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1. MICROPROCESSORS AND MICROCOMPUTERS

1.1. A  Perspective on LSI Technology

The nature of integrated circuit technology dictates an upper 

limit on the number of gates that can be placed on a single chip and 

still permit production that is economically feasible. This upper limit 

is constantly being increased by improving technology. The first inte­

grated circuits had a small number of individual gates on a chip. As 

technology progressed, medium-scale-integrated (MSI) chips were produced 

with complex functions such as multiplexers, counters and shift registers. 

Early in the 1970's the maximum number of gates had increased to the 

point where a complete system or subsystem, such as a microprocessor 

could be placed on a single chip. This technology is referred to as 

large-scale-integration (LSI).

These highly complex LSI circuits are achieved only with very 

high development cost. This development cost is due to the large amount 

of time and effort required for design, layout, initial fabrication and 

checkout. For any given LSI circuit, the development cost is a fixed 

cost; it is the same for producing one chip or many chips. To overcome 

this high cost, LSI circuits are usually developed only for high volume 

markets in which case a small portion of the development cost can be 

recovered from the selling price of each chip produced.

If an LSI circuit cannot be sold in sufficient volume, its 

selling price is high and may not be price-competitive with conventional 

SSI and MSI implementations.
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In some cases a single application has high enough volume to 

justify development of an LSI chip; e.g., calculator and digital watch 

chips. In other cases, a more general-purpose LSI chip can be developed 

which can be adapted to many different applications by the user. It 

should be pointed out that two of the main components in a microcomputer, 

the microprocessor and the memory are manufactured to be used in a broad 

range of applications. This is one reason for their low cost.

1.2. Microprocessors

The microprocessor is an LSI component for use in digital 

systems. A microprocessor is a single chip or chip set that performs 

the functions traditionally associated with the central processing unit 

(CPU) of a computer. That is, it processes data as indicated by a 

sequence of instructions, called a program, stored in an external memory. 

Given a microprocessor and memory, a stand-alone computer, called a 

microcomputer, can be implemented with very few additional components.

The low cost of microcomputers has provided a new approach to the design 

of digital systems which is based on the use of a general purpose computer 

as an alternative to special purpose hardware.

In order to establish a frame of reference, listed below are 

some relevant terms along with a working definition of each.

Minicomputer - a small, general purpose computer with a central 

processing unit (CPU), a memory for storing programs and data, and I/O 

de v i c e s .

Microprocessor - a microprocessor contains registers, arithmetic, 

and control logic for processing data as specified by instructions stored
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in a memory and is always implemented in LSI technology as a single 

chip or a set of chips.

Microcomputer - a very low-cost, generally low-performance 

computer which uses a microprocessor as its CPU. A  microcomputer 

consists of a microprocessor, memory, I/O devices and all necessary external 

logic such as clock generators, buffers and latches. Typically, the memory 

is also implemented with LSI circuits.

It should be noted that both microprocessor and microcomputer 

are technology-related terms in that the distinguishing characteristic 

of each is the technology used to implement the function rather than the 

function itself.

Microprogrammed Processor - a CPU (usually of a small or medium 

sized computer) or the heart of a programmable controller which uses a 

memory-like component called control store for implementing its control 

logic. Microprocessors, minicomputers and other computers may or may not 

be microprogrammed.

Microprogrammable Processor - a microprogrammed processor 

in which the control store is alterable by the user so that each system 

may have a different control structure (instruction set) or may change 

easily between several control structures.

The wide variety of available microprocessors provides a spec­

trum of performance within the class of microprocessor circuits. The 

range extends from the low-performance 4-bit microprocessors to the high- 

performance 16-bit microprocessors and to even larger word sizes in multi­

chip processors. Word size, speed and instruction set are all factors for 

performance evaluation.



The 4-bit microprocessors have an architecture which resembles 

calculator designs. The difference between them and calculator chips is 

that they are programmable. The 4-bit word size is convenient for per­

forming BCD arithmetic. The primary applications of the 4-bit microprocessors 

are as programmable calculators and simple controllers. The 8 -bit mic r o ­

processors are useful for processing alphanumeric data since the word size 

matches standard character codes such as ASCII and EBCDIC. Typical appli­

cations of the 8 -bit microprocessors are controllers, character string 

processors and low precision (or multiple pass) data processors. The 

microprocessors with 12 or 16 bit word sizes can be conveniently used to 

implement a general purpose low-performance minicomputer or a high per­

formance controller.

1.3. Applications of Microcomputers

There are two design approaches to implementing small digital 

systems. One is to design special purpose hardware which uses flip-flops 

to store and define a state, and gates to define the next state and decode 

output signals. This approach usually yields a system which is very fast, 

but inflexible. The other approach is to use a microcomputer which is 

programmed to perform the specified control function. This approach 

usually yields a system that is slow compared to a special purpose h ard­

ware implementation, however it is very flexible in that the system 

function is determined by a program. When using a microcomputer, changes 

in system functions can be done by changing programs rather than by alter­

ation of system hardware. In other words, in a microcomputer system, a 

fixed hardware configuration is adapted to many different applications 

by programming.

4



Thus a microcomputer user is required to write and debug pro­

grams. This could be a disadvantage for a user who is inexperienced in 

programming with low-level languages. Often, once microprocessors have 

been on the market for a while, there is software support available, 

such as assemblers and simulators to ease the job of programming. Special­

ized hardware tools, such as system emulators, are also often available 

to assist in debugging.

The concept of designing a system around a dedicated, general 

purpose computer is not new. It has long been recognized that using a 

computer as the heart of a system offers a degree of flexibility that no 

special purpose hardware design could have. However, the cost of traditional 

minicomputers severely limited the number of applications that could 

afford this approach. With the introduction of the microcomputer, this 

cost restriction is removed in vast numbers of applications. Many small 

system applications which could not previously use computers may now be 

designed around the microcomputer. Current microcomputers are not equal 

in performance to minicomputers. However, microcomputers are not designed 

to compete with minicomputers but to extend the concept of a dedicated 

computer to applications where the minimization of cost and size are 

important, but high-speed performance is not. Listed in Fig. 1.3.1 

are some typical microcomputer applications.

In many applications where the microprocessor has been success­

fully used, the microprocessor has had speed and capability which far 

exceeded the need for the application. Thus, although the use of a micro­

processor is sometimes a clear case of "overkill", the low cost of micro­

processors still make it the cheapest solution for many problems. Therefore,
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Peripheral controllers 

Automatic test systems 

Digital instruments 

Automobiles
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Numerical control 

Point of sale terminals 

Communication systems 

Traffic controllers

Fig. 1.3.1 Microcomputer applications
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the microprocessor should be used in any application where it is the 

cheapest solution, regardless of how inefficiently the microprocessor 

is used because the unused capability is obtained for no additional 

cost. Often, in such applications, additional capability can be used 

to provide more sophisticated processing or ancillary jobs at little or 

no extra cost.

The microprocessor is not the solution to all logic design 

problems. In systems where the hardware function is trivial, special 

purpose hardware is still the most economical solution. In systems that 

require 50 or more packages using special purpose hardware, microprocessors 

should be considered as a potentially attractive alternative, providing 

the microprocessor performance is adequate to handle the application.

The microprocessor is well-suited for implementing functions that can be 

described by a flow chart. That is, functions which can be described by 

a sequential series of operations and decisions. In some cases, either 

the program length, instruction cycle time, or both are such that the 

microprocessor is too slow for the application.

1.4. Microprogrammed Control

Microprogramming refers to a method of implementing control 

logic. In this method, the control section contains memory, usually 

called control store, which contains control information. Control signal 

sequences are generated by continuously accessing control store locations. 

Each access to the control store retreives a word called a microinstruction. 

Each microinstruction contains two types of information. The first type 

is control signals which setup the data paths for the corresponding
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microinstruction. The second type is information for selecting the 

next microinstruction. A sequence of microinstructions is called a 

microprogram. Thus, by specifying appropriate control store 

contents, the execution of a microprogram can generate any complex 

sequence of control signals. Shown in Fig. 1.4.1 is a block diagram of 

a microprogrammed control unit. Since the control information is 

determined by the contents of the control store, changes to the control 

sequence can be made by simply modifying the contents of the control 

store. This flexibility is one of the attractive features of micro­

programmed control.

The control store is typically implemented with R O M  or PROM.

This means the control structure is defined when the memory is programmed 

and remains fixed during execution. In some cases, RAM (called writeable 

control store) is used and the control store contents can be altered during 

execution. This allows the architecture of the machine to be dynamically 

altered during execution. In most cases, high speed bipolar control store 

is used to produce the high execution speeds.

Microprogramming is considered a highly regular form of control 

logic, as compared to hardwired control units which are implemented 

with gates and flip-flops in an irregular fashion to generate timing and 

control signals.

It should be noted that the "micro" in the word microprocessor 

does not stand for microprogrammable, but rather simply for LSI implementa­

tion. While some microprocessors, such as the National GPC/P or the Intel 

3000 are microprogrammable, most are not. In addition, most microprocessors
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Fig. 1.4.1 Microprogrammed control unit
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do not use microprogrammed control, but rather classical state machines 

implemented in programmable logic arrays (PLA’s).

A n  important point is the distinction between microprogrammed 

and microprogrammable. If a computer is microprogrammable, there exists 

some way for the user to alter the contents of the control store. This 

allows the user to write and execute his own microprograms, thus to 

define the control structure of the machine instruction set (within 

limits). If a computer is simply called microprogrammed, the user 

generally cannot alter the microprogram and the fact that the control 

logic is microprogrammed is essentially transparent to the user.

In the classical sense of the word, a microprogrammed co m ­

puter is one which has two levels of programmability and both are directly 

meaningful to the system hardware at execution time. The low level pro­

gramming is done with microinstructions. The high level programming is 

done with macroinstruetions, which are similar to standard machine 

language instructions. In such a computer, macroinstruction execution 

occurs in two steps. First, a sequence of microinstructions is executed 

to fetch a macroinstruction from the user memory. The op code of the 

macroinstruction is decoded to cause a jump to the microinstruction 

sequence necessary to execute the macroinstruction. After completing 

this sequence, a jump to the instruction fetch microroutine is executed 

and the two step sequence repeats. This is one use of microinstructions: 

to implement a higher level language. This use of microprogramming is 

important in that it allows each user, in effect, to define a personal 

macroinstruction set. Thus for any specified application, the designer
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can, in theory, define instructions that accomplish the job with maximum 

efficiency. This feature may also be used to allow one machine to execute 

the instruction set of another machine, which is known as emulation.

This minimizes software development and eliminates the need to rewrite 

programs. Emulation may not, however, be as efficient as a rewritten 

program.

Another method of using microinstructions is to write the user 

program at that level. Notice that in this context, the term m i cro­

instruction is somewhat contradictory because two levels of programma­

bility no longer exist. Some manufacturers have referred to their 

microprocessors as microprogrammable, although they are not microprogram­

mable in the classical sense of the word because the programming is done 

at one level (the microinstruction level) only. This apparent contra­

diction can be reconciled by the fact that many microprocessors are 

programmed with very low level instructions which resemble the micro­

instructions of previous machines.

Programming with microinstructions has the advantage of higher 

speed execution because the overhead time needed to perform the macro­

instruction fetch and decode is eliminated. Another advantage is the 

detailed level of control that can be achieved. This direct control of 

built-in CPU functions can result in greater parallelism of execution 

and elimination of unnecessary steps caused by using a general purpose 

instruction set. The disadvantage of microprogramming is the tedious 

task of programming with a very low-level language. Several manufacturers 

have support software for easing the microprogramming task.
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1.5. Typical Microcomputer Organization

A block diagram of a typical microcomputer is shown in Fig.

1.5.1. The diagram illustrates the three sections that traditionally 

comprise a computer system, namely the microprocessor, memory and I/O.

As stated previously, the function of the microprocessor is to 

process data as specified by instructions stored in an external memory.

To do this, the microprocessor must generate control signals which provide 

information to the other system elements to indicate what is happening 

internally and what should happen externally. The memory and I/O devices 

must interpret this information to synchronize their operations with the 

microprocessor.

The system memory is used to store user programs and data. It 

can contain any combination of read/write random-access memory (RAM), 

read-only memory (ROM), programmable read-only memory (PROM) which can 

be programmed once, and electrically-alterable read-only memory (EAROM) 

which can be repeatedly written and erased. The choice of memory is made 

by considering the application. ROM's are used to store programs and con­

stants in high-volume applications. RAM's are used in applications where 

data is altered during program execution. PROM's and EAROM's are similar 

to ROM's except they are programmed by the user, as opposed to being mask 

programmed. They are useful in low-volume applications where the one time 

cost of mask programmed ROM's is not justified. Another typical use of 

PROM's and EAROM's is for program storage while debugging prototype systems.

The total primary memory capacity available to the user is deter­

mined by the addressing capability of the microprocessor. The design of
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Fig. 1.5.1 Microcomputer organization
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the system memory is an important consideration since in a real system, 

the memory costs are a significant part of the system cost.

The I/O section refers to the I/O devices connected to the 

microprocessor and the circuits needed to control these devices and 

interface them to the microprocessor. Some typical I/O devices are CRT 

terminals, small printers, switch registers, keyboards, LED displays,

A/D converters, small discs, tapes, etc.

1.6. External Logic

One consequence of implementing circuits with LSI is that the 

number of external pins on microprocessor chips for interconnections is 

limited. The wire connection between the silicon chip and the metal 

pin is a major cause of failures in integrated circuits. Furthermore, 

the number of pins required for a chip rather than the logical complexity 

of the chip most often determines the size of the chip. Thus the m anu­

facturers have tried to minimize the number of pins to minimize the size 

and probability of chip failure.

In microcomputers, the effort to minimize the number of pins 

on LSI packages, along with several other design constraints (such as 

minimizing chip area) has made it necessary to supplement the LSI packages 

with external logic to form a working microcomputer in most cases. The 

functions likely to require external logic are clock generation, initiali­

zation, bus buffering, interrupt control and I/O interfacing. The 

external logic usually consists of TTL MSI and SSI with an increasing 

number of specialized LSI parts, such as general purpose parallel and
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serial I/O chips along with terminal and disk controller chips. Listed 

below are some external logic functions that can occur in a typical 

microcomputer system.

Input Multiplexers - These are used to select one of many 

signal sources to drive a given pin. Using external multiplexers permits 

a reduction in pin count and has the additional advantage of allowing a 

pin to be used at different times for a variety of purposes (so-called 

"time-shared" pins). In some systems this multiplexing function is 

accomplished with the use of three-state or open collector logic (see 

Chapter 2). In any case the microprocessor must provide control infor­

mation to the multiplexer indicating which input to select.

Bus Buffers - The output pins of MDS microprocessors have 

limited drive capability. The DC fanout is typically one standard TTL 

load. If the MOS output must drive long PC traces with many loads, the 

load capacitance may increase the propagation delay. The problem is 

solved by using TTL bus drivers which connect to the MOS outputs and 

drive all the loads.

Data Registers - A problem arises when two output signals are 

needed simultaneously from a single time-shared pin. The solution is 

to send out one of the signals early. This signal is then stored in an 

external data register until it is used. Thus, the time-sharing of 

pins trades off pin count (and speed) for external data registers.

Decoders - Control, addressing, device selection and timing 

information are sometimes supplied by the microprocessor in encoded 

form. TTL MSI decoders are then used to decode this information into a
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form useable by the system. For example, seven control signals which 

never occur at the same time can be encoded in three bits and decoded to 

one signal per wire with an external three-to-eight decoder.

External logic in microcomputer systems in undesireable since 

it requires extra logic design, additional packages and increased cost. 

Manufacturers have tried several approaches to minimizing the amount of 

external logic needed. One is to design new microprocessors which supply 

control information and data in a form that can be directly used by the 

system. This approach implies a higher pin count. A second approach is 

to design a family of specialized chips, such as peripheral interfaces, 

timing and control chips, clock generator chips, and memory interface 

chips. Since these chips are designed to operate with a specific mic r o ­

processor, their design can be optimized to minimize the total number of 

chips used. Often, they are useful in a limited way in other systems as 

well.

1.7. Microcomputer Configurations

There are many configurations of microcomputers available. 

Listed below are three configurations which can be distinguished by 

application, package count and cost.

1) The self-contained family of microprocessor, memory and 

I/O, implemented with a chip or chip set. This configuration is intended 

to produce microcomputers at minimum cost with a minimum package count. 

The LSI chips have been designed to interact directly with no external 

logic. All timing and signal protocols are built into the chips. Typi­

cally, this configuration results in relatively low performance. The
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ultimate case of this configuration is the single chip microcomputer.

The extremely low cost of this configuration allows it to be used in 

dedicated applications where cost is the all-important factor. Shown in 

Fig. 1.7.1 is an example of a self-contained chip set family, the Intel 

4004.

2) The single chip microprocessor which interfaces to standard 

memory and I/O devices. These microprocessors utilize a unified bus to 

talk to memory and I/O through simple protocols. This is done to permit 

easy interfacing. This configuration typically requires some external 

logic for interfacing. However, there is greater flexibility in the 

interface which allows any memory or I/O device to be used. The ease

of interfacing allows this configuration to be easily expanded through 

the addition of memory or I/O. This configuration produces relatively 

high performance at the cost of extra logic and higher package count. 

Shown in Fig. 1.7.2 is an example of this configuration, the Intel 8080.

3) The multi-chip, bit-slice microprocessor which interfaces 

to standard memory and I/O devices. The bit-slice architecture is a 

useful approach when a microprocessor with the desired word length or 

operating characteristics cannot be fabricated on a single chip. In a 

bit-slice microprocessor there are typically two types of chips, namely 

data slices and control sequencer slices. The data chips are all 

identical and partitioned as a bit-slice parallel to the data paths.

In other words, each chip has data paths for an N  bit word and the chips 

are designed so that they can be connected in parallel to form an arbi­

trarily large word with a multiple of N  bits. Connections between data 

path chips are necessary for the execution of certain instructions such
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as add, subtract, shift and rotate. The sequencer chips are designed to 

implement a microprogrammed control unit which controls the data paths.

The function of the sequencer chips is to provide the current control 

store address and the logic to determine the next control store address. 

These chips are sliced parallel to the control store address, thus con­

necting them in parallel generates a larger control store address.

The bit-slice architecture has many advantages. The user can 

define the machine in terms of word length and control store capacity.

In addition, the use of microprogrammed control allows the user the 

flexibility to define the architecture of the machine by creating an 

instruction set optimized for the application. Bit slices are typically 

very fast because they are generally implemented with bipolar logic.

Thus, bit-slice microprocessors have very high performance. The imple­

mentation of a bit-slice microprocessor requires a large amount of SSI 

and MSI logic along with considerable design effort. However, bit-slice 

microprocessors can be built which rival the performance of today's 

minicomputers. Shown in Fig. 1.7.3 is a bit-slice microprocessor based 

on the AMD 2900 family.

1.8. Microcomputer Bus Structure

All microcomputers have an I/O bus structure, that is, a group 

of signal lines through which communication is established between the 

data processing section of the microprocessor and all other system elements 

such as memory and I/O devices. The bus structure organization permits 

flexibility in that the number of devices connected to the bus can be 

variable. The microprocessor architecture determines the structure of
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the bussing system in terms of the number of busses and the structure 

of each bus.

It is clear that the use of a common bus requires that some 

means be provided to steer data between the microprocessor and a 

selected device. To accomplish this, the microprocessor supplies control 

and timing signals to indicate to each device connected to the bus when 

and how to interpret the various bus signals.

The I/O bus structure is an important factor affecting mic r o ­

computer system performance. One bus structure is the use of a single 

bidirectional, time-multiplexed bus, such as that used with the Intel 

8008. A n  advantage of this method is that it allows a minimum pin count 

on the microprocessor chip. A single bus is used to transfer addresses 

and data alternately. Memory operations are done by first sending an 

address on the bus. At the same time, control signal is generated to 

indicate that the data on the bus is a memory address.

For a read operation, after the memory address transfer, the 

memory places the read data on the bus at a later time. The micro­

processor then reads the data bus at a specified time. Thus, a memory 

read typically requires one cycle. For a write operation, after the 

memory address transfer, the microprocessor places the write data on 

the bus along with a control signal to indicate that the data on the bus 

is memory write data. Thus, a memory write requires the microprocessor 

to initiate two bus transfers, which typically requires two cycles.

The single bus system usually requires output buffer registers since 

the microprocessor bus outputs are time-shared. Typically the address 

is latched in the external devices and stored until the data is available 

at the next bus transfer.
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Another bus structure is the two bus system, which has separate 

busses for address and data. Such a two bus system is found in the Intel 

8080 and the Motorola 6800. This method allows one data word and its 

associated address to be transferred in the same cycle, thus eliminating 

the delays and extra logic associated with time-multiplexed bussing and 

resulting in potentially faster output transfers. The use of a multiple 

bus system requires more pins on the microprocessor chip.

Since the 4 to 8 bit word size commonly used in microcomputers 

is inadequate for addressing memory, the memory address word size was 

made larger than the data word size, usually a integer multiple of the 

data word size. Since the internal circuitry of the microprocessor is 

designed to process data words, often the bus is also designed to transfer 

one data word at a time. In systems with a single bus such as the Intel 

4004, addresses are transferred to other system devices over the data 

bus in data word size pieces. The full address is thus time-multiplexed 

onto the bus. When the device or the device interface logic receives these 

pieces it must reassemble them in an address buffer to form the complete 

address. This procedure is very time consuming and results in very 

inefficient addressing. The logic used to disassemble and reassemble 

the address is sometimes called a "bundle interface".

Since a microcomputer spends a major part of its time communi­

cating with memory, it is important to maximize the efficiency of memory 

addressing when system performance is of concern in the intended applica­

tion. In the case of the single bus system, this can be done by designing 

a bus that is wide enough to transfer an address word in a single bus 

transfer. This essentially implies using a microprocessor in which the



data and addresses words are the same size. The multiple bus system 

voids the fixed word size problem by using separate buses for data and 

address, each of which are matched to the appropriate word size.

1.9. Support Circuitry

Many microcomputer systems rely on externally generated clocks 

for their operation. It is normally the job of the logic designer to 

develop circuits to generate the specified clock signals. In systems 

requiring one-phase or two-phase external clocks, the clock signals are 

commonly generated by interconnecting one-shots if timing tolerances 

are not too strict, or by a crystal oscillator if precise timing is 

required. In cases requiring more complicated clocking, such as four- 

phase clocks, other methods are used.

One common method of generating multiphase clock signals is 

implemented with a counter whose states correspond to clock phases, and 

decoding logic. The counter is clocked repeatedly through a fixed 

sequence of states by a master clock generated with an oscillator. The 

master clock runs continuously and is the basic timing signal of the 

system. The desired clock signals are then obtained by decoding the 

appropriate counter states.

A binary counter is usually not suitable for this type of 

application because of the hazards that occur during state transitions.

The counters used in this application should execute hazard-free tran­

sitions to avoid generating false momentary outputs. Counters well- 

suited for this application, called shift counters, can be built using 

shift registers with feedback. The feedback signal, which is some

24
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function of the shift register state, is applied to the serial input 

of the shift register. Two common shift counter circuits are the ring 

counter and the Johnson counter.

The outputs of an N-bit binary counter can be decoded into a 

N
maximum of 2 states. The ring counter and the Johnson counter are both 

less efficient in that an N-bit version of each of these has N and 2N 

states, respectively.

The shift registers used to implement shift counters must have 

parallel data outputs to allow the counter state to be decoded. Another 

useful feature is a Clear input which can be used for initialization. In 

the absence of a Clear input, the counter must be self-starting, i.e., it 

must sequence to a valid state from any arbitrary initial state. Further­

more, the computer must be designed so that the start-up sequence does 

not interfere with proper operation.

In the design of shift counters, there are several considerations 

which are common to all sequential machines. One consideration is when and 

how the shift counter should be initialized. Another consideration is what 

happens if an error occurs causing the shift counter to enter an invalid 

state. The counter can be designed to hang-up or self-start (return to 

the normal state sequence). Another consideration is how the decoding 

logic treats invalid states. The decoding logic is minimal if it treats 

invalid states as don't cares. However, if the counter ever reaches an 

invalid state it could be decoded as being in a valid state or even several 

valid states at once. If the decoding logic does not treat the invalid 

states as don't cares, the decoding logic is said to reject false data.
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A ring counter is a shift counter that operates by circulating 

a single logical 1 level. A n  N bit shift register forms an N  state ring 

counter. Since the counter outputs contain a single logical 1 level, 

the counter states are essentially decoded without additional logic. In 

other words, State 1 = Q^, State 2 = Q^, and State i = Q^. The elimina­

tion of state decoding is the advantage of the ring counter which is

N
otherwise very inefficient because it uses only N of the 2 possible

states. Shown in Fig. 1.9.1 is a ring counter circuit along with a table

describing its operation. This ring counter circuit must be initialized

into a valid state. In addition, if an error causes the counter to reach

an invalid state, the counter cannot recover (it is not self-starting).

The feedback logic is used to insert the logical 1 level at

the appropriate time. The feedback logic must detect when the logical

1 level is in the last stage of the shift register. When this state is

reached, the feedback logic functions should be such that the serial

input of the shift register is a logical 1 .

Every state transition of a ring counter has a hazard, unless

the output propagation delay of the shift register from a logical 0 to a

logical 1 (t ) exactly equals the output propagation delay from a 
PLH

logical 1 to a logical 0(t ). Since this is not usually the case, a
PHL

hazard will occur. If it is known which delay is shorter, the type of

hazard, either overlap or isolation, can be predicted. If t ^ is less

than t , overlap will occur. Overlap implies that the next state 
PHL

begins before the present state ends. If t is greater than t ,
PLrl PriL

isolation will occur. Isolation implies that the present state ends 

before the next state begins.



Master
CLK N -B it  Shift Right Register 

^prinl Tnnut

Clock

Q, Q f  Q ,  • • * Q N

FP"5930

Ring Counter Circuit

CLOCK

PULSE

Shift

^1

register outputs 

Q? Q3 • • • • * QN-1 %

-»1 1 0 0 . . . . . 0 0

2 0 1 0 . . . . . 0 0

3 0 0 1 . . . . . 0 0

• • • • • •

• • • • • •

• • • • •

N-l 0 0 0 . . . . . 1 0

-N 0 0 0 . . . . , 0 1

Table illustrating operation of a ring counter

Fig. 1.9.1 Ring Counter
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Consider how the type of hazard affects the state decoding.

Since single states are available at the shift register outputs without 

decoding, there is a built in hazard between adjacent states. The 

adjacent states are either isolated or overlapped, depending on the type 

of hazard. To decode a group of consecutive states, the method depends 

on the type of hazard. If overlap occurs reliably, an "OR" gate can be 

used to decode groups of consecutive states by simply "ORing" the outputs 

which correspond to each of the single states in the group. No momentary 

zero will appear at the output of the OR gate between states. If isolation 

occurs, an R-S flip-flop can be used by setting and clearing the flip-flop 

with the appropriate state outputs.

Shown in Fig. 1.9.2 is a ring counter circuit which uses a 

different feedback function. One advantage of this circuit is that it 

can be initialized by using the Clear input. Another advantage of this 

circuit is that it is self-starting. The counter can return to its 

normal sequence from any invalid state.

This discussion of the ring counter has been based on counters 

in which a single logical 1 level is circulated. Of course, with the 

appropriate changes, a ring counter that circulates a single logical 0 

level can be built.

The Johnson counter is implemented with a shift register and 

feedback such that the compliment of the output of the last shift register 

stage is fed back to the serial input of the shift register. A n  N bit 

shift register forms a 2N state Johnson counter, thus it is twice as 

efficient as a ring counter. Shown in Fig. 1.9.3 is a Johnson counter 

circuit along with a table describing its operation.
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The operation table illustrates that the state transitions of 

the Johnson counter are hazard-free, since only one bit changes during 

any state transition.

This counter circuit can be initialized with the Clear input, 

since the 000...0 state is a valid state. This circuit cannot recover 

from an invalid state, thus it is not self-starting.

Unlike the ring counter, the Johnson counter requires decoding 

of the shift register outputs to obtain any particular state. Any state 

or consecutive group of states can be decoded with a 2-input AND gate 

provided that both true and complemented outputs are available on the 

shift register. The state decoding functions are indicated in the operation 

table. Although there are no hazards in the Johnson counter transitions, 

there can be hazards between the decoded outputs due to delays in the 

decoding logic.

While the preceding discussions illustrate how to use the ring 

counter and the Johnson counter to generate clock signals, it is important 

to note that these two methods can also be used to generate complex timing 

signals by the use of appropriate state decoding.

Many digital applications require the designer to supply a basic 

system clock signal, which must be generated by an oscillator. Shown in 

Figs. 1.9.4 and 1.9.5 are two oscillator circuits, one RC controlled and 

one crystal controlled. Both use a single inexpensive TTL IC and a small 

number of discrete components.

r ■ j. <\ ■: ' ' a  l u i  - 1 ■ laLot is i i . • « a  ̂■ a i . 1
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The upper limit is approximately 5 MHz. This circuit is taken from the 

"TTL Applications Handbook", Fairchild Semiconductor.

The frequency of the Fig. 1.9.5 oscillator is determined by 

the crystal frequency. This provides more stable operation for the added 

expense of the crystal. The upper frequency limit is approximately 20 MHz. 

This circuit is taken from "The Electronic Engineer", May 1969.

When power is first applied to any circuit, the state of all 

flips-flops, counters, registers, etc., is random. Before operation can 

begin, everything must be in a known state, or in other words, the circuit 

must be initialized. Shown in Fig. 1.9.6 is a circuit which will provide 

an initialization signal every time power is applied or the switch is closed.

The signals in Fig. 1.9.7 illustrate the operation of the initiali­

zation circuit. The power supply is turned on and then the power supply 

voltage reaches a valid level at t^. From t^ to t^, the supply voltage is 

valid and the initialize signal is present. During this time, the initialize 

signal (ENlT) is being used to set all flip-flops to their correct state. Also, 

during this time self-starting state machines are being clocked to their 

correct sequence. At t^, the initialization period is over and system 

operation begins. The duration of the initialization period, t^, is deter­

mined by the RC product in the initialization circuit.

Many teletypes now operate with a 20 ma current loop convention. 

Thus a logical 1 = 20 m a  and a logical 0 = 0  ma. Thus, a converter is 

required to convert the TT L  levels used by the system logic to the current 

loop representation used by the teletype. Shown in Fig. 1.9.8 is a typical 

conversion circuit.
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1.10» Microcomputer Design Considerations

One important characteristic of any microcomputer system is 

its execution speed. Several measures of execution time that are commonly 

used are the state time, the cycle time and the register-to-register add 

instruction time. While these provide some indication of the execution 

speed, the only reliable method of determining how fast a microcomputer 

can perform a given task is to write a program which performs the task. 

From the execution times of the various instructions, the execution time 

of the program can be determined.

The design of a microcomputer requires consideration of both 

the hardware and software. These considerations are important in deter­

mining the amount of external logic, the ease of programming, the system 

performance and cost.

Major hardware design considerations include clock generation, 

power supply requirements and logic compatibility.

Most microcomputers require externally generated clock signals, 

although some have on-chip clocks. For on-chip clocks, the user need 

only connect a frequency controlling device such as a crystal or RC ne t ­

work. Some microprocessors require external multiphase clocks. Other 

clock considerations involve required frequency, signal rise and fall 

times, clock signal voltages and other specified timing relationships. 

Another issue is whether the microprocessor can tolerate much variance 

of these requirements from the nominal specifications. When signals 

must meet tight specifications, the clock circuitry design can become 

complicated.
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The power supply voltages required are important because each 

power supply represents a significant cost in small systems. Most systems 

contain a +5 volt supply to power the TTL logic. Systems using MOS micro­

processors often require one or two additional supply voltages. When 

selecting memory chips, the supply voltages used by the memory chips 

should be considered since often they can require another different 

supply voltage, at potentially large currents.

Logic compatibility refers to the capability of directly inter­

connecting components of different logic families within a single system. 

Such direct connections require that the signals from each device be 

compatible with the others to which it may be connected, in terms of 

both logic voltage levels and signal currents. In most cases, logic 

compatibility is referenced to TTL. In other words, a device is referred 

to as TTL compatible or not TTL compatible. Logic compatibility is 

desireable because it eliminates the need to use voltage level translators 

and current drivers. Most MOS microprocessors and memories available are 

designed to be compatible (or nearly compatible) with TTL logic voltage 

levels.

There are several system characteristics that affect the system 

software. In effect, they define the system as the programmer sees it.

Major software characteristics of microprocessors include the data word 

size, the addressing modes, the instruction set and the number of registers.

The small data word size typically used in microcomputers has 

several effects on the programmer. When the real data is such that it 

must be stored in several microprocessor data words, operations on real 

data require multiple-word microcomputer operations. This type of



operation is similar to conventional multiple precision arithmetic.

Another result of small data words is that addresses require a larger 

register size than data for efficient operation. This separation of 

address and data handling decreases the number of possible register-to- 

register transfers and can cause complications when manipulating 

addresses.

The instruction set affects the system flexibility, the amount 

of program memory needed, the ease of programming and the execution time. 

One characteristic of the instruction set is the addressing modes.

Typical addressing modes are direct, immediate, relative, indexed and 

indirect. A variety of addressing modes is necessary to allow the pro­

grammer to select among the methods throughout his program for efficient 

execution. It should be noted that many microcomputer programs are stored 

in RO M  and such programs cannot be modified during execution. The address­

ing modes must then provide adequate capability for using and manipulating 

addresses in registers.

Another important hardware feature of the microcomputer from 

the programmer's point of view is the number of registers available. 

Generally, a larger number of registers increases the efficiency of the 

computer in terms of execution time. This is because the registers can 

be used for temporary data storage and the relatively slow and cumbersome 

references to the system memory can be avoided. There are several types 

of registers. General purpose registers can be used as temporary storage 

for addresses, operands and results. Other special purpose registers may 

be used for special addressing functions or chip input/output.
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There are several other system features which are present in 

some microcomputers: stacks, interrupt capability and DMA.

Many microprocessors use a last-in-first-out stack for saving 

status during subroutine calls and interrupt processing. Before leaving 

the main program, the program counter contents and other status informa­

tion are saved by "pushing" them onto the stack. The return to the main 

program is done by "popping" the information off the stack and into the 

appropriate registers, thus restoring the original status condition. The 

stack is convenient for handling nested subroutine calls and interrupts 

in which a sequence of status savings and restorations is done. On some 

microprocessors, the stack may also be used for temporary storage by the 

programmer.

There are two methods used to implement a stack. In one method, 

the complete stack or part of the stack is implemented within the micro­

processor chip. In the other method, a register within the microprocessor 

is used as a stack pointer and part of the system RAM is used for storing 

the stack. The stack pointer register contains a memory address which is 

the current top-of-stack. To push data onto the stack, the stack pointer 

is incremented and the data is written into the memory at the address then 

indicated by the stack pointer. To pop data off the stack, the data is 

read from memory at the address indicated by the stack pointer. The stack 

pointer is then decremented. Several minor variants of this scheme are 

commonly used as well.

The use of the on-chip stack is faster because stack operations 

are accomplished with no memory references. Many microprocessors have 

been designed with on-chip stacks so they can be used in applications 

where the only system memory used is ROM.



When using stacks that are implemented with RAM, the depth 

of the stack is essentially unlimited. However, when using an on-chip 

stack, the depth of the stack is limited to some small number, typically 

16 or less. The programmer must make sure that the stack usage due to 

data storage, subroutine calls and interrupt requests that occur during 

the program execution do not exceed the capacity of the stack. When 

this happens, the stack overflows resulting in a loss of information.

In microprocessors which have on-chip stacks, some are designed so that 

the stack is accessible to the programmer. On-chip stacks may also 

have associated stack full and stack empty signals so that the depth of 

the stack can be extended by software into the system RAM.

Interrupt capability is a feature that allows some external 

d e v i c e  to signal the computer that it needs immediate servicing. Mic r o ­

processors which can be interrupted have an input called the interrupt 

request line. All the external devices which may want to interrupt are 

connected to this line. The microprocessor tests this line periodically. 

When it sees a request, it starts the interrupt process. This begins 

by saving the status of the machine, consisting of the program counter 

and any other needed registers. The status saving can be done in hard­

ware, software or a combination depending on the particular machine being 

used. After saving the machine status, the interrupt service routine is 

started. After servicing the interrupting device, the original status 

is restored and the main program processing resumes. Interrupt capability 

is needed only in situations that require fast real-time response from the 

microcomputer. However, in many applications the interrupt capability is
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a great convenience. In some cases the external conditions are slow 

enough that they can be tested periodically with software by a polling 

technique, thus eliminating the need for interrupts.

Direct memory access (DMA) refers to a system capability which 

allows high speed peripherals to transmit data directly to the memory 

without going through the microprocessor. This feature allows large 

blocks of data to be transferred at high speed and causes minimal inter­

ference with normal processing. Some microprocessors, such as the Intel 

8080, have been designed with features that allow easy implementation 

of DMA. Most microprocessors can be made to perform DMA or a "DMA-like" 

operation, however, some may require extensive additional hardware while 

those designed for DMA require less.

A DMA request disables the processor and allows the requesting 

peripheral to control the memory busses directly. The DMA feature is 

particularly critical for slow processors with fast peripheral devices 

such as disks, on the system. Even the relatively slow disk systems 

which are used with microprocessors are often too fast to be handled by 

interrupt routines. DMA capability is then essential.



2. COMPUTER CIRCUIT DESIGN

2.1. Logic Design in LSI Systems

The widespread usage of LSI integrated circuits has altered 

the role of the computer logic designer. The availability of LSI circuits 

such as microprocessors and memories have made it possible to implement 

a computer with a small number of packages. Each LSI package contains a 

large number of gates. Thus much of the logic design problem has shifted 

to the IC manufacturer. The job of a logic designer building a system 

with LSI circuits has become selecting, interconnecting, and interfacing 

the needed packages to form the desired system.

The nature of the interface logic required is dictated by the 

particular LSI circuits used and the desired system characteristics.

The flexibility in the hardware design of a system utilizing LSI circuits 

is in theinterfacing logic. In most cases, the interface is implemented 

with SSI gates and MSI functions. Currently TTL is used because of the 

large number of low-cost functions available. Thus a typical micro­

computer system consists of LSI packages interfaced with TTL logic.

The purpose of this chapter is to give the designer a basic 

understanding of TTL circuits, an overview of the MSI functions available 

and guidelines for circuit design, all which are needed for effective 

design.

2.2. TTL Circuits

Transistor-transistor logic, or TTL, is an integrated circuit 

logic family which is currently the most widely used because of high 

speed, low cost and a large number of functions available. Most TTL
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integrated circuits are identified by a 74XX Series number, which identifie 

the circuit function.

The basic TTL NAND gate circuit is shown in Figure 2.2.1, along 

with the NAND gate symbol and truth table.

The gate circuit contains the multiemitter input transistor (QI) 

and the totem-pole output stage (Q3 and Q4) characteristic of TTL gates.

The multiemitter input transistor performs the AND function on the inputs. 

The remainder of the circuit acts as an inverter. The totem-pole output 

gives the gate good drive capability because of its low output impedance 

in both logic states. This makes it effective for driving capacitive loads 

The operation of the NAND gate of Fig. 2.2.1 is illustrated by the 

following discussion. Shown in Fig. 2.2.2 is the transfer characteristic 

of a TTL gate.

W h e n  either input voltage is low, QI is in saturation, Q2 and

Q3 are off. Q4 is on. The output voltage is two diode drops below V •

As the input voltage rises, the base of Q2 also rises. When the input

voltage is .5 volts, Q2 turns on and its collector voltage drops as its

emitter voltage rises. QI goes from saturation to reverse active mode,

as Q2 goes from off to active. As the collector of Q2 drops, the output

voltage drops, since the emitter of Q4 follows its base. The gate is now

in the transition region of the curve. As the emitter of Q2 rises, Q3

turns on and becomes active. A further increase in input voltage causes

Q2 to saturate, which turns off Q4 and drives Q3 into saturation. The

output voltage is now V cp , namely the collector to emitter saturation
sat

voltage of Q3. The diode Dl is present to assure that Q4 turns off when 

Q3 saturates.
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Fig. 2.2.1 TTL NAND gate circuit
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The totem pole output shown in the NAND gate circuit is used

in almost all TTL logic, both SSI and MSI. The drive capability of the

totem pole output is an important factor in achieving high TTL switching

speeds. However, the totem pole output has an inherent problem which causes

it to generate a current spike every time the output goes from low-to-high.

Consider the totem pole circuit shown in Fig. 2.2.3. Assuming a logical

0 output, Q3 is on and saturated. Q4 is off. When the gate switches, Q4

rapidly goes from cut-off to active, while Q3 is attempting to turn off.

The turn off requires a transition from saturation, through the active

region, to cut-off. Since Q3 is initially saturated, there is a charge-

storage delay while it tries to turn off. This results in a low-resistance

path between V cc and ground for the short interval that both Q3 and Q4 are

on, which produces a current spike in the V line. The maximum value of
cc

the current spike, Icc , is given by:
max

V cc - VD1 - Vce03 - Vce04 

max R4

The current spike previously described occurs during the logical 

0-to-logical 1 output transition. A similar action occurs during the 

logical 1-to-logical 0 output transition. However, since the transition 

does not usually involve the turn off of a saturated transistor, the 

period of the conduction overlap is small and the current spiking effect 

is negligible in this direction.

Any current spikes generated appear as noise in the system and 

since many gates can be switching simultaneously this noise could result 

in signal errors. Thus the totem-pole output circuit, which is itselt 

part of the logic circuitry is a source of noise in the system. The
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Fig. 2.2.3 Totem-pole output circuit
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rather high noise immunity of TTL circuits minimizes the problems of such 

noise spikes. However, more serious problems exist in systems with mixed 

logic families. Although this current spiking cannot be eliminated, there 

are methods to reduce the effects of it on the rest of the system.

2.3. TTL Circuit Families

Standard 74XX TTL is designed for a reasonable balance in the 

trade-off between power and speed. Therefore, it is well suited for 

general purpose applications. Other families of TTL are available which 

are variations of standard TTL in that they emphasize either higher speed 

or lower power. The result is high speed logic that consumes significantly 

more power or low power logic which operates at slower speeds. A brief 

description of each of the TTL logic families is given below.

Standard 74XX TTL - This is the widest available and lowest 

priced TTL family. It also has the most functions and second sources.

The typical gate delay is 10 nsec with a power consumption of 10 mW.

Schottky 74SXX TTL - Schottky TTL is the highest speed TTL 

family available. It is made by utilizing Schottky diodes with the 

transistors inside the gate. This prevents the transistors from saturating 

and eliminates the storage time delays within the transistors. Schottky 

parts are designated 74SXX. The typical gate delay is 3 nsec with a 

power dissipation of 19 mW.

Low-power Schottky 74LSXX TTL - Low-power Schottky TTL is a 

TTL family which utilizes Schottky technology to implement gates which 

utilize Schottky technology to implement gates which are slightly faster 

than standard TTL but require only 20% of the power. This is done by
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utilizing Schottky transistors within the gate to gain speed and then 

using larger resistors which slows down the gate but also requires less 

power. Low-power Schottky parts are designated 74LSXX. The typical gate 

delay is 9.5 nsec with a power dissipation of 2 mW. Low-power Schottky 

is a relatively new technology. As more functions appear and second 

sources develop, low-power Schottky will challenge standard TTL in medium 

speed applications.

The wide range of performance capabilities allows the designer 

to optimize all portions of a system according to varying requirements.

In the future, the advantages of Schottky technology will make Low-power 

Schottky the choice in medium speed applications and Schottky the choice 

in high speed applications. All families are compatible and interface 

directly with each other. The typical characteristics of each family 

are summarized in Fig. 2.3.1.

2.4. Interconnecting TTL Logic

The majority of logic circuit interconnections consist of gate 

outputs connected to the inputs of similar gates. To accomplish such 

connections, the gate inputs and outputs must be electrically compatible.

The notation for TTL voltage levels are as follows:

V TTJ = Logical 1 input voltage level 
111

V = Logical 1 output voltage level 
OH

V = Logical 0 input voltage level 
1L

V = Logical 0 output voltage level 
UL

The relationship between these levels is illustrated by the 

diagram in Fig. 2.4.1.
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Family Gate Delay 

(nsec)

Power

Dissipation

(mW)

Max Clock 

(Mhz)

74XX 10 10 35

74LSXX 9.5 2 45

74SXX 3 19 125

Fig. 2.3.1 TTL Family Characteristics



From Fig. 2.4.1, it can be seen that the worst-case input and

output levels differ by some fixed amount in each state. In other words,

V_T is less than V and V is greater than V_„. This fixed difference 
ULi JLLi U ri I H

is called the guaranteed noise immunity. This means that any gate output

signal can be corrupted by a noise voltage equal to the fixed difference

and still be used as a reliable gate input signal. The values for each of

the TTL families is given in Fig. 2.4.2.

A n  input of a TTL gate requires current that the gate output

which is driving it must supply, either as sink current (current toward

the output) or source current (current from the output). Thus, the

number of gate inputs that can be connected to a single gate output is

dependent on the maximum amount of current the output can sink or source.

The maximum number of inputs that can be connected to the output of a

gate is called the maximum fanout. To determine the maximum fanout, the

current characteristics of the gate inputs and outputs must be known.

The notation for TTL gate current parameters are as follows.

I is the current a driver must sink for a logical 0 input.
ILi

I is the current a driver must source for a logical 1 input.
IH

I is the current a driver can sink and still maintain a 
ULi

logical 0 output.

I is the current a driver can source and still maintain a 
OH

logical 1 output.

These currents are illustrated in Figs. 2.4.3 and 2.4.4.

Thus, given these parameters, the maximum gate fanout can be

found.
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Fig. 2.4.3 Driver with logical 0 output

Fig. 2.4.4 Driver with logical 1 output
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Maximum fanout = MIN ^ O H ^ I H ^

Shown in Fig. 2.4.5 are the standard current characteristics 

of several TTL families. Shown in Fig. 2.4.6 is a fanout matrix which 

indicates how many standard inputs of a given family can be driven by 

an output of another family.

Circuit specifications for any particular IC will give the 

current capability needed to check fanout. Several TTL IC's have input 

pins which represent more than one load. This usually occurs in some 

MSI I C ’s because the input signal is fanned out directly to several gates 

within the chip.

In cases where the output is not driving similar gates, any 

type of load may be used as long as it does not exceed the current 

capability of the gate output as specified by 1^  and

It is very important to check fanout on any given design and

to eliminate violations since the consequences of exceeding the fanout

are degradation of V_ and V voltage levels causing at least loss of
OL OH

noise immunity. If the violation is severe enough, it may result in 

improper operation and damage to the gate.

A gate input with no connection is referred to as a "floating" 

input. In TTL circuitry, a floating input is interpreted as a logical 1 

input level. A floating input can be detected by measuring the voltage 

at the gate input. A  floating input will read from 1.4 to 1.6 volts.

Floating inputs are a potential source of problems and should 

generally be avoided. They can cause degradation in gate performance
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and in some cases can result in a false signal due often to coupling 

inside the IC package. Floating inputs are particularly sensitive to 

coupling.

Thus all unused inputs should be connected to an appropriate 

voltage. For a logical 0, system ground is used. For a logical 1, any 

voltage between 2.5 and 5.5 volts can be used. This can be done by 

either connecting the unused input to V cc through a 1000 ohm pull-up 

resistor or tieing the inputs to the output of an unused gate in the 

system which is wired to produce a logical 1 output. Alternatively, 

when the logic function of a gate is not affected, some logic input to 

the gate can be repeated on a floating input. This does not normally 

increase the loading of that signal in the zero state which often has 

a more restrictive fanout limit.

2.5. Tri-State Logic

Tri-State logic is a variation of TTL in which the totem-pole 

output circuit has been modified such that it can assume one of three 

states. Standard TTL can assure two output states, low-impedance logical

0 output and low-impedance logical 1 output. In Tri-State logic there is 

a third state, the high-impedance or disabled state. Shown in Fig. 2.5.1 

is a Tri-State inverter.

Circuits with Tri-State outputs have an additional input which 

is used to control the state of the output. This Enable control input 

overrides the normal gate operation. When Enable input is low, the 

disable circuit output (input to the multiemitter transistor is high and 

the gate functions as a normal TTL inverter. When the Enable input is in
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Fig. 2.5.1 Tri-state inverter circuit
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the disable state (logical 1 ), the multiemitter transistor is turned on 

regardless of the data inputs thereby turning the bottom output transistor 

off. The diode conducts thereby turning the top output transistor off.

The output is thus forced to the high-impedance state. In this state, 

both output transistors are off and the output resembles an open circuit, 

sinking or sourcing a maximum of 40 y,a. of leakage current.

The development of Tri-State logic was motivated by a major 

shortcoming of the totem-pole output. The totem-pole output prohibits 

the use of wired logic. The capability to implement wired logic is very 

useful in a bus organized system. Thus, before Tri-State logic, open- 

collector TTL gates which permit wired logic were used as bus drivers. 

These gates are two state devices whose output is either a logical 0 or 

floating. The use of open collector gates requires a passive pullup 

resistor on each bus line which reduces system speed. The pullup 

risistor pulls the bus high when all open-collector gates connected 

to the bus present floating outputs. The propagation delay of the bus 

is increased due to the RC time constant of the pull-up resistor and 

the bus capacitance. Also the number of devices that could be attached 

to the bus is decreased because of the limited drive capability of the 

open collector output.

Tri-State logic eliminated these problems by allowing gates 

with totem-pole outputs to be used in a wired logic configuration. The 

good drive capability of the totem-pole output minimizes bus delays so 

that buses with Tri-State drivers are capable of TTL speeds.

Outputs of Tri-State gates are generally tied together. Only 

one of these gates should be enabled at a time. However, some protection



62

is needed should more than one be enabled at the same time. If two 

Tri-State outputs on a common line ever become enabled simultaneously, 

there is typically a built-in current limiting process to prevent 

destruction of the gate. In this situation however, the output level 

is unpredictable.

In a bus-organized system, when Tri-State devices are used as 

bus drivers, many devices can be hard-wired to a single bus and made to 

time-share that bus. Normally, all but one output on a common bus should 

be disabled at any given time. One line of a typical Tri-State bus is 

shown in Fig. 2.5.2.

This circuit is somewhat equivalent to multiplexing, an 

essential function in bus-organized systems. This equivalence is 

illustrated in Fig. 2.5.3.

This circuit equivalence is valid if exactly one enable signal 

is logical 1 at a time. When all enable signals are logical 0, the 

multiplexer bus is a logical 0 while the Tri-State bus "floats". When 

more than one enable signal is a logical 1 , the multiplexer bus carries 

the "OR" of the corresponding data inputs, while the Tri-State bus is 

inde termina t e .

The Tri-State drivers form a bus which functions as a 

"distributed" multiplexer in the sense that the Tri-State devices may 

be located in different modules of the system. The bus wire serves as 

a distributed OR gate.

By using Tri-State gates as bus drivers and low input current 

gates as bus receivers, it is possible to connect a large number of
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devices to a single bus. The chart below gives typical characteristics 

of a Signetics 8T95, which is a High Speed Hex Tri-State buffer package, 

Since the input current requirements for these gates are small, this 

chip can function effectively as a bus driver or a bus receiver.

Bus driver

characteristics

Bus receiver

characteristics

Characteristics of Signetics 8T95

Logical 1 output current

sourcing capability (I.™)
OH

Logical 0 output current

sinking capability (Im )
ULi

Third state output 

leakage current (^0 3 )

Logical 1 input current (ITTJ)
LH

Logical 0 input current (I )
JLL

Third state input current (I
13)

5.2 m a . max

48 m a . max

40 y.a. max

40 y*a. max 

400 y,a. max 

40 y,a. max

2.6. TTL MSI Functions

TTL integrated circuits are categorized into two classes, SSI 

and MSI. SSI, or small-scale-integration, refers to packages which 

contain a small number of gates. The gates in SSI packages are typically 

not interconnected. Each individual gate performs a simple logic function 

such as NAND or NOR. MSI, or medium-scale-integration, refers to packages 

that typically contain 20-1 00 gates and perform a specific complex func­

tion. Designing systems using MSI packages reduces design time and 

effort because it avoids the repetitious design of commonly-used functions. 

Examples of available TTL MSI functions are given in Fig. 2.6.1.
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Fig. 2.6.1 TTL MSI functions

The operation of these functions is not discussed here, since 

the function name is self-explanatory.

The detailed description of MSI packages can be obtained from 

manufacturer's data sheets. Wiring constraints and behavioral properties 

are similar to thos discussed for SSI circuits.

2.7» Power Supplies and Power Distribution Wiring

In logic systems with a large package count there are several 

design guidelines normally followed to assure the proper distribution of 

power to each package.

The voltage output of all power supplied is specified along with 

a maximum current rating. No power supply should be operated with a load 

that draws more than the rated current. Each IC package in a system draws 

a specified current, denoted I r r » The total power supply load, which is the 

sum of all package currents, must not exceed the rated supply current. The 

result of overloading is a drop in power supply output voltage. While most 

power supplies are "short circuit protected", severe overloading of an 

unprotected supply can cause permanent damage to the supply. Use of "overload 

protected" power supplies is recommended to protect circuits from line surges 

and power supply failures.
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One technique used to implement power supplies is a microprocessor 

system is the use of three-terminal IC voltage regulators. The only addi­

tional parts required to implement the supply are a transformer, rectifier, 

and several capacitors. This approach is attractive because of the low cost 

involved. Regulators are available for most standard voltages and can 

supply currents up to five amps, thus they are sufficient for most m i c r o ­

processor systems. So, one approach is to have the power supply generate 

all voltages necessary and then bus the regulated voltages around the 

system. Another approach is to bus around unregulated voltage rails and 

place the regulators on each card. This is an attempt to improve regulation 

by placing the regulators closer to where the voltage is used.

It should also be noted that the use of voltage regulators solves 

the current overloading problem since most regulators have a built in 

overload detection mechanism which causes them to shut down when the 

specified current load is exceeded.

The power supply in digital systems sees a varying load since when 

a logic device changes state, the package current, I , displays significant
UVj

variations. These variations can be attributed to two distinct causes.

1. The D.C. current level, Ip p , is different for each output state. 

The current level for a logical 0 output is denoted I r r j . The current level

for a logical 1 output is denoted I„niJ.
CLri

2. A transient current variation occurs each time an output changes 

state. This is due to the current spike generated by the totem-pole output 

of TTL circuits and the current needed to charge (or discharge) the load 

capacitance. TTL power requirements thus increase, greatly during high 

frequency operation.



While some spikes on the supply voltages are inevitable, it 

is essential that the supply voltage remain as stable as possible through­

out the system during current variations.

Most voltage variation can be minimized by a technique called 

decoupling. This involves inserting capacitors between power and ground 

lines throughout the system. The capacitors tend to keep the power supply 

current load constant by storing charge to be converted to current when a 

momentary high current demand must be met.

The decoupling network, shown in Fig. 2.7.1, consists of a 

single 30 to 50 uf. capacitor and a variable number of .01 to .1 uf. 

capacitors. The large capacitor is placed directly across the power 

supply terminals and/or the power supply connection of each circuit 

card. The small capacitors are distributed throughout the system with 

approximately one capacitor for every one to six IC packages. The small 

capacitors should be the high-frequency (non-inductive) type, usually 

ceramic disc. The small capacitors suppress high frequency transients; 

the large capacitors, low frequency transients.

2.8. Noise in Logic Interconnections

In high-speed logic systems such as TTL, the interconnection 

wiring used to carry signals between packages must be done with care.

W hen this wiring is done improperly, it increases the presence of noise 

in the system and is a potential cause of signal errors. The noise 

appearing on interconnection wiring can be attributed to two independent 

phenomena, crosstalk and reflections.
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Crosstalk refers to electrical coupling that often occurs 

between two adjacent conductors. Thus coupling is caused by mutual 

capacitance and mutual inductance that exist between the conductors.

When this coupling is strong enough, a signal level change on one con­

ductor will also appear falsely on the adjacent conductor.

TTL logic is a low impedance system, therefore most of the 

signal crosstalk noise occurs by mutual inductance, rather than mutual 

capacitance. The reason for the relatively large noise immunity to 

capacitively coupled noise can be shown with a simplified model. Consider 

Fig. 2.8.1, where Rout is the output impedance of a TTL gate and Cco is 

the capacitive coupling between the signal line and some noise source.

When transient noise is coupled onto the signal line, it has

a duration related directly to the time constant R C . I n  the case
out coup

of TTL logic, which has a low output impedance in both states, R Qut is 

usually small and thus the duration of the crosstalk noise is short. If 

the duration of the noise is short enough, it may be ignored by the input 

of gate B. Thus in this way, TTL gates are relatively immune to capaci­

tively coupled noise. This model is a simplification in that a distributed 

coupling is being modeled as a lumped capacitor, however it does illustrate 

the way in which the low output impedance improves capacitive crosstalk 

noise immunity.

Since most of the crosstalk noise in TTL circuits occurs by 

mutual inductance, the wiring should be done such that the mutual induc­

tance, the wiring should be done such that the mutual inductance between 

lines is minimized. Mutual inductance is a function of the spacing
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Fig. 2.8.1 TTL Noise immunity circuit model



between two conductors. Thus one method of reducing it is to avoid 

placing leads adjacent to each other. In situations where leads must 

be adjacent, such as bussing, another technique is commonly used. The 

mutual inductance is reduced by running the signal line in close 

proximity to a ground line. This reduces the amount of flux in the 

field around the noise sourcing wire and therefore reduces the coupling 

as well. This technique is used for coaxial cable, flat cable and 

twisted pair leads.

Reflections can occur on a TTL interconnection when the gate 

driving that line changes state. These reflections produce transient 

voltage variations originating at both ends of the line. The condition 

for reflections to occur is that the length of the wire (and therefore 

the propagation delay of the wire) be long compared to the signal rise 

time. If the wire is short, the reflections still occur but they occur 

during the rise time and therefore are not a problem. For TTL wiring, 

the maximum wire length for which reflections may be ignored is about 

12". Longer wires behave not as simple wires, but as transmission lines

Every transmission line is described by a parameter called its 

characteristic impedance, denoted Z^. is defined as Jh/C where L

equals the inductance per length and C equals the capacitance per length 

Reflections occur on a transmission line whenever it is terminated in an 

impedance not equal to its characteristic impedance. In TTL wiring, 

reflections occur because the line is terminated by the gate input 

impedance, which is typically 10^ ohms. This impedance creates a m i s ­

match since the characteristic impedance of the wire is typically 150 

o h m s .



In addition to reflections at the receiving end of the line, 

the low output impedance of TTL devices creates a mismatch which causes 

reflections to occur at the driving end also. Reflections from both 

ends of the line can result in a voltage variation called ringing.

Shown in Fig. 2.8.2 are the decaying oscillations about the final steady- 

state value that are characteristic of a ringing signal.

Since ringing is a transient effect, one obvious solution to 

the problem of ringing is to slow the system down, therefore not looking 

at the signal until the ringing has sufficiently died down.

Another method of reducing reflections is a procedure called 

termination. Termination involves placing an impedance equal to the 

characteristic impedance at one or both ends of the line, since no 

reflections occur at a matched end. Termination impedances are usually 

implemented with discrete resistors. To use termination techniques 

effectively, the line must have a known and uniform characteristic 

impedance. There are two approaches to termination, series and parallel. 

Series termination places the matching impedance at the driving end of 

the line. Parallel termination places the matching impedance at the 

receiving end of the line.

Fig. 2 .8.3 illustrates a configuration commonly used in parallel 

termination.

Resistors Rl and R2 are located at the receiving end of the 

line. The value of the terminating resistance is the parallel combination 

of Rl and R2. Thus Rl and R2 are selected such that their parallel 

combination is equal to Z q , the characteristic impedance of the line.
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Two resistors are used to produce the termination impedance 

so that the termination can be accomplished without using an additional 

power supply voltage. Shown in Fig. 2.8.4 is the parallel termination 

circuit along with the Thevenin equivalent.

The Thevenin equivalent circuit illustrates that the termina­

tion could be accomplished with a single resistor R,̂  and a single power

supply voltage V . However, in most small systems, the cost of obtain- 
TH

ing the additional power supply voltage is not justified.

The next consideration is determining the values of resistors

Rl and R2. There are two constraints needed. One constraint can be

set by specifying V ^ .  For TTL circuitry, V  should be equal to the
i H  I H

logical 1 output voltage, which is typically 3 volts. The other con­

straint can be set by specifying From the transmission line 

considerations given in this section, R,^ should be equal to Z q .

Thus the two constraints for determining Rl and R2 are:

M . . . U *  = z / >
Rl +  R2 0

R2 V = 3
Rl +  R2 cc

Therefore, given Z Q , Rl and R2 are determined.

A n  advantage of parallel termination is that it allows d i s ­

tributed loading, thus receivers can be distributed the entire length 

of the line. A  disadvantage of parallel termination is the large 

current that flows through Rl when the driver output is a logical 0. 

The power supply must be capable of supplying this additional current
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and the gate driving the line must be capable of sinking this a d d i ­

tional current.

Parallel termination is accomplished by selecting Rl and R2 

to match the characteristic impedance Z q . Shown in Fig. 2.8.5 is a 

chart which gives the values of Rl and R2 for values of Z q to to 

360 ohms. The graph is constructed by simultaneously solving the two 

constraints given above.

After selecting Rl and R2, the bussing circuit should be 

checked to verify that the drivers and receivers are not operating 

under conditions that exceed their specifications.

The bus drivers must be capable of driving a load that co n ­

sists of all the receiver inputs in addition to the current through the 

termination resistors. The worst loading occurs when the driver output 

is a logical 0. As the value of Rl decreases, this loading increases. 

The value of Rl and R2 which give a perfect impedance match may result 

in currents that exceed the capability of the bus driver. In that 

case, values of Rl and R2 are used which are as close to proper termina­

tion as possible without exceeding the capability of the bus driver.

W hen terminating a line, a partial match is better than no match at all. 

A  partial match ma y  reduce the magnitude of the reflections to an 

acceptable level. The goal is to obtain as close a match as the circuit 

conditions allow.

Series termination requires a resistor between the driver and 

the transmission line, as shown in Fig. 2.8.6. The receiving end has 

no termination resistance. The series resistor value should be
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selected so that when added to the driver output impedance, the total 

resistance equals the characteristic impedance of the line.

Any reflections along the line that return to the source 

are absorbed. Series termination is also useful for controlling 

overshoot and undershoot that may damage receiving devices. An 

advantage of series termination is the low power dissipated in the 

termination. A disadvantage is that all the receiving gates must be 

located at the end of the line, thus receivers cannot be distributed 

along the bus. Another problem with series termination is that when 

the value of the resistor becomes large, the resultant voltage across 

that resistor degrades the noise immunity.

Series damping is similar to series termination except that 

in selecting the resistor value, no attempt is made to match the 

characteristic impedance of the line. Instead, a small (27-47 ohm) 

resistor is inserted between the driver and the transmission line, as 

shown in Fig. 2.8,7. This gives a partial match and reduces over­

shoot and undershoot. This technique is useful when the characteristic 

impedance of the line is unknown or the voltage drop across a proper

R cannot be tolerated.
s

When building logic circuits in a breadboarding situation, 

the single most important wiring practice to follow is the use of 

short leads. Always make leads as short as possible and try not to 

exceed 12" in high speed circuitry. Another practice to follow is to 

avoid running wires in neat, parallel bundles. Instead, use the more 

random point-to-point wiring. These practices will minimize both 

crosstalk and reflections.
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In situations where longer connections are needed, such as 

bussing between circuit modules, termination is needed to assure 

reliable operation. Parallel termination is necessary when distributed 

receivers along the bus are required. For a unidirectional bus, 

termination is done at the receiving end, while for a bidirectional 

bus, both ends are terminated. The use of termination implies the 

bus cable has a uniform characteristic impedance. Flat cable is 

currently the most widely used interconnection in bussing applications 

because it has a convenient variety of available connectors and has 

a uniform characteristic impedance when used in the GROUND-SIGNAL- 

GROUND configuration, which means every other conductor is grounded 

for signal isolation. Terminations are applied to the SIGNAL lines 

only. Shown in Fig. 2 . 8 .8 is a table of the properties of Scotch- 

Flex flat cable.

In practice, the most common termination is the parallel 

termination with R^ = 3 3 0 ^  and R^ = 220^. These values are pro- 

partionately scaled upwards when the driver cannot sink adequate 

current. If bidirectional bus drivers have adequate current sinking 

capability, terminations are used at both ends of the line rather than 

one. Note further that ground isolation of flat cable signals may 

be omitted between adjacent signals such that neither one changes 

state near the time that the other is sampled by any receiver, i.e. 

if it is assured that any cross-coupling effects will have died out 

whenever a signal value is required to be stable.



TYPICAL PROPERTIES OF SCOtChffeX BRAND FLAT CABLES
3M Part 
Number 3350 /__ 3365 /__ 3401/28 3306 /__ 3451/24 3405/28

3405/36 3380 /__ 3469 /__ 3476 /__

Insulation
Material Polyvinyl Chloride (PVC) U.L. Rated FR-1 Polyvinyl Chloride (PVC) U.L . Rated FR-1

Color Gray Gray

Edge Marking Red None Red Green Red Black

Center
Spacing

050"
(1.27 mm)

.0625"
(1.59 mm)

.075" 
(1.91 mm)

.050" 
(1.27 mm)

Conductor
Solid

Copper
Stranded

Copper
Solid

Copper
Stranded

Copper
Solid

Copper
Stranded

Copper

Conductor
Size 30 AWG

28 AWG 
(7*36) 26 AWG

24 AWG 
(7x32) 30 AWG 28 AWG 

(7x36)

Conductor
Quantity

10
14
16
20
24
26
34
40
50

10
14
16
20
24
26
34
40
50

28

10
14
16
20
24
26
34
40
50

24
28
36

40
46
50

14
16
20
26
34
40
50

20
26
34
40
50

Impedance 125 ohms 105 ohms 95 ohms 85 ohms 100 ohms 75 ohms 65 ohms

Capacitance 12 pF/ft. 
(39 pF/m)

15 pF /ft. 
(49 pF/m)

14 pF/ft. 
(46 pF/m)

16 pF/ft. 
( 5 2 pF /m )

13 pF /ft 
(43 pF/m)

24 0 pF /ft. 
(78 7 pF/m)

29 0 pF/ft. 
<95 1 pF/m)

Inductance 0.23 pH/f«. 
(0.75 pH/m)

0.20 pH/ft. 
(0.66 pH/m)

0 16 pH/ft. 
(0.52 pH /m)

0  17 pH/ft. 
(0.56 pH/m)

0.17 pH/ft. 
(0.56 pH/m)

0.20 pH /ft 
(0 66 pH/m)

0.14 pH/ft. 
(0.46 pH/m)

Propagation
Delay

1 42 ns/ft. 
(4 66 ns/m)

1.40 ns/ft. 
(4.59 ns/m)

1.42 ns/ft. 
(4 66 ns/m)

1.29 ns/ft. 
(4 .23 ns/m)

1.33 ns/ft. 
(4.36 ns/m)

1.68 ns/ft. 
(5.51 ns/m)

1 65  ns/ft. 
(5.41 ns/m)

Insulation
Resistance

> 1 0 '0 ohms/ 
10 Ft. (3 m>

>109 ohms/ 
10 Ft. (3 m)

Voltage
Rating 300 VRMS 300 VRMS

Temperature
Rating

-4 “F to  +221 “F 
(-20“C to  +105“Cl

-4®F to  +221 °F 
<-20°C to +105°C)

U.L. Style 
Number 2651 2682

Fig. 2.8.8 Properties of Scotch-Flex flat cable
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2.9.0 TTL/MOS Interfacing

Many systems contain a combination of TTL and MOS logic. 

These systems require that some TTL outputs drive MOS inputs and 

some MOS outputs drive TTL inputs. Most MOS integrated circuits are 

now built with inputs and outputs that are compatible (or nearly 

compatible) with TTL voltage levels, thereby allowing direct inter­

connection and eliminating the need for level conversion circuits.

In situations where the signals are not compatible, an interface 

circuit must be used.

Whenever using MOS integrated circuits, it is good practice

to check the V _ T , V , V , and V specifications. Often MOS inputs 
OL OH IL IH

and outputs that are specified as "TTL compatible" are not truly so.

True TTL compatibility means that these specifications will be the

same as the TTL counterparts. An example of this is the Intel 8080

which has MOS inputs which have a V specification of 3.3. Since
lH

TTL only guarantees a V of 2.4, the 8080 may not receive a logical
OH

1 when the TTL gate is driving in a valid logical 1 level.

The input impedance of an MOS gate is mainly capacitive. 

Thus, the input current is small and the only effect on the TTL gate 

driving in is increased load capacitance which can increase the rise 

time.

Next consider an MOS output driving a TTL gate. MOS outputs

are not well suited for supplying the drive current (ITtr, ITT)
lrl LLi

required by TTL inputs. The current drive capability of an MOS output 

is proportional to the size of the MOS devices in the output stage.
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Therefore, the current drive is designed to be very small and even 

most TTL compatible MOS outputs have a fan-out of 1 standard TTL 

load. Often, MOS outputs are interfaced to Low-power Schottky TTL 

since it requires much less drive current.

In many systems MOS inputs and outputs are connected to a 

bus. This requires that the MOS outputs drive the bus, i.e., both 

the AC and the DC load. The DC load consists of the input currents 

of the gates connected to the bus and the leakage currents of the 

three-state outputs connected to the bus. The AC load consists of 

capacitance created by the devices on the bus, along with the 

capacitance of the interconnection. The AC load can be calculated 

using the following:

TTL input 5=pf.

PNP TTL input=10 pf.

Three-state output=5 pf.

PC trace 3=pf/inch

This gives the total AC load seen by the output. If this 

is greater than the specified load, the effect is an increase in 

propagation delay. The amount of delay is found by derating according 

to the specifications of the MOS output. When either the DC loading 

or the decrease in speed is unacceptable, the problem can be solved 

by using TTL bus drivers.
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Wiring Guidelines Summary

1. Follow TTL Loading Rules to avoid problems caused by exceeding 

the fanout capability of a gate. (Section 2.4)

2. Avoid floating inputs by tieing unused inputs to the appropriate 

levels. (Section 2.4)

3. When using MSI functions, check the loading for each input pin, 

since it often may represent more than 1 standard TTL load.

(Section 2.6)

4. Flip-flops should not be used to drive long lines because 

reflections may cause unwanted transitions to occur in the 

flip-flop.

5. Check that the power supply current capability can match that 

needed for the system being powered. Also, make sure there is a 

low impedance path between the power and ground pins on each 

package and the corresponding power supply terminal. (Section 2.7)

6 . Decouple the circuit by placing one 30 to 50 M-f capacitor across 

the power supply connection to the circuit board. In addition, 

place one .01 |J-f ceramic disk to other suitable by-pass capacitor 

across the power and ground lines for every one to six IC's in 

the system. (Section 2.7)

7. When wiring signal lines, use short leads. Do not run leads in 

parallel bundles, use point-to-point wiring. For long lines where 

reflections are a problem, use some form of termination. (Section 2.8)

8 . When using flat cable use GROUND signals to isolate signals for 

which cross-coupling cannot be tolerated. (Section 2.8)
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3. MEMORY

3.1. Introduction to Semiconductor Memory

Semiconductor memory refers to a class of integrated circuits 

in which a large-capacity memory has been fabricated on a single chip. 

Advances in technology have produced semiconductor memory which is 

more attractive in both price and performance than previous types of 

memory, such as magnetic cores. In addition, semiconductor memory 

possesses unique properties that have made it applicable in situations 

where previous types of memory could not be used.

Memory was one obvious application of LSI technology due to 

its regular structure and was therefore one of the first LSI c i r ­

cuits developed. After semiconductor memory was developed there was 

a need for additional systems to utilize the memory. Some people 

believe that the original reason for introducing the microprocessor 

was to create a market that would support the sale of semiconductor 

m e m o r y .

Semiconductor memory is an essential component in m i c r o ­

computer systems. The development of semiconductor memory and m i c r o ­

processors made possible the realization of low-cost microcomputers.

The system memory should receive special attention in the design of 

any microcomputer, since memory cost is usually a significant part of 

the system cost. This is easily seen since a system usually contains 

a single microprocessor whose operation requires a memory system that 

contains many memory packages.
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Semiconductor memory is usually made by fabricating an array 

of 1 -bit storage circuits, called memory cells, on a single chip.

The memory cells are circuits which are usually implemented with 

standard bipolar and MOS logic families. In addition, other cir­

cuitry needed to read and write the memory cells, such as address 

decoders and data buffers, are also designed into the chip. The 

ability to place the address decoder within the memory chip is 

essential because the use of external address decoding would require 

a prohibitively large pin count on the memory chip package.

The above discussion reveals two basic advantages of semi­

conductor memory. Since the circuitry on the memory chips is imple­

mented with a standard logic family, the memory chips possess 

compatibility with the logic that forms the rest of the system which 

allows simple interfacing to the remainder of the system. Another 

advantage of semiconductor memory is the placement of circuitry such 

as address decoders and data buffers on the chip. Because of this, 

the memory system design is simplified and package count is kept to 

a minimum. Individual memory chips are easily interconnected to form 

memory systems.

3.2. Random Access Memory

Random access memory (RAM) is memory which has the charac­

teristic that the time needed to execute a memory operation is inde­

pendent of the memory address. An additional property, often 

associated with the term RAM, is that both read and write operations 

must be done in times independent of the address. In operation, the



data is written into a memory cell at a fixed address location specified 

by the memory address provided. The same data is retrieved by reading 

the memory cell at the same memory address. The data does not move 

from cell to cell inside the memory. There are two technologies 

commonly used to implement RAM's: bipolar and MOS.

The structure of a typical static RAM chip is shown in 

Fig. 3.2.1. The address decoders select one cell from the memory 

array to be operated upon by decoding the address inputs A ^  to A^

The READ/WRITE line controls the mode of operation (read if 1, write 

if 0). In the read mode, the contents of the addressed memory cell 

appear at the data output after a delay equal to the access time if 

CHIP SELECT is low. In the write mode, the data appearing at the data 

input is written into the addressed memory cell if CHIP SELECT is low. 

Notice that no memory operations occur when CHIP SELECT is high. In 

this state, the DATA OUTPUT pin is normally at a high impedance state. 

Such three-state DATA OUTPUT pins of several memory chips 

associated with distinct addresses can be tied together for expanded 

memory. Also, there are timing relations between the various signals 

that must be observed for proper operation.

One inherent property of semiconductor RAM is volatility, 

i.e., stored information is lost when the power is removed. This is 

a serious drawback in some applications. In cases where the loss of 

data due to accidental power removal is unacceptable there are several 

possible solutions. One solution is to sense when the power supply 

voltage begins to drop and at that time branch to a routine then 

places the contents of RAM in some nonvolatile storage such as disk.
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Another solution is based on the fact that MOS RAM memory power 

requirements are much smaller when in the standby condition than 

when operating. Thus the solution is to sense when the power supply 

voltage begins to drop and switch to an alternate power source such 

as batteries. The batteries can usually supply the standby power 

requirements needed for the memory to retain its data. This 

technique is called "battery back-up".

Bipolar technology is familiar to most logic designers 

since it is the technology used to build TTL and ECL integrated 

circuits. There are three basic components which can be integrated 

with bipolar technology: transistors, diodes and resistors. All 

circuitry on bipolar integrated circuits is based on these three 

components.

A bipolar memory cell is simply a cross-coupled transistor 

flip-flop circuit which has been redesigned for integrated circuit 

fabrication. Bipolar memories are faster than MOS. However, they 

are more expensive and consume more power. Bipolar memory also has 

a lower packing density than MOS, thus there is less logic per unit 

chip area. One major reasons for this is the isolation that must 

exist between each individual component on a bipolar chip. A common 

method of isolation uses a reverse-biased PN junction. This method 

has two drawbacks. It requires large areas for the isolation 

junctions and the reverse-biased junctions have large capacitances 

which degrades the switching time. The packing density is being 

improved as new isolation techniques are discovered.
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The characteristics of bipolar RAM make it ideal for high- 

speed-small capacity memory applications.

MOS technology is based on the MOS transistor as the primary 

circuit device. There exists two types of MOS devices, P-channel, or 

PMOS and N-channel, or NMOS. Early circuits were implemented with 

PMOS since it was easiest to fabricate reliably. However, since the 

fabrication problems associated with NMOS have been solved, NMOS is 

preferred because it is faster and TTL compatible.

MOS technology is attractive because it is relatively easy 

to lay out and requires fewer steps to fabricate than bipolar. In 

addition, MOS gates are more powerful in terms of logic capability.

When compared to bipolar, MOS provides much denser cir­

cuitry because component isolation is not needed. Power dissipation 

is much lower. However, the speed is much less. The slower speed is 

due to the high impedances of MOS devices and the parasitic capacitances 

present in MOS circuits.

The characteristics of MOS, namely dense circuitry and low 

power dissipation make it attractive for large capacity, low cost LSI 

memories.

There are two types of RAM cells in MOS technology, static 

and dynamic. Static cells are made with cross-coupled flip-flops. 

Dynamic cells make use of the capacitance of the MOS transistor by 

storing information as charge on this capacitance.



3.3, Read-only Memories

Read-only memories (ROM's) are memories in which each 

location contains fixed data. The ROM is actually a form of RAM, 

since every location must have a fixed access time. Since ROM's do 

not have the write capability, the circuitry is much simpler than 

that for RAM's. This allows ROM's to have a much higher density than 

RAM's. There are two types of ROM's. One type is that which is 

programmed during the fabrication process. The last step in p r o ­

cessing is to form a metalization layer defined by a mask. This mask 

is customized for each user and is made such that it fixes the contents 

of the ROM. In this type of ROM, the user cannot alter the contents. 

There is another type of ROM in which the user may alter the contents 

of the ROM. In these cases, the write operation is very slow and 

requires the use of special programming hardware. ROM's which can be 

altered (programmed) after fabrication are called Programmable Read- 

Only Memories (PROM's). These are useful because they provide the 

user the flexibility to alter the contents of the ROM. Both bipolar 

and MOS technologies are used to implement ROM's. Bipolar ROM's are 

typically small and fast, while MOS ROM's are large and relatively

slow. ROM's are typically more than one bit wide, usually 4 or 8 

bits wide.

3.4. Memory System Design

Memory system design consists of two steps. The first step 

is selecting the appropriate memory chips. This is done by considering

94
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the intended application along with such factors as access time, cycle 

time, power dissipation, the number of power supply voltages, logic 

compatibility, and cost. The second step is designing the system by 

interconnecting an array of memory chips and any additional logic 

needed to form a working memory system. Included in this step is the 

interfacing to the processor.

Memory system design is greatly simplified by the character­

istics of the memory chips themselves. One important characteristic 

is the inclusion of logic such as decoders and buffers within the chips 

Another important characteristic is the sue of Tri-state outputs on the 

memory chips. Such outputs are enabled by the chip enable input signal 

This greatly simplified the interconnection of individual memory chips.

Memory chips can be classified as either static or dynamic, 

which refers to their method of storing information. In static 

memories, the data is stored in flip-flops. In dynamic memories, the 

information is stored as charge on the parasitic capacitance of an 

MOS transistor. However, due to leakage, this charge can escape 

resulting in a loss of information. Thus dynamic memories must be 

periodically refreshed. Thus, dynamic memories require additional 

control logic to provide the refresh.

Dynamic memories do have several advantages. One is cost: 

dynamic memories typically cost 33% less than equivalent static chips. 

Another advantage of dynamic memories is density, i.e. dynamic RAM's 

have a four to one capacity advantage over static chips. In small 

systems requiring less than 4 K  of RAM static memories are probably
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preferred because of the simplicity. In systems requiring greater 

than 4 K, the dynamic RAM's become an attractive alternative because 

they are more cost-effective. This is because most of the overhead 

logic required in memory systems, such as latches, bus receivers, bus 

drivers, parity checkers and parity generators are common to both 

static and dynamic systems. In dynamic systems, the logic to control 

refreshing, which typically consists of a counter, multiplexer, 

oscillator, shift register and clock driver are shared by the entire 

memory and add little cost to a large memory system when compared to 

the cost advantage of the dynamic RAM chips themselves. The memory 

itself, however, is unavailable to the system while it is being 

refreshed. Normally, this results in very little, if any, performance 

degradation. However, it can be a problem in real-time or high- 

performance applications.

Furthermore, most static RAM's require only a single TTL 

compatible power supply. In addition, the design is relatively 

straightforward. Dynamic RAM's usually require several power supply 

voltages. The design and debug of dynamic memory systems is more 

complex than static memory systems and can pose problems for the 

novice system designer. Some microprocessors have memory interface 

chips specifically designed to control dynamic memories and simplify 

the design.

Typically, RAM chips are one bit wide. When designed for 

words that are K  bits wide, the memory system contains K memory chips 

in parallel with suitable control logic.
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The block diagram of an example memory module is shown in 

Fig. 3.4.1. This is a diagram of a 1024 by 8 memory card implemented 

with 1024 by 1 bit RAMs (such as the Intel 2102). In other words, 

each card has 1024 words where each word is 8 bits wide. The card 

assumes 16 bit addresses and 8 bit data.

The operation of the memory card is straightforward. The 

memory operation begins by storing a 16 bit address in the address 

latch. The 10 low-order bits are connected by a common bus to all 

memory chips. The remaining 6 high-order bits are fed into a comparator. 

The other input to the comparator comes from a switch register. This 

6 bit switch register is set to a bit pattern which established the 

high order address bits pattern which this card recognizes. When 

the compare between the high order memory address and the switch 

register indicates a match, the card is selected and the memory chips 

on the card are enabled. To complete a read operation, the memory 

chips are cycled through a read and then the data is gated onto the 

data bus through Tri-state buffers. The Enable on the Tri-state 

buffers is also controlled by the comparator output. To complete a 

write operation, the memory stores a 8 bit data word into the Write 

Data Latch and then the memory chips are cycled through a write.

A  memory system implemented with this type of card is 

partitioned into equal size segments called modules. The size of a 

module is the capacity of one memory card. Thus the memory address 

consists of two bit fields as shown in Fig. 3.4.2.
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The high order bit field selects a particular module and the 

low order bit field selects a location within the selected module.

Shown in Fig. 3.4.3 is a memory map of this system.

It can be seen that the switch register setting maps the 

memory module into a particular 1 K space. Thus by using the appro­

priate switch settings on the memory cards, a 64 K x 8 memory can be 

implemented.

With this type of memory card, memory system expansion is 

very simple, up to a maximum size of 64 K  x 8. The easy expansion is 

facilitated by the use of Tri-state buffers which provide modularity.

To add memory cards, simply daisy-chain the control signals and data 

bus to the new card. Then set the switch register to map the new 

memory card into an unused module.

3.5. Microcomputer Memory Systems

The amount of memory required in microcomputers varies widely 

according to the application. Almost all systems require some n o n ­

volatile memory, such as ROM, to store initialization routines which 

are executed when the power is first applied. The amount of RAM 

required varies from none, in which case the ALU register file and on- 

chip microprocessor stack serve as data storage, to relatively large 

amounts (greater than 4 K ) .

One important characteristic of the use of memories in 

microcomputers is typically low utilization, i.e., the memory is used
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only a small portion of the time. Low utilization is particularly 

pronounced when the memory and microprocessor are implemented with 

similar technology. During the execution of an instruction, micro­

processors typically execute three nonmemory cycles for every memory 

cycle resulting in a memory utilization of only 257o.

Memory operations are typically performed in a single cycle, 

since memory cycle times and processor cycle times are approximately 

equal. Thus a "Read cycle" sends out an address to the memory early 

in the cycle and reads in the data at the end of the cycle. A  "Write 

cycle" requires one or two microcycles, depending on the bus structure. 

A single bus structure requires two cycles. One cycle, the "Address 

cycle", is used to send out the address and then another cycle, called 

the "Write cycle", is used to send out the data. In a two-bus 

structure, this is done in a single "Write cycle" by sending out both 

the address and data in the same cycle.

Shown in Fig. 3.5.1 is the machine cycling for a single bus 

processor such as the IMP-16. The single bus requires that address 

and data be multiplexed within a bus cycle.

The read cycle, which requires one bus cycle, is shown in 

Fig. 3.5.1(a). Early in the cycle, the memory address is placed on 

the bus and an output strobe is supplied which causes the address to 

to loaded into a register within the memory. The memory then reads 

this address and the data is enabled onto the bus with the input 

timing strobe. The processor reads in the data during this period.

The write cycle, which requires two bus cycles, is shown in Fig. 

3.5.1(b). During the first cycle, the address is placed onto the
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bus and an output strobe is supplied which causes the address to be 

loaded into a register within the memory. During the second cycle, 

the data to be written is placed on the bus and an output strobe is 

supplied which causes the data to be loaded into a register within 

the memory. The data is then written.

In the case of a two bus processor, the cycling is similar, 

but without bus multiplexing.

The memory system contains interface logic which utilizes 

control signals sent from the microprocessor. There are typically 

two types of control signals. One type, called flags, are set at the 

beginning of the cycle to indicate the type of cycle, such as Memory 

Read or Memory Write. The other type of signals needed are timing 

strobes, which indicate the actual period within a particular cycle 

that a latch or buffer driver connected to the bus should be enabled. 

Shown in Fig. 3.5.2 is a functional diagram of a memory interface, 

showing how signals from microprocessor are used.

There are several criteria for selecting a memory chip.

One obvious criterion is cost. In terms of performance, the criterion 

is the memory access requirements of the microprocessor. In other 

words, the time between when the memory address is sent out and when 

the microprocessor expects to receive the data back. To avoid slowing 

down the microprocessor, the memory chip selected should have an 

access time less than or equal to the memory access time of the micro­

processor. However, more important than the chip access time is the 

memory system access time. This includes the memory access time, 

plus additional delays, such as bussing propagation delays and inter-
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face logic propagation delays. It is really the system access time 

that must meet the memory access requirement of the processor.

Depending on the memory system access time, the mic r o ­

computer system can be operating as either processor limited or 

memory limited. In the processor-limited region, a faster memory 

cannot improve performance, since the system is already running at 

maximum speed. In the memory-limited region, the run-time is sensitive 

to memory system access time. It is also a function of memory 

utilization. Shown in Fig. 3.5.3 is a chart which illustrates the 

relationship between memory system access time and performance, 

expressed as run-time.

In Fig. 3.5.3 when memory access time exceeds t Sy S the 

performance of the microprocessor begins to degrade. The variable 

X  is the memory utilization. The Run Time is given by

RUN TIME = (1-X) +  X(MAX(l,t ))

Many microcomputer applications permit very slow execution 

while still accomplishing the specified task. In such applications, 

the designer may be able to lower the memory cost by using slower 

memory. Slower memory is defined as any memory whose access time is 

such that is does not meet the requirements of the microprocessor 

running at full speed. Many microprocessors support this type of 

operation, which essentially allows the microprocessor to pause in 

the middle of a memory operation, until the operation is complete.

This is typically done with an external input to the microprocessor 

called the READY line. The memory system controls the READY line.
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During a memory cycle, the microprocessor outputs an address (and data 

for writes) to the busses and then tests the READY line. The memory 

system pulls down the READY line. The microprocessor tests the READY 

line and remains paused as long as it remains low. When the memory 

operation is complete, the memory system raises the READY line and the 

microprocessor continues execution.

3.6. Logic Implemented with ROM's and PLA's

In applications where high speed is not essential, ROM's and 

PLA's (Programmable Logic Arrays) can be used to implement logic 

functions. Both ROM's and PLA's generate logic functions using AND-OR 

structures. Thus, both possess an array of AND gates and an array of 

OR gates. The AND gate array generates product terms of the input 

variables and the OR gate array generates output functions by ORing the 

appropriate product terms. The ROM and PLA differ in the level of 

programmability. The ROM is characterized by a programmable OR gate 

array, while the PLA has both programmable AND gate and OR gate arrays. 

This leads to the result that a ROM is simply a special case of a PLA.

ROM's can be used to implement any function directly as a 

sum of minterms. This is accomplished in the following manner. Shown 

in Fig. 3.6.1 is a 3-bit address decoder. The address decoder accepts 

the three address bits as inputs and generates eight outputs, where 

each output corresponds to selecting one of eight possible memory 

addresses. The address decoder can also be viewed in a different 

manner, that of a minterm generator. Assume each of the address inputs 

is a logical variable, as shown in Fig. 3.6.2. Then each of the outputs



A.

A;

A

A.

1 ^ 0  

r>A 2Ai

A-
a :
a ;

A
A
5

o
1 3 3

Memory
Address

0

F P - 5898

Fig. 3.6.1 Address decoder





corresponds to one of the eight possible minterms of the input variables.

N
In a ROM, the address decoder is complete, that is it generates all 2 

possible minterms of the N input variables.

Thus in a ROM, the address decoder is the AND gate array and 

the resulting product terms generated are all possible minterms of the 

input variables. There is thus no need to program the AND array in a 

ROM. The OR gate array consists of a number of output function lines, 

where each line serves as a distributed OR gate. Each output function 

is implemented by ORing the desired minterms by forming a connection 

between each selected minterm line and the output function line. The 

connections between the minterm lines and the output function lines 

are formed during the process of programming the ROM. Thus in a ROM, 

the AND gate array is fixed and the OR gate array is programmable.

Shown in Fig. 3.6.3 is the symbolic internal structure of a typical 

ROM.

Using a ROM as logic has one disadvantage. To implement a

function of N variables requires a ROM whose memory size is proportional

N N
to 2 . To implement K  functions of N variables requires a 2 x K  bit

ROM. Thus the ROM size is very sensitive to the number of input

variables. This fact can make the ROM very inefficient in certain

applications. For example, to make a 4 stage adder (with 9 inputs and

5 outputs) requires 29 x 5 = 2560 bits of ROM. This same function can

presently be made in a single dedicted MSI package without use of ROM.

The PLA can be used to implement any sum-of-products function

expression. The PLA is similar to a ROM, with the major difference being

the AND gate array. In the case of a ROM, and AND gate array is an

Ill
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address decoder which generates all possible minterms of the input 

variables. In the case of a PLA, the AND gate array is programmable.

In other words, the AND gates can be programmed to recognize any 

product term of the input variables. There are two reasons why the PLA 

allows a reduction in the number of AND gates needed as compared to a 

ROM. One reason is that the PLA can be programmed to generate only 

needed product terms. Another reason is the fact that the PLA allows 

arbitrary product terms, thus a single product term gate in a PLA can 

replace several minterm product term gates in a ROM. The OR gate array 

in a PLA operates as in a ROM. Thus to use a PLA, the needed product 

terms are generated by programming the AND gate array and the needed 

functions are formed by programming the OR gate array. Shown in 

Fig. 3.6.4 is a typical PLA structure.

N
It can now be seen that a ROM is simply a PLA with 2 unique 

product terms. The PLA has an advantage in that there is no necessary 

correlation between the number of inputs and the size of the PLA, 

except for the number of input pins and the size of each AND gate.

This allows a PLA to use input variables without becoming excessively 

large.

The PLA is ideal for LSI implementation of logic. It has a 

regular structure which permits easy layout and fabrication. It also 

has the advantage of reducing the gate count to a minterm. This tends 

to minimize the chip area needed, which is always an important goal 

in chip fabrication.

Standard N variable PLA chips, available as MSI components, 

contain vastly fewer than 2^ AND gates, e.g. 48 AND gates with N = 14.
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Thus only a very few of the 2 functions of N variables are imple- 

mentable in a single chip. However, many useful functions of N 

variables are implementable and the larger value of N allowed in a 

PLA chip is often more useful than the completeness of a ROM chip with 

smaller N. Typically 8 or more functions can be output from a single 

PLA chip.
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4. INPUT/OUTPUT

4.1. Microcomputer Input/Output

In most applications utilizing microcomputers, some communi­

cations between the microcomputer and the outside world is required, 

since in the course of performing tasks, the microcomputer must input 

information, process it, and output the appropriate response. Most 

microcomputer tasks are very i/O-oriented, controller-type applications 

in which the microcomputer is constantly performing I/O. This type 

of application is natural since the relatively slow processing speed 

and pin limitations of microcomputers make them unsuitable for high 

speed numeric processing.

The I/O section of the microcomputer contain the logic 

necessary for the microcomputer to communicate with I/O devices.

The structure of the I/O section and the methods used to connect I/O 

devices to it are important. Furthermore, the low cost of m i c r o ­

computers make them suitable for many new applications in which they 

will be interfaced to a wide variety of I/O devices. The variety of 

devices and applications creates the need for a wide spectrum of I/O 

capabilities, each of which must be implemented at minimum cost.

Here the designer can make use of hardware-software tradeoffs to 

implement the necessary performance for the lowest cost.

One important point to realize in I/O design is the large 

speed differential that can exist between I/O devices and the mic r o ­

processor they are communicating with. Even though microcomputers 

are at the low end of the computer performance spectrum, they still
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operate at speeds which are orders of magnitude faster than some I/O 

devices, especially those I/O devices that are designed for human 

interaction such as keyboards and displays. These devices operate at 

data rates which are very slow compared to even the slowest micro­

computers, which have an instruction execution rate of approximately 

10“* instructions per second. In addition, the microcomputer can 

service I/O devices much faster than the I/O device can handle the 

data. Thus, although the microcomputer can appear to be doing several 

tasks simultaneously this is only an illusion created by the speed 

differential. The microcomputer can perform only part of one task in 

each cycle.

The primary characteristics of microcomputers that affects 

the structure of the 1/0 system is the use of a bus architecture.

The microcomputer usually communicates with all its I/O devices through 

one or two main buses. Each I/O device controller contains device 

recognizer logic which is necessary since all I/O devices are connected 

to a common bus. Thus, the device which is to perform the data trans­

fer must be specified by the microprocessor. Typically, this is 

accomplished by the microprocessor which in the process of executing an 

I/O instruction sends out the select code, specified within an 1/0 

instruction, before the data transfer. Each device on the bus has a 

unique select code which it recognizes. Thus, to talk to a given device, 

the programmer simply specifies that device in the select code field 

of an I/O instruction.

The use of a bus structure for microcomputer I/O results in 

a system with several desireable characteristics of a low-cost system,



namely simplicity and flexibility. The simplicity results from

interfacing all devices to the bus through a common bus protocol.

The designer will define the timing relationships of data and control 

signals which are available to all devices on the bus. In effect, 

the user is defining the protocols for a system unibus. Thus, inter­

facing becomes simple because all interfaces are similar. The 

flexibility is illustrated by the ease with which additional devices 

are connected to the system. Additional devices are connected by 

simply connecting the data control bus to them and assigning them 

device numbers.

The primary method of performing I/O data transfers in a 

microcomputer system is by executing I/O instructions. Every time an 

I/O instruction is executed, the microcomputer will sequence through 

the steps needed to perform the I/O operation. This operation consists 

of a transfer of a word or byte of data between an accumulator internal 

to the microprocessor and a device connected to the system bus. Thus, 

I/O operations are initiated by the microcomputer which remains in 

control throughout the operation. Since the microcomputer is the 

controlling device, it must supply control information to the I/O 

devices to accomplish the data transfer. This control information must 

perform two functions. First, it must steer the data to the proper 

device on the bus, by issuing a device select code. Second, it must 

provide timing information to synchronize the I/O device to the mic r o ­

computer timing to perform the data transfer.

118
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Every microcomputer has some form of I/O instruction in its 

instruction set. Currently, there are two methods used to implement 

them. The first method of implementing I/O instructions is to have 

two instructions, one for input and one for output, which are used 

exclusively for I/O transfers. Such instructions are typically called 

IN and OUT (or RIN and ROUT). The second method of implementing I/O 

instructions is to have memory-reference instructions used in con­

junction with special memory locations which have been assigned to 

I/O devices. In this method, the I/O device must be capable of 

recognizing and responding to its assigned memory address. This is 

called memory mapped I/O. Its advantage is the ability to manipulate 

I/O data with memory-reference inatructions and to provide great 

flexibility in the amount of memory space and the number of I/O 

devices used in the system. Normal memory functions are inhibited 

when an I/O location is addressed.

Typically, the only explicit I/O instructions in m i c r o ­

processors are the ones that perform the actual data transfers. These 

have the form shown in Fig. 4.1.1.

The op code specifies either an IN or OUT type instruction. 

Each instruction contains a field, called a control field. The 

contents of the control field are output as control information to the 

I/O devices during the execution of an I/O instruction. The meaning 

of the control field is user defineable. During the execution of an 

I/O instruction, each I/O device receives and decodes the control 

field and performs the specified function. Thus, the programmer
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controls I/O devices by specifying control field contents when writing 

a program. One use of the control field is to specify a select code, 

which identifies which device is to perform the I/O transfer. Another 

use is to send out I/O commands, such as start device, input status or 

perform data transfer.

The function of the select code is clearly needed, since all 

I/O devices share a common bus. Thus, a way is needed to specify the 

correct device. While executing an I/O instruction, the select code 

is sent out for all I/O devices to examine. All devices compare this 

select code with their own and only the one that matches will respond.

The remaining bits of the control field contain control information for 

the selected device in some format agreed to by the programmer and the 

device controller designer. In some cases, the entire function of the 

instruction may be contained in the command control field and no useful 

data word transfer occurs.

Suppose a microcomputer wants to read in data from a paper tape 

reader. The microcomputer must tell the reader to read and input a 

character. This is done by executing a routine called a paper tape 

reader driver. The driver contains the I/O instructions that inter­

act with the reader. A  separate "start device 11 I/O command is usually 

given to engage the reader motor and begin moving the tape. No actual 

data is transferred with this command although a transfer cycle must 

be executed in order to send the command information since an IN or 

OUT instruction must be used. Next, the microprocessor will try to 

read in the data. However, the reader is a slow device and executing 

an IN immediately will probably read in garbage. Thus, the m i c r o ­
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computer must have come way of interrogating the status of the reader 

controller to see if it has a word of data. This is done with an 

"input status" I/O command. Thus, the microcomputer executes a loop 

testing the status of the reader repeatedly until it has a word of 

data. The data is then obtained with an IN instruction. This method 

of programmed I/O is called busy-wait I/O since the microprocessor 

executes a loop waiting for the I/O device to be ready. Thus, the 

user defines bit patterns in the control field of the I/O instructions 

to command the devices to perform necessary functions and the controller 

hardware must interpret them accordingly. Successive words may be 

obtained by reentering the busy-wait loop and executing IN instructions 

until the desired number of words has been read, whereupon a "stop 

device" command is sent to the reader.

Alternatively, the controller can be designed to get the 

next word from tape automatically each time a word is read by the 

microprocessor. In this case, the controller is less complicated and 

start device and stop device commands are not needed for the reader.

The following example illustrates the hardware and software of a 

typical programmed I/O device. This particular example is for a paper 

tape reader. The microcomputer has a 16 bit word and the I/O control 

fields are defined as shown in Fig. 4.1.2. The select code of the 

reader is assumed to be 8 . H signifies hexadecimal.

The beginning of a program to read paper tape is shown in 

Fig. 4.1.3.



123

Instruction

ROUT

ROUT

RIN

RIN

Command Function Control Field Value

STOPRDR This command stops

the reader

08H

STARTRDR This command starts

the reader

18H

STATUSRDR The status of the 

reader is input in 

bit 0 of the data 

word. Bit 0 = 0 

indicates the reader 

has a word ready to 

transfer

28H

DATARDR A  data word is

read in from the 

reader

38H

Fig, 4.1.2 Reader Commands
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STOPRDR = 08 H 

STARTRDR = 18H 

STATUSRDR = 28 h  

DATARDR = 38H

READCHAR: ROUT STARTRDR

RIN STATUSRDR

BOC C3 , *-1

RIN DATARDR

Define control field for stop command 

Define control field for start command 

Define control field to input status 

Define control field to input data

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Start paper tape reader

Check status of reader

.
If Bit 0 = 1  branchback to check again 

Read in data word

Fig. 4.1.3 Beginning of reader driver



The I/O operations are done using this driver program along 

with compatible hardware. The hardware must be capable of inter­

preting the commands contained in the I/O instructions. A typical 

hardware interface is shown in Fig. 4.1.4.

The IMP-16 is a microprocessor with two 16-bit busses, one 

for address and one for data. The ADEN, RDP and WRP are control 

signals which indicate bus usage during a machine cycle. ADEN indi­

cates the presence of an 8 -bit 1/0 control field on the address bus.

RDP indicates that the data bus will be used to perform an input 

transfer. WRP indicates that the data bus will be used to perform an 

output transfer. T4 and T78 are timing signals used during data 

transfers. T4 is used as a data strobe during output transfers.

T78 is used as a data enable during input transfers.

Note that under busy-wait i / O w i t h  a slow device, the 

processor spends almost all of its time in the busy wait loop waiting 

for the device to be ready. In interrupt driven 1/0 this time can be 

used for other execution and the processor is interrupted when the 

device is ready.

4.2. Interrupts

Interrupts are signals originating in a device controller 

and sent to the processor. The processor can perform normal processing 

while waiting for the device to become ready. When an interrupt 

occurs, normal processing is suspended, the program which services 

the interrupt is executed and then the program that was interrupted 

resumes. An interrupt can thus be viewed as a "hardware forced"
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jump to subroutine. Interrupts allow external devices to demand ser­

vice from the microcomputer.

Interrupts are essential in real time applications where 

data must be processed within a specified time or lost. Furthermore, 

they are useful to perform efficient I/O operations, since they allow 

the microcomputer to continue processing between the times that 

relatively slow I/O devices need servicing. The I/O devices are 

serviced only when they request it by transmitting an I/O interrupt.

An idealized example illustrates the efficiency gained with 

interrupt driven 1/0. The microcomputer is sending data out to a 

printer at 10 char/sec. Assume it takes 100 M<sec. of processor time 

to execute a routine which sends a single character to the printer. 

Thus, only 0.1% of the microcomputer time is spent servicing the 

printer and 99.9% of the time is available for other processing. Busy- 

wait I/O can do no other processing while servicing the printer.

Interrupts can also be used to notify the microcomputer of 

external conditions such as power failure, parity errors and real-time 

clock events as well as internal conditions arising from the processor 

itself, such as arithmetic overflow. If, for example, no overflow 

interrupt capability exists, the program must check the validity of 

each arithmetic operation which might overflow.

Most microcomputers have some type of interrupt capability. 

Those that do have an input through which interrupts are requested, 

typically called Interrupt Request (INTREQ). They also usually have an 

internal interrupt enable flip-flop which determines when the interrupt



system is ON. This input is tested periodically by microcomputer h a r d ­

ware, usually during each instruction fetch operation. If the INTREQ 

line is low, no device is requesting service and normal processing 

continues. If the INTREQ line is high and the interrupt system is 

enabled, some device is requesting service and the microcomputer h a r d ­

ware begins the interrupt handling.

Shown in Fig. 4.2.1 is a flowchart of a typical interrupt 

processing sequence. The functions performed during an interrupt 

processing sequence are common to all microcomputers. However, the 

methods differ and there are variations in the amount of interrupt 

processing done in hardware.

Decision block A  of Fig. 4.2.1 is the test of the INTREQ line. 

This simply decides if there is an interrupt pending. If so, the 

interrupt processing begins. Since most microcomputers can process 

only one interrupt at a time, usually at this point the interrupt system 

is disabled automatically, thus ignoring all other interrupt requests.

In Block B, the processor status is saved. This must be done so that 

processing can resume after servicing the interrupt. The Program 

Counter is saved at some fixed location. In Block C, the Program 

Counter is loaded with a fixed address and execution is started. At 

this address the Interrupt Handler routine is located. Block D is a 

program which determines the source of the interrupt if there can be 

more than one. This is done by polling devices until the interrupting 

device is found. Block E sends out an Interrupt Acknowledge signal to 

the interrupting device being serviced. This will usually cause the 

device to turn off its interrupt request. This must be done or else 

the microcomputer could see the same interrupt request twice. In
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Block F the service routine of the interrupting device is executed.

Block G restores the status of the microcomputer and returns to normal 

processing. This means the Program Counter is restored from the 

location where it was saved and the Interrupt system is reenabled. This 

function is usually done with a Return-from-interrupt instruction.

In a system with only one interrupting device, there is no 

need to poll devices to determine the source of the interrupt since 

there can be only one. However, when there are multiple interrupting 

devices, some scheme must be used to determine the source of the interrupt 

along with a method of assigning priorities to the interrupting devices. 

Shown in Fig. 4.2.2 is the diagram for the single-line interrupt method, 

where all device requests are input to an OR gate.

The OR function is usually implemented on a single wire with 

open-collector gates as shown in Fig. 4.2.3. Alternatively, inverting 

Tri-state circuits can be used to behave like open-collector circuits 

by making their inputs equal to a logical 1 and using DEVREQ as an enable.

The interrupting device is determined by polling all the devices 

in the interrupt handler routine. The priority of the devices is det e r ­

mined by the order of the polling, highest priority device polled first, 

next-highest priority device polled second, etc. The potential problem 

with software polling is that it can become very time-consuming.

The time used for device polling can be eliminated with a 

technique called "vectored interrupt". A  vectored interrupt allows the 

microcomputer to begin executing the service routine of the interrupting 

device immediately. This is done by reading in a word, called an
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interrupt vector, which points to the address of the correct inter­

rupt service routine. The interrupting devices uses the IAK signal 

from the microcomputer as an enable to place its interrupt vector on 

the bus. During this time it is read in by the microcomputer. Each 

device typically has a unique vector.

During the time the vector is being read in, only one device 

can have its vector on the bus. Thus, vectored interrupts require all 

the interrupting devices to resolve priorities externally so that only 

the highest priority device respond to the IAK. This can be done with 

a technique called daisy-chained priority. A  single line is serially 

connected through all devices, as shown in Fig. 4.2.4„ This line carries 

priority. The priority of any given device is determined by the position 

on the line. A  device must have the highest priority among the devices 

presently needing service to request an interrupt. Once any device 

requests an interrupt the priority chain is broken and no lower 

priority devices can request interrupts. Shown in Fig. 4.2.5 is the 

circuitry for a vectored/daisy-chained priority interrupt card.

The interrupt circuitry shown in Fig. 4.2.5 would be present 

on every I/0 card w ithin a system. The priority chain is daisy-chained 

to all devices. Initially, both the DEVICE INT REQ FF and INT REQ FF 

are clear. There is one clock, I/O CLK, generated by the microprocessor.

Whenever an I/O device wants to interrupt, it pulses the 

DEVICE INT REQ set input to asynchronously set the DEVICE INT REQ FF 

to a logical 1. The next rising edge of I/O CLK sets the INT REQ FF.

This will cause the INT REQ line into the microprocessor to become a 

logical 1. It also clocks the priority chain and clears PROUT to a
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Fig. 4.2.5 Vectored/Daisy-chained interrupt circuit
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logical 0. Once the microprocessor recognizes the interrupt it gener­

ates the IAK signal. Assuming this card has priority (i.e., P R I N = I ) , 

this causes two things to happen. First, the DEVICE INT REQ FF on the 

card is reset. Then, on the next I/O CLK the card removes its INT REQ 

FF. Second, the card drives its DEVICE VECTOR onto the Data Bus. The 

operation of the circuit is illustrated by the waveforms of Fig. 4.2.6.

The key requirement of this circuit is that both the priority 

chain and INT REQ F F ’s be stable during IAK. The I/O CLK is used to 

synchronize the INT REQ F F ‘s with the microprocessor. Note that there 

is a settling time for the priority chain (following the rising edge of 

each I/O CLK) which must be allowed before IAK.

The interrupt vector for a device is usually the address of 

its service routine or an arbitrary instruction (e.g. jump to sub­

routine at that address) or an address into a table of routine

addresses. In the latter scheme, the table is stored in fixed locations 

of memory, but the routines themselves may be moved by changing the 

contents of the table. On some systems there are both vectored and 

nonvectored interrupts and a mixture of devices of each type as well 

as those which do not interrupt at all can be present.

The ability of a microcomputer to respond to interrupts is 

measured by the interrupt latency. Interrupt latency is defined as 

the m a x imum time that can occur between a device interrupt request 

and the beginning of the interrupt routine that services that device. 

Interrupt latency is the sum of several components. The first is the 

longest execution time of any instruction of the processor, since this 

is the worst case time for sensing an interrupt request. The next 

component is the time to sense the interrupt, swap the PC and save
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status. The last component is the time needed to determine the source

of the interrupt and service it. Thus, each microprocessor has 

characteristics, including execution speed, instruction set and archi­

tecture, which determine its interrupt latency. Certain architectural 

features enhance (minimize) the interrupt latency. Vectored interrupts 

minimize the time needed to determine the source of an interrupt. Data 

stacks minimize the time needed to save and restore status. In many 

cases, the designer needs to know the interrupt latency since I/O devices 

may be designed to operate with some specified latency.

Following are descriptions of how four current microprocessors 

process interrupts. Basic similarities can be seen.

The National IMP-16 senses interrupts at the INTRA input. There 

is an INTERRUPT ENABLE FLAG which turns the interrupt system on and off. 

This flag is program controlled and hardware controlled also. If there is 

an interrupt pending at the end of the current instruction, and the INTER­

RUPT ENABLE FLAG is sent, the processor resets the INTERRUPT ENABLE FLAG, 

saves the current PC on the stack and sets the PC to 1. It then starts 

executing the interrupt handler which must begin at location 1. The IMP-16 

also has another interrupt, CPINT, named under the assumption that it 

originates from a control panel. CPINT is a vectored interrupt and has an 

associated acknowledge, CPINP (control panel input). The interrupting 

device drives a 16 bit instruction onto the data bus when CPINP occurs.

This single instruction is executed. Then main program processing 

resumes, except that a jump to subroutine instruction causes the entire
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subroutine to be executed. The return- from that subroutine, a return 

from interrupt instruction (RTI), resumes main program processing and 

enables the interrupt system.

The Intel 8080 senses interrupts at the INT input. There is an 

INTE signal which indicates the status of the interrupt system and is 

program alterable. If there is an interrupt pending at the end of the 

current instruction and INTE is a logical 1, the processor starts a fetch 

cycle and sends out the INTA status bits which serves as an interrupt 

acknowledge. Also, the PC is not incremented, so the current PC is still 

present. When the processor asks for an instruction, the interrupting 

device drives an instruction on the data bus. Note that the 8080 did not 

save the PC. The user must save and modify the PC with an instruction 

as a JSB type. The 8080 has a one byte JSB instruction, RST, which causes 

the PC to be saved on the stack and jump to a location encoded within 

the instruction.

The Intersil IM6100 senses interrupts at the INTREQ input.

There is an INT EN FF which turns the interrupt system on and off and 

is program alterable. If there is an interrupt pending at the end of 

the current instruction and the INT EN FF is set, the processor grants 

the device interrupt. The current PC is written at location 0, and the 

PC is set to 1. It then starts executing the interrupt handler routine 

at location 1 .

The Signetics 2650 senses interrupts at the INTREQ input.

There is an INT EN flag in the program status work (PSW) which indicates 

the state of the interrupt system and is program alterable. If there is 

an interrupt pending at the end of the current instruction and the INT EN
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flag is set, the processor first disables the INT EN flag in the PSW and

then executes a jump to subroutine instruction. It also sends out an INT 

A C K  signal which causes the interrupting device to put an 8 bit address on 

the data bus. This address becomes the target of the jump-to-subroutine 

instruction. Since the 8 bit address can be indirect, this allows the 

interrupt handler routine to begin at any addressable memory location.

4.3. Serial I/O

In addition to programmed I/O which transfers words or bytes 

in parallel there is another I/O method used with microcomputers called 

serial I/O. As the name implies, this method is for serial or b i t ­

stream devices. Of course serial I/O can be implemented by a controller 

which transfers words to and from the processor and bits to and from 

the device. To implement serial I/O directly the microcomputer needs 

an input, called sense, whose logic state can be tested under program 

control. There must also be an output, called flag, which can be set 

and reset under program control. With the sense input and flag output 

the microcomputer can read and write bit streams, thus forming a serial 

I/O port. Shown in Fig. 4.3.1 is a typical serial I/O connection.

Serial I/O transfers are totally program controlled. Typically, 

serial I/O operates with a predetermined data format and data rate which 

are implemented within the program. In effect, the microcomputer is 

serving as its own interface. The main function of the program is 

serial to parallel conversion on the data at the sense input parallel 

to serial conversion on the data at the flag output, and accurate 

t imi n g .
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Fig. 4.3.1 Serial I/O



Serial I/O is the ultimate programmable interface, since it 

consists of a program only. This allows for flexibility in data rate, 

data format and error checking. For the same reason, serial I/O 

requires microcomputer control for the entire duration of the transfer.

Since serial I/O operates with a direct link between the m i c r o ­

computer and the I/O device, there is no hardware interface needed.

Thus there are no hardware costs associated with serial I/O. This 

makes it especially useful with microcomputers where low-cost is 

essential.

Almost every application of microcomputers requires the use 

of a terminal or teletype. The teletype needs a serial interface to 

communicate with the microcomputer. This interface can be built into 

a hardware controller at some cost or serial I/O can be used to 

implement a flexible, low-cost teletype interface.

Teletype communication involves sending ASCII characters as 

bit streams. Data bit 1, which is transmitted first, is the least 

significant ASCII code bit. The character is framed with one start (low) 

and two stop (high) bits. The data format is shown in Fig. 4.3.2.

The start of a character is indicated by a high-to-low 

transition. Each character requires 11 bits including one start and 

two stop bits. Typically the data rate is 10 char/sec. or 110 baud 

(bits/sec). The resulting bit time is 9.09 msec. Higher baud rate 

terminals (up to 9600 baud) are available which use the same protocol 

except that only 1 stop bit is used.

Data is represented within the teletype by current. This is 

known as the Teletype 20 ma. current loop convention. A  TTL logical
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one corresponds to a current of 20 ma. A TTL logical 0 corresponds 

to a current of 0 ma. Therefore, a level converter is needed. A  

level converter circuit is given in Fig. 1.9.8.

Thus, the serial interface for the teletype consists of the 

level converter hardware and the serial I/O program, as shown in 

Fig. 4.3.3. Many terminals are available which use the EIA convention 

rather than the 20 ma. current loop for interfacing. These accept any 

voltage >  3 volts as logical 0 and any <  -3 volts as logical 1. A  

TTL compatible or "forgiving EIA" will accept and drive TTL voltage 

levels directly with a negative logic convention, i.e. logical 1 is 

LOW and logical 0 is HIGH. The program must be capable of reading and 

writing data in the teletype format. The flowchart for routines which 

input and output characters is shown in Fig. 4.3.4. The programs are 

generalized for any microcomputer.

The output routine assumes that the 8 bit ASCII character 

to be transmitted is right justified in a register, called REG, when 

the routine is entered. The input routine assumes that the 8 bit ASCII 

character to be received is to be left justified in REG with the other 

bits of REG, if any, shifted to the right by 8 bits. Timed delays in 

the program are implemented by a loop of an appropriate number of NOP 

instructions.

Note that the serial I/O programs tie up the processor for 

the entire time that characters are sent or received. If a controller 

is used which has a word interface to the processor (and a serial inter­

face to the Teletype), busy-wait I/O can be programmed which allows
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simpler software for input-output routines and allows some time between 

characters for other processing, provided only that the busy-wait loop 

is reentered in time to receive input characters at the maximum rate. 

Reentering the busy-wait loop for output routines is not so critical 

since the stop bit level may be held for any amount of time greater 

than or equal to 2 bit times (1 bit time for faster terminals).

Either controller can be made interrupt driven to free up 

the processor further. For the serial I/O controller, a received 

start bit edge can interrupt the processor to enter the input routine.

This is particularly useful for input messages arriving at much slower 

than the maximum rate, e.g. human keyboard entry. Note that if 

interrupt latency is high for this system, then sampling of subsequent 

data bits is after the midpoint of the bits. If the latency is excessive, 

transmission errors can result. For the parallel I/O controller, 

interrupt capability can be applied to both input and output to free 

up the processor to a greater extent. Each successive step in 

increased controller capability involves added controller hardware 

cost, less system software, and higher system performance (if the 

processor has other processing which can be done while it waits for 

I/O). This is the so-called "hardware-software tradeoff" in design.

4.4. Direct Memory Access

Direct memory access (DMA) is a high speed I/O method in 

which data is transferred directly between the I/O device and memory, 

completely bypassing the microprocessor. The data rate of DMA is 

limited only by the cycle time of the memory rather than the execution
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rate of the microprocessor (as in programmed I/O). DMA is therefore 

the fastest means of I/O for a given memory system.

The use of DMA requires extra logic which initiates and 

controls DMA cycles. This logic, called a DMA controller, interacts 

with elements of the system (microprocessor, I/O device, and memory) 

to perform DMA transfers. The DMA controller performs three basic 

functions; 1) Accept and execute commands from the microprocessor.

2) Request and be granted the use of system resources such as busses 

and memory. 3) Generate the control signals to the I/O device and 

memory to perform the transfer. The DMA controller temporarily takes 

control of the system for each of its memory access cycles. DMA 

controllers allow the processor maximum time for other processing 

while I/O operations are in progress.

When DMA is enabled it is operating with a specified I/O 

device. Thus, the DMA controller is constantly monitoring the DMA 

Service Request line from the I/O device. A  DMA cycle is initiated 

whenever a DMA Service Request is issued. Thus, although DMA is 

continuously enabled, the DMA transfer rate is determined by the I/O 

device.

Most applications of the DMA involve block transfers of data 

in which a specified number of words are transferred between the 1/0 

device and memory. Block transfers require several parameters to be 

set up in the DMA controller, namely the word count which specifies 

the number of words to be transferred and the memory address which 

specifies the starting address for DMA data. During each DMA cycle 

the word count is decremented and the memory address is incremented.
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The DMA operation is complete when the word count equals zero. A  DMA 

operation consists of a series of DMA cycles. On data word is trans­

ferred during each DMA cycle. Of course the block can be transferred 

to memory in reverse order, if required, by decrementing memory 

addresses. Sometimes a capability is built in for a processor to 

abort a DMA block transfer in progress, either under program or 

device control.

DMA as an I/O method thus has several desirable character­

istics, namely high transfer rates and minimal interference to c o n ­

current processing. The trade-off for obtaining these advantages is 

the extra hardware costs of the DMA controller.

The high data rates are due to the nature of DMA which allows 

transfers into memory every memory cycle and therefore transfer at the 

data rate of the memory. Processing interference arises when both DMA 

and the microprocessor request a memory cycle at the same time. 

Typically, DMA will be granted a memory cycle and the microprocessor 

will pause for one cycle. The DMA controller will initiate a cycle 

(by requesting a memory cycle) only when the I/O device using DMA has 

data ready to transfer. Thus, processing interference is minimal since 

the microprocessor is paused only one memory cycle per DMA cycle and 

a DMA cycle is initiated only when the I/O device requests it. Note 

that even in interrupt driven I/O, typically a 100 M<sec. routine may 

be required per word transferred. Assuming a 1 M-sec. memory cycle, 

the processor load per word transferred is reduced to about 1 °L of the 

load for interrupt driven 1/0 .
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DMA is essential for servicing high-speed I/O devices where 

other I/O methods are insufficient. This has been the traditional 

application of DMA. DMA is also useful for servicing low to medium 

speed devices because it performs I/O transfers with a minimum amount 

of interference to the microprocessor. Thus, DMA is an efficient I/O 

method for all devices. Historically, the high cost associated with 

DMA restricted its use to high-speed devices. However, in micro­

computer systems, the simple and economical implementation of DMA has 

made DMA a realistic alternative to be considered for any device.

Microprocessors can be designed to facilitate the use of DMA. 

This is done with a Pause input which when asserted by the DMA 

controller can cause the microprocessor to enter a pause state. In 

the pause state, processing is suspended and no memory cycle requests 

are generated by the microprocessor. This prohibits the microprocessor 

from interfering with a DMA cycle. Also, while in the pause state the 

microprocessor will let the memory and data busses "float” (high- 

impedance three-state output), thus making them available to the DMA 

controller.

If both the microprocessor and one or more DMA controllers 

are requesting memory cycles, there must be some method of priority 

resolution. The simplest method is to allow a DMA controller to pause 

the microprocessor when DMA wants a memory cycle. This makes the 

microprocessor the lowest priority memory requester. Priority resolution 

between multiple DMA controllers can be costly and difficult to design 

correctly. One simple solution, if possible, is to activate only one 

DMA controller at a time.



DMA can even be used for processors with no pause facility.

For some processors, the clocks can be shut off for one or more cycles, 

thereby achieving a forced pause. If the processor does not use 

memory intensively, the processor can be given high priority and a 

DM A  request can wait for the next unused memory cycle (many mic r o ­

processors have at least one idle memory cycle per instruction). Of 

course, some mechanism must be used to substitute DMA information for 

processor information on the memory busses during DMA cycles and suit­

able control signalling must be designed.

One characteristic of DMA is the DMA latency. This is the 

maximum amount of time between a DMA service request from an I/O 

device and the completion of the DMA transfer. Note that for minimal 

I/O buffering,

t < _______ i_______
latency —  I/O data rate

For the DMA memory priority method of pausing the m i c r o ­

processor, the latency is the execution time of the longest instruction, 

which could be relatively long. Other implementations of DMA, as 

suggested above can provide shorter latencies if needed.

Although DMA data transfers operate independent of the m i c r o ­

processor, the microprocessor manages DMA operations through commands 

in the form of 1/0 instructions. The microprocessor treats the DMA 

controller as an 1/0 device and utilizes I/O instructions to initialize 

DMA registers such as word count, memory address and direction of transfer. 

After loading these registers the microprocessor sends a Start DMA 

command via an l/O instruction. Following this command, the DMA
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contoller operates independently until command completion. When a 

DMA command is completed, the controller notifies the microprocessor 

of a completion, typically through an interrupt, so the processor can 

take appropriate action. Listed in Fig. 4.4.1 are the control signals 

typically present in a DMA controller.

Shown in Fig. 4.4.2 is example of a DMA controller inter­

connected with all the system elements. A  flowchart detailing a DMA 

input operation using such a system is shown in Fig. 4.4.3.

4.5. I/O System Design

The i/O-oriented nature of most microcomputer applications 

make 1/0 a major factor in microcomputer system design. I/O is the 

least structured section of any microcomputer and the most flexible 

since it must accommodate a wide variety of devices. Thus, the 

definition and design of the I/O section is a large part of microcomputer 

system design.

The design of the I/O section begins with a complete definition 

of all I/O requirements within the system. The I/O section can then 

be defined utilizing the particular mix of I/O methods which accomplish 

the system requirements in the most economical way. The design should 

also consider the possibility of future expansion.

The I/O requirements of any system can be defined by examining 

the task to be done and the I/O devices to be used. The l/O requirements 

can be characterized by the data rates and service latency of each I/O 

device. Service latency is defined as the maximum time from a device 

requesting service to the time that service is complete. An additional
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Signal Name 

LOAD WC (Load Word Count)

LOAD ADDR (Load address)

LOAD IN/OUT

START DMA 

STOP DMA

DMA ADDR EN (DMA Address Enable)

INC ADDR (Increment Address Register)

DEC WC (Decrement Word Count)

DMA COMPLETE

Funct ion

Command generated by an I/O 

instruction which loads Word 

Count Register from the Data bus.

Command generated by an I/O 

instruction which loads Address 

Register from the Data bus.

Command generated by an 1/0 

instruction which loads the 

transfer direction flip-flop to 

indicate input or output (and 

possibly other control infor­

mation) .

Command generated by an 1/0 

instruction which starts DMA 

monitoring the specified I/O 

device DMA Service Request.

Command generated by an 1/0 

instruction which terminates 

any DMA operation in progress.

Signal generated by DMA control 

logic which enables the DMA 

address register onto the Address 

Bus during a DMA cycle.

Signal generated by DMA control 

logic which increments the 

address register to point to 

the next DMA memory location.

Signal generated by DMA control 

logic which decrements the 

Word Count Register.

Signal generated when DMA Word 

Count Register equals zero used to 

notify I/O device and/or m i c r o ­

processor that DMA is complete.

Fig. 4.4.1 DMA control signals
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Fig. 4.4.1 (continued)

I/O DATA IN

I/O DATA OUT

START DEVICE

DMA SER REQ (DMA Service Request) 

ME M  READ 

M E M  WRITE 

M E M  DATA IN

ME M  DATA OUT

PAUSE REQ

PAUSE A C K

Signal generated by DMA control 

logic which causes I/O device to 

place data word on the Data Bus 

during a DMA cycle.

Signal generated by DMA control 

logic which causes I/O device to 

load a data word from the Data 

Bus during a DMA cycle.

Signal generated by DMA control 

logic which tells the l/O device 

to start at the end of a DMA 

cycle when the Word Count is not 

equal to zero.

Signal generated by the I/O 

device to notify the DMA controller 

that it is ready for a DMA cycle.

Signal generated by DMA control 

logic which tells the memory to 

perform one memory read cycle.

Signal generated by DMA control 

logic which tells the memory to 

perform one memory write cycle.

Signal generated by DMA control 

logic which causes the data word 

on the Data Bus to be latched into 

the memory data register.

Signal generated by DMA control 

logic which causes the memory to 

place the data word in the memory 

data register onto the Data Bus.

Signal generated by DMA control 

logic which causes the m i c r o ­

processor to pause and relinquish 

control of the memory and busses.

Signal generated by the mic r o ­

processor in response to a PAUSE 

REQ which tells the DMA controller 

that the microprocessor is paused.
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Fig. 4.4.1 (continued) 

END TRANSFER Signal generated by DMA control 

logic during a DMA cycle which 

acts as an acknowledge to clear 

DMA SER REQ.
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Pause Req 
Pause Ack £
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DMA
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DMA Controller
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End Transfer
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I/O  Data Out

DMA 
Service 
Request 

<--------

w/M /z/mmm

Memory
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Write
Mem data in 
Mem data out
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Fig. 4.4.2 DMA controller in a system



Fig. 4.4.3 DMA input operation
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design consideration is the amount of concurrent processing that must 

be done during 1/ 0 operations.

There are two types of l/O devices. The first type is the 

word-mode devices which perform single word transfers. For each START 

DEVICE command, one word is transferred and another transfer does not 

begin until the next START DEVICE command. These devices have no 

minimum required data rate and allow arbitrarily large service latency.

The second type are the block mode devices which transfer 

words in blocks at some minimum data rate. This type requires that block 

mode devices demand service from the system or data will be lost. The 

service latency of block mode devices specifies the amount of time the 

system has to respond to requests before data is lost. These device 

controllers typically have an overrun error indication as part of their 

status word. An overrun error indicates that data has been lost due to 

excessive processor latency.

Programmed I/O is the most simple and economical l/O method 

and should be used whenever possible. In simple systems, with a small 

number of low-speed I/O devices, programmed I/O can usually meet system 

requirements. Programmed I/O does not allow the l/O device to demand 

service and therefore the I/O program must poll the 1/0 devices to see 

if service is needed. Normally, a single high-speed l/O device can be 

serviced using programmed l/O if the program can be dedicated to the 

device for the duration of the block transfer*

Interrupt driven I/O can be used to provide a maximum service 

latency equal to the interrupt latency. In addition, the use of
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interrupts allows the microprocessor to do concurrent processing while 

servicing relatively slow I/O devices.

The use of DMA provides both the highest maximum data rate 

and the shortest service latency. In addition, DMA allows the maximum 

amount of concurrent processing for any given data rate. Shown in 

Table 4.5.1 is a description of each of the l/O methods.

Thus, by knowing the system I/O requirements, the designer 

can supply the 1/0 methods which accomplish the task best. However, the 

advantages gained in using I/O methods such as interrupts and DMA are 

accompanied by a considerable increase in system complexity and often 

cost. Thus, they should only be used when required.

The complexities of interrupts and DMA are inherent in the 

hardware and software needed to implement them. In addition, there 

are interactions between the methods which create more complexity and 

timing problems. For example, the interrupt latency is difficult to 

estimate in a DMA environment. Also, if more than one DMA or interrupting 

device in present, the specified service latency is only valid for the 

highest priority device. Any timing loops that exist in software, such 

as in programmed l/O, are not valid if interrupted or paused through 

I/O interrupts or DMA. When all these interactions are occurring, the 

system design can become very complex. Restrictions regarding the number 

of kinds of active l/O devices are normally made in most microprocessor 

systems to insure proper l/O operation.

When utilizing programmed l/O, in most applications some minimum 

data rate is required. When selecting a microprocessor for a particular
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Type

Serial I/O

Busy-Wait 1/0

Interrupt-driven I/O

DMA

Typical Data Rates 

Low data rates

20K-40K words/sec

20K-40K words/sec 

Up to 2M words/sec

Comments

Minimal external hardware 

needed. Microprocessor 

serves as I/O controller 

by executing a program which 

receives data by sensing a 

data input and transmits 

data by controlling a data 

output.

Data transfer done through 

the microprocessor by 

program execution. Makes 

use of I/O instructions to 

transfer words between 

internal registers and I/O 

device.

Same as busy-wait 1/0 except 

service latency-interrupt 

latency. Allows some con­

current processing while 

I/O is in progress.

Data transfers done directly 

between I/O device and 

memory bypassing the mic r o ­

processor. Requires DMA 

controller hardware.

Fig. 4.5.1 I/O methods
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application, often microprocessors are compared by using benchmarks. 

Benchmarks are sample programs which perform the same function on 

each distinct microprocessor under consideration. To illustrate how 

well a given microprocessor will move data, a benchmark which trans­

fers a block of words from memory to an I/O device can be written. 

Shown in Fig. 4.5.2 are programmed I/O benchmark programs for a 

National IMP-16 and Intel 8080.

4.6. I/O Developments

Future applications of microcomputers will demand more I/O 

performance for minimal cost. This will be provided by the use of 

general purpose LSI l/O chips. The chips are general purpose in that 

their function and mode of operation are programmable by the m i c r o ­

processor. It is natural to extend the cost advantages of LSI 

microprocessors and LSI memory to the 1/0 section. Thus, future 

microprocessors will have a family of compatible I/O chips.

The use of LSI facilitates the placement of large amounts of 

logic on the I/O chip which allows the creation of an intelligent l/O 

chip. These chips will be capable of performing many 1/0 functions 

independent of the microprocessor. This eliminates the 1/0 bottle­

neck that arises when the microprocessor controls the I/O directly in 

detail and therefore must respond to every I/O event in the system.

The use of LSI I/O chips allows intelligent I/O chips to be 

implemented economically. The use of intelligent I/O chips creates 

a system with distributed processing capability in which the I/O chips
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L o o p :

L o o p :

National IMP-16

LI Rl, -100

LI R 2 , 20

LD RO, (2 )

ROUT 10

AISZ 2,1

AISZ 1,1

JMP Loop

HALT J

Loop Initialization

Loop execution

time = 34.4 M-sec

I/O data rate =

1

34.4
M'sec = 2 . 9 1 X 1 0  words/sec

= 5 . 8 2 X 1 0  bytes/sec.

INTEL 8080

LXI H Loop Initialization

MOV B,M

LXI H

MOV A , M ~ ^ \ Loop execution

OUT 10 time = 21 M*sec

INX H > I/O data rate =

INR B 1 4 
—  M-sec = 4.76 X 10

JNZ Loop

HLT J
Fig. 4.5,2 Programmed 1/0 benchmarks
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process l/O concurently with microprocessor execution. Thus the 

I/O handling responsibility is removed from the microprocessor and 

system I/O performance is enhanced.

Currently, several types of 1/0 chips exist, namely parallel 

interface chips and serial interface chips. DMA controllers are also 

being implemented as LSI chips in which several channels of DMA are 

designed into a single chip. In addition, interface/controller chips 

are being developed for common microcomputer peripherals such as 

CRT's, floppy disks and magnetic cartridges. These chips will lower 

system cost by reducing the chip count and minimizing the design time.

As microcomputer systems become standardized (within a given 

family) with respect to instruction set l/O commands, interrupt 

system protocols and DMA handling, general purpose I/O interface 

chips will be developed which can give each device programmed I/O, 

interrupt and DMA capability. In one type of I/O system, each I/O 

device has an interface, but all control exists within the micro­

processor which issues commands to each interface.

In a distributed intelligence I/O system, each 1/0 device 

is connected to an intelligent l/O chip. In effect, the I/O control 

that existed in the microprocessor has been distributed to each I/O 

chip. The I/O chip functions as the device controller and is capable 

of controlling the l/O device independent of the microprocessor.

The I/O chip has all the interface logic needed to communicate with 

the microprocessor through programmed l/O or interrupts. The I/O 

chips also has the logic needed to perform DMA operations with the



device. The use of intelligent I/O chips which are capable of 

functioning independently requires an additional system element to 

resolve requests from all the devices needing resources. This device 

arbitrates all request and grants system resources on a priority 

basis. This type of system will result in minimal hardware costs 

for the capability provided. The design of the I/O system will then 

consist mainly of writing the software to manage all the concurrent 

processing.
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