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Abstract

Ordered arrays of granular particles (beads) have attracted considerable attention in recent years
due to their rich dynamical behaviors and interesting properties. Depending on the ratio of static
to dynamic deformations between particles the dynamics of granular media is highly tunable
ranging from being strongly nonlinear and non-smooth in the absence of static pre-compression,
to reducing to weakly nonlinear and smooth for large static pre-compression. The nonlinearity in
uncompressed granular media arises from two sources: First, nonlinear Hertzian interactions,
which can be modeled mathematically, between beads in contact, and second, bead separations in
the absence of compressive forces between them leading to collisions between adjacent beads.
When no applied pre-compression exists there is complete absence of linear acoustics in ordered
granular media, which results in zero speed of sound as defined in the sense of linear acoustics
through the classical wave equation; thus, these media have been characterized as “sonic vacua”.
However, various nonlinear waves can still propagate in these media with energy tunable

properties.

The first part of this dissertation aims to study the frequency responses of a single
homogenous granular chain. We consider a one-dimensional uncompressed granular chain
composed of a finite number of identical spherical elastic beads with Hertzian interactions. The
chain is harmonically excited by an amplitude- and frequency-dependent boundary drive at its left
end and has a fixed boundary at its right end. We computationally and experimentally detect time-
periodic, strongly nonlinear resonances whereby the particles (beads) of the granular chain respond
at integer multiples of the excitation period, and which correspond to local peaks of the maximum
transmitted force at the chain’s right, fixed end. In between these resonances we detect local

minima of the maximum transmitted forces corresponding to anti-resonances, where chimera



states (i.e., coexistence of different stationary and nonstationary waveforms) are noted, in the
steady-state dynamics. Furthermore, we construct a mathematical model which can completely

capture the rich and complex dynamics of the system.

The second part of the study is primarily concerned with the propagatory dynamics of
geometrically coupled ordered granular media. In particular, we focus on primary pulse
transmission in a two-dimensional granular network composed of two ordered chains that are
nonlinearly coupled through Hertzian interactions. Impulsive excitation is applied to one of the
chains (denoted as “excited chain”), and the resulting transmitted primary pulses in both chains
are considered, especially in the non-directly excited chain (denoted as “absorbing chain”). A new
type of mixed nonlinear solitary pulses — shear waves is predicted for this system, leading to
primary pulse equi-partition between chains, indicating strong energy exchange between two
chains through the geometric coupling. Then, an analytical reduced model for primary pulse
transmission is derived to study the strongly nonlinear acoustics in the small-amplitude
approximation. In contrast to the full equations of motion the simplified model is re-scalable with
energy and parameter-free, and is asymptotically solved by extending the one-dimensional
nonlinear mapping technique. The nonlinear maps, which are derived for this two-dimensional
system and governing the amplitudes of the mixed-type waves, accurately capture the primary
pulse propagation in this system and predict the first occurrence of energy or pulse equi-partition
in the network. Moreover, to confirm the theoretical results we experimentally test a series of two-
dimensional granular networks, and prove the occurrence of strong energy exchanges leading to
eventual pulse equi-partition between the excited and absorbing chains, provided that the number

of beads is sufficiently large.



Then we analyze the dynamics of a granular network composed of two semi-infinite,
ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak
linear stiffnesses under periodic excitation. We first review the acoustic filtering properties of
linear and nonlinear semi-infinite periodic media containing two attenuation zones (AZs) and one
propagation zone (PZ) in the frequency domain. In both linear and nonlinear systems, under
suddenly applied, high-frequency harmonic excitations, “dynamic overshoot” phenomena are
realized whereby coherent traveling responses are propagating to the far fields of these media
despite the fact that the high frequencies of the suddenly applied excitations lie well within the
stop bands of these systems. For the case of the linear system we show that the transient dynamic
overshoot can be approximately expressed in terms of the Green’s function at its free end. A
different type of propagating wave in the form of a “pure” traveling breather, i.e., of a single
propagating oscillatory wavepacket with a localized envelope, is realized in the transient responses
of a nonlinear granular network. The pure breather is asymptotically studied by a
complexification/averaging technique, showing nearly complete but reversible energy exchanges
between the excited and absorbing chains as the breather propagates to the far field. We
analytically prove that the reason for this dynamic overshoot phenomenon in both linear and
nonlinear networks is the high rate of application of the high-frequency harmonic excitation, which,
in essence, amounts approximately to an impulsive excitation of the periodic medium. Verification

of the analytical approximations with direct numerical simulations is performed.

We further study passive pulse redirection and nonlinear targeted energy transfer in the
aforementioned weakly coupled granular network. Periodic excitation in the form of repetitive
half-sine pulses is applied to the excited chain. The frequency of excitation is within the pass band

of the granular system. At the steady state nearly complete but reversible energy exchanges



between the two chains are noted. We show that passive pulse redirection and targeted energy
transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the
spatial analog of the Landau-Zener quantum tunneling effect. This is realized by finite
stratification of the elastic foundation of the excited chain, and depends on the system parameters
(e.g., the percentage of stratification) and on the parameters of the periodic excitation. We detect
the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i)
energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to
irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the
form of nonlinear beats between the two chains in the absence of resonance capture. Our results
demonstrate that steady state passive pulse redirection in these networks can be robustly achieved

under periodic excitation.

The final part of present work is concerned with propagating breathers in granular networks
under impulsive excitation. We apply a complexification-averaging methodology leading to
smooth slow flow reduced models of the dynamics to reveal the nature of 1:1 resonance at
fundamental steady-state responses of the system. The primary aim of this analytical study is to
provide a predictive way to excite the system at its resonance conditions. In addition to the
fundamental resonance we numerically verify the occurrences of subharmonic steady-state
responses in such granular networks. We experimentally detect the propagating breathers in a
single chain mounted on elastic foundations. Our experimental measurements show good
correspondence with the computational results which validate our previous theoretical predications.
The results of this work contribute to the design of practical nonlinear acoustic metamaterials and

provide a new avenue for understanding ofthe complex nonlinear dynamics of granular media.
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Chapter 1. Introduction
Granular media are collections of finite numbers of distinct granules or beads. These unique media
are usually considered to possess the properties of solid, liquid and gas states of matter. The
evolution of the motion of the granules follows Newton’s 2" law and the compressive forces
between granules are non-zero only when there are contacts between them. The particle
distribution in the granular system can range from packed or ordered to randomly dispersed or
disordered. In this dissertation, we primarily focus on ordered granular systems, i.e., the

arrangements of granules in the systems follow certain patterns or paths.

1.1 Literature review and research objectives

Ordered arrays of granular beads are known to exhibit rich nonlinear dynamical and acoustical
behaviors, so they have received considerable attention in diverse fields of applied mathematics,
applied physics and mechanics. This field of research originated from the papers of Nesterenko
(1983) and Lazaridi and Nesterenko (1985), and was further explored by other researchers
(Sinkovits et al., 1995; Coste et al. 1997; Sen et al., 1998; Daraio et al., 2006; Sen et al., 2008;

Spadoni et al., 2010; James, 2011; Kevrekidis, 2011; Porter et al., 2015).

It is well-known that granular media are a highly complex and distinct class of dynamical
systems. The dynamics of granular media is highly tunable, ranging from strongly nonlinear and
non-smooth in the absence of static pre-compression, to weakly nonlinear and smooth for large
static pre-compression (Nesterenko, 2001; Daraio et al., 2006; Sen et al., 2008; Sun et al., 2011).
The nonlinearity in granular media arises from two sources: First, due to nonlinear Hertzian
interactions between beads in contact; and second, due to bead separations in the absence of

compressive forces between them leading to collisions between adjacent beads. With applied pre-



compression a linear component in the acoustics is generated and the problem becomes
linearizable, whereas for strong pre-compression and under the assumption of small amplitude
oscillations, the dynamics of granular chains can be effectively described by the well-known
Fermi-Paste-Ulam (FPU) model (Poggi et al., 1997; Rink and Verhulst, 2000; Chechin et. al., 2002;
Flach et al., 2005; Dauxaois et al., 2005, Berman and Izrailev, 2005; Henrici and Kappeler, 2008)
which in a long-wave approximation is reduced to the well-known integrable Kortweg-de Vries
(KdV) model (Nesterenko, 2001; Sen et al., 2008). When no pre-compression exists and separation
between beads is possible, there is complete absence of linear acoustics in ordered granular media,
which results in zero speed of sound as defined in the sense of linear acoustics through the classical
wave equation; hence, these uncompressed media have been characterized by Nesterenko (2001)
as “sonic vacua”. Despite the absence of linear acoustics, however, it has been shown that these
essentially nonlinear sonic vacua possess highly complex nonlinear responses with no counterparts
in linear theory. Moreover, even in the strongly nonlinear regime (i.e., in the absence of any pre-
compression) computational and analytical techniques have been developed for studying solitary
waves (Lazaridi, and Nesterenko, 1985; Coste et al., 1997; MacKay, 1999; Sen and Manciu, 2001;
Sen et al.,, 2008), traveling waves (Starosvetsky and Vakakis, 2010), resonances and anti-
resonances (Pozharskiy et al., 2015; Zhang et al., 2016), frequency bands (Jayaprakash et al.,
2011a; Lydon et al., 2013; Hasan et al., 2015), traveling and standing breathers (Sen and Mohan,
2009; Starosvetsky et al., 2012a), targeted energy transfers (Hasan et al., 2013a), and other strongly

nonlinear dynamical and acoustical phenomena.

Much emphasis has been given to the analysis of wave propagation in one-dimensional
homogenous granular chains. Nesterenko (1983) was the first to discover the propagation of a

special class of solitary pulses in one-dimensional homogeneous granular chains that do not



involve bead separations, and, hence, can be studied by asymptotic techniques in the continuum
limit using long-wave approximations; in this work these solitary pulses will be denoted as
Nesterenko solitary pulses. These waves span 6-7 beads (Lazaridi and Nesterenko, 1985;
Nesterenko, 2001; Sen et al., 2008) with amplitude-dependent shapes and speeds, and were
referred to as compactons (Rosenau and Hyman, 1993, Porter et al., 2008) exhibiting super-
exponential decay in their tails (Chatterjee, 1999). Solitary waves provide the fundamental
mechanism for energy and momentum transfer in ordered granular networks, and have been well-
studied both theoretically (Friesecke and Wattis, 1994; Ji and Hong, 1999; MacKay, 1999; Sen
and Manciu, 2001; English and Pego, 2005; Stefanov and Kevrekidis, 2012; Starosvetsky, 2012)
and experimentally (Lazaridi and Nesterenko, 1985; Coste et al., 1997; Daraio et al., 2006; Job et
al., 2007). Solitary pulses have been used in various applications, such as sound bullets and

acoustic lenses (Spadoni and Daraio, 2010) and nondestructive evaluation (Yang et al., 2012).

Although few works have considered dissipation effects in granular chains, the highly
complex granular dynamics is very sensitive to damping, since for low-enough dissipation the
granular chain possesses chaotic dynamics due to separations and ensuing collisions between
beads (Lydon et al., 2013; Hooheboom et al., 2013; Charalampidis et al., 2015). Despite numerous
efforts (Rosas et al., 2007; Carretero-Gonzalez et al. 2009; Vergara 2010), a universal model
capturing quantitatively the phenomenology of dissipative losses is still not available. Nevertheless,
modeling the dissipation with (linear) velocity-dependent damping is very successful as proved

experimentally (Herbold and Nesterenko, 2007; Potekin et al., 2012).

In spatially periodic systems resonances and anti-resonances are the main mechanism to
facilitate or restrict energy transmission. In impulsively excited one-dimensional diatomic granular

chains resonances and anti-resonances were also noted. Periodic diatomic chains are composed of



pairs of different types of beads, for example, chains consisting of alternating (“heavy” and “light”)
beads with dissimilar mass and/or stiffness. The dynamics of one-dimensional diatomic granular
chains have been studied in previous works (Nesterenko, 2001; Porter et al., 2008; Herbold et al.,
2009). In an appropriately designed dimer chain with no pre-compression, the existence of
countable infinities of resonances and anti-resonances was proved theoretically (Jayaprakash et al.,
2011b; Jayaprakash et al., 2013) and verified experimentally (Potekin et al., 2012). At discrete
values of the mass ratio of light and heavy beads anti-resonances are realized, leading to
unattenuated energy transmission through the dimer chain. At other discrete values of the mass
ratio, resonances can be realized when the initial applied impulse leads to strong but localized
oscillations of the light beads; these resonances lead to strong passive attenuation of propagating
pulses, which restricts energy transmission to the far field (Jayaprakash et al., 2011b). This is a
clear practical application for passive shock mitigation devices which are commonly used in

engineering practice.

Although the majority of works have focused on “dry” granular media, i.e., granular
networks where the interstitial space between granules is unfilled and granules are not connected
to any attachments, the effect of elastic foundations on the free (unforced) and forced dynamics of
spatially periodic media can be significant, e.g., giving rise to a special class of time-periodic
nonlinear responses with highly localized envelopes referred to as discrete traveling breathers
(Sievers and Takeno, 1988; Campbell and Peyrard, 1990). A traveling breather is defined as a
nonlinear oscillatory wavepacket propagating in a nonlinear medium, with its envelope possessing
localized characteristics (either in amplitude or in slope). It has been demonstrated that discrete
standing or propagating breathers form in nonlinear lattices due to discreteness, dispersion and

nonlinearity (Aubry, 1997; Flach and Willis, 1998; Flach and Gorbach, 2008).



The formation of discrete breathers in ordered granular media is a relatively unexplored
area of study. The realization of transient breathers due to the presence of the small mass intruder
(Starosvetsky et al., 2012b), and intrinsic energy localization by exciting breathers under pre-
compression (i.e., taking into account the linear component in the dynamics) (Theocharis et al.,
2010) were studied, whereas experimental proof of discrete breathers in a one-dimensional
diatomic granular crystal has been reported by Boechler et al. (2010). Some other works related to
discrete breathers in ordered granular media include discrete breathers at the interface between a
diatomic and a monoatomic granular chain with pre-compression (Hoogeboom et al., 2010); and
wave localization in Hertzian chains with mass defect (Job et al., 2009). Furthermore, analytical
techniques have been developed for studying the highly complex dynamics of discrete breathers
in granular media (James, 2011; James et al., 2013). Starosvetsky et al. (2012a) analytically studied
the dynamics of two weakly coupled, homogeneous granular chains without precompression, each
supported by a linear distributed elastic foundation, in which complete and recurrent energy
exchanges between the chains through the excitation of nonlinear beat phenomena were detected.
In a continuation of that work Hasan et al. (2013) introduced the concept of targeted energy transfer,
i.e., of directed energy transfer (Vakakis et al. 2008), from a primary oscillating system to a
secondary attachment, where this energy is locally confined without scattering back to the identical
granular network, leading to passive, irreversible pulse redirection from the directly excited chain
to the chain to which it is weakly coupled. The nonlinear dynamical mechanism governing this
interesting phenomenon was found to be a macroscopic analog (in space) of the Landau-Zener
quantum tunneling effect (in time). Landau-Zener tunneling is a dynamical transition of a two-
level quantum mechanical system where the quantum system tunnels across an energy gap between

two energy states (Zener, 1932; Razavy, 2003). Such a macroscopic analog of Landau-Zener



tunneling in time was first studied by Kosevich et al. (2010) and Manevitch et al. (2011). Moreover,
in two recent works (Vortnikov and Starosvetsky, 2015a,b) the efficacy of nonlinear energy
channeling was demonstrated in two-dimensional nonlinear networks of coupled oscillators
consisting of periodic arrays of locally resonant unit-cells incorporating internal rotators. In
ordered granular media the practical realization of the Landau-Zener effect was achieved by spatial
stratification (variation) of the weak coupling between the chains or of the elastic foundation of
the directly excited chain. The propagation of discrete breathers proved to be the fundamental
component of this passive energy redirection and targeted energy transfer (Hasan et al., 2013;
Zhang et al., 2015b). In addition, experimental verification of traveling breathers was performed
by Hasan et al. (2015) in harmonically forced granular chains embedded in viscoelastic material

matrices.

The acoustic filtering properties of linear systems with spatially periodic structure have
been well studied. The dispersion relation of linear periodic systems contains two stop-bands and
one pass-band in the frequency domain (Brillouin, 1953; Mead, 1975; Vakakis et al., 2008). In
similarity to linear periodic systems, ordered granular media also support acoustic bands (i.e., pass-
and stop-bands) which are passively tunable with energy (Jayaprakash et al., 2011a; Lydon et al.,
2013; Hasan et al., 2015). The structure of the pass- and stop-bands strongly affects the
transmission of disturbances in the far fields of the media, since frequency components in stop-
bands are blocked from transmission, whereas components in pass-bands propagate through these
media unattenuated. In turn, these acoustic filtering properties drastically affect the forced
responses of these media under harmonic excitations, since only frequencies in pass-bands can
lead to spatially extended forced responses, whereas frequencies in stop-bands lead to near-field

motions that are spatially localized close to the excitation source. Due to the strong energy



dependencies of acoustic zones of granular media much focus is devoted to the application of
granular lattices in diverse fields (Donahue et al., 2014; Leonard et al., 2014), such as tunable

vibration filters and acoustic switches (Boechler et al., 2011).

Motivated by these pioneering achievements in the area of strongly nonlinear dynamics of
granular media reviewed above, in this dissertation we aim to explore and analyze the nonlinear
dynamics of one-dimensional and multi-dimensional networks of uncompressed, highly
discontinuous granular metamaterials. The dynamical systems in this study follow the essentially
nonlinear inter-particle Hertzian interaction law. In addition, another form of strong nonlinearity
in the interaction law originates from the possible separations between neighboring beads because
of the tensionless character of the system, which implies there are no forces when beads are not in
contact. The ensuing collisions between beads lead to interesting nonlinear dynamical phenomena
and introduce non-smooth effects to the systems. In the context of our discussion this work aims
to be one of the first comprehensive studies of nonlinear resonances and propagatory behaviors of

ordered granular media.

The main objectives of this dissertation are summarized as: (a) To study the nonlinear
dynamical mechanisms governing strong energy transfer phenomena and energy redistribution in
granular networks; (b) To investigate and construct a predictive mathematical framework of wave
propagation in granular networks and acoustic metamaterials for effective wave tailoring; and (c)
To theoretically design and experimentally establish practical realizations to employ granular

media as shock transmitters or attenuators.



1.2 Outline of the thesis

We begin our study in Chapter 2 by considering the dynamics of a homogenous one-dimensional
granular chain. We particularly consider nonlinear resonances and anti-resonances in finite
granular chains under harmonic excitations. The boundaries of the system under consideration
consist of an actuator exciting the bead with prescribed harmonic displacement at one end and a
rigid wall at the other end (Pozharskiy et al., 2015). The nonlinear nature of the system makes the
dynamics energy dependent and sensitive to external excitations. We analyze the dynamics of the
homogenous chain for varying driving frequency under constant forcing amplitude, wherein
distinguishable resonances and anti-resonances between the resonances are studied. In Section 2.1
we present an experimental study of this one-dimensional uncompressed granular chain. We
experimentally detect time-periodic, strongly nonlinear resonances and anti-resonances, which
correspond to local peaks and dips of the maximum transmitted force at the chain’s fixed end,

respectively. Furthermore, the experimental results are verified by direct numerical simulations.

In Chapter 3 we focus on primary pulse transmission in a two-dimensional granular
network composed of two ordered homogeneous chains that are nonlinearly coupled through
Hertzian interactions with rigid boundaries (Zhang et al., 2015a). One of the chains is excited by
impulsive excitation (designated as the “excited chain”), and the resulting transmitted primary
pulses in both chains are considered, especially in the non-directly excited chain (the “absorbing
chain”). In Section 3.1, we numerically study the propagatory and oscillatory responses of coupled
granular networks where a new type of mixed wave involving nonlinear solitary-like pulses in the
longitudinal direction and oscillatory shear waves in the transverse direction is formed. We show
strong energy exchanges between the two coupled granular chains, leading to eventual primary

pulse equi-partition. In Section 3.2 we extend the one-dimensional nonlinear mapping technique
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developed in (Starosvetsky, 2012) to analytically study the strongly nonlinear acoustics in the
small-amplitude approximation in the coupled granular systems by introducing an analytical
reduced model for primary pulse transmission. The amplitudes of the mixed-type waves of the
primary pulse propagation in this system are accurately captured by the extended nonlinear maps.
Furthermore, these asymptotic results predict the first occurrence of energy equipartition in the
network as presented in Section 3.2. Finally, in Section 3.3 a series of experimental tests of two-
dimensional coupled granular networks is performed to verify the strong energy exchanges

between the excited and abosbing chains.

A systematic analysis of the frequency response of weakly coupled granular networks is
presented in Chapter 4. We first briefly review the well-known acoustic filtering properties of
linear systems with spatially periodic structure in Section 4.1. We show that in linear systems
under high-frequency suddenly applied excitations, dynamic overshoot phenomena are realized
and the responses can be asymptotically approximated in terms of the Green’s function at the free
ends. Then, in Section 4.2 dynamic overshoot phenomena in the form of “pure” traveling breathers
in a two-dimensional strongly nonlinear granular network composed of two semi-infinite, ordered
homogeneous granular lattices mounted on linear elastic foundations and coupled by weak linear
coupling terms are demonstrated (Zhang and Vakakis, 2016). The pure breathers are
asymptotically studied by a complexification/averaging technique (Manevitch, 1999) revealing
nearly complete but reversible energy exchanges between the excited and absorbing lattices as the
breather propagates to the far field. In Section 4.3 we extend this work by exciting this two-
dimensional granular network in the intermediate frequency range. We find that sequential series
of nonlinear beats in terms of propagating breathers in both chains lead to strong and recurring

energy exchanges. In addition, we show that passive pulse redirection and targeted energy transfer



is possible from the directly excited lattice to the absorbing one by introducing a macro-scale
analog of the Landau-Zener quantum tunneling effect in the spatial domain. Moreover, we reveal
the nonlinear mechanism, i.e., sustained resonance capture, leading to irreversible pulse redirection

in this periodically forced network.

Granular networks mounted on linear elastic foundations are considered as good candidates
as effective shock mitigators due to the realization of passive energy redirection and targeted
energy transfer, and the propagation of discrete breathers is proved to be the fundamental
component which enables the realization of these interesting phenomena. However, very few
works reported analytical results of propagating breathers in granular networks and no
experimental evidence of the existence of such propagating breathers has been reported to date.
Hence, in Chapter 5, we analytically and experimentally study the formation of propagating
breathers in granular networks. Smooth slow flow reduced models of the dynamics are developed
in Section 5.1.1 for the fundamental resonance responses, whereas the existence of higher-order
resonances is numerically shown in Section 5.1.2. Further, in Section 5.2 a series of experimental
tests is performed to study propagating breathers in ordered steel granular chains, and the proposed

theoretical model fully captures the experimentally detected responses.

Finally, in Chapter 6 we provide a summary of all the results presented in this dissertation
and discuss their potential application to practical design. In addition, we provide some suggestions

for further development of the ideas based on the topics of this dissertation.
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Chapter 2. One-dimensional granular network under harmonic excitation: Resonances,

anti-resonances, and chimera states

One-dimensional ordered arrays of granular beads are known to exhibit rich nonlinear dynamical
and acoustical behavior, so they have received considerable recent attention in diverse fields of
applied mathematics, applied physics and mechanics. Most published works on ordered granular
media focus on impulsive inputs which often are simplified as prescribed initial conditions. Only
a few works have studied the responses of granular particles to harmonic excitations (Lydon et al.,
2013; Hoogeboom et al., 2013; Chong et al., 2014; Charalampidis et al., 2015). As essentially
nonlinear systems, the dynamics and acoustics of uncompressed granular media are highly tunable
with energy and depend on the frequency and energy content of the external excitation. In this
chapter, we perform a systematic study of a one-dimensional granular medium under harmonic
excitation. Resonance is the main mechanism for energy transmission in spatially periodic systems.
To study the frequency responses in single granular networks, a scalar model is developed, where
all beads are constrained to move only in the horizontal direction, so the network is one-
dimensional; under this condition additional effects due to rotations of the beads can be neglected,
so such rotational effects are not taken into account in the model. We numerically show that in this
system there occur resonances and anti-resonances in the long-term responses, in the form of
traveling and standing waves. Moreover, to model dissipative effects in the granular chain due to
inherent internal structural damping within the beads and frictional effects during bead interactions,
we introduce linear damping terms in the system. This type of viscous damping has been shown
to be adequate in modeling granular dynamics (Herbold and Nesterenko, 2007; Rosas et al., 2007;

Carretero-Gonzalez et al., 2009; Potekin et al., 2012).
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We also experimentally examine the existence of resonances and anti-resonances by
slightly modifying the configuration of the system through the addition of soft flexures in Section
2.2. We show that the very rich and complex dynamics of this system can be reproduced by our
experimental setup, with good agreement between experimental and numerical results. In a more
general context, the material in this chapter aims to experimentally prove the realization of strongly
nonlinear resonances and anti-resonances in an uncompressed granular medium, even if the

medium itself has a complete absence of any linear resonance spectrum.

2.1 Computational study

In Section 2.1, we construct a mathematical model of an uncompressed granular chain consisting
of 11 identical particles (beads), and a right fixed boundary. A prescribed harmonic displacement
with constant amplitude is applied at the left boundary through the (prescribed) motion of a “zero-
th” bead. A systematic computational study is performed to investigate the stationary-state
nonlinear responses of the network under different excitation frequencies. We show that in spite
of the fact that the applied excitation has constant amplitude the amount of energy transmitted to
the right end of the system varies with respect to excitation frequencies. In particular, we measure
the maximum of the transmitted force at the right end for varying driving frequency where local

peaks (“resonances”) and dips (“anti-resonances”) are identified.

2.1.1 System description

A schematic of the considered one-dimensional granular system is presented in Figure 2.1. The
beads are of spherical shape and are composed of linearly elastic material; moreover, it is assumed
that the developed stresses due to bead-to-bead interactions are within the elastic limit of the

material of the beads. Under compressive internal forces the interactions between beads obey the
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essentially nonlinear Hertzian law, with some added dissipative effects as discussed below. In the
absence of compressive forces, bead separations and ensuing collisions between them may occur,

providing an additional source of strong nonlinearity in the dynamics.

Figure 2.1. The one-dimensional granular network under periodic excitation.

According to the previous assumptions, the granular medium can be theoretically
approximated by a discrete model consisting of concentrated point masses (the beads) with nearest-
neighbor coupling stiffnesses obeying the Hertzian (3/2) power force law in local compression,
and exerting zero force (i.e., allowing for separation between beads) in the absence of any such
compression. Accordingly, the equations of motion of the granular system of Figure 2.1 can be

approximately expressed as,
du, E+2R .
m dtzl =307 {(AO sin(2x ft)—ul)i’2 —(u, —uz)ilz}
+D {[27 A, cos(2rr ft) —u, |H (A sin(27 ft) —u, ) — (U, —u, ) H (u, —u, )}

du. E2R 312 312
m dtl;II = 3(1—V2) {(uifl _ui )+ _(ui _ui+1) }
+D (U, — 0 ) H (U — )= (U =0 )H (U~ )}, 1=2,3,..,N -1

+

(2.1)

du E\/ﬁ /
g :3(1—v2){(“N-1‘”N)iz‘(“N)ilz}

+D{(UN—1 —Uy )H(uNfl —Uy )_(UN )H(UN )}

where M is the mass of one spherical bead, E and v the elastic modulus and Poisson’s ratio of its

material, R its radius (for material density denoted by p), and D the viscous damping coefficient;
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the variable u; , i = 1,2,...,N = 11, denotes the axial displacement of the i — th bead of the
granular chain. The amplitude (in m) and frequency (in Hz) of the prescribed displacement
excitation are represented by A, and f. The subscript (+) denotes that a negative argument in the
corresponding parenthesis should be replaced by zero, whereas H(-) denotes the Heaviside
function. These terms appear due to the absence of tensile stresses in the granular chain, implying
the possibility of bead separations in the absence of compressive forces. Moreover, zero initial

conditions are assumed at the time instant of application of the periodic excitation.

The equations of motion (2.1) are in dimensional form. For our preliminary computational
study reported in this section we consider a granular system composed of steel beads with
parameters m = 28.84 x 1073 Kg, E =193 x 10° Pa, v =0.3, R = 9.525 x 1073m ; and
damping D = 100 Ns/m. At this point we would like to emphasize that the system considered in
this section is not tied to any specific physical setup since our primary purpose is to highlight the
strongly nonlinear resonance and anti-resonance phenomena that can occur the forced granular
chain. Moreover, we assume that the harmonic displacement excitation has constant amplitude
Ao, = 5 x 10~7m, which ensures that the elastic deformations of the beads are sufficiently small
(within the elastic limit of steel). The dimensional equations of motion can be normalized by
dividing each equation by the common mass of the beads, m, and introducing the following

rescalings,
X =UlA,7=pt, A=D/(mp) and =27 /¢

12

J2RA E
3(1—v2)m

of motion for this system can be expressed in the following form,

where the scaling factor is defined as ¢ = . Then the non-dimensional equations
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3/2

%, = (sin(B7) = %)™ = (% = %,)”
+2{(Boos(Br) ~ % ) H(sin(Br) =%, )~ (% — % ) H (% ~ %, )}

% =(X1—% )ilz —(% - Xi+1)i/2 (2.2)

FA{ (% =% ) H (X = %) = (% =X )H(4 =Xy )}, T=

3/2 3/2

2
X.N:(XNfl_XN)Jr _(XN)+ +ﬂ‘{(XN—1_XN)H(XN4_XN)_(XN)H(XN)}

where the variables x; denote the normalized displacement of the i — th bead of the chain, and T
is the new normalized time. These equations indicate that the only nondimensional parameter
governing the nonlinear dynamics is the normalized frequency . We study the frequency response
of the granular chain by fixing the amplitude of the displacement excitation and recording the
maximum of the transmitted force at the rigid wall on the right end for varying frequency. We
focus on the stationary-state response of this granular network, i.e., on the state of the dynamics
that is eventually reached after a sufficiently long time, so that any initial transients have died out

due to dissipative effects.

2.1.2 Computational results

As an example of the nonlinear stationary-state dynamics of the granular chain, in Figure 2.2 we
present the maximum of the transmitted force at the right end of the 11 bead homogeneous chain

for varying driving frequency in the range 30Hz < f <3000Hz and constant amplitude

=5x10"m. In this particular example there are five distinguishable peaks or “resonances,”
p p g p

corresponding to frequencies where maximal force is transmitted to the right end of the chain. The
diagram of Figure 2.2 also features dips or “anti-resonances” between the resonances, associated
with frequencies of minimal force transmission. In recent studies it was theoretically (Jayaprakash
et al., 2011) and experimentally (Hasan et al., 2015) shown that ordered granular media such as

the granular chain of Figure 2.1 possess energy-tunable pass and stop bands similar to linear
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spatially periodic systems. These strongly nonlinear frequency bands are due to the periodic
structure of the granular system, and the essentially nonlinear bead-to-bead interactions, and
correspond to frequency and energy ranges where disturbances will either propagate (pass bands)
or attenuate (stop bands) in the medium. Indeed, in low-frequency acoustic pass-bands, these
highly discontinuous media support solitary-like pulses (Lazaridi and Nesterenko, 1985; Coste et
al., 1997; MacKay, 1999; Sen and Manciu, 2001; Sen et al., 2008), or spatially extended wave
transmission (Starosvetsky et al., 2012; Hasan et al., 2013). Referring to the plot of Figure 2.2, the
frequency range (coinciding with the pass band) where these resonances and anti-resonances occur
lies within the nonlinear pass band of the granular chain of Figure 2.1, whereas for frequencies
above 2000Hz (in the stop band) there is negligible force transmission due to the incapacity of the
granular crystal to transmit energy at high frequency. Focusing on the responses within the pass
bands where resonances and anti-resonances occur, we explore these features in detail to fully
understand the strongly nonlinear mechanisms governing these interesting stationary-state

phenomena.

1.4 Transmitted Force
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Figure 2.2. Maximum force transmitted on the right fixed boundary.
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As a representative example of the dynamic response of the forced granular chain in a
resonance, in Figure 2.3 we depict the spatiotemporal variation of the kinetic energies of the 11
beads in the regime of 1:1 and 1:3 resonance peaks, together with the corresponding displacement
waveforms for every bead during one period. It is apparent that the response of the chain is in the
form of waves that are initiated on the left (forced) end of the chain, and reflected at the right fixed
end. The third component of each figure summarizes this pulse traveling in the form of an effective
phase variation in the response of each bead: What is plotted is the time difference between the
first occurrence during a period (at stationarity), of positive velocity for each bead, and for the
leftmost bead of the chain; the almost perfect straight line plot clearly implies the traveling pulse
nature of the long-term, stationary dynamics in the resonance peaks considered. This provides
some insight into the nature of the relevant periodic, nonlinear solutions that dominate the response
at resonance of the crystal lattice under the periodic external excitation. Focusing at the resonance
depicted in Figure 2.3a we note that the zero-th bead exerts a strong impulse-like excitation at
precisely the time instant when the traveling pulse reflected from the right, immovable boundary
reaches the left end; one deduces that there is a strong excitation exerted at the granular chain at
each period of the prescribed displacement excitation, so that the traveling pulses in the chain fully

synchronize with the excitation source. Accordingly, this peak is designated as a 1:1 resonance.

On the contrary, at the resonance depicted in Figure 2.3b (corresponding to the third peak
of Figure 2.2), one notes that there is one strong impulse-like excitation every three periods of the
zero-th bead oscillation, since the time needed by the traveling pulse to fully traverse twice the
length of the chain is three times the period of the excitation; hence, this is designated as a 1:3
resonance. We note that whereas secondary, weaker impulses also occur in between the strong

impulse excitations in this case, these are too weak to initiate new identifiable traveling pulses in
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Figure 2.3. Long-term, stationary spatiotemporal variation of the kinetic energy (scaled X 107) for
(a) 1:1 resonance and (b) 1:3 resonance, where the input harmonic displacement and applied force
excitations for each case are also shown on the left of each plot; (c,d) Displacement waveforms of
every bead during one full period of the crystal motion, and (e,f) effective phase variation of the
individual bead responses (computed by the time instants when each bead’s velocity first becomes
positive and when the leftmost bead’s velocity first becomes positive); this highlights the
“traveling pulse” nature of the long-term, stationary dynamics of the granular chain at the
resonance peaks.

the granules. Using this classification the resonance peaks of Figure 2.2 can be classified as 1: n
resonances for n = 1,...,5, whereas higher-order resonances are eliminated due to dissipative
effects. Moreover, all these nonlinear resonances occur in the pass band of the granular medium
of Figure 2.1, since only in that frequency range can traveling pulses propagate from the left to the

right boundary and vice versa.

In anti-resonances, as shown in Figure 2.4, there occurs strong attenuation of the

propagating pulses caused by destructive interference between right- and left-going pulses
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Figure 2.4. Long-term, stationary spatiotemporal variation of the kinetic energy (scaled X 107) for

(@) the second antiresonance and (b) the third antiresonance, where the input harmonic
displacement and applied force excitations for each case are also shown on the left of each plot;
(c,d) Displacement waveforms of every bead during one full period of the crystal motion, and (e,f)
Effective phase variation of the individual bead responses (computed by the time instants when
each bead reaches maximum positive displacement and when the leftmost bead does); this
highlights the chimera-like, partially “traveling pulse” and partially “standing wave” nature of the
long-term, stationary dynamics of the granular chain at antiresonances.

propagating through the granular chain. The negative interference of traveling pulses propagating
in opposite directions in the granule is responsible for the “low-intensity” impulses delivered by
the exciting source in these cases resulting the minimization of transmitted force. Moreover, all
anti-resonances are located within the pass band, and correspond to 1:1 synchronization between
the prescribed amplitude excitation and the resulting pulses in the medium. In such case a type of
mixed traveling pulses (similar as in the resonance cases) and apparent nonlinear standing waves

(traveling on the left side, standing on the right side) is observed here. This coexistence of
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apparently traveling and standing waves highlights the essentially nonlinear nature and the high
complexity of the long-term, stationary response and is corroborated by the results presented in
Figures 2.4e and 2.4f. States of coexistence of different waveforms have been referred to as
chimera states in other contexts (Abrams and Strogatz, 2004; Panaggio and Abrams, 2015). It was
believed that identical oscillators exhibit either in-phase synchronization or incoherent drifting
before the recovery of chimera states. A chimera state is a state of broken symmetry and has been
defined as coexisting regions of coherent and incoherent oscillation in identical oscillators. The
dynamics of these states have studied theoretically (Panaggio and Abrams, 2015) and

experimentally (Martens et al., 2013).

2.2 Experimental tests, results and comparisons

In Section 2.1 we numerically examined and explained the existence of resonances and anti-
resonances in a single granular chain under harmonic excitation. In this section, we present an
experimental study of such a forced single granular chain aiming to verify the computational
results in the previous section. For this study we consider harmonic excitation at one end of the
granular network and study the steady state responses. Moreover, we focus only on low-frequency
regimes where dissipative effects are less pronounced, and where low-order resonances and anti-
resonances are realized. We experimentally confirm two types of resonance motions involving
harmonic or subharmonic traveling pulses in the granular chain, as well as a state of anti-resonance.
Hence, we experimentally prove that a strongly nonlinear medium (with complete absence of
linear acoustics and with no linear resonance spectrum) can still support a nonlinear resonance
spectrum that is tunable with energy. To our knowledge this is the first such experimental result

reported in the area of granular media.
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In addition, we modify our computational model to compare with the experimental
measurements in the stationary-state responses which verifies that theoretically predicted
resonances and anti-resonances can be realized experimentally. The results reported in this work
have multiple potential applications in the design of acoustic metamaterials which are strongly
nonlinear. These media can be used as energy absorbers when they are excited at anti-resonance

frequencies, but, on the contrary, can intensify energy transmission at resonance frequencies.

2.2.1 Experimental setup and procedures

The experimental fixture is shown in Figure 2.5, and represents the practical realization of the
forced granular medium depicted in Figure 2.1. It consists of two sturdy pillars connected through
threaded shafts. To host the flexures, stainless steel holders with slots are placed on these shafts.
Each bead in the granular chain is rigidly attached to the one end of a thin steel flexure and aligned
horizontally and vertically. This alignment is crucial in order to experimentally realize the one-
dimensionality of the granular dynamics and minimize frictional effects due to relative rotations
between adjacent beads. The other end of the aforementioned flexure is placed in a slot of the
holders assembled on the threaded shafts. The thin flexures, made of spring steel grade 1095, are
designed to be much softer than the stiff beads, so that the time scales of the dynamics of the
flexure responses and the dynamics of the bead-to-bead interactions (through Hertzian contact) are
separable. It follows that the dynamics of the flexures should minimally affect the granular
dynamics, so their contributions to the measured responses should be small. Nevertheless, as
discussed below, the theoretical model needs to be modified by adding weak grounded stiffness in
order to account for “ringing effects” in the measured responses due to the dynamics of the
supporting flexures. After completing the alignment of the granular chain the holders are firmly

bolted and rigidly fastened to the support structures.
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Figure 2.5. Experimental fixture of the forced granular chain.
The homogeneous granular chain consists of 11 spherical granules composed of bearing-

quality aircraft-grade E52100 alloy steel of common radius R =12.7 mm, modulus of elasticity

E =210 GPa, density p = 7850 Kg/m® and Poisson’s ratio v = 0.3. The supporting flexure is
inserted to a depth of about 1/8™ of its diameter and permanently glued. Controlled excitation to
the first particle (at the left end) is provided by means of an APS® long-stroke shaker. The stinger
of the shaker is guided to excite the chain horizontally, and a piezoelectric force transducer (PCB®
model 208C03, with sensitivity 2,248mV/kN) is attached at the point of contact of the stinger with
the sample in order to measure the applied force. Due to the strong nonlinear bead-stinger dynamic

interaction during the measurement, the measured applied force is affected by the measured
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response since the force sensor is not glued to the first particle, which raises the possibility of
losing contact with the chain as we will see below. Hence, a laser vibrometer (Polytec® model
PSV-300-U) is employed here to record the velocity of the armature of the shaker which is
unaffected by the measured dynamics and enables accurate measurement of the amplitude and
frequency of the applied harmonic motion. As a measured output signal, the transmitted force at
the right end of the chain is recorded by an additional piezoelectric force transducer (PCB® model
208C02, with sensitivity 11,241mV/kN). To summarize, three measurements (applied force, input
velocity and output force) are recorded in the testing of this granular chain. The data is then post

processed using Matlab®.

2.2.2 Experimental results

As mentioned above, our experimental study considers the forced dynamics of the granular chain
under low-frequency harmonic excitation. We aim to maintain the shaker’s displacement
amplitude as constant as the frequency varies, but this amplitude cannot be recorded directly due
to the limitation of the experimental setup. Assuming that the motion of the shaker is ideally
harmonic and its initial phase is zero, its velocity can be expressed as V(t) = V,ycos(2nft), and
the corresponding displacement as A(t) = Aysin(2mft) where f is the driving frequency
and A, = V,/ 2nf. In Figure 2.6 we depict the experimental measurements of the amplitude of the

velocity of the shaker (V) in the range 20Hz < f <160Hz , along with the corresponding

displacement amplitude of the shaker (4,). Clearly, the displacement amplitude (cf. Figure 2.6b)
remains nearly constant under different drive frequencies. By maintaining the amplitude of the

excitation to a nearly constant level, the only factor that affects the response of the tested system
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is the driving frequency. Hence, all experimental measurements can be plotted and analyzed as

functions of the external frequency.
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Figure 2.6. Experimental shaker output over the frequency range of the tests: (a) Measured velocity

amplitude, and (b) derived displacement amplitude of the armature of the shaker.

The study of the force transmitted by the 11th (farthest to the right) bead to the force

transducer at the right boundary allows us to identity the resonances and anti-resonances in the

stationary-state dynamics: local peaks of the maximum transmitted force correspond to maxima of

energy transmission through the granular medium, whereas local valleys of the maximum

transmitted force indicate weak energy transmission. The central result of the experimental study

IS summarized in Figure 2.7a, depicting the maxima of the experimentally measured transmitted

force at the right of the granular chain for varying drive frequency in the range 20Hz < f <160Hz.

Within this range we are able to detect two clear local peaks or resonances (located at 60Hz and

100Hz), and one valley or anti-resonance in between the two peaks
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Figure 2.7. Experimental response of the granular chain under harmonic excitation: (a) Maximum
of the transmitted force measured by the force transducer at the right end for 20Hz < f <160Hz;
(b) experimental velocity time series of the armature of the shaker measured by laser vibrometry
(top), time series of input force applied at the first bead measured by the force transducer at the
left end (middle), and time series of the transmitted force by the 11" bead measured by the force

transducer at the right end (bottom), under harmonic excitation at 60 Hz (1:1 resonance).
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Figure 2.8. Experimental velocity time series E)f) the armature of the shaker measured by laser
vibrometry (top), time series of input force applied at the first bead measured by the force
transducer at the left end (middle), and time series of the transmitted force by the 11" bead
measured by the force transducer at the right end (bottom), under harmonic excitation at (a) 90 Hz
(1:1 anti-resonance), and (b) 100 Hz (1:2 resonance).
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(located at 90Hz ). Based on the theoretical study of Section 2.1 we identify that these two peaks
of transmitted force are 1:1 and 1:2 resonances, respectively, whereas the valley in between is a
1:1 anti-resonance. To ensure repeatability of the experimental results, three different tests were
repeated at every frequency, except for the two resonance peaks and the anti-resonance valley, for
which five repeated tests were performed at each frequency. Even though the amplitude of the
excitation was maintained almost constant in each of the repeated tests, some small variation was
still unavoidable during the experiments. Accordingly, the averages of the different trial tests were
computed to determine the final measured responses for varying frequency. The extreme measured

values of these tests were also indicated in Figures 2.6 and 2.7 through the error bars.

A special note is warranted at this point concerning the force excitation exerted by the
stinger of the shaker to the first bead of the granular chain. As discussed in previous works (Hasan
et al., 2015; Pozharskiy et al., 2015), at the low-frequency pass band, even though the stinger has
a prescribed harmonic motion, it does not maintain continuous contact with the first bead of the
granular chain; as a result, the force excitation applied to the granular chain consists of a periodic
or quasi-periodic series of force pulses as shown in the time series of input force in Figure 2.7b.
In the pass band each applied force pulse generates a transmitted pulse in the granular chain (cf.
Figure 2.3) which propagates almost unattenuated (except for dissipative effects) through the chain.
This is verified by the force pulses transmitted to the right end of the chain and recorded by the

force transducer at the right end (cf. Figure 2.7b).

In Figures 2.7b and 2.8a, b we depict experimentally measured time series for three distinct
forcing frequencies, namely 60Hz, 90Hz and 100Hz , corresponding to 1:1 resonance, 1:1 anti-
resonance, and 1:2 resonance, respectively. In particular, we depict the velocity time series of the

armature of the shaker measured by a non-contacting laser vibrometer with reference to numerical
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harmonic signals at corresponding frequencies; this time series is nearly harmonic, verifying that
the applied displacement excitation of the shaker stinger is harmonic. In addition, we depict the
time series of the input force applied by the stinger to the first bead of the granular chain and
measured by the force transducer located at the left end of the chain; the time series verifies the
pulse-like excitation of the granular chain in the low-frequency pass band, as discussed previously.
Finally, the time series of the force transmitted by the 11" (furthest to the right) bead to the force
transducer at the right end of the chain; we note that the transmitted force is again in the form of
pulses since each applied impulse pulse on the left end gives rise to a transmitted force pulse at the
right end. The recording of the maxima of the transmitted force pulses for varying frequency

generates the transmitted force plot of Figure 2.7a.

Clear “silent zones” between any two successive input force pulses are due to the
separations between the stinger and the first bead. However, a different result is observed
considering the region between two successive transmitted force pulses in the two resonance peaks
(cf. Figures 2.7b and 2.8b) since instead of silent zones we note the realization of distinct small
peaks of transmitted force between the main transmitted pulses. These small residual force pulses
(or “ringing”) are mainly contributed by the presence of the on-site potential (elastic foundation)
in the nonlinear dynamics due to the fact that each of the beads of the granular chain is supported
(grounded) by the “soft” steel flexures. Even though there is time scale separation between the
“soft” dynamics of the flexures and the “stiff” dynamics of the bead-bead interactions, there is still
a measured dynamic effect contributed by the supporting flexures. As a result, the 11" bead does
not fully relax after each interaction with the force transducer (which generates the main
transmitted force pulse), but due to the restoring effect of the flexure foundation the bead regains

contact with the force transducer, resulting in the small force pulse which occurs after the
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transmission of the main force pulse. We note, however, that this ringing residual effect is small
compared to the main transmitted force pulse train, a result that verifies the adequate time scale

separation of the stiff/soft dynamics.

In our study we focus only on the main transmitted forced pulses caused by the Hertzian
interactions between beads. Considering first the case of excitation frequency at 60 Hz, there
occurs 1:1 resonance in the dynamics (cf. Figures 2.7a,b). At this resonance peak the stinger of the
shaker exerts a strong force pulse at every period of the harmonic oscillation of the shaker armature,
so there is 1:1 synchronization between the displacement of the shaker and the resulting input force
to the granular chain. By increasing the excitation frequency to 90 Hz (1:1 anti-resonance), a
different type of forced dynamics of the granular chain is identified, where the maximum
transmitted force plot reaches a local valley (cf. Figures 2.7a and 2.8a). At that frequency input
force pulses delivered by the excitation source have a 1:1 correspondence with low-intensity
transmitted force pulses, due to destructive interference of left- and right-going pulses in the
granular chain. Interestingly enough, by further increasing the frequency to 100 Hz we notice a
second resonance peak in the transmitted force plot which corresponds to an 1:2 resonance; in this
case the granular chain undergoes a period-2 subharmonic motion. Indeed, at this resonance peak
(cf. Figures 2.7a and 2.8b) the excitation source exerts a strong force pulse at every second period
of the harmonic oscillation of the shaker armature. As a result, the input force pulse measured at
the left end of the granular chain repeats itself every two periods of the prescribed harmonic
oscillation of the armature of the shaker. Between two successive input force pulses, clear silent
zones are again noticed due to the loss of contact between the stinger and the first bead of the
granular chain. The cause of this 1:2 resonance (similarly for all higher order resonances) is the

relative phase between the periodic motions of the stinger and the first bead of the chain which
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leads to loss of contact at every period of the prescribed displacement excitation of the shaker
armature; rather, following one cycle of oscillation (period) after a strong force pulse is exerted on
the chain, the stinger motion becomes out-of-phase with respect to the motion of the first bead of
the chain, so no contact is possible at that time instant. However, after another cycle, the motion
of the shaker and of the first bead are in-phase (condition for resonance) so a strong force impulse
is exerted again by the stinger of the shaker to the chain. Moreover, similar to the case of 1:1
resonance (cf. Figure 2.7b), small residual force pulses are introduced in the transmitted force

measurement due to the soft dynamics of the flexures (cf. Figure 2.8b).

Hence, our experimental results fully verify previous theoretical predictions and confirm
the existence of strongly nonlinear resonance motions in the granular chain of Figure 2.5. We note
at this point that since the granular chain has no prior compression, it represents a sonic vacuum
with complete lack of any linear resonance spectrum. It follows that the experimentally measured
resonance spectrum is strongly nonlinear and fully tunable with energy, so the detected resonances
and anti-resonances are highly sensitive to the applied energy input. Moreover, due to the highly
complex granular dynamics the nonlinear resonance spectrum is highly sensitive to damping, since
for low-enough dissipation the granular chain possesses chaotic dynamics (due to separations and
ensuing collisions between beads) so no detectable resonance spectrum can be observed. This was
the case of a previous study (Lydon et al., 2013) where chaotic resonance motions were
experimentally detected in a two-bead granular system, and no discernable resonance spectrum
similar to the one presented here (cf. Figure 2.7a) could be experimentally detected. This was due
to sensitive dependence on initial conditions of the chaotic motions of that system. Chaotic
dynamics was also observed systematically in distributed versions of relevant driven-damped

granular chains e.g., in (Hooheboom et al., 2013; Charalampidis et al., 2015).
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2.2.3 Theoretical modeling and comparisons

As a further step we aim to reconstruct computationally the experimental measurements. Based on
the previous discussion it is clear that the mathematical model (2.1-2.2) should be augmented by
stiffness terms in order to model the “soft” dynamics of the supporting flexures that give rise to
the “ringing” effects in the transmitted force time series of Figure 2.7b and 2.8b. To this end, the
augmented configuration depicted in Figure 2.9 is considered, which, compared to the model of

Figure 2.1, possesses weak grounding linear stiffnesses for each bead of the granular chain.

i oult

Figure 2.9. Augmented mathematical model for the forced granular chain incorporating the weak

on-site foundation generated by the supporting flexures.
Maintaining the notation of the model (2.1-2.2), the augmented equations of motion (in

dimensional form) of this system are expressed as:

d? EV2R 312 L
" dtlil = I:in _3(T\/72){(U1—u2)+ }+ D{_(ul_uz)H(ul_uz)}_kUl
d2 ) EV2R 3/2 3/2
" dtl;I :3(15) {(“i—l_ui)+ —(U U ), }
+D{(ui—1 =ty ) H (U = u;) = (U = U,y ) H (U, _u”l)}_ku" 1=23,.10 (23)

dzull _ E\/ZR 3/2 3/2
m dt? _3(1—1/2) {(ulo_ull)+ —\/§(U11)+ }

+D{(u10 _ull)H(ulo _ull)_(ull)H(ull)} - kull

The first term, F;,, on the right-hand-side of the equation of motion of the first bead is taken

directly from the experimental measurements (cf. Figures 2.7b, 2.8a and 2.8b), in order to ensure
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that the computational model is excited by the same pulse train excitation exerted in the
experimental fixture. This turns our modeling into a data assimilation problem, since the response
of the system is driven by an experimentally obtained signal; the model predictions will then
become nonlinear observations of the experimental system state. The numerical values of all
parameters in the model (2.3) were previously defined, except for the damping coefficient D and
the (soft) foundation stiffness k. The viscous damping in a one dimensional homogenous chain
composed of steel beads has been estimated by Herbold et al. (2007) as 32.15 Ns/m, and by
Potekin et al. (2013), as 35.4 Ns/m. Regarding the numerical value of the damping coefficient,
we consider the estimated value by Potekin et al. (2013) which was derived for the identical
experimental setup. Accordingly, we set D = 35.4 Ns/m and use this numerical damping value in
all of the following computational simulations that are performed for comparing with the
experimental results. To simulate the weak foundation effect resulting from the thin steel flexures,

we choose k as 0.1% of the Hertzian contact stiffness between particles, and set

k = E+/2R/3000(1—1?).

In Figure 2.10 we compare the experimental transmitted forces directly recorded by the
force transducer with direct numerical simulations of the granular network (2.3) with a fixed
boundary condition at the end; in the computational model the output force is calculated as
F,. = 2E~/R(uy)¥?/3(1-v?) . In Figure 2.10a the maximum of the numerical output force at the
right end of the chain is superimposed on the experimental results in the frequency range
20Hz < f <160Hz. Satisfactory agreement is inferred, with the computational predictions fully

capturing the two resonances and the anti-resonance in-between of the experimental measurements.

Moreover, comparisons of the experimental and computational time series of the transmitted force
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Figure 2.10. Comparisons between experimental measurements (red) and numerical results (green)
from the model (3): (a) Maximum of the transmitted force at the right end of the granular chain in
the frequency range 20Hz < f <160Hz; (b) experimental velocity time series of the armature of
the shaker (top), experimental input force at the left end of the first granule (middle) and
transmitted force at the right end (bottom) for 1:1 resonance at 60 Hz.
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from the model (3): Experimental velocity time series of the armature of the shaker (top),
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right end (bottom) for (a) 1:1 anti-resonance at 90 Hz, and (b) 1:2 resonance at 100 Hz.
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at 60 Hz (1:1 resonance), 90 Hz (1:1 anti-resonance) and 100 Hz (1:2 resonance) are depicted in
Figures 2.10b, 2.11a and 2.11b, respectively. Examining the force pulse trains depicted in these
plots, we clearly deduce that all numerical simulations reproduce accurately the experimental
measurements, following the same trends and even reproducing the ringing effects due to the
flexural supports at the two resonances (cf. Figures 2.10b and 2.11b). It follows that the augmented
mathematical model (2.3) is capable of accurately reproducing the experimental measurements,
fully validating the experimentally detected strongly nonlinear resonance and anti-resonance

steady state responses.

The deviations between the experimental and computational results may be attributed to
the approximation of dissipative effects by linear viscous damping used in the numerical model
(2.3) which is incapable of fully modeling nonlinear dissipative effects such as friction and
plasticity. Despite numerous efforts (Rosas et al., 2007; Carretero-Gonzalez et al. 2009; Vergara
2010), a universal model capturing quantitatively the phenomenology of dissipative losses is still
not available. In addition, possible inherent bead misalignments in the experimental fixture can
affect the force pulses transmitted to the right end of the granular chain, as well as the theoretical
modeling of the right boundary condition as fixed, i.e., of infinite stiffness. It is clear that in the
practical realization of the granular chain, the right boundary is a force transducer which has a
finite stiffness. Nevertheless, the computational results are in satisfactory agreement with the
experimental measurements, both in the frequency and the time domains, fully recovering the

resonances and anti-resonances in the stationary-state responses.
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2.3 Conclusions

In this chapter, we have studied the stationary-state dynamics of a one-dimensional finite
homogeneous granular chain, without prior compression and under time-periodic excitation. Two
types of resonance motions in the granular chain, i.e., harmonic or subharmonic traveling pulses,
and states of anti-resonances have been identified experimentally. These results, which correspond
to local maxima and minima, respectively, of the maximum transmitted force at the right end of
the chain, validate theoretical studies. In particular, in agreement with previous theoretical
predictions we experimentally verified the existence of two strongly nonlinear resonance peaks
and one anti-resonance valley between them within the frequency range of 20 — 160 Hz, which
indicated that a strongly nonlinear medium can possess an energy-tunable nonlinear resonance
spectrum. Furthermore, we revisited the mathematical model of the experimental fixture and were
able to confirm the existence of aforementioned interesting dynamic responses by direct numerical

simulations.

We emphasize that due to the strong nonlinearity of the granular dynamics, the detected
resonance spectra are dependent on the intensities (magnitudes) of the applied excitations, so the
stationary-state dynamics are passively tunable with energy. Moreover, such designs can be
extended to higher dimensions, exploring the concepts of resonance and anti-resonance in these
setups as well, e.g., in hexagonal or square lattices. In general, the results of this work contribute
to the design of practical nonlinear acoustic metamaterials with properties adaptive to different

types of external excitations.

45



2.4 References

Abrams, D., Strogatz, S., “Chimera States for Coupled Oscillators,” Phys. Rev. Lett., 93, 174102,

2004.

Carretero-Gonzalez, R., Khatri, D., Porter, M., Kevrekidis, P., Daraio, C., “Dissipative Solitary

Waves in Granular Crystals,” Phys. Rev. Lett., 102, 024102, 2009.

Charalampidis, E., Li, F., Chong, C., Yang, J., Kevrekidis, P., “Time-periodic Solutions of Driven

Damped Trimer Granular Crystals,” Math. Problems in Engr., 830978, 2015.

Chong, C., Li, F., Yang, J., Williams, M., Kevrekidis, 1., Kevrekidis, P., Daraio, C., “Damped-
driven Granular Chains: An Ideal Playground for Dark Breathers and Multibreathers,” Phys. Rev.

E, 89(3), 032924, 2014.

Coste, C., Falcon, E., Fauve, S., “Solitary Waves in a Chain of Beads under Hertz Contact,” Phys.

Rev. E, 56(5), 61046117, 1997.

Hasan, M., Cho, S., Remick, K., Vakakis, A., McFarland, D., Kriven, W., “Experimental Study of
Nonlinear Acoustic Bands and Propagating Breathers in Ordered Granular Media Embedded in

Matrix,” Gran. Matter, 17, 49-72, 2015.

Hasan, M., Starosvetsky, Y., Vakakis, A., Manevitch, L., “Nonlinear Targeted Energy Transfer
and Macroscopic Analog of the Quantum Landau—Zener Effect in Coupled Granular Chains,”

Physica D, 252, 46-58, 2013.

Herbold, E., Nesterenko, V., “Shock Wave Structure in a Strongly Nonlinear Lattice with Viscous

Dissipation,” Phys. Rev. E, 75(2), 021304, 2007.

46



Hoogeboom, C., Man, Y., Boechler, N., Theocharis, G., Kevrekidis, P.G., Kevrekidis, I.G., Daraio,
C., “Hysteresis loops and multi-stability: From periodic orbits to chaotic dynamics (and back) in

diatomic granular crystals,” EPL, 101, 44003, 2013.

Jayaprakash, K., Starosvetsky, Y., Vakakis, A., Peeters, M., Kerschen, G., “Nonlinecar Normal
Modes and Band Zones in Granular Chains with No Precompression,” Nonl. Dyn., 63(3), 359-385,

2011.

Lazaridi, A.N., Nesterenko, V.F., “Observation of a new type of solitary waves in a one-

dimensional granular medium,” J. Appl. Mech. Tech. Phys., 26(3), 405408, 1985.

Lydon, J., Jayaprakash, K., Ngo, D., Starosvetsky, Y., Vakakis, A.F., Daraio, C., “Frequency
Bands of Strongly Nonlinear Finite Homogeneous Granular Chains,” Phys. Rev. E, 88, 012206,

2013.

MacKay, R.S., “Solitary waves in a chain of beads under hertz contact,” Phys. Lett. A, 251(3),

191-192, 1999.

Martens, E., Thutupalli, S., Fourriere, A., Hallatschek, O., “Chimera states in mechanical oscillator

networks”, Proc. Natl. Acad. Sci. U.S.A, 110(26), 10563-10567, 2013.

Panaggio, M., Abrams, D., “Chimera states: Coexistence of coherence and incoherence in

networks of coupled oscillators”, Nonlineraity, 28(3); and arXiv: 1403.6204v3, 2015.

Potekin, R., Jayaprakash, K., McFarland, D., Remick, K., Bergman, L., and Vakakis, A.,
“Experimental study of strongly nonlinear resonances and anti-resonances in granular dimer

chains,” Exp. Mech., 53(5), 861-870, 2012.

47



Pozharskiy, D., Zhang, Y., Williams, M., McFarland, D., Kevrekidis, P., Vakakis, A., Kevrekidis,
I., “Nonlinear Resonances and Antiresonances of a Forced Sonic Vacuum,” Phys. Rev. E, 92(6),

063203; and arXiv:1507.01025, 2015.

Rosas, A., Romero, A.H., Nesterenko, V.F., Lindenberg, K., “Observation of two-wave structure

in strongly nonlinear dissipative granular chains,” Phys. Rev. Lett., 98, 164301, 2007.

Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R., “Solitary waves in the granular chain,” Phys.

Rep., 462 (2), 21-66, 2008.

Sen, S., Manciu, M., “Solitary wave dynamics in generalized hertz chains: An improved solution

of the equation of motion,” Phys. Rev. E, 64(5), 056605, 2001.

Starosvetsky, Y., “Evolution of the primary pulse in one-dimensional granular crystals subject to

on-site perturbations: Analytical study,” Phys. Rev. E, 85(5), 051306, 2012.

Vergara, L., “Model for dissipative highly nonlinear waves in dry granular crystals,” Phys. Rev.

Lett., 104, 244302, 2010.

48



Chapter 3. Two-dimensional granular network under impulsive excitation

It is evident from the discussions of Chapter 2 that ordered arrays of granular particles (beads)
possess rich dynamical behavior, including passive adaptivity and tunabilty with energy. The
propagatory dynamics of such one-dimensional granular networks has been well studied
(Chatterjee, 1999; Coste et al., 1997; Daraio et al., 2005; Job et al., 2007; Mackay, 1999).
Nesterenko (2001) was the first to discover the propagation of a special class of solitary pulses in
one-dimensional homogeneous granular chains that do not involve bead separations, and, hence,
can be studied by asymptotic techniques in the continuum limit using long-wave approximations;
here these solitary pulses will be denoted as Nesterenko solitary pulses. However, the many current
applications of ordered granular crystals, such as shock and vibration mitigation (Jayaprakash et
al., 2013), shock energy trapping and absorption (Sen et al., 2001; Daraio et al., 2006b; Doney and
Sen, 2006; Fraternali et al., 2009), tunability of solitary waves (Daraio et al., 2006a) and frequency

filtering (Jayaprakash et al., 2011), mainly focus on one-dimensional systems.

In this chapter, we extend our studies to two-dimensional coupled granular chains. We
numerically, analytically and experimentally examine primary wave transmission in a system of
impulsively excited, coupled, finite granular chains, and show strong energy exchanges through
excitation of transverse primary pulses (or shear waves) and the formation of a new type of mixed
waves involving both solitary pulse propagation in the longitudinal direction and oscillatory shear
waves in the orthogonal direction. We emphasize that in this chapter we are only interested in
primary pulse propagation, that is in the early time wave transmission of nonlinear waves, before
any reflections from the axial boundaries of the system occur and secondary waves are generated.
In that context, our analysis extends the one-dimensional nonlinear mapping technique developed

by Starosvetsky (2012), and Ben-Meir and Starosvetsky (2013), and clarifies the strongly
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nonlinear dynamical mechanisms that govern the formation and evolution of these mixed primary
waves. Moreover, our developed mathematical model is validated with experimental
measurements and contributes to the predictive design of multi-dimensional granular media in

applications in practical acoustic metamaterials.

3.1 Computational study

In this section, we report on the strongly nonlinear dynamics of a system of uncompressed, coupled,
finite granular chains. For this study we consider impulsive excitation of one of the chains of the
granular network. We show that in spite of the fact that the impulse is only applied to one of the
granular chains, strong transient energy transfer from this directly excited chain to its neighboring
absorbing chain is obtained. Eventually, the initially applied impulse is spread in two chains and
evolves towards a final stationary state of formation of solitary waves with same amplitudes that
propagate in each of the chains. Moreover, by examining time series of two chains’ responses in
horizontal and vertical directions, which are parallel and normal to the orientation of the chain,
respectively, two types of wave forms, namely solitary-like pulses and shear oscillatory waves, are

noted.

3.1.1 System description

We depict our considered system of ordered granular chains in Figure 3.1. The system is composed
of two coupled homogeneous granular chains with no prior compression. All beads are identical,
spherical in shape, composed of linearly elastic material, and in point contact with each other.
Strongly nonlinear Hertzian dynamic interactions between beads are assumed with no dissipative
effects, such as those attributed to material damping, plasticity or dry friction. One of the chains is

excited by an impulse of intensity V,, applied at t = 0 +, and is designated as the “excited chain,”
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whereas the other is designated as the “absorbing chain.” Rigid-wall boundary conditions are
imposed on three sides of the system, with the fourth side being free, and the system is assumed
to be at rest at t = 0 —. As discussed below, these boundary conditions play an important role in

the complex wave phenomena that evolve in this system.

Absorbing chain

L-3-1-3

Excited Chain

Figure 3.1. Impulsively excited system of two coupled granular chains.

Denoting by z; and w; the horizontal and vertical components, respectively, of the
displacement of the ith bead of the excited chain, and by ¢&; and n; the corresponding
displacement components of the i th bead of the absorbing chain (with i = 1, ..., n), the strongly
nonlinear and coupled equations of motion can be derived explicitly, and are listed in equation
(3.1). Similar to equation (2.2), the equations of motion (3.1) have been normalized by introducing
the re-scalings z; = z;/R, w; = w;/R, & = &/R, n; = n;/R, T =t/VA, 2 =AA/m, V, =
VAV, /R, where the scaling factor is A = 2v/2mpR?(1 — v?)/E. Then all parameters except for
the damping coefficients can be removed from the re-scaled equations since the mass-normalized

Hertzian coefficient re-scales as @ = 1, and the undamped problem becomes parameter-free.
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Hence, the results can be extended to the general class of granular networks possessing the
configuration of Figure 3.1. We note that this set of equations is not re-scalable with energy since
not all terms are proportional to the same power of the displacement components. It follows that
the nonlinear dynamics of the system can change qualitatively with energy (i.e., with varying
intensity of applied impulse). As discussed later, this can be rectified in the limit of small applied
impulses by deriving a reduced model which is fully re-scalable with energy (see Section 3.2). In
any case, the intensity of the applied impulse should be sufficiently small in order that the resulting
deformations of the elastic beads of the coupled granular chains conform to the assumptions

necessary for the mathematical model (3.1), and the (small) rotations of the beads can be neglected.

3.1.2 Mixed solitary-shear waves and pulse equi-partition

In the following computational study of this section we consider undamped granular chains
composed of a number of identical stainless steel beads with parameters p = 7958 kg/m3, E =
1.93 x 10! Pa,v=0.3, R=4.75x10"3m, A = 0 Nm/s,A = 754.8 X 10~ 12sec? and V, =
172.9 V, mm/sec. In Figure 3.2 we depict the time series of the normalized horizontal and vertical
velocity components (e.g., in the normalized velocity z'(t), prime denotes differentiation with
respect to normalized time t) of the leading beads of the excited and absorbing chains, each
composed of n = 20 beads for normalized impulse intensity V, = 1 x 10™%. In these plots we
depict the early-time primary wave and pulse propagation in the two nonlinearly coupled chains,
that is, the nonlinear waves and pulses that evolve immediately after the application of the applied
impulse before reflections from the right boundary take place. Our main motivation is to study the
perturbations of the Nesterenko solitary waves that would develop in the one- dimensional chains

in the absence of coupling between chains and the lateral fixed boundary conditions.

54



X 10'5 X-Velocity

10
8 \ Excited
6 FAN
2
5 4 N
o
L 2
0
-2
-4
0 50 100 150
Time
x10
10

ﬁé

0 50 100 150
Time
(a)
x10° Y-Velocity
3
Excited
2 N\

Velocity
e
~
>
<<
S

€A TR A
E!E?E?”%&f
\/ ¥ X

0 50 100 150
Time

-5
x 10

Absorbing

Velocity

0 50 100 150
Time

(b)

Figure 3.2. Re-scaled early-time velocity components of the leading beads of the system with n =
20 and normalized impulse intensity V/, = 1 x 10™*: (a) Horizontal components (P —pulses), and

(b) vertical components (S —waves) in the excited and absorbing granular chains.
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Certain conclusions can be drawn from the results of Figure 3.2. As an initial observation,
two distinct types of propagating pulses and waves are realized involving predominantly horizontal
and vertical velocity components, respectively. Focusing first on primary pulses involving the
horizontal velocity components (denoted for obvious reasons as “P —pulses” (solitary pulses), see
Figure 3.2a), we note that two traveling solitary pulses develop in each of the two chains, which
are similar to the Nesterenko solitary pulses realized in single homogeneous granular chains and
studied in (Nesterenko, 2001) using a long wave approximation analysis. These horizontal pulses
are primarily responsible for momentum and energy transfer in the axial directions of the two
chains, and can be considered as perturbations of the Nesterenko solitary pulses of the uncoupled
one-dimensional granular chains. When coupling exists, strong energy exchanges between the two
chains is inferred, as demonstrated by the primary pulse equi-partition that occurs when the two
P —pulses reach the 13" beads of the excited and absorbing chains (see Figure 3.2a). Note that due
to the geometry of the coupled granular system there is a time delay in the arrival of the primary

P —pulse at the 13" bead of the absorbing chain.

This strong energy exchange and pulse equi-partition is more clearly viewed in Figure 3.3
where the contour plots of the total instantaneous kinetic energies of the beads of the excited and
absorbing chains are depicted separately as they evolve in space and time. From these plots it is
concluded that following the application of the impulse, energy is transferred from the excited to
the absorbing chain, leading to eventual energy equi-partition between the two chains. We note
that this energy transfer is not recurring in time, as in systems where nonlinear beat phenomena or
discrete breathers are realized. Discrete breathers (Kopidakis and Aubry, 2000) were reported in
other configurations of ordered granular systems, including homogeneous granular chains on

elastic foundations (James, 2011; James et al., 2013), and systems of linearly coupled chains on
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elastic foundations (Starosvetsky et al., 2012); in these works it was shown that these recurrent
strongly nonlinear motions caused by 1:1 resonance captures, are effective mechanisms for strong
energy transfer between components of a weakly coupled system, and, with appropriate structural
modifications, can lead to passive energy redirection (i.e., one-way targeted energy transfer) from

the excited chain to the absorbing one (Hasan et al., 2013a).

Excited Chain %10 Absorbing Chain %10

150 150

100 100

Time
Time

50 50

5 10 15 20 5 10 15 20
Bead Index Bead Index

Figure 3.3. Contour plots of total kinetic energy (scaled x 10°) of the re-scaled granular system
with n = 20 and normalized impulse intensity V, = 1 x 10™*; strong energy exchange between

the excited and absorbing granular chains is noted leading to eventual energy equi-partition.
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The studies involving discrete breathers will be discussed in Chapter 4. On the contrary, in
the present coupled chain configuration, once energy equi-partition occurs following initial
transients, it is preserved during the entire primary pulse transmission, leading to the propagation
of two independent solitary P —waves of equal magnitudes in each chain. Indeed, following the
application of the impulse there is an initial phase during which waves of mixed type are realized
giving rise to complex energy exchanges between the two chains; however, after these initial
transients propagating pulses develop in the x —direction in each of the two chains and propagate
unattenuated to the far field. Hence, the present system resembles more the impulsively excited
system of weakly coupled granular chains considered in (Starosvetsky et al., 2013), and the
granular system with intruders considered in (Szelengowicz et al., 2013), where weak coupling
leads to pulse equi-partition. In this case, however, it is the geometry and kinematics of the network
that provide the necessary coupling between the two granular chains that induces eventual pulse

equi-partition (at least for the small intensity impulses considered in the presented simulations).

Additional interesting conclusions can be drawn considering the y —components of the
velocities depicted in Figure 3.2b. In particular, we deduce the formation of a different type of
nonlinear waves involving oscillations in the y —direction, i.e., in the direction transverse to the
axial direction of pulse propagation. These secondary oscillatory waves will be denoted as ‘S —
waves’ (shear waves), to emphasize their resemblance to shear waves of classical linear elasticity
theory. These transverse higher-frequency oscillations of the beads in the vertical direction
(contrasting the near-zero frequency of the P —solitary pulses propagating axially) are generated
by Hertzian interactions with the fixed bounding walls, so the resulting motions constitute strongly
nonlinear shear-type waves. The overall result is the formation of near-field nonlinear shear waves,

which indicates that the propagation of P —pulses in the x —direction is associated with transverse
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oscillations of the beads in the transverse y —direction. The formation of nonlinear shear waves
can be better viewed in Figure 3.4 where contour plots of the re-scaled amplitudes of the horizontal
and vertical velocity components of the excited and absorbing chains are depicted in space and
time for a system with n = 40, and re-scaled impulse intensity V, = 1 x 10™*. As mentioned
previously, these waves are near-field motions (i.e., they are spatially localized close to the point
of application of the impulse) and are formed during the initial transients, when P —pulses
propagate in both chains. We conclude that nonlinear shear waves are produced by the nonlinear
coupling of the horizontal and vertical motions of the beads during the initial highly energetic
phase of the motion (i.e., when the nonlinear effects are more pronounced), and cannot be

transmitted to the far field (downstream) of the coupled system.

We note, however, that due to the geometric configuration of the coupled granular network
of Figure 3.1, in the vicinity of the point of application of the impulse the P —pulses and S —waves
become coupled, and together form a mixed mode of wave propagation involving coupled near-
zero frequency horizontal propagatory pulses, and higher-frequency vertical shear oscillatory
waves. In essence, the nonlinear S —waves correspond to oscillatory dynamics and the P —pulses
to propagatory acoustics. Moreover, whereas the P —pulses constitute the primary mechanism for
momentum and energy transfer along the longitudinal direction of the coupled granular system
(similar to the Nesterenko solitary waves in isolated one-dimensional homogeneous granular
chains), the S — waves provide the mechanism for partial higher-frequency scattering of the
applied impulsive energy in a direction orthogonal to the primary direction of momentum transfer.
Hence, these secondary oscillatory waves play an important role in the nonlinear acoustics of the
problem, by reducing the amount of impulsive energy that is eventually transferred to the far field

of the coupled system. Close to the point of application of the impulse the mixed wave mode is
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composed of both propagatory acoustics and oscillatory dynamics, whereas away from that point

the wave mode becomes purely propagatory, composed of only P —pulses.

As mentioned previously, the strongly nonlinear dynamics of the coupled granular system
(3.1) is not re-scalable with energy, so it is expected to depend on the magnitude of the intensity
of the applied impulse. Therefore, the previous results are tied to the assumption of small applied
impulse intensities, or, equivalently, of small-energy nonlinear acoustics. Precisely in this small-
energy limit, however, and under certain additional restrictions, it is possible to perform
simplifications of the full equations of motion (3.1) and reduce them to a system that is amenable
to asymptotic analysis. Moreover, it is possible to make the reduced system fully re-scalable with
energy, so that its dynamics and acoustics become independent of the (small) intensity of the
applied impulse. In the following section we perform this analytical reduction, and study
asymptotically the responses of the reduced system by extending the nonlinear mapping technique
first developed by Starosvetsky (2012), and Ben-Meir and Starosvetsky (2013). Our analysis
theoretically recovers the formation of the mixed wave mode close to the point of application of
the applied impulse leading to the formation of coupled P — and S — waves, reveals the nonlinear
dynamical mechanisms governing the formation of the mixed wave mode, and correctly predicts

the first instance of primary pulse equi-partition in the two granular chains.

3.2 Analytical study

Considering the strongly nonlinear equations of motion (3.1), we will restrict our study to the
regime of primary pulse propagation and disregard secondary waves formed in the tail of the
primary propagating pulses or after reflection of the primary pulses from the rigid boundaries. In

addition, we will assume that the horizontal and vertical deformations (and their time derivatives)
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are sufficiently small, so simplifications of the strongly nonlinear terms can be carried out. Under
these assumptions we focus on the regime of the acoustics corresponding to the propagating front
of the primary pulse where strong compressive forces between beads are realized. Clearly, in the
propagating front of the primary pulse no bead separations or collisions can occur, the acoustics is
smooth, and the (+) subscripts can be disregarded in equations (3.1). This simplifies significantly

the analysis.

3.2.1 Reduced system

Based on the physics of the problem, and motivated by the previous computational results, we
expect that the x —components of the responses of the beads of the excited chain will represent
the dominant acoustics of primary pulse propagation, and drive the other components of the
response of the coupled granular system. Moreover, for primary pulse transmission we anticipate
that the effects of damping can be neglected, since dissipative effects are minimal in the early time
response of the system (i.e., during primary pulse transmission); numerical simulations confirmed

the validity of this assumption.

As the first step in the analysis to asymptotically model primary P —pulse propagation in
the excited chain, we set w; = &; = n; = 0 in equations (3.1), neglect the damping terms, and

implement the re-scalings mentioned therein to get the normalized equations for z;, i = 1,...n:
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v?)/E, as discussed in Section 3.1. Assuming that (z;_; — z;) < 1 and z; < 1 we perform the

following Taylor series expansions,

\/(zi +1)% + (\/3)? = {4+ 2z +...}1/2 = {21%(4)‘”22; +} = Zi%zi +...

3/2

(2—\/(2i +1)? + (+/3)2)%2 = (2—{4122i Ve +)

+

Zi il B 1 *l_ L , 1 i
Zilzi—(ziﬂ){Zizzi} —(Ziil){(Z) F(2) (2Zi)+"'}_
2
(Zi——"l)(ArLSZi)+...:%_%—T-%+...

Substituting into (3.2) we obtain the following simplified system:

3/2 3/2
"_ N2 (g o \32 z+1 (1 z-1(1
Zi - I:(Zi—l Zi )+ (Zi Zi+1)+ ]+ 1 ( 2 Zij + 1 (2 Zi +

24+—-1, i
2 2 (3.4)
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Then, disregarding nonlinear terms of order higher than the Hertzian exponent, (3/2), from
equations (3.4), we obtain the following reduced equation of motion for the axial components of

the responses of the beads of the excited chain,
14 1
2=[(z,~2)"* (2, - zi+1)i’2]+ﬁ[—(zi ) (3.5)

where we have recognized that (—zi )i/Z =0 for primary pulse propagation, since no bead

separations can occur in that highly compressed local regime of the acoustics.

The solution of this reduced system provides the main approximation for the primary P —wave
(solitary pulse) in the excited chain, driving the nonlinear acoustics by exciting primary S — waves
in both chains and primary P —waves in the absorbing chain. Adopting this causality argument,
we can formulate similar reduced systems governing the other response components of the
granular network. To this end, we assume that (w;_; —w;) < 1,(z; = &) < 1, (w; — ;) < 1,
and w;, &;,m; < 1 and perform similar Taylor series expansions to obtain the governing equations

for the other components of the bead responses,

W= _ZTJE{[_(; &) +Bw ) ] [ -8)+ VBl _m)r’z}+ 22(-w)¥+... (36)
é:i”: |:(§i—1 _é:i )3/2 (f §|+1)3/2}
i{[(Zi_é:i)"‘\/g(wi_ni)l /2_[ Ziy §)+‘/_( Wi =77 ]3/2}"'"'

o512
= ﬁ{[(A _Qgi)"'\/g(wi _77i)l3/2 +|: Zig— )"'\/7( Wi,y —77;) T } 23/2(77| ilz +.. (38)

= 25/2

3.7)

The reduced system (3.5-3.8) can be further simplified by imposing the symmetry

argument that the vertical components of the displacements of the excited and absorbing chains
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are equal but out-of-phase, & =-7,, 1=12,...,n. Hence, the final reduced system is composed of

the following three equations:

Z'= [(zi_1 -7)"?—(z,- zm)i’Z] + 271,2[—(4 )i’z} +... (3.9)

W= —ﬁ([(zi ~)rafan] " ezt w (3.90)

F=[(Ga-a) (66 Jrom @ -a)r 2w ]+ (3.90)
i=1..n

v

s

OONES
=000 ~ 000 -

x10° X-Velocity
15
Excited
10
N
z YYYY N
g 4 X \ < ¢ v
K=} NN ~ - A DAY WY
> 1 \\ N\ ,\'/ \\, NN ), l'l L ¥ 1‘
> p\ ) Y TN X N | )
AV ATAATARAY Y S Sk
\
) L \ A ~
0
NS o :, =
Mo SNl 5 e X (Y 9]
i ~ - \,
| SN == ‘ N \ /"\ *-'/ \_/' \\_‘_/:\____‘/
' ' TN N R
| S S - A >
0 50 100 150 200 250
Time
x 10
4
— Absorbing
3 <~
.~ PN N PN
_ N NV
s N LN
f) ) o S
N\ e ot ) N 3\
2 S i f4¢ "
\
% W p AYAAN, ; 7

Plati Y

Velocity
=
\
1
¥
1
’r
3
',

0 ,
1 -
_20 50 100 150 200 250
Time
Figure 3.5. Comparison of the responses of the exact re-scaled system (3.1) (——), and the
reduced system (3.9a-c) (----------- ): Re-scaled horizontal velocity components (P —pulses).
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Figure 3.6. Comparison of the responses of the exact re-scaled system (3.1) (——), and the
reduced system (3.9a-c) (----------- ):Re-scaled vertical velocity components (S —waves).

By construction, equation (3.9a) governing the formation of the primary pulse in the
excited chain is uncoupled from the other two equations and serves as the “driver” of the nonlinear
acoustics of the system in the neighborhood of excitation. That is, after approximating the primary
P —wave propagation in the excited chain by approximately solving (3.9a), we will consider the
derived solution as the excitation for the other two equations (3.9b) and (3.9¢c) governing the
formation of primary P — pulse propagation in the absorbing chain and primary S —wave

propagation in both chains, respectively. Moreover, we note that since all nonlinear terms in the
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reduced system (3.9) have the same power (3/2), the dynamics and acoustics are fully re-scalable
with energy; this is in contrast to the original system (3.1), which as discussed previously is not
re-scalable with energy. It follows that the results of our asymptotic analysis are independent of
the intensity of the applied impulse, provided that it is sufficiently small in order to conform to our

previous assumptions.

In Figures 3.5 and 3.6 we depict the comparison of the reduced system with the original
system (3.1) for a coupled granular system with n = 50, and normalized impulse intensity V, =
1 x 10~*. We have slightly modified the configuration of the system by adding an auxiliary one-
dimensional homogeneous granular chain on the left side of the excited chain and applying the
impulse to the left end of this auxiliary chain; the rationale for this modification is our wish to
excite the coupled granular chain by a “pure” Nesterenko solitary wave instead of an impulse, so
that we can study the scattering of the impeding solitary wave by the two-dimensional granular
system under consideration. In addition, it turns out that the nonlinear mapping methodology
developed below works best with this type of “pure” Nesterenko solitary pulse excitation instead
of impulse excitation; this is due to the fact that it is based on a perturbation of the Nesterenko
solitary pulse which is used as the generating solution in the asymptotics. The comparisons of the
P —pulses and S —waves depicted in Figures 3.5 and 3.6 indicate that the reduced model
accurately captures the formation of the primary pulses/waves in the coupled granular system and

validates our reduction.

3.2.2 Solitary-like wave approximation and analytical results

In this section, we proceed to analyze the reduced system (3.9a-c) in order to study the nonlinear

dynamical mechanisms governing the formation of primary pulses/waves, and the mixed wave
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mode in the neighborhood of the point of the impeding Nesterenko solitary wave. Towards this
end, we will extend to multiple dimensions the nonlinear mapping technique developed by
Starosvetsky (2012), and Ben-Meir and Starosvetsky (2013) for studying primary pulse

transmission in one-dimensional granular chains.

Considering first the primary P —pulse governed by (3.9a), we note that by defining the
small parameter &=1/2"?<<1, this equation represents a perturbation of a one-dimensional
homogeneous granular chain which admits as a solution the Nesterenko solitary pulse. It follows
that we can use this well-known solitary solution as a generating function in order to develop
asymptotic approximations for € < 1 by perturbation expansions. Motivated by this observation

we introduce the relative displacement &, =(z, —z,,) and express this equation as follows (where

higher order terms arising due to the previous Taylor series expansions are omitted from further

consideration):

gt (2~ | =6 200 (0 @10

In the asymptotic analysis & will be regarded as the small parameter of the problem. Furthermore,

assuming that the amplitude variation between adjacent bead responses in (3.9a) is sufficiently

small, we express z, =&, +6,,, +0( &), and express (3.10) in the following form:

i+1

orve|((5+5

i i+1

|20 G o) @

In the limit ¢ - 0 equation (3.11) describes the homogeneous granular chain and the solution is
the Nesterenko solitary pulse; although no exact analytical solution for this pulse exists there have

been developed a number of approximations (Nesterenko, 1983; Lazaridi and Nesterenko, 1985;

68



Sen et al., 2008; Ahnert et al., 2009; Starosvetsky and Vakakis, 2010). Motivated by these
observations and following Starosvetsky (2012), we assume that for primary pulse propagation the
developing P —solitary pulse in the excited chain can be regarded as a perturbation of the

Nesterenko solitary pulse, and express the relative displacements ;(t) and 6;_,(7) as

5i (T) ~ Ag(Al/4z_) - 5;(7) ~ A514§'(A1/4T) — évirr(l_) ~ A3/2§”(A1/4T)

i (3.12)
5.,(0) = A S(Ar+1)

where by S(-) we denote the approximation for the Nesterenko solitary pulse of the homogeneous

granular chain, and by A the amplitude of the primary pulse at the i th bead of the excited chain.

Considering now the construction of the nonlinear map governing the amplitudes A of the

solitary approximations of expressions (3.12), we work as follows. Substituting (3.12) into (3.11)

we obtain:

A3/28~N(A1/4Z_)= [As’/lz {é(Alffr +1)}3/2 B 2A3/z {g(AMz_)}m N 3+,12 {g(AlﬁT _l)}s/zJ B

3/2 3/2 (3'13)
e[ AS(A ) A8 (A1) ] [ AS (Al -] | oo

Integrating this expression with respect to time in the interval —co < 7 < 0, shifting time so that

the maximum of the primary propagating pulse at the i th bead is realized at T = 0, taking into
account the limit lim_, S'(A”7)=0 and that S'(0)=0 (since 7 =0 corresponds to the
maximum of the primary propagating pulse at the i th bead), and introducing the new scaled time

7= A"z in the integrals, we obtain the approximate expression:
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(3.14)

Recognizing that the following expressions are numerical constants depending only on the

approximation for the Nesterenko solitary pulse S(s),

0 0 0 0
[Sw+p*du=1, [SWPdu=f, [Su-)"du=f, [Su-Ddu=f, (3.15)

—0 —0

we write (3.15) as:

O |:A5/4 2'&15/4 2 A5/4 .;3 :| _
1

(3.16)

T{I | AS(A"r)+A.S (Alii‘f—l)]s - AT, }+o<e)

—00

Due to the assumed small variation of the amplitude of the primary P —pulse in the excited chain,

it is possible to assume that A,, = A +O(¢g), which combined with the fact that f, =2.5052,

f,=0.1378, and u= % ~0.06 <<1 (Starosvetsky, 2012), leads to further simplification of
1

(3.17),
5/4 514 ' 5/4 f3
0= {A —2A7 24 A T}
i h ! (3.18)
?{I [AS(A"r)+AS(A%r-1)]" dr- A" f4}+0(8ﬂ)
or,
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{As’f —(ﬁ—u}&”}?( f,~ f,) A% = 0+ O(eu) (3.19)

1

0

where f, = I [S~(u)+ S(u —1)}3/2 du . By evaluating this map in a recurring way (starting from the

“initial condition” A, = A, where A is the maximum relative response for the impeding

Nesterenko solitary pulse) we obtain an asymptotic approximation of the spatial variation of the
maximum amplitude of the primary P —pulse in the excited chain at each of the leading beads
following the arrival of the Nesterenko solitary pulse that is generated by the impulse excitation
on the auxiliary homogeneous chain on the left of the coupled granular system. The actual spatial
and temporal variation of the primary pulse in the excited chain (up to the shifted time instant T =
0 when it reaches its maximum amplitude at each bead) can then be approximated by the relations

(3.12).

In Figure 3.7 we present the numerical solution computed by the nonlinear map (3.19) for
the 20 leading beads of the excited granular chain, subject to a normalized impulse of intensity
Vo = 1 x 10~* applied to the auxiliary homogeneous chain. By comparing these results with the
corresponding maxima of the relative displacements between beads computed from the exact re-
scaled system (3.1) we observe good agreement, which validates our previous asymptotic

approximation.

Following the analytic approximation of primary pulse generation in the excited chain, in
the next step of our study we consider the remaining two equations (3.9b) and (3.9c¢) of the reduced
system, and regard terms depending on z; as excitations. By noting the mathematical structures of

these equations we conclude that the primary P — pulse in the exciting chain acts as parametric
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forcing for both primary S —waves and primary P —pulses in the absorbing chain. In addition, we
note that the S —waves are nonlinearly coupled to the P —pulse in the absorbing chain, so these

secondary waves are simultaneously excited by the initial primary P — pulse in the excited chain.
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Figure 3.7. Primary P —pulse propagation in the excited chain: Maximum amplitudes of re-scaled
relative x —displacements between leading beads for normalized impulse intensity V, = 1 x
10~*; (7)) Asymptotic predictions based on the reduced system (3.19), compared to (e) exact

solutions based on the re-scaled equations (3.1).

The nonlinear coupled equations (3.9b) and (3.9c) are difficult to analyze so at this point
we make an additional simplifying assumption which will allow us further analytical treatment of
the problem; namely, we will assume that the mutual interaction between the driven primary
S —waves and P —pulses in the absorbing chain is much weaker than the interaction of each of
these waves and the driver primary P —pulse in the excited chain. Accordingly we proceed to omit
these mutual interactions from further analysis (i.e., the coupling terms in (3.9b,c)), and consider

instead the further simplified equations:
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W =— I([z +2fw} ) +2¥2(~w)¥ + .. (3.20)

25/2

312 312 1 312
[(é,l—*fi) (5 §|+1) } 25/2[(Zi_§i)]+ te (3.21)

i=1..n

=

We note that this last simplification (which can be justified from a physical point of view) provides

results that are consistent with numerical simulations.

Starting from equation (3.20) governing the evolution of the primary S —waves in both

excited and absorbing chains and imposing the previous approximations, z, =&, + 6, +0(¢),

i+1

5.(t) = AS(A”t), A, =A +O(¢), we obtain the expression:

W2 (W) = —Be[ AS(A D) + AS(AMe D+ 2w | 10" (322)

Interestingly enough this can be completely renormalized, so the amplitudes A can be scaled out

of the equation. To show this, we introduce the following transformation of variables

w, =AW, A’z =7, yielding

2% (i )7 =3, g[S(z‘)+S(r ~1)+23 w] +0(£?) (3.23)

Hence, the global dynamics of shear waves in the granular chain is effectively reduced to the single
degree-of-freedom (DOF) nonlinear oscillator (3.23) which is independent of the strength of the
excitation provided by the excited chain (the driver), and thus can be solved once and for all for

the entire class of granular systems considered herein. This also means that by solving (3.23) one

may obtain the functional form W(7) and the amplitude of the primary response (that is, W(7"),
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where 7~ corresponds to the time point where the primary response reaches its maximum value).
Here we note in passing that an analytical approximation of the primary response of (3.23) can be
derived by various well known techniques of perturbation theory (e.g., Padé approximants or other
successive approximations). Then, to derive the response of the transversal pulse propagating
down the chain, one applies to the previous transformation, w, () = AW(A"*z).

x10° Primary P —pulse in excited chain

T T T T T T T T T
®  Exc-x (Num)
o Exc-x (Map)

[} 4 B E
E ® e,
a ]
£ 2 * s g
< AL R
0 | 1 | 1 1 1 1 | 1
1 2 4 6 8 10 12 14 16 18 20
4 Bead Index
6 X 10 Primary S —wave in excited chain
®  Exc-y (Num)
% 4l O  Exc-y (Map) |[|
=9 4
Q
Z2f ¢ 3 ¢ 3 s 3 7
* 35 4§ 3
0 | 1 | 1 1 | Ig g H\ E IH a ;
1 2 4 6 8 10 12 14 16 18 20

Bead Index

Figure 3.8. Primary P —pulse and S —wave transmission in the excited chain: Maximum
amplitudes of re-scaled y —displacements of the leading beads for normalized impulse intensity
Vo = 1 x 10™*; Asymptotic predictions based on the reduced system (3.22) (7)), compared to
exact solutions based on the re-scaled equations (3.1) (®); the results of Figure 3.7 are reproduced

here for comparison.

We also note that equation (3.23) describes a weak perturbation corresponding to the
primary phase of the response of an asymmetric, strongly nonlinear oscillator. In fact this
asymmetry is caused by the two distinct types of interaction (depending on the phase); namely,

interaction with the rigid wall (primary phase — the first half period), and also interaction with the
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neighboring beads (secondary phase — the second half period). This justifies the oscillatory
dynamics of the primary S —waves, compared to the propagatory dynamics of the primary
P —pulses which are governed by equations (3.9a) and (3.21), and are not in the form of perturbed
oscillators. This underscores the different nature of the generated waves and pulses in the x — and
y —directions. First, we need to solve equation (3.23) for the global variable W, and then we can
obtain the responses of the y —components of all beads of the excited chain using the expression
w. = AW . In Figure 3.8 we depict the maxima of the amplitudes of the re-scaled y —displacements
of the leading beads of the excited chain for normalized impulse intensity V, = 1 x 10~%, from

which satisfactory agreement with direct numerical simulations of the exact model (3.1) of Section

3.1is noted.

Finally, considering the evaluation of the P —pulse in the absorbing chain governed by
equation (3.21), we introduce the results of the map (3.19) into that equation and perform direct

numerical integration of the resulting equation:

3/2

d=[(60-8)" (60" Jr g ASA D - ASA e 94 ], (3.24)

i=1..n

Again, following the same idea of driving and driven variables we retain solely the terms of the

excited chain (z,) corresponding to the driving variable. It is worthwhile noting that unlike

equation (3.22), equation (3.24) cannot be reduced to a single degree-of-freedom system (i.e. a
forced nonlinear oscillator). Therefore, the primary response of (3.24) cannot be expressed in

reduced form, so we cannot express ¢&; in terms of the solution of a single, forced oscillator scaled

with respect to its corresponding amplitude of oscillation A (which is derived from the nonlinear
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Figure 3.9. Primary P —pulse propagation in the absorbing chain, maximum amplitudes of re-
scaled relative x —displacements between leading beads for normalized impulse intensity V, =
1 x 10~*: Asymptotic predictions based on the reduced system (3.21) (CJ), compared to exact

solutions based on the re-scaled equations (3.1) (e).

map (3.19)). Thus, equation (3.24) can only be solved numerically. Results of the numerical
simulations are shown in Figure 3.9. We note that there is discrepancy between the analytical
predictions and the direct numerical simulations, which can be attributed to the approximations
involved in the derivation of the reduced order model, especially the elimination of the cross-
coupling terms between the driven variables. The build-up of the P —pulse in the absorbing chain,

however, is fully captured by the analytical model, although it overestimates its amplitude.

3.3 Experimental study

In Section 3.1 we computationally presented strong energy exchange between two coupled chains.
Then, we developed a semi-analytical method for studying the primary pulse transmission in such
a nonlinearly coupled system of granular chains subjected to impulsive excitation in Section 3.2.
To test the previous theoretical and analytical results we designed an experimental fixture to study
the impulsive response of a two-dimensional, uncompressed granular network such as the one
depicted in Figure 3.1. The impulsive excitation was provided by means of a pendulum with a

similar bead at its end, which excited the first bead at one end of the excited chain. Moreover, in
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similarity to the theoretical analysis, in the experimental tests we only focused on primary pulse
transmission, that is, on the early-time evolution of propagating pulses in the axial directions of
the two coupled chains of the granular network, and not on secondary pulses developing the wake

of the primary pulses or formed after the reflections of the primary pulses from the boundaries.

3.3.1 Experimental setup

In similarity to the theoretical study, we considered a number of identical beads composed of type
302 stainless steel (McMaster Carr®, 9291K31) for the excited and absorbing chains, as depicted
in Figure 3.10. Each bead had a radius of R = 9.5 mm, modulus of elasticity E = 193 GPa,
density p = 8,000 Kg/m3, and Poisson’s ratio v = 0.3. The lateral boundaries were also
composed of stainless steel in order to conform to the previous theoretical models. The
transduction mechanism consisted of a piezoelectric force transducer (PCB® model 208C02 with
sensitivity 11,241 mV/kN) at the left boundary of the excited chain to measure the transmitted
force at that location, and two non-contacting laser vibrometers (Polytec® models PSV-300-U and
PSV-400) to measure the initial input velocity provided to the system by the pendulum, and the
velocity of the last bead of the free left end of the absorbing chain, respectively. The force

transducer was firmly mounted on a pedestal and rigidly fixed onto the base (cf. Figure 3.10).

Comparing the experimental granular network of Figure 3.10 with the theoretical network
of Figure 3.1 we highlight the difference that in the experimental network the number of beads of
the excited chain exceeded the number of beads of the absorbing chain by one. This slightly
modified configuration allowed enough space to place the excitation mechanism (the pendulum)

to impact the first bead of the excited chain without contacting the absorbing chain, and reduced
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friction effects due to possible bead misalignments in the experiment. As in the theoretical model

of the network of Figure 3.1 the fixed boundary condition in the experiment was posed at the end

(.' o (C (I' (ﬁ (l Aw (l (l (l

Figure 3.10. Top view of experimental fixture for testing the impulsively excited granular network.

of the excited chain, so the end of the absorbing chain was traction-free. As discussed below, the
traction-free boundary condition at the end of the absorbing chain introduced end-effects in the
response of its bead, which needed to be taken into account in our study of primary pulse equi-

partition in the network.

A series of experimental tests was performed with varying numbers of beads in each of the
network configurations that was tested. In the tests we used a combination of 4-3, 7-6, 10-9 and
13-12 numbers of beads in the excited and absorbing chains, respectively. For example, in the
configuration shown in Figure 3.10 there are a total of 13 beads in the excited chain and 12 beads

in the absorbing chain. As mentioned previously at the one end of the excited chain a pendulum
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was used to provide the initial impulse excitation. We recorded the initial input velocity provided
to the excited chain by aiming a laser vibrometer directly at the bead of the pendulum, similar to
(Hasan et al., 2013b). To measure the velocity response of the last bead of the absorbing chain,
another laser vibrometer was used in synchronization with the first one. In addition, the transmitted
force signal measured at the end of the excited chain was fed to a 24-bit m+p International®
VibPilot data acquisition system, allowing for direct visualization of the transmitted force. The
data was then post-processed using Matlab®. These measurements were used to study the nonlinear
dynamics of the granular network and verify the results predicted by the theoretical models of the
previous Sections 3.1 and 3.2. As shown below energy transfer from the excited to the absorbing
chain intensifies with increasing number of beads. Moreover, the realization of strong energy
exchange between the two coupled granular chains and the verification of the theoretically
predicted eventual pulse equi-partition in the two chains can be inferred by measuring the
transmitted force at the end of the excited chain and the velocity of the last bead of the absorbing
chain; this will be performed by computing the velocity of the end bead of the excited chain in
terms of the measured transmitted force, and comparing it to the directly measured velocity of the

last bead of the absorbing chain.

A last note concerning the experimental setup has to do with the dissipative effects in the
dynamics, which are always present in any practical fixtures. Although an attempt was made to
minimize the frictional contacts in the experimental fixture, complete elimination of friction and
other sources of damping in the experiments could not be accomplished. In fact, friction forces are
expected due to relative rotations between adjacent beads or between beads and side boundaries;
moreover, inherent internal structural damping in the material of the beads is anticipated as an

additional source of damping in the experimental system. Given that in the previous theoretical
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models we did not take into account such dissipative effects, we anticipate discrepancies when
comparing the predictions of the theoretical models to experimental measurements. To address
this issue, linear viscous damping terms proportional to the relative velocities between adjacent
beads and between beads and the rigid boundaries were introduced in the theoretical models used
for comparisons with direct experimental measurements. The determination of the viscous
damping parameter was performed by reconciling the theoretical and experimental results for an
impulsively excited, isolated homogeneous granular chain composed of 7 beads. Such viscous
damping models have been proven to provide a good approximation to the dissipative effects in
the granular dynamics (Rosas et al., 2007; Herbold and Nesterenko, 2007; Potekin et al., 2013;

Hasan et al., 2013b).

3.3.2 Experimental results and comparisons with numerical simulation

As discussed previously, we have carried out five different sets of experiments for granular
networks composed of different number of beads. To test the repeatability of the experimental
results, at least 5 trials were performed for each of the considered experimental configurations. In
all cases impulsive excitation was applied to the first bead of the excited chain by means of a
pendulum with a bead attached to its end. The applied initial impulse (and, approximately, the
initial velocity of the first bead of the excited chain) was measured by a laser vibrometer; this
measurement is important in order to accurately reproduce theoretically the experimental tests and
obtain the corresponding comparisons. A typical measurement of the velocity of the bead of the
pendulum is depicted in Figure 3.11, from which we deduce approximately the initial velocity of
the first bead of the excited chain. In the experimental tests the measured initial velocities were in

the range 115 — 134 mm/s.
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Figure 3.11. Typi