
c© 2017 Md Tanvir Al Amin



EXPLOITATION OF INFORMATION PROPAGATION PATTERNS IN
SOCIAL SENSING

BY

MD TANVIR AL AMIN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

Professor Tarek Abdelzaher, Chair
Associate Professor Indranil Gupta
Assistant Professor Aditya Parameswaran
Dr. Mudhakar Srivatsa, IBM Research



ABSTRACT

Online social media presents new opportunity for sensing the physical world.

The sensors are essentially human, who share information in the broadcast

social media. Such human sensors impose challenges like influence, bias,

polarization, and data overload, unseen in the traditional sensor network.

This dissertation addresses the aforementioned challenges by exploiting the

propagation or prefential attachment patterns of the human sensors to distill

a factual view of the events transpiring in the physical world.

Our first contribution explores the correlated errors caused by the de-

pendent sources. When people follow others, they are prone to broadcast

information with unknown provenance. We show that using admission con-

trol mechanism to select an independent set of sensors improves the quality

of reconstruction. The next contribution explores a different kind of corre-

lated error caused by polarization and bias. During events related to conflict

or disagreement, people take sides, and take a selective or preferential ap-

proach when broadcasting information. For example, a source might be less

credible when it shares information conforming to its own bias. We present a

maximum-likelihood estimation model to reconstruct the factual information

in such cases, given the individual bias of the sources are already known. Our

next two contributions relate to modeling polarization and unveiling polariza-

tion using maximum-likelihood and matrix factorization based mechanisms.

These mechanisms allow us to automate the process of separating polarized

content, and obtain a more faithful view of the events being sensed.

Finally, we design and implement ‘SocialTrove’, a summarization service

that continuously execute in the cloud, as a platform to compute the re-

constructions at scale. Our contributions have been integrated with ‘Apollo

Social Sensing Toolkit’, which builds a pipeline to collect, summarize, and

analyze information from Twitter, and serves more than 40 users.

ii



Dedicated to my parents.

iii



ACKNOWLEDGMENTS

All praise is due to the Almighty, who bestowed me the strength and deter-

mination to wade through the stress of graduate life. For almost six years, I

have worked toward this dissertation that improves the quality and scalabil-

ity of summarization services in social sensing. It has been an adventurous

journey full of challenges, innovation, accomplishments, occasional failures,

learning experiences, and papers!

Many thanks to my advisor, Tarek Abdelzaher, who motivated and in-

spired me to scientific rigor, high quality writing, and presentation style.

Without his help, this thesis would not have been possible. I specially re-

member many long meetings, discussions, and brainstorming sessions that

have been integral to the formation of my thesis. Moroever, his direction

has helped me to lead a team of graduate student researchers developing

Apollo Social Sensing Toolkit, and acquire leadership skills. We also de-

signed and taught a Real-Time Systems course at UIUC. It gave me op-

portunity to create teaching material, and advise students in challenging

projects. Also thanks to my committee members: Indranil Gupta, Aditya

Parameswaran, and Mudhakar Srivatsa, for numerous help, suggestions, and

support. Thanks to the University of Illinois Department of Computer Sci-

ence, and the Graduate College for awarding me Chirag Foundation Graduate

Fellowship. It relieved me from financial burden at the beginning of my doc-

toral program. Research published in this dissertation has been funded by

grants from US Army Research Laboratory, DTRA, and National Science

Foundation. Thanks to the funding agencies for their immensely helpful

grant programs.

My collaborators at IBM Research, and US Army Research Laboratory:

Mudhakar Srivatsa, Raghu Ganti, Charu Aggarwal, Lance Kaplan, deserve

big thanks for their guidance and advice during my visits. I am grateful for

the brainstorming sessions. Special thanks to professors at UIUC: Indranil

iv



Gupta, Philip Brighten Godfrey, Klara Nahrstedt, and Matthew Caesar, who

have advised me during course projects and research collaborations. Earliest

iterations of an important contribution of my thesis ‘SocialTrove’ started as a

course project with Indranil Gupta. My internships at Google and Facebook

enriched me with real-world systems skills and engineering techniques. I

thank my hosts Phil Gross, Yi Wang, Rajesh Nishtala, Andrii Grynenko for

their guidance. My collaboration with Boleslaw Szymanski at RPI, Reaz

Ahmed at UWaterloo was very useful.

I am thankful to Yusuf Sarwar Uddin who helped me quickly bootstrap

research in our group. Numerous meetings with Shen Li have been very influ-

ential. I am thankful to Dong Wang and Hieu Le for their awesome support

and advice during the initial phase of my PhD. I am also thankful to other

labmates and collaborators, who helped shape up my research. I can not pos-

sibly include all the names here, but I would specially thank Muntasir Rah-

man, Panindra Seetharamu, Jongdeog Lee, Shuochao Yao, Prasanna Girid-

har, Shaohan Hu, Shiguang Wang, Hongwei Wang, Huajie Shao, Yiran Zhao,

Hengchang Liu, Lu Su.

I was born and grown up in beautiful Bangladesh. I earned a bachelors

and masters degree in Computer Science and Engineering from Bangladesh

University of Engineering and Technology. I also had the chance to work

there as a Lecturer, and teach courses to undergraduate students. It was

one of the most wonderful experiences spanning professional and social as-

pects of my life, and certainly had a strong influence on making me the

person I am today. It was my professors and colleagues there who taught

me the fundamentals of Computer Science and Engineering, inspired me to

pursue a PhD in Computer Science, and made me aware of the social and

ethical responsibilities a scientist should hold. I want to take some time to

thank my professors, colleagues, friends, and students there, specially Mo-

hammad Kaykobad, Mostofa Akbar, Reaz Ahmed, Ashikur Rahman, Sohel

Rahman, Abu Sayed Md. Latiful Hoque, Eunus Ali, Yusuf Sarwar Uddin,

Khaled Mahmud Shahriar, Abul Hassan Samee, Abdullah Adnan, Shahriar

Nirjon, Rifat Shahriyar, Sukarna Barua, Nashid Shahriyar, Arup Raton Roy,

Tanaeem Moosa, Shihabur Rahman Chowdhury, Debajyoti Mondal, Shahriar

Rouf Nafi, Mahbubur Rahman, Muntasir Mashuk, Masruba Tasnim, and

many others. I was very fortunate to work with Mosharaf Chowdhury and

Shahriar Nirjon, as programming contest teammates; they enriched my al-

v



gorithmic analysis and problem solving skills, and mentored me during my

research. I am thankful to my teachers Abu Bakar Siddiqui, Delwar Hossain,

Sushanta Kumar Sarker, and Nimai Chandra Das. I am thankful to Mizanur

Rahman and Shafiqur Rahman, who taught me how to teach students! I

also worked with fantastic classmates and project partners, who made my

student life vibrant and full of learning experiences. I would specially like to

thank Helal, Sukarna, Fortune, Ayon, and Romel.

The journey to doctoral thesis is a long one. Without the love, inspiration,

and support from my parents I could not complete this journey thousands of

miles away from home. I dedicate this dissertation to my father Md Abdul

Hai and my mother Khandakar Tohura. Many thanks to my elder brothers

Abdullah Al Mahmud, and Shahidullah Al Faruq, whose inspiration and help

guided me through tough times. My friends in Bangladesh: Abir, Tanvir,

Bipul, and Chisty were integral to many aspects of my life. Moreover, it

would be very hard for me to sustain here as a graduate student, without the

help of my friends in Urbana-Champaign. To name a few, I am grateful to

Ahmed Khurshid, Abul Hassan Samee, Yusuf Uddin, Reaz Mohiuddin, Tuba

Yasmin, Shafiul Azam, Shakil Kashem, Imranul Hoque, Muntasir Rahman,

Munawar Hafiz, Farhana Ashraf, Ahsan Arefin, Shameem Ahmed, Abdul-

lah Al Nayeem, Anupam Das, Farhadul Hoque, Naheed Ferdous, Priyanka

Sarker, Shegufta Ahsan, Persia Aziz, Sajjadur Rahman, Himel Dev, and the

list continues. It is my family, friends, and the society that help me traverse

life, and give ultimate meaning to me and my contributions.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 9

CHAPTER 2 SOURCE DEPENDENCY IN SOCIAL SENSING . . . 10
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Source Selection in Social Sensing . . . . . . . . . . . . . . . . 12
2.3 Online Admission Control . . . . . . . . . . . . . . . . . . . . 17
2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CHAPTER 3 SOCIAL SENSING WITH POLARIZED SOURCES . 36
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 The Case of a Polarized Network . . . . . . . . . . . . . . . . 39
3.3 A Model for Polarized Social Networks . . . . . . . . . . . . . 41
3.4 Ground-truth Estimation in Polarized Networks . . . . . . . . 44
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

CHAPTER 4 EVALUATING POLARIZATION MODELS IN SOCIAL
NETWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 The Polarization Problem . . . . . . . . . . . . . . . . . . . . 59
4.3 Individualized Bias with Individualized Blogging Rate . . . . . 62
4.4 Community-wide Bias with Individualized Blogging Rate . . . 69

vii



4.5 Community-wide Bias with Community-wide Blogging Rate . 72
4.6 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.8 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

CHAPTER 5 UNVEILING POLARIZATION IN SOCIAL NET-
WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Polarization in Social Networks . . . . . . . . . . . . . . . . . 89
5.3 A Matrix Factorization Approach to Uncover Polarization . . 94
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

CHAPTER 6 SOCIALTROVE: A SUMMARIZATION SERVICE
FOR SOCIAL SENSING . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 A Self-Summarizing Storage Model . . . . . . . . . . . . . . . 114
6.3 SocialTrove Runtime . . . . . . . . . . . . . . . . . . . . . . . 118
6.4 An Application Case Study . . . . . . . . . . . . . . . . . . . 129
6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

CHAPTER 7 APOLLO SOCIAL SENSING TOOLKIT . . . . . . . . 145
7.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.2 Real-time News Feed Pipeline . . . . . . . . . . . . . . . . . . 148
7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

CHAPTER 8 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . 152

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

viii



LIST OF TABLES

1.1 Example tweets appearing earlier than news media . . . . . . 2
1.2 Examples of factual and non-factual tweets . . . . . . . . . . . 4
1.3 Tweets of different polarities . . . . . . . . . . . . . . . . . . . 5

2.1 Statistics of two datasets . . . . . . . . . . . . . . . . . . . . . 23

3.1 Summary of the tweets collected . . . . . . . . . . . . . . . . . 40
3.2 Summary of the dataset of the experiments . . . . . . . . . . . 51
3.3 Quality of exclusive information . . . . . . . . . . . . . . . . . 53

4.1 Parameters representing akli = Pr(SCij, θ|Y k
i , Z

l
j) . . . . . . . . 63

4.2 Parameters of the simulated network . . . . . . . . . . . . . . 73
4.3 Occupy Sandy converged parameters . . . . . . . . . . . . . . 81

5.1 Top 10 tweets from the separated polarities (Egypt) . . . . . . 106
5.2 Top 10 tweets from the separated polarities (Eurovision) . . . 107
5.3 Top 10 tweets from the separated polarities (Trump) . . . . . 109

6.1 Top summaries . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2 Querying cluster model with occupysandy . . . . . . . . . . . 141
6.3 Querying for tweets similar to S4 (Amazon wedding registry) . 142

ix



LIST OF FIGURES

2.1 A social graph of Twitter uesrs. A directed edge means
which source follows which. . . . . . . . . . . . . . . . . . . . 13

2.2 Admission control scheme. Assuming the same dependence
score f between pair of sources, β(i) = (1 − f)2 and β(j)
is declined by a factor (1− f). . . . . . . . . . . . . . . . . . . 19

2.3 Schematic model of the admission controller with Apollo’s
pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 (a) Complementary distribution (CCDF) of follower and
followee count per user, (b) CCDF of ff-ratio per user, in
Egypt dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Relative quality scores across different admission control
schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Admission controller statistics for different admission schemes
(Egypt dataset). . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Admission controller statistics for different admission schemes
(Irene dataset). . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Complementary cumulative distribution of cascade sizes . . . . 40
3.2 Distribution of pro tendency of sources . . . . . . . . . . . . . 41
3.3 Executing polarity aware fact-finder . . . . . . . . . . . . . . . 45
3.4 An overlay of two polarized social networks. Pro shown in

red and anti shown in green . . . . . . . . . . . . . . . . . . . 48
3.5 Distribution of neighborhood similarity of neutral sources

between polarized and generic network . . . . . . . . . . . . . 49
3.6 Distribution of neighborhood similarity between polarized

and generic networks . . . . . . . . . . . . . . . . . . . . . . . 50
3.7 Number of claims believed as facts by different algorithms . . 51

4.1 (a) Crawled data does not reveal polarization structure,
(b) Manually filtering out the nonpolarized sources and
assertions reveal polarization. . . . . . . . . . . . . . . . . . . 60

4.2 Modeling a polarized source-assertion network by identify-
ing different types of edges . . . . . . . . . . . . . . . . . . . . 61

4.3 Highlighted edges are considered when running expectation
step for S3 and C6 . . . . . . . . . . . . . . . . . . . . . . . . 68

x



4.4 Quality of estimation vs. blogging rate . . . . . . . . . . . . . 73
4.5 Quality of estimation vs. number of sources (average blog-

ging rate = 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Quality of estimation vs. number of sources (average blog-

ging rate = 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Convergence properties of the models with community bias . . 75
4.8 Crawling Egypt dataset using Apollo Social Sensing Toolkit . 77
4.9 Receiver operating characteristics (Trump) . . . . . . . . . . . 78
4.10 Weekly analysis: before and after election . . . . . . . . . . . 79
4.11 Receiver operating characteristics (Eurovision) . . . . . . . . . 80
4.12 Receiver operating characteristics (Egypt) . . . . . . . . . . . 80
4.13 Receiver operating characteristics (Syria) . . . . . . . . . . . . 82

5.1 (a) Model of a polarized source-assertion network, (b) Re-
lation between the polarized and the neutral network. . . . . . 92

5.2 Gradient descent algorithm for factorization . . . . . . . . . . 97
5.3 (a) Assertions from the estimated factor matrix V̂ and their

polarities, (b) Although the social dependency network im-
proves performance, there is still variance in the separation
due to the presence of the neutral network. . . . . . . . . . . . 98

5.4 Algorithm to form an ensemble of factorization experiments . 100
5.5 Algorithm to estimate polarities from the ensemble . . . . . . 101
5.6 (a) Aligning two experiments, (b) Graph of 20 experiments . . 101
5.7 Egypt: Factorization performs best with area under ROC

0.93, EM-Social 0.53, Umigon 0.51, Sentiment140 0.51,
Metis 0.61, MetisVoting 0.64 . . . . . . . . . . . . . . . . . . . 104

5.8 Eurovision: Factorization performs best with area under
ROC 0.91, EM-Social 0.54, Umigon 0.64, Sentiment140
0.52, Metis 0.73, MetisVoting 0.76 . . . . . . . . . . . . . . . . 104

5.9 Trump: Factorization 0.92, EM-Social 0.70, Umigon 0.58,
Sentiment140 0.52, Metis 0.90, MetisVoting 0.90 . . . . . . . . 105

6.1 SocialTrove system design . . . . . . . . . . . . . . . . . . . . 118
6.2 Mapping a set of points in two dimensions to a tree . . . . . . 122
6.3 Distribution of search completeness . . . . . . . . . . . . . . . 123
6.4 Algorithm to insert an object . . . . . . . . . . . . . . . . . . 125
6.5 Algorithm to lookup cluster summaries . . . . . . . . . . . . . 126
6.6 Algorithm to generate summary model . . . . . . . . . . . . . 127
6.7 Flow of map, fold (reduce), and broadcast operations in

Spark to recursively partition an RDD of points . . . . . . . . 129
6.8 Without a summary model, lookup throughput is very low . . 134
6.9 SocialTrove offers high throughput for small to medium

sized requests . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.10 Response time for a request is often high without a sum-

mary model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xi



6.11 SocialTrove has lower response time compared to the other
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.12 Time to generate summary using unoptimized code with
(a) 8 worker machines, (b) different number of machines . . . 138

6.13 Time to generate summary from Decahose (optimized code) . 138
6.14 Effect of scaling out (optimized code), 4 million tweets . . . . 139
6.15 Comparing scaling out and scaling up (optimized code),

4 million tweets . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.1 Architecture of Apollo Social Sensing Toolkit . . . . . . . . . . 146
7.2 Workflow of a real-time news feed generation pipeline . . . . . 148
7.3 Accuracy of the claims unique to particular schemes . . . . . . 150
7.4 Runtime for medium (100 claims) and large (1000 claims)

output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xii



LIST OF ABBREVIATIONS

βi Probability of a source to be independent in making claims

fij Probability of source i making same or similar claims as source j

τ Admission threshold

SC Source-assertion network

Si Source i

Cj Assertion j

SD Source dependency network

zj Factual state of assertion j

yj Known polarity of claim j

θ Vector of parameters associated with EM formulations

akl Probability of a source from group k to make claims from group l

Y k
i Source i belongs to polarized group k

Z l
j Assertion j belongs to polarized group l

A Matrix of source-assertion network

U Matrix corresponding to sources, related to factorization

V Matrix corresponding to assertions, related to factorization

T Source dependency or influence network

k Number of polarized groups

λ Regularization factor

γ Strength of social dependency factor

xiii



α Step size for gradient descent

size Ensemble size

B Partitions generated by a specific factorization experiment

τdiag Distance threshold between partitions of a factorization experiment

τedge Distance threshold between two factorization experiments

∆ Batching interval

d(u,v) Distance between vectors u and v

dq Query distance threshold

dc Threshold of diameter of a set of vectors, decides whether to cluster
further

xiv



CHAPTER 1

INTRODUCTION

This dissertation addresses the problem of reconstructing independently ob-

servable states of the physical world from content shared or corroborated by

human sensors in the online social medium. The problem is important be-

cause humans possess tremendous capability in terms of assessing different

situations, much better than a hardware sensor can. When an important

event like celebration, protest, election, disaster, sports, or even a revolution

happens in the physical world, people can independently observe it. Increas-

ing prevalence of gadgets with rich sensors, and the use of online social net-

works for instant information broadcast motivates them to share the obser-

vations in the form of text, location, photo, or video. Individuals discussing

the events in this way, on average, understand the context. Their behavior

reflects their understanding. By monitoring such collective behavior, it is

possible to harness the collective intelligence of the social medium [1], that

can be useful to assess the veracity of the information. Therefore, our goal

is to faithfully reconstruct factual information about the events happening

in the physical world. This direction unveils new opportunities. It becomes

possible to automatically crowd-sense news without professional curation,

free from bias or influence. To make our point, Table 1.1 shows evidences of

events being reported to Twitter first, much before a traditional news service.

The problem is challenging for many reasons. First, participants are hu-

man, and individual participation is mostly voluntary and untrained. There-

fore, traditional human errors like mistake, omission, or exaggeration are

common. Second, unlike physical world, online platforms tend to have much

lower cost of social interactions. They follow a broadcast (or multicast) based

information dissemination model. People share both original and corrobo-

rated content in the form of text, pictures, or video, and others can easily

discover those by following particular people or topics of interest. Therefore,

1



Table 1.1: Example tweets appearing earlier than news media

Event Time (CT) Tweet

Beijing
Earthquake

1:37am
12 May 2008

EARTH QUAKE in Beijing? Yup... @keso I
felt it too!!

Hudson river
plane crush

2:36pm
15 Jan 2009

http://twitpic.com/135xa There’s a plane
in the Hudson. I’m on the ferry going to pick
up the people. Crazy

Royal Wedding 5:04am
16 Nov 2010

The Prince of Wales is delighted to announce
the engagement of Prince William to Miss
Catherine Middleton

Raid on Osama
Bin Laden

2:58pm
1 May 2011

Helicopter hovering above Abbottabad at
1AM (is a rare event)

Whitney
Houston

6:30pm
11 Feb 2012

My sources say Whitney Houston found dead
in Beverly hills hotel.. Not in the news yet

Boston
Marathon
Bombing

1:50pm
15 Apr 2013

Explosion at coply

it is easier to be partial, be influenced, believe rumors, or be persuaded by

bias. Third, the social platforms receive content at a tremendously high rate.

Applications would need to utilize machine clusters to run at scale. More-

over, much of this content can be irrelevant to particular question, or not

represent observable physical states. In this dissertation, we present algo-

rithms and systems to summarize the factual information at scale, from the

large volume of human generated social media content.

Toward the goal of reconstructing the physical world, we identify that the

fundamental challenge is to find mechanisms to handle correlated errors in

the observations posted by human sources. In this dissertation, we present

algorithms to solve this problem in different situations. We observe that

people tend to follow others, and are influenced by them. Because of this

property, people sharing information about an event may not have indepen-

dently observed it, rather they are relaying information received from some-

one else. We present admission control techniques to drop dependent sources

from a social-sensing scenario [2]. Further improvements jointly estimate the

credibility of the sources and the informations given a social dependency net-

work, using a maximum-likelihood estimation technique [3]. Next we observe

that in case of situations involving conflicting interests of multiple opposing

groups, the network of information propagation takes a polarized shape. Peo-

2



ple show preference for particular side of the conflict, and selectively share,

omit, or follow information. We argue that the sources become less credible if

the information confirms their bias. We show that polarity-aware algorithms

can better reconstruct the ground truths [4, 5], given the attachment of the

sources is already known. Next, we have developed unsupervised algorithms

to model polarization in the social network [6], and automate the process of

separating content of different polarities [7]. Using the polarity annotations

obtained by our algorithm, we automate the generation of polarized social

dependency network, which allows us to develop a real-time news service.

To run this service at scale, we developed ‘SocialTrove’ [8], which utilizes a

machine cluster to summarize social content. We have integrated our algo-

rithms and services into ‘Apollo Social Sensing Toolkit’ [9]. Evaluations have

been performed using Twitter as the social network.

The central theme to this dissertation is making use of the crowd wisdom.

Human sensors have already assessed the events that transpire around them,

and expressed their version. We show that taking hints from the selective

share and corroboration properties of the sources allow us to reconstruct the

observable states of the physical world. We, therefore, state the following:

Thesis Statement Algorithms to distill facts from social media posts must

observe and account for information propagation patterns on the medium.

Relying exclusively on analysis of information propagation patterns can in-

deed distill accurate observations with high probability, even in the absence

of (deep) analysis of content.

1.1 Challenges

In this section, we further explain the problem and the challenges in the

context of Twitter.

• Human generated observations are unstructured and contains various

forms of conscious or unconscious variabilities. Two different volun-

teers may take the photo of same important event, but their photos

would probably have different angles [10]. Two different sources may

tweet about the same event, albeit in slightly different wording [8]. For

3



Table 1.2: Examples of factual and non-factual tweets

Factual tweets Non-factual tweets

Hate crime soared to record levels in
most areas after #Brexit vote.

Do you know that there may be a third
force acting on this #Brexit thing?

After Hurricane #Irene hit Puerto
Rico, the streets were so flooded that
a shark managed to swim in a street.

I won’t cry if Hurricane Irene annihi-
lates the Jersey Shore.

In Egypt, the death toll in the clashes
between police and pro-Morsi support-
ers in Cairo has risen to 34.

Good luck #Egypt! Peacefully Fight
for what you know is right! We are
thinking of you!

Warren Buffet led Berkshire Hathaway
has tripled its holdings in #Apple.

The iPhone 7 charger/headphone situ-
ation is one of the worst things that’s
ever happened to me.

example, Main street is flooded, and There is flood in main

street essentially represents the same state about the physical world.

• People share independently observable events in the social media. Ad-

ditionally they also post slogans, personal stories, opinions, etc that do

not constitute as states of the physical world. Our goal is to faithfully

reconstruct the observable states. Table 1.2 shows example of such

tweets in the left, and tweets that do not represent factual information

on the right. Presence of unrelated information makes the problem

harder. Note that tweets on the left can have binary states True or

False.

• Some people are more credible in their reporting and, some are less

credible by adding false or fictional information [3]. The social influ-

ence among the people also affects what they share [2, 4, 5]. In case

of conflicts, dispute, or situations involving multiple parties with con-

trasting interests, people can become biased and color their observa-

tions according to their sides [4]. Table 1.3 shows example of tweets of

different polarity on the left and right.

• ‘Big Data’ is inherent for crowd-sensing. According to Twitter, they re-

ceive over 500 million tweets per day [11]. For another example, around

100 million pictures are uploaded to instagram every day. Moreover,

the tweets can be viewed as a stream with high arrival rate. The rate

of generation of new information is variable depending on the events

4



Table 1.3: Tweets of different polarities

Pro Anti

President awarded @jamala title
of the Peoples Artist of Ukraine
(Pro-Jamala)

#Oops Poroshenko accidently confirms
on TV that Jamalas #Eurovision song
1944 is the same song “Crimea is
ours” from May 2015. @EBU HQ
(Anti-Jamala)

Crowds March in Egypt to Protest
Morsi Detention. (Pro-Morsi)

Amnesty International Egypt: Evi-
dence points to torture carried out by
Morsi supporters. (Anti-Morsi)

Huge #Brexit benefit is some control of
immigration. If you want in, you have
to have a job. (Pro-Brexit)

If #Brexit is a grand social experi-
ment to see how stupid people can be
and how low they can go, the answer
is Very. Can we stop now please?
(Anti-Brexit)

Syrians In #Ghouta Claim Saudi-
Supplied Rebels Behind #Chemical At-
tack (Pro-Government)

Syria govt forces carried out co-
ordinated chemical attacks on
#Aleppo. Security Council should act
(Anti-Government)

that are actually happening in the real world. Events like election,

disaster, or major sports are likely to generate more involvement from

people for a while. As a result, the observations can be highly transient

and the value of the information can quickly damp out. It is practical

for the applications to have near real-time requirements to act on the

observations.

1.2 Contributions

This dissertation addresses the challenges mentioned in section 1.1. In the

following sections, we explain the contributions.

1.2.1 Source Dependency in Social Sensing

A key challenge in reconstructing the physical states is selecting an inde-

pendent set of observations, that truly corroborates a particular event in

question. Because human sensors are influenced by others, we observe that

presence of non-independent observations rank many of the non-factual or

rumor tweets higher. In this work, we explore several simple distance met-

5



rics between sources, derived from their social dependency network. Distance

may depend on factors such as whether one source is directly connected to

another (e.g., one follows the other in Twitter), whether both are connected

to a common ancestor (e.g., both follow a common source), or whether both

are followed by the same people. By choosing the most dissimilar sources,

we show that we can improve the reconstruction of events. This work is

described in detail in Chapter 2.

1.2.2 Social Sensing with Polarized Sources

In this work, we develop a polarity aware fact-finder. The fact-finder ad-

dresses the problem of reconstructing accurate ground truth from unreliable

human observations in polarized scenarios. By polarization, we refer to a

situation where different groups of sources hold largely different beliefs that

color their interpretation, and hence representation, of events they observe.

Hence, multiple competing versions of such events are reported. The goal

of our algorithm is to identify versions that are more likely to be consistent

with ground truth. We abstract human observers as binary sensors [3] in

that each reported observation is either true or false, and make statistical

credibility assesments solely based on propagation patterns on different ob-

servations. Based on the polarity of the assertions, we extend EM-Social [3]

algorithm to implement a polarity-aware fact-finder. Evaluations using po-

larized scenarios crawled using Twitter search API show that in the presence

of polarization, our reconstruction tends to align more closely with ground

truth in the physical world than the existing algorithms. The algorithm is

implemented as an application module in Apollo Social Sensing Toolkit, and

used to de-bias the crowd-sensed news feed service. It is described in detail

in Chapter 3.

1.2.3 Evaluating Polarization Models in Social Networks

This work develops and evaluates models of information propagation on so-

cial media in the presence of polarization, where opinions are divided on

issues of contention into multiple, often conflicting, representations of the

same events, each reported by one side of the conflict. Multiple models are

6



compared that derive from the hypothesis that individuals propagate more

readily information that confirms their beliefs. We use these models to solve

the inverse problem; namely, given a set of posts in a conflict scenario, au-

tomate their separation into opinions that favor each side, as well as pieces

that appear to me more neutral. Specifically, we develop new maximum-

likelihood estimation algorithms for separation of polarized Twitter posts.

This work is described in detail in Chapter 4.

1.2.4 Unveiling Polarization in Social Networks

We present a matrix factorization based gradient descent algorithm to sepa-

rate polarized content in social networks. We propose a model for polarized

information networks, and show that the presence of polarized groups can

be detected by considering dependence among posted observations. We ex-

plore different degrees of polarization and compare the quality of separation

(of tweets of opposing polarity) across different algorithms, using real traces

collected from Twitter. Evaluations using polarized scenarios crawled using

Twitter search API show that our algorithm performs much better than using

sentiment analysis or veracity analysis to solve the problem. The algorithm

has been implemented as an application module in Apollo Social Sensing

Toolkit. It is used to separate the assertions in different polarity groups, as

an input to the polarity aware fact-finder. This work is described in detail

in Chapter 5.

1.2.5 SocialTrove: A Summarization Service for Social
Sensing

SocialTrove is a general-purpose representative sampling service that reduces

redundancy in large data sets. The service allows application designers to

specify an application-specific distance metric that describes a measure of

similarity relevant to this application among data items. Based on that

application-specific measure, the service hierarchically clusters incoming data

streams in real time, and allows applications to obtain representative samples

at arbitrary levels of granularity by returning cluster heads at appropriate

levels of the cluster hierarchy. When data are large, if the observations

7



are stored in a cluster-agnostic manner, retrieving a representative summary

would require scanning the entire set of observations, thereby communicating

with many machines and decreasing throughput. Instead, SocialTrove stores

content in a similarity-aware fashion. Apollo Social Sensing Toolkit uses

SocialTrove in the underlying data infrastructure level to cluster incoming

data objects in an online fashion, and to serve data objects matching to a

query, for subsequent consumption by the application modules. Evaluations

using Twitter decahose streams show that SocialTrove supports higher query

throughput compared to traditional indexing mechanisms, while maintaining

a low access latency. SocialTrove is described in detail in Chapter 6.

1.2.6 Apollo Social Sensing Toolkit

The social-sensing and summarization algorithms presented in this disserta-

tion have been integrated with ‘Apollo Social Sensing Toolkit’, which is a

cloud-backed social sensing platform to create, execute, and customize social

sensing tasks. consisting of levels (i) Social Sensors, (ii) Data Infrastructure,

and (iii) Application Modules, and a runtime system. Apollo is scalable, and

uses a distributed architecture to parallelize analytics workload in a machine

cluster. Apollo Social Sensing Toolkit is described in detail in Chapter 7.

1.3 Impact

• The research outcomes have been integrated into Apollo Social Sens-

ing Toolkit, a distributed platform for social sensing. Apollo is being

used at US Army Research Lab, and for academic research in multiple

departments at UIUC, RPI, CUNY, UCSF, UWisc, ND, PSU, and a

few other universities.

Current implementation of Apollo Social Sensing toolkit is deployed in

UIUC Green Data Center [12]. There are 20 internal and 20 external

users on apollo3.cs.illinois.edu and apollo4.cs.illinois.edu,

regularly utilizing the toolkit for tracking current events and distilling

high value content from large amounts of noisy social media content.

• SocialTrove and the social-sensing algorithms developed in this dis-

8



sertation are also used as infrastructure for data prioritization in the

recently proposed NDN stack that makes networks aware of hierarchical

data names.

• Algorithms related to this dissertation have been mentioned in books

‘Social Sensing: Building Reliable Systems on Unreliable Data’ [13],

‘Advances in Computer Communications and Networks – From Green,

Mobile, Pervasive Networking to Big Data Computing’ [14].

• Papers related to this dissertation have been included more than 15

times, in the reading list of graduate-level courses in different universi-

ties. The courses include Sensing in Social Spaces, Adaptive Computing

Systems, Advanced Distributed Systems, Data-Driven CPS, etc.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 introduces the cor-

related error in social-sensing caused by the dependent sources. It presents

source selection mechanism to select an independent set of sources. Chap-

ter 3 explains the correlated error caused by the presence of polarization

and bias in conflict situations. It presents a polarity-aware fact-finder algo-

rithm to uncover the likely truths in the presence of two or more parties with

conflicting interests. It requires the content to be separated into different

polarities. Therefore, Chapter 4 studies polarization models, and proposes

maximum-likelihood estimation algorithms. Chapter 5 presents matrix fac-

torization based algorithms to partition the content into polarized groups.

Based on the partitions, the algorithms presented in Chapter 3 is used to

automatically generate a news-feed of observable facts about the conflict sit-

uations happening in the physical world. Chapter 6 introduces SocialTrove

to address the issue of information overload. SocialTrove reduces redundancy

from socially sensed observations by hierarchically clustering tweets in an on-

line fashion, and provides a representative and diverse sample to build the

information network required by the earlier algorithms. We have integrated

the proposed algorithms and the systems into Apollo Social Sensing Toolkit,

described in Chapter 7. Finally, we conclude the dissertation in Chapter 8,

and explore avenues for future research.

9



CHAPTER 2

SOURCE DEPENDENCY IN SOCIAL
SENSING

This chapter develops algorithms for improved source selection in social sens-

ing applications that exploit social networks (such as Twitter, Flickr, or other

mass dissemination networks) for reporting. The collection point in these

applications would simply be authorized to view relevant information from

participating clients (either by explicit client-side action or by default such as

on Twitter). Social networks, therefore, create unprecedented opportunities

for the development of sensing applications, where humans act as sensors or

sensor operators, simply by posting their observations or measurements on

the shared medium. Resulting social sensing applications, for example, can

report traffic speed based on GPS data shared by drivers, or determine dam-

age in the aftermath of a natural disaster based on eye-witness reports. A key

problem, when dealing with human sources on social media, is the difficulty

in ensuring independence of measurements, making it harder to distinguish

fact from rumor. This is because observations posted by one source are

available to its neighbors in the social network, who may, in-turn, propagate

those observations without verifying their correctness, thus creating corre-

lations and bias. A corner-stone of successful social sensing is therefore to

ensure an unbiased sampling of sources that minimizes dependence between

them. This chapter explores the merits of such diversification. It shows

that a diversified sampling is advantageous not only in terms of reducing the

number of samples but also in improving our ability to correctly estimate the

accuracy of data in social sensing.

2.1 Overview

This chapter investigates algorithms for diversifying source selection in social

sensing applications. We interpret social sensing broadly to mean the set

10



of applications, where humans act as the sensors or sensor operators. An

example application might be a participatory sensing campaign to report

locations of offensive graffiti on campus walls, or to identify parking lots

that become free of charge after 5pm. Another example might be a damage

assessment effort in the aftermath of a natural or man-made disaster, where

a group of volunteers (or survivors) survey the damaged area and report

problems they see that are in need of attention. Social sensing benefits from

the fact that humans are the most versatile sensor. This genre of sensing is

popularized by the ubiquity of network connectivity offered by cell-phones,

and the growing means of information dissemination, thanks to Twitter,

Flickr, Facebook, and other social networks.

Compared to applications that exploit well-placed physical sensors, social

sensing is prone to a new type of inaccuracy; namely, unknown dependence

between sources, which affects data credibility assessment. This dependence

arises from the fact that information shared by some sources (say via a social

network such as Twitter) can be broadly seen by others, who may in turn

report the same information later. Hence, it becomes harder to tell whether

information received is independently observed and validated by the source

or not. When individual data items are inherently unreliable, one would like

to use the degree of corroboration (i.e., how many sources report the same

data) as an indication of trustworthiness. For example, one would like to

believe an event reported by 100 individuals more than an event reported by

a single source. However, if those individuals are simply relaying what they

heard from others, then the actual degree of corroboration cannot be readily

computed, and sensing becomes prone to rumors and mis-information.

We investigate the effect of diversifying the sources of information on the

resulting credibility assessment. We use Twitter as our social network, and

collect tweets representing events reported during Egypt unrest (demonstra-

tions in February 2011 that led the resignation of the Egyptian president)

and hurricane Irene (one of the few hurricanes that made landfall near New

York City in 2011). For credibility assessment, we use a tool developed earlier

by the authors that computes a maximum-likelihood estimate of correctness

of each tweet based on its degree of corroboration and other factors [15]. In

our dataset, some of the tweets relay events that are independently observed

by their sources. Others are simply relayed tweets. Note that, while Twit-

ter offers an automatic relay function called “re-tweet”, there is nothing to

11



force individuals to use it when repeating information they heard from oth-

ers. It is perfectly possible to originate tweets with similar content to ones

received without using the re-tweet function. In this case, information is lost

on whether content is independent or not.

While it is generally impossible to tell whether or not content of two similar

tweets was independently observed, our premise is that by analyzing the

social network of sources, we can identify those that are “close” and those

that are “not close”. By using more diversified sources, we can increase the

odds that the chosen sources offer independent observations, and thus lower

our susceptibility to rumors and bad information.

We explore several simple distance metrics between sources, derived from

their social network. Distance may depend on factors such as whether one

source is directly connected to another (e.g., one follows the other in Twitter

lingo), whether both are connected to a common ancestor (e.g., both follow

a common source), or whether both are followed by the same people. By

choosing the most dis-similar sources, according to these metrics, we show

that we can indeed suppress more rumors and chain-tweets. The impact

of different distance metrics on improving credibility assessment of reported

social sensing data is compared.

The rest of this chapter is organized as follows. Section 2.5 describes

earlier work done in field of source selection and fact-finding. Section 2.2 for-

mulates our source selection problem and proposes a set of source selection

schemes that diversify the sources admitted for purposes of data collection.

Evaluation results demonstrating the effect of source selection on credibil-

ity assessment of collected data are presented in Section 2.4 followed by a

summary in Section 2.6.

2.2 Source Selection in Social Sensing

Data in social sensing applications that exploit social networks (e.g., Twitter)

can be polluted by users who report events that are not experienced or verified

by themselves. This is because individuals are able to reproduce claims that

they heard from others. We argue that if information can be collected from

a diverse set of sources who have a weak “social” connection between them,

there is a higher chance that the information collected thereby would be more

12



independent, allowing a more informed judgment to be made regarding its

reliability. In the following, we use the terms users, sources and nodes as well

as the terms tweets, feeds, claims and observations interchangeably.

2.2.1 Online User Social Graph and Source Dependence

In an online community platform or online social network, each user main-

tains a virtual relationship with a set of other users. This relationship entails

some degree of information sharing. For example, on YouTube, a user may

subscribe for videos posted by another user so that the former gets a no-

tification when the later uploads a new video. In Facebook, there is an

explicit friend relationship and a membership of a fan-page of another well-

known user. Google+ has more granularity like friends, family members,

acquaintances, and other groups, called circles. In this chapter, we consider

a Twitter-based social sensing application, which allows a follower-followee

relation. A user following another user means that the former intends to

receive the posts made by the latter. We say that if user i follows user j, i is

the follower and j is the followee. In Twitter, a user can arbitrarily choose

which other users to follow, although the converse is not true. That is, a

person can not make another user follow them (a person can, however, block

another user from following).

F

E

D C

B
A

Figure 2.1: A social graph of Twitter uesrs. A directed edge means which
source follows which.

We leverage this relationship in Twitter to form a social graph among

users. We represent each user by a vertex in the graph. A directed edge

from one vertex to another denotes that the latter follows the former. We

use the notation i→ j to denote an edge in the graph (meaning that user i

follows user j). Sometimes, a user may not directly follow another, but can

13



follow transitively via a set of intermediate followees. We refer to this as a

follow chain. We use i→k j to denote such a chain with k edges in between.

Obviously, i → j = i →1 j. If i follows j via more than one path, i →k j

denotes the one with the least number of hops. We also use F (i) to denote

the set of users that a node i follows, that is, the set of followees of node i.

It is reasonable to argue that if source i directly follows source j, reports

posted by j would be visible to i, making the information posted by i po-

tentially not original. Another possibility could be that both source i and

j have another source in common that both of them follow (i.e., they have

a common followee). In that case, the common followee may impact both

of them, making their observations mutually dependent. In order to extract

reliable information from user-generated tweets, our intention is to gather

tweets from independent sources to maximize the odds of originality of the

information (or equivalently minimize the chance that these users influenced

one another). The question is how to reduce potential dependence among

users as a given the follower-followee relationships between them. In the

following, we formulate this source selection problem.

2.2.2 Source Selection Problem Formulation

We construct a dependence graph consisting of sources as vertices and di-

rected edges between vertices as an indication whether or not a source is po-

tentially dependent on another source (e.g., receives their tweets). Weights

assigned to edges reflect the degree to which such influence can happen.

These weights depend on the characteristics of the social network and the

underlying relationship among sources in the social graph. In the context of

Twitter, we simply use the follow relationship between sources. If we con-

sider the follow relationship to be the only way sources could be dependent,

the proposed dependence graph is identical to the Twitter social graph itself.

In general, it is reasonable to assume that other forms of dependence may

also exist.

Let G = (V,E) be the dependence graph, where an edge ij indicates source

i is potentially dependent on j. Each edge ij is assigned a dependence score,

fij, that estimates the probability of such dependence. That is, with proba-

bility fij, source i could make the same or similar claims as source j. Many

14



factors affect these dependence scores. For example, when a source directly

follows another source, it is more dependent on its followee than a source

that follows the same followee via a longer follow chain. The number of com-

mon followees between a pair sources can also be an indication of dependence

between them. If a given pair of nodes have a large number of common fol-

lowees, they are prone to be more dependent than a pair that have fewer

common followees or no followees at all. Whatever the cause of dependence

between sources is—that we describe in the subsequent subsection in more

detail—we aim to choose a subset of sources that have the least amount of

dependence among them.

In the rest of the chapter, we re-draw the dependence graph, G, as a

complete graph with transitive dependencies collapsed into a single edge.

Hence, fij exists for every pair of sources i and j (fij, and is zero only

if no influence exists between them. We are interested in estimating the

probability that a source makes an independent claim, when its claims can

be potentially influenced by those made by others. We define an overall

independence score for each source that gives the probability that it is not

influenced by other sources in making a claim. This score, denoted by β(i)

for source i, can be approximated as:

β(i) = P [i is independent in making claims]

=
n∏
j=1

P [i is not dependent on j]

=
n∏
j=1

(1− fij) (2.1)

One important property of the independence score (that we shall hence-

forth refer to as the β-score) is that a source cannot have this score in iso-

lation. It is rather a functional form of dependence on other sources. From

the definition, we observe that β(i) = 1 means that source i is absolutely

independent (not dependent on any other sources in consideration). We also

notice that the β-score declines for a source if the source is influenced by

more other sources. To diversify the collection of sources, we consider only

a subset of sources whose sum of independence scores is maximum subject

to the constraint that no individual source has an independence score below

15



a certain threshold. Let this threshold be τ . That is, we want to compute

the subset of selected sources S ⊆ V that maximizes the sum of β-scores.

Therefore, we have:

max
∑
i∈S

∏
j∈S

(1− fij) (2.2)

s.t.
∏
j∈S

(1− fij) ≥ τ, ∀i ∈ S (2.3)

Note that, individual sources can also have an influence factor associated

with them that can be inferred from the number of followers. If a source

has many followers, it may mean that this source produces observations that

other users find reliable. This is a source ranking problem and has been

addressed in prior work. In this chapter, we do not address source ranking.

Instead, we verify the promise that diversifying the sources can improve the

performance of a subsequent ranking algorithm.

The optimization problem stated by Equation (2.2) can be shown to be an

IP (Integer Programming) problem, and is therefore NP-Hard. We can use

a greedy approximation by building the solution incrementally. The greedy

algorithm assumes that all candidate sources are available apriori so that the

source selection can pick a subset of them. Sometimes the set of sources is

not known beforehand. Rather, new sources are discovered as they arrive

incrementally. In that case, an online algorithm seems more appropriate.

In this chapter, we consider a system where a stream of tweets arrives

at a processing station. Our source selection scheme acts as an admission

controller that needs to make an online assessment regarding whether or not

a new source is to be selected based on the relationships it has with respect

to other sources selected earlier. If the source is selected, all tweets that

originate from that source are admitted, and will be passed to the actual

processing engine as they arrive. Otherwise, the source is not admitted and

all tweets from that source will be dropped on arrival. Hence, our online

admission controller is a simple gate that admits tweets based on which

source they are coming from. An advantage of admission control as described

above is that it is fast and easy. In particular, it is based on sources and

not on the content of tweets. In principle, better admission controllers can

consider content as well, but they will be significantly slower. Hence, in this

16



chapter, we restrict our notion of data sampling to the granularity of entire

sources, making it a source selection scheme. In the following, we compare

performance of different source selection schemes.

2.3 Online Admission Control

The online admission controller makes a decision regarding each tweet upon

its arrival to the system. If the source associated with the tweet is already

admitted, the tweet is passed to the next step. If not, the candidacy of the

source is evaluated in terms of how independent this source is with respect

to the earlier admitted sources. The admission controller computes the β-

score of the incoming source and then accepts it only if its β-score remains

above an admission threshold, τ . Otherwise, it is denied. Let S be the set

of sources that have been admitted so far. The source denial rule, as per

Equation (2.3), is:

Denial rule for source i:
∏
j∈S

(1− fij) < τ (2.4)

For a certain definition of fij and the associated admission threshold, τ ,

we can formulate a set of different admission controllers as we describe in the

following. In all admission control schemes, if not otherwise stated, admission

decisions are final: once admitted, a source is not revoked from the admitted

set. In the following discussion, let i be the source who is seeking admission.

1. No direct follower:

fij =

1 if i follows j

0 otherwise

τ =1

Deny, if the source is a direct follower of another admitted source. Recall

that if source i follows any of the earlier admitted sources in S, that is, for

some j ∈ S, fij = 1, it leads to β(i) = 0, thus violating the admission

condition.

17



2. No direct follower as well as no common followee:

fij =

1 if i→ j ∨ F (i) ∩ F (j) 6= ∅

0 otherwise

τ =1

Deny, if the source directly follows someone in the set or has at least one

followee in common with another admitted source.

3. No descendants:

fij =

pk if i→k j, 0 < p < 1

0 otherwise

τ =1

Deny, if the source is a follower of another admitted source possibly via a set

of intermediate followees.

4. No more than k followees:

fij =

p if i follows j

0 otherwise

τ =(1− p)k

for some constant p, 0 < p < 1.

Deny, if a source is a direct follower of more than k admitted sources.

No common followee with more than k sources:

fij =

p if F (i) ∩ F (j) 6= ∅

0 otherwise

τ =(1− p)k

Deny, if a source has at least one followee in common with at least k other

admitted sources.

18



No more than k common followees:

fij =

1 if |F (i) ∩ F (j)| ≥ k

0 otherwise

τ =1

Deny, if a source has at least k followees in common with another admitted

source.

jS

i

Figure 2.2: Admission control scheme. Assuming the same dependence
score f between pair of sources, β(i) = (1− f)2 and β(j) is declined by a
factor (1− f).

4. β-controller: This controller selects sources that progressively improve the

sum of β-scores as per Equation (2.2), while satisfying the constraint (2.3) for

each individual admitted source. This controller considers transitive follower-

followee relationships among sources and defines the following dependence

function:

fij =

pk if i→k j

0 otherwise
(2.5)

for some constant p < 1. We used, p = 1
2
.

Let B(S) be the sum of β-scores of admitted sources. In other words,

B(S) =
∑

j∈S β(j). Let i be the new source. The scheme computes:

β′(i) =
∏

j∈S∪{i}

(1− fij),∀i ∈ S ∪ {i} (2.6)

19



B(S) =
∑
j∈S

β(j) (2.7)

B′(S) =
∑

j∈S∪{i}

β′(j) (2.8)

The scheme then admits i only if β′(i) ≥ τ and B′(S) > B(S). Note

that, when a new source is admitted, the scores of some earlier admitted

sources may decrease (this is because they may be followers of this newly

admitted source). Upon admittance of the new source, those scores are

updated. Among possible choices, we consider two versions of β-controllers,

with τ = 0, 1. The one with τ = 0 does not check individual β-scores but

admits sources as long as they improve B(S), whereas τ = 1 denies a new

source if it has any link with any of the earlier admitted sources (i.e., β < 1)

and also fails to improve B(S).

Admission Control Logic

Source crawler

Source<source, tweet>

Database

Source Admission Controller

Tweet Tweet stream

decision

independence scores

admitted sources

Controller soft states

www.twitter.com

Tweet

No

Yes
Pass?

Social graph

{sources, dependence scores}

Parser
Tweet stream

Source

Drop source

(e.g. Apollo)

Crediability Assessor

Fact−finding tool

Figure 2.3: Schematic model of the admission controller with Apollo’s
pipeline.

2.3.1 Complexity of Admission Controllers

Once accepted, a source is not rejected later, and vice versa. So the decision

about a particular source can be stored in a hash table. Once a source arrives,

whether that source had already been explored or not, can be checked in

O(1) time and the stored decision can be used. If the incoming node is

previously unexplored, the admission controller needs to decide about it.

For the first three controllers, this decision requires O(out(i)) computations,

where out(i) is the outdegree of i in the dependence graph. The method is

simply to check whether any of those outdegree vertices belong to the set of

already decided sources. β-controllers consider ingoing edges also, so they

20



take O(out(i) + in(i)) computation steps per admission decision. In short,

the admission cost of a new source is at worst in the order of its degree in

the dependency graph. But it is O(1) lookup for all the tweets that come

from it thereafter. Moreover, social graphs tend to have a power law degree

distribution, so very few nodes will require a high computation time for the

decision.

Once admitted, a source is not discarded later, so the decision about a

particular source can be cached in a hash table. Once a tweet arrives, whether

that node had already been explored or not, can be checked in O(1) time

and that cached decision can be used. If the incoming node si is previously

unexplored, the admission controller needs to compute β(si) which takes

O(|TW (si)|+ |TR(si)|) computation time, where TW (si) is the set of those

edges in the transitive closure of the social graph which originate from si, and

TR(si) is the set of those edges in the transitive closure of the social graph

which end i si. So, computational complexity for taking a decision about a

new source depends on the sum of its indegree and outdegree in the transitive

closure of the social graph. For n sources, the total time for decision becomes

O(
∑n

i=1[|TW (si)| + |TR(si)|]) = O(et) according to handshaking lemma of

graph theory, where et is the number of edges in the transitive closure of

the social graph. However, when τ = 1, this computation can be done in

the original social graph rather than its transitive closure. Over time, as the

tweets arrive, total time spent for decision in that case becomes O(e), where

e is the number of edges in the social graph. For a stream of t tweets (t > n),

the total time spent is O((t−n) ∗O(1) +O(e)) = O(t+ e). So, average time

spent per tweet is O( e
t
). In a running system like Twitter, there will always

be some new users joining, but the fraction of new users will be insignificant.

After all the existing sources have been explored, total number of admitted

sources will remain nearly constant. Each tweeter user in general generates

a lot of tweets; so, as the number of tweet t increases, effective complexity

becomes O(1), which is the time needed for lookup in the hash table.

2.3.2 System Design and Implementation

Our admission controller is used in association with a fact-finding tool called

Apollo [16]. It receives a stream of tweets from which it derives credibility

21



scores of sources and claims (i.e., tweets) using an expectation-maximization

(EM) technique [15]. Once the iterations converge, Apollo outputs the top

credible sources and top credible tweets made by those sources.

Apollo assumes that all sources are independent. Our admission controller

filters out tweets before they are fed into the Apollo engine such that the

surviving ones are more likely to be independent indeed. Figure 2.3 shows

the design of the whole pipeline.

The pipeline is implemented as a set of stages processing a stream of tweets

in JSON format. A parser extracts various information components from

each tweet entry. There are two main components to extract: user infor-

mation, usually a unique Id and screen name of the source who tweeted the

current tweet, and the tweet string itself. The admission controller maintains

a source information base that is updated as it encounters new sources. Upon

encountering a new user, the “source crawler” contacts to the Twitter server

and collects the Twitter record of that particular user, which includes addi-

tional information such as the user’s screen name, location, profile url, the

number of followers and the number and identities of followees this user has.

If not otherwise restricted by any privacy setting for this user, the crawler

also collects the complete list of followees (i.e., the other users that this user

follows in Twitter’s user space). As more and more sources are encountered,

a social graph among users is constructed. This social graph is stored in a

database and is an essential element for source admission control.

An admission controller logic unit implements the admission control rules

described in Section 2.3. It computes dependence scores between pairs of

sources and admits new sources as permitted by the corresponding admission

rules. When an incoming source is admitted, the associated tweet entry is

passed to the next processing stage within Apollo.

2.4 Evaluation

We evaluated our source selection schemes using two Twitter datasets. One

is for Egypt unrest, collected in February 2011, during a massive public up-

rising in Cairo. Another dataset is from hurricane Irene, one of the costliest

hurricanes on record in the Northeastern United States, collected in Au-

gust 2011, when it made landfall near New York City. In both cases, we

22



(a) (b)

Figure 2.4: (a) Complementary distribution (CCDF) of follower and
followee count per user, (b) CCDF of ff-ratio per user, in Egypt dataset.

collected hundreds of thousands of tweets posted by users as the events un-

folded during those times. The datasets are summarized in Table 2.1. We

were interested in extracting a smaller subset of high quality reports on the

progress of these events as computed by the find-finder engine, Apollo. The

question is whether a significant improvement occurs in distilling the most

important tweets due to the source diversification process described earlier

in this chapter.

Table 2.1: Statistics of two datasets

Dataset Egypt unrest Hurricane Irene
Time duration 18 days ≈ 7 days
# of tweets 1,873,613 387,827
# of users crawled 5,285,160 2,510,316
# of users actually twitted 305,240 261,482
# of follower-followee links 10,490,098 3,902,713

In Twitter, both the number of followers and followees per user observe a

power law distribution (i.e., heavy tail distribution). More precisely, there

exists a very large number of users who have only a few followers, whereas

a few sources may have an extremely large number of followers. The same

is true for the number of followees. Figure 2.4a plots the complementary

cumulative distribution (CCDF) of the number of followers and followees

per source across all users recorded in the Egypt dataset and Irene dataset.

The CCDF depicts what fraction of users have the number of followers or

followees greater than the corresponding value on the x-axis.

In Figure 2.4a, we observe that the number of followers per user, in both

23



(a) Egypt dataset (b) Irene dataset

Figure 2.5: Relative quality scores across different admission control
schemes.

datasets, is larger than the number of followees per user. Hence, the followee

curve in the plot lies beneath the follower curve. Clearly, when the entire

social network is considered, the totals will be the same. However, in our

data collection, we see only those who tweet. Hence, we invariably sample

the subset of more active users, creating the imbalance between follower and

followee counts. We plot the ratio of follower count to followee count (ff-

ratio) in Figure 2.4b. We see that in both datasets only a very small fraction

of users have non-zero follower and followee count (1.7% for Egypt dataset

and 2.4% for Irene dataset). More than half of these have more followers

than followees (ff-ratio > 1). Very few users have an order of magnitude

more followers than followees. These are mostly popular entities, such as

celebrities, international organizations, and news media.

The goal of the evaluation was to answer two related questions: First,

what is the impact of source diversification on data credibility assessment

when the social network is well-connected? Second, what is the impact if

the social network is very sparse? Since both of our datasets were sparse,

to answer the first question, we artificially removed from one of the datasets

(namely, the Egypt dataset) all users who did not have any links (together

with their tweets). Tweets from the remaining sources were considered. The

Irene dataset was kept as is, and used to answer the second question (i.e.,

demonstrate the impact of our admission controllers in the case when the

underlying social network is sparse). Conceptually, our admission controllers,

by their very design, exploit links between sources for diversification. Hence,

in the absence of many links, their effect should not be pronounced.

Next, we present results from various admission controllers that we de-

24



scribed in Section 2.3. We compare no admission control to several admission

control schemes; namely, no follower (No FLWR), no common followee (No

CF) and no descendant (No DT), and β-controller (Beta). We evaluate the

improvement, attained by these admission controllers, in Apollo’s ability to

rank tweets. Performance was assessed by the fraction of top-ranked tweets

that were “good” in that they reported “relevant and true facts”. To identify

relevant and true facts, we asked volunteers to grade the top-ranked tweets

by placing them in one of the following two categories:

• Fact : A claim that describes a physical event that is generally observ-

able by many individuals independently and can be corroborated by

sources external to the experiment (e.g., news media).

• Other: An expression of one’s personal feeling, experiences, or senti-

ments. Remarks that cannot be corroborated. Unrelated random text

and less meaningful tweets.

Apollo was run with each of the admission control options on consecutive

windows of data, called epochs , and used to return the top 5 tweets from each

epoch. For the Egypt dataset, we divided the timeline into 18 epochs, and

collected the top 5 tweets from each, resulting in a total of 90 tweets graded

per experiment (i.e., per admission control option). For the Irene dataset,

we choose 150 tweets (top 5 tweets from each of 30 epochs). We built a

web interface, where volunteers could grade these tweets without revealing

which ones were selected in which experiment (i.e., with which admission

controller). Once tweets were graded, a quality score for each experiment

was computed denoting the fraction of tweets that have been identified as

fact. If more than one volunteer graded the same results and differed in

classifying a tweet, we used the average score.

Figure 2.5 presents the relative quality scores of various admission con-

trol schemes with respect to the “no admission control” scheme. We present

results with two Apollo options, i) with retweets and ii) without retweets.

The former option has no effect on the dataset. The latter option discards

all tweets that are explicitly tagged by their sources as “retweets” (i.e., a

repeat of tweets posted earlier). This discarding is in addition to tweets

already dropped by admission control. We observe that, in both datasets,

experiments with no-retweet option produce higher quality scores. This is

25



because they eliminate “chain-tweeting”, where users relay sentiments and

opinions of others. In the absence of such re-tweets, highly corroborated

tweets (that percolate to the top) more often reflect situations that indepen-

dently prompted the respective individuals to report. Such a synchronized

reaction typically reflects a higher importance of the reported situation.

In our plots, “Beta 1.0” stands for β-controller with threshold, τ = 1.0.

We observe that in general β-controllers result in better quality scores. This

observation supports our hypothesis that diversifying sources does indeed

improve the quality of information distillation. In contrast, the performance

of the other admission controllers is mixed. For the Egypt dataset, simple

admission heuristics such as ‘no follower’, ‘no common followee’ and ‘no de-

scendant’ generally offer slightly lower quality scores compared to no admis-

sion control. For the Irene dataset, they produce lower scores when retweets

are included but higher scores in the no-retweets case.

Note that, since the Irene dataset has limited connectivity, β-controllers

have a more limited impact. They performs similarly to the no admission

control case for the with-retweets option, and slightly better for the no-

retweets option. This is expected, since sparse social networks offer little

opportunities for further diversification.

With retweets option, however, there are a couple of small discrepancies.

For example, “Beta 0” improves the result, but “Beta 0.5” does not, again

“Beta 1.0” does. While dropping admitted sources has positive improvements

for “Beta 0.5”, the same does to hold for “Beta 1.0”. These discrepancies in

the reported results are mainly due to the fact that in all experiments we had

a single stream of tweets, which did not allow us to repeat these experiments

for a set of different tweet streams but on the same experiment condition.

We could have been able to make more generalizable comments on results if

we had more tunable experiment setups. We will accommodate this in our

future work.

For Irene dataset, we were needed to run a couple of different other admis-

sion controllers, due a particular issue with the dataset. The Irene dataset

has a very small connected social network: most sources have no edges with

others. This makes a very large number of sources to be trivially admit-

ted by the admission controllers we described earlier. To circumvent this,

we incorporate individual attributes of sources in addition to their pair-wise

relationships in admitting sources. We specifically used ff-ratio (which we

26



(a) With retweets (b) Without retweets

Figure 2.6: Admission controller statistics for different admission schemes
(Egypt dataset).

(a) With retweets (b) Without retweets

Figure 2.7: Admission controller statistics for different admission schemes
(Irene dataset).

refer to as α factor). Recall that ff-ratio specifies the ratio of follower count

to followee count of a user. Generally, sources with higher α scores prone to

be more independent than those with smaller values. When α score is con-

sidered, the admitted sources not only need to satisfy β-constraint, but their

α scores need to be higher than a certain threshold. That gives a variant of

“Alpha Beta” admission controllers. We show the results in Figure 2.5b.

Figure 2.6 and Figure 2.7 show the percentage of sources and tweets that

each admission controller admits for the two datasets. It is apparent that

some admission schemes are more pessimistic in the sense that they admit

fewer sources (and tweets thereby) than others. For the Egypt dataset, on

an average, 15–20% tweets are pruned by the admission controllers. For the

Irene dataset, however, admission rates across various admission controllers

are much higher because of the disconnected nature of the underlying social

network.

27



2.5 Related Work

Social sensing has received much attention in recent years [17]. This is due

to the large proliferation of devices with sensing and communication capa-

bilities in the possession of average individuals, as well as the availability

of ubiquitous and real-time data sharing opportunities via mobile phones

with network connection and via social networking sites (i.e., Twitter). A

few early applications include CarTel [18], a vehicular data collection and

sharing system, BikeNet [19], an application allowing bikers to share their

biking experiences on different trails, PhotoNet [20], a data collection service

for pictures from disaster scenes, CenWits [21], a search and rescue scheme

for hikers, CabSense [22], a participatory sensing application using taxi car

fleets, Urban sensing [23, 24], and ImageScape [25], an application for shar-

ing diet experiences. It has been suggested [17] that people-centric genre of

sensing should also cover humans as the sensors themselves, as opposed to

being sensor carriers and operators. There are many sensing challenges in

human context such as accommodating energy constraints of mobile sensing

devices [26], protecting the privacy of participants [27], and promoting social

interactions in different environments [28].

Srivastava et al. [17] suggested that humans are the most versatile sensors.

One consequent problem lies in the decreased quality of collected data, since

humans are not as reliable as well-calibrated sensors. Moreover, there are new

challenges that stem from the fact that observations may propagate among

such “sensors”, leading to correlated noise and bias. A significant amount of

literature therefore deals with extracting useful information from a vast pool

of unreliable data.

Prior to the emergence of social sensing, much of that work was done in

machine learning and data mining. The techniques were inspired by gener-

alizations of Google’s PageRank [29], Hubs and Authorities [30], Salsa [31],

Hub Synthesis [32] etc. These algorithms are designed to find authoritative

web-page to answer a web search query. However, it was noted that authority

does not always translate to accuracy, and data crawled from authoritative

web sources may contain conflicting information, wrong information, or in-

complete information. Therefore techniques were proposed that represent

information by a source-claim network [33,34] that tells who said what. The

basic idea is that the belief in correctness of a claim is computed as the

28



sum of trustworthiness of sources who made that claim, and the trustwor-

thiness of a source is, in turn, obtained from the beliefs in correctness of the

claims it makes. An iterative algorithm then tries to reason on this graph to

extract the most trustworthy information given the degree of corroboration

and inferred source reliability. Generally these techniques are called fact-

finders , a class of iterative algorithms that jointly infer credibility of claims

as well as trustworthiness of sources. Notable fact-finding schemes include

TruthFinder [35], 3-Estimates [36], and AccuVote [37,38].

Several extensions were developed to improve fact-finding results, such as

incorporating prior knowledge [39, 40], and accounting for the source’s ex-

pertise in different topics [41]. A maximum likelihood estimation approach

was developed that is the first to compute an optimal solution to the cred-

ibility assessment problem [15]. The solution is optimal in the sense that

the resulting assignment of correctness values to claims and sources is the

one of maximum likelihood. A confidence interval was also computed to de-

scribe the quality of the maximum-likelihood hypothesis [42]. In this chapter,

we attempt to improve quality of fact-finding results by improving its input

through increasing the odds of independence between the selected sources.

Directly considering the source dependencies in the EM formulation resulted

in EM-Social algorithm [3]. Further improvements resulted in [4, 43,44].

In the context of fact-finders, Qi et al. [45] consider dependency between

the sources and assess credibility of the sources at a group level, where a

group is formed by inferring latent dependency structure among the sources.

Vydiswaran et al. [46] propose fact-finders in the context of free-text claims

as opposed to structured information. Lehmann et al. [47] propose DeFacto

– a fact-validation mechansim for RDF triples. Yu et al. [48] propose multi-

dimensional fact-finding framework using slot filling validation technique. Li

et al. [49] propose confidence-aware algorithm when there is a long-tail distri-

bution of the sources to the claims. They incorporate signals from multiple

sources, systems, and evidences, using a knowledge graph, and combine with

multi-layer linguistic analysis of the content. Cao et al [50] address relative

accuracy in the absence of true values. Sensoy et al. [51] propose frameworks

based on Description Logic and Dempster-Shafer theory to reason about un-

certain information obtained from different sources. Pal et al. [52] address

the problem of integrating unreliable information over time. They model the

real-world history as hidden semi-Markovian process (HSMM), the unreliable

29



sources as observations of the hidden states, and propose Gibbs Sampling and

EM algorithms to jointly infer the history and their mapping to the sources.

Li et al. [53] propose optimization-based and MAP-based algorithms to es-

timate credibility from evolving data. Zhi et al. [54] propose EM algorithms

to identify the existence of true answer to particular questions in slot filling

tasks. These algorithms primarily work on structured information, while the

data received from social media is mostly free-form. The lack of addressing

for social factors such as influence or bias required new solutions.

The problem of source dependency has been addressed to improve the ac-

curacy of information fused from multiple web-sites and data sources [33,36,

55–57]. Dong et al. [38] consider source dependency by the complex copy-

ing relationship between sources. The problem is considered in the context

of fact-finders in [58]. Use of source-dependency to account for conflicting

data was presented by Dong et al. [37], Blanco et al. [59]. Liu et al. [60]

present Solaris, an online data fusion system and computes expected, max-

imum, and minimum probabilities of a value to be true. Sarma et al. [61]

consider the problem from the perspective of cost minimization and coverage

maximization. In their model, correlated errors from the dependent sources

are not explicitly considered. Zhao et al. [62] propose Latent Truth Model.

They model the sources using two types of errors, namely false positives and

false negatives, and merge multi-valued attribute types using a Bayesian ap-

proach. The problem of estimating real-valued variables in the presence of

conflicts has been addressed in [63]. Li et al. [64] propose iterative mech-

anisms using loss functions to estimate source reliability in the presence of

conflicting information. Pasternack and Roth [65] propose Latent Credibility

Analysis, a principled mechanism to identify credibilities in the presence of

conflict. Dong et al. [66] focus on providing explanation for the fusion for the

purpose of understanding the output. Pochampally et al. [67] propose fusion

techniques that consider source quality and data correlations. Li et al. [68]

propose scalable methods for copy detection.

Problems discussed in these works are related to our general problem of

finding facts, however the solutions are not applicable. The mechanisms as-

sume the presence of formatted and structured knowledge triplets, on which

the possible copy and level of dependency is estimated. They consider the

source dependency by unveiling possible data copies. They generate a rela-

tively independent set of high quality sources to perform data fusion using

30



voting. Earlier works [15] observed that voting is not optimal for finding facts

from social media posts. The reason is the unknown odds of different sources

to post correct information. To estimate the source models optimally con-

sistent with the observations, we use Expectation-Maximization (EM) based

formulations.

Additionally, the problem of detecting copied information is relevant in

fusing information from different web based information sources. This is

because often a particular information or a subset gets copied, and sometimes

there are multiple versions with conflicting claims. In case with Twitter or

similar social media analysis, posts are often small and are often about events

transpiring in the physical world that quickly change. It is easy to access

social media, and it is also easy to publish. Therefore, detecting possible

copy of a particular post is less relevant, rather the aggregate dependency

between the sources is more important for the analysis. The timestamp of

the posts, retweet information, and the similarity in expressed information

is used to estimate social dependency network.

The problem of information source selection has also been discussed in web

data retrieval [69–72] and in query sampling [73–75]. Dai et al. [76] utilize

the mutual dependency between sources to identify anomaly in the context of

users-rating-books and users-clicking-advertisement scenario. These efforts

reason on the attributes of sources as well as the content that those sources

generate. In contrast, ours is a content-agnostic approach that relies only on

relationships among sources.

Gupta et al. [77] propose heuristic methods to detect credible events in

the context of tweets. They perform ‘PageRank-like’ iterations for authority

propagation on a multi-typed network of events, tweets, and users, followed

by an event-graph analysis using event similarities. Xu et al. [78] perform ur-

ban event analysis using search engine results. Ye et al. [79] propose truth dis-

covery in the context of crowdsourcing. Meng et al. [80] propose optimization

framework to find true values in the context of crowd-sensing tasks, such as

air quality sensing, gas price, or weather condition estimation. [81] addresses

crowdsensing in disaster response. Ipeirotis et al. [82] utilize a classical EM

formulation to estimate worker quality in Amazon Mechanical Turk in the

presence of worker bias. Participant recruitment is addressed in [83]. Ay-

din et al [84] address multiple-choice question answering via crowdsourcing.

Su et al. [85] propose generalized decision aggregation in distributed sensing

31



systems. Scalability was addressed in [86], and approximate truth discov-

ery mechanisms by scale reduction was proposed. FaitCrowd [87] proposes

Bayesian algorithm for truth discovery in crowdsourding. Miao et al. [88]

propose privacy-preserving truth discovery in the context of crowd-sensing.

[89] proposes additive and multiplicative models for crowdsourced claim ag-

gregation. [90] detects spatial events via truth discovery in crowdsourcing.

[91] exploits implication relations in the data for truth discovery. Li et al. [92]

propose truth discovery for reliable medical diagnosis using crowdsourcing.

Feeds from Twitter have been used for event detection [93, 94], explaining

anomaly in traffic events [95, 96], or exploring sports events [97]. Mukherjee

et al. [98] combine some linguistic features with contextual information to

estimate user credibility in the context of medical drugs using probabilistic

inference. Sakaki et al. modeled Twitter users as social sensors to report

earthquake in Japan [99].

Most of the related works discussed in this section utilize a network-based

approach to detect facts or key events. A different school of thought uses

semantic analysis, sentiment analysis, or natural language processing tech-

niques to determine whether a tweet is likely fact [100–106]. In general, these

solutions require a set of ground truth annotations to train a model specific

to a language, situation, or context. Twitter is a global and multilingual me-

dia. Events transpiring in the physical world are dynamic in nature, and the

signature to detect key facts may require contextual knowledge [101,104,105].

While our solutions can benefit from the presence of situation specific mod-

els, we did not want to depend on those. Therefore, in this dissertation, we

primarily restrict ourselves to statistical techniques like EM or matrix fac-

torization. Our algorithms look at source-claim structures, or information

propagation patterns that can reliably find key facts even in the absence of

(deep) content analysis.

EM-based fact-finders in the context of social sensing have been further

extended. Wang et al. [107], Yao et al. [44] propose recursive fact-finders in

the context of Twitter. The problem when the social media participants can

post conflicting claims has been addressed in [108]. Later in this disserta-

tion, we extend the EM-Social [3] formulation to polarized situation in social

media [4]. Huang and Wang [109] propose confidence-aware and link-weight

based [110] EM formulation for fact-finding in the context of social sensing.

Hierarchy of the claims has been exploited in [43]. Ouyang et al. [111] pro-

32



pose EM algorithms to eliminate bias from crowdsensed local business and

services discovery. Recent literature also extend the fact-finder formulation

in specialized situations like place discovery [112], spatial-temporal-social

constrained [113], theme-relevant [114], topic-aware [115], etc.

The social network of trust, influence, or dependency among the users

have been explored in different application contexts. Wang et al. [116] pro-

pose iterative reinforcement mechanisms to identify fake reviews or review

spammers using a social review graph. Agarwal et al. [117] propose mech-

anisms to estimate influence of the sources to the community in a blogging

environment. TIDY [118] proposes a trust-based approach to information

fusion by diversifying the set of sources.

The social dependency network can be used to detect rumors. Nel et

al. [119] propose a method using the information publishing behavior of the

sources and clustering sources with similar behavior. Shah and Zaman [120]

propose “rumor centrality” as a maximum likelihood estimator to detect the

source of rumors. Jin et al. [121] applied epidemiological models to study in-

formation cascades in Twitter resulting from both news and rumors. Castillo

et al. [102] develop a method that uses source, content, and propagation pat-

terns to classify rumors from non-rumors. The work on rumor-detection is

largely complementary to ours. We do not explicitly detect rumor source in

the dependency network. However, the mechanism to corroborate claims by

multiple independent sources tend to suppress rumors.

While estimating factual information from the social media posts, we do

not consider malicous sources. The error models considered in this disser-

tation consists of error caused by source dependency, polarization, or bias.

It is also possible for certain sources to collude, act malicious and deliber-

ately flood the network with false information. Algorithms for detecting sybil

nodes [122, 123] might be used in such cases to drop the bad sources from

consideration, before applying fact-finder techniques.

In this chapter, we use Apollo [9], a generic fact-finding framework that

can incorporate different suitable fact-finding algorithms as plug-ins for a

versatile set of applications. We use the aforementioned maximum-likelihood

estimator [15, 124] as the fact-finding algorithm in Apollo. We demonstrate

that the performance of fact-finding can be significantly improved by using

simple heuristics for diversifying sources so that it uses sources that are less

dependent on one another. Further improvements resulted in algorithms

33



described in [3, 43,44].

While our work on diversifying sources would not be needed if one could

accurately account for dependence between them in data credibility assess-

ment, we argue that, in general, estimating the degree of dependence between

sources is very hard. For example, if one source follows another on Twitter

and both report the same observation, it is hard to tell whether the second

report is simply a relay of the first, or is an independent measurement. Given

the ambiguity regarding the originality (versus dependence) of observations,

we suggest that diversifying the sources is a useful technique whether or not

credibility assessment can take dependence into account.

We implemented our source selection scheme as an online admission con-

troller that is included as an upfront plug-in to the Apollo execution pipeline.

Results show that our admission control can both speed up data processing

(by reducing the amount of data to be processed) and improve credibility

estimates (by removing dependent and correlated sources).

2.6 Summary

In this chapter, we considered a fact extraction problem from a large col-

lection of user-generated tweets during two recent events, namely the Egypt

unrest and hurricane Irene. We demonstrated that diversifying the sources

can improve the results of extracting high quality information (i.e., facts or

credible claims) from human-generated content. Human sources on social

networks may describe events that do not constitute their own independent

observations. This lack of independent corroboration may affect the accuracy

of extracting information. We built different online admission controllers that

filter tweets based on their sources and feed them into the fact-finding engine,

Apollo. We observed that those admission controllers that used local social

graph features such as the direct neighborhood of the source in question

had inconsistent performance, whereas admission controllers that used more

global features tended to perform better. In the current implementation, as a

proof-of-concept, we leveraged the “follow” relationship between online users

in Twitter as an indication of dependence between them. Other attributes

that might potentially make sources dependent, such as geographic locations

or communities to which users belong, will be investigated in the future.

34



The admission control mechanism improves the accuracy of distilled in-

formation. However, because we are dropping sources, we might be losing

important and significant information. Therefore, the correlated error model

caused by the dependent sources as described in this chapter has been further

improved in [3]. The algorithm is known as EM-Social. EM-Social considers

the dependency between the sources in a maximum-likelihood formulation.

The retween pattern of the sources is used to estimate a social network of

dependencies. This network provides information about parent-child rela-

tionship between the sources. When a parent claims a particular assertion,

and a child also claims it, the claim from the child is given less weight de-

pending on its repeat ratio. On the other hand, we consider those cases

as independent where the child claims an assertion, while the parent didn’t

claim it. Experiment results showed that such mechanisms that integrated

the source dependency inside the maximum-likelihood formulation improved

the accuracy of the distilled facts by 10% to 20% for different scenarios.

35



CHAPTER 3

SOCIAL SENSING WITH POLARIZED
SOURCES

This chapter addresses correlated errors in social sensing when the sources

can be polarized. Such might be the case, for example, in political disputes

and in situations involving different communities with largely dissimilar be-

liefs that color their interpretation and reporting of physical world events.

Reconstructing accurate ground truth is more complicated when sources are

polarized. The chapter describes an algorithm that significantly improves

the quality of reconstruction results in the presence of polarized sources. For

evaluation, we recorded human observations from Twitter for four months

during a recent Egyptian uprising against the former president. We then

used our algorithm to reconstruct a version of events and compared it to

other versions produced by state of the art algorithms. Our analysis of the

data set shows the presence of two clearly defined camps in the social net-

work that tend of propagate largely disjoint sets of claims (which is indicative

of polarization), as well as third population whose claims overlap subsets of

the former two. Experiments show that, in the presence of polarization, our

reconstruction tends to align more closely with ground truth in the physical

world than the existing algorithms.

3.1 Overview

This chapter addresses the problem of reconstructing accurate ground truth

from unreliable human observations. It extends recent crowd-sensing lit-

erature [125] by investigating reliable information collection from polarized

sources . By polarization, we refer to a situation where different groups of

sources hold largely different beliefs that color their interpretation, and hence

representation, of events they observe. Hence, multiple competing versions

of such events are reported. The goal of our algorithm is to identify versions

36



that are more likely to be consistent with ground truth.

We apply our solution to extracting information from Twitter. We view

Twitter as a participatory sensing system, where participants voluntarily

report events they observe. The view of social networks acting as sensor net-

works was proposed in a recent survey on human-centric sensing [126]. We

do not perform natural language processing on tweets (such a contribution

would fall into another venue). Rather, in this chapter, we explore the mer-

its of making statistical credibility assessments solely based on propagation

patterns of different observations, as well as their degree of corroboration,

regardless of their semantics.

There are two different schools of thought in information credibility assess-

ment on Twitter. The first uses a machine learning approach that attempts

to model human judgement of credibility. In this approach, classifiers are

trained to recognize credible tweets as would be judged by a person (e.g., by

a mechanical turk worker). Several recent papers proposed classification fea-

tures of increasing degrees of sophisticatation that lead to increasingly good

matches between human and machine credibility annotations [101,102,127].

The second school of thought comes from sensing literature and adopts

an estimation-theoretic perspective. It assumes a unique ground truth that

is realized in the physical world, and views humans as unreliable sensors

who report such ground truth with possible errors and omissions. Statis-

tical (estimation-theoretic) techniques are then used to determine the like-

lihood that these sensors are correct, given the correlations between them

(e.g., that arise from social ties and retweets). An example of this approach

in a recent expectation maximization algorithm that jointly estimates the

unknown source reliability as well as the statistical tweet credibility [125].

The work was extended to account for non-independent sources [3] and non-

independent claims [128].

We adopt the latter school of thought. In this work, we are more inter-

ested in understanding the physical world (i.e., in sensing) as opposed to

understanding what humans perceive as credible. Following this model, we

abstract human observers as binary sensors [3] in that each reported observa-

tion is either true or false. The novelty of this contribution lies in considering

sources that are polarized. Intuitively, polarization affects our model of corre-

lations in (human) sensor outputs: when sources (viewed as unreliable binary

sensors) share a more significant bias towards a topic, their observation (bit)

37



errors on that topic are more correlated. On the other hand, when they

do not share a bias, their errors are independent. Note that, when sources

are correlated, corroboration among them carries less statistical weight than

when they are independent. Hence, when statisically assessing the likelihood

of error in an observation reported by multiple sources, it is important to

know whether the topic of that observation matches the bias of the sources

or not. The answer determines whether such sources should be regarded

as correlated or not, leading to a topic-dependent source correlation model.

Later in the chapter, we explore the above intuition more formally to arrive

at a polarity-informed maximum-likelihood estimate of statistical credibility

for each reported observation.

Another advantage of the estimation-theoretic approach adopted for cred-

ibility assessment in this chapter is that the resulting estimator has a known

error bound. This bound was computed in prior work [129], and remains

applicable to ours. Hence, not only do we compute truth estimates but also

arrive at confidence intervals in source reliability.

We evaluate our solutions using real-world traces collected from Twitter.

We recorded observations from Twitter for four months during a recent upris-

ing against the former Egyptian president. We manually annotated a fraction

of tweets depending on their degree of support to the deposed president as

pro, anti , or neutral . We henceforth call these tweets claims , with no im-

plication as to their degree of credibility. We then studied the propagation

patterns of these different groups of claims and adapted our previous fact-

finder to recognize polarization. The fact that different topics propagate on

different dissemination trees is intuitive and has already been pointed out

in prior literature [100]. The contribution is novel in its investigation of

the specific case of polarized sources and in accounting for polarization in

maximum-likelihood credibility assessment.

The investigation of our particular data set revealed the presence of two

clearly defined camps in the social network that tend to propagate only one

group of claims, as well as a population that tends to propagate selected

claims with less correlation with their polarity. We estimated their respec-

tive polarity-dependent propagation networks. Each network was then used

to compute correlations among sources for the purposes of computing their

error-independence properties. For comparison, we also estimated the prop-

agation network constructed when content polarity is not taken into account,

38



as done in previous estimation-theoretic work on truth estimation [3]. We

observed that the latter network matches the respective polarity-dependent

propagation networks when describing the graph neighborhood of strongly

polarized sources, but diverges when describing the neighborhoods of sources

that are more neutral. This causes the previous approach to infer incorrect

correlations for neutral sources. We show that these false correlations lead to

degradation in truth estimation in favor of polarized information. Our new

approach avoids this pitfall.

The rest of this chapter is organized as follows. In Section 3.2, we present

a case study for this work that shows how polarized certain situations can be.

In Section 3.3, we propose a model for polarized sources, claims, and bias-

aware social networks. In Section 3.4, we present a formulation of the problem

and derive algorithms to solve it. Experimental evaluation is presented in

Section 3.5. Related work is reviewd in Section 6.6. Finally, we present

conclusions and future work in Section 3.7.

3.2 The Case of a Polarized Network

We analyzed traces obtained from Twitter during a recent uprising in Egypt

that resulted in deposing the president. The collected tweets expressed either

a positive or negative sentiment towards the deposed president. These tweets

were first clustered such that tweets making the same observation (typically

the same sentence or very similar sentences) were put in the same cluster.

Each such cluster was viewed as a single claim. By observing the time

at which different sources contributed their tweet to a given cluster, it was

possible to identify a propagation cascade of the corresponding claim through

the social network. Table 3.1 presents statistics of the tweets collected.

To asses polarization, it is required to classify the claims into pro, anti,

and neutral classes. We chose to manually annotate the largest cascades

as those represent the claims that have been observed or propagated the

most; therefore more likely to cover important or popular events. Figure 3.1

shows that the distribution of cascade sizes is approximately heavy tailed.

This observation suggests that considering a small number of top claims

is sufficient to represent a large number of tweets. We experimented by

manually annotating 400 and 1000 largest cascades, and the results were

39



Table 3.1: Summary of the tweets collected

Query Egypt ∨ Morsi ∨ Cairo

∨ Location: 100 miles around Cairo

Number of tweets 4.3M

Total size 17 GB

Tweets containing Morsi 900K

English tweets containing Morsi 600K

Number of cascades 193K

similar. We describe the case with 1000 largest cascades. Collectively, these

cascades accounted for roughly 44K sources and 95K tweets.

������

������

�������

������

�����

����

��

�� ��� ���� ����� ������

��
��
���
��
��
��
��
��
��
��
�
���
��
��
��
�
��

������������������

Figure 3.1: Complementary cumulative distribution of cascade sizes

Figure 3.2 plots the distribution of the probability of a source to tweet pro

in the top 1000 cascades. The figure illustrates a very interesting property

of these cascades. Namely, it is evident that there are three visibly different

types of sources. The first type, accounting for 50% of the sources, has a

near 1 probability of tweeting pro. The second type, accounting for more

than 20% has a near zero probability of tweeting pro (i.e., mostly tweets

anti). The rest of the sources tweet both polarities. They are located in the

middle of the plot. We call them “neutral” sources. The figure suggests that

the community is clearly polarized. This observation motivates us to ask

the questions: Does this polarization affect the accuracy of reconstruction

of physical world events via social sensing? How reliable are previous data

cleaning approaches in the presence of polarized sources? How to circumvent

their shortcomings?

40



��

����

����

����

����

��

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

��
��
���
��
��
��
��
��
��

���������������

Figure 3.2: Distribution of pro tendency of sources

We show in our evaluation that, in general, community polarization is

strong enough to confuse previous algorithms, and therefore polarity-aware

credibility analysis algorithms are necessary.

3.3 A Model for Polarized Social Networks

This section presents a model of polarized social networks acting as sensor

networks. In the following subsections, the models for claims, (polarized)

sources, and their dependencies are described.

3.3.1 Modeling Polarized Claims and Sources

Consider m sources who collectively make n claims (i.e., generate n cascades).

The relation between the claims and their sources can be represented by

a source-claim network, SC, which is a bipartite graph. We conveniently

represent it using a m × n matrix, such that SCi,j = 1 if source Si makes

claim Cj (i.e., contributes to jth cascade), and 0 otherwise.

We consider a binary model, where each claim can be True or False. This

categorization is orthogonal to polarity. To model polarized claims, we in-

troduce a topic indicator, yj, for each claim Cj, that takes one of the values

from topic set T = {pro, anti, neutral}. This topic represents the polarity of

claim Cj. A vector y is defined as the polarity vector for all claims.

In general, a source may make claims of different polarity. We define the

reliability of a source as the probability of making correct claims. Note,

41



however, that when making claims that agree with the source’s own bias, the

source might become less selective and have a higher probability of making

false claims. In contrast, when making claims that are orthogonal to the

source’s bias, the source might get more conservative and the probability of

correctness increases. This suggests that source reliability is a vector, with

one entry per topic. Hence, we model a source Si by a vector ri of dimension

|T |, where ri,t denotes the reliability of the source when making claims of

polarity Tt.

3.3.2 Modeling Polarity-aware Source Dependencies

Prior work on credibility assessment in social sensing [125] developed an algo-

rithm that takes a source-claim network, SC, as input, and jointly estimates

both reliability of sources and statistical credibility of claims. The algorithm

was then adapted to take into account dependencies between sources [3]. As

mentioned earlier, such dependencies imply correlated errors that need to be

accounted for in statistical analysis.

A dependency between two sources is a directional quantity. It is esti-

mated by observing the probability that one source propagates information

obtained from the other (i.e., joins a cascade given that the other source

joined it earlier). Representing such correlations by directional links between

the respective source nodes, a propagation graph is constructed that consti-

tutes the inherent social (influence) network. Netrapalli and Sanghavi [130]

formulate the problem uncovering the latent influence network (or informa-

tion propagation graph), given a sufficient number of cascades. We use their

algorithm to generate social networks given the set of sources, tweets, and

their timestamps.

An alternative method of finding the latent network is to take the Twitter-

provided follower-followee graph. However, the follower-followee graph is not

always a good representation of actual information propagation paths exer-

cised by users. For example, as most of the tweets are public, when an event

of significance transpires in the physical world, interested individuals may

search for top tweets and act on those. This method does not require follow-

ing any particular person and therefore the follower-followee relationship is

an incomplete proxy for the underlying information propagation network.

42



Another possibility is to construct the propagation graph directly from

retweets. For example, if source A retweets source B, k times, insert a

weighted directed link (A,B, k) in the network. The problem with this ap-

proach is that in large cascades it is not clear who exactly (of those who

tweeted the same claim earlier) a source was influenced by. Hence, the retweet

relation does not necessarily reflect the correct influence topology. The influ-

ence network estimation approach proposed by Netrapalli and Sanghavi [130]

avoids this problem, which is why we adopt it in this work.

A further advantage of using the approach of Netrapalli and Sanghavi [130]

for estimating the influence propagation network is that we no longer care

whether something is a retweet, or a separately authored tweet of similar

content. All that matters for this algorithm are the clusters of tweets (of

similar content), each forming a cascade, and the timestamp of each tweet in

each cascade. Hence, the approach is not restricted to uncovering influence

propagation via the Twitter medium itself. A source may influence another

externally (e.g., via a different communication medium). The external link

can still be uncovered as long as both sources make tweets of similar content.

To model polarity-aware source dependencies, we generate |T | different

influence propagation networks, using the aforementioned algorithm [130],

by observing claims of a single polarity at a time to infer a single network.

The set of these networks is collectively referred to as SDB, where element

SDB
t is the network generated by considering only the claims of polarity Tt.

We call the corresponding networks pro, anti, and neutral networks. For

comparison, we also construct a generic network, SD, by considering all

claims regardless of their polarity. In Section 3.5, we empircally evaluate the

quantitative differences between SDB and SD.

Please note that the pro (anti, neutral) network is not a network of only the

pro (anti, neutral) sources, rather it is a network created using only the pro

(anti, neutral) claims. As a result, these networks may contain overlapping

sources if such sources make claims of different polarities. The terms pro

source, anti source, and neutral source, when used, therefore refer to the

predominant disposition of a source as opposed to exclusive membership of

one of the networks.

43



3.4 Ground-truth Estimation in Polarized Networks

This section formulates the problem of ground truth estimation in polarized

networks and describes the algorithm we use to solve it.

3.4.1 Problem Formulation

Based on the model described in section 3.3, the problem is to estimate the

statistical credibility of each claim given the source claim network, SC, the

polarity of each claim, specified in the vector, y (where yj is the polarity of

claim Cj), and the inferred set of influence propagation networks, SDB, one

per polarity. Let zj be the unknown ground truth value of claim Cj (stating

whether it is true or false). Formally, we want to compute:

∀j, 1 ≤ j ≤ n : Pr(zj = True|SC, y, SDB) (3.1)

3.4.2 Solution

As discussed earlier, the bias of a source may cause it to be less selective

in making claims of one polarity compared to another. For example, the

source might indiscriminately propagate claims that agree with its bias, while

being selective in making other claims. Hence, source reliability (probability

of making claims that are true) may depend on claim polarity. Let the

reliability of source, Si, when making claims of polarity, Tt, be denoted ri,Tt .

For simplicity, in this chapter, we assume that the source reliability values

for different polarities are independent. The polarities of interest are T =

{pro, anti, neutral}. Hence, we can break down Expression (3.1) into three

independent subproblems; namely, computing the credibility of pro, anti ,

and neutral claims, respectively. This is formally expressed as finding the

probabilities below:

∀j, yj = pro : Pr(zj = True|SCyj=pro, SDB
pro) (3.2)

∀j, yj = anti : Pr(zj = True|SCyj=anti, SDB
anti) (3.3)

∀j, yj = neu. : Pr(zj = True|SCyj=neu., SDB
neu.) (3.4)

44



S1

S2

S3

C1

C2

C3

C4

C5
S4

S1

S2

S3

C1

C3

S4

S1

S2

S3

C2

C4

S4

S1

S2

S3

C5
S4

Original problem Sub-problem: Pro Sub-problem: Anti Sub-problem: Neutral

Figure 3.3: Executing polarity aware fact-finder

where SCyj=pro, SCyj=anti, and SCyj=neu. are the subgraphs of the source

claim network, SC, with claims of only the specified polarity present (or

equivalently, the array SC with claim columns of other polarities removed).

The independence assumption between source reliability parameters ri,pro,

ri,anti, and ri,neutral makes it possible to solve for variables (3.2), (3.3), and

(3.4) separately, essentially breaking the original problem into three indepen-

dent subproblems, one for each polarity. In the subproblem corresponding

to polarity, Tt, we consider the source claim subnetwork SCyj=Tt and the

inferred influence propagation network SDB
Tt

, then solve jointly for source

reliability ri,Tt and statistical claim credibility, zj, where yj = Tt.

Figure 3.3 illustrates the formation of the subproblems. Here S1 to S4 are

the sources, and C1 to C5 are the claims. There is an edge in (Si, Cj) in

the bipartite network if source Si authored claim Cj. The pro claims are

shown in red, the anti claims are shown in green, and the neutral claims

are shown in white. The proposed polarity-aware algorithm identifies each

‘class’ of claims, and considers the independent subproblems that contain

all the claims of that particular class and the sources that make them. The

solution to each subproblem results in credibility scores for the claims in that

particular class, as well as one element of the polarity-aware reliability vector

of the sources.

More specifically, each subproblem is solved using the expectation maxi-

mization algorithm presented in [3]. Starting with an initial guess of source

reliability parameters, expressed as the vector θ0, the algorithm performs the

iterations:

θn+1 = arg max
θ
{Ez|SCyj=Tt ,θn

{ln Pr(SCyj=Tt , z
t|SDB

Tt , θ)}} (3.5)

45



where zt is the vector of latent variables zj (claim credibility), for all claims,

where yj = Tt. The above breaks down into three steps:

• Compute the log likelihood function

ln Pr(SCyj=Tt , z
t|SDB

Tt
, θ)

• The expectation step

Qθ = Ezt|SCyj=Tt ,θn
{ln Pr(SCyj=Tt , z

t|SDB
Tt
, θ)}

• The maximization step

θn+1 = arg maxθ{Qθ}

where the last two steps are solved iteratively until they converge, yielding

updated source reliability estimates and claim credibility, zt (for claims of

polarity Tt).

3.4.3 Polarity Classification of Claims

Our polarity aware model assumes that there exists a mapping y from claims

to polarities. This mapping is required to divide the set of tweets into |T |
parts. We manually annotated the top 1000 largest cascades (most prop-

agated claims). However, to use our polarity aware credibility estimation

algorithm as a crowd-sensing tool, it is important to include all the claims

in the analysis. Therefore, an algorithm to classify each incoming tweet into

a particular polarity is required.

We attempted to use readily available learning-based sentiment analysis

tools for this purpose that look at the content of the tweets and classify

them into positive and negative sentiments. It was not sufficient because the

polarity of a tweet is not necessarily correlated with its sense or sentiment

being positive or negative. For example, “The government is working for the

people”, and “The opposition is working against the people” have positive

and negative sentiments respectively; but polarity of both of these claims are

likely to be pro-government.

It is possible to design an advanced classifier for this purpose that uses

learning techniques or natural lanuage processing methods to classify the

tweets into pro, anti , and neutral classes. However, such a classifier requires

extensive domain-specific knowledge and its design depends on the choice of

46



polarity classes and their context. Moreover, simple learning-based tools of-

ten suffer from low quality and require extensive training. A domain-specific

classifier that looks at the content and determines the polarity is therefore

hard to generalize.

Instead, given our seed of manual annotations, we used an iterative al-

gorithm that propagates tweet annotations to source annotations, and then

from source annotations back to tweet annotations, repeatedly. Sources that

predominantly make tweets of a given polarity are identified from the man-

ually annotated tweets and other tweets of the same sources are given the

same polarity. This algorithm is clearly an approximation. Nevertheless,

even this approximate polarity annotation can lead to an improvement in

fact-finding, compared to polarity-unaware analysis. Later in this disserta-

tion, we automate the polarity detection mechanism [7], in chapter 4 and

chapter 5.

3.5 Experiments

In this section, we describe the experiments performed to determine how com-

munity polarization affects statistical credibility estimation in social sensing.

Our experiments use the traces obtained from Twitter during the recent up-

rising in Egypt resulting in deposing the president (summarized in Table 3.1).

The crawling started in July, 2013 and continued for four months.

3.5.1 Polarization Analysis

A key hypothesis of our work is that a better solution to the credibility es-

timation problem is obtained by breaking all tweets by polarity and solving

independently for credibility of tweets in each polarity class, Tt, given the

polarity-specific source-claim matrix, SCyj=Tt , and the polarity-specific in-

fluence propagation network, SDB
Tt

. This is as opposed to amalgamating

all tweets regardless of polarity into one source claim matrix, SC, and us-

ing a single influence propagation network, SD, as inputs to the credibility

estimation.

To appreciate the difference between the two solutions, some analysis of the

resulting networks is needed. For this analysis, we read the text of the largest

47



1000 claims and manually annotated them as pro, anti, or neutral. The

annotation revealed that there are 199 pro cascades and 109 anti cascades

in the top 1000 largest cascades. By utilizing the timestamps of when each

source forwarded a given claim, we estimated the inherent social propagation

network for each type of claims using the algorithm proposed by Netrapalli

and Sanghavi [130].

This resulted in 15,714 edges in the pro network SDB
pro, 8,460 edges in

the anti network SDB
anti, and 33,946 edges in the neutral network SDB

neutral.

We also estimated the generic network SD using all 1000 cascades together.

There are 55,329 edges in that network.

Figure 3.4: An overlay of two polarized social networks. Pro shown in red
and anti shown in green

Figure 3.4 shows the pro network, SDB
pro, in red, and the anti network,

SDB
anti, in green, overlayed together. The neutral network is not shown to

maintain visual clarity.1 This plot suggests that two polarized groups exist

with their own different propagation links.

With that preparation, we are ready to answer the question: is considering

one amalgamated influence propagation network the same as considering a

polarity-specific network, when estimating the credibility of tweets?

1Source are further restricted to only the top 400 cascades for clarity.

48



��

����

����

����

����

��

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

��
��
���
��
��
��
��
��
��
��
��
��
��

�������������������������

(a) Neutral sources: pro network vs.
generic network

��

����

����

����

����

��

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

��
��
���
��
��
��
��
��
��
��
��
��
��

�������������������������

(b) Neutral sources: anti network vs.
generic network

Figure 3.5: Distribution of neighborhood similarity of neutral sources
between polarized and generic network

The answer is no. It turns out that the neighborhood of neutral sources

is not correctly represented in the amalgamated network. This results in

improper modeling of source dependencies, which affects credibility estima-

tion when such sources propagate pro or anti tweets. To see the difference

in source dependency estimation when neutral sources propagate pro or anti

tweets, consider Figure 3.5, which compares the neighborhood of neutral

nodes in the amalgamated influence propagation network, SD, versus that

in the pro or anti network (SDB
pro or SDB

anti). The degree of similarity is

measured by the jaccard similarity coefficient between the two sets of neigh-

borhoods. The similarity distribution between SDB
pro and SD is shown in

Figure 3.5a. The similarity distribution between SDB
anti and SD is shown

in Figure 3.5b. It is seen that more than 98% of the sources have differ-

ent neighborhoods in the amalgamated SD network compared to the SDB
pro

and SDB
anti networks. This means that the amalgamated network does not

properly capture their dependencies. Further inspection suggests that it ex-

aggerates them, leading the statistical estimation algorithm to rely less on

such sources (to avoid correlated errors).

The same cannot be said of polarized sources. Figure 3.6 shows that the

generic network SD does not confuse the neighborhood of the strongly polar-

ized sources. Figure 3.6a shows the distribution of neighborhood similarity

between SDB
pro and SD, and Figure 3.6b shows the distribution of neighbor-

hood similarity between SDB
anti and SD. The generic network SD correctly

determines the neighborhood for around 80% of the polarized sources. This

is expected. Those sources forward mostly one polarity of claims. Hence, the

49



��

����

����

����

����

��

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

��
��
���
��
��
��
��
��
��

�������������������������

(a) Pro sources: pro network vs. generic
network

��

����

����

����

����

��

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

��
��
���
��
��
��
��
��
��

�������������������������

(b) Anti sources: anti network vs. generic
network

Figure 3.6: Distribution of neighborhood similarity between polarized and
generic networks

estimation of influence propagation returns the same results whether all or

only those claims are considered.

The above figures offer an intuition into the shortcomings of the amalga-

mated approach from the perspective of credibility estimation: the approach

tends to “disenfranchise” neutral sources.

3.5.2 Fact Finding

We compare the accuracy of our polarity-aware credibility estimation algo-

rithm to its predecessor [3] that does not consider the polarity of tweets. We

identify our algorithm by the word ‘Polarized’ and the other algorithm by

the word ‘Combined’.

To evaluate the fact-finding performance, we executed three experiments

by selecting the largest n cascades, for n ∈ {400, 1000, 5000}. Summaries

of the datasets used in each experiment are presented in Table 3.2. In each

experiment, we classified the claims into the three polarity classes and ran

polarity-aware and polarity-unaware estimators. In each case, the fact-finder

computed the credibility of input claims ∈ [0, 1] and the reliability of their

sources ∈ [0, 1].

Figure 3.7 shows the relation between the output of different algorithms

in different experiments. The circle and triangle pointed curves show the

fraction of claims that are believed as facts by the combined and the po-

larized algorithm, respectively. We find that the combined algorithm is less

judgmental and believes more claims to be true. The square pointed curve

50



Table 3.2: Summary of the dataset of the experiments

Experiment 1 Experiment 2 Experiment 3

Cascades 400 1000 5000

Pro claims 105 199 379

Anti claims 50 109 371

Neutral claims 245 692 4,250

Number of sources 31,480 43,605 68,206

Number of tweets 62,864 94,871 184,452

Pro tweets 17,603 22,750 27,114

Anti tweets 8,509 11,691 19,411

Neutral tweets 36,752 60,430 137,927

Source-claim edges (total) 43,024 68,092 140,170

Source-claim edges (pro) 13,057 17,152 22,773

Source-claim edges (anti) 6,770 9,302 16,380

Source-claim edges (neutral) 24,197 41,638 101,017

Pro network edges 12,160 15,714 23,942

Anti network edges 6,292 8,460 19,037

Neutral network edges 19,735 33,946 92,683

Combined network edges 36,472 55,329 130,092

��

����

����

����

����

��

���� ����� �����

��
��
���
��
��
��
��
��
�

������������������������������

���������������
����������������

���������

Figure 3.7: Number of claims believed as facts by different algorithms

shows the agreement between two schemes. The agreement is computed as

the jaccard similarity between the two sets of claims believed as facts by

the two algorithms. It is evident that the two algorithms converge more as

the number of claims increase. We conjecture that this is because polarized

claims were retweeted more and had larger cascade sizes. Hence, the smaller

experiments had more polarized claims, offering a larger difference in results

51



between the two approaches.

From Table 3.2, the probability of an arbitrary claim to be polarized is

nearly 39% in the 400 claims experiment, while its nearly 31% in the 1000

claims experiment, and only 15% in the 5000 claims experiment. We also

classified the tweets for a 10,000 claims and a 25,000 claims experiment,

where the probability of a claim to be polarized went further down to 11%

and 7%, respectively.

Finally, we evaluated the quality of information obtained by the polarized

algorithm and the combined algorithm. Here, we present the comparison

for the 1000 claims experiment. In this experiment, the polarized algorithm

selected 128 pro, 76 anti, and 498 neutral claims as true (a total of 700

claims). The combined algorithm selected 147 pro, 88 anti, and 543 neutral

claims (a total of 778 claims). Of the two sets, 662 claims were common in

both cases, resulting in a degree of agreement of 81.13%.

The interesting cases, however, are those where the algorithms disagreed.

We considered two sets of claims on which there was disagreement. Set A

contained the claims that the polarized algorithm believed to be true with

a probability 1, but the combined algorithm did not. There were 38 such

claims. Conversely, set B contained the claims that the combined algorithm

believed to be true with probability 1, but the polarized algorithm does not.

There were 116 such claims.

The two sets were merged and presented to a human grader without the

information on which claim came from which set. The grader was instructed

to carefully research and verify each claim using historic data. Verified facts

received a score of 1. Fabricated claims and lies received score of -1. Non-

factual claims such as expressions of emotion, slogans, and sentiments were

discarded (received a score of 0). After grading was done, we separated

the sets again and calculated the scores for each algorithm. The results are

presented in Table 3.3.

If we count non-factual claims (i.e., expressions of emotion, etc) then,

when the algorithms disagree, 66% of the claims believed by the polarized

algortihm are true, compared to 62% for the combined algorithm. More

interestingly, the polarized algorithm believes only 2.6% false claims (that

received a -1 score), while the combined algorithm believes 8.6% false claims.

If we discard non-factual claims from the total (after all, they do not refer to

binary facts), then when the algorithms disagree, 96% of the claims believed

52



Table 3.3: Quality of exclusive information

Set A Set B
Definition Claims exclusive Claims exclusive

to Polarized to Combined

Total 38 116
Factual 26 82

Non-factual (0) 12 34

True (1) 25 72
False (-1) 1 10

Factual true 96% 88%
Sum of scores 25− 1 = 24 out of 38 72− 10 = 62 out of 116

by the polarized algortihm are true, compared to only 88% for the combined

algorithm. Equivalently, the probability of error is reduced (in our case) from

12% to 4%, or by a factor of three!

Finally, combining all scores to get a single overall quality indicator, our

bias-aware crowd-sensing algorithm improves the quality by more than 18%.

The results shown above are a step forward. They demonstrate that when

sources are polarized, we should consider separately the pro, anti , and neutral

claims in performing credibility analysis. Such separation prevents estimation

of false dependencies between neutral sources, based on amalgamated retweet

patterns. By separating the content and considering only polarity-specific

dependencies, errors are reduced.

3.6 Related Work

Crowd-sensing is an increasingly popular area of research, where humans are

acting as the sensors generating observations. It extends more traditional

participatory sensing models where humans carry the sensor devices that

collect data. Human-generated observations have a different error model

than traditional sensors, which introduces many interesting questions and

challenges.

Wang et al. [125] addressed the question of reliable sensing in the context

of human observers. He proposed a model where human observations are

treated as binary claims that can be either true or false. The question of es-

53



timating credibility of a particular claim can be trivially addressed by voting

(i.e., a claim with a larger propagation is deemed more credible). However,

this simple approach is highly suboptimal when sources have different de-

grees of reliability. Wang’s approach [125] jointly estimated source reliability

and claim credibility for independent sources. When source are generally

not independent, source diversification heuristics were studied that select

tweets from only a subset of sources to maximize a measure of mutual inde-

pendence [2]. A more principled solution that models source dependencies

directly and accounts for them in the maximum likelihood framework was

described in [3]. Our work builds on this foundation, while accounting for

the polarized sources.

Information propagation through social or other complex networks has

been studied extensively [131–134]. Netrapalli and Sanghavi [130], Myers

and Leskovec [135], and Rodriguez et al. [136] model the propagation of in-

formation through social networks as epidemic cascades and use different

ways to estimate the propagation graph from multiple cascades. This work

nicely complements ours, since the latent influence propagation network is

one of the inputs to our maximum likelihood (credibility) estimator. A re-

lated problem is community detection. Several efforts addressed the issue of

detecting different communities in social networks [137, 138]. These meth-

ods can be used to confirm that influence cascades indeed propagate largely

within corresponding community boundaries.

Topic-based models to infer user influence and information propagation

have been studied in different contexts. Lin et al. [139] proposed a prob-

abilistic model to infer the diffusion of topics through social networks. Pal

and Counts [140], and Eytan et al. [141] propose methods to infer topic-based

authorities and influential nodes in the context of online social platforms and

microblogs. The concept of social media genotype to model and predict user

activity in social media platforms was propsoed by Bogdanov et al. [100].

The genotype is a set of features that defines user behavior in a topic-specific

fashion. Like us, they argue that a single static network is not a good indi-

cator of user activity. Instead, they derive topic-aware influence backbones

based on user genotypes, which we exploit in understanding how different

polarities (topics) of information follow different paths in the social network.

They focus on predicting user activity, while we are interested in improving

the quality of fact-finding.

54



Finally, our work is related to the more general genre of crowd-sourcing;

using the crowd to perform useful tasks [142, 143]. Unlike our work, where

participants are unaware of their participation, this genre of research consid-

ers a more controlled and structured environment, where people are generally

paid to participate in advertised tasks.

3.7 Summary

The chapter addressed truth recovery from tweets in the case of a polarized

network. It was shown that polarization impairs credibility estimation. The

problem was solved by developing a new polarity-aware estimation methodol-

ogy that improves quality of results by 18%. Several extensions of the current

framework are possible. For example, we assume that polarities are already

known. Advanced classifiers that aggregate both content and provenance

information may prove useful to reduce the need for manual polarity annota-

tion. Although we adopt an estimation-theoretic perspective for credibility

assessment, our algorithm can be easily extended to incorporate additional

machine learning analysis or natural language processing on the text, which

may improve the fact-finding performance. The idea of polarities can be

extended to topics with arbitrary relations and overlap. Also, while this

work considered sources that are polarized, it did not regard them malicious.

An intent to decieve by an intelligent adversary presents a harder challenge.

These extensions are delegated for future work.

55



CHAPTER 4

EVALUATING POLARIZATION MODELS
IN SOCIAL NETWORKS

In this chapter, we develop and evaluate models of information propagation

on social media in the presence of polarization, where opinions are divided

on issues of contention into multiple, often conflicting, representations of the

same events, each reported by one side of the conflict. Multiple models are

compared that derive from the hypothesis that individuals propagate more

readily information that confirms their beliefs. We use these models to solve

the inverse problem; namely, given a set of posts in a conflict scenario, au-

tomate their separation into opinions that favor each side, as well as pieces

that appear to me more neutral. Specifically, we develop new maximum-

likelihood estimation algorithms for separation of polarized Twitter posts.

We show that our solutions allow for such opinion separation to occur in

an unsupervised fashion, and without machine interpretation of the dissem-

inated content, while offering analytic means for quantifying accuracy of

results. Our empricial evaluation, based on multiple Twitter data sets, con-

firms the accuracy of content separation, offering a new capability for viewing

unbiased representations of events, or isolating the positions of different sides

of a conflict.

4.1 Overview

This chapter studies models of polarization on broadcast-based public so-

cial media that support microblogging. For scenarions where polarization

is present, we develop algorithms that separate media content into different

positions, held by the respective sides of the conflict, as well as isolate what

appears to be more neutral content. We show that such separation can oc-

cur in a manner that is both (i) language-agnostic (i.e., without machine

interpretation of content), and (ii) fully unsupervised (e.g., without a priori

56



knowledge of the individual sources and their beliefs, and without the use of

labeled data or remote supervision techniques that train ahead of time based

on existing text corpora).

The work is motivated by the rise of social media platforms, such as Twit-

ter, that democtratize information broadcast, offering everyone not only the

opportunity to share opinions at an unprecedented scale [144], but also to

find, tune-in to, and copy opinions of like-minded individuals [145]. These af-

fordances for information sharing, input selection, and downstream content

propagation set the stage for the formation of online echo-chambers [146],

where different groups of like-minded individuals propagate often-conflicting

information that confirms their individual beliefs [4, 5, 147]. We call such a

situation, polarization.

The work follows on recent interest in polarization in social media [4, 5, 7,

148–150], where the feasibility of unsupervised separation of different opin-

ions was first established [7]. Their approach offered a heuristic based on

matrix factorization. Other works offer methods to quantify polarization

using distribution of opinions and graph partitioning algorithms [149, 150].

In contrast, we study generative models of information dissemination and

their application in a maximum-likelihood framework to solve the opinion

separation problem. Our models are based on one underlying hypothesis,

confirmed in recent social media studies [148,151–154], that individuals tend

to propagate more readily information that confirms their beliefs. Hence, in

aggregate, they form propagation topologies that offer different “impedance”

to different types of content. By observing which content propagates more

readily on which topologies, it is possible to jointly isolate the different sides

of a conflict (nodes in the topology) together with their beliefs (posts prop-

agating on the edges). Neutral content is not specific to a single side and

hence propagates indiscreminately in both [148,155]. These models of infor-

mation propgation, in turn allow solving the inverse problem. Namely, they

lead to maximum-likelihood estimation algorithms that, given a set of posts,

automatically separate the opinions espoused by individual sides, as well as

content that appears to be neutral. The capability for such separation can

have many applications. For example, it could be used as an automated

means for identifying less biased representations of events (by focusing on

neutral content), or presenting the online positions of different sides.

The problem of modeling polarization, described above, is different from

57



many other recent analysis challenges in social media. For example, it is

different from fact-finding . Recent literature developed algorithms to recon-

struct physical events from posted observations by separating credible and

false observations [3]. Such algorithms have been shown to result in a bi-

ased reconstruction of events when incorrect posts have large support in the

population [4], as might occur due to shared biases, which in essence creates

correlated errors. Work, presented in this chapter, can mitigate such an effect

by identifying potentially biased content.

The work also addresses a different concern from sentiment analysis [156,

157]. While current solutions to sentiment analysis aim to recognize the

sentiment expressed in individual posts [158,159], we are more concerned with

separating the positions of different sides with respect to issues of concern,

regardless of their sentiment towards the individual issues.

It is also different in focus from community detection. Much of the commu-

nity detection work rests on variations of the observation that individuals, by

homophily, interact more within their community than across communities.

While indeed the different sides of a conflict can be thought of as different

communities based on their information propagation characteristics, the exis-

tence of neutral content complicates the separation process. Neutral content,

by definition, propagates orthogonally to the conflict divide, thus leading to

significant links across clusters [155]. Moreover, the boundaries of formed

clusters shift depending on discussed content [148]. For example, we show

that following a recent democratic election that resulted in significant polar-

ization, the clusters blended together again, as the topic of discourse shifted.

Our problem is thus more about separating potentially biased content , as

opposed to binning sources.

Finally, the work does not require prior knowledge or supervision. In-

deed, our results can be further enhanced by exploiting prior knowledge of

individual sources or by using language and vocabulary models that help

interpret the content. The advantage of not using any prior source-specific

or language-specific information, however, is that the algorithmic techniques

developed in this chapter become generally applicable to any population (we

do not need to know the sources ahead of time) and any language (we do

not need to know the language or dialect used in the discourse). As such,

the cost and prerequisites of developing a working system are significantly

reduced.

58



The rest of this chapter is organized as follows. Section 4.2 explains the

polarization problem and provides the background. Section 4.3 formulates

modeling polarization as a maximum likelihood estimation problem, and pro-

vides a candidate solution using EM mechanism. Section 4.4 and section 4.5

provides alternate formulations. Because it is not clear which solution is

better, we perform a comparative study using controlled simulations in sec-

tion 4.6. Section 4.7 implements our algorithm, evaluates with real-world

datasets collected from Twitter, and compares with other candidate mecha-

nisms. Section 4.8 reviews related literature, and finally section 4.9 discusses

the findings and provides directions for future research.

4.2 The Polarization Problem

To illustrate polarization on social media, consider the following excerpts

from posts on Twitter (i.e., tweets) describing a series of clashes between

police and demonstrators in Bahrain, a Southwest-Asian state on the Arabian

peninsula. Some of the excerpts are very anti-police: “#Bahrain This is How

#Cops #Kill #People With #Automatic #Shotguns”, “#BAHRAIN: This

Is How Police Kill and Shoot the Citizens Demanding For FREEDOM”,

and “Resistance by revolutionary youth across #Bahrain last night after the

police kill an 18 year old”. Other posts are more emphathetic with the police:

“Those Kids were instruments used by #Bahrain Protesters 2 Kill civilians &

Police”, “Bahrain shia protesters use molotov to kill police”, and “Protesters

in Bahrain attacking police and kill them”. Finally, some have a neutral

tone: “Violent confrontation between the revolutionary youth and the riot

police troops in the streets of #Manama #Bahrain”.

The question addressed in this chapter is the following: can one develop

a generative model of information propagation (in the presence of polar-

ization) that allows developing an unsupervised algorithm to automatically

distinguish the above three categories of tweets, without prior training, and

without knowledge of language or vacabulary? Importantly, can such an al-

gorithm offer assurances in results? The main idea behind the generative

model is that people tend to propagate information that matches their be-

liefs. Hence, by observing how information propagates, it may be possible to

solve the inverse problem; namely, recover which side the information favors,

59



(a) (b)

Figure 4.1: (a) Crawled data does not reveal polarization structure, (b)
Manually filtering out the nonpolarized sources and assertions reveal
polarization.

or tell if it is impartial.

The problem is complicated by the fact that polarized sources, besides

sharing information that confirms their bias, usually also share neutral in-

formation about the situation [4,5,148,153]. Moreover, neutral sources may

exist that selectively share elements from both points of view [7,160]. There-

fore, no clean separation exists between clusters of sources based on what

they propagate.

Figure 4.1a illustrates the bipartite graph between the sources and asser-

tions they make (i.e., showing who shares what) collected in Egypt after a

democratically-elected president was deposed. For visual clarity, only the

largest 100 cascades of information propagated through the social media are

shown. Manually graded assertions that were in favor of the president, and

against the president, are shown in large red and green circles, respectively.

The black circles are the neutral assertions. The smallest grey circles denote

the sources. Figure 4.1b shows the same network after removing all neutral

sources and claims. The remaining graph clearly separates well-connected

clusters of nodes that espouse the different sides of the story. The edges in

those subgraphs represent the opinions partial to the respective side. Note

however that those clusters are different than what would have been obtained

by directly clustering the original graph in Figure 4.1a. The challenge is to

identify polarized opinions automatically by analysis of the original graph,

without the benefit of manual labeling, prior training, or use of language-

60



Pro 
Sources

Neutral 
Sources

Pro 
Assertions

Anti 
Assertions

Neutral 
Assertions

Anti 
Sources

Figure 4.2: Modeling a polarized source-assertion network by identifying
different types of edges

specific features.

The polarity set is defined as the set of different attitudes, or polarities,

corresponding to a situation that involves a conflict or debate, which has

been termed as the polarity context or pole [7]. Consider the situation re-

garding EU referendum vote [161]. The polarity set can have two polarities

{VoteLeave, VoteRemain}, relating to the campaigns regarding the decision.

In the following, we develop models for the common case of two polarities

only. The extensions to more polarities, however, are straightforward. In

all cases, absence of membership to a particular polarity makes a source or

assertion neutral.

To develop the polarity models, we use the terminology {pro, anti} to

denote the two polarities [4, 5], regardless of the polarity context. Note that

the source-assertion network is a bipartite graph. In the presence of a neu-

tral group obscuring the homophilic tendency of the pro and anti polarities,

the source-assertion network can be modeled as in figure 5.1b. The anti,

neutral, and pro networks are shown in left, middle, and right, respec-

tively. Note that there are seven different type of edges in our model, which

corresponds to the seven thick arrows emanating from the sources and ter-

minating at the assertions. Because of the partisanship in the network, the

pro sources do not claim anti assertions, and the anti sources do not claim

pro assertions. Therefore the model excludes such edges.

Below, we discuss different models that define behavior of polarized sources,

and use them to solve the inverse problem; namely, given the observed source

assersion graph, determine the underlying polarities of sources and assersions

(or lack thereof). Our models differ in the degree to which behaviors of polar-

ized sources are individualized. There are generally two issues in describing

61



source behavior. First, should individial sources have individualized param-

eters describing individualized degrees of polarization (that dictate different

probabilities of emitting biased versus unbiased claims), or can sources of

the same polarity be generally described by the same polarity-specific pa-

rameters? Second, should individual sources have individualized parameters

describing the blogging probability in geeneral, or could they be described by

community-wide parameters as well? Those differences give rise to multiple

models, presented below.

4.3 Individualized Bias with Individualized Blogging

Rate

Consider a scenario with two polarities, namely pro and anti. Some of the

observations posted in the social media favors or averts the pro camp. Some

of the observations do the same for the anti camp. Also consider the presence

of neutral assertions which are not favoring any of the polarized camps.

There are also neutral sources who forward polarized assertions of both

polarity or neutral assertions, possibly based on their factual significance. In

this chapter, our goal is to separate the polarities.

Consider Pr(SCij), probability that source i shares an observation j. Then

Pr(Z l
j) denotes the probability that assertion j is of polarity l. Pr(Y k

i ) de-

notes the probability that source i is of polarity k. K and L represent the set

of polarities {neu, pro, anti} for the sources and the assertions, respectively.

Therefore k ∈ K, and l ∈ L. We can then write equation 5.1 by using the

total probability theorem for Pr(SCij).

Pr(SCij) =
∑

(k,l)∈K×L

Pr(SCij|Y k
i , Z

l
j).Pr(Y k

i , Z
l
j) (4.1)

When the assertion opposes the polarity of a source, the source is not going to

share it. Therefore, both Pr(SCij|Y pro
i Zanti

j ) and Pr(SCij|Y anti
i Zpro

j ) reduces

to 0. Note that, the neutral group is not opposing to either pro or anti

groups. Therefore, neither Pr(SCij|Y neu
i Z l

j), nor Pr(SCij|Y k
i Z

neu
j ) reduce to

0 in general.

In case of social-sensing, the polarity of the source or the assertion is

unknown during data collection. The only information known is which source

62



Table 4.1: Parameters representing akli = Pr(SCij, θ|Y k
i , Z

l
j)

Source Yi Assertion Zj SCij = 1 SCij = 0

neutral neutral anni 1− anni
neutral pro anpi 1− anpi
neutral anti anai 1− anai

pro neutral apni 1− apni
pro pro appi 1− appi
pro anti 0 1
anti neutral aani 1− aani
anti pro 0 1
anti anti aaai 1− aaai

claimed which assertion. Therefore, the polarities are latent states. Each

source can have seven (possibly non-zero) parameters related to its chance

of forwarding different type of assertions based on its own polarity and the

polarity of the assertion.

Suppose there are m sources and n assertions. The source-assertion net-

work SC is bipartite graph from the sources to the assertions, where SCij = 1

means source i made claim j, and SCij = 0 means source i did not make

claim j. This network represents the set of known observatins. Our goal is

to jointly estimate the source and the assertion polarities. Mathematically,

the problem is to estimate the distribution of Pr(Y k
i ) for each source, and

the distribution of Pr(Z l
j) for each assertion.

Next, we cast the problem of computing the distribution of each source

and assertion to particular polarities as a maximum likelihood estimation

problem from the given observations, SC = [scij], which is a binary relation

representing whether source i made an assertion j or not. As discussed, we

have seven unknown parameters for each source. Let us define the vector θ,

which represents the unknown parameters of the problem. Table 4.1 shows

the parameters for each source akli = Pr(SCij, θ|Y k
i , Z

l
j) for each case of source

and assertion polarities.

θ = [akli : (k, l) ∈ K × L, i ∈ {1..m}] (4.2)

The polarities of the source and the assertions are considered as latent states.

Y k
i = 1, if source i is of polarity k, and Y k

i = 0 otherwise. Z l
j = 1 if assertion

j is of polarity l, and Zj = 0 otherwise. A maximum likelihood estimator is

63



used to estimate the unknown parameters that is maximally consistent with

the given observations, i.e. maximizes the probability of observations SC.

In another words, we want to find such θ that maximizes Pr{SC|θ}.
Given a likelihood function, an expectation maximization (EM) algorithm

can be used to solve the problem. The algorithm starts with some initial guess

θ0 for the parameter vector θ, and then iteratively performs the following two

steps until convergence.

• Computes the expected values for the latent states using the given

observations and the present guess of the parameter vector θ.

• From the computed expected values, it finds a new parameter vector

that maximizes the likelihood function.

4.3.1 Likelihood Function

The likelihood function computes the probability of the known observations

to happen for a particular set of parameters. The known observations for

our problem is SC, the source-assertion network. Therefore the likelihood

function L is defined by equation 4.3. The expansion on equation 4.4 allows

to compute it using the present value of the latent states.

L(θ;SC) = Pr(SC|θ) (4.3)

=
∑
Y,Z

Pr(SC, Y, Z|θ) (4.4)

=
∑
Y,Z

m∏
i=1

n∏
j=1

Pr(SCij, Y, Z, θ) =
m∏
i=1

n∏
j=1

∑
Y,Z

Pr(SCij, Y, Z, θ)

=
m∏
i=1

n∏
j=1

∑
(k,l)∈K×L

Pr(SCij, Y
k
i , Z

l
j, θ) (4.5)

Maximizing the likelihood function is equivalent to maximizing the log-

likelihood function. Therefore, we derive equation 4.6:

logL(θ;SC) =
m∑
i=1

n∑
j=1

log
∑
(k,l)

Pr(SCij, Y
k
i , Z

l
j, θ) (4.6)

64



Expectation of the log-likelihood function is derived in equation 4.7.

E[logL(θ;SC)] =
m∑
i=1

n∑
j=1

∑
(k,l)

Pr(Y k
i , Z

l
j|θ) log Pr(SCij|Y k

i , Z
l
j, θ) (4.7)

4.3.2 Expectation Step

In the expectation step, the latent states are estimated using the given ob-

servations and the present guess of the parameter vector θ. Therefore we

want to find:

∀1 ≤ i ≤ m, 1 ≤ j ≤ n,

(k, l) ∈ K × L : Pr(Y k
i , Z

l
j|SC, θ) (4.8)

We use Bayes’ theorem to determine the expression for Pr(Y k
i , Z

l
j|θ, SC)

Pr(Y k
i , Z

l
j|θ, SC) =

Pr(SC, θ|Y k
i , Z

l
j).Pr(Y k

i , Z
l
j)

Pr(SC, θ)
(4.9)

Note that total probability theorem can be used to define Pr(SC, θ) =∑
(k,l)∈K×L Pr(SC, θ|Y k

i , Z
l
j).Pr(Y k

i , Z
l
j) Therefore, we write equation 4.10

Pr(Y k
i , Z

l
j|θ, SC) =

Pr(SC, θ|Y k
i , Z

l
j).Pr(Y k

i , Z
l
j)∑

(k,l) Pr(SC, θ|Y k
i , Z

l
j).Pr(Y k

i , Z
l
j)

(4.10)

Note that the expression Pr(Y k
i , Z

l
j) does not involve SC or θ. It is apriori

probability of source i to be of polarity k, and assertion j to be of polarity

l. The apriori probabilities can be considered equal and hence we can omit

them, and write the expression for the expectation step in equation 4.11

Pr(Y k
i , Z

l
j|θ, SC) =

Pr(SC, θ|Y k
i , Z

l
j)∑

(k,l) Pr(SC, θ|Y k
i , Z

l
j)

(4.11)

Given the expressions in equation 4.10 or equation 4.11, the exact expec-

tation step depends on how we formulate Pr(SC, θ|Y k
i , Z

l
j). If a particular

65



source i belongs to polarity group k, and a particular assertion j belongs to

polarity group l, it estimates the chance of the given observations SC hap-

pening using the present parameter vector θ. In this chapter, we consider

three different formulations based on different assumptions.

Here we describe a simple expression for Pr(SC, θ|Y k
i , Z

l
j). As a first as-

sumption, we consider that the given conditions that source i belongs to

polarity k and assertion j belongs to polarity l only affects whether source

i makes assertion j or not. Therefore, only the presence of the particular

(i, j) edge, i.e. SCij is affected by the premises. Therefore, we can write

equation 4.12.

Pr(Y k
i , Z

l
j|θ, SC) =

Pr(SC, θ|Y k
i , Z

l
j)∑

(k,l) Pr(SC, θ|Y k
i , Z

l
j)

=
Pr(SCij, θ|Y k

i , Z
l
j)∑

(k,l) Pr(SCij, θ|Y k
i , Z

l
j)

=
[akli ]SCij .[1− akli ]1−SCij∑
(k,l)[a

kl
i ]SCij .[1− akli ]1−SCij

(4.12)

Note that the final expression in equation 4.12 is constructed by consulting

Table 4.1. Consider the numerator. [akli ]SCij .[1 − akli ]1−SCij . The format of

this expression represents a conditional statement. Because SCij is binary,

one of the two product terms will reduce to 1. Therefore, if the observation

SCij = 1, the numerator will evaluate to akli , and if the observation SCij = 0,

the numerator will evaluate to 1− akli .

4.3.3 Maximization Step

The maximization step can be derived by maximizing the expectation of

the log-likelihood function. Therefore, we want to maximize equation 4.7.

We rewrite the equation with the expression for Pr(SCij|Y k
i , Z

l
j, θ) for our

formulation.

E[logL(θ;SC)] =
m∑
i=1

n∑
j=1

∑
(k,l)

Pr(Y k
i , Z

l
j|θ). log([akli ]SCij .[1− akli ]1−SCij)

=
m∑
i=1

n∑
j=1

∑
(k,l)

Pr(Y k
i , Z

l
j|θ).[SCij log akli + (1− SCij) log(1− akli )] (4.13)

66



We differentiate E[logL(θ;SC)] with respect to each of the parameters,

and set those to 0. Solving for akli , equation 4.14 gives the final expression

to update the parameter so that it maximizes the likelihood function.

∂E
∂akli

=
n∑
j=1

Pr(Y k
i , Z

l
j|θ).[

SCij
akli
− 1− SCij

1− akli
] = 0

⇒
n∑
j=1

Pr(Y k
i , Z

l
j|θ)

SCij
akli

=
n∑
j=1

Pr(Y k
i , Z

l
j|θ)

1− SCij
1− akli

⇒ akli
1− akli

=

∑n
j=1 SCij Pr(Y k

i , Z
l
j|θ)∑n

j=1(1− SCij) Pr(Y k
i , Z

l
j|θ)

⇒ akli =

∑n
j=1 SCij Pr(Y k

i , Z
l
j|θ)∑n

j=1 Pr(Y k
i , Z

l
j|θ)

(4.14)

So the final algorithm using our first formulation is using equation 4.12 and

equation 4.14 repeatedly. At step t, equation 4.12 is applied for every possible

source-assertion pair to estimate the joint distribution [Y, Z]t of the sources

and the assertions to different polarity groups using the current estimate of

the parameter vector θt−1. Equation 4.14 is then applied to every source to

update the seven akli parameters, resulting in a new parameter vector θt. The

iterations continue until convergence.

4.3.4 Enhanced Expectation Step

In this section, we analyze some of our assumptions used in the derived model.

To derive equation 4.12, we assumed that the condition that source i is of

polarity k, and the assertion j is of polarity l affects only the (i, j) edge in

the source-assertion network. It made the derivation of the expectation step

easier, but we hypothesize that this is an over-simplified assumption. For

example, if a source is pro, it increases the chance of all the other assertions

it made to be pro and increases the chance for all the assertions it did not

make to be anti. Likewise, if an assertion is pro, it increases the chance of

all the sources who made this claim to be pro, and increases the chance of

all the sources who did not make this claim to be anti. Therefore, we need

to update the expression for the expectation step to include not only the

(i, j) edge for a particular source-assertion pair, rather consider all the edges

where either i or j is incident. Figure 4.3 explains this mechanism. Here S3

67



S6S5S4

C7C2 C6C1 C5

S3

C4C3

S2S1

Figure 4.3: Highlighted edges are considered when running expectation step
for S3 and C6

and C6 are the selected source and the assertion. Edges that are considered

for the (S3, C6) pair are highlighted, edges that exist in the network, but are

not considered are dimmed in this figure.

Based on this argument, we derive a new expectation step. We consider

the source-assertion pairs as independent. Therefore, the joint probability of

the observed data SC can be computed as individual probability of presence

or absence of each of the source-assertion pairs.

Pr(Y k
i , Z

l
j|θ, SC) =

Pr(SC, θ|Y k
i , Z

l
j)∑

(k,l) Pr(SC, θ|Y k
i , Z

l
j)

=

∏
i′,j′ Pr(SCi′,j′|Y k

i Z
l
j)∑

k,l

∏
i′,j′ Pr(SCi′,j′|Y k

i Z
l
j)

(4.15)

In equation 4.15, cases where both i′ 6= i and j′ 6= j can be considered as

independent of Y ik and Z l
j. This is because of the argument illustrated in

figure 4.3. The chance of a different source i′ making a different assertion j′

is unrelated to the polarity of i and j. Therefore we write,

Pr(Y k
i , Z

l
j|θ, SC) =

∏
(i′=i)∨(j′=j)

Pr(SCi′,j′|Y k
i , Z

l
j)∑

k,l

∏
(i′=i)∨(j′=j)

Pr(SCi′,j′ |Y k
i , Z

l
j)

=
G(i, j, k, l)∑

k,l

G(i, j, k, l)
(4.16)

G(i, j, k, l) = [akli ]SCij .[1− akli ]1−SCij

.
∏
j′ 6=j

[
∑
l′∈L

akl
′

i .Pr(Ẑ l′

j′)]
SCij′ [

∑
l′∈L

(1− akl′i ).Pr(Ẑ l′

j′)]
1−SCij′

68



.
∏
i′ 6=i

[
∑
k′∈K

ak
′l
i′ .Pr(Ŷ k′

i′ )]SCi′j [
∑
k′∈K

(1− ak′li′ ).Pr(Ŷ k′

i′ )]1−SCi′j (4.17)

Here K and L represent the set of polarities {neu, pro, anti} for the sources

and the assertions, respectively. Equation 4.16 presents the new expecta-

tion step, where G is defined in equation 4.17. Pr(Ẑ l′

j′) and Pr(Ŷ k′

i′ ) inside

equation 4.17 represent current estimate of Pr(Z l′

j′) and Pr(Y k′

i′ ), computed

by marginalizing Pr(Y k
i , Z

l
j) obtained from the previous iteration. The max-

imization step remains to be the one described in equation 4.14.

4.4 Community-wide Bias with Individualized

Blogging Rate

We observe that there is a group behavior for the affinity of the sources to

particular assertions, and vice versa. Inspired by figure 5.1b, we hypothesize

that instead of seven parameters akli per source, it might be sufficient to have

seven parameters akl per polarized group. akl represents the chance of an

assertion claimed by a source from polarity k to be of polarity l, defined by

equation 4.18.

akl = Pr(Z l
j|Y k

i , SCij) (4.18)

The parameters akli for each source can be represented using group parame-

ter akl and the blogging rate of that source Ri. Ri is blogging rate of a source,

and it is independent of the polarity of the source. Some sources are highly

active in the social media, and some are relatively less active. Independent of

its activity level, a source can be either pro, anti, or neutral source. Ri is

defined in equation 4.19. We estimate it by the ratio of number of assertions

claimed by source i and total number of assertions. Additionally, we define

dl as apriori probablity of an assertion to belong to particular polarity l, the

blogging rate of the source Si. dl is an additional input to the algorithm

provided as background information, and Ri is inferred from the given data,

SC.

Ri = Pr(SCij) (4.19)

69



dl = Pr(Z l
j) (4.20)

Blogging rate represents how active a source is. Because blogging rate of

a source Si does not depend on its polarity, we can trivially write Ri =

Pr(SCij) = Pr(SCij|Y k
i ). Therefore, we can derive equation 4.22:

aklRi = Pr(Z l
j|Y k

i , SCij) Pr(SCij)

= Pr(Z l
j|Y k

i , SCij) Pr(SCij|Y k
i ) (4.21)

= Pr(Z l
j, SCij|Y k

i )

= Pr(Z l
j|Y k

i ) Pr(SCij|Y k
i , Z

l
j) (4.22)

Using total probability theorem, we can condition Pr(Z l
j|Y k

i ) based on the

presence or absence of (i, j) edge in the source-assertion network, i.e. whether

SCij = 1 or SCij = 0.

Pr(Z l
j|Y k

i ) = Pr(Z l
j|Y k

i , SCij) Pr(SCij|Y k
i ) + Pr(Z l

j|Y k
i , SCij) Pr(SCij|Y k

i )

= aklRi + Pr(Z l
j|Y k

i , SCij)(1−Ri) (4.23)

Note that, Pr(Z l
j|Y k

i , SCij) represents the probability of an assertion j to

belong to polarity l, when source i of polarity k did not claim it. Not claiming

an assertion does not provide much information. Therefore, we estimate this

to be the apriori probability of an assertion to belong to polarity group l, i.e.

dl = Pr(Z l
j). Therefore, by substituting equation 4.23 into equation 4.22, we

find

Pr(SCij|Y k
i , Z

l
j) =

aklRi

aklRi + dl(1−Ri)
(4.24)

In this new formulation, the expectation step stays the same as the pre-

vious one as defined in equation 4.16 and equation 4.17. Note that akli =

Pr(SCij|Y k
i , Z

l
j). Therefore equation 4.24 is used to find the source parame-

ters akli from the group parameters akl and per source blogging rate Ri. The

source parameters are then used in equation 4.16 during expectation step.

We derive the maximization step by maximizing the expectation of the

log-likelihood function. We want to maximize equation 4.7. We rewrite the

70



equation with the expression for Pr(SCij|Y k
i , Z

l
j, θ) for our formulation.

E[logL(θ;SC)] =
m∑
i=1

n∑
j=1

∑
(k,l)

Pr(Y k
i , Z

l
j|θ).

log ([ aklRi

aklRi + dl(1−Ri)
]SCij .[

dl(1−Ri)

aklRi + dl(1−Ri)
]1−SCij)

=
m∑
i=1

n∑
j=1

∑
(k,l)

Pr(Y k
i , Z

l
j|θ).[SCij log

aklRi

aklRi + dl(1−Ri)

+(1− SCij) log
dl(1−Ri)

aklRi + dl(1−Ri)
]

=
m∑
i=1

n∑
j=1

∑
(k,l)

Pr(Y k
i , Z

l
j|θ).[SCij log(aklRi)

+(1− SCij) log{dl(1−Ri)} − log{aklRi + dl(1−Ri)}] (4.25)

We differentiate E[logL(θ;SC)] with respect to each of the parameters, and

set those to 0.

∂E
∂akl

=
m∑
i=1

n∑
j=1

Pr(Y k
i , Z

l
j|θ).[

SCij
akl
− Ri

aklRi + dl(1−Ri)
] = 0

⇒
m∑
i=1

n∑
j=1

SCij Pr(Y k
i , Z

l
j|θ)

akl
=

m∑
i=1

n∑
j=1

Ri Pr(Y k
i , Z

l
j|θ)

aklRi + dl(1−Ri)

⇒
m∑
i=1

n∑
j=1

SCij Pr(Y k
i , Z

l
j|θ) =

m∑
i=1

n∑
j=1

aklRi Pr(Y k
i , Z

l
j|θ)

aklRi + dl(1−Ri)
(4.26)

Therefore, we solve the nonlinear equation 4.26 for each of the seven group

parameters akl. This gives the updated parameter vector maximizing the

likelihood function. The updated parameters are then used to determine the

source parameters using equation 4.24, which are put into equation 4.16 to

update the latent states [Y, Z]. We continue iterating in this manner until

convergence is reached.

Note that dl can also be considered as a parameter. In that case, we

differentiate E[logL(θ;SC)] with respect to dl, and set it to 0.

m∑
i=1

n∑
j=1

∑
k∈K

(1− SCij) Pr(Y k
i , Z

l
j|θ) =

m∑
i=1

n∑
j=1

∑
k∈K

dl(1−Ri) Pr(Y k
i , Z

l
j|θ)

aklRi + dl(1−Ri)

(4.27)

71



In this mechanism, the maximization step becomes solving the system of

equations 4.26 and 4.27 for seven akl parameters, and three dl parameters.

4.5 Community-wide Bias with Community-wide

Blogging Rate

In this section we develop the formulation when the blogging rate is not indi-

vidualized. It is specific to different polarities. Therefore, in this model, akl

represents P (SCij|Y k
i , Z

l
j), which remains same throughout all (i, j) source-

assertion pairs with polarity (k, l). The expectation step is followed from

equation 4.16 with akli = akl for each i. To derive the maximization step, we

write equation 4.28. We differentiate and set to 0 with respect to akl. Solv-

ing for akl, equation 4.29 gives the final expression to update the parameter

vector so that it maximizes the likelihood function.

E[logL(θ;SC)]

=
m∑
i=1

n∑
j=1

∑
(k,l)

Pr(Y k
i , Z

l
j|θ). log([akl]SCij .[1− akl]1−SCij)

=
m∑
i=1

n∑
j=1

∑
(k,l)

Pr(Y k
i , Z

l
j|θ).[SCij log akl + (1− SCij) log(1− akl)] (4.28)

∂E
∂akl

=
m∑
i=1

n∑
j=1

Pr(Y k
i , Z

l
j|θ).[

SCij
akl
− 1− SCij

1− akl
] = 0

⇒
m∑
i=1

n∑
j=1

Pr(Y k
i , Z

l
j|θ)

SCij
akl

=
m∑
i=1

n∑
j=1

Pr(Y k
i , Z

l
j|θ)

1− SCij
1− akl

⇒ akl =

∑m
i=1

∑n
j=1 SCij Pr(Y k

i , Z
l
j|θ)∑m

i=1

∑n
j=1 Pr(Y k

i , Z
l
j|θ)

(4.29)

This model, therefore, iterates between equation 4.16 and equation 4.29 until

convergence.

72



Table 4.2: Parameters of the simulated network

Parameter Default

Probability of any source making neu claim 0.3
Probability of pro source making pro claim 0.9
Probability of anti source making anti claim 0.9
Distribution of neu, pro, and anti assn. {0.34, 0.33, 0.33}
Distribution of neu, pro, and anti source {0.34, 0.33, 0.33}

1 2 3 4 5 6 7 8 9 10
Blogging Rate (claims / source)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

IB-IR
CB-IR
CB-CR

1 2 3 4 5 6 7 8 9 10
Blogging Rate (claims / source)

0.0

0.2

0.4

0.6

0.8

1.0
Po

la
ri

ze
d 

bi
as

ed
 m

is
cl

as
si

fic
at

io
n IB-IR

CB-IR
CB-CR

1 2 3 4 5 6 7 8 9 10
Blogging Rate (claims / source)

0.0

0.2

0.4

0.6

0.8

1.0

N
eu

tr
al

 b
ia

se
d 

m
is

cl
as

si
fic

at
io

n IB-IR
CB-IR
CB-CR

1 2 3 4 5 6 7 8 9 10
Blogging Rate (claims / source)

0.0

0.2

0.4

0.6

0.8

1.0

In
te

rp
ol

ar
ity

 m
is

cl
as

si
fic

at
io

n

IB-IR
CB-IR
CB-CR

Figure 4.4: Quality of estimation vs. blogging rate

4.6 Simulation Study

In this section, we simulate the three models developed in the earlier sec-

tions and analyze their performance. We have written a network generator

using C++ that generates polarized source-assertion networks with known po-

larities for the nodes. The simulator requires number of sources, number of

assertions, and average blogging rate to produce a network. It has several

tunable parameters. Table 4.2 shows the parameters. In the presented re-

sults, the model from Section 4.3 is represented as IB-IR (individual bias

with individual blogging rate), the model from section 4.4 as CB-IR (com-

munity bias with individual blogging rate), and the model from section 4.5

as CB-CR (community bias and blogging rate).

4.6.1 Varying Blogging Rate

Figure 4.4 shows results for the three models with respect to blogging rate.

The number of assertions was chosen to be 30, and the number of sources was

chosen to be 300. Note that such a ratio of sources to assertions comes from

the observations on the Twitter collected datasets. The average number

of claims per source was varied between 1 to 10. Figure 4.4 shows four

73



60 120 180 240 300
Number of sources

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

IB-IR
CB-IR
CB-CR

60 120 180 240 300
Number of sources

0.0

0.2

0.4

0.6

0.8

1.0

Po
la

ri
ze

d 
bi

as
ed

 m
is

cl
as

si
fic

at
io

n IB-IR
CB-IR
CB-CR

60 120 180 240 300
Number of sources

0.0

0.2

0.4

0.6

0.8

1.0

N
eu

tr
al

 b
ia

se
d 

m
is

cl
as

si
fic

at
io

n IB-IR
CB-IR
CB-CR

60 120 180 240 300
Number of sources

0.0

0.2

0.4

0.6

0.8

1.0

In
te

rp
ol

ar
ity

 m
is

cl
as

si
fic

at
io

n

IB-IR
CB-IR
CB-CR

Figure 4.5: Quality of estimation vs. number of sources (average blogging
rate = 7)

charts related to the quality of classification. The leftmost chart presents the

accuracy of the algorithms, which is the ratio of assertions correctly classified.

The next chart presents the cases where the algorithms misclassified a neutral

assertion as polarized. The third chart presents the cases where a polarized

assertion was estimated to be neutral. The rightmost chart presents the

misclassifications within the polarity groups, i.e. pro estimated as anti, and

vice versa.

In all cases, CB-IR is found to be superior. The model IB-IR, the one with

individual bias and blogging rate, does not perform well because it has too

many parameters that are estimated. Therefore, the model could converge

in many ways. The model CB-CR also performs reasonably well, but worse

than CB-IR. CB-CR has too few parameters, therefore, the algorithm is often

making compromises. Note that the misclassifications reduce for both CB-IR

and CB-CR as the blogging rate increases.

4.6.2 Varying Number of Sources

In this section, we test the models by varying number of sources from 30 to

300. We present two cases, one with higher blogging rate, and the another

with lower blogging rate. Figure 4.5 shows results for the three models when

the average number of claims per source was 7. As expected from the previous

section, IB-IR can converge to many solutions. As the number of sources

increase, both CB-IR and CB-CR starts performing better.

The trend is similar in figure 4.6, which shows results when the average

number of claims per source is 3. However, now the algorithms require more

sources to perform better. Note that the difference between the two algo-

rithms with community parameters, CB-IR and CB-CR is larger here. Lower

74



60 120 180 240 300
Number of sources

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

IB-IR
CB-IR
CB-CR

60 120 180 240 300
Number of sources

0.0

0.2

0.4

0.6

0.8

1.0

Po
la

ri
ze

d 
bi

as
ed

 m
is

cl
as

si
fic

at
io

n IB-IR
CB-IR
CB-CR

60 120 180 240 300
Number of sources

0.0

0.2

0.4

0.6

0.8

1.0

N
eu

tr
al

 b
ia

se
d 

m
is

cl
as

si
fic

at
io

n IB-IR
CB-IR
CB-CR

60 120 180 240 300
Number of sources

0.0

0.2

0.4

0.6

0.8

1.0

In
te

rp
ol

ar
ity

 m
is

cl
as

si
fic

at
io

n

IB-IR
CB-IR
CB-CR

Figure 4.6: Quality of estimation vs. number of sources (average blogging
rate = 3)

5 10 15 20 25 30
Iteration count

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ra

m
et

er
s 

(C
B-

IR
)

Neu-Neu
Pro-Pro
Anti-Anti

5 10 15 20 25 30
Iteration count

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ra

m
et

er
s 

(C
B-

C
R

)

Neu-Neu
Pro-Pro
Anti-Anti

Figure 4.7: Convergence properties of the models with community bias

blogging rate gives the models less information per sources to converge to,

therefore, considering individual blogging rate translates to better quality of

estimation. On the other hand, CB-CR mixes blogging rate in the single akl

parameters, so it has to make compromise for many sources.

4.6.3 Convergence Properties

In this experiment, we consider the convergence properties for the two algo-

rithms with community wide parameters CB-IR, and CB-CR. Figure 4.7 plots

values along the main diagonal of the parameter matrix, i.e. ann, app, and

aaa parameters. Note that around 15 to 20 iterations was enough for the

algorithms to converge for the simulated networks.

From the simulation experiments, it is clear that CB-IR performs better

than the other models. Rest of this chapter evaluates and compares this

model to other candidates using Twitter as the social network.

75



4.7 Evaluation

In this section, we evaluate the polarization models using real-world events

tracked from Twitter. Following the simulation study presented in sec-

tion 4.6, we choose the model with community bias and individualized blog-

ging rate (Section 4.4) to evaluate using the crawled tweets. The model was

implemented using Java 1.8. Goal of the evaluation is judge the efficacy of

model to track controversial situations. Therefore, the converged model is

used to obtain a separation of the polarized tweets, which were manually

annotated by human graders beforehand, to indicate whether it is pro or

anti. The polarized tweets received from the model is then evaluated on the

goodness of the separation. For this purpose, receiver operating character-

istics (ROC) curve is used. ROC plots true positive rate vs. false positive

rate. We plot rate of pro vs. rate of anti. For this evaluation, having the

area of 1 under the ROC translates to an optimal algorithm, and having the

area of 0.5 translates to a random algorithm. We also compare the output

obtained from our model with that of some candidate techniques.

Metis-2 and Metis-3 Various variants of community detection has been

used in the literature. We use Metis [162] as the readily available tool for

graph partitioning. Metis-2 represents when we partition the graph in two

parts, and Metis-3 represents when we partition the graph in three parts.

Note that, the sequence of the three partitions that result in a higher ROC

has been presented.

EM Fact-finder These are also EM based maximum likelihood algorithms

[3] to uncover likely facts from social media, also known as veracity analysis.

Fact-finders are not associated with polarity of the tweets, but they would

perform well if a particular polarity of the opposing groups is more likely to

post more facts.

Sentiment Analysis A few eariler works use sentiment analysis based

tools to analyze controversial issues in social media [158, 159]. We used

Umigon [157], which is a sentiment analysis tool trained for tweets. It is

readily available through API.

76



Figure 4.8: Crawling Egypt dataset using Apollo Social Sensing Toolkit

4.7.1 Data Collection and Preprocessing

Apollo Social Sensing Toolkit [3, 9] was used to collect tweets in real-time.

Apollo [9] presents a interface for users to specify interests to start collecting

tweets using Twitter search api [163]. We started several crawling tasks dur-

ing various polarized situations. For example, during 2013 political unrest

in Egypt (2013), figure 4.8 illustrates the apollo task At every configurable

interval, the set of collected tweets is forwarded to further down pipeline for

further analysis, which also includes polarization analysis. The collection of

recorded traces was clustered based on text similarity to generate a repre-

sentative summary [8]. Clustering is required to (a) account for variations in

the text asserting the same information, (b) generate a subset of tweets for

further processing via various ranking mechanims, and (c) generate cascades

regarding how information in particular tweets propagated across Twitter.

Because the distribution of the cluster sizes is approximately heavy tailed,

considering the largest clusters can sufficiently represent the larger set of

tweets [4]. We considered the largest 100 clusters and manually annotated

those in relation to the polarity group to obtain the ground truth. The tweets

77



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Rate of Anti)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
Po

si
tiv

e 
R

at
e 

(R
at

e 
of

 P
ro

)

EM Polar
EM Fact-finder
Sentiment
Metis 2
Metis 3
Random

Figure 4.9: Receiver operating characteristics (Trump)

are in JSON [164] format, which also includes various meta-information in-

clduing the user authoring the tweet (source) and creation time of the tweet.

The source information extracted are used to create the source nodes in the

source-assertion network. On the other hand, the hierarchy provides asser-

tion information. Different components of the pipeline were interfaced using

Python.

4.7.2 Quality of Separation

In this section we present the quality of separation between pro and anti

polarities and compare the results with alternate methods.

Trump

Collected around the U.S. Presidential election 2016, with the single keyword

Donald Trump. The controversy was regarding the republican candidate, and

therefore this dataset has Pro-Trump and Anti-Trump tweets. Figure 4.9

shows the ROC obtained from various mechanisms. The dataset has a strong

separation between pro and anti groups with the pro group talking about

their likeness for the candidate, and the anti group talking about the contro-

versies or mocking him. 30 largest assertions were chosen. Our formulation,

labeled ‘EM Polar’ had area under ROC 0.96 Note that although there is

strong separation, Metis-2 or Metis-3 had area under ROC 0.8 and 0.88, re-

spectively. The reason is that the largest polarized assertions were shared by

78



0.0 0.2 0.4 0.6 0.8 1.0
Pr(Source of particular polarity)

0.0

0.5

1.0

1.5

2.0

kd
e

Nov 03-Nov 09

0.0 0.2 0.4 0.6 0.8 1.0
Pr(Source of particular polarity)

0.0

0.5

1.0

1.5

2.0

kd
e

Nov 10-Nov 16

Figure 4.10: Weekly analysis: before and after election

some people alike, creating a neutral group, which confused the partitioning.

On the other hand, EM Polar could assign the edges more appropriately in

a probabilistic fashion. Because of the presence of campaign related strongly

positive and negative words, sentiment analysis has performed reasonably

well. The fact-finder has chosen likely truths from both side, which explains

the shape of the curve. Figure 4.10 shows an interesting trend resulting from

ongoing analysis of the situation, one week before and after U.S. Presidential

Election on 2016. It runs our algorithm separately for both week, and plots

kernel density estimate for the distribution of sources being in a particular

camp, as derived from the converged parameters. Note that one week af-

ter the election, the distribution is more uniform, i.e. polarized voice has

reduced.

Eurovision

Polarization in this dataset is around the unexpected win of Susana Jamal-

adinova from Ukraine in Eurovision 2016. The controversy in this dataset is

rooted in Ukraine-Russia relations. Pro-Jamala corresponds to tweets from

her well-wishers spreading the news or congratulating her. Anti-Jamala fac-

tion asserts the winning song was performed earlier in May 2015 at a separate

event, which might have been a reason for disqualification. Some tweets were

also related to whether the winning song ‘1944’ was really telling a personal

story, or pointing to a political issue related to the deportation of crimean

tatars from soviet. Top 100 largest assertions were chosen. Figure 4.11 shows

the comparison. It was a Pro-Jamala heavy dataset, therefore both our tech-

nique ‘EM Polar’ and Metis-3 performed reasonably. Presence of the positive

words related to the win contributed to the performance of sentiment anal-

79



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Rate of Anti)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
Po

si
tiv

e 
R

at
e 

(R
at

e 
of

 P
ro

)

EM Polar
EM Fact-finder
Sentiment
Metis 2
Metis 3
Random

Figure 4.11: Receiver operating characteristics (Eurovision)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Rate of Anti)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
Po

si
tiv

e 
R

at
e 

(R
at

e 
of

 P
ro

)

EM Polar
EM Fact-finder
Sentiment
Metis 2
Metis 3
Random

Figure 4.12: Receiver operating characteristics (Egypt)

ysis. One important point to note is that Metis-2 did not perform as well as

Metis-3. The reason is the presence of two factions in the anti group, which

confused the algorithm.

Egypt

This dataset was collected in July 2013, when the Egyptian army asked the

previously elected President Morsi to resign, and appointed a new leader.

This led to chaos and confrontations culminating in largely publicized clashes

on August 14, where lots of Morsi supporters died. This dataset contains

Pro-Morsi and Anti-Morsi factions as well as large neutral group consisting

both neutral sources and assertions. Figure 4.12 presents the ROC. Presence

of the neutral has confused the graph partitioning algorithms. Note that

80



Table 4.3: Occupy Sandy converged parameters

Neu. Assn. Pro Assn. Anti Assn.

Neu. Source 0.79 0.10 0.11
Pro Source 0.69 0.31 0.00
Anti Source 0.71 0.0 0.29

both Metis-2 and Metis-3 have suffered. Therefore, neither a two-way nor a

three-way partition was enough to separate the polarized tweets. Sentiment

analysis performed poorly, because the sentiment being positive and negative

was orthogonal to being Pro-Morsi and Anti-Morsi.

Occupy Sandy

Occupy Sandy is a disaster relief effort started afterwards Hurricane Sandy

in New York area. Tweets related to the restoration activities. The largest

300 assertions were used for polarization analysis. It is not a controver-

sial dataset, and therefore there is no discernible polarization in the dataset

which was confirmed by manually reading the tweets. More than 85% sources

were classified as neutral by our algorithm. Table 4.3 presents the akl pa-

rameters. Note the large value of first parameters in the second and third

columns, which indicates that even though the algorithm could fit a polariza-

tion model, most of the fitted polarized sources are connected more strongly

to the neutralized network.

Syria

This dataset is collected in the aftermath of Syrian chemican weapons cri-

sis in August 2013. Different camps had different opinions on what hap-

pened, blaming different parties for the deaths. These included a hypothesis

that Syrian rebels accidentally detonated chemical weapons while transfer-

ring them to another location, a hypothesis that the Syrian government or-

dered those bombs, and a hypothesis that a third (foreign) party carried out

the attack to frame Syria. This was a sparsely polarized dataset with mul-

tiple polarities, and the results are presented in figure 4.13. Our algorithm,

based on different initial conditions of the akl parameters, came to different

81



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Rate of Anti)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
Po

si
tiv

e 
R

at
e 

(R
at

e 
of

 P
ro

)

EM Polar 1
EM Polar 2
EM Fact-finder
Sentiment
Metis 2
Metis 3
Random

Figure 4.13: Receiver operating characteristics (Syria)

conclusions, which are represented by ‘EM Polar 1’ and ‘EM Polar 2’. One

of these are almost perfect with area under ROC around 0.97. Community

detection algorithms performed reasonably. And sentiment analysis could

not perform well because of foreign language and mostly negative emotions

corresponding to both camps.

Results presented in this section confirm that our polarization model based

on community bias parameters and individualized speak rates are able to cap-

ture polarization present in various controversial situations reasonably well.

In most of the cases, our algorithm performed better than graph partitioning

or other heuristic based approaches. In the presence of noise or missing in-

formation in the source-assertion network, a maximum likelihood model can

‘guess’ the missing values, and converge to the best solution consistent with

the available data.

4.8 Related Works

Polarization in social media has been studied in the context of politics and

elections around the globe. Adamic and Glance [165] analyze political blogs

related to 2004 US Election. They find difference in the pattern of linking

between the liberal and the conservative blogs. Tumasjan et al. [166] study

the use of Twitter for political deliberation in the context of 2009 election in

Germany. They found that the Twitter messages matched with the politi-

cal campaign and could be used as election predictor. Likewise, Gruzd and

82



Roy [167] study political polarization on Twitter in the context of 2011 Cana-

dian Federal Election. Polarization also depend on the chosen mechanism

of representing relations. According to Conover et al. [152], retweet-based

graphs have strong homophilic separation, but the mention-based graphs do

not exhibit much. Their study is based on U.S. congressional elections. Gar-

cia et al. [168] study polarization in the context of politnetz.ch, a Swiss online

political platform.

Lee et al. [169] study relation between network heterogeneity and opinion

polarization in social media. Barberá [170] argue that access to diversified

people through social media can reduce individual exposure to political polar-

ization. Macy et al. [171] explore polarizing behavior of dynamic networks.

Using dynamics of influence and attraction between computational agents

they extend the Hopfield model of attraction. They propose that homophily,

xenophobia, etc states of can naturally result in polarization of antagonistic

groups.

Many works address polarization as a community detection problem [137,

138]. In general applying such techniques on data directly collected in the

real-world social media require case specific tuning. We argue that the pre-

ferred technique should be modeling polarization relating to the presence of

the non-polarized behavior. Bakshy et al. [155] shows polarization and diver-

sity among the facebook users. Barberá [148] explore different case studies

showing varying degree of homophily and polarization in Twitter networks.

Amin et al. [7] propose matrix factorization and ensemble based approach to

separate different polarity groups.

Different polarization metrics have also been proposed in various papers.

An important finding has been presented by Guerra et al. [172]. Accord-

ing to them, modularity is not a good measure, as the presence of different

communities in the social network does not necessarily correspond to op-

posing polarized groups. They also find that boundary nodes are likely to

be less popular in polarized networks. Morales et al. [149] propose meth-

ods to measure degree of polarization based on the distribution of opinions.

Akoglu [173] uses bipartite opinion networks. Garimella et al. [150] attempt

to quantify polarization and convtroversy in Twitter using graph partitioning

and random walk techniques. Their work focuses on detecting whether there

is controvery around a particular topic in Twitter using different statistical

measurements. In this chapter, we observe that the dynamics of neutral-

83



ized sources and content [148, 153, 155, 160] often limits the efficacy of such

techniques, and makes it harder to identify the polarized content from the

nonpolarized. Therefore, it is necessary to model polarization by exploiting

the propagation structure between different polarity types.

It is important to note how presence of polarization imposes additional

complexity on the end-user systems. Due to widespread use of social me-

dia [144, 145] and availability of mobile devices, various forms of citizen

journalism is easily possible. Systems crafted for preparing diversified news-

feed [9,174,175] are prone to choosing a side and mislead users if polarization

is not taken into account for controversial issues. Jisun et al. [154] explore

bipartisanship and polarization in the context of Facebook posts. Amin et

al. [4], Kase et al. [5] study social-sensing [3] in polarized networks. Their

paper shows polarization is strong enough to alter the results of various an-

alytics algorithms.

Our model is dependent on the presence of source information related to

the content. The source-assertion network or some variant of it has been used

by veracity analysis, or information ranking algorithms commonly known as

fact-finders. The model has been incorporated into several social-sensing

architectures [2, 3]. If the social network is not readily available, prior lit-

erature addresses how to infer it from the data [132, 133]. Netrapalli and

Sanghavi [130], Myers and Leskovec [135], and Rodriguez et al. [136] use

data driven approaches to estimate a social network using different maximum

likelihood formulations. Using source information to perform classification in

social networks has been studied by Wang et al. [124]. While the maximum-

likelihood formulation in those papers focus on reliability or veracity of the

sensed observations, our formulation aims to analyze bias and polarization.

Sentiment analysis [157, 176] has been used in earlier works to address

polarization. Choi et al. [158], Mejova et al. [159] study sentiment analysis

based techniques to identify controversial issues. It has been pointed out that

sentiment analysis is not a preferred technique to model polarization. For

example, a tweet that is pro-government can have both positive or negative

sentiment, and vice-versa. Moreover, because of extensive training required

for sentiment analysis tools, they are less applicable to dynamic and interna-

tionalized environments like Twitter, Facebook, or Instagram, where people

often introduce new terms, hashtags, colloquial language, satire, contextual

terms. Therefore, while sentiment analysis or other natural language process-

84



ing tools can be used as a next-step to refine the output, the first approach

to modeling polarization in social media benefits from using structural prop-

erties of the network. Sentiment analysis will help in the absence of source

information or loosely connected sources.

4.9 Summary

This chapter is an exercise on how to properly model polarization in social

sensing. We have started with a simple probabilistic model and improved

it with subsequent formulations. Our solution is based on the maximum

likelihood estimation of fitting a model consisting pro, anti, and neutral voice

and the interaction between these types. We show the strength of our model

with real-world polarized datasets collected from Twitter. Our algorithm

has been able to correctly follow the level of polarization in ongoing events of

international interest. Our research opens avenues for further investigation.

Is it possible to fuse information from multiple data sources across different

networks? Are the models obtained from different situations comparable

in terms of the parameters? Is it possible to derive structural properties

of the social network to measure strength or type of on-going contention,

and predict future transformations? Are the polarization models affected by

the presence of bots and promotional content in the social media? Future

research will focus on such questions.

85



CHAPTER 5

UNVEILING POLARIZATION IN SOCIAL
NETWORKS

This chapter presents unsupervised algorithms to uncover polarization in so-

cial networks (namely, Twitter) and identify polarized groups. The approach

is language-agnostic and thus broadly applicable to global and multilingual

media. In cases of conflict, dispute, or situations involving multiple par-

ties with contrasting interests, opinions get divided into different camps.

Previous manual inspection of tweets has shown that such situations pro-

duce distinguishable signatures on Twitter, as people take sides leading to

clusters that preferentially propagate information confirming their individ-

ual cluster-specific bias. We propose a model for polarized social networks,

and show that approaches based on factorizing the matrix of sources and

their claims can automate the discovery of polarized clusters with no need

for prior training or natural language processing. In turn, identifying such

clusters offers insights into prevalent social conflicts and helps automate the

generation of less biased descriptions of ongoing events. We evaluate our

factorization algorithms and their results on multiple Twitter datasets in-

volving polarization of opinions, demonstrating the efficacy of our approach.

Experiments show that our method is almost always correct in identifying

the polarized information from real-world Twitter traces, and outperforms

the baseline mechanisms by a large margin.

5.1 Overview

This chapter presents algorithms to uncover polarization on social media

networks, such as Twitter, and identify opposing sets of biased tweets. We

define polarization as a condition in which two opposing views enjoy wide

support by different groups in a community. For example, a community

might become divided over a political or social issue; this is often manifested

86



as opposing views on how the issue should be resolved. Often, the conflict

extends to claims about factual observations, such as whether a person had

a gun on them or not at a particular time. These widely held and reported

conflicting beliefs obfuscate descriptions of the real progression of events

as a result of various injected biases. To uncover a less biased (i.e., more

neutral) description of events, it is important to identify polarization and

distill neutral observations from the reported mix, which motivates the work

in this chapter.

In this chapter, we present a polarization model for information networks,

and show that the presence of polarized groups can be detected by con-

sidering dependence among posted observations. Using matrix rank as a

parameter, we propose a matrix factorization approach to uncover polariza-

tion. We explore different degrees of polarization and compare the quality of

separation (of tweets of opposing polarity) across different algorithms using

real traces collected from Twitter. The work is motivated, in part, by the

increased reliance on social networks as news sources. Social network based

news dissemination is different from traditional news networks, where raw

information goes through curation by expert analysts and journalists before

publication. In contrast, in the social media, anybody can post anything.

Polarization or bias is inevitable [152]. Hence, tools are needed to clean-up

the media before consumption as news.

Our results demonstrate that opposing sets of polarized tweets and sources

can be identified automatically (with no content analysis or natural language

processing) by the aforementioned matrix factorization approach. Exper-

iments show that the proposed algorithm performs much better than the

baseline methods in terms of accuracy in unveiling the polarized sources and

groups. The underlying intuition lies in that, in cases of conflict, parties of

opposing views tend to disseminate dissimilar sets of claims on social net-

works. Hence, some of the disseminated tweets can be separated into two

subsets propagated by largely non-overlapping sets of sources. We repre-

sent the set of tweets as a matrix, where one dimension represents sources

and the other represents their tweets (or claims), and where non-zero en-

tries represent who said/forwarded which tweet. Given such a matrix, our

algorithm uncovers the underlying latent groups and claims, thereby iden-

tifying both the conflicted social groups and their respective views. The

language-independent nature of the approach makes it especially advanta-

87



geous in applications involving multilingual media such as Twitter, since no

dependency on a particular lexicon is involved.

It should be noted that the problem addressed in this work is different from

detecting communities in the social network. We observe that in practice, the

crawled traces of polarized tweets are often intermixed with a large set of neu-

tral sources and observations. Since neutral observations can also be relayed

by polarized sources, and since neutral sources may mix and match view of

different polarities, the task of separating the polarized clusters becomes a

much harder problem. In this setting, algorithms based on community detec-

tion do not correctly identify the polarized clusters. In this chapter, solutions

are presented that explicily handle the existence of a neutral poplulation of

sources and claims that blurs the boundaries of polarized groups.

The problem addressed in this work is also different from the commonly

addressed problem of veracity analysis on social media. There can be several

types of bias present on the social medium. In the extreme case, one or more

of the polarized sources are malicious. People post false information to glorify

or defame certain acts or causes. This propaganda may result in an ‘online

war’ on the social platform, and veracity analysis might be used to detect

improbable claims. However, it is often that polarization is more benign.

Individuals do not post entirely fabricated observations, but rather color true

observations depending on their opinions. A more subtle form of polarization

occurs when people selectively propagate or suppress observations based on

their bias. For example, a person supporting political party X may only

forward (true) positive information about X and the negatives about Y .

Another person can forward (true) information about the opposite. In this

case, veracity analysis does not help identify polarization.

Also, note that the problem is different from sentiment analysis. A state-

ment that mentions, say, a president and features a negative sentiment might

not actually be opposing the president. It might be negative on something

else. For example, consider these tweets regarding a former Egyptian presi-

dent (Morsi): “Saudi Arabia accused of giving Egypt $1B to oust Morsi” or

“Egypt clashes after army fire kills #Morsi supporters”. Both tweets mention

“Morsi” (the president) and feature negative sentiments (due to use of such

keyword as “accuse”, “oust”, “clash” and “kill”). However, reading them

carefully, it is easy to see that both sympathize with the president depicting

him and his supporters as victims.

88



The contribution is therefore novel in addressing the problem of identifying

and separating polarization as opposed to, for example, performing veracity

analysis, community detection, or sentiment analysis.

The rest of this chapter is organized as follows. Section 5.2 illustrates a

motivating example from Twitter that leads to our problem, models polar-

ization in social network, and formulates the problem. Section 5.3 derives a

matrix factorization based gradient descent algorithm to estimate the polar-

ities. In section 5.4 we describe the implementation, evaluate our algorithm,

and compare it to other baselines. Section 5.5 reviews the literature related

to polarization in social networks. The chapter concludes with a discussion

in section 5.6.

5.2 Polarization in Social Networks

The end result (of identifying polarization), presented in this chapter, could

in principle be accomplished using semantic analysis and natural language

processing. The goal of our work, however, is to achieve that end in a lan-

guage agnostic manner. There are two reasons why this is important. First,

on a multi-lingual, multi-national medium, such as Twitter, the number of

languages used is large. Developing a model for each language specifically

to identify polarization is a rather expensive undertaking. Second, it is not

always clear that understanding the language helps understand the polarity

of a statement. Consider, for example, the following tweet about Jamala, the

winner of the Eurovision competition in 2016: “Jamala performs Bizim Qirim

at Kiev concert Hall, 18 May, 2015. The same song wins Eurovision one year

later”. Is this tweet advertising Jamala (i.e., is “pro”) or is it against her

(i.e., is “anti”)? Someone not familiar with the underlying background might

consider it pro. In reality, it is not. Eurovision rules dictate that Eurovision

songs have to be original. By claiming that the song was performed a year

earlier, the source suggests that the entry should have been disqualified. The

need to understand situation-specific context on a case-by-case basis poses

significant challenges when it comes to building general-purpose schemes for

identifying polarity.

Our approach uses a different intuition. Individuals retweeting statements

such as the above, on average, understand their context and polarity. Their

89



behavior reflects their understanding. Hence, by monitoring such collective

behavior (namely, the overall propagation patterns of tweets), and clustering

it by similarity, it is possible to separate “pro” versus “anti” without having

to understand the language. In essence, we harness the collective intelligence

of the social medium. In the following sections, we introduce the information

model for polarized social networks, and formally define the problem.

5.2.1 Information Model for Social Networks

Online social platforms often allow mechanisms to crawl public information.

The crawled information at first goes through domain specific cleaning or

filtering steps. The content is then clustered using appropriate similarity

measurement, which helps to consolidate small variations in the data, and

generate a rich information network. A cluster of the very similar observa-

tions is considered as a single assertion, and the people or the authors who

posted those observations are considered as sources. The bipartite graph

from the sources to the assertions is called a source-assertion network. The

method of generating this network from the crawled data has been discussed

in detail in different works [3, 8]. In this chapter, we represent the source-

assertion network as a binary source-assertion matrix A of dimensions s× c,
where s is the number of sources, and c is the number of assertions. If source

i claims assertion j, then aij = 1, otherwise aij = 0.

In addition to the source-assertion network, a social influence or depen-

dency network can also be derived (or crawled), where an (s, t) edge de-

notes that source s has a tendency to forward information if it is received

from source t. This graph can be weighted when the intensity of influence

or dependency is considered into the model, or it can be simplified as an

unweighted graph of binary relations. We represent it as a s×s social depen-

dency matrix T = [tij] of binary values. It can be derived from an explicit

social network such as Twitter follower-followee relations. It can also be es-

timated from retweet behavior of the sources. Netrapalli and Sanghavi [130]

model the propagation of information through the social network as cas-

cades of epidemics. Given the tweets along with sources and timestamp

information, they solve the inverse problem of finding the latent propagation

structure. In this chapter, we estimate the social dependency network using

90



their maximum likelihood estimation mechanism.

5.2.2 Modeling Polarized Information Networks

In this section we augment the source-assertion network with additional

states for polarized scenario. Please note that these models are developed

according to the real-world observations reported by multiple independent

works [4, 155].

We define a polarity group as the set of different senses (polarities) relative

to a polarity context (pole). For example, in a US political parties context,

the polarity group can be K = {democrat, republic}. Please note that al-

though two polarities are common, the polarity group can contain more than

two members, if the context is not bipartite. For example, the polarity group

of the former example could also contain libertarian as a polarity. Given

a set of assertions strictly related to the polarity context, each assertion can

be classified as one of the polarities from the polarity group. However, due

to the nature of data collection, often there are assertions that do not belong

to any of the polarities, which can be termed as neutral, or nonpolarized

assertions. For example, every tweet that contains the keyword Morsi is not

necessary pro-Morsi or anti-Morsi.

Obtaining the ground truth about the polarity of an assertion requires

human effort (that we want to automate). It requires a human grader to

understand the content of the assertion and its context. Then the grader

assigns a polarity from the polarity group, or classifies it as a neutral or

nonpolarized assertion. A source is polarized if its odds of making non-

neutral claims of a particular polarity is above a threshold τ , otherwise a

source is neutral.

Suppose the polarity group is K = {pro, anti}. The bipartite source-

assertion network takes the form shown in Figure 5.1a. Circles S1 to S6 repre-

sent six sources, and squares C1 to C7 represent seven assertions. Empty cir-

cles (squares) represent neutral sources (assertions). Filled circles (squares)

represent polarized sources (assertions). Arrows represent claims of different

polarities. The relationship between the polarized and the neutral com-

ponents can be represented as Figure 5.1b. Here sources (assertions) with

particular polarities are consolidated together as a single circle (square) rep-

91



S1

S2

S3

C1

C6

C2

C7

C3

S4

C4

C5

S5

S6

(a)

Pro

Anti

Neutral 
Sources

Pro

Anti

Neutral 
Assertions

Polarized
Assertions

Polarized
Sources

Po
la

riz
ed

 N
et

w
or

k
N

eu
tra

l N
et

w
or

k

(b)

Figure 5.1: (a) Model of a polarized source-assertion network, (b) Relation
between the polarized and the neutral network.

resenting that polarity. The rest of the vertices are consolidated as neutral

sources and neutral assertions. The polarized vertices are consolidated as

the polarized network.

5.2.3 Problem Formulation

Consider a scenario with two polarities, namely pro and anti. Some of the

observations posted in the social media favors or averts the pro camp. Some

of the observations do the same for the anti camp. In this chapter, our goal

is to separate the polarities. To develop the formulation, we consider the sim-

plified case with opposing polarities only, without the presence of the neutral

network. Later we show how the solution to the simplified formulation is

adapted to solve the general case with a huge neutral network obscuring the

polarized network.

The observation that there are polarized factions that do not share posts

contradicting their polarities, allows us to separate them. Consider Pr(SiCj),

probability that source i shares an observation j. Pr(Cq
j ) denotes the prob-

ability that assertion j is of polarity q. Pr(Sqi ) denotes the probability that

source i is of polarity q. We can then write equation 5.1.

Pr(SiCj)

= Pr(SiCj|Cpro
j ).Pr(Cpro

j ) + Pr(SiCj|Canti
j ).Pr(Canti

j )

= Pr(SiCj|Sproi Cpro
j ).Pr(Sproi ).Pr(Cpro

j )

92



+ Pr(SiCj|Santii Cpro
j ).Pr(Santii ).Pr(Cpro

j )

+ Pr(SiCj|Sproi Canti
j ).Pr(Sproi ).Pr(Canti

j )

+ Pr(SiCj|Santii Canti
j ).Pr(Santii ).Pr(Canti

j ) (5.1)

When the assertion opposes the polarity of a source, the source is not

going to share it. Therefore, both Pr(SiCj|Sproi Canti
j ) and Pr(SiCj|Santii Cpro

j )

reduces to 0.

Pr(SiCj) = Pr(SiCj|Sproi Cpro
j ).Pr(Sproi ).Pr(Cpro

j )

+ Pr(SiCj|Santii Canti
j ).Pr(Santii ).Pr(Canti

j ) (5.2)

Now we consider the terms Pr(SiCj|Sproi Cpro
j ) and Pr(SiCj|Santii Canti

j ) in

equation 5.2. In an ideal situation, these values are 1, making a source share

each and every observation whenever the polarity matches. In practice, this

does not happen. Pr(SiCj|SqiC
q
j ) depends on various social and human fac-

tors, but we can simplify this probability as a combination of two independent

components, (i) activity level of the source i denoted by act(Si), and (ii) cir-

culation level of the assertion j denoted by cir(Cj). Taking δ as a scaling

constant, we can write Pr(SiCj|SqiC
q
j ) = δ.act(Si).cir(Cj).

Pr(SiCj) = δ.act(Si).cir(Cj).Pr(Sproi ).Pr(Cpro
j )

+ δ.act(Si).cir(Cj).Pr(Santii ).Pr(Canti
j ) (5.3)

Consider the general case with k polarities, q ∈ {1..k}. U = [uiq] is an s× k
matrix, and V = [vjq] is a c×k matrix. Activity levels of the sources and their

probabilities to belong to particular polarized camps are represented in U .

Circulation levels of the assertions and their probabilities to favor particular

camps are represented in V . Therefore, uiq = δ1.act(Si).Pr(Sqi ), and vjq =

δ2.cir(Cj).Pr(Cq
j ). If Â = [âij] represents the probability of a source to share

a particular assertion, we can rewrite equation 5.3 as âij =
∑k

q=1 uiqvjq, or

Â = UV T .

Given A = [aij] as the actual observations on whether source i shared

assertion j in the social network, T = [tij] as the social dependency matrix

on whether source i is likely to forward information received from source j,

and a polarity group K, our goal is to estimate U and V component matrices

that allow us to separate the polarized components.

93



5.2.4 Solution Approach

Given k as the rank, we can factorize A to estimate U and V components.

Please note that, A = UV T = URR−1V T = (UR)(V R−T )T , where R is a

k× k multiplier matrix. Therefore, factorizing A without any constraint will

result in UR and V R−T as component matrices. In the following section,

we add appropriate constraints to limit the arbitrariness of R. In the sim-

plified case, when there is only the polarized network, rank of A is exact.

Sources and assertions of different polarities can be uniquely separated us-

ing the estimated factor matrices Û and V̂ . However, in the presence of a

large neutral network, the number of polarized camps k does not correctly

represent the rank of A. In this case, different separations are possible that

can approximate the observation matrix A. We estimate multiple instances

of (Û , V̂ ) using different initializations. For each instance, observations are

partitioned into different polarities. Instances are generally related to each

other in terms of similarity between corresponding partitions. Anomalous

instances that are highly different than the rest are discarded. Rest of the

instances are aggregated to estimate the final partitions.

5.3 A Matrix Factorization Approach to Uncover

Polarization

In this section, we derive a gradient-descent algorithm to jointly estimate the

polarization of the sources and assertions. Suppose A is the s × c source-

assertion matrix. Polarization of the sources and the assertions can be es-

timated from A by factorizing it in the form of matrices Û and V̂ , defined

eariler.

If k = rank(A), A can be factorized exactly in the form A = UV T , where

U = [uij] is an s × k matrix that represent the polarization of the sources,

and V = [vij] is a c×k matrix representing the polarization of the assertions.

Please note that A is an incomplete matrix because when source i does not

claim assertion j, it can be that source i did not have opportunity to observe

j, or i ignored assertion j after observing it. Therefore a sample of the

missing edges in the source-assertion network are represented as aij = 0, and

the rest are considered as missing. Because A is incomplete, we do not know

94



the exact rank of A. However, as visible from Figure 5.1a, the sources and

assertions of different polarized camps are independent when they are sharing

information related to the particular polarized scenario. Hence, we take the

number of polarized groups |K| as rank(A), and approximately factorize A

as A ≈ UV T .

Note that this condition is defined only for the entries of A that are ob-

served. Therefore, let us define the set O = {(i, j) : aij is observed} to be all

the indices in matrix A that are observed. Given a particular U and V , the

estimate of an entry of A is given by âij =
∑k

q=1 uiqvjq. Therefore, the esti-

mation error is eij = aij− âij. In order to approximately factorize the matrix

A, we need to minimize the objective function, which is equal to the sum-

of-squared errors J =
∑

(i,j)∈O e
2
ij =

∑
(i,j)∈O(aij −

∑k
q=1 uiqvjq)

2. This form

of the objective function, however, can result in infinitely many solutions,

each of which minimizes J . Therefore, we impose the following constraints.

The first constraint corresponds to overfitting of the objective function. The

second constraint corresponds to the impact of the social dependency matrix.

Regularization

If U and V is a particular solution, then multiplying U by an arbitrary k×k
real matrix R, and multiplying V by R−T would also minimize J , provided

R is inversible. This is because UV T = UIV T = URR−1V T , where I is a

k× k identity matrix. Depending on the chosen initial values or the missing

entries, the objective function can overfit the model, or oscillate between

multiple solutions. Therefore, we impose a regularization constraint on J .

We choose to use L2-regularization λ(||U ||2F + ||V ||2F ) so that arbitrarily large

values in R would be prevented. The multiplier λ > 0 represents the value

of the regularization parameter.

Social dependency-based polarization consistency

We observed that polarization in the crawled data is obscured by a large non-

polarized or neutral network. Presence of such sources and assertions result

in multiple separations between the different polarity groups likely. The ob-

jective function would result in multiple candidate solutions. Therefore, we

add an additional constraint. Users that depend on one another according to

95



the social dependency matrix T are more likely to exhibit polarization con-

sistency. So the columns in U corresponding to sources who depend on each

other contains similar entries. If ux is the row in U corresponding to source x,

the additive component γtij||ui− uj||2 would add a penalty whenever source

i depends on source j, but their corresponding columns vary. Here γ > 0 is

a parameter that regulates the importance of the social consistency compo-

nent. This parameter can be chosen later in the tuning phase. Please note

that adding this constraint will increase the error in the factorization but it

will favor solutions that have higher consistency with the social dependency

network.

Therefore, by adding these terms, our objective function becomes J =∑
(i,j)∈O(aij −

∑k
q=1 uiqvjq)

2 +
∑

i,j γtij||ui− uj||2 + λ(||U ||2F + ||V ||2F ), which

needs to be minimized.

5.3.1 Solving the Optimization Problem

We minimize J with respect to the parameters in U and V using gradient

descent method. We rewrite the objective function, and compute the partial

derivative of J with respect to each parameter in U and V :

J =
∑

(i,j)∈O

e2ij +
∑
i,m

γtim

k∑
q=1

(uiq − umq)2 + λ(||U ||2F + ||V ||2F ) (5.4)

∂J

∂uiq
= 2

∑
j:(i,j)∈O

eij(−vjq) + 2
∑
m

(γtim + γtmi)(uiq − umq) + 2λuiq (5.5)

∂J

∂vjq
= 2

∑
i:(i,j)∈O

eij(−uiq) + 2λvjq (5.6)

Note that we can ignore the constant factor of 2 throughout the RHS of the

aforementioned equation for the purposes of gradient descent. We compute

all partial derivatives with respect to the different parameters in uiq and vjq to

create gradient matrix ∇U of dimensions s×k, and ∇V of dimensions c×k.

The gradient-descent method updates U ⇐ U − α∇U , and V ⇐ V − α∇V ,

where α is the step-size. The parameter γ, λ can be selected using cross-

validation. Figure 5.2 enumerates this mechanism.

We impose the additional constraint that the entries of the matrix U and

V are non-negative, although the optimization objective function remains

96



1: procedure Factorize(A, T, k)
2: Randomly initialize U, V
3: repeat
4: for each (i, q) do
5: u+iq ← uiq − α ∂J

∂uiq
. Equation 5.5

6: end for
7: for each (j, q) do
8: v+jq ← vjq − α ∂J

∂vjq
. Equation 5.6

9: end for
10: for each (i, q) do
11: uiq ← u+iq
12: end for
13: for each (j, q) do
14: vjq ← v+jq
15: end for
16: until convergence reached on U, V
17: return (U, V )
18: end procedure

Figure 5.2: Gradient descent algorithm for factorization

the same. It provides a sum-of-parts decomposition to the source-assertion

matrix as dictated by the problem formulation. To achieve this, during

initialization, the entries of matrices U and V are set to non-negative values

in (0, 1). During an update, if any entry in U or V becomes negative, then

it is set to 0.

5.3.2 Separating Polarities using Û and V̂

Activity levels of the sources and their probabilities to belong to particular

polarized camps are represented in U . Circulation levels of the assertions

and their probabilities to favor particular camps are represented in V . Rows

of U and V can be considered as points in a k-dimensional euclidean space.

In the simplified case, where the source-assertion matrix consists of only the

polarized network with K = {pro, anti}, the extreme points of U or V

are (1, 0) or (0, 1). These points represent the sources making all the pro

assertions, or making all the anti assertions, respectively. All the other

points would fall on either x-axis or y-axis. However, in the general case, the

neutral network is present, hence it is possible to have points that fall within

the right triangle defined by vertices at (0, 0), (1, 0), and (0, 1).

97



0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
First column

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Se
co

nd
 c

ol
um

n

Pro
Anti

(a) (b)

Figure 5.3: (a) Assertions from the estimated factor matrix V̂ and their
polarities, (b) Although the social dependency network improves
performance, there is still variance in the separation due to the presence of
the neutral network.

Through factorization we have estimated Û = UR, and V̂ = V R−T . This

multiplier R causes the estimated values in Û or V̂ to have been applied a

linear transformation. A linear transformation in general can be decomposed

to several rotations and scales. Due to the constraints we have added to J ,

effect of R is small. Figure 5.3a shows an output where the rows of V̂ are

plotted on the 2D plane for a particular experiment. We observe that the

multiplier R has been mostly restricted to a diagonal matrix corresponding

to scale transformation.

Figure 5.3a also plots the ground truth of the assertions as obtained via

manual annotaion. To separate the different polarity groups, we note that

linear transformations preserve parallel lines. Therefore, the midpoint of a

transformed line corresponds to the transformation of the midpoint of the

original line. We can separate the polarities by finding the pair of assertions

(a, b) from V̂ with maximum euclidean distance, i.e. arg maxa,b ||v̂a − v̂b||2,
and assigning the other assertions to either the polarity of a or b, using a

nearest neighbor rule. However, we observe that R has been mostly restricted

to scaling. Therefore, to obtain a separation of the polarities, assertion j can

be assigned to the group corresponding to arg maxq{v̂jq}. For Figure 5.3a,

this corresponds to using sign of v̂j,1− v̂j,2 as the separator. The sources can

also be separated in a similar manner using Û .

98



5.3.3 Ensemble of Factorization Experiments

We note that in the presence of a large neutral network, different runs of fac-

torization results in different separations. Figure 5.3b illustrates the receiver

operating characteristics (ROC) for the egypt scenario. ROC curve plots

true positive rate vs. false positive rate, and is used to assess the quality of

classification. The optimal algorithm has an area of 1 under the ROC, which

happens when the output includes all the true positives before any of the

false positives.

Figure 5.3b plots the distribution of true positive rate for different false

positive rates, and shows that although the factorization algorithm is able

to achieve good performance, there is significant variance in the separation

obtained from the results. We also compare the result of when the social

dependency network is used as a constraint vs. when it is not. We observe

that although use of social dependency network improves the quality of the

results, there is still variance in the separation. We, therefore, use an ensem-

ble of factorization experiments to estimate the most likely assignments of

the assertions to the respective polarities.

It is not possible to directly compare V̂m with V̂n, when m and n differ-

ent experiments, because of the transformation difference caused by Rm and

Rn. We, therefore, separate the assertions to different polarity groups for

each experiment. Experiments are aligned to each other using a mechanism

based on Jaccard distance [177]. We explain it for two polarities, i.e. k = 2.

Figure 5.4 and figure 5.5 shows the algorithm, with the procedure Esti-

matePolarities at line 9 of figure 5.5 being the starting point. Suppose

the separation generated by factorization experiment m is B1
m and B2

m, and

the separation generated by factorization experiment n is B1
n and B2

n. It is

possible that (B1
m,B2

m) aligns with (B1
n, B

2
n), or with (B2

n, B
1
n). Figure 5.6a

illustrates the two cases considering the polarities as pro and anti. We com-

pute a 2× 2 matrix of the Jaccard distances between the separations created

by the experiments. Jaccard distance between two sets X, Y is defined as

1 − |X∩Y |
|X∪Y | . It is used to assess how similar or dissimilar they are. In order

for the two experiments to match, either the main diagonal will exhibit more

similarity than the anti-diagonal (or vice versa). If the maximum in the

matching diagonal is below a threshold τedge, given their difference is within

τdiag, the experiments are considered to match and a weighted edge is added

99



1: procedure PartitionDistance(Bm, Bn)

2: . JaccardDist(X,Y ) = 1− |X∩Y ||X∪Y |
3: d11 ← JaccardDist(B1

m, B
1
n)

4: d12 ← JaccardDist(B1
m, B

2
n)

5: d21 ← JaccardDist(B2
m, B

1
n)

6: d22 ← JaccardDist(B2
m, B

2
n)

7: dist← 1.0
8: if d11 < d12 and d22 < d21 and |d11 − d22| < τdiag then
9: . (B1

m, B
2
m) aligns with (B1

n, B
2
n)

10: dist← max(d11, d22)
11: else if d12 < d11 and d21 < d22 and |d12 − d21| < τdiag then
12: . (B1

m, B
2
m) aligns with (B2

n, B
1
n)

13: dist← −max(d12, d21)
14: end if
15: return dist
16: end procedure

17: procedure GenerateExpGraph(B, size)
18: G← ∅
19: for m ∈ [1, size− 1] do
20: for n ∈ [m+ 1, size] do
21: dist←PartitionDistance(Bm, Bn)
22: if |dist| < τedge then
23: . Insert weighted undirected edge (m,n, dist) to G
24: G← G ∪ (m,n, dist)
25: end if
26: end for
27: end for
28: return G
29: end procedure

Figure 5.4: Algorithm to form an ensemble of factorization experiments

to G, the graph of experiments. The weight is considered positive if the ex-

periments matched along the main diagonal, and negative if the experiments

matched along the anti-diagonal. Figure 5.6b shows an experiment graph

(without the weights) obtained from 20 experiments on the egypt polarized

scenario. Experiments that highly differ from the others remain isolated in

the experiment graph, or form small islands. We find the experiment with

the largest degree in G, and agreegate all the adjacent experiments.

There can be several procedures to aggregate the experiments. We keep a

vector of frequencies (xj, yj) for each assertion. xj and yj counts the number

of times assertion j has been assigned to polarity x or y. Normalizing these

100



1: procedure MergeExp(freq,BX , BY )
2: for v ∈ BX do . Assertions in BX

3: freq[v]← freq[v] + (1, 0)
4: end for
5: for v ∈ BY do . Assertions in BY

6: freq[v]← freq[v] + (0, 1)
7: end for
8: end procedure

9: procedure EstimatePolarities(A, T, size) . Run size experiments
10: . A source-assertion matrix, T source dependency matrix, k = 2
11: for l ∈ [1, size] do
12: (Ûl, V̂l) ← Factorize(A, T, 2) . Figure 5.2
13: (B1

l , B
2
l ) ← SeparateAssertions(V̂l) . Section 5.3.2

14: end for
15: G← GenerateExpGraph(B, size) . Graph of experiments
16: node← Vertex with maximum degree in G
17: freq ← ∅ . Mapping assertions to frequency of polarities
18: MergeExp(freq,B1

node, B
2
node)

19: for each edge (node, exp, dist) ∈ G do
20: if dist ≥ 0 then
21: MergeExp(freq,B1

exp, B
2
exp)

22: else
23: MergeExp(freq,B2

exp, B
1
exp)

24: end if
25: end for
26: prob← ∅ . Mapping assertions to distribution of polarities
27: for each assertion v in freq do
28: prob[v]← ( freq[v]1

degree[node] ,
freq[v]2

degree[node])
29: end for
30: return prob
31: end procedure

Figure 5.5: Algorithm to estimate polarities from the ensemble

Pro

Anti

Pro

Anti

Pro

Anti Pro

Anti

Bm Bn Bm Bn

Case 1 Case 2

(a)

301
310

302

303

304

306

307

308

309

311

312

313

314

315

316

318

320

305

319

317

(b)

Figure 5.6: (a) Aligning two experiments, (b) Graph of 20 experiments

101



frequencies and sorting them by the difference of the vector components

(xj − yj) gives us a spectrum of assertions, from the most likely to belong to

one polarized camp to the most likely to belong to the other camp.

5.4 Evaluation

We evaluate our algorithm in the context of polarized scenario in Twitter.

Tweets were crawled in real time with tools using Twitter search API. Three

sets of traces were collected that contains polarization around (i) former

Egyptian president Morsi, (ii) Eurovision song contest 2016 winner Jamala,

(iii) US Presidential election candidate Donald Trump. The entire collec-

tion of recorded traces was clustered based on text similarity to generate a

representative summary [8,177,178]. We implemented the factorization pro-

gram using Java. Sparse matrix data structures were used to efficiently store

large matrices. Different components of the pipeline were interfaced using

Python. Factorization was performed followed by the ensemble of multiple

experiments to separate the tweets between two polarities. We used k = 2,

α = 0.001, γ = 0.1, λ = 0.5, ensemble size = 20, τdiag = 0.15, τedge = 0.7.

We compare the quality of separation obtained by our algorithm with the

following related techniques:

Sentiment Analysis

Sentiment analysis [156, 176] uses language models to understand the sense

of content written in natural language, and classifies them as having pos-

itive, negative, or neutral sentiment. To annotate the assertions we used

Umigon [157] and Sentiment140 [179], two freely available specialized tools

to perform sentiment analysis on tweets.

Community Detection

Polarized sources are unlikely to share tweets contradicting their own polar-

ity. Therefore detecting communities in the social network is a candidate

mechanism for separating the polarities. We partition the graph of sources

and assertions into k = 2 communities with the objective of minimizing the

102



edge-cut (number of edges that cross partitions). We used Metis [162] to

obtain that. In addition to detecting communities, we have added another

baseline where the assertions in each community are ranked by their degrees.

We refer this mechasim by MetisVoting.

Veracity Analysis

Algorithms to perform veracity analysis [2, 3, 44, 124] utilize the source-

assertion network to uncover likely facts from the set of tweets. They can

be considered related techniques if one of the polarities have more affinity

towards factual information. We used the EM-Social [3] algorithm to jointly

asses the credibility of the sources and the assertions.

5.4.1 Egypt

Mass street protests against the then president Mohamed Morsi was followed

by a coalition led by the army chief, on July 3, 2013. The president was

deposed and arrested by the army along with other leaders of his political

party. This incident resulted in protests and clashes between the supporters

and the opponents of the removed president. Tweets related to the deposed

president were collected. For the purpose of evaluation, the largest 1000

clusters containing English tweets were read and manually annotated on

whether they were pro-Morsi, anti-Morsi, or neutral in sense. There were

199 pro-Morsi, 109 anti-Morsi, and 692 nonpolarized assertions.

Figure 5.7 compares the receiver operating characteristics (ROC) achieved

from our algorithm to other baselines. To obtain the ROC, the set of asser-

tions were sorted in the order of highest polarity in one class to the highest

polarity in the other class. When consuming the assertions in that sequence,

finding a pro-Morsi assertion was considered as an occurence of true positive,

and finding an anti-Morsi assertion was considered as an occurence of false

positive. The area under ROC curve measures how well an algorithm per-

forms both in terms of finding the correct answers, and omitting the wrong

answers.

Factorization algorithm performs really well. Area under the ROC curve

is approximately 0.93. Both Umigon and Sentiment140 performed just as

good as a random technique, because (i) a large number of assertions were

103



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Rate of Anti)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
Po

si
tiv

e 
R

at
e 

(R
at

e 
of

 P
ro

)

Factorization
EM Social
Umigon
Sentiment140
Metis
Metis Voting
Random

Figure 5.7: Egypt: Factorization performs best with area under ROC 0.93,
EM-Social 0.53, Umigon 0.51, Sentiment140 0.51, Metis 0.61, MetisVoting
0.64

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Rate of Anti)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
Po

si
tiv

e 
R

at
e 

(R
at

e 
of

 P
ro

)

Factorization
EM Social
Umigon
Sentiment140
Metis
Metis Voting
Random

Figure 5.8: Eurovision: Factorization performs best with area under ROC
0.91, EM-Social 0.54, Umigon 0.64, Sentiment140 0.52, Metis 0.73,
MetisVoting 0.76

classified as neutral, and (ii) as described earlier in the chapter, sentiment

analysis is not the correct technique to uncover polarization. An assertion

having positive sentiment can be a positive statement favoring either camp.

Hence, sentiment is orthogonal to polarity. EM-Social is also unable to differ-

entiate between the polarities. It illustrates that there was almost no corre-

lation between the veracity of a tweet and any particular polarity. Metis and

MetisVoting techniques performed better than the other baselines because of

their graph partitioning nature. However, the source-assertion network had

around 80% nonpolarized sources and 70% nonpolarized assertions. There-

fore a community detection analysis was unable to perform well.

104



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Rate of Anti)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
Po

si
tiv

e 
R

at
e 

(R
at

e 
of

 P
ro

)

Factorization
EM Social
Umigon
Sentiment140
Metis
Metis Voting
Random

Figure 5.9: Trump: Factorization 0.92, EM-Social 0.70, Umigon 0.58,
Sentiment140 0.52, Metis 0.90, MetisVoting 0.90

Table 5.1 shows the top 10 tweets from each polarity from the separation

achieved using our algorithm. Note that the tweets on the left column sym-

pathize with the deposed president or his supporters. On the other hand,

the tweets on the right column is vocal against the deposed president and

his political party, and reporting negative news about them.

5.4.2 Eurovision

Susana Jamaladinova (Jamala) from Ukraine was the winner of Eurovision

2016, an annual European song competition. It was unexpected to many as

the expected winner was Russia or Australia according to pre-competition

polls. The winning song, 1944, according to the artist, was telling a personal

story related to her family in the aftermath of the deportation of the Crimean

Tatars by the Soviet Union. However, it was also alleged to have political

connotations against Russian interference with Crimea in 2014. Tweets re-

lated to Jamala were collected for five days after her win. The largest 1000

assertions were manually annotated. There were 600 pro-Jamala, 239 anti-

Jamala, and 161 neutral assertions.

Figure 5.8 compares quality of factorization with other baselines. Our al-

gorithm performs best in this scenario. Metis performs reasonably better

than the earlier case because of relatively better community separation. Be-

cause there were many tweets with positive sentiment that were correlated

to pro-Jamala, Umigon also performed better than it did in the other cases.

105



Table 5.1: Top 10 tweets from the separated polarities (Egypt)

Pro-Morsi Anti-Morsi

1 Sudden Improvements in Egypt Sug-
gest a Campaign to Undermine Morsi
http://t.co/0yCjbKGESr

Prayers for the Christian community
in Egypt, facing violent backlash for
opposing the Muslim Brotherhood.
https://t.co/O5X7BwUjCI

2 Saudi Arabia accused of giv-
ing Egypt $1B to oust Morsi
http://t.co/d4ZQNntCH

Egypt’s Coptic Christians, under at-
tack for supporting overthrow of
Muslim Brotherhood, need continued
prayers: http://t.co/dW0gdcielb

3 Before Morsi’s Ouster, Egypt’s top
generals met regularly with opposition
leaders http://t.co/LbdHKJF508 via
@WSJ

Islamic extremists reportedly attack-
ing Egypt’s Christian community
over Morsi ouster — Fox News
http://t.co/VMMN2m49Sw

4 #Egypt: #Morsi supporters denied
rights amid reports of arrests and
beatings — Amnesty International
http://t.co/koVRHlmdWk

In Egypt, the death toll in the clashes
between police and pro-Morsi support-
ers in Cairo has risen to 34.

5 Crowds March in Egypt
to Protest Morsi Detention
http://t.co/Hp9566xyfB

Amnesty International — Egypt:
Evidence points to torture car-
ried out by Morsi supporters
http://t.co/8hgAHrNoWd

6 Egypt’s Morsi ‘To Stand Trial Over
Deaths’ http://t.co/dDtTFoc0Qt

This... Is... Rab3aaaaaaa! #Morsi
http://t.co/f6PJwpQqeE

7 Huge turnout of Morsi support-
ers here in Mohandiseen #Egypt
http://t.co/TzWsV2CP8D

BBC News - Egypt’s cabinet or-
ders police to end pro-Morsi sit-ins
http://t.co/v2MQV9wgoh

8 Egyptian Leaders Freeze Assets
of Morsi Backers, via @nytimes
http://t.co/qFndiQbR0u

Egypt’s Morsi to be tried for inciting
violence http://t.co/rFJ9e5n06w

9 Egypt’s ousting of Mohamed Morsi
was a coup, says John McCain
http://t.co/O8BaBX1vu1

#Egyptians close #Ramsis square,
one of the main active points
in #Cairo to support #Morsi
#AntiCoup #CNN #Egypt
http://t.co/rKXSE2y8Ih

10 Good luck today EGYPT!Peacefully
Fight for what you know is
right! We are thinking of you!
http://t.co/ciTqadOjfs

You must be either stupid or stupid
if you don’t see a direct relation be-
tween Morsi’s presidency and terror-
ism in Sinai.

Table 5.2 shows the top 10 tweets from each polarity from the separation

achieved using our algorithm. Note that the tweets on the left column are

congratulating the winner (pro-Jamala), sharing winning related news, or

talking against Russia. On the other hand, the tweets on the right column

are against Jamala, and pointing out reasons for the deportation of Crimean

106



Table 5.2: Top 10 tweets from the separated polarities (Eurovision)

Pro-Jamala Anti-Jamala

1 Incredible performance by #Jamala,
giving Crimean Tatars, suffering per-
secution & abuse, reason to celebrate
https://t.co/XWOZADrywH

For #Jamala1944: Crimea Tatar vol-
unteers in the Nazi army parade before
senior German officers, 1942 #Eurovi-
sion https://t.co/itgsyKvzO2

2 Breaking: #Russia launches ha-
rassment campaign against #Ja-
mala’s @Twitter a/c. All known
Kremlin trolls. @BBC ua @AP
https://t.co/btk9QyUpkH

Repeat after me: NATO loves Jamala
and there was absolutely nothing po-
litical about her win (via @marcel-
sardo) https://t.co/0bTbzVIR35

3 President awarded @jamala title
of the Peoples Artist of Ukraine
https://t.co/2df8J9zHP5

#BOOM Jamala released Eurovision
song commercially on 19.06.2015
in Kiev club Atlas. @EBU HQ
https://t.co/LGbgb77RzH
https://t.co/9Se1rwEkIg

4 Jamalas father: We do not
talk with Russian journal-
ists https://t.co/EEewVpZ9D2
https://t.co/51rcf8Je3K

#Oops Poroshenko accidently con-
firms on TV that Jamala’s Eurovision
song 1944 is the same song “Crimea is
ours” from May 2015. @EBU HQ

5 Congratulations to Ukraine on win-
ning #Eurovision 2016! @JAMALA
wrote and composed her song ‘1944’
by herself. https://t.co/vZjYHvtoC

Second left grandfather Jamala!. Or-
dinary fascist, that “the tyrant Stalin
sent him to Kyrgyzstan”! @anto-
nio bordin https://t.co/b9jsXHhiP1

6 After deportation requiem, #Ja-
mala explains how restrictions
in/on #Crimea prevented par-
ents fm joining her @ #ESC
https://t.co/tMKlX1qNA9

NATO here also confirms political
neutrality of Jamala’s Eurovision
song: https://t.co/QoZ4Toqnsg
@Russianspringru
https://t.co/uyt8e4qNAY

7 Russian coverage of Jamalas victory
descends to the level of old Soviet
anecdote https://t.co/HoNwJKdtCO
via @EuromaidanPress

Crimea invites Ukraines Ja-
mala to sing at opening of
memorial to deportation victims
https://t.co/gIANBIAuFL

8 Photo gallery: #Eurovision win-
ner #Jamala arrives in #Kyiv
https://t.co/MBKhuQ7W03
https://t.co/1eEHKAgsjB

Video appears where Poroshenko con-
firms that the old title of the Jamala’s
song is “Crimea is ours” @EBU HQ
https://t.co/e7kEFfD6i9

9 #Jamala sends everyone a post-
card from home, #Ukraine
https://t.co/l1eN6KPVfK

And scene. @Jamala admits that the
music to the Eurovision song 1944
was written before September 2015
@EBU HQ https://t.co/e5lswwcRhn

10 Another thank you from #Jamala
#Eurovision #CrimeaIsUkraine
https://t.co/W8zOlDRnXn

I must say I feel a little sorry for @ja-
mala, from the start simply a tool
in the Wests “#CrimeanTatars” cam-
paign https://t.co/ZduJgP8X7J

107



Tatars, or arguing that the winning song should be disqualified. Some of the

tweets are also sarcastic.

5.4.3 Trump

Donald Trump is the Republican Party nominee for President of the United

States in the 2016 election. There have been much debate and controversies

around the candidate. Tweets were collected using a single keyword Donald

Trump, during April 2016. Collected tweets show support by the pro-Trump

polarity and the negative opinions or mockery posted by the anti-Trump

polarity. For the purpose of generating the ROC curves, the largest 1000

assertions were manually annotated. There were 372 pro-Trump, 522 anti-

Trump, and 106 neutral assertions.

Figure 5.9 compares quality of factorization with other baselines. In this

particular scenario, performance of our algorithm is around 2% better than

community detection. This is because the corresponding source-assertion

network had strong community separation, with only 10% nonpolarized as-

sertions being lightly connected. EM-Social also performs reasonably to find

the separations because of the same reason. Table 5.3 shows the top 10 tweets

from each polarity from the separation achieved using our algorithm. Note

that the tweets on the left column are strongly pro-Trump in nature and

describing support for him or praising him. On the other hand, tweets on

the right column are sharing the negative information about the candidate,

and pointing out the controversies.

5.5 Related Work

Presence of polarization in social networks has been studied in various con-

texts. Conover et al. [152] study retweet-based social networks and men-

tion-based social networks in political contexts related to U.S. congressional

elections. Guerra et al. [172] study polarization metrics for social networks.

They argue that modularity is not directly applicable as a measure of po-

larity because even without polarization modular communities are present.

Uncovering polarization in social networks is important in various contexts.

Bakshy et al. [155] study polarization in the context of Facebook. Amin et

108



Table 5.3: Top 10 tweets from the separated polarities (Trump)

Pro-Trump Anti-Trump

1 Retweet if you are 100 PERCENT vot-
ing for Donald Trump

Donald Trump said women should
be punished for seeking an abortion.
That’s not a distractionit’s a disgrace.
https://t.co/sbJ3opebyB

2 @realDonaldTrump Fugedaboudit!!!
The woman in New York love Donald
Trump!!! https://t.co/7yzgMHVzL4

At this point, Donald Trump has in-
sulted the vast majority of Americans.
The good news is, there’s something
we can all do about it: Vote.

3 Thank you, @NYPost! #Trump2016
https://t.co/KzGweIxaEo

Read and sign this letter that people
all over are signing to Donald Trump:
https://t.co/S56QbW5K5C

4 “The police are the most mistreated
people in this country,” Donald Trump
#BlueLivesMatter #Trump2016
https://t.co/WfJvWUkMaB

We’ve earned more votes than any
other candidate – Republican or
Democrat. https://t.co/tRJNMj86AJ
https://t.co/XJIt2bGevs

5 Nobody beats me on National Secu-
rity. https://t.co/sCrj4Ha1I5

Study: Hillary Clinton, not Donald
Trump, gets the most negative media
coverage https://t.co/CyONOdFTU0

6 Donald Trump #DonaldTrump
#NewYork #NY #NYPrimary
#RhodeIsland #Pennsylvania
#NewYork4Trump #Delaware #CT
#Maryland https://t.co/iYfo13Jjut

Donald Trump says wages are too
high. (Yeah, you read that right.)
https://t.co/up8ZI1WULC

7 Latinos For Donald Trump 2016
“Go Out & #VoteTrump” #Lati-
nosForTrump #Hispanics4Trump
#Trump2016 @realDonaldTrump
https://t.co/eSNy170CXu

Happy to hear @realDonaldTrump ac-
cepted my challenge to debate one-on-
one: https://t.co/mikc6fXZei

8 1987: Donald J. Trump Celebrated
As Model Citizen in #NYC. Remem-
ber TV without HD? #NYPri-
mary #MAGA #Trump2016
https://t.co/5ROvjhJyAK

Ive released 9 years of tax re-
turns. RT if you agree its time
for Donald Trump to release his!
https://t.co/08whtFVC0r

9 The Post endorses Donald
Trump https://t.co/bGIxG1DnZO
https://t.co/1lC8E4Xi89

Donald Trump says wages are
too high. Really? Hard-
working Americans don’t think
so. https://t.co/5oEK9UhGI1
https://t.co/1z0tuCedJa

10 I’m a Veteran. I was born in Mexico,
but I am here Legally! I am not racist!
I support Donald Trump #Trump2016
https://t.co/pD076BcWU5

It’s not just Trump: Every Repub-
lican presidential candidate has at-
tacked women’s health and rights.
https://t.co/3TQdSvYTSs

al. [4], Kase et al. [5] study crowd-sensing and fact-finders in the context of

war and conflict situations. In this chapter, we solve the orthogonal problem

109



of separating the polarity classes.

Polarization in social network can be viewed as a community detection or

graph partitioning problem [137, 138]. We do not directly apply such tech-

niques because of the presence of neutral sources and assertions. Moreover,

the requirement of fusing muliple signals to converge to an expected solution

required an optimization framework. Sentiment analysis [157, 176] can also

be viewed as a related technique to uncover polarization. However, in our

case, sentiment analysis is not directly applicable because the positive and

negative classes in sentiment analysis can be orthogonal to the polarization

group in question. Moreover, sentiment analysis is a supervised technique,

while our technique is unsupervised. Sentiment analysis can require train-

ing and language model to map the sense of the text to sentiments. Even

after training, such techniques can miss the assertions that are composed

of sentiment-neutral wording, but semantically biased toward a certain side.

On the other hand, our method looks at the source information and ex-

ploits the network structure to uncover polarity. As it does not consider text

information, assertions that are not well connected in the network can be

misclassified.

Finding a social-influence network, or source-dependency network has been

studied in prior literature [130,132,135]. In this chapter, we use the maximum

likelihood approach proposed by Netrapalli and Sanghavi [130] to generate

the social dependency matrix used as an input to our algorithm. In addition,

bagging [180] and boosting [181] are two main solutions in ensemble learn-

ing [182]. In this chapter, we follow this idea by filtering out bad separations

by identifying Jaccard distance among the candidates and bagging filtered

candidates.

5.6 Summary

In this chapter, we have presented a matrix factorization and ensemble based

gradient descent algorithm to uncover polarization in social networks. We

have evaluated our algorithm in the context of ongoing disputes, conflicts,

or controversies as polarized situations. Experiments show that it can sepa-

rate the tweets of different polarities by looking just at the source-assertion

network and the social dependency network, and can be more than 90% ac-

110



curate. Our algorithm performs much better than supervised techniques like

sentiment analysis. Moreover, it also performs around 20% − 30% better

than the community detection approaches, when the separation between the

sources or the assertions of different polarities is obscured because of the

presence of a large neutral network. If a particular source or assertion is

not well connected to the network, the method can misclassify. Correctly

estimating such cases with the help of additional information, deriving con-

fidence bounds for the detected polarity, and jointly estimating polarity of

the tweet with its veracity will be addressed in future works.

111



CHAPTER 6

SOCIALTROVE: A SUMMARIZATION
SERVICE FOR SOCIAL SENSING

This chapter describes a general-purpose self-summarizing storage service,

called SocialTrove. The objective is to obtain a representative sampling of

large data streams at a configurable granularity, in real-time, which can be

used to build an information network for subsequent consumption by the al-

gorithms presented in earlier chapters. SocialTrove summarizes data streams

from human sources, or sensors in their possession, by hierarchically cluster-

ing received information in accordance with an application-specific distance

metric. It then serves a sampling of produced clusters at a configurable

granularity in response to application queries. While SocialTrove is a gen-

eral service, we illustrate its functionality and evaluate it in the specific

context of workloads collected from Twitter. Results show that SocialTrove

supports a high query throughput, while maintaining a low access latency

to the produced real-time application-specific data summaries. As a spe-

cific application case-study, we implement a fact-finding service on top of

SocialTrove.

6.1 Overview

This chapter describes the design, implementation, and evaluation of Social-

Trove; a self-summarizing storage service for social sensing applications. The

service offers an API that allows applications to access their data at different

degrees of summarization in a configurable manner. SocialTrove is motivated

by the advent of an age of data overload, brought about by the increasing

availability of smart devices with instant data collection and sharing capabil-

ities, as well as by the growth of social network broadcast, such as microblog

upload on Twitter. Early autonomic computing envisioned machines with

self-* properties that independently meet application needs. The rise of so-

112



cial networks in the present decade, together with the proliferation of smart

devices and other digital data sources, suggests that an increasing applica-

tion need in the foreseeable future will be one of summarizing large volumes

of redundant data for subsequent processing. This motivates development of

a general-purpose summarization service.

In this chapter, we focus on social sensing applications. We refer by social

sensing to those applications, where humans share information on them-

selves or their environment, either directly (e.g., by blogging) or using sens-

ing devices in their possession (e.g., sensing on a smart phone). The ap-

plication features a back-end, where collected data is stored, which is the

focus of our work. Social sensing applications encompass participatory sens-

ing [183–186], opportunistic sensing [23,187,188], and use of humans as sen-

sors [2–4, 95, 125, 189]. For example, smartphone users on a participatory

sensing campaign might run a geotagging application that allows them to

upload GPS locations of items of interest via the phone. The application

might also allow them to describe these items using text tags, or to sup-

ply images. For another example, Internet-connected vehicles may upload

speed information periodically from on-board navigation systems, allowing

the back-end servers to compute city traffic speed of different streets. In

recent work, the authors explored the use of social networks, such as Twit-

ter, as sensor networks, observing that many tweets can be viewed as bits of

information about the state of the physical world. For such sensor networks,

an application might construct physical state estimates from “human sensor”

observations [2–4, 108]. A common characteristic of social sensing systems

exemplified above is that they generate large amounts of redundant data.

The underlying data objects may be different, depending on the application.

The simplest way to summarize data is to reduce redundancy by offering a

sampling of the original data set, where the selected samples are minimally

redundant. We call such a sampling policy, representative sampling . A chal-

lenge, therefore, is to develop a representative sampling service agnostic to

the data type.

SocialTrove is an exercise in building a general-purpose representative sam-

pling service that reduces redundancy in large data sets. The service allows

application designers to specify an application-specific distance metric that

describes a measure of similarity relevant to this application among data

items. Based on that application-specific measure, the service hierarchically

113



clusters incoming data streams in real time, and allows applications to obtain

representative samples at arbitrary levels of granularity by returning cluster

heads (and member counts) at appropriate levels of the cluster hierarchy.

An important design consideration in developing our service is scalabil-

ity. When data are large, if the observations are stored in a cluster-agnostic

manner, retrieving a representative summary would require scanning the en-

tire set of observations, thereby communicating with many machines and

decreasing throughput. Instead, SocialTrove stores content in a similarity-

aware fashion, according to the application-specific similarity metric. We

implement SocialTrove and evaluate its performance in the context of sum-

marizing Twitter data. We demonstrate that it outperforms the alternate

mechanisms in terms of both (summary) query latency, and maximum query

throughput. To demonstrate an application that uses Twitter data sum-

maries, we built a fact-finding service [3] that uses the produced summaries

to determine which observations are more credible in the presence of noise,

errors, and conflicts. We observe that the fact-finder implementation on top

of SocialTrove required significantly fewer lines of code than a standalone

service.

The rest of this chapter is organized as follows. Section 6.2 describes the

main interface exported by SocialTrove as a self-summarizing storage service.

In Section 6.3 we present the distributed architecture of the SocialTrove run-

time. Section 6.5 presents microbenchmarks and a performance evaluation.

We review the related work in Section 6.6. The chapter concludes with a

discussion in Section 6.7.

6.2 A Self-Summarizing Storage Model

Our goal in this chapter is to build a (data storage) service that allows an ap-

plication to retrieve summaries of their data at arbitrary levels of granularity

based on an application-specific redundancy metric. We call such a service,

self-summarizing storage. The main purpose of summarization is to reduce

data redundancy by selecting data samples that are minimally redundant.

Towards that end, SocialTrove employs a hierarchical clustering scheme and

returns data samples constitituting cluster-heads at a configurable granular-

ity (together with the sizes of corresponding clusters). Finally, we aim to

114



design the service that is agnostic to the data type, so that it may be reused

in different application contexts. Hence, we allow applications to define their

own application-specific distance metric between data objects, and cluster

objects in the corresponding feature space. The SocialTrove API is carefully

designed not to make assumptions regarding the feature space in which ap-

plication objects live, and yet perform clustering, store clusters, and serve

summary queries in an efficient manner at different levels of granularity.

In accordance with the above design requirements, the fundamental ab-

straction and main “citizen” of SocialTrove is the abstract data object . It

is an opaque data type that SocialTrove itself does not interpret. Instead,

it stores object records that are tuples of (ObjectSource, ObjectHandle,

FeatureVector), where ObjectSource specifies the ID of the input source

(e.g., sensor ID, camera ID, or social network user ID) from which the ob-

ject was obtained, ObjectHandle is a handle to the abstract data type, and

FeatureVector is a placeholder for the object’s application-specific feature

vector (not computed by SocialTrove).

Further, the service offers two interfaces; (i) a customization interface that

allows applications to define their application-specific features and distance

metrics for objects, and (ii) a summary query interface, that allows appli-

cations to retrieve data summaries at different degrees of granularity. We

begin the chapter by describing those interfaces first to give the reader, re-

spectively, an understanding of (i) the way we attain independence of the

service from the application-specific data type, and (ii) the functionality we

offer to the application.

6.2.1 The Customization Interface

To customize SocialTrove to the summarization needs of a particular appli-

cation, two application-specific callback functions must be written by the ap-

plication developer. These functions will be called by SocialTrove. Namely:

• Vectorize(u): SocialTrove requires applications to implement a call-

back function, called Vectorize(). SocialTrove passes an object han-

dle, u, to this function. The function returns a corresponding feature

vector, FeatureVector. Note that, SocialTrove never interprets the

incoming objects themselves or assumes their format. Rather, only

115



Vectorize() is aware of what an object means. Similarly, SocialTrove

does not interpret the output feature vector. It is stored as an opaque

data type in the object’s record.

• Distance(u.FeatureVector, v.FeatureVector):

SocialTrove requires applications to implement a callback function,

called Distance(), that computes the distance between two objects, u

and v, based on their feature vectors. As mentioned above, SocialTrove

itself never interprets the feature vectors, as they are application spe-

cific. Instead, it treats the feature vectors generated by the Vectorize

function as an opaque data type. A handle to the data type is stored in

the object’s record. The Distance() function operates on these vec-

tors and returns a scalar distance value. We require that the scalar

distance value obey the triangle inequality. In other words, we require

that distance(u, v) + distance(v, w) ≥ distance(u,w).

The above interface is flexible and supports the needs of very different appli-

cations. For example:

• Scalar measurements : In applications involving scalar sensor values,

Vectorize() trivially returns the sensor measurements. Distance()

returns the difference between two measurements.

• Vector measurements : In applications where objects such as, environ-

mental measurements, are associated with metadata, such as time and

location, Vectorize() might focus on metadata elements of objects,

viewed as a feature vector. Distance() might then return a weighted

Cartesian distance between feature vectors, where weights reflect the

relative impact of differences in the corresponding dimension on the

likelihood of similarity between objects. For example, say, we know

that a particular variable does not change much over time, but has

large spatial variations. Hence, the weight of the location dimension

is set larger and the weight of the time dimension is set smaller. This

allows computing a scalar similarity measure between any two objects

and estimating measurements at one time and location using a nearby

object in the feature space (albeit from a different time and location).

• Pictures : In applications involving visual objects, Vectorize() might

apply a library of image processing tools to extract relevant image

116



features. Distance() may compute visual similarity between images

based on these features.

• Text and tags: In applications where objects constitute small amounts

of text (such as tweets or tags associated with images), Vectorize()

might split the text entry on whitespaces into different tokens (words).

Distance may be applied on pairs of vectors (token lists) by count-

ing the proportion of similar tokens. The Tanimoto distance and the

Angular distance are suitable distance metrics in this space [177,190].

The point of the above discussion is to demonsrate versatility. Many appli-

cation domains (e.g., vision and speech) already have well-defined distance

metrics between objects. The definition of vector spaces and distance met-

rics is thus out of scope for SocialTrove. In our case study, we demonstrate

a distance defined on short text (tweets), showing how it leads to meaninful

summaries of human observations.

6.2.2 The Summary Query Interface

Using the above two application-specific callback functions, SocialTrove has

all it needs to perform hierarchical clustering in real time, as will be de-

scribed later in this chapter. With clusters at different levels of granularity

constructed, SocialTrove exports an interface to retrieve data summaries at

different degrees of granularity. A summary in our service is given by a list

of cluster-heads. For each cluster-head, the service allows one to optionally

retrieve a member count (i.e., count of objects in the same cluster) or a

member list (list of object record handles for objects in the same cluster).

Remember that an object record is a tuple, (ObjectSource, ObjectHandle,

FeatureVector), specifying the source ID, feature vector and object handle.

Hence, given a list of record handles, the application can retrieve the cor-

responding objects, sources, or features, depending on how much data they

need.

For example, an application interested in the degree of data corroboration

only, might retrieve a summary that consists of cluster heads and member

counts only. An application that also needs to know which sources reported

the observations in the cluster (e.g., in case some are trusted more than

117



Driver Process

Summary 
Model

for Interval t

Online Summaries
(Interval t)

Distributed Storage

Interval   t
Interval t-1

Interval  2
Interval  1

Input
Daemon

Summary 
Model Cache

Distributed Input Proxy

Input
Daemon

Summary 
Model Cache

Input
Daemon

Summary 
Model Cache

Analytics
Generate 

Summary Model

Ex
te

rn
al

 S
ou

rc
e(

s)

Interval   t
Interval t-1

Interval  2
Interval  1

Interval   t
Interval t-1

Interval  2
Interval  1

Slave

Machine Cluster

Slave

Slave Slave

Figure 6.1: SocialTrove system design

others), can retrieve the member (handle) list and inspect the sources. An

application interested in statistics over clusters may also inspect the feature

vectors. The SocialTrove runtime is described in the following sections.

6.3 SocialTrove Runtime

SocialTrove is designed for large-scale social sensing services where collected

data is too big for a single machine. Hence, we design and implement So-

cialTrove on a machine cluster. In this section, we describe the design of

the runtime environment that makes it scalable. The design is based on two

observations:

• Latency and throughput are improved by limiting global state updates

to only once per a configurable interval, called the batching interval .

Hence, incoming data are buffered until enough of it is present, then a

batch process makes an update to existing clusters, once per batching

interval. Batching amortizes run-time overhead across a larger body

of input data. The batching interval (e.g., 5 minutes) is thus a con-

figurable parameter that offers a trade-off between data freshness and

update overhead.

118



• Availability is improved by noting that social sensing content is likely

to exhibit temporal locality. Hence, state does not change significantly

across batching periods, making further optimizations possible.

6.3.1 System Components

Figure 6.1 shows the components of SocialTrove and their interactions, de-

scribed below.

Data Input Proxy

We envision SocialTrove to sit on top of a data collection service. This

service will interact with the various sources and will supply a stream of real-

time data to SocialTrove for summarization. In the current implementation,

the input is supplied as a set of tuples (ObjectSource, ObjectHandle) in

JSON [164] format. In our particular application example, we replace the

data collection service with Twitter and write a simple interface that uses

Twitter API to stream tweets. In this instantiation, ObjectSource is a

Twitter user ID, and ObjectHandle is a handle to a tweet object (including

text and metadata).

The input proxy is composed of several data input daemons that receive

streaming objects and must resolve where to store each. This resolution is

done by consulting a Cluster Model , also known as Summary Model , which

keeps track of the existing clusters for the present batching interval and the

mapping from these clusters to individual storage machines.

Client Query Proxy

Similarly to the input daemon nodes, are the client query proxies. (The

proxies are not shown in Figure 6.1 to keep it simple.) They function like

input daemons and cache the cluster model as well. Instead of clustering

collected data from external sources, the query proxies receive queries from

SocialTrove clients, and fetch the matching data summaries from the storage

nodes using their locally cached cluster model.

119



Cluster Model (also known as Summary Model)

The Cluster Model is a data structure that contains the set of cluster cen-

troids, along with their hierarchical relationships. Computing an accurate

cluster model requires knowledge of all the data objects, including those that

would be arriving in future. Because the data objects arrive as a stream, hav-

ing an accurate model is often not possible. Maintaining a streaming cluster

model that updates the existing clusters as the data objects arrive would be

close to accurate [191]. In this scenario, the input daemons would require

exclusive locks to update the model at every insertion, and all the proxies

would need to synchronize the updates to maintain consistency. Such a write-

heavy scheme would greatly reduce both throughput and response time of

the system, and would not be scalable as a service.

To solve this problem, SocialTrove maintains a system wide batching in-

terval of ∆ minutes. A new cluster model is computed using the recently

collected data objects, and advertised at the beginning of every interval.

The input daemons and the client query proxies cache the cluster model (or

portions of it) in their main memory that remains consistent until the in-

terval ends. In later sections, we discuss different solutions to organize and

update the cluster model.

Storage

The storage nodes store actual data objects in a clustered form. The ob-

jects are received from the input daemon nodes that cluster incoming data

objects using the cluster model. The clusters stored in the storage nodes are

partitioned and indexed according to the interval they were received. For a

particular interval, the union of the respective partitions over all the storage

nodes constitutes the ‘sensed universe’ for that interval.

Model Update Routine

The model update routine is run every batching interval of ∆ minutes. Dur-

ing interval t, it considers the data objects received in interval t−m to t− 1

(the previous m intervals), and computes the cluster model that the data

input and the client query proxies will use during interval t + 1 (the next

120



interval). As an option, output of this routine can be fed back to the stor-

age nodes so that the data objects received during interval t − 1 could be

readjusted.

6.3.2 Cluster Model Management

The Cluster Model is a key part of SocialTrove. It maintains a set of centroids

as the cluster heads of the existing clusters. For an incoming data object,

the input daemons traverse the cluster model to find the centroid of the

cluster this object belongs to. Similarly, to serve the applications running

on top of SocialTrove, the client query proxies traverse the cluster model to

find matching vectors. Depending on how the distributed cluster model is

organized and maintained, there can be different trade-offs and flexibilities

the system can offer.

SocialTrove is scalable by virtue of efficient realization of these insert and

lookup queries. If there are k centroids and n incoming data objects in an

interval, the naive and most versatile implementation requires a query object

to be compared with all the centroids to find the nearest match, resulting

in a O (nkd) algorithm when the whole cluster model fits in the cache and

the comparisons take O (d) time. The comparison time can be considered

a constant. We also observe that the cluster sizes in socially sensed data

objects approximately follow a long tail distribution, and k is roughly of

the same order as n. Hence, the naive algorithm requires O (n2) time when

the entire cluster model fits in the cache. This naive solution would not be

scalable.

If object distances, however, follow the triangle inequality, some distances

can be inferred from others and hence the above extensive comparison is an

overkill. Given a metric distance space, we thus build a nearest neighbor

data structure (tree) during clustering. The insert and search operations

on the clustered data objects can then be performed efficiently using the

tree. Disjoint partitions of the tree are mapped to different storage nodes, so

that an input daemon can quickly decide which storage node to forward the

incoming data object, and a query proxy can quickly decide which storage

node(s) to forward the user query to.

If the distance function satisfies all the properties of a metric, (i) non-

121



A

D

CB

E

H

G

KI
J

F

L M N P

C

A

B

E

D
F

G

H

I J K

Tree RepresentationPoints in 2D

u

L

N

P

M

Figure 6.2: Mapping a set of points in two dimensions to a tree

negativity, (ii) small self-distance, (iii) isolation, (iv) symmetry, and (v) tri-

angle inequality) [192], it enables us to use rich nearest neighbor data struc-

tures like M-tree [193] or Ball-tree [194] to perform k-means [195] clustering

efficiently. It is trivial to satisfy the first four properties. The triangle in-

equality may not be satisfied by all distance measures. However, if any of the

last three conditions fail; provided the other four are satisfied, it is possible

to find a function through transformation, which is a metric function [192].

The euclidean distance function follows triangle inequality and is a metric

function. In fact, all normed vector spaces are metric spaces, if we define

d(x,y) = ‖x− y‖. Some distance measures like KL-Divergence or Maha-

lanobis Distance do not follow triangle inequality, but instead follow another

property called Bregman Divergence. There are Nearest Neighbor data struc-

tures inspired by Ball-tree; for example Bregman Ball-tree [196] that can be

used in this case for efficient clustering. These, however, are currently not

implemented on SocialTrove.

In SocialTrove, the cluster model is represented as a binary tree of cen-

troids. The tree is constructed using a divide and conquer paradigm. At

every stage, the current set of vectors is partitioned into two sets, using a

2-means1 clustering algorithm. The centroids of the two sets are considered

as the two children of the centroid of the original set. This process continues

until we arrive at a set of vectors with diameter less than a threshold, which

is considered as a single indivisible cluster. The data objects are separable in

this way, provided the distance function satisfies the triangle inequality (and

1k-means clustering with k = 2

122



��
�����
����
�����
����
�����
����
�����
����
�����
����

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

��
��
���
��
��
��
��
��
��

�������������������

�����
������
������
������
������

Figure 6.3: Distribution of search completeness

all the properties of a metric). The tree is generated by the model update

module, and synchronized every interval to the input daemon and the proxy

nodes that cache it. As an illustrative example, Figure 6.2 shows a set of

points in two dimensional space and maps those to a corresponding binary

tree that divides the space using the euclidean distance among the points as

a distance metric.

For each collected object, the input daemons find the closest centroid from

the tree, and assign it to the corresponding cluster. If there are k centroids,

this operation can be performed quickly, in O (log k) time. However, for the

clustering performed this way to be correct and the lookup operations to

succeed, the nodes of the tree requires perfect centroids for all objects that

would be collected during the current interval, which is not possible.

We assume that objects collected in the present interval are correlated

with those collected in past intervals. Hence, we estimate the cluster tree for

interval t during interval t − 1 by clustering the objects collected in last m

intervals (i.e., intervals t−m− 1 to t− 2).

To check the validity of our assumption, experiments were performed using

Twitter data as the input by clustering past tweets to build the cluster tree,

and inserting new tweets using it. The objective was to check how complete

the lookup operations would be, if a scheme for quickly clustering recent

tweets based on a past model is used. The hashtags present in the current

set of tweets were then used as search queries. We used a very large ∆, of

1 day, as a very extreme case. Figure 6.3 shows the distribution of search

completeness for the newest tweets for different values of m from 1 day to

5 days.

123



The plot confirms that tweets from present and past intervals are corre-

lated. The plot also reveals one potential limitation of this method; false

negatives. Over 20% of user queries could not find any match at all, and

40% could only find at most 50% of the desired results. This problem is vis-

ible with high dimensional data like text or tweets, where some dimensions

were not known when the summary model was generated. As the cluster

tree is computed and circulated to the input daemon nodes in synchronous

intervals, it fails to look up using query terms that are unique to the present

interval.

As a solution, we add an asynchronous component to the cluster model

using Bloom filters [197]. There are Bloom filters corresponding to every

node of the cluster tree. Dimensions (keywords, in case of tweets) unique to

the present interval are locally inserted to the Bloom filters corresponding

to the tree nodes visited by an incoming data object. Crawlers use a gossip

protocol [198] to propagate their local updates to the Bloom filters. These

updates are not expensive because only relative changes are sent over the

network, which are easily merged using bitwise ORing. Lookups are per-

formed using the Bloom filter. A Bloom filter has a 100% recall rate; hence

it solved the aforementioned problem of false negatives when searching with

the query terms unique to the present interval.

Insertion

New object insertions use the cluster model to find the correct cluster for

incoming objects. Here, we illustrate using Figure 6.2 how insertions are

performed. Suppose an incoming object u (the red point in Figure 6.2)

arrives. To assign the nearest cluster to this point, it is at first compared

with centroids B and C. Distance from centroid C is found to be lower.

Thus, the object is pushed down that branch of the tree. Centroid C has two

children, namely F andG. Again, object u is compared to both. The distance

from G is found lower. Thus, the object is pushed down that branch. The

two children of G (namely J and K) are compared to u next. The incoming

object is closer to J , which is a single cluster. Hence, u is assigned to cluster

J .

The pseudo-code for insertion using the cluster tree is shown in Figure 6.4.

nodesync corresponds to the synchronized component of node that is updated

124



1: procedure Insert(u) . Data object u
2: nodesync ← root(CMsync) . Global cluster model
3: nodeasync ← root(CMasync) . Local cluster model
4: while nodesync is not leaf do
5: lsync ← left(nodesync) . Left child
6: lasync ← left(nodeasync)
7: rsync ← right(nodesync) . Right child
8: rasync ← right(nodeasync)
9: if dist(u, lsync) < dist(u, rsync) then

10: nodesync ← lsync
11: nodeasync ← lasync
12: else
13: nodesync ← rsync
14: nodeasync ← rasync
15: end if
16: for all token ∈ u do
17: Set nodeasync[token] . Update Bloom filter
18: end for
19: end while
20: Append u to the cluster nodesync . Invoke RPC
21: end procedure

Figure 6.4: Algorithm to insert an object

every interval, and nodeasync corresponds to the asynchronous components

that are maintained through Bloom filters. Lines 4–19 push the incoming

object u down the tree. Lines 9–15 compare the new point with the two

children of the presently considered node of the tree and decide which branch

to take next. As the incoming object traverses down the tree, the local

Bloom filters of the corresponding nodes are updated (which would be later

propagated to the data input and the client query proxies). In Line 20, the

cluster that u belongs to has been decided and the corresponding cluster

summary is pushed to the in-memory distributed cache at this point.

Lookup

Lookups use the asynchronous component of the cluster model to find the

correct cluster summaries related to an incoming query. Please note that, for

an insertion, the incoming data object is assigned to only one cluster, which

is nearest from it. The incoming data items are expected to follow the trend

of the existing clusters, so that the summary model can be used to find the

125



1: procedure Lookup(w, dq) . Query object w
2: nodeasync ← root(CMasync) . Local cluster model
3: result← ∅ . Set of matching objects
4: if dist(w, nodeasync) ≤ dq then
5: ExploreBranch(w, dq, nodeasync, result)
6: end if
7: return result
8: end procedure

9: procedure ExploreBranch(w, dq, node, result)
10: if node is not leaf then
11: l← left(node) . Left child
12: if dist(w, l) ≤ dq then
13: ExploreBranch(w, dq, l, result)
14: end if
15: r ← right(node) . Right child
16: if dist(w, r) ≤ dq then
17: ExploreBranch(w, dq, r, result)
18: end if
19: else
20: Append cluster node to result
21: end if
22: end procedure

Figure 6.5: Algorithm to lookup cluster summaries

nearest cluster. However, for a lookup, the queries can be any point in space.

The response is a set of cluster summaries within a mentioned distance from

the query.

Figure 6.5 presents the pseudo code. Lines 4–5 decide if the query object

w is within a specified distance dq of the root node. If it is not, it is decided

that the query does not match any of the existing summaries in the model. If

the distance is within dq, Lines 10–21 traverse the tree, taking the branches

for which the distance of the centroid is less than the specified threshold dq,

and pruning when it is not.

Model Update

Model update is an offline job that runs once per batching interval. It con-

siders the objects collected in the previous m intervals, and constructs the

cluster model by repeatedly performing 2-means clustering. Because the dis-

tance function satisfies triangle inequality, divisions performed at each stage

126



1: procedure GenerateModel(S, dc) . Set of objects S
2: root← mean(S) . Calculate centroid of S
3: if diameter(root) > dc then
4: TwoMeansModel(root, dc) . Non-blocking
5: end if
6: end procedure

7: procedure TwoMeansModel(node, dc)
8: . node must be divisible in atleast two clusters.
9: . TwoMeans uses 2-means clustering to

10: . partition node into two clusters l and r.
11: (l, r) ← TwoMeans(node) . MapReduce job
12: left(node)← l . Assign l as left child
13: right(node)← r . Assign r as right child
14:

15: . Calls to TwoMeansModel are independent,
16: . asynchronous, and can be scheduled in parallel.
17: if diameter(l) > dc then
18: TwoMeansModel(l, dc) . Non-blocking
19: end if
20: if diameter(r) > dc then
21: TwoMeansModel(r, dc) . Non-blocking
22: end if
23: end procedure

Figure 6.6: Algorithm to generate summary model

are independent, and are scheduled in parallel for further division.

Figure 6.6 presents the pseudo code. dc is a threshold parameter the al-

gorithm uses to decide if the current set of objects are distant enough to be

partitioned into two clusters. Line 2 initializes the root node of the tree. Line

11 calls the TwoMeans procedure to perform a 2-means clustering. In ref-

erence to Figure 6.2, if C is the current set of points, F and G are calculated

in line 11. For a large set of data objects, this is an expensive operation,

and we use a MapReduce framework to parallelize the workload [199]. Lines

12–13 updates the tree with the newly calculated centroids. At this point,

the problem has been divided into two independent subproblems. Line 18

and 21 schedule new invocations of TwoMeansModel in parallel, and the

process continues until the diameter of the current set is less than dc.

127



6.3.3 Implementation

SocialTrove runs in UIUC Green Data Center [12]. We use Python to im-

plement a data collection service to provide input data. Apache Thrift [200]

is used as a Serialization and RPC framework. Memcached [201] is used as

a distributed in-memory cache layer for the input data and the client query

proxies. Apache Hadoop [202] and Spark [203] are used for offline analytics.

The input data objects are sent by input data daemons to be stored in

a Hadoop Distributed File System (HDFS) [202]. There are 23 machines

with one 6-core 2.0 GHz processor (Intel Xeon E5-2620), 16 GB memory,

and 1 TB of storage. The model update routine has been implemented using

Java, which runs on Apache Spark [204], in a subset of the available machines.

Spark has been configured to run in Standalone mode (i.e., without Yarn [202]

or Mesos [205]). Each of the Spark slaves runs one worker process using

12 GB memory. Due to higher memory requirements of the Spark tasks,

30% of the memory is reserved for caching the RDDs (Resilient Distributed

Datasets) [206] instead of the default allocation of 60%. The remaining 9 GB

is available for the Java heap.

A machine with two 10-core 3.0 GHz processors (Intel Xeon E5-2690 v2)

and 128 GB memory works as the driver machine. The driver machine com-

mands the worker machines to build RDD (Reslilient Distributed Datasets)

using the data that has been collected over the past interval. It uses the Gen-

erateModel algorithm (Figure 6.6), which generates a summary model by

repeated use of 2-means clustering as a subroutine to bisect the distributed

dataset.

Figure 6.7 shows the flow of distributed computation in generating the

summary model. At each step, two objects are randomly selected from the

present dataset that act as initial centroids. These two centroids are broad-

cast to all workers. After this broadcast, the driver machine initiates a map

phase (known as RDD Transformation in Spark) so that the workers cal-

culate the distance of each object in its collection from the two broadcast

centroids, and assigns it to the centroid with the smaller distance. After

that, the driver issues a reduce phase (RDD Action) that calculates two new

centroids from the previous assignments. The new centroids are broadcast to

the workers again, and the process continues until it converges and results in

two clusters. The parent RDD is then partitioned into two child RDDs cor-

128



1 2 3 4 5 6

RDD of points

Action: Select two random points to initialize current mean

1 2 3 4 5 6

current means (two points)

Broadcast current mean to all nodes

Map: Calculate distances of all points from the current 
means and use nearest neighbor rule for assignment

RDD of distances

current means (two points)

Fold (Reduce): Calculate means from the assigned points

1 2 3 1 2 3

Not converged
Converged

RDD of points

Map: Partition into two clusters

Schedule the two RDDs to partition independently in parallel

Figure 6.7: Flow of map, fold (reduce), and broadcast operations in Spark
to recursively partition an RDD of points

responding to the newly formed clusters, each of which are scheduled to run

TwoMeansModel (Figure 6.6), in parallel. Due to the overhead of small

jobs, once an RDD becomes small enough, we start bisecting it in a single

thread, instead of spawning new Spark jobs. Once clustering is complete, the

data input proxies and the client query proxies update their cluster models

accordingly.

6.4 An Application Case Study

In this section, we present an example of using SocialTrove. Our cases study

describes a simplified implementation of a fact-finding service, reported in

recent literature [3], on top of SocialTrove. The fact-finder views humans as

sensors, and Twitter as a sensor network. It performs maximum-likelihood

estimation to determine the likelihood of correctness of different reported

observations and offers the users a list of facts that are most likely to be true

(in a maximum-likelihood sense). Hence, the term fact-finder. The exact

algorithm used for estimating credibility of observations has been published

129



in previous literature. In this chapter, we reimplement the service as an

example of how it could use SocialTrove.

6.4.1 Data Collection

Our data objects are tweets posted on Twitter. We developed a thin interface

where crawlers periodically query Twitter using the ‘Search API’ [163] and

generate the JSON object files input to SocialTrove. In our implementation

of data collection, the Twitter query is simply be a set of keywords and a

geographic radius. The output of which is a sample of latest tweets that

match the query. Twitter’s API also supports crawling tweets of a particular

user, or crawling a timeline. The queries are subject to rate limits. In our

implementation, we set up a Web-based user interface for the data collection

service that can be used to create Twitter queries. Resulting JSON files are

randomly assigned to SocialTrove input daemons.

6.4.2 Mapping Tweets to Vectors

The input daemons pre-process the tweets to generate feature vectors. In our

implementation, each word in the tweet is a dimension of the feature vector,

and is associated with a weight. Standard techniques for processing text

documents suggest to (i) remove stopwords (about 750 in English language),

(ii) remove high frequency and low frequency terms, (iii) use stemming, and

(iv) apply TF-IDF scaling to associate a weight with each word. In practice,

for our Twitter input, we found that removing the embedded URLs, sym-

bols, and the words under a certain length resulted in acceptable fact-finding

performance.

After preprocessing, a tweet is represented as a high dimensional vector in

our vector space model. The order of words inside the tweet and multiplicity

of occurrences are ignored. The weight of each dimension thus becomes either

0.0 or 1.0. These very sparse vectors are conveniently represented using a

dictionary data structure.

130



6.4.3 Distance Function

Euclidean metrics ‖u− v‖ fail to provide a good separation of very high-

dimensional data like text. Instead, Jaccard distance [177] is a good mea-

surement of similarity between high-dimensional sets. We use Tanimoto dis-

tance [177], which can be considered as a vector expansion of Jaccard dis-

tance. Tanimoto distance obeys the triangle inequality when the weights of

the components are all non-negative [190], which is true for our vector repre-

sentations of the tweets. If u and v are two vectors, their Tanimoto distance

is computed by Equation (6.1), below.

d(u,v) = 1− u.v

u2 + v2 − u.v
(6.1)

For three tweets t1, t2, and t3, an example of applying the distance function

is shown below. It is assumed that words with less than four characters are

ignored and no stemming is applied.

t1 = Today is warm

t2 = I am feeling warm

t3 = Today is very warm

t1 = {today : 1.0, warm : 1.0}

t2 = {feeling : 1.0, warm : 1.0}

t3 = {today : 1.0, very : 1.0, warm : 1.0}

d(t1, t2) = 1− 1

2 + 2− 1
= 0.6666

d(t2, t3) = 1− 1

2 + 3− 1
= 0.75

d(t1, t3) = 1− 2

2 + 3− 2
= 0.3333

If t1 and t3 are considered to belong to the same cluster, then the centroid

for that cluster becomes the mean of the two vectors, i.e.

{today : 1.0, very : 0.5, warm : 1.0}

131



6.4.4 Ranking

The application queries SocialTrove using keywords. SocialTrove returns

summaries of objects that approximately match the set of keywords according

to the above distance metric. As stated earlier, the summary is composed of

cluster-heads.

In the simplest implementation, the application requests cluster heads and

member counts. More corroborated clusters have a large count. The appli-

cation can therefore display the received cluster head tweets as facts, sorted

by their degree of corroboration (i.e., member count of the corresponding

cluster).

A more involved implementation of the fact-finding application is to also

retrieve the list of sources per cluster in the received summary (see the sec-

tion on service API). The fact-finder then constructs a distributed graph of

(source, object) pairs, where the objects are tweets and the sources are

user IDs (i.e., constructs a source-tweet graph). It does so by connecting

each source to all clusters where the source is listed, and connecting each

cluster (head) to all sources who contributed a member tweets of the cluster.

The resulting graph is analyzed using fact-finding algorithms from recent lit-

erature [3] to jointly estimate the credibility of sources and tweet clusters in

a maximum-likelihood fashion using the source-tweet graph.

6.5 Evaluation

We evaluate SocialTrove in the context of summarizing tweets. Each tweet is

represented as a high dimensional vector of tokens in our vector space model.

We use Tanimoto distance [177], which obeys triangle inequality [190], and

can be considered as a vector expansion of the Jaccard distance [177]; a good

measurement of similarity between high-dimensional sets. Our objective is

to answer the following questions:

• For summarization to be a service, is it necessary to precalculate a

summary model? Instead, can we generate the summaries only for the

related tweets on demand as the queries arrive?

• Where and how much do we gain by organizing the summary as a

hierarchy? Instead, can we build a reverse index from keywords to list

132



of tweets (or tweet summaries)? Such techniques, used by the web

search engines, are able to support a high request throughput.

• Does SocialTrove scale well?

Live tweets crawled from Twitter via its search API are subject to rate lim-

its. Hence, we merge tweets collected during several events in the physical

world, and play those back to SocialTrove. The events include Crimean Cri-

sis (February 2014), Sochi Winter Olympics (February 2014), Syria Chemical

Attack (August 2013), Boston Marathon Bombings (April 2013), Hurricane

Sandy (October 2012), Hurricane Irene (August 2011), England Riots (Au-

gust 2011), Fukushima Nuclear Disaster (March 2011), Egyptian Revolution

(January 2011), etc. This combined set contains 4 142 586 tweets.

To the best of our knowledge, SocialTrove is the first system to offer sum-

marization of social streams as a cloud-backend service. We did not find

any corresponding system in the state of the art. Hence, we compare the

performance by replacing SocialTrove components and algorithms with the

following options:

• Baseline In this scheme we do not build periodic summary models.

The input daemon randomly picks a storage machine for an incom-

ing tweet even without deserialization (JSON parsing). To perform a

lookup, the client proxies broadcast the query to all machines. The

machines collect matching tweets, cluster those, and return a represen-

tative sample.

• Indexing This scheme does not precalculate a summary model. How-

ever, it maintains a keyword-to-storage map in memory. An incoming

tweet is scanned to find keywords. For every keyword occuring in the

tweet, we consult the map, and assign the corresponding storage ma-

chines. To perform a lookup, we cluster the matching tweets collected

from the storage machines, and present a representative summary.

• Summary Baseline This scheme precalculates a summary model. It

opts for a flat organization of the cluster summaries. At every interval,

the model is pushed to the data input and the client query proxies, just

like SocialTrove. To assign an incoming tweet to an existing cluster,

this scheme computes the distance to all the existing clusters and finds

133



��

��

���

���

���

���

���

���

�� ��� ���� ���� ���� ���� ���� ���� ���� ���� ����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

����������������������������

�������
��������

Figure 6.8: Without a summary model, lookup throughput is very low

the nearest one. To perform a lookup, this scheme again needs a linear

search through the list of summaries.

• Summary Indexing This scheme is derived from techniques used by

the web search engines. It computes the summary model, and organizes

those by reverse indexing from keywords to the list of summaries. To

insert a new tweet, a data input proxy extracts the keywords from it,

searches only the reverse indexes corresponding to those keywords, and

finds the nearest summary to assign the tweet. To perform a lookup,

this scheme needs to scan the list of reverse indexes corresponding to

the given keywords, and find the matching summaries.

6.5.1 Query Throughput

In our application, a query is a set of keywords. In response to a query from

the application, the Client Query Proxy prepares a representative summary

of the tweets that contain the given keywords. Please note the difference

between returning all the results and returning a representative summary.

The former is the application of known data structures and storage systems

that can return all the matching objects. However, SocialTrove is a sum-

marization service to deal with information overload, and as such, returns a

representative sample (i.e., cluster-heads). The queries can also include an

optional distance parameter, which specifies the minimum diversity among

the returned samples.

Figure 6.8 shows that the throughput is very low for the Baseline and the

134



��

��

���

���

���

���

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

���������������������������������������������������

�����������
���������������

�����������������������
����������������

������������������������

Figure 6.9: SocialTrove offers high throughput for small to medium sized
requests

Indexed methods that do not pre-calculate a summary model. These meth-

ods calculate a summary on demand, in response to a query. The baseline

option suffers the most in lookup throughput as it is putting load on every

worker machine for every query. The indexed meachanism would have a high

throughput if the queries would ask for all matching data objects instead of

a representative summary. It performs better than the baseline because of

the underlying indexing that provides it the set of candidate tweets with-

out searching. However, the throughput quickly falls off towards zero as the

number of tweets in the universe increases.

SocialTrove client query proxies cache the summary model in their memory

once it is generated. For every query request, it traverses the tree according

to the Algorithm in Figure 6.5 and finds the corresponding leaves. To answer

queries, it consults the distributed in-memory cache (Memcached) to fetch

a sample tweet from each of the clusters. Figure 6.9 compares SocialTrove

with the other methods that prepare a summary model in advance, in a uni-

verse of 4 million tweets. SocialTrove can sustain a much higher throughput

compared to the other methods, because of the hierarchical organization of

the summary model. It can also incorporate the distance parameter (di-

versity) without any overhead because the tree had already calculated and

cached the necessary distance information. The Summary Indexing method

offers roughtly 50% of SocialTrove throughput when the number of objects

requested is small (around 20). On the other hand, the Summary Indexing

method suffers when the diversity parameter is included. Baseline Indexing

has the lowest throughput with and without the diversity parameter because

135



��

���

���

���

���

���

���

���

�� ��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�
��
��
��
��
�
��
��
��
��
��
��
�

����������������������������

�������
��������

Figure 6.10: Response time for a request is often high without a summary
model

����

��

���

����

�����

������

�� �� ��� ��� ��� ��� ���

�
��
��
��
��
�
��
��
��
���
��
��
��
��
�

�������������������

�����������
���������������

�����������������������
����������������

������������������������

Figure 6.11: SocialTrove has lower response time compared to the other
methods

of the lack of organization in the cluster summaries.

The evaluation presented here shows that when serving small requests like

updating a web-page with the cluster summaries, or showing a set of tweets on

a cellphone screen, SocialTrove allows high throughput. This is particularly a

useful aspect of SocialTrove, because the user-facing applications often need

a ‘concise’ amount of useful information.

6.5.2 Query Response Time

In this section we measure and compare the query response time of Social-

Trove and the alternate mechanisms. Figure 6.10 shows that the Baseline

and Indexed methods that do not precompute a cluster summary do not

136



scale. These mechanisms are acceptable as a service only when the number

of data objects that pass through the system at every interval is very low.

Twitter receives around 500 million tweets per day [11] (or 20 million per

hour), so clearly precomputing a summary model is necessary.

Figure 6.11 compares the response time between the methods that pre-

compute the summary model in advance. We measure the response time

at various levels of load (number of requests per second) in a universe of 4

million tweets, and observe that SocialTrove responds in 10 ms under heavy

load, and nearly in 1 ms under light load. The summary indexing method

is acceptable only when the system is lightly loaded (around 5K queries per

second). If the diversity parameter is added, the summary indexing method

suffers even more due to the additional distance calculations to ensure diver-

sity.

We conclude that SocialTrove performs best, because it (1) precalculates

the cluster summaries, (2) organizes the summaries as a tree, which prunes

many options and reduces the search space, and (3) makes it possible to

cache the summary model in main memory. If the summary model was not

cached, traversing the tree would require at least one RTT (round trip time)

in the network, reducing both throughput and response time. On the other

hand, caching the summary model has been possible by allowing updates to

the model only in synchronous intervals. This is how SocialTrove avoids a

write-heavy data structure and cache consistency issues.

6.5.3 Cluster Model

We now present the time it takes SocialTrove to generate a summary model

using Spark. Figure 6.12a shows the time in minutes, for different number

of tweets as input, using 8 worker machines. k-means (in our case, k = 2)

clustering algorithms sometimes converge to local minima, which in our case

translates to unbalanced partitioning at some stages, requiring more time to

finish. This is the reason for the variability in the summary generation time.

Figure 6.12b shows the effect of parallelizing the clustering workload by com-

paring the median model generation time for 4 million tweets with different

number of worker machines. Note that the data presented in figure 6.12a

refer to an earlier code that used Spark Reduce operations, Java Serializa-

137



��

����

����

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ��� �����

�
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
�

���������������������������

(a)

4 8 11
Number of Workers

50

100

150

200

250

300

350

M
od

el
 G

en
er

at
io

n 
T

im
e 

(M
in

ut
es

)

(b)

Figure 6.12: Time to generate summary using unoptimized code with (a) 8
worker machines, (b) different number of machines

6 hours
~10M tweets

12 hours
~20M tweets

24 hours
~40M tweets

Batching Interval

20

40

60

80

100

120

140

160

180

M
od

el
 G

en
er

at
io

n 
T

im
e 

(M
in

ut
es

)

Figure 6.13: Time to generate summary from Decahose (optimized code)

tion, java.util library, and used string representation for the keywords. We

mention this code as unoptimized code.

We later optimized SocialTrove to use (i) Spark Fold instead of Reduce, (ii)

it.unimi.dsi.fastutil library, (iii) Kryo Serialization, (iv) Hash represen-

tation of the tweet keywords, which resulted in 10x improvement in memory

usage and job completion time. We mention this code as optimized code.

Figure 6.13 shows runtime for summary tree generation on a single machine,

using 6 hours (10 million), 12 hours (20 million), and 24 hours (40 million

tweets) of Decahose stream. Decahose provides a 10% random sample of all

the tweets in a particular interval. Figure 6.14 and figure 6.15 compare

the performance of scaling out and scaling up, in the context of SocialTrove.

138



0 1 3 4 6 12
Scale out to number of machines (12 cores, 12 GB total)

0

5

10

15

20

25

30

Su
m

m
ar

y 
ge

ne
ra

tio
n 

tim
e 

(m
in

ut
es

)

Figure 6.14: Effect of scaling out (optimized code), 4 million tweets

2 3 4 5 6 8 10 12
Scale out or scale up (each 1 core, 1 GB)

0

5

10

15

20

25

30

35

40

Su
m

m
ar

y 
ge

ne
ra

tio
n 

tim
e 

(m
in

ut
es

)

Scale out
Scale up

Figure 6.15: Comparing scaling out and scaling up (optimized code),
4 million tweets

In figure 6.14, we always allocate 12 cores, and 12 GB memory for Social-

Trove using different number of machines. A dataset of 10 million tweets

were used. In the left-most point, everything including HDFS name-node,

data-node, Spark master, Spark workers, Spark driver is running in the same

machine and therefore it has the fastest run time. The later points illustrate

the run-time when the resource allowance is uniformly distributed across dif-

ferent number of machines. Figure 6.15 shows the different in runtime when

we increase the resource allowance from 2 cores and 2 GB gradually up to 12

core and 12 GB. The trend is similar for both scaling out to more machines,

139



Table 6.1: Top summaries

Index Top level tweet

1 Thousands at Moscow rally against Russian intervention in #Ukraine:
http://t.co/6U0AIOOgQv http://t.co/kobbd7KzXY

2 Man in Ukraine plays the piano to help calm down a riot.
http://t.co/fdNAc0cfJ2

3 For Crimea, Google Shows Different Borders Based on Your Lo-
cation: Russia’s Minister of Communications and Mass Media
http://t.co/vIHGYlibOC

4 Militants in eastern #Ukraine were equipped with Russian weapons and
the same uniforms as those worn by Russian forces that invaded Crimea.

5 50,000 #Ukraine supporters march in Moscow to protest Russia’s interven-
tion in #Crimea. http://t.co/qMJjYgPNxI

6 Some russian tanks on ukrainian border already painted with ‘peacekeeping’
slogans. How much longer until the ‘humanitarian intervention’?

7 I’ve been speaking to @BarackObama about the situation in Ukraine. We
are united in condemnation of Russia’s actions. http://t.co/7Rk2k8iOIK

8 Ukrainian Defense Ministry says its lone submarine has been taken by Rus-
sians. http://t.co/lj1XP4q1BX http://t.co/mDDhQ2lqAO

9 Ukraine prepares armed response as city seized by pro-Russia forces
http://t.co/ahVX7lKftT

10 Ukraine crisis: Nato warns Russia against further intervention - BBC News
http://t.co/GtdmRMxAPI

and scaling up to more resources.

Table 6.1 shows sample output of the summary tweets ranked by a fact-

finder application on top of SocialTrove. Our application queried SocialTrove

for the set of summaries related to the keywords {Crimea, Ukraine, Russia}
and ranked them according to the algorithm in [3]. Note how the tweets offer

a quick insight into the highlights of the current event.

Figure 6.2 shows sample output of the summary tweets from a diversity

ranking application. Our application queried the cluster model for a diverse

set of summaries related to the keywords {Occupysandy}. Note how the

tweets offer a quick insight into the highlights of the event. Next, the appli-

cation queried for tweets related to S4. The output is shown in Figure 6.3.

Note how the tweets are more related to the selected tweet.

140



Table 6.2: Querying cluster model with occupysandy

Index Top level tweet

S1 RT @morningmoneyben: As a sometime critic of the Occupy movement,
have to say they are out BIG TIME helping w/ Sandy relief, huge credit
to them #occupysandy

S2 RT @JimGaffigan: Before the Red Cross and FEMA came to help @Occu-
pySandy was there. Thanks! http://t.co/nlyOS7qt

S3 RT @VeganLunchTruck: Serving FREE hot #Vegan food, fresh donuts
Friday 12:00-6:00ish 192 beach 96th street rockaway beach @occupysandy
#sandyrelief

S4 RT @TheAtlantic: How @OccupySandy is using Amazon’s wedding registry
to collect donations for storm victims http://t.co/PjUwo8te

S5 RT @OccupyWallStNYC: “Capable of summoning an army with the post-
ing of a tweet” @NYTimes http://t.co/kSskJe54 #OccupySandy

S6 Urgent: need A Lot of thermals+ponchos for #Rockaways for Weds storm.
Deliver to 5406 4th Ave or 520 Clinton Ave in BK. @OccupySandy #Sandy

S7 RT @whoisMGMT: Hurricane Sandy devastated the coastal areas(cont. -
http://t.co/aLtkP2fZ) @OccupySandy @wavesforwater @RockawayHelp

S8 RT @ofthespirit: you know things are changing when you get official email
from the city of new york telling u to volunteer through @Occupysandy

S9 RT @OneLoveOccupy: On the ground with #occupysandy – more effective
than the Red Cross? http://t.co/kVTBaX10 via @slate

S10 RT @OccupySandy: Drug store offering free meds RT @Jamester85: @Oc-
cupySandy it’s awesome everyone is doing their part to help out..

6.6 Related Work

SocialTrove is motivated by the needs of data-intensive applications that

handle sensor or social media data. We consider social sensing applications

where redundant data are collected from people or sensors in their posses-

sion. For exampe, CabSense [207] is a crowd-sourced service that collects

information on taxi cab fleets. Mediascope [208] describes a media retrieval

service to query and retrieve photos taken by people directly from their mo-

bile devices. Another recent service uses Twitter as a sensor network and

models humans as noisy sensors to report and summarize ongoing events [3].

To reduce the inherent redundancy in data reported by such services, a

clustering algorithm is needed. A very common one is k-means cluster-

ing [195]; an iterative method that repeats between selecting k means as

centroids, assigning the rest of the points to the means based on similarity,

and recalculating the means. Our work uses a special form of the k-means

141



Table 6.3: Querying for tweets similar to S4 (Amazon wedding registry)

Index Related tweets

S4 RT @TheAtlantic: How @OccupySandy is using Amazon’s wedding registry
to collect donations for storm victims http://t.co/PjUwo8te

D1 RT @annawiener: A rare moment of unbridled enthusiasm about Amazon:
@occupysandy is using its wedding registry to collect donations (!)

D2 RT @GregChase: Creative: @occupysandy using wedding registry on Ama-
zon to coordinate donations for #SandyRelief http://t.co/c8QrXKya

D3 Brilliant RT @OccupyWallStNYC RT @NYCSandyNeeds Genius. RT
@TheAtlantic: How @OccupySandy is using Amazon’s wedding ...
http://t.co/VG8TzmeQ

D4 @occupysandy are you using Amazon wedding registry to coordinate dona-
tion requests? Are deliveries coming? New registry how often?

D5 Great: RT @TheAtlantic How @OccupySandy uses Amazon’s wedding reg-
istry to collect donations for storm victims http://t.co/5xL5sqqs

D6 RT @rachaelmaddux: Shop @OccupySandy “wedding registry,” have sup-
plies shipped straight to hurricane victims: http://t.co/QQe6ibBT

D7 @OccupySandy has set up a “wedding registry” on Amazon for anyone who
wants to donate supplies. http://t.co/7VmVLDWZ @EcoWatch

D8 RT @gregpak: (h/t to @RNonesuch OH for the scoop on the @occupysandy
wedding registry: http://t.co/Dg6viHS7 )

D9 RT @askdebra: If you don’t know about the @occupysandy amazon gift
registry, it’s an innovative crowdfunding idea: http://t.co/11zLTyfi

D10 @OccupySandy I’m on the wedding registry team. @sandy registry temp
down, but Amazon registry is on fire!!! msg with ???

algorithm, where k = 2, repeatedly bisecting a data set to form a hierar-

chy. The k-means algorithm is sensitive to its initialization. Different efforts

have addressed this problem. For example, k-means++ [209] avoids the issue

and can be applied to SocialTrove in a straightforward way. The Buckshot

Clustering algorithm [210] combines Hierarchical Agglomerative Clustering

(HAC) and k-means. It selects O(n) points randomly and runs a group av-

erage on this sample, which takes O(n) time. Using the result of HAC as

initial seed for k-means can avoid the bad initialization problem.

To apply k-means on streaming data, Ailon et al. [211] run online facility

location algorithm on a stream of size n, to arrive at a partial solution with

O (k log(n)) clusters. The partial solution is followed by a ball k-means step

to reduce the number of clusters to k. Shindler et al. [191] simplify the algo-

rithm, which results in a better approximation guarantee. DS-means [212]

describes a distributed algorithm to cluster data streams in a p2p environ-

142



ment. This system mainly uses the distributed k-means algorithm described

by Bandyopadhyay et. al. [213], along with local instances of X-means [214]

and gossip propagation to converge to the actual number of clusters in the

system. We do not directly incorporate streaming algorithms in SocialTrove

due to the need for model updates, required upon insertions. Instead, we use

a batching interval to update the summary model, and exploit the “slow-

changing” nature of social sensing observations in between updates.

To attain scalable implementations of data processing services, one com-

mon execution model is MapReduce [215]. MapReduce, however, is not effi-

cient for a large class of vertex parallel iterative algorithms that have a substa-

tial data shuffling phase. Another limitation is that the results of each round

are stored on disk to be read again in the next step. Spark [203], in contrast,

is an in-memory cluster computing framework that uses Resilient Distributed

Datasets (RDD) to record the lineage of operations on the datasets instead

of storing the data. Once a fault occurs, the lineage can be traversed to re-

cover from the fault. Stark [216] improves in-memory computing on dynamic

dataset collections. Trinity [217] is another in-memory distributed platform

for iterative computation that partitions the dataset over the main memory

of individual machines. Other systems include Storm [218], a distributed

and fault-tolerant framework for processing streams in real-time, and Spark-

Streaming [203], which uses RDDs for streaming workloads. SocialTrove uses

Spark to generate the summary model because the main building block of

that algorithm is 2-means clustering, which is a data parallel iterative algo-

rithm. Typically many rounds of iterations on many subsets of the data are

necessary, along with back and forth communications with the driver ma-

chine. The in-memory computation reduces the inter-round overhead and

latencies.

Memcached [201] is an in-memory key-value store, often utilized to mask

latencies from external data sources by caching results [219]. SocialTrove

uses Memcached [201] as the distributed in-memory cache for the data input

and the client query proxies, which improves throughput and response time

of the queries. Druid [220] is a distributed column-oriented real-time OLAP

system that uses a combination of real-time nodes and historical nodes to

answer both real-time queries and historical aggregate queries. Compared to

Druid, SocialTrove is not limited to structured time-series data. Moreover,

Druid emphasizes fast ingestion for real-time queries, whereas SocialTrove

143



provides a flexible summarization service by allowing the users to define a

summarization criteria. Duong et al. [221] consider social network topol-

ogy as a sharding technique to reduce query costs on large social network

databases. ApproxHadoop [222] introduces approximation mechanisms into

the MapReduce paradigm to reduce runtime. Their approach utilizes statisti-

cal sampling theory to aggregate data, where SocialTrove utilizes application

defined distance measurements and clustering algorithms to generate sum-

mary.

6.7 Summary

In this chapter, we described SocialTrove; an information summarization ser-

vice for social-sensing. The design of the service is motivated by the advant

of an age of information overload, where much data is generated in real-time,

and where redundancy is common. SocialTrove delivers data summaries at

arbitrary levels of granularity by reducing redundancy through clustering.

Evaluation shows that SocialTrove is scalable in serving data summaries be-

cause it caches a cluster summary model in memory for a predefined interval,

which allows it to provide high throughput, low-latency lookups for real-time

social sensing data, without incurring signficiant insertion overheads. It out-

performs traditional indexing methods, which incur a heavier latency and

suffer from lower throughput. A limitation of the current evaluation is that

it tests SocialTrove only in the context of Twitter data summarization. Fu-

ture work of the authors will focus on exploring the benefits and performance

of SocialTrove in summarizing other types of large streaming data.

144



CHAPTER 7

APOLLO SOCIAL SENSING TOOLKIT

The earlier chapters have presented algorithms to summarize the observable

states of the physical world using observations shared in the social network,

considering redundancy, influence, bias, and polarization. This chapter in-

tegrates the algorithms, and presents a pipeline to build a real-time news

feed application using Apollo Social Sensing Toolkit. Apollo Social Sensing

Toolkit is a platform to create, execute, and customize social-sensing tasks

based on Twitter. The toolkit has several data collection, processing, and

presentation modules implemented, and the modules can be interconnected

to create a customized pipeline that accomplishes a social sensing task. Ap-

plication programmers can use existing pipelines, use the existing modules to

create a new pipeline, or implement entirely new modules. A social-sensing

task generally starts with data collection. The user can specify interests,

keywords, and analysis algorithms. A task configuration file is created, and

the corresponding pipeline starts. Depending on the configuration, the data

is collected through real-time crawlers, or input from underlying storage.

Batches of data stream operates through the modules to accomplish a task.

7.1 Architecture

Apollo Social Sensing Toolkit uses a distributed architecture. Each module

is executed as a separate process, typically written using Python, Java, or

C++. Separate modules perform separate operations, and the modules com-

municate through RPC mechanism. The pipelines are executed on Apollo

Runtime, which is a supervisor process to schedule data crawling or process-

ing tasks, manage existing resources over a cluster, and handle crashes or

faults. Because the modules execute as separate processes, crashes are local

to particular tasks. Every 5 minutes the collected data are written to persis-

145



Task Supervisor

Task List Resource Inventory

Spark 
Worker

Cores

Memory

Admission
Control

Application Modules

Fact
Finder

Diversity Social Net
Estimator

Anomaly 
Detector

Event 
Tracker

Geo
Location

Polarity
Detector

Social Sensors

Twitter Instagram Facebook

Distributed File System (HDFS) Distributed Cache (Memcache)

Real-time Summarization Service (SocialTrove)

Data Infrastructure

Humans sense and share from the physical world

Figure 7.1: Architecture of Apollo Social Sensing Toolkit

tent storage. At every configurable interval (e.g. 30 minutes, 60 minutes, or

24 hours), the accumulated batch is operated through the pipeline.

Figure 7.1 illustrates the system level architecture of Apollo Social Sensing

Toolkit.

7.1.1 Social Sensors

Social sensing starts with the ‘Social Sensors’. Events of significance (for

example, sports, concert, riot, protest, war, earthquake, flood, hurricane,

campaign, procession, etc) transpire in the physical world. Humans can ob-

serve and share these events through the human social network (for example,

when two friends meet) or through the online social media. Twitter, Insta-

gram, Facebook etc. are popular online social networks where people share

about these events. Apollo can crawl information through Twitter or Insta-

gram provided API, by making peridic queries using keywords or geographic

locations. Apollo can also stream tweets from Twitter Firehose (100% Twit-

ter stream) or Decahose (10% Twitter stream). At this level the sensed data

are raw tweets or pictures.

146



7.1.2 Data Infrastructure

A common characteristic of social sensing systems is that they generate large

amounts of redundant data. Summarization services continually cluster the

incoming raw objects (for example, tweets or pictures) in a hierarchical fash-

ion. They offer API to obtain a representative summary of a given query (e.g.

keywords), at a configurable granularity. Apollo uses SocialTrove [8] as the

summarization service. The service allows the task configurations to specify

an application-specific distance metric that describes a measure of similarity

relevant to this application among data items. Based on that application-

specific measure, the service hierarchically clusters incoming data streams in

real time, and allows applications to obtain representative samples at arbi-

trary levels of granularity by returning cluster heads (and member counts) at

appropriate levels of the cluster hierarchy. SocialTrove uses Spark to paral-

lelize the summarization workload throughout the cluster, and a distributed

file system (for example, HDFS) allows fault-tolerant access to the crawled

data throughout the cluster during the summarization phases. At the Data

Infrastructure level, Apollo also contains a distributed cache to serve the

popular items with low response time.

7.1.3 Application Modules

At the application level, Apollo contains a library of analytics modules.

Figure 7.1 shows some example modules. Admission Control implements

source-selection algorithms to filter objects based on sources [2]. Fact Finder

implements fact-finder algorithms like Voting, Bayesian, EM-CRB, or EM-

Social [3,125]. Diversity samples a diversified set of representable summaries

[8, 175]. In case of polarized scenario, Polarity Detector separates the set of

inputs into different classes [4]. A pipeline configuration file describes the

interconnection between the modules to perform a social sensing task. The

application developer can use a defined pipeline, or write a new pipeline to

create a new type of social sensing application, or write new modules.

147



Twitter 
Firehose

Raw Tweets

Summarization 
Service

Task 
Config

Query

Vectorize, Distance Metric

Cluster
Hierarchy

Polarity 
Detector

Information 
Network 
Extractor

Source Dependency Graph

Source Assertion Graph

Real-time
Storyline

Generator

Real-time
News Feed

Social
Network 
Estimator

Ranks
Polarity Aware

Fact-Finder

Polarities

Figure 7.2: Workflow of a real-time news feed generation pipeline

7.1.4 Apollo Runtime

Apollo Runtime consists of a supervisor process to coordinate the social

sensing tasks. The Task Supervisor keeps track of the running tasks, and

the available resource (memory, cores) over the machine cluster. Based on

the available resources, it schedules spark jobs over the cluster, or starts

standalone processes for the modules that do not require parallelism. Task

Supervisor handles crash recovery. Optionally, it can also prioritize the tasks.

7.2 Real-time News Feed Pipeline

In this section, we build a real-time news feed application using the algo-

rithms presented in the earlier chapters. Based on the input keywords, this

application shows a diversified collection of newsworthy tweets that are more

likely to be facts from the events happening in the physical world. The

workflow of this application is shown in Figure 7.2. Tweets are collected by

Apollo crawlers. The task configuration supplies appropriate parsing mech-

anism (vectorize) and distance functions to SocialTrove, which periodically

forms the hierarchical cluster summaries. Based on the keywords specified

in the task configuration, the matching objects are collected and passed to a

series of application modules described below.

148



Social Network Estimator estimates a social dependency graph from the

cluster summaries using the algorithm from [130]. This graph accounts

for uncertain provenance of the sources, who may have tweeted based on

their own observations or observations they heard from others. The so-

cial network estimator module models the sources and the timestamps

in the clusters of tweets as cascades of epidemic propagation, and esti-

mates the latent social dependency network by using a iterative greedy

strategy.

Information Network Extractor forms a Source-Assertion graph from

the cluster summaries. This is a bipartite graph that relates asser-

tions to the sources. As assertion is formed from the clusters of tweets,

by considering the clusters as binary observations.

Polarity Detector In many cases, the events in the physical world are po-

larized and a community might become divided over an issue, manifest-

ing opposing views. Often, the conflict extends to claims about factual

observations. To uncover a less biased (i.e., more neutral) descrip-

tion of events, the polarity detector module uses a matrix factorization

approach to separate the set of assertions into groups of different po-

larities. The polarity detector module is based on the factorization

and ensemble based algorithm presented in Chapter 5. Note that only

two polarities with k = 2, corresponding to Pro and Anti are used.

Neutral assertions may get binned with assertions of either polarity.

For a news feed service, separating the polarities result in a more ac-

curate reconstruction of the events [4].

Polarity Aware Fact-Finder Using the information network, social de-

pendency network, and the detected polarities, this module estimates

the polarity aware credibilities of the sources and the assertions. It uses

a maximum likelihood approach to infer the ground truths. Polarity

aware fact-finder implements the algorithms described in Chapter 3.

The method uses EM-Social algorithm from earlier work [3] as a sub-

routine. EM-Social is expensive to run when the source-assertion graph

is large, and apollo can parallelize the workload in a machine cluster.

Using the ranks generated from the polarity aware fact-finder module, the

‘Real-time Storyline Generator’ module then prepares the news feed to serve

149



0% 

20% 

40% 

60% 

80% 

100% 

Egypt Trump Eurovision

A
cc

ur
ac

y

Without polarity Polarity-aware

Figure 7.3: Accuracy of the claims unique to particular schemes

to the users. This is a presentation module that keeps track of what infor-

mation is already visible to the user on the browser window, and shows only

new information.

7.3 Evaluation

In this section, we evaluate the quality of distillation and runtime of Apollo.

Specifically, we measure the accuracy of results provided by the polarity-

aware fact-finder application, and the corresponding runtime. Figure 7.3

considers the claims from the polarity-aware algorithm to EM-Social run-

ning without polarity information. For the purpose of comparing the quality,

claims that are believed by both algorithms are not included in the evalua-

tion. The plot presents the accuracy of the claims that are exclusive to each

algorithm. Three datasets Egypt, Trump, and Eurovision are considered.

The datasets have been described in detail in Chapter 4 and Chapter 5.

In each cases, the polarity aware algorithm has much better performance.

Figure 7.4 shows the runtime of the different components of a polarity-aware

fact distillation pipeline. SocialTrove was running on a dataset of 10M tweets

with an input size of 50GB. Regardless of the output size, it took around

19 minute for SocialTrove to generate an summarization hierarchy using 16

cores. After the summary tree has been generated, a diverse set of 100

(medium-sized output) or 1000 assertions (large-sized output) are selected

for further analysis. The later stages are much faster for the medium-sized

output. Note that the timing for the factorization step is dependent on how

150



0 2 4 6 8 10 12 14 16 18 20

SocialTrove (16 cores)

Residual Clus. (16 cores)

Dependency Network

Factorization (16 cores)

EM-Social (2 cores)

Runtime of components (minutes)

Large output (1000 claims) Medium output (100 claims)

Figure 7.4: Runtime for medium (100 claims) and large (1000 claims)
output

polarized the data is, so an average has been plotted. EM-Social runs using

2 cores, each core corresponding to a particular polarity. Note that, it is

possible to execute EM-Social in a shared-memory multi-threaded fashion

for faster completion.

7.4 Summary

In this section, we have described the architecture of Apollo Social Sensing

Toolkit. Apollo uses SocialTrove described in Chapter 6 to generate a sum-

marization hierarchy every interval. From the summarization hierarchy, we

build an information network using the most diverse assertions, most popular

assertions, or assertions nearest to an event described by keywords. Using the

algorithms presented in this dissertation, we have implemented a polarity-

aware fact distillation pipeline, that considers the information propagation

pattern of the sources and produces distilled facts to present to an analyst.

151



CHAPTER 8

CONCLUSIONS

The explosive growth in social network content suggests that social sensing

might be the future of sensing. In this dissertation, we have presented that

exploiting propagation and corroboration properties of the human sources

result in a better estimation of the observable states of the physcial world.

We have incorporated our algorithms in “Apollo Social Sensing Toolkit”, an

infrastructure for implementing summarization services on the cloud. We

have evaluated our research in the specific context of tweets and workloads

collected from Twitter. However, the proposed systems have been care-

fully designed to separate the content-specific components from the content-

indepdent components. In most of the cases, our algorithms work with graph

data structures or feature vectors obtained from the input data objects.

Adapting our social sensing systems to a different type of data requires writ-

ing some content-specific parsers only. To design an appropriate architecture

for social sensing, we have observed that scalability is an important con-

cern as the common characteristic of social media is that they generate large

amounts of redundant data. Therefore, the back-end needs to take advantage

of a machine cluster. SocialTrove is used as the data infrastructure for our

proposed architecture for Apollo Social Sensing Toolkit. SocialTrove delivers

data summaries at arbitrary levels of granularity by reducing redundancy

through clustering. We also observe that social sensing data streams have

various types of noise including social influence and polarization. We have

proposed matrix factorization and ensemble methods to detect polarization in

social networks. We have also proposed polarity aware fact-finder. The sum-

marization services and the fact-finder algorithms have enabled us to build

a crowd-sensed news service using Apollo Social Sensing Toolkit. Future re-

search will focus on optimally updating the summary model in SocialTrove

from interval to interval, performing credibility estimation in real-time, and

scheduling algorithms to jointly improve coverage of different tasks.

152



REFERENCES

[1] J. Surowiecki, The Wisdom of Crowds. Anchor, 2005.

[2] M. Uddin, M. Amin, H. Le, T. Abdelzaher, B. Szymanski, and
T. Nguyen, “On diversifying source selection in social sensing,” in 9th
International Conference on Networked Sensing Systems (INSS), 2012.

[3] D. Wang, M. T. Amin, S. Li, T. Abdelzaher, L. Kaplan, S. Gu, C. Pan,
H. Liu, C. Aggarwal, R. Ganti, X. Wang, P. Mohapatra, B. Szymanski,
and H. Le, “Humans as sensors: An estimation theoretic perspective,”
in ACM/IEEE Conf. on Information Processing in Sensor Networks,
2014.

[4] M. T. A. Amin, T. Abdelzaher, D. Wang, and B. Szymanski, “Crowd-
sensing with polarized sources,” in Proc. 2014 IEEE Intl. Conference
on Distributed Computing in Sensor Systems, 2014, pp. 67–74.

[5] S. E. Kase, E. K. Bowman, M. T. Amin, and T. Abdelzaher, “Exploit-
ing social media for army operations: Syrian crisis use case,” in Proc.
SPIE Defense, Security, and Sensing, 2014.

[6] M. T. A. Amin, T. Abdelzaher, and L. Kaplan, “On evaluating polar-
ization models in social networks,” 2017, submitted.

[7] M. T. A. Amin, C. Aggarwal, S. Yao, T. Abdelzaher, and L. Kaplan,
“Unveiling polarization in social networks: A matrix factorization ap-
proach,” in Proc. IEEE International Conference on Computer Com-
munications (INFOCOM 2017), May 2017.

[8] M. T. A. Amin, S. Li, M. R. Rahman, P. T. Seetharamu, S. Wang,
T. Abdelzaher, I. Gupta, M. Srivatsa, R. Ganti, R. Ahmed, and H. Le,
“SocialTrove: A self-summarizing storage service for social sensing,” in
International Conference on Autonomic Computing (ICAC’15). IEEE,
July 2015, pp. 41–50.

[9] “Apollo-Toward Fact-finding for Social Sensing,” Feb 2017. [Online].
Available: http://apollofactfinder.net/

153



[10] M. Y. S. Uddin, M. T. A. Amin, T. Abdelzaher, A. Iyengar, and
R. Govindan, “Photonet+: Outlier-resilient coverage maximization in
visual sensing applications,” in ACM/IEEE Conference on Information
Processing in Sensor Networks (IPSN), 2012.

[11] Oct 2014. [Online]. Available: https://blog.twitter.com/2013/
new-tweets-per-second-record-and-how/

[12] [Online]. Available: http://greendatacenters.web.engr.illinois.edu/

[13] D. Wang, T. Abdelzaher, and L. Kaplan, Social sensing: building reli-
able systems on unreliable data. Morgan Kaufmann, 2015.

[14] K. Sha, A. Striegel, and M. Song, “Advances in computer communica-
tions and networks,” 2016.

[15] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher, “On truth discov-
ery in social sensing: A maximum likelihood estimation approach,” in
Proceedings of the 11th International Conference on Information Pro-
cessing in Sensor Networks, ser. IPSN ’12, 2012, pp. 233–244.

[16] H. Le, D. Wang, H. Ahmadi, M. Y. S. Uddin, Y. H. Ko, T. Abdelzaher,
O. Fatemieh, J. Pasternack, D. Roth, J. Han, H. Wang, L. Kaplan,
B. Szymanski, S. Adali, C. Aggarwal, and R. Ganti, “Apollo: A data
distillation service for social sensing,” University of Illinois Urbana-
Champaign, Tech. Rep., 2012.

[17] M. Srivastava, T. Abdelzaher, and B. Szymanski, “Human-centric sens-
ing,” Philosophical Transactions of the Royal Society, A, vol. 370, no.
1958, pp. 176–197, 2012.

[18] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu,
E. Shih, H. Balakrishnan, and S. Madden, “CarTel: a distributed mo-
bile sensor computing system,” in Proc of SenSys, 2006.

[19] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn,
and A. T. Campbell, “The bikenet mobile sensing system for cyclist
experience mapping,” in Prof of Sensys, 2007.

[20] M. Y. Uddin, H. Wang, F. Saremi, G.-J. Qi, T. Abdelzaher, and
T. Huang, “Photonet: a similarity-aware picture delivery service for
situation awareness,” in Proc. of RTSS, 2011.

[21] J.-H. Huang, S. Amjad, and S. Mishra, “Cenwits: a sensor-based
loosely coupled search and rescue system using witnesses,” in Proc.
of SenSys, 2005, pp. 180–191.

[22] Sense Networks, “Cab sense,” http://www.cabsense.com/.

154



[23] N. D. Lane, S. B. Eisenman, M. Musolesi, E. Miluzzo, and A. T. Camp-
bell, “Urban sensing systems: Opportunistic or participatory?” in 9th
workshop on Mobile computing systems and applications, 2008.

[24] D. Cuff, M. Hansen, and J. Kang, “Urban sensing: out of the woods,”
Communications of the ACM, vol. 51, no. 3, pp. 24–33, 2008.

[25] S. Reddy, A. Parker, J. Hyman, J. Burke, D. Estrin, and M. Hansen,
“Image browsing, processing, and clustering for participatory sensing:
Lessons from a dietsense prototype,” in Proc. of EmNets, 2007.

[26] S. Nath, “Ace: Exploiting correlation for energy-efficient and continu-
ous context sensing,” in Proceedings of the tenth international confer-
ence on Mobile systems, applications, and services (MobiSys’12), 2012.

[27] I. Boutsis and V. Kalogeraki, “Privacy preservation for participatory
sensing data,” in Pervasive Computing and Communications (Per-
Com), 2013 IEEE International Conference on. IEEE, 2013, pp.
103–113.

[28] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow, “Sociable-
sense: exploring the trade-offs of adaptive sampling and computation
offloading for social sensing,” in Proceedings of the 17th annual inter-
national conference on Mobile computing and networking. ACM, 2011,
pp. 73–84.

[29] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web
search engine,” Computer Networks and ISDN Systems, vol. 30, no.
1-7, pp. 107–117, 1998.

[30] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM, vol. 46, no. 5, pp. 604–632, 1999.

[31] R. Lempel and S. Moran, “Salsa: the stochastic approach for
link-structure analysis,” ACM Transactions on Information Systems
(TOIS), vol. 19, no. 2, pp. 131–160, 2001.

[32] D. Achlioptas, A. Fiat, A. R. Karlin, and F. McSherry, “Web search
via hub synthesis,” in Foundations of Computer Science, 2001. Pro-
ceedings. 42nd IEEE Symposium on. IEEE, 2001, pp. 500–509.

[33] L. Berti-Equille, A. D. Sarma, X. Dong, A. Marian, and D. Srivastava,
“Sailing the information ocean with awareness of currents: Discovery
and application of source dependence,” in CIDR, 2009.

[34] L. Blanco, V. Crescenzi, P. Merialdo, and P. Papotti, “Probabilistic
models to reconcile complex data from inaccurate data sources,” in
CAiSE, 2010, pp. 83–97.

155



[35] X. Yin, J. Han, and P. S. Yu, “Truth discovery with multiple conflicting
information providers on the web,” IEEE Transactions on Knowledge
and Data Engineering, vol. 20, no. 6, pp. 796–808, June 2008.

[36] A. Galland, S. Abiteboul, A. Marian, and P. Senellart, “Corroborating
information from disagreeing views,” in Proceedings of the Third ACM
International Conference on Web Search and Data Mining, 2010, pp.
131–140.

[37] X. L. Dong, L. Berti-Equille, and D. Srivastava, “Integrating conflicting
data: The role of source dependence,” PVLDB, vol. 2, no. 1, pp. 550–
561, 2009.

[38] X. Dong, L. Berti-Equille, Y. Hu, and D. Srivastava, “Global detection
of complex copying relationships between sources,” PVLDB, vol. 3,
no. 1, pp. 1358–1369, 2010.

[39] J. Pasternack and D. Roth, “Knowing what to believe (when you al-
ready know something),” in International Conference on Computa-
tional Linguistics (COLING), 2010.

[40] J. Pasternack and D. Roth, “Generalized fact-finding (poster paper),”
in World Wide Web Conference (WWW’11), 2011.

[41] M. Gupta, Y. Sun, and J. Han, “Trust analysis with clustering,” in
WWW, ser. WWW ’11. ACM, 2011.

[42] D. Wang, T. Abdelzaher, L. Kaplan, and C. C. Aggarwal, “On quan-
tifying the accuracy of maximum likelihood estimation of participant
reliability in social sensing,” in 8th International Workshop on Data
Management for Sensor Networks (DMSN), 2011.

[43] S. Wang, L. Su, S. Li, S. Hu, T. Amin, H. Wang, S. Yao, L. Kaplan, and
T. Abdelzaher, “Scalable social sensing of interdependent phenomena,”
in Proceedings of the 14th International Conference on Information
Processing in Sensor Networks (IPSN), 2015, pp. 202–213.

[44] S. Yao, M. T. Amin, L. Su, S. Hu, S. Li, S. Wang, Y. Zhao, T. Ab-
delzaher, L. Kaplan, C. Aggarwal, and A. Yener, “Recursive ground
truth estimator for social data streams,” in Proc. IPSN, 2016.

[45] G.-J. Qi, C. C. Aggarwal, J. Han, and T. Huang, “Mining collective
intelligence in diverse groups,” in Proc. International Conference on
World Wide Web, 2013, pp. 1041–1052.

[46] V. V. Vydiswaran, C. Zhai, and D. Roth, “Content-driven trust prop-
agation framework,” in Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, 2011,
pp. 974–982.

156



[47] J. Lehmann, D. Gerber, M. Morsey, and A.-C. Ngonga Ngomo, “De-
facto - deep fact validation,” in Proc. 11th International Semantic Web
Conference, 2012, pp. 312–327.

[48] D. Yu, H. Huang, T. Cassidy, H. Ji, C. Wang, S. Zhi, J. Han, C. R. Voss,
and M. Magdon-Ismail, “The wisdom of minority: Unsupervised slot
filling validation based on multi-dimensional truth-finding.” in Proc.
Int. Conf. on Computational Linguistics (COLING’14), 2014.

[49] Q. Li, Y. Li, J. Gao, L. Su, B. Zhao, M. Demirbas, W. Fan, and J. Han,
“A confidence-aware approach for truth discovery on long-tail data,”
Proc. VLDB Endow., 2014.

[50] Y. Cao, W. Fan, and W. Yu, “Determining the relative accuracy of
attributes,” in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, 2013, pp. 565–576.

[51] M. Sensoy, A. Fokoue, J. Z. Pan, T. J. Norman, Y. Tang, N. Oren, and
K. Sycara, “Reasoning about uncertain information and conflict reso-
lution through trust revision,” in Proceedings of the 2013 International
Conference on Autonomous Agents and Multi-agent Systems, 2013, pp.
837–844.

[52] A. Pal, V. Rastogi, A. Machanavajjhala, and P. Bohannon, “Informa-
tion integration over time in unreliable and uncertain environments,”
in Proceedings of the 21st International Conference on World Wide
Web, 2012, pp. 789–798.

[53] Y. Li, Q. Li, J. Gao, L. Su, B. Zhao, W. Fan, and J. Han, “On the
discovery of evolving truth,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2015.

[54] S. Zhi, B. Zhao, W. Tong, J. Gao, D. Yu, H. Ji, and J. Han, “Modeling
truth existence in truth discovery,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2015, pp. 1543–1552.

[55] M. Wu and A. Marian, “A framework for corroborating answers from
multiple web sources,” Information Systems, vol. 36, no. 2, pp. 431–
449, 2011.

[56] X. Li, X. L. Dong, K. Lyons, W. Meng, and D. Srivastava, “Truth
finding on the deep web: is the problem solved?” in Proceedings of the
39th international conference on Very Large Data Bases, 2013.

[57] A. Marian and M. Wu, “Corroborating information from web sources,”
Data Engineering, p. 11, 2011.

157



[58] X. L. Dong, L. Berti-Equille, and D. Srivastava, “Truth discovery and
copying detection in a dynamic world,” Proc. VLDB Endow., vol. 2,
no. 1, pp. 562–573, Aug. 2009.

[59] L. Blanco, V. Crescenzi, P. Merialdo, and P. Papotti, “Probabilistic
models to reconcile complex data from inaccurate data sources,” in In-
ternational Conference on Advanced Information Systems Engineering.
Springer, 2010, pp. 83–97.

[60] X. Liu, X. L. Dong, B. C. Ooi, and D. Srivastava, “Online data fusion,”
Proceedings of the VLDB Endowment, vol. 4, no. 11, pp. 932–943, 2011.

[61] A. D. Sarma, X. L. Dong, and A. Halevy, “Data integration with de-
pendent sources,” in Proceedings of the 14th International Conference
on Extending Database Technology, 2011, pp. 401–412.

[62] B. Zhao, B. I. P. Rubinstein, J. Gemmell, and J. Han, “A bayesian
approach to discovering truth from conflicting sources for data integra-
tion,” Proc. VLDB Endow., vol. 5, no. 6, pp. 550–561, Feb. 2012.

[63] B. Zhao and J. Han, “A probabilistic model for estimating real-valued
truth from conflicting sources,” Proc. of QDB, 2012.

[64] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han, “Resolving con-
flicts in heterogeneous data by truth discovery and source reliability
estimation,” in Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, 2014, pp. 1187–1198.

[65] J. Pasternack and D. Roth, “Latent credibility analysis,” in Proc. In-
ternational Conference on World Wide Web, 2013, pp. 1009–1020.

[66] X. L. Dong and D. Srivastava, “Compact explanation of data fusion de-
cisions,” in Proceedings of the 22nd International Conference on World
Wide Web, 2013.

[67] R. Pochampally, A. Das Sarma, X. L. Dong, A. Meliou, and D. Srivas-
tava, “Fusing data with correlations,” in Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, 2014, pp.
433–444.

[68] X. Li, X. L. Dong, K. B. Lyons, W. Meng, and D. Srivastava, “Scaling
up copy detection,” in 2015 IEEE 31st International Conference on
Data Engineering, April 2015, pp. 89–100.

[69] J. P. Callan, Z. Lu, and W. B. Croft, “Searching distributed collec-
tions with inference networks,” in Proceedings of the 18th annual in-
ternational ACM SIGIR conference on Research and development in
information retrieval, ser. SIGIR ’95, New York, NY, USA, 1995, pp.
21–28.

158



[70] L. Gravano, H. Garcia-Molina, and A. Tomasic, “Gloss: text-source
discovery over the internet,” ACM Transactions on Information Sys-
tems (TOIS), vol. 24, pp. 229–264, 1999.

[71] B. Yuwono and D. Lee, “Server ranking for distributed text retrieval
systems on the internet,” in Proc of Database Systems for Advanced
Applications, 1997, pp. 41 – 49.

[72] R. Balakrishnan and S. Kambhampati, “SourceRank: Relevance and
trust assessment for deep web sources based on inter-source agree-
ment,” in Proceedings of the 20th International Conference on World
Wide Web, 2011, pp. 227–236.

[73] F. Abbaci, J. Savoy, and M. Beigbeder, “A methodology for collection
selection in heterogeneous contexts,” in Proc of Information Technol-
ogy: Coding and Computing (ITCC), 2002.

[74] L. Si, R. Jin, J. Callan, and P. Ogilvie, “Language modeling framework
for resource selection and results merging,” in Proc of Information and
Knowledge Management (CIKM), 2002.

[75] D. Aksoy, “Information source selection for resource constrained envi-
ronments,” SIGMOD Rec., vol. 34, no. 4, pp. 15–20, 2005.

[76] H. Dai, F. Zhu, E. P. Lim, and H. Pang, “Detecting anomalies in
bipartite graphs with mutual dependency principles,” in 2012 IEEE
12th International Conference on Data Mining, 2012, pp. 171–180.

[77] M. Gupta, P. Zhao, and J. Han, “Evaluating event credibility on twit-
ter,” in Proceedings of the 2012 SIAM International Conference on
Data Mining. SIAM, 2012, pp. 153–164.

[78] Z. Xu, Y. Liu, J. Xuan, H. Chen, and L. Mei, “Crowdsourcing based
social media data analysis of urban emergency events,” Multimedia
Tools and Applications, pp. 1–18, 2015.

[79] C. Ye, H. Wang, H. Gao, J. Li, and H. Xie, Truth Discovery Based on
Crowdsourcing, 2014, pp. 453–458.

[80] C. Meng, W. Jiang, Y. Li, J. Gao, L. Su, H. Ding, and Y. Cheng, “Truth
discovery on crowd sensing of correlated entities,” in Proceedings of the
13th ACM Conference on Embedded Networked Sensor Systems (SEN-
SYS), 2015, pp. 169–182.

[81] S. Gu, C. Pan, H. Liu, S. Li, S. Hu, L. Su, S. Wang, D. Wang, T. Amin,
R. Govindan et al., “Data extrapolation in social sensing for disaster
response,” in Distributed Computing in Sensor Systems (DCOSS), 2014
IEEE International Conference on, 2014, pp. 119–126.

159



[82] P. G. Ipeirotis, F. Provost, and J. Wang, “Quality management on
amazon mechanical turk,” in Proceedings of the ACM SIGKDD Work-
shop on Human Computation, 2010, pp. 64–67.

[83] Z. He, J. Cao, and X. Liu, “High quality participant recruitment
in vehicle-based crowdsourcing using predictable mobility,” in 2015
IEEE Conference on Computer Communications (INFOCOM), 2015,
pp. 2542–2550.

[84] B. I. Aydin, Y. S. Yilmaz, Y. Li, Q. Li, J. Gao, and M. Demirbas,
“Crowdsourcing for multiple-choice question answering.” in In AAAI,
2014, pp. 2946–2953.

[85] L. Su, Q. Li, S. Hu, S. Wang, J. Gao, H. Liu, T. F. Abdelzaher, J. Han,
X. Liu, Y. Gao, and L. Kaplan, “Generalized decision aggregation in
distributed sensing systems,” in 2014 IEEE Real-Time Systems Sym-
posium, 2014, pp. 1–10.

[86] X. Wang, Q. Z. Sheng, X. S. Fang, X. Li, X. Xu, and L. Yao, “Approxi-
mate truth discovery via problem scale reduction,” in Proceedings of the
24th ACM International on Conference on Information and Knowledge
Management (CIKM), 2015.

[87] F. Ma, Y. Li, Q. Li, M. Qiu, J. Gao, S. Zhi, L. Su, B. Zhao, H. Ji, and
J. Han, “Faitcrowd: Fine grained truth discovery for crowdsourced data
aggregation,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2015.

[88] C. Miao, W. Jiang, L. Su, Y. Li, S. Guo, Z. Qin, H. Xiao, J. Gao, and
K. Ren, “Cloud-enabled privacy-preserving truth discovery in crowd
sensing systems,” in Proceedings of the 13th ACM Conference on Em-
bedded Networked Sensor Systems (SENSYS), 2015.

[89] R. W. Ouyang, L. M. Kaplan, A. Toniolo, M. Srivastava, and T. J. Nor-
man, “Aggregating crowdsourced quantitative claims: Additive and
multiplicative models,” IEEE Transactions on Knowledge and Data
Engineering, vol. 28, no. 7, pp. 1621–1634, 2016.

[90] R. W. Ouyang, M. Srivastava, A. Toniolo, and T. J. Norman, “Truth
discovery in crowdsourced detection of spatial events,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 28, no. 4, pp. 1047–
1060, 2016.

[91] X. Wang, Q. Z. Sheng, L. Yao, X. Li, X. S. Fang, X. Xu, and B. Bena-
tallah, “Truth discovery via exploiting implications from multi-source
data,” in Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management (CIKM), 2016.

160



[92] Y. Li, N. Du, C. Liu, Y. Xie, W. Fan, Q. Li, J. Gao, and H. Sun,
“Reliable medical diagnosis from crowdsourcing: Discover trustworthy
answers from non-experts,” in Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining (WSDM), 2017.

[93] P. Giridhar, S. Wang, T. F. Abdelzaher, J. George, L. Kaplan, and
R. Ganti, “Joint localization of events and sources in social networks,”
in Distributed Computing in Sensor Systems (DCOSS), 2015 Interna-
tional Conference on. IEEE, 2015, pp. 179–188.

[94] A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Madden, and
R. C. Miller, “Twitinfo: aggregating and visualizing microblogs for
event exploration,” in Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 2011, pp. 227–236.

[95] P. Giridhar, M. Amin, T. Abdelzaher, L. Kaplan, J. George, and
R. Ganti, “Clarisense: Clarifying sensor anomalies using social network
feeds,” in Pervasive Computing and Communications Workshops, 2014
IEEE International Conference on, March 2014, pp. 395–400.

[96] P. Giridhar, M. T. Amin, T. Abdelzaher, D. Wang, L. Kaplan,
J. George, and R. Ganti, “Clarisense+: An enhanced traffic anomaly
explanation service using social network feeds,” Pervasive and Mobile
Computing, vol. 33, pp. 140–155, 2016.

[97] J. Nichols, J. Mahmud, and C. Drews, “Summarizing sporting events
using twitter,” in Proceedings of the 2012 ACM international confer-
ence on Intelligent User Interfaces. ACM, 2012, pp. 189–198.

[98] S. Mukherjee, G. Weikum, and C. Danescu-Niculescu-Mizil, “People on
drugs: credibility of user statements in health communities,” in Pro-
ceedings of the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, 2014, pp. 65–74.

[99] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter
users: real-time event detection by social sensors,” in Proceedings of
the 19th international conference on World wide web. ACM, 2010,
pp. 851–860.

[100] P. Bogdanov, M. Busch, J. Moehlis, A. K. Singh, and B. K. Szymanski,
“The social media genome: Modeling individual topic-specific behav-
ior in social media,” in Proc. 2013 IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and Mining (ASONAM),
2013.

[101] S. Sikdar, B. Kang, J. O’Donovan, T. Hllerer, and S. Adalı, “Under-
standing information credibility on twitter,” in Proc. SocialCom, 2013.

161



[102] C. Castillo, M. Mendoza, and B. Poblete, “Information credibility on
twitter,” in Proc. WWW, NY, USA, 2011, pp. 675–684.

[103] J. Lehmann, B. Gonçalves, J. J. Ramasco, and C. Cattuto, “Dynamical
classes of collective attention in twitter,” in Proceedings of the 21st
International Conference on World Wide Web, 2012, pp. 251–260.

[104] E. J. Ruiz, V. Hristidis, C. Castillo, A. Gionis, and A. Jaimes, “Corre-
lating financial time series with micro-blogging activity,” in Proceedings
of the Fifth ACM International Conference on Web Search and Data
Mining, 2012, pp. 513–522.

[105] A. Gupta, H. Lamba, P. Kumaraguru, and A. Joshi, “Faking sandy:
Characterizing and identifying fake images on twitter during hurricane
sandy,” in Proceedings of the 22Nd International Conference on World
Wide Web, pp. 729–736.

[106] M. Imran, C. Castillo, F. Diaz, and S. Vieweg, “Processing social media
messages in mass emergency: A survey,” ACM Comput. Surv., vol. 47,
no. 4, pp. 67:1–67:38, June 2015.

[107] D. Wang, T. Abdelzaher, L. Kaplan, and C. C. Aggarwal, “Recur-
sive fact-finding: A streaming approach to truth estimation in crowd-
sourcing applications,” in 33rd International Conference on Distributed
Computing Systems (ICDCS), 2013.

[108] D. Wang, T. Abdelzaher, L. Kaplan, R. Ganti, S. Hu, and H. Liu, “Ex-
ploitation of physical constraints for reliable social sensing,” in IEEE
Real-Time Systems Symposium, 2013, pp. 212–223.

[109] D. Wang and C. Huang, “Confidence-aware truth estimation in social
sensing applications,” in 12th Annual IEEE International Conference
on Sensing, Communication, and Networking (SECON), 2015, pp. 336–
344.

[110] C. Huang and D. Wang, “Link weight based truth discovery in social
sensing,” in Proceedings of the 14th International Conference on Infor-
mation Processing in Sensor Networks (IPSN), 2015, pp. 326–327.

[111] R. W. Ouyang, L. Kaplan, P. Martin, A. Toniolo, M. Srivastava, and
T. J. Norman, “Debiasing crowdsourced quantitative characteristics in
local businesses and services,” in Proceedings of the 14th International
Conference on Information Processing in Sensor Networks (IPSN),
2015.

[112] C. Huang and D. Wang, “Unsupervised interesting places discovery
in location-based social sensing,” in Distributed Computing in Sensor
Systems (DCOSS), 2016 International Conference on, 2016, pp. 67–74.

162



[113] C. Huang and D. Wang, “Exploiting spatial-temporal-social constraints
for localness inference using online social media,” in Advances in Social
Networks Analysis and Mining (ASONAM), 2016 IEEE/ACM Inter-
national Conference on, 2016, pp. 287–294.

[114] D. Wang, J. Marshall, and C. Huang, “Theme-relevant truth discovery
on twitter: An estimation theoretic approach.” in ICWSM, 2016, pp.
408–416.

[115] C. Huang and D. Wang, “Topic-aware social sensing with arbitrary
source dependency graphs,” in Proceedings of the 15th International
Conference on Information Processing in Sensor Networks (IPSN),
2016.

[116] G. Wang, S. Xie, B. Liu, and P. S. Yu, “Identify online store review
spammers via social review graph,” ACM Trans. Intell. Syst. Technol.,
vol. 3, no. 4, pp. 61:1–61:21, Sep. 2012.

[117] N. Agarwal, H. Liu, L. Tang, and S. Y. Philip, “Modeling blogger
influence in a community,” Social Network Analysis and Mining, vol. 2,
no. 2, pp. 139–162, 2012.

[118] A. Etuk, T. J. Norman, M. ensoy, C. Bisdikian, and M. Srivatsa, “Tidy:
A trust-based approach to information fusion through diversity,” in
Proceedings of the 16th International Conference on Information Fu-
sion, 2013, pp. 1188–1195.

[119] F. Nel, L. M.-J., P. Capet, and T. Dellavallade, “Rumor detection
and monitoring in open source intelligence: Understanding publish-
ing behaviors as a prerequisite,” in Proc. Terrorism and New Media
Conference, 2010.

[120] D. Shah and T. Zaman, “Rumors in a network: Who’s the culprit?”
IEEE Transactions on Information Theory, vol. 57, pp. 5163–5181,
2011.

[121] F. Jin, E. Dougherty, P. Saraf, Y. Cao, and N. Ramakrishnan, “Epi-
demiological modeling of news and rumors on twitter,” in Proceedings
of the 7th Workshop on Social Network Mining and Analysis. ACM,
2013, p. 8.

[122] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard: De-
fending against sybil attacks via social networks,” in ACM SIGCOMM,
2006, pp. 267–278.

[123] L. Shi, S. Yu, W. Lou, and Y. T. Hou, “Sybilshield: An agent-aided
social network-based sybil defense among multiple communities,” in
INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 1034–1042.

163



[124] D. Wang, M. Amin, T. Abdelzaher, D. Roth, C. Voss, L. Kaplan,
S. Tratz, J. Laoudi, and D. Briesch, “Provenance-assisted classification
in social networks,” Selected Topics in Signal Processing, IEEE Journal
of, vol. 8, no. 4, pp. 624–637, 2014.

[125] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher, “On truth discov-
ery in social sensing: A maximum likelihood estimation approach,”
in ACM/IEEE Conf. on Information Processing in Sensor Networks,
2012.

[126] M. Srivastava, T. Abdelzaher, and B. Szymanski, “Human-centric sens-
ing,” Philosophical Transactions of the Royal Society, Series A, vol.
370, pp. 176–197, 2012.

[127] S. Sikdar, S. Adal, M. Amin, T. Abdelzaher, K. Chan, J.-H. Cho,
B. Kang, and J. O’Donovan, “Finding true and credible information
on twitter,” in 17th International Conference on Information Fusion,
2014.

[128] D. Wang, T. Abdelzaher, L. Kaplan, and R. Ganti, “Exploitation of
physical constraints for reliable social sensing,” in Proc. Real-Time Sys-
tems Symposium (RTSS), 2013.

[129] D. Wang, L. Kaplan, T. Abdelzaher, and C. C. Aggarwal, “On scal-
ability and robustness limitations of real and asymptotic confidence
bounds in social sensing,” in 9th Annual IEEE Communications So-
ciety Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON), 2012.

[130] P. Netrapalli and S. Sanghavi, “Learning the graph of epidemic cas-
cades,” in Proc. 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), 2012.

[131] D. M. Romero, B. Meeder, and J. Kleinberg, “Differences in the me-
chanics of information diffusion across topics: Idioms, political hash-
tags, and complex contagion on twitter,” in Proc. 20th International
Conference on World Wide Web (WWW), 2011.

[132] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. 9th ACM SIGKDD Intl.
Conference on Knowledge Discovery and Data Mining, 2003.

[133] N. Friedkin, A Structural Theory of Social Influence. Cambridge Uni-
versity Press, 2006.

[134] M. E. J. Newman, “The structure and function of complex networks,”
SIAM REVIEW, vol. 45, pp. 167–256, 2003.

164



[135] S. A. Myers and J. Leskovec., “On the convexity of latent social network
inference,” in Proc. Neural Information Processing Systems (NIPS),
2010.

[136] M. Gomez Rodriguez, J. Leskovec, and A. Krause, “Inferring networks
of diffusion and influence,” in Proc. 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2010.

[137] G.-J. Qi, C. C. Aggarwal, and T. S. Huang, “Online community detec-
tion in social sensing,” in Proc. 6th ACM International Conference on
Web Search and Data Mining (WSDM), 2013, pp. 617–626.

[138] G.-J. Qi, C. Aggarwal, and T. Huang, “Community detection with edge
content in social media networks,” in Data Engineering (ICDE), 2012
IEEE 28th International Conference on, April 2012, pp. 534–545.

[139] C. X. Lin, Q. Mei, Y. Jiang, J. Han, and S. Qi, “Inferring the diffusion
and evolution of topics in social communities,” in Proc. ACM SIGKDD
Workshop on Social Network Mining and Analysis (SNAKDD), 2011.

[140] A. Pal and S. Counts, “Identifying topical authorities in microblogs,”
in Proc. 4th ACM International Conference on Web Search and Data
Mining (WSDM), 2011.

[141] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts, “Everyone’s
an influencer: Quantifying influence on twitter,” in Proc. 4th ACM
Intl. Conference on Web Search and Data Mining (WSDM), 2011.

[142] M. J. Franklin, B. Trushkowsky, P. Sarkar, and T. Kraska, “Crowd-
sourced enumeration queries,” in Proc. 2013 IEEE International Con-
ference on Data Engineering (ICDE), 2013.

[143] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin,
“Crowddb: answering queries with crowdsourcing,” in ACM Interna-
tional Conference on Management of data (SIGMOD), 2011.

[144] J. Kulshrestha, M. Zafar, L. Noboa, K. Gummadi, and S. Ghosh,
“Characterizing information diets of social media users,” in Interna-
tional AAAI Conference on Web and Social Media, 2015.

[145] A. Hermida, F. Fletcher, D. Korrell, and D. Logan, “Your friend as
editor: the shift to the personalized social news stream,” in Future of
Journalism Conference, 2011.

[146] S. Flaxman, S. Goel, and J. Rao, “Filter bubbles, echo chambers, and
online news consumption,” Public Opinion Quarterly, p. nfw006, 2016.

165



[147] C. Grevet, L. G. Terveen, and E. Gilbert, “Managing political differ-
ences in social media,” in Proceedings of the 17th ACM conference on
Computer supported cooperative work & social computing. ACM, 2014,
pp. 1400–1408.

[148] P. Barberá, J. T. Jost, J. Nagler, J. A. Tucker, and R. Bonneau,
“Tweeting from left to right is online political communication more
than an echo chamber?” Psychological science, 2015.

[149] A. J. Morales, J. Borondo, J. C. Losada, and R. M. Benito, “Measur-
ing political polarization: Twitter shows the two sides of venezuela,”
Chaos, vol. 25, no. 3, 2015.

[150] K. Garimella, G. De Francisci Morales, A. Gionis, and M. Math-
ioudakis, “Quantifying controversy in social media,” in Proceedings of
the Ninth ACM International Conference on Web Search and Data
Mining, ser. WSDM ’16, 2016.

[151] S. K. Heather Roy, Elizabeth Bowman and T. Abdelzaher, “Investi-
gating social bias in social media information transmission,” in 21st
International Command and Control Research and Technology Sympo-
sium, 2016.

[152] M. Conover, J. Ratkiewicz, M. Francisco, B. Goncalves, F. Menczer,
and A. Flammini, “Political polarization on twitter,” in Proc. Interna-
tional AAAI Conference on Weblogs and Social Media, 2011.

[153] E. Colleoni, A. Rozza, and A. Arvidsson, “Echo chamber or public
sphere? predicting political orientation and measuring political ho-
mophily in twitter using big data,” Journal of Communication, vol. 64,
no. 2, pp. 317–332, 2014.

[154] J. An, D. Quercia, and J. Crowcroft, “Partisan sharing: facebook ev-
idence and societal consequences,” in Proceedings of the second ACM
conference on Online social networks. ACM, 2014, pp. 13–24.

[155] E. Bakshy, S. Messing, and L. A. Adamic, “Exposure to ideologically
diverse news and opinion on facebook,” Science, vol. 348, no. 6239, pp.
1130–1132, 2015.

[156] S. Kiritchenko, X. Zhu, and S. M. Mohammad, “Sentiment analysis of
short informal texts,” J. Artif. Int. Res., vol. 50, no. 1, May 2014.

[157] C. Levallois, “Umigon: sentiment analysis on tweets based on terms
lists and heuristics,” in Proc. 7th International Workshop on Semantic
Evaluation, June 2013.

166



[158] Y. Choi, Y. Jung, and S.-H. Myaeng, “Identifying controversial issues
and their sub-topics in news articles,” in Pacific-Asia Workshop on
Intelligence and Security Informatics. Springer, 2010, pp. 140–153.

[159] Y. Mejova, A. X. Zhang, N. Diakopoulos, and C. Castillo, “Controversy
and sentiment in online news,” arXiv preprint arXiv:1409.8152, 2014.

[160] J. S. Morgan, C. Lampe, and M. Z. Shafiq, “Is news sharing on twit-
ter ideologically biased?” in Proceedings of the 2013 Conference on
Computer Supported Cooperative Work, ser. CSCW ’13, 2013.

[161] Wikipedia, “United kingdom european union member-
ship referendum, 2016,” Jan 2017. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=United Kingdom
European Union membership referendum, 2016&oldid=760173015

[162] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific Comput-
ing, vol. 20, no. 1, pp. 359–392, 1998.

[163] “Twitter Search API,” Jan 2017. [Online]. Available: https:
//dev.twitter.com/rest/public/search

[164] “Introducing json,” http://www.json.org.

[165] L. A. Adamic and N. Glance, “The political blogosphere and the 2004
u.s. election: Divided they blog,” in Proceedings of the 3rd International
Workshop on Link Discovery, 2005.

[166] A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe, “Pre-
dicting elections with twitter: What 140 characters reveal about polit-
ical sentiment.” ICWSM, vol. 10, pp. 178–185, 2010.

[167] A. Gruzd and J. Roy, “Investigating political polarization on twitter:
A canadian perspective,” Policy & Internet, vol. 6, no. 1, pp. 28–45,
2014.

[168] D. Garcia, A. Abisheva, S. Schweighofer, U. Serdült, and F. Schweitzer,
“Ideological and temporal components of network polarization in online
political participatory media,” Policy & Internet, vol. 7, no. 1, pp. 46–
79, 2015.

[169] J. K. Lee, J. Choi, C. Kim, and Y. Kim, “Social media, network hetero-
geneity, and opinion polarization,” Journal of Communication, vol. 64,
no. 4, 2014.

167



[170] P. Barberá, “How social media reduces mass political polarization.
evidence from germany, spain, and the u.s.” American Political
Science Association annual meeting, 2015. [Online]. Available:
http://pablobarbera.com/static/barbera polarization APSA.pdf

[171] M. W. Macy, J. A. Kitts, A. Flache, and S. Benard, “Polarization in
dynamic networks: A hopfield model of emergent structure,” Dynamic
social network modeling and analysis, pp. 162–173, 2003.

[172] P. H. C. Guerra, W. Meira Jr, C. Cardie, and R. Kleinberg, “A measure
of polarization on social media networks based on community bound-
aries.” in Proc. International AAAI Conference on Weblogs and Social
Media, 2013.

[173] L. Akoglu, “Quantifying political polarity based on bipartite opinion
networks,” in International AAAI Conference on Web and Social Me-
dia, 2014.

[174] “Collect great content to share,” Jan 2017. [Online]. Available:
http://paper.li

[175] J. Lee, A. Kapoor, M. T. A. Amin, Z. Wang, Z. Zhang, R. Goyal, and
T. Abdelzaher, “Infomax: An information maximizing transport layer
protocol for named data networks,” in 2015 24th International Con-
ference on Computer Communication and Networks (ICCCN), 2015.

[176] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y.
Ng, and C. Potts, “Recursive deep models for semantic composition-
ality over a sentiment treebank,” in Proceedings of the conference on
empirical methods in natural language processing (EMNLP), vol. 1631,
2013, p. 1642.

[177] S.-H. Cha, “Comprehensive survey on distance/similarity measures be-
tween probability density functions,” City, vol. 1, no. 2, p. 1, 2007.

[178] M. Steinbach, G. Karypis, and V. Kumar, “A comparison of document
clustering techniques,” in Proceedings of Workshop on Text Mining,
6th ACM SIGKDD International Conference on Data Mining, 2000.

[179] “Sentiment140 - A Twitter Sentiment Analysis Tool,” Jul 2016.
[Online]. Available: http://http://www.sentiment140.com//

[180] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[181] R. E. Schapire and Y. Freund, Boosting: Foundations and algorithms.
MIT press, 2012.

168



[182] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC
press, 2012.

[183] D. Estrin, “Participatory sensing: applications and architecture [inter-
net predictions],” Internet Computing, IEEE, vol. 14, no. 1, 2010.

[184] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen,
E. Howard, R. West, and P. Boda, “Peir, the personal environmen-
tal impact report, as a platform for participatory sensing systems re-
search,” in Proceedings of the 7th international conference on Mobile
systems, applications, and services. ACM, 2009, pp. 55–68.

[185] R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. F. Abdelzaher,
“GreenGPS: A participatory sensing fuel-efficient maps application,”
in 8th Intl. Conf. on Mobile Systems, Applications, and Services, 2010.

[186] S. Reddy, D. Estrin, and M. Srivastava, “Recruitment framework
for participatory sensing data collections,” in Pervasive Computing.
Springer, 2010, pp. 138–155.

[187] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peter-
son, H. Lu, X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn, “The rise
of people-centric sensing,” Internet Computing, IEEE, vol. 12, no. 4,
pp. 12–21, 2008.

[188] M. Shin, C. Cornelius, D. Peebles, A. Kapadia, D. Kotz, and N. Trian-
dopoulos, “Anonysense: A system for anonymous opportunistic sens-
ing,” Pervasive and Mobile Computing, vol. 7, no. 1, pp. 16–30, 2011.

[189] M. F. Goodchild, “Citizens as sensors: the world of volunteered geog-
raphy,” GeoJournal, vol. 69, no. 4, pp. 211–221, 2007.

[190] A. H. Lipkus, “A proof of the triangle inequality for the tanimoto
distance,” Journal of Mathematical Chemistry, vol. 26, 1999.

[191] M. Shindler, A. Wong, and A. Meyerson, “Fast and accurate k-means
for large datasets,” in Neural Information Processing Systems, 2011.

[192] K. Clarkson, “Nearest-neighbor searching and metric space dimen-
sions,” in Nearest-Neighbor Methods in Learning and Vision: Theory
and Practice, 2006, pp. 15–59.

[193] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access
method for similarity search in metric spaces,” in 23rd International
Conference on Very Large Data Bases, 1997, pp. 426–435.

[194] I. H. Witten and E. Frank, Data Mining: Practical Machine Learn-
ing Tools and Techniques, Second Edition. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2005.

169



[195] C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and
Applications, 1st ed. Chapman & Hall/CRC, 2013.

[196] L. Cayton, “Fast nearest neighbor retrieval for bregman divergences,”
in Intl. Conference on Machine Learning, 2008, pp. 112–119.

[197] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, July 1970.

[198] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for repli-
cated database maintenance,” in 6th Annual ACM Symposium on Prin-
ciples of Distributed Computing, 1987, pp. 1–12.

[199] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based on
mapreduce,” in 1st Intl. Conf. on Cloud Computing, 2009.

[200] “Apache thrift,” Jan 2015. [Online]. Available: https://thrift.apache.
org/

[201] “Memcached,” Jan 2015. [Online]. Available: http://memcached.org

[202] “Hadoop,” Jan 2015. [Online]. Available: http://hadoop.apache.org/

[203] “Spark,” Sep 2014. [Online]. Available: http://spark.apache.org/

[204] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: cluster computing with working sets,” in 2nd USENIX
conference on Hot topics in cloud computing, 2010.

[205] “Apache mesos,” Jan 2015. [Online]. Available: http://mesos.apache.
org/

[206] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing,” in 9th USENIX Networked Systems Design and Implementation,
2012.

[207] X. Yu, Q. Fu, L. Zhang, W. Zhang, V. Li, and L. Guibas, “Cabsense:
creating high-resolution urban pollution maps with taxi fleets,” ACM
MobiSys, Taipei, 2013.

[208] Y. Jiang, X. Xu, P. Terlecky, T. Abdelzaher, A. Bar-Noy, and R. Govin-
dan, “Mediascope: Selective on-demand media retrieval from mobile
devices,” in ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks, ser. IPSN ’13, 2013, pp. 289–300.

170



[209] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii,
“Scalable k-means++,” Proc. VLDB Endow., vol. 5, no. 7, 2012.

[210] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey, “Scat-
ter/gather: A cluster-based approach to browsing large document col-
lections,” in Research and Development in Info. Retrieval, 1992.

[211] N. Ailon, R. Jaiswal, and C. Monteleoni, “Streaming k-means approx-
imation,” in Neural Information Processing Systems, 2009.

[212] A. Guerrieri and A. Montresor, “DS-means: Distributed data stream
clustering,” in Intl. Conf. on Parallel Processing, 2012.

[213] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu, and
S. Datta, “Clustering distributed data streams in peer-to-peer environ-
ments,” Inf. Sci., vol. 176, no. 14, pp. 1952–1985, July 2006.

[214] D. Pelleg and A. W. Moore, “X-means: Extending k-means with effi-
cient estimation of the number of clusters,” in International Conference
on Machine Learning, 2000, pp. 727–734.

[215] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, 2008.

[216] S. Li, M. T. Amin, R. Ganti, M. Srivatsa, S. Hu, Y. Zhao, and
T. Abdelzaher, “Stark: Optimizing in-memory computing for dynamic
dataset collections,” in In Proceedings of the IEEE International Con-
ference on Distributed Computing Systems (ICDCS’17), 2017.

[217] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on
a memory cloud,” in Intl. Conference on Management of Data, 2013.

[218] “Apache Storm,” Sep 2014. [Online]. Available: http://storm.apache.
org/

[219] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung,
and V. Venkataramani, “Scaling memcache at facebook,” in Networked
Systems Design and Implementation, 2013, pp. 385–398.

[220] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli,
“Druid: A real-time analytical data store,” in Proceedings of the 2014
ACM SIGMOD Intl. Conf. on Management of Data, 2014, pp. 157–168.

[221] Q. Duong, S. Goel, J. Hofman, and S. Vassilvitskii, “Sharding social
networks,” in 6th Intl. Conf. on Web Search and Data Mining, 2013.

171



[222] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “Approx-
Hadoop: Bringing approximations to mapreduce frameworks,” in Intl.
Conf. on Arch. Support for Prog. Lang. and Operating Systems, 2015.

172


