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This thesis is a systematic development of a general numerical method for the solution of 

the nonlinear ship wave problem. Analytical approaches to this problem must always be 

linearized and are often unable to handle arbitrary and complicated hull geometry in the pres

ence of a free surface. Other numerical approaches often provide inconsistent results for the 

physical quantities of interest, particularly the wave resistance. The present work unifies the 

numerical approach to the ship wave problem and considers all of the major aspects of the 

numerical method. Many of the features of the method are novel in the sense that they do not 

agree w ith the presently accepted views of the numerical ship hydrodynamics community.

The solution method is a time dependent finite difference technique which couples the 

time advancement of the free surface boundary conditions to a fast direct solution of the 

Laplace equation for the interior flow. The direct solver is optimized in the sense that the 

numerical solution in the entire domain need not be calculated or stored. A new type of mesh 

system is also developed so as to accurately accommodate the exact hull geometry, and the fast 

Laplace solver is modified by the capacitance matrix technique in order to implement the hull 

boundary condition. Furthermore, it is found that by increasing the size of the computational 

region so that the downstream boundary is far from the ship, an effective open boundary condi

tion which is far simpler than what has been proposed in the past may be implemented.

Results are obtained for the thin ship and Neumann-Kelvin problems and are compared to 

existing solutions and to experiments. It is generally found that the linearized, inviscid models 

presently in use are unable to adequately predict in a quantitative way the extremely small 

values of wave resistance over a wide range of Froude numbers. It is therefore shown in detail 

how the numerical groundwork developed in this thesis may be extended to solve the full non

linear ship wave problem.
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CHAPTER 1. INTRODUCTION

Surface wave problems are in general characterized by the motion of a free boundary in 

response to a disturbance. A free surface which lacks surface tension is defined as a boundary 

which always contains the same fluid particles and along which the pressure is zero. The 

resulting motion of a free boundary must therefore proceed in such a way that this definition is 

continuously satisfied. This leads to three primary computational difficulties, namely those due 

to geometry, boundary conditions and flow conditions. Since the free surface geometry is unk

nown and must be determined as a part of the solution, we see that the difficulties due to 

geometry and boundary conditions are coupled in an essential way.

Many problems involving free surfaces are common in engineering applications. For 

instance, body motion problems involving heave and sway of oil rigs in the open sea are of 

interest for the design of structural integrity and stability. Material scientists are often con

cerned with the properties of melting solids in which the liquid-solid interface forms a free 

boundary. Other examples typically involve the formation of waves, and naval hydrodynami- 

cists seek to determine the wave resistance experienced by a free surface piercing body. This 

will be our present topic of physical interest.

Naval ship hydrodynamics has had a long history of analytical and experimental 

research. The primary goal is to accurately predict the wave pattern of full scale ships in an 

effort to minimize or at least reduce the associated wave resistance during the design phase of 

new hull forms. This ultimate goal, however, has never been realized. The apparent reason for 

this is that analytical and quasi-analytical approaches must necessarily resort to linearized 

theory which often gives inconsistent results for conventional ship forms. Even purely 

numerical treatments have not been developed to the point where they can provide adequate 

predictions. Therefore, in an effort to better understand the problems associated with the deter

mination of ship wave resistance, a brief review of several important methods will be given.
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Purely analytical methods have long dominated ship hydrodynamics. The foundations of 

the potential theory underlying flows about thin bodies are well understood, and consequently 

an extension to flows with a free surface has been made. The classical thin ship theory given 

by Michell [l] in 1898 provides an explicit expression for the wave resistance in terms of hull 

geometry and sj>eed. He linearized the full nonlinear problem to first order about the free 

stream velocity ;md applied the free surface condition at the location of the undisturbed free 

surface. In addition, the thin ship assumption allowed him to apply the body boundary condi

tion on the ceniErplane of the hull rather than on the actual solid surface. Under these 

assumptions, an appropriate Green’s function can be found which satisfies the Laplace equation, 

the free surface condition and a condition at infinity, namely that there exist only downstream 

waves. Such a Green’s function is called a Havelock source. A collection of these sources can 

be distributed below the free surface and over the centerplane of the hull in such a way as to 

satisfy the thin ship condition. Once the velocity potential is known from the distribution of 

Havelock sources, other quantities of interest, such as wave profiles and wave resistance, can be 

calculated, rhe determination of wave resistance, for instance, involves the evaluation of a 

quintuple integral known as Michell’s integral.

That Michell’s theory so dominated the subject of ship hydrodynamics is seen from the 

fact that it was the only well founded theory in consistent use even as recently as thirty years 

ago. However, the age of high speed computer technology brought not only easier evaluation of 

Michell’s integral but also provided the opportunity for improvements in the theory itself. The 

assumption of potential flow is apparently overshadowed in importance by the thin ship and 

linearized free surface approximations in the sense that the latter simplifications are most often 

singled out for improvement. By far the easier condition to improve is the thin ship assump

tion. A simple extension of the Michell theory is due to Guilloton [2]. Emerson [3] and Gadd [4] 

have applied Guilloton’s method with reasonable success. The procedure is based on the intui

tive observation that the flow over the linearized hull can be related to the flow over a real 

hull by a suitable transformation of coordinates. Thus, once the Michell solution is obtained,
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one can find the real hull to which the linearized solution applies. The inverse procedure, that 

is, finding the linearized hull which corresponds to a given real hull, is an iterative process. 

While this method must ultimately rely upon a linearized calculation, the wave profiles along 

the real hull are in better accord with experiment than the linearized theory alone. Gadd 

argues that this is primarily due to a better accommodation of the free surface conditions. The 

Michell approximation allows the streamlines to actually pass through the physical hull since 

the hull boundary condition is applied on the centerplane of the ship. The Guilloton transfor

mation, on the other hand, provides coordinate displacements in all three directions so that 

better account is taken of the actual free surface and solid body locations. Therefore, the 

linearized hull surface streamline along the centerplane is transformed into the wave profile or 

the curved free surface streamline along the real hull. The results of Gadd and Emerson are 

similar and both show some improvement over the first order theory.

The preceding discussion would seem to indicate that the deficiencies of the Michell 

theory can be largely overcome by applying the desired boundary conditions at the proper loca

tions. In fact, the exact body condition can be satisfied by distributing Kelvin sources over the 

actual hull surface rather than over the centerplane. Since in this formulation, known as the 

Neumann-Kelvin problem, the free surface conditions remain linearized while the hull condi

tion is exact, it is often argued that the approach is mathematically inconsistent. Further con

troversy also exists over the use of a line source distribution along the waterline of a ship. 

Since a surface piercing hull does not actually form a closed surface, Brard [5] argues that such 

an additional source distribution should be considered so that the shape, and therefore the flow 

around, the physical hull is more accurately represented. He reported that the inclusion of the 

line integral term along with the source distribution on the hull gave better results for the 

wave resistance, especially at low Froude numbers.

It is often convenient and more accurate to linearize the wavemaking problem about the 

double model potential rather than the free stream potential. This extension is the so called
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double body approximation (often referred to as the zero Froude number approximation) and 

represents the flow that would exist if the free surface was replaced by a rigid plate. In prac

tice, one determines the double body potential by reflecting the hull in the undisturbed free sur

face, thereby forming an image hull. The required source strengths may then be determined 

either analytically or numerically. As a first approximation, this potential provides a more 

accurate representation of the flow since the streamlines flow around the hull rather than 

through it, as in thin ship theory. The result is similar to the desired effect of Guilloton’s 

method.

Gadd [6] uses the double model potential, represented by Kelvin sources distributed on the 

actual hull, to obtain wave profiles and wave resistance curves for a series of models at several 

Froude numbers. The procedure used in determining the source strengths, which allow satis

faction of the slip condition on the body, is outlined as follows. The ship is divided into n 

panels on which. Kelvin wavemaking sources are uniformly distributed. Such a distribution 

may usually be regarded as a single point source concentrated at the center of a panel. The 

total velocity at each of the centers is evaluated in terms of the unknown source strengths on 

all the panels. Special consideration is given to the influence of a particular panel upon itself as 

well as upon its image panel. The requirement that the normal velocity at the center of each 

of the n panels be zero then yields n equations for the n unknown source strengths. Gadd is 

then able to calculate far field waves, hull wave profiles and surface pressure and velocity dis

tributions. He birings the wave resistance results more into line with experiment by the addi

tion of an empirical stem wave damping factor which effectively reduces the amplitude of the 

stem waves. Tliis ad hoc procedure is justified by presuming that viscous effects must be 

important near the stern, especially if the body shape is bluff. The results for the several 

models investigated show qualitative agreement with existing Michell and second order 

theories (Gadd [7]), although there seems to be no marked improvement in either hull wave 

profile or wave resistance predictions. Guilloton’s method still appears to provide better results

in these areas.
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Another approach which uses the double body potential is low speed theory, first intro

duced by Baba and Takekuma [8]. Baba and Hara [9] present calculations for a semi-submerged 

sphere as well as several ship forms, while Baba [10] provides results for more conventional 

ship hulls. Low speed theory is a representation of ship wave resistance in the asymptotic 

limit of zero Froude number. The velocity potential is assumed to be the sum of two parts. 

The first potential is that due to the double body, while the second is called the surface layer 

potential and represents the wave motion. The total potential must satisfy a nonlinear form of 

the free surface conditions, but only the double model potential is required to satisfy the solid 

body condition. The disturbance on the free surface is represented by products of derivatives of 

the known double body potential, and this is taken to be the only nonlinear effect on the free 

surface. At infinity, the wavy potential vanishes and there exists only uniform flow. Then, in 

the low speed limit, a solution for the free surface layer potential is found to be an integral 

involving only derivatives of the double model potential. The wave resistance can be derived 

from this expression, and this constitutes one of the main results of low speed theory. Early 

calculations [8,9] showed promise, especially for mathematical models in which the bow and 

stern are sharp (e.g., the Wigley hull). For conventional bluff forms, such as the HSVA tanker 

or the Series 60 hull, the theory was found to yield unacceptable results for the wave resis

tance (Baba [lO]). It was later concluded by Tulin [ll) that most low speed theories do not per

form well.

An apparently successful method has been introduced by Dawson [12] in which the dou

ble model solution is improved by treating a portion of the free surface near the body 

separately from the outer part of the free surface away from the body. On the symmetry line 

between a two dimensional body and its image, the free surface condition is linearized in terms 

of the free stream velocity. This boundary condition is then satisfied by a line source distribu

tion along the undisturbed free surface. The symmetry condition is a good approximation 

upstream where there is no disturbance. Downstream, however, Dawson argues that it 

represents the average condition of zero disturbance. Since the problem as stated up to this
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point does not have a radiation condition at infinity, the solution will not be unique, and 

upstream waves will satisfy the boundary conditions just as well as downstream waves. 

Therefore, in order to prevent upstream waves, Dawson uses a four point, one sided upstream 

difference operator when applying the free surface condition for the velocity potential. This 

effectively allows waves to propagate only downstream. Furthermore, Dawson also found that 

it was necessary to include a damping region near the downstream boundary in order to 

prevent unwanted oscillations. Such a damping region is the usual approach for steady state 

formulations in which the proper numerical radiation condition at the downstream boundary 

is unknown. Although Israeli and Orszag [13] have shown that care must be taken in con

structing a proper damping region, Dawson claims that a two point upstream difference opera

tor works well and has limited upstream influence. This approach has also been extended to 

three dimensions, and the results of Dawson [l2j and particularly of Dawson [14] show reason

able agreement with experiment for five ship hulls over a typical range of Froude numbers. It 

is apparently the general consensus [ll] that the method due to Dawson shows the most overall 

promise. A similar method due to Gadd [15,16] is less consistent and is still not as close to 

experimental hull wave profiles as Guilloton’s method, especially in the bow region.

All of the methods previously discussed for wave resistance computations fall into the 

broad category known as the Green’s function approach. These procedures are characterized by 

steady state formulations of the problem in which the solution is obtained by an appropriate 

distribution of singularities on the boundaries. They have the distinct advantage that the 

Laplace equation for the potential function is automatically satisfied by the Green’s function, 

and thus the computational burden does not involve calculating the details of the entire flow 

field. However, tliis type of approach runs into difficulty when trying to deal with nonlinear 

boundary conditions by superimposing linear combinations of component Laplace solutions. 

Thus, when applying the full nonlinear free surface conditions, it is necessary to abandon the 

Green’s function approach and proceed by a more direct method of solution.
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In contrast to the singularity methods, the class of direct simulation techniques is charac

terized by a finite element or finite difference solution of the Laplace equation. Most of the 

computational effort, especially in three dimensional problems, is consequently associated with 

this endeavor. The opportunity to handle the exact free surface conditions, however, is now 

more readily available. Most of the methods in this class attempt to satisfy the free surface 

conditions (both the linearized and the nonlinear forms) as accurately as possible while using 

any convenient technique for the remainder of the flow field.

Direct methods can be further divided into the steady state and the time dependent 

approaches. The steady state approach seeks only to determine the final wave pattern over the 

entire free surface. Oomen [17,18] used this approach based in part on a method developed by 

Korving and Hermans [19]. The Laplace equation is solved by a finite element method with a 

Neumann condition at the assumed location of the free surface. Small changes in the conditions 

at the free surface are calculated using the linearized boundary conditions, after which the 

problem is systematically solved until these changes become negligible. As in the Green’s func

tion approach, the proper outflow condition for this steady state formulation is also unknown. 

This is perhaps one of the most serious difficulties associated with any direct numerical 

approach to the steady state ship wave problem. One could specify the downstream boundary 

values, but there is never any assurance that the values one chooses would be correct. Oomen’s 

solution to this problem was to introduce a pressure damping region near the downstream 

boundary of the truncated domain. Then, with no waves present, he specified uniform outflow. 

Bai [20], using a simple test problem, claims that this procedure is appropriate, although it 

would seem that additional numerical experimentation is necessary in order to completely 

understand the upstream influence of artificial damping regions in the flow field.

Although Oomen attempted to consider the nonlinear effects on the free surface, his 

results do not agree well with experiment. The hull wave profiles for the Series 60 ship show 

a phase shift aft relative to the experimental profiles. The wave resistance predictions, com-
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puted for three Froude numbers from far field wave profiles, also appear to be rather poor. It 

may be that taking only three vertical planes to represent the depth variation of the velocity 

potential is not justified for full ships. The method, however, is still significant since it 

represents a purely numerical attack on the ship wave resistance problem.

Of the two types of direct techniques, the time dependent approach is perhaps a more 

natural and appending concept when dealing with free surface wave phenomena. The transient 

solution is calculated, and the flow is assumed to approach the steady state after a long time. 

The free surface conditions are treated as a separate initial value problem, after which the 

Laplace equation is solved numerically with Dirichlet conditions at the moving boundary. The 

sole reason for using the time dependent approach over the steady state formulation is that the 

downstream boundary condition can be specified more precisely. That is, there is less guess 

work involved since artificial damping regions do not have to be designed. The idea is rather to 

allow the transient waves to propagate out of the truncated domain as if there was no boun

dary at all. For this reason, the downstream boundary is often referred to as an open boundary.

Although the difficulty of merely specifying the downstream boundary condition has 

been overcome in the time dependent approach, new computational difficulties regarding the 

actual implementation of an open boundary condition have been introduced. The open boun

dary treatment which is most often preferred is the use of a one dimensional advection model 

based on the Sommerfeld radiation condition. This model has been shown by Wu and Wu [21] 

to work well for long wave (i.e., shallow water) pressure distribution problems in which the 

exact wave speed is known. Except for situations of limited physical interest, their open boun

dary treatment is not applicable to ship wave resistance computations since the proper wave 

speed for deep water problems is unknown. Thus the major difficulty to be dealt with in 

implementing an effective open boundary condition is the accurate calculation of the phase 

speed of the waves approaching the truncation boundary. This calculation must be accurate in 

order for the waves to propagate cleanly (i.e„ without reflection) out of the region. This idea
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was originally proposed by Orlanski [22], who suggested that the wave speed could be numeri

cally calculated near the open boundary and then used in the Sommerfeld radiation condition. 

Chan [23] revised Orlanski’s original scheme so that it was nondissipative and applied the 

modified method to a ship wave problem. His purpose was to decrease the size of the computa

tional region so that an excessive number of grid points was not required and hence so that 

relative efficiency in the Laplace solution could be maintained* He claimed that the boundary 

treatment was successful, but it is believed that further study is needed in this regard, espe- 

cially since, as pointed out by Yeung [24], ship waves approaching the open boundary are two 

dimensional and should actually be considered using a two dimensional advection model.

Additional work of significance concerning the issue of the open boundary condition has 

been performed by Yen and Hall [25]. They first recognized the importance of studying the side 

effects of implementing a numerical radiation condition* Their advection experiments concen

trated on the procedures and the errors involved in calculating the phase speed near the open 

boundary. By using a two dimensional pressure distribution problem as a test case, they com

pared wave height results for both a fixed and an expanding domain. The open boundary 

implementation was found to cause two grid interval oscillations near the boundary. If these 

spurious wave components were not eliminated, they believed that the solution in the region of 

interest could be severely contaminated. In order to eliminate these oscillations, the authors 

proposed the filtering scheme of Shapiro [26], but found it to be effective at early times onlv. 

For long time solutions they suggested the use of a dissipative time marching scheme, even 

though no physical viscosity was assumed to be present. They do caution, however, that 

further study is needed in order to ascertain the overall influence of damping on the solution. 

This work is nonetheless unique in the sense that it does not oversimplify or misjudge the 

problems encountered in developing and implementing an accurate open boundary condition.

Another difficult issue which is encountered in the direct approaches to the ship wave 

problem is the representation of irregular and arbitrary geometry (e.g., the hull and free sur-
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faces) on a finite difference mesh. The approach taken by Chan [23] was to use a body fitted 

coordinate system throughout the physical domain. He was able to accurately accommodate 

arbitrary hull geometry, but he had to increase the computational complexity by transforming 

the Laplace equation into a general elliptic equation in the new coordinate system. The solu

tion method used was successive over relaxation (SOR), which is known to have a very slow 

convergence rate, especially when an optimum relaxation parameter is not known. The solu

tion of the transformed elliptic equation was thus an extreme computational burden at each 

time step. In order to improve the efficiency of the Laplace solution, Ohring [27] described a 

fast direct solution method based on the Fast Fourier Transform (FFT). Ohring and Telste [28] 

applied this solution technique, with second order spatial differencing, to the problem of a 

translating hull form. Their method of handling the exact hull condition, described in [29], is 

rather unconventional. They expand the Neumann condition at the hull, as well as two of its 

derivatives in two surface directions, in a Taylor series about the hull location. After manipu

lating the resulting expressions and incorporating the Laplace equation, they obtain a boundary 

condition which they apply at the mesh plane immediately adjacent to the exact hull. They 

thus completely avoid the problem of actually representing the hull form in their mesh sys

tem. This is an interesting approach, but it does not maintain second order spatial accuracy 

since many of the approximations in the Taylor expansion are only first order.

Given the present state of the art in ship wave resistance computations, it is desired to 

develop a new, general finite difference method for accurately and efficiently predicting ship 

wave resistance. This thesis represents a unified and systematic development of such a method 

for the full nonlinear ship wave problem. We shall consider only the Wigley hull, although 

the method shall be applicable to surface piercing bodies of arbitrary shape. In Chapter 2, we 

present both the nonlinear and linearized formulations of the ship wave problem. Chapter 3 is 

devoted to a discussion of the proposed numerical methods as well as a review of some other 

Laplace solution techniques so that the differences can be more easily illustrated. Chapter 4 

establishes the validity of the present time dependent approach by solving the linearized, thin
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ship problem for the Wigley hull. Numerical experiments are also performed to investigate the 

sensitivity of the solutions to changes in the computational parameters. Chapter 5 introduces 

the concept of the locally body fitted coordinate system which both maintains spatial resolution 

near the hull as well as superior efficiency in the Laplace solution. This chapter then describes 

the modification of the fast direct Laplace solver, which is required to handle the irregular hull 

geometry, and presents results for the Neumann-Kelvin problem. Chapter 6 uses the guidelines 

set forth in Chapters 4 and 5 to extend the method to the full nonlinear case. Wave profile 

results for this case are obtained and are compared to those of the linearized Neumann-Kelvin 

problem. The general conclusions of this work as well as indications for further research in 

the area of numerical ship hydrodynamics are finally outlined in Chapter 7.
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CHAPTER 2. FORMULATION OF THE SHIP WAVE PROBLEM

We now present the mathematical formulation for the free surface flow about a hull. 

Consider the Cartesian coordinate system which is moving with a ship at an instantaneous 

speed Us in the —x direction (Fig. 2.1). The x  -axis is aligned with the forward motion, the y -  

axis is perpendicular to this motion, and the z -axis is directed opposite to the force of gravity. 

Since the flow is symmetric about the centerplane, we need to consider only half of the ship. 

For an inviscid fluid without surface tension, there exists a velocity potential <E> which satisfies 

the Laplace equation

V 2̂> = <$xx + $ yy + q zz = 0 . (2.i)

Subscripts are used to denote partial differentiation, e.g„ <S>XX = . We also note that the
a* 2

fluid velocity components are defined in terms of the potential as (u,v,w) = (<X> <3> <j>_ ).

The domain of interest is enclosed by the upstream and downstream boundaries, the sym

metry, lateral and bottom planes, and by the hull and free surfaces. Appropriate boundary 

conditions must also be specified for Eq. (2.1). On the free surface, there are two physical 

requirements. The first is that no fluid is allowed to cross the boundary. If we define the func

tion t , - z  — rjCx ,y t  ), where 7) is the free surface height above the reference plane z = 0, then 

clearly £ = 0 on z = T). The kinematic boundary condition is thus

t  + + "M j + ♦*£* = 0. (2.2)

Expanding the particle derivative and writing Eq. (2.2) in terms of tj(x ,y t  ), we have

7)f + <*>*T)X + <&y7)y = S>- (2.3)

on z = ti .x ,y l  ).

The second physical requirement on the free surface is that the pressure must remain 

atmospheric. The velocity and pressure are related by Bernoulli’s equation, which can be
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written in a moving frame of reference as

*, + + 4>»2 + <t-/) + gz + P ip  = PaIp + ± u *  + Æ  . (2.4)
2 2 dt

The symbol p is used for the fluid density, g for gravitational acceleration, P for the pressure 

and Us for the instantaneous speed of the ship in the —x direction. For convenience, let us 

define P -  P —Pa so that P = 0 on z  =77. The dynamic boundary condition then becomes

$r + + 0>y +  $ / ) + Tf/Pr2 -  ^ r U 2 + . (2.5)
*  2  d t

In equations (2.1), (2.3) and (2.5), lengths have been nondimensionalized by the ship length, L , 

velocity by the free stream velocity, U w  and time by LfU  ̂  We note that the range for Us is 

now 0 < Us ^  1 since the maximum speed of the ship is Furthermore, the nondimen-

sional parameter Fr is the Froude number and is defined as Fr — ^ 00
(gL yh

At the upstream boundary, free stream conditions exist so that we require —Us. The 

same is true for the lateral and bottom boundaries, both presumed to be far from the ship, so 

that we have -  0 and d>. = 0 there, respectively. On the symmetry plane the proper condi

tion is $ v =0, while on the hull, the normal velocity vanishes, i.e„ d>„ = 0. Far downstream of 

the ship we require that no energy is generated, i.e„ waves are only allowed to propagate 

downstream. This requirement can be expressed mathematically as d>, — Us as x -»00. Com

putationally, however, it will be necessary to truncate the domain and assume that <&x = Us at 

the downstream boundary. As we shall see, numerical experiments are required to determine 

the appropriate domain length such that this downstream boundary approximation is valid.

It is often convenient to consider a perturbation potential <j> defined by

<*> = Us x + 6  , (2.6)

where <f> represents a small deviation from the instantaneous hull speed. Substituting Eq. (2.6) 

into Eqs. (2.1), (2.3) and (2.5), we obtain the following governing equation and free surface
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boundary conditions:

0xx + 4>yy + <t>zz *  0 , (2.7)

subject to

and

T)t +  ( ^ * + 0 *  H r  +  <t>y V y  =  <f>z (2.8)

& + Us<f>x + ~-(0x2 + 4>y + 0 /)  + T)/Fr2 = 0 (2.9)

on z = X * ,y ? ). The conditions on the remaining boundaries are then expressed as

0 X = 0, upstream 

0 X = 0, downstream

<f>y = 0, symmetry (2.10)

4>y = 0, lateral 

0- = 0, bottom.

In order to express the hull boundary condition, we define the shape of the hull by the 

function y = f  ix y z \  The components of the unit normal vector (positive when pointing into 

the fluid), expressed in terms of direction cosines, are n = (cosa, cos/3, cosy). The unit normal 

can also be expressed as ii = (—f x /y lt 1/yi, — / 2/yi), where the normalizing factor y y is 

defined as = [l + f  2 + f In terms of the perturbation potential, the hull boundary 

condition becomes

-fx<t>x + 0 ,  - / z 0 z  = u s f x (2.11)

on y -  f  (xjs).

Equations (2.7X2.11 ) are the governing equation and the boundary conditions for the full 

nonlinear ship wave problem. The initial conditions are 0 = T) = 0 at t = 0, after which the 

ship accelerates, either impulsively or gradually, with nondimensional speed Us. It is interest-
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ing to note that the governing equation is linear while the free surface boundary conditions are 

highly nonlinear. This is a consequence of the fact that the boundary shape is determined as a 

part of the solution and that one of the boundary conditions specifies the pressure rather than 

the velocity. There are no analytical solutions to this set of equations, nor are there any 

existence or uniqueness proofs. It is therefore difficult to assess the accuracy of any numerical 

solution to this problem.

The complexity of the full nonlinear ship wave problem is due primarily to a time 

dependent boundary whose shape is unknown a priori. The way to circumvent this difficult 

is to linearize the problem by neglecting certain higher order quantities, such as <f>x rjx or <f>2, 

which may be assumed to be small in some cases. The linearized kinematic and dynamic condi

tions then become, respectively,

Vt + U ST)X =4>s (2.12)

and

4>t +Us<t>x + T\/Fr2 = 0 (2.13)

on z = 0. We may also apply the hull boundary condition on the centerplane of the ship to 

obtain the thin ship condition, which is expressed as

<t>y = U s f x  (2.14)

on y — 0. The Laplace equation is thus to be solved subject to the boundary conditions in Eqs. 

(2.10), (2.12), (2.13) and (2.14). The initial conditions are the same as for the nonlinear case.

The linearized ship wave problem is much simpler than the full nonlinear problem for 

several important reasons. The boundary conditions have been simplified both in form and in 

the way in which they are applied. The linearized free surface conditions are applied on the 

plane 2 = 0  rather than on the free surface 2 = r£x ,y $ ). Furthermore, the hull boundary con

dition is applied on the ship’s centerplane (y = 0) rather than on the exact hull (y = f  ( x j )). 

Major simplification in the geometrical complexity of the full nonlinear ship wave problem has
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thus been achieved by linearizing the free surface conditions and by employing the thin ship 

condition. These additional approximations are physically justified under fairly restrictive con

ditions, however. It must be assumed that the actual vessel being considered does not disturb 

the free surface so violently that the wave height and slope become too large. In addition, the 

beam of the ship must be small in comparison to all other length scales in order for the thin 

ship approximation to be rigorously justified. These two restrictions are compatible, however, 

in the sense that a thin ship will not disturb the free surface to a great extent, and therefore 

the linearized problem can be used in a consistent fashion.



Figure 2.1 Placement of the ship within the Cartesian coordinate 
system, denoted by (x ,y ,z). The coordinate system follows 
the forward (— x direction) motion of the ship.
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CHAPTER 3. THE NUMERICAL METHOD

There are two distinct types of equations which are encountered in the ship wave prob

lem. The Laplace equation is elliptic, while the free surface conditions, when coupled to this 

governing equation, are hyperbolic. As different as these two types of equations are mathemat

ically, so too is there a great difference in the numerical methods which must be used to solve 

them. Since the overall effect of the free surface conditions and the Laplace equation is to 

describe the propagation of gravity waves on the surface of water, it is necessary to construct a 

numerical scheme which properly reflects this physical attribute. This chapter shall therefore 

be concerned with the principle features of the present numerical approach to the ship wave 

problem and shall also deal explicitly with the details of the numerical method.

The present method uses a time dependent, finite difference approach to obtain steady state 

solutions for the thin ship, Neumann-Kelvin and full nonlinear ship wave problems. The 

underlying assumption is that a steady state solution exists and that it can be found after a 

finite number of time steps. The time dependent approach is used primarily so that a physi

cally appropriate downstream boundary condition can be defined. Furthermore, we use an 

explicit time marching scheme on the free surface in order to decouple the free surface boun

dary conditions f rom the solution of the Laplace equation. It is therefore necessary to solve the 

Laplace equation only once during each time step, subject to a Dirichlet condition on the free 

surface and to Neumann conditions at all the other boundaries.

The present approach to the numerical solution of the Laplace equation uses a general fast 

Poisson solver wliich is based on the Fast Fourier Transform (FFT). It is found that by exploit

ing certain characteristics of the Fourier Transform, an elliptic solver which is optimized in 

terms of storage and execution time can be derived. This means that it is neither necessary to 

compute or store the elliptic solution in the entire domain. Since the solution of the Laplace 

equation represents the bulk of the computational burden, an explicit scheme for the free sur-



19

face conditions and an optimized fast direct method for the Laplace equation are considered 

essential to the efficiency and accuracy of the present approach.

The choice of a fast direct method for the Laplace solver is motivated by the fact that this 

elliptic equation will be solved many times during the calculation, and we therefore require 

maximum computational efficiency. A fast Poisson solver is the most efficient and accurate 

means of solving the Laplace equation, but its use is restricted to rectangular regions. The 

application of this technique therefore requires that we use a Cartesian grid. This in turn 

changes the way in which the Neumann boundary condition on the exact hull has previously 

been handled. The usual approach has been to transform the Laplace equation into a general 

body fitted coordinate system so that the mesh planes coincide exactly with the hull surface. 

However, a fast Poisson solver cannot be used in arbitrary curvilinear regions of body fitted 

coordinates which extend throughout the entire domain. It is therefore necessary to localize the 

body fitted mesh only near the hull so that the bulk of the region can be represented by a rec

tangular grid. In this way, we can maintain spatial resolution on the ship as well as efficiency 

in the Laplace solver since the fast direct method can be modified to handle the Neumann condi

tion on the curvilinear surface of a ship which is embedded in a locally body fitted region. The 

modification method used in this work will be considered in detail in Chapter 5 when we 

investigate the Neumann-Kelvin problem.

Another particularly interesting numerical feature contained in the present implementa

tion is the treatment of the open boundary condition in the truncated domain. Previous 

approaches have used a one dimensional advection model based on the Sommerfeld radiation 

condition as a means to supply a Dirichlet condition for <f> at the open boundary. It is found to 

be more convenient and efficient, however, to specify a Neumann boundary condition at the 

downstream boundary, and, as we shall see in this chapter, the most efficient choice is <f>x » 0 

(i.e., the free stream condition). A numerical experiment which verifies that this condition is 

acceptable is devised and performed on the linearized, thin ship problem in Chapter 4. It is
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thus possible to avoid altogether the complicated open boundary treatment which has so often 

been believed to be necessary for the ship wave problem.

In this chapter, we shall consider only the numerical methods which are used to solve the 

free surface and Laplace equations. We first discuss the implementation of the free surface con

ditions and then turn to a general numerical discussion of the Laplace equation. Since the solu

tion of elliptic finite difference equations is usually accomplished by iterative techniques, a 

brief review of some of the classical methods will be given so that a better comparison with 

the present optimized direct method can be made. We shall delay consideration of the details of 

the mesh systems and implementation of the Neumann ¡and open boundary conditions until 

specific computational examples are presented in Chapters 4-6.

Num erical Im plem entation o f the Free Surface Conditions

The present scheme for the free surface conditions was developed and used by Chan [23] 

for a ship-like floating body. This scheme can be characterized as an explicit, upwind centered 

scheme which is neutrally stable for pure advections at constant speed. To investigate this 

method, we write the free surface equations in the following form

Qr + u*Qx + v Qy = A* , (3.1)

in which the scalar Q represents either 77 or 0, and u \  v‘ and A* may be functions of Q. 

Notice that by the appropriate choice of u , v and A , both the nonlinear and linearized ver

sions of the free surface conditions (Eqs. (2.8), (2.9) and (2.12), (2.13), respectively) can be w rit

ten in the form (3.1). When specific computational examples are discussed in Chapters 4-6, the 

exact definitions of u*, v* and A* will be given.

We now center Eq. (3.1) about an upstream point on the free surface. This point is shown 

in the (x 4 ) plane in Fig. 3.1. Using the standard notation of Q"y to represent 

QO Ax,j Ay41A/ ), we make the following finite difference replacements to center the calcula

tion about the point [(i —1/2)Ax, j  Ay 41 Ai ]:
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Qr = 2A7 + Q .-lj) -  (QCy + Qi-I,!/)]

Qx = -¿ -(Q".y — (3.2)

° ,  = + Q ~  Q .-w -i)

These finite difference approximations are substituted into Eq. (3.1), and the result is an explicit 

expression for Q”/ 1. We thus advance the values of tj and <f> in time using the following gen

eral expression

Q " /1 = Q i-lj + ciQZj -  Q/Lw ) -  2 A i [ v ( Q . ) ^  -A * ] . (3.3)

where a  » 1 — —  . The quantities u*, v* and A* are all evaluated at [(£ —l/2)Ax ,j  A y /i At \

which means that the required values are averaged at [(i — l)A x,j Ay /i At ] and 

[G Ax J  Ay ji At], For the case in which u* and v* are constant and A* = 0, the linear von Neu

mann stability analysis, given in Appendix A, provides the following stability condition

+ 2c* I ^  1 + V2 (3.4)

_  ̂ _ u* At v* At -.„T, *where cx ------ ■ and cv = —-—  . When v -  0, as in the linearized case, this restriction isAx Ay

shown in Appendix A to reduce to the usual Courant condition

u* At 
Ax ^  1 (3.5)

This condition guarantees that no information will travel faster than one mesh interval in one 

time step. For the non linear case, Eq. (3.4) should be observed locally at all points on the free 

surface. This is the safest practice for a situation in which linear stability analysis is applied to 

a nonlinear problem. It should be pointed out that numerical experimentation may still be 

necessary in order to determine the computational parameters which produce a stable calcula

tion. For the linearized case, however, Eq. (3.5) is well known and is sufficient to guarantee 

stability.
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We now make several observations concerning how the scheme in Eq. (3.3) is started and 

how it is applied at the boundary intersections. Since this is a three time level scheme, it can

not be used to start the calculation from t = 0 since the solution at r = —At is not known. We 

must therefore consider the use of some other starting scheme. However, any explicit starting 

scheme which one wishes to use will always lead to the same result, i*., Q " /1 » 0 at t -  At 

for all points on the free surface. This is because, by virtue of the initial conditions, all of the 

forcing terms contained in A* are equal to zero at t = 0. It is therefore possible to use Eq. (3.3) 

for all values of t with the understanding that the scheme begins at t = 2 At and that the 

solution is zero at t = 0 and t — At.

Chan’s scheme does require some modification at the intersection of the free surface with 

some of the other boundaries. At the symmetry, hull and far field boundaries, one sided 

differencing is used for Qy so as to avoid introducing unknown values outside of the domain. 

At the upstream boundary, one sided (downstream) differencing for Qx is avoided since we 

want to retain the upwind bias of the scheme. We thus choose to impose the additional compu

tational boundary conditions <f>x => 0 and T)x = 0 at the intersection of upstream boundary with 

the free surface. This is again necessary in order not to introduce unknowns outside of the 

domain. It is physically justified on the grounds that the perturbations do not propagate 

upstream, and thus free stream conditions will hold at the upstream boundary. In order to 

implement these conditions, it would be possible to use Eq. (3.3) with Q/Lw = Q?tJ and with 

QF-ij = QPJ1 at the upstream points. However, it is preferred to use the formula 

Q /!/1 = QF,j ~~ Ai[v (Qy\ nj  — A*] so as to avoid centered time differencing. This formula is 

obtained by using a forward time, centered space approximation to Eq. (3.1) with Qx = 0. The 

centered space formula is used only in the y -direction so that Qv is evaluated as previously dis

cussed. Finally, we remark that at the downstream boundary, no additional unknowns outside 

of the domain are introduced (i.e., only upstream points are used) so that the explicit scheme is 

used in its original form.
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Num erical Solution o f the Laplace Equation

The Laplace equation occurs in many physical applications, and consequently its numeri

cal solution is quite often needed. In this section, we shall discuss the present optimized direct 

method for the efficient numerical solution of this elliptic equation: The present solution tech

nique is much more efficient and accurate than any iterative method, and it is therefore con

sidered to be essential to the success of the time dependent approach in which the Laplace equa

tion must solved accurately at each time step. In order to demonstrate the superiority of the 

optimized fast Poisson solver, we shall begin with a discussion of some classical iterative 

methods and of the preconditioned conjugate gradient technique.

The result of applying finite difference approximations to the Laplace equation is a linear 

system of the form

Ax = b . (3.6)

The matrix A is large (N x N) and sparse, i.e., there are many more zeros than non-zeros in each 

of its rows. Methods to solve the system (3.6) fall into two primary categories, direct and itera

tive. The direct methods theoretically obtain the exact solution to Eq. (3.6) in a finite number 

of arithmetical operations. Iterative methods, on the other hand, successively approximate the 

solution vector x and must be terminated when a sufficiently accurate approximation is 

obtained. We shall briefly discuss some of the classical iterative methods as well as the higher 

order conjugate gradient technique before turning to a presentation of the proposed direct 

method.

Complete advantage of the sparsity of A is taken by iterative methods. This means that 

only the non-zero elements of the matrix need to be stored. We first split A into the form

A — I — L — U , (3.7)

where I is the identity matrix and L and U are strictly lower and upper triangular matrices, 

respectively. Equation (3.6) then becomes
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(I — L — U)x = b , (3.8)

from which we can define the iterative process

Ixi+1 »  (L + U)x, + b 0 = 0,1,2,«.), (3.9)

where the x, (i = 0,1,2,-) represent successive approximations to the actual solution vector x. 

This particular iterative process is called the point Jacobi method. If we use the most recent 

approximations as soon as they become available, then we have the Gauss-Seidel iterative 

method, defined as

(I -  L)xl +1 = Ux, + b (i = 0,1,2,—) . (3.10)

These two methods comprise particular cases of the more general iteration

xi+i = BXj- + c (i = 0,1,2,—) ,  (3.11)

in which B = L + U and (I — L)” 1!! for the point Jacobi and the GaiLiss-Seidel methods, respec

tively.

To investigate the convergence of these methods, we define the error in the i th iterate as

et = x, -  x (i = 0,1,2,—), (3.12)

where x is the exact solution. Inserting Eq. (3.12) into Eq. (3.11) and realizing that x satisfies

x = Bx + c , (3.13)

we obtain

eI+i = Be, (i = 0,1,2,-). (3.14)

Hence we conclude that

=B ‘e0 (3.15)

and that e, - *0a s i  -* oo, if B1 0. The matrix B is then said to be convergent if and only if 

p(B) < 1, where p(B) is the spectral radius (largest eigenvalue) of B.
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We now discuss the particular method known as successive overrelaxation (SOR). We use 

the splitting of Eq. (3.8) and define an intermediate iterate f i+1 as

Ixi+1 = Lxi+1 + Uxs + b . (3.16)

The accepted value xl+1 is then

x!+1 = x, + oj(x1+1 -  x,) (3.17)

where 0 < a> < 2 for stability. Equation (3.17) can be interpreted as increasing (overrelaxing) 

the displacement vector (xi+1 — xf) by a factor a* when (d > 1. We note that Eq. (3.17) reduces 

to the Gauss-Seidel method when o> = 1.

We now eliminate xl +! from Eqs. (3.16) and (3.17) to obtain

(I -  wL)x,+1 = [coU + (1 -  fiOflx,- + a>b (3.18)

from which it follows that

Xj+i — (I — 6>L)-1[iiiU + (l — co)l]xi + gXI — £i>L)~lb . (3.19)

The so called iteration matrix for the SOR method is then seen from Eq. (3.19) to be defined as 

-  (I — <t>L)_1[<tjU + (l — ce>) I], Thus, from the general theory of iterative methods of the 

form (3.11), the SOR method will converge if and only if pCB̂ ) < 1.

The success of the SOR method really depends on the knowledge of an optimum relaxa

tion parameter, o>0, as well as on the initial guess, x<> Young [30] shows that the convergence 

rate of SOR is extremely sensitive to the choice of o>, especially when =  o>0. As can be seen 

from Eq. (3.15), SOR will converge in the fewest number of iterations if p(B j is as small as 

possible. Thus the determination of 0)o depends on minimizing the largest eigenvalue of Bu 

with respect to co. In practice, the calculation of oj0 is non-trivial and often takes as much time 

as the solution to Ax = b with (o0 known exactly. Thus, for cases in which the elements of A 

may be time dependent, as in the nonlinear free surface wave problem, it is not likely that SOR 

will succeed due to the difficulty and cost of estimating oj0 at each time step.
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Ad alternative to the SOR method is the conjugate gradient (CG) technique. This was ori

ginally developed as a direct method by Hestenes and Stiefel [31], but was found not to work 

well as such in practice. It was later reported by Reid [32]* however, to be an excellent itera

tive method. Recently, Concus, Golub and O’Leary [33] discussed how CG could be used to 

accelerate already convergent iterative processes. This method has several advantages over SOR 

in the sense that it requires no restrictions on the coefficient matrix other than symmetry and 

positive definiteness, although the extension to the nonsymmetric case has been carried out by 

Concus and Golub [34]. Furthermore, no estimation of acceleration parameters is required, as in 

SOR, since they are determined as a part of the solution.

The basic idea of the unmodified CG algorithm for solving the system (3.6) is to minimize 

the quadratic form of the error given by

E(x* ) = “ (x -  x* )tA(x -  x* ) .  (3.20)

The minimum of E(x* ) is of course zero at x = x*. We now define a search direction p* such 

that the new iterate, xk +1, minimizes E in the direction p*. Thus, using the definition

x* +i = x* + 0* p* , (3.21)

we find such that E(x* + /3* pk) is minimized. Then, defining r* to be the residual at the' 

k th step, i.e., r* = b — Ax*, we choose the next search direction , p* +I, to be the component of 

rk +l which is conjugate to all the previous search directions, i.e„ Po, Pi, p > p * . Thus we have

Pa+i = r£+i + ak Pk » (3.22)

where ak is chosen such that

p*T+1Ap, = 0  (j  = 0,1,2r -k ). (3.23)

Putting these concepts together to form the complete algorithm, we define the following four 

steps as the conjugate gradient method :



27

(i) given Xo r0 * b — Axq and p0 » Tq, 
for k = 0,1,2,~, compute

(u) x*+1-x* +& P *. & T?Tt 
p/Apk

(iii) Tk +1 « I k - & k Apk

T/ _ _ /̂fc +l̂ /t +1Uv) p* +1 -  r* +1 + ak pk, atk ------------.
Tr*r*

The exact solution is obtained in at most N steps, where N is the order of A. For this reason, the

algorithm was originally classified as a direct method. However, in the presence of roundoff 

error, the orthogonality of the sequence p* is lost and so too is the finite- termination property. 

Fortunately, however, a satisfactory approximation x* is usually obtained in a number of steps 

which is small compared to N. It is for this reason that Reid suggested the use of CG as an 

iterative technique.

Although the CG algorithm may be used as an iterative method in its own right, it is 

more often used to accelerate slowly convergent iterative processes. This extension is known as 

the preconditioned conjugate gradient algorithm, and the process to be accelerated is called the 

preconditioner. The essence of this approach is to replace Eq. (3.6) by

M *Ax = M-1b (3.24)

with the idea that M lA should be close to the identity matrix. For example, if we precondi

tion CG with SOR, then we have

M = 7T(I ~  (3.25)0)

in view of Eq. (3.19).

We now apply the standard CG algorithm to the system (3.24) and obtain the precondi

tioned conjugate gradient algorithm, which may now be defined in terms of the following four 

modified steps :
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for k * 0,1,2,-, compute

28

(ii) x* +j * x¿ + fik p*, fik 

(iü) ri+ i - r *  -  fit Apt

r¿TM’ lrfc
P*TAP*

(iv) P* +i -  M” ‘r* +, + ak p*, ak
r7+iM~1rí:+1

In this algorithm, one must solve during each iteration a linear system of the form

Mz* = r* . (3.26)

This suggests that systems involving M should be easily solved. Meijerink and van der Vorst 

[35] suggest preconditioning by incomplete Choiesky decomposition. Kershaw [36] extends these 

ideas and also explores incomplete LU decomposition as a preconditioner, while Khosla and 

Rubin [37] prefer strongly implicit factorization. It is often possible to precondition by fast 

Poisson solvers, as described in [33].

Efficient implementation of the CG algorithm is discussed by Reid [32] and by Concus, 

etal. [33]. However, the method still requires the storage of the vectors x*, r*, p* and Ap* in 

addition to the non-zero elements of A. Thus the requirement is greater than that for SOR, but 

it is offset by the fact that the acceleration parameters (i.e., otk and $k) do not need to be 

estimated. Furthermore, the convergence rate of CG has been found in practice to be much 

greater than that of SOR [37,38]. Since one of the objectives in the ship wave problem is to 

efficiently obtain an accurate potential solution at each time step, it would appear that CG is a 

likely candidate. It turns out, however, that this algorithm has some serious drawbacks which 

limit its effectiveness for the three dimensional ship wave problem. Specifically, the amount of 

storage required, even for modestly sized domains with adequate spatial resolution, is in fact 

too great to be practical without using out of core storage. This would be a severe disadvantage 

because of the amount of time required to perform I/O operations. Another limitation is that 

no advantage can be taken of the fact that the same matrix is being inverted for a variety of
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different right hand sides (a new right hand side at each time step). Thus a tremendous amount 

of computational effort is wasted by repeatedly performing the same operations. As a result of 

these considerations, direct methods for the solution of Eq. (3.6) were investigated and were 

found to be superior in every respect when applied to this problem. We shall now take up a 

discussion of the direct method which is to be used in the present approach to the ship wave 

problem.

Remarkable advances in fast Poisson technology are described by Buzbee, Golub and Niel

son [39]. Most of the so called fast direct methods are based on the Fast Fourier Transform 

(FFT), however other techniques are described in [39] as well as in a review on the subject by 

Dorr [40], These methods require a highly regular structure in the coefficient matrix, which 

makes them ideally suited to Cartesian mesh systems and rectangular regions. The present 

method uses Fourier analysis to successively reduce the system (3.6) to a sequence of simpler 

problems. This approach was first discussed by Hockney [41,42]. The basic idea is to Fourier 

analyze the solution and the right hand side vectors in two of the three mesh directions as a 

means of uncoupling the unknowns in these directions. The result is a sequence of tridiagonal 

systems which must be solved for the Fourier amplitudes of the solution. These amplitudes are 

then used to reconstruct the exact solution by Fourier synthesis. Full details of this procedure 

are given in Appendix B. The tremendous efficiency of the method is due in part to the availa

bility of an FFT routine which performs the analysis and synthesis. The Fast Fourier 

Transform is an efficient way to compute sums involving trigonometric functions since it util

izes the symmetry of these functions to significantly reduce the number of required operations.

We now describe how additional, significant computational savings, both in terms of 

storage and execution time, can be attained when applying the algorithm given in Appendix B 

specifically to the ship wave problem. In step 1 (Appendix B), it is not necessary to transform 

any vector sequence which is entirely zero since all of the Fourier amplitudes are also zero. In 

this problem, the right hand side is entirely zero except on the hull or centerpiane (nonhomo-
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geneous Neumann condition) and near the free surface (a nonhomogeneous Dirichlet boundary). 

Thus, the right hand side is transformed only if non-zeros appear on the particular mesh line 

under consideration. This strategy takes complete advantage of the fact that the right hand 

side contains mostly zeros, and thus the operation count in this step is reduced significantly 

We now see that the choice of -  0 at the downstream boundary is the most efficient for the 

simple reason that it introduces no additional non-zeros on the right hand side.

In step 2, we recognize several important observations. First, the solution for the velocity 

potential is needed only on the hull or the centerplane (to calculate the wave resistance by 

pressure integration) and just below the free surface (to advance the free surface conditions in 

time by computing <f>z in Eqs. (2.8) and (2.9)). The solution in the rest of the domain is really 

of no physical interest. Second, the reconstruction of the solution (Eqs. (B.9) and (B.10)) in the 

regions of physical interest does not require knowledge of the Fourier components in the entire 

domain. These two observations motivate one not to compute the Fourier components or the 

velocity potential in the entire domain but rather to efficiently compute only that part of the 

solution which is absolutely needed.

Such a strategy can be realized in step 2 in the following manner. Starting from the bot

tom of the domain, the forward elimination part of the tridiagonal solution for the Fourier 

components (Eq. B.6) is performed all the way up to the free surface. The backward substitu

tion, however, proceeds only as far down as the keel of the ship. Thus, only the Fourier 

coefficients between the keel and the free surface are computed since these are the only ones 

which are needed to reconstruct the velocity potential solution in this region. We note that 

since the Fourier coefficients below the keel are never needed, it is not necessary to allocate any 

additional storage for them.

In step 3, during the reconstruction of the potential solution from the Fourier components, 

it is necessary to compute the Fourier amplitudes for all values of l, j  and k between the 

keel and the free surface. However, when using Eq. (B.10) to compute the solution we



31

only obtain this solution on and near the hull (centerplane) and just below the free surface.. 

Thus, in most of the region between the keel and the free surface, the velocity potential is 

never Fourier synthesized. We note, however, that storage must be allocated in this entire 

region since all of the amplitudes 0 ^ . are needed in Eq. (B.10).

From the previous discussion of the steps involved in obtaining the potential solution by 

the Fourier series method, we have seen why it is not necessary to compute or store the solution 

in the region below the keel of the ship. This strategy possesses two significant computational 

advantages. First, the number of operations is reduced since not every Fourier sum nor every 

tridiagonal system must be computed or solved. Second, the amount of core storage required is 

much smaller and remains nearly constant, even for domains of essentially arbitrary depth. 

The present direct method is thus optimized in terms of efficiency and storage since every com

putational advantage is exploited.

We now consider again the use of iterative methods for this problem in light of the fast 

Poisson solver. By comparison, all computational advantage is lost since all iterative methods 

must update the entire solution vector at each step in the iteration. Thus the storage and com

putation tune requirements increase substantially as the size of the domain increases. Further

more, iterative methods cannot produce as accurate a solution in as little time as the present 

optimized direct method. For example, a typical convergence level for the two norm of the 

residual in the CG method is 10 A By contrast, the direct method, using less computation time, 

gives a residual which is much less than 10~10. Therefore, in addition to minimizing the accu

mulation of error at each time step, fast direct methods offer significant computational advan

tages over iterative methods and are thus preferred for use in the ship wave problem.

The entire computational algorithm which has been developed for both the linearized and 

the nonlinear ship wave problems can be summarized in the following steps :

(1) Initialize the flow field by setting 0  = 7] = 0 throughout the domain.

(2) Advance 0 and rj in time at the free surface using Eq. (3.3) applied to
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either the nonlinear or linearized free surface boundary conditions.

(3) Solve the Laplace equation with 0  at the free surface given from step (2).
The Neumann boundary conditions for the other five boundaries and the hull 
are given by Eqs. (2.10) and (2.11), respectively.

(4) Repeat steps (2) and (3) until the steady state is reached.

Specific criteria for the termination of this solution process will be given in the next chapter. 

This algorithm will then be applied directly to the case of a translating hull under the linear

ized, thin ship assumption. In this particular problem, the domain is entirely rectangular, and 

the optimized direct method can therefore be used without modification. We shall see, how

ever, that some modification of the fast Poisson solver will be necessary when implementing 

the exact hull boundary condition in a locally body fitted mesh system. The necessary exten

sion of the direct method to the exact hull case will be given in Chapter 5 and Appendix C 

when the Neumann-Kelvin problem is considered. This modified direct method will then be 

directly applicable to the nonlinear ship wave problem, which will finally be dealt with in 

Chapter 6.
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Figure 3.1 View in the (x jt)  plane of the upstream point [(£— ~-Ax)] about 
which the time marching scheme is centered.
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CHAPTER 4. THE LINEARIZED, THIN SHIP PROBLEM

The first step in the systematic development of a general numerical method to solve the 

full nonlinear ship wave problem is the consideration of a simple test problem. It is necessary 

to investigate the underlying numerical features of any method by studying typical computa

tional characteristics such as accuracy, execution time, storage requirements and the effects of 

changes in the parameters on the solutions. In this chapter, we investigate in numerical detail 

the linearized, thin ship problem for the free surface flow about a simple hull geometry. This 

problem is significant because it offers the opportunity to study the features of the proposed 

numerical approach in a situation which is free of the geometrical and computational complex

ity present in the full nonlinear problem. Furthermore, the linearized, steady state problem 

possesses an analytical solution for simple hull geometries. Although it is usually nontrivial to 

evaluate this solution, the thin ship theory of Michell [l] has nonetheless been applied to a sim

ple hull form which is a special case of a series of algebraically defined models proposed by 

Wigley [43]. Before actually applying the present time dependent approach to this problem, 

however, we shall discuss the Wigley hull form, the mesh system to be used, the implementa

tion of the boundary conditions and the calculation of the ship wave resistance.

The Wigley ship is a simple mathematical hull form defined as

/ ( l ^ )  = y ( l - 4 l 2) ( l - U / h «  (4.1)

for —V2 ^  x < V2 and — h < z ^  0. The parameters b and h are the beam and draft of the 

ship and are set equal to 0.10 and 0.0625, respectively. These values are chosen to agree with 

those of an experimental towing tank model of the Wigley hull which has already been and 

tested. A perspective view of this hull is shown in Fig. 4.1. It is seen to be a symmetric hull 

characterized by a sharp bow and stern as well as a very shallow draft. This is an attractive 

hull to consider because of its convenient definition.
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The linearized, thin ship problem has already been formulated in Chapter 2 and is defined 

by Eqs. (2.7), (2.10) and (2.12M2.14). We recall that the linearized free surface conditions (Eqs. 

(2.12) and (2.13)) are applied on the plane z =* 0, while the thin ship condition (Eq. (2.14)) is 

applied on the centerplane of the hull (y = 0). The domain is thus entirely rectangular, and 

the optimized direct method of Chapter 3 and Appendix B is therefore directly applicable. The 

free surface equations, which supply the Dirichlet boundary condition for 0  in the Laplace 

equation, are advanced in time using Eq. (3.3). The following definitions are used for the quan

tities u*, v* and A* appearing in this time marching scheme :

Dynamic condition for 0 :

u = U s 

v* = 0

A* = —rf/Fr2

Kinematic condition for r j:

u =  U S 

v* = 0  

A* =0_.

The initial conditions are 0  = 7} = 0 at i =0, after which the ship is linearly accelerated for 20 

time steps (Ai = 0.02) to its final (free stream) velocity. This simply means that Us is a linear 

function of i for 0 < i < 20Ai and is a constant (= l) for t > 20Ai.

The Mesh System

A Cartesian mesh system is used to describe the rectangular computational domain. Since 

the physical dimensions of the domain will need to be changed frequently, it is convenient to 

define mesh system parameters which control the size of the domain, the grid spacing and the 

number of mesh points in each coordinate direction. One of the goals of this research is to
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determine the sensitivity of the numerical solutions to changes in these computational parame

ters. Numerical experiments will be performed in order to investigate the solutions obtained 

under a variety of operating conditions, and we therefore find it convenient to define the grid 

system in terms of the mesh system parameters as follows :

Xi = -(0.49 + 30Ax) + (t-l)A x  (1 < i ^  L \  

y j -  ( j  —l)Ay (1 < j  ^  M )

2t
- d  + 0.2U - * , )  (jt1 < k < 24) 
zUc) (24 ^  k ^  34)
z ( 34) + a  -  34)Az (34 < k ^  40)

(far below the ship) 
(transition region) 
(on the hull).

(4.2)

In this mesh system, the grid spacing is uniform in the x - and y  -directions. In the z  -direction, 

however, there are three distinct mesh regions. The spacing on the ship and far below the ship 

is constant but unequal. A transition region consisting of nonuniform grid intervals is used to 

smoothly match the mesh in the two constant spacing regions. Considerations for the proper 

development of the vertical grid distribution will be given at the end of this section.

The grid is seen to consist of L x M  x (41 - Jtj) mesh points in the x-, y- and z-  

directions, respectively. The size of the domain is controlled by the parameters L , M  and d. 

The upstream boundary is set at x = -(0.49 + 30Ax), and we recall that the ship is located 

between x = —1/2 and x = 1/2. The parameter k t is used in conjunction with d to determine 

the depth of the domain.

Throughout this work, the values Ax = 0.98/19, Ay = 2.0/(M-X) and Az = h/6.5 are 

used, unless otherwise noted. The values of Ax and Az  are chosen so that the Wigley hull 

(defined for 31 ^  i ^  50 and 34 < k ^  40) is covered by 20 x 7 grid points and so that mesh 

lines straddle the bow, stem and keel. This is a necessary aspect of the mesh system since the 

directions normal to the Wigley hull at these locations are not precisely defined.

The design of the grid distribution in the vertical (z-) direction requires careful con

sideration. We must reconcile the relatively small grid intervals on the centerplane (h/6.5)



37

with the larger intervals (0.2) far below the ship. It is thus necessary to use a nonuniform 

mesh in this direction. The spacing remains constant on the centerplane and far below the ship, 

but in between these constant grid interval regions we define a transition region which 

smoothly matches the mesh spacing. These transition values, denoted by z ( k )  for 

24 ^  k ^  34 in Eqs. (4.2), are given in Table 4.1, and they shall be used in all of the mesh sys

tems for the thin ship problem. The parameters which therefore remain free to be chosen are 

L , M , k j and d. The specific values for these parameters will be given later in this chapter 

when the numerical experiments are discussed.

Vertical Mesh Snacinps
k z
24 -0.4000
25 -0.2800
26 - 0.2000
27 -0.1600
28 -0.1300
29 - 0.1100
30 -0.0962
31 -0.0865
32 -0.0769
33 -0.0673
34 -0.0577

Table 4.1 The values of z vs. k in the vertical mesh 
transition region, defined by 24 < k ^  34.

Im plem entation o f the Boundary Conditions

We now discuss specifically how the boundary conditions for the Laplace equation are 

implemented using the grid defined in Eqs. (4.2). In order to apply the thin ship condition 

(0y s f  x ) on y = 0 ( j  = 1), we first write the finite difference form of the Laplace equation 

on the centerplane. This equation is of the form (cf. Eq. (B.1))
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C , & - I .U  ” 20* ,U  +  0Ì+1.U + C & a* 20Uji: + (f>it2Jc

ak 0z,U -1 &i ,\Jc + c* 0t,U +1 ~ 0 • (4.3)

We note that 4>ìm  Les outside of the computational domain since the allowed values of the 

index j  are 1 ^  j  ^  M  (cf. Fig. 5.3a). We must therefore use the thin ship condition to elim

inate 4>ì,qj: from Eq. (4.3). Approximating 0 V by a central difference, we write the thin ship 

condition as

foot = ~  2AyUs f  x . (4.4)

The finite difference representation of the Laplace equation on the centerpiane thus becomes

0 i—i,u  20ftU + 0 t*+i,u + 2C $1,2* ~  4>i„u

ak -1 -  h  0i.U + Ck <t>i,U +1 = Us f  X  » (4.5)

since C 2
Ay: The effect of the Neumann boundary condition on the centerplane is thus

seen to add a source term on the right hand side of the Laplace equation. This nonzero term 

accounts for the wave disturbance to the free surface in the absence of a real (physical) hull. 

We note that an analogous procedure is followed for all other boundaries on which <f>n is 

specified. It turns out, however, that no additional source terms appear on the right hand side 

since <f>n = 0 on the remaining Neumann boundaries. We also note that Eq. (4.5) is equivalent 

to one in which <f>y =* 0 with a nonzero right hand side, so that the direct method of Appendix 

B for the more general Poisson equation is appropriate.

In the case of the Dinchlet condition on z — 0 (k =40), we immediately put the known 

solution on the right hand side to obtain

Ci 39 + 0I+ltyJ9 + c 139 20,^39 + 0j,y+li 39

ak 4>i ,j,38 b/c 0 i J ,39 — “  ck 4>i J ,40 • (4.6)

Finite difference equations of this form are applied at all points just below the free surface.
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We note that at the intersection of the free surface and the centerplane, the Neumann boundary 

condition leads to additional modification of the right hand side, as previously discussed,

C alculation of the W ave Resistance

In addition to calculating hull wave profiles and ship wave patterns, one of the primary 

objectives of this research is to estimate the wave resistance. A ship traveling in an inviscid 

fluid with a free surface experiences a resistance to its motion due to the fact that the surface 

velocity, and hence the pressure, are not symmetric fore and aft of the midship section. Thus, 

the integral of the x  -component of the surface pressure on the hull is nonzero. We therefore 

define the resistance as

R = - 2 / /  Pn, dS , (4.7)
s

where nx is the x -component of the unit normal vector (equal to — f x / y {\  S is the wetted 

hull surface area at rest, and P is equal to P -  ? a. We can transform the integral in Eq. (4.7)

to an equivalent integral over the centerplane area A by choosing dS = d z . We thus
n7

obtain

R = 2 /  /  Vf * d x d z  , (4.8)
A

where f  x is the x -slope of the Wigley hull, and ny is equal to \ / y x.

The pressure is calculated from Bernoulli’s equation (Eq. (2.13) applied on the center- 

plane), and for the present linearized case we have

P = - 4>t + u s<f>x + z /F r 2

Then, defining the wave resistance coefficient, Cw, as

= R
VzpUi S ’

(4.9)

(4.10)
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we obtain finally

C w ------ f  f  (0r + U s <f>x ) f x d x  d z  ,
D -h-»/4

(4.11)

where (0r + Us<f>x ) is evaluated on the Wigley hull centerplane. In Eq. (4.11) we have used

the fact that the integral of z ¡Fr 2 over this symmetric hull is zero since f  x is an odd function 

of x . Furthermore, the value of S (nondimensionalized by the square of the ship length) is 

obtained from

Three key numerical experiments have been performed in order to determine the effects 

of changes in the computational parameters on the hull wave profiles and the wave resistance. 

The computational parameters under consideration are: 1) the domain depth (i.e., the choice of 

k i in Eqs. (4.2)), 2) the domain length (i.e., the choice of L in Eqs. (4.2)) and 3) the order of the 

difference approximation for <f>z in Eq. (2.12) (i-e., first or second order one-sided differencing on 

z — 0). These experiments are considered to be most important in determining the characteristic 

features of the present time dependent approach to the steady state solution of the linearized, 

thin ship problem.

Experiments 1) and 2) are necessary for two reasons. First, since the Laplace equation 

must be solved many times during the calculation, we want to minimize the computational 

effort by allowing the domain to be as small as possible. The proper choice for the domain size

(4.12)

and this value for the Wigley hull is found to be S * 0.1487906.

Num erical Experim ents

must be based upon numerical evidence which establishes that the placement of artificial boun

daries does not contaminate the solution near the ship. We thus seek to determine a finite 

domain size which both maintains efficiency during the Laplace solution and which also best
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approximates an infinite region.

The second reason involves simplicity and efficiency in the implementation of the down

stream (open) boundary condition. Various complicated alternatives for the implementation of 

an open boundary condition have been proposed (e.g., Orlanski [22], Chan [23] and Yen and Hall 

[25]). These methods attempt to calculate the phase velocity of the waves near the downstream 

boundary and then allow the disturbances to advect out of the region at the proper speed. In 

principle, this procedure should minimize the wave reflection from the open boundary and 

hence reduce the effects near the ship. It would also then be theoretically possible to place the 

downstream boundary very close to the ship since the finite cutoff is assumed to be transparent 

to wave propagation. In practice, however, it is very difficult to accurately estimate the 

required wave speed. Furthermore, only one dimensional advection models have been con

sidered, and it is well known that ship waves meet the downstream boundary at a nonzero 

angle, thus requiring a two dimensional propagation model. Therefore, for ease of implementa

tion, it is proposed that a simple downstream boundary condition be used (i.e., <f>x = 0). This 

condition eliminates the necessity of calculating the wave speed, and it is also physically 

justified, as long as no disturbance is present. When a disturbance has reached the downstream 

boundary, however, we must be concerned about wave reflection and its possible contamination 

of the solution on the ship. It is therefore necessary to experimentally determine the appropri

ate length of the computational domain such that an accurate steady state solution on the ship 

is obtained. We must thus balance our requirement of efficiency against the demand for accu

racy by performing numerical experiments to establish the optimum operating conditions for 

the numerical towing tank.

Finally, experiment 3) is important since the term <f>z in Eq. (2.12) couples the free sur

face boundary conditions to the interior flow and hence strongly influences the development of 

the solution. Chan [23] used first order one-sided differencing for <f>. at the free surface and 

thus did not maintain overall second order accuracy in space. In this work, the order of the
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difference approximations is considered to be worthy of careful investigation since it will 

clearly affect the accuracy of the results.

We now turn to a discussion of the experimental procedures and the results. It should be 

kept in mind that throughout this exposition, the computational procedure outlined at the end

of Chapter 3 is always used. One of the most important features of this method is the use of
\

the optimized Laplace solver. By contrast, the conjugate gradient iterative technique, precondi

tioned by incomplete Cholesky decomposition, was first applied to the thin ship problem, but it 

was found that an affordable convergence level could not be maintained at each time step. 

Furthermore, the additional accumulation of error due to a relatively inaccurate potential solu

tion can seriously affect the results, especially for Cw, which is particularly sensitive to this 

error. Therefore, a direct method must be used in order to efficiently obtain at each time step 

the most accurate elliptic solution possible.

The numerical experiments are carried out on three different mesh systems (Mesh I, Mesh 

n and Mesh HI), each of which are defined by specifying the parameters in Eqs. (4.2). These 

parameters, given below in Table 4.2, complete the definitions of the mesh systems which are 

used in this chapter. The three mesh systems contain 129 x 33 x 20, 97 x 33 x 20 and 97 x 33 x 

40 grid points and represent domain sizes of 6.6 x 2.0 x 1.0, 4.95 x 2.0 x 1.0 and 4.95 x 2.0 x 5.0, 

respectively. Mesh systems I. and II are shown in Figs. 4.2-4.3, in which the placement of the 

ship is also indicated. We note that Mesh III is identical to Mesh II when the depth is increased 

to d = 5.0.

The Mesh Svstems
Mesh I Mesh II Mesh IH
L= 129 L = 97 L = 97
M = 33 M = 33 M = 33

= 21 k l « 21 “ 1
d = 1.0 d *  1.0 d = 5.0

Table 4.2 The computational parameters in Eqs. (4.2) which define 
the three mesh systems used in the numerical experiments.
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In all of the numerical experiments, we consider three Froude numbers (Fr * 0.266, 

0.350 and 0.452) which are chosen to be representative of typical values used for the Wigley 

hull. In the first experiment, we compare, using mesh systems II and HI for the two domain 

depths, the hull wave profiles and the wave resistance at t -  9.0. The value t = 9.0 represents 

450 time steps with At * 0.02, and we shall see presently that t — 9.0 represents a sufficiently 

long time such that the steady state solution is obtained on the centerplane. Figures 4.4-4.6 

show the hull wave profiles for the three Froude numbers under consideration, each with the 

depth of the domain equal to 1.0 and to 5.0. We note that in these plots the longitudinal coor

dinate is x II (l is half of the ship length), while the wave elevation r\ is nondimensionalized 

by U CO /2g • For all three Froude numbers, there are negligible quantitative differences between 

the respective solutions for each of the domain depths. It is also found that the wave resistance 

does not vary to any significant degree in this depth comparison. Figure 4.7 shows Cv vs. Fr 

for these cases and also compares the results to the Michell resistance and to an experiment bv 

Ju [44]. The residual resistance seen in this figure is defined as the total hull resistance (meas

ured) minus a viscous component. The viscous component in this experimental result is 

assumed to be equivalent to that of a flat plate with a total wetted surface area equal to that of 

the Wigley hull. The general trend for the linearized, thin ship theory is to overestimate the 

wave resistance. However, there is good agreement between the Michell theory and the present 

time dependent approach.

In Figs. 4.8-4.9, we show the time history of Cw for Fr = 0.452 with the depth equal to 

1*0 and 5.0, respectively. There is essentially no difference between these two cases, even in the 

actual transition to the steady state. Furthermore, from the Cw vs. t curve for this Froude 

number, we note that Cw has settled down by t — 9.0, and the solution on the centerplane is 

therefore considered to be steady. It has been observed, however, that for the lower Froude 

numbers, the wave resistance oscillates about its steady state value. Figures 4.10-4.11 for Fr = 

0.266 show that the frequency of the oscillation increases with decreasing Froude number but 

remains independent of the depth. Therefore, in order to obtain the steady state value for Cw,
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it is necessary to take an average by integrating the Cw (i ) curve i$ the interval 4.0 < i < 9.0 

and by dividing the result by the duration of the interval (5.0 in this case). This procedure has 

been followed for all cases in which Cv is reported.

The depth experiment has shown that the solution on the Wigley centerplane is insensi

tive to large variations in the depth and that a domain depth equal to 1.0 is sufficient to approx

imate a very deep region. It should also be pointed out that because of the nature of the optim

ized Laplace solver, the two depth cases required essentially the same amount of storage, and 

the d = 5.0 case required only 10% more execution time. This should be compared to iterative 

methods for the Laplace equation in which the storage requirements would be doubled and the 

execution time would increase far more than 10% for the d = 5.0 case.

The second numerical experiment is more critical than the first since the treatment of the 

downstream boundary condition is usually thought to be a more difficult issue in numerical 

ship hydrodynamics. Physically, the propagating disturbances must always move downstream 

and must therefore leave the finite computational domain without reflection. Numerically, 

however, we cannot easily enforce this condition. We therefore impose the much simpler free 

stream condition (<f>x = 0) and experimentally determine the proper domain length such that 

this open boundary condition does not affect the solution on the centerplane. We thus consider 

two domain lengths, 6.6 and 4.95, which are represented by mesh systems I and n, respectively 

(Figs. 4.2-4.3X In Fig. 4.2, the downstream boundary is located 4.06 ship lengths from the 

stem, while in Fig. 4.3 this distance is decreased to 2.41 ship lengths. The wave profiles for 

these domain lengths are compared for the three Froude numbers at i = 9.0 in Figs. 4.12-4.14. 

It is again noted that there are no substantial quantitative differences between the solutions. 

Furthermore, the wave resistances for both cases are found to be identical and are the same as 

shown in Fig. 4.7 for the depth experiment. It is thus concluded that, within the limits con

sidered, the placement of the downstream boundary relative to the stern and the use of the con

dition 4>x = 0 at the open boundary have a negligible influence on the solution on and near the
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centerplane.

The previous result is rather surprising since the present treatment of the downstream 

boundary is completely contrary to what is usually considered to be a more standard approach 

to wave propagation problems in truncated domains. The physical appeal of using a one 

dimensional advection model to allow the disturbances to leave the domain at the proper speed 

is attractive. However, this concept overlooks the fact that the disturbances near the boundary 

may be small enough that <f>x = 0 is a valid approximation, which seems to be the case here. It 

is thus of interest to examine more closely the events taking place at the open boundary by 

plotting the surface wave pattern generated by the moving ship. A time sequence of ship wave 

patterns for Fr * 0.266 is shown in Figs. 4.15-4.17 for the domain lengths 6.6 (Long Domain) 

and 4.95 (Short Domain). At early times, the wave disturbances are only approaching the 

downstream boundary in both domains. After the disturbances have reached the outflow boun

dary, we see immediately that no wave reflection is evident. Furthermore, there is no evidence 

of distortion in the wave patterns near either downstream boundary, even long after the dis

turbances have reached the limits of the domain. It is especially interesting to note that the 

wave patterns for both domains are essentially identical if one imagines that the long domain 

is truncated to the short domain. It is thus apparent from this numerical experiment that the 

disturbances are indeed small enough such that the condition <f>x = 0 is justified. Moreover, this 

boundary condition is simple and efficient to implement, so its use is greatly preferred over 

more complicated open boundary schemes. We therefore conclude that the domain of length 

4.95 is a sufficient approximation to a much longer domain and shall henceforth be used as such.

In the final numerical experiment, we investigate a computational parameter which is 

associated with the finite difference approximations rather than with the mesh system. 

Specifically, it is desired to compare the results when both first and second order approximations 

are used for the vertical free surface velocity (0 .) in Eq. (2.12). The wave profiles for these 

two cases are compared for the three Froude numbers in Figs. 4.18-4.20. It is seen from these
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figures that the qualitative features of the wave profiles do not depend significantly on the 

order of the 0Z differencing. There is, however, a slight upstream phase shift for all three 

Froude numbers in the second order case, and this is considered to be the correct trend. This can 

be seen by comparing each of the wave profiles with the Michell (steady state) profile for Fr = 

0-^66 (Figs. 4.21-4.22). There is slightly better phase and amplitude agreement in the bow 

region for the second order 0Z differencing. This trend can also be seen in Figs. 4.23-4.24, in 

which the Fr = 0.350 profile is compared to an experiment by Shearer and Cross [45]. The bow 

wave is not only better predicted for the second order case, but the downstream profile on the 

Wigley hull is also in better qualitative agreement with experiment. We also show the thin 

ship wave profiles vs. experiment for FV « 0.266 and Fr =* 0.452 in Figs. 4.25-4.26, respec

tively. The second order 0 . profiles for all three Froude numbers compare quite favorably 

with this experiment, especially when one considers that viscous effects are ignored in this cal

culation.

We finally compare the wave resistance predictions for both types of 0- differencing. As 

shown in Fig. 4.27, the second order 0 , greatly improves the wave resistance relative to the 

linear source distribution theory, especially at Fr = 0.452. At Fr = 0.266, the trend is to 

approach the Michell resistance. At Fr = 0.350, however, there is little change, which is 

perhaps a consequence of the fact that Michell and the experiment agree fairly well at this 

Froude number. Based on all of the above observations, we conclude that the one-sided second 

order 0Z differencing is more accurate and should therefore be used in order to maintain overall 

second order spatial accuracy.

Summary

The purpose of this chapter has been to implement and test an efficient, time dependent 

method for obtaining the steady state solution for the free surface flow about the Wigley hull. 

Numerical tests were conducted under simplified conditions so that the underlying features of
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the method could be examined apart from the geometrical and computational complexity 

present in the full nonlinear problem. It is concluded that the present approach reproduces the 

qualitative features of the wave profiles, patterns and resistance for the Wigley hull shape. 

Furthermore, the numerical experiments demonstrated that the 4.95 x 2.0 x 1.0 domain, con

taining 97 x 33 x 20 grid points, was sufficient to approximate a much longer and deeper 

domain since the solutions were relatively insensitive to large changes in the domain size. It 

was also demonstrated that second order <f>z differencing at the free surface gives better results 

than first order differencing. In addition, the implementation of the open boundary condition 

presented here is contrary to the presently understood approach to this issue. The results, how

ever, nonetheless proved that the present implementation is successful in effectively allowing 

the waves to leave the computational region without reflection or distortion of the wave pat

tern. More importantly, however, this simple open boundary condition was found to have no 

influence on the hull wave profiles or the wave resistance.

It is interesting to note that the present optimized fast Poisson solver has performed very 

well in the solution of the thin ship problem. The exact numerical solution of the Laplace 

equation is obtained at each time step with relatively little computational effort or cost. This 

effort has been compared to that for the conjugate gradient technique, preconditioned by incom

plete Cholesky decomposition, and has been found to be substantially less. For example, using 

the same spatial resolution on the centerplane, the preconditioned CG algorithm required twice 

as much storage and seven times as much execution time as the fast Poisson solver to obtain 

essentially the same steady state solution to this problem. This is a dramatic difference which 

cannot be ignored, and it is therefore considered crucial that fast direct methods in general be 

used for time dependent elliptic problems.

In the next chapter, we shall use the solution guidelines prepared in this chapter to inves

tigate the Neumann-Kelvin problem. In this case, the exact hull boundary condition is imple

mented, but the linearized free surface conditions are retained. We shall see that the use of an
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optimized Laplace solver based on the FFT will determine the mesh system to be used and the 

way in which the exact hull boundary condition is implemented. Some modification of the 

Laplace solver will be required, but the overall efficiency and accuracy are maintained since it 

is still possible to use fast direct methods for the elliptic finite difference system. Although the 

Neumann-Kelvin problem may be considered mathematically inconsistent, the extension of the 

present method to handle the exact hull boundary condition will be needed in Chapter 6 when 

the full nonlinear ship wave problem is considered.



Figure 4.1 Perspective view of the w'igiey parabolic hull. The vertical scale is 
enlarged by a factor oi two for clarity. Note the sharp bow, stern and keel.
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W W W  
Ship Location

(a)

Figure 4.2 Cartesian mesh system for the 6.6 x 2.0 x 1.0 domain.
(a) Top view of the (x ,y ) plane showing the constant grid intervals.
(b) Side view of the ( y plane. Note the concentration 
of mesh lines near the free surface so that the shallow 
draft of the Wigley hull can be accommodated.
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\\W \W ' 
Ship Location

(a)
■*-x

Figure 4.3 Cartesian mesh system for the 4.95 x 2.0 x 1.0 domain.
(a) Top view of the Cx,y) plane showing the constant grid intervals.
(b) Side view of the (y.,z ) plane. Note the concentration 
of mesh lines near the free surface so that the shallow 
draft of the Wiglev hull can be accommodated.
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Figure 4.4 Comparison of the Wigley hull wave profiles using the thin 
ship condition for the depth equal to 1.0 and 5.0 and for Fr -  0.266.
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Figure 4.5 Comparison of the Wigley hull wave profiles using the thin 
ship condition for the depth equal to 1.0 and 5.0 and for Fr = 0.350.



W
av

e 
El

ev
at

io
n,

Longitudinal Coordinate, x/l

Figure 4.6 Comparison of the Wigiey hull wave profiles using the thin 
ship condition for the depth equal to 1.0 and 5.0 and for Fr = 0.452.



Froude Number
Figure 4.7 Wigley hull wave resistance vs. Froude number using the thin 
ship condition for the depth equal to 1.0 and 5.0 compared to the Michell 
resistance and an experiment.
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Figure 4.8 Wigley hull wave resistance vs. time using the thin 
ship condition for the depth equal to 1.0 with Fr = 0.452.
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Figure 4.9 Wigley hull wave resistance vs. time using the thin 
ship condition for the depth equal to 5.0 with Ft -  0.452.
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Figure 4.10 Wigley hull wave resistance vs. time using the thin 
ship condition for the depth equal to 1.0 with Fr - 0.266.
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Figure 4.11 Wigley hull wave resistance vs. time using the thin 
ship condition for the depth equal to 5.0 with Fr = 0.266.



W
av

e 
El

ev
at

io
n,

Longitudinal Coordinate, x/l

Figure 4.12 Comparison of the Wigley hull wave profiles using the thin ship 
condition for the domain length equal to 6.6 and 4.95 and for Fr = 0.266.
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Figure 4.13 Comparison of the Wigiey hull wave profiles using the thin ship 
condition for the domain length equal to 6.6 and 4.95 and for Fr = 0.350.
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Figure 4.14 Comparison of the Wigley hull wave profiles using the thin ship 
condition for the domain length equal to 6.6 and 4.95 and for Fr = 0.452.
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Figure 4.15 A time sequence of the thin ship wave profiles generated bv 
the translating Wigley hull for both the Long Domain and the Short Domain. 
t = 1,2 and 3; Fr = 0.266.
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Figure 4.16 A time sequence of the thin ship wave profiles generated by 
the translating Wigley hull for both the Long Domain and the Short Domain. 
t = 4,5 and 6; Fr - 0.266.
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Figure 4.17 A time sequence of the thin ship wave profiles generated by 
the translating Wigley hull for both the Long Domain and the Short Domain. 
t = 7,8 and 9; Fr = 0.266.
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Figure 4.18 Comparison of the Wigley hull wave profiles using the thin 
ship condition for both first and second order one-sided differencing 
of the vertical velocity (</>„) at the free surface. Fr = 0.266.
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Figure 4.19 Comparison of the Wigley hull wave profiles using the thin 
ship condition for both first and second order one-sided differencing 
of the vertical velocity (02) at the free surface. Fr = 0.350.
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Figure 4.20 Comparison of the Wigley hull wave profiles using the thin 
ship condition for both first and second order one-sided differencing 
of the vertical velocity (0 ,)  at the free surface. Fr — 0.452.
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Figure 4.21 Comparison of the Wigley hull wave profile using the thin 
ship condition (first order 4> ) with the Michell solution for Fr = 0.266.
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Figure 4.22 Comparison of the Wigley hull wave profile using the thin 
ship condition (second order <j>z ) with the Michell solution for Fr = 0.266.
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Figure 4.23 Comparison of the Wigley hull wave profile using the thin 
ship condition (first order 0 : ) with an experiment for Fr = 0.350.
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Figure 4.24 Comparison of the Wigley hull wave profile using the thin 
ship condition (second order 4>z) with an experiment for Fr - 0.350.
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Figure 4.25 Comparison of the Wigley hull wave profile using the thin 
ship condition (second order <f>= ) with an experiment for Fr = 0.266.
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Figure 4.26 Comparison of the Wigley hull wave profile using the thin 
ship condition (second order <j>z) with an experiment for Fr = 0.452.
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Figure 4.27 Comparison of the Wigley hull wave resistance vs. Froude 
number for both first and second order differencing.
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CHAPTERS. THE NEUMANN-KELVIN PROBLEM

In the present development of a general numerical method for the nonlinear ship wave 

problem, it is desired to create a new, more efficient approach to the implementation of the exact 

hull boundary condition (Eq. (2.11)). The development of this approach is given in the context 

of the Neumann-Kelvin problem in which the hull boundary condition is satisfied exactly but 

the free surface conditions remain linearized. This strategy allows a careful examination of the 

numerical features in the absence of the complexity due to the nonlinear free surface condi

tions. It is often argued, however, that the Neumann-Kelvin problem is mathematically incon

sistent since the orders of approximation for the hull and free surface conditions are not the 

same. Regardless of this inconsistency, we must develop a new mesh system to accurately 

accommodate the Wigley hull, and we must revise the fast Poisson solver for the Laplace equa

tion so that the exact hull boundary condition can be efficiently implemented. It is felt that 

this step is most effectively accomplished by considering the Neumann-Kelvin problem. Furth

ermore, the method developed in the present chapter will play an important role in the solu

tion of the full nonlinear problem, which will be discussed in Chapter 6.

In this chapter, we introduce a new mesh system which allows an accurate representation 

of the Wigley hull in a Cartesian grid. Since the region is no longer rectangular, as in the thin 

ship case, is is necessary to modify the fast Poisson solver by using the capacitance matrix tech

nique. This modification method allows the optimized elliptic solver of Chapter 3 and Appen

dix B to be used, even when a Neumann boundary condition must be implemented on an arbi

trary curvilinear surface described in Cartesian coordinates. As a test example, the numerical 

solution to a simple boundary value problem, which possesses an analytical solution, demon

strates the accuracy of the present mesh system and solution technique. The method is then 

applied to the problem of a translating Wigley hull in the presence of a linearized free surface. 

The hull wave profiles and wave resistance values obtained are compared to the previous thin
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ship results as well as to experiments. Based upon the numerical and experimental evidence, 

conclusions regarding the validity of the linearization of the free surface conditions in this case 

are drawn.

The Mesh System

The success of the optimized direct method for the thin ship problem motivates one to 

consider an immediate application of the technique to the Neumann-Kelvin problem. However, 

the presence of the exact Wigley hull introduces the necessity for non-Cartesian (i.e., curvi

linear) mesh lines as a means of accommodating the hull geometry. Unfortunately, fast elliptic 

solvers, including the Fourier series method, cannot be directly applied in this situation. One 

alternative approach, proposed by Chan [23], is to use the mesh system shown schematically in 

Fig. 5.1. The physical (x,y) plane uses a body fitted coordinate system throughout the entire 

domain to accommodate the hull geometry. A transformation is then made to the computa

tional (x ,y ) plane, which is represented in this figure by a uniform mesh with constant grid 

intervals. The resulting elliptic equation is extremely tedious to deal with, and its finite 

difference analog must be solved by SOR. The slow convergence rate coupled with the awk

wardness of the field equation are considered to be the extreme disadvantages of this approach.

In the present section, we shall introduce the new concept of the locally body fitted mesh 

system, which is shown for the Wigley hull in Fig. 5.2. This type of mesh system is considered 

to be more appropriate for application to the ship wave problem. As in Chan’s approach, the 

hull becomes a coordinate plane so that the Neumann condition can be applied at the proper 

location. This requires that the Laplace equation be transformed to account for the derivatives 

being computed on the curvilinear hull surface. Contrary to Chan’s approach, however, we 

continue to use the Cartesian mesh system away from the hull so that the form of the Laplace 

equation does not change. This means that in most of the domain, the finite difference form of 

the Laplace equation will remain the same as that in the thin ship case. Modification of the
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fast Poisson solver is required only for a few of the equations in the finite difference system 

(i.e  ̂ those on and near the Wigley hull) which are perturbed due to the locally body fitted 

coordinate transformation. This approach for implementing the exact hull boundary condition 

thus minimizes the awkwardness of the elliptic field equation by using the locally body fitted 

concept, and at the same time it maximizes the solution efficiency and accuracy by retaining the 

use of the fast Poisson solver.

Since the numerical experiments for the thin ship problem demonstrated that the domain 

size 4.95 x 2.0 x 1,0 was sufficient to approximate a much longer and deeper computational 

region, the grid system parameters for Mesh 33 (Table 4.2) will be used in the present applica

tion. In anticipation of the extension to the full nonlinear case, however, we find it necessary 

to redefine the vertical mesh spacing near the free surface so that finite amplitude waves can be 

readily accommodated without allowing any mesh lines to intersect. To meet this requirement, 

we choose the first interior mesh points below the free surface to be located at z — —h /3, i.e  ̂at 

a vertical position which is equal to one third of the draft of the ship (Fig. 5.2a). The constant 

vertical spacing on the remaining portion of the hull is now Az = h/5.5. Furthermore, the new 

vertical transition coordinates for smoothly matching the constant (but unequal) grid intervals 

on the hull and far below the hull are given in Table 5.2. We note that only the vertical grid 

spacing is modified and that all remaining aspects of the mesh system described by Eqs. (4.2) for 

Mesh II remain in force.

The motivation for choosing the first interior mesh points to be placed at z -  —h /3 is that 

at the lower or moderate Froude numbers, the free surface height will not be large enough to 

allow the possibility of intersecting mesh lines. This will only be a concern when the free sur

face is actually allowed to move (Chapter 6). However, the new vertical spacing is introduced 

here for the Neumann-Kelvin problem so that a more consistent comparison with the nonlinear 

results can be made. Furthermore, we wish to demonstrate the accuracy afforded by the 

representation of the hull geometry and the flow variables in the present mesh system before
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applying it to the physical problems of interest.

Vertical Mesh Spacings
k z
24 -0.4000
25 -0.2500
26 -0.1750
27 -0.1250
28 -0.1100
29 -0.1000
30 -0.0900
31 -0.0824
32 —0.0748
33 -0.0673
34 -0.0597

Table 5,1 The values of z vs. k in the vertical mesh 
transition region used for the nonlinear calculations. This region 
is again defined for values of k in the range 24 < k ^  34.

The Locally Body Fitted Coordinate Transformation

In this section, we shall consider the transformation of the Laplace equation to a locally 

body fitted coordinate system in which the Wigley hull becomes a coordinate plane* This is 

done solely for the purpose of facilitating the implementation of the Neumann condition on the 

exact hull surface. We shall see that the form of the second order derivatives of 0 in the 

Laplace equation will be modified by the transformation in order to take account of the fact 

that the grid lines now conform to a curvilinear surface.

We first consider the following change of variables :

x1 = x

y ~ y — f (XyZ) (5.1)

z' — z

t! -  t
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The (x', /  J  ) coordinate system is body fitted, i.e., movement in the x' - or /  -directions is along 

the surface of the body defined by y = /  (xa).  Applying the chain rule to Eqs. (5.1), we find 

the following relations for the derivatives of any function Q :

Q* “ Q* ~  fxQy'

Qy = Qy (5.2)

Qz -  Qz -  f zQy

Q r  =  Q r  •

Using these rules of differentiation for 0, we transform the Laplace equation into

+ vftyy + “  i f  z4>& “  2 / - 0 y f. -  y ^ y  = 0 , (5.3)

where — (1 + / x2 + f  z2) h and y 2 — ( / ZI + f  zz). This equation is to be applied only on 

the Wigley hull surface.

The cross derivatives appearing in this equation (i.e., <f>yy and 4>y-') are rather troublesome 

since their finite difference approximations involve several additional unknowns which lie out

side of the domain. Since these additional unknowns cannot be easily eliminated from the 

resulting linear system, it is desirable to remove these cross derivatives from the transformed 

Laplace equation. This can be accomplished by using the exact hull condition, which we recall 

from Chapter 2 is

- f x<f>x + 0 V - / 20_. = U s f x (2.11)

or, after applying the transformation of Eqs. (5.2), becomes

$? -  “ ¡‘b'i20n + f  x4>x- + f  z<f>A (5.4)ri

on y = /  (x yZ) or y' =0. The quantity 0„ is the perturbed fluid velocity normal to the hull

, . Us f 3
and is equal to —  ■ 1 . We now compute 0_yV and 0y_. from Eq. (5.4) and, together with Eq. 

(5.4), substitute these expressions into Eq. (5.3) to obtain



a 11cf>:N + a 2iPy'y' + a 33'Pz'z' + a 1:fPx'z' + a 1cf>x· + a :fPz' = r I , 

in which the coefficients are defined as 

au=l- 2// 
yf 

a22 = yf 

a33 = 1 -
21 z2 
yf 

a13 = 
4fxf z 

yf 

a 1 = -1 'Y
21: x + 2/ x I/~ I + 2/ z I/~ I 
"fl "fl x "fl z 

= -1 Yd = + 2/ I/ z I + 2/ I / z Q3 2 X 2 Z 2 
'Y1 'Y1 x 'YI z 

r1='Yt/Jn +2fxcf>nx +2fzcf>nz · 
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(5.5) 

(5.6) 

Equation (5.5) represents the transformed Laplace equation which is to be applied at the 

exact location of the Wigley hull. We note that the cross derivatives cf>y·x· and cf>y'z' have been 

eliminated at the expense of introducing the term cf>x·z·. This situation is acceptable since this 

derivative can be approximated without introducing any unknowns outside of the computa

tional region. We also note that this equation reduces identically to the original 

(untransformed) Laplace equation in the absence of the locally body fitted coordinate transfor

mation. We expect the finite difference form of Eq. (5.5) to be similar to that of the original 

Laplace equation and therefore to be a slightly perturbed form of the thin ship linear system. 

As we shall see in the next section, the exact hull linear system has some important differences. 

Implementation of the Boundary Conditions 

The Dirichlet conditions on the free surface as well as the Neumann conditions on all of 

the boundaries except the hull are implemented in exactly the same way as for the thin ship 

~, -. 
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case. Therefore, in this section, we shall explicitly consider only the implementation of the 

exact hull boundary condition as well as of the linearized free surface conditions at the points 

of intersection with the exact hull. The procedure is, in principle, precisely the same as that for 

the thin ship case. We first discretize the transformed Laplace equation (Eq. (5.5)) and then 

eliminate the single unknown outside of the domain using the discretized form of the hull 

boundary condition (Eq. (5.4)). By contrast, this procedure is illustrated schematically in Fig. 

5.3a for the thin ship case. The unknown value 4>ifXk, which is located a distance Ay outside 

of the domain, is eliminated from the finite difference system by using the thin ship boundary 

condition. In the exact hull case, however, the presence of the Wigley hull (Fig. 5.3b) alters the 

y-spacing so that the grid intervals are no longer constant in this direction. It is therefore 

necessary to use finite difference formulas modified for nonuniform spacing when computing 

<t>yy and <f>y- on the exact hull. Using the standard Taylor series approximations for nonuni

form grid intervals, we find the following finite difference representations :

<f>yy  G -iji <f>i q j, (o t j £  +  0 ,  % )<f>i j j t  +  ^  <f>i 2 J i (5.7)

and

“Yijcfii JXk ( yiji + St- j. )<f>i + S,- ̂  0,- 2j. , (5.8)

in which the coefficients aiJc, y iJc and 8iik are defined as

2 Ay (Ay + f  iJc) 

_ (Ay + f i * )

(5.9)

* 2Ay(Ay — f  tJl)

Note that we use the shorthand notation f  iJc to represent /  (xirzk ), etc. Now, since lies 

outside of the domain, we eliminate it from Eqs. (5.7) and (5.8) to obtain
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0yy ** ~ €¿ /  0 i ,1/ +  €i /  At +
<*i/0,v

V//
(5.10)

a'¿ &¿Áwhere €,/ — fijj. . The derivatives <f>z-x- and <f>x- in Eq. (5.5) are computed using the
V;/

standard second order finite difference expressions, whereas <f>2-z', <f>x-z- and <f>.- require nonuni

form formulas due to the unequal spacing near the free surface. Using Eqs. (5.4) and (5.10) to 

eliminate </>vy and <f>y , we obtain the final discretized form of Eq. (5.5) as

a  11 0i-l,U  + °  il 01+1,1/ + a  33 0 i,l/ -1 + a  33 0 i,l/ +1 + CL 2 & J C  0 f ,2 /  + 

a  ll (0i +1.1 /  -1 ~  0i —1,1/ -l) “  ^  13° 13 ) (0/+U / “  0i-l,U  ) +

a ¡3 (0 i+ u / +i -  01-1,1/ +i) "  a o0i,i/ = r ' ! (5.11)

in which we define

a il = _f_LL *  - L . r n . a '/  , i 
A*> *  2 ^ ta i + — '̂

+ _  2a 33 + a 3 .̂ _ j
u 33 — --------------------

A z +

_ _ 2a 33 a-ftk a 33------------------

a 13 -

a  1 3 --------

Az~

fl -i
2Ajc Az +

a i3^t
2 Ax Az-  

Az + - K  (hk + hk_ ,) 

Az~ = **_!(** + fc*_,)

= 2k +1 ”  zk

usf x
0n =

Vi

Equation (5.11) represents the modified (transformed) Laplace equation which is to be 

applied on the curvilinear surface of the Wig ley hull (i.e., only for 31 ^ i < 50, j = 1 and 

34 ^ k ^  39). Since the hull contains 20 x 6 unknowns in the x - and z -directions, respec-
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tively, we see that there are actually 120 perturbed finite difference equations of the form 

(5.11). In addition, the equations immediately adjacent to the hull ( i ^  at j  = 2 in Fig. 5.3b) 

must be modified since the y  distance to the hull is not the constant Ay. These 120 additional 

finite difference equations are obtained simply by using a nonuniform grid spacing formula for 

<t>yy in the Laplace equation. No other changes or transformations are necessary. It is thus 

found that the total number of perturbed finite difference equations is 240. Therefore, the 

capacitance matrix system, described in Appendix C, will be of order 240.

We remarked at the end of the last section that the two linear systems which include the 

thin ship and exact hull boundary conditions are quite different. In fact, there are several cru

cial differences between these two linear systems. The exact hull system is not symmetric nor 

is it diagonally dominant, whereas the thin ship system is both symmetric as well as diago

nally dominant. Furthermore, the diagonal elements in the exact hull matrix change sign on 

the surface of the ship as the keel is approached from above. All of these conditions are 

extremely detrimental to the use of iterative methods for the exact hull case since there is no 

guarantee that the solution will converge. In fact, an iterative procedure, based on the optim

ized fast Poisson solver, was originally set up as a means of handling the exact hull boundary 

condition. This approach was unsuccessful since the iterations diverged quite rapidly. For

tunately, these properties of the exact hull linear system do not affect the use of the capacitance 

matrix technique since this approach does not depend on the question of convergence. It is 

therefore important to keep in mind that the exact hull linear system is not amenable to the 

use of iterative methods and that the present direct approach appears to be the only viable 

alternative.

We now consider the modification of the linearized free surface boundary conditions 

under the transformation in Eqs. (5.2). These equations will be used only when applying the 

boundary conditions at the intersection of the free surface with the exact hull. Employing the 

appropriate relations for the derivatives of <f> and p from Eqs. (5.2), we obtain the transformed
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linearized free surface conditions (Eqs. (2.12) and (2.13)) as

+ US7}X' = <f>£ -  f z<t>y. (5.13)

and

<f>r' + Us fa  -  f  x4>y = - r)/Fr2 . (5.14)

It then follows from Eqs. (5.13) and (5.14) that the following definitions hold for u*, v* and 

A in the time marching scheme of Eq. (3.3) :

Dynamic condition for 0  :

u* =U S 

v* = - f x 

A* = ~r)/Fr2

Kinematic condition for t) :

u =17, 

v* = 0

= 4>z — f  z<t>y

These special definitions for u , v and A are necessary because of the locally body fitted coor

dinate system. At any free surface location away from the hull, the previous definitions from 

Chapter 4 (Le., those for f  x — f  z = 0 ) remain in effect. Since the new definitions are to be 

used only at the intersection of the Wigley hull with the free surface, we must remember to 

compute <fiy according to the hull boundary condition (Eq. (5.4)).

A Numerical Test Problem

In order to conclusively establish the solution accuracy provided by the present locally 

body fitted mesh system, we compute the numerical solution to a simple, nonphysical boundary 

value problem and compare the results with the analytical solution. This test problem is for-
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mulated as follows. Consider a region R which is defined by

0 ^  x ^  ir

0 ^  y  < y  (5.15)

“ 1 ^  2 ^  0 .

We seek a function tfKx ,y ,z) which satisfies

+ ^yy + 4>Z2 -  0 (5.16)

in R, subject to the conditions

= 0 on x = 0,ir ,

^y = 0 on y = 0 ,y  ,

~ 0  onz = - l  , (5.17)

i/r = cosh(4\/2)cos4xcos4y on 2 = 0 ,

V1 = /*cosh[4V2(l + z)]sin4xcos4y — cosh[4>/2(l + z)]cos4xsin4y —

/ - >/2sinh[4V2(l + z)]cos4xcos4y on y = / ( x , z ) .

The function f  (x>z) again describes the Wigley hull, which may be redefined for the region R 

as

/ ( * ,* )  = y [ l - 4 0 c (5.18)

for x c ¥2 ^  x ^  x c + V2 and —h ^  z ^  0. The quantities b, h and x c are the beam, draft

and the x position of midship and have the values b -  0.10, h * 0.0625 and x c 

The analytical solution to this boundary value problem is simply

657T 
128 + V2.

0(x , y a )  = cosh[4v^2(l + z ) ]cos4xcos4y . (5.19)

Using the locally body fitted mesh system and the modified direct solution technique 

described in Appendix C, we compute the numerical solution to this boundary value problem. 

The grid for this test example is chosen to be 65 x 26 x 20, with Ax = tt/64 and Ay = 7T/50.
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The z -distribution of mesh points previously discussed for application to the Neumann-Kelvin 

is also used in this example. We are particularly interested in the numerical solution for If, on 

the actual hull surface. We thus compare this solution against the analytical solution (Eq. 

(5.19)) for two values of z (i.e., z = -0.0208 and -0.0597) in Figs. 5.4 and 5.5. These figures 

show the solution for v, on the Wigley hull as a function of the longitudinal coordinate, 

(x - xJ!l. Excellent agreement between the solutions is obtained, and we therefore co~clude 

that the present mesh system is able to accurately resolve the correct solution on a curvilinear 

surface such as the Wigley hull. Furthermore, the method of treating the exact hull boundary 

condition by transforming the Laplace equation is also seen to be appropriate. We also conclude 

that the capacitance matrix technique, used to modify the fast Poisson solver of Appendix B, is 

an effective way to accurately handle the linear system arising from the discretization of the 

Laplace equation on the Wigley hull. We shall now proceed with the application of the 

present method and mesh system to the problem of a translating Wigley hull with a linearized 

free surface. 

Numerical Results for the Neumann-Kelvin Problem 

1n this section, we shall discuss the wave profile and wave resistance results obtained for 

the translating Wigley hull under the approximations associated with the Neumann-Kelvin 

problem. The numerical experiments described in Chapter 4 for the thin ship case provide the 

guidelines for the operating conditions under which the present results are obtained. 

Specifically, we use the 4.95 x 2.0 x 1.0 domain size with second order <l>z differencing on the 

free surface and compute the solutions tot = 9.0. We also use the simple open boundary condi

tion which was found to be so effective for the thin ship case. Toe boundary condition imple

mentation for the Laplace equation has already been discussed, and w e initialize the flow field 

and gradually start the Wigley hull in exactly the same manner as for the thin ship problem. 

The calculation of the wave resistance in the present case is the same as for the thin ship case, 

with the exception that the linearized expression for the pressure on the hull (Eq. (4.9)) is 

:, 
( 
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subject to the coordinate transformation of Eqs. (5*2).

The first result to be discussed is the comparison of the exact hull wave profiles with the 

previously obtained thin ship profiles. This comparison is made so as to emphasize the 

differences between the exact hull and thin ship boundary conditions and is in no way meant 

to imply that one solution is better than the other. These wave profiles along the Wigley hull 

are shown in Figs. 5.6-S.8 for the Froude numbers 0.266,0.350 and 0.452, respectively. For all 

three Froude numbers, the agreement is seen to be reasonably good in the bow region where the 

thin ship assumption for the Wigley hull is locally valid. Further downstream, however, the 

exact hull boundary condition shows a tendency to excite higher frequency components in the 

solution, with the frequency of the waves increasing as the Froude number decreases. This 

observation suggests that the exact hull boundary condition exerts more influence on the solu

tion only downstream of those points on the Wigley hull at which the thickness begins to 

increase. This is what we might intuitively expect for any hull form which is not strictly a 

thin ship.

In Figs. 5.9-5.11, we compare the Neumann-Kelvin profiles for the three Froude numbers 

to an experiment by Shearer and Cross [45]. The bow waves are seen to be in qualitative agree

ment with the experimental profiles. The wave oscillations present in the numerical calcula

tion are not observed in the experiment, but there are several good reasons for this. It is unclear 

to what extent the fluid viscosity affects the wave profiles, and it is thus possible that the 

higher frequency components are not damped out sufficiently in a model which ignores the 

viscous effect. It is more likely, however, that the flaws are in the Neumann-Kelvin problem 

itself since this full hull form is not allowed to make any physical waves whatsoever. That 

is, the linearization of the free surface conditions and the application of these conditions on the 

plane z = 0 may be considered to be inappropriate when the exact hull condition is applied. 

These conclusions, of course, depend to a significant degree upon the reliability of the physical 

experiments. For the ship wave problem, such experiments are extremely difficult to perform
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and could be inaccurate, so one should not place absolute faith in them. They should rather be 

used as a guideline, along with the numerical calculations.

The final result for this problem is the wave resistance vs. Froude number curve. The 

wave resistance is computed for eight Froude numbers, as shown in Fig. 5.12. The results for 

Cw shown in this figure exhibit two definite peaks around Fr = 0.233 and 0.350. This trend is 

not observed in the experiment by Ju [44], which is believed to at least have defined the quali

tative features of the Wigley hull wave resistance. In order to explain the behavior of the 

numerical solution relative to the experiment, we must again question the validity of the 

Neumann-Kelvin problem. We expect that for very low Froude numbers, the wave resistance 

could be reasonably close to the experiment since in this range the linearization of the free sur

face conditions is perhaps acceptable. Unfortunately, at the lower Froude numbers, the boun

dary layer is thicker and the wake is wider than in the higher Froude number range. These 

phenomena clearly affect the wave resistance, and it is therefore difficult to judge this inviscid 

numerical model by comparing the results to experiments.

On the other hand, for higher Froude numbers, when fairly large waves are formed, the 

linearization of the free surface conditions breaks down, but the viscous effects on the wave 

resistance become relatively less important. We therefore do not expect the Neumann-Kelvin 

problem to be applicable in the higher Froude number range, so it is again difficult to assess the 

numerical results for the wave resistance. There do seem to be stretches along this curve, how

ever, on which Cw agrees, perhaps coincidentally, with the experiment. It may be that the 

Neumann-Kelvin problem is applicable for certain Froude number ranges, but it is impossible to 

predict these ranges in advance unless a general trend is known for all ship models. It does 

seem possible that the observed peaks in Cw may be due ultimately to the free surface lineari

zation, but this point will require more careful consideration in the next chapter when we 

extend the method to solve the full nonlinear ship wave problem.
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Summary

In this chapter, the new concept of the locally body fitted mesh system was introduced 

for application to the Neumann-Kelvin problem. The body fitted transformation for both the 

hull and free surface boundary conditions was described in detail. As a result of this local 

transformation, a few of the finite difference equations representing the Laplace equation had 

to be altered. Since iterative methods for the resulting exact hull linear system cannot be 

expected to converge, a modification of the optimized direct Laplace solver was implemented, 

and the capacitance matrix technique was used for this purpose. The solution algorithm was 

then tested on a simple boundary value problem in a region which contained the Wigley hull. 

The results of this test demonstrated the accuracy of the locally body fitted mesh system as 

well as of the optimized direct method. The application of the modified method to a translating 

Wigley hull was then carried out, and the results for the wave profiles and the wave resistance 

were discussed. It was generally found that the Neumann-Kelvin problem may be applicable 

for specified ranges of Froude numbers but that one cannot easily predict these values a priori. 

In addition, there are open questions as to the influence of viscosity on the wave profiles and the 

wave resistance, and this area should be investigated further.

Although the Neumann-Kelvin problem is not the final solution for ship wave resistance 

calculations, its significance in relation to the development of a general method for the non

linear ship wave problem cannot be overemphasized. The finite difference approach can be suc

cessful only if it is able to accommodate the geometry accurately and to solve the field equation 

efficiently. The development and careful study of a numerical method which possesses these 

requirements is thus considered to be a priority in the present work. The final priority, how

ever, is the implementation of the full nonlinear free surface boundary conditions. Therefore, 

in the next chapter, the solution method developed for the Neumann-Kelvin problem will be 

used in an iterative procedure which is set up to satisfy the exact nonlinear free surface condi

tions at their proper locations.



Physical Plane
Top View

Figure 5.1 Comparison of the physical and computational planes for a body 
fitted coordinate system which is used throughout the entire domain. The mesh 
lines in the physical plane accommodate the body geometry but map into uni
form intervals in the computational plane.
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z=0.

z=-0.0208

(a)

(b)

Figure 5.2 Two views of the locally body fitted mesh system for the Wiglev 
hull. Note that only the finite difference equations on and near the hull are 
perturbed due to the coordinate transformation.
(a) A side view in the (y £ )  plane showing the hull accommodation.
(b) A top view in the (x ,y ) plane.



Wigiey Hull Centerplane (y = 0)

Exact Wigiey Hull (y = f(x,z))

Figure 5.3 Comparison of the thin ship and exact hull mesh systems and their 
relationship to the implementation of the Neumann boundary condition.
(a) The unknown <i>im is located a distance Ay outside of the domain and is 
easily eliminated from the equations by using the thin ship condition.
(b) The unknown d>,.oa in the locally body fitted mesh system is no longer 
located a uniform distance outside of the domain. Special derivative formulas 
must therefore be used in order to eliminate it from the system of equations.
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Figure 5.4 Comparison of the analytical and numerical solutions for the 
boundary value problem which tests the mesh system and the solution tech
nique. The solution is plotted along the Wigley hull at 2 = —0.0208.
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Figure 5.5 Comparison of the analytical and numerical solutions for the 
boundary value problem which tests the mesh system and the solution tech
nique. The solution is plotted along the Wigley hull at z = —0.0597.
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Figure 5.6 Comparison of the Wigley hull wave profiles for the thin ship and 
the exact hull cases (second order <f>: differencing) for Fr = 0.266.
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Figure 5.7 Comparison of the Wigley hull wave profiles for the thin ship and 
the exact hull cases (second order <f>z differencing) for Fr = 0.350.



W
av

e 
El

ev
at

io
n,

Longitudinal Coordinate, x/l

Figure 5.8 Comparison of the Wigley hull wave profiles for the thin ship and 
the exact hull cases (second order </>_ differencing) for Fr -  0.452.
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Figure 5.9 Comparison with an experiment of the Wigley hull wave profile 
obtained using the exact hull condition for hr  = 0.266.
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Figure 5.10 Comparison with an experiment of the Wigley hull wave profile 
obtained using the exact hull condition for Fr = 0.350.
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Figure 5.11 Comparison with an experiment of the Wigley hull wave profile 
obtained using the exact hull condition for Fr = 0.452.
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tion, the Michell solution and an experiment.
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CHAPTER 6. THE NONLINEAR SHIP WAVE PROBLEM

The numerical development up to this point has proceeded with the ultimate goal of 

obtaining a solution to the nonlinear ship wave problem. We have seen that the computational 

difficulties, such as the open boundary and exact hull conditions, are successfully resolved by 

the present numerical approach. We have also seen that the thin ship and the Neumann-Kelvin 

formulations of the ship wave problem generally do not adequately predict the wave resistance 

of the Wigley hull over a typical Froude number range. It is therefore the purpose of this 

chapter to outline in detail the extension of the present time dependent finite difference method 

to the full nonlinear ship wave problem. We shall begin with a discussion of the new compu

tational difficulties involved as well as with the strategy which will be used to handle them. 

A detailed description of the implementation of the nonlinear free surface conditions on the 

exact location of the moving boundary will then be presented, after which we shall describe 

the calculation of the wave resistance for the nonlinear case. Finally, the results for the non

linear wave profiles will be compared to the those of the Neumann- Kelvin problem.

One new computational difficulty which is found in the nonlinear problem is the actual 

time advancement of the free surface boundary conditions at the exact location of the moving 

boundary. Since the free surface geometry is continuously changing, we must now be able to 

compute the free surface derivatives on a time dependent, curvilinear surface. This is accom

plished by employing a time dependent mesh system which is capable of following the chang

ing geometry. A general boundary fitted coordinate transformation is necessary in order to 

easily compute the required derivatives on z -  7j(x,y;f ). The result of this transformation is 

that the free surface is allowed to actually move since the top mesh plane in the Cartesian grid 

system conforms to the instantaneous location of the boundarv.

The most difficult problem encountered in the nonlinear case, however, is the simultane

ous implementation of the exact hull condition and the Dirichlet conditions for 0 on the mov-
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ing free surface. The situation is complicated by the fact that the capacitance matrix itself, 

used in implementing the exact hull condition, must be computed for each given geometry, 

including that of the free surface. As we have seen in Appendix C, the preprocessing involved 

in computing this matrix represents a fair amount of overhead since the fast Poisson solver 

must be used a number of times equal to the order of the capacitance matrix (240 in this case). 

This preprocessing obviously cannot be performed each time the geometry changes (i.e., at each 

time step), and so we must resort to a different strategy for the Laplace equation in the non

linear case.

We have already remarked in Chapter 5 that the properties of the matrix for the exact 

hull linear system are not conducive to the use of iterative methods for the Laplace equation. 

On the other hand, it is possible to iteratively apply the Dirichlet boundary conditions on the 

exact location of the free surface since no coordinate transformations of the Laplace equation 

are necessary for this implementation. The present strategy is thus to successively refine the 

Laplace solution by repeatedly solving the Neumann-Kelvin problem with the correct free sur

face boundary conditions applied on the plane z — 0. The Dirichlet conditions on z =7j(x ,y ;t ) 

are increasingly better approximated at each iteration by using results from the previous itera

tion to improve the interior solution. This strategy has been devised so that the use of the capa

citance matrix technique, which relies on fixed geometry, is applicable even in the nonlinear 

case. These ideas concerning the new solution strategy for the Laplace equation as well as the 

implementation of the nonlinear free surface conditions will be developed in detail in the next 

section.

Implementation of the Nonlinear Free Surface Boundary Conditions

In this section, we shall first discuss the free surface fitted coordinate transformation and 

then formally present the new strategy for the numerical solution of the Laplace equation. 

We find that the time advancement of T) and <t> on the moving boundary may be accomplished
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in the same manner as before, however we must now redefine the quantities u*, v* and A* in 

the time marching scheme (Eq. (3.3)) so that we properly take into account the shape of the 

free surface on which the derivatives in Eqs. (2.8M2.9) are computed. This is done by per

forming the necessary coordinate transformations so that the free surface becomes a coordinate 

plane on which these derivatives may be easily evaluated. The most general situation of this 

sort occurs at the intersection of the hull with the free surface, and so this case is considered 

first.

We recall from Chapter 2 that the kinematic and dynamic conditions are

T ) t  + W s  + 4 > x y r ) x  +  4 > y  7)v =  <f>: (2.8)

and

0r + Us <Px + J  (<f>x + <f>y + 4 > D  + Tj/Fr2 = 0 . (2.9)

In order to handle the deformation of the Cartesian mesh system due to the hull geometry, we 

reintroduce the transformation of Eqs. (5.1), which was already used for the Neumann-Kelvin 

problem, and recall that the rules of differentiation are

Qx = Qx ~  f x Q y

Qy = Qy (5.2)

Qz = Qz -  f z Q y  

Qr = Qr

for any function Q (i.e., either 7} or 0). The free surface geometry is handled by a similar 

transformation to a moving mesh system which, by definition, always conforms to the instan

taneous location of the free boundary. The change of variables in this case is :

x" = x'

y" = y' (6.1)

2" = 2' ~  Tjix' ,y )



106

f" =  t' ,

from which it follows that

Qx = Q,' -  v* Q.-

Qy =Qy-~VyQ r (6.2)

Qz *  Q,*

Qr = Qr* -  %Q:

for any function Q. Using the first transformation on the free surface conditions, we obtain

Vt' + (Us + <f>x }qx■ + (<f>y -  f x(Us + <f>x ) -  f z<f>z >)v. = <f>, (6.3)

for the kinematic condition and

<t>f + V;<t>x- + y ( 0 /  + y fr ?  + <t>i) -  f  x4>i4>y -  f z4>?4>z + 1)/Fr2 = o (6.4)

for the dynamic condition. We recall that is defined asyj  = (l + f  x2 + f  2)l/\

Since Eqs. (6.3) and (6.4) are applied at the intersection of the hull with the free surface, 

we must compute <f>y (as well as <f>y ) according to the exact hull boundary condition (Eq. 

(2.11)). In view of this condition, the coefficient of 7)y in Eq. (6.3) is identically zero. Further

more, after applying the second transformation to Eq. (6.3), we obtain

Vr + (Us + 4>x =  <$>-• -  f  -Ay (6.5)

in which (f>x is computed using Eqs. (5.2) and (6.2), while <f>y is computed using Eq. (5.4).

Under the transformation of Eqs. (6.2), Eq. (6.4) becomes

+ U Ax  “  f  *(US + <f>x’Ay + A + rj/F’r 2 = 0 , (6.6)

in which A -  + y f r l  -  (l + + y f t i  + -  f ,  These two condi-

tions are applied on z" = 0 (i.e., on 2' = r^x' ,y' */')).

From Eqs. (6.5) and (6.6), we derive the following expressions for u*, v* and A* which 

are to be used in the time marching scheme of Eq. (3.3) :



Dynamic condition for q, : 

Kinematic condition for TJ : 

u = us 

v• = -f x(U, +<l>x·) 

t:.: = -!:::. - TJIFr 2 

u• = (U, + <l>x) 

v· = 0 

t:,.· = <I>.- - f z <l>y· 
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The above definitions are used in the time marching scheme only when the free surface 

conditions are applied at the intersection of the free surface with the hull. Since the original 

mesh system is Cartesian away from the hull, these definitions may be simplified when the 

boundary conditions are applied at free surface points not in contact with the ship. We are 

then able to consider these expressions with all references to the hull geometry set equal to 

zero. Therefore, away from the hull, we use the following quantities in the time marching 

scheme (Eq. (3.3)): 

Dynamic condition for <I>: 

Kinematic condition for TJ: 

u• = u. 

V = 0 

t:,.• = ~ [<l>x~ + <I>} -(1 + T);- + TJf)¢}] - T)/Fr 2 

U • = (Us + <l>x· - TJx• <pz·) 

V = ef>y• - T)y• <f>,• 

!:::.' = <f>z· 

The free surface conditions may now be advanced in time using the same explicit scheme 
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described in Chapter 3. This time marching scheme is thus seen to be very flexible in the ship 

wave problem since we are able to use it for all of the free surface boundary conditions con

sidered in this work. 

We now turn to a discussion of the method by which the Dirichlet conditions for¢ may 

be implemented on the moving boundary during the numerical solution of the Laplace equa

tion. As we mentioned earlier, this presents a special problem since the capacitance matri.x 

technique requires that the geometry of the region remain fixed, which is not the case when we 

allow the free surface to move. We therefore incorporate the fast direct solution of the 

Neumann-Kelvin problem into an iterative procedure which successively approximates the 

solution to the full nonlinear problem. This is done by applying the correct conditions for¢ on 

z' = 0 and by modifying the right hand side of the Laplace equation in such a way as to take 

account of the exact free surface location. We now proceed to consider this method more for

mally in the following discussion. 

Let us define the matrix A in such a way that the linear system A¢ = b describes the 

discretiz.ation of the Laplace equation in the region whose boundaries include the exact hull and 

the moving free surface. In a similar fashion, we define the matrix B to be that for the 

Neumann-Kelvin problem. We already know that systems involving B can be easily solved by 

the method of Appendix C, so we naturally consider the splitting 

A=B-N, (6.7) 

where the matrix N describes the time dependent part of A. Thus N will account for the fact 

that the free surface position is z' = r/.x' ,y' ;t') rather than z' = 0, as is assumed in the matrix B. 

Given the matrix splitting of Eq. (6.7), the following iterative process solves A</>= b: 

B<Ps+I = b + N<f>s . (6.8) 

We use here the subscript s to denote the iteration count. It is seen from Eq. (6.8) that the 

right hand side of the finite difference elliptic system is updated using information from the 



109 

previous step. Since N involves only the equations adjacent to the moving boundary, this 

accounts for the fact that the Dirichlet conditions on the free surface are succes.sively better 

approximated after each iteration. 

The entire numerical method to solve the full nonlinear ship wave problem is now sum

marized in the following steps : 

(t) Initialize the flow field by setting <I>-= "IJ = 0 throughout the domain. 

(2) Advance the free surface boundary conditions in time using the scheme in 
Eq. (3.3) with the nonlinear definitions for u', v• and t,:. 

(3) Solve the Laplace equation using the iterative process defined in Eq. (6.8). 
The exact hull condition is satisfied at each iteration while the Dirichlet condi
tions at the precise location of the free surface are successively approximated by 
this process. 

(4) Repeat steps (2) and (3) until the steady state is reached. 

We remark at this point that we have not entirely relaxed our restrictions on the use of 

iterative methods for the ship wave problem. Comments made previously in this work sug

gested that the exclusive use of iterative methods for the solution of the Laplace equation in 

the ship wave problem would be inefficient and possibly inaccurate. It should be pointed out 

that the present method for the nonlinear problem still uses an efficient direct method for the 

bulk of the flow field and only incorporates this method into an iterative procedure to facilitate 

the implementation of the Dirichlet conditions at the free surface. It is still felt that the use of 

fast direct methods should dominate the solution process of the ship wave problem. 

Calculation of the Wave Resistance 

We now briefly describe the formula which is used to calculate the wave resistance in the 

nonlinear problem. The pressure integral is different in two respects from the previous linear-
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ized cases. First, the full Bernoulli equation is used to compute the pressure, and second, the 

limits of integration are modified by the presence of the exact free surface, z = rf-x ,y ;t ). The 

Bernoulli equation (Eq. (2.9)) applied on the hull can be written as 

1 P=-[<f>, +Us<f>x +-:/<f>;+<f>/ +<f>}) +z/Fr 2 • (6.9) 

The derivatives in this expression must be computed according to Eqs. (5.2), and the exact hull 

condition (Eq. (2.11)) must be used to compute <Py. Using the wave resistance formula given by 

Eqs. (4.8) and (4.10), we compute C..., in the nonlinear case from 

-nlz y ·r 1 'h 4 ., ' . -
C,., = S J J Pf x dx dz . 

-h -'h 

(6.10) 

We recall that S is the wetted hull area at rest and is given by Eq. (4.12). 

· Numerical Results for the Nonlinear Problem 

The iterative procedure for numerically solving the Laplace equation subject to the exact 

hull condition as well as the exact nonlinear free surface conditions is now applied to the case 

of a translating Wigley hull. The iteration is initialized by assuming that the matrix N in Eq. 

(6.8) has all zero elements for the first step. This corresponds to applying the exact Dirichlet 

conditions on the plane z = 0 and is intended to represent a good first approximation to the inte

rior flow. For each successive iteration, the matrix N contains the elements which correspond to 

the finite difference approximations to <f>zz at all the mesh points which are adjacent to the 

moving free surface (i.e., at z = --0.0208 in Fig. (5.2a)). We use two iterations to obtain the 

present solution, and this strategy corresponds to a predictor-corrector type method. 

The nonlinear wave profile result is obtained for Fr = 0.266 and is compared to the 

corresponding result for the Neumann-Kelvin problem at t = 3.0 in Fig. 6.1. We note that the 

profiles in the bow region are very similar but they begin to exhibit their own characteristics at 

downstream locations. The nonlinear wave amplitudes are slightly reduced, especially near the 
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stern. This is an interesting result since it indicates that the nonlinear terms have a strong 

influence on the solution in the stern region. This region is also affected by the wake, and it is 

likely that further nonlinear-viscous interaction would take place in a model which included 

viscosity. 

Summary 

In this chapter, we have described the logical extension of the present numerical method 

to the full nonlinear ship wave problem. Two additional computational difficulties, not present 

in the linearized cases, were identified. The first concerned the calculation of the free surface 

derivatives on a time dependent, curvilinear boundary. A general boundary fitted coordinate 

transformation was performed so that the required derivatives could be easily evaluated. The 

second difficulty, considered to be more severe than the first, involved the simultaneous satisfac

tion of all of the boundary conditions at their proper locations. In order to resolve this prob

lem, the solution of the Neumann-Kelvin problem was used in an iterative procedure such that 

at each iteration, the hull condition was satisfied exactly, and the Dirichlet conditions on the 

free surface were successively refined in accuracy. The next discussion concerned the 

modification of the wave resistance calculation due to the introduction of the nonlinear terms 

as well as to the replacement of the upper limit of the pressure integration in the z -direction 

by the bound z = rf_x ,y; t ). Finally, the nonlinear wave profile result for Fr = 0.266 was 

compared to that of the Neumann-Kelvin problem, and it was found that the nonlinear terms 

most affect the solution in the stern region. 
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CHAPTER 7. SUMMARY AND CONCLUSIONS 

This thesis represents a unified and systematic development of a general numerical 

method to solve the full nonlinear ship wave problem. The approach has been to divide the 

task into three distinct phases which progress successively in levels of both difficulty and real

ity. This strategy allows the computational difficulties in each phase to be identified, studied 

and resolved. Furthermore, the importance of numerical experiments during the initial 

development cannot be overemphasized since they provide valuable insight into both the 

characteristics of the numerical method as well as into the effects of changes in the computa

tional parameters on the solutions. In this chapter, we shall review the overall numerical 

approach and highlight the major results and conclusions of this research. We shall then con

clude with some indications for further numerical ship hydrodynamics research which is 

identified as a result of the present study. 

One of the main contributions of this work is the development of an optimized direct 

method for the numerical solution of the Laplace equation both in rectangular and nonrec

tangular regions. The solution technique is considered to be optimized in the sense that it is nei

ther necessary to compute or store the solution in the entire domain. The reason for this is that 

the Fourier series method for solving the finite difference form of the Laplace equation is able 

to take advantage of the fact that the right hand side vector consists entirely of zero elements 

in the region below the keel of the ship. Using this method, it is possible to efficiently compute 

the solution in regions which are very much larger than could be handled by any other solu

tion procedure. The present Laplace solution method is thus considered to be essential to the 

success of the time dependent finite difference approach to the ship wave problem. 

The numerical strategy for the time dependent solution of the thin ship, Neumann-Kelvin 

and nonlinear ship wave problems is essentially the same. We first initialize the flow field, 

then update the free surface conditions in time and finally solve the Laplace equation subject to 
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the appropriate boundary conditions. This updating and Laplace solution process is repeated 

until the steady state solution is attained. The major difference between each of these problems 

lies exclusively in the solution of the Laplace equation. The elliptic solution strategy for the 

thin ship and the Neumann-Kelvin problems differs significantly due to the l_ocally body fitted 

coordinate transformation. The strategy for the nonlinear problem differs due to the iterative 

refinement of the Dirichlet conditions which must be imposed on a time dependent boundary of 

arbitrary shape. The optimized direct solution technique used in the thin ship problem (Appen

dix B) is modified by the capacitance matrix method (Appendix C) so as to allow the direct 

solution of the Laplace equation in an irregular (i.e., non-Cartesian) region which arises from 

the presence of the exact hull geometry. This modified direct Laplace solver is then used in an 

iterative procedure as a means of solving the nonlinear ship wave problem. 

The solution accuracy, speed and storage requirements of the present optimized direct 

method are considered to be superior to those of any iterative method for the numerical solu

tion of the Laplace equation. The use of the fast direct method based on the FFr is further 

enhanced by the locally body fitted mesh system. This mesh allows the majority of the domain 

to be represented by an orthogonal Cartesian grid, while at the same time it accurately accom

modates arbitrary hull geometry in a localized portion of the region. The concept of the locally 

body fitted mesh is thus essential to the applicability of the optimized direct method to the 

solution of the Neumann-Kelvin and the nonlinear problems. 

It is interesting to note that the use of the locally body fitted mesh system is currently 

recognized by the aircraft design industry as an essential tool in the rapid solution of transonic 

fl.ow problems. For example, Johnson, et. al. (46] have described a panel method in which rec

tangular grids are used to represent the bulk of the fl.ow field which surrounds complex air

craft configurations. This new direction in the grid generation for elliptic problems, taken in 

the present numerical approach to the nonlinear ship wave problem, has been found to be 

necessary given the fact that the Laplace equation must be solved efficiently many times during 

I 

I 

I 
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the course of the calculation. The field of numerical ship hydrodynamics is thus beginning to 

share at least one of the concepts which is considered to be important in the more established 

field of numerical aerodynamics. 

Another issue in numerical ship hydrodynamics which has been dealt with succes.sfully 

is the implementation of the open boundary condition. We recall that in the steady state 

approach, which disregards the transient solution, the appropriate conditions at the downstream 

boundary are unknown a priori. One way to circumvent this difficulty is to use the time 

dependent approach so that an open boundary must exist downstream of the ship. Although 

the open boundary condition is known, its correct implementation is the subject of an ongoing 

debate. The usual one dimensional advection models presently in use are often difficult to 

implement in practice, and two dimensional models have never been considered. Furthermore, 

these approaches can be inaccurate due to numerical errors in the calculation of the proper 

wave speed. It was found in the present work, however, that a much simpler approach to this 

issue is possible. The downstream boundary is placed a large distance from the ship, and the 

correct condition for no disturbance (i.e., uniform fl.ow) is specified. This condition has been 

found to be a good approximation even when transient waves are present since the depth of the 

domain is large compared to the wave height. This in turn means that the mass flux across the 

downstream boundary is still approximately correct (i.e., equal to that at the inflow boundary). 

Furthermore, no wave reflection or distortion at the open boundary are observed, and there is 

no adverse influence on the solution near the Wigley hull due to this treatment, even long after 

the waves have reached the downstream boundary. It is interesting to note that Chan [23] 

placed the open boundary very close to the ship with the hope that the SOR iteration would 

converge more rapidly. However, without using his complicated open boundary treatment, the 

present approach, using a relatively long domain and the optimized fast Laplace solver, can 

actually outperform the SOR procedure used in a much shorter region. Therefore, if the time 

dependent approach is to be used, it is much simpler and faster to use the present method. We 

are thus able to conclude that the open boundary issue is not as severe as is now generally 
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believed by the numerical ship hydrodynantics community. 

One final comment which concerns the open boundary condition is that colleagues in 

fields other than naval hydrodynamics have obtained results which concur with the present 

implementation. Rudy [47] considers a propagating vortex as a test example for several 

different open boundary implementations, all of which are based on the Sommerfeld radiation 

model. He tests a simple outflow condition similar to the present one as well as both one and 

two dimensional advection models in which the exact phase speed is known. He reports that 

there is no reflection at the outflow boundary for any of the boundary treatments, although the 

vortex is allowed to pass more cleanly out of the region as the level of sophistication of the 

open boundary condition increases. The important point here is that Rudy's results for an 

entirely different problem are in agreement with the present findings as far as the lack of wave 

reflection is concerned, even when the open boundary treatment is as simple as possible. 

W.e now briefly review the numerical experiments which were described in Chapter 4 for 

the thin ship problem. These experiments demonstrated that the domain size 4.95 x 2.0 x 1.0 

was sufficient to approximate a much longer and deeper domain. This is significant because we 

can maximize the computational efficiency in a relatively small region while obtaining the 

same results that would be expected in a much larger region. The numerical experiments also 

showed that second order one sided differencing for the vertical free surface velocity (¢z) gave 

more accurate results relative to the senti-analytical classical solution of Michell. The guide

lines for the choices of the computational parameters, having thus been established, were then 

followed throughout the rest of the work. 

The wave profile and wave resistance results obtained shall now be briefly reconsidered. 

The validity of the time dependent approach to the ship wave problem was first verified by 

comparing the thin ship wave profile and wave resistance results to those computed from the 

first order Michell theory. The qualitative features of these results for the Wigley hull were 

certainly reproduced by the present method. While the thin ship theory seemed to reproduce 

I 
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some aspects of the hull wave profiles which have been observed in experiments, it seemed to 

have difficulty in accurately predicting the experimental wave resistance. It has been argued 

that this is due to the thin ship approximation, especially in the low Froude number range in 

which the linearization of the free surface conditions is usually assumed to be tolerable. The 

results for the Neumann-Kelvin problem, however, have apparently refuted this argument. 

Relative to the thin ship and experimental profiles, these results exhibited higher frequency 

components which were not previously observed. Furthermore, the wave resistance results 

predicted two peaks in the c., vs. Fr curve which were also not observed. Since one of these 

peaks occurred at Fr = 0.233, it may not be justified to assume that the Neumann-Kelvin prob

lem will accurately predict the wave resistance, even at low Froude numbers. 

We now conclude with some indications, based on the results of this study, for further 

research in the area of numerical ship hydrodynamics. The Wigley hull has been considered in 

this work because of its simple mathematical representation and because of its wide acceptance 

as a research standard. However, since the method developed here for the ship wave problem is 

generally applicable to any hull form, it would be of interest to consider other shapes as well. 

Using the present method, this is quite simple to do, even if the hull has no algebraic definition. 

This is in fact one of the great advantages of numerical methods in ship research since new 

models do not have to be built and tested in a towing tank. However, without a large database 

created from many runs in a numerical towing tank for a variety of different hull forms, it is 

too early to tell how effective purely numerical methods will be in augmenting modern ship 

design. It is felt that research on the numerical aspects of ship hydrodynamics should continue 

and should follow the guidelines set forth in the present work. 
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APPENDIX A 

The linear von Neumann stability analysis for Chan's advection scheme is now presented. 

We consider the two dimensional model equation 

<p, + U<px + V<py = 0 (A.1) 

in which u and v are constant(~ 0). We replace the derivatives in Eq. (A.1) w ith the finite 

difference approximations from Eqs. (3.2) to obtain 

2~t [<t>r./1 + </>/'-1.1 - <l>!'.1 - </>r..:j.11 l + :x [<t>r.1 - <l>t-1.1 I + 

4~y l<pi~l+I - <f>f'.1 -1 + <f>/'-1,l+I - <p/'-1,1-1] = Q • (A.2) 

In order to analyze this scheme, we assume that the solution </>;~1 can be written in the form 

A..n . = A n e i\k.x1 + ly .' 
'Yl ,J I 

(A.3) 

where )t.,n is the amplitude (damping) factor at time t = n At, which must be ~ 1 for stability, 

d i t kx + ly . I h · 1 · · f h l · F h k 27r 1 27r an e ' ' represents t e spat1a variation o t e so ut1on. urt ermore, = ~ , = ~ 
X )' 

and i = N , in which X,. and Ay are the wavelengths in the x - and y-directions, respec

tively. Substituting Eq. (A.3) into Eq. (A.2), we obtain the following relation for the damping 

factor 

X2 + b)t., - z = 0 , 

in which we have introduced the following definitions 

and 

b = (2cx -lXl-z) + icysinlAy(l +z ) , 

z = e-i~ = coskAx - isink.Ay , 

uAt 
C =--

x Ax 

(A.4) 



vAt 
C y = Ay . 

The solution to Eq. (A.4) has two roots, which can be written as 

Using the identities 

we obtain for Eq. (A.5) 

A:1: = - ~ + ~ [b2 + 4z )½. 

(1-z)2 = -4zsin2 kAx 2 , 

(l+zXl-z) = 2(1-zcoskAx), 

(1 +z)2 = 2z(l + coskAx), 

.l - coskAx = i sinkAx , 
z 

~ . kAx kAx (l 2)'1 "- = -as1n -- ± cos-- -a 2 

:1: 2 2 

. [ kAx . kAx (l 2)'h) -1 a cos -- ± sm -- -a 
2 2 ' 

. hi h ·n1A kAx + (2 1)s· kAx mw c a=cys1 ycos-
2

- ex- m-
2
-. 
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(A.5) 

(A.6) 

We see that Eq. (A.6) has the form A:1: = x + iy, so that IA:1: 12 = x 2 + y 2
• Using this 

fact, we find that 

IA:1:1 2 =1. (A.7) 

Thus, Chan's scheme is neutrally stable, meaning that pure advections (i.e., u,v = constant) will 

theoretically propagate with no changes in amplitude. This is a very desirable numerical pro

perty for the ship wave problem since no physical viscosity is assumed to be present. 

Equation (A.7) guarantees that the scheme in Eq. (A.2) will be stable, but it does not indi

cate for which combination of Ax, Ay or At. Therefore, we must also find the conditions 

under which Eq. (A.7) holds. This is accomplished by requiring that the imaginary part of Eq. 

(A.6) remain entirely imaginary. That is, we must have 1-a2 ~ 0, or 
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lcvsinlay cos ka
2

x + (2c,. -l)sin kax I ~ 1. 
. 2 (A.8) 

We take the maximum absolute value of this expression to occur when sinlay 1 and 

kax . kax .Ji, Th bill d" . h be cos -
2

- = sm -
2

- = 2 . e sta ty con 1t1on t us comes 

I Cy + 2cx I ~ 1 + ✓2 . (A.9) 

For the one dimensional case, in which v = 0, we reconsider Eq. (A.8) with cY = 0. We 

now take the maximum absolute value to occur when sin kti.x = 1, giving us the one dimen-
2 . 

sional stability requirement 

1 uat 1 ~ 1 . 
ax (A.IO) 

This is the usual Courant condition which states that information must not propagate faster 

than one mesh interval per time step. 
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APPENDIXB 

We consider in this section the reduction of the three dimensional finite difference Poisson 

(Laplace) equation, via the finite Fourier transform, to a sequence of tridiagonal systems which 

must be solved for the Fourier coefficients. Once obtained, these coefficients are used to recon

struct the exact solution to the finite difference equations by Fourier synthesis. 

The second order seven point difference operator for the Poisson equation is written as 

C1[cf>;-1,i.t -2¢;.u +cf>;+1,JJ: ]+C2[¢;,1-1J: -2¢;.u +cf>;,1+1J:] 

+ a-.._cf>i ,JJ: -1 - b-.._cf>i,JJ: + c-.._cf>;,JJ: +1 = r ;,JJ: • (B.1) 

Standard finite difference notation is used so that cf>i,JJ.: represents the solution cf> at the grid 

point [i t:.x , j t:.y, kAz]. The coefficients C 1 and C 2 are constant and equal to ~ and ~. 
t:.x t:.y 

respectively. The coefficients in the z- (k-) direction are defined as 

2 
a..._= ( ) 

h k -1 h -.._ + h1.:-1 

2 
bk= h -.._h k -1 

2 
C - ) , 

k. - hih k + h k -1 

(B.2) 

where h..._ = zk +1 - zk. These definitions are used so as to allow the use of nonuniform grid 

spacing in the vertical direction. The above coefficients have been derived by considering the 

standard Taylor series expansion about a point cf>i,J.k which is located a distance h k -t and hk 

from its neighboring points, <l>i,J.k-t and cf>;,JJ: +I• respectively. 

We now assume that the solution and the right hand side of Eq. (B.1) can be written as 

L 

cf>i,iJ: = EE,,r 'if>~.1.- cos(l - 1)0; (B.3a) 
/ = I 

and 



where 6; 

L 

ri ,i.k = EE,.r rJ; cos(l-1)6;, 
/ =l 

= ~;~{) and i = 1,2,....L . We also define the normalizing factor, E ;,i , as 

- I½ if i = 1 or i = j 
E ; ,J - 1, otherwise. 
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(B.3b) 

In the x-direction, the Fourier coefficients of the solution and the right hand side are 

represented by ip ~.k and r J.k, respectively. It can be seen from Eqs. (B.3a) and (B.3b) that the 

number of coefficients required to exactly represent the solution and the right hand side in the 

x -direction is just L , the total number of x -grid points. Furthermore, the cosine transform is 

used since the boundary conditions in this case are 'Px = 0 at the extreme values of x , and the 

cosine series in Eq. (B.3a) satisfies these boundary conditions exactly. 

The procedure is now to substitute the Eqs. (B.3) into Eq. (B.1) so that we obtain an equa

tion involv ing only the Fourier coefficients. We thus obtain 

L L 

C1 EE1.r <P~; cos(l-1)6;_1 -2c 1 EE,.r IP~; cos(l-1)0; 
/= l f =I 

L I 

+ C1 EE1.r <Pi.k cos<z-1)0;+1 
l =I 

L I L I 
+ C 2 E E1 .r ip J- 1.k cos(l-1)6; - 2C 2 E E1 .r ip J.k cos(l-1)0; 

l=l l= I 

L I 
+ C 2 EE,.r IP j +l,kcos(l-1)6; 

/=l 

L I L I 

+ a._ E E 1 .r q, i .k -l cos<L-1)6; - b._ E E 1 .L ip JJ.: cos(l -lW; 
l =I 

L I 

+ ckEEl.L IPJ,k +I cos(L-1)6; = 
l= I 

l =I 

L 

EE, .r r J,k cos(l-1)0; . 
l =l 

(B.4) 

We now multiply Eq. (B.4) through by E;.r cos<m-1)6; and sum over i. Using the orthogonal

ity relations 
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L (L-1)/2 if 1 = m ;c 1 or L 
EE;.r cos(l-1)6;cos(m-1)6; = 
i=I 

L -1 if 1 = m = 1 or L 
lo if 1 .= m 

and 

L 

EE;.r sin(l-l)B;cos(m-1)0; = 0 , 
i =I 

we obtain the system 

[ 
I I I I I I 

C 2 <f> 1-1.1: - 2<[> 1.1: + <f> 1+1.1: ] + ak<f> 1.1: -1 - bk<{> J /i. + ck<[> JJ: +1 

\ ;;;I -1 
- "-l'f' j J: = r j J: ' (B.5) 

. hi h \ - 4C . 2 (l-l)1r f l - 1 2 ,L in w c "'' - 1sin ( ) or - , ,... . 
2 L-1 

By applying the above procedure in the x -direction, we have uncoupled the finite 

difference equations so that there is no longer any x (i) dependence. We now have a sequence 

of L two dimensional linear systems to be solved. This sequence can be further reduced to 

L x M tridiagonal systems by transforming in the y (j) direction, which contains M unk

nowns per mesh line. A completely analogous transformation then yields 

l ,tn l,tn l,tn ,.l,tn 

akcpk-1-[bk+A1+Am]<pk +ck'Pk+1 = r k (B.6) 

. hi h \ - 4C . 2 (m-l)1r f - 12 ..,M in W C "'m - z Sin ( ) Or m - , ,. . 
2M-1 

The right hand side of Eq. (B.6) is obtained in two steps, each carried out by using the 

cosine transform in the x - and y-directions. Thus, 

_J L 
r J.k = EE;.r r i ,J.k cos(l-1)0; 

i =I 

holds for the x-direction (1 = 1,2, ... ,L and all j ,k ), while we have 

=["" 
T k 

M 

= EE J.M r ),1: cos(m-1)61 
} =I 

(B.7) 

(B.8) 

for the y -direction (m = 1,2, . ..,M and all l ,k ). The quantity 0 1 is defined analogously as 
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0 . = (j-1)1T 
1 (M-1) 

Equation (B.6) represents L x M tridiagonal systems which must be solved for the 

l .m 
Fourier coefficients, <Pk . The order of the system is just the number of unknowns in the z-

(k-) direction. The exact solution is then obtained from the coefficients by Fourier synthesis. 

Performing the inverse transformation in reverse order, we have for the y-direction 

I M l.m 
q, J.k = ~ Em .M <Pk cos(m -1)0 J (B.9) 

m=I 

for j = 1,2, . ...M and all l ,k . The final inverse transform in the x -direction yields the solution 

as 

L 

c/>;,J/i = ~E1,r q,~ .k cos(l-1)0; (B.10) 
l =I 

for i = 1,2,-..L and all j ,k. 

The Fourier sums in Eqs. (B.7) - (B.10) are performed by the routine COST in the Fishpak 

library. If the methods of Cooley and Tukey [48) are used, then the values of (L-1) and 

(M-1) must be of the form 2P + 1, where pis an integer(> 0). The COST subroutine, how

ever, removes this restriction and performs the summations for arbitrary L and M. This is 

found to offer greater flexibility in the choice of mesh spacing and domain size. 

The solution procedure for the Poisson (Laplace) equation by the Fourier series method is 

now summarized in the following steps : 

(t) Transform the right hand side, r;,J.x• ,i.J! 
the X - and y -directions to obtain r k 

(Eqs. (B.7) and (B.8)). 

(2) Solve L x M tridiagonal systems (Eq. 
(B.6)) to obta~ the Fourier coefficients of 
the solution, ~ k.m. 

(3) Inverse transform these coefficients in the 
y- and x-directions (Eqs. (B.9) and (B.10)) 
to obtain the exact solution, c/>; ,J" . 
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APPENDIXC 

In this section, we describe the capacitance matrix technique for efficiently solving elliptic 

finite difference systems in irregular regions. The development of this method has been carried 

out by Buzbee and Dorr [491 however we shall follow the treatment given by Buzbee [50). 

We suppose that we are to solve the N x N elliptic finite difference system Ax = b in 

which A is not amenable to the Fourier series method due to the irregular hull geometry. The 

matrix A, however, is very close to a matrix B which describes the thin ship problem in an 

entirely rectangular domain and for which fast direct methods are applicable. The only 

difference between these two matrices occurs on and near the hull where an irregular body 

fitted grid must be used to accommodate the hull geometry. This motivates us to change A into 

B so that the Fourier series method can be used. Thus, instead of solving Ax= b, we shall solve 

Bx = c by the optimized direct method. We use the capacitance matrix technique to find the 

modified right hand side c from the original right hand side b. 

We now assume that we must modify only p rows of A to make it identical to B. We 

then let 

R = !1,2,. .. ,N I · 
S = p element subset of R 

and 

Ax =b. 

We note that row j of A is identical to row j of B for all j in R-S. Now we define 

Bg; = e; for all i in S , 

Bi= b 

and 

(C.1) 



z = i + E/3;g; · 
s 
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The vector e; is the Fh column of the N x N identity matrix, and the scalars /3; (for all i in S) 

are to be determined. We then have 

(Az) i = (Bz) i = bi for all j in R-S . 

The notation (Az) i means that the jlh row of A multiplies the vector z. Thus, z satisfies the 

N-p unmodified equations of (C.1). Our objective is to determine the /3; so that the remaining p 

equations of (C.1) are also exactly satisfied. Once this is done, we will have satisfied the hull 

boundary condition at the precise location of the hull. We now simply require 

(Az); = b; = (Ax); + E/3/( (Agk ); 
s 

(C.2) 

for all i in S. The quantity (Ag"-); is the k th element of the F h row in the capacitance matrix, 

so that Eq. (C.2) defines the p x p linear system for /3 as 

C/3=y, 

where C is the capacitance matrix and 'Y; = b; - (Ai); for all i in S. The algorithm is divided 

into two phases, a preprocessing and a solution phase. Toe preprocessing invol ves computing 

and factoring C and can be performed independently of the right hand side b. The solution 

phase then uses these results to obtain the solution vector x for a given right hand side. 

Toe complete capacitance matrix algorithm is then summarized as follows: 

Preprocessing: 

Solution: 

( 1) Solve Bg; = e; for all i in S. 

(2) Calculate and factor C, defined by (Agk ); for all i ,k in S. 

(3) Solve Bx = b. 

(4) Solve C/3 = y. 



(5) Solve Bx= y + ~t3;e;. 
s 
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We note that the solution phase consists of two fast direct solutions involving the matrix 

B, so that solving the exact bull problem is roughly twice as expensive as the thin ship prolr 

lem. We also remark that C is factored by Crout reduction with partial pivoting into C = LU. 

Thus, C/3 = y is solved very efficiently by forward and backward substitution. 

For the present locally body fitted mesh system under consideration, there are 240 per

turbed finite difference equations on and near the exact Wigley hull. This means that the set S 

contains 240 elements. From step (1) above, we see that by far the greatest amount of prepro

cessing effort is spent on solving the systems involving B for all i in S (i.e., the systems involv

ing Bare solved 240 times). This must be done once for each hull geometry under considera

tion and is roughly analogous to constructing a new ship model before it is tested in a towing 

tank, although the cost for the present preprocessing is far less. 
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