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ABSTRACT

Smart handheld devices such as phones, tablets and watches are becoming

more and more common rapidly. From a computer architect point of view,

processor design for such computer systems is a complex problem. Since

the Li-ion battery manufacturing technology is strictly limited by physical

and technological limitations, the new generation of mobile processors should

have a better energy efficiency to support an acceptable battery life. On the

other hand, TLP of current mobile applications is measured to be mostly

less than 2, which implies mobile processors should have high performance

on user’s demand to provide an acceptable QoE.

By shrinking the chip manufacturing technology size, SoC design has been

the most preferred integration approach in such applications. For example,

Apple’s A10, iPhone7 SoC [1], has more than 3 billion transistors including 4

big.LITTLE cores, 6 GPU cores and caches. Due to power-density and heat-

dissipation constraints of such integration level, providing high performance

on demand in an efficient way is a complex control problem.

In the A10 architecture, assigning the right cores at the right time to run-

ning threads is a challenging complex control problem. The state of the art

systems have control loops for controlling architectural parameters in dif-

ferent ways. In mobile devices controllers are heuristics-based mainly for

simplicity. Considering the power-density and heat-dissipation issues in such

systems, we propose an OS architecture and interface to provide an envi-

ronment for improving the functionality of controllers in mobile computer

systems.
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1 INTRODUCTION

In this chapter, an abstract work on mobile applications benchmarking is

provided in detail, following by some background information on using for-

mal control theory methods to control architectural parameters in a mobile

computer system.

1.1 Mobile Applications Benchmarking

In this study, TLP over time is monitored for a big.LITTLE computer system

running Android. Moreover, the quality of user experience on different core

configurations is investigated for common Android applications.

1.1.1 Background

Traditional user-interactive desktop applications are mostly running on mo-

bile devices nowadays. Tasks on mobiles are becoming increasingly more

performance-intensive, and user’s demand for multitasking is increasing. The

mentioned trends drive the mobile industry towards more power-efficient pro-

cessor designs. Due to the tight power budget on mobile devices, the benefit

of using just DVFS is reaching a limit, and most vendors are turning to het-

erogeneous multi-core platforms. Most of the high-end smart phones in the

market are dual-core, quad-core, or even octa-core devices.

Among the popular Android phones released in 2016, Samsung Galaxy

S7, LG G5 and HTC 10 shipped with the quad-core Qualcomm Snapdragon

820 processor, Nexus 6P with an octa-core Snapdragon 810, and Samsung

Galaxy Note 5 with an octa-core Exynos 7420 processor. However, some

smartphones are equipped with only dual cores and still give satisfactory

performance. Apple’s A9 SoC [3] in iPhone 6s is dual-core, but is also one

of the most powerful and energy-efficient mobile SoCs in the market today.
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It seems there are two competing design decisions in the mobile proces-

sors manufacturing industry. Apple aims to improve per-thread performance,

while Qualcomm favors introducing more cores. Qualcomm’s deca-core Snap-

dragon 818 is shipping by the end of 2016.

Researchers have been studying core utilization of desktop and mobile

devices for a while. Blake et al. [4] studied TLP on a suite of representative

desktop applications in 2010. They showed that the number of cores that

can be effectively used is less than 3 for the most commonly-used desktop

applications. Later studies suggested that mobile device applications have a

similar characteristic and cannot fully utilize a quad-core CPU.

Gao et al. [5] in 2015 analyzed mobile applications using TLP on an

ARM big.LITTLE architecture and demonstrated that mobile applications

utilize less than 2 cores on average, even with some background applications

running concurrently. They observed a diminishing return on TLP with in-

creasing number of cores and suggested that having many powerful cores is

over-provisioning. They also claimed that current mobile workloads can ben-

efit from an architecture that has the flexibility to accommodate both high

performance and good energy-efficiency for different application execution

phases.

Both the software and the architecture have changed since Gao’s paper was

written. Programmers are becoming more conscious of heterogeneous multi-

core [6] and try to write more efficient multi-threaded programs for such

systems. The main reason is that most of the common mobile applications

are web applications or cloud-based. They offload tasks on GPU, DSPs, and

other ASICs in SoC. These units can already exploit much of the parallelism,

leaving little for the CPU. On the device side, ARM big.LITTLE technology

has evolved. The main idea is to have both energy efficient low performance

cores(i.e., ARM A7) and high performance cores(i.e., ARM A15) in a same

chip [7].

There are three scheduling methods for big.LITTLE designs. Global task

scheduling is the most recent scheme among the three [8][9]. The other two

are clustered switching and in-kernel switching. Figure 1.1 shows an example

of two big cores and two little cores under the three models. In clustered

switching, either two little cores or two big cores are running tasks at any

given time. In in-kernel switching, one big core is paired with one little core

and only one core from each pair is running a task at any given time. In
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Figure 1.1: Three run-state migration methods

global task scheduling, any combination of cores can be running tasks at any

given time. In Gao et al. [5], the authors conducted their experiments on an

octal core Samsung Exynos 5410 SoC which uses clustered switching. Either

four A15s or four A7s can be enabled at the same time. The system model is

symmetric, since there is only one cluster running at any time. Although the

paper was written in 2015, the device they used uses technology from 2011.

Also, the architecture model from the OS point of view is symmetric, which

reduces system model variation significantly.

Although previous studies of mobile device utilization suggest mobile ap-

plications utilize less than 2 cores most of the time, Android device vendors

are heading towards more cores on chip hoping for a better QoE. With the

global task scheduling schemes and new big.LITTLE devices, it will be inter-

esting to revisit the question of the number of cores we actually need on the

mobile processing unit. We study, the TLP of a suite of representative mobile

applications on a recent octal core ARM big.LITTLE device that supports

the latest version of the Android kernel’s global task scheduler. The main

motivation is to investigate whether the statements in [5] remain consistent

with the most recent mobile technology.

1.1.2 Hardware Configuration

The Allwinner A80 Optimus development board is used for this study, it fea-

tures an octal core Allwinner A80 SoC, including an ARM big.LITTLE octal

core of four 1.6GHz A15s and four 1.2GHz A7s. Each core has 32KB/32KB

L1 instruction and data caches. The A15s share a 2MB L2 cache and the

A7s share a 512KB L2 cache. The board supports global task scheduling,

with which any number of the eight cores can be running at the same time as

long as power budget is satisfied. CPU0 is always running for OS tasks and
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some systematic interrupts. The board is running Android 4.4.2-Kitkat in-

teractive CPU governor mode, which is the most common choice for enabling

DVFS for CPUs on mobile devices. Shell commands are used to force the

kernel to adopt the specified core configurations as we see in the following,

and the board is connected to a host machine, which is collecting dumped

traces using the Android Studio platform [9].

1.1.3 Methodology

A wide range of popular Android applications are chosen as benchmark. This

includes applications such as music and video players, social communication,

games and web browsers. The focus is on three different core configurations.

The default heterogeneous setup which has 4 big and 4 LITTLE cores, 2

big and 2 LITTLE cores, and 4 LITTLE cores. The thread level parallelism

is used as metric to study Android applications. Each application is tested

under standalone condition, being the only application running. There is also

an aggressive use case which involves many background applications and a

user who switches and interacts between different applications and Android

GUI.

TLP

In the benchmarking experiment, I decided to use TLP as a metric for core

utilization. TLP is a measure of core utilization, ignoring the fraction of

the time spent with 0 cores running the application. TLP is used instead

of a normal core utilization metric because many of the target applications

are user driven, meaning they sit idle waiting for user interaction. Following

equation is the formulation used for TLP in this study.

TLP =

∑n
i=1Cii

1 − C0

Ci is the fraction of time spent where the system is using i cores and C0

is the fraction of time spent idle for target application. The TLP metric

is not a metric used to gauge performance, but is just a metric for system

profiling. This metric provides a pretty accurate indicator of the number of
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cores required to execute target workload with the target QoE. Basically it

can be thought of as the average number of cores needed to run a workload

over its non-idle portions of execution. The idea is to monitor different

applications execution in terms of parallelism when enough computing power

is provided.

Calculating TLP

The TLP for benchmarks is calculated from post processing stored dumped

traces. In other words, a parser, parses and post processes the trace output

file for each execution. The trace output, as seen in the example below in

figure 1.2, traces events that occur within the system kernel. Each event has

a PID for the process that triggered the event, a timestamp, the CPU that

triggered the event, and the corresponding function being called. The main

function that is considered is the sched switch function.

By tracking who calls sched switchs and when, the developed tool is able

to track each CPU’s context switches. If a core triggers a sched switch and

switches to the process swapper we know that core has become inactive. If

a core moves from the swapper to execute some process, we know that the

core has become active. By tracing the time cores become active, we can

know how many cores are active at any given time. By knowing the number

of cores active at any given time, calculating the TLP becomes trivial. We

make sure to ignore any cores that are running the trace or our logging code

to not over-estimate the TLP.

There are a few problems with the trace files when parsing. One of the

main issues was dealing with dropped events. Occasionally the buffer that

stores the trace output would overflow before flushing to the output file.

So some events would be missed, including sched switch events. When this

happened we were be unable to know when a core becomes active or inactive.

We accounted for this by tracking the last running process on a given CPU

(by PID). If this process is seen executing instead on another processor and

no more kernel events are being triggered for this process on the previous

CPU, we know the process has migrated and the previous CPU has become

inactive and the current one active.
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Figure 1.2: Example trace output demonstrating CPU context switches,
processor 1 triggers a sched switch event and the previous context was the
swapper, processor 1 becomes active, there is 1 active CPU, processor 2
triggers the same kind of event and becomes active, now there are 2 active
CPUs

1.1.4 Result

TLP Measurements

As previously discussed, TLP measurements are conducted over a wide se-

lection of common Android applications. Table 1.1 shows the results of this

experiment when running the single application on the default big.LITTLE

configuration with 4 big cores and 4 LITTLE cores.

Table 1.1: TLP values for different categories of commonly used mobile
applications

Category Application TLP
System None 1.02
Web Browser Chrome 2.29
Video Player Netflix 1.12
Music Player Spotify 1.14
Communication Telegram 1.12
Game Angry Birds 1.15
Social Network Facebook 1.42
Navigation Google Maps 1.35
Email Gmail 1.12
Daily Usage Average 1.26

The first important thing to get from this TLP table is the system TLP.
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Figure 1.3: Percentage of non-idle execution time different number of cores
were running for the applications Google Chrome and Spotify

This is the TLP of just running the Android system including UI deamons,

frameworks and kernel itself (no applications). This TLP is very close to 1,

which tells us that the Android operating system occupies 1 core. Moreover,

the geometric mean of the application TLPs is 1.26. This tells us that popular

Android applications don’t fully utilize the cores simultaneously and possibly

don’t need to utilize a significant number of the cores. The only exception in

our experiment is Google Chrome. In the Google Chrome experiments, the

user opened several browser tabs, visited websites, and closed tabs in varying

orders. Chrome is likely able to take advantage of the multicore system

mainly because each tab could potentially run off in its own process and

these processes can be scheduled independently on different cores depending

on the workload required for the given tab. The following pie charts give a

clearer description of what these TLP numbers mean.

There is shown that Google Chrome spent a significant portion of its exe-

cution time running on 2, 3, and 4 cores. This indicates that Google Chrome

when used in the typical use case is able to take advantage of the multicore

system and spread its workload across the multiple cores. However Spotify,

spends most of its execution time running on a single core. This indicates

that applications like Spotify only need 1 maybe 2 cores to run effectively

(provide a good delay free user experience). Moreover, low TLP applications

7



Figure 1.4: TLP over Time graph for the Spotify benchmark

could gain from interleaving and concurrency.

Android Apps TLP over time

A common application behavior detected is an immediate spike in TLP near

the beginning of the application’s lifetime. Figure 1.4 shows this general

trend of TLP over time plot for application lifetime. The methodology for

the test is to run the application by tapping the apps icon, later applying

set of ordered UI commands to. Once the application was loaded we began

taking the trace of the system followed by interacting with the application.

This trend shows that upon the first user interactions, the application’s

TLP significantly increases, indicating that the application must instantiate

several threads or processes to handle the immediate burst of work related

to launching, and the scheduler does not know how to effectively schedule

this workload across all the cores. So it simply assigns each thread to a

different core to maximize QoE. However, over time TLP begins to decrease

and slowly move back towards a value of 1. We believe this happens because

the Android global scheduler is able to identify the workload pattern and

properly schedule the application’s processes on proper core’s.
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Figure 1.5: TLP over time for aggressive scenario

Aggressive scenario

In this test a more realistic general scenario, a user running multiple apps in

the background (such as navigation, a music player, Facebook, etc...) while

switching the top task and interacting with it is investigated. Figure 1.5

shows the TLP over time. The test has been done for 3 different architecture

configurations (4HP4EE,2HP2EE,4EE) yet the result is about the same. The

main idea behind having different sets of core configuration is to verify other

system components i.e. core power gating is not interfering in our TLP

observations. Note that the relatively low steady state TLP even for high

use case scenarios running on fixed set of cores.

As mentioned there is no significant difference between TLP over time

in the three configurations which indicates the low amount of parallelism

exploited in these workloads. Considering the fact that most mobile devices

are run in similar scenarios, it seems fair to argue that devices should be

optimized a in way to fit for these workload scenarios.

Antutu Benchmark

On the other hand, I was curious to conduct the same test methodology for

a potentially highly parallel application. AnTuTu [10], is developed mainly
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Figure 1.6: TLP over time comparison - AnTuTu CPU test

for performance measurements of ARM based mobile devices. It is a heavy

non-realistic workload for mobile devices and it does not need any UI. This

application is download-able from Google Play on Android devices, and there

are several tests which monitor detailed information related to the CPU,

GPU, network, and memory system usage for the application. Here are the

results from running the CPU test on our different configurations.

As shown in figure 1.6, as we ran the CPU test on our cores’ configurations

there are noticeable differences in TLP over times. These differences show

that providing less computing power (core counts) for the scheduler could

degrade the performance of highly high parallel scenarios significantly, as we

expected.

1.1.5 Illustration

In this short study, we showed that there is no need for having more cores

when even the aggressive usage of up-to-date applications cannot effectively

utilize 3 cores. Global Task Scheduling helps the software exploit more

from big.LITTLE architectures. Moreover it is shown that reducing the core

counts would degrade the performance of highly parallel program chunks.

To conclude, trends show that, if the behavior of the mobile applications is

going to be the same in the future, an acceptable single thread performance

would satisfy the user in terms of QoE. Later, having a few cores plus ac-

celerators and coprocessors would be a better design decision for handheld

mobile devices.
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Figure 1.7: Typical feedback control loop [2]

1.2 Background on Controlled Systems

A typical closed-loop controller, also known as a feedback controller, has a

high level schematic shown in the sub-figure 1.7. Assume the system block

includes all the parts of the computer system and there are sets of input and

output values for the system. For system x in the figure representing the

computer system, input set is u, and y is the output. The ultimate goal of

the controller is to actuate on the input set to make the system follow the

given reference value(s) for the output. In other words, the current output

is fed-back and the error from the reference is the controller input and the

controller determines the u values based on the current error and history of

the controller.

There are different aspects and trade-offs in controller design. What type

of formal design would work best for the target system? How fast does a

controller reach the reference value? How much over/under shoots the sys-

tem could tolerate? How resilience is the design to different artifacts such as

sensor errors in sensing feedback signals or variation in the system model?

Mentioned considerations are all questions which controller designer has to

answer in a smart way to efficiently operate for target application. Obvi-

ously answers to, the mentioned design decisions should correlate, otherwise

systems efficiency degrades significantly. For example, the faster a controller

reaches the target values, the more over/under shoots it may apply to the sys-

tem inputs, and the less system model variation, Lets the controller designer
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Figure 1.8: PID SISO controller for applications such as DVFS for
delivering demanded QoS

to come with a better controller.

For example, one of the common controllers, which has been widely used

in computer architectures, is PID controller. As shown in figure 1.8, it simply

combines three different informations on the error signal to actuate on the

input of the system. The output could be one of the performance counters

inside the processor(lets say the instruction count). The reference value is

passed by application to the kernel for QoS. Finally, the input could be

different voltage steps for DVFS.

There are different architectural parameters tightly collaborating with each

other. If the system has a different decoupled SISO controller for each differ-

ent parameter, it is possible that the controllers work against each other and

the whole system functionality degrades as a result. However, the biggest

advantage of SISO controller is design simplicity along with great effective-

ness. The controller designer only needs to find a proper coefficient for each
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Figure 1.9: An example of MIMO controller for architectural parameters in
a computer system [2]

term in the PID controller.

An alternative approach would be designing a MIMO controller as shown

in figure 1.9. The controller tries to keep the screen frame rate at the satis-

factory level, lets say 60fps, and also meet the power envelop. In other words,

the system tries to provide target QoE for user. The MIMO controller actu-

ates on frequency, issue width and load/store buffer length.

The effectiveness of control theory over other methodologies for computer

architecture tuning is explained in detail in the work of Pothukuchi et al.

[2]. In table 1, they summarized the comparison of different techniques for

architectural tuning. Since in this work, I mainly tackled the implementation

issues of using controllers in practice on a big.LITTLE Odroid developement

board, it’s recommended to refer to their work for more details on architec-

tural controllers. There is also a detailed tutorial on architectural controller

formal design flow published by the same authors [11].

Considering the study at the beginning of this report, and also recent

big.LITTLE ARM architectures for mobile processors, the problem of de-

signing an efficient controller for mobile processors is getting even more chal-

lenging. Every new version of mobile processors should speed up the previous

version, mainly because mobile applications are getting more and more com-

plex and users are demanding more concurrency and better QoE.
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Moreover, such processor should have less overall power consumption for a

specific code chunk, in other words, it needs to process more energy-efficiently

to provide a longer battery life. Consequently, based on the fact that average

TLP is less than 2, there are both a major need and potentially huge benefit

on efficiently controlling of mobile processors.
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2 IMPLEMENTATION

Researchers have worked on custom ad-hock designs of the kernel scheduler

to get a better energy efficiency. In [12] they are addressing the same perfor-

mance and power efficiency problem but for a different SMT CMP platform.

There are performance issues with the Linux scheduler even for a general

purpose processor [13]. After implementing an architectural controller on

a real big.LITTLE system, those problems with the baseline system mani-

fest as performance degradation. As a result, a smarter scheduler is needed.

Therefore, I implemented an interface using LKM, which lets the program-

mer write any scheduling policy in user space without changing any kernel

code. This saves huge time in development.

2.1 Problems with Linux Scheduler

Exploiting the big.LITTLE architecture flexibility for power efficient com-

puting has been a challenging problem. Mainly, because there are several

architectural parameters controlled by different units. Those units usually

work independently from each other. Assume an SoC for a mobile device

with a big.LITTLE octal core CPU architecture. Those cores should over-

all consume less than the maximum power budget, which often implies that

some of them need to be in a lower power level or power-gated, to meet the

power envelop constraint. Temperature is also a critical factor for safety.

There is a thermal management unit implemented in firmware, to kick in

when the temperature of a core hits a certain point. The thermal manage-

ment unit then takes care of putting the heated core to a lower power state.

There is no customization for applications. In other words, we do not have

any information about the workload in run-time on our asymmetric machine.

Implementing an effective scheduler to work in such complicated environ-

ment is an open challenging problem in OS scheduling. Mainly, because

the above mentioned artifacts related to power and temperature manage-
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ment units, could easily act against the scheduler decisions. As a result,

performance and also energy efficiency both are sub-optimal. There is an

interesting work in this context. However, the authors bounded the applica-

tion to web browsing [14]. They addressed the same problem only for web

browsing by benchmarking and tuning the scheduler for that pattern. More-

over, there is another work on a software approach for distributing tasks on

a big.LIITLE architecture for multi-thread applications [15].

There is no work on trying to find a smart controller to tackle this problem

for general purpose applications. To be more specific, there is no work on

architectural controllers that perform very well for all mobile applications.

There are some proposals on EAS(Energy Aware Scheduling) to converge

to a better resource management leading to a better energy efficiency [16].

Unfortunately the current-updated implementation of the Linux scheduler

works poorly on recent big.LITTLE development boards e.g. Odroid-XU4. I

ran multi-programmed SPEC2000 and multi-threaded PARSEC[17] applica-

tions on my Odroid-XU4 board while logging temperature and performance

values. The overall system performance degrades significantly when the ther-

mal management unit kicks in for high temperatures. I decided to tackle the

problems of the scheduler with a hierarchical controller consisting of differ-

ent blocks implemented with formal control-theory methods, user and kernel

space tasks and many interfaces between different software layers.

2.2 Implemented LKM

My formal controller is implemented in user space. On the other hand, the

scheduler runs in the kernel space. There are a set of OS metrics fed into

the controller’s block: some information about processes, cores, temperature

and power. To provide controllers running in user space with such informa-

tion, there are some challenges. Some information such as processes’ states

and CPU time change rapidly. The main challenge is to have impact on

scheduler decisions by monitoring critical values in the kernel from the user

space. In our design, there are values such as application processes’ state and

scaled CPU-time, or the scaled time each process spent running on a core.

Acquiring such values frequently from user space has a large overhead for

system performance. Since we needed to implement it in an efficient way to
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be able to do better than the baseline performance. I implemented an inter-

face based on a Linux Kernel Module that interfaces with both the sensors

and the actuators of our controller.

Linux Kernel Modules are section of C code that can be installed and

removed into the kernel at run time. They extend the functionality of the

kernel without the need to reboot the system or changing the kernel code.

A type of modules which is really common is the device driver module. It

allows the kernel to access hardware connected to the IO, which is installable

on demand. Without LKM, we would have to rebuild the kernel and add

new functionality directly into the kernel source code. Besides having larger

kernels, it would be such a waste of time to rebuild and restore the kernel after

a single change in implementation. Also, kernel program debugging would

be hard since any error would crash the system and any change would need

a rebuild. On the other hand, LKM has the advantage of fast installment

and low cost of recovery. For example, in our system a single restart would

recover the system and remove the faulty module.

After installing the LKM into the kernel, a virtual file named“status” is

generated in the Proc file system. Every access to the status file from the

controller invokes the corresponding call back function. The controller, at

the beginning, registers application processes to the module by writing their

process-ID into the status file. After registration, updated OS metrics of

registered IDs will be ready upon the controller’s request by reading the

status file. The implemented LKM sets up a timer interrupt and a handler

to hook up monitoring and actuating tasks to the work queue, which is served

by on kernel threads.

As shown in figure 2.1, there is a local linked list for storing updated

OS metrics inside the module implementation. The implemented linked list

makes it possible to respond to the controller, updated version of values with

out locking the main data structure in the kernel. The assigned work queue

task grabs the lock of task struct, one of Linux data structures holding in-

teresting metrics which is needed in controller, traverses the list and finally

updates OS metrics in internal data structures, and also applies the output

values of the controller to task struct. The current implementation moni-

tors the scaled CPU time, processes state, and actuates on CPU masks for

scheduling of each task. In other words, the controller can decide where to

run each thread next time.
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Figure 2.1: Implemented LKM for sensing scaled CPU times, and
processes’ state, and actuating on CPU masks for scheduling
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2.3 Extensibility

In the current implementation, processes’ information, core utilization and

cache locality metrics are obtained from a centralized LKM and Perf tool

using performance counters. In future studies, we might need to measure

run time power consumption, yet in most of the development boards there

is no such sensors or the latency to access them is pretty high(i.e., 500ms

for Odroid-XU3). I designed and implemented a power view tool, a smart

power sampler, which can log power(maximum 50w) every 10ms. It can also

fed it back to the controller itself, either through fast serial communication

or a typical network. Technically, the power view box is programmed on a

Raspberry Pie B+ development board, a current sensor, and a GrovePi de-

velopment extension board adding analog-to-digital converters to the system.
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3 EVALUATION

To evaluate the effectiveness of our platform, we implemented different ver-

sions of controlling methods, all in kernel space using the kernel module, to

improve multi-threaded application performance. The main goal of the con-

troller is to help the Linux scheduler schedule threads on the big.LITTLE

architecture fairly.

3.1 Monitoring Baseline

We used our platform for monitoring the baseline scheduler, while running 8

threads of Blackscholes, one of the applications of the PARSEC benchmark

suit. Blackscholes is a CPU intensive workload without synchronization. We

are not interfering in scheduler decisions. The monitoring result is shown in

the figure 3.1. The Y axis is the core number: 0 to 3 are LITTLE and 4

to 7 are big cores. The X axis is simply time, each solid colored line in the

graph corresponds to a running thread. The vertical dashed lines represent

the end of a thread. Note that the monitoring is conducted only for the

parallel section, which is the main focus of this chapter.

Frequency-scaled CPU times are also provided in the table in figure 3.1.

The ideal scenario for a multi-threaded program would be one in which all

threads are terminating at about the same time. In other words, they may

have similar CPU times at any given time. In figure 3.1, PID 0 was always

running on a big core. Consequently it finished first among all other threads.

On the other hand PID 3 was mostly running on a LITTLE core. As a result

it finished as the last thread. Since Blackscholes lacks synchronization, it can

reveal the issues with the Linux scheduler on a heterogeneous architecture

clearly.

In contrast of Blackscholes, the Vips application from PARSEC suite has

fine-grained synchronization. Figure 3.2 shows the same monitoring experi-

ment on the Vips application. Note that in figure 3.2 all threads terminated
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Figure 3.1: Monitoring baseline scheduler for 8 threads of Blackscholes from
PARSEC

at about the same time, mainly because of the fine-grained synchronization,

which causes threads to change cores all the time. After this monitoring

observation, our main focus was on designing a universal controller for the

scheduler to achieve a better performance, using our platform. Note that,

the measured performance overhead of our tool on the system for monitoring

is about 3%.

3.2 Baseline Improvements

The next set of experiments consisted of forcing the Linux scheduler to use

affinity scheduling for threads, using our platform. Figures 3.3 and 3.4 show

the timing result when there is only one core assigned to each thread. As

we expected, again, the Blackscholes suffers from non uniform thread ter-

mination due to lack of synchronization. On the other hand, for Vips the

affinity scheme does not hurt the simultaneous termination. It improves the

performance. I believe the performance gain here comes from eliminating

unnecessary migrations.

The next set of experiments were on setting affinity of each thread to

two cores, one big and one little, using my platform. Figures 3.5 and 3.6
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Figure 3.2: Monitoring baseline scheduler for 8 threads of Vips from
PARSEC

Figure 3.3: Setting affinity of each thread to one core for 8 threads of
Blackscholes from PARSEC
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Figure 3.4: Setting affinity of each thread to one core for 8 threads of Vips
from PARSEC

show the result. There is an interesting artifact observed in the figure 3.5

about the Linux scheduler. As long as a task is utilizing the resources well,

like Blackscholes, the Linux scheduler refuses to migrate the task. This

observation was an eye-opener. It helped me understand how to achieve

the next scheduling scheme which works best among our tested approaches.

The last and most effective scheduling scheme implemented is periodic

toggling between LITTLE and big for each thread. Obviously, there is a

sweet point for how often it is best to toggle cores. The result is shown for

toggling every 0.25 second in figures 3.7 and 3.8 for Blackscholes and Vips

respectively. The result is that we obtain the faster executions of Blackscholes

and Vips.

We did the same experiment on core-toggling for 3 different rates. Figure

3.9 wraps up the performance gain of different methods. The baseline is just

monitoring. As it is shown, using our platform and the simple core-toggling

scheme for the controller, we speed up the multi-threaded applications up

to 14%. The proposed platform implemented as a Linux Kernel Module

could be utilized in smarter ways using control theory and machine learning

methods.
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Figure 3.5: Setting affinity of each thread to two cores for 8 threads of
Blackscholes from PARSEC

Figure 3.6: Setting affinity of each thread to two cores for 8 threads of Vips
from PARSEC
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Figure 3.7: Core-toggling every 0.25 second for 8 threads of Blackscholes
from PARSEC

Figure 3.8: Core-toggling every 0.25 second for 8 threads of Vips from
PARSEC
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Figure 3.9: Speedup comparison among different implemented methods on
Blackscholes and Vips from PARSEC, the best speeds are obtained by
toggling each thread between big and LITTLE every 0.25s
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4 CONCLUSION

The big.LITTLE architecture is the state of the art design strategy for mo-

bile processors, yet there is an open question on how to best exploit this

flexibility in hardware for mobile applications. A benchmarking study on

TLP of Android applications shows an average TLP of 1.6 for all mobile ap-

plications. This low number is mainly caused by waiting for IO or UI, since

most of the mobile application are deeply interactive with web and user. On

the other hand, QoE is the ultimate goal of these systems. Single thread

performance on demand, is essential for having a high QoE. All mentioned

facts are contributing to the complexity of this challenging control problem.

Scheduling is the key part, since power and thermal management units are

not flexible, and some vendors make power and thermal management units

run as firmware for safety. They are hard to modify. Our idea is to control

the scheduling in a way that cooperates with other controllers in the system,

to achieve more efficient computing. An implemented LKM is proposed for

offloading regular critical controlling tasks from user space to kernel space

implemented by working queue threads. This helps the developer to test

the controller without being concerned about Linux kernel scheduler inter-

faces. We studied several techniques to schedule multi-threaded application

on a big.LITTLE system. We found that the best speedups are obtained by

toggling each thread between big and LITTLE periodically, every 0.25s.
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