
TIME-OPTIMAL CONTROL OF AN OPTICAL-MEMORY
INFORMATION RETRIEVAL SYSTEM

by
Abdul Mohammed Javery

This work was supported by the Joint Services Electronics
Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract
DAAB-07-72-C-0259.

TIME-OPTIMAL CONTROL OF AN OPTICAL-MEMORY

INFORMATION RETRIEVAL SYSTEM

BY

ABDUL MOHAMMED JAVERY

B. S . , University of Illinois (Chicago Circle) 1976

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1977

Thesis Adviser: Professor William R. Perkins

Urbana, Illinois

iii

ACKNOWLEDGEMENT

The author would especially like to thank his advisor
Professor W. R. Perkins for his encouragement, interest and
understanding. Special thanks to Mr. John Squire for his
help in defining the control problem and to Mr. S. H. Javid
for helping the author understand the time-optimal control
iterative procedure.

iv

TABLE OF CONTENTS

Page
1. INTRODUCTION .. 1

1.1 The Overall System 1
1.2 The System Model 3
1.3 Discussion of The Problem 12

2. TIME-OPTIMAL CONTROL 14
2.1 The Iterative Procedure 14
2.2 Linear Transformation 15
2.3 The Slow Subsystem 17
2.4 The Fast Subsystem 19

2.4.1 Application of The Minimum Principle 19
2.4.2 Switching Curves and Controls 23

3. SIMULATION AND RESULTS 30
3.1 Simulation on Hybrid Computer and DEC-10 30
3.2 The Algorithm 31
3.3 Results .. 35
3.4 Real Time Implementation 38

3.4.1 Feasibility Study 38
3.4.2 Algorithm for Real-Time Implementation ... 44
3.4.3 Results and Discussion 49

4. CONCLUSIONS ... 53
LIST OF REFERENCES 55
APPENDIX A: THE PHASE-PLANE TRAJECTORIES 56/
APPENDIX B: THE SWITCHING CURVE 59
APPENDIX C: COMPUTER PROGRAM FOR TIME-OPTIMAL ALGORITHM. 62
APPENDIX D: COMPUTER PROGRAM FOR REAL-TIME ALGORITHM ... 67
APPENDIX E: THE 8080A BASED MICROCOMPUTER SYSTEM 70

V

LIST OF FIGURES

Figure Page
1 1 The Overall System 2
1 2 Schematic Diagram of the System 4
1 3 State Diagram of the System 9
1 4 Natural Time Responses of the System States 10
1 .5 Phase-Plane Trajectory in (x2 ,Xg) Plane 11
2 .1 Phase-Plane Trajectory in the Transformed (z2 ,Zo)

Plane ... 21
2 2 Function of the Costate Variable f(p) and the

Corresponding Control u(t) Vs. Time 24
2 • 3(a) Switching Curve for Final Track = 1100 26
2 .3(b) Switching Curve for Final Track = 3600 27
2 .4 Switching Curve for Going to the Origin 29
3 1 Patching Diagram of the System on the Analog

Computer .. 32
3 .2 Flow Chart for the Time-Optimal Algorithm 34
3 •3(a) Time Responses of the Controlled System States... 36
3 .3(b) Phase-Plane Trajectory of the Controlled System

States .. 36

3 .3(c) Actual Track Movement Versus Time 37
3 .3(d) Control u(t) Versus Time 37

3 .3(e) Time Responses of the Transformed States of the
Controlled System 39

3 •3(f) Phase-Plane Trajectory of the Transformed
Controlled System 39

3 .4(a) Time Responses of the Controlled System States... 40
3 .4(b) Phase-Plane Trajectory of the Controlled System

States .. 40
3 .4(c) Actual Track Movement Versus Time 41

vi

Figure Page
3.4(d) Control u(t) Versus Time 41
3.4(e) Time Responses of the Transformed States of the

Controlled System 42
3.4(f) Phase-Plane Trajectory of the Transformed

Controlled System 42
3.5 Flow Chart for Real-Time Algorithm 48
3.6(a) Track Movement Versus Time Applying Real-Time

Algorithm (from Track 50 to Track 2000) 50
3.6(b) Track Movement Versus Time Applying Time-Optimal

Algorithm (from Track 50 to Track 2000) 50
3.7(a) Track Movement Versus Time Applying Real-Time

Algorithm (from Track 3600 to Track 1200) 51
3.7(b) Track Movement Versus Time Applying Time-Optimal

Algorithm (from Track 3600 to Track 1200) 51
E.1 CPU, Clock and Controller 72
E . 2 8K PROM Board 76

E. 3 2K RAM Board .. 78

E.4 ADC-DAC Interface Board 80
E.5 8080A System Functional Block Diagram 86

1

CHAPTER 1

INTRODUCTION

1 . 1 The Overall System. f

In recent years a significant amount of work has been
done in the field of optics. These advances has made it
possible to use optics as a communication medium. One
apparent application is seen in the video-disc systems
presently being developed by the television industry.
Recently some interest has evolved in applying the
video-disc technology towards an optical memory device
having a large information storage capability.

A memory device of this kind is presently being
developed at the Coordinated Science Laboratory at the
University of Illinois, Urbana. The storage medium for this
system is a mylar disc coated with a thin film of bismuth.
Information is stored in 4096 concentric tracks on the disc
where the metallic film has been selectively removed. This

omemory device has an expected storage capacity of 10 to
1010 bits of information per disc. The laser optics serves
as a communication medium between the disc and the optical
sensor, which senses the presence or absence of metal in
accordance with the information stored. Fig. 1.1 shows a
schematic diagram of the system. The laser source is fixed
and the laser beam, (after passing through two lenses for
proper convergence), is reflected off a mirror onto the

2

FP-5561

Fig. 1.1 The Overall System.

3

disc. If the metallic film is present at the region, (a
circular region of a radius of about 5um where the beam is
focussed), the beam will be reflected back and sensed by the
optical sensor. The disc rotates at 1800 rpm so that any
portion of the disc can be scanned and the information
retrieved by merely deflecting the mirror by an appropriate
amount. The mirror itself is mounted on the arm of a moving
iron galvanometer.

The purpose of this work is to design a time-optimal
control algorithm to position the mirror so as to focus the
laser beam on any desired track for information retrieval.
The application of this optical memory device can be varied,
anywhere from replacing the conventional disc drives to
storing audio messages for air traffic control.

1.2 Xhe System Model.

The mechanism used to deflect the mirror is a moving
Iron Galvanometer, with the mirror being mounted on its arm.
The galvanometer used is a commercially available General
Scanning G-300PD Model. The plant consists of an iron vane
rotor supported by a torsion spring immersed in a permanent
magnetic field. Windings are used to produce a bias field
such that the torque generated is proportional to the
current in the drive coils. A schematic diagram of the plant
is given in Fig. 1.2.

4

Fig. 1.2 Schematic Diagram of the System.

5

Let
R = armature resistance
L = armature inductance
i = armature current

ea = applied voltage

h<D back emf
e = angular position
(D = angular velocity
B = back emf constant
J = total inertia

Bm = bearing (viscous) friction coefficient

IIs!*d motor torque constant
K = torsion spring constant.

Refering to the schematic diagram of Fig. 1.2, the variables
i(t),6Kt) and ou(t) are assigned as the states of the system.
Writing Kirchhoff’s voltage law around the loop

Ldi _ -Ri - eK + e„ .dt b a

The back emf voltage is proportional to the motor speed,

eb = Bod .

Therefore

di _ - J L L B oj f ea ♦ (1 .1)
dt L L L

6

Assuming the spring to be linear, the torque-spring
relationship is given by

Ts = K* •

The torque constant Km relates the motor torque Tm and the
armature current i(t) by

Tm = V ' 1» •

The torque T^ produced due to the viscous friction is
proportional to the motor speed,

Tf = Bmo) .

The algebraic sum of the torques must be equal to the
product of the total inertia and motor acceleration,

Jd^Ct) . Kmi(t) - K0(t) - B_o)C t)
dt

or daft) . K i(t) . K<9(t) _ R <o(t) .
dt J J J

The third state equation is simply

AM t) _ cu(t) .
dt

Defining
x1 = i(t)
x 2 - 0
x ̂ = oj and x =
ea = u(t)

(1 . 2)

(1.3)

7

Equations (1.1) - (1.3) can be written in the form of state
equations:

-R/L 0 -B/L 1 /L

X = oo x + 0

Km/J -K/J -Bm/J 0
__ __ - __ _

The values of the system parameters are obtained from
the specifications provided by the galvanometer manufacturer
(General Scanning Co.). The sytem parameters are:

R = 8.0 Ohms
B = 0.166 V-Sec/rad
Km= 0.14 Nt-m/A
K = 0.28 Nt-m/rad
Bm= 3.39x10“ ̂ (Nt-m)/(rad/sec)
J = 9.8x 10- 7 Kg-m2

L = 0.03 H

Substituting the values for the system parameters, the state
equation (1.4) becomes:

-2 6 6.667 0 -5.5333 33.333

x = 0 0 1 x + 0

142,860 -285,710 -34.592 0

8

The state diagram of the system is as shown in Fig.
1.3. The transfer function between the motor displacement
and the input voltage is obtained from the state diagram as:

0(s) _ _____________ 4.761995x1 06__________________
U(s) s3 + 3 . 0 1 2 x 103 s 2 + 1 . 0 8 5 x 107 s + 7 . 6 1 9 x 108

The transfer function has no zeroes and has the three poles
located at X.j =-7 1 . 2696 , X 2 3=-114.99±j1027.5. The system is
basically open loop except for the feedback loop caused by
the back emf (Fig. 1.3). The back emf effect is equivalent
to an 'electrical friction', which tends to improve the
stability of the system.

Fig. 1.4 shows the natural time response of the system
with an initial condition of x(0) = [0.2 0.1 0]'. The plot
for the state x-| (current) shows that the decay in the
current is not pure exponential but it is affected by the
oscillatory modes in the system. The oscillations in x-| are
due mainly to the back emf voltage. A comparison of the
plots for x.j and x2 (current & position) show an almost
linear relationship. The constant relating the two is about
0 . 5 rad/A,

x2(t) = 0.498x1(t) (1.6)

The phase-plane trajectory of the system in the x2-x^
plane is shown in Fig. 1.5. Again the effect of back emf
voltage is evident. As the velocity increases so does the

9

-285,710

Fig. 1.3 State Diagram of the System.

5— 0.100 '

0-

-5-

- 10-

0.075

0.050 —

0 .025—

-1 5 —1 0 .000—J

TIME CSECONDS}

Fig. 1.4 Natural Time Responses of the System States.

X2

Fig. 1.5 Phase-Plane Trajectory in (x2 ,X3) Plane.

12

back emf voltage which tends to decrease the velocity. The
back emf voltage gradually increases and at a point exceeds
the control voltage in magnitude (but having opposite sign),
rendering the control ineffective and decreasing the
velocity to zero. With the decrease in velocity, the back
emf voltage also decreases and eventually becomes so small
that the control voltage becomes effective again. This
cycle is repeated as the state X2 (position) moves towards
the origin.

1 . 3 D,i.scu.§gion of the Problem .

In the past it was attempted [1] to solve this problem
of positioning the laser beam by neglecting the inductance
in the plant and thus considering it to be a second order
system instead of third order. It was assumed in [1] that
the control for travelling absolute distances is the same,
thus having the same switching curve, but merely shifting
the coordinates for different final points. This assumption
was found to be incorrect. The switching curve is seen to
be final-point dependent. So the problem of designing a
controller for the optical memory is essentially unsolved in
[1], but an appreciable amount of insight to the system was
gained through the work done in [1].

In this thesis, the basic approach taken in solving the
third order problem is to apply the ideas of singular
perturbation. But from the system eigenvalues it is evident

13

that the system does not really possess a "two time scale
property" (the system eigenvalues are not very widely
separated), so that the theory of singular perturbation e.g.
in [2] or [3], is not directly applicable. However, an
iterative procedure, proposed in [4], based on the theory of
singular perturbation can be used with some modifications.

An unusual property of the system is that the
electrical mode (current) is slower than the mechanical
modes (position and velocity). This adds to the complexity
of the problem because it is required to control the fast
modes of the system through its slow mode.

14

CHAPTER 2
TIME-OPTIMAL CONTROL

2.1 The Iterative Procedure.

The basic idea involved in the iterative procedure, as
proposed in [4], is to decouple the higher order system into
'slow' and ’fast* subsystems (subsystems having slow and
fast eigenvalues) and then try to control them separately.
The 'slow states', xg(states of the slow subsystem), are
first steered to their final values and then the 'fast
states', x^Cstates of the fast subsystem), are rapidly
steered to their desired final values. If the eigenvalues
of the subsystems are widely separated then the slow states
would not move away from its final position, while the fast
states are being steered. But if the separation is not wide
enough then the slow states would drift away (from their
final values) while trying to steer the fast states.

The algorithm proposed in [4] gives a method to
iteratively find a point xsi by integrating the slow
subsystem backwards from its desired final value using the
'fast control'(control required to steer the fast subsystem
to its final value). Now the slow states are taken to this
calculated point xsi (instead of their exact final values).
If the fast states are then steered, the slow states would
automatically drift to their final values under the
influence of the fast control.

15

In this procedure the fast states, xf, are at their
desired positions but the slow states, xs, are somewhat
drifted from their final values. Applying the procedure
iteratively, the slow states move towards their desired
final values in steps and eventually converges to their
final values. The algorithm may fail to converge if the
steps taken are too large. To assure convergence, the
algorithm can be modified to reduce the steps taken by the
slow states by multiplying them by a number s, where 0<s<1 .
The value of s is picked in such a way that there is no
divergence but at the same time convergence is achieved in
an acceptable number of iterations. Note that making s
arbitrarily small would considerably decrease the rate of
convergence. There is no closed form formula available to
calculate the value of s. But, experimenting with the
system it was found that the value of s does not vary
rapidly so that s can be taken as constant over some ranges
of initial and final conditions. The value of s for the
different ranges of the system was found by trial and error.

2 .2 Linear Transformation

To use the iterative procedure the system has to be
decoupled into slow and fast subsystems. A Jordan
Transformation is applied here. Rewriting the system
equations (1 .5)

16

- 2 6 6 . 6 6 7 0 - 5 . 5 3 3 3 3 3 . 3 3 3

0 0 1 x + 0

1 4 2 , 8 6 0 - 2 8 5 , 7 1 0 - 3 4 . 5 9 2 0

Let x = Tz where T is the transformation matrix and z is the
transformed state vector, so that

z = T” ̂ATz + T-1 Bu.

The transformation matrix T is found to be

0 . 1 8 6 9 7 x 1 0 7 0 . 8 2 0 7 5 x 1 0 6 - 0 . 2 0 6 4 6 x 1 0 8

0 . 9 2 6 3 6 x 1 0 6 - 0 . 1 3 4 5 1 x 1 0 6 0 . 7 4 2 6 0 x 1 0 5

- 0 . 6 6 0 2 3 x 1 0 8 - 0 . 6 0 8 3 6 x 1 0 8 - 0 . 1 4 6 7 5 X 1 0 9

The Jordan form of system (2.1) is

z-| = -71.2695z-| + 0.486x10”^u

z 2 = -114.99z2 + 1 027.5z3 + . 26254x10~4u
z3 = -1 027.5z2 - 114.99z3 - 0.1 307x10-i|u .

(2 . 2)

(2 .3a)

(2 .3b)

Thus the system is decoupled into slow subsystem (2.3a) and
fast subsystem (2.3b). The general approach is to control
the slow subsystem first and steer it to some desired point
(to z-|j., if the system has widely separated eigenvalues) and
then to control the fast subsystem. The problem here is to

17

iteratively find a point), (intermediate at time
tg), depending on (final z-j) so that z^ is steered to

instead of Z ̂ . Now if the ' fast states' (z2 and z 3)

steered to their final values (z2f and Z3f), the slow
state (z.j) would automatically drift from z ^ to z1f. under
the influence of the fast control uf.

2.3 The ¿1.P.M Subsystem.

The equation for the slow subsystem is

ẑ = -71.2696z -j + 0.486x10“^u .

The performance index to be minimized is

(2.4)

with | u | <. k .

The Minimum Principle is applied to find the time-optimal
control. The Hamiltonian is

H = 1 - 71 .2696z., (t)p1 (t) + 0.'t86x10_5u(t)p1 (t) .

The costate p-j(t) satisfies the equation

P-j (t) = 71 .2696P1 (t) . (2.5)

The control u(t) that minimizes the Hamiltonian is given by

u(t) = ug(t) = -Sgn{p1 (t)}*k .

18

Solving (2.5)

P-, (t) = p, (0)e71 -2696t _ (2.6)

From (2.6) it is seen that, since the exponential is always
positive, p-j(t) does not change sign and has the same sign
as that of p-j(O). This implies that for the slow subsystem
there is no switching. It can be shown [5] that for this
first order system the optimal u is given by

ug = -Sgn{z1 (0)-z1 (tf)}*k

Thus the control law is

If z1 (0) < Z-, (t f) , then us = k.
If z (0) > Z1 (tf) , then us = -k. (2.7)
If z-j (0) = z 1 (t) , then us = 0 .

Solving (2.4) for z-j(t) gives

z1 (t) = 6 .81 92x10-8u+(z1 (0)-6 .8 192x10”8u)e"71*2 6 9 6 . (2 .8)

Equation (2.8) can be used to find the intermediate point
Z1 (tg), for the iterative procedure. Thus

z1 i(ts) = 6 ‘8l9 2x1 0"8uf+(zl(tf)-6 .8 192x1 CT8uf)e" 71 *2 696t.(2 .9)

In the above equation û » is fast control (control required
for the fast subsystem), z.,(tf) is the desired final point
and t should be substituted by the negative of the time for
which the fast control was applied in the previous

19

iteration. Note that if the value of being calculated
is for the (n+1)th iteration then the control and time (u^
and t) used is from the nth iteration.
Also from (2.8)

ts = -ln[a1/a2]/71.2696 (2.10)

where
a 1 =z1 i(tg)-6 . 8 1 9 1 8ug
a2 =z1 (0)—6.81918ug

Thus the time required to reach any given intermediate point
can be calculated using Eq. (2.10). This then is the time
for which the slow control is to be applied for the next
iteration. Thus for each iteration the new intermediate
point z -| (t s) is given by Eq. (2.9) and the time t is given
by Eq. (2.10).

2.4 The East Subsystem

2.4.1 Application .pf the Minimum Principle.

The state equations for the fast subsystem are

z 2 = -114.99z2 + 1 0 2 7 .5 z 3 + 0 .2 6 2 5x 1 0"4u
(2 . 1 1)

z3 = -1027.5z2 - 114.99z3 - 0 . 1 3 0 7x 1 0"4u .

20

This second order system is a stable but very lightly
damped harmonic oscillator. It has a natural frequency of
1033.9 rad/sec and a damping coefficient of 0.1112. A
detailed analysis and the time-optimal control of a system
of this type is given in [5]. Using polar coordinates and
eliminating time, the equation for the phase-plane
trajectories is found to be

R = Roe[<*-0O)/8 -” 56] (2.12)
where

R =Ty(z2-z2 e) 2 + <z3-z3 e) 2

R0 = V (Z2 0-Z2e)2 + (230_z3e)2

0 = Cos"1 ((z2-z2 e)/R)

0 O = Cos"1 ((z2 o“Z2 e)/R0)

and where (z2 q ,z ^o) and (z2 e ,z^e) are the initial and
equilibrium points, respectively.
Eq.(2.12) describes a family of logarithmic spirals tending
to the equilibrium point. The calculations involved in
deriving the equation of the phase-plane trajectory are
given in Appendix A. Fig. 2.1 shows the phase-plane
trajectories of the system in the transformed z2-z^ plane
with no control on the system. The Minimum Principle is
utilized again to find the time-optimal control for the
second order subsystem.

Rewriting the transformed state equations (2.11)

XI0"7

Fig. 2.1 Phase-Plane Trajectory in the Transformed (z?,z_)
Plane. ̂ 5

22

z 2 = -114.99z2 + 1 027.5z 3 + 0.2625x10~4u
(2.13)

z3 = -1027.5z2 - 114.99z3 - 0 .1 3 0 7x 1 0"4u

The Hamiltonian is

H - 114.99z2p2 + 1027.5z3p2 + 0.2625x10“^up2

- 1027.5z2 p3 -114.99z3p3 - 0 .1 3 0 7x 1 0~4up3 .

The control that minimizes the Hamiltonian is

u(t) = -Sgn{0.2625x10"4p2 (t)-0.1307x10“4p3 (t)}*k .

The costate variables p2 (t) and p3 (t) satisfy the following
differential equations

p2 = 1 14.99 p2 + 1 027.5p 3

p3 = -1027.5p2 + 114 . 99 P3 . (2.14)

The transition matrix for system (2.14) is

Cosat Sinat
♦ <t) = e1l4-” t

-Sinat Cosat
where a = 1 0 2 7 . 5 .

The solution for (2.14) is given by

p2 (t) = e11^ * 991(p2QCosat + p3QSinat)

P3(t) = e 1 1 ^ * 991(p3Qcosat - p2QSinat)
where

23

p0 = p(°) •

A plot of the function (0.2625x1 0“^p2 (t)-0.1 307x1 0“ % 3 (t))
versus time and the corresponding control u(t) is shown in
Fig. 2.2. Note that the sign of the control u(t) depends on
the sign of this function. From the figure it is seen that
the control cannot remain constant for more than
114.99‘7t/1 027.5 secs. and also that there could be an
infinite number of switchings.

2.4.2 Switching Curves and Controls.

The final point is any allowable point including the
origin. The shape of the switching curve varies with the
final point. Due to the linear relationship (Eq. 1.6)
between the system states x 1 and x2 , the transformed initial
and final points will always lie on a straight line in the
Z2-Z3 plane given by

z3 = 2.86586z2 . (2.15)

Eq. (2.15) is the equation of a line that passes through the
origin and the two equilibrium points (due to u = ± 5).
Furthermore the initial and final states are constrained to
the portion of the straight line between the two equilibrium
points. This implies that there could be at most one
switching. A more detailed description is given in Appendix
B. The equation of the switching curve is

5.0-i 0.4

-5.0-^ —0.4— j— I.m r I 1 1 1 I l-vi-i- j-T-y-!- I I I ,« -r- j.-i-T-r-r>-
0.000 0.025 0.050 0.075 0.100 0.125 0.15

X10“1
TIME CSECONDS!)

Fig. 2.2 Function of the Costate Variable f(p) and the
Corresponding Control u(t) Vs. Time.

25

Rs = RsO*exp[Us-0sO)/8.9356] (2 . 1 6)

where
Rs (z2-z2 e) 2 + (z3-z3 e) 2

RsO = z2f-z2e^2 + (z3f-z3e^2] * exp (tt/8 .9356)

0S = Cos“ 1 ((z2-z2 e)/Rs)

*s0 = 1 * 2 2 .

The switching curves are obviously final point
dependent as can be seen from Eq. (2.16). Figs. 2.3(a) &
2 .3 (b) show typical switching curves for track 1 1 00 and 3600

as the final points respectively. Thus the switching curves
consist of exactly two "semiloops", one on each side of the
final point, which are portions of the phase-plane
trajectory. Any point on the switching curve can,
therefore, be taken to the final point by the control u= + 5V
or u=-5V .

The time-optimal control, as a function of the
transformed states (z2 & 2 3)» is given by

If (2 2 > 2 ̂) is above the switching curve *, then u 11¡3II + k.
If (z 2 j z ̂) is below the switching curve *, then u = Uf = -k.
If (2 2 > Z ̂) is on the left half of the ;switching curve, then
*u ll C 11 + k.

If (z 2 » z ̂) is on the right half of the switching curve, then
*u II c *-*> II -k.

XI0-®

-0 .2 5 -0 .1 5 -0 .0 4 0 .05 0 .15
XI0-6 z 2

Fig. 2.3(a) Switching Curve for Final Track = 1100.

X10~6

- 0.10 0.00 0.10
X10""6

0.20 0.30

Fig. 2.3(b) Switching Curve for Final Track = 3600.

28

Rewriting the equation of the switching curve:

Rs - Rs0*exp[(0 S - 0sO)/8.9356] = 0 (2.17)

with Rs , Rso>^s and ^sO as in E<3‘

The location of any given point with respect to the
switching curve can be found by substituting its value in
the left hand side of Eq. (2.17). Let EQ be the value
obtained by this substitution. The value of EQ will be
identically zero only if the point lies on the switching
curve. Refering to Fig. 2.4 (switching curve with origin as
the final point), the point under consideration lies in the
shaded region if the value of EQ is negative and in the
unshaded region if EQ is positive. Thus knowing which half
of the plane the point lies in (by the value of z2), it Gan
be inferred by the sign of EQ if the point lies above, below
or on the switching curve.

Fig. 2
(Track

4 Switching Curve for Going to the Origin
2048) .

rv>

30

CHAPTER 3

SIMULATION AND RESULTS

3.1 Simulation on Hybrid Computer and DEC-10 .

The system was simulated on the AD-5 (Applied Dynamics)
Analog Computer with PDP-11/40 as the digital controller.
The ultimate goal is to be able to use a microcomputer
system (e.g. INTEL 8080 based system) as the digital
controller, which would physically reside on the system. A
documentation of the existing 8080A based microcomputer
system with a description of the available software is given
in Appendix E. For simulation purposes it was assumed that
all three states are available. The equation for the
switching curve being fairly complicated (involving
exponentials and arc cosines), it was inferred that the
PDP-11 could not perform the required calculations to
control the system in real time. Therefore, the simulated
system was time scaled by a factor of 1000. The state x^
was also magnitude scaled by 1 000 to keep the simulation
within the dynamic range of the hybrid computer. Thus the
scaled system equations are:

-0.2667 0 -5.5333 0.3333

X = 0 0 1 x + 0 u/10. (3.1)

0.1428 -0.2857 -0.0346 0

31

Fig. 3.1 shows the patching diagram of the system on
the Hybrid Computer. It was attempted to control this
simulated system, but the accuracy achieved was not
satisfactory. This is mainly due to the fact that the
calculations involved are too time consuming making the
control algorithm comparatively slow even for the time
scaled system. However, this simulation was found very
useful in obtaining system responses and studying system
behaviour under open loop control.

To achieve better accuracy, the system was simulated on
the DEC-10 Digital Computer. A simple Euler approximation
for integration was used with very small value for At
(5x10”^sec.). For this simulation also it was assumed that
all the states were available. The control algorithm was
applied to this simulated system and the desired accuracy
was achieved so that the criteria of reaching within +10
tracks was satisfied.

3.2 l„h.g Algorithm.

The iterative procedure described in Sec. 2.1 with the
step size modification is used to find the control for the
system. The initial and final tracks are given and it is
assumed that the states are available at all times.
Applying the linear transformation discussed in Sec. 2.2,
the transformed states are formed. To find the control
required to move the system from any arbitrary initial point

32

Fig. 3.1 Patching Diagram of the System on the Analog Computer.

33

to any final point, the slow state is first steered to
its final value z-|f* The required control is given by
(2.7). At zi = zi , the location of the transformed system
states in the Z2~z^ plane is determined with respect to the
switching curve. This is done by substituting the present
state values in (2.17) and calculating the value of EQ as
described in Sec. 2.4.1. Knowing the position of the states
with respect to the switching curve, the control sequence
for the fast subsystem is formed. The proper control is
then applied and the position of the system states are
evaluated at every sampling instant. The values of the
system states are substituted in the equation for the
switching curve (2.17) after very sampling period to check
if the switching curve is reached. When the states reach
the switching curve or are in a very small neighborhood e

(=0.2x10”^), of the switching curve, the control is
switched. This (switched) control is now applied until the
states reach a small neighborhood o(0.5x10”®) of the final
point ^^2f*^3f^ . While z2 and z^ are steered to their final
values, the slow state z ^ drifts away from its final value
(to which it was steered) The iterative procedure is now
applied and an intermediate value of z-j , (z^), is
calculated using (2.9). The calculated z ^ ± is multiplied by
the step size s and on second iteration, ẑ is steered to
z-i^s instead of Z1 f. The whole procedure is repeated until
the final track value reaches within +10 tracks of the
desired value. Fig. 3.2 shows a flow chart for the

34

Fig. 3.2 Flow Chart for the Time-Optimal Algorithm.

35

algorithm. The computer program for implementing this
algorithm is given in Appendix C.

3.3 Re,£y,lt,s.̂

Utilizing the varying step size, the iterative
procedure converges, on an average, in 8 iterations.
Although on the actual system a control voltage of upto +15V
is allowed, here the control voltage considered is +5V.
This does not change the problem of designing the control in
any way. Changing the control from +.5V to +15V merely
speeds up the system, with the proposed time-optimal
algorithm remaining the same. Fig. 3.3(a) and 3.3(b) show
the time response and the phase-plane trajectories,
respectively, of the controlled system in going from track
100 to track 4000 (picked arbitrarily). From the figures it
is seen that state x-| oscillates as it moves towards its
desired final value but the response for x2 is not very
oscillatory. The response for x2 is that of a monotonic
non-decreasing (or non-increasing) function so that the
mirror deflection is always in the right direction, without
oscillating back and forth. The actual tracks traversed and
the corresponding control is shown in Figs. 3.3(c) and
3.3(d) respectively. The track reached is very close to the
actual desired track (track 4004 was reached with the
desired being 4000). The control required shows that the
slow control is applied for the longest time with two fast

36

120— 1 0 . 3 - ,

100— 0.2—

80 —

60 —

40 —

20 —

0 —

-0.1-

- 0.2-

- 0 .3 — 1

0.1 —

0 . 0 *

Fig. 3.3(a) Time Responses of the Controlled System States

- 0 .3 - 0 .2 - 0.1 0 .0 0 .1 0 .2 0 .3

x2
Fig. 3.3(b) Phase-Plane Trajectory of the Controlled System
in the (x2 ,x^) Plane.

37

Fig. 3.3(c) Actual Track Movement Versus Time.

1111 n i l i i i i TTTT TTTT 1 1 1 1 1111
0.080 0.005 0.010 0.015 0.020 0.025 0.030 0.03

TIME CSECONDS3

Fig. 3.3(d) Control u(t) Versus Time.

38

switchings at the end. Refering to Fig. 3.3(c), the slow
control takes the system fairly close to the final value
(track 3980) and then the fast control takes the system to
the desired position. Figs. 3.3(e) and 3.3(f) show the time
response and phase-plane trajectory of the transformed
system (controlled) states respectively for the same track
movement (track 100 to track 4000). The effect of the slow
and fast controls is clearly seen in Fig. 3.3(f). The
system moves towards the final point in an oscillatory
motion and as soon as the desired slow state is reached, two
fast switchings takes the system to the final point. Figs.
3.4(a) through 3.4(f) are identical to Figs. 3.3(a) through
3.3(f) except that the tracks traversed is from track 3500
to 300.

The time required to make these large excursions are
around 30ms. The time decreases as the number of tracks to
be traversed is decreased. Also applying a control of ±15V
instead Of +5V would decrease the required time by a factor
of 2.

3.4 Real Time Implementation.

3.4.1 Feaglbil.lty S.t.ydx̂

The control required for travelling absolute distances
is not the same, rather it depends on the initial and final
points. If the control for travelling absolute distances

39
X18“6 Xt0~® XI0*"6

0 .4 — 1 0 .4 -1

0 .2-

- 0 .2-

- 0 .4 — J

0 .2-

0,0— 0.0-

-0.2—

-2 .4 —

Fig. 3.3(e) Time Responses of the Transformed States
of the Controlled System.

X10~®

xt a"6 z 2
Fig. 3.3(f) Phase-Plane Trajectory of the
Transformed Controlled System.

40

20— 0.1 —
X -

0— 0.0 —

-60— ■0.3—

Fig. 3.4(a) Time Responses of the Controlled System States.

Fig. 3.4(b) Phase-Plane Trajectory of the Controlled
System in the (x2 ,x^) Plane.

41

6

4

2
U

0

-2

-4'

•6
0.000 0.005 0.010 0.015 0.020 0.02

TIME CSECONDSD
Fig. 3.4(d) Control u(t) Versus Time.

1 1 I I 1111 1 1 1 1 1 1 1 1 —I—1—1—I—

42

xia*"® xta" 6 xta“6
a.s-t

0 .4 -

0.3—

0 .2-

a.t —

a.a—

- a . t—1

Fig. 3.4(e) Time Responses of the Transformed States
of the Controlled System.

X10~®

Fig. 3.4(f) Phase-Plane Trajectory of the
Transformed Controlled System.

43

were the same there would be 4096 different solutions, which
could be conveniently stored up to form a look-up table.
But here the solution for going from every track to every
other track is different. Thus there are n(n+1)/2 , i.e .
about 16 .78 million different solutions. Considering the
symmetry about the origin the number of different solutions
can be reduced to half, leaving 8.39 million solutions. A
look-up table of this size is impractical, specially keeping
in mind that the control being designed is for a "memory
device". The only reasonable thing left to do is to
calculate the control in real time. But, as mentioned
earlier, this is not feasible because calculating the
control involves finding exponentials and arc cosines at
every sampling period. Furthermore there would be a need
for position feedback, which is difficult to obtain.
Calculating exponentials and arc cosines on a microcomputer
in real time does not seem feasible at all. The other
possibility is to store the tables of exponentials and arc
cosines, but this again involves a huge amount of memory.

Experimenting with the system, a very peculiar property
of the system was discovered for which no theoretical
justification is known at the moment. This property
(explained in the next section) has made it possible to form
a look-up table, containing only 4096 entries, from which
all the solutions can be found by a very simple iterative
algorithm. This algorithm involves one multiplication and
one addition per iteration. Five iterations are needed so

44

that the algorithm can be implemented in real time.

3.4.2 Algorithm for Real Time Implementation.

The property of the system that has made it possible to
have a look-up table (containing 4096 solutions) will be
discussed here first. Suppose that all the solutions for
going from track 1 to any other track is stored in a table.
Let un be the solution for going from track 1 to track n.
The solution u^qq (arbitrary) is picked. Now this solution
is applied to the system but with track 100 as the initial
track (instead of track 1). One might expect the final
track to be 600 (a distance of 500 tracks away). But it is
seen that instead of going to track 600, the system goes to
track 580. This means that there is a "loss" of 20 tracks
for a "shift" of 100 tracks in the initial value. Now if
instead of track 100 the same solution (u^q q) is aPPli®d
starting at track 200, the system ends up on track 660 ; a
"loss" of 40 tracks. Thus there exists a linear
relationship between the loss in the number of tracks
traversed and the "shift" in the initial point. For the
above example, the loss per track shift is 0.2. That is,

Tracks "lost" = 0.2*Initial track "shift".

The factor relating the number of tracks lost and
initial track shift will be called "loss factor" from now
on. In the above equation the loss factor is 0.2. Thus, if
it is required to move from track 100 to track 580 or from

45

track 200 to track 660, the solution u^qq can be applied.
Considering every possibility for arbitrary track movements,
there is always a solution available in the look-up table
that can be used. The only thing required is an algorithm
to pick the right solution from the table (of 4096
solutions).

Unfortunately, the loss factor varies from solution to
solution. That is, the loss factor for u^qq is different
from the one for u -jqqq or u^oo* it important to
note here that the loss factor for a particular un is
constant for all shifts in the initial point. Furthermore,
the values for the loss factors do not have jumps in them.
It changes slowly between 0.07 and 0.92. Thus the value of
the loss factor can be taken as a constant over certain
ranges of track numbers. Experimentally it was found that
the value of the loss factor do not change appreciably over
a range of 20 tracks, for which the value can be taken as
constant. Thus, only 205 different values of loss factor
are required.

Due to the symmetry in the system in going from left to
right or right to left on the disc, everything that is true
for travelling in one direction is also true for the other
direction. The innermost track on the disc is numbered 1
and the outermost is numbered 4096. The laser beam is
focused to the center of the disc (on track 2048) for zero
current and zero deflection. Thus to focus on track 1 or

46

track 4096 would require maximum current and maximum
deflection on either sides. Thus the solution for going
from track 1 to any track is exactly the same as for going
from track 4096 to a track same distance away, except that
the sign of the controls are reversed.

An algorithm to pick a solution from the table, that is
also a solution for a given initial and final point, is
given below. The basic idea is to take a solution un and
apply it starting at the given initial track, at the same
time taking into account the "loss" encountered due to the
"shift". The further away the initial track is (from track
1), the greater is the loss. Let un be the control for
moving from track 1 to track n (as defined earlier) and let
Ln be the corresponding loss factor. Suppose it is required
to move from track m to track k.

1. Find the number of tracks to be traversed,
d = k-m

2. Find the associated loss factor Ld . The shift in
the initial track is m-1 (from 1 to m). Therefore, the loss
is

L = Ld*(m-1)
3. Let n = d+L .
4. Find Ln . Note that Ln is different from Ld . Find

the new value of loss,
L = Ln*(m-1)

5. Repeat steps (3) & (4) five times. Note that the
value of d (distance to be traversed) remains constant for a

47

particular set of iterations.
6. Look-up the value of un . This is the required

control for going from track m to track k. The value of n
is the one obtained after five iterations.

It was found that five iterations were sufficient to
achieve the desired accuracy of reaching within +10 tracks.
Each iteration in the above algorithm involves one addition,
one multiplication and 'looking up' the value of the loss
factor from the table. Fairly cheap Random Access Memory is
available with an access time of a few hundred nanoseconds.
The time required in performing an addition is in the order
of few microseconds. The only time consuming operation is
that of multiplication, which might require 200 to 300 /xsec.
Therefore the time required for the algorithm to find the
control would be around 1.5 to 2 msec. This time could be
drastically reduced by employing hardware multiplier instead
of software multiplication routine. Typical time for
finding the control in this case would be less than 300
jiisec .

Fig* 3*5 shows the flow chart for the algorithm. The
computer program to implement this algorithm is given in
Appendix D.

48

Fig. 3.5 Flow Chart for Real-Time Algorithm.

49

3.4.3 Results and Discussion.

The proposed algorithm for real time implementation was
applied to the system model. The results obtained were
quite satisfactory. Figs. 3.6(a) & 3.6(b) show the result of
applying this new algorithm (referred to as 'real time
algorithm' from now on) and the time-optimal algorithm
(discussed in Sec. 3.2) respectively, for going from track
50 to track 2000. For the real time algorithm, track 1992
is reached with the required total time of 9.76ms. With the
time-optimal algorithm track 1994 is reached in 9.74ms.
Figs. 3.7(a) & 3.7(b) show a similar comparison in going
from track 3600 to track 1200. The track reached by the
real time algorithm in this case is 1193 with an access time
of 14.54ms. The time-optimal algorithm takes the system to
track 1192 in 14.39ms. In both the above cases it is seen
that the accuracy of the real time algorithm is acceptable
and also the access time is within 1.1$ of the one required
by the time-optimal algorithm (which cannot be implemented
in real time). Several different points were tried and the
real time algorithm performed well. In every case the
criteria of reaching within +10 tracks was satisfied. For
the worst case, the time required by the real time algorithm
was 1.5$ more than that required by the time-optimal
algorithm.

50

Fig. 3.6(a) Track Movement Vs. Time Applying the
Real-Time Algorithm.

Fig. 3.6(b) Track Movement Vs. Time Applying the
Time-Optimal Algorithm.

51

Fig. 3.7(a) Track Movement Vs. Time Applying the
Real-Time Algorithm.

Fig. 3.7(b) Track Movement Vs. Time Applying the
Time-Optimal Algorithm.

52

Nevertheless, the time-optimal algorithm is the basic
algorithm that is used to generate all the solutions in
going from track 1 to any other track. These 4096 different
solutions are stored in the form of a table which is
utilized by the real time algorithm.

5 3

CHAPTER 4
CONCLUSIONS

The purpose of this thesis was to design a time-optimal
control algorithm for positioning the mirror so as to focus
the laser beam. The focussing of the laser beam on a
desired track acts as an information retrieval system for
the optical memory device. The mirror to be positioned is
mounted on the arm of a moving iron galvanometer. It is
required to control the angular movement of the armature for
precise deflection of the laser beam (reflected off the
mirror).

The overall system description of the optical memory
device alongwith the system model was given in Chapter 1. A
third order model of the system was considered taking into
account the inductance in the motor and also the back emf
effect.

The basic approach taken in solving the third order
system was to apply the theory of singular perturbation,
i.e. decompose the system into 'slow' and 'fast' subsystems
and then try to control them separately. An iterative
procedure based on the theory of singular perturbation was
applied. The first two sections in Chapter 2 describes the
iterative procedure and the linear transformation for
decomposing the system into slow and fast subsystems. The
time-optimal control for the subsystems, utilizing Minimum
Principle, was developed in the remaining part of Chapter 2.

54

The control algorithm alongwith the simulation and
results was given in Chapter 3. The simulation results show
that the proposed control algorithm satisfies the criteria
of reaching within +10 tracks of the final value. But, it
is seen that the algorithm is too complicated to be
implemented in real time. The feasibility of having a
open-loop control (with look-up table) was discussed next.
It was found that the number of different solutions to be
stored in the table was over 8 millions, making the idea of
open-loop control seemingly impractical. A very peculiar
property of the system was then discussed that made it
possible to have a table containing 4096 different solutions
only. Finally, an algorithm was proposed that could be
implemented in real time to generate all the solutions to
the system from the table (of 4096 different solutions).

Thus, it is feasible to have an open-loop control for
the system by forming a look-up table of 4096 solutions and
using the ’real time algorithm' to find the control for any
desired track movement.

55

LIST OF REFERENCES

[1] G. S. Gurley, "Time-Optimal Control of a Video Disc
Scanner", M. S. Thesis, University of Illinois,
Urbana, Illinois, 1977

[2] P. V. Kokotovic and A. H. Haddad, "Singular
Perturbation of a Class of Time-Optimal Controls",
IEEE Trans. Automatic Control, Vol. AC-20, No. 1,
pp 163-164, Feb. 1975

[3] P. V. Kokotovic and A. H. Haddad, "Controllability and
Time-Optimal Control of System With Slow and Fast
Modes", IEEE Trans. Automatic Control Vol. AC-20,
No. 1, pp 111-113, Feb. 1975

[4] S. H. Javid, "The Time-Optimal Control of a Class of
Singularly Perturbed Systems", M. S. Thesis,
University of Illinois, Urbana, Illinois, 1975

[5] Michael Athans and Peter L. Falb, "OPTIMAL CONTROL: An
Introduction to the Theory and Its Application",
New York: McGraw Hill, 1966

56

APPENDIX A

IHE £HASg.-P,LANE TRAJECTORIES

The state equations of the fast subsystem are

io = - 1 1 4 . 9 9 Zo + 1 0 2 7 . 5 Zo + 0 . 2 6 2 5 x 1 0 " 4 u

z 3 = -1 0 2 7 . 5 z 2 - 1 1 4 . 9 9 z 3 - 0 . 1 3 0 7 x 1 0 ” 4u .
(A. 1)

Let (z2e»z3e^ be the eQuilibrium point with u = k. Define a
new coordinate system (z^jZg1) with its origin at (z2e»z3e^
i . e .

z2 ’ = z2 ” z2e

z3 * = z3 " z3e *

Transforming to polar coordinates,

or

z2 ' = R*Cos# = z2 - z2e

z^' = R*Sin# = z^ - z^e

z2 = R*Cos0 + z2e

z^ = R*Sin# + z^e (A.2)

Substituting (A.2) in (A.1), the state equations take
the form

57

R*Cos0-R*Sin00= -a(R*Cos0+z2e) + /3(R*Sin#+z3e) + £u (A.

R*Sin0+R*Cos00= -0(R*Cos0+z2e)-a(R*Sin# + z3e)-r]u (A.

where the symbols used for writing convenience are:

a = 1 14.99, /3 = 1027.5, 4= .2625x10“4
and r) = 0.1 307X10"11 .

From (A.1), for equilibrium point
-114.99z2e+1027.5z3e+0.2625x 10"4u = 0

-1 027.5z2e-1l4.99z3e-0.1 307x10~iiu = 0 .

Substituting (A.4) in (A.3),

R*Cos0-R*Sin# 0 = -aR*Cos0 + /8R*Sin0 (A.

R*Sin0+R*Cos0 6 - -/3R*Cos0 - aR*Sin# . (A.

Dividing (A.5(a)) by (A.5(b)),

CosfldR - R»Sinfldfl _ -a»Cos6 + /3*Sin<9
SintfdR + R*Cos0d0 - (3 * C o s O - a*Sin#

After some algebraic manipulations (A.6) becomes

aRdR - /8R2d9 - 0
or

dR _ /3d6
R " a

Integrating both sides of (A.8) and taking
exponentials ,

R = RQ*exp[(0- 0 O) P / a]

3(a))

3(b))

(A.4)

5(a))

5(b))

(A.6)

(A.7)

(A.8)

the

58

= Rq * ex p[(0-0o)/8.93556] (A.9)

From (A .2)

R = V (z2-z2 e)2 + (z3-z3e)2

and $ = Cos”1[(z2-z2e)/R] .

The constant of integration Rq and Q are found to be

Rq / (z20-z2e)2 + (z

IIO Cos” [(z20-

30"z3e

where (z2q ,z^q) is the initial point.

59

APPENDIX B

1 M . 3,.WITCHING curve.

The switching curve for the fast system (2.11) in
general would consist of an infinite number of "semi-loops"
as discussed in [4], The first of these "semi-loops" on
either side of the final point are portions of the
phase-plane trajectories, so that any point on this part of
the switching curve can be driven to the final point in no
more than *7t/8.9356 sec. by applying a control of u = +5.
Let Y = Y+UY" denote this portion of the switching curve
where Y+ is the portion that requires u = +5 and y ~ is the
portion that requires u = - 5 to drive a point on it to the
final point.

In the steady state, the system state x3 = 0 and owing to
the system property, x2 =0.5x1. Calculating the inverse of
the transformation matrix T given by (2.2), the
transformation equations are found to be

z2 =7.8763x10-7 x1 -1.7311x10“6x 2 -1.9841x 10"9x 3 (B.1(a))

z 3 = -3.9211x 10-7Xi+3>5797x 10-7X2_6 >08i5x 1 Q-9X3 . (B.1(b))

Expressing (B.1(a)) and (B .1(b)) in terms of x2 only in the
steady state,

z2 = -1 .5585x 10_7 x2

z3 = -4.2 6 2 5x1 0"7 x 2 .

60

Therefore
z 3 = 2 . 7 3 5 z 2 . (B .2)

Equation (B.2) implies that the initial and final points
always lie on a straight line. Evidently the equilibrium
points also lie on this line. Due to the following state
constraints,

x2 ^ 0 . 2 6 1 8 rad (15 deg. deflection on each side)
x 1 <: 0.5236 A

the transformed states are constrained to

z2 s<: 4.0801x10”8
z3 v<: 1 . 1 159x10~7 .

Now the equilibrium point due to the control of u =5V
is (z2 ,) = (4 . 8694x10“8 ,1 . 3321 x10“7) . This implies that due
to the constraint on z2 & z^ , all the initial and final
points of the system in the transformed plane will lie on
the straight line (B.2) between the two equilibrium points.
Note that the portion of the switching curve denoted by
Y = Y+UY~, encompasses the two equilibrium points, so that for
all initial and final points only the portion Y of the
switching curve is required. This also implies that for all
feasible initial points there could be at most one
switching.

61

The equation of the switching curve is the same as that
for a particular portion Y of the phase-plane trajectory.
The portion considered is that which passes through the
desired final point and also every point on it can be forced
to the final point in no more than i r / 8.9356 sec. Thus the
equation of the switching curve is

Rs = RS0*exp^ ̂ s" #s0 ̂ /8 * 93 56]

where
Rs

e s - Cos" [(z2-z2 e)/Rs]

$gQ — Tan (z -^q / z ^ q) — 1 » 2 2 rad.

62

APPENDIX C

PROGRAM FOR TIME-OPTIMAL ALGORITHM

C GIVEN THE INITIAL AND FINAL TRACKS, THIS PROGRAM
C CALCULATES THE TIME OPTIMAL CONTROL ITERATIVELY.
C THE TIMES GIVEN BY THE PROGRAM ARE THE TIMES FOR
C WHICH THE CONTROL SEQUENCE IS TO BE APPLIED. THE
C CONTROL SEQUENCE IS ALSO GIVEN BY THE PROGRAM.
C APPLYING THIS CONTROL TO THE SYSTEM WOULD STEER
C THE SYSTEM TO WITHIN ±10 TRACKS OF THE DESIRED
C FINAL TRACK.
C
C
C ENTER INITIAL AND FINAL TRACKS.
C
10 TYPE 20
20 FORMAT(' INITIAL TRACK ?»/)

ACCEPT 30 , ITR
30 FORMAT(14)

TYPE 40
40 FORMAT(' FINAL TRACK?’/)

ACCEPT 30 , IFT
C
C ITR = INITIAL TRACK, IFT = FINAL TRACK

DIST=ABS(ITR-IFT)
C
C CHECK IF THE DESIRED DISTANCE TO BE TRAVERSED
C IS MORE THAN 10 TRACKS.

IF(DIST.LE.10) GO TO 50
GO TO 7 0

50 TYPE 60
60 FORMATC YOU ARE WITHIN 10 TRACKS.'/)

GO TO 10
70 CALL STEP(DIST,ST)
C
C FORM THE INITIAL AND FINAL STATES.

X10=(ITR-2048)*0.2563476E-3
X20=0.4986654839*X10
X1F=(IFT-2048)*0.2563476E-3
X2F=0.4986654839*X1F
X3F=0.0
CALL JORDAN(X1F,X2F,X3F,Z1F,Z2F,Z3F)

C
C U IS THE CONTROL, EPS (EPSILON) IS THE
C NEIGHBORHOOD OF THE SWITCHING CURVE,
C SIGMA IS THE NEIGHBORHOOD OF THE FINAL
C POINT AND DTF IS THE TIME FOR EULER
C INTEGRATION.

U = 5 .0
EPS=0.2E-9
SIGMA=.7E-8

63

DTF = 5.OE-7
C
C FIND THE CONTROL FOR THE SLOW SURSYSTEM.
C

Z1 0 = 1 .4 57 987E-7*X10 + 7 . 994 377E-7*X20
IF(Z10-Z1F) 80,90,90

80 U1= U
GO TO 100

90 U1=-U
C (Z2E,Z3E) IS THE EQUILIBRIUM POINT.
100 Z2E=4.869355725E-8

Z3E=1.33206105E-7
C
C CALCULATE THE INITIAL RADIUS OF THE SWITCHING
C CURVE. THIS DEPENDS ON THE FINAL POINT.
C RO1 IS THE INITIAL "RADIUS" OF THE RIGHT HALF
C OF THE SWITCHING CURVE AND R02 IS FOR THE LEFT
C HALF.
C

R1 1=SQRT((Z2E-Z2F)*(Z2E-Z2F) + (Z3E-Z3F)*(Z3E-Z3F))
R01=R1 1 * 1.35764436
R12=SQRT((Z2E+Z2F)*(Z2E+Z2F)+(Z3E+Z3F)*(Z3E+Z3F))
R02 =R12 * 1 .35764436
Z11 = Z1 F

C SET ITERATION COUNT TO ZERO.
NITR=0

110 CONTINUE
C
C CALCULATE THE TIME TS REQUIRED TO REACH THE
C DESIRED VALUE OF Z1 (Z1I).
C

ARG=(Z11-6.81917676E-8*U1)/(Z10-6.81917676E-8*U1)
TS = -(ALOG(ARG))/71 .2696
DTS = TS/1 000 .
X1K = X10
X2K=X20
X3K = 0 .0
1=1

C APPLY THE SLOW CONTROL FOR TIME TS.
DO 120 J=1,1000
X1=X1K+DTS*(-266.667*X1K-5.5333*X3K+33.3333*U1)
X2=X2K+DTS*X3K
X3=X3K+DTS*(142860*X1K-285710*X2K-34.592*X3K)
X 1K=X1
X2K=X2
X3K=X3

120 CONTINUE
C
C FIND THE LOCATION OF THE STATES IN THE
C TRANSFORMED STATES AFTER THE SLOW CONTROL
C HAS BEEN APPLIED AND FORM THE CONTROL
C SEQUENCE.
C

CALL JORDANCX1 ,X2,X3,Z1 ,Z2,Z3)
FLAG=0

64

130
1 40

1 50
160
C
170

C
C
C

1 80
C
C
C
1 90

C
C

200

C
C
C
C

CALL FCNTRL(EQ,FLAG,R01,R02,Z2,Z3)
IF(FLAG.EQ.1) GO TO 140
IF(EQ.LT.0) GO TO 130
U2 =-U
GO TO 160
U2=U
GO TO 160
IFCEQ.LT.0) GO TO 150
U2=U
GO TO 160
U2 = -U
U3=-U2
N= 1
APPLY THE FAST CONTROL.
CONTINUE
X1=X1K+DTF*(-266.667*X1K-5.5333*X3K+33.3333*U2) X2=X2K+DTF*X3K
X3=X3K+DTF*(142860#X1K-285710*X2K-34. 592*X3K)
X 1 K = X 1
X2K=X2
X3K=X3
CALL J0RDANCX1,X2,X3,Z1,Z2,Z3)
CHECK IF SWITCHING CURVE IS REACHED.
CALL FCNTRL(EQ,FLAG,R01 , R02 ,Z2 ,Z3)
EQ=ABS(EQ)
IF(EQ.LE.EPS) GO TO 180
N = N +1
GO TO 170
TF1=DTF*N
TF1 IS THE TIME FOR WHICH THE FAST CONTROL
IS APPLIED BEFORE SWITCHING.
M = 1
APPLY THE "SWITCHED CONTROL".
CONTINUE
X1=X1K+DTF*(-266.667*X1K-5.5333*X3K+33.3333*U3) X2=X2K+DTF*X3K
X3=X3K+DTF*(142860*X1K-285710*X2K-34.592*X3K)
XI K = X 1
X2K=X2
X3K=X3
CHECK IF THE NEIGHBORHOOD OF THE FINAL POINT
HAS BEEN REACHED.
CALL J0RDANCX1 ,X2 ,X3 ,Z1 ,Z2 ,Z3)
R=SQRT((Z2-Z2F)*(Z2-Z2F)+(Z3-Z3F)*(Z3-Z3F))
IFCR.LE.SIGMA) GO TO 200
M = M+1
GO TO 190
TF2 =DTF*M
IFTR=7822.785741»X2+2048
TF2 IS THE TIME FOR WHICH THE SWITCHED FAST
CONTROL IS APPLIED AND IFTR IS THE FINAL
TRACK REACHED.

65

NITR=NITR+1
C STOP IF MORE THAN 20 ITERATION IS REQUIRED.

IF(NITR.GE.20) GO TO 210
C
C STOP IF WITHIN 10 TRACKS OF THE DESIRED VALUE
C OTHERWISE ITERATE.

MISS=ABS(IFT-IFTR)
IFCMISS.LE.10) GO TO 230

C FIND THE NEW Z1I.
Z1S = 6 .8l92E-8*U3+(Z1F-6.8192E-8*U3)*EXP(7 1 .26 966*TF2)
Z11 = 6 . 8192E-8*U2+(Z1S-6 .8192E-8*U2)*EXP(71 . 26 966*TF1)
Z1 I = Z11/ST
GO TO 110

210 TYPE 220
220 FORMATC' CONVERGENCE IS TOO SLOW.'/)
230 TYPE 240 ,TS,TF1 ,TF2
240 FORMATC TS = ' , F1 2.8 ,2X , ' TF 1 = ' , F 1 2.8 ,2X , ' TF2 = ' , F 1 2 .8)

TYPE 250,IFTR,NITR
250 FORMATC TRACK = * ,17, ’ OF ITR= ',13)

TYPE 260,U1,U2,U3
260 FORMAT(' THE CONTROL SEQUENCE IS ’,3G)

TYPE 270
270 FORMATC' TYPE 1 TO START AGAIN,0 TO END'/)

ACCEPT 280,1
280 FORMATC12)

IF(I .EQ . 1) GO TO 10
STOP
END

C
C
C SUBROUTINE FCNTRL (FAST CONTROL)
C THIS ROUTINE DETERMINES THE POSITION OF A POINT
C WITH RESPECT TO THE SWITCHING CURVE. IT IS USED
C TO FORM THE FAST CONTROL SEQUENCE AND ALSO TO
C DECIDE IF THE SWITCHING CURVE HAS BEEN REACHED.
C

SUBROUTINE FCNTRL(EQ,FLAG , RO1 ,R02,Z2,Z3)
Z2E=4.869355725E-8
Z3E=1.33206105E-7
Z2BAR=Z2-Z2F
IF(Z2BAR.GE.0) GO TO 10
Z2=-Z2
Z3=-Z3
R0=R02
FLAG=1
GO TO 20

10 RO = RO1
20 A1=Z2-Z2E

A2=Z3-Z3E
A=SQRT(A1*A1+A2*A2)
ARG = A 1/A
C=ACOS(ARG)
IFCZ3.LE.Z3E) C=-C
D = RO *EXP((C-1 .23057)/10.275)
EQ=A-D

66

RETURN
END

C
C
C SUBROUTINE STEP
C THIS ROUTINE IS ESSENTIALLY A LOOK-UP TABLE.
C GIVEN THE NUMBER OF TRACKS TO BE MOVED, THE
C ROUTINE GIVES THE VALUE OF THE STEP SIZE.
C

SUBROUTINE STEP(DIST,ST)
DIMENSION A (16) , B(16)
DATA(A(I),1=1,5)/160,250,350,450,500/
DATA(A(I) , 1 = 6 ,1 0) / 6 0 0 , 8 0 0 ,8 5 0 , 9 0 0 ,1 0 0 0 /
DATA(A(I) ,1=1 1 , 1 6)/1050,1950,2050,2200,4000,4095/
DATA(B(I) ,1=1,5)/1.0,1 .01 ,1 .02,1 .03,1 .035/
DATA(B(I) ,1 = 6 ,1 0)/1 .04,1 .045,1.035,1.03,1 .02/
DATA(B(I) , 1=11, 16)/1 . 01, 1.0,1.01, 1.02,1.0,1.01/
DO 10 K = 1 ,16
ST = B(K)
IF(DIST.LE.A(K)) GO TO 20

10 CONTINUE
20 RETURN

END
C
C
C SUBROUTINE JORDAN
C THIS ROUTINE FINDS THE TRANSFORMED STATES GIVEN
C THE SYSTEM STATES.
C

SUBROUTINE JORDAN(XI , X2 , X3,Z1 , Z2 , Z3)
Z1 = 1 . 457987E-7*X1+7. 994 377E-7*X2 + 1 .994189E-10*X3
Z2 = 7 . 876269E-7 *X 1 -1 .731 1 02E-6*X2-1 .98409E-9*X3
Z3 = -3.921 1 1 27E-7*X1+3.579705E-7*X2-6.0 81 508E-9#X3
RETURN
END

67

APPENDIX D

PROGRAM FOR 'REAL-TIME' ALGORITHM

C THIS PROGRAM CALCULATES THE TIME OPTIMAL
C CONTROL, FOR THE OPTICAL MEMORY DEVICE,
C IN REAL TIME. IT UTILIZES A LOOK-UP TABLE
C CONTAINING 4096 SOLUTIONS FOR GOING FROM
C TRACK 1 TO ANY OTHER TRACK ON THE DISC.
C IT ALSO REQUIRES A TABLE OF "LOSS FACTORS.
C
C ENTER INITIAL AND FINAL TRACK.
10 TYPE 20
20 FORMAT(' INITIAL TRACK?'/)

ACCEPT 30 , ITR
30 FORMAT(16)

TYPE 40
40 FORMAT(' FINAL TRACK?'/)

ACCEPT 30 , IFT
C ITR = INITIAL TRACK, IFT = FINAL TRACK
C
C FORM THE CONTROL SEQUENCE.

U = 5.0
IF(ITR-IFT) 50,60,60

50 U1=U
GO TO 70

60 U1=-U
70 U2 = -U1

U 3 =U 1
ITR1=ITR
IFT1=IFT

C FIND THE NUMBER OF TRACKS TO BE MOVED.
IDIST=ABS(IFT-ITR)
IMOV = IDIST

C
C IF MOVEMENT IS FROM HIGHER TRACK NUMBER
C TO LOWER TRACK, MAKE USE OF SYMMETRY.

IF(IFT.LT.ITR) ITR=4096-ITR
C
C FIND ITERATIVELY THE SOLUTION TO BE
C PICKED FROM THE LOOK-UP TABLE.

DO 80 KK =1 ,5
TAB=IDIST/20.
ITAB=INT(TAB)
FRAC=TAB-ITAB
IF(FRAC.GE.0.5) ITAB=ITAB+1
CALL LOSFACCITAB,ALOSS)
IADD=ALOSS*ITR

80 IDIST=IMOV+IADD
C
C IDIST IS THE REQUIRED TRACK NUMBER.
C THAT IS, THE CONTROL REQUIRED FOR

68

C
C
C
C
C
C
C
C
C
C

90
100
110

C
C
C
C
C
C
c
c
c

GOING FROM TRACK ITR TO TRACK IFT IS
THE AS FOR GOING FROM TRACK 1 TO TRACK
IDIST .
ASSUME THE 4096 SOLUTIONS ARE STORED IN
THE MEMORY WHICH CAN BE ACCESSED THROUGH
SOME SUBROUTINE LOOKUP. NOTE THAT THE
PREVIOUS PROGRAM TOPT.FOR CAN BE USED TO
GENERATE SUCH A TABLE.
CALL L00KUP(IDIST,TS,TF1,TF2)
TYPE 90 , TS , TF1 ,TF2
FORMAT(' THE TIMES ARE = ' ,3G)
TYPE 100
FORMATC» TYPE 1 TO RESTART,0 TO END'/)
ACCEPT 110,K
FORMAT(12)
IF(K . EQ . 1) GO TO 10
STOP
END

SUBROUTINE LOSFAC (LOSS FACTOR)
THIS ROUTINE IS A »LOOK-UP TABLE' FOR THE
LOSS FACTOR. GIVEN THE DESIRED DISTANCE TO
BE MOVED, THIS ROUTINE FINDS THE ASSOCIATED
LOSS FACTOR.

SUBROUTINE LOSFAC(ITAB,ALOSS)
DIMENSION AR(205)
DATA(AR(J),J=1,7)/.07,.09,.11,.125,.14,,.16/
DATA(AR(J),J=8,14)/.165,.18,.18,.185,.19,.195,.205/
DATA(AR(J) ,J = 1 5,21)/.21 , .215, .22, .23, .23, .235, .24/
DATA(AR(J) ,J = 2 2,28)/.24,.24,.25 ,.26,.26 ,.27,.265/
DATA(AR(J) , J = 29,35)/ .27 , .27 , .275 , .28 , .28 , .285 , .29/
DATA(AR(J),J=36,42)/.295,.29,.3,.3,.3,.305,.3/
DATA(AR(J),J=43,49)/.31,.31,.315,.32,.32,.325,.33/
DATA(AR(J) ,J = 50,56)/.33 ,.33,.335,.34,. 34 ,.335 ,. 34/
DATA(AR(J) , J = 5 7 ,63) / .34 , .34 , . 345 , . 345 , . 34 , .34 , . 345/
DATA(AR(J),J=64,70)/.35,.35,.35,.35,.35,.355,.35/
DATA(AR(J),J=71,77)/.35,.355,.36,.355,.35,.355,.35/
DATA(AR(J),J=78,84)/.36,.36,.37,.38,.395,.4,.415/
DATA(AR(J),J=85,91)/.42,.43,.44,.45,.455,.46,.47/
DATA(AR(J),J=92,98)/.475,.48,.485,.5,.5,.505,.51/
DATA(AR(J),J=99,105)/.51,.515,.52,.525,.53,.535,.535/
DATA(AR(J),J=106,112)/.54,.54,.545,.55,.555,.555,.55/
DATA(AR(J),J=113,119)/.56,.56,.565,.57,.57,.57,.57/
DATA(AR(J),J=120,126)/.57,.58,.575,.57,.58,.58,.58/
DATA(AR(J) ,J = 127,1 33) / .585 , .58 , .59 , .595 , .6 , .605 , .61 /
DATA(AR(J) ,J = 134,140)/.62,.625,.63,. 64 ,.65 ,.65 ,.66/
DATA(AR(J),J=141,147)/.67,.675,.6 8,.6 8,.685,.59,.695/
DATA(AR(J) ,J = 148,154)/.7,.705,.71,.705,.71,.72 ,.71/
DATA(AR(J),J = 1 55,161)/.72,.71 , .725 , .72 , .72 ,.73,.725/
DATA(AR(J) ,J = 162,1 68)/.735 ,.74 ,.74 ,.74,.75,.75 ,.76/

69

DATA(AR(J) ,J = 169,175)/.77,.78,.78,.785,.79,.795,.80 5/
DATA(AR(J) ,J = 176,182)/.81,.805,.81,.81,.81,.82,.82/
DATA(AR(J) ,J = 183,189)/.825 ,. 83 ,.83,. 835,. 84,. 85,.85/
DATA(AR(J),J = 190,196)/.8 6,.865,.87,.87 , . 87 , .87 , .88/
DATA(AR(J) ,J = 197,20 3)/.88,.885,.89,.9,.91,.9,.91/DATA(AR(J) , J = 2 04,205)/.92,.92/
AL0SS=AR(ITAB)
RETURN
END

70

APPENDIX E
THE 8080A BASED MICROCOMPUTER SYSTEM.

E .1 Introduction.

The purpose of this Appendix is to provide adequate
information on the existing 8080 microcomputer system (its
hardware & software) built around intel 8080A CPU. Here an
effort has been made to collect the important information
pertaining to the system's hardware and software and present
it with some comments on its functional aspect. This
Appendix may be considered as a documentation on the
existing hardware and software. The Appendix has been,
basically, divided into two sections: Hardware and
Software .

The hardware section gives an overview of the system
organization. It deals with the layouts and functions of
each of the boards in the system, i.e. the different chips
being used, their interconnections, control & addressing
scheme. A detailed description of the various chips can be
found in [1] & [2]. The figures included here are in block
diagram form only showing the important connections. The
software section deals with the functional description of
the utility routines available on the ROM, their locations,
etc. A complete listing of these utility routines is given
at the end.

71

E.2 Hjjrd_ffar

The system consists of the following four boards:

i) 8080A CPU, Clock and Controller,
ii) 8K PROM

iii) 2K RAM
iv) ADC-DAC Interface Board

Each of these boards will be described individually and then
the overall system organization will be described in block
diagram form. The CPU-Controller and memory layouts are
standard in the sense that these three boards are laid out,
more or less, as suggested in the Intel 8080 User’s Manual.
A brief description of these boards will be given here,
however, the ADC-DAC board will be described in some detail.

i) 10-80.A C..E.SL , £.lock and Controller:

This board (Fig. E.1) is the heart of the system as it
has the CPU chip on it. The 8080A CPU is a 8-bit parallel
processor. It has a 16-bit address bus so that upto 64K
8-bit words can be addressed. The CPU provides the
following signals:

SYNC - signal to indicate the beginning of each machine
cycle.

DBIN(Data Bus In) - signal to indicate that the data bus
is in input mode.

WR (Write) - this signal is used for memory write or I/O

72

HOLD —
INT —
INTE -*

TANK
<MTTlJ
RESIN

8224
CLOCK ^GENERATOR DRIVER

8080 A
CPU

DBIN
HDL A

4> i
WAIT

READY

RESET

SYNC

A0 a7
ADDRESS BUS (8)}

BUSEN
A 8 “ ̂ 15

ADDRESS BUS(8)>

8212

DS1DS2

8212

g DS1DS2

ADDRESS BUS(8)̂ A0- A7
* 1 (High)

ADDRESS BUS(8)> A8- A15
--1 (High)

f DATA BUS(8fr
Do- D7

STSTB
BUSEN

u ir

8228
BI-DIRECTIONALBUSDRIVER
SYSTEM
CONTROL

(DATA BUS (8) > D0- D7

F P -5 5 4 4

Fig. E.1 CPU, Clock and Controller

73

output.
WAIT -signal to indicate CPU is in wait state.
INTE (Interrupt Enable) - indicates content of interrupt

flip/flop .
HLDA(Hold Acknowledge) - indicates CPU is in hold state.

The CPU accepts the following signals for its proper
operation :

READY - indicates to the CPU that valid input data is
available on the 8080A data bus.

HOLD - requests CPU to enter hold state.
INT (Interrupt) - signal to the CPU for an interrupt

request.
RESET - this signal when activated (3 clock cycle min)

clears the program counter and returns the
program to the begining of the monitor.

The 8224 chip is used as the clock generator/driver for
the CPU. The oscillator circuit in the 8224 derives its
basic operating frequency from an external crystal. The
chip has a divide by 9 counter so that the oscillator
operates at 9 times the desired processor speed. A
l8.432mHz crystal is used so that the 8080A runs at
2.048mHz. Since the frequency is high (>10mHz) a 10pF
capacitance is connected in series with the crystal which
has the effect of "trimming” the frequency to obtain the
desired frequency. The 8224 provides the CPU with the two
phase clock (0-j &<i>2) which are driven internally and are
directly interfaced to the CPU. A power—on reset signal is

74

also provided by the 8224 and is connected to the reset of
the CPU for initialization of the system. The 8224 recieves
a SYNC (synchronization) signal from the CPU. Gating this
signal with the phase 1 (<t>̂) of the clock it produces a
STSTB (status strobe) signal for the system controller
(8228) .

The function of system controller and data bus driver
for the 8080A is performed by the 8228 chip. The 8228
generates all control signals to interface directly with
RAM, ROM and I/O components. The 8080A data bus is
connected to memory & I/O devices through the 8-bit
bi-directional bus driver in the 8228 chip. The
bi-directional data bus is controlled so that proper bus
flow is maintained. The STSTB of the controller(8228) is
connected to the STSTB signal of the Clock/Driver
chip(8224). The controller uses the STSTB signal to latch
the "status" information issued by the CPU. This status
information alongwith HLDA, DBIN & WR signals from the CPU
is used to generate control signals (MEMR, MEMW, I/OR, I/OW
& INTA).

The 16 bit address issued by the CPU is latched and
buffered by two 8212 chips (8-bits each). The device select
bit DS2 of 8212 is set high and bit DS1 (of 8212) is
connected to BUSEN (Bus Enable) signal, so that the device
is selected only if the bus is enabled (active low).

75

ii) Read Only Memory:

8K of Read Only Memory is available on this board (Fig.
E.2). There are eight 8708 EPROMS(Erasable Programable Read
Only Memory) with 1K X 8 bits each. The 16 bit address from
the CPU can be decoded to address any byte in the memory
bank. The addressing scheme is as follows. the lower 10
bits (Aq — Ag) is used to address the ROM chip. Bits AQ-Ag of
the CPU address bus is connected to AQ-Ag bits of each ROM
through a buffer (8212). The next 3 bits (A1 0-A12) are
inputs to a "1 out of 8 binary decoder" (8205). The output
of the decoder is connected to the CS (Chip Select) input of
the ROMs (8 output of decoder, 1 to each ROM) so that any
one of the eight ROM chips on the board can be selected by
specifying these bits (A1 0-A12). The higher 3 bits
(A-j^-A^) of the address bus is used for 'board select'.
The board select is done by setting a switch dip on the
board and comparing it with bits A 1 3 — A ̂ ̂ using a 4-bit
comparator (SN7485). Bit 6 (high if the two inputs are
equal) of the comparator is connected to the enable of the
decoder. Thus when the bits specified by A^-A-j^ matches
the ones set on the board (by switch dip) the decoder is
enabled which in turn selects one of the 8 ROM chips on the
board (specified by A 1 0-A^2) and the particular byte on the
ROM is selected by Aq-A^ . Note that MEMR & MEMEN (Memory
Enable) are connected to the other two enable input
(E-| & E2) of the decoder, so that in order to enable the

76

Fig . E.2 8K PROM Board.

77

decoder the CPU must be in the right mode (that is, MEMR &
MEMEN signals must both be "low").
The switch dip for this board is set to 0000 . The existing
software in the ROM is:

Location 00H to 3FFH (1K) ------ 8080 MOnitor
Location 400H to 7FFH (1K) ------ Utility Routines

(to be described later)

iii) Random Access Memory:

There are sixteen 8102A-4 RAM chips on this board (Fig.
E . 3) , each with 1K X 1 bits of memory, so that 2K X 8 bits
of Random Access Memory is available on this board (some
boards might have only 1K of RAM). The 16-bit address from
the CPU is latched and buffered by two 8212 chips(8-bits
each). The addressing scheme is somewhat similar to the one
used for the ROMs. The lower 10-bits of the address bus
(Aq “Ag) is connected to the address inputs (Aq-A^) of each
RAM chip and is used to address a particular bit in the RAM.
The higher 5-bits (A ^ - A ^) is used for board select. The
switch dip is set to a particular value which is a
characteristic of the board (for this board the 5 bits on
the switch dip is set to 00100). These bits are compared to
the bits A-̂ -A-jcj of the address bus using two 4-bit
comparators (SN7485). If there is a match, a signal is
issued by the comparator (bit 6) which is gated with bit A 10

of the address bus to produce an enable signal for the

78

Fig. E.3 2K RAM Board.

79

board. Bit A-| q is used to enable 1K of memory (either the
higher or the lower 1K of the memory is enabled at a time).
With A^q =0 the lower 1K of memory is selected and with A^q =1
the higher 1K of memory is selected (ofcourse to select any
memory the result of the "board select" comparison must be
high (bit 6 = 1)). With the above set up the address of the
RAM goes from 2000H to 27FFH (2K of memory) or from 2000H to
23FFH (if only 1K of memory is available).

This being random access memory the flow of data is
bi-directional (from and to the 8080A). The 8-bit data bus
from the CPU is connected to two unidirectional (8212)
latch/buffers. One of these 8212 is for "read" instruction
(data from memory to CPU) and the other for "write"
instructions (data from the CPU to memory). One of these
chips is selected depending on whether a "read" or "write"
instruction is being carried on. The ’MEMR ' and *MEMW*
signals provided by the controller is used to select the
particular chip.

iv) ADC-DAC Interface Board:

Interfacing the 8080 system is made very easy through
the use of the 8255 parallel interface chip. This chip is
used to interface the DAC to the 8080A CPU (Fig. E.4). The
8228 system controller is used as an interface to the 8080

data bus. For I/O devices, this implies that when data is
being requested by the 8080 the I/O R signal is active

80

A D C - A

Fig. E.4 ADC-DAC Interface Board

81

(= low). If data is being output to the I/O device, the
I/O W signal is active (slow). The lower half of the
address bus (AQ-Ay)will be decoded to specify which device
the 8080 is trying to access. These actions of the hardware
allow the operation of the 'IN’ and 'OUT' instructions.

The heart of the interface is the 8255. It provides
three ports: ports A and B can be unidirectional or
bi-directional with latched or unlatched input and output.
The third, port C, can be split in half to provide four bits
of input and output or it can be used an unlatched input
and/or output port. The configuration for a particular
application is specified by user software. In this
application, ports A and B have latched outputs with
unlatched input. Port C is split in half to allow flow of
control signals from and to the 8080. For our operation the
following port assignment is required:

Port A Output
Port C (Upper, PCy-PC^) ----- Input
Port C (Lower, PC^-PCq) ----- Output
Port B Output

The control word for this assignment is 88H. In order to
set up the ports in the above manner the control word (88H)
is "output” by the CPU to the control word register under
software instructions. Therefore to set up the ports the
following two instructions must be executed:

82

MVI A ,88H
OUT CNTRL

(where 'CNTRL' should be equated to the address of
the Control Word Register of the 8255 in question)

Since there are 4 DACs it is necessary to use two 8 2 5 5s,
each placed in the 88H mode. Having two 8255 chips there
are 6 ports (3 in each) and two control word registers
(CNTRL), one for each 8255 . The first (upper) 8255 is
connected to the pair of DACs that under software control
performs the function of ADCs. The second (lower) 8255 is
connected to the pair of DACs that performs its normal
function of D/A conversion. The 3 ports and the control
word register of the upper 8255 connected to the "ADC" has
the following addresses:

Port A ------- 0 4H
Port B ------- 05H
Port C ------- 06H
CNTRL ------- 07H

The 3 ports and Control Word Register of the lower 8255
connected to the "DAC" has the following addresses:

Port A ------- OCH
Port B ------- ODH
Port C ------- OEH
CNTRL ------- OFH

However, control signals need only be passed through one of

83

the C ports with the other being unused. Specifying a port
of an 8255 is done via the lower two bits of the address
bus, ABq and AB-j . A detailed bit assignment is given in
[1]. Bits ABq and AB-j are connected to the AQ and Â inputs
of each 8255. An 8255 chip is be seclected using bit three
of the address bus (AB^), which being the input to one of
the chip select inputs of the 8 2 5 5's and its complement the
input to the other, so that only one of the 8255 is selected
at a time. To allow more than one DAC boards, the remaining
bits of the address bus is decoded as a board select with
the exception of bit two. This bit is used to distinguish
between serial and parrallel interface boards. Since the
8255 sinks only 1 . 6mA it is necessary to buffer its
connections to the 8080 data bus. This is done with the
8216 bi-directional bus driver chip which can sink 50mA per
input. A chip select and data in enable signal are required
for its use. The chip select is made active when either
8255 is selected. The data in enable input is tied to the
I/O W signal.

There now remains the details of interface to the DAC
chips themselves. In order to have bipolar operation using
two's complement number representation inverters are placed
on the lower seven digital inputs of the DAC chips. Sample
rate is defined by bit 7 of Port C of the upper 8255. It is
assumed to be high active and can be tested using an 'IN'
instruction and masking the result with 80H.(See Subroutine
SPWT) . The remainder of Port C is used for signals to

84

implement a software analog to digital conversion routine
(See Subroutine CVRT). The 8080 sends out a digital word
which (after conversion to analog by the upper DAC) is
compared to the analog signal to be converted (to digital).
This analog comparison is done using 741 Op-Amps. The
result of the comparison is sent to bit 6 of Port C (of the
upper 8255). The CVRT routine checks this bit and depending
on the result of the comparison, the routine either
increases or decreases the value of the next word it puts
out (for further details see Subroutine CVRT). The bit
assignment of Port C of the first (upper) 8255 is a s
follows:

Bit 7: Sample time flag. This bit is connected to
the clock so that it goes high at every sampling time. It
is used by Subroutine SPWT (wait for sampling time).

Bit 6j_ The result of comparison of two analog
signals (the one to be converted and the other "guessed" by
the CPU) .

If 1 : Input to ADC-A>DAC-A Output.
If 0 : Input to ADC-A<DAC-A Output.

Note that an ambiguity occurs when the two signals are
equal, in which case the result of the comparator is
arbitrary.

Bit 5; Pause flag. This bit is connected to bit 3
through some "gates" acting as hardware delays. It is
tested (by Subroutine WAIT) after toggling bit 3. The

85

purpose of this delay is to provide the op-amp comparator
enough time to perform the comparison.

Bit JLl The function of this bit is similar to bit
6 . Here the result is from the comparison of ADC-B & DAC-B
instead of 'comparison' of ADC-A & DAC-A.

If 1 : Input to ADC-B > DAC-B Output
If 0 : Input to ADC-B < DAC-B Output

Bit 3_l Toggle for 'hardware delay'.

The only remaining important thing to be discussed on
this board is the I/O communication interface, that is,
connecting up the 8080 to a TTY or a CRT, etc. The 8251, a
Universal Synchronous/Asynchronous Receiver/Transmitter
(USART), is used for I/O communication interface this chip
accomodates all the data communication required by the 8080

and is programmed by the CPU. the USART accepts data
characters from the CPU in parallel format and then converts
them into a continuous serial data stream for transmission
(to the TTY or CRT). Simultaneously it can receive serial
data streams (from TTY or CRT) and convert them into
parallel data for the CPU. The rate of transmitting and
receiving data is governed by the Buad Rate Generator (which
is simply a divider which receives the clock <i>2 (TTL) from
the clock generator (8224)). Further information on baud
grate generator and baud rate selection can be found in [2],
The overall system can be best understood by refering to the
complete system diagram (Fig. E.5). The four boards

86

Fig. E.5 System Functional Block Diagram.

87

described above are connected together. The CPU is
connected to the memory (ROM & RAM) by data and address
buses. The CPU also communicates with the outside world
through the interface board (8255, 8251 & DACs in our case).
This essentially completes the brief discussion about the
hardware layouts. A more detailed description on the
various signals available (from 8080 & other chips) and the
timing diagram can be found in [1],

88

E.3 Software,,

Besides the very powerful instruction set for the 8080,
there is quite a bit of software available in the form of
subroutines in the ROM. User can access these subroutine by
simply using the 'CALL' instruction. It is necessary to
know the locations of these subroutines in the ROM in order
to initiate these calls. The 8080 monitor resides in the
first 1K of the memory (locations 00H to 3FFH) and the
second 1K is taken up by the utility routines (locations
400H to 7FFH). The listing and description of the monitor
routines is given in [2]. The monitor and the utility
routines assume certain variables to be present at certain
fixed locations in the memory. The meaning of these
variables will become more apparent as they are discussed in
context with various subroutines below. Here a list of
those variables with their locations is given for quick
reference:

Name Description .Subr^.utlne Location

DIM Length of Vector VCMLT 231 4H
AD 1 Pointer to 1st Vector VCMLT 2315H - 2316H
AD2 Pointer to 2nd Vector VCMLT 2317H - 2318H
XSIZE Incr. for X-axis GRID 231 9H
YSIZE Incr. for Y-axis GRID 231 AH
DCNT # pts. to be plotted DSPLY 231BH
DXPND # times a pt.to be plotted " 2 3 1 CH

89

The monitor save area is in locations 23EDH thru 23FCH.
User RST 7 branches to location 237DH. The stack pointer is
random with power-on (or RST 1) and must be initialized to a
higher location in RAM (23ECH) so that it does not interfere
with the user’s programs in the RAM. The locations of the
util ity routines are listed in Table 1 and can be used for
quick reference.

labié 1
broutine Loca^ign (Address)
YAD 041 2H
XAD 0424H
GRID 04 3 6H
DSPLY 04CBH
TRANS 04ECH
FADD 05 6 1 H
FMULT 05E4H
MLT 0649H
VCMLT 0670H
TST 06 ADH
INVRT 06C2H
TRUNC 06EDH
DSFT 070BH
CNVRT 07 3 8h
CNRT 0759H
CVRT 077EH
SPWT 07E6H

90

The functional description of the available subroutines
are given below. A complete program listing can be found at
the end of this Appendix.
Warning : In using these routines, it should be noted that
the content of the registers are destroyed (altered) by the
subroutines, so that the content of a certain register does
not necessarily remain the same after a subroutine has been
called.

Subroutine CTS

Operand in accumulator.
Result is placed in D-E pair.
This routine converts the eight bit two's complement number
in the accumulator to a ten bit offset binary number in the
D-E register pair. This routine is used by routines YAD &
XAD .

.Subroutine XAD

Operand in accumulator.
Result: output to the graphics display.
This routine calls subroutine CTS to convert the eight bit
two's complement operand in the accumulator to a ten bit off
set binary operand in the D-E pair. The routine then takes
this operand and adds the codes for HIY (20H) to register D
and LOY (60H) to register E. The routine then calls the
monitor routine 'CO' to output the result to the graphics

91

display. This routine is used by routines GRID & DSPLY to
draw vertical vertors.

¿UlmflaUDfi 1AD iM24H)

Operand in accumulator.
Result: output to graphic display.
This routine is very similar to the YAD routine except that
it is used by the GRID and DSPLY routines to draw horizontal
vectors instead of vertical.

Subroutine GRID 1M36HI

Initialization:
XSIZE (2319H), The step size along X-axis.
YSIZE (231AH), The step size along Y-axis.
Equate GRCMD to 1DH. This character (GRCMD) puts graphics
display in graph mode.
Equate TTCMD to 1FH. This character (TTCMD) is the control
word to put the graphics display in TTY mode.
This routine generates a grid of specified size as an aid in
reading the graph. This subroutine is not normally called
by another routine (that is, it is generally not a part of
the program). After its execution it returns to the
monitor.

92

r a tine .DS£LI i04CBH)
Operand (point to be plotted) in register B.
Initializations:
Put terminal in graphics mode:

MVI C ,1DH
CALL CO

Set iteration count to 80H:
MVI A , 80H
STA DCNT

Set # times a sample to be repeated (normally 1):
MVI A ,XPND
STA DXPND

Specify the location for DCNT & DXPND:
DCNT EQU 231 BH
DXPND EQU 231 CH

The above mentioned initialization must be done before
calling this routine. This routine plots the content of
register B (which is updated after a point has been plotted)
at 256 points, that is, the routine quits after plotting 256
points and returns to the point from which it was called.

Subroutine TRANS (Q 4 E C H)
Transfer of data from DEC-10 to 8080.

The pointer to the beginning of the ram area where data
is to be loaded is placed in the H-L pair (prior to calling
the routine). This routine transfer data from the DEC-10 to
the 8080 (down line loading). The routine stays in the wait

9 3

loop until it receives the character 'I* (ignoring all other
characters before that). The routine then assumes all the
succeeding data to be ASCII encoded hex digits, at all times
ignoring null characters. Each successive pairs of ASCII
characters received is decoded into a pair of hex digits and
placed in the location pointed to by the H-L register pair.
The H-L pair is incremented after every two hex characters
have been received. The process is terminated by a
(shift-4).
D,.QK.n, Ling Loading;

In order to transfer a set of data from DEC-10 (at CSL)
to the 8080 the following is done;
1) Set the stack pointer to a desirable location (23ECH) in
the RAM (can be done by using monitor command XS).
2) Place the address of the beginning of the RAM where data
is is to be loaded in the H-L pair (can be done by using
monitor command XM).
3) Execute subroutine TRANS and while it is waiting for the
data (from the DEC-10), turn the switch to connect the
terminal to the DEC-10.
4) Put the data to be transfered in file named 'PROG.DAT*
and then type the following;

.TT NO CRLF (no carraige return or line feed)
5) The program can now be transferred by typing:

.SUB 8080A.C** :0UT/N0L0G
The two asteriks after 'C' is the terminal number.
6) Logoff (K/N) from the DEC-10 and immediately flip the

94

switch to the 'LOAD' position. After the data has been
loaded in the 8080 (it will be displayed on the screen) type
in a '$* (Shift-4) to terminate the TRANS routine.

Subroutine FADD (05 6 1H)

Floating point addition.
Addend: B-C pair.
Augend: D-E pair.
Result is in B-C pair.

This routine takes the contents of register pairs B-C &
D-E and forms their sum using floating point arithmetic.
The result is placed in the B-C pair.

.Subroutine FMULT (Q5E4H)

Floating point multiplication.
Multiplicand: B-C pair.
Multiplier: D-E pair.
Result: B-C pair.

This routine takes two floating numbers (content of B-C
& D-E pairs) and forms their product. The result is placed
in B-C pair.

Sab rating 1CMLT. (Q670H)

Vector multiplication.
This routine assumes the following initialization:
Length of the vectors (DIM): at 2314H

95

Pointer to the first vector (AD1): at 2315H-2316H
Pointer to the second vector(AD2): at 2317H-2318H
This routine accepts two vectors and forms the sum of their
products. The corresponding elements in the two vectors are
multiplied and their sum is formed. Note that the two
vectors are of the same length. The result is placed in the
B-C register pair.

SufaTflUUftfi 1ST (06 ADH).

This routine compares the operand in the B-C pair to 0.75.
Result:

If operand > 0.75, no action taken.
If operand < 0.75, return to monitor.

Note that the stack pointer must be reinitialized after use
of this routine since there may remain a return address on
the stack.

¿JlteflilfeiPje I H U l (0.6 C2H)

Invert the positive operand.
Operand to be inverted: B-C pair.
Result: B-C pair.
This routine assumes that the operand to be inverted is
positive. It places the result in the B-C pair.

96

Subroutine TRUNC (0 6EDH)

Truncate a floating point number.
Operand to be truncated in B-C pair.
Result is placed in B-C pair.

This routine takes a floaing point number in the B-C
pair and truncates it to a eight bit fixed point number.

Subroutine CNVRT (07S8H)

Operand: Register B
Result: B-C pair.

This routine converts a fixed point number in register
B to a floating point number. The result is placed in B-C
pair .

¿IJbxautlns £NRT (0Z59H)

Operand: B-C pair.
Result: Register B

This routine converts a floating point number in the
B-C pair to a fixed point number and places the result in
register B.

SubrguUng CVRX. iUllEBl

Software analog to digital conversion.
Register assignments:
Current ADC-A result: Register B

97

Current ADC-B result: Register C
nth increment: Register D
Status of ADC (Port C): Register E
In addition to the register an iteration count is located at
22BDH. This routine uses the upper (first) parallel port
chip (8255) to perform a binary successive approximation of
two analog signal at the same time. The routine first
checks for the 'sign' of the analog signal (tests bit 6 for
ADC-A) and accordingly sets the sign bit (bit 7 in register
B for ADC-A) to 1 or 0. It then sets the next higher order
bit (bit 6) to 1 and outputs this number to the DAC. The
digital number after conversion to analog by the DAC, is
compared to the actual analog signal to be converted.
Depending upon the result of the comparison bit 6 is either
left as 1 or reset to 0. Next, bit 5 (of register B for
ADC-A) is set to 1 and a similar operation is repeated as
for bit 6 and so on. Thus the whole procedure of getting
the digital number approximately equal to the analog signal,
8 iterations are required. The conversion of the second
analog signal (ADC-B) is performed in a similar way except
that the result is placed in register C. The time required
for the complete conversion is about 500-600 jus which is
relatively fast compared to the time required by some of the
ADC available.
Result:
A/D conversion of signal in ADC-A in register B.
A/D conversion of signal in ADC-B in register C.

98

.3.Ubrg,aU n .e, ¿£11 (07E6H)

Wait for next sample time.
This routine tests bit 7 of port C of the upper (first)

8255 and when the signal on this bit goes high (= 1), the
routine returns to where it is called from. Recall that bit
7 of port C is connected to sampling rate clock of the
system. This routine also stores the 'status' of port C in
register E, which is used by subroutine CVRT.

99

LIST OF REFERENCES

[1] Intel 8080 Microcomputer System User's Manual,
1975
[2] Intel MCS-80 System Design Kit User’s Guide, 1976

Sept.

100

PROGRAM LISTING

; THIS ROUTINE CONVERTS THE EIGHT
; BIT TWO’S COMPLEMENT NUMBER IN THE
¡ACCUMULATOR TO A TEN BIT OFFSET
;BINARY NUMBER IN THE D-E REGISTER
; PAIR . AFTER CONVERSION TO OFFSET
;BIN ARY, THE MOST SIGNIFICANT FOUR
; BITS ARE RIGHT JUSTIFIED AND PLACED IN
; THE LOWER FIVE BITS OF REGISTER D
;AFTER BEING LEFT JUSTIFIED, THE LEAST
;SIGNIFICANT FOUR BITS ARE PLACED IN THE
;LOWER FIVE BITS OF REGISTER E
>
»
CTS: ADI 80H

RRC
RRC
RRC
RRC

;CONVERT THE TWO’S COMPLEMENT NUMBER
;TO OFFSET BINARY AND ROTATE RIGHT
;FOUR PLACES
!

MOV E , A
;PLACE RESULT IN E REGISTER

101

ANI OFH
; GET RID OF THE UPPER FOUR BITS
»

MOV D , A
; PLACE RESULT IN REGISTER D
î

MOV A ,E
; GET TWO'S COMPLEMENT OPERAND
; FROM REGISTER E

ANI OFOH
; MASK OUT LOWER FOUR BITS

RRC
RRC
RRC

; ROTATE RIGHT THREE PLACES
!

MOV E ,A
; PLACE RESULT IN REGISTER E
>

RET

102

fiüMfllUIUE XAD

THIS ROUTINE CALLS CTS TO
CONVERT THE EIGHT BIT TWO'S
COMPLEMENT OPERAND IN THE
ACCUMULATOR TO A TEN BIT
OFFSET BINARY OPERAND IN THE D-E
PAIR,THEN TAKES THIS OPERAND AND
ADDS THE CODES FOR HIY,20H,TO REGISTER D
AND LOY , 60H,TO REGISTER E
THE RESULTS ARE OUTPUT TO THE GRAPHICS
DISPLAY

CO EQU 01 E3H
; THIS IS STARTING ADDRESS FOR THE
; ROUTINE TO OUTPUT A CHARACTER TO
; GRAPHICS DISPLAY OR TTY
HI Y EQU 20H
LOY EQU 60H
5
YAD : CALL CTS

MOV A , D
ADI HI Y
MOV C , A
CALL CO

¡OUTPUT FIRST BYTE OF Y ADDRESS
; TO TERMINAL

A , EMOV

103

ADI LOY
MOV C , A
CALL CO

¡OUTPUT SECOND BYTE OF ADDRESS
î

RET
ft*****************************

S_U.B FLQU T X N E XAD

THIS ROUTINE CALLS CTS TO CONVERT
THE EIGHT BIT TWO'S COMPLEMENT
OPERAND IN THE ACCUMULATOR TO
A OFFSET BINARY TEN BIT OPERAND
IN THE D-E PAIR. THEN TAKES THIS RESULT
AND ADDS THE CODE FOR HIX,20H,TO
REGISTER D ;AND ADDS THE CODE FOR LOX
,40H , TO REGISTER E
THE RESULTS ARE THEN OUTPUT TO THE
TERMINAL

HIX EQU 20H
LOX EQU 40H
>
XAD: CALL CTS

MOV A , D
ADI HIX
MOV C, A

CALL CO
; OUTPUT HIX
j

MOV A , E
ADI LOX
MOV C , A
CALL CO

¡OUTPUT LOX
t

RET
******X«**********tt***********

M .B,ROUTINE GRID

¡THIS ROUTINE GENERATES A GRID FOR
¡READING GRAPH
j
XSIZE EQU 2319H
5
GRCMD EQU 1DH
¡THIS CHARACTER PUTS GRAPHICS DISPLAY
¡IN GRAPHING MODE
TTCMD EQU 1FH
¡THIS CHARACTER PUTS GRAPHICS DISPLAY
¡IN TTY MODE
5
GRID: MVI C,TTCMD

CALL CO

105

; PUT GRAPHICS DISPLAY IN TTY MODE
5

MVI C ,GRCMD
CALL CO

; PUT GRAPHICS DISPLAY IN GRAPH MODE
; THIS NOW ALLOWS THE FIRST VECTOR
;NOT TO BE DRAWN, THAT IS, THE FIRST
;VECTOR WILL BE TO THE ORIGIN FOR PURPOSES OF
; INITIALZATION

; GENERATE HORIZONTAL PART FIRST
LXI H ,XSIZE

;LOAD THE H-L PAIR WITH THE ADDRESS
; OF THE STEP SIZE FOR THE HORIZONTAL
; GRID

MVI B , 80H
MVI A , 80H
CALL YAD
MOV A , B
CALL XAD
CALL XTST

;TEST FOR OVERFLOW FROM
jPOSITIVE TO NEGATIVE
!

MOV A ,M
ADD B

106

MOV B , A
MVI A , 80H
CALL YAD
MOV A , B
CALL XAD

MOVE TO NEXT LOCATION ON HORIZONTAL
AXIS FOR VECTOR

MVI A , 7FH
CALL YAD
MOV A , B
CALL XAD

DRAW THE VECTOR

MVI A , 7FH
CALL YAD
CALL XTST

TEST FOR OVERFLOW FROM POSITIVE
TO NEGATIVE

MOV A , M
ADD B
MOV B, A
CALL XAD

DRAW VECTOR TO NEXT HORIZONTAL LOCATION

JMP XLP

XTST: MOV A , B

107

ANA A
RM
ADD M
XRA B
RP

; THIS LOOP COMPLETES HORIZONTAL GRID
»
; BEGIN VERTICAL GRID HERE
î
YSIZE EQU 231 AH
; VERT ICAL GRID SIZE
i

YGRID: MVI C , TTCMD
CALL CO
MVI C , GRCMD
CALL CO

»
; PREPARE FOR INITIALIZATION
; AT ORIGIN
>

LXI H , YSIZE
; LOAD H-L PAIR WITH ADDRESS FOR
; VERT ICAL GRID SIZE
j

MVI B, 80H
YLP: MOV A,B

108

CALL YAD
MVI A , 80H
CALL XAD

; GET ORIGIN FOR NEXT VECTOR

MOV A ,B
CALL YAD
MVI A , 7FH
CALL XAD
MOV A ,B
CALL YAD
MVI A , 80H
CALL XAD

DRAW THE VECTOR

CALL YTST
MOV A , M
ADD B
MOV B, A
JMP YLP
MOV A , B
ANA A
RM
ADD M
XRA B
RP

THIS FINISHES VERTICAL GRID

MVI A , 7FH
CALL YAD
MVI A , 80H
CALL XAD
MVI A , 7FH
CALL YAD
MVI A , 7FH
CALL XAD
RST 1

tt********tt***tt*»***»*«*«****ftft

fiJIfiRflllllHE D2P.LX

THIS ROUTINE GRAPHS THE CONTENTS
OF REGISTER B AT 256 POINTS. AFTER
THIS IT SIMPLY RETURNS TO THE POINT
FROM WHICH IT WAS CALLED

INITIALIZATION IS ASSUMED AS FOLLOWS
MVI C ,1DH
CALL CO

THIS PUTS GRAPHICS TERMINAL IN
GRAPHICS MODE

MVI A , 80H
STA DCNT

THIS SETS THE ITERATION

1 10

COUNT TO 80H
MVI A ,XPND
STA DXPND

THIS REPEATS SAMPLE XPND TIMES
THIS IS NORMALLY 1(0NE)

DCNT EQU 231 BH
DXPND EQU 231 CH

ANA A
JM DADD
L XI H ,DXPND
ADD M
JP DCONT
RET

DADD : LXI H,DXPND
ADD M

DCONT: MOV o >

STA DCNT
MOV A , B
MOV B,C
CALL YAD
MOV A , B
CALL XAD
RET
END

f i f lBRQmNE ODD

FADD: MOV A ,B
ANA A
JZ RSLTD
MOV A,D
ANA A
RZ
MOV A,C
SUB E
MOV H ,A
JZ AD;TEST FOR SHIFT
JP SFTS;SHIFT REG D IF

;R-S IS GREATER THAN ZERO
SFTB: MVI A,00H

SUB H
MOV H ,A
MOV C,E
CPI 08H
JP RSLTD
SFTR B ,H
JMP AD

SFTS: CPI 08H
RP
SFTR D,H

AD: MOV A,B
XRA D
JM ADZ;TEST FOR SIGNS OF

1 12

; B AND D THE SAME
;IF DIFFERENT BRANCH TO ADZ
; THIS BRANCH IS FOR SAME SIGN

MOV A,B
ANA A
JM LZRO;TEST FOR RESULT LESS THAN ZERO
ADD D
JP POSS

NRM: RAR
JNC NNCR
INR A

NNCR: INR C
DON: MOV B,A

RET
LZRO: ADD D

JM NEGG;TEST FOR RESULT LESS THAN ZERO
JMP NRM

ADZ: MOV A,B
ADD D
JZ ZER
JM NEGG

LL: DCR C
ADD A
JP LL
RAR
INR C
MOV B,A

ZER :

RSLTD:

POSS :

NEGG :

1 1 3

RET
MVI B,00H
MVI C , OOH
RET
MOV B,D
MOV C,E
RET
DCR C
ADD A
JP POSS
RAR
INR C
MOV B ,A
RET
DCR C
ADD A
JM NEGG
RAR
INR C
MOV B,A
RET

******»*****»«***«»*****»***

1 14

SILBBQllIIHg EMU.LT

FMULT : MOV A,C;GENERATE EXP
ADD E;FROM EXP'S IN C£ REG'S
MOV L , A ; PUT RESULT IN L REG
MOV A , B ;TEST FOR POSITIVE
XRA D; OR NEGATIVE RESULT WITH XRA
JM NG
MOV A , B ;POSITIVE RESULT BRANCH
ANA A
JP BPOS;TEST FOR BOTH POSITIVE
CMA ; NEGATE BOTH IF FOUND B
INR A;TO BE NEGATIVE
MOV B, A
MOV A, D
CMA
INR A
MOV D , A

BPOS : MOV C,B
CALL MLT;FORM UNSGNED 16 BIT PRODUCT

LO : MOV A,B ; GET RID OF UNNECESSARY ZEROS
ANA A
JM L 1 0 1
MOV A, C
ADD A
MOV C, A
MOV A, B
RAL

1 1 5

L1 0 1 :

MOV B,A
DCR L
JMP LO
RAR;HAVING FOUND FIRST ONE
MOV B,A;RIGHT SHIFT
JNC NAD
INR B;ROUND TO 8 BITS

NAD: INR L
MOV C,L ;RESULT IN B,C REGS
RET

NG: MOV A,B ;NEG BRANCH
ANA A;SET STATUS
JP DNEG;FIND WHICH MANTISSA
CMA;IS NEGATIVE
INR A
MOV B,A
JMP L202

DNEG : MOV A,D
CMA
INR A
MOV D,A

L202 : MOV C,B
CALL MLT

L3: MOV A,B
ANA A
JM L4
MOV A,C

1 1 6

ADD A
MOV C, A
MOV
RAL

A , B

MOV B, A
DCR L
JMP

L4: RAR
L3

MOV B, A
JNC NNAD
INR B

NNAD: INR L
MOV C , L
MOV
CMA

A, B

INR A
MOV
RET

B, A

ZRO: MVI B , OOH
MVI C ,OOH
POP
RET

H

»*«#*tt***»*«*****»***ft«ttft*

s u b r o u t i n e mlt ¿MULTIPLICATION)

MLT: MOV A,C
ANA A ; SET STATUS

1 17

MULTO :

MULTI :

DONE :

JZ ZRO
MOV C,A
MOV A,D
ANA A ; SET STATUS
JZ ZRO
MVI B,OOH
MVI E,09H
MOV A,C
RAR
MOV C,A
DCR E
JZ DONE
MOV A,B
JNC MULTI
ADD D
RAR
MOV B,A
JMP MULTO
MOV A,C
ADD A
MOV C,A
MOV A,B
RAL
MOV B,A
RET

a***###****######*#**##*#*#**#

118

SUBROUTINE VCMLT

VCMLT

L1 0 :

LDA DIM
STA CNT
LDM TEMP,0000H
LRPI B ,C ,AD 1
INX H
SHLD AD 1
LRPI D,E,AD2
INX H
SHLD AD2
CALL FMULT
LDRP D ,E ,TEMP
CALL FADD
STRP TEMP,B,C
DCRM CNT
JNZ L 1 0
RZ

******#***#*###*######*#*##*#*

SUBROUTINE Ifil

TST: MOV
ANA
JZ
JM

A , B
A ; SET FLAGS
STOP
STOP

; TEST LESS THAN OR EQUAL ZERO
MOV A ,C

119

ANA A
; TEST EXP GREATER THAN ZERO

JM STOP
RNZ
MOV A , B
CPI 50H
RP
JMP STOP

******* ***********************

SUBROUTINE XNVRT

TEST MANTISSA GREATER THAN 0.5
REGISTER ASSIGNMENTS
B=NUMBER TO BE INVERTED
C = RESULT
D=REMAINDER
E = CNTR

INVRT: MOV A,C
STA TEMP

;SAVE EXP IN TEMP
MVI C ,OOH
MVI D ,0 80H
MVI E,06H

L50: MOV A ,D
CMP B
JM SFT
SUB B

120

INR C
SFT: ADD A

MOV D , A
MOV > o

ADD C
MOV C, A
DCR E
JNZ L50
MOV A , D
ADD A
JP NOINR
INR C

NOINR: MOV CO o

; PUT RESULT IN B
LDA

; GET EXP
TEMP

MOV C , A
MVI A , 00H
SUB C
INR A
MOV
RET

C, A

¿IIM flUI I ttE IflHttC
TRUNC: MOV A , C

ANA A

121

RP
MVI A , OOH
SUB C
CPI 07H
JM NZR
MVI B , OOH
MVI C ,OOH
RET

NZR: MVI D ,OFFH
MOV E , A
MOV A , D

TRLP: ADD A
MOV D , A
DCR E
JNZ TRLP
MOV A , B
ANA D
MOV B, A
RET

* * * * f t * t f » * * * * « « * t t * * t t * « * * * f t * f t » S *

SU.BFQUTIN5L ns FT

DSFT: LHLD AD 1
MVI D , 00
LD A MDIM
ADD A
MOV C , A

122

LDA LDIM
ADD A
ADI OFEH
MOV E, A
DAD D
MOV E ,L
I NX H
MOV D , L
MOV A , C
ADI 2
PUSH D

DLP : MOV L , E
DCR E
MOV B,M
MOV L , D
DCR D
MOV M,B
DCR A
JNZ DLP
MOV A , C
CPI 00
RZ
POP D
MVI C ,00
JMP DLP

*tt**tt******ft**tttt»****ft********

123

SUBROUTINE CNVRT

THIS ROUTINE CONVERTS A FIXED POINT NUMBER
IN REGISTER B TO A FLOATING POINT NUMBER IN
THE B-C REGISTER PAIR

CNVRT: MVI C ,OOH
' MOV A , B

ANA A
JZ ZZ
JM LTZ

LP : DCR C
ADD A
JP LP

FIN : RAR
INR C
MOV B, A
RET

LTZ: DCR C
ADD A
JM LTZ
JMP FIN
RET

ZZ : MVI B , OOH
MVI C ,OOH
RET

*»«***************************

124

¿HB.BQLP 1 IN E £ M X

THIS ROUTINE CONVERTS A FLOATING POINT NUMBER IN
THE B-C REGISTER PAIR TO A FIXED POINT NUMBER IN
REGISTER B

CNRT : MOV A , C
CPI OF8H
JP NTZ
MVI B, 00
RET

NTZ : ANA A
RZ
CPI 1
JP SAT
MOV A , B

LPP : ANI OFEH
JP SFTRP
CMC

SFTRP : RAR
INR C
JNZ LPP
MOV B, A
RET

SAT: MOV A , B
ANA A
MVI B, 7FH
RP

125

INR B
RET

f t *

SUBROUTINE CVRT

THIS ROUTINE PERFORMS A BINARY CHOP
SUCCESSIVE APPROXIMATION OF TWO ANALOG
INPUTS USING A 8255 PARALLEL PORT CHIP
TO PASS DATA. ITS MODE IS DEFINED AS
PORTA OUTPUT
PORTB OUTPUT
PORTC-UPPER HALF INPUT

LOWER HALF OUTPUT

PORTA EQU 1 4H
PORTB EQU 1 5 H
PORTC EQU 16H
CNTRL EQU 17H
CMD EQU 88h
CVRT: MVI A , CMD

OUT CNTRL
MVI D,40H
MVI A,7
STA CNT
MVI A ,0
OUT PORTA
OUT PORTB

OUT PORTO
MOV B, A
MOV C , A
CALL WAIT
CALL WAIT

WAIT FOR COMPARATOR TO RESPOND

MOV A, E
ANI 40H

TEST BIT 6 TO DETERMINE IF INPUT TO ADC-A
; IS GREATER OR LESS THAN ZERO

JNZ TSTB
MVI B, 80H

TSTB: MOV A , E
ANI 1 OH

; TEST BIT 4 TO DETERMINE IF INPUT TO ADC-B
; IS GREATER OR LESS THAN ZERO

JNZ NXT
MVI C , 80H

NXT: MOV A , B
ADD D
OUT PORTA
MOV A , C
ADD D
OUT PORTB

127

; GET NTH INCREMENT FOR BINARY CHOP AND
; ADD IT TO N-1TH APPROXIMATION FOR BOTH
; ADC CHANNELS

CALL WAIT
CALL WAIT

; WAIT FOR RESPONSE
MOV A, E
ANI 40H

TEST BIT 6 OF STATUS
WORD FOR ADC'S TO DETERMINE
IF PRESENT INCREMENT IS TO BE
ADDED TO N-1TH APPROXIMATION
; OF ADC-A

JZ NADA
MOV A , B
ADD D
MOV B, A

NADA: MOV A, E
ANI 1 OH

TEST BIT 4 OF STATUS WORD
TO DETERMINE IF PRESENT
INCREMENT IS TO BE ADDED TO
N-1 TH APPROXIMATION OF ADC-B

JZ NADB
MOV A , C
ADD D
MOV C , AMOV

128

NADB: MOV A ,D
ANA A
RAR
MOV D ,A

; FORM N+1TH INCREMENT BY SHIFTING
; CONTENTS OF REGISTER D

LXI H ,CNT
DCR M

; GET ITERATION COUNT AND DECREMENT
; IF NOT ZERO PERFORM NEXT ITERATION

JNZ NXT
RET

; THIS ROUTINE PAUSES A TIME
; DETERMINED BY HARDWARE BY
; TOGGLING BIT 3 OF PORTC
; AND WAITING FOR BIT 5 TO
; GO HIGH
WAIT : MVI A ,8

OUT PORTC
MVI A ,0
OUT PORTC

PAUSE : IN PORTC
MOV E , A
ANI 20H
JZ PAUSE
RET

ft************«*«*»«*»*»***«««*

129

M.BM.UJI1,.S. SE.W1

THIS ROUTINE WAITS FOR NEXT
SAMPLE TIME AS DETERMINED BY
EXTERNAL CLOCK FLAGGED BY BIT
7 OF PORTC OF FIRST 8255 AND
SAVES STATUS IN REGISTER E

SPWT: IN PORTC
MOV E , A
ANI 80H
JZ SPWT
RET
END

**************************«*««

