2,R) and
Farey fraction statistics

2.1 Introduction

In this chapter, we prove our main results on Farey fraction statistics utilizing dynamics in homo-

geneous spaces SL(2,R)/H. These results appear in [35]. We begin by giving some basic properties

of Farey fractions we use throughout the chapter.

An alternative way of defining the Farey sequence (F(Q))Q is by induction through the following

process: First, let F(1) =
{

0
1 ,

1
1

}
. Then, assuming we have defined F(Q) for a particular Q ∈ N,

we let F(Q + 1) be the set of all fractions in F(Q), together with all the mediants of consecutive

fractions in F(Q) having denominator Q + 1, i.e, fractions of the form a+a′

q+q′ , where a
q and a′

q′ are

consecutive elements in F(Q) and q+ q′ = Q+ 1. A few clear consequences of this is that if a
q <

a′

q′

are any consecutive elements of F(Q), then q+q′ > Q; and for any Q′ ≥ Q, the element succeeding

a
q in F(Q′) is of the form ma+a′

mq+q′ where m ∈ N ∪ {0}, and similarly the element in F(Q′) preceding

a′

q′ is of the form a+a′n
q+q′n where n ∈ N ∪ {0}.

Another elementary property we wish to note is that for any nonnegative integers a, a′, q, q′

such that 0 ≤ a
q <

a′

q′ ≤ 1, then a
q <

a′

q′ are consecutive in the Farey sequence of order max{q, q′} if

and only if a′q−aq′ = 1. It is then easy to see that if q, q′ ∈ {1, . . . , Q} such that gcd(q, q′) = 1 and

q+ q′ > Q, then there exist nonnegative integers a, a′ such that a
q <

a′

q′ are consecutive elements in

F(Q), which establishes a one-to-one correspondence a
q ↔ (q, q′) between F(Q)\{1} and the set

{(q, q′) ∈ {1, . . . , Q}2 : q + q′ > Q, gcd(q, q′) = 1}.

A property of great importance is that if a
q <

a′

q′ <
a′′

q′′ are three consecutive elements in F(Q),

then a+ a′′ = Ka′ and q + q′′ = Kq′ for some positive integer K which is commonly refered to as

8



the index of a′

q′ . More precisely, we have

K =

⌊
Q+ q

q′

⌋
, a′′ =

⌊
Q+ q

q′

⌋
a′ − a, q′′ =

⌊
Q+ q

q′

⌋
q′ − q. (2.1)

(See, e.g., [32, Chapter 3] and [31].) This led to the study of the BCZ map defined by Boca,

Cobeli, and Zaharescu in [14]. The BCZ map is a function T : Ω → Ω on the Farey triangle

Ω = {(a, b) ∈ (0, 1]2 : a+ b > 1} defined by the equality

T (a, b) :=

(
b,

⌊
1 + a

b

⌋
b− a

)
.

As a result of (2.1), we have

T

(
q

Q
,
q′

Q

)
=

(
q′

Q
,
q′′

Q

)
.

Let

F(Q) =

{
γ0 =

a0

q0
=

0

1
< γ1 =

a1

q1
< · · · < γN(Q) =

aN(Q)

qN(Q)
=

1

1

}

with gcd(ai, qi) = 1. The properties given above motivate the correspondence ai
qi
↔
(
qi
Q ,

qi+1

Q

)
between F(Q)\{1} and the subset

{(
qi
Q
,
qi+1

Q

)
: γi ∈ F(Q)

}
=

{(
q

Q
,
q′

Q

)
: q, q′ ∈ {1, . . . , Q}, gcd(q, q′) = 1, q + q′ > Q

}

of Ω that we refer to as the set of Farey points of order Q, and which is a periodic orbit of T .

In the next section, we see how the distribution of these points in Ω as Q → ∞ impacts the gap

distribution of the Farey sequence.

Let G = SL(2,R) and Γ = SL(2,Z). (We caution the reader that in all other chapters, G

denotes the Gauss map.) The central result of this chapter is the following:

Theorem 1. Let H be a finite index subgroup of Γ and M ⊆ Γ/H be a nonempty subset, closed

under left multiplication by
(

1 −1
0 1

)
. Also, for Q ∈ N, let FM (Q) ⊆ F(Q) be the set of fractions a

q

such that  q′ a′

−q −a

H ∈M,

9



where a′

q′ is the successor of a
q in F(Q). Then the sequence (FM (Q))Q becomes equidistributed

in [0, 1] with respect to the Lebesgue measure as Q → ∞. Furthermore, if I ⊆ [0, 1] is a given

subinterval and FI,M (Q) = FM (Q) ∩ I, then the limiting gap measure νI,M of (FI,M (Q))Q exists

and has a continuous and piecewise real analytic density.

We include the hypothesis that M is closed under left multiplication by
(

1 −1
0 1

)
in order to

ensure that (FM (Q))Q is an increasing sequence of sets. Indeed, let a
q ∈ FM (Q) so that

 q′ a′

−q −a

H ∈M,

where a′

q′ is the successor of a
q in F(Q). If Q′ ≥ Q, then by the mediant property of Farey fractions,

the successor of a
q in F(Q′) is equal to ma+a′

mq+q′ for some m ≥ 0. We then have

 mq + q′ ma+ a′

−q −a

H =

 1 −1

0 1


m q′ a′

−q −a

H ∈M,

implying that a
q ∈ FM (Q′), and hence (FM (Q))Q is increasing.

Applying Theorem 1 with H = Γ(m), where m is a positive integer and Γ(m) is the congruence

subgroup 
 a b

c d

 ≡
 1 0

0 1

 mod m : a, b, c, d ∈ Z, ad− bc = 1


of Γ, and with

M =


 n4 n3

−n2 −n1

H ∈ Γ/H : (n1, n2) mod m ∈ A


where A ⊆ (Z/mZ)2 is such that M is nonempty, i.e., there is some (n1, n2) ∈ A such that

gcd(n1, n2,m) = 1, we have the following result:

Corollary 1. Let A ⊆ (Z/mZ)2 contain some (n1, n2) such that gcd(n1, n2,m) = 1, and let

I ⊆ [0, 1] be a subinterval. Then for Q ∈ N, let Fm,A(Q) be the set of fractions a
q ∈ F(Q) such

that (a, q) ≡ (n1, n2) mod m for some (n1, n2) ∈ A, and let FI,m,A(Q) = Fm,A(Q) ∩ I. Then

(Fm,A(Q))Q becomes equidistributed in [0, 1] with respect to the Lebesgue measure as Q→∞, and

10



the limiting gap measure νI,m,A of (FI,m,A(Q))Q exists and has a continuous and piecewise real

analytic density.

Corollary 1 includes the existence of the limiting gap measures of (FQ,d)Q and (F̃Q,`)Q proven

in [16] as special cases since FQ,d = Fd,A(Q), where A ⊆ (Z/dZ)2 is the subset consisting of all

pairs (n1, n2) such that gcd(n2, d) = 1, and F̃Q,` = F`,A′ , where A′ ⊆ (Z/`Z)2 is the subset having

all pairs (n1, n2) with n1 6≡ 0 mod `. Congruence subgroups also appear in the study [55, Corollary

2.7] of the related problem of proving the existence of the limiting gap measure for the angles of

visible points in Z2 with respect to an observer at a rational point. See [6] and [68] for similar

applications of the ergodic properties of the horocycle flow on homogeneous spaces G/H to the

computation of the limiting gap measure of slopes on the golden L and the octagon, respectively.

In [20], Erdős, Szüsz, and Turán introduced the Diophantine problem concerning the sets

S(n, α, c) :=

{
ξ ∈ [0, 1] : there exists a, q ∈ Z such that (a, q) = 1, n ≤ q ≤ nc, |qξ − a| ≤ α

q

}

where n ∈ N, α > 0, and c ≥ 1. They computed the limit of the Lebesgue measures

lim
n→∞

λ(S(n, α, c))

when α ≤ c
1+c2

, and the posed the problem of deciding the existence of the limit, and computing it

if it does exist, for all α and c. The limit was computed in the expanded range αc ≤ 1 by Kesten [50]

and shown to exist in all cases by Kesten and Sós [51] using probabilistic methods. Later, Xiong

and Zaharescu [70], and independently Boca [12], gave a direct proof for the existence of the limit

and expressed it in all cases explicitly in terms of iterates of the BCZ map. This type of problem

was recently investigated in higher dimensions as well as in the setting of translation surfaces by

Athreya and Ghosh [8]. The second main result of this chapter is the following theorem, which

establishes the limiting measure for sets defined in the same way as S(n, α, c), with the restriction

that the pairs (a, q) are such that a
q ∈ FM (Q) for some Q ∈ N.

Theorem 2. Let FM (Q) be the set of Farey fractions defined as in Theorem 1. Then for n ∈ N,

11



α > 0, and c ≥ 1, let

SM (n, α, c) :=

{
ξ ∈ [0, 1] : there exists

a

q
∈ FM (bncc) in lowest terms

such that q ≥ n, |qξ − a| ≤ α

q

}
,

and for a given subinterval I ⊆ [0, 1], SI,M (n, α, c) := I ∩ SM (n, α, c). Then the limits

lim
n→∞

λ(SM (n, α, c)) and lim
n→∞

λ(SI,M (n, α, c))

exist, and if we denote %M (α, c) := limn→∞ λ(SM (n, α, c)), then

lim
n→∞

λ(SI,M (n, α, c)) = |I|%M (α, c).

Again, letting H = Γ(m) and M ⊆ Γ/H be defined as before Corollary 1, we obtain the

following:

Corollary 2. Let A ⊆ (Z/mZ)2 contain some (n1, n2) such that gcd(n1, n2,m) = 1. Then for

n ∈ N, α > 0, and c ≥ 1, let

S(n, α, c, A) :=

{
ξ ∈ [0, 1] : there exists a, q ∈ Z≥0 such that (a, q) = 1,

(a, q) mod m ∈ A,n ≤ q ≤ nc, |qξ − a| ≤ α

q

}

and for a given subinterval I ⊆ [0, 1], SI(n, α, c, A) := I ∩ S(n, α, c, A). Then the limits

lim
n→∞

λ(S(n, α, c, A)) and lim
n→∞

λ(SI(n, α, c, A))

exist, and

lim
n→∞

λ(SI(n, α, c, A)) = |I| lim
n→∞

λ(S(n, α, c, A)).

In Section 2.2, we review the work of Athreya and Cheung [7] in showing the horocycle flow

as a suspension flow by naturally identifying the Farey triangle Ω with a cross section Ω′ of the

horocycle flow whose first return map corresponds to the BCZ map. We also outline how Athreya

12



and Cheung used the ergodic properties of the horocycle flow to prove the equidistribution of the

Farey points in Ω′, which in turn yields results about Farey fraction gaps. Then in Sections 2.3–2.6,

we prove Theorem 1 using the same process. We start in Section 2.3 by proving that
⋃
Q∈NFM (Q)

is dense in [0, 1], and this involves proving an elementary lemma regarding representatives for cosets

in Γ/H. In Section 2.4, we use results in [26] to construct a cross section ΩM of the horocycle

flow on G/H analogous to Ω′ that relates to the gaps in (FM (Q))Q. In Section 2.5, we prove some

important properties of the first return time function of ΩM which have an effect on the existence

and properties of νI,M mentioned in Theorem 1. Then in Section 2.6, we prove the equidistribution

of certain points in ΩM , analogous to the Farey points in Ω′. From this equidistribution we can

conclude the existence of the limiting gap measure of (FI,M (Q))Q. In Section 2.7, we examine

a particular property that we call the repulsion gap of (FI,M (Q))Q, which is the infimum of the

support of νI,M . In the particular case where (FI,M (Q))Q is the sequence of Farey fractions a
q with

q ≡ 1 mod m for some fixed m ∈ N, the repulsion gap is explicitly computed as

3

π2m

∏
p|m

p prime

(1− p−2)−1. (2.2)

Lastly, in Section 2.8, we prove Theorem 2 also as a corollary of the work in Sections 2.3–2.6.

2.2 The cross section of Athreya and Cheung

In [7], Athreya and Cheung viewed the Farey triangle Ω as a subset of G/Γ by letting

P :=

pa,b =

 a b

0 a−1

 : (a, b) ∈ Ω


and considering the set

Ω′ := PΓ/Γ = {Λa,b = pa,bΓ : (a, b) ∈ Ω},

13



which was found to be a cross section for the horocycle flow, the action by left multiplication on

G/Γ of

N =

hs =

 1 0

−s 1

 : s ∈ R

 .

This means that for almost every Λ ∈ G/Γ with respect to the Haar measure, the set {s ∈ R :

hsΛ ∈ Ω′} of times the orbit of Λ under the horocycle flow meets Ω′ is nonempty, countable, and

discrete. The first return time function R : Ω′ → R defined by R(Λa,b) = min{s > 0 : hsΛa,b ∈ Ω′}

is R(Λa,b) = (ab)−1, and the first return map r : Ω′ → Ω′ defined by r(Λa,b) = hr(Λa,b)Λa,b is

r(Λa,b) = ΛT (a,b), where T is the BCZ map. The last equality can be seen by the calculation

hR(Λa,b)Λa,b =

 1 0

−(ab)−1 1


 a b

0 a−1

Γ =

 a b

−b−1 0


 0 −1

1
⌊

1+a
b

⌋
Γ

=

 b
⌊

1+a
b

⌋
b− a

0 b−1

Γ = ΛT (a,b).

Also, if we identify G/Γ with the set {(a, b, s) : (a, b) ∈ Ω, 0 ≤ s < (ab)−1} via the correspondence

hsΛa,b ↔ (a, b, s), then dµG/Γ = 2 da db ds, where µG/Γ is the Haar measure on G/Γ such that

µG/Γ(G/Γ) = π2

3 .

Letting I ⊆ [0, 1] be a subinterval, FI(Q) = F(Q) ∩ I, and NI(Q) = #FI(Q), we define on Ω′

the measure

ρQ,I :=
1

NI(Q)

∑
i:γi∈I

δri(Λ1,1/Q) =
1

NI(Q)

∑
i:γi∈I

δΛqi/Q,qi+1/Q
,

where δx denotes the Dirac measure of measure one concentrated at x ∈ Ω′. Now notice that

R(Λqi/Q,qi+1/Q) = Q2

qiqi+1
= Q2(γi+1 − γi), and as a result,

#{γi ∈ FI(Q) : 3
π2Q

2(γi+1 − γi) ∈ [0, ξ]}
NI(Q)

= ρQ,I

(
R−1

([
0,
π2

3
ξ

]))
(2.3)

for all ξ ≥ 0. By the equidistribution of (F(Q))Q, NI(Q) ∼ 3
π2 |I|Q2, and if γI,l and γI,g are the least

and greatest elements in FI(Q), respectively (we suppress the dependence on Q), then γI,g−γI,l →

|I| as Q→∞. Thus the limit of the left side of (2.3) as Q→∞ is the measure of [0, ξ] under the
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limiting gap measure of (FI(Q))Q. So to show that the limiting gap measure of (FI(Q))Q exists,

it suffices to prove that the limit of the right side of (2.3) exists. To do so, Athreya and Cheung

proved that the sequence (ρQ,I)Q of measures converges in the weak* topology to the measure m

on Ω′ given by dm = 2 da db. They first noticed that if ρRQ,I is the measure on G/Γ defined by

dρRQ,I = dρQ,I ds, where we are viewing G/Γ as the set {(Λa,b, s) ∈ Ω′ ×R : 0 ≤ s < (ab)−1} by the

correspondence hsΛa,b ↔ (Λa,b, s), then ρRQ,I → µG/Γ in the weak* topology. This convergence is a

consequence of the equidistribution of closed horocycles in G/Γ (see, e.g., [71, 62, 21, 36, 65]).

It then follows that if πΩ′ : G/Γ → Ω′ is the projection (Λa,b, s) 7→ Λa,b (we are again viewing

G/Γ as {(Λa,b, s) ∈ Ω′ × R : 0 ≤ s < (ab)−1}), then

1

R
πΩ′∗ρ

R
Q,I →

1

R
πΩ′∗µG/Γ (Q→∞)

in the weak* topology. It is easy to see that ρQ,I = 1
RπΩ′∗ρ

R
Q,I and m = 1

RπΩ′∗µG/Γ, and so

ρQ,I → m.

Remark 1. The convergence ρQ,I → m was proven in [43] in the case I = [0, 1]. This can actually

be proven in an elementary way using Möbius summation. For shrinking subintervals I = I(Q) ⊆

[0, 1] with |I(Q)| � Q−1/2+ε, this convergence can be deduced using a corollary of the Weil bound

for Kloosterman sums (see, e.g., [15, Section 2]). For fixed I, this convergence also follows from

[53, Theorem 6], in which the equidistribution of Farey points of arbitrary dimension was proven.

See [54] for results regarding the spacing statistics of higher dimensional Farey fractions. Using

ρQ,I → m, Athreya and Cheung [7] not only explained the gap distribution of (FI(Q))Q, but

through finding appropriate functions f : Ω′ → R such that

lim
Q→∞

∫
Ω′
f dρQ,I =

∫
Ω′
f dm,

they were able to recast in this unified setting many previously known results about Farey fractions,

including results on their h-spacings and indices.
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2.3 The density of
⋃
Q∈NFM(Q) in [0, 1]

Throughout this section and Sections 2.4–2.6, let H ⊆ Γ be a subgroup of finite index, M =

{m1H, . . . ,mkH} ⊆ Γ/H be a nonempty subset closed under left multiplication by
(

1 −1
0 1

)
, and

I = [t1, t2] ⊆ [0, 1] be a subinterval. We now set out to prove that the limiting gap measure νI,M

of (FI,M (Q))Q exists and start in this section by proving that
⋃
Q∈NFM (Q) is dense in [0, 1]. We

first prove the following elementary lemma:

Lemma 1. Let gH be any coset in Γ/H. Then there exist positive integers a, b, c, d such that

 a b

−c −d

 ∈ gH.
Proof. First note that since [Γ : H] <∞, there exists an integer N ≥ 2 such that

UN =

 1 N

0 1

 , LN =

 1 0

N 1

 ∈ H.

Let A =
(
a0 b0
c0 d0

)
∈ gH. If a0 > 0 and b0 = 0, then A =

(
1 0
c0 1

)
. Replacing A by AL−jN for a large

enough j replaces c0 by a number less than −1, and so we can assume that c0 < −1. We then have

AUN =
(

1 N
c0 c0N+1

)
, which is a matrix of the desired form. So the proof is complete in this case.

So assume that a0 ≤ 0 or b0 6= 0. If b0 = 0, we must have a0 < 0, and if a0 = 0 so that

b0 6= 0, multiplying A on the right by LN or L−1
N replaces a0 by a negative number. So we can

assume that a0 < 0. Then multiplying A on the right by U−jN for a large enough j replaces b0

by a positive number, and so assume that b0 > 0. Now since a0d0 − b0c0 = 1, we clearly have

c0d0 ≤ 0. Suppose that d0 = 0, implying that A =
(
a0 1
−1 0

)
. Multiplying A on the right by LjNUN

yields
(
a0+jN N(a0+jN)+1
−1 −N

)
. Choosing j so that a0 + jN > 0 yields a matrix of the desired form,

and so the proof is complete in this case. If c0 = 0, then A =
(−1 b0

0 −1

)
, and multiplying A on the

right by L−1
N yields

(−1−b0N b0
N −1

)
.

Thus we have reduced the case where c0 = 0 to the situation where A =
(−a b
c −d

)
with a, b, c, d >

0, which we now consider. Let γ
α < δ

β be fractions such that αδ − βγ = 1 and a
b <

γ
α . Matrix

multiplication reveals that any power of B =
(
α β
γ δ

)
is of the form

(
α′ β′

γ′ δ′

)
where γ

α ≤
γ′

α′ <
δ′

β′ ≤
δ
β .
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So noting that [Γ : H] < ∞, we can replace B by some power of B that is in H. We then have

AB ∈ gH and

AB =

 −a b

c −d


 α β

γ δ

 =

 −aα+ bγ −aβ + bδ

cα− dγ cβ − dδ

 ,

which is a matrix of the desired form since c
d <

a
b <

γ
α <

δ
β .

The last case we need to consider is when A =
(−a b
−c d

)
with a, b, c, d > 0. Noting that a

b <
c
d

since −ad+ bc = 1, we can find fractions γ
α <

δ
β such that αδ − βγ = 1 and a

b <
γ
α <

δ
β <

c
d . As in

the previous case, we may assume that B =
(
α β
γ δ

)
∈ H. Then AB ∈ gH and

AB =

 −a b

−c d


 α β

γ δ

 =

 −aα+ bγ −aβ + bδ

−cα+ dγ −cβ + dδ


is a matrix of the desired form. This completes the proof.

So by Lemma 1, there exist a, b, c, d ∈ N such that
(
a b
−c −d

)
H ∈ M . Multiplying

(
a b
−c −d

)
on

the right by LN yields a matrix of the form
(
q′ a′

−q −a

)
, where a

q <
a′

q′ are consecutive Farey fractions

of some order. We have
(
q′ a′

−q −a

)
H ∈M , proving that

⋃
Q∈NFM (Q) is nonempty.

Lemma 2. There exists constants Y > 0 and Q0 > 0, depending only on the subgroup H ⊆ G,

such that for any Q ≥ Q0 and x ∈ [0, 1],

min
β∈FM (Q)

|x− β| ≤ Y

Q
.

Proof. By Lemma 1, there exists a matrix of the form
(
a b
−c −d

)
, with a, b, c, d > 0, in each coset gH

in Γ/H. By multiplying each on the right by a sufficiently large power of
(

1 −N
0 1

)
, we can say that

each coset in Γ/H also contains a matrix of the form
(
a −b
−c d

)
, with a, b, c, d > 0. Let kH ∈ N be

an upper bound on the entries of coset representatives in Γ/H of the forms
(
a b
−c −d

)
and

(
a −b
−c d

)
.

Now let x ∈ [0, 1] be given. Then for Q ∈ N, let a
q <

a′

q′ be consecutive in F(Q) such that

a
q ≤ x ≤ a′

q′ , and note that the difference between x and both a
q and a′

q′ is at most Q−1. Thus any

fraction between a
q and a′

q′ is at most Q−1 away from x.
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By our comments above, the coset
( q a
q′ a′

)
H contains an element of the form

(
a0 −b0
−c0 d0

)
, with

0 < a0, b0, c0, d0 ≤ kH . Thus H contains

 a0 −b0

−c0 d0


−1 q a

q′ a′

 =

 d0 b0

c0 a0


 q a

q′ a′

 =

 v u

v′ u′

 ,

where u
v <

u′

v′ are consecutive Farey fractions of some order between a
q and a′

q′ such that v, v′ ≤

2kHQ. If
(

a1 b1
−c1 −d1

)
is a representative of any coset miH in M with 0 < a1, b1, c1, d1 ≤ kH , then

miH contains

 a1 b1

−c1 −d1


 v u

v′ u′

 =

 a1v + b1v
′ a1u+ b1u

′

−c1v − d1v
′ −c1u− d1u

′

 .

Thus FM (Q′) contains c1u+d1u′

c1v+d1v′
for all Q′ ≥ max{a1v+b1v

′, c1v+d1v
′}. Since max{a1v+b1v

′, c1v+

d1v
′} ≤ 4k2

HQ, FM (Q′) contains c1u+d1u′

c1v+d1v′
for Q′ ≥ 4k2

HQ. Thus the minimum distance between

x and an element in FM (4k2
HQ) is at most Q−1. Replacing Q by

⌊
Q

4k2
H

⌋
in this argument, and

letting Q ≥ 8k2
H , we see that the minimum distance between x and an element in FM (Q) is at

most 1
(Q/4k2

H)−1
≤ 8k2

H
Q . This completes the proof with Y = Q0 = 8k2

H .

This immediately implies the density of (FM (Q))Q.

Corollary 3. The set
⋃
Q∈NFM (Q) is dense in [0, 1].

With Lemma 2 and the horocycle equidistribution results of Hejhal [36], and later Strömbergsson

[65], it is conceivable that one can obtain results while allowing the subinterval I to shrink with Q

and n in Theorems 1 and 2, respectively.

2.4 A cross section for G/H

In the same way the properties of Ω′ as a cross section of the horocycle flow on G/Γ were used in [7]

to deduce many consequences for the gaps in (F(Q))Q, we now find a new space ΩM that is a cross

section of the horocycle flow on G/H which can be used to analyze the gaps in FM (Q). One step

toward this goal is to lift the cross section Ω′ to G/H via the natural projection πH : G/H → G/Γ.
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In order to do this, we use the work of Fisher and Schmidt [26] on the behavior of a lifted cross

section for the geodesic flow from F\PSL(2,R), F ⊆ PSL(2,R) being a Fuchsian group of finite

covolume, to a finite cover F ′\PSL(2,R) of F\PSL(2,R). In particular, we apply [26, Lemma 2,

Theorem 3] to the finite cover πH : G/H → G/Γ, lifting the cross section Ω′ to ΩH := π−1
H (Ω′).

In applying [26, Theorem 3], we make the slight modifications of working in the left coset space

instead of the right coset space, replacing the geodesic flow with the horocycle flow, and allowing

the possibility that − ( 1 0
0 1 ) /∈ H, so that G/H is not necessarily of the form PSL(2,R)/F ′. We

summarize the results we need from this application in the following theorem:

Theorem 3. The set

ΩH := π−1
H (Ω′) = PΓH/H = {pa,bgH : pa,b ∈ P, g ∈ Γ}

is a cross section for the action of N on G/H with first return time function R ◦ πH : ΩH → R

and first return map rH : ΩH → ΩH such that, for all pa,b ∈ P and g ∈ Γ,

rH(pa,bγH) = hR(πH(pa,bγH))pa,bγH

=

 1 0

−(ab)−1 1


 a b

0 a−1


 0 −1

1 b1+a
b c


 0 −1

1 b1+a
b c


−1

γH

=

 b b1+a
b cb− a

0 b−1


 b1+a

b c 1

−1 0

 γH. (2.4)

Identify ΩH with P ×Γ/H via the correspondence pa,bγH ↔ (pa,b, γH), and let µΩH be the measure

on ΩH corresponding in this way to the product measure on P × Γ/H of 2 da db with the counting

measure on Γ/H. Then identify G/H with {(x, s) ∈ ΩH×R : 0 ≤ s < (R◦πH)(x)} via (x, s)↔ hsx.

Then the Haar measure µG/H on G/H, normalized so that µG/H(G/H) = π2

3 [Γ : H], is given by

dµG/H = dµΩH ds.

Our next step is to find a correspondence of F(Q) with points in ΩH analogous to that of F(Q)

with the Farey points in Ω. So suppose that a
q <

a′

q′ <
a′′

q′′ are consecutive fractions in F(Q). Then
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letting K =
⌊
Q+q
q′

⌋
and noting that a′′ = Ka′ − a and q′′ = Kq′ − q, by (2.4) we have

rH


 q

Q
q′

Q

0 Q
q


 q′ a′

−q −a

H

 =

 q′

Q
Kq′−q
Q

0 Q
q′


 Kq′ − q Ka′ − a

−q′ −a′

H

=

 q′

Q
q′′

Q

0 Q
q′


 q′′ a′′

−q′ −a′

H.

Therefore, if we associate each fraction a
q ∈ F(Q) to the element

WH,Q

(
a

q

)
:=

 q
Q

q′

Q

0 Q
q


 q′ a′

−q −a

H

of ΩH , where a′

q′ is the element succeeding a
q in F(Q), then rH

(
WH,Q

(
a
q

))
= WH,Q

(
a′

q′

)
. The

map WH,Q gives the correspondence of F(Q) with ΩH that we are seeking, and WH,Q sends a

fraction in F(Q) to

ΩM := PM = {pmiH : p ∈ P,miH ∈M}

if and only if the fraction is in FM (Q). The set ΩM is the cross section in G/H we set out to find

at the beginning of this section.

To see that ΩM is in fact a cross section for the horocycle flow on G/H, notice that the set

h[−1,0]ΩM = {hspmiH : s ∈ [−1, 0], pmiH ∈ ΩM} ⊆ G/H

has positive µG/H -measure. Now by the ergodicity of the horocycle flow [33], µG/H -a.e. x ∈ G/H

is sent to h[−1,0]ΩM by {hs : s > 0}. Clearly all of h[−1,0]ΩM is sent to ΩM by {hs : s ≥ 0}, and

so a.e. x ∈ G/H is sent to ΩM by {hs : s > 0}. The discreteness of {s ∈ R : hsx ∈ ΩM} for a.e.

x ∈ G/H follows from the fact that ΩM ⊆ ΩH . This proves that ΩM is a cross section for the

action of N on G/H.

Let RM : ΩM → (0,∞] be the first return time function RM (x) := min{s > 0 : hsx ∈ ΩM}

and rM be the first return map on ΩM defined by rM (x) := hRM (x)x. Here we note that if

µΩM := 1
#M µΩH |ΩM , then dµG/H = (#M) dµΩM ds, where we identify G/H with {(x, s) ∈ ΩM×R :
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0 ≤ s < RM (x)} by hsx↔ (x, s).

Now that we have identified a cross section in G/H and a correspondence WH,Q of FM (Q) to

a subset of ΩM analogous to the set of Farey points in Ω, we wish to see if information about

the gaps in FM (Q) can be deduced from ΩM . So let γi ∈ FM (Q) such that there are i′ > i with

γi′ ∈ FM (Q). Since ΩM ⊆ ΩH , for each x ∈ ΩM in which rM (x) is defined, rM (x) = rjH(x) for

some j ∈ N. So

rM (WH,Q(γi)) = rjH(WH,Q(γi)) = WH,Q(γi+j),

where j ∈ N is the least element such that WH,Q(γi+j) ∈ ΩM , i.e., γi+j ∈ FM (Q). We then have

RM (WH,Q(γi)) =

j−1∑
i′=0

(R ◦ πH)(ri
′
H(WH,Q(γi))) =

j−1∑
i′=0

Q2

qi+i′qi+i′+1

= Q2(γi+j − γi). (2.5)

So just as the return time function R on Ω′ contained information about the gaps in F(Q), RM

contains information about the gaps in FM (Q).

Let NI,M (Q) := #FI,M (Q)− 1 and

FI,M (Q) = {β0 < β1 < · · · < βNI,M (Q)}.

For notational convenience, we suppress the dependence of the βi on Q. Then define the measure

ρQ,I,M on ΩM by

ρQ,I,M :=
1

NI,M (Q)

NI,M (Q)−1∑
i=0

δWH,Q(βi).

By (2.5), we have

#{0 ≤ i ≤ NI,M (Q)− 1 : Q2(βi+1 − βi) ∈ [0, ξ]}
NI,M (Q)

= ρQ,I,M
(
R−1
M ([0, ξ])

)
(2.6)

for all ξ ≥ 0. To show that the limit of the left side, and hence the right side, exists, we prove in

Section 2.5 that the boundary ∂
(
R−1
M ([0, ξ])

)
of the set R−1

M ([0, ξ]) has µΩM -measure 0, and then
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prove in Section 2.6 that (ρQ,I,M )Q converges weakly to µΩM as Q→∞. These results imply that

lim
Q→∞

ρQ,I,M
(
R−1
M ([0, ξ])

)
= µΩM

(
R−1
M ([0, ξ])

)
by the Portmanteau theorem. Note that the right side of (2.6) is not the relevant limit to prove the

existence of the limiting gap measure for (FI,M (Q))Q because of the gap normalization factor Q2

and the missing factor βNI,M (Q) − β0 to be multiplied by ξ. However, we have βNI,M (Q) − β0 → |I|

as Q → ∞ by the density of
⋃
Q∈NFM (Q) in [0, 1], and we show that NI,M (Q) ∼ |I|(#M)Q2

µG/H(G/H) =

3|I|(#M)Q2

π2[Γ:H]
as Q → ∞ in the course of our work in Section 2.6. It then follows that the limiting

gap measure νI,M exists and satisfies

νI,M ([0, ξ]) = µΩM

(
R−1
M

([
0,
π2[Γ : H]

3(#M)
ξ

]))
(2.7)

for all ξ ≥ 0. Another corollary is that limQ→∞
NI,M (Q)
N[0,1],M (Q) = |I| for every subinterval I ⊆ [0, 1],

implying that (FM (Q))Q becomes equidistributed in [0, 1] as Q→∞.

2.5 The return time function RM

In this section, we prove important properties of the first return time function RM . Specifically, we

show that µΩM

(
∂
(
R−1
M ([0, ξ])

))
= 0 for every ξ ≥ 0, and the function AM : [0,∞)→ [0, 1] defined

by

AM (ξ) = µΩM

(
R−1
M ([0, ξ])

)
has a continuous, piecewise real analytic derivative. These results, together with our work in Section

2.6, prove that the limiting gap measure νI,M exists and has a continuous and piecewise real analytic

density. To do this, we show that RM is a piecewise rational function, viewing each component

PmiH/H of ΩM as a copy of the Farey triangle Ω by the correspondence pa,bmiH ↔ (a, b), and

that the region in a given component PmiH/H over which RM is equal to a particular rational

function is a polygon. This allows us to say that R−1
M ([0, ξ]) is the union of regions, each being

obtained by intersecting a polygon with a region bounded below by a hyperbola which depends in

a smooth way on ξ. In particular, we show that R−1
M ([0, ξ]) is a finite union of these regions, which
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grants us the properties of AM we seek.

2.5.1 RM is piecewise rational

First let pa,b ∈ P and miH ∈M so that pa,bmiH ∈ ΩM , and suppose s > 0. We have hspa,bmiH ∈

ΩM if and only if there exist pc,d ∈ P and mjH ∈M such that hspa,bmiH = pc,dmjH. This means

there exists h ∈ H such that hspa,bmihm
−1
j = pc,d. Letting mihm

−1
j = ( c1 c2c3 c4 ), this equality is

 ac1 + bc3 ac2 + bc4

a−1c3 − s(ac1 + bc3) a−1c4 − s(ac2 + bc4)

 =

 c d

0 c−1

 .

Thus hspa,bmiH ∈ ΩM if and only if there exists ( c1 c2c3 c4 ) ∈
⋃k
j=1miHm

−1
j such that (ac1 +bc3, ac2 +

bc4) ∈ Ω and s = c3
a(ac1+bc3) = 1

a(b+c1a/c3) . The latter conditions and s > 0 imply that c3 > 0, and

hence c1 ≤ 0 since ac1 + bc3 ≤ 1 and a + b > 1. In particular, if RM (pa,bmiH) < ∞, then

RM (pa,bmiH) = 1
a(b+c1a/c3) , where c1

c3
is the greatest fraction such that c1 ≤ 0, c3 > 0, and there

exists ( c1 c2c3 c4 ) ∈
⋃k
j=1miHm

−1
j with (ac1 + bc3, ac2 + bc4) ∈ Ω. Note that such a greatest fraction

exists since if c1c3 and
c′1
c′3

are distinct fractions satisfying the conditions of the previous sentence, then∣∣∣ 1
a(b+c1a/c3) −

1
a(b+c′1a/c

′
3)

∣∣∣ =
|c′1c3−c′3c1|

(c3b+c1a)(c′3b+c
′
1a)

> 1. So RM can be written not only as an infimum,

but as a minimum, of the expressions 1
a(b+c1a/c3) . We have thus proven the following result:

Proposition 1. The function RM is a piecewise rational function. Specifically,

RM = min
C∈

⋃k
i,j=1 miHm

−1
j

fC ,

where for each C = ( c1 c2c3 c4 ) ∈
⋃k
i,j=1miHm

−1
j , fC : ΩM → [0,∞] is defined by

fC(pa,bmiH) :=


1

a(b+ c1a/c3)
if C ∈

k⋃
j=1

miHm
−1
j , c3 > 0, ( a b ) ( c1 c2c3 c4 ) ∈ Ω

∞ otherwise.

Next, for a given fraction c1
c3

with c1 ≤ 0 and c3 > 0, we wish to better understand the region

R−c1/c3 :=

{
pa,bmiH ∈ ΩM : RM (pa,bmiH) =

1

a(b+ c1a/c3)

}
.
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In particular, we want to prove the following technical result, which is a great aid in showing that

µΩM

(
∂
(
R−1
M ([0, ξ])

))
= 0 for ξ ≥ 0 and that A′M is continuous and piecewise real analytic.

Proposition 2. For each i ∈ {1, . . . , k}, R−c1/c3 ∩ PmiH/H is either empty or a polygon when

we view PmiH/H as the Farey triangle Ω.

Proof. We first examine the region

RC :=

pa,bmiH ∈ ΩM : (ac1 + bc3, ac2 + bc4) ∈ Ω, C ∈
k⋃
j=1

miHm
−1
j


for a given C = ( c1 c2c3 c4 ) ∈

⋃k
i,j=1miHm

−1
j . Note that R−c1/c3 is a subset of the union of all RC′ such

that C ′ ∈
⋃k
i,j=1miHm

−1
j is a matrix having ( c1c3 ) as its first column. If c4 = 0, then C =

(
c1 −1
1 0

)
and for a given index i, RC ∩ PmiH/H is a subset of {pa,bmiH : (ac1 + b,−a) ∈ Ω} = ∅. Thus

RC is empty in this case. Next, suppose c4 ≤ −1. Then RC ∩ PmiH/H consists of the elements

pa,bmiH which must satisfy

−c1

c3
a < b ≤ 1− c1a

c3
and

1− c2a

c4
≤ b < −c2

c4
a.

However, we have c1c4−c2c3 = 1, which implies that c1
c3
− c2
c4

= (c3c4)−1 < 0, and hence − c2
c4
< − c1

c3
.

Thus the above conditions on pa,bmiH cannot be satisfied, and therefore RC = ∅. So RC is

nonempty only when c1 ≤ 0 and c3, c4 ≥ 1, which then implies that c2 = c1c4−1
c3

< 0.

As a result of our work above, we reset notation so that C =
(−c1 −c2
c3 c4

)
and we assume that

c1 ≥ 0 and c2, c3, c4 ≥ 1. Now a point (a, b) ∈ Ω satisfies (−ac1 + bc3,−ac2 + bc4) ∈ Ω if and only if

c1

c3
a < b ≤ 1 + c1a

c3
,

c2

c4
a < b ≤ 1 + c2a

c4
, and b >

1 + (c1 + c2)a

c3 + c4
.

Since c1
c3
a < c2

c4
a ≤ 1+(c1+c2)a

c3+c4
for a ∈ (0, 1], the above conditions reduce to 1+(c1+c2)a

c3+c4
< b ≤

min
{

1+c1a
c3

, 1+c2a
c4

}
. We therefore have

RC =

pa,bmiH ∈ ΩM :

1+(c1+c2)a
c3+c4

< b ≤ min
{

1+c1a
c3

, 1+c2a
c4

}
C ∈

⋃k
j=1miHm

−1
j

 .
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Since M is closed under left multiplication by
(

1 −1
0 1

)
,
⋃k
j=1miHm

−1
j is closed under right

multiplication by ( 1 1
0 1 ) for each i ∈ {1, . . . , k}. So if C ∈

⋃k
j=1miHm

−1
j , then for every n ∈ N,

C

 1 n

0 1

 =

 −c1 −nc1 − c2

c3 nc3 + c4

 ∈ k⋃
j=1

miHm
−1
j .

We have

R
C( 1 n

0 1 ) =

pa,bmiH ∈ ΩM :

1+((n+1)c1+c2)a
(n+1)c3+c4

< b ≤ 1+(nc1+c2)a
nc3+c4

C ∈
⋃k
j=1miHm

−1
j

 ,

noting that 1+(nc1+c2)a
nc3+c4

< 1+c3a
c4

. Thus for each i such that C ∈
⋃k
j=1miHm

−1
j , the regions{

R
C( 1 n

0 1 ) ∩ PmiH/H : n ∈ N
}

paste together to form

{
pa,bmiH ∈ PmiH/H :

c1

c3
a < b ≤ min

{1 + c1a

c3
,
1 + c2a

c4

}}

since the sequence
(

1+(nc1+c2)a
nc3+c4

)
n

decreases to c1
c3
a for each a ∈ (0, 1]. Therefore, if we assume that

c2,i
c4,i

is the largest fraction such that
(
−c1 −c2,i
c3 c4,i

)
∈
⋃k
j=1miHm

−1
j , then

Rc1/c3 ∩ PmiH/H ⊆
{
pa,bmiH :

c1

c3
a < b ≤ min

{1 + c1a

c3
,
1 + c2,ia

c4,i

}}
.

(Every candidate for
c2,i
c4,i

is a fraction immediately succeeding c1
c3

in F(Q) for some Q ∈ N, and

thus a largest such fraction exists.) We use R(i)
c1/c3

to denote the set on the right for each c1 ≥ 0,

c3 ≥ 1, and i ∈ {1, . . . , k} such that
(−c1
c3

)
is the first column of a matrix in

⋃k
j=1miHm

−1
j , and

c2,i
c4,i

(c2,i, c4,i ≥ 1) is the largest fraction with
(
−c1 −c2,i
c3 c4,i

)
∈
⋃k
j=1miHm

−1
j . If c1, c3, and i do not

satisfy these conditions, we let R(i)
c1/c3

= ∅. Then for all c1 and c3, we have

Rc1/c3 =

k⋃
i=1

R(i)
c1/c3

\
⋃
s∈Q

0≤s<c1/c3

R(i)
s

 .

Assume that c1, c3, and i are such that R(i)
c1/c3

6= ∅. In order to show that Rc1/c3 ∩ PmiH/H

is either empty or a polygon, it is sufficient to prove that Rc1/c3 ∩ PmiH/H can be written in the
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form R(i)
c1/c3
\
(⋃n

`=1R
(i)
s`

)
for some s` ∈ Q. Note that if c1

c3
= 0, then Rc1/c3 ∩ PmiH/H = R(i)

0 ,

which is a triangle if nonempty. So assume that c1
c3
> 0. We now consider two cases.

Case 1. There exists s ∈ Q with s < c1
c3

such that R(i)
s contains the lower-right border

{
pa,bmiH :

b = c1
c3
a
}

of R(i)
c1/c3

in its interior. Then clearly there exists N ∈ N such that

R(i)
c1/c3
\R(i)

s ⊆
{
pa,bmiH :

1

N
+
c1

c3
a < b ≤ 1 + c1a

c3

}
.

If there is another
c′1
c′3
∈ Q with

c′1
c′3
< c1

c3
such that R(i)

c′1/c
′
3

intersects R(i)
c1/c3
\R(i)

s , then there exists

(a, b) ∈ Ω such that 1
N + c1

c3
a < b ≤ 1+c′1a

c′3
. This implies that

(
c1
c3
− c′1

c′3

)
a < 1

c′3
− 1

N , which can only

hold if c′3 < N . Thus there are finitely many s′ ∈ Q such that R(i)
s′ intersects R(i)

c1/c3
\R(i)

s . So

Rc1/c3 ∩ PmiH/H = R(i)
c1/c3
\

(
R(i)
s ∪

n⋃
`=1

R(i)
s`

)

for some s` ∈ Q, completing the proof that Rc1/c3 ∩ PmiH/H is a polygon in this case.

Case 2. There exists no s ∈ Q with s < c1
c3

such that R(i)
s contains the lower-right border of R(i)

c1/c3

in its interior. Let n1 ≥ 0 and n2 ≥ 1 be integers such that
{
pa,bmiH : b = 1+n1a

n2

}
is an upper

border for R(i)
s for some s ∈ Q with s < c1

c3
. If n1

n2
= c1

c3
, then the line

{
(a, b) ∈ R2 : b = 1+n1a

n2

}
is

above and parallel to
{

(a, b) ∈ R2 : b = c1
c3
a
}

, in which case the lower-right border of R(i)
c1/c3

is con-

tained in the interior of R(i)
s , a contradiction. So n1

n2
6= c1

c3
, and

{
(a, b) ∈ R2 : b = 1+n1a

n2

}
intersects{

(a, b) ∈ R2 : b = c1
c3
a
}

at the point
(

c3
n2c1−n1c3

, c1
n2c1−n1c3

)
. If n1

n2
> c1

c3
, then since c3

n2c1−n1c3
< 0

and the slope of b = 1+n1a
n2

is greater than that of b = c1
c3
a, the lower-right border of R(i)

c1/c3
is again

contained in the interior of R(i)
s , another contradiction.

So n1
n2

< c1
c3

, and furthermore, the intersection point
(

c3
n2c1−n1c3

, c1
n2c1−n1c3

)
cannot be above

or to the right of Ω. If the intersection point is in the interior of Ω or is on or below its border

b = 1− a, then R(i)
c1/c3
\R(i)

s contains a set of the form

{
pa,bmiH : b− c1

c3
a ∈ (0, ε), a ∈ (w1, w2)

}

where ε, w1, w2 ∈ (0, 1) and w1 < w2. Since 1
a(b−c1a/c3) is not µΩM -integrable over the above set for

any ε, w1, w2 ∈ (0, 1) with w1 < w2 and RM is µΩM -integrable, the lower-right border of R(i)
c1/c3

is
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b = 1+c1a
c3

b = 1+n1a
n2

b = c1
c3
a

Figure 2.1: Rc1/c3 in Case 1

b = 1+c1a
c3

b = 1+n1a
n2

b = c1
c3
a

Figure 2.2: Rc1/c3 in Case 2

contained in
⋃
s∈Q,0≤s<c1/c3 R

(i)
s . Since the set

{(
c3
n ,

c1
n

)
: n ∈ N

}
∩Ω of possible intersection points

in Ω of b = c1
c3
a with a line b = 1+n1a

n2
corresponding to the upper-left border of a set R(i)

s is finite,

there must be some s ∈ Q with s < c1
c3

such that R(i)
s contains the lower-right border of R(i)

c1/c3
, and

in this case, the line determining the upper-left border of R(i)
s , say b = 1+n1a

n2
, intersects b = c1

c3
a at

the border of Ω at the line a = 1 or b = 1.

Now let s′ ∈ Q with s′ < c1
c3

such that the upper-left border of R(i)
s′ is determined by b =

1+n′1a
n′2

.

Since R(i)
s′ does not contain the lower-right border of R(i)

c1/c3
,
n′1
n′2

< c1
c3

and b =
1+n′1a
n′2

intersects

b = c1
c3
a at or to the left of the intersection point of b = 1+n1a

n2
with b = c1

c3
a. If

n′1
n′2

> n1
n2

, then

it is clear that the line b =
1+n′1a
n′2

passes under the set
{

(a, b) ∈ Ω : b > max
{

1+n1a
n2

, c1c3a
}}

, and

thus R(i)
s′ does not intersect R(i)

c1/c3
\R(i)

s . If
n′1
n′2

< n1
n2

and R(i)
s′ does intersect R(i)

c1/c3
\R(i)

s , then

there exists (a, b) ∈ Ω such that 1+n1a
n2

< b ≤ 1+n′1a
n′2

, implying that
(
n1
n2
− n′1

n′2

)
a < 1

n′2
− 1

n2
. This

inequality holds only if n′2 < n2. This shows that there are finitely many s′ ∈ Q such that R(i)
s′

intersects R(i)
c1/c3
\R(i)

s , and thus completes the proof that Rc1/c3 ∩ PmiH/H is a polygon.

So by our work above, we have proven that RM is a piecewise rational function on ΩM , and for

a given c1
c3
∈ Q, the region Rc1/c3 over which RM (pa,bmiH) = 1

a(b−c1a/c3) is either empty or a union

of polygons, one polygon being in each component PmiH/H such that Rc1/c3 ∩ PmiH/H 6= ∅.

Note also that if C =
(−c1 −c2
c3 c4

)
∈ miHm

−1
j , then the restriction of the return map rM to the
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polygon Rc1/c3 ∩RC ∩ PmiH/H is given by

rM (pa,bmiH) = p−c1a+c3b,−c2a+c4bmjH.

Therefore, each component PmiH/H of ΩM can be divided into a countable number of polygons

P such that rM maps each P linearly from PmiH/H to PmjH/H, for some j depending on P.

2.5.2 The boundary of R−1
M ([0, ξ]) has measure 0

Next, we prove that for a given ξ > 0, the boundary of R−1
M ([0, ξ]) has µΩM -measure 0. First notice

that RM is continuous µΩM -a.e. Because the set R−1
M ([0, ξ])\R−1

M ([0, ξ]) contains only points of

discontinuity of RM , it has µΩM -measure 0. Now for a given s ∈ Q, define fs : ΩM → [0,∞] so

that

fs(pa,bmiH) =


1

a(b−sa) for all pa,bmiH ∈ Rs

∞ otherwise.

We then have

R−1
M ([0, ξ])\

(
R−1
M ([0, ξ])

)o
=
⋃
s∈Q

f−1
s ([0, ξ])\

⋃
s∈Q

f−1
s ([0, ξ])

o

⊆
⋃
s∈Q

f−1
s ([0, ξ])\

⋃
s∈Q

(f−1
s ([0, ξ]))o


⊆
⋃
s∈Q

((
f−1
s ([0, ξ])

)
\
(
f−1
s ([0, ξ])

)o)
.

Each set f−1
s ([0, ξ]) is either empty or a finite union of sets of the form

{
pa,bmiH ∈ PmiH :

c1

c3
a < b ≤ min

{1 + c1a

c3
,
1 + c2,ia

c4,i

}
, b ≥ c1

c3
a+

1

ξa

}
.
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So f−1
s ([0, ξ])\

(
f−1
s ([0, ξ])

)o
is essentially a set of finitely many line and curve segments for each

s ∈ Q. Hence it is clear that R−1
M ([0, ξ])\

(
R−1
M ([0, ξ])

)o
is of µΩM -measure 0. As a consequence,

∂
(
R−1
M ([0, ξ])

)
= R−1

M ([0, ξ])\
(
R−1
M ([0, ξ])

)o
=
(
R−1
M ([0, ξ])\R−1

M ([0, ξ])
)
∪
(
R−1
M ([0, ξ])\

(
R−1
M ([0, ξ])

)o)

has µΩM -measure 0. This, along with Section 2.6, proves the existence of the limiting gap measure

νI,M .

2.5.3 A′M is continuous and piecewise real analytic

Next, we want to prove that the function AM has a continuous, piecewise real analytic derivative.

Note first that since R−1
M ([0, ξ]) is the disjoint union of the sets f−1

s ([0, ξ]), we have

AM (ξ) =
∑
s∈Q

µΩM

(
f−1
s ([0, ξ])

)
.

So it suffices to show that ξ 7→ µΩM

(
f−1
s ([0, ξ])

)
has a continuous, piecewise real analytic derivative

for every s ∈ Q, and that for a given ξ > 0, there are at most finitely many s ∈ Q for which

f−1
s ([0, ξ]) is nonempty.

The first claim is easy to see. Indeed, by triangulating the polygons that make up the region

Rs, we can write ξ 7→ µΩM

(
f−1
s ([0, ξ])

)
as a finite sum of functions AT : [0,∞)→ R defined by

AT (ξ) =
1

#M
m

({
(a, b) ∈ T : b ≥ sa+

1

ξa

})
,

where T ⊆ Ω is a triangle and as in Section 2.2, dm = 2 da db. It is then straightforward to

show that each function AT has a continuous, piecewise real analytic derivative, implying that

ξ 7→ µΩM

(
f−1
s ([0, ξ])

)
has the same property.

To prove the latter assertion, let ξ > 0 be given and suppose that there exists c1
c3
∈ Q such

that f−1
c1/c3

([0, ξ]) is nonempty (assume c1 ≥ 0 and c3 ≥ 1). Then there is some index i such that
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f−1
c1/c3

([0, ξ]) ∩ PmiH/H 6= ∅. We have

f−1
c1/c3

([0, ξ]) ∩ PmiH/H ⊆
{
pa,bmiH :

c1

c3
a < b ≤ 1 + c1a

c3
, b ≥ c1

c3
a+

1

ξa

}
,

and hence the latter set is nonempty. So there exists pa,bmiH ∈ PmiH/H such that c1
c3
a + 1

ξa ≤

b ≤ 1+c1a
c3

, which implies that ξ ≥ c3
a . We have

sup

{
a ∈ R : (a, b) ∈ Ω,

c1

c3
a < b ≤ 1 + c1a

c3

}
=


1 if c1

c3
≤ 1

c3
c1

if c1
c3
> 1

,

and therefore ξ ≥ c3 if c1
c3
≤ 1 and ξ ≥ c1 if c1

c3
> 1; i.e., ξ ≥ max{c1, c3}. There are clearly finitely

many positive fractions c1
c3

satisfying this condition, and thus satisfying f−1
c1/c3

([0, ξ]) 6= ∅. This

completes the proof that A′M is continuous and piecewise real analytic.

One more property of RM we wish to mention is that for any ε > 0, there exist bounded

continuous functions ψ1,ε, ψ2,ε, ψ3,ε : ΩM → [0,∞) such that ψ1,ε ≤ RM , ψ2,ε ≤ 1
RM
≤ ψ3,ε, and

∫
ΩM

(RM − ψ1,ε) dµΩH ,

∫
ΩM

(
1

RM
− ψ2,ε

)
dµΩH ,

∫
ΩM

(
ψ3,ε −

1

RM

)
dµΩH < ε.

This follows easily from the properties of RM proven in Section 2.5.1, and the fact that 1
RM
≤ 1

R ≤ 1.

2.5.4 The h-spacings and numerators of differences of (FI,M(Q))Q

In this section, we briefly see how our work through Section 2.6 yields results on the limiting

distribution of the h-spacings and the numerators of differences of (FI,M (Q))Q. First, from the

equality (RM ◦ rj−1
M )(WH,Q(βi)) = Q2(βi+j − βi+j−1), i ∈ {0, . . . , NI,M (Q)− h}, we have

#{βi ∈ FI,M (Q) : Q2vFI,M (Q),i,h ∈
∏h
j=1[0, ξj ]}+O(h)

NI,M (Q)
= ρQ,I,M

 h⋂
j=1

(RM ◦ rj−1
M )−1([0, ξj ])

 .

(Recall the notation vFI,M (Q),i,h from Section 1.1.) For a given j ∈ N, the function RM ◦ rjM , like

RM itself, is piecewise rational and the domain on which RM ◦ rjM is defined by a given rational

function is a union of polygons. Indeed, we have seen in Section 2.5.1 that ΩM can be divided
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into a countable number of polygons on each of which rM is linear, which implies that the same

property holds for rjM for any j ∈ N. (This is in fact true for all j ∈ Z since rM is invertible.) This,

together with the piecewise rationality of RM on polygons implies the same for RM ◦ rjM . We also

note that the level sets of the rational functions defining RM ◦ rjM are hyperbolas since the same is

true for RM and rjM is linear. As a consequence, the sets
(
RM ◦ rjM

)−1
([0, ξj ]) have boundaries of

measure 0. Hence, by our work in Section 2.6, the limiting h-spacing measure νI,M,h of (FI,M (Q))Q

exists and satisfies

νI,M,h

 h∏
j=1

[0, ξj ]

 = µΩM

 h⋂
j=1

(
RM ◦ rj−1

M

)−1
([

0,
π2[Γ : H]

3(#M)
ξj

]) .

Lastly, note that if a
q <

b
p are consecutive elements in FI,M (Q), a′

q′ succeeds a
q in F(Q), and

WH,Q

(
a
q

)
∈ Rc1/c3 , then p = −c1q + c3q

′ and

bq − ap = qp

(
b

p
− a

q

)
=
q(−c1q + c3q

′)

Q2
RM

(
WH,Q

(
a

q

))
=
q(−c1q + c3q

′)

Q2

Q2

q(q′ − c1
c3
q)

= c3.

Using this fact and Section 2.6, one can show that for every c3 ∈ N,

lim
Q→∞

#{aq <
b
p consecutive in FI,M (Q) : bq − ap = c3}

NI,M (Q)
= µΩM

 ⋃
c1∈N∪{0}

gcd(c1,c3)=1

Rc1/c3

 ,

recovering a result Badziahin and Haynes proved for the sequence (FQ,d)Q in [10].

2.6 The convergence ρQ,I,M → µΩM

In this section, we prove the weak convergence ρQ,I,M → µΩM , and hence complete the proof of

Theorem 1. We first consider the measures
(
ρRQ,I,M

)
Q

on G/H defined by

dρRQ,I,M =
NI,M (Q)

Q2
dρQ,I,M ds.

In other words, ρRQ,I,M is a measure concentrated on segments of the horocycle flow connecting

WH,Q(βi) to WH,Q(βi+1) for 0 ≤ i ≤ NI,M (Q) − 1. These segments connect to give one segment
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from WH,Q(β0) to WH,Q(βNI,M (Q)). So for a bounded, measurable function f : G/H → R, we have

∫
f dρRQ,I,M =

1

Q2

∫ Q2βNI,M (Q)

Q2β0

f


 1 0

−s 1

WH,Q(0)

 ds, (2.8)

noting that hQ2βiWH,Q(0) = WH,Q(βi). We wish to show that the sequence (ρRQ,I,M )Q converges

weakly to
|I|µG/H

µG/H(G/H) . Notice that

 1 0

−s 1

WH,Q(0) =

 0 1

−1 0


 Q 0

0 Q−1


 1 s

Q2

0 1

H.

So (2.8) can be written as

∫
f dρRQ,I,M =

∫ βNI,M (Q)

β0

(f̃ ◦ g̃Q)


 1 t

0 1

H

 dt,

where f̃ : G/H → R is the composition of left multiplication on G/H by
(

0 1
−1 0

)
followed by f , and

g̃Q : G/H → G/H is left multiplication by
(
Q 0
0 Q−1

)
. Since

⋃
Q∈NFM (Q) is dense in [0, 1], β0 → t1

and βNI,M (Q) → t2 as Q→∞. So if we define the measure ρR
′

Q,I,M on G/H such that

∫
f dρR

′
Q,I,M =

∫ t2

t1

(f̃ ◦ g̃Q)


 1 t

0 1

H

 dt,

for all bounded, measurable functions f : G/H → R, then it is clear that ρRQ,I,M − ρR
′

Q,I,M → 0

weakly. Thus to show that ρRQ,I,M →
|I|µG/H

µG/H(G/H) weakly, it suffices to prove that ρR
′

Q,I,M →
|I|µG/H

µG/H(G/H)

weakly.

Like the convergence ρRQ,I → µG/Γ, this is a consequence of the equidistribution of closed

horocycles in G/H. In particular, the argument for [21, Theorem 7] can be used to prove

lim
Q→∞

∫ t2

t1

(f ◦ g̃Q)


 1 t

0 1

H

 dt =
t2 − t1

µG/H(G/H)

∫
G/H

f dµG/H (2.9)
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for all functions f : G/H → R that are bounded and uniformly continuous.

We give this argument in detail. Let f : G/H → R be bounded and uniformly continuous. For

θ, t, y ∈ R with y > 0, we make the following definitions:

kθ =

 cos θ sin θ

− sin θ cos θ

 , ay =

 y1/2 0

0 y−1/2

 , ut =

 1 t

0 1

 .

By the uniform continuity of f , for a given ε > 0, there is a δ ∈ (0, 1) such that if |θ|, |y − 1| ≤ δ,

then

|(f ◦ g̃Q)(kθayutH)− (f ◦ g̃Q)(utH)| < ε

for all Q ∈ N and t ∈ [0, 1]. So if we let

B = {kθayutH : θ ∈ [0, δ], t ∈ [t1, t2], y ∈ [1− δ, 1]}

and define f ◦ g̃Q : B → R by f ◦ g̃Q(kθayutH) = f ◦ g̃Q(utH), then

∣∣∣∣∫
B
f ◦ g̃Q dµG/H −

∫
B
f ◦ g̃Q dµG/H

∣∣∣∣ ≤ ε · µG/H(B)

for all Q ∈ N. Now notice that

∫
B
f ◦ g̃Q dµG/H =

∫ δ

0

∫ 1

1−δ

∫ t2

t1

f ◦ g̃Q (kθayutH) dt dy dθ

=
µG/H(B)

t2 − t1

∫ t2

t1

(f ◦ g̃Q) (utH) dt,

and so ∣∣∣∣∫ t2

t1

(f ◦ g̃Q) (utH) dt− t2 − t1
µG/H(B)

∫
B
f ◦ g̃Q dµG/H

∣∣∣∣ ≤ ε(t2 − t1). (2.10)

By the Howe-Moore theorem [37], the geodesic flow {g̃s : s > 0} is mixing on G/H, and so

lim
Q→∞

∫
B
f ◦ g̃Q dµG/H =

µG/H(B)

µG/H(G/H)

∫
G/H

f dµG/H .
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Hence by (2.10), we have

lim
Q→∞

∫ t2

t1

(f ◦ g̃Q) (utH) dt =
t2 − t1

µG/H(G/H)

∫
G/H

f dµG/H ,

noting that ε > 0 was chosen arbitrarily. This completes the proof of (2.9).

Next, since µG/H is left G-invariant, we have

lim
Q→∞

∫
f dρR

′
Q,I,M =

|I|
µG/H(G/H)

∫
G/H

f̃ dµG/H =
|I|

µG/H(G/H)

∫
G/H

f dµG/H ,

for every bounded, uniformly continuous function f : G/H → R. By the Portmanteau theorem,

this is equivalent to saying that ρR
′

Q,I,M →
|I|µG/H

µG/H(G/H) weakly, which then implies that ρRQ,I,M →
|I|µG/H

µG/H(G/H) weakly.

Our next step is to prove that if πM : G/H → ΩM is the projection (x, s) 7→ x, where we are

viewing G/H as {(x, s) ∈ ΩM × R : 0 ≤ s < RM (x)}, then πM∗ρ
R
Q,I,M →

|I|πM∗µG/H
µG/H(G/H) weakly. So

let f ∈ C(ΩM ) be nonnegative and bounded. For a given ε > 0, let ψε : ΩM → R be a bounded

continuous function such that ψε ≤ RM and
∫

ΩM
(RM − ψε) dµΩH < ε

2 . Then

Oε = {hspa,bmiH : (a, b) ∈ Ωo,miH ∈M, 0 < s < ψε(pa,bmiH)}

is an open subset of G/H in which µG/H((G/H)\Oε) < ε
2 . So by the inner regularity of µG/H and

Urysohn’s lemma, there is a continuous function χε : G/H → [0, 1] such that Suppχε ⊆ Oε and

χ−1
ε ({1}) is a compact subset of Oε with µG/H((G/H)\χ−1

ε ({1})) < ε.

Now notice that πM is continuous on Oε, and therefore fε,1 = χε · (f ◦πM ), fε,2 = N −χε · (N −

f ◦ πM ) ∈ C(G/H), where N > 0 is a constant such that f ≤ N . Thus

lim
Q→∞

∫
G/H

fε,j dρ
R
Q,I,M =

|I|
µG/H(G/H)

∫
G/H

fε,j dµG/H , j = 1, 2.
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Since fε,1 ≤ f ◦ πM ≤ fε,2, we also have

lim inf
Q→∞

∫
G/H

f ◦ πM dρRQ,I,M ≥
|I|

µG/H(G/H)

∫
G/H

fε,1 dµG/H and

lim sup
Q→∞

∫
G/H

f ◦ πM dρRQ,I,M ≤
|I|

µG/H(G/H)

∫
G/H

fε,2 dµG/H .

By the properties of χε,

∫
G/H

f ◦ πM dµG/H ≤
∫
G/H

fε,1 dµG/H +Nε and∫
G/H

f ◦ πM dµG/H ≥
∫
G/H

fε,2 dµG/H −Nε,

and therefore the following two inequalities hold:

lim inf
Q→∞

∫
G/H

f ◦ πM dρRQ,I,M ≥
|I|

µG/H(G/H)

(∫
G/H

f ◦ πM dµG/H −Nε

)
,

lim sup
Q→∞

∫
G/H

f ◦ πM dρRQ,I,M ≤
|I|

µG/H(G/H)

(∫
G/H

f ◦ πM dµG/H +Nε

)
.

Letting ε→ 0 then yields

lim
Q→∞

∫
G/H

f ◦ πM dρRQ,I,M =
|I|

µG/H(G/H)

∫
G/H

f ◦ πM dµG/H ,

proving that πM∗ρ
R
Q,I,M →

|I|πM∗µG/H
µG/H(G/H) weakly.

As noted in Section 2.5, 1
RM

can be well approximated in L1(ΩM , µΩM ) from above and below by

continuous functions ψ2,ε and ψ3,ε, and so one can easily show that 1
RM

πM∗ρ
R
Q,I,M →

|I|πM∗µG/H
RMµG/H(G/H)

weakly using the fact that

ψ2,επM∗ρ
R
Q,I,M →

ψ2,ε|I|πM∗µG/H
µG/H(G/H)

and ψ3,επM∗ρ
R
Q,I,M →

ψ3,ε|I|πM∗µG/H
µG/H(G/H)

weakly. Notice that

1

RM
πM∗ρ

R
Q,I,M =

NI,M (Q)

Q2
ρQ,I,M and

|I|πM∗µG/H
RMµG/H(G/H)

=
|I|(#M)µΩM

µG/H(G/H)
,
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and hence
NI,M (Q)

Q2 ρQ,I,M →
|I|(#M)µΩM
µG/H(G/H) weakly. Since ρQ,I,M is a probability measure for all Q ∈ N,

we have

lim
Q→∞

NI,M (Q)

Q2
= lim

Q→∞

NI,M (Q)

Q2
ρQ,I,M (ΩM ) =

|I|(#M)µΩM (ΩM )

µG/H(G/H)
=
|I|(#M)

µG/H(G/H)
,

implying that NI,M (Q) ∼ |I|(#M)Q2

µG/H(G/H) = 3|I|(#M)Q2

π2[Γ:H]
as Q→∞. This proves the equidistribution of

(FM (Q))Q in [0, 1] and the weak convergence

ρQ,I,M → µΩM ,

completing the proof of Theorem 1.

2.7 The repulsion gap for Farey fractions a
q with q ≡ 1 mod m

In this section, we determine the repulsion gap for Farey fractions with denominators congruent

to 1 modulo m. For a given increasing sequence A := (An) of subsets of [0, 1] with limiting gap

measure νA , we define the repulsion gap of A to be

KA := sup{ξ ≥ 0 : νA ([0, ξ]) = 0}.

This means that if ∆av(An) is the average gap between consecutive elements in An, then for a

given ε ∈ (0,KA ),

lim
n→∞

#{x, x′ consecutive in An : x′ − x ≤ ε∆av(An)}
#An − 1

= 0.

In other words, the proportion of the number of gaps of elements in An that are smaller than

ε∆av(An) approaches 0 as n → ∞. So KA provides a measure for how big a large proportion of

the gaps in An must be for large n.

Let I ⊆ [0, 1] be a subinterval, m ∈ N, and

A = {(a, 1) mod m : a ∈ {0, . . . ,m− 1}} ⊆ (Z/mZ)2
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so that FI,m,A(Q) is the set of fractions a
q ∈ F(Q) ∩ I with q ≡ 1 mod m. We now compute the

repulsion gap for the sequence (FI,m,A(Q))Q. First note that FI,m,A(Q) = FI,M (Q), where M is

the set of cosets of the form
(
a b
−1 d

)
Γ(m) in Γ/Γ(m), where a, b, and d are any integers such that

ad+ b = 1. It is well known that [Γ : Γ(m)] = m3
∏
p|m, p prime(1− p−2). Also, since the congruence

ad + b ≡ 1 mod m has m2 solutions and each coset of Γ/Γ(m) is completely determined by the

congruence classes modulo m of the entries of one of its elements, there are m2 cosets in M . So by

(2.7), the repulsion gap of (FI,m,A(Q))Q is

3ξ′

π2m

∏
p|m

p prime

(1− p−2)−1

where ξ′ = sup
{
ξ ≥ 0 : µΩH

(
R−1
M ([0, ξ])

)
= 0
}

. We have previously found that for a given non-

negative fraction c1
c3

, f−1
c1/c3

([0, ξ]) is nonempty only if ξ ≥ max{c1, c3}. Also, f−1
0 ([0, ξ]) is a subset

of {
pa,bmiH : b ≥ 1

ξa
, i ∈ {1, . . . , k}

}
which clearly has positive µΩH -measure if and only if ξ > 1. Thus, we have ξ′ ≥ 1. On the other

hand, notice that if m1 =
(

1 0
−1 1

)
and m2 :=

(
0 1
−1 0

)
, then m1Γ(m),m2Γ(m) ∈M and

m1m
−1
2 =

 0 −1

1 1

 ∈ m1Γ(m)m−1
2 .

This implies that f−1
0 ([0, ξ]) contains the set

{
pa,bm1H : b ≥ 1

ξa

}
, which has positive µΩH -measure

when ξ > 1. This proves that ξ′ = 1, and hence the repulsion gap, Km,A, of (FI,m,A(Q))Q is given

by (2.2).

Figure 2.3 depicts numerical approximations of densities of the revised measures ν ′I,m,A given

by ν ′I,m,A([0, ξ]) = νI,m,A
([

0, 3m2

π2[Γ:Γ(m)]
ξ
])

for m = 3, 6, 11. The multiplication by 3m2

π2[Γ:Γ(m)]
makes

ν ′I,m,A the limiting measure corresponding to (2.6) in which the normalization of the gaps is Q2,

which allows for an even comparison of the gaps in the sequences. The initial interval [0, 1] on

which the densities are zero in Figure 2.3 reflect the fact that the constant ξ′ above equals 1 for all

three sequences.
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Figure 2.3: Revised gap distribution densities for fractions with denominators congruent to 1
modulo 3, 6, and 11

2.8 Proof of Theorem 2

As in Sections 2.3–2.6, we let H ⊆ Γ be a finite index subgroup, M = {m1H, . . . ,mkH} ⊆ Γ/H be

nonempty and closed under left multiplication by
(

1 −1
0 1

)
, and I ⊆ [0, 1] be a subinterval. Recall

that SI,M (n, α, c) is the set of ξ ∈ I for which there exists a
q ∈ FM (bncc) such that q ≥ n and

|qξ − a| ≤ α
q ; and that we aim to show that the limits of the sequences (λ(SM (n, α, c)))n and

(λ(SI,M (n, α, c)))n exist, and

lim
n→∞

SI,M (n, α, c) = |I|%M (α, c), where %M (α, c) = lim
n→∞

λ(SM (n, α, c)).

The idea of the proof is to show that the measures λ(SI,M (n, α, c)) can, up to a small change, be

written as sums of expressions of the form

∫
H (n/bncc)

f dρbncc,I,M , (2.11)

where H ( n
bncc) ⊆ ΩM is a subset having a boundary of µΩM -measure 0, and f is a piecewise

real analytic function which is bounded on H (C) for any C > 0. We then use the convergence

ρQ,I,M → µΩM , in addition to the fact that the region H
(

n
bncc

)
becomes H (c−1) as n → ∞, to
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show that the above integral approaches

3|I|(#M)

π2[Γ : H]

∫
H (c−1)

f dµΩM .

We begin by following the process in [70] of using the inclusion-exclusion principle to rewrite

λ(SI,M (n, α, c)) as approximately a linear combination of measures of intervals. For α > 0, c ≥ 1,

and n ∈ N, let Q = bncc and

FI,M (Q) =

{
β0 =

b0
p0

< β1 =
b1
p1

< · · · < βNI,M (Q) =
bNI,M (Q)

pNI,M (Q)

}
,

with gcd(bi, pi) = 1. Then for every βi ∈ FI,M (Q), let

J(βi) =

[
bi
pi
− α

p2
i

,
bi
pi

+
α

p2
i

]
.

and then define

S′I,M (n, α, c) =
⋃

βi∈FI,M (Q)
pi≥n

J(βi).

Now SI,M (n, α, c)\S′I,M (n, α, c) is contained in the union of the intervals of the form
[
b
p −

α
p2 ,

b
p +

α
p2

]
∩I, where b

p is a fraction in FM (Q)\I with p ≥ n. On the other hand, S′I,M (n, α, c)\SI,M (n, α, c)

is contained in the union of the intervals of the form
[
b
p −

α
p2 ,

b
p + α

p2

]
\I, where b

p is a fraction in

FM (Q) ∩ I with p ≥ n. It is clear that the measure of each of these unions cannot exceed 2α
n2 ,

and so the sequences (λ(SI,M (n, α, c)))n and (λ(S′I,M (n, α, c)))n converge and have the same limit

if one converges. Thus from now on, we examine the sets S′I,M (n, α, c).

By the inclusion-exclusion principle, we have

λ(S′I,M (n, α, c)) = λ

 ⋃
βi∈FI,M (Q)

qi≥n

J(βi)


=

NI,M (Q)−1∑
r=0

(−1)r
∑

0=j0<···<jr≤NI,M (Q)

NI,M (Q)−jr∑
i=0

pi+js≥n,0≤s≤r

λ

(
r⋂
s=0

J(βi+js)

)
. (2.12)
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By [70, Lemma 3], there exists an integer K, depending only on α and c, such that if a
q ,

a′

q′ ∈ F(Q)

such that q, q′ ≥ n and J(aq ) ∩ J(a
′

q′ ) 6= ∅, then there are at most K − 1 elements in F(Q) between

a
q and a′

q′ . It follows that if βi, βj ∈ FM (Q) with pi, pj ≥ n and J(βi)∩ J(βj) 6= ∅, then |i− j| ≤ K.

We can thus rewrite (2.12) as

K∑
r=0

(−1)r
∑

0=j0<···<jr≤K

NI,M (Q)−jr∑
i=1

pi+js≥n,0≤s≤r

λ

(
r⋂
s=0

J(βi+js)

)
. (2.13)

Next, again analogous to [70], we construct a region Hj1,...,jr(
n
Q) in ΩM having the property

that WH,Q(βi) ∈Hj1,...,jr(
n
Q) if and only if pi+js ≥ n for 0 ≤ s ≤ r, and then write

λ

(
r⋂
s=0

J(βi+js)

)

as a piecewise real analytic function of WH,Q(βi). In this way, we will rewrite (2.13), up to a small

change, as a linear combination of expressions in the form (2.11) as mentioned above.

The fraction βi ∈ FI,M (Q) satisfies pi+js ≥ n if and only if

WH,Q(βi+js) = rjsM (WH,Q(βi)) ∈
{
pa,bmiH ∈ ΩM : a ≥ n

Q

}
.

So the set of βi such that pi+js ≥ n for 0 ≤ s ≤ r are such that WH,Q(βi) ∈Hj1,...,jr(
n
Q), where for

t ∈ (0, 1],

Hj1,...,jr(t) =
r⋂
s=0

r−jsM {pa,bmiH ∈ ΩM : a ≥ t}.

Note that Hj1,...,jr(t) is a countable union of polygons. This follows easily from our observation in

Section 2.5.1 that for a given j ∈ Z, ΩM can be divided into a countable number of polygons P

such that rjM is linear on P. Hence any set of the form r−jM {pa,bmiH ∈ ΩM : a ≥ t} is a countable

union of polygons, and thus Hj1,...,jr(t) is as well.

Next, for j ∈ N, let R
(j)
M : ΩM → R be the jth return time function defined by

R
(j)
M =

j−1∑
i=0

RM ◦ riM .
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(Let R
(0)
M ≡ 0.) We then have R

(j)
M (WH,Q(βi)) = Q2(βi+j − βi). Also, define the function π1 :

ΩM → R by π1(pa,bmiH) = a. We then have

λ

(
r⋂
s=0

J(βi+js)

)
= max

{
0, min

0≤s≤s′≤r

{(
bi+js
pi+js

+
α

p2
i+js

)
−

(
bi+js′
pi+js′

− α

p2
i+js′

)}}

=
1

Q2
max

{
0, min

0≤s≤s′≤r

{
α

(
Q2

p2
i+js

+
Q2

p2
i+js′

)
−Q2

(
bi+js′
pi+js′

− bi+js
pi+js

)}}

=
1

Q2
max

{
0, min

0≤s≤s′≤r

{
α
(
(π1 ◦ rjsM )(WH,Q(βi))

−2 + (π1 ◦ r
js′
M )(WH,Q(βi))

−2
)

− (R
(js′−js)
M ◦ rjsM )(WH,Q(βi)))

}}
=

1

Q2
f

(α)
j1,...,jr

(WH,Q(βi)),

where f
(α)
j1,...,jr

: ΩM → R is given by

f
(α)
j1,...,jr

= max
{

0, min
0≤s≤s′≤r

{
α
(
(π1 ◦ rjsM )−2 + (π1 ◦ r

js′
M )−2

)
− (R

(js′−js)
M ◦ rjsM )

}}
.

We can now rewrite (2.13) as

K∑
r=0

(−1)r
∑

0=j0<···<jr≤K

1

Q2

∑
βi∈FI,M (Q),
i≤NI,M (Q)−jr

f
(α)
j1,...,jr

(WH,Q(βi))

=
K∑
r=0

(−1)r
∑

0=j0<···<jr≤K

(
NI,M (Q)

Q2

∫
Hj1,...,jr

(n/Q)
f

(α)
j1,...,jr

dρQ,I,M

+O

(
K‖f (α)

j1,...,jr
|Hj1,...,jr

(n/Q)‖∞
Q2

))
.

For C > 0, we have ‖f (α)
j1,...,jr

|Hj1,...,jr
(C)‖∞ ≤ 2α

C2 , and if C = n
Q , 2α

C2 ≤ 2αc2. Thus the error term

above is negligible, and to complete the proof, it remains to show the existence of

lim
n→∞

∫
Hj1,...,jr

(n/Q)
f

(α)
j1,...,jr

dρQ,I,M

for all j1, . . . , jr.

Now by the properties of RM , rM , and π1, it is clear that f
(α)
j1,...,jr

is a piecewise real analytic

41



function. We have proven above that for a fixed C > 0, f
(α)
j1,...,jr

is bounded on Hj1,...,jr(C). Also,

it is clear that Hj1,...,jr(C) has a boundary of µΩM -measure 0, implying that

lim
n→∞

∫
Hj1,...,jr

(C)
f

(α)
j1,...,jr

dρQ,I,M =

∫
Hj1,...,jr

(C)
f

(α)
j1,...,jr

dµΩM .

Since n
Q ≥ c

−1, and thus Hj1,...,jr(
n
Q) ⊆Hj1,...,jr(c

−1), we have

lim sup
n→∞

∫
Hj1,...,jr

(n/Q)
f

(α)
j1,...,jr

dρQ,I,M ≤ lim
n→∞

∫
Hj1,...,jr

(c−1)
f

(α)
j1,...,jr

dρQ,I,M

=

∫
Hj1,...,jr

(c−1)
f

(α)
j1,...,jr

dµΩM .

On the other hand, for a given ε > 0, we have n
Q ≤ c

−1 + ε for large n. Therefore,

lim inf
n→∞

∫
Hj1,...,jr

(n/Q)
f

(α)
j1,...,jr

dρQ,I,M ≥ lim
n→∞

∫
Hj1,...,jr

(c−1+ε)
f

(α)
j1,...,jr

dρQ,I,M

=

∫
Hj1,...,jr

(c−1+ε)
f

(α)
j1,...,jr

dµΩM .

By the continuity of measure from below, letting ε→ 0 yields

lim inf
n→∞

∫
Hj1,...,jr

(n/Q)
f

(α)
j1,...,jr

dρQ,I,M ≥
∫

H ′
j1,...,jr

(c−1)
f

(α)
j1,...,jr

dµΩM ,

where

H ′
j1,...,jr(c

−1) =
r⋂
s=0

r−jsM {pa,bmiH ∈ ΩM : a > c−1}.

We clearly have

µΩM

(
r⋂
s=0

r−jsM {pa,bmiH ∈ ΩM : a = c−1}

)
= 0,

and thus

lim
n→∞

∫
Hj1,...,jr

(n/Q)
f

(α)
j1,...,jr

dρQ,I,M =

∫
Hj1,...,jr

(c−1)
f

(α)
j1,...,jr

dµΩM .

Noting again that NI,M (Q) ∼ 3|I|(#M)Q2

π2[Γ:H]
as Q → ∞, we have completed the proof of Theorem 2,

with

%M (α, c) =
3(#M)

π2[Γ : H]

K∑
r=0

(−1)r
∑

0=j0<···<jr≤K

∫
Hj1,...,jr

(c−1)
f

(α)
j1,...,jr

dµΩM .
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Chapter 3

Continued fractions and the Gauss
and Farey maps

We now turn our attention to the dynamics of continued fractions, and in particular, the Farey

map. We begin in this chapter by reviewing some elementary properties of continued fractions

which we need in the following chapters. We then define the Gauss and Farey maps, in addition

to their natural extensions and transfer operators, and give some of their properties.

3.1 Continued fractions

Recall that we denote a regular continued fraction by

[a1, a2, . . .] :=
1

a1 +
1

a2 +
.. .
.

(aj ∈ N)

We shall also make use of the notation

[a0; a1, a2, . . .] := a0 + [a1, a2, . . .]. (a0 ∈ Z, aj ∈ N)

For a given sequence a = (aj)
∞
j=1 of positive integers, define the nonnegative, coprime integers

pn = pn(a) = pn(a1, . . . , an), qn = qn(a) = qn(a1, . . . , an) by

pn
qn

:= [a1, a2, . . . , an].
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Denoting also p0 = p0(a) := 0 and q0 = q0(a) := 1, one can find that for n ≥ 2, pn = anpn−1 +pn−2

and qn = anqn−1 + qn−2, which imply

 an 1

1 0


 an−1 1

1 0

 · · ·
 a1 1

1 0

 =

 qn pn

qn−1 pn−1

 . (3.1)

This in turn gives pn−1qn − pnqn−1 = (−1)n, and hence pn−1

qn−1
− pn

qn
= (−1)n

qn−1qn
.

For j, n ∈ N with j ≤ n, we define pj,n = pj,n(a) and qj,n = qj,n(a) by

pj,n
qj,n

= [aj , aj+1, . . . , an].

Taking transposes in (3.1) reveals that qn(a1, . . . , an) = qn(an, . . . , a1), which then implies that

qn(a) = a1q2,n(a)+q3,n(a), and more generally, qj,n(a) = ajqj+1,n(a)+qj+2,n(a) for j ≤ n−2. This

equality extends to j = n−1, n once we denote qn+1,n = qn+1,n(a) := 1 and qn+2,n = qn+2,n(a) := 0.

Another subtle property of the values qj,n we wish to note is that

n∏
j=1

pj,n
qj,n

=
1

qn
. (3.2)

(See [22, Lemma 2.1, Theorem 3.6] for proof.)

Lastly, we define for a finite tuple b = (b1, . . . , bn) ∈ Nn the set

Ib = Jb1, . . . , bnK := {[b1, . . . , bn + t] : t ∈ [0, 1]} = {[a1, a2, . . .] ∈ [0, 1] : aj = bj , j = 1, . . . n},

which is the closed interval between pn+1(b,1)
qn+1(b,1) and pn(b)

qn(b) . We thus have

λ(Ib) =

∣∣∣∣pn+1(b, 1)

qn+1(b, 1)
− pn(b, 1)

qn(b, 1)

∣∣∣∣ =
1

qn+1(b, 1)qn(b, 1)
=

1

qn(b)(qn(b) + qn−1(b))
. (3.3)
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3.2 The Gauss map

The Gauss map G : [0, 1]→ [0, 1] is defined by

G(x) :=


{x−1} if x 6= 0

0 if x = 0.

This map is invariant with respect to the Gauss measure ν given by

dν :=
dx

(1 + x) log 2
.

We define the natural extension G̃ : [0, 1]2 → [0, 1]2 of the Gauss map by

G̃(x, y) :=


(
G(x), 1

bx−1c+y

)
if x 6= 0

(0, 0) if x = 0

which is invariant with respect to the measure ν̃ given by

dν̃ :=
dx dy

(1 + xy)2 log 2
.

The action of G and G̃ on continued fractions is as follows:

G([a1, a2, . . .]) = [a2, a3, . . .]; (3.4)

G̃([a1, a2, . . .], [b1, b2, . . .]) = ([a2, a3, . . .], [a1, b1, b2, . . .]). (3.5)

In other words, G and G̃ act respectively as the one and two-sided shifts on the continued fraction

expansions of their arguments.

Next, we let Ĝλ and Ĝν be the transfer operators of the Gauss map with respect to the measures

λ and ν, respectively, so that

∫
[0,1]

(Ĝλf) · g dλ =

∫
[0,1]

f · (g ◦G) dλ and

∫
[0,1]

(Ĝνf) · g dν =

∫
[0,1]

f · (g ◦G) dν
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for all f ∈ L1(λ) = L1(ν) and g ∈ L∞(λ) = L∞(ν). We can calculate Ĝλ as follows: Fix f ∈ L1(λ)

and x ∈ [0, 1]. Then we have

∫ x

0
(Ĝλf)(t) dt =

∫
G−1([0,x])

f dλ =
∞∑
n=1

∫ 1/n

1/(x+n)
f(t) dt.

Taking the derivative with respect to x yields

(Ĝλf)(x) =
∞∑
n=1

f

(
1

x+ n

)
1

(x+ n)2
.

One can similarly find an explicit formula for Ĝν . Also, it is easy to see by definition that if

ξ : [0, 1]→ R is the Radon-Nikodym derivative dν
dλ so that ξ(x) = 1

(1+x) log 2 and Mξ : L1(ν)→ L1(λ)

is the (invertible) multiplicative operator Mξf = ξ · f , then Mξ ◦ Ĝν = Ĝλ ◦Mξ. Hence Ĝν and Ĝλ

are similar.

The operators Ĝλ and Ĝν have garnered a lot of study over the years. A central problem

motivating this attention, posed by Gauss in a letter to Laplace in 1812, was to estimate the error

λ({[a1, a2, . . .] ∈ [0, 1] : [an+1, an+2, . . .] ≤ u})−
log(1 + u)

log 2
, (3.6)

with u ∈ (0, 1) fixed, as n→∞. This is equivalent to estimating

λ(G−n([0, u]))− ν([0, u]), (n→∞)

which can then be written as

∫
[0,u]

(Ĝnλ(1)− ξ) dλ or

∫
[0,u]

(Ĝnν (ξ−1)− 1) dν.

Since ν is G-invariant, the constant function 1 is an eigenfunction of Ĝν with eigenvalue 1, and Ĝλ

has the corresponding eigenfunction ξ with eigenvalue 1. Wirsing found the optimal decay rate of

(3.6) by finding a spectral gap in Ĝν as an operator on C1([0, 1]) below 1, and an implication of
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his work is [38, Theorem 2.2.6]

Ĝnνf −
∫

[0,1]
f dν ∼ Cf (−ψ)n for f ∈ C1([0, 1]),

where Cf ∈ R is a constant dependent on f and ψ = 0.30366 . . . is the absolute value of the

second largest eigenvalue of Ĝν . Thus, letting f = ξ−1 in the above equality, we see that (3.6)

is commensurate with ψn as n → ∞. An exact solution to Gauss’s problem was first given by

Babenko who analyzed an operator similar to Ĝν and Ĝλ which is compact on a certain Hilbert

space of analytic functions. This work was later extended by Mayer and Roepstorff. See [38] for

history and details.

The discovery of the spectral gap in the transfer operator of G has further implications on the

ergodic properties of G, and in particular its rate of mixing, which we interpret as the rate at which

its preimages equidistribute. For f ∈ C1([0, 1]) and a subinterval I ⊆ [0, 1], we have

∫
G−n(I)

f dλ =

∫
I
Ĝnν (ξ−1f) dν =

∫
I

(∫
[0,1]

ξ−1f dν +Of (ψn)

)
dν

= ν(I)

(∫
[0,1]

f dλ+Of (ψn)

)
. (3.7)

This shows that the preimages (G−n(I))n equidistribute in [0, 1] with respect to the Lebesgue

measure at an exponential rate.

The transfer operator of G has also been utilized in the study of the periodic points of G.

Utilizing Mayer’s work [56], Pollicott [59] determined the limiting distribution of the periodic

points. He studied a Ruelle-Perron-Frobenius operator which forms an analytic perturbation of

Ĝλ, and in particular, he related the determinants of this operator to the Laplace transform of the

sum of functions over the periodic points. Finding the growth rate of the sum was, by the Wiener-

Ikehara Tauberian theorem, reduced to studying the behavior of the leading eigenvalue of the

operator that determined the residue of the pole in the Laplace transform. We detail this process

more in Section 4.3, where we analyze an appropriate alteration to the Ruelle-Perron-Frobenius

operator in establishing the distribution of the periodic points of the Farey map.
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3.3 The Farey map

The Farey map F : [0, 1]→ [0, 1] is defined by

F (x) :=


x

1− x
if x ∈

[
0, 1

2

]
1− x
x

if x ∈
(

1
2 , 1
]
.

An invariant measure µ for F is given by

dµ :=
dx

x
.

The natural extension F̃ : [0, 1]2 → [0, 1]2 of F is defined by

F̃ (x, y) :=


(

x

1− x
,

y

1 + y

)
if x ∈

[
0, 1

2

]
(

1− x
x

,
1

1 + y

)
if x ∈

(
1
2 , 1
]
,

and has invariant measure µ̃ given by

dµ̃ :=
dx dy

(x+ y − xy)2
.

The fact that both measures µ and µ̃ are infinite leads F and F̃ to have significantly different

behavior than G and G̃. For future reference, we note that µ is the natural projection of µ̃ onto

the first coordinate, i.e.,

∫
[0,1]2

f(x) dµ̃(x, y) =

∫
[0,1]

f dµ. (f ∈ C([0, 1])) (3.8)
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The maps F and F̃ act on continued fractions according to

F ([a1, a2, . . .]) =


[a1 − 1, a2, . . .] if a1 ≥ 2

[a2, a3, . . .] if a1 = 1;

(3.9)

F̃ ([a1, a2, . . .], [b1, b2, . . .]) =


([a1 − 1, a2, . . .], [b1 + 1, b2, . . .]) if a1 ≥ 2

([a2, a3, . . .], [1, b1, b2, . . .]) if a1 = 1.

(3.10)

So, like G and G̃, the Farey map and its extension act as shifts on the continued fraction expansions

of its arguments, though in a slower manner, shifting a 1 in a digit instead of a whole digit at a

time. In fact, F is a slowdown of G as demonstrated by the equality

F b1/xc(x) = G(x). (x 6= 0)

Also, by [18, Theorem 1], G is isomorphic to the induced transformation FA : A→ A of the Farey

map on A :=
[

1
2 , 1
]

= {[1, a1, a3, . . .] : aj ∈ N} defined by

FA(x) := F φA(x)(x), where φA(x) = min{n ∈ N : Fn(x) ∈ A}.

This can be easily seen from the equality

FA([1, a1, a2, . . .]) = [1, a2, a3, . . .].

Similarly, G̃ can be seen as isomorphic to the induced transformation F̃Ã : Ã → Ã of F̃ on

Ã = (0, 1]×
(

1
2 , 1
]

defined by

F̃Ã(x) := F̃ φÃ(x)(x), where φÃ(x) = min{n ∈ N : F̃n(x) ∈ Ã} (3.11)

from the equality

F̃Ã([a1, a2, . . .], [1, b1, b2, . . .]) = ([a2, a3, . . .], [1, a1, b1, b2, . . .]). (3.12)
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Early studies of the Farey map include [23, 24] in the context of thermodynamics, and [40], where

the natural extension F̃ was also introduced, in examining mediant continued fraction convergents.

See also [18] for more details on the above properties of F and F̃ and their relationships to G and

G̃, in addition to continued fraction applications.

Next, let F̂ : L1(µ)→ L1(µ) be the transfer operator of F with respect to the invariant measure

µ, which is easily seen to satisfy

F̂ f(x) =
f
(

x
1+x

)
+ xf

(
1

1+x

)
1 + x

.

Analogous to the mixing results for the Gauss map given in the previous section, we establish an

effective equidistribution result for the preimages of the Farey map utilizing the transfer operator

F̂ . However, we make no appeal to the spectral properties of F̂ , as such a process appears to be

difficult by the examinations of the spectrum by Isola [39] and Prellberg [60].
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Chapter 4

Distribution of the periodic points of
the Farey map

4.1 Introduction

In this chapter, we study the distribution of the periodic points of the Farey map. In this intro-

ductory section, we characterize the periodic points of both F and F̃ in relation to those of G and

G̃, and formulate our main equidistribution results. Then in Section 4.2, we review the connection

between the modular surface and continued fractions. In particular, we recall Series’ cross section

of the geodesic flow. We then enlarge this cross section to yield another whose first return map

under the geodesic flow is a double cover of the Farey map’s natural extension. We then use this

new section to extend the correspondence between closed geodesics in the modular surface and the

periodic points of the Gauss map to those of the Farey map. Lastly, in Section 4.3, we prove our

main equidistribution result utilizing the relationship between the periodic points of the Farey and

Gauss maps to essentially reduce the problem to proving the equidistribution of the Gauss periodic

points over certain continuous functions on (0, 1] which are allowed to have a vertical asymptote at

0. We thus adapt Pollicott’s work [59] on the Ruelle-Perron-Frobenius operator of the Gauss map,

being careful to account for a possible asymptote in a function used to define the operator.

First, notice that from the equalities (3.4) and (3.5), it is easy to see that the periodic points

of G are exactly the periodic continued fractions of the form

[a1, . . . , an] := [a1, . . . , an, a1, . . . , an, . . .],

i.e., the reduced quadratic irrationals x ∈ [0, 1] with conjugate root x̄ < −1; and the periodic points
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of G̃ other than (0, 0) are of the form

([a1, a2, . . . , an], [an, an−1, . . . , a1]),

where the continued fraction expansion of the second argument is the reverse of that of the first.

Alternatively, the nonzero periodic points of G̃ are of the form (x,−x̄−1), where x is a reduced

quadratic irrational. Notice that x↔ (x,−x̄−1) gives a natural one-to-one correspondence between

the nonzero periodic points of G and G̃.

Let QG denote the set of nonzero periodic points of G. To each x ∈ QG with minimal even

periodic expansion x = [a1, . . . , a2n], we associate the value

`(x) := −2
2n∑
j=1

log(Gj(x)) (4.1)

which is the length of a corresponding geodesic in the modular surface (see Section 4.2.2). For

future reference, we analogously define, for a given tuple a = (a1, . . . , an) ∈ Nn of any length,

`(a) := −2
n∑
j=1

log(Gj [a1, a2, . . . , an]).

We then let

QG(T ) := {x ∈ QG : `(x) ≤ T}. (T > 0)

The result of Pollicott [59, Theorem 3] states that for all f ∈ C([0, 1]), we have

lim
T→∞

1

|QG(T )|
∑

x∈QG(T )

f(x) =

∫
[0,1]

f dν; (4.2)

and it then follows from Kelmer’s result [45, Lemma 17] that for all f ∈ C([0, 1]2),

lim
T→∞

1

|QG(T )|
∑

x∈QG(T )

f(x,−x̄−1) =

∫
[0,1]2

f dν̃. (4.3)

The main goal of this chapter is to formulate and prove results analogous to (4.2) and (4.3) for

the periodic points of the Farey map and its natural extension. We have the following characteri-
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zations, the first originally discovered by Claire Merriman, of the periodic points of F and F̃ which

provide connections to those of G and G̃.

Proposition 3 (C. Merriman). A number x ∈ (0, 1] is a periodic point of the Farey map if and

only if x = F k(y), where y ∈ QG and k ∈ Z≥0. Equivalently, x is a periodic point of F if and only

if

x = [a1 − k, a2, . . . , an, a1], (4.4)

for some aj ∈ N and k ∈ {0, . . . , a1 − 1}.

Proof. It is clear that if x is the continued fraction (4.4), then x = F a1+···+an(x). So we only need

to show that every periodic point of F can be written in the form (4.4). So assume that x ∈ (0, 1]

with F j(x) = x. Let x = [a1, a2, . . .] be the continued fraction expansion of x. Then the equality

F j(x) = x is equivalent to

[ n∑
m=1

am − j, an+1, an+2, . . .
]

= [a1, a2, a3, . . .],

where n ∈ N is the least index such that
∑n

m=1 am > j; hence
∑n−1

m=1 am ≤ j. Therefore, we have

x = [a1, a2, . . . , an], and

a1 =
n∑

m=1

am − j = an +

(
n−1∑
m=1

am − j

)
≤ an,

that is, a1 = an − k for some k ∈ {0, . . . , an − 1}. This shows that x = F k([an, a2, a3 . . . , an−1]),

which completes the proof.

Proposition 4. A point in [0, 1]2\{(0, 0)} is a periodic point of F̃ if and only if it is of the form

F̃ k([a1, a2, . . . , an], [1, an, an−1 . . . , a1]) = ([a1 − k, a2, a3, . . . , an, a1], [1 + k, an, an−1 . . . , a1]) (4.5)

for some aj ∈ N and k ∈ {0, . . . , a1 − 1}. In other words, with the exception of (0, 0), the periodic

points of F̃ are exactly those of the form F̃ k(x), where x is a periodic point of the induced map F̃Ã.
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Proof. We clearly have

F̃ a1+···+an([a1, . . . , an], [1, an, . . . , a1]) = ([a1, . . . , an], [1, an, . . . , a1]);

thus it suffices to prove that every periodic point of F̃ in [0, 1]2\{(0, 0)} is of the form (4.5). So

suppose that (x, y) ∈ [0, 1]2\{(0, 0)} is a point such that F̃ j(x, y) = (x, y) for some j ∈ N. From

the definition of F̃ , it is clear that x 6= 0, for if x = 0, and hence y 6= 0, then the second coordinate

of the sequence (F̃ j(0, y))∞j=0 would be strictly decreasing. Also, letting x = [a1, a2, . . .] (possibly

terminating), we have

F̃ (x, 0) =


([a1 − 1, a2, . . .], [1]) if a1 ≥ 2

([a2, a3, . . .], [1]) if a1 = 1,

and subsequent iterations of (x, 0) under F̃ are then determined by (3.10). If the continued fraction

expansion of x does not terminate, then iterations of F̃ simply add continued fraction digits to the

second coordinate, and periodicity never occurs. If the expansion of x does terminate, then for

k ∈ N sufficiently large, F̃ k(x, 0) has first coordinate 0, and thus, again periodicity of the orbit of

(x, 0) doesn’t occur. Therefore, in order for (x, y) to be periodic, we must have y 6= 0.

So we have (x, y) ∈ (0, 1]2, and furthermore, the above shows that the first coordinate of every

iterate F̃ k(x, y) is nonzero, i.e., the continued fraction expansion of x is nonterminating. Now let

y = [b0, b1, . . .]. By taking the image of (x, y) under an iterate of F̃−1, we may assume without loss

of generality that b0 = 1. Then F̃ j(x, y) = (x, y) implies that

(x, y) =

([ n∑
m=1

am − j, an+1, an+2, . . .
]
,
[
1 + j −

n−1∑
m=1

am, an−1, an−2, . . . , a1, b1, b2, . . .
])

,

where n ∈ N is the least index such that
∑n

m=1 am > j. Equating the first continued fraction digits

of the second coordinates in the above equality reveals that
∑n−1

m=1 am = j; hence the first digit of

the first coordinate equals an. Then equating the rest of the digits yields

x = [a1, a2, . . . , an−1] and y = [1, an−1, an−2, . . . , a1].
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Notice that, analogous to the periodic points of G and G̃, there is a natural correspondence

[a1 − k, a2, . . . , an, a1]↔ ([a1 − k, a2, . . . , an, a1], [1 + k, an, . . . , a1])

between the periodic points of F and F̃ . We let QF be the set of all nonzero periodic points of F ,

and for a given x ∈ QF , we let x̃ ∈ [0, 1] be such that (x, x̃) is the periodic point of F̃ corresponding

to x.

Using Proposition 3, we extend the definition of the length function ` on QG to QF by letting

`(F k(x)) := `(x)

for all x ∈ QG and k ∈ N. We shall see that this definition follows naturally from the correspondence

between the primitive closed geodesics in the modular surface and the periodic points of the Farey

map which we develop in Section 4.2. Also, define the set

QF (T ) = {x ∈ QF : `(x) ≤ T}.

We can now formulate our main theorem. It is best expressed in terms of proving the equidis-

tribution in [0, 1] of the weighted points in QF (T ) as T → ∞. For T > 0, we define the measure

mT on [0, 1] by the equality

∫
[0,1]

f dmT :=

∑
x∈QF (T ) xf(x)∑
x∈QF (T ) x

. (f ∈ C([0, 1]))

In other words, mT is the sum of the Dirac measures over the points x ∈ QF (T ) with weight x,

normalized to be a probability measure. Our main result of this chapter is the following:

Theorem 4. For f ∈ C([0, 1]), we have

lim
T→∞

∫
[0,1]

f dmT =

∫ 1

0
f(x) dx.

In other words, the weighted set of periodic points of F given by the measure mT equidistributes

with respect to the Lebesgue measure on [0, 1].
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Alternatively, one may view this theorem as saying that the unweighted periodic points of F

equidistribute according to the invariant measure µ. However, one must restrict the functions

over which equidistribution can be tested to those of the form x 7→ xf(x), with f ∈ C([0, 1]).

Additionally, one must maintain the normalizing factor
∑

x∈QF (T ) x; because µ has infinite measure,

normalizing by #QF (T ) would yield 0 in the limit. Indeed, we see below that the growth rate of∑
x∈QF (T ) x is commensurate with eT . However, the growth of #QF (T ) is given by

#QF (T ) =
1

4ζ(2)
TeT +

1

2ζ(2)

(
γ − 3

2
− ζ ′(2)

ζ(2)

)
eT +O(T 4e3T/4), (T →∞) (4.6)

where ζ is the Riemann zeta function and γ is Euler’s constant. This follows from the fact that

#QF (T ) =
∑

x∈QG(T )

⌊
1

x

⌋

(for each x = [a1, . . . , an] ∈ QG(T ) there exist a1 =
⌊

1
x

⌋
corresponding elements of QF (T )); and

in analyzing the growth of the number of products of the matrices ( 1 1
0 1 ) and ( 1 0

1 1 ) with bounded

trace, Kallies et al. [41] provided an asymptotic expression for the sum on the right, providing the

main term in (4.6). The second term was extracted by Boca [13], who then obtained the error term

O(e(7/8+ε)T ). Ustinov [67] later analyzed the error term more carefully, and obtained that shown

in (4.6).

Using the correspondence between the periodic points of F and F̃ , we also obtain an analogous

equidistribution result for the periodic points of F̃ as a corollary of Theorem 4. Define the function

h : [0, 1]2 → R by h(x, y) = (x+ y − xy)2 and the measure m̃T on [0, 1]2 by

∫
[0,1]2

f dm̃T :=

∑
x∈QF (T ) h(x, x̃)f(x, x̃)∑

x∈QF (T ) h(x, x̃)
. (f ∈ C([0, 1]2))

We then have the following:

Corollary 4. For all f ∈ C([0, 1]2),

lim
T→∞

∫
[0,1]2

f dm̃T =

∫ 1

0

∫ 1

0
f(x, y) dx dy,
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that is, the weighted sequence of periodic points of F̃ given by m̃T equidistributes with respect to

the Lebesgue measure on [0, 1]2.

Proof. We begin by following the reasoning of [45, Lemma 17] and showing the asymptotic formula

lim
T→∞

∑
x∈QF (T ) f(x, x̃)∑

x∈QF (T ) x
=

∫
[0,1]2

f dµ̃ (4.7)

for appropriate approximating functions f . We first verify (4.7) when f is an indicator function

1Ib×Ib′ , where b = (b1, . . . , bn) and b′ = (b′1, . . . , b
′
n′) are any tuples and Ib = JbK and Ib = Jb′K are

the sets defined in Section 3.1. First note that if B = b′1 + · · ·+ b′n′ , then 1Ib×Ib′ ◦ F̃
B = 1Ib′′×[0,1],

where

b′′ = (1, b′n, b
′
n−1, . . . , b

′
2, b
′
1 + b1 − 1, b2, b3, . . . , bn).

Also, since F̃ forms a bijection of {(x, x̃) : x ∈ QF (T )}, we have

∑
x∈QF (T )

1Ib×Ib′ (x, x̃) =
∑

x∈QF (T )

(1Ib×Ib′ ◦ F̃
j)(x, x̃)

for any j ∈ Z. Therefore, using Theorem 4, the equality (3.8), and the F̃ -invariance of µ̃, we have

lim
T→∞

∑
x∈QF (T ) 1Ib×Ib′ (x, x̃)∑

x∈QF (T ) x
= lim

T→∞

∑
x∈QF (T )(1Ib×Ib′ ◦ F̃

B)(x, x̃)∑
x∈QF (T ) x

= lim
T→∞

∑
x∈QF (T ) 1Ib′′×[0,1](x, x̃)∑

x∈QF (T ) x
= lim

T→∞

∑
x∈QF (T ) 1Ib′′ (x)∑

x∈QF (T ) x

=

∫
[0,1]

1Ib′′ dµ =

∫
[0,1]2

1Ib′′×[0,1] dµ̃ =

∫
[0,1]2

1Ib′′×[0,1] ◦ F̃B dµ̃

=

∫
[0,1]2

1Ib×Ib′ dµ̃.

We thus have (4.7) for f of the form 1Ib×Ib′ .

Next, (4.7) can be easily verified when f(x, y) = x. Also, we see in Section 4.2.3 that the

set {(x, x̃) : x ∈ QF (T )} is symmetric about the line x = y. As a result, (4.7) holds also when

f(x, y) = y.

We now have a sufficient set of approximating functions, so let f ∈ C([0, 1]2). By splitting f

into its positive and negative parts, we may assume without loss of generality that f ≥ 0. For a
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given ε > 0, there exists a finite linear combination, which we denote by fε, of indicator functions

of the form 1Ib×Ib′ such that fε ≤ h · f and

∫
[0,1]2

(h · f − fε) dµ̃ < ε.

This is possible since the sets of the form Ib × Ib′ generate the Borel σ-algebra of [0, 1]2 and

∫
[0,1]2

h · f dµ̃ =

∫ 1

0

∫ 1

0
f(x, y) dx dy <∞.

We then have

lim inf
T→∞

∑
x∈QF (T ) h(x, x̃)f(x, x̃)∑

x∈QF (T ) x
≥ lim

T→∞

∑
x∈QF (T ) fε(x, x̃)∑

x∈QF (T ) x
=

∫
[0,1]2

fε dµ̃

≥
∫

[0,1]2
h · f dµ̃− ε.

Letting ε→ 0 yields

lim inf
T→∞

∑
x∈QF (T ) h(x, x̃)f(x, x̃)∑

x∈QF (T ) x
≥
∫

[0,1]2
h · f dµ̃. (4.8)

Now notice that h(x, y) · f(x, y) ≤ H(x, y) := ‖f‖∞(x+ y) for (x, y) ∈ [0, 1]2. Repeating the above

process used to produce the inequality (4.8), while replacing the function h · f with H − h · f , we

find that

lim inf
T→∞

∑
x∈QF (T )(H − h · f)(x, x̃)∑

x∈QF (T ) x
≥
∫

[0,1]2
(H − h · f) dµ̃.

Since (4.7) is satisfied when f is replaced by H, we can cancel the H in the above inequality to get

lim sup
T→∞

∑
x∈QF (T ) h(x, x̃)f(x, x̃)∑

x∈QF (T ) x
≤
∫ 1

0

∫ 1

0
f(x, y) dx dy,

and thus

lim
T→∞

∑
x∈QF (T ) h(x, x̃)f(x, x̃)∑

x∈QF (T ) x
=

∫ 1

0

∫ 1

0
f(x, y) dx dy.

Dividing this equality by the same equality, with f replaced by the constant function 1, yields the

result.

In an analogous manner to Theorem 4, one can view Corollary 4 as the equidistribution of
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the unweighted periodic points of F̃ according to the measure µ̃. As before, one must restrict the

functions over which to test the equidistribution and maintain the normalization
∑

x∈QF (T ) h(x, x̃).

4.2 The modular surface and the Gauss and Farey maps

4.2.1 The modular surface and the geodesic flow

Let H = {x + iy : x, y ∈ R, y > 0} denote the upper half of the complex plane equipped with

the hyperbolic metric ds2 = dx2+dy2

y2 . The geodesics in H with this metric are vertical lines and

the semicircles centered on the real line. The group PSL(2,R) acts isometrically on H by linear

fractional transformation:  a b

c d

 (z) :=
az + b

cz + d
.

The modular surface is the quotient space M := PSL2(Z)\H, whose geodesics are naturally pro-

jected from those of H.

Let T1H and T1M be the unit tangent bundles of the upper half plane and modular surface,

respectively. Then let gt : T1H → T1H denote the geodesic flow on T1H so that for (z, v) ∈ T1H,

gt(z, v) is the tangent vector obtained by starting at the base point z, and moving a distance t

along the geodesic tangent to the vector (z, v). Let {gt : t ∈ R} also be defined on T1M by natural

projection. Next, define the coordinates (x, y, θ) on T1H (and, locally, on T1M by projection)

corresponding to the vector with base point x + iy and at an angle θ counterclockwise from the

vertical upward-pointing vector. Then the g·-invariant Liouville measure λ̃, given by dλ̃ = dx dy dθ
y2

is obtained by importing the Haar measure on PSL2(R) to T1H via the natural identification

γ 7→ γ(i, v0) = (γ(i), γ′(i)v0) : PSL2(R)
∼−→ T1H, (4.9)

where v0 is the upward-pointing vector at i. The Liouville measure naturally descends to T1M.

Notice also that under the above map, T1M is naturally identified with PSL(2,Z)\PSL(2,R) ∼=
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SL(2,Z)\SL(2,R), and the geodesic flow gt corresponds to right multiplication by

 et/2 0

0 e−t/2

 .

Thus the functions g̃Q we considered in Section 2.6 can, in some cases, be viewed as the geodesic

flow in a quotient of T1H.

We can use the alternative coordinates (α, β, t) ∈ R3 on T1H, which correspond to the point

(z, v) ∈ T1H such that α = α(z, v) := limt→−∞ gt(z, v) is the endpoint of the geodesic g(z,v) :=

{gs(z, v) : s ∈ R} approached by (z, v) under the geodesic flow in the backward direction, β =

β(z, v) := limt→∞ gt(z, v) is the endpoint of g(z,v) approached under the flow in the forward direc-

tion, and t = t(z, v) is such that g−t(z,v)(z, v) is based at the apex of g(z,v). With respect to these

coordinates, the Liouville measure is

dλ̃ =
dα dβ dt

(β − α)2
.

4.2.2 The cross section of Series and G̃

The cross section of the geodesic flow considered by Series [63] is

X := {(z, v) ∈ T1M : 0 < |α(z, v)| ≤ 1, |β(z, v)| ≥ 1, z ∈ iR}.

If β(z, v) 6= ±1, then the geodesic flow returns (z, v) to X. So the first return map P for X defined

by

P (z, v) := gr(z,v)(z, v), where r(z, v) := min{s > 0 : gs(z, v) ∈ X},

is well defined on X∗ := {(z, v) ∈ X : |β(z, v)| > 1}. (Note that X∗ is of full measure in

X with respect to the measure dα dβ
(β−α)2 induced on X by λ̃.) Using the correspondence between

the continued fraction expansions of α(z, v) and β(z, v) and the cutting sequence of the geodesic

g(z,v), Series proved that G̃ is a factor of P . Specifically, if we parameterize X by the coordinates

(U, V, ε) ∈ (0, 1]2 × {±1}, where U = |β|−1, V = |α|, and ε = sign(β), and abuse notation by
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identifying X with (0, 1]2 × {±1}, then

P (U, V, ε) = (G̃(U, V ),−ε).

(Here we must also assume that U−1 /∈ Z.) So if we define πX : X → [0, 1]2 by πX(U, V, ε) = (U, V ),

then we have the diagram

X∗

πX
��

P // X

πX
��

[0, 1]2
G̃ // [0, 1]2

which commutes a.e., and expresses G̃ as a factor of P .

The cross section X also allows us to see that there is a one-to-one correspondence between

the closed geodesics in T1M and periodic orbits of the return map P . Indeed, a closed geodesic is

simply the g·-orbit in T1M of one of points in a periodic orbit of P . A given periodic orbit of P is

of the form

{(G̃j([a1, a2, . . . , a2n], [a2n, a2n−1, . . . , a1]),±(−1)j) : j = 1, . . . , 2n}, (4.10)

where 2n is the minimal even period length of the continued fraction [a1, a2, . . . , a2n]. It follows

from [63, Section 3.2] that the length of the geodesic corresponding to the orbit (4.10) is

−2
2n∑
j=1

log(Gj([a1, a2, . . . , a2n])),

which inspired the definition (4.1) in [59]. Here, we wish to note that the closed geodesics corre-

sponding to the orbits

{(G̃j([a1, a2, . . . , a2n], [a2n, a2n−1, . . . , a1]),±(−1)j) : j = 1, . . . , 2n}, and

{(G̃j([a2n, a2n−1, . . . , a1], [a1, a2, . . . , a2n]),±(−1)j) : j = 1, . . . , 2n}

are permuted by the symmetry (z, v) 7→ (z,−v) on T1M. Indeed, the first orbit corresponds to the
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geodesic tangent to the element (z, v) ∈ T1M with

β(z, v) = ±[a1; a2, . . . , a2n] and α(z, v) = ∓[a2n, a2n−1, . . . , a1],

whereas the second orbit corresponds to the geodesic tangent to the element (z′, v′) ∈ T1M such

that z′ ∈ iR,

β(z′, v′) = ±[a2n; a2n−1, . . . , a1], and α(z′, v′) = ∓[a1, a2, . . . , a2n].

Acting by the matrix
(

0 −1
1 0

)
∈ PSL2(Z), we see that this geodesic is the same as that tangent to

(z′′, v′′) ∈ T1H, where z′′ = −(z′)−1,

β(z′′, v′′) = ∓[a2n, a2n−1, . . . , a1], and α(z′′, v′′) = ±[a1; a2, . . . , a2n].

In other words, we have (z′′, v′′) = (z,−v). Hence the two geodesics are the same length, i.e.,

`([a1, a2, . . . , a2n]) = `([a2n, a2n−1, . . . , a1]). (4.11)

4.2.3 A new cross section for F̃

We now seek to find a cross section analogous to X whose return map under the geodesic flow is

a double cover of F̃ . The fact that G̃ is conjugate to the induced map (3.11) hints that we should

seek to expand the range of the parameter V with respect to the coordinates (U, V, ε), or the range

of α with respect to the coordinates (α, β). In fact, we define our new cross section X̄ by

X̄ := {(z, v) ∈ T1M : α(z, v) 6= 0, |β(z, v)| ≥ 1, z ∈ iR};

so we have just removed the restriction |α| ≤ 1 from the endpoint α of the geodesic determined by

(z, v). One can also see that X̄ is simply all the nonvertical tangent vectors with base point on the

positive imaginary axis. We can parameterize X̄ by the coordinates (U,W, ε) ∈ (0, 1]×(0, 1)×{±1},

where W = 1
1+|α| , and as before, U = |β|−1 and ε = sign(β). (We again abuse notation by

identifying X̄ with (0, 1] × (0, 1) × {±1}.) Our definition of the coordinate W follows from the
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equality (3.12), which motivates us to change the second coordinates of our points in X according

to the map

[b1, b2, . . .] 7→ [1, b1, b2, . . .].

Now let P̄ : X̄∗ → X̄ be the first return map

P̄ (z, v) := gr̄(z,v)(z, v), where r̄(z, v) := min{s > 0 : gs(z, v) ∈ X̄}

and X̄∗ = (0, 1)2 × {±1} is the set of points in X̄ on which P̄ is defined. Our main goal of this

section is to prove the following:

Theorem 5. The natural extension of the Farey map F̃ is a factor of the return map P̄ . Specifically,

we have

P̄ (U,W, ε) =


(F̃ (U,W ), ε) if U ∈

(
0, 1

2

]
(F̃ (U,W ),−ε) if U ∈

(
1
2 , 1
) (4.12)

so that if πX̄ : X̄ → [0, 1]2 is defined by πX̄(U,W, ε) = (U,W ), we have the following commutative

diagram:

X̄∗

πX̄
��

P̄ // X̄

πX̄
��

[0, 1]2
F̃ // [0, 1]2

Also, the first return time function r̄ is given by

r̄(U,W, ε) = −1

2
log((1− U)(1−W )). (4.13)

Proof. To begin, it is helpful to note that the set of base points of the vectors lifted from X̄

to T1H lie on the PSL2(Z) translates of the positive imaginary axis, which make up the Farey

tesselation. Each of these translates is either a vertical geodesic with integer real part, or a semicircle

connecting rational numbers which are adjacent in a Farey sequence of some order. This is easy

to see by evaluating limt→0,∞ γ(it) for γ ∈ PSL2(Z). The important thing to note is that all of

the nonvertical translates lie below the semicircles connecting adjacent integers. Part of the Farey

tessellation is depicted in Figures 4.1 and 4.2.
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Farey tessellation

(z, v)

(z′, v′)(z′′, v′′)

α βα− 1 β − 1−1 0 1 2

Figure 4.1: The case U ≤ 1
2

Now let (z, v) ∈ X̄∗, which we identify with its coordinates (U,W, ε) ∈ (0, 1)2×{±1}, and assume

for simplicity that ε = 1. (The argument for ε = −1 mirrors the following.) Let U = [a1, a2, . . .]

and W = [b1, b2, . . .], either of which may terminate. We first consider the case when U ∈
(
0, 1

2

]
,

and hence a1 ≥ 2. Then the geodesic g(z,v) has endpoints β = β(z, v) = U−1 = [a1; a2, . . .] and

α = α(z, v) = −(V −1 − 1) = −[b1 − 1; b2, . . .]. Since β > 1, the first point in X̄ that (z, v)

encounters under the geodesic flow is a point (z′, v′), where Re(z′) = 1. The matrix
(

1 −1
0 1

)
∈

PSL(2,Z) identifies (z′, v′) with the point (z′′, v′′), where β(z′′, v′′) = β − 1 = [a1 − 1; a2, . . .] and

α(z′′, v′′) = α − 1 = −[b1; b2, . . .]. (See Figure 4.1.) The (U,W, ε) coordinates of this element are

U ′′ = [a1 − 1, a2, . . .], W
′′ = [b1 + 1, b2, b3, . . .], and ε′′ = 1. Thus (4.12) holds for U ∈

(
0, 1

2

]
.

Next, consider the case when U ∈
(

1
2 , 1
)
, i.e., a1 = 1. As above, the corresponding geodesic

g(z,v) has endpoints β = [a1; a2, . . .] and α = −[b1− 1; b2, . . .]. Similar to the previous case, the first

point in X̄ that (z, v) passes through under the geodesic flow is a point (z′, v′), where Re(z′) = 1.

However, since β(z, v) = [1; a2, . . .] < 2, we must use the matrix
(

0 −1
1 −1

)
∈ PSL(2,Z) to identify

(z′, v′) with the point (z′′, v′′) satisfying

β(z′′, v′′) =
−1

β − 1
=

−1

[1; a2, a3, . . .]− 1
= −[a2; a3, a4, . . .] and

α(z′′, v′′) =
−1

α− 1
=

−1

−[b1 − 1; b2, b3, . . .]− 1
= [b1, b2, b3, . . .].

(See Figure 4.2.) The (U,W, ε) coordinates of (z′′, v′′) are U ′′ = [a2, a3, . . .], W
′′ = [1, b1, b2, . . .],
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Farey tessellation

(z, v)

(z′, v′)

(z′′, v′′)

α β−1
α−1

−1
β−1

−1 0 1 2

Figure 4.2: The case U > 1
2

and ε′′ = −1, which shows (4.12) for U ∈
(

1
2 , 1
)
. This proves that F̃ is a factor of P̄ .

We now outline the calculation of the return time function r̄. As above, let (z, v) ∈ X̄∗ with

coordinates (U, V, ε) ∈ (0, 1)2 × {±1}, and again assume that ε = 1, since the case ε = −1 is

a mirror image. Also, let z = iy for y ∈ R, y > 0, and θ ∈ (0, π) be the angle v makes with

the upward-pointing vector in the counterclockwise direction. Then under the identification (4.9),

(z, v) is identified with  y1/2 0

0 y−1/2


 cos θ2 − sin θ

2

sin θ
2 cos θ2

 .

By the previous part of the proof, r̄(U, V, ε) is the constant t > 0 such that the base point of

gt(z, v) = (M(i),M ′(i)v0), where

M =

 y1/2 0

0 y−1/2


 cos θ2 − sin θ

2

sin θ
2 cos θ2


 et/2 0

0 e−t/2

 ,

has real part equal to 1. By a straightforward calculation, this implies that

r̄(U, V, ε) =
1

2
log

(
y sin(θ/2) cos(θ/2) + cos2(θ/2)

y sin(θ/2) cos(θ/2)− sin2(θ/2)

)
.

Then, using the fact that U = y−1 tan θ
2 and W = 1

1+y tan(θ/2) , we easily deduce (4.13).
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Remark 2. See [3, Section 7] for a different way of relating the Farey map to a cross section of

the geodesic flow in T 1M.

Hence, we can see how a given periodic orbit

{
P̄ j([a1, a2, . . . , a2n], [1, a2n, a2n−1, . . . , a1],±1) : j = 1, . . . ,

2n∑
k=1

ak

}
(4.14)

of P̄ naturally includes the periodic orbit (4.10) of P , and so corresponds to the same closed

geodesic. We therefore extend our definition of the length function ` to the periodic points of F so

that for all k ∈ N, `(F k([a1, . . . , a2n])) is the length of the closed geodesic given by the g·-orbit of

any point in (4.14), i.e.,

`(F k([a1, . . . , a2n])) = −2
2n∑
j=1

log(Gj([a1, . . . , a2n])).

Note here that if x = [a1, . . . , a2n] has minimal even periodic length 2n and k ∈ {0, . . . , a1 − 1},

then letting y = F k(x), we have

`(ỹ) = `([1 + k, a2n, a2n−1, . . . , a1]) = `(F a1−1−k([a1, a2n, a2n−1, . . . , a2]))

= `([a1, a2n, a2n−1, . . . , a2]) = `([a2n, a2n−1, . . . , a1]) = `([a1, a2, . . . , a2n]) = `(y),

where we used (4.11) for the penultimate equality. This shows that for any T > 0, the set {(x, x̃) :

x ∈ QF (T )} is symmetric about the line x = y, a fact we used in the proof of Corollary 4.

To conclude this section, we notice that the measure dα dβ
(β−α)2 on X̄ induced by the Liouville

measure is, in the coordinates (U,W ) (with ε fixed as 1 or −1),

−d(U−1) d(−(W−1 − 1))

(U−1 + (W−1 − 1))2
=

U−2W−2dU dV

(U−1 +W−1 − 1)2
=

dU dW

(U +W − UW )2
.

Thus the Liouville measure naturally induces the invariant measure µ̃ of F̃ on [0, 1]2.
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4.3 Proof of equidistribution

We now set out to prove Theorem 4. The result follows directly from the following asymptotic

formula we aim to show, and which holds for all f ∈ C([0, 1]):

∑
x∈QF (T )

xf(x) ∼
(

3

π2

∫ 1

0
f(x) dx

)
eT (T →∞) (4.15)

In Section 4.3.1, we reduce the proof of (4.15) to showing a similar asymptotic formula for sums

of certain analytic functions over the periodic points of the Gauss map. From that point we adapt

the work of Pollicott [59] on a Ruelle-Perron-Frobenius operator of the Gauss map. We introduce

this operator in Section 4.3.2 and establish its nuclearity and analyticity with respect to certain

parameters in Section 4.3.3. Then in Section 4.3.4, we utilize the Fredholm determinants of the

operator to construct a certain η function which is the Laplace transform of an approximation S̃f

to a sum of the form

Sf (T ) :=
∑

x∈QG(T )

f(x).

We then calculate the residue of a pole of the η function and apply the Wiener-Ikehara Tauberian

theorem to determine the asymptotic growth rate of S̃f . We conclude the proof in Section 4.3.5

by showing that S̃f is in fact asymptotically equivalent to Sf , which uses a fact due to Kelmer

[45, Theorem 3] that the sum of f over the odd periodic continued fractions grows asymptotically

slower than that over the even.

4.3.1 Reduction to equidistribution of QG(T )

First, let f ∈ C([0, 1]), and assume without loss of generality that f is real valued and nonnegative.

Then let g : [0, 1]→ R be defined by g(x) = xf(x). Notice that for any T > 0, we have

∑
x∈QF (T )

xf(x) =
∑

[a1,...,a2n]∈QG(T )

a1−1∑
k=0

g([a1 − k, a2, . . . , a2n, a1])

=
∑

[a1,...,a2n]∈QG(T )

a1−1∑
k=0

(g ◦ F k)([a1, . . . , a2n]) =
∑

x∈QG(T )

b1/xc−1∑
k=0

(g ◦ F k)(x).

67



So understanding the sum of g over QF (T ) is equivalent to understanding the sum of the function

ḡ : (0, 1]→ R defined by

ḡ(x) =

b1/xc−1∑
k=0

(g ◦ F k)(x)

over QG(T ). Notice also that

∫
[0,1]

ḡ dν =
∞∑
n=1

∫ 1/n

1/(n+1)

n−1∑
k=0

(g ◦ F k)(x)
dx

(1 + x) log 2
=
∞∑
k=0

∞∑
n=k+1

∫ 1/n

1/(n+1)
g

(
x

1− kx

)
dx

(1 + x) log 2

=
∞∑
k=0

∫ 1/(k+1)

0
g

(
x

1− kx

)
dx

(1 + x) log 2

=
∞∑
k=0

∫ 1

0
g(y)

dy

(1 + ky)2(1 + y/(1 + ky)) log 2

(
y =

x

1− kx

)

=
1

log 2

∫ 1

0
g(y)

( ∞∑
k=0

1

(1 + ky)(1 + (k + 1)y)

)
dy

=
1

log 2

∫
[0,1]

g dµ =
1

log 2

∫ 1

0
f(x) dx.

Thus the asymptotic formula (4.15) is equivalent to

∑
x∈QG(T )

ḡ(x) ∼

(
3 log 2

π2

∫
[0,1]

ḡ dν

)
eT . (T →∞)

If ḡ had an extension to a function in C([0, 1]), this asymptotic formula would follow from the work

of Pollicott. However, in general, ḡ(x) has discontinuities at the points x ∈ {n−1 : n ∈ N, n ≥ 2}

and can grow without bound as x→ 0+, and we must take these facts into account. On the other

hand, the following lemma essentially shows that we can assume that ḡ is an analytic function of

a particular form.

Lemma 3. The function ḡ(x) =
∑b1/xc−1

k=0 (g ◦ F k)(x) can be approximated arbitrarily closely in

L1(ν) from above and below by functions of the form p(x) = p1(x)(1− log x), where p1 is a polyno-

mial.

Proof. By the mutual absolute continuity between ν and the Lebesgue measure λ on [0, 1], it suffices

to prove the approximation in the L1 norm with respect to λ. It is clear that ¯̄g(x) := ḡ(x)
1−log x is

uniformly bounded on (0, 1], and it is also continuous except possibly at the points {n−1 : n ∈
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N, n ≥ 2}, where there could be jump discontinuities. For any ε > 0, one can clearly find continuous

functions h1,ε, h2,ε : [0, 1]→ R such that h1,ε ≤ ¯̄g ≤ h2,ε, ‖h1,ε‖∞, ‖h2,ε‖∞ ≤ ‖¯̄g‖∞,

∫ 1

0
(¯̄g(x)− h1,ε(x)) dx ≤ ε, and

∫ 1

0
(h2,ε(x)− ¯̄g(x)) dx ≤ ε.

Then by the Stone-Weierstrass theorem, there exist polynomials p1,ε, p2,ε such that h1,ε(x) − ε ≤

p1,ε(x) ≤ h1,ε(x) and h2,ε(x) ≤ p2,ε(x) ≤ h2,ε(x) + ε for x ∈ [0, 1]. We then have

∫ 1

0
[ḡ(x)− p1,ε(x)(1− log x)] dx =

∫ 1

0
(¯̄g(x)− p1,ε(x))(1− log x) dx

=

∫ 1

0
(¯̄g(x)− h1,ε(x))(1− log x) dx+

∫ 1

0
(h1,ε(x)− p1,ε(x))(1− log x) dx

≤
∫ ε

0
2‖¯̄g‖∞(1− log x) dx+ (1 + log ε−1)

∫ 1

ε
(¯̄g(x)− h1,ε(x)) dx+ ε

∫ 1

0
(1− log x) dx

≤ 2‖¯̄g‖∞ε(2− log ε) + ε(1 + log ε−1) + 2ε.

The last expression above approaches 0 as ε → 0. Thus, we can conclude that ḡ(x) can be

approximated arbitrarily closely in L1(λ) from below by functions of the desired form. Similarly,

using pε,2, one can show the approximation of ḡ(x) by such functions from above.

By this approximation result, we have reduced the proof to showing that

Sf (T ) =
∑

x∈QG(T )

f(x) ∼

(
3 log 2

π2

∫
[0,1]

f dν

)
eT . (T →∞)

for functions f : (0, 1]→ R of the form f(x) = p(x)(1− log x) where p is a polynomial.

4.3.2 The Ruelle-Perron-Frobenius operator

We now begin following [59], as well as [22] and [45], in proving the above growth rate by analyzing

a Ruelle-Perron-Frobenius operator of the Gauss map. For r > 0, let Dr = {z ∈ C : |z − 1| < r}

and Dr the closure of Dr, and let a, b ∈ R be any fixed constants satisfying 1 < a < b < 3
2 . The

Ruelle-Perron-Frobenius operator we define below acts on the disk algebra, which we denote by A

and view as the set of continuous functions on Da which are analytic in Da, equipped with the

supremum norm ‖ · ‖∞. Let f be a complex valued function of the form f(z) = f1(z)(1 − log z),
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where log z is the principal branch of the logarithm and f1 is analytic in an open neighborhood of

D1 and real valued and positive on [0, 1]. Then f is analytic in an open neighborhood of D1\{0},

and letting K = ‖f1‖∞(1 + π), we have |f(z)| ≤ K(1 − log |z|) for all z ∈ D1\{0}. Then letting

χs,ω(z) := z2seωf(z) for s, ω ∈ C (the 2s power coming from the principle branch of the logarithm),

we define the Ruelle-Perron-Frobenius operator Ls,ω : A→ A by

(Ls,ωg)(z) :=
∞∑
n=1

g

(
1

z + n

)
χs,ω

(
1

z + n

)
.

Note that the particular operator L1,0 is the transfer operator Ĝλ of the Gauss map. Letting

U :=
{

(s, ω) ∈ C2 : Re(s) > 1+K|ω|
2

}
, we see that Ls,ω is a well defined and bounded operator for

(s, ω) ∈ U (with s = σ + it for σ, t ∈ R) by the calculation

∞∑
n=1

∣∣∣∣g( 1

z + n

)
χs,ω

(
1

z + n

)∣∣∣∣ ≤ ‖g‖∞ ∞∑
n=1

∣∣∣∣ 1

(z + n)2s

∣∣∣∣ ∣∣∣eωf(1/(z+n))
∣∣∣

= ‖g‖∞
∞∑
n=1

eRe((2σ+2it)(− log |z+n|−i arg(z+n)))eRe(ωf(1/(z+n)))

≤ ‖g‖∞
∞∑
n=1

e−2σ log |z+n|+2t arg(z+n)e|ω|K(1+log |z+n|)

≤ ‖g‖∞
∞∑
n=1

e2πt+K|ω|

|z + n|2σ−K|ω|
≤ ‖g‖∞

∞∑
n=1

e2πt+K|ω|

(n− 1
2)2σ−K|ω| . (4.16)

4.3.3 Ls,ω is nuclear of order 0 and analytic

We now closely follow the arguments of Faivre [22] to show that for (s, ω) ∈ U , Ls,ω is a nuclear

operator of order 0, and is analytic in (s, ω). We begin with nuclearity.

For a given ε > 0, we wish to find a sequence {Λj ⊗ ej}∞j=0 ⊆ A∗ ⊗ A such that

Ls,ω =

∞∑
j=0

Λj ⊗ ej , and

∞∑
j=0

‖Λj‖ε‖ej‖ε∞ <∞,

where Λj ⊗ ej is defined as an operator on A by ((Λj ⊗ ej)g)(z) = (Λjg)ej(z). Assume (s, ω) ∈ U

so that σ > 1+K|ω|
2 , fix g ∈ A, and for each n ∈ N let

(Ln,s,ωg)(z) := hg,n,s,ω(z) := g

(
1

z + n

)
χs,ω

(
1

z + n

)
.
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It is easy to see that hg,n,s,ω is an analytic function on D3/2, and so for z ∈ Da ⊆ Db,

hg,n,s,ω(z) =
∞∑
j=0

h
(j)
g,n,s,ω(1)

j!
(z − 1)j .

Define the element Λn,j,s,ω ∈ A∗ by

Λn,j,s,ωg :=
h

(j)
g,n,s,ω(1)

j!
=

1

2πi

∫
|ζ−1|=b

hg,n,s,ω(ζ)

(ζ − 1)j+1
dζ;

the latter equality follows from Cauchy’s formula. Also define ej ∈ A by ej(z) = (z − 1)j so that

hg,n,s,ω =
∞∑
j=0

(Λn,j,s,ωg)ej .

By the calculation (4.16), we have

‖hg,n,s,ω‖∞ ≤
‖g‖∞e2πt+K|ω|

(n− 1
2)2σ−K|ω| ,

and therefore

|Λn,j,s,ωg| ≤
‖hg,n,s,ω‖∞

2π

∫
|ζ−1|=b

1

|ζ − 1|j+1
|dζ| = ‖g‖∞e2πt+K|ω|

bj(n− 1
2)2σ−K|ω| .

This implies that
∞∑
n=1

‖Λn,j,s,ω‖ ≤
∞∑
n=1

e2πt+K|ω|

bj(n− 1
2)2σ−K|ω| ,

which is a finite quantity, and we denote its product with bj by κ(s, ω). Hence

Λj,s,ω :=

∞∑
n=1

Λn,j,s,ω

is a well defined element of A∗.
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Next, notice that

∞∑
j=0

∞∑
n=1

‖Λn,j,s,ω‖‖ej‖∞ ≤
∞∑
j=0

∞∑
n=1

e2πt+K|ω|

bj(n− 1
2)2σ−K|ω|a

j = κ(s, ω)
∞∑
j=0

(a
b

)j
=

κ(s, ω)

1− (a/b)
<∞.

As a result, we have

Ls,ω =
∞∑
n=1

Ln,s,ω =
∞∑
n=1

∞∑
j=0

Λn,j,s,ω ⊗ ej =
∞∑
j=0

∞∑
n=1

Λn,j,s,ω ⊗ ej =
∞∑
j=0

Λj,s,ω ⊗ ej

Finally, note that for all ε > 0,

∞∑
j=0

‖Λj,s,ω‖ε‖ej‖ε ≤
∞∑
j=0

κ(s, ω)ε

bεj
aεj =

κ(s, ω)ε

1− (a/b)ε
<∞.

This completes the proof that Ls,ω is nuclear of order 0.

We now prove the analyticity of Ls,ω. We specifically show that (s, ω) 7→ Ls,ω is analytic as a

map from U to the order ε nuclear operators on A for any ε > 0. Throughout the proof, we fix

(s0, ω0) ∈ U at which we prove the differentiability of Ls,ω. Also, let s0 = σ0 + it0 for σ0, t0 ∈ R.

For our first step, we fix n, j ∈ N∪{0} with n ≥ 1, and show that (s, ω) 7→ Λn,j,s,ω is differentiable

(as a map from U to A∗) at (s0, ω0) with respect to s. Define the element θ
[1]
n,j,s,ω ∈ A∗ by

θ
[1]
n,j,s,ωg =

1

2πi

∫
|ζ−1|=b

−2hg,n,s,ω(ζ) log(ζ + n)

(ζ − 1)j+1
dζ.

We aim to show that θ
[1]
n,j,s,ω = ∂

∂sΛn,j,s,ω. For (s, ω0) ∈ U and g ∈ A, we have

∣∣∣∣(Λn,j,s,ω0 − Λn,j,s0,ω0

s− s0
− θ[1]

n,j,s0,ω0

)
g

∣∣∣∣
=

∣∣∣∣∣∣∣
1

2πi

∫
|ζ−1|=b

g((ζ + n)−1)eω0f((ζ+n)−1)

(ζ − 1)j+1

(
(ζ + n)−2s − (ζ + n)−2s0

s− s0
+

2 log(ζ + n)

(ζ + n)2s0

)
dζ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1

2πi

∫
|ζ−1|=b

g((ζ + n)−1)eω0f((ζ+n)−1)

(ζ − 1)j+1(ζ + n)2s0

(
(ζ + n)−2(s−s0) − 1

s− s0
+ 2 log(ζ + n)

)
dζ

∣∣∣∣∣∣∣ . (4.17)

Notice that for a function ψ that is analytic in an open neighborhood N of 0, and for h ∈ C such
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that the straight line segment [0, h] connecting 0 and h is in N , we have

|ψ(h)− ψ(0)− hψ′(0)| =

∣∣∣∣∣
∫

[0,h]
ψ(u) du− hψ′(0)

∣∣∣∣∣ =

∣∣∣∣∣
∫

[0,h]
(ψ′(u)− ψ′(0))du

∣∣∣∣∣
=

∣∣∣∣∣
∫

[0,h]

ψ′(u)− ψ′(0)

u
u du

∣∣∣∣∣ ≤
∫

[0,h]
max
u′∈[0,u]

|ψ′′(u′)||u||du|

≤
(

max
u∈[0,h]

|ψ′′(u)|
)∫ |h|

0
x dx =

|h|2

2
max
u∈[0,h]

|ψ′′(u)|. (4.18)

This implies that

∣∣∣∣∣(ζ + n)−2(s−s0) − 1

s− s0
+ 2 log(ζ + n)

∣∣∣∣∣ ≤ |s− s0|
2

max
u∈[0,s−s0]

∣∣∣∣4(log(ζ + n))2

(ζ + n)2u

∣∣∣∣
≤ 2|s− s0|(π + log(n+ 1 + b))2e2π| Im(s−s0)|(n+ 1 + b)2|Re(s−s0)|.

Hence, (4.17) is at most

‖g‖∞e2πt0+K|ω0|

bj(n− 1
2)2σ0−K|ω0|

2|s− s0|(π + log(n+ 1 + b))2e2π| Im(s−s0)|(n+ 1 + b)2|Re(s−s0)|,

and therefore

∥∥∥∥Λn,j,s,ω0 − Λn,j,s0,ω0

s− s0
− θ[1]

n,j,s0,ω0

∥∥∥∥
≤ 2(π + log(n+ 1 + b))2e2πt0+K|ω0|+2π| Im(s−s0)|(n+ 1 + b)2|Re(s−s0)|

bj(n− 1
2)2σ0−K|ω0|

|s− s0|,

which approaches 0 as s→ s0. This proves that θ
[1]
n,j,s,ω = ∂

∂sΛn,j,s,ω.

Next, notice that

∞∑
n=1

‖θ[1]
n,j,s,ω‖ ≤

∞∑
n=1

e2πt+K|ω|2(π + log(n+ 1 + b))

bj(n− 1
2)2σ−K|ω| ,

which is finite for (s, ω) ∈ U ; and hence

θ
[1]
j,s,ω :=

∞∑
n=1

θ
[1]
n,j,s,ω
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is a well defined element of A∗ for all j ∈ N ∪ {0}. We then have

∥∥∥∥Λj,s,ω0 − Λj,s0,ω0

s− s0
− θ[1]

j,s0,ω0

∥∥∥∥
≤
∞∑
n=1

2(π + log(n+ 1 + b))2e2πt0+K|ω0|+2π| Im(s−s0)|(n+ 1 + b)2|Re(s−s0)|

bj(n− 1
2)2σ0−K|ω0|

|s− s0|,

which is finite as long as s is close enough to s0 so that 2σ0 −K|ω0| − 2|Re(s − s0)| > 1. Such s

comprise an open neighborhood of s0 since 2σ0 −K|ω0| > 1. It is thus clear that as s → s0, the

left side above approaches 0. This proves that ∂
∂sΛj,s,ω exists and equals θ

[1]
j,s,ω.

Next fix ε > 0. Then notice that

∞∑
j=0

‖θ[1]
j,s,ω‖

ε‖ej‖ε ≤
∞∑
j=0

( ∞∑
n=1

e2πt+K|ω|2(π + log(n+ 1 + b))

bj(n− 1
2)2σ−K|ω|

)ε
ajε

=

( ∞∑
n=1

e2πt+K|ω|2(π + log(n+ 1 + b))

(n− 1
2)2σ−K|ω|

)ε
1

1− (a/b)ε
<∞,

for (s, ω) ∈ U , implying that

θ[1]
s,ω :=

∞∑
j=0

θ
[1]
j,s,ω ⊗ ej

is a nuclear operator of order ε. We also have

∞∑
j=0

∥∥∥∥Λj,s,ω0 − Λj,s0,ω0

s− s0
− θ[1]

j,s0,ω0

∥∥∥∥ε ‖ej‖ε
≤
∞∑
j=0

( ∞∑
n=1

2(π + log(n+ 1 + b))2e2πt0+K|ω0|+2π| Im(s−s0)|(n+ 1 + b)2|Re(s−s0)|

bj(n− 1
2)2σ0−K|ω0|

|s− s0|

)ε
ajε

= |s− s0|ε
( ∞∑
n=1

2(π + log(n+ 1 + b))2e2πt0+K|ω0|+2π| Im(s−s0)|(n+ 1 + b)2|Re(s−s0)|

(n− 1
2)2σ0−K|ω0|

)ε
1

1− (a/b)ε
,

which again is finite as long as 2σ0 −K|ω0| − 2|Re(s− s0)| > 1, and approaches 0 as s→ s0. This

means that

Ls,ω0 − Ls0,ω0

s− s0
− θ[1]

s0,ω0
=

∞∑
j=0

(
Λj,s,ω0 − Λj,s0,ω0

s− s0
− θ[1]

j,s0,ω0

)
⊗ ej

approaches 0 in the norm on order ε nuclear operators. This completes the proof that (s, ω) 7→ Ls,ω

is analytic with respect to s as a map to the order ε nuclear operators (∀ε > 0) and ∂
∂sLs,ω = θ

[1]
s,ω.
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We will now essentially repeat the above argument to show that

∂

∂ω
Ls,ω =

∞∑
j=0

∞∑
n=1

θ
[2]
n,j,s,ω ⊗ ej ,

where

θ
[2]
n,j,s,ωg =

1

2πi

∫
|ζ−1|=b

hg,n,s,ω(ζ)f((ζ + n)−1)

(ζ − 1)j+1
dζ.

For (s0, ω) ∈ U and g ∈ A, we have

∣∣∣∣(Λn,j,s0,ω − Λn,j,s0,ω0

ω − ω0
− θ[2]

n,j,s0,ω0

)
g

∣∣∣∣
=

∣∣∣∣∣∣∣
1

2πi

∫
|ζ−1|=b

g((ζ + n)−1)

(ζ − 1)j+1(ζ + n)2s0

(
eωf((ζ+n)−1) − eω0f((ζ+n)−1)

ω − ω0
− eω0f((ζ+n)−1)f

(
1

ζ + n

))
dζ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1

2πi

∫
|ζ−1|=b

g((ζ + n)−1)eω0f((ζ+n)−1)

(ζ − 1)j+1(ζ + n)2s0

(
e(ω−ω0)f((ζ+n)−1) − 1

ω − ω0
− f

(
1

ζ + n

))
dζ

∣∣∣∣∣∣∣ (4.19)

Using (4.18), we have

∣∣∣∣∣e(ω−ω0)f((ζ+n)−1) − 1

ω − ω0
− f

(
1

ζ + n

)∣∣∣∣∣ ≤ |ω − ω0|
2

max
u∈[0,ω−ω0]

∣∣∣∣∣euf((ζ+n)−1)f

(
1

ζ + n

)2
∣∣∣∣∣

≤ 1

2
|ω − ω0|K2(1 + log(n+ 1 + b))2e|ω−ω0|K(1+log(n+1+b)).

Therefore, (4.19) is at most

‖g‖∞e2πt0+K|ω0|

2bj(n− 1
2)2σ0−K|ω0|

|ω − ω0|K2(1 + log(n+ 1 + b))2eK|ω−ω0|(n+ 1 + b)K|ω−ω0|,

and so

∥∥∥∥Λn,j,s0,ω − Λn,j,s0,ω0

ω − ω0
− θ[2]

n,j,s0,ω0

∥∥∥∥
=
K2(1 + log(n+ 1 + b))2e2πt0+K|ω0|+K|ω−ω0|(n+ 1 + b)K|ω−ω0|

2bj(n− 1
2)2σ0−K|ω0|

|ω − ω0|,

which approaches 0 as ω → ω0. We have thus shown that θ
[2]
n,j,s,ω = ∂

∂ωΛn,j,s,ω.
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Now notice that

∞∑
n=1

‖θ[2]
n,j,s,ω‖ ≤

∞∑
n=1

e2πt+K|ω|K2(1 + log(n+ 1 + b))

bj(n− 1
2)2σ−K|ω| ,

which is finite for (s, ω) ∈ U . So

θ
[2]
j,s,ω :=

∞∑
n=1

θ
[2]
n,j,s,ω

is a well defined element of A∗ for all j ∈ N ∪ {0}. Then

∥∥∥∥Λj,s0,ω − Λj,s0,ω0

ω − ω0
− θ[2]

j,s0,ω0

∥∥∥∥
≤
∞∑
n=1

K2(1 + log(n+ 1 + b))2e2πt0+K|ω0|+K|ω−ω0|(n+ 1 + b)K|ω−ω0|

2bj(n− 1
2)2σ0−K|ω0|

|ω − ω0|,

which is finite as long as ω is close enough to ω0. Thus, if ω → ω0, the left side above approaches

0. This proves that ∂
∂ωΛj,s,ω exists and equals θ

[2]
j,s,ω.

Again fix ε > 0 and notice that

∞∑
j=0

‖θ[2]
j,s,ω‖

ε‖ej‖ε ≤
∞∑
j=0

( ∞∑
n=1

e2πt+K|ω|K2(1 + log(n+ 1 + b))

bj(n− 1
2)2σ−K|ω|

)ε
ajε

=

( ∞∑
n=1

e2πt+K|ω|K2(1 + log(n+ 1 + b))

(n− 1
2)2σ−K|ω|

)ε
1

1− (a/b)ε
<∞,

for (s, ω) ∈ U , implying that

θ[2]
s,ω :=

∞∑
j=0

θ
[2]
j,s,ω ⊗ ej

is a nuclear operator of order ε. We also have

∞∑
j=0

∥∥∥∥Λj,s,ω0 − Λj,s0,ω0

s− s0
− θ[1]

j,s0,ω0

∥∥∥∥ε ‖ej‖ε
≤
∞∑
j=0

( ∞∑
n=1

K2(1 + log(n+ 1 + b))2e2πt0+K|ω0|+K|ω−ω0|(n+ 1 + b)K|ω−ω0|

2bj(n− 1
2)2σ0−K|ω0|

|ω − ω0|

)ε
ajε

= |ω − ω0|ε
( ∞∑
n=1

K2(1 + log(n+ 1 + b))2e2πt0+K|ω0|+K|ω−ω0|(n+ 1 + b)K|ω−ω0|

2(n− 1
2)2σ0−K|ω0|

)ε
1

1− (a/b)ε
,

which is finite as long as 2σ0 −K|ω0| −K|ω − ω0| > 1, and approaches 0 as ω → ω0. This implies
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that

Ls0,ω − Ls0,ω0

ω − ω0
− θ[2]

s0,ω0
=
∞∑
j=0

(
Λj,s0,ω − Λj,s0,ω0

ω − ω0
− θ[2]

j,s0,ω0

)
⊗ ej

approaches 0 in the norm on order ε nuclear operators. Thus (s, ω) 7→ Ls,ω is analytic with respect

to ω, and hence with respect to (s, ω), as a map to the order ε nuclear operators (∀ε > 0) and

∂
∂ωLs,ω = θ

[2]
s,ω.

4.3.4 The η-function

By the work of Grothendieck [28, 29] on the theory of Fredholm determinants of nuclear operators

on Banach spaces, the functions

Z±(s, ω) := det(I ± Ls,ω) =
∏

λs,ω∈spec(Ls,ω)

(1± λs,ω),

where spec(Ls,ω) is the set of eigenvalues of Ls,ω (counted with multiplicity), are well defined

and analytic on U . Furthermore, the product over the eigenvalues converges absolutely. By [22,

Proposition 3.4], if Re(s) > 1 or s = 1 + it with t ∈ R\{0}, then the spectral radius of Ls,0 is less

than 1, and hence there is an open neighborhood V of {(s, 0) ∈ C2 : Re(s) ≥ 1, s 6= 1} in U such

that the spectral radius of Ls,ω is less than 1 for all (s, ω) ∈ V. Thus, for (s, ω) ∈ V, Z±(s, ω) 6= 0

and

Z±(s, ω) = exp

 ∑
λs,ω∈spec(Ls,ω)

log(1± λs,ω)

 = exp

 ∑
λs,ω∈spec(Ls,ω)

∞∑
n=1

(−1)n−1

n
(±λs,ω)n


= exp

(
−
∞∑
n=1

(∓1)n

n
Tr(Lns,ω)

)
.

Assuming that Re(s) > 1 and following [56] (see also [22, Theorem 3.3] for a detailed argument

which can readily be applied to our situation), we have

Tr(Lns,ω) =
∞∑

a1,...,an=1

∏n
j=1 χs,ω(Gj([a1, . . . , an]))

1− (−1)n
∏n
j=1G

j([a1, . . . , an])2
.
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It then follows that

ζ+(s, ω) :=
Z+(s+ 1, ω)

Z−(s, ω)
= exp

 ∞∑
n=1

1

n

∞∑
a1,...,an=1

n∏
j=1

χs,ω(Gj([a1, . . . , an]))

 ,

ζ−(s, ω) :=
Z−(s+ 1, ω)

Z+(s, ω)
= exp

 ∞∑
n=1

(−1)n

n

∞∑
a1,...,an=1

n∏
j=1

χs,ω([Gj(a1, . . . , an]))

 ,

and hence

η(s, ω) :=
1

2
log(ζ+(s, ω)ζ−(s, ω)) =

∞∑
n=1

1

2n

∞∑
a1,...,a2n=1

2n∏
j=1

χs,ω(Gj [a1, . . . , a2n]).

Taking the derivative of η with respect to ω and setting ω = 0 yields the function

η̂(s) :=
∞∑
n=1

1

2n

∞∑
a1,...,a2n=1

 2n∑
j=1

f(Gj([a1, . . . , a2n]))

 e−s`(a1,...,a2n)

For a given tuple a = (a1, . . . , an) ∈ Nn of any length, we define per(a) be the length of the

minimal period in the periodic continued fraction [a], which is the number of distinct tuples of

length n that one can cyclically permute to obtain a. Then the term (2n)−1f([a])e−s`(a) appears

per(a) times in the sum defining η̂, and so we can rearrange terms to get

η̂(s) =
∞∑
n=1

∑
a∈N2n

per(a)

2n
f([a])e−s`(a).

This establishes η̂ as the Laplace transform

∫ ∞
0

e−st dS̃f (t)

of the function

S̃f (T ) =

∞∑
n=1

∑
a∈N2n

`(a)≤T

per(a)

2n
f([a]).

Now since η̂(s) is the ω-derivative of η(s, ω) at ω = 0, η̂ extends analytically to a neighborhood

of {s ∈ C : Re(s) ≥ 1}\{1}. In this section, we see that s = 1 is a simple pole of η̂ and calculate
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its corresponding residue, which allows us to determine the asymptotic growth rate of S̃f .

Recall that as an operator on C1([0, 1]), Ĝν has maximal eigenvalue 1, and all other eigenvalues

have modulus less than 0.31. Hence, the same is true for Ĝλ = L1,0 as an operator on the smaller

space A. By analytic perturbation theory (see [44]), there is a neighborhood W of (1, 0) such

that for (s, ω) ∈ W, the maximal eigenvalue λ1(s, ω) of Ls,ω is analytic in (s, ω) and the lesser

eigenvalues of Ls,ω are of modulus less than 1. So for (s, ω) ∈ W such that λ1(s, ω) 6= 1,

η(s, ω) = −1

2
log(1− λ1(s, ω)2) + Φ(s, ω),

where Φ is analytic in V. Hence

η̂(s) =
λ1(s, 0)

1− (λ1(s, 0))2

∂λ1

∂ω
(s, 0) +

∂Φ

∂ω
(s, 0),

which extends the domain of η̂(s) to the set of s ∈ C such that (s, 0) ∈ W and λ1(s, 0) 6= ±1. So if

∂λ1
∂s (1, 0) 6= 0, then η̂(s) has a simple pole at s = 1 with residue

−∂λ1
∂ω (1, 0)

2∂λ1
∂s (1, 0)

.

From the proof of [59, Proposition 2] and [22, Theorem 3.6], it follows that −∂λ1
∂s (1, 0) is the entropy

of the Gauss map, which is π2

6 log 2 ; and [59] also establishes that ∂λ1
∂ω (1, 0) =

∫
[0,1] f dν.

We prove the latter assertion in detail, taking into account the fact that f(z) can have an

asymptote at z = 0. Note first that if ω ∈ R, then it is clear that Tr(Ln1,ω) > 0 for all n ∈ N, and

hence λ1(1, ω) is real and positive. Therefore, λ1(1, ω) can be calculated as the spectral radius of

Ln1,ω for ω ∈ R. So letting ω ∈ R and following [22, Theorem 3.6], we have

log λ1(1, ω) = lim
n→∞

1

n
log ‖Ln1,ω‖

≥ lim
n→∞

1

n
log

max
z∈Da

∣∣∣∣∣∣
∞∑

a1,...,an=1

 n∏
j=1

[aj , . . . , an + z]2

 exp

ω n∑
j=1

f([aj , . . . , an + z])

∣∣∣∣∣∣


≥ lim
n→∞

1

n
log

 ∞∑
a1,...,an=1

 n∏
j=1

[aj , . . . , an]2

 exp

ω n∑
j=1

f([aj , . . . , an])
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By the properties (3.2) and (3.3), we have

n∏
j=1

[aj , . . . , an]2 =
1

q2
1,n

≥ 1

q1,n(q1,n + q1,n−1)
= λ(Ja1, . . . , anK).

These inequalities and the concavity of log yields

log λ1(1, ω) ≥ lim
n→∞

1

n
log

 ∞∑
a1,...,an=1

λ(Ja1, . . . , anK) exp

ω n∑
j=1

f([aj , . . . , an])


≥ ω lim

n→∞

1

n

n∑
j=1

∞∑
a1,...,an=1

λ(Ja1, . . . , anK) · f([aj , . . . , an]).

Next, notice that

f([aj , . . . , an]) =
1

λ(Ja1, . . . , anK)

∫
Ja1,...,anK

(f ◦Gj−1) dλ+O
(∥∥∥f ′∣∣Jaj ,...,anK

∥∥∥
∞
· λ(Jaj , . . . , anK)

)
=

1

λ(Ja1, . . . , anK)

∫
Ja1,...,anK

(f ◦Gj−1) dλ+O

( ‖f ′|Jaj ,...,anK‖∞
qj,n(qj,n + qj,n−1)

)
;

and hence

log λ1(1, ω) ≥ ω lim
n→∞

∫
[0,1]

1

n

n∑
j=1

(f ◦Gj−1) dλ+O

 sup
a1,...,an

1

n

n∑
j=1

‖f ′|Jaj ,...,anK‖∞
qj,n(qj,n + qj,n−1)


= ω

∫
[0,1]

f dν +O

ω lim
n→∞

1

n
sup

a1,...,an

n∑
j=1

‖f ′|Jaj ,...,anK‖∞
qj,n(qj,n + qj,n−1)

 , (4.20)

where we used the von Neumann ergodic theorem [58] and the ergodicity of G to derive the equality.

We wish to prove that the error term in (4.20) is equal to 0. To do so, note that by the definition

of f , there exists C > 0 such that |f ′(z)| ≤ C
|z| for z ∈ D1\{0}, and so ‖f ′|Jaj ,...,anK‖∞ ≤ C(aj + 1).

From Section 3.1, we have the property qj,n = ajqj+1,n + qj+2,n, and as a result,

n∑
j=1

‖f ′|Jaj ,...,anK‖∞
qj,n(qj,n + qj,n−1)

≤
n∑
j=1

2C

qj,n
.

Now for any a1, . . . , an ∈ N, qj,n ≥ Fn−j+1, where {Fj}∞j=1 is the Fibonacci sequence with F1 =
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F2 = 1; and since the Fibonacci sequence grows at an exponential rate, we can say that

sup
n

sup
a1,...,an

n∑
j=1

2C

qj,n
≤
∞∑
j=1

2C

Fj
<∞.

This proves that

lim
n→∞

1

n
sup

a1,...,an

n∑
j=1

‖f ′|Jaj ,...,anK‖∞
qj,n(qj,n + qj,n−1)

= 0,

and hence

log λ1(1, ω)− ω
∫

[0,1]
f dν ≥ 0.

for (1, ω) ∈ U . Since U contains an open neighborhood of (1, 0), and thus the above holds for ω in

an open neighborhood of 0, and the expression on the left is equal to 0 when ω = 0, the expression’s

derivative at ω = 0 must vanish. So

∂λ1
∂ω (1, 0)

λ1(1, 0)
−
∫

[0,1]
f dν = 0;

and since λ1(1, 0) = 1, we have

∂λ1

∂ω
(1, 0) =

∫
[0,1]

f dν.

We have therefore established that the function η̂(s) has a pole at s = 1 with residue 3 log 2
π2

∫
[0,1] f dν.

Then by the Wiener-Ikehara Tauberian theorem [52, Section III, Theorem 4.2],

S̃f (T ) ∼

(
3 log 2

π2

∫
[0,1]

f dν

)
eT . (T →∞)

4.3.5 Sf (T ) and S̃f (T ) are asymptotically equivalent

We first rewrite the sum defining S̃f (T ) in terms of the periodic points of G. For this we need to

distinguish between periodic continued fractions of even and odd period by defining the sets

QG,even(T ) = {[a] : a ∈ N2n, n ∈ N, per(a) = 2n, `([a]) ≤ T},

QG,odd(T ) = {[a] : a ∈ N2n, n ∈ N is odd, per(a) = n, `([a]) ≤ T}.
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Now let a ∈ N2n, with `(a) ≤ T , be a tuple represented in the sum defining S̃f (T ). Then by the

definition of per(a), a is the concatenation of the tuple (a1, . . . , aper(a)) with itself 2n
per(a) times. If

per(a) is even, let k = 2n
per(a) , and if per(a) is odd, let k = n

per(a) . Then letting x = [a], we have

`(a) = k`(x) whether per(a) is even or odd. Thus, for a given tuple a in the sum defining S̃f (T ),

we have associated corresponding elements x ∈ QG and k ∈ N such that `(a) = k`(x). So we can

rewrite S̃f (T ) as follows. First define

S̄f (T ) =
∑

x∈QG,even(T )

f(x) +
1

2

∑
x∈QG,odd(T )

f(x). (4.21)

We then have

S̃f (T ) =

bT/`0c∑
k=1

1

k
S̄f

(
T

k

)
,

where `0 is the length of the shortest closed geodesic in T1M. Noting that f is real valued and

positive on (0, 1], we see that S̄f (T )� S̃f (T )� eT as T →∞, and hence

bT/`0c∑
k=2

S̄f

(
T

k

)
� TeT/2. (T →∞)

This yields

S̄f (T ) ∼ S̃f (T ) ∼

(
3 log 2

π2

∫
[0,1]

f dν

)
eT . (T →∞) (4.22)

To complete the proof, by (4.21) it suffices to establish that
∑

x∈QG,odd(T ) f(x)� eT/2. To show

this, note that

∂

∂ω
(log ζ+(s, ω))

∣∣∣
ω=0

=
∞∑
n=1

∑
a∈Nn

per(a)

n
f([a])e−s`(a)

is the Laplace transform of the function

¯̄Sf (T ) =

∞∑
n=1

∑
a∈Nn
`(a)≤T

per(a)

n
f([a]),

and has a simple pole at s = 1, though is otherwise analytic on {s ∈ C : Re(s) ≥ 1}. So by the
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Wiener-Ikehara Tauberian theorem, ¯̄Sf (T )� eT . Note also that

∑
x∈QG,odd(T )

f(x) ≤ ¯̄S

(
T

2

)
,

since if x = [a1, . . . , an], where n is odd and the minimal period length in the continued fraction

expansion of x, then `(x) = 2`(a1, . . . , an) so that the inequalities `(x) ≤ T and `(a1, . . . , an) ≤ T
2

are equivalent. We thus have ∑
x∈QG,odd(T )

f(x)� eT/2.

(One can likely adapt the work of Kelmer [45, Theorem 3] to prove a more precise estimate.) This

imples that

Sf (T ) ∼ S̄f (T ) ∼

(
3 log 2

π2

∫
[0,1]

f dν

)
eT , (T →∞)

and therefore the proof of Theorem 4 is complete.
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Chapter 5

Effective equidistribution of
preimages of iterates of the Farey map

5.1 Introduction

In this chapter, we consider the equidistribution of preimages of the Farey map, building upon the

author’s work in [34]. We begin in this section by stating our main results and drawing out their

dynamical and number theoretical implications.

5.1.1 The preimages F−n([α, β])

As noted in Chapter 1, a motivation for the work of Kesseböhmer and Stratmann on the preimages

of F was the problem of estimating the Lebesgue measure of the sum-level set for continued fractions

Cn =

{
[a1, a2, . . .] ∈ [0, 1] :

k∑
i=1

ai = n for some k ∈ N

}

as n → ∞. Using the fact that C1 =
[

1
2 , 1
]

and that F−1(Cn) = Cn+1 (following from (3.9)),

we clearly have Cn = F−(n−1)(C1) = F−(n−1)
([

1
2 , 1
])

(see [49, Lemma 2.1]). This is illustrated

in Figure 5.1 when n = 4. Kesseböhmer and Stratmann proved the asymptotic equivalence [49,

Theorem 1.3]

λ(Cn) ∼ 1

log2 n
. (n→∞)

Then in [48], they examined the more general preimages (F−n([α, β]))n, with [α, β] ⊆ (0, 1], which

can be interpreted as

F−n([α, β]) =

[a1, a2, . . .] ∈ [0, 1] :
[ ιn(a)∑
i=1

ai − n, aιn(a)+1, aιn(a)+2, . . .
]
∈ [α, β]

 ,
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Figure 5.1: The graph of F 3 and C4 shown as the preimage F−3
([

1
2 , 1
])

.

where ιn(a) = ιn(a1, a2, . . .) is the least index such that
∑ιn(a)

i=1 ai > n. Specifically, they showed

that

lim
n→∞

log n

log(β/α)

∫
F−n([α,β])

f dλ =

∫
[0,1]

f dλ, (5.1)

which establishes the decay rate of the Lebesgue measures and the equidistribution of the preimages

(F−n([α, β]))n. Their proofs applied results in infinite ergodic theory following from the work of

Aaronson [1, 2], and Kesseböhmer and Slassi [46, 47], to the Farey map. The goal of this chapter is

to prove the following result, which provides an effective version of (5.1) when f is a C2 function.

We can think of this result as an analogue for the Farey map of the mixing rate of the Gauss map

because of the similarity to the characterization of mixing (3.7).

Theorem 6. For any interval [α, β] ⊆ (0, 1] and f ∈ C2([0, 1]), we have

log n

log(β/α)

∫
F−n([α,β])

f dλ =

∫
[0,1]

f dλ+Oα,β

(
‖f‖C2

log n

)
, (n→∞) (5.2)

where ‖f‖C2 = ‖f‖∞ + ‖f ′‖∞ + ‖f ′′‖∞.

We prove Theorem 6 as a corollary of the following result.
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Theorem 7. Let u ∈ (0, 1) and ϕ ∈ L1(µ) ∩ {f ∈ C2([0, 1]) : h, h′ ≥ 0, h′′ ≤ 0}, and let

µ(u)
ϕ,n :=

∫
F−n([u,1])

ϕdµ.

Then:

(a)
(
µ

(u)
ϕ,n

)
n

is a nonincreasing sequence;

(b)
n∑
k=0

µ
(u)
ϕ,k =

n log(1/u)

log n

(∫
[0,1]

ϕdµ+Ou

(
‖ϕ′‖∞
log n

))
. (n→∞)

Establishing Theorem 6 from Theorem 7 involves finding, for each f ∈ C2([0, 1]), an appropriate

way of writing the function x 7→ xf(x) as the difference of two functions having the properties of

ϕ in Theorem 7. We detail how this is done in Section 5.2.1.

5.1.2 The Stern-Brocot sequence

The sets Sn =
{
sn,k
tn,k

: k = 1, . . . , 2n + 1
}

in the Stern-Brocot sequence (Sn)n are defined recursively

as follows:

• s0,1 := 0 and s0,2 := t0,1 := t0,2 := 1;

• sn+1,2k−1 := sn,k and tn+1,2k−1 := tn,k for k = 1, . . . , 2n + 1;

• sn+1,2k := sn,k + sn,k+1 and tn+1,2k := tn,k + tn,k+1 for k = 1, . . . , 2n + 1.

In other words, similar to how the Farey sequence can be generated, we have S0 =
{

0
1 ,

1
1

}
, and

Sn+1 is the union of Sn together with the mediants of its consecutive elements. However, unlike

the Farey sequence, there are no restrictions on the mediants of Sn to include in Sn+1.

It is elementary to show that Sn = F−(n+1)(0) and Sn+1\Sn = F−(n+1)(1) = F−n
(

1
2

)
for

n ≥ 0. Additionally, the sum-level sets Cn = F−(n−1)
[

1
2 , 1
]

can be written as gaps in elements of

the Stern-Brocot sequence. Specifically, we have C1 =
[

1
2 , 1
]

=
[
s1,2
t1,2

,
s1,3
t1,3

]
, and for n ≥ 2,

Cn =
2n−2⋃
k=1

[
sn,4k−2

tn,4k−2
,
sn,4k
tn,4k

]
.

86



0
1

1
2

C1

1
1

0
1

1
1

0
1

1
3

2
3 1

1
0
1 C2

0
1

1
4

2
5

3
5

3
4 1

1 C3

C4

C5

• •

• • •

• • • • •

• • • • • • • • •

0
1

1
5

2
7

3
8

3
7 1

1

4
5

5
7

5
8

4
7• • • • • • • • • ••••••••

0
1

1
6

2
9

3
11

3
10

4
11

5
13

5
12

4
9

1
1

5
6

7
9

8
11

7
10

7
11

8
13

7
12

5
9

• • • • • • • • • • • • • • • • • ••••••••••••••••

Figure 5.2: The sum-level sets as Stern-Brocot intervals

(See Figure 5.2.) This was the characterization of Cn considered by Fiala and Kleban [25] motivated

by their study of spin chain models.

Now all rational numbers in [0, 1] are contained in
⋃∞
n=0 Sn. So for a given v

w ∈ Q ∩ (0, 1),

there exists n0 ∈ N such that v
w ∈ Sn0 = F−(n0+1)(0); and as a result, for every n ∈ N ∪ {0},

F−n
(
v
w

)
⊆ F−(n+n0+1)(0) = Sn+n0 . So the preimages (F−n

(
v
w

)
)n form a sequence of subsets of

the Stern-Brocot sequence. By finding a way to shrink the interval [α, β] to a single point in (5.1),

Kesseböhmer and Stratmann [48, Theorem 1.2] were able to prove that for all v
w ∈ Q ∩ (0, 1) with

gcd(v, w) = 1,

lim
n→∞

log(nvw)
∑

p/q∈F−n(v/w)
gcd(p,q)=1

q−2f

(
p

q

)
=

∫
[0,1]

f dλ for f ∈ C([0, 1]). (5.3)

So the weighted subsets
(
F−n

(
v
w

))
n

equidistribute with respect to the Lebesgue measure when

p
q ∈ F

−n ( v
w

)
is weighted by q−2. In a similar way, we obtain the following effective version of this

result as a reasonably straightforward corollary of Theorem 6.

Theorem 8. Let v
w ∈ Q ∩ (0, 1) with gcd(v, w) = 1 and f ∈ C2([0, 1]). Then

log(nvw)
∑

p/q∈F−n(v/w)
gcd(p,q)=1

q−2f

(
p

q

)
=

∫
[0,1]

f dλ+Ov/w

(
‖f‖C2

log n

)
. (n→∞)

We prove our results in the following section. As in the work of Kesseböhmer and Stratmann,
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we analyze the transfer operator F̂ : L1(µ)→ L1(µ) of F , which we recall satisfies

∫
B
F̂ f dµ =

∫
F−1(B)

f dµ, for all B ⊆ [0, 1] Borel and f ∈ L1(µ),

and

F̂ f(x) =
f
(

x
1+x

)
+ xf

(
1

1+x

)
1 + x

. (5.4)

We begin in Section 5.2.1 with reducing Theorem 6 to Theorem 7. Then in Section 5.2.2, we prove

part (a) of Theorem 7 in a straightforward manner using previously known elementary properties

of F̂ . We then prove part (b) in Section 5.2.3. To do so, we establish estimates involving sums

of the iterates F̂ kϕ, and make careful applications of the equality (5.7) following from [1, Lemma

3.8.4] and Karamata’s Tauberian theorem [42], which are important results underlying much of the

machinery used in [48, 49], so as to obtain error terms. In particular, we make an application of

Freud’s effective version of Karamata’s theorem [27] in establishing an asymptotic estimate of a

certain weighted sum of the values µ
(u)
ϕ,n from an estimate of its Laplace transform derived from (5.7).

We can then remove the weights to prove (b) by a standard analytic number theory argument. We

conclude by proving Theorem 8 in Section 5.2.4. See [57] for other asymptotic results derived from

operator renewal theory involving the iterates of transfer operators of infinite measure preserving

systems.

5.2 Proofs

5.2.1 Reduction of Theorem 6 to Theorem 7

We begin by establishing from Theorem 7 the special case of Theorem 6 in which the function

f0 ∈ C2([0, 1]) defined by f0(x) := xf(x) is in L1(µ) ∩ {h ∈ C2([0, 1]) : h, h′ ≥ 0, h′′ ≤ 0}. First

define λ
(u)
f,n by

λ
(u)
f,n :=

∫
F−n([u,1])

f dλ.
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Then note that (a) and (b) imply that for all u ∈ (0, 1),

λ
(u)
f,n = µ

(u)
f0,n
≤ 1

n

n∑
k=0

µ
(u)
f0,k

=
log(1/u)

log n

(∫
[0,1]

f dλ+Ou

(
‖f ′0‖∞
log n

))
, and

λ
(u)
f,n = µ

(u)
f0,n
≥ 1

n

2n∑
k=n+1

µ
(u)
f0,k

=
1

n

(
2n log(1/u)

log 2n
− n log(1/u)

log n

)∫
[0,1]

f dλ+Ou

(
‖f ′0‖∞
log2 n

)
=

log(1/u)

log n

(
1 +O

(
1

log n

))∫
[0,1]

f dλ+Ou

(
‖f ′0‖∞
log2 n

)
=

log(1/u)

log n

(∫
[0,1]

f dλ+Ou

(
‖f‖∞ + ‖f ′‖∞

log n

))
.

Hence, we have

λ
(u)
f,n =

log(1/u)

log n

(∫
[0,1]

f dλ+Ou

(
‖f‖∞ + ‖f ′‖∞

log n

))
. (n→∞) (5.5)

Then subtracting this expression for u = β from that for u = α yields (5.2) with the error term

Oα,β

(
‖f‖∞+‖f ′‖∞

logn

)
.

To prove Theorem 6 for general f ∈ C2([0, 1]), we wish to write f as the difference f1 − f2 of

functions f1, f2 ∈ C2([0, 1]) such that for j = 1, 2 fj ≥ ‖f ′j‖∞, f ′j , f
′′
j ≤ 0, and ‖fj‖∞ ≤ 2‖f‖C2 .

We have

f(x) = f(0) + f ′(0)x+

∫ x

0

∫ t

0
f ′′(s) ds dt

= f(0) + f ′(0)x+

(
‖f ′′‖∞ −

∫ x

0

∫ t

0
f ′′−(s) ds dt

)
−
(
‖f ′′‖∞ −

∫ x

0

∫ t

0
f ′′+(s) ds dt

)
,

where f ′′+ and f ′− are the positive and negative parts of f ′′, respectively. Let f̃1 be ‖f ′′‖∞ −∫ x
0

∫ t
0 f
′′
−(s) ds dt, added to f(0) if f(0) ≥ 0, and to f ′(0)x if f ′(0) ≤ 0; and let f̃2 be ‖f ′′‖∞ −∫ x

0

∫ t
0 f
′′
+(s) ds dt, added to −f(0) if f(0) < 0, and to −f ′(0)x if f ′(0) > 0. Then f̃1 and f̃2 are

functions such that f = f̃1 − f̃2, and for j = 1, 2, f̃j
′
, f̃j
′′ ≤ 0, ‖f̃j

′‖∞ ≤ ‖f ′‖∞ + ‖f ′′‖∞, and

−‖f ′‖∞ ≤ f̃j ≤ ‖f‖∞ + ‖f ′′‖∞. Thus the functions fj = f̃j + 2‖f ′‖∞ + ‖f ′′‖∞, j = 1, 2, satisfy all

our desired properties.

As a result, the functions x 7→ xf1(x) and x 7→ xf2(x) are in {h ∈ C2([0, 1]) : h, h′ ≥ 0, h′′ ≤ 0}.

Therefore (5.2) is valid for f1 and f2, with the error terms being Oα,β

(‖fj‖∞+‖f ′j‖∞
logn

)
, j = 1, 2.
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Subtracting these two asymptotic formulas yields Theorem 6 for the function f , since ‖fj‖∞ +

‖f ′j‖∞ ≤ 3‖f‖C2 , j = 1, 2.

5.2.2 Proof of Theorem 7(a)

We now set out to prove Theorem 7, and we begin by fixing ϕ ∈ L1(µ) ∩ {h ∈ C2([0, 1]) : h, h′ ≥

0, h′′ ≤ 0}, and proving that
(
µ

(u)
ϕ,n

)
n

is a nonincreasing sequence. Note that by [46, Lemma 3.2],

F̂ maps the set {h ∈ C2([0, 1]) : h, h′ ≥ 0, h′′ ≤ 0} to itself. Thus if x ∈
[

1
2 , 1
]

and n ∈ N ∪ {0},

we have F̂nϕ(x) ≥ F̂nϕ
(

1
2

)
= F̂n+1ϕ(1) ≥ F̂n+1ϕ(x). Thus (a) holds for u ≥ 1

2 . (See the proof of

[49, Theorem 1.1].) Now assume that u ∈
(
0, 1

2

)
. By [46, Lemma 3.2], it suffices to show that

∫ 1

u
F̂ f dµ ≤

∫ 1

u
f dµ

whenever f ′ ≥ 0. This follows from

∫ 1

u
f dµ−

∫ 1

u
F̂ f dµ =

∫ 1

u
f dµ−

∫
F−1([u,1])

f dµ =

∫ 1

u
f dµ−

∫ 1/(1+u)

u/(1+u)
f dµ

=

∫ 1

1/(1+u)
f dµ−

∫ u

u/(1+u)
f dµ ≥

(
f

(
1

1 + u

)
− f(u)

)
log(1 + u) ≥ 0.

5.2.3 Proof of Theorem 7(b)

We first consider the case where u = 1
N , with N ∈ N, N ≥ 2. Define the function a : R→ R by

a(σ) =
1

logN

bσc∑
k=0

µ
(u)
ϕ,k,

which is the µ-average of the function F̂σϕ :=
∑bσc

k=0 F̂
kϕ on C u

1 =
[

1
N , 1

]
by

1

µ(C u
1 )

∫
C u1

bσc∑
k=0

F̂ kϕdµ =
1

logN

bσc∑
k=0

∫
F−k(C u1 )

ϕdµ =
1

logN

bσc∑
k=0

µ
(u)
ϕ,k.

We have the following bound between F̂σϕ and a(σ).
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Lemma 4. For all σ ∈ R and x ∈ C u
1 ,

|F̂σϕ(x)− a(σ)| ≤ ‖ϕ‖∞
N(N − 1)

2
.

Proof. Without loss of generality, we assume that σ = n ∈ N ∪ {0}. By [46, Lemma 3.2], we know

that F̂nϕ is nondecreasing. So the difference between F̂nϕ(x) and a(n) is at most F̂nϕ(1)−F̂nϕ
(

1
N

)
.

Using the equality

F̂ kϕ

(
1

j

)
=

j

j − 1
F̂ k+1ϕ

(
1

j − 1

)
− 1

j − 1
F̂ kϕ

(
j − 1

j

)
(j, k ∈ N ∪ {0}, j ≥ 2)

following from (5.4) and the fact that F̂ kϕ is nondecreasing, we have

F̂nϕ(1)− F̂nϕ
(

1

N

)
=

n∑
k=0

(
F̂ kϕ(1)− F̂ kϕ

(
1

N

))

=

n∑
k=0

(
F̂ kϕ(1)− N

N − 1
F̂ k+1ϕ

(
1

N − 1

)
+

1

N − 1
F̂ kϕ

(
N − 1

N

))

≤ N

N − 1

n∑
k=0

(
F̂ kϕ(1)− F̂ k+1ϕ

(
1

N − 1

))
.

Using this inequality recursively, and also the equality F̂ f(1) = f
(

1
2

)
, yields

F̂nϕ(1)− F̂nϕ
(

1

N

)
≤ N

2

n∑
k=0

(
F̂ kϕ(1)− F̂ k+N−2ϕ

(
1

2

))

=
N

2

n∑
k=0

(F̂ kϕ(1)− F̂ k+N−1ϕ(1)) ≤ ϕ(1)
N(N − 1)

2
= ‖ϕ‖∞

N(N − 1)

2
.

Next, we let S : (0,∞)→ R be the Laplace transform of a given by

S(σ) =

∫ ∞
0−

e−t/σ da(t) =
1

logN

∞∑
n=0

e−n/σµ(u)
ϕ,n

and prove the following bound similar to Lemma 4.
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Lemma 5. For all x ∈ C u
1 and all σ > 0,

∣∣∣∣∣
∞∑
n=0

e−n/σF̂nϕ(x)− S(σ)

∣∣∣∣∣ ≤ ‖ϕ‖∞N(N − 1)

2
.

Proof. We first note the equality

∞∑
n=0

ane
−n/σ = (1− e−1/σ)

∞∑
n=0

e−n/σ

(
n∑
k=0

ak

)
, (5.6)

which holds for all sequences (an)n satisfying
∑n

k=0 ak = O(n) as n→∞ and all σ > 0.

Let x ∈ C u
1 , δn(x) = F̂nϕ0(x)− a(n), and σ > 0. Using (5.6) twice, we have

∞∑
n=0

e−n/σF̂nϕ(x) = (1− e−1/σ)
∞∑
n=0

e−n/σF̂nϕ(x) = (1− e−1/σ)
∞∑
n=0

e−n/σ(a(n) + δn(x))

= S(σ) + (1− e−1/σ)

∞∑
n=0

e−n/σδn(x).

Since |δn(x)| ≤ ‖ϕ‖∞N(N−1)
2 for all n ≥ 0, we have

∣∣∣∣∣(1− e−1/σ)

∞∑
n=0

e−n/σδn(x)

∣∣∣∣∣ ≤ (1− e−1/σ)

∞∑
n=0

e−n/σ‖ϕ‖∞
N(N − 1)

2
= ‖ϕ‖∞

N(N − 1)

2
.

To continue the proof, we will make use of the following equality given by [1, Lemma 3.8.4].

∫
A

( ∞∑
n=0

e−n/σF̂nf

)
(1− e−φA/σ) dµ =

∞∑
n=0

e−n/σ
∫
An

f dµ (5.7)

Here, f is any function in L1(µ), σ is any positive real number, A ⊆ [0, 1] is any subset such that

µ(A) < ∞, A0 = A, and An = F−n(A)\
⋃n−1
k=0 F

−k(A) for n ≥ 1. Also, φA : A → N is the return

time function on A defined by φA(x) = min{n ∈ N : Fn(x) ∈ A}.

Letting A = C u
1 and f = ϕ in (5.7), and noting that An = [ 1

n+N ,
1

n+N−1) for n ≥ 1, we have

∫ 1

1/N

( ∞∑
n=0

e−n/σF̂ kϕ

)
(1− e−φA/σ) dµ =

∫ 1

1/N
ϕdµ+

∞∑
n=1

e−n/σ
∫ 1/(n+N−1)

1/(n+N)
ϕdµ.
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On the other hand, using Lemma 5, we see that the left side of the above is also equal to

(S(σ) +ON (‖ϕ‖∞))(1− e−1/σ)

∫ 1

1/N

( ∞∑
n=0

e−n/σF̂ k1

)
(1− e−φA/σ) dµ

= (S(σ) +ON (‖ϕ‖∞))(1− e−1/σ)

(
µ(C u

1 ) +

∞∑
n=1

e−n/σ
∫ 1/(n+N−1)

1/(n+N)
dµ

)

= (S(σ) +ON (‖ϕ‖∞))(1− e−1/σ)

(
logN +

∞∑
n=1

e−n/σ log

(
n+N

n+N − 1

))

as σ → ∞. (Note that (5.7) holds for the constant function f(x) = 1 in spite of the fact that

1 /∈ L1(µ) since
∑∞

n=0 e
−n/σF̂ k1 has finite integral over C u

1 .) For our next step, we determine the

asymptotic behavior of

∫ 1

1/N
ϕdµ+

∞∑
n=1

e−n/σ
∫ 1/(n+N−1)

1/(n+N)
ϕdµ and logN +

∞∑
n=1

e−n/σ log

(
n+N

n+N − 1

)
.

Lemma 6.

∫ 1

1/N
ϕdµ+

∞∑
n=1

e−n/σ
∫ 1/(n+N−1)

1/(n+N)
ϕdµ =

∫
[0,1]

ϕdµ+O

(
‖ϕ′‖∞

log σ

σ

)
(σ →∞)

Proof. Let S1 : R→ R be defined by

S1(t) =

(∫ 1

1/N
ϕdµ

)
1[0,∞)(t) +

btc∑
n=1

∫ 1/(n+N−1)

1/(n+N)
ϕdµ =


∫ 1

1/(btc+N) ϕdµ if t ≥ 0

0 if t < 0.

Then for σ > 0,

∫ 1

1/N
ϕdµ+

∞∑
n=1

e−n/σ
∫ 1/(n+N−1)

1/(n+N)
ϕdµ =

∫ ∞
0−

e−t/σ dS1(t) =
1

σ

∫ ∞
0

(∫ 1

1/(btc+N)
ϕdµ

)
e−t/σ dt

=

∫
[0,1]

ϕdµ−
∫ ∞

0

(∫ 1/(bσxc+N)

0
ϕdµ

)
e−x dx.

Next, letting ϕ̄ : (0, 1]→ R be defined by ϕ̄(x) = ϕ(x)
x , we have

0 ≤
∫ ∞

0

(∫ 1/(bσxc+N)

0
ϕdµ

)
e−x dx ≤ ‖ϕ̄‖∞

∫ ∞
0

e−x dx

bσxc+N
.
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Note that since ϕ ∈ L1(µ) ∩ C2([0, 1]), ϕ(0) = 0. So for each x ∈ (0, 1],

ϕ̄(x) =
ϕ(x)− ϕ(0)

x− 0
= ϕ′(y)

for some y ∈ (0, x) by the mean value theorem, which shows that ‖ϕ̄‖∞ ≤ ‖ϕ′‖∞. Also, since the

inequality btc+N ≥ 1
2(t+ 2) holds for t ≥ 0,

∫ ∞
0

e−x dx

bσxc+N
≤ 2

∫ ∞
0

e−x dx

σx+ 2
≤
∫ 1

0

2 dx

σx+ 2
+

∫ ∞
1

2e−x

σ
dx� log σ

σ
, (σ →∞)

which completes the proof.

Lemma 7. We have

logN +
∞∑
n=1

e−n/σ log

(
n+N

n+N − 1

)
= log(σ +N) + C +ON

(
log σ

σ

)
, (σ →∞)

where

C =

∫ 1

0

e−x − 1

x
dx+

∫ ∞
1

e−x

x
dx.

Proof. Let S2 : R→ R be defined by

S2(t) = (logN)1[0,∞)(t) +

btc∑
n=1

log

(
n+N

n+N − 1

)
=


log(btc+N) if t ≥ 0

0 if t < 0.

Then for σ > 0,

logN +
∞∑
n=1

e−n/σ log

(
n+N

n+N − 1

)
=

∫ ∞
0−

e−t/σ dS2(t) =
1

σ

∫ ∞
0

e−t/σ log(btc+N) dt

=

∫ ∞
0

e−x log(bσxc+N) dx

=

∫ ∞
0

e−x log(σx+N) dx−
∫ ∞

0
e−x log

(
σx+N

bσxc+N

)
dx.
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Using the inequality log(1 + x) ≤ x, we have

∫ ∞
0

e−x log

(
σx+N

bσxc+N

)
dx =

∫ ∞
0

e−x log

(
1 +

{σx}
bσxc+N

)
dx�

∫ ∞
0

e−x dx

bσxc+N
,

which is O
(

log σ
σ

)
as σ →∞ by the proof of Lemma 6.

Next, integration by parts yields

∫ ∞
0

e−x log(σx+N) dx = logN +

∫ ∞
0

σe−x dx

σx+N
. (5.8)

To continue, we consider the integral on the right over [0, 1] by writing

∫ 1

0

σe−x dx

σx+N
=

∫ 1

0

σ dx

σx+N
+

∫ 1

0

σ(e−x − 1)

σx+N
dx.

The first integral on the right equals log(σ +N)− logN , while the second equals

∫ 1

0

e−x − 1

x
dx−N

∫ 1

0

e−x − 1

x(σx+N)
dx =

∫ 1

0

e−x − 1

x
dx+O

(∫ 1

0

N dx

σx+N

)
=

∫ 1

0

e−x − 1

x
dx+ON

(
log σ

σ

)
. (σ →∞)

Now considering the integral in (5.8) over [1,∞), we write

∫ ∞
1

σe−x dx

σx+N
=

∫ ∞
1

e−x

x
dx−N

∫ ∞
1

e−x dx

x(σx+N)
=

∫ ∞
1

e−x

x
dx+ON

(
1

σ

)
.

Putting these results together proves the lemma.

Lemma 6 and the preceding equalities give

(S(σ) +ON (‖ϕ‖∞))(1− e−1/σ)

(
logN +

∞∑
n=1

e−n/σ log

(
n+N

n+N − 1

))

=

∫
[0,1]

ϕdµ+O

(
‖ϕ′‖∞

log σ

σ

)
(5.9)
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as σ →∞. Using Lemma 7 and noting that ‖ϕ‖∞ ≤ ‖ϕ̄‖∞ ≤ ‖ϕ′‖∞, we have

S(σ) =
σ

log σ + C

∫
[0,1]

ϕdµ+ON (‖ϕ′‖∞). (σ →∞) (5.10)

At this point, an application of Karamata’s Tauberian theorem [42] yields

n∑
k=0

µ
(u)
ϕ,k ∼

n

logN n

∫
[0,1]

ϕdµ. (n→∞)

Furthermore, one can apply an adaptation of Freud’s effective version of Karamata’s theorem [27]

(see also [66, Section 7.4]) accommodating logarithms to (5.10) in order to prove

n∑
k=0

µ
(u)
ϕ,k =

n

logN n

(∫
[0,1]

ϕdµ+ON

(
1 + ‖ϕ′‖∞
log logn

))
. (n→∞)

This, together with the fact that
(
µ

(u)
ϕ,n+1

)
n

is a nonincreasing sequence, implies that

µ
(u)
ϕ,k =

1

logN n

(∫
[0,1]

ϕdµ+ON

(
1 + ‖ϕ′‖∞
log logn

))
(n→∞)

by the reasoning of Section 5.2.1. To obtain an error term of ON

(
1

logn

)
, we evaluate the equality

(5.9) more precisely. Instead of directly establishing an asymptotic equality for S(σ), we divide by

1− e−1/σ and multiply the series expression for S(σ) together with the other series on the left side.

Together with Lemma 7, this process yields

1

logN

∞∑
n=0

(
n∑
k=0

µ
(u)
ϕ,k`N (n− k)

)
e−n/σ = σ

(∫
[0,1]

ϕdµ+ON

(
‖ϕ′‖∞

log σ

σ

))
, (σ →∞)

where we let `N (0) = logN and `N (n) = log
(

n+N
n+N−1

)
for n > 0. Now a direct application of

Freud’s effective Tauberian theorem yields

n∑
k=0

k∑
j=0

µ
(u)
ϕ,j`N (k − j) = n logN

(∫
[0,1]

ϕdµ+ON

(
‖ϕ′‖∞
log n

))
. (n→∞)
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The left side of this expression is equal to

n∑
k=0

µ(u)
ϕ,k logN +

k−1∑
j=0

µ
(u)
ϕ,j`N (k − j)

 = logN

n∑
k=0

µ
(u)
ϕ,k +

n−1∑
j=0

µ
(u)
ϕ,j

n∑
k=j+1

`N (k − j)

= logN

n∑
k=0

µ
(u)
ϕ,k +

n−1∑
j=0

µ
(u)
ϕ,j log

(
n− j +N

N

)

=
n∑
k=0

µ
(u)
ϕ,k log(n− k +N),

where the second equality follows from the definition of `N and telescoping. We can rewrite the

last expression above as

log(n+N)
n∑
k=0

µ
(u)
ϕ,k +

n∑
k=1

µ
(u)
ϕ,k log

(
1− k

n+N

)
.

So if we can show that

n∑
k=1

µ
(u)
ϕ,k log

(
1− k

n+N

)
= ON

(
‖ϕ′‖∞

n

log n

)
, (n→∞) (5.11)

then
n∑
k=0

µ
(u)
ϕ,k =

n

logN n

(∫
[0,1]

ϕdµ+ON

(
‖ϕ′‖∞
log n

))
. (n→∞)

First note that since
(
µ

(u)
ϕ,n

)
n

is nonincreasing, we have

µ(u)
ϕ,n

n∑
k=0

log(n− k +N) ≤
n∑
k=0

µ
(u)
ϕ,k log(n− k +N) = n logN

(∫
[0,1]

ϕdµ+ON

(
‖ϕ′‖∞
log n

))
,

from which it is easy to see that µ
(u)
ϕ,n = ON

(
‖ϕ′‖∞
logn

)
as n→∞. Now since individual terms on the
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left side of (5.11) decay to 0 as n→∞, we can consider the sum starting from k = 3. We have

∣∣∣∣∣
n∑
k=3

µ
(u)
ϕ,k log

(
1− k

n+N

)∣∣∣∣∣ =
n∑
k=3

µ
(u)
ϕ,k

∞∑
j=1

1

j

(
k

n+N

)j
=
∞∑
j=1

1

j(n+N)j

n∑
k=3

kjµ
(u)
ϕ,k

�N

∞∑
j=1

‖ϕ′‖∞
j(n+N)j

n∑
k=3

kj

log k
�

∞∑
j=1

‖ϕ′‖∞
j(n+N)j

∫ n+1

3

xj dx

log x

�
∞∑
j=1

‖ϕ′‖∞
j(n+N)j

(
(n+ 1)j+1

(j + 1) log(n+ 1)

)

� n

log n

∞∑
j=1

‖ϕ′‖∞
j(j + 1)

(
n+ 1

n+N

)j
� ‖ϕ′‖∞

n

log n
. (n→∞)

This proves Theorem 7 in the case that u = 1
N .

For the general case u ∈ (0, 1), let N =
⌈

1
u

⌉
so that [u, 1] ⊆

[
1
N , 1

]
. Then for x ∈

[
1
N , 1

]
, we

have

n∑
k=0

F̂ kϕ(x) =
1

logN

n∑
k=0

µ
(1/N)
ϕ,k +ON (‖ϕ‖∞) =

n

log n

(∫
[0,1]

ϕdµ+ON

(
‖ϕ′‖∞
log n

))
. (n→∞)

Integrating the first and last expressions over [u, 1] yields

n∑
k=0

µ
(u)
ϕ,k =

n log(1/u)

log n

(∫
[0,1]

ϕdµ+ON

(
‖ϕ′‖∞
log n

))
, (n→∞)

completing the proof of Theorem 7.

5.2.4 The weighted Stern-Brocot subsets

Finally, we prove Theorem 8. Let γ = v
w ∈ Q ∩ (0, 1) with gcd(v, w) = 1, ε ∈ (0, 1 − γ), and

f ∈ C2([0, 1]). By Theorem 6, we have

log n

log((γ + ε)/γ)

∫
F−n([γ,γ+ε])

f dλ =

∫
[0,1]

f dλ+Oγ

(
‖f‖C2

log n

)
. (n→∞) (5.12)

(Note that the constants associated with the error term can be chosen large enough so they remain

valid independent of ε, since these constants tend to grow as γ decreases, not as γ increases.) Let
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Fn be the set of continuous functions g : [0, 1] → [0, 1] making up the inverse branches of Fn.

Then

lim
ε→0+

log n

log((γ + ε)/γ)

∫
F−n([γ,γ+ε])

f dλ = lim
ε→0+

γ log n

ε

∑
g∈Fn

±
∫ g(γ+ε)

g(γ)
f(x) dx

= γ log n
∑
g∈Fn

|g′(γ)|f(g(γ)), (5.13)

where the ± is chosen to be + if g(γ + ε) ≥ g(γ), and − otherwise. Now the inverse branches of

F are the maps x 7→ x
x+1 and x 7→ 1

x+1 , i.e., the linear fractional transformations determined by

the matrices M1 = ( 1 0
1 1 ) and M2 = ( 0 1

1 1 ). Thus any g ∈ Fn is the linear fractional transformation

determined by a product of M1 and M2, which is of the form
(
p p′

q q′

)
, where 0 ≤ p ≤ q, 0 ≤ p′ ≤ q′,

and pq′ − p′q = ±1; hence g(x) = px+p′

qx+q′ . Now g(γ) = pv+p′w
qv+q′w is a fraction in F−n(γ) such that

(pv + p′w, qv + q′w) = 1 since pq′ − p′q = ±1 and gcd(v, w) = 1. We also have |g′(γ)| = w2

(qv+q′w)2 .

So we can rewrite (5.13) as

log(nvw)
∑

p/q∈F−n(v/w)
gcd(p,q)=1

q−2f
(p
q

)
.

Thus, letting ε→ 0+ in (5.12) yields

log(nvw)
∑

p/q∈F−n(v/w)
gcd(p,q)=1

q−2f
(p
q

)
=

∫
[0,1]

f dλ+Oγ

(
‖f‖C2

log n

)
. (n→∞)
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[8] J. S. Athreya, A. Ghosh. The Erdős-Szüsz-Turán distribution for equivariant processes.
Preprint arXiv:1508.01886 math.DS.

[9] V. Augustin, F. P. Boca, C. Cobeli, A. Zaharescu. The h-spacing distribution between Farey
points. Math. Proc. Cambridge Philos. Soc. 131(1) (2001), 23–38.

[10] D. A. Badziahin, A. K. Haynes. A note on Farey fractions with denominators in arithmetic
progressions. Acta Arith. 147(3) (2011), 205–215.

[11] P. Billingsley. Convergence of probability measures. Second ed. Wiley Series in Probability
and Statistics, John Wiley and Sons, Inc., New York, 1999.
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Soc. 16 (1955).
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