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ABSTRACT

Dynamic magnetic resonance imaging (MRI) holds great promise for speech-related studies be-

cause of its potential to investigate velopharyngeal motion and physiological properties jointly in

real time. However, many applications of dynamic speech MRI are limited by the technical trade-

offs in imaging speed, spatial coverage, spatial resolution and clinical interpretation. In particular,

high-resolution dynamic speech MRI with full-vocal-tract coverage and phonetically meaningful

interpretation remains a challenging goal for many speech researchers. This dissertation develops

novel model-based dynamic speech MRI approaches to enable high-resolution, full-vocal-tract 3D

dynamic speech MRI with quantitative characterization of the articulatory motion.

Our approaches include technical developments in imaging models, data acquisition strategies

and image reconstruction methods: (a) high-spatiotemporal-resolution speech MRI from sparsely

sampled data is achieved by employing a low-rank imaging model that leverages the spatiotem-

poral correlations in dynamic speech motion; (b) a self-navigated sampling strategy is developed

and employed to acquire spatiotemporal data at high imaging speed, which collects high-nominal-

frame-rate cone navigators and randomized Cartesian imaging data within a single TR; (c) quan-

titative interpretation of speech motion is enabled by introducing a deformation-based sparsity

constraint that not only improves image reconstruction quality but also analyzes articulatory mo-

tion by a high-resolution deformation field; and (d) accurate assessment of subject-specific motion

as opposed to generic motion pattern is realized by using a low-rank plus sparse imaging model

jointly with a technique to construct high-quality spatiotemporal atlas. Regional sparse modeling

is further introduced to assist effective motion analysis in the regions of interest.

Our approaches are evaluated through both simulations on numerical phantoms and in vivo

validation experiments across multiple subject groups. Both simulation and experimental results

allow visualization of articulatory dynamics with a frame rate of 166 frames per second, a spatial
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resolution of 2.2× 2.2× 5.0 mm3, and a spatial coverage of 280× 280× 40 mm3 covering the en-

tire upper vocal tract across 8 mid-sagittal slices. Deformation fields yielded from our approaches

share an identical spatiotemporal resolution that characterizes accurate soft-tissue motion. With a

high-quality atlas, the low-rank and the sparse components are reconstructed to reveal both subject-

specific motion and generic speech motion across a specific subject group.

The effectiveness of our approaches is demonstrated through practical phonetics investigations

that include (a) integrative imaging and acoustics analysis of velopharyngeal closure; (b) under-

standing the formation and variation in a variety of languages, American English, North Metropoli-

tan French, Brazilian Portuguese and Levantine Arabic; and (c) analyzing motion variability of a

particular subject with respect to a specific subject group. The capabilities of our method have the

potential for precise assessment of the oropharyngeal dynamics and comprehensive evaluation of

speech motion.
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CHAPTER 1

INTRODUCTION

1.1 Problem statement

In a typical dynamic speech MRI experiment, the acquired Fourier encoded magnetic resonance

(MR) data, d(k, t), from the (k, t)-space can be expressed as

d(k, t) =

∫
I(r, t)e−i2πk·rdr + η(k, t), (1.1)

where I(r, t) is the desired spatiotemporal images of speech motion and η(k, t) is the measurement

noise. Unlike in conventional MRI applications, dense sampling in the (k, t)-space is challeng-

ing during dynamic speech MRI data acquisition: on the one hand, the articulators in the vocal

tract move rapidly during speech production and require high sampling speed to capture; on the

other hand, the sampling speed in dynamic speech MRI is constrained due to physical limits of

the data acquisition hardware and the physiological concerns on peripheral stimulation on human.

The situation is more difficult when it entangles with the “curse of dimensionality” – the required

amount of measured data grows exponentially with the increased resolution requirements of the

imaging problem according to the Nyquist-Shannon sampling theorem. This dilemma renders

high-resolution full-vocal-tract dynamic speech MRI a challenging task and has led to various

technical trade-offs between the imaging speed, spatial resolution, temporal resolution, spatial

converge, signal-to-noise ratio and clinical interpretation of speech motion.

Aiming at addressing the above challenges, this dissertation centers on developing model-

based approaches to achieve high-resolution full-vocal-tract dynamic speech MRI with phonet-

ically meaningful interpretation of speech motion. The hypothesis is that high-quality dynamic

speech MRI is achievable by leveraging the latest developments in spatiotemporal imaging mod-
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eling, fast data acquisition strategies and advanced reconstruction methods. In particular, this

dissertation proposes to include (a) a low-rank imaging model that leverages spatiotemporal cor-

relation in speech motion to recover high-quality dynamic images; (b) an accelerated model-based

data acquisition strategy to capture fast articulatory dynamics; (c) an image reconstruction method

that combines a low-rank image model with deformation estimation to allow high-quality recon-

struction and accurate analysis of articulatory motion; (d) an advanced imaging model that enables

effective decomposition of subject-specific motion patterns as opposed to the generic speech mo-

tion pattern; and (e) evaluation of the practical utility of the above technical elements in terms of

systematic simulation, in vivo experiments and phonetics investigation. These developments allow

dynamic speech MRI to serve as a powerful imaging and diagnostic tool for a variety of speech-

related research and applications.

1.2 Motivation

Dynamic magnetic resonance imaging holds great promise for real-time visualization of the vocal

articulators and the associated vocal muscles. Compared with existing dynamic imaging tech-

niques, dynamic speech MRI has multiple technical advantages: dynamic speech MRI allows vi-

sualizing the anatomical structures along arbitrary imaging planes without invasive procedures, as

compared with endoscopy and ultrasound; and dynamic speech MRI provides excellent soft-tissue

contrast without using ionizing radiation, as compared with video fluoroscopy and positron emis-

sion tomography. Recent development in MRI hardware, sequence developments and advanced

imaging models have effectively enhanced the technical capabilities of MRI and enabled signifi-

cant progress in various dynamic imaging applications.

Dynamic speech MRI has recently started to demonstrate its usefulness both for scientific

research and clinical studies in speech. The utilization of dynamic speech MRI to capture struc-

tural and functional changes of the vocal tract has led to a broad spectrum of applications. These

applications include studying complex soft-tissue geometries in the upper vocal tract [1–3]; de-

tecting structural defects, functional disorder and motor dysfunctions [4–7]; and studying the evo-
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lution and variations of important languages [8–14]. Although dynamic speech MRI has found

widespread use in a variety of scenarios, the state-of-the-art dynamic imaging methods still suf-

fer from low spatiotemporal resolution, limited spatial coverage and poor clinical interpretation.

Developing advanced dynamic imaging techniques that can simultaneously allow high-resolution

visualization of speech motion, broad spatial coverage covering the entire upper vocal tract and ef-

fective phonetics interpretation of the articulatory motion is critical towards deeper understanding

of basic phonetics studies and better clinical diagnostics.

An effective dynamic speech imaging should at least provide six desirable properties: (1)

non-invasive procedures to visualize articulatory dynamics without interrupting natural speech

production; (2) good soft-tissue contrast to clearly visualize the vocal articulators and the associ-

ated driving muscles in the vocal tract; (3) sufficient spatial resolution differentiate the gestures

of small-sized articulators; (4) high imaging speed to capture rapid temporal movements of the

vocal tract articulators: high imaging speed is a critical property for dynamic speech MRI appli-

cations because brief temporal events may carry important information that reflects the structural

and functional changes of the vocal tract [15]; (5) quantitative characterization of the reconstructed

articulatory motion with respect to a ground truth image; and (6) effective separation and analy-

sis of subject-specific motion patterns as opposed to the subject group. Although the past decade

has seen significant improvement separately in each of the above properties, in general it remains

challenging to maximize all properties at the same time. Also, the associated clinical tools to ef-

fectively interpret the reconstructed images have been generally lacking. These difficulties have

prevented dynamic speech MRI from greater scientific impact and clinical influence.

1.3 Overview of contributions

This dissertation centers on the developments of dynamic speech MRI methods that simultane-

ously provide high-speed, high-resolution, full-vocal-tract-coverage imaging methods of speech

dynamics with quantitative characterization of speech motion both for a single subject and across

the entire subject group. The main contributions in this dissertation are summarized as follows:
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• An imaging model has been employed to represent the spatiotemporal structure of dynamic

speech images and recover high-quality spatiotemporal speech dynamics from highly under-

sampled measured data. An image reconstruction formulation has been proposed to leverage

the signal properties of speech and integrate both the imaging model and sparse modeling.

Efficient algorithms-based on half-quadratic regularization have been implemented and op-

timized. Performance has been systematically evaluated through simulation, in vivo experi-

ments and phonetic investigations.

• Model-based data acquisition strategies have been developed to capture fast transitions of

dynamic articulatory motion. Developments in data acquisition strategies include the design

and implementation of fast, low-angle shot (FLASH) pulse sequences; design and optimiza-

tion of novel trajectories both for 2D and 3D dynamic speech MRI applications; design

and implementation of sparse sampling schemes appropriate for the imaging model; and the

development of imaging and operation protocols for practical phonetics studies.

• A novel dynamic speech MRI method based on deformation analysis has been proposed to

not only enhance the quality of image reconstruction, but also to allow quantitative anal-

ysis of the articulatory motion by high-resolution deformation fields. These two goals are

simultaneously achieved by integrating a deformation-based sparsity constraint into the im-

age reconstruction formulation. This method has been further developed to allow automatic

tracking or segmentation of articulatory gestures for various phonetics applications. Perfor-

mance of this method has been evaluated by simulation, in vivo experiments and phonetics

investigations.

• To allow characterization of the articulatory gestures across multiple subjects, a novel dy-

namic speech MRI method has been proposed to incorporate a spatiotemporal atlas into a

low-rank plus sparse imaging model. A spatiotemporal atlas provides strong prior infor-

mation for the image reconstruction problem and the low-rank plus sparse model allows

effective decomposition of the generic and subject-specific speech motion. Regional sparse

modeling has also been integrated to improve the performance of our method in targeted
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regions. The resulting imaging method not only facilitates the image reconstruction through

a spatiotemporal atlas, but also enables effective interpretation of speech motion separately

for the generic pattern and the subject-specific motion. The performance of this method has

been evaluated by simulation, in vivo experiments and statistical phonetic analysis.

1.4 Organization of dissertation

This dissertation is organized as follows:

• Chapter 2 reviews the necessary background information for the ensuing chapters, cover-

ing historical development of speech imaging techniques, a detailed review of important

dynamic speech MRI methods from signal processing approaches and data acquisition ap-

proaches, and a detailed review of the clinical and phonetics applications.

• Chapter 3 presents our method that enables high-resolution, full-vocal-tract 3D dynamic

speech MRI. It presents technical developments in the imaging model, accelerated data ac-

quisition strategy, algorithm analysis, simulation studies, results from validation experiments

and various examples from phonetics investigations.

• Chapter 4 introduces our method that integrates deformation estimation into dynamic speech

MRI to simultaneously improve reconstruction quality and allow accurate motion analysis.

It consists of technical developments in problem formulation, solution algorithm, simulation

studies and validation experiments. The practical utility of our method has been validated

through multiple phonetics investigations.

• Chapter 5 presents our work on a spatiotemporal atlas-based dynamic speech MRI method.

It presents technical developments on a low-rank plus sparse imaging model, a method of

constructing spatiotemporal atlas images of both high image quality and high throughput and

an image reconstruction formulation that integrates the imaging model with a spatiotemporal

atlas. Experimental results and phonetics investigations are presented to demonstrate the

practical value of our method for clinical and scientific applications.

• Chapter 7 provides the conclusion to this dissertation.
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CHAPTER 2

BACKGROUND

Chapter 2 aims to provide a detailed review of dynamic speech imaging techniques, covering its

technical development over the past three decades, signal-processing-based approaches to dynamic

speech MRI, data-acquisition-based approaches to dynamic speech MRI and the representative

clinical applications of dynamic speech MRI. The detailed review provided in this chapter serves

as important background information for the ensuing chapters. Specifically, Section 2.1 provides

an overview of the development of dynamic speech imaging methods over the past three decades,

covering conventional dynamic speech imaging methods and the evolution of MR-based dynamic

speech imaging methods. Section 2.2 presents the signal-processing-based approaches to dynamic

speech MRI, covering partial separability model-based imaging, parallel imaging and compressed

sensing-based imaging. Section 2.3 presents the data-acquisition-based approaches to dynamic

speech MRI, covering spatiotemporal sampling patterns, fast pulse sequences, advanced data ac-

quisition hardwares and a range of scanning protocols. The last section in this chapter presents

representative dynamic speech MRI applications, covering both clinical and non-clinical applica-

tions.

2.1 Development of speech imaging

2.1.1 Conventional dynamic speech imaging

Speech is a vital bodily function directly related to the quality of life. Given its importance, ef-

fective techniques have been developed to monitor and measure the dynamics in the vocal tract.

These techniques can be roughly divided into two categories, non-imaging-based and imaging-
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based techniques. This dissertation provides an overview of the imaging-based techniques, while

the interested readers can refer to [16] for a review of the non-imaging-based techniques.

The imaging-based techniques are far superior to their non-imaging-based counterparts in pro-

viding directly visualization of both localized articulatory behaviors and global articulatory move-

ments. This visualization capability is of great importance in speech-related studies because artic-

ulatory motion consists of bulk motion from hard-tissue structures (the hard palate, the jaw and the

pharyngeal wall), as well as localized motion from soft-tissue structures (the tongue, the velum and

the epiglottis). Having the capability to simultaneously visualize both patterns of motion (which is

not available from non-imaging-based techniques) helps understand how these structures behave

and change individually and interact with others collectively [17]. Four imaging methods have

traditionally dominated dynamic speech imaging methods: video endoscopy, ultrasound, video

fluoroscopy (VFS) and computerized tomography (CT). This dissertation gives an overview of

each of these imaging methods.

Video endoscopy

Video endoscopy is by its nature an optical imaging modality that allows visualization of the in-

terior of the human body by using a small-sized camera. A flexible endoscope, usually equipped

with its own light source at the front end, is inserted through the oral and nasal cavities to reach

the region of interest. Structures of the surface of the inner cavities are imaged, and the acquired

images are transferred back through an optical fiber to radiologists for visual evaluation [18]. Fig-

ure 2.1 provides an example of a typical endoscopic image of the surface of the pharynx obtained

by using video endoscopy.

Video endoscopy provides straightforward detection of the surface lesions in the vocal tract.

In particular, the abnormal tissues can be easily identified by comparing their shapes and those

of the normal tissues [19]. Comparison results can be more targeted by employing certain types

of dyes to enhance image contrast [20, 21]. However, one of the main potential limitations of

video endoscopy in clinical applications is the light source used by the endoscopic imaging sys-

tem – imaging information obtained with video endoscopy is usually constrained by the FOV and
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Figure 2.1: A typical image of the surface of the pharynx obtained by using video endoscopy
(image courtesy of Dr. Brad Sutton and Dr. Jamie Perry).

the resolution of its front-end camera. The dependence on camera performance makes it difficult

to detect abnormal structures beneath the surface of the vocal tract cavity with video endoscopy.

In addition, video endoscopy can be regarded as an invasive imaging method through which the

subjects suffer great discomfort. These potential limitations of video endoscopy makes it a less

commonly used imaging method for dynamic speech imaging applications.

Ultrasound

Ultrasound is a typical non-invasive imaging modality. It employs a range of high-frequency sound

waves for the purpose of imaging. Specifically, an ultrasound transducer focuses high-frequency

sound waves into a sound beam. The resultant sound beam is further introduced into the human

body to visualize an inner structure [22, 23]. The introduced sound beam bounces back when it

reaches air-tissue boundaries in the vocal tract. When the sound beam is bounced back, it can be

captured by the transducer in the form of voltage signals [22]. The locations of the soft-tissue struc-
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tures can be determined by calculating the timing, amplitude and even phase [23] of the returned

sound beam. This non-invasive feature of ultrasound has made it a popular imaging modality for

studying the oropharyngeal structure.

Ultrasound has its own drawback: the sound beam produced by the transducer has limited pen-

etration depth due to signal loss across the air-tissue boundaries. This prevents the clinicians from

getting a visualization of the inner structures of the vocal tract, even when the transducer is placed

close to the lower chin [22]. In addition, ultrasound has limited soft-tissue contrast compared with

MRI, CT or video fluoroscopy. These drawbacks have limited the use of ultrasound for dynamic

speech imaging applications [24–26].

Video fluoroscopy

Video fluoroscopy integrates the imaging power of conventional X-ray fluoroscopy with accel-

erated visualization techniques to provide a sequence of X-ray images of the vocal tract. Video

fluoroscopy generates high-frequency electromagnetic waves that pass through soft tissues of the

human body and get picked up by the X-ray receiver. As different tissues and structures have differ-

ent absorptions along its beam path, the received X-ray carries information about tissue structures

as two-dimensional (2D) projections.

Video fluoroscopy has long been treated as the “gold standard” imaging modality for clin-

ical dynamic speech imaging experiments [27–30]. However, video fluoroscopy is an imaging

modality that relies on the use of ionizing radiation, rendering it inappropriate for dynamic speech

imaging scans that require long scan time across a large number of subjects. As given in Figure

2.2, video fluoroscopy obtains images from a single projection angle, which prevents visualization

of complex 3D soft-tissue structures.

Computerized tomography

Computerized tomography (CT) exceeds video fluoroscopy in its capability to differentiate spa-

tial features. Unlike video fluoroscopy, CT obtains imaging data from more than one projection

9



Figure 2.2: A typical image of the upper vocal tract obtained by using video fluoroscopy (image
courtesy of Dr. Brad Sutton and Dr. Adrienne Perlman). This image was obtained while the
subject was swallowing liquid.

angle. This allows the ensemble of data to be combined and reconstructed according to the pro-

jection slice theorem. As a result, CT is capable of differentiating anatomical features in space

instead of providing overlapping projected spatial images. Given this characteristic, CT has long

been regarded as a competitive alternative to video fluoroscopy for clinical applications related to

speech [31, 32]. Recent developments in CT have also resulted in higher spatial resolution, faster

imaging speed and the presence of multimodal CT imaging techniques. These developments in CT

have led to a range of exciting applications in speech [31, 32]. Like video fluoroscopy, CT is by

its nature an imaging modality relying on the use of ionizing radiation. This characteristic of CT

renders it inappropriate for large-scale phonetics studies despite many of its favorable properties.

2.1.2 MR-based dynamic speech imaging

Compared with conventional modalities for dynamic speech imaging, MRI provides excellent soft-

tissue contrast along arbitrary view planes without the risk of ionizing radiation. This favorable
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property has made MRI an ideal imaging modality for investigating both the structures and dy-

namics in the vocal tract.

Early applications of MRI to speech-related studies mainly centered on imaging static or pro-

longed utterance [33]. Specifically, the subjects were requested to hold articulatory gestures during

the length of the experiment. As a result, the sounds of interest are largely limited to simple vowels

by which the subjects can easily maintain articulatory gestures over a relatively long time, such as

2 s or more in early applications [33]. Typical vowels for these experiments include vowel sounds

such as /a/, /i/ and /u/. As a result, typical regions of interest mainly include the tongue body and

the soft palate [34]. Despite these successful reports, prolonged utterance significantly limits the

variety of sounds that can be studied with MRI. This is because the important transitions between

different sounds and the dynamics within each sounds were completely beyond observation with

these early methods.

An important improvement over the early speech MRI methods was achieved by the utilization

of gating techniques. Gating techniques are based on the assumption that there exist repetitions

of the carrier phrase during speech. Therefore, this assumption can be used to relax the sampling

requirements if the speech contains certain repetitions or quasi-repetitive patterns. Specifically, a

portion of k-space data is collected during each repetition, and the ensemble of required k-space

samples is collected at the end of all the repetitions. As a result, acquiring k-space data across

multiple repetitions can be treated as identical to instantaneous sampling of the required samples

in a single repetition. Compared with the earlier techniques, the gating techniques have allowed

complex speech samples, rather than static ones, to be studied using MRI [35–38]. However,

the performance of gating techniques greatly relies on the speaker’s ability to reproduce consistent

motion across all the repetitions. Motion variability may heavily corrupt speech dynamics for even

simple utterances, such as “golly” [39]. This drawback has switched people’s attention to dynamic

speech imaging methods that allow natural sound production in real time.

High-resolution, three-dimensional (3D) dynamic speech MRI, as the latest development in

speech imaging, holds great promise for scientific research and clinical applications in speech.

Broad spatial coverage is especially useful both for phonetics studies and clinical application.

This is because the sound production may require coordinated movements from multiple struc-

tures with complex geometries at different locations of the vocal tract. Having a broad spatial
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coverage allows these coordinated movements to be captured and compared at the same time. In

particular, 3D spatial coverage over the entire vocal tract has shown great benefits for a number

of speech-related studies [35, 40]. High spatiotemporal resolution, on the other hand, is needed to

delineate the gestures of small-scaled articulators and fast transitions of articulatory dynamics. For

example, a tagged-MRI study has imaged the tip of the tongue with a high spatial resolution of 1.9

mm in order to properly model its motion [41]. Other studies have also indicated that structural

changes within short intervals, even as short as 10 ms [10–14], may contain important informa-

tion about speech function. In this way, increasing the imaging speed of dynamic speech MRI

is critical towards capturing the subtle temporal transitions that may help reveal the structural and

functional changes of the articulators. A review of imaging protocols for dynamic speech MRI and

the associated acquisition and reconstruction tools can be found in [42]. Some important imaging

protocols, data acquisition methods and image reconstruction tools will also be discussed in detail

in the following sessions.

2.2 Dynamic speech MRI: Signal processing approaches

Dynamic speech MRI brings great challenges to MR data acquisition and image reconstruction.

Compared with the rapidly changing articulatory motion, the relatively slow sampling speed of

conventional MR data acquisition prevents collection of the full Nyquist samples. Therefore,

advanced signal processing approaches leveraging the physics and signal properties of dynamic

speech MRI are needed to properly capture the fast transitions of speech motion.

2.2.1 Partial separability model-based imaging

Acceleration in the imaging speed of dynamic speech MRI can benefit from embracing the generic

properties of the images representing speech motion. As a generic signal property [43], partial

separability (PS) exploits the fact that many speech images have a high degree of spatiotemporal

correlation and, as a result, exist in a subspace of lower dimensionality. It is worth noting that

12



partial separability is a natural property that is often observed in images or image sequences from

a variety of applications, including spectroscopic imaging [44, 45], cardiac imaging [46–48] and

speech imaging [42,49–51]. Based on the PS model, the dynamic MR images representing speech

motion can be represented as [43]:

I(r, t) =
L∑
l=1

ψl(r)φl(t), (2.1)

where {ψl(r)}Ll=1 denotes a set of spatial basis functions and {φl(t)}Ll=1 denotes a set of temporal

basis functions up to model order L. It should be noted that the Lth-order PS model induces a

low-rank structure: the Casorati matrix Î defined over the point set {I(rn, tm)}N,Mn,m=1,

Î =


I(r1, t1) · · · I(r1, tM)

... . . . ...

I(rN , t1) · · · I(rN , tM)

 , (2.2)

is a low-rank matrix with its rank upper bounded by L [43, 52], where N and M are the number

of spatial encodings and temporal frames. This implies that Î exists in an L-dimensional subspace

(L � min{N,M}) and can be represented by a matrix factorization Î = UV, where columns of

U ∈ CN×L span the spatial subspace of Î and rows of V ∈ CL×M span the temporal subspace of

Î [43, 52]. It should be noted that the PS model represents a generic property and, as a result, the

Casorati matrix in the (k, t)-space can be expressed as:

Ĉ =


d(k1, t1) · · · d(k1, tM)

... . . . ...

d(kN , t1) · · · d(kN , tM)

 , (2.3)

the rank of which is also upper bounded by L [43, 52]. Similarly, this implies that Ĉ exists in an

L-dimensional subspace and allows the factorization Ĉ = ΦΨ, where columns of Φ ∈ CN×L

span the spatial subspace of Ĉ, and rows of Ψ ∈ CL×M span the temporal subspace of Ĉ [43,52].

Compared with full-rank or higher-rank matrices, low-rank matrices rely on fewer degrees of free-

dom to represent the signal of interest by leveraging the correlation between spatial and temporal
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information. In this way, the PS model allows high-quality speech dynamics to be captured with

high spatial resolution and high temporal frame rate.

Conventional imaging methods towards recovering the Casorati matrices, Î or Ĉ, are performed

based on the rank minimization-based approaches. For instance, a typical rank minimization-based

method solves the following problem,

Ĉ = arg min
C

rank(C) s.t. ||d − EC||2 ≤ ε, (2.4)

where d is the sparsely sampled data from the dynamic speech MRI experiment; E is the encoding

operator that includes a sparse sampling operation, which retains the elements of C at the sampled

locations; and ε is the tolerance level for data discrepancy. It has been indicated that C can be suc-

cessfully recovered with high probability when certain numerical conditions are satisfied [53–55].

Compared with the matrix completion-based approaches, the reconstruction problem can be

simplified when either the temporal or spatial subspace of C is predetermined. For instance, the

PS model [43] applies an explicit rank constraint to reconstruct C in an elegant way: determina-

tion of the temporal subspace and the spatial subspaces of C is performed in two separate, but

synergistically connected, steps. As a result, the image reconstruction problem requires fewer

spatiotemporal samples and becomes more straightforward compared with the matrix completion-

based approaches. In particular, the image reconstruction problem is equivalent to recovering the

spatial subspace Φ of C if the temporal subspace Ψ is predetermined. Mathematically, the image

reconstruction problem can be expressed as:

Ψ̂ = arg min
Ψ

||d− EΨΦ||22. (2.5)

As can be seen, enforcing an explicit rank constraint (predetermination of the temporal subspace)

significantly simplifies the reconstruction problem and greatly reduces the number of spatiotem-

poral samples required to properly recover the speech dynamics [52]. Given these advantages of

the PS model, the following chapters of this dissertation will focus on detailed strategies of ap-

plying PS model-based data acquisition and image reconstruction methods to capture high-quality

spatiotemporal dynamics of speech.
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2.2.2 Compressed sensing-based imaging

The compressed (or compressive) sensing theory exploits the compressibility or sparsity in natural

images to recover image from undersampled data. Compared with methods that rely on spatiotem-

poral support constraint to facilitate image recovery [56–59], sparsity in a transformed domain

may be a more generic signal property: a sparsifying transform can be applied to transform the

image of interest into a certain transformed domain where only a few non-zero coefficients ex-

ist. The compressed sensing scheme allows effective sampling of compressed image data, in-

stead of sampling at the amount specified by the Nyquist-Shannon theorem, before recovering

the sparsely sampled data through sparsity-promoting algorithms [60–64]. Compared with con-

ventional sampling strategies, the sampling strategies guided by the compressed sensing theories

allow the inherent correlation in the signal of interest to be exploited, and consequently relax

the sampling requirements. Therefore, the compressed sensing-based approaches, often referred

to as sparse modeling-based approaches, have found extensive use in a variety of MR applica-

tions [65–67]. The interested reader can also refer to [16] for a detailed review of the classical

compressed sensing-based imaging methods in the context of general dynamic MRI.

Mathematically, the compressed sensing theory aims to obtain a solution for the following

problem

d = EI + ε, (2.6)

where d denotes the measurement data according to a certain sampling strategy, E denotes an

encoding operator that models the imaging process and ε denotes the measurement noise. Without

loss of generality, if we assume the existence of a transform T such that I can be mapped to a

vector that is sparse (containing a limited number of non-zero elements and a large number of zero

elements), the image recovery problem can be rewritten as follows,

Î = arg min
I
||TI||0 s.t. ||d− EI||22 < ε, (2.7)
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where || · ||0 denotes the l0 norm that calculates the cardinality of non-zero elements in a certain

vector. It should be noted that the use of || · ||0 results in a non-convex optimization problem that is

NP-hard, i.e., the problem cannot be settled within polynomial time, and consequently a common

alternative to the above optimization problem relies on the use of the l1 norm as surrogate. In

practice, the l1 norm is commonly used because it is regarded as the tightest convex relaxation of

the l0 norm, while other surrogate functions have been used to promote desirable image property.

Without loss of generality, the image recovery problem with l1 norm as a surrogate metric can be

rewritten in the following form,

Î = arg min
I
||TI||1 s.t. ||d− EI||22 < ε. (2.8)

If we introduce the Lagrange multiplier, the above problem can be further rewritten as:

Î = arg min
I
||TI||1 + λ||d− EI||22 < ε, (2.9)

where λ denotes the Lagrange multiplier. The compressed sensing theory asserts that the image

I in the above formulation can be exactly recovered with high probability when the restricted

isometry property is satisfied [68–71]. In practice, however, the restricted isometric property is

not straightforward to validate. Also, the available acceleration in imaging speed by using com-

pressed sensing alone is often limited. In order to demonstrate this, numerical simulations have

been performed based on a numerical phantom developed in [51] and the comparison of recon-

struction quality with multiple methods is shown in Figure 2.3. As can be seen, Figure 2.3a shows

a representative mid-sagittal image and the associated temporal profile (taken with a vertical strip

across the tip of the tongue) from the gold standard. Figure 2.3b illustrates a representative mid-

sagittal image and the associated temporal profile (taken with a vertical strip across the tip of the

tongue) from a low-rank model-based method. Figure 2.3c shows a representative mid-sagittal

image and the associated temporal profile (taken with a vertical strip across the tip of the tongue)

from a compressed sensing-based method. Figure 2.3d shows a representative mid-sagittal image

and the associated temporal profile (taken with a vertical strip across the tip of the tongue) from

a sliding window-based method. As can be seen, the compressed sensing-based method suffer
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from compromised image quality and degraded temporal dynamics when the required acceleration

in imaging speed is high (simulated with less sampled data). The sliding window-based method,

on the other hand, suffers from significant spatial and temporal blurring. As a result, compressed

sensing methods are often used in complementary to other imaging strategies to yield improved

reconstruction quality.

2.3 Dynamic speech MRI: Data acquisition approaches

The previous section focuses on introducing signal processing-based approaches to dynamic speech

MRI. Successful application of these approaches for practical phonetics experiments requires cor-

responding data acquisition schemes. This section focuses on providing a detailed review of the

data acquisition approaches towards dynamic speech MRI, covering a variety of spatiotemporal

sampling patterns, fast pulse sequences, data acquisition hardware and imaging protocols.

2.3.1 Spatiotemporal sampling

The design and optimization of the spatiotemporal sampling pattern is critical towards the im-

age quality in dynamic speech MRI reconstructions. A variety of sampling strategies have been

proposed to efficiently and effectively traverse the (k, t)-space during dynamic speech MRI data

acquisition. This subsection focuses on the representative (k, t)-space sampling trajectories and

analyzes the influence of each type of sampling trajectories on the quality of the resulting recon-

struction.

Cartesian sampling is perhaps the most commonly used sampling trajectory in MRI due to its

straightforwardness and simplicity in implementation [72]. Specifically, Cartesian sampling on a

2D image plane or a 3D image volume is often the default option for a series of imaging sequences

on existing commercial platforms [73]. For MRI applications that involve high frequency and

great amplitude variation motion, Cartesian sampling has also been shown to reduce magnetic sus-

ceptibility artifacts [16,72,74]. When combined with half-Fourier sampling techniques, Cartesian
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Figure 2.3: Comparison of reconstruction quality with multiple methods on a numerical phantom:
(a) a representative mid-sagittal image and the associated temporal profile (taken with a vertical
strip across the tip of the tongue) from the gold standard; (b) a representative mid-sagittal image
and the associated temporal profile from a low-rank model-based method; (c) a representative mid-
sagittal image and the associated temporal profile from a compressed sensing-based method; and
(d) a representative mid-sagittal image and the associated temporal profile from a sliding window-
based method. As can be seen, the compressed sensing-based method suffer from compromised
image quality and degraded temporal dynamics when the required acceleration in imaging speed
is high (simulated with less sampled data). The sliding window-based method, on the other hand,
suffers from significant spatial and temporal blurring.
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sampling also allows accelerated sampling by a factor of 2 to 3 without significantly changing the

underlying imaging sequence or protocol [42].

Compared with Cartesian sampling, non-Cartesian sampling trajectories are often employed

to achieve a good trade-off between spatial resolution, temporal resolution and spatial cover-

age [50, 51, 74–76]. A typical non-Cartesian sampling trajectory is the spiral trajectory, which

has been shown as a good trade-off between SNR, k-space coverage and sampling speed [77–79].

These desirable properties of the spiral trajectory come from the fact that it is intrinsically densely-

sampled in the center of k-space, while quickly spiraling out towards the edge of the k-space. This

unique combination of the spiral trajectory gives it unprecedented advantage over the Cartesian

trajectory [50, 51, 74–76]. Other options for non-Cartesian sampling patterns include radial sam-

pling patterns and zig-zag sampling patterns. A detailed analysis of the superior performance of

non-Cartesian trajectories to their Cartesian counterparts can be found in [16].

Advanced model-based data acquisition schemes often rely on a combination of multiple spa-

tiotemporal sampling patterns. For instance, PS model-based dynamic speech MRI applies a com-

posite sampling strategy where two types of sampling trajectories were employed [50, 51, 74–76]

- a Cartesian trajectory is used to acquire the imaging data with random phase encoding orders,

while a spiral or cone trajectory was used to acquire the navigation data with extended k-space

coverage. It should be noted that the cone trajectory [80–82] can be viewed as a modified spiral

trajectory with consideration of an additional spatial dimension in the k-space. The combination

of multiple spatiotemporal sampling patterns allows the advantage of each sampling pattern to be

fully exploited, and consequently the acquired data can be better utilized to assist the ensuing im-

age reconstruction problem. Recent developments in other fast MR applications also indicate the

potential of a variety of composite sampling trajectories [83–85].

2.3.2 Pulse sequences

A variety of fast pulse sequences have been developed to accommodate the physical and physio-

logical requirements of dynamic speech MRI experiments. In general, both gradient-echo-based

and spin-echo-based sequences have been developed and used for imaging the vocal tract. The
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spin-echo-based sequences are often used to visualize static structures of the upper vocal tract or

used as pre-scans prior to the dynamic data acquisition [86–90], while the gradient-echo-based

sequences are often used for dynamic speech MRI experiments [87, 91–93]. It is worth noting

that recent advances in steady state free precession (SSFP)-based sequences have also been used

to improve the signal-to-noise ratio (SNR) of dynamic speech MRI acquisition [35, 94], while a

potential disadvantage of SSFP-based data acquisition remains in its sensitivity to field inhomo-

geneities [95, 96]. To obtain optimized data acquisition quality, the imaging protocol often has to

take into consideration the interactions between the pulse sequences, the quality of shimming and

the field strength of the scanner.

Simultaneous high imaging speed with improved image quality can be achieved when the

gradient-echo-based sequences are properly integrated with model-based data acquisition schemes.

An example of successful integration is the implementation of a spiral FLASH sequence to sample

the k-space at high imaging speed [97,98]. This sequence has been further modified and optimized

to properly capture the fast transition of articulatory motion at an interval as short as 5.99 ms [51].

Specific parameters of the optimized sequence are as follows: a TR of 5.99 ms, a TE of 1.85 ms

for the imaging data, a TE of 3.25 ms for navigator data, an acquisition matrix size of 128 × 128

× 8, an FOV of 280 × 280 × 40 mm3 and a spatial resolution of 2.2 × 2.2 × 5.0 mm3. Prior

to the acquisition of the dynamic imaging data using the above-mentioned sequence, a pilot scan

was performed to determine the sensitivity profiles of the receiver coils. The estimated sensitivity

profiles were assumed to be time-invariant for the subsequent image reconstruction.

2.3.3 Parallel imaging

Parallel imaging-based methods improve the quality of dynamic speech MRI by exploiting the

potential of multichannel receiver coils. For a typical dynamic speech MRI experiment based

on parallel imaging techniques, the required data are independently collected from Q receiver

channels. A typical usage of parallel imaging in dynamic speech MRI is using 12 head channels

together with 4 neck channels. During the reconstruction step, the data collected from these acqui-

sition channels are combined into the reconstructed image sequence I(r, t). The use of multiple
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phased array coils in a dynamic speech MRI experiment allows the spatiotemporal signal to be

better recovered from the collected data even when they are sampled under the Nyquist rate. This

property is especially favorable for dynamic speech MRI experiments where fast transitions of ar-

ticulatory motion are anticipated.

The application of parallel imaging techniques to accelerate data acquisition in dynamic speech

MRI is rooted in Papoulis’s multichannel sampling theorem of band-limited signals. For a spa-

tiotemporal band-limited signal, I(r, t), representing the articulatory motion, if we assume that

I(r, t) has a spatial support of width W and the spatiotemporal samples are acquired using Q ac-

quisition channels, Papoulis’s multichannel sampling theorem asserts that I(r, t) can be recovered

from the underlying data without significant aliasing when the sampling speed is above the sam-

pling speed ofQ /W with a proper choice of interpolation kernel φq [99–102]. This statement also

holds true for its equivalent in the Fourier space d(k, t) [99–102].

Examples of representative parallel imaging techniques include SENSE [103], GRAPPA [104]

and their variants [105–108]. Although these techniques may differ in their specific strategies to

combine multichannel data, invariably they distribute the phase encoding portions of the field of

view among an array of receiver coils and carry out these tasks in parallel. Although the mul-

tichannel sampling allows a certain acceleration factor, it should be noted that the acceleration

enabled by using multiple sampling channels are still limited. Specifically, the acceleration is still

limited to approximately 3 to 4 folds for 2D dynamic speech MRI applications and roughly 8 folds

for 3D dynamic speech MRI applications. It is also worth noting that the multiband acquisitions

or simultaneous multi-slice acquisitions can acquire up to 12 slices simultaneously using 32- or

64-channel coils for brain imaging, but the acceleration achievable is dependent on the slice ori-

entation and the coil geometry. Appropriate coils for speech imaging are not readily available,

although some developments have been made [109–112]. Another potential problem involves the

reduced SNR penalty, while the other potential problem involves the measurement noise from each

receiver coil [103–108]. Given these practical considerations of using parallel imaging techniques,

they are often combined with model-based imaging methods to enhance the quality or speed of

dynamic speech MRI experiments.
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2.3.4 Acquisition hardware

Scanner specification

Performance of the scanner plays an important role in determining the acquisition speed and the

quality of the acquired data. Subjects of dynamic speech MRI experiments are often placed in

a supine position in the MR scanner. The head motion of each subject was minimized by fixing

the positions of the subject’s head in the receiver coil with foam pads. Guidance of speech sam-

ples (carrier phrases) is often provided through a projection screen. For a typical dynamic speech

MRI experiment on a Siemens Trio scanner (Siemens Medical Solutions, Erlangen, Germany), the

system specifications are as follows: a field strength of 3 T, a gradient strength of 40 mTm−1,

a maximum slew rate of 176 Tm−1s−1, a 12-channel head receiver coil and a 4-channel neck

receiver coil. Similar specifications can also be found in a variety of other scanners [113, 114].

Informed consent is obtained for all subjects, and the experiment needs to be carried out in ac-

cordance with the protocols from the Institutional Review Board at the University of Illinois at

Urbana-Champaign.

Audio recording

Audio recording during MR data acquisition allows additional information about speech dynamics

to be obtained in the form of an acoustic signal. In general, audio recording starts at the same

time as MR data acquisition and will be later synchronized with the reconstructed spatiotempo-

ral images of articulatory motion in the post-processing stage. As dynamic speech MRI acquires

spatiotemporal samples at a relatively fast sampling speed, the temporal alignment of the acquired

acoustic signal and the reconstructed image is critical towards accurate phonetic analysis of the

articulatory motion as opposed to the features in the acoustic signal. In addition, the recorded

acoustic signal is often contaminated by acoustic noise due to fast transition of gradients in dy-

namic MR data acquisition. As a result, noise canceling techniques are also important towards

the ensuing phonetic analysis. These two challenges have made signal processing of the acoustic

signal an important task in properly integrating the reconstruction and the recorded audio.
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Recent developments in signal processing techniques have witnessed multiple successful com-

modity products in providing actively-noise-canceled acoustic recording along MR data acquisi-

tion. It has been reported in our own works [51, 76] that the voice of the subjects was simulta-

neously recorded at a sampling rate of 8 kHz through a fiber-optic microphone with active noise

cancellation (Dual Channel FOMRI, Optoacoustics, Or Yehuda, Israel) during data acquisition.

Similar setups have also been used in a range of experiments for other purposes, including signal

processing applications, photonics applications and biosensing applications [115–125]. Advanced

voice enhancement algorithms have also been proposed to improve the quality of the voice record-

ings [39, 126–128]. These efforts have already facilitated the understanding of the relationship

between acoustics and articulation of nasal and oral vowels [129].

2.3.5 Imaging protocol

The choice of imaging protocols involves making decisions on various aspects of dynamic speech

MRI. These decisions include understanding of the underlying clinical and scientific purposes

of dynamic speech MRI experiments, the specific imaging requirements for a dynamic speech

MRI experiment, the requirements for data acquisition (choices of scanner, field strength, gradient

strength, slew rates, pulse sequences, spatiotemporal sampling patterns, receiver coils and audio

recording facilities), the requirements for image reconstruction (imaging model, image reconstruc-

tion formulation and optimization algorithms), as well as the requirements for post-processing of

the reconstructed images (audio-video synchronization and phonetics and acoustic analysis). Al-

though these considerations may overlap largely with other subsections above, it is important to

make a high-level integrated decision covering all potential aspects of the imaging process in order

to achieve optimized image quality.

Recently there has been a growing number of works that provide detailed comparison of the

differences between different aspects of the imaging protocol. Among these works, a recent review

based on a recent dynamic speech MRI summit held at University of Southern California pro-

vides an objective and detailed summary of the widely used dynamic speech MRI techniques [42].

Compared with other existing dynamic speech MRI techniques, it should be noted that the meth-
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ods presented in this dissertation outperforms their counterparts in terms of imaging speed and

spatiotemporal resolution. Detailed comparison of the image quality in clinical and scientific ap-

plications is beyond the scope of this dissertation, but will be an interesting research topic in the

future.

2.4 Dynamic speech MRI: Clinical and phonetics applications

The previous section focuses on providing a detailed review of the data acquisition aspects in dy-

namic speech MRI. This section focuses on giving a detailed review of a wide range of applications

of dynamic speech MRI both for clinical applications and scientific research. These applications

are roughly divided into two categories – clinical and other applications of dynamic speech MRI.

2.4.1 Clinical applications of dynamic speech MRI

Clinical applications of speech MR imaging involve monitoring pathological changes, whether in-

herited or acquired, in soft-tissue structures of physiological functions of the organs in the vocal

tract. Typical organs of interest include the tongue, the lips, the velum, the epiglottis, the pha-

ryngeal wall and the nasal cavity. The geometric shapes and physiological functions of these

organs may change significantly in speech diseases and disorders. Speech MRI, as an imag-

ing modality that provides good soft-tissue contrast without using ionizing radiation or causing

significant subject discomfort, holds great promise for monitoring the structures, dynamics and

pathological states of these organs, especially when compared with endoscopy, ultrasound or CT.

Representative applications include using speech MRI to monitor the structure and motion of the

cleft palate [27,130–132], the cleft lips [133,134], various tongue cancers [135–137], the laryngi-

tis [138–140] and multiple types of damages to the vocal cord [141–143].

The uses of speech MRI in clinical applications are not limited to qualitatively visualizing

geometric structures. It has also been used to provide quantitative measurements: physiological

parameters have been obtained from various clinical experiments to facilitate clinical assessment
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of the changes in speech functions. Useful parameters have been obtained from various speech

motion, including swallowing movements [144–147], lateral pharyngeal wall motion [6,148–150]

and the rate of airflow [151, 152]. These clinical applications and explorations of MRI have pro-

vided valuable intuition towards better health care for subjects suffering from speech diseases and

disorders.

While speech MRI has been employed in various applications to monitor pathological, struc-

tural and functional changes in the vocal tract, there are certain challenges and limitations in these

applications. Although the majority of clinical researchers have acknowledge the potential and

effectiveness of applying MRI in speech-related topics, the potential of MRI has not been fully

utilized. For instance, there has been limited effort in optimizing the temporal resolution, the spa-

tial resolution and the SNR of the associated imaging protocols. Other technical aspects, such as

the choices of pulse sequences, image reconstruction formulations and optimization algorithms are

less discussed. While optimization of these aspects may not be the focus for clinical applications

of dynamic speech MRI, it is reasonable to believe that better performance or more accurate results

can be obtained if these aspects are taken into consideration.

2.4.2 Phonetics applications of dynamic speech MRI

Speech MR imaging is also promising for facilitating the studies of a broad spectrum of speech-

related studies, including speech production, speech motor functions and language evolution. Dur-

ing speech production, there exists a range of variations in the articulator postures depending on the

subjects’ vocal tract structures, language features and the context of the carrier phrases [153–156].

It has been demonstrated in previous studies that speech MRI (including dynamic and static speech

MRI) is effective in capturing the subtle differences in the postures of vocal tract articulators from

utterance to utterance [157–160]. The unique advantages of dynamic speech MRI also find great

use in quantitatively analyzing speech production. These analyses include extracting parameters to

evaluate speech motor functions [161–163] and to calculate the area functions at various locations

in the vocal tract [1, 164]. Recent progress in multi-modal speech imaging has also witnessed a

growing interest in employing dynamic speech MRI jointly with other imaging modalities, such as
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ultrasound, electromagnetic articulographs (EMA), computerized tomography (CT) or advanced

sensing techniques [165–173], to obtain multi-model measurements and analyses of the underly-

ing speech motions. Detailed review of these approaches is beyond the scope of this dissertation.

The applications of dynamic speech MRI are not just limited to analyzing or understanding

speech movements themselves. Images and analytic results from dynamic speech MRI also are

important towards understanding of subtle language features and language variations. Dynamic

speech MRI has been extensively applied to study a variety of widely used languages. In particu-

lar, these languages include English [12, 129, 174], Mandarin [175–179], French [10–12, 51, 180],

Arabic [8, 13, 14, 50, 76, 181, 182] and Portuguese [9, 183]. Beyond the references provided in this

dissertation, there exists a large and growing number of novel applications of dynamic speech MRI

that may eventually lead to a deeper understanding of the mechanism, function and dynamics of

speech.
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CHAPTER 3

HIGH–RESOLUTION 3D DYNAMIC SPEECH MRI

3.1 Introduction

The past decade has seen significant improvement separately in the speed, coverage or resolution

of speech MRI. However, it remains challenging to maximize all three properties at the same time.

Recently, the partial separability (PS) model-based methods have shown great potential to balance

the trade-offs between these properties [43]. For instance, a two-dimensional (2D) multi-slice-

based approach has enabled visualization of 8-slice speech dynamics at 12.8 fps [74, 75, 184]. A

3D acquisition-based approach also allowed articulatory gestures to be captured at 8.1 fps [40].

Expanding upon earlier approaches [50, 51, 74–76, 184], this chapter aims at achieving full 3D

dynamic speech MRI with simultaneous high temporal frame rate, broad spatial coverage and high

spatial resolution. This goal is achieved by integrating novel data acquisition strategies with PS

model-based 3D acquisition and reconstruction methods. A nominal frame rate of 166 fps and

a spatial resolution of 2.2 × 2.2 × 5.0 mm3 are achieved with full vocal-tract coverage across 8

slices. The practical utility of this approach has been systematically evaluated by numerical simu-

lations, validation experiments and phonetics investigations.

3.2 Imaging model

As discussed in Section 1.1, the measured data from the (k, t)-space can be expressed as

d(k, t) =

∫
object

I(r, t)e−i2πk·rdr + η(k, t). (3.1)
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Figure 3.1: Strong spatiotemporal correlation exists in the dynamic image sequence of speech.
Three spatial points are taken on the surface of the tongue body as indicated by the colored arrows
in (a). As can be seen with (b), although the temporal dynamics at these three spatial points are
different at each time point, the overall temporal evolution remain highly correlated. This figure
shows that strong spatiotemporal correlation exists in the spatiotemporal speech motion.

For speech MRI experiments, I(r, t) often manifests strong spatiotemporal correlation because (a)

spatial images corresponding to articulations of similar sounds are highly correlated, (b) image

voxels within certain bulk articulators (e.g. the tongue or velum) share similar temporal dynamics,

and (c) only a few driving muscles are involved in the production of a specific syllable. Strong

spatiotemporal correlation can be illustrated with Figure 3.1, where three spatial points are taken

along the surface of the tongue body from a dynamic speech imaging sequence. As shown in

Figure 3.1b, the associated temporal dynamics along these three points are different at each time

point but demonstrate strong spatiotemporal correlation.

The PS model quantitatively represents the strong spatiotemporal correlation with a set of

partially separable functions [43]:

I(r, t) =
L∑
l=1

ψl(r)φl(t), (3.2)

where L is the model order, {ψl(r)}Ll=1 is a set of spatial basis functions and {φl(t)}Ll=1 is a set

of temporal basis functions. The PS model implies that a data matrix Î (referred to as a Casorati
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Figure 3.2: Spatiotemporal dynamics at the tip of the tongue can be well-represented by the partial
separability model. As can be seen, the temporal profile at the tongue tip can be well-represented
as the combination of a finite number of components. These components are represented in the
partial separability model as the spatiotemporal dynamics at different model orders.

matrix in [43]) defined over any point set {I(rn, tm)}N,Mn,m=1,

Î =


I(r1, t1) · · · I(r1, tM)

... . . . ...

I(rN , t1) · · · I(rN , tM)

 , (3.3)

has a rank upper bounded by L [43, 52], where N denotes the number of spatial encoding steps

and M denotes the number of image frames in the dynamic image sequence. As given in Figure

3.2, Equation 3.2 induces a low-rank structure and Equation 3.3 implies that Î exists in an L-

dimensional subspace (L � min{N,M}). Equation 3.2 allows the factorization Î = UV, where

columns of U ∈ CN×L span the spatial subspace of Î and rows of V ∈ CL×M span the temporal

subspace of Î [43]. By leveraging the correlations between the spatial and temporal information,

the PS model enables an acquisition and reconstruction method that simultaneously achieves high

spatial resolution and high temporal frame rate.
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Figure 3.3: Demonstration of the proposed data acquisition strategy with a simplified (k, t)-space
sampling pattern. The (k, t)-space is sparsely sampled to obtain two data sets, the navigator data
and the imaging data, in an interleaved fashion. Due to the different function of these two data sets,
separate considerations were given to the spatiotemporal sampling patterns. The navigator data
are sampled with a cone trajectory that traverses the distributed 3D k-space within short temporal
intervals. The imaging data are acquired from distributed k-space using Cartesian trajectories with
random phase encoding orders.

3.3 Data acquisition

The (k, t)-space is sparsely sampled to obtain two data sets, the navigator and imaging data, in an

interleaved fashion [43,50,51,74–76,184,185]. Figure 3.3 illustrates the data acquisition strategy

with a simplified (k, t)-space sampling pattern. For these two data sets, the navigator data is used

to estimate V, while the imaging data is used to estimate U. Although each data set serves a

different purpose, both data sets contribute to reproducing Î.

Due to the different function of these two data sets [43], separate considerations were imposed

in terms of acquisition trajectory and sampling requirements. Specifically, the navigator data are

acquired using a cone trajectory [50,74] that traverses extended 3D k-space within short temporal

intervals. This cone trajectory is chosen because it allows a good trade-off between navigation

speed, SNR, and k-space coverage in both the low- and high-spatial-frequency regions: (a) the

cone trajectory provides high gradient efficiency to traverse 3D k-space compared with other tra-

jectories, (b) the cone trajectory receives high SNR due to its natural oversampling at the center of

k-space and (c) the cone trajectory has the potential to cover broader k-space within certain time

constraints or slew rate limits [50, 74, 186, 187]. The imaging data are acquired from distributed

k-space using Cartesian trajectories with random phase encoding orders. The use of Cartesian
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trajectories greatly simplifies the reconstruction problem and results in low image distortions from

magnetic susceptibility [51, 184].

A self-navigation strategy is exploited to accelerate the PS model-based acquisition. Un-

like previous approaches that collect navigator data with a separate radio frequency (RF) excita-

tion [74, 75], this self-navigation strategy combines the acquisition of both navigator and imaging

data into a single repetition time (TR) using a multi-echo readout [47]. This combined acquisi-

tion of both data sets is particularly desirable for speech imaging applications not only because

it effectively increases the imaging speed by shortening TR, but also because it avoids missing

temporal components that associate with important articulatory dynamics. Figure 3.4 illustrates

the proposed acquisition strategy with a simplified pulse sequence diagram.

Additional considerations are given to reduce the sensitivity of the acquisition to eddy cur-

rent effects. For the above self-navigation strategy, it should be noted that a rephasing gradient is

added prior to navigator acquisition in the second gradient echo. This rephasing gradient ensures

the navigator trajectory starts from the center of k-space at each TR. Considering this, it is desir-

able to minimize the length of this gradient in pursuance of shorter TR (so that the imaging speed

is increased). However, eddy current generated from the prior imaging acquisition and rephasing

gradients vary from TR to TR due to the random phase encoding and directly impact the temporal

signatures of the navigator data. This results in biased estimation of the temporal subspace and

unwanted temporal dynamics in the reconstructions. To address this issue, the shortest length is

chosen for the rephasing gradient, which results in no noticeable eddy current effects, but also

maintains a high imaging speed, determined by trial-and-error tuning of its gradient duration and

ramps while examining the resulting reconstructions for contamination from eddy current.

3.4 Image reconstruction

Given the acquired navigation data, the principal component analysis (PCA) or singular value

decomposition (SVD) is performed to estimate the temporal subspace, i.e., matrix V [43, 185].

Specifically, V is constructed from the L- most significant right singular vectors of Ĉ [43]. With
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Figure 3.4: A simplified pulse sequence diagram for the proposed “self-navigated” data acquisition
strategy. This strategy is proposed to accelerate data acquisition. Within a single TR, the imaging
data set is acquired at early echo time using a Cartesian trajectory with random phase encoding,
while the navigator data set is acquired at later echo time using a cone trajectory.

32



V estimated, one can determine U from the imaging data by solving a least-squares problem. By

separating the estimation of V and U in two steps, our method yields a convex and significantly

simplified reconstruction problem (compared with methods that simultaneously determine U and

V).

Also, it should be noted that direct determination of Û from least-squares fitting is usually ill-

conditioned, especially when a higher L is used but limited samples are available [48]. Additional

constraint needs to be employed to regularize the ill-conditioned image reconstruction problem.

The sparsity constraint has been found effective in existing low-rank constrained reconstruction

problems [47, 48]. Combining the sparsity constraint with the low-rank constraint has also been

shown to improve the conditioning of the PS model fitting problem. Further, the spatiotemporal

total variation (TV) constraint has been applied to other dynamic imaging applications [48, 188].

Compared with a spatial-spectral sparsity constraint [48, 188], the spatiotemporal TV constraint

simultaneously penalizes finite differences in the spatial and temporal domains, so that the artic-

ulatory dynamics are preserved as spatiotemporal edges in the reconstructions. Extending upon

these previous approaches [47, 48, 188], we further developed a method to jointly impose the low-

rank and spatiotemporal TV constraints.

The image reconstruction problem can be formulated as follows:

Û = arg min
U∈CN×L

Q∑
q=1

||Ω{FSqUV} − dq||22 + λTV{UV}, (3.4)

where Q denotes the number of receiver coils, Ω{·} denotes a sparse sampling operator corre-

sponding to the acquisition of the imaging data (and vectorizing the acquired data in a columnwise

fashion), F denotes a spatial Fourier transform matrix, Sq denotes the sensitivity map of the qth

coil, dq denotes the sparsely acquired imaging data samples from the qth receiver coil and λ de-

notes a regularization parameter. In particular, the TV operator is defined as

TV{UV} =
M∑
j=1

N∑
i=1

||DiUVj||1, (3.5)

where Vj is the jth column of V , Di ∈ C3×N is a gradient operator taking finite differences at the

ith pixel of the image along spatially horizontal, spatially vertical and temporal directions (finite
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difference along the slice direction was not incorporated due to computational considerations). A

numerical algorithm based on half-quadratic regularization with continuation is applied to solve

Equation 3.4 [48].

3.5 Simulation studies

3.5.1 Simulation setup

Numerical simulations were conducted to evaluate the performance of our method. Particular em-

phasis of the simulation study is placed on demonstrating that high-resolution 3D speech MRI can

be achieved with our method. Given that no other dynamic speech imaging method is capable

of spatially and temporally resolving speech motion as proposed in this dissertation, a numerical

phantom needs to be developed to properly examine the performance of our method in Section

3.4. Although the simulations yield good empirical results, the reader should keep in mind that

our method is a nonlinear imaging method, and its exact performance results on a particular data

set may depend on the quality and characteristics of the specific data sets acquired from in vivo

experiments.

A generic numerical phantom for 3D dynamic speech MRI was created and simulation studies

have been performed to characterize the performance of our method. The phantom was designed

to simulate multi-channel, complex-valued dynamic speech imaging data. Specifically, this nu-

merical phantom was constructed from an initial reconstruction from an in vivo dynamic MRI ex-

periment, where the subject was requested to produce repetitions of /loo/ - /la/ - /lee/ - /la/ sounds

at his own speaking rate. The created numerical phantom had a matrix size of 128 × 128 × 8, a

FOV of 280 × 280 × 40 mm3, a spatial resolution of 2.2 × 2.2 × 5.0 mm3, a TR of 5.99 ms and a

total number of 71,680 time frames.

Simulated data acquisition followed the (k, t)-space sampling strategy as described in Section

3.3. At each TR, the imaging data were created by taking samples along one Cartesian line in

3D k-space according to a randomized phase encoding order; the navigator data were created by

sampling from a 3D cone trajectory in k-space using an NUFFT-based routine [189]. Sensitivity
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profiles were taken directly from the initial scan. White Gaussian noise was added to data from

each receiver coil, such that the simulated data had a noise level that was comparable to the in vivo

acquisitions. With this simulated sampling strategy, a full data set was acquired after sampling

71,680 time frames from the numerical phantom (equivalent to an acquisition length of 7 min 12

s). Reconstruction from simulated data was performed using our method: V was first determined

by performing SVD on the navigator data; U was then estimated according to the strategy as de-

scribed in Section 3.4. A model order of 70 and a regularization parameter of 1.31 × 10−6 were

chosen based on empirical evaluation of image quality. The following reconstruction error was

used to quantitatively assess reconstruction quality [48],

error =
||Ip −UV||F
||Ip||F

, (3.6)

where Ip represents the numerical phantom and || · ||F represents the Frobenius norm.

A modified numerical phantom was also created based on the generic phantom to characterize

the frame rate achievable with our method. Specifically, the generic phantom was augmented with

a high-temporal-frequency flashing pattern: a bright square was positioned above the subject’s

forehead and appeared on every other time frame. This flashing pattern was appropriate for char-

acterizing the imaging speed because it requires an effective frame rate of at least 166 fps to be

properly captured.

3.5.2 Simulation results

Figure 3.5 shows representative simulation results from the generic phantom. The reconstructed

spatiotemporal dynamics are consistent with those in the phantom and have a reconstruction error

of 0.0472. Specifically, Figure 3.5a and Figure 3.5b show tongue gestures from the same time

frame for the phantom and the reconstruction, respectively. Articulatory gestures of the phantom

are well-captured with great spatial details in the reconstruction. To further evaluate the quality

of the reconstructed dynamics, temporal profiles both for the numerical phantom (red box) and

the reconstruction (green box) are compared. As seen, the reconstruction faithfully represents the
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Figure 3.5: Comparison of spatial details and temporal dynamics. The comparison is performed
between: (a) the numerical phantom; and (b) reconstruction of the simulated data. The temporal
profiles (∼40 s) along a strip at the yellow line across the tongue tip on the 4th mid-sagittal plane
are compared for the phantom (red) and the reconstruction (green). Absolute difference of the
temporal profiles (scaled by a factor of 2) is also shown.

temporal dynamics of the phantom without significant temporal blurring, which is also evident

by examining the absolute difference in the temporal profiles. Figure 3.5 demonstrates that our

method is capable of capturing high-quality spatiotemporal details for dynamic speech MRI.

Figure 3.6 shows representative results from the modified phantom. In particular, Figure 3.6a

shows a reconstructed time frame with the added “on” pattern: the added bright square positions

above the subject’s forehead. As contrast, Figure 3.6b shows an ensuing time frame that has the

“off” pattern. Figure 3.6c shows a reconstructed temporal profile along a strip across the subject’s

tongue tip. As seen, the temporal varying pattern and the dynamics of articulatory motion are

both well-captured by the reconstruction. Even in the zoom-in view of the reconstructed temporal

profile, the level of temporal blurring is small. Figure 3.6 demonstrates that our method is capable
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of capturing temporal events that require a frame rate of 166 fps.

The performance of our method has been further evaluated on the above numerical phantom

using a simulated point spread function (SPSF). In particular, the SPSF is obtained by measuring

our method’s frequency response, i.e., by comparing the output spectrum of the reconstruction as

opposed to the input spectrum of the phantom. As seen in Figure 3.7, the SPSF has a full width

half maximum of 1.1 voxel and corresponds to a nominal frame rate of 151 fps. It is noticed that

the SPSF provides an empirical description of the frequency response of our method and, despite

its own limitation, the results from SPSF depends on this specific numerical phantom and may not

be indicative to the true resolution property.

3.6 Experimental studies

3.6.1 Validation experiments

Experiments were performed on a Siemens Trio scanner (Siemens Medical Solutions, Erlangen,

Germany) with the following features: a field strength of 3 T, a gradient strength of 40 mTm−1, a

maximum slew rate of 176 Tm−1s−1 and a 12-channel head receiver coil. Based on the proposed

self-navigation strategy, a FLASH sequence has been developed to acquire data with the following

parameters: a TR of 5.99 ms, an echo time (TE) of 1.85 ms for the imaging data, a TE of 3.25 ms

for navigator data, an acquisition matrix size of 128 × 128 × 8, a FOV of 280 × 280 × 40 mm3

and a spatial resolution of 2.2 × 2.2 × 5.0 mm3. When acquiring the necessary data that targets

at a model order of around 70, as was done in this chapter, the acquisition time was 7 min 12 s

(increasing the model order by 1 requires an increase of approximately 6.13 s in acquisition time).

With our image reconstruction method, the recovered image sequence allows visualizing the entire

vocal tract at a nominal frame rate of 166 fps (defined based on the reconstruction of a full 3D

volume at each TR of 5.99 ms).

Prior to the acquisition of the dynamic imaging data, a pilot scan was performed to determine

the sensitivity profiles of the receiver coils. The estimated sensitivity profiles were assumed to

be time-invariant for the subsequent image reconstruction. During the acquisitions, the voice of
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Figure 3.6: Characterization of the nominal frame rate using a modified numerical phantom with
a flashing temporal pattern every other frame: (a) a time frame that has a bright square that is
positioned above the subject’s forehead; (b) a time frame that has no added bright square; (c) the
temporal profile along the yellow line across the tongue tip on the fourth mid-sagittal plane (top)
and its zoom-in view (bottom). It is obvious from the zoom-in view that the temporal blurring in
the reconstructed temporal profile is relatively small.
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Figure 3.7: Evaluation of the point spread function of our method based on a numerical phantom:
(a) articulatory gestures from the numerical phantom; (b) articulatory gestures from the recon-
struction; (c) simulated point spread function (SPSF) calculated from the frequency response of
our method; (d) the simulated point spread function evaluated across time has a full width half
maximum of 1.1 voxel.
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the subjects was simultaneously recorded at a sampling rate of 8 kHz through a fiber-optic micro-

phone with active noise cancellation (Dual Channel FOMRI, Optoacoustics, Or Yehuda, Israel).

The head motion of each subject was minimized by fixing the positions of the subject’s head in the

receiver coil with foam pads. Informed consent was obtained for all subjects and the experiment

was carried out in accordance with protocols from the Institutional Review Board at the University

of Illinois at Urbana-Champaign.

Eight volunteers participated in the validation experiments. Six volunteers were male and two

were female. All volunteers were native speakers of American English, and they had an age range

of 22 to 38 years. During data acquisition, volunteers were requested to recurrently produce /loo/

- /lee/ - /la/ - /za/ - /na/ - /za/ at their natural speaking pace. To investigate whether our method in-

deed allows for high-quality spatiotemporal dynamics, two additional acquisitions were conducted

to compare the performance of our 3D imaging method as opposed to that of a previous 2D multi-

slice method [50]. A male speaker of American English volunteered for both experiments: the 3D

acquisition followed the imaging protocol as described above, whereas the 2D acquisition followed

a dynamic 8-slice imaging protocol described in [50], where the full frame rate is split across the 8

slices due to interleaved acquisition of each slice, resulting in a nominal frame rate of 12.8 fps. In

order to enable roughly synchronized comparison of the associated temporal dynamics, the subject

was requested to produce sounds following visual cues (“karaoke” scripts of the /loo/ - /lee/ - /la/ -

/za/ - /na/ - /za/ sounds) synchronized for both acquisitions. Notice that the mismatch in temporal

articulatory motion is minimized with the visual cue, but a certain level of temporal misalignment

may still exist with this experimental design.

3.6.2 Experimental results

Figure 3.8 shows tongue gestures of the upper vocal tract from a 3D imaging experiment where a

subject was asked to produce the /loo/ - /lee/ - /la/ - /za/ - /na/ - /za/ sounds. Specifically, Figure

3.8a and Figure 3.8b show tongue gestures at the onset of the /l/ sound and the /a/ sound in the

/la/ syllable, respectively. Although the /l/ and /a/ sounds transition within a brief duration (∼20

ms), apparent differences in tongue gestures are still captured with great spatial detail: the tip of
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the tongue is elevated towards the alveolar ridge to prepare for the production of the /l/ sound,

while the tongue retracts to a resting position to produce the /a/ sound. In addition, it is noticed

that the velum at slice 4 is not in full contact with the velopharyngeal wall. This is not unexpected

because /l/ is often classified as a liquid consonant, whose production does not require full buildup

of intraoral air pressure and tight velopharyngeal closure.

The shaping of the tongue is then investigated. The images during the time point of contact

are plotted between the tongue and the alveolar ridge. As our method captures an imaging volume

covering the vocal tract, great flexibility is allowed to visualize tongue gestures in arbitrary planes.

For instance, Figure 3.9a shows mid-sagittal, coronal and axial views of the tongue during the

production of the /l/ sound. At this time point, the tongue comes into full contact with the alveolar

ridge and its gesture is well-captured across all view planes. When the tongue retracts to its resting

position and continues to the /a/ sound, as seen in Figure 3.9b, its gesture is reflected in coronal

and axial planes as darkened intensity. In addition, incomplete velopharyngeal closure is observed

as in Figure 3.8. This is reasonable because the /l/ sound is immediately followed by the “low”

vowel /a/, which itself is often produced with a lowered soft palate position as shown in Figure

3.9b.

The temporal dynamics of our method is also evaluated. Figure 3.10 shows spatial images and

temporal profiles from a 3D imaging experiment, in which a different subject was asked to produce

an identical carrier phrase as in Figure 3.9. Spatial images are shown in the first row of Figure 3.10.

Representative temporal dynamics are taken from a line segment on a central mid-sagittal slice and

are plotted as opposed to time. Sharp temporal transitions of tongue motion are well-captured and

presented in the second row of Figure 3.10. In addition, a transverse line segment is placed right

beneath the alveolar ridge to capture the contact from the tongue tip. As illustrated in the second

row of Figure 3.10, the temporal profile of tongue-tip contact from the transverse line segment

matches well with its mid-sagittal counterpart.

To further investigate if an increased nominal frame rate of the 3D acquisition improves

spatiotemporal dynamics over a previous lower-nominal-frame-rate 2D acquisition. Figure 3.11

shows direct comparison of temporal dynamics from our method (with a nominal frame rate of 166

fps) as opposed to that from a previous 2D multi-slice method [50], where the full frame rate is

split across the 8 slices and results in a nominal frame rate of 12.8 fps. Specifically, representative
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Figure 3.8: Mid-sagittal articulatory gestures in the upper vocal tract during the production of
the /loo/ - /lee/ - /la/ - /za/ - /na/ - /za/ sounds. The articulatory gestures of the /l/ sound in the
/la/ syllable is shown in (a). The articulatory gestures of the /a/ sound in the /la/ syllable are
shown in (b). Although the /l/ and /a/ sounds transition within a brief duration (∼20 ms), apparent
differences in tongue gestures are still captured with great spatial detail: the tip of the tongue is
elevated towards the alveolar ridge to prepare for the production of the /l/ sound, while the tongue
retracts to a resting position to produce the /a/ sound.
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Figure 3.9: Visualization of sound production at the mid-sagittal, coronal and axial planes: (a) the
production of /l/ in the /la/ sound: at this time point, the tongue comes into full contact with the
alveolar ridge and its gesture is well-captured across all view planes; (b) the production of /a/ in
the /la/ sound. When the tongue retracts to its resting position and continues to the /a/ sound, its
gesture is reflected in coronal and axial planes as darkened intensity. The placements of coronal
and axial planes are indicated with yellow and red colors, respectively.
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Figure 3.10: Temporal dynamics of tongue motion from an imaging volume covering the entire
vocal tract. The temporal dynamics are taken from a line segment on a central mid-sagittal slice
and are plotted as opposed to time. Sharp temporal transitions of tongue motion are well-captured
and presented. The bottom rows demonstrate the dynamics along a line segment from the mid-
sagittal plane, as well as on a transverse plane placed beneath the alveolar ridge.
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temporal profiles are taken along strips across the tongue tip from both reconstructions (slight

temporal mismatch in tongue motion can be observed as the reconstructions are performed upon

two separate, but temporally guided experiments as described in Section 3.6). As can be seen, the

temporal profile from the 3D method displays sharper temporal transitions of the tongue motion

compared with its 2D counterpart. By comparing the associated temporal dynamics along the

dashed line segments, it is apparent that a similar temporal motion pattern is shared by the two

reconstructions, but the 3D method offers richer spatiotemporal information. Even for regions that

involves less motion, such as the lower chin, the 3D method still provides enhanced spatiotemporal

dynamics.

3.7 Phonetics investigations

3.7.1 Phonetics investigations

Our method was first employed to systematically study the production of flaps, which is a chal-

lenging task to perform if only acoustic recordings are available. The articulation of flaps – a

subset of consonant sounds that are challenging to study because they occur for a brief duration

of ∼20 ms – is known to be of particular phonetics interest [190]. Many existing methods in ar-

ticulatory phonetics lack sufficient frame rate to capture the tongue postures associated with these

brief events. In this dissertation, particular interest was placed on applying our method to analyze

tongue postures in American English flaps – sounds that are characterized by a single, short clo-

sure made with the apex of the tongue contacting the alveolar ridge [190]. These flaps are usually

realized when an alveolar stop (the /t/ or the /d/) occurs intervocalically after a stressed syllable.

Traditional phonological theories claim that these two flaps (the /t/ and the /d/) lose all distinc-

tion [191] in their acoustic characteristics and, therefore, in their underlying articulatory gestures,

as well. Recent experimental studies, however, have implied that a slight acoustic distinction may

exist between these flaps [192]. It is worth noting that this claim has only been demonstrated using

acoustic evidence [193], without imaging evidence of the underlying articulatory differences.

In order to determine whether the articulation of these two flaps manifests any gestural differ-
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Figure 3.11: Comparison of temporal dynamics from our method and from a previous 2D multi-
slice method: (a) the temporal profile along a strip across the tongue tip from a 3D reconstruction;
the associated temporal dynamics along a red dashed line segment; (b) the temporal profile along a
strip across the tongue tip from a 2D multi-slice reconstruction; the associated temporal dynamics
along a green dashed line segment. Improved temporal dynamics and sharper temporal transitions
are seen with the 3D reconstruction.
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ence, these flaps were acquired with carrier phrases in a dynamic MRI experiment. Specifically, a

single female speaker of Mid-Atlantic American English (a dialect known to demonstrate acoustic

differences [194]) volunteered as the subject. The speaker was requested to repeat the minimal

pair “writing” and “riding” in a carrier phrase (“I said X to you”) at a normal speaking rate for

the length of acquisition. After acquisition, the boundaries of the /t/ and the /d/ flaps from the car-

rier phrase were annotated using the synchronously acquired acoustic signal and a representative

frame associated with each flap was manually selected after the annotation. In addition, a rectan-

gular region of interest (ROI) that included the tongue and oral cavity was defined afterwards on

the reconstructed imaging volume for the convenience of ensuing phonetic analysis.

With the annotated flaps and the predefined ROI, two previously developed phonetic analysis

methods were applied to reveal the distinction between the flaps. Specifically, a deformation-based

analysis method [12, 13, 184] was employed to measure the vertical distances between the tongue

tip and alveolar ridge for the /t/ and the /d/ flaps, respectively, among every frame within the du-

ration of each flap across 137 occurrences. In addition, another analysis method based on the

principal component analysis [180] was also applied. Visualization of the principal components

(PC) projected back onto the original pixels in the image was displayed using a heat map, which

allowed for identification of the relationship between PCs and pixel intensity in different parts of

the image. This in turn allowed us to infer the association between PCs and differential movements

of the tongue.

3.7.2 Investigation results

Figure 3.12 shows representative imaging and statistical results in the analysis of the /t/ and the

/d/ flaps during the phrases “I said writing / riding to you.” Figure 3.12a compares the respective

tongue gestures between the two flaps. The /t/ flap has a slightly more superior tongue position

compared with the /d/ flap. The averaged tongue tip - alveolar ridge distances is then quantitatively

measured with a deformation-based method [12,13,184] for the /d/ and the /t/ flaps over a normal-

ized duration (the original duration are ∼66 ms for the /d/ flaps and ∼54 ms for the /t/ flaps). As

shown in Figure 3.12b, a larger averaged distance for the /d/ flaps is observed at the beginning of
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Figure 3.12: Mid-sagittal reconstructions and phonetics analyses of the production of American
English flaps: (a) representative tongue gestures at the production of the /d/ and the /t/ flaps; (b)
averaged distances between the tongue tip and the alveolar ridge for the /d/ and the /t/ flaps over a
normalized duration; (c) top row shows spatial maps associated with the first principal component
(PC1) for the flaps; bottom row shows statistical results of higher PC1 score for the /t/ flap than
the /d/ flap sound (suggesting higher level of tongue apex protrusion and tongue blade elevation).

the normalized duration, while the distances from the two flaps converge at the end. In addition,

the above results are validated with a phonetic analysis based on both heat maps and principal

component (PC) scores [180]. As seen with Figure 3.12c, the /t/ flaps have a higher correlation

with PC1 than the /d/ flaps, as evidenced by “greener” pixels in the heat map around the tongue

tip. The higher intensity of green pixels suggests that the /t/ flaps exhibit greater anterior move-

ments [180] in the tongue apex region during articulation. This result was statistically verified in

a one-way ANOVA (F = 104.7, p < 0.001). The above analyses demonstrate the effectiveness of

our method in analyzing sounds that are otherwise difficult to study from acoustic recordings.

Our method was additionally applied to analyze the level of nasalization during the produc-
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tion of a speech sample. Particular emphasis in the second phonetics investigation was placed on

velopharyngeal activity. With regard to velopharyngeal activity, nasalization refers to the coupling

between the nasal and oral cavities due to velar movement [195]. The level of velopharyngeal

coupling is influenced by the fast interaction between the velum and the velopharyngeal aperture.

Previous work has indicated the potential of dynamic MRI to examine the spatiotemporal variation

in the aperture and provide imagery basis for phonetic assessments of nasalization level [196,197].

However, analysis of velopharyngeal activity at this frame rate has not been possible.

French was chosen as the carrier language for the studies of nasalization. Unlike English,

French contains nasal vowel sounds, oral vowel sounds and nasalization effects during speech.

Therefore, it is an especially interesting language to study in relation to the coupling between the

nasal and oral cavities to produce nasalized speech sounds, such as the alveolar nasal consonant as

introduced in [10, 198–200]. This experiment focused on a dialect of French, northern metropoli-

tan French, due to its prevalence. The carrier phrase was chosen as “ Il retape X parfois,” where

X denotes articulation of three nasal vowels: /Ã/, /Ẽ/ or /Õ/. A healthy female subject was recruited

for the experiment, during which she was requested to produce the phrase recurrently. No other

requirement was imposed on the subject’s speaking pace. This experiment was conducted in ac-

cordance with an approved protocol through the Institutional Review Board at the University of

Illinois at Urbana-Champaign.

Figure 3.13 shows images from multiple imaging planes from an in vivo experiment. Our

method allowed opening sizes of the vocal tract to be simultaneously investigated. Specifically,

these images focus on comparing vocal tract opening sizes for three nasal vowels, the /Ã/, /Ẽ/ and

/Õ/ sounds. In the anterior portion of the vocal tract, as illustrated with Figure 3.13a and Figure

3.13b, the /Ã/ sound has the largest opening size while the /Õ/ sound has the smallest. An oppo-

site observation, as given in Figure 3.13c, is seen in the mid-posterior portion of the vocal tract,

where /Ã/ has the smallest opening size and /Õ/ has the largest. Nearly identical opening sizes are

observed in the inferior portion of the vocal tract, as given in Figure 3.13d. The results in Figure

3.13 demonstrate that our method provides sufficient spatial coverage to capture variation in vocal

tract opening sizes at different spatial locations.
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Figure 3.13: Comparison of multiple nasal vowels /Ã/, /Ẽ/ and /Õ/ sounds: (a) /Ã/ has the largest
distance between the median portion of the tongue and the palate; (b) /Ã/ has largest velopharyngeal
opening size; (c) /Ã/ has the smallest opening between the root of the tongue and the pharynx; and
(d) three vowels have nearly identical opening between the epiglottis and the pharyngeal wall.
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3.8 Discussion

Our method provides broad spatial coverage to capture speech movements for phonetic analysis.

Sufficient spatial coverage is critical for phonetic studies that investigate the relations between

multiple regions in the vocal tract. For the three nasal vowels sounds, traditional phonetic analysis

of French language has taken for granted that the superior region of the vocal tract undergoes a

greater level of motion compared with the inferior region. However, imaging evidence has been

lacking. In this chapter, this hypothesis is verified by applying our method to examine movements

at different levels of the vocal tract and the results are summarized in the results section. As can

be seen, the opening sizes of these cavities vary significantly in the superior vocal tract but remain

nearly identical in the inferior portion. The results confirm the above hypothesis and may suggest

a pivot-like structure of muscle motion: the superior vocal tract may be more deformable while

the inferior vocal tract may be more stable.

Our method improves imaging speed and spatial coverage by integrating a self-navigation

scheme into 3D acquisition. The self-navigation scheme allows faster sampling as it removes

the overhead associated with a separate RF excitation and, instead, collects the navigator data

at a later echo time in each TR. In particular, a TR of 5.99 ms is achieved with the proposed

self-navigation scheme, while an overall TR of 9.81 ms per slice was used with a “separate RF

excitation” approach for previous 2D multi-slice acquisitions [51]. Moreover, the proposed self-

navigation scheme optimized the length of the refocusing pulse to ensure there exists no significant

impact from the eddy current effects on the reconstruction while maintaining a relatively short TR.

Our method reveals subtle temporal and spatial changes in the production of American English

flaps. It is known in phonetics that a voiced consonant (such as the /d/ flap) lengthens the sounds

preceding it [201], while a voiceless consonant (such as the /t/ flap) does not. This study provides

sufficient frame rate to corroborate this with the finding that the sounds preceding the /d/ flaps are

on average∼12 ms longer than those preceding the /t/ flaps. This finding may suggest that a lower

back positioned vowel sound is realized for the /d/ flap. To verify this hypothesis, the associated

spatial details (i.e., averaged tongue tip to alveolar ridge distances) are compared over a normal-

ized duration. The results agree with the hypothesis and show that a lower position of the tongue

indeed placed the tongue tip in a more posterior position for the /d/ flaps compared with the /t/
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flaps. Our method reveals the subtle difference between two perceptually similar flaps, which are

difficult to distinguish by acoustic recordings. The results allow us to conclude that the /t/ and the

/d/ flaps have articulatory differences, while sharing a general gesture.

Although our method has demonstrated a number of merits, several aspects need to be consid-

ered to obtain high-quality reconstructions. First, it is important to rigorously define the true tem-

poral resolution achievable from our method. In contrast with a linear imaging method, whose res-

olution property can be characterized by a shift-invariant point spread function (PSF), our method

is a nonlinear imaging method and its resolution is difficult to characterize because the associated

PSF may be shift-varying or object-dependent. Although improved spatiotemporal dynamics are

demonstrated in Figure 3.11, a rigorous measure of the true temporal resolution is challenging to

define as it may vary from voxel to voxel and from frame to frame, and non-linearly interact with

the spatiotemporal features of the object being imaged. To avoid potentially misleading statements

on the truly achieved resolution, a uniform nominal frame rate was used as an empirical measure

of the temporal resolution. It should also be noted that other empirical measures exist to describe

the resolution for nonlinear imaging methods. For instance, the local PSF [202] for our method

has a full width half maximum of 1.1 voxel and corresponds to a nominal frame rate of 151 fps.

Practical limits exist in the available acceleration from our acquisition strategy. Although a

high nominal frame rate is achieved to potentially allow the study of short speech patterns, the ac-

tual scan time increases on the order of 6 s for each model order increase, and the total acquisition

length is on the order of 7 min with this imaging protocol. Also, a practical limit in acceleration

exists because the self-navigated scheme requires playing out a gradient rephaser prior to the navi-

gator. Higher frame rate requires increased slew rates in the rephaser, which consequently induces

eddy current that compromise the quality of the navigator. Careful control of gradient switching

and slew rate limits, therefore, is essential to prevent the impact of eddy current on the accuracy of

the estimated temporal subspace. In this chapter, the length of the rephaser was carefully chosen

and limited to be 890 µs, and it has been observed in our preliminary studies that shorter duration

results in eddy current artifacts as higher-temporal-frequency information spreads throughout the

reconstructed image. Our method may benefit from further theoretical characterization and sys-

tematic validations of the eddy current effects.

Like many imaging methods that involve regularized reconstructions, the performance of our
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method is influenced by the selection of regularization parameters. In this chapter, our formula-

tion assigns a uniform regularization parameter λ to the spatiotemporal TV constraint along all

spatial and temporal dimensions. It should be noted that a refined selection of λ, such as assign-

ing a separate regularization parameter along each of the three spatial dimension and the temporal

dimensions, may lead to improved reconstruction quality. Also, the value of λ in our method is

chosen based on the discrepancy principle as discussed in [203], while other alternative methods

exists [204], and systematic evaluation of these methods will be an interesting further research

topic.

Our method may pose a computational burden in the context of clinical applications due to the

underlying high dimensional optimization problem involved. For instance, reconstruction time of

71,680 frames at 166 fps (defined based on a TR of 5.99 ms) from a data set obtained from a 7

min 12 s scan with 12 receiver channels was around 12 hour 36 min on a 32-core 512GB-memory

workstation without code optimization. Acceleration of computation can be realized by leveraging

computational methods, such as those exploiting graphical processing units [205], but adaptation

of these methods to such a large-scale optimization problem may not be trivial and is beyond the

scope of this chapter.

3.9 Summary

High-frame-rate 3D full-vocal-tract dynamic speech MRI has been achieved by exploiting: (a) a

novel acquisition strategy with 3D spatial encoding and a volumetric self-navigated scheme, and

(b) an image reconstruction method based on joint low-rank and spatiotemporal-TV constraints.

Our method has been validated in speech imaging experiments, achieving a nominal imaging speed

of 166 fps (defined based on a TR of 5.99 ms) with a spatial resolution of 2.2 × 2.2 × 5.0 mm3

for an imaging volume covering the entire vocal tract. Its effectiveness has also been demonstrated

through phonetic studies on American English flaps and French nasalization.
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CHAPTER 4

DYNAMIC SPEECH MRI WITH DEFORMATION
ESTIMATION

Dynamic speech magnetic resonance imaging (MRI) has been considered as a promising technique

for speech-related studies. In Chapter 3, the potential of dynamic speech MRI in capturing the

structural and functional changes of the velopharyngeal region of the vocal tract has been demon-

strated with simulation results, in vivo experiments and phonetics studies on American English

flaps and French nasalization. This chapter presents an image reconstruction method that not only

allows high-quality visualization of speech motion, but also quantitative description of the motion

at the same time. In particular, Section 4.2 provides a brief review of the imaging model. Section

4.3 gives detailed description of our method. Section 4.4 describes the setup and the results from

the numerical simulation. Section 4.5 provides details on the setup of the validation experiments

and the phonetics investigations. Section 4.6 provides results from the validation experiments and

the phonetics investigations. Discussion and summary on our method will be given at the end of

the chapter.

4.1 Introduction

Dynamic speech magnetic resonance imaging has been considered as a promising technique for

speech-related studies. Despite the great potential and wide application of dynamic speech MRI,

its practical utility has still been limited by two obstacles: the intrinsic trade-offs between speed

and resolution, and the lack of quantitative analysis on the reconstructed articulatory motions.

As discussed in Chapter 2 and Chapter 3, a desirable dynamic speech MRI technique should

offer at least three properties to overcome the above two obstacles: First, it should provide suffi-

cient imaging speed to capture temporal transitions of articulatory gestures. Second, the technique

54



should have adequate spatial resolution to differentiate fine-scaled spatial features. Finally, the

technique should be able to quantitatively analyze speech motion. In practice, there exist multi-

ple ways to analyze the articulator gestures, with respect to a reference gesture, but among these

methods it has been shown that the deformation field holds great potential in providing quantitative

and objective descriptions of speech motion [206, 207]. In particular, if the deformation field is

estimated with high spatial resolution, it can serve as a useful tool for representing and quantifying

articulatory motion in both horizontal and vertical directions. Conventionally, deformation fields

are extracted from reconstructed images as separate image registration steps [208, 209]. How-

ever, the accuracy of estimated motion relies heavily on that of the reconstructed images. Recent

research has shown great potential in improving the accuracy by simultaneously estimating the

image sequence and deformation field [210].

Expanding upon our earlier methods [50,51,74–76] and inspired by our earlier conference pub-

lication [184], this chapter presents a novel imaging method that realizes all the above-mentioned

requirements. In particular, our method in this chapter simultaneously estimates a high-resolution

dynamic image sequence and an associated dense deformation field. Both 2D and 3D dynamic

speech MRI experiments were performed to demonstrate the effectiveness of our methods: the 2D

dynamic speech MRI experiments were performed to achieve a spatial resolution of 2.2 mm × 2.2

mm with a nominal imaging speed of 100 fps, while the 3D dynamic speech MRI experiments

were performed to achieve a spatial resolution of 2.2 mm× 2.2 mm× 5.0 mm, a nominal imaging

speed of 166 fps and an imaging volume covering the entire upper vocal tract with 8 mid-sagittal

slices without slice gap. This capability not only captures fine-scaled articulatory motion, but also

enables quantitative characterization of motion through a precise deformation field, which shares

an identical spatiotemporal resolution with that of the reconstruction. The practical utility of our

method is systematically examined through in vivo experiments and a phonetics study on Ameri-

can English. While some results are demonstrated with 2D dynamic speech MRI experiment data,

it should be noted that our method is a general imaging methodology and extends naturally to all

2D and 3D dynamic speech MRI applications.
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4.2 Imaging model

The imaging model follows in general with that presented in Section 3.2. This section only pro-

vides a brief overview of the imaging model for the sake of brevity, while particular focus is placed

on the incorporation of deformation-based methods into the imaging formulation in Section 4.3.

The acquired data d(k, t) from the (k, t)-space can be expressed as

d(k, t) =

∫
object

I(r, t)e−i2πk·rdr + η(k, t). (4.1)

In practice, d(k, t) is often sampled below the Nyquist rate due to physical and physiological

concerns, and the recovery of I(r, t) is often ill-conditioned. However, the partial separability

model allows recovery of high-quality dynamic image sequence from sparsely sampled data by

assuming that the spatiotemporal dynamics to be partially separable to the Lth order [43]. In

addition, the PS model implies the rank of the Casorati matrix Î is upper bounded by L and allows

the following factorization:

I = UV, (4.2)

where U is the spatial subspace and V is the temporal subspace. I(r, t) can be effectively recov-

ered from highly undersampled data when both U and V are determined [43].

4.3 Image reconstruction

As presented in Section 3.2, the image reconstruction problem requires estimating both U and V

from the acquired data. In general, U and V can be determined using either a combined approach

or a separate approach [43, 48, 50, 51, 76, 188]. This section presents an approach that determines

U and V separately from two individual steps: (a) singular value decomposition is first performed

on the navigator data set to determine the temporal subspace, or matrix V [43] and (b) with a

predetermined V, U can be estimated by directly solving a least-squares problem [43].

Determination of U from direct least-squares fitting may lead to an ill-conditioned problem

[48, 188], and sparsity constraints can be incorporated to regularize the reconstruction problem.
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This section chooses to enforce a sparsity constraint on the deformed spatiospectral image Ddef{I},

where Ddef{·} is a composite imaging operator consisting of two transforms: (1) a non-rigid

spatiotemporal warping transform from I to a reference image Iref , and (2) a temporal Fourier

transform applied on the deformed image Dref{I}. The warping transform lies at the core of

Ddef{·}. This transform allows nonlinear image registration based on a deformation field, Θ, that

represents the pixel-wise coordinate displacements between I and Iref along both horizontal and

vertical directions. Specifically, the warping transform is performed with a routine based on the

demons algorithm [211–214]. The proposed deformation-based sparsity constraint is appropriate

for dynamic speech MRI applications because the temporal profiles of the deformed image are

more uniform than those on the original image. As a result, signal representations of the deformed

images in the (x, f)-domain are sparser than those of the un-deformed images [184, 210]. A

conceptual illustration of the motivation behind this approach is given in Figure 4.1.

With the proposed deformation-based sparsity constraint, the image reconstruction problem

can be written as

Û = arg min
U

||d − E{FSUV}||22 + λ ||Dref{UV}||1, (4.3)

where E is a composite imaging operator that consists of sensitivity encoding across multiple

receiver coils, as well as sparse sampling; FS is a spatial Fourier transform matrix and λ is a

regularization parameter. The formulation in Equation 4.3 is similar to the previous formulation

in Equation 3.4 with a novel constraint that yields two-fold benefits - on the one hand, the pro-

posed constraint provides stronger regularization, compared with that used in Equation 3.4, for the

estimation of the spatial subspace U due to the sparser (x, f) spectrum; on the other hand, our

formulation yields a high-resolution deformation field Θ as an important by-product that allows

quantitative description of the articulatory motion. An algorithm based on half-quadratic min-

imization with continuation procedures is applied to solve the above optimization problem. At

each continuation step, it is noticed that the operator Ddef{·} provides an update of the deforma-

tion field Θ.

57



Figure 4.1: Comparison of the (x, t) profiles and (x, f) spectrum for the dynamic and deformed
image sequences along vertical strips across the tip of the tongues: (a) the spatial position, (x, t)
profile and (x, f) spectrum for the dynamic image sequence, (b) the spatial position, (x, t) profile
and (x, f) spectrum for the deformed image sequence. Compared with the dynamic image se-
quence, the deformed one demonstrates more uniformed (x, t) profile and sparser (x, f) spectrum.
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4.4 Simulation studies

4.4.1 Simulation setup

Numerical simulations were conducted to evaluate the performance of our method. Particular em-

phasis of the simulation study was placed on demonstrating the estimated deformation field from

our method is accurate. Given that no other dynamic speech MRI method is capable of present-

ing the spatiotemporal motion and deformation at the resolution as provided in this dissertation, a

numerical phantom needs to be developed to properly examine the performance of our method. It

should be noted that the simulations performed in this dissertation yielded good empirical results,

but the reader should keep in mind that our method is a nonlinear imaging method, and its exact

performance results on a particular data set may depend on the quality and characteristics of the

specific data sets acquired from in vivo experiments.

A generic numerical phantom for 2D dynamic speech MRI has been created. Simulation stud-

ies have been performed to characterize the effectiveness of estimating the spatiotemporal motion

and the spatiotemporal deformation field. The phantom was designed to simulate multi-channel,

complex-valued dynamic speech imaging data. Specifically, this numerical phantom was con-

structed from an initial reconstruction from an in vivo dynamic MRI experiment, where the subject

was requested to produce repetitions of /za/ - /na/ - /za/ sounds at his own speaking rate. The cre-

ated numerical phantom had a matrix size of 128 × 128 × 1, a FOV of 280 × 280 × 6.5 mm3, a

spatial resolution of 2.2× 2.2× 6.5 mm3, a TR of 9.8 ms and a total number of 8960 time frames.

Simulated data acquisition followed the (k, t)-space sampling strategy as described in this

chapter. At each TR, the imaging data were created by taking samples along one Cartesian line in

3D k-space according to a randomized phase encoding order; the navigator data were created by

sampling from a 3D cone trajectory in k-space using an NUFFT-based routine [189]. Sensitivity

profiles were taken directly from the initial scan. White Gaussian noise was added to data from

each receiver coil, such that the simulated data had a noise level that was comparable to the in vivo

acquisitions. Image reconstruction and deformation field estimation from the simulated data were

performed using our method and are not discussed here for the sake of brevity.
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4.4.2 Simulation results

Figure 4.2 compares the estimated deformation field with regards to the ground truth deformation

field. Specifically, each row in Figure 4.2 contains four images – the spatiotemporal reconstruction,

the ground truth deformation field, the estimated deformation field and the residual deformation

field (from left to right and top to bottom). The residual deformation field has been scaled up by a

factor of 5 to assist visualization. Figure 4.2a shows the comparison when the tongue is elevated

towards the alveolar ridge. Figure 4.2b shows the comparison when the tongue is positioned at

a neutral position. As can be seen, the reconstruction faithfully represents the spatial details of

the numerical phantom without significant spatial distortion. In addition, the yielded deformation

field represents accurate estimation of the articulatory motion with respect to the reference image.

This comparison demonstrates that our method is capable of both high-quality reconstruction and

accurate estimation of the deformation field.

Figure 4.3 examines further the estimated deformation field. Specifically, each row in Figure

4.3 contains three images – the residual deformation field, the reference image and the resulting

image with the residual deformation field applied to the reference image (from left to right). Fig-

ure 4.3a shows the comparison when the tongue is elevated towards the alveolar ridge. Figure

4.3b shows the comparison when the tongue is positioned at a neutral position. As can be seen,

the estimated deformation field faithfully captures the articulatory motion such that the residual

deformation field only causes minor spatiotemporal deformation on the reference image. This

comparison demonstrates that our method is capable of estimating accurate deformation field.

4.5 Experimental studies

4.5.1 Validation experiments

To demonstrate the effectiveness of our method, in vivo experiments were performed on a Siemens

Trio scanner (Siemens Medical Solutions, Erlangen, Germany) with a field strength of 3 T, a gradi-

ent strength of 40 mTm−1 and a maximum slew rate of 176 Tm−1s−1. A 12-channel head receiver
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Figure 4.2: Comparison of the estimated deformation field with regards to the ground truth de-
formation field: (a) the spatiotemporal reconstruction, the ground truth deformation field, the es-
timated deformation field and the residual deformation field (from left to right and top to bottom)
when the tongue is elevated towards the alveolar ridge. The residual deformation field has been
scaled up by a factor of 5 to assist visualization; and (b) the spatiotemporal reconstruction, the
ground truth deformation field, the estimated deformation field and the residual deformation field
(from left to right and top to bottom) when the tongue is positioned at a neutral position. The
residual deformation field has been scaled up by a factor of 5 to assist visualization. This com-
parison demonstrates that our method is capable of both high-quality reconstruction and accurate
estimation of the deformation field.
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Figure 4.3: Examination of the estimated deformation field - the residual deformation field is ap-
plied to the reference image to demonstrate the level of residual deformation between the estimated
deformation field and the ground truth: (a) the residual deformation field, the reference image and
the resulting image with the residual deformation field applied to the reference image (from left to
right) when the tongue is elevated towards the alveolar ridge. The residual deformation field has
been scaled up by a factor of 5 to assist visualization; and (b) the residual deformation field, the
reference image and the resulting image with the residual deformation field applied to the refer-
ence image (from left to right) when the tongue is positioned at a neutral position. This comparison
demonstrates that our method is capable of estimating accurate deformation field.
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coil was used to image the subject. The acquisition details are different for the 2D and the 3D

dynamic speech MRI experiments, and are described separately as follows.

For 2D dynamic speech MRI experiments, a FLASH sequence was developed to interleave

a spiral navigation acquisition and a Cartesian imaging acquisition with a TR of 9.78 ms. The

navigation and imaging data acquisition had a TE of 0.85 ms and 2.3 ms, respectively. Due to the

nonlinear and non-stationary nature of our formulation, a nominal frame rate of 100 fps (defined

by 1/TR) is used to describe the imaging speed capturing speech motion and deformation. Other

parameters were: acquisition matrix size = 128 × 128, FOV = 280 mm × 280 mm, spatial reso-

lution = 2.2 mm × 2.2 mm and a slice thickness of 6.5 mm. When acquiring data that targets a

model order of around 70, the acquisition time was 1 min 42 s.

For 2D dynamic speech MRI experiments, five volunteers participated in the validation exper-

iments. These subjects had an age range of 23 to 38 and were requested to produce /loo/ - /lee/ -

/la/ - /za/ - /na/ - /za/ recurrently at their natural speaking pace. The voices of these subjects were

simultaneously recorded at a sampling rate of 22 kHz through a fiber-optic microphone with active

noise cancellation (Dual Channel FOMRI, Optoacoustics, Or Yehuda, Israel). Informed consent

was obtained for all subjects and the experiment was carried out in accordance with protocols from

the Institutional Review Board at the University of Illinois at Urbana-Champaign.

For 3D dynamic speech MRI experiments, the self-navigation strategy was applied to acquire

data. A FLASH sequence has been developed to acquire data with the following parameters: a TR

of 5.99 ms, a TE of 1.85 ms for the imaging data, a TE of 3.25 ms for navigator data, an acquisition

matrix size of 128 × 128 × 8, a FOV of 280 × 280 × 40 mm3 and a spatial resolution of 2.2 ×

2.2 × 5.0 mm3. When acquiring the necessary data that targets at a model order of around 70,

the acquisition time was 7 min 12 s. With our image reconstruction method, the recovered image

sequence allows visualizing the entire vocal tract at a nominal frame rate of 166 fps (defined based

on the reconstruction of a full 3D volume at each TR of 5.99 ms). Two volunteers participated

in the 3D dynamic speech MRI validation experiments, the procedure of which followed largely

with the 3D data acquisition strategies discussed in Chapter 3. For brevity of this dissertation, the

details of the experiments are omitted but the interested readers are encouraged to refer to Chapter

3 for more details.

Prior to the acquisition of the dynamic imaging data, a pilot scan was performed to determine
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the sensitivity profiles of the receiver coils. The estimated sensitivity profiles were assumed to

be time-invariant for the subsequent image reconstruction. During the acquisitions, the voice of

the subjects was simultaneously recorded at a sampling rate of 8 kHz through a fiber-optic micro-

phone with active noise cancellation (Dual Channel FOMRI, Optoacoustics, Or Yehuda, Israel).

The head motion of each subject was minimized by fixing the positions of the subject’s head in the

receiver coil with foam pads. Informed consent was obtained for all subjects and the experiment

was carried out in accordance with protocols from the Institutional Review Board at the University

of Illinois at Urbana-Champaign.

4.5.2 Phonetics investigations

To examine the practical utility of our method, the method was applied to a phonetics study to ex-

amine the differences in articulatory gesture of oral vowels and their nasal counterparts. Particular

interest was placed on the level of pharyngeal constriction in front and back vowel congeners in

American English. Traditionally, the measurement of constriction was obtained by manual analy-

sis on low-temporal-resolution images, which is challenging and tedious especially for the analysis

of image sequences that have thousands of image frames. As a result, automatic analysis on high-

temporal-resolution image sequence has long been lacking.

Given our method, a natural phonetics question to ask is: is it possible to enable automatic

tracking and measuring the level of constriction by leveraging the deformation field? Starting

from this question, imaging data were collected from a volunteer speaker of American English

using both 2D and 3D dynamic speech MRI protocols. The targeted sounds for phonetics investi-

gation were /a/, /u/, /e/ vowels as opposed to the longer /a∼/, /u∼/ and /e∼/ vowels in American

English. Other details of data acquisition were carried out following the identical procedures as

described in the previous section and are omitted in this subsection for brevity.

The reconstructed spatiotemporal image and deformation fields were analyzed using an ap-

proach proposed in [184]. In particular, the contours pertaining to the tongue root and the posterior

mediopharyngeal wall were first extracted from the reference image. Using this contour informa-

tion, together with the associated deformation field, the positions of the tongue root and those of
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Figure 4.4: Demonstration of automatic constriction measurement: The contours pertaining to the
tongue root and the posterior mediopharyngeal wall were first extracted from the reference image.
Using this contour information, together with the associated deformation field, the positions of the
tongue root and those of the posterior pharyngeal wall at each temporal frame were calculated.
The calculated positions were further converted into distances between the tongue root and the
pharyngeal wall for linguistic analysis.

the posterior pharyngeal wall at each temporal frame were calculated. The calculated positions

were further converted into distances between the tongue root and the pharyngeal wall for linguis-

tic analysis. Figure 4.4 illustrates the essential steps of automatic constriction measurement.

4.6 Experimental results

4.6.1 Validation experiments

Figure 4.5 shows the reconstruction of a mid-sagittal slice and its associated deformation field from

an in vivo experiment. Articulatory gestures in producing /ee/ during the /loo/ - /lee/ - /la/ - /za/

- /na/ - /za/ sounds are shown with fine spatial details in Figure 4.5a. The reference image, with
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Figure 4.5: Demonstration of the reconstructed articulatory gesture and the associated deformation
field: (a) the articulatory gesture during the production of the /ee/ sound in the /loo/ - /lee/ - /la/ -
/za/ - /na/ - /za/ sounds; (b) the reference image used for deformation estimation; (c) the estimated
deformation field in the horizontal direction; (d) the estimated deformation in the vertical direction.

respect to Figure 4.5a, is obtained from the identical subject at a representative neutral position

and is shown in Figure 4.5b. Compared with the reference image in Figure 4.5b, it is obvious that

the bulk tongue body in Figure 4.5a elevates towards the roof of the mouth in the vertical direction,

with slight horizontal translation at the tongue tip and tongue root. This trend of tongue motion

is faithfully capture by the deformation fields: the deformation field in the horizontal direction is

shown in Figure 4.5c and the deformation field in the vertical direction is shown in Figure 4.5d.

Figure 4.6 shows the reconstruction and the temporal profiles from an 3D in vivo experi-

ment where the subject was requested to produce the /ai/ - /au/ - /wi/ - /a/ - /u/ - /i/ sounds. The

reconstructed articulatory gesture of the /a/ sound from the entire upper vocal tract is free from
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significant artifacts and is shown in Figure 4.6a. The temporal profile along a vertical strip across

the tip of the tongue taken from the fourth mid-sagittal slice (indicated as a green dashed line)

is shown in Figure 4.6b. As is seen, the temporal profile in Figure 4.6b captures the temporal

dynamics of the contact between the tip of the tongue and the alveolar ridge with fine temporal

details. The temporal profile along a horizontal strip across the soft palate (velum) from the fourth

mid-sagittal slice (indicated as a red dashed line) is shown in Figure 4.6c. The speech motion

along the horizontal strip, including the motion of the lips and that of the soft palate, are free from

significant temporal blurring.

Figure 4.7 shows the reconstruction from mid-sagittal imaging planes and the re-sliced coro-

nal imaging planes from a 3D in vivo experiment where the subject was requested to produce the

/ai/ - /au/ - /wi/ - /a/ - /u/ - /i/ sounds. The reconstructed articulatory gestures of the /a/ sound are

shown from eight consecutive mid-sagittal slices in Figure 4.7a without any slice gap. Re-sliced

reconstructions are shown on Figure 4.7b covering five coronal imaging planes. These coronal

images progress from the front end of the vocal tract towards the root of the tongue (indicated with

five different colors) and are re-sliced based on the same reconstruction in Figure 4.7a.

Figure 4.8 examines the accuracy of the estimated deformation field by measuring the differ-

ence between the deformed image and the reference. Specifically, the comparison was performed

between two methods: (a) the PS-sparse and (b) our method. The deformed image for the PS-

sparse method is estimated as a separate step after the image reconstruction. The deformed image

for our method is jointly estimated with the reconstruction itself according to our formulation. The

differences between the deformed images and the reference image are shown in Figure 4.8c and

Figure 4.8f, respectively for PS-sparse and our method. As can be seen, our method yields smaller

difference at the back of the velum (as indicated with yellow arrows in the zoomed-in view inside

the dashed green box). This suggests that the simultaneously estimated deformation field allows

more accurate description of articulatory motion (because its deformed image better matches with

the reference), especially compared with a separately estimated deformation field that is prevalent

in many phonetics studies.
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Figure 4.6: Reconstruction results and temporal profiles from a 3D in vivo experiment where the
subject was requested to produce the /ai/ - /au/ - /wi/ - /a/ - /u/ - /i/ sounds: (a) the reconstructed
articulatory gesture of the /a/ sound from the entire upper vocal tract; (b) temporal profile along
a vertical strip across the tip of the tongue taken from the fourth mid-sagittal slice (indicated as a
green dashed line); (c) temporal profile along a horizontal strip across the soft palate (velum) from
the fourth mid-sagittal slice (indicated as a red dashed line).
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Figure 4.7: Reconstruction results from mid-sagittal imaging planes and the re-sliced coronal
imaging planes from a 3D in vivo experiment where the subject was requested to produce the
/ai/ - /au/ - /wi/ - /a/ - /u/ - /i/ sounds: (a) the reconstructed articulatory gesture of the /a/ sound
from eight consecutive mid-sagittal slices without slice gap; (b) Re-sliced reconstructions on five
coronal imaging planes that progress from the front end of the vocal tract towards the root of the
tongue (indicated with five different colors).
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Figure 4.8: Comparison on the accuracy of the estimated deformation field by measuring the
difference between the deformed image and the reference. Specifically, the comparison was per-
formed between two methods: (a) PS-sparse and (b) proposed method. The deformed image for
the PS-sparse method is estimated as a separate step after the image reconstruction. The deformed
image for our method is jointly estimated with the reconstruction itself according to our formula-
tion. The differences between the deformed images and the reference image are shown in (c) and
(f), respectively. Our method yields better deformed images with reduced difference (as shown in
the zoomed-in view inside the dashed green box) and therefore suggests better estimation of the
articulatory motion.
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4.6.2 Phonetics investigations

With the capability to jointly estimate dynamic image sequences and deformation fields, our

method opens up a range of opportunities in quantitatively analyzing articulatory motion. Figure

4.9 shows obvious difference in the minimum distances between the tongue root the and posterior

pharyngeal walls between the /a/ and the /a∼/ sounds (t = 15.426, p . 0.0001), with the oral vowel

having a wider pharyngeal opening than the nasal vowel. Also, there is obvious difference between

/u/ and /u∼/ sounds (t = 17.6502, p . 0.0001), but with the nasal vowel having a wider pharyngeal

aperture. There is less difference between the /e/ and the /e∼/ sounds in pharyngeal distance (t =

- 0.66, p = 0.5). This is an indication of enhanced F1 differences in the non-front vowels F1 is

predicted to rise for the /a∼/ sound in comparison with the /a/ sound, and to lower for the /u/ sound

in comparison with the /u∼/ sound. Furthermore, these results are in line with previous findings on

oral articulation of oral and nasal vowel pairs in Brazilian Portuguese [9,183,184], indicating that

the distinctions between oral and nasal vowel articulation are achieved by more complex speech

motion than the canonical view of nasalization through velum lowering, which involve multiple

sections of the vocal tract.

4.7 Discussion

Our method is capable of simultaneously offering high-spatiotemporal-resolution dynamic image

sequences and the associated dense deformation fields for visualizing, analyzing and quantifying

articulatory motion. Compared with its counterpart that estimates deformation fields as separate

image registration, our method allows more accurate motion analysis. Although the practical value

of our method has been demonstrated in the in vivo experiments, several aspects may affect the

quality of reconstruction and computation efficiency. These aspects include the selection of model

order, regularization parameters and the computational requirement.

Our method requires the experimenter to determine an appropriate model order L. In this

chapter, L was chosen empirically based on visual inspection of reconstruction quality including

the discernibility of small-sized articulators, the level of temporal blurring during frame-to-frame
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Figure 4.9: Minimum tongue-velum distances for oral (the /a/, /u/, /e/ sounds) and nasal (the /a∼/,
/u∼/, /e∼/ sounds) vowel pairs. The statistics in the comparison are summarized in the box plot
and the outliers are indicated with red crosses. As is seen, obvious difference is observed in the
minimum distances between the tongue root the and posterior pharyngeal walls between the /a/
and the /a∼/ sounds. There is also obvious difference between the /u/ and the /u∼/ sounds, while
there is less difference between the /e/ and the /e∼/ sounds in pharyngeal distance.
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transitions, and the overall readability of the reconstructed articulatory motion. Based on these fea-

tures, an L of 65 was chosen in this chapter and it has consistently yielded good empirical results

for the reported experiments. It should be noted, however, that there exist other quantitative-metric-

driven approaches [215–217] to guide the selection of L, although integration of these approaches

and systematic evaluation of their performance will be out of the scope of this dissertation.

Our method requires selection of the regularization parameter λ. In the reconstructions pre-

sented in this chapter, λ is also chosen based on visual inspection of image quality based on motion

fidelity and temporal blurring. Specifically, a λ = 4.67 × 10−3 was chosen for the above recon-

structions. However, it is worth noting that our method provides relatively robust performance

over a range of λ values. This robustness mainly results from the complementary role of signal

model and the proposed constraint. In addition, there exist some theoretical results to guide the

selection of regularization parameters [203]. The integration of these methods into our method

will be systematically investigated in further studies.

Our method may pose a computational burden in its clinical applications due to the high di-

mensional optimization problem and the nonlinear registration routine involved. For instance, the

reconstruction time for a total of 8960 2D time frames at a nominal speed of 100 fps (correspond-

ing to a 1 min 29 s 2D dynamic speech MRI scan) from 12 receiver channels was around 1.5

hour on a 24-core 128GB-memory SUN workstation without code optimization. Fortunately, ac-

celeration in computation time can be realized by taking advantage of a decoupled computation

structure that decomposes a large-scale reconstruction problem into separate smaller ones along

one spatial dimension [51]. In addition, fast solvers for key arithmetic components have been im-

plemented for the proposed problem based on graphical processing units [205,218,219], although

code optimization for computational efficiency is beyond the scope of this chapter.

4.8 Summary

In summary, this chapter presents a novel method for high resolution dynamic speech MRI with

the capability to quantitatively describe articulatory motion. Our method enables simultaneous

estimation of a high-resolution dynamic image sequence and a high-resolution deformation field.
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We performed both 2D and 3D dynamic speech MRI experiments to demonstrate the effectiveness

of our methods: the 2D dynamic speech MRI experiments were performed to achieve a spatial

resolution of 2.2 mm × 2.2 mm with a nominal imaging speed of 100 fps, while the 3D dynamic

speech MRI experiments were performed to achieve a spatial resolution of 2.2 mm× 2.2 mm× 5.0

mm, a nominal imaging speed of 166 fps and an imaging volume covering the entire upper vocal

tract with 8 mid-sagittal slices without slice gap. The practical utility of the method has been vali-

dated through in vivo experiments and a phonetics study on American English. Our method serves

as a promising tool for visualizing and characterizing articulatory motion in speech-related studies.
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CHAPTER 5

SPATIOTEMPORAL ATLAS–BASED DYNAMIC
SPEECH MRI

As introduced in Chapter 3 and Chapter 4, dynamic speech MRI has been recognized as a promis-

ing method for visualizing the articulatory motion of speech in both scientific research and clinical

applications. However, precise characterization of the gestural and acoustical properties of the vo-

cal tract remains a challenging task for dynamic speech MRI because it simultaneously requires:

(1) reconstructing high-quality spatiotemporal images from highly undersampled data; (2) im-

proving the quality of the reconstruction by incorporating strong prior knowledge that genuinely

reflects the underlying articulatory dynamics; and (3) quantitatively interpreting the reconstructed

images that contain great motion variability. This chapter aims to propose a novel imaging method

that simultaneously meets these three requirements by integrating a spatiotemporal atlas into a

partial separability model-based imaging framework. Through the novel use of an atlas-driven

imaging model, our method in this chapter is capable of capturing high-quality articulatory dy-

namics simultaneously at high imaging speed and at high spatiotemporal resolution. Moreover,

our method enables quantitative characterization of variability of speech motion (comparison of

the reconstructed articulatory dynamics with respect to the generic motion pattern across all sub-

jects) through the spatial residual components and the reconstructed sparse components.

5.1 Introduction

Dynamic speech magnetic resonance imaging (MRI) has demonstrated its usefulness for both sci-

entific research and clinical studies in speech. The interested readers are encouraged to refer to

Chapter 3 for high-resolution full-vocal-tract 3D dynamic speech MRI and Chapter 4 for high-

resolution dynamic speech MRI with deformation estimation. The utilization of dynamic speech
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MRI to capture structural and functional changes of the vocal tract has led to a range of exciting

applications, such as studying complex soft-tissue geometries [1], detecting structural defects and

motor dysfunctions [4], as well as understanding articulatory motion related to language formation

and variation [8–14]. The interested readers are also encouraged to refer to Chapter 2 for a detailed

review of a variety of application of dynamic speech MRI to speech-related studies.

Driven by clinical needs and scientific curiosity about the fast moving structures in the oral

and pharyngeal regions, many recent studies of speech are in pursuit of dynamic speech MRI tech-

niques that are capable of high imaging speed and high spatial resolution. This pursuit, however,

in turn results in dynamic imaging data sets with high spatiotemporal dimensions and great mo-

tion variability, which consequently creates challenges for effective clinical interpretation of the

spatiotemporal reconstructions. As a result, a critical need for the speech-imaging community re-

mains a practical dynamic speech MRI method that simultaneously fulfils three requirements: high

imaging speed, high spatial resolution and accurate characterization of the underlying articulatory

motion.

Recent developments in dynamic speech MRI techniques have led to dynamic images that

contain great variation in articulatory motion. For instance, our approach in Chapter 3 has enabled

capturing articulatory dynamics over a temporal interval of as short as 6 ms across an imaging

volume covering the entire upper vocal tract. Along with the fast growing capability in dynamic

speech MRI, however, imaging methods that provide simultaneous high-quality spatiotemporal

reconstruction and accurate analysis of the articulatory dynamics have been developing slowly.

The approach to address this need would allow the extraction of the subject-specific articulatory

dynamics that sits on top of the “standard” speech motion associated with a carrier phrase, and

consequently holds great promise for simultaneously providing high-quality reconstruction. It is

worth noting that recent developments in the low-rank plus sparse model have demonstrated cer-

tain potential in answering this question [220–228] and have shown improvements in several MR

imaging applications [220–222]. However, this low-rank plus sparse model has never been em-

ployed to reconstruct highly undersampled dynamic speech MRI data, neither has it been used to

show any potential in dynamic speech imaging. One hypothesis of this chapter is that the idea

of the low-rank plus sparse model can be improved and incorporated into the partial separability

model-based imaging framework to both improve reconstruction quality and facilitate analysis of
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the articulatory motion.

Developments in dynamic speech MRI techniques have also led to significantly increased spa-

tiotemporal dimensions that prevent effective data analysis. As introduced in Chapter 3 and Chap-

ter 4, a better spatial resolution and a larger number of time frames from advanced dynamic speech

MRI methods not only bring unprecedented capability to visualize speech motion, but also lead

to greater difficulty to properly analyze the reconstruction. Although dynamic speech MRI exper-

iments have be performed over a relatively large subject population [9, 183], few clinical speech

analysis tools exist in general to provide objective and effective interpretation over a large num-

ber of data sets. In order to allow objective and effective analysis of generic speech motion, a

“standard” is required to represent the generic temporal motion pattern from all the groups of in-

terest. This “standard” serves as a metric upon which the reconstructed spatiotemporal dynamics

are compared and analyzed in terms of articulatory pattern and motion variability. However, it is

not an easy task to construct a “standard”: the spatial features and the contrast properties in this

image sequence should be in register with those in the reconstructions in order to minimize the

analysis error. As a result, the construction of such an image sequence has long been considered

difficult.

The possibility to meet the above stringent requirements has only been opened up recently - a

technique has been proposed to construct a high-quality spatiotemporal atlas from a group of sub-

jects [229–231]. In particular, this technique allows high-temporal-resolution articulatory dynam-

ics and high-spatial-resolution anatomical features to be preserved during the atlas construction

steps [229–231]. This high-quality atlas-creation technique, and its integration with model-based

spatiotemporal imaging methods, holds great promise for a better dynamic speech MRI method.

Inspired by the developments in Chapter 3 and Chapter 4 and extending upon the previous con-

ference publications [232, 233], this chapter proposes a novel dynamic speech MRI method that

leverages a spatiotemporal atlas to simultaneously allow high imaging speed, high spatial resolu-

tion and accurate characterization of the underlying articulatory motion. Of particular novelty are

the low-rank plus sparse model and the integration of the atlas into dynamic speech MRI through

a spatiotemporal sparsity constraint. The low-rank plus sparse model allows separate modeling of

the generic speech motion and the subject-specific articulatory movement, which not only solves

the image reconstruction problem, but also improves image reconstruction quality. The integration

77



of a spatiotemporal atlas into the imaging formulation allows the dynamic articulatory motion to

be compared against the atlas in the form of spatial residual components. Further, the proposed

model enables accurate comparison of motion at an identical spatiotemporal resolution (of the re-

construction) either on a single or across multiple subjects. The practical utility of our method has

been demonstrated through an in vivo experiment.

5.2 Imaging model

The proposed dynamic speech MRI method aims to integrate the idea of a low-rank plus sparse

model and a high-quality spatiotemporal atlas into a PS model-based imaging framework. This

section first briefly describe the individual components - a low-rank plus sparse model-based imag-

ing method, an improved method based on the low-rank plus sparse model with regional sparse

modeling and a method that constructs high-quality spatiotemporal atlas-based on group-wise dif-

feomorphic registration. Upon completion of describing each individual components, this section

then describes the integration of these components.

5.2.1 Low-rank plus sparse model

As discussed in Section 1.1, the measured spatiotemporal data from the (k, t)-space can be ex-

pressed with the following equation:

d(k, t) =

∫
object

I(r, t)e−i2πk·rdr + η(k, t). (5.1)

In typical dynamic speech MRI experiments, the measured (k, t)-space data d(k, t) is often sparsely

sampled due to physical and physiological limitations. Reconstruction of I(r, t) from sparsely

sampled data d(k, t) is an underdetermined problem. As a result, sophisticated modeling of the

spatiotemporal dynamics based on the anatomical and physiological features of speech motion is

critical towards proper recovery of I(r, t) from d(k, t). As introduced in Chapter 3 and Chapter
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4, the PS model allows high-quality reconstructions of I(r, t) from d(k, t) by assuming I(r, t)

to be Lth order partially separable [43]. Further, the PS model assumes that I(r, t) exists in a

low-dimensional subspace and induces a low-rank structure on the Casorati matrix I that is de-

fined over any point set I{rn, tm}N,Mn,m=1, where N and M are the number of spatial encodings and

time frames. This low-rank structure allows I to be factorized as I = UV [52], where U and V

represents the associated spatial and temporal subspaces, respectively. I(r, t) can be effectively

reconstructed from the sparsely sampled data when both U and V have been determined.

Recent developments in the low-rank plus sparse model [220, 221] (or often referred to as

a robust principal component analysis model [222–226]) have revealed the potential of incorpo-

rating an additional sparse component to represent residual spatiotemporal dynamics that are not

captured by the low-rank model. In particular, the low-rank plus sparse model expresses the spa-

tiotemporal dynamics to be a combination of the generic spatiotemporal motion (often known as

the background motion) and the additional spatiotemporal motion that is unique to the speaker or

the carrier phrase. Mathematically, the generic spatiotemporal motion (or the background motion)

is represented with a low-rank matrix and the additional spatiotemporal motion is represented with

a sparse matrix. Mathematically, this idea can be expressed as

I(r, t) = L(r, t) + S(r, t), (5.2)

where L(r, t) represents the generic spatiotemporal motion and S(r, t) represents the additional

spatiotemporal motion. As is shown in Equation 5.2, the low-rank component is designed to cap-

ture the spatially and temporally correlated dynamics of speech, while the sparse component is

designed to model the additional spatiotemporal dynamics that are built on top of the low-rank

matrix. Specifically in dynamic speech MRI, the low-rank plus sparse model allows greater flexi-

bility in modeling the spatiotemporal motion due to the separation of a low-rank component and a

sparse component. In addition, the separation of the spatiotemporal motion into two parts greatly

facilitates the ensuing phonetic analysis on the associated motion. Therefore, the hypothesis of

this chapter is that the low-rank plus sparse model can properly represent the spatiotemporal mo-

tion; and the resulting separation of spatiotemporal motion is useful towards meaningful phonetic

analysis on the articulatory dynamics.
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The low-rank plus sparse model can be seamlessly integrated with the PS model-based spa-

tiotemporal imaging framework. It is noted that the low-rank component that represents the generic

spatiotemporal dynamics can be effectively expressed in the PS model [43]. Mathematically, this

integration can be expressed as in matrix-vector form as

I = UV + S, (5.3)

where U represents the spatial subspace of I, V represents the temporal subspace of I and S rep-

resents the additional spatiotemporal speech motion in I. It should be noted that the PS model

is a powerful signal model that represents the universal signal property for a variety of dynamic

speech MRI applications [50, 51, 74–76]. Therefore, the integration of the low-rank plus sparse

model into the PS model-based spatiotemporal imaging framework allows the spatiotemporal dy-

namics of speech to be tailored to a specific speaker or a specific carrier phrase [232].

5.2.2 Regional sparse modeling

The representation power of the low-rank plus sparse model can be further enhanced by incorpo-

rating regional sparse modeling. In particular, Equation 5.2 assumes a global low-rank plus sparse

structure, where the background component and additional component of the underlying articu-

latory motion are combined across all the spatiotemporal dimension. In practice, however, the

additional component of any speech motion may be more obvious in the vocal tract region where

most of the moving articulators appear. In the non-articulatory regions, such as the brain, the neck

and the nasal cavity, the additional component does not carry significant soft-tissue movements

and can therefore be captured properly with the background component alone. In the interest of

focusing on modeling the spatiotemporal dynamics for major articulators, this subsection aims at

enhancing the original assumption of the low-rank plus sparse model and proposes to incorporate

a regional sparse model to capture the additional articulatory motion in the regions of phonet-

ics interest. In particular, the articulatory region of regional sparse modeling is specified by a

spatiotemporal mask predetermined by the user, and the resulting model can be mathematically

represented as
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I(r, t) = L(r, t) + Ωvocal tract{S(r, t)}, (5.4)

where Ωmotion(r, t){·} represents an imaging operator that enforces a predefined spatiotemporal

mask onto the associated image sequence of speech. The spatiotemporal region that this mask

covers should be indicative of the vocal tract area in which major articulatory motion occurs. An

illustration of this model can be found in Figure 5.1. It should be noticed that the spatiotemporal

mask Ωmotion(r, t) shown in Figure 5.1 aims at illustrating the general concept, while in practice

the spatiotemporal mask can be spatiotemporal varying and can change based on the regions of

interest and articulator of interest.

Like its primitive counterpart, the low-rank plus sparse model with regional sparse modeling

can also be integrated with the PS model-based spatiotemporal imaging framework. Mathemati-

cally, this integration can be expressed as in matrix-vector form as

I = UV + ΩS, (5.5)

where Ω represents an imaging operator that enforces a spatiotemporal support constraint to re-

alize regional sparse modeling of speech motion in the designated region of interest. Compared

with Equation 5.3, the spatiotemporal model represented in Equation 5.5 is tailored to focus on a

particular region of phonetics interest. This formulation allows prior knowledge of the articulatory

motion to be injected into the imaging process and consequently represents a more accurate imag-

ing model for a particular carrier phrase of interest.

5.3 Image reconstruction

A novel dynamic speech MRI method has been proposed to integrate the proposed imaging model

with a spatiotemporal atlas-based constraint to achieve high-resolution spatiotemporal imaging of

speech. In particular, the formulation proposes to enforce two constraints to regularize the image

reconstruction problem: (1) A sparsity constraint was chosen to be enforced on the regional sparse

component in the spatiotemporal image. This sparsity constraint is suitable for facilitating dy-
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Figure 5.1: Our method models the spatiotemporal dynamics of speech motion with a low-rank
plus regional sparse model: (a) the quasi-static regions, such as the brain, the nasal cavity or the
background, are modeled with the background component; and (b) regions that contain major
articulatory motion are modeled with both the background and the sparse component to capture
both the generic motion and the additional motion of speech. These regions are schematically
indicated with a spatiotemporal mask Ωvocal tract in the image.
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Figure 5.2: The proposed consistency constraint enforces the spatiotemporal difference between
the candidate reconstruction and the spatiotemporal prior constructed from a set of high-quality
spatiotemporal atlas images. This figure is a typical frame of the reconstructed image (left), a
typical frame of the constructed spatiotemporal prior image (middle) and the associated residual
component (right). The spatiotemporal prior is capable of approximating the true spatiotemporal
motion and contrast changes of the reconstruction. The residual component is capable of picking
up the difference between the reconstruction and the prior image.

namic speech MRI reconstruction due to the reasons discussed in Section 5.2.2. (2) A consistency

constraint was chosen to be enforced on the spatiotemporal difference between the low-rank com-

ponent, UV, and the spatiotemporal prior, Ip, constructed from a set of high-quality spatiotempo-

ral atlas images [232]. It should be noted that there exist multiple ways to construct Ip [229–231],

and this chapter chooses to construct Ip based on a nearest neighbor classifier [234–238] with a

distance metric based on the Lipschitz norm [229–231]. An illustration of a typical frame of the

reconstruction, the spatiotemporal prior, Ip, and the associated residual component, UV − Ip, is

provided with Figure 5.2. As seen with Figure 5.2, conceptually the proposed consistency con-

straint is appropriate because Ip is designed to approximate the true spatiotemporal dynamics, and

this constraint picks up the spatial and temporal differences between UV and Ip.

The two proposed constraints work in complementary to regularize the ill-conditioned image

reconstruction problem. The resulting image reconstruction formulation, can be mathematically

written as
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{Û, Ŝ} = arg min
U

||d− E{UV + ΩS}||22 + λ1 ||UV − Ip||22 + λ2 ||ΩS||1, (5.6)

where U represents the desired spatial subspace, S represents the desired sparse component, E{·}

represents a composite imaging operator that incorporates sensitivity encoding, undersampling

in the (k, t)-space and the associated Fourier encoding processes, λ1 represents a regularization

parameter for the consistency constraint (the first constraint in Equation 5.6), λ2 represents a reg-

ularization parameter for the sparsity constraint (the second constraint in Equation 5.6) and Ω

represents an imaging operator that enforces a spatiotemporal mask onto the associated image.

The above constrained optimization problem can be solved efficiently using an algorithm based on

additive half-quadratic minimization with continuation procedures [232]. A schematic summary

of our method is provided in Figure 5.3.

5.4 Spatiotemporal atlas construction

Construction of an objective spatiotemporal atlas of the targeted articulatory motion is the key to

improving the quality of the reconstructions and the accuracy of the phonetic analysis. This chapter

chooses to construct a high-quality spatiotemporal atlas in two sequential steps: (1) construction

of a generic spatiotemporal atlas and (2) the creation of a subject-specific atlas.

5.4.1 Generic spatiotemporal atlas

The atlas construction strategies proposed in [229] to construct a generic atlas in multiple steps: (1)

an initial reconstruction is performed based on the methods proposed in Chapter 3. In particular,

the choice of initial reconstruction is completely subject to the user’s discretion, and this chapter

chooses to initialize with the methods in Chapter 3, while other methods may also be employed

for initialization; (2) a common spatial space [229] is defined from the initial reconstructions by

selecting a time frame that has a representative articulatory posture; (3) all the time frames are

84



Figure 5.3: Our method integrates a high-quality spatiotemporal atlas into a low-rank plus sparse
model-based imaging framework. This figure summarizes our method: (a) generation of initial
spatiotemporal atlas from four initial reconstructions; (b) generation of subject-specific atlas em-
ploying spatial and temporal warping procedures; and (c) reconstruction of spatiotemporal image
by jointly enforcing the proposed constraints.
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spatially warped to a predefined common space. The associated spatial warping procedure is per-

formed with the symmetric image normalization (SyN) method [214] using the large deformation

diffeomorphic metric mapping algorithm (LDDMM) [239]. Specifically, it should be noted that

one can employ routines in the advanced normalization tools (ANTs) open source software li-

brary [240] to perform this step, as was done in this chapter; and (4) a generic atlas is constructed

by temporally realigning the preliminary atlas using a temporal alignment strategy based on the

Lipschitz norm, which is defined as [229]

Lip(ξtsti , r) := inf{ ||ξtsti
−1

(r1)− ξtsti
−1

(r2)|| 6 Lip(ξtsti , r) ||r1 − r2||, r1, r2 ∈ r, r1 6= r2}, (5.7)

where ξtsti represents a diffeomorphism between a time frame ti in the initial guess and another

time frame ts of the subject. Particularly in this chapter, the initial guess has been set to the

reconstruction of a representative subject, while other choices exist to choose the initial guess

[229–231]. For each subject, the temporal alignment procedure finds the candidate time frame ti

from the neighboring time frames (with a window size of 20 time frames) by

t̂i = arg min
ti ∈{ti−10,··· ,ti+9}

Lip(ξtsti , r). (5.8)

A preliminary spatiotemporal atlas is finally constructed by applying a group-wise diffeomor-

phic registration on each time frame across all subjects [230,231]. Specifically, a cross correlation

criterion is employed to assist the group-wise image registration problem [214, 240]. A schematic

overview of the proposed atlas construction method is provided in Figure 5.4.

The construction of a spatiotemporal atlas is not limited to 2D dynamic speech MRI applica-

tions. As a generic method, this technique can also find its use in dynamic speech MRI of higher

dimensions. Figure 5.5 provides an example where this generic atlas-construction technique is

applied to construct a 3D spatiotemporal atlas. As can be seen with Figure 5.5, the upper image

represents a representative frame from the 3D reconstruction, while the lower image represents

the corresponding 3D atlas image. Although the spatiotemporal dimensions have significantly

increased from 2D speech MRI to 3D speech MRI, our method is still capable of constructing

high-quality atlas images. The image shown in Figure 5.5, for instance, is devoid of significant
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Figure 5.4: Our method constructs a subject-specific spatiotemporal atlas in multiple steps: (a)
a common spatial space is defined from the initial reconstructions by selecting a time frame that
has a representative articulatory posture; (b) all time frames are spatially warped to the predefined
common space; (c) a preliminary spatiotemporal atlas is constructed by temporally realigning
the preliminary atlas using a temporal alignment strategy based on the Lipschitz norm; and (d)
a generic atlas is constructed by applying a group-wise diffeomorphic registration on each time
frame across all subjects.
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contrast difference as compared with the reconstruction.

5.4.2 Subject-specific spatiotemporal atlas

There exist multiple ways to construct the subject-specific atlas-based on the steps described in

Section 5.4.1 [229–231]. This chapter chooses to apply an inverse spatial transform to warp the

generic atlas back to each subject’s image sequence by using the SyN method described in Section

5.4.1 [214, 239, 240]. The resultant subject-specific atlas is not only devoid of significant contrast

difference or temporal misalignment with the initial reconstruction, but is also an objective repre-

sentation of the generic motion pattern across all the subjects [230, 231].

5.5 Experimental studies

5.5.1 Experimental design

To demonstrate the effectiveness of our method, a validation experiment was performed on a

Siemens Trio scanner (Siemens Medical Solutions, Erlangen, Germany) with the following speci-

fications identical with those described in the previous chapters. Four volunteers (three males and

one female) participated in the validation experiment. These subjects had an age range of 23 to

38 and were requested to produce /loo/ - /lee/ - /la/ - /za/ - /na/ - /za/ recurrently at their natural

speaking pace. Informed consent was obtained and the experiments were carried out in accordance

with local protocols from the Institutional Review Board at the University of Illinois at Urbana-

Champaign.
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Figure 5.5: A set of 3D generic spatiotemporal atlas constructed using the method introduced
in Chapter 5. The upper image shows a representative frame from the reconstruction. The lower
image shows the corresponding generic atlas image. The subject-specific atlas image is devoid of
significant contrast difference as compared with the reconstruction.
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5.5.2 Experimental results

Figure 5.6 shows the articulatory movements from in vivo experiments where the subjects were

asked to produce recurrent the /loo/ - /lee/ - /la/ - /za/ - /na/ - /za/ sounds at their own speeds.

Although these four subjects have diverse anatomical features and distinct speaking pace, their

articulatory movements are invariably well-captured with our method. For instance, Figure 5.6a

shows the tongue gestures at neutral positions during the production of the /la/ sound. Figure 5.6b

shows protrusion of the tongue (as indicated with yellow arrows) in preparation for the production

of the /loo/ sound. Compared with Figure 5.6a, the elevation of the tongue towards the alveolar

ridge are well described in Figure 5.6b with fine spatial details across all the subjects, despite dif-

ferences in their vocal tract anatomies and variance in speech motion patterns.

Figure 5.7 shows the effectiveness of our method in capturing the low-rank and the sparse

components. In particular, this chapter focuses on comparing the reconstructed components among

two temporally adjacent time instances where the articulatory motions differ slightly in localized

regions. As can be seen, Figure 5.7a shows a time instance when the tongue is in touch with the

alveolar ridge and the velum is raised towards the pharyngeal wall, and Figure 5.7b shows an en-

suing time instance when the tongue remains touching the alveolar ridge and the velum is lowered

towards the root of the tongue. Each row in Figure 5.7a and Figure 5.7b contains three horizontally

arranged images: the reconstructed image frame, the reconstructed low-rank component and the

estimated sparse component. The articulatory movements in (a) and (b) differ slightly due to the

temporal adjacency of these two image frames, and most difference are found in localized regions

around the velum or at the tip of the tongue. However, the proposed method is still capable of

capturing the difference in articulatory motion. Difference in localized articulatory motion is well-

captured in both the velum and the tongue tip.

Figure 5.8 shows that the proposed low-rank plus sparse model is capable of capturing dy-

namic subject-specific motion that exists on top of the generic motion. In particular, Figure 5.8a

shows an overlaid image where the low-rank component is color coded with green color and the

sparse component is color coded with cyan color. Although the relative locations are less obvious

when reading the gray-scale images, the color coded image in Figure 5.8a allows the position of

the sparse component to be clearly observed in relation to the underlying low-rank component.
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Figure 5.6: Articulator gestures from all subjects when they produce the /loo/ - /lee/ - /la/ - /za/ -
/na/ - /za/ sounds at: (a) a resting position during the /la/ sound; and (b) an elevated position where
the tongue protrudes towards the lips (as indicated with yellow arrows) and the velum elevates
towards the velopharyngeal wall. Although these four subjects have diverse anatomical features
and distinct patterns of speech motion, their articulatory movements are invariably well-captured
with our method.
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Figure 5.7: The reconstructed articulatory gesture compared with the associated low-rank and
sparse component. The reconstruction are obtained from an in vivo data set where the subject
was requested to produce the /loo/ - /lee/ - /la/ - /za/ - /na/ - /za/ sounds. Reconstruction results
from two temporally adjacent time instances are shown: (a) a time instance when the tongue is
in touch with the alveolar ridge and the velum is raised towards the pharyngeal wall; and (b)
an ensuing time instance when the tongue remains touching the alveolar ridge and the velum is
lowered towards the root of the tongue. Each row of the results contains three horizontally arranged
images: the reconstructed image frame, the reconstructed low-rank component and the estimated
sparse component. As can be seen, the articulatory movements in (a) and (b) differ slightly in very
localized regions, but our method is still capable of capturing the difference in articulatory motion
in both the low-rank and the sparse component.
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Figure 5.8: The reconstructed sparse component is associated with the subject-specific articulatory
motion. This figure shows (a) an overlaid image where the low-rank component is color coded with
green color and the sparse component is color coded with cyan color; (b) the low-rank component
as a gray-scale image; and (c) the sparse component as a gray-scale image. It is obvious from
(a) that the reconstructed sparse component in (c) is spatially in register with the reconstruction.
In addition, the sparse component mainly exists in regions where subject-specific movements are
likely to happen, such as the lips and the surface of the tongue. These images show that our low-
rank plus sparse model is capable of capturing additional dynamic subject-specific motion that
exists on top of the generic motion.

Figure 5.8b illustrates the low-rank component as a gray-scale image and Figure 5.8c shows the

associated sparse component as a gray-scale image. It is obvious from the comparison between

Figure 5.8a, b and c that the reconstructed sparse component is spatially in register with the re-

construction. In addition, the sparse component mainly exists in regions where subject-specific

movements are likely to happen, such as the lips and the surface of the tongue. Results in Figure

5.8 reveal the connection of the underlying articulatory motion with the reconstructed low-rank

and sparse component.

The separation of the low-rank and the sparse components in the imaging model allows the

articulatory gestures to be compared with both the generic motion and the subject-specific motion.

Specifically, our method introduces a spatiotemporal atlas into the imaging framework. The spa-

tiotemporal atlas and the associated spatiotemporal prior image provides a standard image frame

that is in register with the subject’s speech motion and is devoid of major contrast difference. This

93



benefit of a spatiotemporal atlas and the prior provides a metric to evaluate the subject’s motion

variability targeted to a specific carrier phrase. It should be noticed that, without our method or

a spatiotemporal atlas, such evaluation may purely depend on the evaluator’s subjective feeling

and is therefore hardly objective. With our method, however, objective evaluation of motion and

motion variability is enabled, in addition to the high-quality reconstructions available from our

method.

Figure 5.9 shows representative phonetic analysis results available from our method. In par-

ticular, the tongue contours for all /a/ sounds during the production of /loo/-/lee/-/la/-/za/- /na/-/za/

phrases are extracted from both the reconstruction and the spatiotemporal prior image [12]. For

example, a representative tongue contour from the reconstructed image is illustrated on the right

of Figure 5.9. The envelopes of all tongue contours from the atlas are plotted with pink color

and those from the reconstruction are plotted with cyan color. As seen, the tongue contours from

the spatiotemporal prior image (pink) are spatially and temporally aligned with the reconstruction

tongue contours (cyan), but demonstrates a thinner envelope. This suggests the spatiotemporal

prior image is representative of the generic pattern of speech, which is expected given the “aver-

aging” effect during the atlas construction procedures [229–231].

The ability to reconstruct the low-rank component and the sparse component also provides

other perspectives in analyzing the underlying articulatory motion. One way to analyze motion

would be to read into the temporally averaged motion pattern. However, one typical problem is

that the temporally averaged motion pattern does not contained much additional information be-

cause the differences have been reduces during the process of taking averages. However, such

differences can be separated and clearly analyzed with the arrival of the sparse component.

In particular, Figure 5.10 demonstrates the possibility of performing statistical analysis of the

associated articulatory motion even with the temporally averaged results. As can be seen, a tempo-

rally averaged reconstruction image frame in Figure 5.10a, while a temporally averaged low-rank

component image frame in Figure 5.10b. As discussed, simple visual inspection of the images

in Figure 5.10a and Figure 5.10b does not reveal significant difference of articulatory motion be-

tween the reconstruction and the low-rank component. This is because the difference is sometimes

subtle and has been further reduced during the process of taking averages. However, the difference

can be clearly revealed from Figure 5.10c, which is obtained by temporally averaging the sparse
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Figure 5.9: Envelopes of tongue blade contours of the spatiotemporal prior image (pink color)
and the reconstruction (cyan color) for all /a/ sounds. The envelope from the spatiotemporal prior
image is approximately aligned with that from the reconstruction , but demonstrates smaller motion
variance. Representative tongue contours from atlas are reconstructions are shown on the right.
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Figure 5.10: Statistical analysis of the reconstructed sparse component allows the subject-specific
motion patterns to be effectively analyzed. This figure shows (a) a temporally averaged recon-
struction image frame and (b) a temporally averaged low-rank component image frame. Visual
inspection of the images in (a) and (b) does not reveal significant difference of articulatory motion
between the reconstruction and the low-rank component. However, the difference can be clearly
revealed from (c), which is obtained by temporally averaging the sparse component along all spa-
tial dimensions. The result indicates that the major motion variation of this speaker mainly exists
in the following regions: the lips, the surface of the tongue, the back of the velum as well as the
tongue dorsum. This result indicates that the speaker has a more vibrant articulatory motion as
compared to the generic pattern of speech represented by the atlas image.

component along all spatial dimensions. The result indicates that the major motion variation of

this speaker mainly exists in the following regions: the lips, the surface of the tongue, the back of

the velum as well as the tongue dorsum. This result, even without significant effort to analyzed,

intuitively indicates that the speaker has a more vibrant articulatory motion as compared to the

generic pattern of speech represented by a spatiotemporal atlas.

Figure 5.11 shows the effectiveness of capturing high-quality articulatory movements and

high-quality temporal profile from an in vivo experiment. Specifically in this experiment, this sub-

ject was requested to produce the /loo/ - /lee/ - /la/ - /za/ - /na/ - /za/ sounds. As can be seen with

Figure 5.11a, two representative articulatory gestures are shown from time frame 4779 and time

frame 4951 of the reconstructed image sequence. The articulatory gestures are particularly chosen

as typical time frames that represent the protruded and the retracted motion of the tongue, respec-
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tively. Both types of movements are well-captured by our method. In Figure 5.11b, a temporal

profile (∼18 s in length) is taken along a vertical strip across the tongue tip. The movements of the

tongue tip, especially its contact against the alveolar ridge, is captured with high temporal fidelity

in the provided temporal profile. Figure 5.11 demonstrates that both the articulatory movements

and the temporal dynamics of the subject are well-captured by our method.

Figure 5.12 demonstrates the effectiveness of our atlas construction method. In particular,

this is demonstrated by comparing a representative time frame from the reconstruction in Figure

5.12a, with a corresponding time frame from the spatiotemporal prior in Figure 5.12b. The resid-

ual component is also shown in Figure 5.12c to assist the comparison. By comparing Figure 5.12a

and Figure 5.12b, it is noted that the gestures of the tongue and the velum resemble, in general,

in the reconstruction and the spatiotemporal prior image, while being dissimilar in subtle spatial

structures and contrast details.

Figure 5.13 demonstrates the effectiveness of capturing temporal dynamics by comparing

the temporal profiles of the reconstruction and the spatiotemporal prior image. Temporal profiles

along the tongue tip from the subject are shown in Figure 5.13a and Figure 5.13b. It is noticed that

the spatiotemporal prior image is capable of representing the generic articulatory motion. Specifi-

cally, the upward and downward movements of the tongue tip are well-represented in Figure 5.13b.

However, the generic motion from the spatiotemporal prior image lacks sufficient temporal details

to correctly describe detailed temporal dynamics, such as the contact of the tongue tip towards the

alveolar ridge.

Figure 5.14 aims to demonstrate the benefits of applying the low-rank plus sparse model to

capture the spatiotemporal dynamics of speech. Compared with imaging models that represent the

spatiotemporal dynamics as low-rank and sparse, the low-rank plus sparse model allows temporal

dynamics to be analyzed for the low-rank component and the sparse component, respectively. In

particular, Figure 5.14 shows the temporal dynamics from an in vivo experiment where a subject

was requested to produce the /loo/ - /lee/ - /la/ - /za/ - /na/ - /za/ sounds. In particular, the temporal

profiles are taken from a vertical strip across the tip of the tongue. Figure 5.14a shows the position

of the strip; Figure 5.14b shows the temporal profile of the reconstruction; Figure 5.14c shows the

temporal profile of the low-rank component; and Figure 5.14d shows the temporal profile of the

sparse component. As can be seen, the temporal profile of the low-rank component represents the
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Figure 5.11: The articulator gestures and the temporal profile from an in vivo experiment where
a subject was requested to produce the /loo/ - /lee/ - /la/ - /za/ - /na/ - /za/ sounds: (a) two repre-
sentative articulatory gestures are shown from time frame 4779 and time frame 4951, representing
protruded and retracted motion of the tongue, respectively; (b) the temporal profile (∼18 s in
length) is taken along a vertical strip across the tongue tip. Both the articulatory movements and
the temporal dynamics are well-captured by our method.
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Figure 5.12: Comparison of (a) the reconstruction, (b) the spatiotemporal prior and (c) the residual
component. It is noted that the gestures of the tongue and the velum resemble in the reconstruction
and the spatiotemporal prior, while being different in subtle spatial structures and contrast details.

generic motion at the tip of the tongue, including the upward and downward movements of the tip

of the tongue towards the alveolar ridge, as well as those of the lower jaw. However, additional

contrast and subtle temporal transitions are picked up by the sparse component. The application

of the low-rank plus sparse model jointly with a spatiotemporal atlas decomposes the temporal

dynamics of speech into two perspectives: the generic movements that are common among all

speakers that contribute to the atlas, as well as the additional dynamic movements that are specific

to the subject, which faithfully represent the subject’s pattern of speech over time. The integration

of the proposed imaging model with a spatiotemporal atlas not only separates these two patterns

of speech, but also integrates them to capture the full temporal dynamics to represent the subject’s

motion.

Our method allows temporal dynamics of speech to be decomposed and subtle temporal

motion to be analyzed in detail. Figure 5.15 illustrates the temporal dynamics from an identical

experiment as in Figure 5.14, but attempts to analyze the temporal motion in greater detail. In

particular, the temporal transitions are organized as follows: Figure 5.14a shows a representative

mid-sagittal frame and the temporal profile of the reconstruction; Figure 5.14b shows a represen-

tative mid-sagittal frame and the temporal profile of the low-rank component; and Figure 5.14c
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Figure 5.13: Comparison of temporal profiles between the reconstruction and the atlas. Temporal
profiles taken from a vertical strip on the subject across the tongue tip and the alveolar ridge are
compared: (a) the subject’s reconstruction and (b) the associated spatiotemporal prior image. Note
that the spatiotemporal prior image is capable of representing the generic articulatory motion, such
as the upward and downward motion of the tongue tip. However, the lack of temporal details needs
to be compensated by the proposed model.
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Figure 5.14: The low-rank plus sparse model allows temporal dynamics to be analyzed separately
for the low-rank and the sparse components. This figure shows the temporal dynamics taken from
a vertical strip across the tip of the tongue: (a) the position of the vertical strip; (b) the temporal
profile of the reconstruction; (c) the temporal profile of the low-rank component; and (d) the
temporal profile of the sparse component.
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shows a representative mid-sagittal frame and the temporal profile of the sparse component. Com-

pared with Figure 5.14, the Figure 5.15 zooms in the temporal events of the speaker’s motion and

reveals in detail how the sparse component interacts with the low-rank component to recover the

full temporal dynamics associated with the carrier phrase. In particular, the sparse component

compensates for the subtle contrast differences in small-sized regions such as the tip of the tongue

and the tip of the alveolar ridge. As a result, the temporal transitions in the reconstruction are more

natural due to the complementary roles of the low-rank and sparse components.

5.6 Discussion

Our method provides high-resolution imaging of speech and accurate assessment of articula-

tory motion by integrating a spatiotemporal atlas into low-rank plus sparse model-based dynamic

speech MRI. The integration of a low-rank plus sparse model into dynamic speech MRI not only

improves the spatial details and temporal dynamics in the reconstruction, but also allows quan-

titative characterization of articulatory motion in the form of low-rank and sparse components.

Although the merits of our method have been demonstrated in the in vivo experiments above, sev-

eral aspects of the method need to be considered. These aspects include the proposed sparsity

constraint, the selection of model order and regularization parameter, and the computational re-

quirements.

A high-quality atlas requires accurate spatiotemporal registration of the generic atlas towards

the spatiotemporal prior image. Unlike many existing works [241, 242] that aim to solve the spa-

tiotemporal registration problem in one single step, this chapter chooses to solve the registration

problem in two separate steps: spatial warping-based on the reference frame and temporal align-

ment based on the Lipschitz norm. In this way, the original high dimensional image registration

problem can be reduced into a lower dimensional problem that register images in a frame-wise

fashion. Compared with the approaches from the existing works [241, 242], the approach used

in this chapter can significantly simplify the spatiotemporal registration problem and increase the

throughput of the generation of the spatiotemporal prior image. The effectiveness of this strategy
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Figure 5.15: Temporal motion analyzed in detail: (a) a representative frame and the temporal
profile of the reconstruction; (b) a representative frame and the temporal profile of the low-rank
component; and (c) a representative frame and the temporal profile of the sparse component. Com-
pared with Figure 5.14, this figure zooms in the temporal events of the speaker’s motion and depicts
how the sparse component interacts with the low-rank component to recover the full temporal dy-
namics associated with the carrier phrase. As can be seen, the sparse component compensates for
the subtle contrast differences in small-sized regions such as the tip of the tongue and the tip of the
alveolar ridge.
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has been demonstrated in both previous [229–231] and current work. However, quantitative char-

acterization of its performance will be an interesting topic for future research.

The performance of the proposed sparsity constraint depends largely on the sparsity level avail-

able from the sparse component. Although it is generally assumed that the low-rank component

of the imaging model captures the generic articulatory motion and the sparse component should

hence be intrinsically sparse, in practice the sparsity level may be suboptimal due to the noise or

the suboptimal performance of the image registration algorithm. Aiming at this issue, this chapter

further enhances the sparsity level by incorporating a regional sparse model: the sparse component

is only estimated for the regions that are likely to contain meaningful articulatory motion. In other

regions inside the vocal tract, the non-sparse components are naturally suppressed, and hence the

sparse component can be more focused on the “dynamic movements that matter.” It should be

noticed, however, that regional sparse modeling is not necessarily required and the performance

of the proposed model is generally robust because of the complementary role between the consis-

tency constraint and the sparsity constraint. Systematic characterization of the performance of the

proposed sparsity constraint under different sparsity levels will be carried out in future studies.

Our method also requires the selection of the model order L, and two regularization parameters

λ1 and λ2. In this chapter, L, λ1 and λ2 were chosen based on visual inspection of image quality

based on the quality of spatial details and the level of temporal blurring. Specifically, this chapter

chose L = 40, λ1 = 2.25 × 10−2 and λ1 = 1.75 × 10−2 for the validation experiments. It is noted

that this set of regularization parameters are chosen empirically and may be sub-optimal. However,

there exist some theoretical results that may shed light upon the choices of the model order [243]

and the regularization parameters [244]. The integration of these theoretic selection criteria into

the selection of optimal parameters for our method should be carried out in the future.

Our method may pose a computational burden in its clinical applications due to the high di-

mensional optimization problem involved in reconstructions and the computationally-expensive

procedures to construct a spatiotemporal atlas. For instance, the construction of an atlas for a total

of 8960 time frames at a nominal speed of 102 fps (corresponding to a 1 min 28 s scan) took ap-

proximately 47 hours on a standard workstation. With the spatiotemporal atlas predetermined, the

reconstruction time was around 4.5 hour on a 24-core SUN workstation without code optimization.

Fortunately, acceleration in computation time may be realized by taking advantage of the strong
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computational power of the graphical processing units [205, 218, 219]. The implementation of the

associated algorithm and optimization of computational efficiency will be investigated in future

research.

5.7 Summary

This chapter proposes a novel dynamic speech MRI method to capture articulatory dynamics with

simultaneous high imaging speed and accurate characterization of the articulatory motion. This

is achieved by integrating a spatiotemporal atlas into a low-rank plus sparse imaging model to

properly capture the spatiotemporal dynamics of speech. The resulting low-rank and sparse com-

ponents enable quantitative characterization of articulatory motion. In particular, the generic artic-

ulatory motion can be well-represented by the low-rank component and the subject-specific motion

is represented by the sparse component. Further, the practical utility of our method has been val-

idated through an in vivo experiment. Our method serves as a promising tool for comparing and

characterizing articulatory motion with regards to the generic motion pattern.
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CHAPTER 6

CONCLUSION

The scientific and clinical value of dynamic speech MRI has long been limited by its intrinsic

trade-offs between imaging speed, spatiotemporal resolution, spatial coverage and motion charac-

terization. This dissertation has shown that high-resolution, full-vocal-tract 3D dynamic speech

MRI with quantitative characterization of generic and individual speech motion can be achieved

with our methods.

A PS model-based imaging method has been shown to capture the detailed spatiotemporal

structure of dynamic speech images and recover high-quality spatiotemporal speech dynamics

from highly undersampled measured data. An image reconstruction formulation has been shown

to successfully leverage signal properties and integrate the imaging model and sparse modeling. A

PS model-based data acquisition strategy has been developed to capture fast transitions of dynamic

articulatory motion. Efficient algorithms based on half-quadratic regularization have been imple-

mented and optimized. Performance has been systematically evaluated through simulation and in

vivo experiments, achieving a nominal imaging speed of 166 fps with a spatial resolution of 2.2

× 2.2 × 5.0 mm3 for an imaging volume covering the entire vocal tract. Its effectiveness has also

been demonstrated through phonetic studies on American English flaps and French nasalization.

A dynamic speech MRI method based on deformation analysis has been shown to not only

enhance the quality of the reconstruction, but also allow quantitative analysis of the articulatory

motion by high-resolution deformation fields. Our method enables simultaneous estimation of a

high-resolution dynamic image sequence and a high-resolution deformation field. Both 2D and 3D

dynamic speech MRI experiments were performed to demonstrate the effectiveness of our meth-

ods - the 2D dynamic speech MRI experiments were performed to achieve a spatial resolution of

2.2 mm × 2.2 mm with a nominal imaging speed of 100 fps, while the 3D dynamic speech MRI

experiments were performed to achieve a spatial resolution of 2.2 mm × 2.2 mm × 5.0 mm, a
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nominal imaging speed of 166 fps and an imaging volume covering the entire upper vocal tract

with 8 mid-sagittal slices without slice gap. This method has been further developed to allow au-

tomatic tracking of articulatory gestures for a phonetics study on American English. Performance

of this method has been evaluated by simulation, in vivo experiments and phonetics investigations.

To allow characterization of the subject-specific articulatory motion and the generic motion

pattern, this dissertation has also proposed to incorporate a spatiotemporal atlas into a low-rank

plus sparse model-based imaging framework. This approach not only improves the image recon-

struction quality through the use of a spatiotemporal atlas, but also enables meaningful separation

of speech motion into the low-rank and sparse components. In addition, regional sparse modeling

has been introduced to assist the analysis of subject-specific motion over a designated area of inter-

est. Successful analyses of motion have been performed on both 2D and 3D dynamic speech MRI

experiments from various subjects across multiple subject groups. Our method enables objective

analysis of subject-specific speech motion of a particular subject as opposed to the generic pattern

of speech across a particular group. Our methods serves as promising tools for comparing and

characterizing articulatory motion for large-scale phonetics studies.
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[93] K. Mády, R. Sader, A. Zimmermann, P. Hoole, A. Beer, H.-F. Zeilhofer, and C. Hannig,
“Assessment of consonant articulation in glossectomee speech by dynamic MRI.” in Pro-
ceedings of the INTERSPEECH Conference. Citeseer, 2002.

[94] A. Scott, R. Boubertakh, M. Birch, and M. Miquel, “Towards clinical assessment of
velopharyngeal closure using MRI: evaluation of real-time MRI sequences at 1.5 and 3
t,” British Journal of Radiology, 2014.

[95] X. Feng, J. Inouye, S. Blemker, K. Lin, K. Borowitz, T. Altes, T. Kovach, W. El-Nahal,
C. Pelland, and C. H. Meyer, “Assessment of velopharyngeal function with multi-planar
high-resolution real-time spiral dynamic MRI,” Proceedings of the 21st Annual Meeting the
International Society of Magnetic Resonance and Medicine (Scientific Sessions), vol. 1228,
2013.

[96] B. Hargreaves, “Rapid gradient-echo imaging,” Journal of Magnetic Resonance Imaging,
vol. 36, no. 6, pp. 1300–1313, 2012.

115



[97] B. P. Sutton, C. A. Conway, Y. Bae, R. Seethamraju, and D. P. Kuehn, “Faster dynamic
imaging of speech with field inhomogeneity corrected spiral fast low angle shot (FLASH)
at 3 T,” Journal of Magnetic Resonance Imaging, vol. 32, no. 5, pp. 1228–1237, 2010.

[98] G.-C. Ngo, J. L. Holtrop, M. Fu, F. Lam, and B. P. Sutton, “High temporal resolution fmri
with partial separability model,” in Engineering in Medicine and Biology Society (EMBC),
the 37th Annual International Conference of the IEEE, 2015, pp. 7482–7485.

[99] H. Ur and D. Gross, “Improved resolution from subpixel shifted pictures,” CVGIP: Graph-
ical Models and Image Processing, vol. 54, no. 2, pp. 181–186, 1992.

[100] J. Shi, Y. Chi, and N. Zhang, “Multichannel sampling and reconstruction of bandlimited
signals in fractional Fourier domain,” IEEE Signal Processing Letters, vol. 17, no. 11, pp.
909–912, 2010.

[101] J. Brown, “Multi-channel sampling of low-pass signals,” IEEE Transactions on Circuits and
Systems, vol. 28, no. 2, pp. 101–106, 1981.

[102] D. Wei, Q. Ran, and Y. Li, “Reconstruction of band-limited signals from multichannel and
periodic nonuniform samples in the linear canonical transform domain,” Optics Communi-
cations, vol. 284, no. 19, pp. 4307–4315, 2011.

[103] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, P. Boesiger et al., “SENSE: Sensitivity
encoding for fast MRI,” Magnetic Resonance in Medicine, vol. 42, no. 5, pp. 952–962,
1999.

[104] M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, and
A. Haase, “Generalized autocalibrating partially parallel acquisitions (GRAPPA),” Mag-
netic Resonance in Medicine, vol. 47, no. 6, pp. 1202–1210, 2002.

[105] M. Blaimer, F. A. Breuer, N. Seiberlich, M. F. Mueller, R. M. Heidemann, V. Jellus, G. Wig-
gins, L. L. Wald, M. A. Griswold, and P. M. Jakob, “Accelerated volumetric MRI with a
SENSE/GRAPPA combination,” Journal of Magnetic Resonance Imaging, vol. 24, no. 2,
pp. 444–450, 2006.

[106] M. Blaimer, F. Breuer, M. Mueller, R. M. Heidemann, M. A. Griswold, and P. M. Jakob,
“SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method,” Topics in Mag-
netic Resonance Imaging, vol. 15, no. 4, pp. 223–236, 2004.

[107] M. Uecker, P. Lai, M. J. Murphy, P. Virtue, M. Elad, J. M. Pauly, S. S. Vasanawala, and
M. Lustig, “ESPIRiT an eigenvalue approach to autocalibrating parallel MRI: Where
SENSE meets GRAPPA,” Magnetic Resonance in Medicine, vol. 71, no. 3, pp. 990–1001,
2014.

[108] P. J. Koopmans, “Two-dimensional-NGC-SENSE-GRAPPA for fast, ghosting-robust recon-
struction of in-plane and slice-accelerated blipped-CAIPI echo planar imaging,” Magnetic
Resonance in Medicine, 2016.

116



[109] Y.-C. Kim, M. I. Proctor, S. S. Narayanan, and K. S. Nayak, “Improved imaging of lin-
gual articulation using real-time multislice MRI,” Journal of Magnetic Resonance Imaging,
vol. 35, no. 4, pp. 943–948, 2012.

[110] K. S. Nayak, C. H. Cunningham, J. M. Santos, and J. M. Pauly, “Real-time cardiac MRI at
3 tesla,” Magnetic Resonance in Medicine, vol. 51, no. 4, pp. 655–660, 2004.

[111] K. S. Nayak, J. M. Pauly, D. G. Nishimura, and B. S. Hu, “Rapid ventricular assessment
using real-time interactive multislice MRI,” Magnetic Resonance in Medicine, vol. 45, no. 3,
pp. 371–375, 2001.

[112] Y. Yang, W. Engelien, S. Xu, H. Gu, D. A. Silbersweig, and E. Stern, “Transit time, trailing
time, and cerebral blood flow during brain activation: Measurement using multislice, pulsed
spin-labeling perfusion imaging,” Magnetic Resonance in Medicine, vol. 44, no. 5, pp. 680–
685, 2000.

[113] S. Narayanan, A. Toutios, V. Ramanarayanan, A. Lammert, J. Kim, S. Lee,
K. Nayak, Y.-C. Kim, Y. Zhu, L. Goldstein et al., “USCTIMIT: a database
of multimodal speech production data,” Tech. Rep., 2013. [Online]. Available:
http://sail.usc.edu/span/usc-timit/usctimit\ report.pdf

[114] T. Sorensen, A. Toutios, L. Goldstein, and S. Narayanan, “Characterizing vocal tract dynam-
ics across speakers using real-time mri,” Proceedings of the INTERSPEECH conference, pp.
465–469, 2016.

[115] M. Fu, J. Zhuang, F. Hou, X. Ning, Q. Zhan, and Y. Shao, “Extracting human gait series
based on the wavelet transform,” Acta Physica Sinica, vol. 59, no. 6, pp. 4343–4350, 2010.

[116] M. Fu, J. Zhuang, F. Hou, Q. Zhan, Y. Shao, and X. Ning, “A method for extracting human
gait series from accelerometer signals based on the ensemble empirical mode decomposi-
tion,” Chinese Physics B, vol. 19, no. 5, p. 058701, 2010.

[117] F. Hou, X. Ning, J. Zhuang, X. Huang, M. Fu, and C. Bian, “High-dimensional time irre-
versibility analysis of human interbeat intervals,” Medical Engineering & Physics, vol. 33,
no. 5, pp. 633–637, 2011.

[118] M. Zhang, C. Ge, M. Lu, Z. Zhang, and B. T. Cunningham, “A self-referencing biosensor
based upon a dual-mode external cavity laser,” Applied Physics Letters, vol. 102, no. 21, p.
213701, 2013.

[119] M. Zhang, J. Peh, P. J. Hergenrother, and B. T. Cunningham, “Detection of protein–small
molecule binding using a self-referencing external cavity laser biosensor,” Journal of the
American Chemical Society, vol. 136, no. 16, pp. 5840–5843, 2014.

[120] C.-Y. Lu, C.-Y. Ni, M. Zhang, S. L. Chuang, and D. H. Bimberg, “Metal-cavity surface-
emitting microlasers with size reduction: Theory and experiment,” IEEE Journal of Selected
Topics in Quantum Electronics, vol. 19, no. 5, pp. 1–9, 2013.

117



[121] A. Matsudaira, C.-Y. Lu, M. Zhang, S. L. Chuang, E. Stock, and D. Bimberg, “Cavity-
volume scaling law of quantum-dot metal-cavity surface-emitting microlasers,” IEEE Pho-
tonics Journal, vol. 4, no. 4, pp. 1103–1114, 2012.

[122] C. Ge, M. Lu, Z. Zhang, B. T. Cunningham et al., “A self-referencing biosensor based
upon a dual-mode external cavity laser,” in Proceedings of CLEO: Science and Innovations.
Optical Society of America, 2013, pp. CM2H–6.

[123] C.-Y. Lu, M. Zhang, S. L. Chuang, E. Stock, and D. Bimberg, “Size dependence of quantum-
dot metal-cavity surface-emitting microlaser,” in Proceedings of 2012 International Semi-
conductor Laser Conference (ISLC), 2012.

[124] M. Zhang, “External cavity laser biosensor for label-free detection,” Ph.D. dissertation, Uni-
versity of Illinois at Urbana-Champaign, 2015.

[125] M. Zhang and B. T. Cunningham, “Liquid-tuned plasmonic external cavity laser,” in Pro-
ceedings of CLEO: Applications and Technology. Optical Society of America, 2014, pp.
AF1L–3.

[126] D. Aalto, J. Malinen, P. Palo, O. Aaltonen, M. Vainio, R.-P. Happonen, R. Parkkola, and
J. Saunavaara, “Recording speech sound and articulation in MRI,” in Biodevices, 2011, pp.
168–173.

[127] R. A. Mattson, T. J. Krochta, and H. K. Tuy, “Voice actuated volume image controller and
display controller,” 1994, US Patent 5,303,148.

[128] J. Malinen and P. Palo, “Recording speech during MRI: Part II,” in MAVEBA, 2009, pp.
211–214.

[129] M. Barlaz, C. Carignan, R. Shosted, S. Johnson, Z.-P. Liang, M. Fu, and B. Sutton, “Un-
derstanding the relationship between acoustics and articulation of nasal and oral vowels,” in
Proceedings of the 5th Joint Meeting of the Acoustical Society of America and the Acousti-
cal Society of Japan, Honolulu, Hawaii, USA, 2016, p. 3pSC.

[130] D. P. Kuehn and K. T. Moller, “Speech and language issues in the cleft palate population:
The state of the art,” Cleft Palate-Craniofacial Journal, vol. 37, no. 4, pp. 348–348, 2000.

[131] A. Kummer, Cleft Palate & Craniofacial Anomalies: effects On Speech and Resonance.
Nelson Education, 2013.

[132] J. C. McGowan III, H. Hatabu, D. M. Yousem, P. Randall, and H. Y. Kressel, “Evaluation of
soft palate function with MRI: application to the cleft palate patient.” Journal of Computer
Assisted Tomography, vol. 16, no. 6, pp. 877–882, 1992.

[133] S. G. Lingala, Y. Zhu, Y.-C. Kim, A. Toutios, S. Narayanan, and K. Nayak, “High-frame-
rate real-time imaging of speech production,” SPIE News Room, 2015. [Online]. Available:
http://spie.org/x113691.xml

118



[134] S. Balaji, “Bilateral cleft lip and palate, hypertelorism with agenesis of corpus callosum,”
Indian Journal of Dental Research, vol. 27, no. 1, p. 100, 2016.

[135] L. Lam and N. Samman, “Speech and swallowing following tongue cancer surgery and free
flap reconstruction – a systematic review,” Oral Oncology, vol. 49, no. 6, pp. 507–524,
2013.

[136] J. Lee, J. Woo, F. Xing, E. Z. Murano, M. Stone, and J. L. Prince, “Semi-automatic segmen-
tation of the tongue for 3D motion analysis with dynamic MRI,” in Biomedical Imaging
(ISBI), IEEE 10th International Symposium on, 2013, pp. 1465–1468.

[137] C. Hagedorn, A. Lammert, M. Bassily, Y. Zu, U. Sinha, L. Goldstein, and S. S. Narayanan,
“Characterizing postglossectomy speech using real-time MRI,” in International Seminar on
Speech Production, Cologne, Germany, 2014.

[138] A. Hemraj, J. Back, and T. George, “1263: a case of laryngitis caused by an unusual sus-
pect,” Critical Care Medicine, vol. 43, no. 12, pp. 317–318, 2015.

[139] W.-G. WANG and J.-P. LU, “Clinial analysis of 106 children with acute laryngitis,” Journal
of Medical Recapitulate, vol. 1, p. 060, 2012.

[140] S. Padilla, A. Sebring, P. Jani, J. Kane, and C. Clardy, “1262: aspirin-induced acute intersti-
tial nephritis in a pediatric liver transplant patient,” Critical Care Medicine, vol. 43, no. 12,
p. 317, 2015.

[141] C.-C. Huang, Y.-S. Leu, C.-F. J. Kuo, W.-L. Chu, Y.-H. Chu, and H.-C. Wu, “Automatic
recognizing of vocal fold disorders from glottis images,” Proceedings of the Institution of
Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 228, no. 9, pp.
952–961, 2014.
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[202] T. Wech, D. Stäb, J. C. Budich, A. Fischer, J. Tran-Gia, D. Hahn, and H. Köstler, “Resolu-
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