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ABSTRACT 

 

Cardiac diseases are the leading cause of mortality in the United States, accounting for every one 

in seven deaths. There are a large proportion of cardiac diseases that need histopathological 

examination by pathologists for a conclusive diagnosis, but this technique hasn’t been improved 

upon in the past decade. In this work, we have attempted to advance the current state of histology 

by developing stainless staining protocols using infrared spectroscopy. 

 

The current gold standard to identify cardiovascular complications such as ischemia, fibrosis, 

alcoholic cardiomyopathy and transplant rejection is biopsy followed by histology. This 

approach lacks in many aspects. Major challenges faced by pathologists are: addressing inter-

observer variability and experimental variations in stain development, and developing 

approaches for in-situ histopathology. Specifically, in the case of cardiac transplants, regular 

monitoring of the transplant is required in order to ensure that the body accepts the transplant. 

This is done by collecting tissue biopsies at specific time intervals. The presence of lymphocytic 

infiltration and accompanying fibrosis is indicative of transplant rejection. A prompt clinical 

action is required if rejection is identified in the biopsy. Cardiac transplant patients can benefit 

from techniques that can identify lymphocytic infiltration and fibrosis with high accuracy, 

complementing current pathology practice and giving greater opportunity to pathologists to study 

complex cases. In the first part of this work, we used infrared spectroscopy coupled with 

supervised Bayesian classification to identify lymphocytic infiltration and fibrosis in the 

myocardium in endomyocardial biopsy samples. This classifier was robust and could be easily 

applied to identify lymphocytes in the tissue and to differentiate between fibrosis in endocardium 

with fibrosis in myocardium which stains similarly in hematoxylin and eosin stain (H&E).  

 

Repeated biopsy procedures can cause significant trauma to the patient, and often the surgeons 

require real time histopathology information of the tissue during surgeries. This cannot be 

accomplished by traditional histology where the tissue sample needs to be excised, sectioned 
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and stained for analysis. Since infrared spectroscopy in stainless, probe-based instruments can 

be developed to provide detection in-situ but were earlier limited by the speed of imaging using 

Fourier Transform infrared spectrometers. The problem of speed can be overcome by using 

quantum cascade laser-based discrete frequency infrared (DFIR) imaging instruments. In the 

second part of this work, we analyzed data collected on recently developed discrete frequency 

instruments and compared it to data collected on FT-IR imaging instruments. This was done by 

unsupervised data clustering to observe histological classes in both types of data. 

 

After establishing that the data collected in DFIR mode retained spectral differences between the 

histological classes to enable their differentiation, in part three of this work we have done 

extensive analysis of classification approaches that can be applied to the DFIR data. This study 

will be relevant to many of the previously built Bayesian classification models that need to be 

evaluated for their applicability on data collected in discrete frequency mode. In addition, we 

identified specific spectral features that could be used to differentiate between fibrosis and 

normal tissue in cardiac biopsy samples computationally at high speed using discrete frequency 

approach. This can give way to utilization of this model in fiber optic probe-based technology 

for on-site detection of fibrosis in patients. 
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INTRODUCTION 

Prospects for Chemical Imaging in Cardiovascular Pathology 

Abstract 

Vibrational Spectroscopy is a well-established technique that utilizes light waves to delineate 

chemical signatures of samples. The molecular basis of the approach has been well-established 

for small chemicals and understanding for complex biomedical samples is emerging. In 

particular, the availability of high-performance and low-cost computation capabilities are now 

transforming spectroscopic delineation of cellular characteristics in various tissues. This review 

describes the emergence of this technology and the role it may play in the development of a new 

way for cardiac tissue assessment at a chemical, molecular and cellular level. The promise in the 

cardiovascular arena is highlighted with emphasis given to ongoing developments that may 

transform cardiovascular pathology and imaging. 

 

Current Evaluation of Cardiovascular Diseases and the Need for New Technology 

Cardiovascular diseases are the leading cause of mortality in the United States accounting for 

every one in 7 deaths in the US1. Cardiovascular diseases broadly fall into those affecting 

coronary arteries, valves, cardiac muscle, cardiac rhythm and aortic & vascular structures.  There 

is often overlap of some of these disorders. Patients are frequently imaged through a variety of 

modalities, which include coronary angiography, echocardiography, computed tomography, 

magnetic resonance imaging, nuclear scans, conventional x-rays, depending on the type of 

disorder.  However, certain conditions such as diseases affecting the cardiac muscle 

(cardiomyopathies), cardiac valves (calcification, degeneration, fibrosis, myxomatous changes, 

infections), cardiac transplant rejection (after heart transplantation), cardiac ischemia/infarction 

(definitely differentiating between ischemia, infarction, scarring) have been very difficult to 

diagnose accurately in patients without pathological studies. The use of histopathological 

examination is confirmatory and the final arbiter in making diagnoses. However, this is 
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complicated and requires excision or removal of the affected tissue, tissue processing, use of 

multiple stains and evaluation by experienced pathologists.   

The Case for Better Cardiac Assessment 

Since the heart is not easily accessible for biopsy, catheter-based techniques have been used to 

excise small fragments of cardiac tissue, typically from the right ventricle and sometimes from 

the left ventricle.  In the absence of open biopsy of the heart, this is the gold standard for 

pathological diagnoses.  Cores of left ventricular apical muscle during ventricular assist device 

implants, small off-cuts of outflow tract myocardium in patients undergoing surgical myectomy 

for HOCM, resected segments of right ventricular muscle in the repair of Tetralogy of Fallot may 

represent some of the available pathological specimens for analyses. 

All of these are invasive to the point of some excision. Non-invasive methods such as 

angiography, Magnetic resonance imaging (MRI), echocardiography, Computed tomography 

(CT) scanning, Nuclear Scans show promise but may not correlate with actual pathological states 

in many conditions. The gold standard continues to be a histopathological evaluation of heart 

tissue through excisional biopsies of some sort. All of these tests are typically performed as a 

reactive measure when the patient has symptoms of cardiovascular diseases.  

Imaging for CVDs  

A variety of clinical tools are used for the assessment and prediction of cardiovascular diseases. 

Important elements of such tools are described here.  

Imaging: Imaging has traditionally been used to identify problematic areas after symptoms have 

been identified. A number of imaging modalities, such as MRI for assessing ischemic heart 

disease2–7 and more recently for quantifying  ventricular volume for assessing cardiac function8 

, PET/CT , and SPECT/CT have been used for diagnosis of coronary artery diseases 9–13 and for 

evaluation of myocardial perfusion14,15.  

Risk factors: Cardiovascular diseases have well-known risk factors among patient populations. 

For example, conventionally accepted factors such as patient’s age16, family history, dietary 
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habits, activity levels, diabetes17, history of smoking, hypertension, and obesity18,19; and more 

recently recognized new generation risk factors such as triglycerides, modified LDL and 

fibrinogen and levels of C-reactive protein18,20.   

Protein-based biomarkers: Most cardiovascular diseases are progressive and thus, early 

monitoring and prevention is a viable option for reducing mortality rates. It has been suggested 

that identification and use of biomarkers related to changes occurring at the molecular stage, 

before the disease has started showing symptoms can predict the occurrence of disease and 

outcome21,22. Inflammatory markers23 such as C-reactive protein levels, IL-6, TNF α and IL-10 

have been studied as predictors for heart disease risk24–28. Blood tests to assess the risk of venous 

thrombosis and identify possible coagulation of the cardiovascular system have been suggested 

using markers such as elevated concentrations of factors II, VIII, IX, XI, and fibrinogen29–32. 

Proteins that are present in the heart cells and released after a heart attack, such as Creatine 

kinase, Myoglobin, Cardiac troponin I etc. can also be measured in the blood to identify 

myocardial damage33. A thorough table enlisting available blood-based tests for heart diseases 

can be referred to elsewhere33.   

Genetic predisposition: Several genetic abnormalities have been found to be associated with an 

increased risk of developing cardiovascular disease34,35. For example, genetic variation in the 

lipoprotein A locus is associated with aortic valve calcification36; rare de novo copy number 

variations 37,38and mutations in GATA4 and TBX539 present genetic loci for congenital heart 

disease. Multiple epigenetic modifications have also been identified that can result in cardiac 

distress and malfunctions40–42.   

Despite major advances in assessing risk and occurrence of cardiovascular diseases, pathology 

remains a holdout. In cases requiring histological analysis of tissue, anatomical and physiological 

changes in diseased states are used. The two major needs are (a) addressing the difficulty of 

diagnoses in cases, (b) adding molecular information and (c) measuring in situ, living tissue. To 

address these needs, there are imaging techniques which can probe at the molecular level and 

identify changes at cellular level much before they are identifiable through conventional 

techniques.  Through molecular imaging, specific molecules, variations in tissues and 
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extracellular spaces can be identified that could start at the early onset of the disease. In addition, 

precise identification of the problem at the micro level can enable practitioners to tailor treatment 

on case by case basis, enabling personalized care.  

 

Molecular imaging for the assessment of cardiovascular diseases 

Contrast agent based imaging: Contrast agent based imaging has enabled in vivo probing of 

abnormalities with currently available imaging modalities. Many developments in this direction 

have been enabled by emerging nanotechnology-based contrast agents43,44. Contrast agents for 

positron emission tomography (PET) scanning, for example, 18F-FDG have gathered interest as 

a prospective marker for identification of inflammation45–47.  However, the clinical applicability 

of this technique is limited by myocardial uptake of FDG that gives significant signal during PET 

imaging48 and efforts are underway to optimize vessel wall imaging using FDG49,50.  

Gadolinium-based contrast agents have been used to target specific sites for detection with 

MRI51. These paramagnetic nanoparticles can get localized to fibrin clots giving high T1 

weighted contrast52. However, safety concerns arise when using Gd-based contrast agents due to 

the risk of nephrogenic systemic fibrosis53. To counter these, biodegradable polydisulfide 

dendrimer nanoclusters containing Gd54 and  Manganese based contrast agents are being 

developed that are expected to reduce such risks55.  Enhanced uptake of superparamagnetic iron 

oxide (SPIO) nanoparticles by macrophages has been utilized for identifying macrophage 

localization. However, a clinical trial utilizing ferucarbotran (Resovist®) did not show any 

further improvement in visualization of myocardial infarction as compared to the conventional 

Gd-based imaging modalities56. MRI has also emerged as a potential noninvasive technique for 

detection and quantification of vascular remodeling using elastin-specific MR contrast agents, 

for which animal models have been studied57.  Here we have given a short summary of some of 

the recent developments, readers are referred to specific review articles for an in-depth discussion 

of targeted molecular imaging agents in the nano and micro size range utilizing conventional 

imaging modalities43,58. 
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Label-free imaging of biological samples: Traditionally, researchers have relied on externally 

applied contrast agents, such as dyes and fluorescent probes for identification of cell types. In 

vivo diagnostic tests for many cardiovascular diseases, on the other hand, have utilized the 

changes in cardiac function to identify the problem using noninvasive techniques. 

Electrocardiographic (ECG) tests have been long established to assess the electrical activity of 

the heart and it has been shown that abnormal ECG can be associated with an increased risk of 

coronary heart disease(CHD) events 59–61 but its utility to predict CHD in asymptomatic adults 

has not been established yet62. It has been difficult to probe at the molecular level in terms of 

disease diagnosis owing to the limited sensitivity of CT and MRI and limited penetration depth 

of optical imaging techniques. Conventional techniques have been very effective in the 

management of a multitude of cardiovascular diseases and do not require extensive 

modifications. However, amid studying biophysical properties of the tissue/organ and applying 

the molecular imaging technique for diagnosis by histopathology, there remains a gap between 

estimation of disease at the surgery table and diagnosis in the pathology lab. The motivation 

behind developing automated label-free diagnosis techniques is to fill this gap and bring real-

time pathology on site. In the following sections of this article, we demonstrate the application 

of recently developed technology of quantum cascade laser-based infrared imaging for 

developing automated pathology of cardiovascular diseases and its potential for clinical 

implementation.     

Spectroscopy and its applications in cardiovascular diseases 

Spectroscopy pertains to the study of absorption and emission of light waves as it interacts with 

matter. Various spectroscopic techniques have been utilized in past to probe the structural and 

biochemical properties of samples based on the wavelength of light used as the probe. Light of 

radio wave frequency, for example, has been a prime tool for studying molecular structure 

through magnetic resonance imaging. While near-infrared probes and fluorescence imaging has 

been explored in great details in past63–72, optical spectroscopy techniques such as infrared 

spectroscopy and Raman spectroscopy have not been discussed. Supplementing already 

developed techniques which can assess myocardial blood flow or perfusion64,73,74, these 

techniques are particularly useful for molecular imaging of targets and have become popular to 
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identify and understand biochemical changes taking place in tissues. Here we will briefly discuss 

current progress in utilizing these techniques for identification of cardiovascular diseases.  

Principles of chemical microscopy and recent enabling advances 

Mid-infrared spectroscopy and Raman spectroscopy enable chemical microscopy in the sense 

that they can quantify chemical constituents and map it on the tissue slide. Therefore, vital 

macromolecules such as collagen proteins, nucleic acids, and glycogen levels can be analyzed 

and their distribution of tissue can be assessed. Therefore, these techniques have four-fold 

potential in assessing cardiovascular diseases. First, mid-infrared chemical imaging can assess 

collagen level variations in tissue which is correlated with fibrosis. Second, high glycogen levels 

in tissue are indicative of early ischemia. There is no established way to observe this elevation 

on tissue section currently but is possible through chemical imaging. Third, apart from 

identification of high collagen and glycogen levels, infrared microscopy can utilize variation in 

multiple chemical species present in tissue to digitally stain the tissue without the need of stains. 

It is, therefore, possible to identify different cell populations present in a tissue section, enabling 

identification of many cardiovascular diseases, for example, transplant rejection. Fourth, digital 

pathology data obtained through chemical imaging can be integrated with patient data such as 

age, weight, and various risk factors to give a personalized diagnosis and prediction of disease 

outcome. This makes chemical imaging the next generation smart imaging and detection 

technique with vast potential remaining to be tapped.  

Raman spectroscopy 

A detailed review has already been written discussing Raman spectroscopy and utilizing it for 

detection of transplant allograft rejection75. In addition, since myocardial infarction and 

subsequent repair causes significant biochemical changes, it is also possible to observe these 

changes through Raman spectroscopy76. Damage in collagen fiber regions can be analyzed in 

nondestructive manner77 and many metabolites such as glucose, cholesterol and lipids can be 

assessed in the blood which are known risk factors associated with atherosclerotic cardiovascular 

diseases78. A recent study reported high specificity (greater than 98%) and high sensitivity 

(greater than 96%) in the identification of normal, necrotic, granulated and fibrotic tissue 
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obtained from rats, establishing label-free Raman spectroscopy to evaluate myocardial 

infarction79. This technique has also been used in past to diagnose coronary atherosclerosis80–83. 

Through optical fiber-based probes, Raman spectroscopy can be used to identify atherosclerosis 

and monitor its progress, predict plaque rupture and determine therapy83,84 and such a method 

can be useful in stainless probing of diseases in situ using Raman spectroscopy. 

Mid-infrared spectroscopy 

Mid-infrared spectroscopy based disease recognition has been applied in two major 

cardiovascular fields in past. First is assessing calcifications and characterizing atherlosclerotic 

plaques to determine vulnerable plaques. In one study, mechanism of aortic valve calcification 

was elucidated using infrared spectroscopy which showed that amorphous calcium phosphate 

salts could be detected using infrared spectroscopy which was not analyzable through X-rays85. 

In addition, qualitative and quantitative measurement of lipid content, as well as changes in 

protein structure in atherosclerotic plaque, can be performed using infrared spectroscopy86–88. 

The water content in tissue can cause strong absorbance in the IR spectrum when tissue is imaged 

in situ, but water subtraction algorithms can be applied to remove its contribution to characterize 

atherosclerotic plaques89,90.  

In the second approach, changes in myocardium pertaining with lipids, proteins, and collagen 

content have been studied using infrared chemical imaging. Wang et al91 studied hamster models 

to identify differences in inflammatory response between immune resistant and immuno-

permissive mouse models and identified chemical differences between the two in terms of 

lipid/protein ratio and collagen content. Another study utilized rat models to study collagen 

deposition post myocardial infarction and identified a strong correlation between FT-IR data and 

trichrome stain as well as immunohistochemical staining of collagen type I92. Studies cited above 

and others93 show that extracellular matrix components such as collagen and elastin are crucial 

to identifying many cardiovascular diseases. Probe-based IR imaging instruments are already 

being developed and tested on animal models to quantify collagen levels which pave way for in 

situ studies94. 
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Impressive progress has been made in the identification of abnormality in tissues, but such 

developments have not been sufficient for clinical translation due to (a) the need of high accuracy 

and (b) ability to image tissue comparable to the gold standard of histopathology. Many in vivo 

techniques have been developed but they fail on the first count and cannot accomplish the second. 

In some cases, point based detection suffices, but nevertheless, capabilities to perform imaging 

need to be developed further as they form the basis for future with much greater information 

content and ability to integrate patient data for greater diagnostic and prognostic accuracy.  

In a past study published from our lab, we identified and digitally stained lymphocyte infiltration 

and fibrosis in endomyocardial biopsy samples from cardiac transplants95. Using infrared 

spectroscopy, high accuracy was obtained when the stain was compared to the pathologists’ 

interpretation of H&E stain. In terms of utility, infrared imaging based stains can significantly 

reduce the sources of false positives and false negatives during the analysis that can arise from 

human errors in sample handling, preparation and interpretation. In past, the chief concern in 

translating this idea to clinics was the speed limitation of conventional infrared imaging systems. 

However, with the advent of quantum cascade laser (QCL) imaging instruments, imaging 

specific bands to probe molecular information has become at least 10 times faster. In recent tests 

conducted in our lab, we found that high accuracy was retained when using QCL for imaging 

cardiac biopsy samples (unpublished results). This is a huge leap in terms of how samples are 

analyzed and interpreted currently, and the hope is to develop next generation imaging techniques 

for rapid detection of diseases using inherent tissue chemistry. Our findings also open up paths 

to faster and accurate histological analysis of tissues, bringing us closer to the goal of intra-

operative and in-vivo imaging.  

In conclusion, infrared based chemical imaging has seen major advancements recently with a 

potential to grow much more. An integrated solution has to be made by jointly considering the 

benefits and limitations of current and oncoming technologies. A major advantage offered by 

infrared spectroscopy is the chemical signature of tissue which can be used in conjugation of 

existing technologies to give a greater level of information associated with the sample. Touch 

based probes, while in their infancy are being tested and would soon become accessible to the 

clinics with well-developed computational protocols. Along with capabilities of integrating 
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patient information and capability of assessing tissue damage real time, this makes infrared 

spectroscopy a strong candidate for assisting surgeons using intraoperative probes.  

References 

1.  Mozaffarian D, Benjamin EJ, Go AS, et al. Heart Disease and Stroke Statistics-2015 

Update: A Report From the American Heart Association. Circulation 2014;131(4):e29-

322. doi:10.1161/CIR.0000000000000152. 

2.  Fuster V, Kim RJ. Frontiers in cardiovascular magnetic resonance. Circulation 

2005;112(1):135-44. doi:10.1161/01.CIR.0000155618.37779.A0. 

3.  Wang J, Balu N, Canton G, Yuan C. Imaging biomarkers of cardiovascular disease. J. 

Magn. Reson. Imaging 2010;32(3):502-515. doi:10.1002/jmri.22266. 

4.  Watanabe Y, Nagayama M. MR plaque imaging of the carotid artery. Neuroradiology 

2010;52(4):253-74. doi:10.1007/s00234-010-0663-z. 

5.  Corti R, Fuster V. Imaging of atherosclerosis: magnetic resonance imaging. Eur. Heart 

J. 2011;32(14):1709-19b. doi:10.1093/eurheartj/ehr068. 

6.  Oikawa M, Ota H, Takaya N, Miller Z, Hatsukami TS, Yuan C. Carotid magnetic 

resonance imaging. A window to study atherosclerosis and identify high-risk plaques. 

Circ. J. 2009;73(10):1765-73. 

7.  Balu N, Wang J, Dong L, Baluyot F, Chen H, Yuan C. Current techniques for MR 

imaging of atherosclerosis. Top. Magn. Reson. Imaging 2009;20(4):203-15. 

doi:10.1097/RMR.0b013e3181ea287d. 

8.  La Gerche A, Claessen G, Van de Bruaene A, et al. Cardiac MRI: a new gold standard 

for ventricular volume quantification during high-intensity exercise. Circ. Cardiovasc. 

Imaging 2013;6(2):329-38. doi:10.1161/CIRCIMAGING.112.980037. 

9.  Di Carli MF, Dorbala S, Hachamovitch R. Integrated cardiac PET-CT for the diagnosis 

and management of CAD. J. Nucl. Cardiol. 2006;13(2):139-44. 



10 
 

doi:10.1016/j.nuclcard.2006.02.007. 

10.  Knaapen P, de Haan S, Hoekstra OS, et al. Cardiac PET-CT: advanced hybrid imaging 

for the detection of coronary artery disease. Neth. Heart J. 2010;18(2):90-8. 

11.  Kaufmann PA, Di Carli MF. Hybrid SPECT/CT and PET/CT imaging: the next step in 

noninvasive cardiac imaging. Semin. Nucl. Med. 2009;39(5):341-7. 

doi:10.1053/j.semnuclmed.2009.03.007. 

12.  Flotats A, Knuuti J, Gutberlet M, et al. Hybrid cardiac imaging: SPECT/CT and 

PET/CT. A joint position statement by the European Association of Nuclear Medicine 

(EANM), the European Society of Cardiac Radiology (ESCR) and the European Council 

of Nuclear Cardiology (ECNC). Eur. J. Nucl. Med. Mol. Imaging 2011;38(1):201-12. 

doi:10.1007/s00259-010-1586-y. 

13.  Namdar M, Hany TF, Koepfli P, et al. Integrated PET/CT for the Assessment of 

Coronary Artery Disease: A Feasibility Study. J. Nucl. Med. 2005;46(6):930-935. 

14.  Di Carli MF, Murthy VL. Cardiac PET/CT for the evaluation of known or suspected 

coronary artery disease. Radiographics 2011;31(5):1239-54. doi:10.1148/rg.315115056. 

15.  Di Carli MF, Dorbala S, Meserve J, El Fakhri G, Sitek A, Moore SC. Clinical 

myocardial perfusion PET/CT. J. Nucl. Med. 2007;48(5):783-93. 

doi:10.2967/jnumed.106.032789. 

16.  Lakatta EG. Age-associated Cardiovascular Changes in Health: Impact on 

Cardiovascular Disease in Older Persons. Heart Fail. Rev. 7(1):29-49. 

doi:10.1023/A:1013797722156. 

17.  Allison SJ. Cardiovascular disease: progression of coronary artery calcification in 

patients with type 1 diabetes mellitus with and without kidney disease. Nat. Rev. 

Nephrol. 2013;9(9):494. doi:10.1038/nrneph.2013.142. 

18.  Wu LL. Review of risk factors for cardiovascular diseases. Ann. Clin. Lab. Sci. 



11 
 

29(2):127-33. 

19.  Mozaffarian D, Wilson PWF, Kannel WB. Beyond established and novel risk factors: 

lifestyle risk factors for cardiovascular disease. Circulation 2008;117(23):3031-8. 

doi:10.1161/CIRCULATIONAHA.107.738732. 

20.  Debra L. Parker PCCC, Mary Ann Tucker P, Teresa K. Hoffmann PCCC. Emerging risk 

factors and risk markers for cardiovascular disease: Looking beyond NCEP ATP III. 

2009. 

21.  Vasan RS. Biomarkers of cardiovascular disease: molecular basis and practical 

considerations. Circulation 2006;113(19):2335-62. 

doi:10.1161/CIRCULATIONAHA.104.482570. 

22.  Persidis A. Cardiovascular disease drug discovery. Nat. Biotechnol. 1999;17(9):930-1. 

doi:10.1038/12935. 

23.  Pearson TA. Markers of Inflammation and Cardiovascular Disease: Application to 

Clinical and Public Health Practice: A Statement for Healthcare Professionals From the 

Centers for Disease Control and Prevention and the American Heart Association. 

Circulation 2003;107(3):499-511. doi:10.1161/01.CIR.0000052939.59093.45. 

24.  Ridker PM. Clinical Application of C-Reactive Protein for Cardiovascular Disease 

Detection and Prevention. Circulation 2003;107(3):363-369. 

doi:10.1161/01.CIR.0000053730.47739.3C. 

25.  Ridker PM. Cardiology Patient Page. C-reactive protein: a simple test to help predict risk 

of heart attack and stroke. Circulation 2003;108(12):e81-5. 

doi:10.1161/01.CIR.0000093381.57779.67. 

26.  Kritchevsky SB, Cesari M, Pahor M. Inflammatory markers and cardiovascular health in 

older adults. Cardiovasc. Res. 2005;66(2):265-75. doi:10.1016/j.cardiores.2004.12.026. 

27.  Pai JK, Pischon T, Ma J, et al. Inflammatory markers and the risk of coronary heart 



12 
 

disease in men and women. N. Engl. J. Med. 2004;351(25):2599-610. 

doi:10.1056/NEJMoa040967. 

28.  Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of 

inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 

2000;342(12):836-43. doi:10.1056/NEJM200003233421202. 

29.  Previtali E, Bucciarelli P, Passamonti SM, Martinelli I. Risk factors for venous and 

arterial thrombosis. Blood Transfus. 2011;9(2):120-38. doi:10.2450/2010.0066-10. 

30.  Franco RF, Reitsma PH. Genetic risk factors of venous thrombosis. Hum. Genet. 

2001;109(4):369-84. doi:10.1007/s004390100593. 

31.  Koster T, Rosendaal FR, Reitsma PH, van der Velden PA, Briët E, Vandenbroucke JP. 

Factor VII and fibrinogen levels as risk factors for venous thrombosis. A case-control 

study of plasma levels and DNA polymorphisms--the Leiden Thrombophilia Study 

(LETS). Thromb. Haemost. 1994;71(6):719-22. 

32.  Kamphuisen PW, Eikenboom JCJ, Bertina RM. Elevated Factor VIII Levels and the 

Risk of Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2001;21(5):731-738. 

doi:10.1161/01.ATV.21.5.731. 

33.  Adams J, Apple F. Cardiology patient page. New blood tests for detecting heart disease. 

Circulation 2004;109(3):E12-4. doi:10.1161/01.CIR.0000114134.03187.7B. 

34.  Kathiresan S, Srivastava D. Genetics of human cardiovascular disease. Cell 

2012;148(6):1242-57. doi:10.1016/j.cell.2012.03.001. 

35.  Marian AJ. Recent developments in cardiovascular genetics and genomics. Circ. Res. 

2014;115(7):e11-7. doi:10.1161/CIRCRESAHA.114.305054. 

36.  Thanassoulis G, Campbell CY, Owens DS, et al. Genetic associations with valvular 

calcification and aortic stenosis. N. Engl. J. Med. 2013;368(6):503-12. 

doi:10.1056/NEJMoa1109034. 



13 
 

37.  Glessner JT, Bick AG, Ito K, et al. Increased frequency of de novo copy number variants 

in congenital heart disease by integrative analysis of single nucleotide polymorphism 

array and exome sequence data. Circ. Res. 2014;115(10):884-96. 

doi:10.1161/CIRCRESAHA.115.304458. 

38.  Marian AJ. Copy number variants and the genetic enigma of congenital heart disease. 

Circ. Res. 2014;115(10):821-3. doi:10.1161/CIRCRESAHA.114.305243. 

39.  Misra C, Chang S-W, Basu M, Huang N, Garg V. Disruption of myocardial Gata4 and 

Tbx5 results in defects in cardiomyocyte proliferation and atrioventricular septation. 

Hum. Mol. Genet. 2014;23(19):5025-35. doi:10.1093/hmg/ddu215. 

40.  Papait R, Cattaneo P, Kunderfranco P, et al. Genome-wide analysis of histone marks 

identifying an epigenetic signature of promoters and enhancers underlying cardiac 

hypertrophy. Proc. Natl. Acad. Sci. U. S. A. 2013;110(50):20164-9. 

doi:10.1073/pnas.1315155110. 

41.  Papait R, Greco C, Kunderfranco P, Latronico MVG, Condorelli G. Epigenetics: a new 

mechanism of regulation of heart failure? Basic Res. Cardiol. 2013;108(4):361. 

doi:10.1007/s00395-013-0361-1. 

42.  Christodoulou DC, Wakimoto H, Onoue K, et al. 5’RNA-Seq identifies Fhl1 as a genetic 

modifier in cardiomyopathy. J. Clin. Invest. 2014;124(3):1364-70. 

doi:10.1172/JCI70108. 

43.  Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast 

agents for in-vivo bioimaging: current status and future perspectives. Anal. Bioanal. 

Chem. 2011;399(1):3-27. doi:10.1007/s00216-010-4207-5. 

44.  Pourmand A, Pourmand MR, Wang J, Shesser R. Application of nanomedicine in 

emergency medicine; Point-of-care testing and drug delivery in twenty - first century. 

Daru 2012;20(1):26. doi:10.1186/2008-2231-20-26. 

45.  Bucerius J, Mani V, Wong S, et al. Arterial and fat tissue inflammation are highly 



14 
 

correlated: a prospective 18F-FDG PET/CT study. Eur. J. Nucl. Med. Mol. Imaging 

2014;41(5):934-45. doi:10.1007/s00259-013-2653-y. 

46.  Chen W, Dilsizian V. (18)F-fluorodeoxyglucose PET imaging of coronary 

atherosclerosis and plaque inflammation. Curr. Cardiol. Rep. 2010;12(2):179-84. 

doi:10.1007/s11886-010-0095-8. 

47.  Hiari N, Rudd JHF. FDG PET imaging and cardiovascular inflammation. Curr. Cardiol. 

Rep. 2011;13(1):43-8. doi:10.1007/s11886-010-0150-5. 

48.  Saam T, Rominger A, Wolpers S, et al. Association of inflammation of the left anterior 

descending coronary artery with cardiovascular risk factors, plaque burden and 

pericardial fat volume: a PET/CT study. Eur. J. Nucl. Med. Mol. Imaging 

2010;37(6):1203-12. doi:10.1007/s00259-010-1432-2. 

49.  Bucerius J, Mani V, Moncrieff C, et al. Optimizing 18F-FDG PET/CT imaging of vessel 

wall inflammation: the impact of 18F-FDG circulation time, injected dose, uptake 

parameters, and fasting blood glucose levels. Eur. J. Nucl. Med. Mol. Imaging 

2014;41(2):369-83. doi:10.1007/s00259-013-2569-6. 

50.  Chen W, Kim J, Molchanova-Cook OP, Dilsizian V. The potential of FDG PET/CT for 

early diagnosis of cardiac device and prosthetic valve infection before morphologic 

damages ensue. Curr. Cardiol. Rep. 2014;16(3):459. doi:10.1007/s11886-013-0459-y. 

51.  Friedrich MG, Strohm O, Schulz-Menger J, Marciniak H, Luft FC, Dietz R. Contrast 

Media Enhanced Magnetic Resonance Imaging Visualizes Myocardial Changes in the 

Course of Viral Myocarditis. Circulation 1998;97(18):1802-1809. 

doi:10.1161/01.CIR.97.18.1802. 

52.  Flacke S, Fischer S, Scott MJ, et al. Novel MRI Contrast Agent for Molecular Imaging 

of Fibrin: Implications for Detecting Vulnerable Plaques. Circulation 

2001;104(11):1280-1285. doi:10.1161/hc3601.094303. 

53.  Reiter T, Ritter O, Prince MR, et al. Minimizing risk of nephrogenic systemic fibrosis in 



15 
 

cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2012;14:31. 

doi:10.1186/1532-429X-14-31. 

54.  Huang C-H, Nwe K, Al Zaki A, Brechbiel MW, Tsourkas A. Biodegradable 

polydisulfide dendrimer nanoclusters as MRI contrast agents. ACS Nano 

2012;6(11):9416-24. doi:10.1021/nn304160p. 

55.  Pan D, Schmieder AH, Wickline SA, Lanza GM. Manganese-based MRI contrast 

agents: past, present and future. Tetrahedron 2011;67(44):8431-8444. 

doi:10.1016/j.tet.2011.07.076. 

56.  Yilmaz A, Rösch S, Klingel K, et al. Magnetic resonance imaging (MRI) of inflamed 

myocardium using iron oxide nanoparticles in patients with acute myocardial infarction - 

preliminary results. Int. J. Cardiol. 2013;163(2):175-82. 

doi:10.1016/j.ijcard.2011.06.004. 

57.  von Bary C, Makowski M, Preissel A, et al. MRI of coronary wall remodeling in a swine 

model of coronary injury using an elastin-binding contrast agent. Circ. Cardiovasc. 

Imaging 2011;4(2):147-55. doi:10.1161/CIRCIMAGING.109.895607. 

58.  McAteer MA, Choudhury RP. Targeted molecular imaging of vascular inflammation in 

cardiovascular disease using nano- and micro-sized agents. Vascul. Pharmacol. 

2013;58(1-2):31-8. doi:10.1016/j.vph.2012.10.005. 

59.  Auer R, Bauer DC, Marques-Vidal P, et al. Association of major and minor ECG 

abnormalities with coronary heart disease events. JAMA 2012;307(14):1497-505. 

doi:10.1001/jama.2012.434. 

60.  De Bacquer D, De Backer G, Kornitzer M, Blackburn H. Prognostic value of ECG 

findings for total, cardiovascular disease, and coronary heart disease death in men and 

women. Heart 1998;80(6):570-577. doi:10.1136/hrt.80.6.570. 

61.  Kannel WB, Kannel C, Paffenbarger RS, Cupples LA. Heart rate and cardiovascular 

mortality: The Framingham study. Am. Heart J. 1987;113(6):1489-1494. 



16 
 

doi:10.1016/0002-8703(87)90666-1. 

62.  Moyer VA. Screening for coronary heart disease with electrocardiography: U.S. 

Preventive Services Task Force recommendation statement. Ann. Intern. Med. 

2012;157(7):512-8. doi:10.7326/0003-4819-157-7-201210020-00514. 

63.  Frangioni J. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 

2003;7(5):626-634. doi:10.1016/j.cbpa.2003.08.007. 

64.  Nakayama A, del Monte F, Hajjar RJ, Frangioni J V. Functional near-infrared 

fluorescence imaging for cardiac surgery and targeted gene therapy. Mol. Imaging 

2002;1(4):365-77. 

65.  Chen J, Tung C-H, Allport JR, Chen S, Weissleder R, Huang PL. Near-infrared 

fluorescent imaging of matrix metalloproteinase activity after myocardial infarction. 

Circulation 2005;111(14):1800-5. doi:10.1161/01.CIR.0000160936.91849.9F. 

66.  Schenke-Layland K, Riemann I, Stock UA, König K. Imaging of cardiovascular 

structures using near-infrared femtosecond multiphoton laser scanning microscopy. J. 

Biomed. Opt. 2005;10(2):024017. doi:10.1117/1.1896966. 

67.  Moreno PR. Detection of Lipid Pool, Thin Fibrous Cap, and Inflammatory Cells in 

Human Aortic Atherosclerotic Plaques by Near-Infrared Spectroscopy. Circulation 

2002;105(8):923-927. doi:10.1161/hc0802.104291. 

68.  Jaffer FA, Tung C-H, Wykrzykowska JJ, et al. Molecular imaging of factor XIIIa 

activity in thrombosis using a novel, near-infrared fluorescent contrast agent that 

covalently links to thrombi. Circulation 2004;110(2):170-6. 

doi:10.1161/01.CIR.0000134484.11052.44. 

69.  Gardner CM, Tan H, Hull EL, et al. Detection of lipid core coronary plaques in autopsy 

specimens with a novel catheter-based near-infrared spectroscopy system. JACC. 

Cardiovasc. Imaging 2008;1(5):638-48. doi:10.1016/j.jcmg.2008.06.001. 



17 
 

70.  Waxman S, Dixon SR, L’Allier P, et al. In vivo validation of a catheter-based near-

infrared spectroscopy system for detection of lipid core coronary plaques: initial results 

of the SPECTACL study. JACC. Cardiovasc. Imaging 2009;2(7):858-68. 

doi:10.1016/j.jcmg.2009.05.001. 

71.  Hilderbrand SA, Weissleder R. Near-infrared fluorescence: application to in vivo 

molecular imaging. Curr. Opin. Chem. Biol. 2010;14(1):71-9. 

doi:10.1016/j.cbpa.2009.09.029. 

72.  Jaffer FA, Calfon MA, Rosenthal A, et al. Two-dimensional intravascular near-infrared 

fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced 

vascular injury. J. Am. Coll. Cardiol. 2011;57(25):2516-26. 

doi:10.1016/j.jacc.2011.02.036. 

73.  Tanaka E, Chen FY, Flaumenhaft R, Graham GJ, Laurence RG, Frangioni J V. Real-

time assessment of cardiac perfusion, coronary angiography, and acute intravascular 

thrombi using dual-channel near-infrared fluorescence imaging. J. Thorac. Cardiovasc. 

Surg. 2009;138(1):133-40. doi:10.1016/j.jtcvs.2008.09.082. 

74.  Sevick-Muraca EM. Translation of near-infrared fluorescence imaging technologies: 

emerging clinical applications. Annu. Rev. Med. 2012;63:217-31. doi:10.1146/annurev-

med-070910-083323. 

75.  Tu Q, Chang C. Diagnostic applications of Raman spectroscopy. Nanomedicine 

2012;8(5):545-58. doi:10.1016/j.nano.2011.09.013. 

76.  Huser T, Chan J. Raman spectroscopy for physiological investigations of tissues and 

cells. Adv. Drug Deliv. Rev. 2015;89:57-70. doi:10.1016/j.addr.2015.06.011. 

77.  Votteler M, Carvajal Berrio DA, Pudlas M, Walles H, Stock UA, Schenke-Layland K. 

Raman spectroscopy for the non-contact and non-destructive monitoring of collagen 

damage within tissues. J. Biophotonics 2012;5(1):47-56. doi:10.1002/jbio.201100068. 

78.  Borges R de CF, Navarro RS, Giana HE, Tavares FG, Fernandes AB, Silveira Junior L. 



18 
 

Detecting alterations of glucose and lipid components in human serum by near-infrared 

Raman spectroscopy. Res. Biomed. Eng. 2015;31(2):160-168. doi:10.1590/2446-

4740.0593. 

79.  Nishiki-Muranishi N, Harada Y, Minamikawa T, et al. Label-free evaluation of 

myocardial infarction and its repair by spontaneous Raman spectroscopy. Anal. Chem. 

2014;86(14):6903-10. doi:10.1021/ac500592y. 

80.  Buschman HP, Motz JT, Deinum G, et al. Diagnosis of human coronary atherosclerosis 

by morphology-based Raman spectroscopy. Cardiovasc. Pathol. 10(2):59-68. 

81.  Buschman HP, Deinum G, Motz JT, et al. Raman microspectroscopy of human coronary 

atherosclerosis: biochemical assessment of cellular and extracellular morphologic 

structures in situ. Cardiovasc. Pathol. 10(2):69-82. 

82.  Peres MB, Silveira L, Zângaro RA, Pacheco MTT, Pasqualucci CA. Classification 

model based on Raman spectra of selected morphological and biochemical tissue 

constituents for identification of atherosclerosis in human coronary arteries. Lasers Med. 

Sci. 2011;26(5):645-55. doi:10.1007/s10103-011-0908-z. 

83.  van de Poll SWE, Römer TJ, Puppels GJ, van der Laarse A. Imaging of atherosclerosis. 

Raman spectroscopy of atherosclerosis. J. Cardiovasc. Risk 2002;9(5):255-61. 

84.  Römer TJ, Brennan JF, Fitzmaurice M, et al. Histopathology of human coronary 

atherosclerosis by quantifying its chemical composition with Raman spectroscopy. 

Circulation 1998;97(9):878-885. 

85.  Dritsa V, Pissaridi K, Koutoulakis E, Mamarelis I, Kotoulas C, Anastassopoulou J. An 

infrared spectroscopic study of aortic valve. A possible mechanism of calcification and 

the role of magnesium salts. In Vivo 2014;28:91-8. 

86.  P. Wrobel T, Mateuszuk L, Chlopicki S, Malek K, Baranska M. Imaging of lipids in 

atherosclerotic lesion in aorta from ApoE/LDLR−/− mice by FT-IR spectroscopy and 

Hierarchical Cluster Analysis. Analyst 2011;136:5247. doi:10.1039/c1an15311k. 



19 
 

87.  Kodali DR, Small DM, Powell J, Krishnan K. Infrared Micro-imaging of Atherosclerotic 

Arteries. Appl. Spectrosc. 1991;45:1310-1317. doi:10.1366/0003702914335878. 

88.  Wrobel TP, Majzner K, Baranska M. Protein profile in vascular wall of atherosclerotic 

mice analyzed ex vivo using FT-IR spectroscopy. Spectrochim. Acta - Part A Mol. 

Biomol. Spectrosc. 2012;96:940-945. doi:10.1016/j.saa.2012.07.103. 

89.  Manoharan R, Baraga JJ, Rava RP, Dasari RR, Fitzmaurice M, Feld MS. Biochemical 

analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy. 

Atherosclerosis 1993;103:181-193. doi:10.1016/0021-9150(93)90261-R. 

90.  Baraga JJ, Feld MS, Rava RP. Detection of Atherosclerosis in Human Artery by Mid-

Infrared Attenuated Total Reflectance. Appl. Spectrosc. 1991;45(4):709-711. 

doi:10.1366/0003702914337047. 

91.  Wang Q, Sanad W, Miller LM, et al. Infrared imaging of compositional changes in 

inflammatory cardiomyopathy. Vib. Spectrosc. 2005;38(1-2):217-222. 

doi:10.1016/j.vibspec.2005.02.011. 

92.  Cheheltani R, Wang B, Sabri A, Pleshko N, Kiani M. Fourier transform infrared imaging 

spectroscopy of collagen deposition after myocardial infarction. In: 2012 38th Annual 

Northeast Bioengineering Conference (NEBEC). IEEE; 2012:305-306. 

doi:10.1109/NEBC.2012.6207086. 

93.  Yang TT, Weng SF, Zheng N, et al. Histopathology mapping of biochemical changes in 

myocardial infarction by Fourier transform infrared spectral imaging. Forensic Sci. Int. 

2011;207(1-3):e34-9. doi:10.1016/j.forsciint.2010.12.005. 

94.  Cheheltani R, McGoverin CM, Rao J, Vorp DA, Kiani MF, Pleshko N. Fourier 

transform infrared spectroscopy to quantify collagen and elastin in an in vitro model of 

extracellular matrix degradation in aorta. Analyst 2014;139(12):3039-47. 

doi:10.1039/c3an02371k. 

95.  Tiwari S, Reddy VB, Bhargava R, Raman J. Computational chemical imaging for 



20 
 

cardiovascular pathology: chemical microscopic imaging accurately determines cardiac 

transplant rejection. PLoS One 2015;10(5):e0125183. 

doi:10.1371/journal.pone.0125183. 

 



21 
 

CHAPTER 1 

Computational Imaging for Cardiovascular Pathology: Chemical Microscopic Imaging 

Accurately Determines Cardiac Transplant Rejection1 

 

Abstract  

Rejection is a common problem after cardiac transplants leading to significant number of adverse 

events and deaths, particularly in the first year of transplantation. The gold standard to identify 

rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot 

of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology 

cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to 

develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR) 

spectroscopic imaging to identify different components of cardiac tissue by their chemical and 

molecular basis aided by computer recognition, rather than by visual examination using optical 

microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate 

efficacy in an example of complex cardiovascular pathology. We recorded data from human 

cardiac transplant patients’ biopsies, used a Bayesian classification protocol and developed a 

visualization scheme to observe chemical differences without the need of stains or human 

supervision. Using receiver operating characteristic curves, we observed probabilities of 

detection greater than 95% for four out of five histological classes at 10% probability of false 

alarm at the cellular level while correctly identifying samples with the hallmarks of the immune 

response in all cases. The efficacy of manual examination can be significantly increased by 

observing the inherent biochemical changes in tissues, which enables us to achieve greater 

diagnostic confidence in an automated, label-free manner. We developed a computational 

pathology system that gives high contrast images and seems superior to traditional staining 

                                                           
1 Reprinted, with permission, from Saumya Tiwari, Vijaya B. Reddy, Rohit Bhargava, and Jaishankar Raman. "Computational Chemical 

Imaging for Cardiovascular Pathology: Chemical Microscopic Imaging Accurately Determines Cardiac Transplant Rejection."PloS one 

10, no. 5 (2015): e0125183. doi:10.1371/journal.pone.0125183 
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procedures.  This study is a prelude to the development of real time in situ imaging systems, 

which can assist interventionists and surgeons actively during procedures. 

Introduction  

The success of cardiac transplantation depends foremost on the immune response to the new 

implant1. The gold standard for identifying allograft rejection is endomyocardial biopsy (EMB)2. 

Endomyocardial biopsy section from a normal heart consists mostly of myocardium which is 

unoriented and appears red-tan. The tissue section is bordered by the overlying endocardium 

which is pearly white in appearance3. In case of cardiac transplant, an activation of the immune 

system can cause severe inflammation which can result in transplant rejection and eventual death 

of patient. Grade of acute cellular rejection, as defined by the revised ISHLT (International 

Society for Heart & Lung Transplantation) heart biopsy grading scale4 is determined by the 

presence of infiltrate and associated myocyte damage. Grade 0 signifies no rejection while grade 

2 (mild rejection), 3 (moderate rejection) and 4 (severe rejection) requires assessing the number 

of foci of infiltrate and associated myocardium damage. Prolonged tissue damage, which could 

be a result of immune attack, injury or toxins etc. may result in deposition of extracellular matrix 

components at the site of damage, leading to a condition termed as fibrosis5-7. Such an 

observation of fibrosis is important in assessing myocardium damage in case of allograft 

rejection. For a detailed description of histopathology associated with cardiac allograph rejection, 

the readers are directed to available literature3-5.  

In routine cases of monitoring allograft reception, biopsy sections are stained and the 

inflammatory response is observed, which is predominantly lymphocytic3. This approach suffers 

from inter-observer variability and an inability to quantify accuracy and confidence in data8-9. 

The estimation variance complicates decision-making. For example, misinterpretation of fibrosis 

through the sub-endocardium can give the erroneous impression of extensive fibrosis2 and can 

cause false positives. The subjective nature of histopathological assessment and the apparent 

potential for errors has long been recognized and debated upon10-11. This has led to development 

of immunohistochemistry for diagnostic purposes by evaluation of specific biomarkers11-12 but 

this technique can get affected from variations in sample preparation, fixation procedures, 

antibody specificity and similar other experimental details12 .There is a need, therefore, to explore 
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technologies that can make routine histopathological examinations more accurate, consistent, 

facile and reliable.  

As opposed to the standard practice of staining tissue with dyes or molecular imaging of specific 

epitopes, the emerging technology of chemical imaging can utilize the inherent molecular 

contrast within samples to provide histologic data. One approach in particular, infrared (IR) 

spectroscopic imaging, offers strong contrast, high sensitivity and rapid data recording. It has 

shown potential broadly in biomedical applications for understanding metabolomics and 

molecular diagnostics13-14. Combined with computer algorithms, IR imaging has been used for 

differentiating between diverse cell types in tissues and for detecting disease15-17. Several studies 

related to cardiovascular systems have reported spectral analysis of tissue and disease in terms 

of resulting biochemical changes. Infrared imaging has been used to study calcifications in aortic 

valve18, for characterizing heart valves19, studying diabetes induced changes in myocardium and 

vessels20-23, for analyzing cardiac extracellular matrix (ECM) remodeling24; and ECM and serum 

components following myocardial infarction25-28. While these studies successfully demonstrate 

differentiation between diseased and healthy tissue via lipid and protein composition and 

collagen content, a histologic analysis consistent with existing pathology practice is lacking. 

Characterization of atherosclerotic plaques29-35 is a step towards clinically-actionable 

information. However, a practical assay to diagnose conditions and provide actionable 

information is still lacking. One step in this direction is to utilize digital information obtained 

from FT-IR spectroscopy and develop a classification protocol which can assign cell identifier 

value to each pixel on the tissue image. Such classification systems, which require multivariate 

analysis have been attempted for identification of various cell types in cancer but very little work 

is found in diseases related to heart36-37. Specifically in case of identification of cardiac allograft 

rejection, we require an automated detection system that has ability to distinguish not only 

between different cell types but more importantly correctly identify lymphocytes. Identification 

of lymphocytes is also critically needed as it has potential importance in assessment of many 

more diseases, for example, identification of tumor infiltrating lymphocytes is also of great 

interest, and a recent study has sought to identify lymphocytic signature in peripheral blood 

samples38. Another study has utilized unsupervised clustering algorithm to obtain impressive 

identification of B and T cells in a single patient sample using infrared spectroscopy39. However, 
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when analyzing multiple patient samples, accounting for point-to-point variations in the samples 

and across samples is difficult via unsupervised classifications, leading to reduction in accuracy.  

The work presented in this manuscript takes this goal of identifying lymphocytes one step further 

by classifying infiltrating lymphocytes spatially in a biopsy section using supervised 

classification algorithms of infrared spectroscopy data. Given the complexity and expertise 

required when conventional pathology is used to diagnose transplant rejection in the heart, we 

used chemical imaging to see if it could provide the necessary diagnoses and visualizations useful 

in clinical practice. We utilized differences in the infrared absorbance patterns among different 

histological classes to develop an automated system where the digital input of IR spectroscopy 

data yielded a computationally colored image showing different classes similar to what one 

would obtain using rigorous staining procedures. 

 

Materials and methods 

 

Sample procurement  

Written consent was obtained in all patients for study of their archived pathological specimens. 

The consents were recorded and maintained securely and separately. The consent process for this 

study was reviewed by the IRB at Rush University Medical Center and approved. All specimens 

were anonymized, de-identified and no clinical or demographic information was recorded. Thirty 

five anonymized human EMB sections from ten patients, formalin fixed and paraffin embedded 

were examined. The biopsies were taken using a bioptome, which is an instrument inserted 

through the internal jugular vein, and directed under fluoroscopy to be positioned in the right 

ventricle. The biopsies are then taken as small pieces of tissue, typically measuring 1 mm x 1 

mm x1 mm. The section thickness was 5µm. Of the thirty five sections obtained; three sections 

had to be discarded due to damage to the sections. Out of the 10 patients analyzed, patient 1-5 

had no rejection; thus counted as control. Patient 6, 7 and 8 had moderate rejection; and patient 

9 and 10 had mild rejection. In current practice, it is very rare to find samples with grade 4 severe 

rejection, and hence such samples could not be included in the study.  
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Sample preparation 

Samples were microtomed onto reflective low-emission (Low-E) glass slides for IR imaging. 

These slides provide a reflective substrate for the sample in IR light but are transparent to visible 

light. Although when using Low-E slides, the IR beams pass through the sample twice and suffers 

from distortions in the spectrum40-41, we have observed that standard preprocessing and treatment 

of data yields good classification results without performing rigorous corrections for distortions. 

Albeit using substrates like Calcium Fluoride and Barium Fluoride is preferable, Low-E slides 

are inexpensive and easy to maintain, making them more practical in clinical environment.   

Prior to acquiring IR data, paraffin was removed from the samples by washing them twice with 

hexane and immersion in hexane for 14 hours at room temperature with continuous stirring. 

Removal of paraffin was evident from the reduction of paraffin-associated CH bending peak at 

1464cm-1 (fig. 1). Furthermore, the spectral features used in our analysis were extracted from 

regions which are not affected by paraffin vibrational modes to ensure that any residual paraffin 

did not interfere with results.  

Fourier transform infrared imaging 

De-paraffinized sections were imaged under mid-infrared light on the IR imaging system. FT-IR 

imaging was performed using a Spotlight 400 system from Perkin Elmer. Spectra were collected 

using a liquid nitrogen cooled mercury-cadmium-telluride (MCT) 16-element 

linear array detector. The background was collected on a clear area of low-E slide at 4cm-1 

resolution using 120 scans for each sample. All images were acquired in reflection mode with 

6.25 µm x 6.25 µm pixel size and 4 cm-1 spectral resolution with 2cm-1 step size using a single 

interferometer scan with signal to noise ratio (SNR) exceeding 500:1 in all cases. Data was 

collected over the mid-infrared region and truncated for storage (800cm-1 to 4000cm-1). The 

image resolutions were nominally 6.25 µm and 25 µm. Since the samples were large, (smallest 

dimension being at least 500 µm for every section) and irregularly shaped, each image was 

acquired by breaking it down to 5-10 smaller rectangular regions and using raster scanning of 

these parts. Each region was separately focused by the instrument to remove any error due to 
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change in focus and the composite image was stitched back together using ENVI-IDL 

4.8(Environment for Visualizing Images-Interactive Data Language). Processing time for a 

square section of 1mm X 1mm at 6.25 µm, starting with imaging and obtaining computational 

stain was about 2 hours. Processing time for the same section at 25 µm was about 10 minutes. It 

has to be kept in mind that this imaging was performed by sweeping through all the wavenumber 

bands from 4000 cm-1 to 800 cm-1 at 4 cm-1 resolution. After building the classifier, one can 

realize that only a segment of this range is actually necessary for classification (discussed in 

results), and thus scanning at discrete frequencies for detection can enable reduction in imaging 

time by three folds or larger42-43.  

 

Hematoxylin and Eosin (H&E) staining 

Serial sections were preserved and stained with H&E for initial determination of rejection grade 

by the pathologist. In addition, after IR imaging was performed on sections, the sections on low-

E slides were stained with Hematoxylin and Eosin stains for future comparisons and imaged 

using Zeiss visible microscope. All the data analysis done in this manuscript used H&E images 

from same section imaged by infrared spectroscopy and not serial section. 

 

Data analysis 

Data pre-processing: Acquired data were imported in ENVI-IDL 4.8 software for analysis. A 

figure annotating important IR peak assignment is shown in supplementary figure 1. A very 

comprehensive table of band assignments of IR spectra of heart tissue is given in this study20 

which can also be referred to. Throughout the analysis, we excluded pixels without protein-

characteristic Amide I absorbance since all cells and ECM in this tissue will contain protein (see 

fig. 1). This was done by setting a threshold of minimum absorbance value corresponding to an 

absorbance of 0.30, which is at least 10-fold larger than the peak-to-peak noise in the data.  

Identification of histological features (classes): With the aim of understanding spectral 

differences in various components of the section and in order to build a Bayesian classifier for 
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automated classification of the sections, we first built a classification grid comprising of 16 

sections by combining data from 16 images in a single file. The breakdown of 16 chosen sections 

for classification training set was as follows:  3 sections from patient 1, 2 sections each from 

patient 5, 6,9,10 and 1 section each from patient 2, 3, 4, 7, and 8. Sections were chosen to 

sufficiently represent each class, namely Myocardium, Endocardium, Fibrosis (Endocardium), 

Fibrosis (Myocardium) and Lymphocytes and to provide maximum inter-patient diversity to the 

training set. Remaining sections were used for validation set. The breakdown of validation set 

was as follows: 2 sections each from patient 3, 4, 5, 6, 7, 8, and 9 and 1 section each from patient 

1 and 10.  

We then used the peak height of vibrational mode at 1236 cm−1 to see contrast between 

lymphocytes and muscle. The 1236 cm-1 peak is associated with CH2 wagging vibrations 

associated with proteins44-45; which was found to be useful in prima facie differentiation of 

different classes (see fig. 2). Five histological classes, namely, Myocardium, Endocardium, 

Fibrosis (Endocardium), Fibrosis (Myocardium) and Lymphocytes were considered for our 

analysis. After H&E staining of samples, regions were marked by pathologist as the above classes 

and this annotation was considered as gold standard46. Next, exact same regions were marked in 

IR images by comparison with pathologist-annotated H&E images from same sections. Care was 

taken to mark only those regions which clearly belonged to a particular class as seen from H&E 

images (gold standard, as described earlier46). This process yielded approximately 330,000 

spectra for training the classification algorithm. For each of the classes, a linear two point 

correction across peaks of interest or specific peaks was used. The points were fixed for all 

spectra in the sample. Spectra were normalized to amide I peak (1652 cm-1) to account for the 

variations in sample thickness47. We then extracted average spectra for each class, which is 

shown in fig. 1.  

 Bayesian classification algorithm: Our Bayesian classifier works by determining the likelihood 

that an unknown pixel belongs to a particular class by using biochemically significant features 

called metric parameters defined by the user. Each of these parameters can have different weights 

in the classification process depending on their ability to differentiate between classes. We used 

a protocol that has previously been established and validated44,48,49. Using the spectral differences 
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observed among the classes in training set (shown in fig. 1), we defined a set of 217 parameters 

using four types of spectral metrics (peak height ratio, peak area to height ratio, peak area to area 

ratio and center of gravity) to differentiate each class from the others. To begin with, normalized 

peak heights are considered as parameters for all peaks appearing in absorbance spectrum using 

peak height ratio with amide I peak. Next, other quantities, peak area to height ratio, peak area 

to area ratio and center of gravity are defined as metric parameters using peaks in the spectra by 

manual examination of the differences in spectra between classes. This gave us 217 metric 

parameters to analyze data with. The significance of these metrics is to reduce data to significant 

quantities which is readily analyzable44.   

Use of ratios instead of absolute values also ensures that these metric definitions are independent 

of variability in instrumentation and sample preparation steps. We evaluated these metrics in 

terms of their ability to separate the classes by using minimum error in identification of class and 

the area under the curve (AUC) for the Receiver Operating Characteristic (ROC). We further 

tested the Bayesian classifier built using these parameters on an independent set of sections to 

evaluate its accuracy in identification of classes. The findings are described in the following 

section. 

Results and discussion 

 

Training 

Samples were imaged using IR microscopy and correlated to features in H&E images that were 

marked by the pathologist’s review as the ground truth. Computerized pattern recognition of IR 

imaging data from unstained EMB samples led to every tissue pixel being classified into a 

specific histological class. Compared to the ground truth, the resultant probability of detection at 

the pixel level for the training set was quite high for lymphocytes (0.991), fibrosis-endocardium 

(0.999), fibrosis-myocardium (0.997) and myocardium (0.952) and somewhat lower for 

endocardium (0.860) with approximately 0.10 probability of false alarm (fig 3 (i)). There is a 

probability of confusing fibrosis with endocardium as evident from confusion matrix shown in 

table 1. As can be seen, 48.5% of the tissue identified as endocardium by the pathologist was 
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classified as fibrosis in myocardium and 9.1% of the endocardium was identified as fibrosis in 

endocardium.  It is well known that the nature and structure of endocardium is not well visualized 

with conventional pathological methods.  This may be due to endocardial damage caused by the 

bioptome and the fact that endocardium is a very thin layer that is easily washed away during 

preparation. The lower accuracy in this data set also arises from a limited number of endocardium 

pixels, as partly mitigated by having higher number of pixels in validation set (supplementary 

table 1). The issue of endocardium damage during biopsy is unfortunately out of our control. The 

nature of the biopsy is such that as the bioptome is used along the endocardial surface of the right 

ventricle, there is inherent damage to the endocardium. This coupled with the fact that the 

endocardium is a thin, evanescent layer that is easily damaged/disturbed makes endocardial 

evaluation difficult. Therefore, we have not discussed any precautions for sample preparation. It 

is important to remember that findings pathognomonic of transplant rejection are not manifested 

in the endocardium but in the sub-endocardial tissue and in the myocardium. Since our focus 

here was the identification of transplant rejection, future efforts can be undertaken to refine the 

data and potentially improve efficiency by better capability instruments for enhanced spatial 

resolution and faster imaging time. Focused efforts to collect specific tissue components, such as 

endocardium would give us sample size large enough to accurately characterize these 

components.  

  

Validation 

We performed validation using an independent set of 16 samples with approximately 300,000 

pixels. Uniformly high probability of detection with low probability of false alarm (0.13) was 

found (fig 3(ii)). Comparison of our technique with H&E staining is shown in fig. 4; and 

comparison from different grades of rejection has been shown for boxed areas from figure 4 in 

Supplementary figure 2. Probability of detection at 10% probability of false alarm is provided in 

table 2. While achieving significant accuracy, our approach is likely limited by mixed pixels 

(particularly in regions of lymphocyte infiltration; which is strongly associated with myocyte 

necrosis and fibrosis) and inclusion of boundary pixels. This limitation is also reflected in 

identification of endocardium for which we do not have comparatively good representation of 
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pure pixels.  Endocardium was not easily visible in the pathology specimens either.  While pixel 

level accuracy may be improved, we achieved accurate identification of the key histopathologic 

features for decision-making in every sample. Hence, we sought to examine if accurate 

information could be achieved by speeding up the data acquisition process. Scanning at coarser 

resolutions can not only make chemical imaging real time but may also lead to higher accuracy 

due to the higher signal to noise ratio of the detector50. Hence, we also collected data at a larger 

pixel size of 25µm x 25µm (at least 16-fold faster) to evaluate the applicability of the procedure 

at lower resolution. As seen from fig. 3(iii) and fig. 4, most classes are identified well, but the 

confidence in data reduces due to larger pixel size. This leads to lower sensitivity which is typical 

of tradeoff between time required to take image and the resolution achieved48. We anticipate that 

a multi-scale scanning algorithm will be practical when translated to use. The tissue could be 

scanned in minutes at low resolution and specific areas can be scanned at higher resolution for 

better accuracy. It is notable that the molecular basis of our histologic approach provides this 

flexibility, and is truly unique to this technology as we have deployed.  In contrast, morphologic 

analysis of conventional stained tissue is specific to the resolution and is very unlikely to yield 

similar results.  The ability to identify areas of concern with coarse resolution and hone into those 

areas with high resolution maybe analogous to scanning at low power and then searching the 

involved areas with high power microscopy. However, the FT-IR imaging based approach is 

significantly quicker and may be automated quite easily. Presence of lymphocytes in 

endocardium as well as in nearby myocardium can be checked by looking up neighbors of pixels 

using simple algorithms; which could also enable us to quantitate foci of infiltrations used for 

grading rejection. Future efforts can be undertaken to incorporate these ideas and making IR 

based detection a practical technique by using focal plane array (FPA) detectors for high spatial 

resolution at faster time frames by utilizing  noise reduction51 techniques.  

                       

Infrared imaging to identify chemical changes in tissue 

According to the ISHLT criteria4, for the sample to be qualified as grade zero (no rejection), there 

should be no evidence of mononuclear inflammation or myocyte damage. We observed that in 

all grade 0 cases, there were negligible lymphocyte pixels, and even the lymphocytes that were 
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found were not encroaching in the myocardium. Thus, using IR spectroscopy, it is very 

straightforward to differentiate between positive (rejected) and negative (not rejected) samples. 

In addition to histologic identification, biochemical changes undergone by tissues can also be 

captured using chemical imaging. Since our hypothesis was that the classifier could capture 

important tissue changes efficiently, we have related specific infrared absorption patterns that we 

identified from the classifier with previous observations. During fibrosis, ECM components 

(majorly collagen) are accumulated in the myocardium52 which is apparent by higher infrared 

absorption intensity of amide III peak in fibrotic regions53. Our classifier correspondingly 

identified the absorbance at 1236 cm-1 (high contribution from collagen15,45,49,54 as an important  

parameter(Table 3 and table 4). Peak due to absorbance at 1236 cm-1 / 1239 cm-1 is due to the 

CH2 wagging vibrations associated with proteins and is known as amide III peak. However, for 

the sample being analyzed here, owing to empirical evidences (Fig 2(i)) and observations from 

past literature discussed above, it can be inferred that major contribution to this peak is coming 

from collagen. With peaks at 1204 cm-1 and 1239 cm-1 reflecting the characteristic vibrational 

modes of collagen proteins-amide III55  (fig. 2 (i)), a significantly low level was observed in 

healthy myocardium. Absorbance (1027 cm-1 to 1032 cm-1) associated with glycogen[56] was 

decreased at sites of fibrosis (fig. 2 (iii)) as previously noted57. Hence, this multivariate approach, 

utilizing multiple biochemical characteristics of tissues, is effective in identifying multiple 

pathologic conditions.  

Together, these results indicate that both the spatial and chemical information can be utilized to 

identify tissue changes during immune response to the allograft. While we use cardiac allograft 

rejection as a proof of concept, chemical imaging can be expanded to identify additional cardiac 

pathologic conditions. Studies show that the false negative rate in identification of myocarditis 

can be up to 45% due to errors in sampling and sensitivity58. Differentiation of lymphocytes from 

other normal constituents like mast cells, fibroblast nuclei, pericytes and endothelial cells is 

difficult via visual pathological examination59. It has already been shown that IR spectroscopy 

can identify different cell types16,60,61. However, it has been very difficult to classify lymphocytes 

using earlier supervised classifiers due to low density of lymphocytes in other tissues, and their 

small size, resulting in problems of mixed pixels at current spatial resolution. It is possible to 

quantify lymphocyte infiltration in tissue in terms of number of pixels per sample. Supplementary 
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table 1 shows the number of pixels marked for each class using gold standard. About 83% of 

these were correctly identified as lymphocytes by our classifier. This data can be combined with 

quantification of associated myocyte damage in order to computationally assess the grade of 

rejection. We are confident that using high definition IR imaging systems62,63 would enable us to 

differentiate between even more cell types, making this technique very useful for pathology 

applications in a variety of conditions.  

While manual examination would require presence of lymphocytes in the section (resulting in 

error due to sampling as well as need to sample multiple times from patient), infrared 

spectroscopy can potentially detect changes undergone by the tissue which are indicative of 

transplant rejection even when lymphocytes are not picked in sampling, reducing the error rates, 

false negatives and avoiding significant trauma to the patient tissue. Apart from chemical 

information associated with tissues, tissues digitally stained with IR imaging approach are 

capable of providing a much better contrast and easy quantification of lymphocytes which can 

greatly reduce the time and effort spent per section by the pathologist.  

This report stresses the capabilities of this approach in a complex condition such as cardiac 

transplant rejection, which traditionally needs careful tissue preparation, multiple stains and 

review by experienced cardiac pathologists to provide accurate diagnoses. Combined with the 

speed of the data acquisition and emerging technologies for high speed IR microscopy42,43, we 

believe this study opens the path to more rapid tissue assessment much closer to the patient than 

previously possible. Eventually, intra-operative and in vivo imaging can be attempted based on 

chemical molecular imaging. This can be made possible by touch probe based fiber optic 

technology on which work is currently under progress. Multiple studies show that spectral in-

vivo analysis is promising using probe based instruments and have previously been applied to 

study atherosclerosis 64-66 and to detect cancer67-68. Using attenuated total reflectance (ATR) 

infrared imaging, mid-infrared light can be used to detect the ailment. Moreover, since this study 

has already identified specific molecular peaks that can be used for detection, we can now build 

instruments that operate on discrete frequencies to give even faster detection systems. This is 

different from near-infrared imaging, which has many pitfalls in making accurate diagnoses69.  
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Although the present study has shown excellent promise in terms of on-site detection, we are 

currently limited by spatial resolution and speed of data acquisition and processing. Spatial 

resolution used in this study can identify single lymphocytes larger than 10 µm, and lymphocytes 

smaller than this can be identified in large enough cluster. While the current study can 

successfully identify grade 0 through grade 4, in order to accurately identify grade 2(mild 

rejection), one would require much better spatial resolution to identify single lymphocytes. This 

task can be accomplished in near future using high definition imaging systems which have spatial 

resolution of the order of single micron, reducing the problem of boundary pixels and enabling 

us to identify every cell more accurately in tissue. Another challenge faced by pathologists is to 

identify whether the rejection is cellular or antibody mediated. Good spatial resolution is 

necessary to identify individual cells and to classify cells that are present in low density in tissues, 

for example macrophages, basophils; or bacterial cells in case of pathogen infections. As the 

project expands, we hope to be able to identify many other cell populations in the region such as 

activated mononuclear cells and pathogens; making spectroscopic analysis of specific cells 

possible. This could in turn enable us to understand other pathological mechanisms of disease 

development. While we were limited by speed in terms of imaging and data processing in this 

study, progress is now being made to reduce data acquisition time by manifolds using discrete 

infrared spectroscopy42,43. The trade-off between the resolution and time can also be improved 

by the use of FPA detectors, using which large areas can be measured at higher resolutions at 

faster time frames, and which are becoming more and more amenable. These advances further 

go on to show that IR imaging provides a potential approach for next generation histology 

procedures that are highly precise and accurate while the automation can lead to better decision 

making closer to the patient. This could be done within a very short period of time; thereby 

reducing the work load on pathologist and bringing smart detection devices to surgery suites. 

 

Conclusion 

The chemical molecular imaging approach offers numerous advantages over traditional sample 

examination techniques, providing a new avenue for clinical diagnosis. Chemical information, 

along with morphologic and architectural tissue information provides for a comprehensive 
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analysis of tissue. Computer algorithms allow us to dispense with staining and pathological 

recognition is aided by color coded images. In this study, we have shown an example of how 

chemical imaging can be applied in cardiac tissues to achieve automated pathology while 

providing a high probability of detection and low probability of false alarm. We identified 

specific spectral characteristics which related to the biochemical changes undergone by the tissue 

which could be used for chemical detection of rejection. In future, we can make this even more 

extensive by differentiating between acute cellular rejection and Quilty lesions. This is the first 

study to show that the chemical molecular imaging approach can be used to diagnose complex 

cardiac conditions, with results equivalent to and probably superior to conventional pathology.  

This technique would also be useful in identifying other cell populations that can be present in 

cardiovascular environment such as activated immune cells, antibody mediated rejection and 

bacterial infections to name a few. It is also possible to integrate this digital data with patient 

history to provide an even more nuanced scientific assessment of disease and prognosis. The idea 

here is to kick start the development of an approach which can give an all-encompassing rapid 

diagnosis at the site of collection of sample without stains and more importantly, assist during 

surgery for identification of diseased and problem areas in the heart & vasculature.   
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Figures and Tables 

 

 

Figure 1: Baseline corrected absorption spectra, normalized using the Amide I peak, for all 

five classes of cells observed in the study. Important spectral differences observed over the 

fingerprint spectral region (1500-900 cm-1) are highlighted in grey and zoomed in without 

offset. 
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Figure 2: Relative intensities of peak height ratios useful in discriminating classes; 

examples from metric definitions (i) 1239cm-1 to 1652cm-1; (ii) 1204cm-1 to 1236cm-1; (iii) 

1027cm-1 to 1543cm-1 

  

Figure 3:  Receiver operating characteristic (ROC) curves demonstrating the accuracy of 

the classification algorithm (i) Training set at 6.25 µm x 6.25 µm pixel size; (ii) Validation 

set at 6.25 µm x 6.25 µm pixel size; (iii) Validation set at 25 µm x 25 µm pixel size 
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Table 1: Confusion matrix for classification for validation data and training data (in 

parentheses) 

 

  Ground Truth(Percentage) 

Class    Endocardium Myocardium Lymphocyte 
Fibrosis 

myocardium 

Fibrosis 

endocardium 

Unclassified 

3.10 2.25 1.68 1.87 2.21 

(10.90) (4.80) (0.90) (0.30) (0.10) 

Endocardium 

12.74 0.08 0.00 1.28 0.55 

(12.30) (0.20) (0.00) (0.30) (0.80) 

Myocardium 

6.42 95.91 0.03 10.11 0.02 

(18.90) (94.50) (0.50) (0.40) (0.00) 

Lymphocyte 

0.19 0.02 82.82 4.74 0.00 

(0.40) (0.00) (85.70) (13.20) (0.00) 

Fibrosis 

myocardium 

52.91 1.54 15.48 81.49 3.53 

(48.50) (0.50) (12.90) (84.80) (19.10) 

Fibrosis 

endocardium 

24.65 0.20 0.00 0.49 93.69 

(9.10) (0.00) (0.00) (1.10) (80.00) 

Total 100 100 100 100 100 
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Figure 4:  Biopsy section array of 16 samples used for validation. Top panel: (i) H&E 

stained image of sections (scale bar represents 500µm); Asterisk marked samples showed 

no rejection in pathologist review. (ii) absorbance at 1236 cm-1 demonstrating differences 

between samples and different cell types; (iii) Classified IR image showing color coded 

pixels indicating different pathological classes; Bottom panel: Magnified view of one 

sample from validation set with matched lower spatial resolution IR image. (iv) H&E 

stained image of section; (v) Classified 6.25 µm x 6.25 µm pixel size IR image; (vi) 

Classified 25 µm x 25 µm pixel image. 
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Table 2: Probability of detection at 10% probability of false alarm 

  Training 
Validation 6.25 

µm 
Validation 25µm 

Lymphocyte 99.1 98.3 72.9 

Fibrosis 

endocardium 
99.9 95.7 93.3 

Fibrosis 

myocardium 
99.7 95.9 62 

Endocardium 86 85.8 48.4 

Myocardium 95.2 97.5 88.7 

Table 3: List of metric definitions found useful to differentiate classes- peak height ratio; 

all values are in wavenumber (cm-1) 

Peak Height Ratio Peak Height Ratio Peak Height Ratio 

Peak 1                   Peak 2              Peak 1            Peak 2            Peak 1           Peak 2            

1389 1236 3315 1236 1204 1236 

1027 1065 1163 1236 1239 1652 

1239 1543 1163 1065 1236 1543 

1389 1452 1452 1543 1236 3300 

1239 3300 1389 1652 1389 3300 

1389 1065 1452 1236 1027 1543 

1405 1236 1155 1452 1032 1236 
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Table 4: List of metric definitions found useful to differentiate classes- peak area to height 

ratio and center of gravity; all values are in wavenumber (cm-1) 

 

            

Figure 5: IR peak assignments for tissue 

Peak area to peak height ratio Center of gravity  

Left area 

bound  

Right area 

bound   

Peak 

position  

Left 

bound  
Right bound  CG 1       CG 2       

1482 1594 1652 1184 1302 1188 1216 

1424 1480 1546 1482 1726 1482 1594 

1184 1300 1652 984 1144 1016 1048 
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Figure 6: Computationally stained infrared image compared with H&E image at various 

grades of rejection. Arrows show lymphocytic infiltration. Top panel: No rejection; 

Middle panel: Mild rejection; Bottom panel: Moderate rejection.  
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 Table 5:  Number of pixels for each class in training and validation sets 

 

 

 

 

  Training Validation 

Myocardium 218024 229001 

Endocardium 3508 4317 

Lymohocyte 18671 3219 

Fibrosis 

Myocardium 11904 18158 

Fibrosis 

Endocardium 77287 51848 
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CHAPTER 2 

Translation of Infrared Chemical Imaging for Cardiovascular Evaluation2 

 

Abstract 

Infrared (IR) spectroscopic imaging has been applied to study histology of cardiovascular tissue, 

primarily using Fourier transform IR (FTIR) Imaging. Here we describe results for histologic 

imaging of cardiac biopsies using a fast, discrete frequency IR (DFIR) imaging system. 

Histologic classification of tissue is understood in terms of the constituent frequencies and 

speeded up by careful optimization of the data acquired. Results are compared to FTIR imaging 

in terms of the signal to noise ratio and information content. 

 

Introduction 

Measuring local tissue morphology as well as expression of biochemical components such as 

collagen, glycogen, glycolipids is important for understanding and evaluating cardiovascular 

diseases. The typical assessment today focuses on assessing morphology and typically involves 

histological analysis and immunostaining that often provide qualitative data while requiring 

expensive reagents, time and effort of pathologist to determine the disease. Biochemical assays 

for molecular analyses of tissue are more quantitative in nature are but are usually destructive, 

often provide average values and do not allow for later use of tissue for other tests. Infrared 

spectrochemical imaging is a non-destructive tissue analysis method that can provide both 

qualitative and quantitative information, in an imaging format, about both the morphology and 

several biologically-important chemicals present. A major focus for IR imaging has been for 

developing protocols to analyze tissue.1–6 Recent results have advanced the capabilities of IR 

                                                           
2 Reprinted, with permission, from Saumya Tiwari, Jai Raman, Vijaya Reddy, Miranda Dawson, and Rohit Bhargava. "Translation of infrared 

chemical imaging for cardiovascular evaluation." In SPIE BiOS, pp. 97040X-97040X. International Society for Optics and Photonics, 

2016. doi:10.1117/12.2230004 
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microscopes7–9, computing10 and theoretical understanding11 as well as provided a number of 

interesting advances in high-definition spectral12,13 and spectral-spatial methods14,15 for tissue 

histology, cellular analysis16–18, diagnosis of disease19, obtaining prognostic information20,21 and 

providing new visualizations for digital molecular pathology22. More recently, this technology 

has also garnered interest for identification of cardiovascular disorders23–28.  

In particular, previous studies using FTIR spectroscopy have identified bands with significant 

collagen contribution in order to study its distribution and remodeling  in the cardiac tissue29,30. 

Rabee et al showed the correlation of band at 1338 cm-1 with immunohistochemical stain for 

collagen type I and trichrome stain31. This is important in identifying fibrosis32,28, myocardial 

infarction24,33, and specific type of collagen degradation can be related to cartilage 

degeneration34.  Studying heart tissue can also give information about other diseases in body. For 

example, glycogen and glycolipid content is related to diabetes-related changes in heart35 and 

chronic kidney disease can lead to accumulation of lipid in the cardiac tissue36. To study these 

diverse and varied effects, it is pertinent to not only develop infrared chemical imaging based 

detection models for heart tissue, but to also optimize speed of acquisition with data quality to 

enable extension of chemical imaging to other associated conditions. A major recent advance 

that promises high speed data acquisition and high-fidelity imaging lies in the development of 

IR spectral microscopes that employ quantum cascade lasers (QCL) as sources.37–44 While 

several reports of these instruments exist, they haven’t been used extensively for digital 

pathology yet and the area represents considerable potential for developing new protocols for 

clinical use. In this study, we discuss the translation of IR imaging for cardiovascular disease 

diagnostics using a discrete frequency IR (DFIR) instrument based on QCLs. In particular, we 

focus on demonstrating how a small number of spectral features45 can rapidly provide 

diagnostically useful information.  

 

Methods 

Formalin-fixed, paraffin-embedded tissues were obtained from the archives of the department of 

Pathology, Rush University Medical center, Chicago. Samples were imaged using and FTIR 
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imaging spectrometer (Perkin Elmer Spotlight) and truncated to a range 748 cm-1 – 4000 cm-1 at 

spectral resolution of 8 cm-1 with step size of 4 cm-1 and square pixel size of 6.25 μm on each 

side. DFIR data was collected using Agilent Hyperscan system in the range 930 cm-1 to 1746 cm-

1 using step size of 6 cm-1 and square pixel size of 5 μm on a side. ENVI IDL 4.8 (Environment 

for Visualizing Images with Interactive Data Language) software was used to process the image 

files.  In order to eliminate non-cellular regions of the tissue sample, a mask was created that 

only selected a threshold of absorbance values at the amide I peak (1652 cm-1).  Specific regions 

of interest were applied to the same areas on both the DFIR and FTIR images.  The average 

spectrum was then obtained at each of these regions.  Resultant data was baseline corrected and 

normalized to the amide peak (1652 cm-1).  For unsupervised classification, iso data classification 

was used in ENVI IDL. Minimum number of classes was set at 4 while maximum number of 

classes was set at 5. A maximum of 3 iterations were performed with a change threshold of 10% 

with the condition that the classification would end before the set number of iterations if the 

number of pixels in each class changed by less than the threshold. In case of FTIR data, only 

spectral range of 900cm-1 to 1800cm-1 was used for classification.  Finally, the relative intensities 

of collagen and glycogen were calculated with band math. Baseline corrected Amide III (1236 

cm-1) and glycogen (1032 cm-1) absorbance values were divided by the values at the referential 

amide peak (1652 cm-1). The resulting ratios were plotted in the form of color intensity map.  

 

Results 

Absorption spectra collected from same areas (normal myocardium) of two different samples 

collected on the FTIR instrument and DFIR system were compared, as shown in figure 1. The 

signal to noise ratio (SNR) obtained in case of hyperspectral scans of DFIR instrument was lower 

than the SNR obtained on FTIR instrument, while the peaks and peak widths in spectra were 

similar from both the instruments with some differences in the absorbance values. These 

differences are to be expected in terms of the different optics of the instrument and for different 

shapes within local sample morphology46 and are relatively minor for most cases. We have also 

shown plotting of discrete frequencies with extrapolation for the same set of samples to 
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demonstrate the utilization of discrete frequency data to reproduce peaks of interest using a 

limited set of measurements, reducing scan time by manifolds.  

An unsupervised Iso Data Classification algorithm was used to identify different classes present 

in the tissue. With the prior information that the sample had Myocardium, Fibrosis, Necrosis and 

non-tissue pixels, the minimum number of classes was set at 4. Myocardium regions, colored 

yellow in classified images, correlated with the Hematoxylin and Eosin (H&E) stain in both FTIR 

and DFIR data (Fig 2). Fibrosis and necrosis could not be differentiated from each other in terms 

of class label (green and blue colors). This was confirmed by plotting average spectra of the 

regions identified as Myocardium against other two classes (combined as “other”). In both the 

samples (Fig 3), regions other than myocardium showed higher intensity of normalized Amide 

III peak, indicating that these two classes had stronger contribution of collagen as compared to 

myocardium labelled class. This shows that both the data sets performed similar to each other in 

an unsupervised classification system. The extent of agreement in classification was not 100% 

and remains to be probed further.  

While unsupervised classification gave a preliminary indication of applicability of DFIR data for 

identification of cell types, we further sought to examine if it could correlate with pathologist’s 

observation of fibrosis, ischemia and amyloid deposition. Towards this end, we plotted the 

relative band intensities of the Amide III and the glycogen-specific features which contributed at 

band 1032cm-1 with Amide I band (Fig 4). As expected, collagen expression, which is a major 

contributor to Amide III correlated highly with pathologist identified regions of fibrosis as noted 

in our earlier studies47. We expected to see variations in levels of glycogen for samples with 

ischemia, but notable differences were not found in these samples compared to control healthy 

samples. This could be possibly due to glycogen washing out during sample preparation steps, 

but further studies would be needed to provide a definitive answer.  Interestingly, peak height 

ratio of 1032cm-1 band with Amide I band appeared significantly high in samples reported to 

have amyloid deposition (Fig 4, last panel). This is an exciting discovery since it is very difficult 

to distinguish between amyloid depositions and fibrosis through H&E stains alone. As expected, 

this could not be differentiated directly via the Amide III band intensity color map since both 

collagen and amyloid deposits contribute overlapping vibrational modes within the band. 
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Introduction of DFIR systems to routine lab use and data analysis towards pathology has shown 

very promising outcomes. Our results indicate that not only can DFIR data be applied in a similar 

manner as FTIR data towards digital pathology, it also has potential to enable pathologists 

identify regions that are visibly similar but biochemically different in their traditional staining 

methods. The findings reported here are on a small data set and would need further validation on 

larger data sets. A detailed protocol will need to be constructed and statistical validation 

understood in light of various other factors48 before attempts at clinical translation. At present, 

this works demonstrated the potential of DFIR imaging and its excellent capacity towards digital 

pathology for cardiovascular diseases.   

 

Conclusion 

In this paper, we describe the application of a DFIR imaging system for the analysis of 

cardiovascular biopsy samples. Although much work needs to be done in order to make the SNR 

comparable to conventional FTIR imaging systems and the development of a clinically 

translatable protocol, it can be seen that the technology performs well in identification of many 

biochemical signals. This approach can be a nice complement to other emerging approaches for 

intraoperative aseessment34.  
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Figures  

 

Figure 7: Absorption spectra of two cardiac biopsy samples collected on Fourier transform 

infrared (FTIR) spectroscopic imaging and quantum cascade laser (QCL)-based discrete 

frequency instrument. 
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Figure 8: Iso Data unsupervised classification on FTIR ((i) and (iv)) and DFIR ((ii) and (v)) 

data. Scale bar on H&E image indicates 6 mm.  
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Figure 9: Spectral comparison of classes obtained using unsupervised classification. Data 

shown is from FTIR instrument corresponding to classes identified in figure 2. 
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Figure 10: Absorbance of Amide III at 1236cm-1 (top) and Glycogen  at 1032 cm-1 (middle) 

normalized by ratio with Amide I peak obtained from DFIR imaging data show good 

correspondence with macroscopic structure seen in conventional H&E stained histologic 

images (bottom). 
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CHAPTER 3 

Towards Translation of Discrete Frequency Infrared Imaging for Rapid Digital 

Histopathology of Clinical Biopsy Samples3 

 

Abstract 

Fourier transform infrared (FT-IR) spectroscopic imaging has been widely tested as a tool for 

stainless digital histology of biomedical specimens, including for identification of infiltration and 

fibrosis in endomyocardial biopsy samples to assess transplant rejection. A major barrier in 

clinical translation has been the slow speed of imaging. To address this need, we tested and 

report here the viability of using high speed discrete frequency infrared (DFIR) imaging to obtain 

stain-free biochemical imaging in cardiovascular samples collected from patients. Images 

obtained by this method were classified with high accuracy by a Bayesian classification 

algorithm trained on FT-IR imaging data as well as on DFIR data.  A single spectral feature 

correlated with instances of fibrosis, as identified by the pathologist, highlighting the advantage 

of the DFIR imaging approach for rapid detection. The speed of digital pathologic recognition 

was at least 16 times faster than the fastest FT-IR imaging instrument. These results indicate that 

a fast, on-site identification of fibrosis using IR imaging has potential for real time assistance 

during surgeries. Further, the work describes development and applications of supervised 

classifiers on DFIR imaging data, comparing classifiers developed on FT-IR and DFIR imaging 

modalities and identifying specific spectral features for accurate identification of fibrosis. This 

addresses a topic of much debate on the use of training data and cross-modality validity of IR 

measurements. Together, the work is a step towards addressing a clinical diagnostic need at 

acquisition time scales that make IR imaging technology practical for medical use.  

 Introduction 

                                                           
3 Reprinted, with permission, from Saumya Tiwari, Jai Raman, Vijaya Reddy, Andrew Ghetler, Richard P Tella, Yang Han, Christopher R 

Moon, Charles D Hoke, Rohit Bhargava. “Towards Translation of Discrete Frequency Infrared Spectroscopic Imaging for Digital 

Histopathology of Clinical Biopsy Samples.” Analytical Chemistry 88.20 (2016): 10183-10190. doi: 10.1021/acs.analchem.6b02754 
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Cardiovascular diseases (CVDs) are the leading cause of mortality in the United States, 

accounting for one in seven deaths1. Histopathological examination is often the final arbiter in 

making diagnoses and guiding therapy for a variety of CVDs, largely relying on manual 

examination of microscopic structures in tissue that become apparent only by the application of 

exogenous contrast agents such as dyes and fluorescent probes. As opposed to cancer pathology, 

in which gross tissue changes allow a simple recognition of disease in most cases, tissue changes 

are more subtle in CVDs and require careful human examination. Due to the need for tissue 

processing and staining followed by manual examination, the recognition process cannot be real-

time. Consequently, there remains a large temporal gap between histopathological analyses in 

the laboratory and the need for input in the surgical suite. A number of stainless staining and 

diagnosis approaches have been suggested to visualize tissue structure2, including those focused 

on CVDs3. While these technologies have shown promise in performing histologic analyses, the 

data acquisition has been slow and incapable of addressing the time gap to bring real-time 

pathology to the site of intervention where it can have the most impact.  

Fourier transform infrared (FT-IR) spectroscopic imaging has shown great promise in cellular 

recognition4–8, metabolic analysis9,10, disease diagnoses11,12 and prognosis13,14. In FT-IR 

imaging, approximately 2000 spectral elements are typically acquired per pixel in the image. 

Using a metrics based approach15,16, it has long been demonstrated that not all recorded data 

may be needed for accurate histologic recognition. By using Bayesian classification, for example, 

a subset of data can be identified that gives accurate classification15 using 10-50 metrics for 

many different types of tissues15. Hence, the potential exists to decrease time for providing 

histologic images from a sample simply by acquiring only the needed data and increasing 

analysis speed ~20-100-fold. This concept, however, has not been previously realized. With the 

development of discrete frequency IR imaging instruments17,18 single band images can be 

generated within seconds for areas of the order of cm2 and pixel size of the order of microns. 

While initial attempts using filters19 did not provide high signal to noise ratio (SNR) for practical 

use, quantum cascade laser (QCL)-based microscopes20–23 have dramatically improved and 

shown promise for tissue imaging24,25. In a previous study, we used unsupervised clustering to 

differentiate between biochemically different regions in cardiac biopsy samples26. Recently, a 
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two class classifier was used to differentiate between cancerous and normal epithelium using 

DFIR imaging25. Since the technology is relatively new, a number of issues remain to be 

resolved. First, it is not clear whether spectral features for DFIR imaging should or can be 

selected from FT-IR imaging data, which provides access to all the possible spectral features and 

high SNR. Or alternately, it is not known whether classification should be developed de novo 

using DF data that suffers from low SNR but would remove imaging modality dependent effects. 

Second, the advantage of the DF approach is not apparent. In order to utilize the speed advantage 

of the system, an ideal case scenario would be a single spectral feature to differentiate between 

the classes but it is unclear whether the SNR of the data are sufficient to permit such a 

determination. Finally, multiclass classifiers have not been developed on DFIR imaging data. 

This raises questions about the possibility and accuracy in identifying multiple classes with DF 

technology. In this study, we focus on these extant issues. Specifically, we demonstrate the 

application of DFIR imaging for automated pathology of CVDs by analyzing the performance of 

different two-class and multiclass classifiers and its potential for clinical implementation. 

Optimizing recognition, we also show that a single spectral feature was sufficient to differentiate 

between two histopathological classes, namely myocardium and fibrosis, giving tremendous 

advantage in terms of speed of detection. Finally, we sought to demonstrate rapid digital 

pathology for use in evaluating cardiac tissue, since intra-operative recognition can be 

advantageous in real-time.  
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Methods: 

Sample acquisition 

 Fourteen patient samples were collected in collaboration with Rush University Medical Center. 

All sections provided were anonymized and no patient identifying information was recorded for 

the experiments. The samples were formalin fixed, paraffin embedded and microtomed onto low 

E glass slides (Kevley Technologies) at 5μm slice thickness for infrared imaging. 

Deparaffinization was performed by repeated hexane washes for 24 hours before imaging. No 

further processing was required for the samples for IR imaging. A serial section was acquired on 

a glass slide for each sample to perform Hematoxylin and Eosin (H&E) stain. An expert 

pathologist identified histologically relevant regions in the biopsies. Based on this, 10 patient 

samples were identified to have histologically normal myocardium regions and seven samples 

contained regions identified as fibrosis. In addition, previously collected thirty-five anonymized 

patient samples’ FT-IR imaging data were used to develop the FT-IR imaging data-based 

classifiers.  

Data acquisition and processing  

FT-IR imaging data were acquired using a 4 cm-1 spectral resolution, a 6.25 micron pixel size 

and one scan per pixel following sample preparation and image collection protocols described 

earlier27–29.  For each image, a background was collected using identical spectral and spatial 

parameters with 120 spectral co-additions. DFIR data was acquired on Agilent LaserDirect IR 

imaging system using a reflection-absorption sampling geometry. The instrument settings 

allowed data collection at 1, 3, 5 and 10 m pixel sizes and pixel size of 5 m was chosen for 

imaging. When acquiring spectra, a step size of 6 cm-1 was used to step the discrete frequencies 

of the quantum cascade laser source.  DFIR data were imported using MATLAB and further 

processing was performed in Environment for Visualization (ENVI) - Interactive Data Language 

(IDL) version 4.8. Programs for Bayesian classification were developed in-house and 

implemented in ENVI. The data collected in the form of tiles was mosaicked in ENVI-IDL using 

in house written algorithms. Tissue pixels were selected by creating a mask at threshold value of 
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0.2 of peak height at 1652 cm-1 after a linear baseline correction using absorbance values at 1482 

cm-1 and 1710 cm-1.  

Development of FT-IR classifier 

In a previous study, we had developed a Bayesian classifier to identify myocardium, fibrosis and 

lymphocytic infiltration3 following earlier protocols15,29. Briefly, the data was converted into 

quantitative ratios of spectral features or characteristics of individual bands called metrics. This 

was done by specifying 148 spectral features which corresponded to peak height ratios, peak area 

to height ratios, peak area to area ratios and centroid position of peaks for every pixel. The ground 

truth was specified by marking regions of interest (ROI) on IR images corresponding to 

pathologist annotated regions on the H&E image from a serial section. These metrics and 

associated ground truth marked pixels were used to train the classifier. We did not use the 

previously built FT-IR imaging data based Bayesian classifier as-is since the range of the DF 

instrument is 800 cm-1 to 1900 cm-1, whereas the original FT-IR imaging data based classifier 

utilized the range of 750 cm-1 to 4000 cm-1. A new Bayesian classifier was developed using the 

truncated FT-IR imaging data and validated on independent set of FT-IR imaging data before 

applying it to DF-IR imaging data. Receiver Operating Characteristic (ROC) curves were 

calculated for FT-IR imaging data training and validation sets. All images acquired in DF-IR 

imaging mode were classified with this classifier and ROC curves, confusion matrix and overall 

accuracy were calculated for DF-IR images with previously established ground truth in ENVI-

IDL.  

Development of DF-IR classifier 

Data preprocessing was performed as described in section 2.2. Data to metric conversion was 

performed by defining 185 metrics in the DFIR data based on spectral variations observed in the 

data. In order to develop Bayesian classifier, the DF-IR data was split into training and validation 

set. Seven samples were used for training the classifier. In case of multi-class classifier, for each 

of the training and validation sets, at least three patient samples were marked with myocardium, 

fibrosis and blood class. One additional ‘cell death’ class was added through one sample in 

training and two samples in validation. Ground truth was marked on this data using pathologist 
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annotated H&E images. Only the regions with high confidence in identifying histological classes 

were marked. Bayesian classifier was developed on this data set using previously developed 

protocols. ROC curves were calculated for both training and validation datasets. Confusion 

matrix and overall accuracy was calculated on classified image acquired from validation set. 

Both confusion matrix and ROC curves were calculated in ENVI IDL prebuilt toolbox for post-

classification processing.  

Specific band based detection 

 Spectral features which led to correct classification in the classifier models were considered 

individually to identify features that offered high overall accuracy of distinguishing between 

myocardium and fibrosis. In order to distinguish between the classes, a threshold was used to 

separate the two classes from each other. Multiple thresholds were tested on each band 

individually for overall accuracy in separation of classes and the spectral feature with highest 

overall accuracy was chosen. Class images were created at the threshold which produced highest 

accuracy and confusion matrix was calculated using the previously established ground truth.  

Results and Discussion 

Data collection and analysis on DFIR imaging instrument 

We imaged identical areas of two patient samples using both FT-IR and DFIR systems to 

compare the spatial and spectral features of data acquired using the two different modalities. 

Images of the Amide I absorbance were used to compare spatial quality and fidelity. No other 

corrections were performed on the images (figure 1 (A, B, E, F)). Comparing spectra obtained 

from FT-IR and DFIR systems using the same area in tissue and background, it can be observed 

that the raw spectra averaged over >5000 pixels have similar spectral characteristics in terms of 

peak positions (figure 1 (C, G)). While averaging provided similar quality spectra, point-by-point 

comparisons of spectra showed some differences likely arising from differences in optical 

configuration30 and noise. In addition to small differences in absorption, DFIR spectra had lower 

SNR (figure 1 (D, H)). As opposed to FT-IR imaging data that have uniform noise across the 

spectrum due to the transformation from the retardation to the spectral domain, the DFIR 
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instrument reflected the underlying fluctuations at specific positions even apparent in single 

beam background spectra. This not only makes the noise non-uniform across the spectrum (figure 

1 (C, G)) but is likely correlated with laser intensity fluctuations as well making, as common for 

shot noise in most lasers, it difficult to signal average.  

A major factor in successful classification is the quality of the data, which typically implies an 

increase in measurement time per pixel or decrease in total area covered, to increase the SNR. 

To determine the speed advantage of DFIR instrument, we first acquired data at the maximum 

rate of approximately 15 seconds per band at 5 µm pixel size, which is the typical cellular size, 

and for a sample area of ~2 mm x 2 mm, which is the typical biopsy size. It is difficult to achieve 

a straightforward comparison of this scan time with an FT-IR imaging system, since the 

techniques are fundamentally different in light utilization, spectral bandwidth and modulation. A 

general comparison of QCL and FT-IR imaging is available18 by normalizing the performance 

of instruments by considering number of pixels imaged, SNR and the time required for image 

collection. A similar examination can be conducted for point microscopy systems with this 

system17, but is not productive. FT-IR point microscopy systems do not typically perform well 

at low aperture settings and need a synchrotron31 for these aperture sizes. A more reasonable 

comparison is between a globar-equipped FT-IR imaging system without apertures and the DFIR 

approach with this bright light source. Each system is playing to its advantages in such a 

comparison, i.e. the light of the large sized globar source is used for widefield imaging while the 

collimated and narrow laser light is used for point microscopy. In this task-based comparison of 

fit for purpose instruments, we proposed that the time required by the DFIR imaging approach 

be compared to the FT-IR imaging approach to obtain a spectral classification. We focused on 

getting the highest possible SNR that could be obtained from the DFIR instrument. In figure 2, 

the effects of signal averaging are demonstrated for low and high speed settings, which 

corresponded to a higher and lower detector integration time respectively. Figure 2(A) compares 

the size of the images at various resolution settings, showing no appreciable change in features. 

The SNR did not change significantly by changing speed as seen from the spectral profile of 5 x 

5 block of pixels in figure 2(B). This is understandable since, as opposed to FT-IR imaging 

systems, the SNR is dominated by laser fluctuations and not by detector noise. Since our goal 
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was to reduce the imaging time, high speed settings were used henceforth. Next, we compared 

the time required to collect images at different pixel sizes for the full range provided by the 

instrument (figure 2(C)) for an area of 2.5 mm2. For comparison, the same area was imaged 

using an FT-IR imaging system with typical parameters for spatial and spectral resolution. A 

comparable spectral range could be obtained by using an undersampling ratio to reduce the FT-

IR scan time further by more than a factor of 2. 

For images taken over the full spectral range of the DFIR instrument and pixel sizes of 5-10 μm, 

the system does not offer significant speed advantages compared to the FT-IR approach. The 

higher intensity of the QCL is an advantage but the low noise thermal source, and the efficient 

interferometry process proves remarkably competitive. However, for the acquisition of a small 

number of bands, the time taken by the DFIR system reduces proportionally. Therefore, even 

though the initial research time required for developing classification algorithms would still 

remain comparable to FT-IR imaging systems due to the need for acquiring spectra over the 

entire bandpass, it is only the combination of DFIR acquisition with metrics-based classification 

that can enable rapid diagnoses in routine application to samples. The caveat here is the 

difference in SNR obtained from the two instruments, which is known to affect the classification 

accuracy32. While commercial FT-IR imaging instruments offer a spectral SNR of above 200, 

the DFIR instrument used in this study had at least 5 times lower SNR. Thus, two important 

future improvements are apparent. First, SNR can be improved by improving the hardware and 

image collection protocols. Second, post-acquisition noise reduction techniques need to be 

developed for discrete frequency data32; in order to be not limited by SNR for obtaining high 

classification accuracy. While the former is likely to be a major focus for the field in the coming 

years, the latter offers a solution that can be implemented faster.  
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Classifier training on FT-IR data and application on discrete frequency data 

The underlying assumption in development of spectral Bayesian classification protocols is that 

switching between image collection modalities would not affect the results in identification of 

cell types since inherent biochemical contrast is utilized for chemical staining. To test this 

assumption, we first trained a Bayesian classifier on FT-IR imaging data to identify 

histologically normal myocardium and fibrotic regions. Upon calibrating in 900-1800 cm-1 

range, 13 metrics were identified to provide adequate performance (Supplementary table 1). The 

classifier generated from this data, in the form of probability distribution functions and list of 

metrics to use for classification was applied as-is to DFIR data. ROC curves generated for this 

classifier are shown in figure 3 ((i), (ii) and (iii)); along with the representative classified images 

and their comparison with H&E stained images (figure 4 (A, E, I)). The regions identified by the 

pathologist as fibrosis have been marked with arrow in figure 4 (D, H, L). Correspondingly, 

fibrotic regions can be seen in classified IR image. When a control sample with no fibrosis 

(figure 4 (A)) was classified, we did not observe any bulk fibrosis in the classification. 

Comparing the ROC curves obtained by applying the classifier on FT-IR and DFIR data, it is 

clear that the classifier had lower area under the ROC curve for DF-IR data. The overall 

accuracy of classification was calculated to be 94.42% (Table 1) on the DFIR dataset that was 

also used for validation in section 3.3 in order to remove effect of marking ground truth while 

comparing performance of FT-IR and DFIR classifier. In conclusion, DFIR data could be 

classified with high correspondence to pathologist identified classes using classifier developed 

on FT-IR data, though not perfectly, with overall accuracy in the neighborhood of 95%.   
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Development of classifiers on DFIR data 

In order to understand whether high sensitivity and specificity classifiers can be built on DF data 

due to its noise characteristics, we started with a binary classification model with myocardium 

and fibrosis classes. The training and validation sets were split and classified as described in 

methods. Using the Baysian approach, 11 metrics were identified which contributed in the 

decision making of the classifier (Supplementary table 2). We calculated the ROC curves of 

training and validation data sets (Figure 3 (iv) and (v)) and observed that the area under the curves 

(AUC) of the ROC of classifier trained on DFIR data was lower as compared to the classifier 

trained on FT-IR data. The accuracy was 90.99% (Table 2). Figure 4 (B, F, J) shows a comparison 

of images identified with this classifier with corresponding H&E images in Figure 4 (D, H, L) 

for three different samples. Pinpointing the cause for lower AUC values in DFIR classifier is 

challenging since the dissimilarities in FT-IR and DFIR classifiers can be found at multiple stages 

of data collection and characteristics of the data. Considering the inherent difference in imaging 

modalities, further causes for divergence of the results are likely to occur due to lower SNR 

obtained in DFIR data, differences in pixel size and spectral step size. In terms of future 

application of pre-built classifiers on discrete frequency data, some of the factors outlined above 

such as spectral step size are easily matched to FT-IR data on which the classifier was built. 

Spectral matrices can be modified based on baseline and peak positions and to account for the 

variations in pixel size when data from different modalities needs to be matched but how the 

differences in pixel sizes can impact classification likely depends on the tissue and its 

morphology.  

Specific band based detection for digital detection of fibrosis 

Even though high accuracy classifiers can be developed using DFIR systems, the full potential of 

the system can only be realized when high speed detection can be optimized. In terms of 

identification of various cell types, multivariate analysis is required for disease detection and has 

been applied successfully in past15,33–38. Depending on the biochemistry of the tissue, we 

hypothesized that a single spectral feature (metric) could exist that can give a fast identification 

of disease in some cases. Metrics were analyzed instead of raw data since conversion of data to 
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metric is an effective way to reduce data while preserving spectral features15. In addition, 

baseline correction and normalization was implemented in metrics which is important to remove 

tissue thickness variation related artefacts and IR light dispersion related effects27. Specifically 

in case of heart tissue, we observed that fibrosis, which results from high deposition of 

extracellular matrix could be easily separated from myocardium by observing the contrast 

produced from absorbance at 1236 cm-1 peak3. Additional peaks could be of interest in 

generating contrast as well, and more recently, regions of fibrosis and hepatocyte populations in 

liver were visualized by plotting absorbance at 1656 cm-1 and 1032 cm-1 obtained on a discrete 

frequency imaging instrument39. In the current model, we were interested in identifying a single 

feature to produce contrast indicative of high ECM deposition in cardiac biopsies. We selected 

all 11 spectral features (metrics) that the DF-IR Bayesian classifier utilized for differentiation 

between myocardium and fibrosis. We then set a range of all possible values for each of these 

metrics by plotting the histograms of values from myocardium and fibrosis pixels. Over this 

range, a threshold was needed to determine whether the pixel belonged to myocardium or 

fibrosis based on the value of the metric. Twenty threshold values were tested for each metric 

and accuracy was plotted at each metric to determine the optimal threshold. Based on the 

maximum accuracy obtained (supplementary table 2), the metric corresponding to peak height 

ratio of amide III (1236cm-1) to amide II (1542 cm-1) was identified to be the top performing 

metric. Fine optimization of threshold was performed for this metric to identify the operating 

point of threshold (supplementary figure 1).  The results obtained by this method (figure 4 (C, G, 

K)) can be compared to results obtained from the classifiers and the H&E in figure 4 (D, H, L) 

and the confusion matrix for this detection has been shown in table 3. As expected, the single 

feature based system performs worse than both FT-IR and DFIR classifiers in terms of overall 

accuracy, highlighting the need for multivariate analysis for accurate identification. 

Nevertheless, a single feature comprising of six spectral frequencies achieved an impressive 

87.5% accuracy, which makes it ideal for initial, real time probing of the sample to identify 

tissue scarring before further analysis can be performed. Moreover, in disease states a single 

pixel (equivalent to a single cell) is of little meaning and the diagnosis is made by observing 

characteristic distribution of cells and ECM in a biopsy; which can be accomplished with the 

models developed here. 
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Multiclass detection with DFIR data 

Last, we sought to examine whether multi-class classifiers can be developed with DFIR data. 

Here, to obtain a more comprehensive and useful model, we expanded the approach for general 

cardiac pathology by adding more histological states.   Fibrosis is the scarring of tissue due to 

deposition of excess extra-cellular matrix, which can lead to reduction in functionality of heart 

40,41. Increased fibrosis can lead to loss of contractile function and reserve42. Additionally, 

scarring causes high mechanical stiffness and diastolic dysfunction 43. Cardiac amyloid 

deposition is a pathological feature of advanced cardiomyopathy. Unlike conventional 

amyloidosis, this histopathological feature is due to breakdown products of normal or abnormal 

proteins called amyloids that accumulate in the heart44. These conditions can result in increasing 

heart stiffness and eventual deterioration of heart pumping function44. Thus, identification of 

cell death and protein deposition in cardiac tissue is important and can be indicative of many 

cardiomyopathies. In the newly expanded classifier, we looked for these tissue damage signatures 

in congenital heart. In the limit of the samples studied, the classifier performed robustly to 

identify myocardium, fibrosis, blood and cell death, which combined the classes of apoptosis, 

necrosis and infarction. As expected, multiclass classifier required additional information that 

was evident as the number of metrics needed to perform classification increased to 18 

(supplementary table 3). The area under the curve of the ROC curve appeared to be lower for 

validation set when compared to the training set (figure 3 (vi) and (vii)) and achieved an accuracy 

of about 83% (table 4).  There is potential to further improve classification accuracy by training 

on a larger dataset since patient to patient variations can have greater effects when the classifier 

is trained with small number of samples. As shown in figure 5, additional classes were identified 

by the classifier built and trained on DFIR data and showed correspondence to pathologist 

identified regions of cell death, red blood cells, myocardium and extracellular matrix (ECM). 

The accumulation of fibrous tissue in the ECM corresponded with pathologist identified regions 

of fibrosis. Since amyloid is also characterized by interstitial protein, the ECM signature could 

correspond to collagen as well as other proteins and accurate interpretation is dependent on 

character of the protein, spatial location and distribution. This can be easily performed on 

digitally classified images by employing neighboring pixel analysis towards an advanced 
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automated histology. We also anticipate that high speed identification of multiple histological 

classes can benefit from a multiclass Bayesian classifier developed specifically on DFIR data to 

provide reliable classification in a short time.  

Discussion 

In this study, we built two histologic classifiers that were trained on FT-IR and DFIR data 

respectively. We used a completely independent set of patients for training the FT-IR classifier 

which was not used for DF-IR imaging. Since patient samples used to train FT-IR and DFIR 

classifiers were different, we sought to compare the spectral features selected by each of these 

classifiers (supplementary table 1 and supplementary table 2) and study if similar biochemical 

information was identified in both classifiers. We observed that both classifiers utilized peaks in 

the 1027 cm-1 – 1040 cm-1 which could have contributions from glycogen (C-O and C-C 

stretching motions) and nucleic acids (phosphodiester groups and C-O stretching in ribose or 

deoxyribose). Both classifiers also select peaks around the 1070 cm-1 to 1090 cm-1 region which 

has heavy contribution of symmetric phosphate stretching from nucleic acids and additionally 

some stretching from glycogen C-O and C-C bonds. Therefore, even though the classifiers were 

constructed on two independent set of patients using two different imaging instruments, not only 

did the classifier provide accurate results, but also the peaks that contributed the most to 

differentiation between the two classes were conserved in different metric definition 

combinations. Interestingly, one metric was identical between the two classifiers, corresponding 

to peak height ratio between amide III (1236 cm-1) and amide II peak (1542 cm-1 or 1543 cm-

1) with some overlap with phosphate vibration of nucleic acids. In the tissue studied, high values 

of this ratio were always obtained in fibrotic regions which did not have high cell density, 

implying that collagen and extracellular matrix proteins could be the highest contributors to this 

metric. The conservation of spectral features across classifiers built on different platform 

highlights the importance of Amide III band in tissue distinction and could possibly be the most 

important decision making step in differentiating between myocardium and fibrosis. This was 

confirmed by calculating accuracy for each of the DFIR classifier metrics towards differentiation 

of myocardium and fibrosis (supplementary table 2). To maximize the advantage of speed in 

DFIR, we confirmed that plotting a single metric of normalized Amide III absorbance at 1236 
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cm-1 correlated with fibrotic regions, enabling an even faster fibrosis identification protocol. The 

fibrosis regions identified in this manner matched with fibrosis regions recognized by the 

classifier. Referencing to figure 2, using six spectral bands for identification of fibrosis would be 

significantly faster than conventional FT-IR imaging system to obtain contrast produced in figure 

4 (C, G, K). Multiclass classifier could be developed with high accuracy for classification of 

many other classes and utilized only a fraction of full range of frequencies. Such an approach has 

a potential to be further improved by adding more classes with the developments in 

instrumentation to improve SNR and using more number of samples for building a robust 

classification system. The aim of this paper was to introduce direct application of new generation 

IR based imaging and staining technology towards digital pathology. To that end, we have 

omitted detailed discussion about the instrumentation in terms of spatial and spectral noise and 

SNR which are ongoing. These will be addressed in details in future work.  

Conclusions 

This study demonstrates a DFIR imaging approach for rapid identification of complex 

histopathological states in the heart and, in particular, the rapid identification of tissue scarring. 

Classification was achieved by using a limited set of frequencies; this reduction in data acquired 

was the factor responsible for the speed advantage. We observed that the classifier developed on 

FT-IR imaging data performed with high accuracy on DFIR imaging data. This is significant 

since this may enable us to apply previously built FT-IR imaging data based classifiers on DFIR 

imaging data at high speeds by identifying specific spectral features of importance. In addition, 

it offers a way to get high accuracy in digital histopathology using DFIR data. Despite low SNR 

data currently recorded with the DFIR system, the DFIR imaging data based classifier could also 

identify tissue types correctly with high accuracy. While this dataset is not comprehensive for all 

cardiomyopathies, further work could ensure high accuracy and expansion of classifier. There is 

also significant potential for faster triaging of samples. Fast identification using IR spectroscopic 

imaging is becoming a reality with new imaging instruments and the DFIR approach, which 

could permit real-time visualization of some information with specific regions being probed in 

greater spectral detail. Further, the same setup can lead to imaging at different pixel sizes. This 

diversity in spectral and spatial sampling, within the same imaging step, presents novel 
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opportunities for optimization. Clinically useful images comparable to FT-IR imaging can be 

obtained significantly more rapidly, paving the way for this approach to be clinically translated 

for real-time pathology. 
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Figures and Tables 

 

Figure 11. Comparison of images and spectra obtained from FT-IR and DFIR instruments 

for two different patient samples. Images obtained using (A, E) FT-IR imaging data (B, F) 

DFIR imaging data using the absorbance at 1652 cm-1. The shaded region represents non-

normalized amide I intensity as gray scale image. Scale bar represents 500μm  (C, G) 

Average spectra obtained for FT-IR and DFIR images for background and tissue regions 

marked as B and T in the images from more than 5000 pixels over similar sized regions. (D, 

H) Spectra obtained at specific points in DFIR and FT-IR images at regions marked in 

images as red dots.  
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Figure 12. Imaging with DFIR instrumentation. (A) Image of myocardium collected at 

different pixel sizes. Every box is image area of 2.02 mm x 1.94 mm at shown pixel size to 

demonstrate the relative data sizes, obtained using the absorbance at 1656 cm-1 and plotted 

as color bar shown in (A).  (B) Absorption spectra show data collected at high speed (red) 

and low speed (black) on DFIR imaging instrument. (C) Time required to image plotted for 

various pixel sizes for the scan area of 2.5 mm2  
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Figure 13. Receiver operating characteristic (ROC) curves for classifiers. 

(i) Training on FT-IR imaging dataset (ii) Validation of FT-IR imaging 

based classifier on FT-IR imaging dataset (iii) Application of FT-IR 

imaging based classifier on DFIR imaging dataset (iv) Training on DFIR 

imaging dataset (v) Validation of DFIR imaging based classifier on DFIR 

imaging dataset (vi) Training of multiclass classifier on DFIR imaging 

dataset (vii) Validation of multiclass classifier on DFIR imaging dataset 
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Figure 14: Classification results shown for DFIR images of three different 

samples. (A, E, I) Classifier developed on FT-IR data. (B, F, J) Classifier 

developed on DFIR data. (C, G, K) Single metric identification of fibrosis. 

Red regions in all the IR colored images are fibrosis. Corresponding H&E 

images are shown in (D, H and L).  Red arrows indicate the regions 

identified by the pathologist as fibrosis.  
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Figure 15: Classification results of multiclass classifier on DFIR images of two different 

samples. (A, C) Classified images showing Fibrosis, Myocardium, Cell death, Blood and 

blood vessels and Non-tissue regions. (B,D) Corresponding H&E.  

 

Table 6: Confusion matrix for FT-IR imaging based classifier applied on 

DFIR imaging dataset 

  Ground Truth (Percent)   

Class Myocardium Fibrosis Total 

Unclassified 0.01 0 0 

Myocardium 96.14 18.65 87.43 

Fibrosis 3.85 81.35 12.57 

Total 100 100 100 

  Overall Accuracy 94.42% 
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Table 7: Confusion matrix for DFIR imaging based classifier applied on DFIR imaging 

dataset 

  Ground Truth  (Percent)   

Class Myocardium  Fibrosis  Total 

Unclassified 0 0 0 

Myocardium 91.4 12.22 82.5 

Fibrosis  8.6 87.78 17.5 

Total 100 100 100 

  Overall Accuracy 90.99% 

 

Table 8: Confusion matrix for specific band based detection  

  Ground Truth (Percent)   

Class Myocardium Fibrosis Total 

Myocardium 94.02 34.09 80.12 

Fibrosis 5.98 65.91 19.88 

Total 100 100 100 

  Overall Accuracy 87.50% 

 

 

Table 9: Confusion matrix for multiclass DFIR imaging based classifier 

  Ground Truth (Percent)   

Class Blood Cell death Fibrosis Myocardium Total 

Blood 57.93 10.52 21.85 1.97 10.95 

Cell death 0.03 3.67 0.03 0.01 0.08 

Fibrosis 33.05 8.05 66.29 6.61 24.49 

Myocardium 8.99 77.76 11.84 91.41 64.48 

Total 100 100 100 100 100 

    

Overall 

Accuracy 
82.87% 
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Figure 16: Optimal threshold identification. Shown here is the threshold identification for 

peak height ratio of 1236 cm-1 and 1542 cm-1 after fine tuning the ratio value threshold. 
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 Table 10. Metrics used in FT-IR imaging based classifier in the order of addition 

  

Metric type Feature 1  Feature 2 

Peak height ratio 1389 cm-1 1236 cm-1 

Peak area to height 

ratio 

1274 cm-1 to 1543 cm-

1 
1652 cm-1 

Peak height ratio 1239cm-1 1543 cm-1 

Peak height ratio 1339 cm-1 1543 cm-1 

Peak height ratio 1236 cm-1 1543 cm-1 

Peak height ratio 1389 cm-1 1452 cm-1 

Center of gravity 1482 cm-1 1594 cm-1 

Peak area to height 

ratio 
1324 cm-1 to 1358 cm-1 1652 cm-1 

Peak height ratio 1405 cm-1 1236 cm-1 

Peak area to height 

ratio 

1482 cm-1 to 1594 cm-

1 
1652 cm-1 

Peak height ratio 1027 cm-1 1236 cm-1 

Center of gravity 1048 cm-1 1070 cm-1 

Peak height ratio 1389 cm-1 1065 cm-1 
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Table 11: Metrics used in DFIR imaging based classifier in the order of addition, accuracy 

percentage is the accuracy obtained at each metric individually at optimized threshold 

values 

Metric type Feature 1  Feature 2  Accuracy (%) 

Peak height ratio 1038 cm-1 1542 cm-1 78.821 

Peak area to height ratio 
1482 cm-1 to 1590 

cm-1 
1038 cm-1 70.09 

Peak area to height ratio 
996 cm-1 to 1140 cm-

1  
1542 cm-1 79.712 

Peak height ratio 1236 cm-1 1542 cm-1 86.46 

Peak area to height ratio 
1482 cm-1 to 1590 

cm-1 
1236 cm-1 76.24 

Peak area to height ratio 
1182 cm-1 to 1290 

cm-1  
1542 cm-1 81.831 

Peak area to height ratio 
1482 cm-1 to 1710 

cm-1  
1236 cm-1 76.203 

Peak height ratio 1236 cm-1 1650 cm-1 85.185 

Peak area to height ratio 
1182 cm-1 to 1290 

cm-1 
1650 cm-1 80.239 

Peak height ratio 1074 cm-1 1650 cm-1 72.031 

Peak area to height ratio 
1482 cm-1 to 1590 

cm-1  
1020 cm-1 53.126 
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Table 12: Metrics used in multi-class DFIR imaging based classifier in the order of addition 

 

 

Metric type Feature 1  Feature 2 

Peak area to height ratio 1362 cm-1  to 1428 cm-1 1650 cm-1 

Peak area to height ratio 1482 cm-1  to 1590 cm-1 1038 cm-1 

Peak area to area ratio 1428 cm-1  to 1482 cm-1 1590 cm-1  to 1710 cm-1 

Peak area to height ratio 1482 cm-1 to 1710 cm-1 1464 cm-1 

Peak height ratio 1038 cm-1 1398 cm-1 

Peak area to height ratio 1482 cm-1 to 1710 cm-1 1236 cm-1 

Peak area to area ratio 1362 cm-1  to 1428 cm-1 1590 cm-1  to 1710 cm-1 

Peak height ratio 1236 cm-1 1464 cm-1 

Peak area to height ratio 1482 cm-1  to 1590 cm-1 1236 cm-1 

Peak height ratio 1482 cm-1 1650 cm-1 

Peak area to area ratio 1482 cm-1  to 1590 cm-1 1590 to 1710 cm-1 

Peak area to height ratio 1482 cm-1  to 1590 cm-1 1020 cm-1 

Peak area to area ratio 1362 cm-1  to 1482 cm-1 1590 cm-1  to 1710 cm-1 

Peak height ratio 1020 cm-1 1398 cm-1 

Peak area to height ratio 996 cm-1  to 1140 cm-1 1542 cm-1 

Peak area to area ratio 996 cm-1  to 1140 cm-1 1590 cm-1 to 1710 cm-1 

Peak area to height ratio 1362 cm-1  to 1428 cm-1 1020 cm-1 

Peak area to height ratio 1482 cm-1  to 1710 cm-1 1038 cm-1 
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SUMMARY 

In this work, we have developed infrared chemical imaging based approach towards digital 

pathology of cardiac biopsy samples. We first applied supervised Bayesian classification 

approach to identify lymphocytes, fibrosis in endocardium, fibrosis in myocardium, myocardium 

and endocardium with sensitivity of greater than 95% for all classes except endocardium at 90% 

specificity, while the sensitivity of endocardium was also at least 85%. This is the first 

demonstration of application of Fourier transform infrared spectroscopic imaging towards 

cardiac histology and is significant in establishing that the histological classes identified in 

endomyocardial biopsy samples have intrinsic chemical contrast. We also tested the performance 

of this classifier on low spatial resolution data collected at 25μm to assess if high speed detection 

could be achieved. While probability of detection was high for myocardium and average for 

lymphocytes, the classifier could not distinguish between other classes well.  

Following our previous attempts at developing a protocol for high speed histology, the next 

approach that we tested was using quantum cascade laser based discrete frequency instruments. 

This enabled us to collect data at high speed without compromising the spatial resolution. We 

first tested if the data collected in DFIR mode, which had lower signal to noise compared to FT-

IR data could be used for differentiation of histological classes based on spectral features. We 

observed that the unsupervised clustering detected similar regions in data collected on both DFIR 

and FT-IR instruments, indicating that the spectral differences that led to differentiation of 

classes in FT-IR were preserved in DFIR data despite low SNR.  

Next, we tested different approaches to develop high accuracy classification models for DFIR 

data. We first applied the classifiers built previously on FT-IR data on data collected in DFIR 

mode. This classifier performed well on discrete frequency data, confirming the premise that 

Bayesian classification can identify specific spectral features necessary and sufficient for 

identification of histological classes. We also developed a Bayesian classifier on DFIR data to 

assess the highest accuracy achieved in classification. Given the lower signal to noise ratio 

obtained in discrete frequency mode, it was expected that the accuracy would be lower for the 

classifier developed on DFIR data. This was confirmed by calculating the accuracy of final 
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classification, which dropped to about 91%. This accuracy lowered further when a multi-class 

classifier was developed on DF-IR data. We anticipate the issue of lower accuracy of classifiers 

developed on DF-IR data can be resolved with using a larger number of samples for training the 

classifiers, and applying noise correction algorithms.  

Finally, we were interested to see if the speed advantage of discrete frequency approach could be 

realized to its full potential by using a single metric based identification. We aimed to identify 

fibrosis in the myocardium which is indicative of tissue damage due to a number of factors such 

as immune response and myocardium damage and can be indicative of loss of function of heart 

muscle. We tested all the metrics utilized in Bayesian classifier for differentiation of fibrosis 

from myocardium, and chose the metric with highest accuracy of differentiation. This metric was 

found to achieve an accuracy of 87.5% for the differentiation of fibrosis from myocardium. 

While the use of discrete frequency mode as compared to FT-IR mode can lower the time 

required to image by 20-folds, this result can further reduce the time required by a factor of 10, 

making this technology practical and relevant on clinical scale. In the bigger picture, this work 

will be useful in developing probe based technology by direct implementation of results obtained 

from this work for a high speed detection of fibrosis. In addition, with high speed imaging being 

made possible by quantum cascade laser technology, this work contributes significantly towards 

high speed digital histopathology of cardiac tissue.   

 


