

UNCLASSIFIED
. SECURI TY CL ASS I FI CATI ON O F THIS P A G E (When D ata E n tered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. R E P O R T NUMBER 2. GOVT ACCESSI ON NO. 3. R E C I P I E N T ' S C A T A LO G NUMBER

4. T I T L E (a n d S u b t i t l e)

THE DESIGN OF MICROCOMPUTER SYSTEMS

5. T Y P E O F R E P O R T & P E RI O D C OVE R E D

Technical Report

6. P E R F O R M I N G ORG. R E P O R T NUMBER

R - 8 1 7 ; UILU-ENG 78-2210

7. AUTHORfaJ

Thomas Alan Lane

8. C O N T R A C T OR GRANT NUMBERfsJ

DAAB-07-72-C-0259

9. P E RF QR M I NG ORGANI ZATI ON NAME AND ADDRESS
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

10. PROGRAM ELEMENT, P R O J E C T , TASK
AREA & WORK UNIT NUMBERS

11. C O N T R O L L I N G O F F I C E NAME AND ADDRESS

Joint Services Electronics Program

12. R E P O R T DATE

July, 1978
13. NUMBER O F P A G E S

169
■.... ... ■ ■ - — — ■ — — — —

14. MONI TORING AGENCY NAME & ADDRESSf i / d i f f e r e n t from C on tro l l ing O f f ic e) 15. SE CURI T Y CLASS, (o f t h i s report)

UNCLASSIFIED

15a. DECLASSI FI C ATI ON/DOWN GR ADI N G
S C H E D U L E

16. DI STRIBUTION S T A T E M E N T (o f t h i s R epor t)

Approved for public release; distribution unlimited

17. DI STRIBUTION S T A T E M EN T (o f the a b s tra c t e n te r e d in B l o c k 20, i f d i f fe r e n t from Repor t)

18. S U P P L E M E N T A R Y NOTE S

19. KEY WORDS (C o n t in u e on r e v e r s e s id e i f n e c e s s a r y and id e n t i f y by b lo c k number)

Microprocessors

Microcomputer Systems

Large-Scale-Integration (LSI)

20. A BS T R A C T (C o n t in u e on r e v e r s e s id e i f n e c e s s a r y and i d e n t i f y by b lo c k number)

The nature of integrated circuit technology dictates an upper limit on the number

of gates that can be placed on a single chip and still permit production that is

economically feasible. This upper limit is constantly being increased by improv­

ing technology. The first integrated circuits had a small number of individual

gates on a chip. As technology progressed, medium-scale-integrated (MSI) chips

were produced with complex functions such as multiplexers, counters and shift

registers. Early in the 1 9 7 0 ’s the maximum number of gates had increased to the

point where a complete system or subsystem, such as a microprocessor could be

DD 1 j AN 73 1 47 3 EDITION OF 1 NOV 65 IS O B S O L E T E UNCLASSIFIED

S E CUR I T Y C L AS S I FI CATI ON O F THIS P A G E (When D ata E n ter e d)

SECURITY CLASSIFICATION OF THIS l»AOg(TW»n Datm Entered)

UNCLASSIFIED

20. ABSTRACT (continued)

placed on a single chip. This technology is referred to as

large-scale-integration (LSI).

UNCLASSIFIED

SE CURI T Y C L ASS I FI CATI ON O F THIS PAGEf»7>«n D » ta E n tered)

UILU-ENG 78-2210

THE DESIGN OF MICROCOMPUTER SYSTEMS

by

Thomas Alan Lane

This work was supported in part by the Joint Services Electronics

Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract DAAB-07-

72-C-0259.

Reproduction in whole or in part is permitted for any purpose

of the United States Government.

Approved for public release. Distribution unlimited.

THE DESIGN OF MICROCOMPUTER SYSTEMS

BY

THOMAS ALAN LANE

B .S.E.E., Bradley University, 1973

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Electrical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1978

Thesis Adviser: Professor Edward S. Davidson

Urbana, Illinois

ACKNOWLEDGMENTS

I would like to express my appreciation to the Electrical

Engineering Department of the University of Illinois which provided me

the opportunity to do this work. In particular, I would like to express

appreciation to my thesis advisor, Professor E. S. Davidson, whose

guidance and consultation was instrumental in completing this work.

Lastly, a very special thanks is due to my wife Mary, who supported me

through this effort.

iii

TABLE OF CONTENTS

Page

1. MICROPROCESSORS AND MICROCOMPUTERS 1

1.1. A Perspective on LSI Technology 1

1.2. Microprocessors .. 2

1.3. Applications of Microcomputers 4

1.4. Microprogrammed Control .. 7

1.5. Typical Microcomputer Organization 12

1.6. External Logic ... 14

1.7. Microcomputer Configurations 16

1.8. Microcomputer Bus Structure 20

1.9. Support Circuitry ... 24

1.10. Microcomputer Design Considerations 38

2. COMPUTER CIRCUIT DESIGN .. 44

2.1. Logic Design in LSI Systems 44

2.2. TTL Circuits* 44

2.3. TTL Circuit Families .. 50

2.4. Interconnecting TTL Logic ... 51

2.5. Tri-State Logic .. 59

2.6. TTL MSI Functions ... 65

2.7. Power Supplies and Power Distribution Wiring 66

2.8. Noise in Logic Interconnections 68

2.9. TTL/MOS Interfacing ... n 85

3. MEMORY .. 88

3.1. Introduction to Semiconductor M e m o r y 88

3.2. Random Access Memory ... 89

3.3. Read-Only Memory .. 94

3.4. Memory System D e s i g n ... 94

3.5. Microcomputer Memory Systems 100

3.6. Logic Implemented with ROM's and PLA's 108

4. I N P U T / O U T P U T .. 116

4.1. Microcomputer Input/Output 116

4.2. Interrupts .. 125

4.3. Serial I / O ... 140

4.4. Direct Memory Access .. 148

4.5. I/O System D e s i g n ... 153

4.6. I/O Developments .. 162

REFERENCES .. 166

iv

V

LIST OF FIGURES

Page

1. MICROPROCESSORS AND MICROCOMPUTERS

1.3.1 Microcomputer applications 6

1.4.1 Microprogrammed control unit 9

1.5.1 Microcomputer organization 13

1.7.1 Intel 4004 ... 18

1.7.2 Intel 8080 ... 19

1.7.3 AMD 2900 Family .. 21

1.9.1 Ring counter .. 27

1.9.2 Modified ring counter circuit 29

1.9.3 Johnson counter circuit 30

1.9.4 RC oscillator 32

1.9.5 Crystal oscillator ... 34

1.9.6 Power-up initialization circuit 35

1.9.7 Initialization timing ... 36

1.9.8 20 ma TTY interface circuit 37

...... •

2. COMPUTER CIRCUIT DESIGN

2.2.1 TTL NAND gate circuit ... 46

2.2.2 TTL gate transfer characteristic 47

2.2.3 Totem-pole output circuit .. 49

2.3.1 TTL Family characteristics 52

2.4.1 TT L Voltage levels ... 54

2.4.2 TTL Family logic levels .. 55

2.4.3 Driver with logical 0 output 56

2.4.4 Driver with logical 1 output 56

2.4.5 TTL current parameters .. 58

2.4.6 TT L Fanout m a t r i x .. 58

,2.5.1 Tri-state inverter circuit 60

2.5.2 Bus line with Tri-state drivers 63

2.5.3 Functional equivalent of Fig. 2.5.2 64

2.6.1 TTL MSI functions .. 66

2.7.1 Power supply decoupling network 69

2.8.1 TTL Noise immunity circuit model 71

2.8.2 Ringing w a v e f o r m ... 74

2.8.3 Parallel t e r m i n a t i o n .. 75

2.8.4 Thevenin equivalent of parallel termination 77

2.8.5 Graph to select termination resistors 79

2.8.6 Series t e r m i n a t i o n ... 80

2.8.7 Series d a m p i n g 82

2.8.8 Properties of Scotch-flex flat ca bl e 84

Page

3. MEMORY

3.2.1 Static RAM chip ... 91

3.4.1 A typical memory module .. . 98

3.4.2 Memory address format .. 99

3.4.3 64 K memory implemented with 1 K modules 101

3.5.1 Memory operations bus cycling103

3.5.2 Typical memory interface 105

3.5.3 Relationship between memory access time and run t i m e 107

3.6.1 Address decoder 109

3.6.2 Minterm generator ...110

3.6.3 ROM structure ..112

3.6.4 PLA structure ..114

4. INPUT/OUTPUT

4.1.1 I/O instruction formats ... 120

4.1.2 Reader commands 123

4.1.3 Beginning of reader driver 124

4.1.4 Reader I/O interface ... 126

4.2.1 Interrupt processing ... 129

4.2.2 Single line interrupt connection 131

4.2.3 OR gate implemented with open collector gates132

4.2.4 Daisy-chained priority 134

4.2.5 Vectored/Daisy-chained interrupt circuit 135

4.2.6 Waveforms of interrupt circuit 137

4.3.1 Serial I / O ... 141

4.3.2 TTY character format ... 143

4.3.3 TTY connection to microprocessor 145

4.3.4 TTY data transfer routines 146

4.4.1 DMA control signals .. 154

4.4.2 DMA controller in a s y s t e m 157

4.4.3 DMA input operation .. 158

4.5.1 I/O methods .. 161

4.5.2 Programmed I/O benchmarks163

vi

1

1. MICROPROCESSORS AND MICROCOMPUTERS

1.1. A Perspective on LSI Technology

The nature of integrated circuit technology dictates an upper

limit on the number of gates that can be placed on a single chip and

still permit production that is economically feasible. This upper limit

is constantly being increased by improving technology. The first inte­

grated circuits had a small number of individual gates on a chip. As

technology progressed, medium-scale-integrated (MSI) chips were produced

with complex functions such as multiplexers, counters and shift registers.

Early in the 1970's the maximum number of gates had increased to the

point where a complete system or subsystem, such as a microprocessor

could be placed on a single chip. This technology is referred to as

large-scale-integration (LSI).

These highly complex LSI circuits are achieved only with very

high development cost. This development cost is due to the large amount

of time and effort required for design, layout, initial fabrication and

checkout. For any given LSI circuit, the development cost is a fixed

cost; it is the same for producing one chip or many chips. To overcome

this high cost, LSI circuits are usually developed only for high volume

markets in which case a small portion of the development cost can be

recovered from the selling price of each chip produced.

If an LSI circuit cannot be sold in sufficient volume, its

selling price is high and may not be price-competitive with conventional

SSI and MSI implementations.

2

In some cases a single application has high enough volume to

justify development of an LSI chip; e.g., calculator and digital watch

chips. In other cases, a more general-purpose LSI chip can be developed

which can be adapted to many different applications by the user. It

should be pointed out that two of the main components in a microcomputer,

the microprocessor and the memory are manufactured to be used in a broad

range of applications. This is one reason for their low cost.

1.2. Microprocessors

The microprocessor is an LSI component for use in digital

systems. A microprocessor is a single chip or chip set that performs

the functions traditionally associated with the central processing unit

(CPU) of a computer. That is, it processes data as indicated by a

sequence of instructions, called a program, stored in an external memory.

Given a microprocessor and memory, a stand-alone computer, called a

microcomputer, can be implemented with very few additional components.

The low cost of microcomputers has provided a new approach to the design

of digital systems which is based on the use of a general purpose computer

as an alternative to special purpose hardware.

In order to establish a frame of reference, listed below are

some relevant terms along with a working definition of each.

Minicomputer - a small, general purpose computer with a central

processing unit (CPU), a memory for storing programs and data, and I/O

de v i c e s .

Microprocessor - a microprocessor contains registers, arithmetic,

and control logic for processing data as specified by instructions stored

3

in a memory and is always implemented in LSI technology as a single

chip or a set of chips.

Microcomputer - a very low-cost, generally low-performance

computer which uses a microprocessor as its CPU. A microcomputer

consists of a microprocessor, memory, I/O devices and all necessary external

logic such as clock generators, buffers and latches. Typically, the memory

is also implemented with LSI circuits.

It should be noted that both microprocessor and microcomputer

are technology-related terms in that the distinguishing characteristic

of each is the technology used to implement the function rather than the

function itself.

Microprogrammed Processor - a CPU (usually of a small or medium

sized computer) or the heart of a programmable controller which uses a

memory-like component called control store for implementing its control

logic. Microprocessors, minicomputers and other computers may or may not

be microprogrammed.

Microprogrammable Processor - a microprogrammed processor

in which the control store is alterable by the user so that each system

may have a different control structure (instruction set) or may change

easily between several control structures.

The wide variety of available microprocessors provides a spec­

trum of performance within the class of microprocessor circuits. The

range extends from the low-performance 4-bit microprocessors to the high-

performance 16-bit microprocessors and to even larger word sizes in multi­

chip processors. Word size, speed and instruction set are all factors for

performance evaluation.

The 4-bit microprocessors have an architecture which resembles

calculator designs. The difference between them and calculator chips is

that they are programmable. The 4-bit word size is convenient for per­

forming BCD arithmetic. The primary applications of the 4-bit microprocessors

are as programmable calculators and simple controllers. The 8 -bit mic r o ­

processors are useful for processing alphanumeric data since the word size

matches standard character codes such as ASCII and EBCDIC. Typical appli­

cations of the 8 -bit microprocessors are controllers, character string

processors and low precision (or multiple pass) data processors. The

microprocessors with 12 or 16 bit word sizes can be conveniently used to

implement a general purpose low-performance minicomputer or a high per­

formance controller.

1.3. Applications of Microcomputers

There are two design approaches to implementing small digital

systems. One is to design special purpose hardware which uses flip-flops

to store and define a state, and gates to define the next state and decode

output signals. This approach usually yields a system which is very fast,

but inflexible. The other approach is to use a microcomputer which is

programmed to perform the specified control function. This approach

usually yields a system that is slow compared to a special purpose h ard­

ware implementation, however it is very flexible in that the system

function is determined by a program. When using a microcomputer, changes

in system functions can be done by changing programs rather than by alter­

ation of system hardware. In other words, in a microcomputer system, a

fixed hardware configuration is adapted to many different applications

by programming.

4

Thus a microcomputer user is required to write and debug pro­

grams. This could be a disadvantage for a user who is inexperienced in

programming with low-level languages. Often, once microprocessors have

been on the market for a while, there is software support available,

such as assemblers and simulators to ease the job of programming. Special­

ized hardware tools, such as system emulators, are also often available

to assist in debugging.

The concept of designing a system around a dedicated, general

purpose computer is not new. It has long been recognized that using a

computer as the heart of a system offers a degree of flexibility that no

special purpose hardware design could have. However, the cost of traditional

minicomputers severely limited the number of applications that could

afford this approach. With the introduction of the microcomputer, this

cost restriction is removed in vast numbers of applications. Many small

system applications which could not previously use computers may now be

designed around the microcomputer. Current microcomputers are not equal

in performance to minicomputers. However, microcomputers are not designed

to compete with minicomputers but to extend the concept of a dedicated

computer to applications where the minimization of cost and size are

important, but high-speed performance is not. Listed in Fig. 1.3.1

are some typical microcomputer applications.

In many applications where the microprocessor has been success­

fully used, the microprocessor has had speed and capability which far

exceeded the need for the application. Thus, although the use of a micro­

processor is sometimes a clear case of "overkill", the low cost of micro­

processors still make it the cheapest solution for many problems. Therefore,

Cash registers

Peripheral controllers

Automatic test systems

Digital instruments

Automobiles

Games

Numerical control

Point of sale terminals

Communication systems

Traffic controllers

Fig. 1.3.1 Microcomputer applications

7

the microprocessor should be used in any application where it is the

cheapest solution, regardless of how inefficiently the microprocessor

is used because the unused capability is obtained for no additional

cost. Often, in such applications, additional capability can be used

to provide more sophisticated processing or ancillary jobs at little or

no extra cost.

The microprocessor is not the solution to all logic design

problems. In systems where the hardware function is trivial, special

purpose hardware is still the most economical solution. In systems that

require 50 or more packages using special purpose hardware, microprocessors

should be considered as a potentially attractive alternative, providing

the microprocessor performance is adequate to handle the application.

The microprocessor is well-suited for implementing functions that can be

described by a flow chart. That is, functions which can be described by

a sequential series of operations and decisions. In some cases, either

the program length, instruction cycle time, or both are such that the

microprocessor is too slow for the application.

1.4. Microprogrammed Control

Microprogramming refers to a method of implementing control

logic. In this method, the control section contains memory, usually

called control store, which contains control information. Control signal

sequences are generated by continuously accessing control store locations.

Each access to the control store retreives a word called a microinstruction.

Each microinstruction contains two types of information. The first type

is control signals which setup the data paths for the corresponding

8

microinstruction. The second type is information for selecting the

next microinstruction. A sequence of microinstructions is called a

microprogram. Thus, by specifying appropriate control store

contents, the execution of a microprogram can generate any complex

sequence of control signals. Shown in Fig. 1.4.1 is a block diagram of

a microprogrammed control unit. Since the control information is

determined by the contents of the control store, changes to the control

sequence can be made by simply modifying the contents of the control

store. This flexibility is one of the attractive features of micro­

programmed control.

The control store is typically implemented with R O M or PROM.

This means the control structure is defined when the memory is programmed

and remains fixed during execution. In some cases, RAM (called writeable

control store) is used and the control store contents can be altered during

execution. This allows the architecture of the machine to be dynamically

altered during execution. In most cases, high speed bipolar control store

is used to produce the high execution speeds.

Microprogramming is considered a highly regular form of control

logic, as compared to hardwired control units which are implemented

with gates and flip-flops in an irregular fashion to generate timing and

control signals.

It should be noted that the "micro" in the word microprocessor

does not stand for microprogrammable, but rather simply for LSI implementa­

tion. While some microprocessors, such as the National GPC/P or the Intel

3000 are microprogrammable, most are not. In addition, most microprocessors

F P - 59.35

Fig. 1.4.1 Microprogrammed control unit

10

do not use microprogrammed control, but rather classical state machines

implemented in programmable logic arrays (PLA’s).

A n important point is the distinction between microprogrammed

and microprogrammable. If a computer is microprogrammable, there exists

some way for the user to alter the contents of the control store. This

allows the user to write and execute his own microprograms, thus to

define the control structure of the machine instruction set (within

limits). If a computer is simply called microprogrammed, the user

generally cannot alter the microprogram and the fact that the control

logic is microprogrammed is essentially transparent to the user.

In the classical sense of the word, a microprogrammed co m ­

puter is one which has two levels of programmability and both are directly

meaningful to the system hardware at execution time. The low level pro­

gramming is done with microinstructions. The high level programming is

done with macroinstruetions, which are similar to standard machine

language instructions. In such a computer, macroinstruction execution

occurs in two steps. First, a sequence of microinstructions is executed

to fetch a macroinstruction from the user memory. The op code of the

macroinstruction is decoded to cause a jump to the microinstruction

sequence necessary to execute the macroinstruction. After completing

this sequence, a jump to the instruction fetch microroutine is executed

and the two step sequence repeats. This is one use of microinstructions:

to implement a higher level language. This use of microprogramming is

important in that it allows each user, in effect, to define a personal

macroinstruction set. Thus for any specified application, the designer

11

can, in theory, define instructions that accomplish the job with maximum

efficiency. This feature may also be used to allow one machine to execute

the instruction set of another machine, which is known as emulation.

This minimizes software development and eliminates the need to rewrite

programs. Emulation may not, however, be as efficient as a rewritten

program.

Another method of using microinstructions is to write the user

program at that level. Notice that in this context, the term m i cro­

instruction is somewhat contradictory because two levels of programma­

bility no longer exist. Some manufacturers have referred to their

microprocessors as microprogrammable, although they are not microprogram­

mable in the classical sense of the word because the programming is done

at one level (the microinstruction level) only. This apparent contra­

diction can be reconciled by the fact that many microprocessors are

programmed with very low level instructions which resemble the micro­

instructions of previous machines.

Programming with microinstructions has the advantage of higher

speed execution because the overhead time needed to perform the macro­

instruction fetch and decode is eliminated. Another advantage is the

detailed level of control that can be achieved. This direct control of

built-in CPU functions can result in greater parallelism of execution

and elimination of unnecessary steps caused by using a general purpose

instruction set. The disadvantage of microprogramming is the tedious

task of programming with a very low-level language. Several manufacturers

have support software for easing the microprogramming task.

12

1.5. Typical Microcomputer Organization

A block diagram of a typical microcomputer is shown in Fig.

1.5.1. The diagram illustrates the three sections that traditionally

comprise a computer system, namely the microprocessor, memory and I/O.

As stated previously, the function of the microprocessor is to

process data as specified by instructions stored in an external memory.

To do this, the microprocessor must generate control signals which provide

information to the other system elements to indicate what is happening

internally and what should happen externally. The memory and I/O devices

must interpret this information to synchronize their operations with the

microprocessor.

The system memory is used to store user programs and data. It

can contain any combination of read/write random-access memory (RAM),

read-only memory (ROM), programmable read-only memory (PROM) which can

be programmed once, and electrically-alterable read-only memory (EAROM)

which can be repeatedly written and erased. The choice of memory is made

by considering the application. ROM's are used to store programs and con­

stants in high-volume applications. RAM's are used in applications where

data is altered during program execution. PROM's and EAROM's are similar

to ROM's except they are programmed by the user, as opposed to being mask

programmed. They are useful in low-volume applications where the one time

cost of mask programmed ROM's is not justified. Another typical use of

PROM's and EAROM's is for program storage while debugging prototype systems.

The total primary memory capacity available to the user is deter­

mined by the addressing capability of the microprocessor. The design of

FP* 5934

Fig. 1.5.1 Microcomputer organization

14

the system memory is an important consideration since in a real system,

the memory costs are a significant part of the system cost.

The I/O section refers to the I/O devices connected to the

microprocessor and the circuits needed to control these devices and

interface them to the microprocessor. Some typical I/O devices are CRT

terminals, small printers, switch registers, keyboards, LED displays,

A/D converters, small discs, tapes, etc.

1.6. External Logic

One consequence of implementing circuits with LSI is that the

number of external pins on microprocessor chips for interconnections is

limited. The wire connection between the silicon chip and the metal

pin is a major cause of failures in integrated circuits. Furthermore,

the number of pins required for a chip rather than the logical complexity

of the chip most often determines the size of the chip. Thus the m anu­

facturers have tried to minimize the number of pins to minimize the size

and probability of chip failure.

In microcomputers, the effort to minimize the number of pins

on LSI packages, along with several other design constraints (such as

minimizing chip area) has made it necessary to supplement the LSI packages

with external logic to form a working microcomputer in most cases. The

functions likely to require external logic are clock generation, initiali­

zation, bus buffering, interrupt control and I/O interfacing. The

external logic usually consists of TTL MSI and SSI with an increasing

number of specialized LSI parts, such as general purpose parallel and

15

serial I/O chips along with terminal and disk controller chips. Listed

below are some external logic functions that can occur in a typical

microcomputer system.

Input Multiplexers - These are used to select one of many

signal sources to drive a given pin. Using external multiplexers permits

a reduction in pin count and has the additional advantage of allowing a

pin to be used at different times for a variety of purposes (so-called

"time-shared" pins). In some systems this multiplexing function is

accomplished with the use of three-state or open collector logic (see

Chapter 2). In any case the microprocessor must provide control infor­

mation to the multiplexer indicating which input to select.

Bus Buffers - The output pins of MDS microprocessors have

limited drive capability. The DC fanout is typically one standard TTL

load. If the MOS output must drive long PC traces with many loads, the

load capacitance may increase the propagation delay. The problem is

solved by using TTL bus drivers which connect to the MOS outputs and

drive all the loads.

Data Registers - A problem arises when two output signals are

needed simultaneously from a single time-shared pin. The solution is

to send out one of the signals early. This signal is then stored in an

external data register until it is used. Thus, the time-sharing of

pins trades off pin count (and speed) for external data registers.

Decoders - Control, addressing, device selection and timing

information are sometimes supplied by the microprocessor in encoded

form. TTL MSI decoders are then used to decode this information into a

16

form useable by the system. For example, seven control signals which

never occur at the same time can be encoded in three bits and decoded to

one signal per wire with an external three-to-eight decoder.

External logic in microcomputer systems in undesireable since

it requires extra logic design, additional packages and increased cost.

Manufacturers have tried several approaches to minimizing the amount of

external logic needed. One is to design new microprocessors which supply

control information and data in a form that can be directly used by the

system. This approach implies a higher pin count. A second approach is

to design a family of specialized chips, such as peripheral interfaces,

timing and control chips, clock generator chips, and memory interface

chips. Since these chips are designed to operate with a specific mic r o ­

processor, their design can be optimized to minimize the total number of

chips used. Often, they are useful in a limited way in other systems as

well.

1.7. Microcomputer Configurations

There are many configurations of microcomputers available.

Listed below are three configurations which can be distinguished by

application, package count and cost.

1) The self-contained family of microprocessor, memory and

I/O, implemented with a chip or chip set. This configuration is intended

to produce microcomputers at minimum cost with a minimum package count.

The LSI chips have been designed to interact directly with no external

logic. All timing and signal protocols are built into the chips. Typi­

cally, this configuration results in relatively low performance. The

17

ultimate case of this configuration is the single chip microcomputer.

The extremely low cost of this configuration allows it to be used in

dedicated applications where cost is the all-important factor. Shown in

Fig. 1.7.1 is an example of a self-contained chip set family, the Intel

4004.

2) The single chip microprocessor which interfaces to standard

memory and I/O devices. These microprocessors utilize a unified bus to

talk to memory and I/O through simple protocols. This is done to permit

easy interfacing. This configuration typically requires some external

logic for interfacing. However, there is greater flexibility in the

interface which allows any memory or I/O device to be used. The ease

of interfacing allows this configuration to be easily expanded through

the addition of memory or I/O. This configuration produces relatively

high performance at the cost of extra logic and higher package count.

Shown in Fig. 1.7.2 is an example of this configuration, the Intel 8080.

3) The multi-chip, bit-slice microprocessor which interfaces

to standard memory and I/O devices. The bit-slice architecture is a

useful approach when a microprocessor with the desired word length or

operating characteristics cannot be fabricated on a single chip. In a

bit-slice microprocessor there are typically two types of chips, namely

data slices and control sequencer slices. The data chips are all

identical and partitioned as a bit-slice parallel to the data paths.

In other words, each chip has data paths for an N bit word and the chips

are designed so that they can be connected in parallel to form an arbi­

trarily large word with a multiple of N bits. Connections between data

path chips are necessary for the execution of certain instructions such

Microprocessor

I / O PORT I / O PORT

FP” 5933

Fig. 1.7.1 Intel 4004

Microprocessor

Memory

FP-5932

Fig* 1-7.2 Intel 8080

20

as add, subtract, shift and rotate. The sequencer chips are designed to

implement a microprogrammed control unit which controls the data paths.

The function of the sequencer chips is to provide the current control

store address and the logic to determine the next control store address.

These chips are sliced parallel to the control store address, thus con­

necting them in parallel generates a larger control store address.

The bit-slice architecture has many advantages. The user can

define the machine in terms of word length and control store capacity.

In addition, the use of microprogrammed control allows the user the

flexibility to define the architecture of the machine by creating an

instruction set optimized for the application. Bit slices are typically

very fast because they are generally implemented with bipolar logic.

Thus, bit-slice microprocessors have very high performance. The imple­

mentation of a bit-slice microprocessor requires a large amount of SSI

and MSI logic along with considerable design effort. However, bit-slice

microprocessors can be built which rival the performance of today's

minicomputers. Shown in Fig. 1.7.3 is a bit-slice microprocessor based

on the AMD 2900 family.

1.8. Microcomputer Bus Structure

All microcomputers have an I/O bus structure, that is, a group

of signal lines through which communication is established between the

data processing section of the microprocessor and all other system elements

such as memory and I/O devices. The bus structure organization permits

flexibility in that the number of devices connected to the bus can be

variable. The microprocessor architecture determines the structure of

Microprocessor

F P - 5 9 3 1

Fig. 1.7.3 AMD 2900 Family

22

the bussing system in terms of the number of busses and the structure

of each bus.

It is clear that the use of a common bus requires that some

means be provided to steer data between the microprocessor and a

selected device. To accomplish this, the microprocessor supplies control

and timing signals to indicate to each device connected to the bus when

and how to interpret the various bus signals.

The I/O bus structure is an important factor affecting mic r o ­

computer system performance. One bus structure is the use of a single

bidirectional, time-multiplexed bus, such as that used with the Intel

8008. A n advantage of this method is that it allows a minimum pin count

on the microprocessor chip. A single bus is used to transfer addresses

and data alternately. Memory operations are done by first sending an

address on the bus. At the same time, control signal is generated to

indicate that the data on the bus is a memory address.

For a read operation, after the memory address transfer, the

memory places the read data on the bus at a later time. The micro­

processor then reads the data bus at a specified time. Thus, a memory

read typically requires one cycle. For a write operation, after the

memory address transfer, the microprocessor places the write data on

the bus along with a control signal to indicate that the data on the bus

is memory write data. Thus, a memory write requires the microprocessor

to initiate two bus transfers, which typically requires two cycles.

The single bus system usually requires output buffer registers since

the microprocessor bus outputs are time-shared. Typically the address

is latched in the external devices and stored until the data is available

at the next bus transfer.

23

Another bus structure is the two bus system, which has separate

busses for address and data. Such a two bus system is found in the Intel

8080 and the Motorola 6800. This method allows one data word and its

associated address to be transferred in the same cycle, thus eliminating

the delays and extra logic associated with time-multiplexed bussing and

resulting in potentially faster output transfers. The use of a multiple

bus system requires more pins on the microprocessor chip.

Since the 4 to 8 bit word size commonly used in microcomputers

is inadequate for addressing memory, the memory address word size was

made larger than the data word size, usually a integer multiple of the

data word size. Since the internal circuitry of the microprocessor is

designed to process data words, often the bus is also designed to transfer

one data word at a time. In systems with a single bus such as the Intel

4004, addresses are transferred to other system devices over the data

bus in data word size pieces. The full address is thus time-multiplexed

onto the bus. When the device or the device interface logic receives these

pieces it must reassemble them in an address buffer to form the complete

address. This procedure is very time consuming and results in very

inefficient addressing. The logic used to disassemble and reassemble

the address is sometimes called a "bundle interface".

Since a microcomputer spends a major part of its time communi­

cating with memory, it is important to maximize the efficiency of memory

addressing when system performance is of concern in the intended applica­

tion. In the case of the single bus system, this can be done by designing

a bus that is wide enough to transfer an address word in a single bus

transfer. This essentially implies using a microprocessor in which the

data and addresses words are the same size. The multiple bus system

voids the fixed word size problem by using separate buses for data and

address, each of which are matched to the appropriate word size.

1.9. Support Circuitry

Many microcomputer systems rely on externally generated clocks

for their operation. It is normally the job of the logic designer to

develop circuits to generate the specified clock signals. In systems

requiring one-phase or two-phase external clocks, the clock signals are

commonly generated by interconnecting one-shots if timing tolerances

are not too strict, or by a crystal oscillator if precise timing is

required. In cases requiring more complicated clocking, such as four-

phase clocks, other methods are used.

One common method of generating multiphase clock signals is

implemented with a counter whose states correspond to clock phases, and

decoding logic. The counter is clocked repeatedly through a fixed

sequence of states by a master clock generated with an oscillator. The

master clock runs continuously and is the basic timing signal of the

system. The desired clock signals are then obtained by decoding the

appropriate counter states.

A binary counter is usually not suitable for this type of

application because of the hazards that occur during state transitions.

The counters used in this application should execute hazard-free tran­

sitions to avoid generating false momentary outputs. Counters well-

suited for this application, called shift counters, can be built using

shift registers with feedback. The feedback signal, which is some

24

25

function of the shift register state, is applied to the serial input

of the shift register. Two common shift counter circuits are the ring

counter and the Johnson counter.

The outputs of an N-bit binary counter can be decoded into a

N
maximum of 2 states. The ring counter and the Johnson counter are both

less efficient in that an N-bit version of each of these has N and 2N

states, respectively.

The shift registers used to implement shift counters must have

parallel data outputs to allow the counter state to be decoded. Another

useful feature is a Clear input which can be used for initialization. In

the absence of a Clear input, the counter must be self-starting, i.e., it

must sequence to a valid state from any arbitrary initial state. Further­

more, the computer must be designed so that the start-up sequence does

not interfere with proper operation.

In the design of shift counters, there are several considerations

which are common to all sequential machines. One consideration is when and

how the shift counter should be initialized. Another consideration is what

happens if an error occurs causing the shift counter to enter an invalid

state. The counter can be designed to hang-up or self-start (return to

the normal state sequence). Another consideration is how the decoding

logic treats invalid states. The decoding logic is minimal if it treats

invalid states as don't cares. However, if the counter ever reaches an

invalid state it could be decoded as being in a valid state or even several

valid states at once. If the decoding logic does not treat the invalid

states as don't cares, the decoding logic is said to reject false data.

26

A ring counter is a shift counter that operates by circulating

a single logical 1 level. A n N bit shift register forms an N state ring

counter. Since the counter outputs contain a single logical 1 level,

the counter states are essentially decoded without additional logic. In

other words, State 1 = Q^, State 2 = Q^, and State i = Q^. The elimina­

tion of state decoding is the advantage of the ring counter which is

N
otherwise very inefficient because it uses only N of the 2 possible

states. Shown in Fig. 1.9.1 is a ring counter circuit along with a table

describing its operation. This ring counter circuit must be initialized

into a valid state. In addition, if an error causes the counter to reach

an invalid state, the counter cannot recover (it is not self-starting).

The feedback logic is used to insert the logical 1 level at

the appropriate time. The feedback logic must detect when the logical

1 level is in the last stage of the shift register. When this state is

reached, the feedback logic functions should be such that the serial

input of the shift register is a logical 1 .

Every state transition of a ring counter has a hazard, unless

the output propagation delay of the shift register from a logical 0 to a

logical 1 (t) exactly equals the output propagation delay from a
PLH

logical 1 to a logical 0(t). Since this is not usually the case, a
PHL

hazard will occur. If it is known which delay is shorter, the type of

hazard, either overlap or isolation, can be predicted. If t ^ is less

than t , overlap will occur. Overlap implies that the next state
PHL

begins before the present state ends. If t is greater than t ,
PLrl PriL

isolation will occur. Isolation implies that the present state ends

before the next state begins.

Master
CLK N -B it Shift Right Register

^prinl Tnnut

Clock

Q, Q f Q , • • * Q N

FP"5930

Ring Counter Circuit

CLOCK

PULSE

Shift

^1

register outputs

Q? Q3 • • • • * QN-1 %

-»1 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 0 0

• • • • • •

• • • • • •

• • • • •

N-l 0 0 0 1 0

-N 0 0 0 , 0 1

Table illustrating operation of a ring counter

Fig. 1.9.1 Ring Counter

28

Consider how the type of hazard affects the state decoding.

Since single states are available at the shift register outputs without

decoding, there is a built in hazard between adjacent states. The

adjacent states are either isolated or overlapped, depending on the type

of hazard. To decode a group of consecutive states, the method depends

on the type of hazard. If overlap occurs reliably, an "OR" gate can be

used to decode groups of consecutive states by simply "ORing" the outputs

which correspond to each of the single states in the group. No momentary

zero will appear at the output of the OR gate between states. If isolation

occurs, an R-S flip-flop can be used by setting and clearing the flip-flop

with the appropriate state outputs.

Shown in Fig. 1.9.2 is a ring counter circuit which uses a

different feedback function. One advantage of this circuit is that it

can be initialized by using the Clear input. Another advantage of this

circuit is that it is self-starting. The counter can return to its

normal sequence from any invalid state.

This discussion of the ring counter has been based on counters

in which a single logical 1 level is circulated. Of course, with the

appropriate changes, a ring counter that circulates a single logical 0

level can be built.

The Johnson counter is implemented with a shift register and

feedback such that the compliment of the output of the last shift register

stage is fed back to the serial input of the shift register. A n N bit

shift register forms a 2N state Johnson counter, thus it is twice as

efficient as a ring counter. Shown in Fig. 1.9.3 is a Johnson counter

circuit along with a table describing its operation.

Initialize CLR

Master Clock CLK N-Bit Shift Right Register

Serial Input

Qi Q 2 • • • Q N- i Q n

K E ____ I
FP-5929

Fig. 1.9.2 Modified ring counter circuit

Initialize
Master Clock

FP-5928

Johnson counter circuit

CLOCK

PULSE

Shift

Qi

register outputs

Q2 • • • ' QN-1

523
O
'

Decode

Logic

(AND)

r*l 0 0 0 0
\

2 1 0 0 0
Q 1 • Q2

3 1 1 0 0 p2 - q 3

• • • • • • •

• • • • • • •

• • • • • • •

N 1 1 1 0
q n - i " °n

N+l 1 1 1 1
*1 • qn

• • • • • • «

• • • • • • •

• # • • • • •

-2N 0 0 . . . • 1—
11

1 O
'

Table illustrating operation of Johnson counter

<

CLR
CLK N” Bit Shift Right Register

Serial Input

Qj Q 2 . . • Q n

Fig. 1.9.3 Johnson counter circuit

31

The operation table illustrates that the state transitions of

the Johnson counter are hazard-free, since only one bit changes during

any state transition.

This counter circuit can be initialized with the Clear input,

since the 000...0 state is a valid state. This circuit cannot recover

from an invalid state, thus it is not self-starting.

Unlike the ring counter, the Johnson counter requires decoding

of the shift register outputs to obtain any particular state. Any state

or consecutive group of states can be decoded with a 2-input AND gate

provided that both true and complemented outputs are available on the

shift register. The state decoding functions are indicated in the operation

table. Although there are no hazards in the Johnson counter transitions,

there can be hazards between the decoded outputs due to delays in the

decoding logic.

While the preceding discussions illustrate how to use the ring

counter and the Johnson counter to generate clock signals, it is important

to note that these two methods can also be used to generate complex timing

signals by the use of appropriate state decoding.

Many digital applications require the designer to supply a basic

system clock signal, which must be generated by an oscillator. Shown in

Figs. 1.9.4 and 1.9.5 are two oscillator circuits, one RC controlled and

one crystal controlled. Both use a single inexpensive TTL IC and a small

number of discrete components.

r ■ j. <\ ■: ' ' a l u i - 1 ■ laLot is i i . • « a ̂■ a i . 1

32

F P - 5927

C Frequency

200 pf 5 MHz

1600 pf 1 MHz
s

.018 M-F 100 KHz

.18 M-F 10 KHz

Fig. 1.9.4 RC oscillator

33

The upper limit is approximately 5 MHz. This circuit is taken from the

"TTL Applications Handbook", Fairchild Semiconductor.

The frequency of the Fig. 1.9.5 oscillator is determined by

the crystal frequency. This provides more stable operation for the added

expense of the crystal. The upper frequency limit is approximately 20 MHz.

This circuit is taken from "The Electronic Engineer", May 1969.

When power is first applied to any circuit, the state of all

flips-flops, counters, registers, etc., is random. Before operation can

begin, everything must be in a known state, or in other words, the circuit

must be initialized. Shown in Fig. 1.9.6 is a circuit which will provide

an initialization signal every time power is applied or the switch is closed.

The signals in Fig. 1.9.7 illustrate the operation of the initiali­

zation circuit. The power supply is turned on and then the power supply

voltage reaches a valid level at t^. From t^ to t^, the supply voltage is

valid and the initialize signal is present. During this time, the initialize

signal (ENlT) is being used to set all flip-flops to their correct state. Also,

during this time self-starting state machines are being clocked to their

correct sequence. At t^, the initialization period is over and system

operation begins. The duration of the initialization period, t^, is deter­

mined by the RC product in the initialization circuit.

Many teletypes now operate with a 20 ma current loop convention.

Thus a logical 1 = 20 m a and a logical 0 = 0 ma. Thus, a converter is

required to convert the TT L levels used by the system logic to the current

loop representation used by the teletype. Shown in Fig. 1.9.8 is a typical

conversion circuit.

34

5 “ 6 0 pf
Crysta l

470X1
- V V V —

470 XI
-AA/V—

7 4 S 0 4 74S04

&

74S04

Fig. 1.9.5 Crystal oscillator

Clock
Output

FP-5926

+5

Fig. 1.9.6 Power-up initialization circuit

Microcomputer
System

T T L
Output
to T T Y

1 | \ 2 470X2
-i —

74 SO 4 M
.001 /xF

-12

T T Y Receiver

T T Y Transmitter

FP"5923

Fig. 1.9.8 20 ma TTY interface circuit

1.10» Microcomputer Design Considerations

One important characteristic of any microcomputer system is

its execution speed. Several measures of execution time that are commonly

used are the state time, the cycle time and the register-to-register add

instruction time. While these provide some indication of the execution

speed, the only reliable method of determining how fast a microcomputer

can perform a given task is to write a program which performs the task.

From the execution times of the various instructions, the execution time

of the program can be determined.

The design of a microcomputer requires consideration of both

the hardware and software. These considerations are important in deter­

mining the amount of external logic, the ease of programming, the system

performance and cost.

Major hardware design considerations include clock generation,

power supply requirements and logic compatibility.

Most microcomputers require externally generated clock signals,

although some have on-chip clocks. For on-chip clocks, the user need

only connect a frequency controlling device such as a crystal or RC ne t ­

work. Some microprocessors require external multiphase clocks. Other

clock considerations involve required frequency, signal rise and fall

times, clock signal voltages and other specified timing relationships.

Another issue is whether the microprocessor can tolerate much variance

of these requirements from the nominal specifications. When signals

must meet tight specifications, the clock circuitry design can become

complicated.

38

39

The power supply voltages required are important because each

power supply represents a significant cost in small systems. Most systems

contain a +5 volt supply to power the TTL logic. Systems using MOS micro­

processors often require one or two additional supply voltages. When

selecting memory chips, the supply voltages used by the memory chips

should be considered since often they can require another different

supply voltage, at potentially large currents.

Logic compatibility refers to the capability of directly inter­

connecting components of different logic families within a single system.

Such direct connections require that the signals from each device be

compatible with the others to which it may be connected, in terms of

both logic voltage levels and signal currents. In most cases, logic

compatibility is referenced to TTL. In other words, a device is referred

to as TTL compatible or not TTL compatible. Logic compatibility is

desireable because it eliminates the need to use voltage level translators

and current drivers. Most MOS microprocessors and memories available are

designed to be compatible (or nearly compatible) with TTL logic voltage

levels.

There are several system characteristics that affect the system

software. In effect, they define the system as the programmer sees it.

Major software characteristics of microprocessors include the data word

size, the addressing modes, the instruction set and the number of registers.

The small data word size typically used in microcomputers has

several effects on the programmer. When the real data is such that it

must be stored in several microprocessor data words, operations on real

data require multiple-word microcomputer operations. This type of

operation is similar to conventional multiple precision arithmetic.

Another result of small data words is that addresses require a larger

register size than data for efficient operation. This separation of

address and data handling decreases the number of possible register-to-

register transfers and can cause complications when manipulating

addresses.

The instruction set affects the system flexibility, the amount

of program memory needed, the ease of programming and the execution time.

One characteristic of the instruction set is the addressing modes.

Typical addressing modes are direct, immediate, relative, indexed and

indirect. A variety of addressing modes is necessary to allow the pro­

grammer to select among the methods throughout his program for efficient

execution. It should be noted that many microcomputer programs are stored

in RO M and such programs cannot be modified during execution. The address­

ing modes must then provide adequate capability for using and manipulating

addresses in registers.

Another important hardware feature of the microcomputer from

the programmer's point of view is the number of registers available.

Generally, a larger number of registers increases the efficiency of the

computer in terms of execution time. This is because the registers can

be used for temporary data storage and the relatively slow and cumbersome

references to the system memory can be avoided. There are several types

of registers. General purpose registers can be used as temporary storage

for addresses, operands and results. Other special purpose registers may

be used for special addressing functions or chip input/output.

40

41

There are several other system features which are present in

some microcomputers: stacks, interrupt capability and DMA.

Many microprocessors use a last-in-first-out stack for saving

status during subroutine calls and interrupt processing. Before leaving

the main program, the program counter contents and other status informa­

tion are saved by "pushing" them onto the stack. The return to the main

program is done by "popping" the information off the stack and into the

appropriate registers, thus restoring the original status condition. The

stack is convenient for handling nested subroutine calls and interrupts

in which a sequence of status savings and restorations is done. On some

microprocessors, the stack may also be used for temporary storage by the

programmer.

There are two methods used to implement a stack. In one method,

the complete stack or part of the stack is implemented within the micro­

processor chip. In the other method, a register within the microprocessor

is used as a stack pointer and part of the system RAM is used for storing

the stack. The stack pointer register contains a memory address which is

the current top-of-stack. To push data onto the stack, the stack pointer

is incremented and the data is written into the memory at the address then

indicated by the stack pointer. To pop data off the stack, the data is

read from memory at the address indicated by the stack pointer. The stack

pointer is then decremented. Several minor variants of this scheme are

commonly used as well.

The use of the on-chip stack is faster because stack operations

are accomplished with no memory references. Many microprocessors have

been designed with on-chip stacks so they can be used in applications

where the only system memory used is ROM.

When using stacks that are implemented with RAM, the depth

of the stack is essentially unlimited. However, when using an on-chip

stack, the depth of the stack is limited to some small number, typically

16 or less. The programmer must make sure that the stack usage due to

data storage, subroutine calls and interrupt requests that occur during

the program execution do not exceed the capacity of the stack. When

this happens, the stack overflows resulting in a loss of information.

In microprocessors which have on-chip stacks, some are designed so that

the stack is accessible to the programmer. On-chip stacks may also

have associated stack full and stack empty signals so that the depth of

the stack can be extended by software into the system RAM.

Interrupt capability is a feature that allows some external

d e v i c e to signal the computer that it needs immediate servicing. Mic r o ­

processors which can be interrupted have an input called the interrupt

request line. All the external devices which may want to interrupt are

connected to this line. The microprocessor tests this line periodically.

When it sees a request, it starts the interrupt process. This begins

by saving the status of the machine, consisting of the program counter

and any other needed registers. The status saving can be done in hard­

ware, software or a combination depending on the particular machine being

used. After saving the machine status, the interrupt service routine is

started. After servicing the interrupting device, the original status

is restored and the main program processing resumes. Interrupt capability

is needed only in situations that require fast real-time response from the

microcomputer. However, in many applications the interrupt capability is

42

43

a great convenience. In some cases the external conditions are slow

enough that they can be tested periodically with software by a polling

technique, thus eliminating the need for interrupts.

Direct memory access (DMA) refers to a system capability which

allows high speed peripherals to transmit data directly to the memory

without going through the microprocessor. This feature allows large

blocks of data to be transferred at high speed and causes minimal inter­

ference with normal processing. Some microprocessors, such as the Intel

8080, have been designed with features that allow easy implementation

of DMA. Most microprocessors can be made to perform DMA or a "DMA-like"

operation, however, some may require extensive additional hardware while

those designed for DMA require less.

A DMA request disables the processor and allows the requesting

peripheral to control the memory busses directly. The DMA feature is

particularly critical for slow processors with fast peripheral devices

such as disks, on the system. Even the relatively slow disk systems

which are used with microprocessors are often too fast to be handled by

interrupt routines. DMA capability is then essential.

2. COMPUTER CIRCUIT DESIGN

2.1. Logic Design in LSI Systems

The widespread usage of LSI integrated circuits has altered

the role of the computer logic designer. The availability of LSI circuits

such as microprocessors and memories have made it possible to implement

a computer with a small number of packages. Each LSI package contains a

large number of gates. Thus much of the logic design problem has shifted

to the IC manufacturer. The job of a logic designer building a system

with LSI circuits has become selecting, interconnecting, and interfacing

the needed packages to form the desired system.

The nature of the interface logic required is dictated by the

particular LSI circuits used and the desired system characteristics.

The flexibility in the hardware design of a system utilizing LSI circuits

is in theinterfacing logic. In most cases, the interface is implemented

with SSI gates and MSI functions. Currently TTL is used because of the

large number of low-cost functions available. Thus a typical micro­

computer system consists of LSI packages interfaced with TTL logic.

The purpose of this chapter is to give the designer a basic

understanding of TTL circuits, an overview of the MSI functions available

and guidelines for circuit design, all which are needed for effective

design.

2.2. TTL Circuits

Transistor-transistor logic, or TTL, is an integrated circuit

logic family which is currently the most widely used because of high

speed, low cost and a large number of functions available. Most TTL

44

45

integrated circuits are identified by a 74XX Series number, which identifie

the circuit function.

The basic TTL NAND gate circuit is shown in Figure 2.2.1, along

with the NAND gate symbol and truth table.

The gate circuit contains the multiemitter input transistor (QI)

and the totem-pole output stage (Q3 and Q4) characteristic of TTL gates.

The multiemitter input transistor performs the AND function on the inputs.

The remainder of the circuit acts as an inverter. The totem-pole output

gives the gate good drive capability because of its low output impedance

in both logic states. This makes it effective for driving capacitive loads

The operation of the NAND gate of Fig. 2.2.1 is illustrated by the

following discussion. Shown in Fig. 2.2.2 is the transfer characteristic

of a TTL gate.

W h e n either input voltage is low, QI is in saturation, Q2 and

Q3 are off. Q4 is on. The output voltage is two diode drops below V •

As the input voltage rises, the base of Q2 also rises. When the input

voltage is .5 volts, Q2 turns on and its collector voltage drops as its

emitter voltage rises. QI goes from saturation to reverse active mode,

as Q2 goes from off to active. As the collector of Q2 drops, the output

voltage drops, since the emitter of Q4 follows its base. The gate is now

in the transition region of the curve. As the emitter of Q2 rises, Q3

turns on and becomes active. A further increase in input voltage causes

Q2 to saturate, which turns off Q4 and drives Q3 into saturation. The

output voltage is now V cp , namely the collector to emitter saturation
sat

voltage of Q3. The diode Dl is present to assure that Q4 turns off when

Q3 saturates.

g=o
Symbol

Circuit Truth Table

F P - 5 9 2 2

Fig. 2.2.1 TTL NAND gate circuit

O
ut

pu
t

Vo
lta

ge

(V
o

lt
s)

Input Voltage (Volts)

Fig. 2.2.2 TTL gate transfer characteristic

48

The totem pole output shown in the NAND gate circuit is used

in almost all TTL logic, both SSI and MSI. The drive capability of the

totem pole output is an important factor in achieving high TTL switching

speeds. However, the totem pole output has an inherent problem which causes

it to generate a current spike every time the output goes from low-to-high.

Consider the totem pole circuit shown in Fig. 2.2.3. Assuming a logical

0 output, Q3 is on and saturated. Q4 is off. When the gate switches, Q4

rapidly goes from cut-off to active, while Q3 is attempting to turn off.

The turn off requires a transition from saturation, through the active

region, to cut-off. Since Q3 is initially saturated, there is a charge-

storage delay while it tries to turn off. This results in a low-resistance

path between V cc and ground for the short interval that both Q3 and Q4 are

on, which produces a current spike in the V line. The maximum value of
cc

the current spike, Icc , is given by:
max

V cc - VD1 - Vce03 - Vce04

max R4

The current spike previously described occurs during the logical

0-to-logical 1 output transition. A similar action occurs during the

logical 1-to-logical 0 output transition. However, since the transition

does not usually involve the turn off of a saturated transistor, the

period of the conduction overlap is small and the current spiking effect

is negligible in this direction.

Any current spikes generated appear as noise in the system and

since many gates can be switching simultaneously this noise could result

in signal errors. Thus the totem-pole output circuit, which is itselt

part of the logic circuitry is a source of noise in the system. The

F P - 5 9 2 0

Fig. 2.2.3 Totem-pole output circuit

50

rather high noise immunity of TTL circuits minimizes the problems of such

noise spikes. However, more serious problems exist in systems with mixed

logic families. Although this current spiking cannot be eliminated, there

are methods to reduce the effects of it on the rest of the system.

2.3. TTL Circuit Families

Standard 74XX TTL is designed for a reasonable balance in the

trade-off between power and speed. Therefore, it is well suited for

general purpose applications. Other families of TTL are available which

are variations of standard TTL in that they emphasize either higher speed

or lower power. The result is high speed logic that consumes significantly

more power or low power logic which operates at slower speeds. A brief

description of each of the TTL logic families is given below.

Standard 74XX TTL - This is the widest available and lowest

priced TTL family. It also has the most functions and second sources.

The typical gate delay is 10 nsec with a power consumption of 10 mW.

Schottky 74SXX TTL - Schottky TTL is the highest speed TTL

family available. It is made by utilizing Schottky diodes with the

transistors inside the gate. This prevents the transistors from saturating

and eliminates the storage time delays within the transistors. Schottky

parts are designated 74SXX. The typical gate delay is 3 nsec with a

power dissipation of 19 mW.

Low-power Schottky 74LSXX TTL - Low-power Schottky TTL is a

TTL family which utilizes Schottky technology to implement gates which

utilize Schottky technology to implement gates which are slightly faster

than standard TTL but require only 20% of the power. This is done by

51

utilizing Schottky transistors within the gate to gain speed and then

using larger resistors which slows down the gate but also requires less

power. Low-power Schottky parts are designated 74LSXX. The typical gate

delay is 9.5 nsec with a power dissipation of 2 mW. Low-power Schottky

is a relatively new technology. As more functions appear and second

sources develop, low-power Schottky will challenge standard TTL in medium

speed applications.

The wide range of performance capabilities allows the designer

to optimize all portions of a system according to varying requirements.

In the future, the advantages of Schottky technology will make Low-power

Schottky the choice in medium speed applications and Schottky the choice

in high speed applications. All families are compatible and interface

directly with each other. The typical characteristics of each family

are summarized in Fig. 2.3.1.

2.4. Interconnecting TTL Logic

The majority of logic circuit interconnections consist of gate

outputs connected to the inputs of similar gates. To accomplish such

connections, the gate inputs and outputs must be electrically compatible.

The notation for TTL voltage levels are as follows:

V TTJ = Logical 1 input voltage level
111

V = Logical 1 output voltage level
OH

V = Logical 0 input voltage level
1L

V = Logical 0 output voltage level
UL

The relationship between these levels is illustrated by the

diagram in Fig. 2.4.1.

52

Family Gate Delay

(nsec)

Power

Dissipation

(mW)

Max Clock

(Mhz)

74XX 10 10 35

74LSXX 9.5 2 45

74SXX 3 19 125

Fig. 2.3.1 TTL Family Characteristics

From Fig. 2.4.1, it can be seen that the worst-case input and

output levels differ by some fixed amount in each state. In other words,

V_T is less than V and V is greater than V_„. This fixed difference
ULi JLLi U ri I H

is called the guaranteed noise immunity. This means that any gate output

signal can be corrupted by a noise voltage equal to the fixed difference

and still be used as a reliable gate input signal. The values for each of

the TTL families is given in Fig. 2.4.2.

A n input of a TTL gate requires current that the gate output

which is driving it must supply, either as sink current (current toward

the output) or source current (current from the output). Thus, the

number of gate inputs that can be connected to a single gate output is

dependent on the maximum amount of current the output can sink or source.

The maximum number of inputs that can be connected to the output of a

gate is called the maximum fanout. To determine the maximum fanout, the

current characteristics of the gate inputs and outputs must be known.

The notation for TTL gate current parameters are as follows.

I is the current a driver must sink for a logical 0 input.
ILi

I is the current a driver must source for a logical 1 input.
IH

I is the current a driver can sink and still maintain a
ULi

logical 0 output.

I is the current a driver can source and still maintain a
OH

logical 1 output.

These currents are illustrated in Figs. 2.4.3 and 2.4.4.

Thus, given these parameters, the maximum gate fanout can be

found.

53

Range
of <
V IH

Range
of

VlL

Guaranteed
Noise
Immunity

Guaranteed
Noise
Immunity

of

V 0 H

Fig. 2.4.1 TTL Voltage levels

74XX 74LSXX 74SXX

/-N

!
d

>

.4 .5 .5

V IL (m a x > .8 .8 .8

V 0 H (min)
2.4 2.7 2.7

V IH ̂m i n ^
2 2 2

Logical 0

noise

irammity

.4 .3 .3

Logical 1

noise

immunity

.4 .7 .7

volts

volts

volts

volts

volts

volts

Units

Fig. 2.4.2 TTL Family logic levels

56

Fig. 2.4.3 Driver with logical 0 output

Fig. 2.4.4 Driver with logical 1 output

57

Maximum fanout = MIN ^ O H ^ I H ^

Shown in Fig. 2.4.5 are the standard current characteristics

of several TTL families. Shown in Fig. 2.4.6 is a fanout matrix which

indicates how many standard inputs of a given family can be driven by

an output of another family.

Circuit specifications for any particular IC will give the

current capability needed to check fanout. Several TTL IC's have input

pins which represent more than one load. This usually occurs in some

MSI I C ’s because the input signal is fanned out directly to several gates

within the chip.

In cases where the output is not driving similar gates, any

type of load may be used as long as it does not exceed the current

capability of the gate output as specified by 1^ and

It is very important to check fanout on any given design and

to eliminate violations since the consequences of exceeding the fanout

are degradation of V_ and V voltage levels causing at least loss of
OL OH

noise immunity. If the violation is severe enough, it may result in

improper operation and damage to the gate.

A gate input with no connection is referred to as a "floating"

input. In TTL circuitry, a floating input is interpreted as a logical 1

input level. A floating input can be detected by measuring the voltage

at the gate input. A floating input will read from 1.4 to 1.6 volts.

Floating inputs are a potential source of problems and should

generally be avoided. They can cause degradation in gate performance

'IH

'OH

'IL

OL

40

400

1.6

16

74XX

20

400

.4

8

74LSXX

50

20

2

20

74SXX

H A

(J.A

mA

m A

Units

Fig. 2.4.5 TTL current parameters

Output

74XX

74LSXX

54SXX

74XX

10

5

12

Number of Inputs

74LSXX 74SXX

20 8

20 4

50 10

Fig. 2.4.6 TTL Fanout matrix

59

and in some cases can result in a false signal due often to coupling

inside the IC package. Floating inputs are particularly sensitive to

coupling.

Thus all unused inputs should be connected to an appropriate

voltage. For a logical 0, system ground is used. For a logical 1, any

voltage between 2.5 and 5.5 volts can be used. This can be done by

either connecting the unused input to V cc through a 1000 ohm pull-up

resistor or tieing the inputs to the output of an unused gate in the

system which is wired to produce a logical 1 output. Alternatively,

when the logic function of a gate is not affected, some logic input to

the gate can be repeated on a floating input. This does not normally

increase the loading of that signal in the zero state which often has

a more restrictive fanout limit.

2.5. Tri-State Logic

Tri-State logic is a variation of TTL in which the totem-pole

output circuit has been modified such that it can assume one of three

states. Standard TTL can assure two output states, low-impedance logical

0 output and low-impedance logical 1 output. In Tri-State logic there is

a third state, the high-impedance or disabled state. Shown in Fig. 2.5.1

is a Tri-State inverter.

Circuits with Tri-State outputs have an additional input which

is used to control the state of the output. This Enable control input

overrides the normal gate operation. When Enable input is low, the

disable circuit output (input to the multiemitter transistor is high and

the gate functions as a normal TTL inverter. When the Enable input is in

Data

Input
/ A

Vcc

- i -

Enable

Vcc

I
Output

FP-5917

Fig. 2.5.1 Tri-state inverter circuit

61

the disable state (logical 1), the multiemitter transistor is turned on

regardless of the data inputs thereby turning the bottom output transistor

off. The diode conducts thereby turning the top output transistor off.

The output is thus forced to the high-impedance state. In this state,

both output transistors are off and the output resembles an open circuit,

sinking or sourcing a maximum of 40 y,a. of leakage current.

The development of Tri-State logic was motivated by a major

shortcoming of the totem-pole output. The totem-pole output prohibits

the use of wired logic. The capability to implement wired logic is very

useful in a bus organized system. Thus, before Tri-State logic, open-

collector TTL gates which permit wired logic were used as bus drivers.

These gates are two state devices whose output is either a logical 0 or

floating. The use of open collector gates requires a passive pullup

resistor on each bus line which reduces system speed. The pullup

risistor pulls the bus high when all open-collector gates connected

to the bus present floating outputs. The propagation delay of the bus

is increased due to the RC time constant of the pull-up resistor and

the bus capacitance. Also the number of devices that could be attached

to the bus is decreased because of the limited drive capability of the

open collector output.

Tri-State logic eliminated these problems by allowing gates

with totem-pole outputs to be used in a wired logic configuration. The

good drive capability of the totem-pole output minimizes bus delays so

that buses with Tri-State drivers are capable of TTL speeds.

Outputs of Tri-State gates are generally tied together. Only

one of these gates should be enabled at a time. However, some protection

62

is needed should more than one be enabled at the same time. If two

Tri-State outputs on a common line ever become enabled simultaneously,

there is typically a built-in current limiting process to prevent

destruction of the gate. In this situation however, the output level

is unpredictable.

In a bus-organized system, when Tri-State devices are used as

bus drivers, many devices can be hard-wired to a single bus and made to

time-share that bus. Normally, all but one output on a common bus should

be disabled at any given time. One line of a typical Tri-State bus is

shown in Fig. 2.5.2.

This circuit is somewhat equivalent to multiplexing, an

essential function in bus-organized systems. This equivalence is

illustrated in Fig. 2.5.3.

This circuit equivalence is valid if exactly one enable signal

is logical 1 at a time. When all enable signals are logical 0, the

multiplexer bus is a logical 0 while the Tri-State bus "floats". When

more than one enable signal is a logical 1 , the multiplexer bus carries

the "OR" of the corresponding data inputs, while the Tri-State bus is

inde termina t e .

The Tri-State drivers form a bus which functions as a

"distributed" multiplexer in the sense that the Tri-State devices may

be located in different modules of the system. The bus wire serves as

a distributed OR gate.

By using Tri-State gates as bus drivers and low input current

gates as bus receivers, it is possible to connect a large number of

Data A

Data Cj

Enable A Enable B

Data B;

Data Bus

Enable C

Data D

Enable D

F P - 5915

Fig. 2.5.2 Bus line with Tri-state drivers

Data Aj

Enable A

Data Bj
Enable B

Data Cj

Enable C

Data Dj

Enable D

FP-5916

Fig. 2.5.3 Functional equivalent of Fig. 2.5.2

65

devices to a single bus. The chart below gives typical characteristics

of a Signetics 8T95, which is a High Speed Hex Tri-State buffer package,

Since the input current requirements for these gates are small, this

chip can function effectively as a bus driver or a bus receiver.

Bus driver

characteristics

Bus receiver

characteristics

Characteristics of Signetics 8T95

Logical 1 output current

sourcing capability (I.™)
OH

Logical 0 output current

sinking capability (Im)
ULi

Third state output

leakage current (^0 3)

Logical 1 input current (ITTJ)
LH

Logical 0 input current (I)
JLL

Third state input current (I
13)

5.2 m a . max

48 m a . max

40 y.a. max

40 y*a. max

400 y,a. max

40 y,a. max

2.6. TTL MSI Functions

TTL integrated circuits are categorized into two classes, SSI

and MSI. SSI, or small-scale-integration, refers to packages which

contain a small number of gates. The gates in SSI packages are typically

not interconnected. Each individual gate performs a simple logic function

such as NAND or NOR. MSI, or medium-scale-integration, refers to packages

that typically contain 20-1 00 gates and perform a specific complex func­

tion. Designing systems using MSI packages reduces design time and

effort because it avoids the repetitious design of commonly-used functions.

Examples of available TTL MSI functions are given in Fig. 2.6.1.

Bus drivers Bus transceivers

Registers Decoders

Arithmetic Logic Units (ALU's) Adders

Shift Registers Counters

Comparators Multiplexers

Fig. 2.6.1 TTL MSI functions

The operation of these functions is not discussed here, since

the function name is self-explanatory.

The detailed description of MSI packages can be obtained from

manufacturer's data sheets. Wiring constraints and behavioral properties

are similar to thos discussed for SSI circuits.

2.7» Power Supplies and Power Distribution Wiring

In logic systems with a large package count there are several

design guidelines normally followed to assure the proper distribution of

power to each package.

The voltage output of all power supplied is specified along with

a maximum current rating. No power supply should be operated with a load

that draws more than the rated current. Each IC package in a system draws

a specified current, denoted I r r » The total power supply load, which is the

sum of all package currents, must not exceed the rated supply current. The

result of overloading is a drop in power supply output voltage. While most

power supplies are "short circuit protected", severe overloading of an

unprotected supply can cause permanent damage to the supply. Use of "overload

protected" power supplies is recommended to protect circuits from line surges

and power supply failures.

66

67

One technique used to implement power supplies is a microprocessor

system is the use of three-terminal IC voltage regulators. The only addi­

tional parts required to implement the supply are a transformer, rectifier,

and several capacitors. This approach is attractive because of the low cost

involved. Regulators are available for most standard voltages and can

supply currents up to five amps, thus they are sufficient for most m i c r o ­

processor systems. So, one approach is to have the power supply generate

all voltages necessary and then bus the regulated voltages around the

system. Another approach is to bus around unregulated voltage rails and

place the regulators on each card. This is an attempt to improve regulation

by placing the regulators closer to where the voltage is used.

It should also be noted that the use of voltage regulators solves

the current overloading problem since most regulators have a built in

overload detection mechanism which causes them to shut down when the

specified current load is exceeded.

The power supply in digital systems sees a varying load since when

a logic device changes state, the package current, I , displays significant
UVj

variations. These variations can be attributed to two distinct causes.

1. The D.C. current level, Ip p , is different for each output state.

The current level for a logical 0 output is denoted I r r j . The current level

for a logical 1 output is denoted I„niJ.
CLri

2. A transient current variation occurs each time an output changes

state. This is due to the current spike generated by the totem-pole output

of TTL circuits and the current needed to charge (or discharge) the load

capacitance. TTL power requirements thus increase, greatly during high

frequency operation.

While some spikes on the supply voltages are inevitable, it

is essential that the supply voltage remain as stable as possible through­

out the system during current variations.

Most voltage variation can be minimized by a technique called

decoupling. This involves inserting capacitors between power and ground

lines throughout the system. The capacitors tend to keep the power supply

current load constant by storing charge to be converted to current when a

momentary high current demand must be met.

The decoupling network, shown in Fig. 2.7.1, consists of a

single 30 to 50 uf. capacitor and a variable number of .01 to .1 uf.

capacitors. The large capacitor is placed directly across the power

supply terminals and/or the power supply connection of each circuit

card. The small capacitors are distributed throughout the system with

approximately one capacitor for every one to six IC packages. The small

capacitors should be the high-frequency (non-inductive) type, usually

ceramic disc. The small capacitors suppress high frequency transients;

the large capacitors, low frequency transients.

2.8. Noise in Logic Interconnections

In high-speed logic systems such as TTL, the interconnection

wiring used to carry signals between packages must be done with care.

W hen this wiring is done improperly, it increases the presence of noise

in the system and is a potential cause of signal errors. The noise

appearing on interconnection wiring can be attributed to two independent

phenomena, crosstalk and reflections.

68

Vcc

F P -5914

Fig. 2.7.1 Power supply decoupling network

70

Crosstalk refers to electrical coupling that often occurs

between two adjacent conductors. Thus coupling is caused by mutual

capacitance and mutual inductance that exist between the conductors.

When this coupling is strong enough, a signal level change on one con­

ductor will also appear falsely on the adjacent conductor.

TTL logic is a low impedance system, therefore most of the

signal crosstalk noise occurs by mutual inductance, rather than mutual

capacitance. The reason for the relatively large noise immunity to

capacitively coupled noise can be shown with a simplified model. Consider

Fig. 2.8.1, where Rout is the output impedance of a TTL gate and Cco is

the capacitive coupling between the signal line and some noise source.

When transient noise is coupled onto the signal line, it has

a duration related directly to the time constant R C . I n the case
out coup

of TTL logic, which has a low output impedance in both states, R Qut is

usually small and thus the duration of the crosstalk noise is short. If

the duration of the noise is short enough, it may be ignored by the input

of gate B. Thus in this way, TTL gates are relatively immune to capaci­

tively coupled noise. This model is a simplification in that a distributed

coupling is being modeled as a lumped capacitor, however it does illustrate

the way in which the low output impedance improves capacitive crosstalk

noise immunity.

Since most of the crosstalk noise in TTL circuits occurs by

mutual inductance, the wiring should be done such that the mutual induc­

tance, the wiring should be done such that the mutual inductance between

lines is minimized. Mutual inductance is a function of the spacing

71

Gate A Gate B

FP-5913

Fig. 2.8.1 TTL Noise immunity circuit model

between two conductors. Thus one method of reducing it is to avoid

placing leads adjacent to each other. In situations where leads must

be adjacent, such as bussing, another technique is commonly used. The

mutual inductance is reduced by running the signal line in close

proximity to a ground line. This reduces the amount of flux in the

field around the noise sourcing wire and therefore reduces the coupling

as well. This technique is used for coaxial cable, flat cable and

twisted pair leads.

Reflections can occur on a TTL interconnection when the gate

driving that line changes state. These reflections produce transient

voltage variations originating at both ends of the line. The condition

for reflections to occur is that the length of the wire (and therefore

the propagation delay of the wire) be long compared to the signal rise

time. If the wire is short, the reflections still occur but they occur

during the rise time and therefore are not a problem. For TTL wiring,

the maximum wire length for which reflections may be ignored is about

12". Longer wires behave not as simple wires, but as transmission lines

Every transmission line is described by a parameter called its

characteristic impedance, denoted Z^. is defined as Jh/C where L

equals the inductance per length and C equals the capacitance per length

Reflections occur on a transmission line whenever it is terminated in an

impedance not equal to its characteristic impedance. In TTL wiring,

reflections occur because the line is terminated by the gate input

impedance, which is typically 10^ ohms. This impedance creates a m i s ­

match since the characteristic impedance of the wire is typically 150

o h m s .

In addition to reflections at the receiving end of the line,

the low output impedance of TTL devices creates a mismatch which causes

reflections to occur at the driving end also. Reflections from both

ends of the line can result in a voltage variation called ringing.

Shown in Fig. 2.8.2 are the decaying oscillations about the final steady-

state value that are characteristic of a ringing signal.

Since ringing is a transient effect, one obvious solution to

the problem of ringing is to slow the system down, therefore not looking

at the signal until the ringing has sufficiently died down.

Another method of reducing reflections is a procedure called

termination. Termination involves placing an impedance equal to the

characteristic impedance at one or both ends of the line, since no

reflections occur at a matched end. Termination impedances are usually

implemented with discrete resistors. To use termination techniques

effectively, the line must have a known and uniform characteristic

impedance. There are two approaches to termination, series and parallel.

Series termination places the matching impedance at the driving end of

the line. Parallel termination places the matching impedance at the

receiving end of the line.

Fig. 2 .8.3 illustrates a configuration commonly used in parallel

termination.

Resistors Rl and R2 are located at the receiving end of the

line. The value of the terminating resistance is the parallel combination

of Rl and R2. Thus Rl and R2 are selected such that their parallel

combination is equal to Z q , the characteristic impedance of the line.

73

3 V

Output

Signal

75

CC

F P - 5911

Fig. 2.8.3 Parallel termination

76

Two resistors are used to produce the termination impedance

so that the termination can be accomplished without using an additional

power supply voltage. Shown in Fig. 2.8.4 is the parallel termination

circuit along with the Thevenin equivalent.

The Thevenin equivalent circuit illustrates that the termina­

tion could be accomplished with a single resistor R,̂ and a single power

supply voltage V . However, in most small systems, the cost of obtain-
TH

ing the additional power supply voltage is not justified.

The next consideration is determining the values of resistors

Rl and R2. There are two constraints needed. One constraint can be

set by specifying V ^ . For TTL circuitry, V should be equal to the
i H I H

logical 1 output voltage, which is typically 3 volts. The other con­

straint can be set by specifying From the transmission line

considerations given in this section, R,^ should be equal to Z q .

Thus the two constraints for determining Rl and R2 are:

M . . . U * = z / >
Rl + R2 0

R2 V = 3
Rl + R2 cc

Therefore, given Z Q , Rl and R2 are determined.

A n advantage of parallel termination is that it allows d i s ­

tributed loading, thus receivers can be distributed the entire length

of the line. A disadvantage of parallel termination is the large

current that flows through Rl when the driver output is a logical 0.

The power supply must be capable of supplying this additional current

77

CC

D
Driver

D
R

Receiver
TH

TH

FP-5910

Fig. 2.8.4 Thevenin equivalent of parallel termination

78

and the gate driving the line must be capable of sinking this a d d i ­

tional current.

Parallel termination is accomplished by selecting Rl and R2

to match the characteristic impedance Z q . Shown in Fig. 2.8.5 is a

chart which gives the values of Rl and R2 for values of Z q to to

360 ohms. The graph is constructed by simultaneously solving the two

constraints given above.

After selecting Rl and R2, the bussing circuit should be

checked to verify that the drivers and receivers are not operating

under conditions that exceed their specifications.

The bus drivers must be capable of driving a load that co n ­

sists of all the receiver inputs in addition to the current through the

termination resistors. The worst loading occurs when the driver output

is a logical 0. As the value of Rl decreases, this loading increases.

The value of Rl and R2 which give a perfect impedance match may result

in currents that exceed the capability of the bus driver. In that

case, values of Rl and R2 are used which are as close to proper termina­

tion as possible without exceeding the capability of the bus driver.

W hen terminating a line, a partial match is better than no match at all.

A partial match ma y reduce the magnitude of the reflections to an

acceptable level. The goal is to obtain as close a match as the circuit

conditions allow.

Series termination requires a resistor between the driver and

the transmission line, as shown in Fig. 2.8.6. The receiving end has

no termination resistance. The series resistor value should be

R
es

is
ta

n
ce

Vcc 79

Z 0
FP-5908

Fig. 2.8.5 Graph to select termination resistors

o - W V

Driver

R« = Zo Rout

o
Receiver

R s = Series Termination Resistor

R out = Driver Gate Output Impedance

F P - 5907

Fig. 2.8.6 Series termination

selected so that when added to the driver output impedance, the total

resistance equals the characteristic impedance of the line.

Any reflections along the line that return to the source

are absorbed. Series termination is also useful for controlling

overshoot and undershoot that may damage receiving devices. An

advantage of series termination is the low power dissipated in the

termination. A disadvantage is that all the receiving gates must be

located at the end of the line, thus receivers cannot be distributed

along the bus. Another problem with series termination is that when

the value of the resistor becomes large, the resultant voltage across

that resistor degrades the noise immunity.

Series damping is similar to series termination except that

in selecting the resistor value, no attempt is made to match the

characteristic impedance of the line. Instead, a small (27-47 ohm)

resistor is inserted between the driver and the transmission line, as

shown in Fig. 2.8,7. This gives a partial match and reduces over­

shoot and undershoot. This technique is useful when the characteristic

impedance of the line is unknown or the voltage drop across a proper

R cannot be tolerated.
s

When building logic circuits in a breadboarding situation,

the single most important wiring practice to follow is the use of

short leads. Always make leads as short as possible and try not to

exceed 12" in high speed circuitry. Another practice to follow is to

avoid running wires in neat, parallel bundles. Instead, use the more

random point-to-point wiring. These practices will minimize both

crosstalk and reflections.

81

o
Driver

R s = 2 7 a - 4 7 &

- W V -------------

Fig. 2.8.7 Series damping

D -
Receiver

F P - 5906

83

In situations where longer connections are needed, such as

bussing between circuit modules, termination is needed to assure

reliable operation. Parallel termination is necessary when distributed

receivers along the bus are required. For a unidirectional bus,

termination is done at the receiving end, while for a bidirectional

bus, both ends are terminated. The use of termination implies the

bus cable has a uniform characteristic impedance. Flat cable is

currently the most widely used interconnection in bussing applications

because it has a convenient variety of available connectors and has

a uniform characteristic impedance when used in the GROUND-SIGNAL-

GROUND configuration, which means every other conductor is grounded

for signal isolation. Terminations are applied to the SIGNAL lines

only. Shown in Fig. 2 . 8 .8 is a table of the properties of Scotch-

Flex flat cable.

In practice, the most common termination is the parallel

termination with R^ = 3 3 0 ^ and R^ = 220^. These values are pro-

partionately scaled upwards when the driver cannot sink adequate

current. If bidirectional bus drivers have adequate current sinking

capability, terminations are used at both ends of the line rather than

one. Note further that ground isolation of flat cable signals may

be omitted between adjacent signals such that neither one changes

state near the time that the other is sampled by any receiver, i.e.

if it is assured that any cross-coupling effects will have died out

whenever a signal value is required to be stable.

TYPICAL PROPERTIES OF SCOtChffeX BRAND FLAT CABLES
3M Part
Number 3350 /__ 3365 /__ 3401/28 3306 /__ 3451/24 3405/28

3405/36 3380 /__ 3469 /__ 3476 /__

Insulation
Material Polyvinyl Chloride (PVC) U.L. Rated FR-1 Polyvinyl Chloride (PVC) U.L . Rated FR-1

Color Gray Gray

Edge Marking Red None Red Green Red Black

Center
Spacing

050"
(1.27 mm)

.0625"
(1.59 mm)

.075"
(1.91 mm)

.050"
(1.27 mm)

Conductor
Solid

Copper
Stranded

Copper
Solid

Copper
Stranded

Copper
Solid

Copper
Stranded

Copper

Conductor
Size 30 AWG

28 AWG
(7*36) 26 AWG

24 AWG
(7x32) 30 AWG 28 AWG

(7x36)

Conductor
Quantity

10
14
16
20
24
26
34
40
50

10
14
16
20
24
26
34
40
50

28

10
14
16
20
24
26
34
40
50

24
28
36

40
46
50

14
16
20
26
34
40
50

20
26
34
40
50

Impedance 125 ohms 105 ohms 95 ohms 85 ohms 100 ohms 75 ohms 65 ohms

Capacitance 12 pF/ft.
(39 pF/m)

15 pF /ft.
(49 pF/m)

14 pF/ft.
(46 pF/m)

16 pF/ft.
(5 2 pF /m)

13 pF /ft
(43 pF/m)

24 0 pF /ft.
(78 7 pF/m)

29 0 pF/ft.
<95 1 pF/m)

Inductance 0.23 pH/f«.
(0.75 pH/m)

0.20 pH/ft.
(0.66 pH/m)

0 16 pH/ft.
(0.52 pH /m)

0 17 pH/ft.
(0.56 pH/m)

0.17 pH/ft.
(0.56 pH/m)

0.20 pH /ft
(0 66 pH/m)

0.14 pH/ft.
(0.46 pH/m)

Propagation
Delay

1 42 ns/ft.
(4 66 ns/m)

1.40 ns/ft.
(4.59 ns/m)

1.42 ns/ft.
(4 66 ns/m)

1.29 ns/ft.
(4 .23 ns/m)

1.33 ns/ft.
(4.36 ns/m)

1.68 ns/ft.
(5.51 ns/m)

1 65 ns/ft.
(5.41 ns/m)

Insulation
Resistance

> 1 0 '0 ohms/
10 Ft. (3 m>

>109 ohms/
10 Ft. (3 m)

Voltage
Rating 300 VRMS 300 VRMS

Temperature
Rating

-4 “F to +221 “F
(-20“C to +105“Cl

-4®F to +221 °F
<-20°C to +105°C)

U.L. Style
Number 2651 2682

Fig. 2.8.8 Properties of Scotch-Flex flat cable

85

2.9.0 TTL/MOS Interfacing

Many systems contain a combination of TTL and MOS logic.

These systems require that some TTL outputs drive MOS inputs and

some MOS outputs drive TTL inputs. Most MOS integrated circuits are

now built with inputs and outputs that are compatible (or nearly

compatible) with TTL voltage levels, thereby allowing direct inter­

connection and eliminating the need for level conversion circuits.

In situations where the signals are not compatible, an interface

circuit must be used.

Whenever using MOS integrated circuits, it is good practice

to check the V _ T , V , V , and V specifications. Often MOS inputs
OL OH IL IH

and outputs that are specified as "TTL compatible" are not truly so.

True TTL compatibility means that these specifications will be the

same as the TTL counterparts. An example of this is the Intel 8080

which has MOS inputs which have a V specification of 3.3. Since
lH

TTL only guarantees a V of 2.4, the 8080 may not receive a logical
OH

1 when the TTL gate is driving in a valid logical 1 level.

The input impedance of an MOS gate is mainly capacitive.

Thus, the input current is small and the only effect on the TTL gate

driving in is increased load capacitance which can increase the rise

time.

Next consider an MOS output driving a TTL gate. MOS outputs

are not well suited for supplying the drive current (ITtr, ITT)
lrl LLi

required by TTL inputs. The current drive capability of an MOS output

is proportional to the size of the MOS devices in the output stage.

86

Therefore, the current drive is designed to be very small and even

most TTL compatible MOS outputs have a fan-out of 1 standard TTL

load. Often, MOS outputs are interfaced to Low-power Schottky TTL

since it requires much less drive current.

In many systems MOS inputs and outputs are connected to a

bus. This requires that the MOS outputs drive the bus, i.e., both

the AC and the DC load. The DC load consists of the input currents

of the gates connected to the bus and the leakage currents of the

three-state outputs connected to the bus. The AC load consists of

capacitance created by the devices on the bus, along with the

capacitance of the interconnection. The AC load can be calculated

using the following:

TTL input 5=pf.

PNP TTL input=10 pf.

Three-state output=5 pf.

PC trace 3=pf/inch

This gives the total AC load seen by the output. If this

is greater than the specified load, the effect is an increase in

propagation delay. The amount of delay is found by derating according

to the specifications of the MOS output. When either the DC loading

or the decrease in speed is unacceptable, the problem can be solved

by using TTL bus drivers.

87

Wiring Guidelines Summary

1. Follow TTL Loading Rules to avoid problems caused by exceeding

the fanout capability of a gate. (Section 2.4)

2. Avoid floating inputs by tieing unused inputs to the appropriate

levels. (Section 2.4)

3. When using MSI functions, check the loading for each input pin,

since it often may represent more than 1 standard TTL load.

(Section 2.6)

4. Flip-flops should not be used to drive long lines because

reflections may cause unwanted transitions to occur in the

flip-flop.

5. Check that the power supply current capability can match that

needed for the system being powered. Also, make sure there is a

low impedance path between the power and ground pins on each

package and the corresponding power supply terminal. (Section 2.7)

6 . Decouple the circuit by placing one 30 to 50 M-f capacitor across

the power supply connection to the circuit board. In addition,

place one .01 |J-f ceramic disk to other suitable by-pass capacitor

across the power and ground lines for every one to six IC's in

the system. (Section 2.7)

7. When wiring signal lines, use short leads. Do not run leads in

parallel bundles, use point-to-point wiring. For long lines where

reflections are a problem, use some form of termination. (Section 2.8)

8 . When using flat cable use GROUND signals to isolate signals for

which cross-coupling cannot be tolerated. (Section 2.8)

88

3. MEMORY

3.1. Introduction to Semiconductor Memory

Semiconductor memory refers to a class of integrated circuits

in which a large-capacity memory has been fabricated on a single chip.

Advances in technology have produced semiconductor memory which is

more attractive in both price and performance than previous types of

memory, such as magnetic cores. In addition, semiconductor memory

possesses unique properties that have made it applicable in situations

where previous types of memory could not be used.

Memory was one obvious application of LSI technology due to

its regular structure and was therefore one of the first LSI c i r ­

cuits developed. After semiconductor memory was developed there was

a need for additional systems to utilize the memory. Some people

believe that the original reason for introducing the microprocessor

was to create a market that would support the sale of semiconductor

m e m o r y .

Semiconductor memory is an essential component in m i c r o ­

computer systems. The development of semiconductor memory and m i c r o ­

processors made possible the realization of low-cost microcomputers.

The system memory should receive special attention in the design of

any microcomputer, since memory cost is usually a significant part of

the system cost. This is easily seen since a system usually contains

a single microprocessor whose operation requires a memory system that

contains many memory packages.

89

Semiconductor memory is usually made by fabricating an array

of 1 -bit storage circuits, called memory cells, on a single chip.

The memory cells are circuits which are usually implemented with

standard bipolar and MOS logic families. In addition, other cir­

cuitry needed to read and write the memory cells, such as address

decoders and data buffers, are also designed into the chip. The

ability to place the address decoder within the memory chip is

essential because the use of external address decoding would require

a prohibitively large pin count on the memory chip package.

The above discussion reveals two basic advantages of semi­

conductor memory. Since the circuitry on the memory chips is imple­

mented with a standard logic family, the memory chips possess

compatibility with the logic that forms the rest of the system which

allows simple interfacing to the remainder of the system. Another

advantage of semiconductor memory is the placement of circuitry such

as address decoders and data buffers on the chip. Because of this,

the memory system design is simplified and package count is kept to

a minimum. Individual memory chips are easily interconnected to form

memory systems.

3.2. Random Access Memory

Random access memory (RAM) is memory which has the charac­

teristic that the time needed to execute a memory operation is inde­

pendent of the memory address. An additional property, often

associated with the term RAM, is that both read and write operations

must be done in times independent of the address. In operation, the

data is written into a memory cell at a fixed address location specified

by the memory address provided. The same data is retrieved by reading

the memory cell at the same memory address. The data does not move

from cell to cell inside the memory. There are two technologies

commonly used to implement RAM's: bipolar and MOS.

The structure of a typical static RAM chip is shown in

Fig. 3.2.1. The address decoders select one cell from the memory

array to be operated upon by decoding the address inputs A ^ to A^

The READ/WRITE line controls the mode of operation (read if 1, write

if 0). In the read mode, the contents of the addressed memory cell

appear at the data output after a delay equal to the access time if

CHIP SELECT is low. In the write mode, the data appearing at the data

input is written into the addressed memory cell if CHIP SELECT is low.

Notice that no memory operations occur when CHIP SELECT is high. In

this state, the DATA OUTPUT pin is normally at a high impedance state.

Such three-state DATA OUTPUT pins of several memory chips

associated with distinct addresses can be tied together for expanded

memory. Also, there are timing relations between the various signals

that must be observed for proper operation.

One inherent property of semiconductor RAM is volatility,

i.e., stored information is lost when the power is removed. This is

a serious drawback in some applications. In cases where the loss of

data due to accidental power removal is unacceptable there are several

possible solutions. One solution is to sense when the power supply

voltage begins to drop and at that time branch to a routine then

places the contents of RAM in some nonvolatile storage such as disk.

90

Read/Write

Data Input

Chip Select

Control

Logic
and

Data
Buffer

Fig. 3.2.

AoAj A2 • • • An-!

FP_ 5905

,1 Static RAM chip

92

Another solution is based on the fact that MOS RAM memory power

requirements are much smaller when in the standby condition than

when operating. Thus the solution is to sense when the power supply

voltage begins to drop and switch to an alternate power source such

as batteries. The batteries can usually supply the standby power

requirements needed for the memory to retain its data. This

technique is called "battery back-up".

Bipolar technology is familiar to most logic designers

since it is the technology used to build TTL and ECL integrated

circuits. There are three basic components which can be integrated

with bipolar technology: transistors, diodes and resistors. All

circuitry on bipolar integrated circuits is based on these three

components.

A bipolar memory cell is simply a cross-coupled transistor

flip-flop circuit which has been redesigned for integrated circuit

fabrication. Bipolar memories are faster than MOS. However, they

are more expensive and consume more power. Bipolar memory also has

a lower packing density than MOS, thus there is less logic per unit

chip area. One major reasons for this is the isolation that must

exist between each individual component on a bipolar chip. A common

method of isolation uses a reverse-biased PN junction. This method

has two drawbacks. It requires large areas for the isolation

junctions and the reverse-biased junctions have large capacitances

which degrades the switching time. The packing density is being

improved as new isolation techniques are discovered.

93

The characteristics of bipolar RAM make it ideal for high-

speed-small capacity memory applications.

MOS technology is based on the MOS transistor as the primary

circuit device. There exists two types of MOS devices, P-channel, or

PMOS and N-channel, or NMOS. Early circuits were implemented with

PMOS since it was easiest to fabricate reliably. However, since the

fabrication problems associated with NMOS have been solved, NMOS is

preferred because it is faster and TTL compatible.

MOS technology is attractive because it is relatively easy

to lay out and requires fewer steps to fabricate than bipolar. In

addition, MOS gates are more powerful in terms of logic capability.

When compared to bipolar, MOS provides much denser cir­

cuitry because component isolation is not needed. Power dissipation

is much lower. However, the speed is much less. The slower speed is

due to the high impedances of MOS devices and the parasitic capacitances

present in MOS circuits.

The characteristics of MOS, namely dense circuitry and low

power dissipation make it attractive for large capacity, low cost LSI

memories.

There are two types of RAM cells in MOS technology, static

and dynamic. Static cells are made with cross-coupled flip-flops.

Dynamic cells make use of the capacitance of the MOS transistor by

storing information as charge on this capacitance.

3.3, Read-only Memories

Read-only memories (ROM's) are memories in which each

location contains fixed data. The ROM is actually a form of RAM,

since every location must have a fixed access time. Since ROM's do

not have the write capability, the circuitry is much simpler than

that for RAM's. This allows ROM's to have a much higher density than

RAM's. There are two types of ROM's. One type is that which is

programmed during the fabrication process. The last step in p r o ­

cessing is to form a metalization layer defined by a mask. This mask

is customized for each user and is made such that it fixes the contents

of the ROM. In this type of ROM, the user cannot alter the contents.

There is another type of ROM in which the user may alter the contents

of the ROM. In these cases, the write operation is very slow and

requires the use of special programming hardware. ROM's which can be

altered (programmed) after fabrication are called Programmable Read-

Only Memories (PROM's). These are useful because they provide the

user the flexibility to alter the contents of the ROM. Both bipolar

and MOS technologies are used to implement ROM's. Bipolar ROM's are

typically small and fast, while MOS ROM's are large and relatively

slow. ROM's are typically more than one bit wide, usually 4 or 8

bits wide.

3.4. Memory System Design

Memory system design consists of two steps. The first step

is selecting the appropriate memory chips. This is done by considering

94

95

the intended application along with such factors as access time, cycle

time, power dissipation, the number of power supply voltages, logic

compatibility, and cost. The second step is designing the system by

interconnecting an array of memory chips and any additional logic

needed to form a working memory system. Included in this step is the

interfacing to the processor.

Memory system design is greatly simplified by the character­

istics of the memory chips themselves. One important characteristic

is the inclusion of logic such as decoders and buffers within the chips

Another important characteristic is the sue of Tri-state outputs on the

memory chips. Such outputs are enabled by the chip enable input signal

This greatly simplified the interconnection of individual memory chips.

Memory chips can be classified as either static or dynamic,

which refers to their method of storing information. In static

memories, the data is stored in flip-flops. In dynamic memories, the

information is stored as charge on the parasitic capacitance of an

MOS transistor. However, due to leakage, this charge can escape

resulting in a loss of information. Thus dynamic memories must be

periodically refreshed. Thus, dynamic memories require additional

control logic to provide the refresh.

Dynamic memories do have several advantages. One is cost:

dynamic memories typically cost 33% less than equivalent static chips.

Another advantage of dynamic memories is density, i.e. dynamic RAM's

have a four to one capacity advantage over static chips. In small

systems requiring less than 4 K of RAM static memories are probably

96

preferred because of the simplicity. In systems requiring greater

than 4 K, the dynamic RAM's become an attractive alternative because

they are more cost-effective. This is because most of the overhead

logic required in memory systems, such as latches, bus receivers, bus

drivers, parity checkers and parity generators are common to both

static and dynamic systems. In dynamic systems, the logic to control

refreshing, which typically consists of a counter, multiplexer,

oscillator, shift register and clock driver are shared by the entire

memory and add little cost to a large memory system when compared to

the cost advantage of the dynamic RAM chips themselves. The memory

itself, however, is unavailable to the system while it is being

refreshed. Normally, this results in very little, if any, performance

degradation. However, it can be a problem in real-time or high-

performance applications.

Furthermore, most static RAM's require only a single TTL

compatible power supply. In addition, the design is relatively

straightforward. Dynamic RAM's usually require several power supply

voltages. The design and debug of dynamic memory systems is more

complex than static memory systems and can pose problems for the

novice system designer. Some microprocessors have memory interface

chips specifically designed to control dynamic memories and simplify

the design.

Typically, RAM chips are one bit wide. When designed for

words that are K bits wide, the memory system contains K memory chips

in parallel with suitable control logic.

97

The block diagram of an example memory module is shown in

Fig. 3.4.1. This is a diagram of a 1024 by 8 memory card implemented

with 1024 by 1 bit RAMs (such as the Intel 2102). In other words,

each card has 1024 words where each word is 8 bits wide. The card

assumes 16 bit addresses and 8 bit data.

The operation of the memory card is straightforward. The

memory operation begins by storing a 16 bit address in the address

latch. The 10 low-order bits are connected by a common bus to all

memory chips. The remaining 6 high-order bits are fed into a comparator.

The other input to the comparator comes from a switch register. This

6 bit switch register is set to a bit pattern which established the

high order address bits pattern which this card recognizes. When

the compare between the high order memory address and the switch

register indicates a match, the card is selected and the memory chips

on the card are enabled. To complete a read operation, the memory

chips are cycled through a read and then the data is gated onto the

data bus through Tri-state buffers. The Enable on the Tri-state

buffers is also controlled by the comparator output. To complete a

write operation, the memory stores a 8 bit data word into the Write

Data Latch and then the memory chips are cycled through a write.

A memory system implemented with this type of card is

partitioned into equal size segments called modules. The size of a

module is the capacity of one memory card. Thus the memory address

consists of two bit fields as shown in Fig. 3.4.2.

Address Bus
Z

16

Data Bus

“7

8
/

16

R /W Line
Common to
All Memory
Chips

/

Address Write Data Tri-State
Latch Latch Buffer

> r* at > H o
 >

<0 >

o D0 Dj . . . D7 D0 Di . . . D 7

FP * 5904

Fig. 3.4.1 A typical memory module

99

1̂5 • • • ^10 < ^ 9 ^ 8 • • • A 0
___________________ » __

Module Address Within A Module
Select

FP-5902

Fig. 3.4.2 Memory address format

The high order bit field selects a particular module and the

low order bit field selects a location within the selected module.

Shown in Fig. 3.4.3 is a memory map of this system.

It can be seen that the switch register setting maps the

memory module into a particular 1 K space. Thus by using the appro­

priate switch settings on the memory cards, a 64 K x 8 memory can be

implemented.

With this type of memory card, memory system expansion is

very simple, up to a maximum size of 64 K x 8. The easy expansion is

facilitated by the use of Tri-state buffers which provide modularity.

To add memory cards, simply daisy-chain the control signals and data

bus to the new card. Then set the switch register to map the new

memory card into an unused module.

3.5. Microcomputer Memory Systems

The amount of memory required in microcomputers varies widely

according to the application. Almost all systems require some n o n ­

volatile memory, such as ROM, to store initialization routines which

are executed when the power is first applied. The amount of RAM

required varies from none, in which case the ALU register file and on-

chip microprocessor stack serve as data storage, to relatively large

amounts (greater than 4 K) .

One important characteristic of the use of memories in

microcomputers is typically low utilization, i.e., the memory is used

100

Address

0 - 1 0 2 3
Module 0
Switch Setting = 0 0 0 0 0 0

1 0 2 4 - 2 0 4 7
Module 1
Switch Setting = 0 0 0 0 0 1

2 0 4 8 - 3 0 7 1
Module 2
Switch Setting = 0 0 0 0 1 0

•
•
#

•
•
•

6 4 5 1 2 - 6 5 5 3 5
Module 6 3
Switch Setting = 1 11 1 11

FP-5903

Fig. 3.4.3 64 K memory implemented with 1 K modules

102

only a small portion of the time. Low utilization is particularly

pronounced when the memory and microprocessor are implemented with

similar technology. During the execution of an instruction, micro­

processors typically execute three nonmemory cycles for every memory

cycle resulting in a memory utilization of only 257o.

Memory operations are typically performed in a single cycle,

since memory cycle times and processor cycle times are approximately

equal. Thus a "Read cycle" sends out an address to the memory early

in the cycle and reads in the data at the end of the cycle. A "Write

cycle" requires one or two microcycles, depending on the bus structure.

A single bus structure requires two cycles. One cycle, the "Address

cycle", is used to send out the address and then another cycle, called

the "Write cycle", is used to send out the data. In a two-bus

structure, this is done in a single "Write cycle" by sending out both

the address and data in the same cycle.

Shown in Fig. 3.5.1 is the machine cycling for a single bus

processor such as the IMP-16. The single bus requires that address

and data be multiplexed within a bus cycle.

The read cycle, which requires one bus cycle, is shown in

Fig. 3.5.1(a). Early in the cycle, the memory address is placed on

the bus and an output strobe is supplied which causes the address to

to loaded into a register within the memory. The memory then reads

this address and the data is enabled onto the bus with the input

timing strobe. The processor reads in the data during this period.

The write cycle, which requires two bus cycles, is shown in Fig.

3.5.1(b). During the first cycle, the address is placed onto the

Address On Bus
From Processor

Output Timing
Strobe

Input Timing
Strobe

Data From
Memory On Bus

Address Cycle
Flag

Write Cycle Flag

Address On Bus
From Processor

Output Timing
Strobe

Data To Memory
On Bus

104

bus and an output strobe is supplied which causes the address to be

loaded into a register within the memory. During the second cycle,

the data to be written is placed on the bus and an output strobe is

supplied which causes the data to be loaded into a register within

the memory. The data is then written.

In the case of a two bus processor, the cycling is similar,

but without bus multiplexing.

The memory system contains interface logic which utilizes

control signals sent from the microprocessor. There are typically

two types of control signals. One type, called flags, are set at the

beginning of the cycle to indicate the type of cycle, such as Memory

Read or Memory Write. The other type of signals needed are timing

strobes, which indicate the actual period within a particular cycle

that a latch or buffer driver connected to the bus should be enabled.

Shown in Fig. 3.5.2 is a functional diagram of a memory interface,

showing how signals from microprocessor are used.

There are several criteria for selecting a memory chip.

One obvious criterion is cost. In terms of performance, the criterion

is the memory access requirements of the microprocessor. In other

words, the time between when the memory address is sent out and when

the microprocessor expects to receive the data back. To avoid slowing

down the microprocessor, the memory chip selected should have an

access time less than or equal to the memory access time of the micro­

processor. However, more important than the chip access time is the

memory system access time. This includes the memory access time,

plus additional delays, such as bussing propagation delays and inter-

Tri “ S ta te BUS to microprocessor

Address
to

Memory
Array

Write Data
to Memory

Array

Read Data
from Memory

Array

F P -5900

Fig. 3.5.2 Typical memory interface

1
0
5

106

face logic propagation delays. It is really the system access time

that must meet the memory access requirement of the processor.

Depending on the memory system access time, the mic r o ­

computer system can be operating as either processor limited or

memory limited. In the processor-limited region, a faster memory

cannot improve performance, since the system is already running at

maximum speed. In the memory-limited region, the run-time is sensitive

to memory system access time. It is also a function of memory

utilization. Shown in Fig. 3.5.3 is a chart which illustrates the

relationship between memory system access time and performance,

expressed as run-time.

In Fig. 3.5.3 when memory access time exceeds t Sy S the

performance of the microprocessor begins to degrade. The variable

X is the memory utilization. The Run Time is given by

RUN TIME = (1-X) + X(MAX(l,t))

Many microcomputer applications permit very slow execution

while still accomplishing the specified task. In such applications,

the designer may be able to lower the memory cost by using slower

memory. Slower memory is defined as any memory whose access time is

such that is does not meet the requirements of the microprocessor

running at full speed. Many microprocessors support this type of

operation, which essentially allows the microprocessor to pause in

the middle of a memory operation, until the operation is complete.

This is typically done with an external input to the microprocessor

called the READY line. The memory system controls the READY line.

Run
Time

F P “ 5899

Fig. 3.5.3 Relationship between memory access time and run time

1
0
7

108

During a memory cycle, the microprocessor outputs an address (and data

for writes) to the busses and then tests the READY line. The memory

system pulls down the READY line. The microprocessor tests the READY

line and remains paused as long as it remains low. When the memory

operation is complete, the memory system raises the READY line and the

microprocessor continues execution.

3.6. Logic Implemented with ROM's and PLA's

In applications where high speed is not essential, ROM's and

PLA's (Programmable Logic Arrays) can be used to implement logic

functions. Both ROM's and PLA's generate logic functions using AND-OR

structures. Thus, both possess an array of AND gates and an array of

OR gates. The AND gate array generates product terms of the input

variables and the OR gate array generates output functions by ORing the

appropriate product terms. The ROM and PLA differ in the level of

programmability. The ROM is characterized by a programmable OR gate

array, while the PLA has both programmable AND gate and OR gate arrays.

This leads to the result that a ROM is simply a special case of a PLA.

ROM's can be used to implement any function directly as a

sum of minterms. This is accomplished in the following manner. Shown

in Fig. 3.6.1 is a 3-bit address decoder. The address decoder accepts

the three address bits as inputs and generates eight outputs, where

each output corresponds to selecting one of eight possible memory

addresses. The address decoder can also be viewed in a different

manner, that of a minterm generator. Assume each of the address inputs

is a logical variable, as shown in Fig. 3.6.2. Then each of the outputs

A.

A;

A

A.

1 ^ 0

r>A 2Ai

A-
a :
a ;

A
A
5

o
1 3 3

Memory
Address

0

F P - 5898

Fig. 3.6.1 Address decoder

corresponds to one of the eight possible minterms of the input variables.

N
In a ROM, the address decoder is complete, that is it generates all 2

possible minterms of the N input variables.

Thus in a ROM, the address decoder is the AND gate array and

the resulting product terms generated are all possible minterms of the

input variables. There is thus no need to program the AND array in a

ROM. The OR gate array consists of a number of output function lines,

where each line serves as a distributed OR gate. Each output function

is implemented by ORing the desired minterms by forming a connection

between each selected minterm line and the output function line. The

connections between the minterm lines and the output function lines

are formed during the process of programming the ROM. Thus in a ROM,

the AND gate array is fixed and the OR gate array is programmable.

Shown in Fig. 3.6.3 is the symbolic internal structure of a typical

ROM.

Using a ROM as logic has one disadvantage. To implement a

function of N variables requires a ROM whose memory size is proportional

N N
to 2 . To implement K functions of N variables requires a 2 x K bit

ROM. Thus the ROM size is very sensitive to the number of input

variables. This fact can make the ROM very inefficient in certain

applications. For example, to make a 4 stage adder (with 9 inputs and

5 outputs) requires 29 x 5 = 2560 bits of ROM. This same function can

presently be made in a single dedicted MSI package without use of ROM.

The PLA can be used to implement any sum-of-products function

expression. The PLA is similar to a ROM, with the major difference being

the AND gate array. In the case of a ROM, and AND gate array is an

Ill

Minterm Product Lines

Address
Inputs

N

o

<
--

--
--

--

Address
Decoder

1 ,

CVJ

........

3 VA 1
2n_i

V \
.O R Gate Connections
•
•

• • •

F, F.

OUTPUTS

r K

FP-5896

Fig* 3.6.3 ROM structure

113

address decoder which generates all possible minterms of the input

variables. In the case of a PLA, the AND gate array is programmable.

In other words, the AND gates can be programmed to recognize any

product term of the input variables. There are two reasons why the PLA

allows a reduction in the number of AND gates needed as compared to a

ROM. One reason is that the PLA can be programmed to generate only

needed product terms. Another reason is the fact that the PLA allows

arbitrary product terms, thus a single product term gate in a PLA can

replace several minterm product term gates in a ROM. The OR gate array

in a PLA operates as in a ROM. Thus to use a PLA, the needed product

terms are generated by programming the AND gate array and the needed

functions are formed by programming the OR gate array. Shown in

Fig. 3.6.4 is a typical PLA structure.

N
It can now be seen that a ROM is simply a PLA with 2 unique

product terms. The PLA has an advantage in that there is no necessary

correlation between the number of inputs and the size of the PLA,

except for the number of input pins and the size of each AND gate.

This allows a PLA to use input variables without becoming excessively

large.

The PLA is ideal for LSI implementation of logic. It has a

regular structure which permits easy layout and fabrication. It also

has the advantage of reducing the gate count to a minterm. This tends

to minimize the chip area needed, which is always an important goal

in chip fabrication.

Standard N variable PLA chips, available as MSI components,

contain vastly fewer than 2^ AND gates, e.g. 48 AND gates with N = 14.

INPUTS

AND Gate Array Ft F2 F3 FK

OUTPUTS
FP - 5895

Fig. 3.6.4 PLA structure

1
1
4

Thus only a very few of the 2 functions of N variables are imple-

mentable in a single chip. However, many useful functions of N

variables are implementable and the larger value of N allowed in a

PLA chip is often more useful than the completeness of a ROM chip with

smaller N. Typically 8 or more functions can be output from a single

PLA chip.

115

2n

116

4. INPUT/OUTPUT

4.1. Microcomputer Input/Output

In most applications utilizing microcomputers, some communi­

cations between the microcomputer and the outside world is required,

since in the course of performing tasks, the microcomputer must input

information, process it, and output the appropriate response. Most

microcomputer tasks are very i/O-oriented, controller-type applications

in which the microcomputer is constantly performing I/O. This type

of application is natural since the relatively slow processing speed

and pin limitations of microcomputers make them unsuitable for high

speed numeric processing.

The I/O section of the microcomputer contain the logic

necessary for the microcomputer to communicate with I/O devices.

The structure of the I/O section and the methods used to connect I/O

devices to it are important. Furthermore, the low cost of m i c r o ­

computers make them suitable for many new applications in which they

will be interfaced to a wide variety of I/O devices. The variety of

devices and applications creates the need for a wide spectrum of I/O

capabilities, each of which must be implemented at minimum cost.

Here the designer can make use of hardware-software tradeoffs to

implement the necessary performance for the lowest cost.

One important point to realize in I/O design is the large

speed differential that can exist between I/O devices and the mic r o ­

processor they are communicating with. Even though microcomputers

are at the low end of the computer performance spectrum, they still

117

operate at speeds which are orders of magnitude faster than some I/O

devices, especially those I/O devices that are designed for human

interaction such as keyboards and displays. These devices operate at

data rates which are very slow compared to even the slowest micro­

computers, which have an instruction execution rate of approximately

10“* instructions per second. In addition, the microcomputer can

service I/O devices much faster than the I/O device can handle the

data. Thus, although the microcomputer can appear to be doing several

tasks simultaneously this is only an illusion created by the speed

differential. The microcomputer can perform only part of one task in

each cycle.

The primary characteristics of microcomputers that affects

the structure of the 1/0 system is the use of a bus architecture.

The microcomputer usually communicates with all its I/O devices through

one or two main buses. Each I/O device controller contains device

recognizer logic which is necessary since all I/O devices are connected

to a common bus. Thus, the device which is to perform the data trans­

fer must be specified by the microprocessor. Typically, this is

accomplished by the microprocessor which in the process of executing an

I/O instruction sends out the select code, specified within an 1/0

instruction, before the data transfer. Each device on the bus has a

unique select code which it recognizes. Thus, to talk to a given device,

the programmer simply specifies that device in the select code field

of an I/O instruction.

The use of a bus structure for microcomputer I/O results in

a system with several desireable characteristics of a low-cost system,

namely simplicity and flexibility. The simplicity results from

interfacing all devices to the bus through a common bus protocol.

The designer will define the timing relationships of data and control

signals which are available to all devices on the bus. In effect,

the user is defining the protocols for a system unibus. Thus, inter­

facing becomes simple because all interfaces are similar. The

flexibility is illustrated by the ease with which additional devices

are connected to the system. Additional devices are connected by

simply connecting the data control bus to them and assigning them

device numbers.

The primary method of performing I/O data transfers in a

microcomputer system is by executing I/O instructions. Every time an

I/O instruction is executed, the microcomputer will sequence through

the steps needed to perform the I/O operation. This operation consists

of a transfer of a word or byte of data between an accumulator internal

to the microprocessor and a device connected to the system bus. Thus,

I/O operations are initiated by the microcomputer which remains in

control throughout the operation. Since the microcomputer is the

controlling device, it must supply control information to the I/O

devices to accomplish the data transfer. This control information must

perform two functions. First, it must steer the data to the proper

device on the bus, by issuing a device select code. Second, it must

provide timing information to synchronize the I/O device to the mic r o ­

computer timing to perform the data transfer.

118

119

Every microcomputer has some form of I/O instruction in its

instruction set. Currently, there are two methods used to implement

them. The first method of implementing I/O instructions is to have

two instructions, one for input and one for output, which are used

exclusively for I/O transfers. Such instructions are typically called

IN and OUT (or RIN and ROUT). The second method of implementing I/O

instructions is to have memory-reference instructions used in con­

junction with special memory locations which have been assigned to

I/O devices. In this method, the I/O device must be capable of

recognizing and responding to its assigned memory address. This is

called memory mapped I/O. Its advantage is the ability to manipulate

I/O data with memory-reference inatructions and to provide great

flexibility in the amount of memory space and the number of I/O

devices used in the system. Normal memory functions are inhibited

when an I/O location is addressed.

Typically, the only explicit I/O instructions in m i c r o ­

processors are the ones that perform the actual data transfers. These

have the form shown in Fig. 4.1.1.

The op code specifies either an IN or OUT type instruction.

Each instruction contains a field, called a control field. The

contents of the control field are output as control information to the

I/O devices during the execution of an I/O instruction. The meaning

of the control field is user defineable. During the execution of an

I/O instruction, each I/O device receives and decodes the control

field and performs the specified function. Thus, the programmer

120

LOC

LOC

N

N + l

I / O OP CODE

Control Field

r------------------------ ------ 1------------- -------------
LOC N I I / O OP CODE ! Control Field

(a) 8 Bit Machines (b) 16 Bit Machines

F P - 5894

Fig. 4.1.1 I/O instruction formats

121

controls I/O devices by specifying control field contents when writing

a program. One use of the control field is to specify a select code,

which identifies which device is to perform the I/O transfer. Another

use is to send out I/O commands, such as start device, input status or

perform data transfer.

The function of the select code is clearly needed, since all

I/O devices share a common bus. Thus, a way is needed to specify the

correct device. While executing an I/O instruction, the select code

is sent out for all I/O devices to examine. All devices compare this

select code with their own and only the one that matches will respond.

The remaining bits of the control field contain control information for

the selected device in some format agreed to by the programmer and the

device controller designer. In some cases, the entire function of the

instruction may be contained in the command control field and no useful

data word transfer occurs.

Suppose a microcomputer wants to read in data from a paper tape

reader. The microcomputer must tell the reader to read and input a

character. This is done by executing a routine called a paper tape

reader driver. The driver contains the I/O instructions that inter­

act with the reader. A separate "start device 11 I/O command is usually

given to engage the reader motor and begin moving the tape. No actual

data is transferred with this command although a transfer cycle must

be executed in order to send the command information since an IN or

OUT instruction must be used. Next, the microprocessor will try to

read in the data. However, the reader is a slow device and executing

an IN immediately will probably read in garbage. Thus, the m i c r o ­

122

computer must have come way of interrogating the status of the reader

controller to see if it has a word of data. This is done with an

"input status" I/O command. Thus, the microcomputer executes a loop

testing the status of the reader repeatedly until it has a word of

data. The data is then obtained with an IN instruction. This method

of programmed I/O is called busy-wait I/O since the microprocessor

executes a loop waiting for the I/O device to be ready. Thus, the

user defines bit patterns in the control field of the I/O instructions

to command the devices to perform necessary functions and the controller

hardware must interpret them accordingly. Successive words may be

obtained by reentering the busy-wait loop and executing IN instructions

until the desired number of words has been read, whereupon a "stop

device" command is sent to the reader.

Alternatively, the controller can be designed to get the

next word from tape automatically each time a word is read by the

microprocessor. In this case, the controller is less complicated and

start device and stop device commands are not needed for the reader.

The following example illustrates the hardware and software of a

typical programmed I/O device. This particular example is for a paper

tape reader. The microcomputer has a 16 bit word and the I/O control

fields are defined as shown in Fig. 4.1.2. The select code of the

reader is assumed to be 8 . H signifies hexadecimal.

The beginning of a program to read paper tape is shown in

Fig. 4.1.3.

123

Instruction

ROUT

ROUT

RIN

RIN

Command Function Control Field Value

STOPRDR This command stops

the reader

08H

STARTRDR This command starts

the reader

18H

STATUSRDR The status of the

reader is input in

bit 0 of the data

word. Bit 0 = 0

indicates the reader

has a word ready to

transfer

28H

DATARDR A data word is

read in from the

reader

38H

Fig, 4.1.2 Reader Commands

124

STOPRDR = 08 H

STARTRDR = 18H

STATUSRDR = 28 h

DATARDR = 38H

READCHAR: ROUT STARTRDR

RIN STATUSRDR

BOC C3 , *-1

RIN DATARDR

Define control field for stop command

Define control field for start command

Define control field to input status

Define control field to input data

* *

Start paper tape reader

Check status of reader

.
If Bit 0 = 1 branchback to check again

Read in data word

Fig. 4.1.3 Beginning of reader driver

The I/O operations are done using this driver program along

with compatible hardware. The hardware must be capable of inter­

preting the commands contained in the I/O instructions. A typical

hardware interface is shown in Fig. 4.1.4.

The IMP-16 is a microprocessor with two 16-bit busses, one

for address and one for data. The ADEN, RDP and WRP are control

signals which indicate bus usage during a machine cycle. ADEN indi­

cates the presence of an 8 -bit 1/0 control field on the address bus.

RDP indicates that the data bus will be used to perform an input

transfer. WRP indicates that the data bus will be used to perform an

output transfer. T4 and T78 are timing signals used during data

transfers. T4 is used as a data strobe during output transfers.

T78 is used as a data enable during input transfers.

Note that under busy-wait i / O w i t h a slow device, the

processor spends almost all of its time in the busy wait loop waiting

for the device to be ready. In interrupt driven 1/0 this time can be

used for other execution and the processor is interrupted when the

device is ready.

4.2. Interrupts

Interrupts are signals originating in a device controller

and sent to the processor. The processor can perform normal processing

while waiting for the device to become ready. When an interrupt

occurs, normal processing is suspended, the program which services

the interrupt is executed and then the program that was interrupted

resumes. An interrupt can thus be viewed as a "hardware forced"

125

Fig. 4.1.4 Reader I/O interface

127

jump to subroutine. Interrupts allow external devices to demand ser­

vice from the microcomputer.

Interrupts are essential in real time applications where

data must be processed within a specified time or lost. Furthermore,

they are useful to perform efficient I/O operations, since they allow

the microcomputer to continue processing between the times that

relatively slow I/O devices need servicing. The I/O devices are

serviced only when they request it by transmitting an I/O interrupt.

An idealized example illustrates the efficiency gained with

interrupt driven 1/0. The microcomputer is sending data out to a

printer at 10 char/sec. Assume it takes 100 M<sec. of processor time

to execute a routine which sends a single character to the printer.

Thus, only 0.1% of the microcomputer time is spent servicing the

printer and 99.9% of the time is available for other processing. Busy-

wait I/O can do no other processing while servicing the printer.

Interrupts can also be used to notify the microcomputer of

external conditions such as power failure, parity errors and real-time

clock events as well as internal conditions arising from the processor

itself, such as arithmetic overflow. If, for example, no overflow

interrupt capability exists, the program must check the validity of

each arithmetic operation which might overflow.

Most microcomputers have some type of interrupt capability.

Those that do have an input through which interrupts are requested,

typically called Interrupt Request (INTREQ). They also usually have an

internal interrupt enable flip-flop which determines when the interrupt

system is ON. This input is tested periodically by microcomputer h a r d ­

ware, usually during each instruction fetch operation. If the INTREQ

line is low, no device is requesting service and normal processing

continues. If the INTREQ line is high and the interrupt system is

enabled, some device is requesting service and the microcomputer h a r d ­

ware begins the interrupt handling.

Shown in Fig. 4.2.1 is a flowchart of a typical interrupt

processing sequence. The functions performed during an interrupt

processing sequence are common to all microcomputers. However, the

methods differ and there are variations in the amount of interrupt

processing done in hardware.

Decision block A of Fig. 4.2.1 is the test of the INTREQ line.

This simply decides if there is an interrupt pending. If so, the

interrupt processing begins. Since most microcomputers can process

only one interrupt at a time, usually at this point the interrupt system

is disabled automatically, thus ignoring all other interrupt requests.

In Block B, the processor status is saved. This must be done so that

processing can resume after servicing the interrupt. The Program

Counter is saved at some fixed location. In Block C, the Program

Counter is loaded with a fixed address and execution is started. At

this address the Interrupt Handler routine is located. Block D is a

program which determines the source of the interrupt if there can be

more than one. This is done by polling devices until the interrupting

device is found. Block E sends out an Interrupt Acknowledge signal to

the interrupting device being serviced. This will usually cause the

device to turn off its interrupt request. This must be done or else

the microcomputer could see the same interrupt request twice. In

128

129

F P - 5892

Fig. 4.2.1 Interrupt processing

130

Block F the service routine of the interrupting device is executed.

Block G restores the status of the microcomputer and returns to normal

processing. This means the Program Counter is restored from the

location where it was saved and the Interrupt system is reenabled. This

function is usually done with a Return-from-interrupt instruction.

In a system with only one interrupting device, there is no

need to poll devices to determine the source of the interrupt since

there can be only one. However, when there are multiple interrupting

devices, some scheme must be used to determine the source of the interrupt

along with a method of assigning priorities to the interrupting devices.

Shown in Fig. 4.2.2 is the diagram for the single-line interrupt method,

where all device requests are input to an OR gate.

The OR function is usually implemented on a single wire with

open-collector gates as shown in Fig. 4.2.3. Alternatively, inverting

Tri-state circuits can be used to behave like open-collector circuits

by making their inputs equal to a logical 1 and using DEVREQ as an enable.

The interrupting device is determined by polling all the devices

in the interrupt handler routine. The priority of the devices is det e r ­

mined by the order of the polling, highest priority device polled first,

next-highest priority device polled second, etc. The potential problem

with software polling is that it can become very time-consuming.

The time used for device polling can be eliminated with a

technique called "vectored interrupt". A vectored interrupt allows the

microcomputer to begin executing the service routine of the interrupting

device immediately. This is done by reading in a word, called an

Microcomputer

DEV REQ 1
DEV REQ 2
DEV REQ 3
DEV REQ 4 #

DEV REQ N *

FP-5890

Fig. 4.2.2 Single line interrupt connection

DEV REQ 1
DEV REQ 2
DEV REQ 3
DEV REQ 4

DEV REQ N

FP

Fig. 4.2.3 OR gate implemented with open collector gates

7 4 0 5 7 4 0 5 + 5

DEV REQ 3 - O h DEV REQ 1 H

INTREQ _ Is
□lenT ---------------------------------------

- v - -

Equivalent ----------------------------- -------- ----------------------- --------- -------1---- 1
To ^

. ^ t ^ 7404
DEV REQ 4 ' " ‘ 1 ^

7405 7405

INTREQ

5891

1
3
2

133

interrupt vector, which points to the address of the correct inter­

rupt service routine. The interrupting devices uses the IAK signal

from the microcomputer as an enable to place its interrupt vector on

the bus. During this time it is read in by the microcomputer. Each

device typically has a unique vector.

During the time the vector is being read in, only one device

can have its vector on the bus. Thus, vectored interrupts require all

the interrupting devices to resolve priorities externally so that only

the highest priority device respond to the IAK. This can be done with

a technique called daisy-chained priority. A single line is serially

connected through all devices, as shown in Fig. 4.2.4„ This line carries

priority. The priority of any given device is determined by the position

on the line. A device must have the highest priority among the devices

presently needing service to request an interrupt. Once any device

requests an interrupt the priority chain is broken and no lower

priority devices can request interrupts. Shown in Fig. 4.2.5 is the

circuitry for a vectored/daisy-chained priority interrupt card.

The interrupt circuitry shown in Fig. 4.2.5 would be present

on every I/0 card w ithin a system. The priority chain is daisy-chained

to all devices. Initially, both the DEVICE INT REQ FF and INT REQ FF

are clear. There is one clock, I/O CLK, generated by the microprocessor.

Whenever an I/O device wants to interrupt, it pulses the

DEVICE INT REQ set input to asynchronously set the DEVICE INT REQ FF

to a logical 1. The next rising edge of I/O CLK sets the INT REQ FF.

This will cause the INT REQ line into the microprocessor to become a

logical 1. It also clocks the priority chain and clears PROUT to a

D E V IC E
1

4 3 PROUT

INTREQ 1

D E V IC E

2 '

P R IN I— NPROUT

INTREQ 2

D E V IC E

3

P R IN f- NPROUTo
INTREQ 3

D E V I C E
4

P R IN I— NPROUTO
INTREQ 4

D E V IC E
5

P R IN I— NPROUTo
INTREQ 5

Decreasing Priority

FP~ 5889

Fig. 4.2.4 Daisy-chained priority

1
3
4

Fig. 4.2.5 Vectored/Daisy-chained interrupt circuit

FP-5888

136

logical 0. Once the microprocessor recognizes the interrupt it gener­

ates the IAK signal. Assuming this card has priority (i.e., P R I N = I) ,

this causes two things to happen. First, the DEVICE INT REQ FF on the

card is reset. Then, on the next I/O CLK the card removes its INT REQ

FF. Second, the card drives its DEVICE VECTOR onto the Data Bus. The

operation of the circuit is illustrated by the waveforms of Fig. 4.2.6.

The key requirement of this circuit is that both the priority

chain and INT REQ F F ’s be stable during IAK. The I/O CLK is used to

synchronize the INT REQ F F ‘s with the microprocessor. Note that there

is a settling time for the priority chain (following the rising edge of

each I/O CLK) which must be allowed before IAK.

The interrupt vector for a device is usually the address of

its service routine or an arbitrary instruction (e.g. jump to sub­

routine at that address) or an address into a table of routine

addresses. In the latter scheme, the table is stored in fixed locations

of memory, but the routines themselves may be moved by changing the

contents of the table. On some systems there are both vectored and

nonvectored interrupts and a mixture of devices of each type as well

as those which do not interrupt at all can be present.

The ability of a microcomputer to respond to interrupts is

measured by the interrupt latency. Interrupt latency is defined as

the m a x imum time that can occur between a device interrupt request

and the beginning of the interrupt routine that services that device.

Interrupt latency is the sum of several components. The first is the

longest execution time of any instruction of the processor, since this

is the worst case time for sensing an interrupt request. The next

component is the time to sense the interrupt, swap the PC and save

I/O Clk

Device
Int
Req
Device
Int
Req FF
Int
Req
FF

PROUT

PRIN

IAK

Data
Bus

IN T
VECTOR

Microprocessor
Recognizes
Interrupt

FP-5887

tig* 4.2.6 Waveforms of interrupt circuit

status. The last component is the time needed to determine the source

of the interrupt and service it. Thus, each microprocessor has

characteristics, including execution speed, instruction set and archi­

tecture, which determine its interrupt latency. Certain architectural

features enhance (minimize) the interrupt latency. Vectored interrupts

minimize the time needed to determine the source of an interrupt. Data

stacks minimize the time needed to save and restore status. In many

cases, the designer needs to know the interrupt latency since I/O devices

may be designed to operate with some specified latency.

Following are descriptions of how four current microprocessors

process interrupts. Basic similarities can be seen.

The National IMP-16 senses interrupts at the INTRA input. There

is an INTERRUPT ENABLE FLAG which turns the interrupt system on and off.

This flag is program controlled and hardware controlled also. If there is

an interrupt pending at the end of the current instruction, and the INTER­

RUPT ENABLE FLAG is sent, the processor resets the INTERRUPT ENABLE FLAG,

saves the current PC on the stack and sets the PC to 1. It then starts

executing the interrupt handler which must begin at location 1. The IMP-16

also has another interrupt, CPINT, named under the assumption that it

originates from a control panel. CPINT is a vectored interrupt and has an

associated acknowledge, CPINP (control panel input). The interrupting

device drives a 16 bit instruction onto the data bus when CPINP occurs.

This single instruction is executed. Then main program processing

resumes, except that a jump to subroutine instruction causes the entire

138

subroutine to be executed. The return- from that subroutine, a return

from interrupt instruction (RTI), resumes main program processing and

enables the interrupt system.

The Intel 8080 senses interrupts at the INT input. There is an

INTE signal which indicates the status of the interrupt system and is

program alterable. If there is an interrupt pending at the end of the

current instruction and INTE is a logical 1, the processor starts a fetch

cycle and sends out the INTA status bits which serves as an interrupt

acknowledge. Also, the PC is not incremented, so the current PC is still

present. When the processor asks for an instruction, the interrupting

device drives an instruction on the data bus. Note that the 8080 did not

save the PC. The user must save and modify the PC with an instruction

as a JSB type. The 8080 has a one byte JSB instruction, RST, which causes

the PC to be saved on the stack and jump to a location encoded within

the instruction.

The Intersil IM6100 senses interrupts at the INTREQ input.

There is an INT EN FF which turns the interrupt system on and off and

is program alterable. If there is an interrupt pending at the end of

the current instruction and the INT EN FF is set, the processor grants

the device interrupt. The current PC is written at location 0, and the

PC is set to 1. It then starts executing the interrupt handler routine

at location 1 .

The Signetics 2650 senses interrupts at the INTREQ input.

There is an INT EN flag in the program status work (PSW) which indicates

the state of the interrupt system and is program alterable. If there is

an interrupt pending at the end of the current instruction and the INT EN

139

140

flag is set, the processor first disables the INT EN flag in the PSW and

then executes a jump to subroutine instruction. It also sends out an INT

A C K signal which causes the interrupting device to put an 8 bit address on

the data bus. This address becomes the target of the jump-to-subroutine

instruction. Since the 8 bit address can be indirect, this allows the

interrupt handler routine to begin at any addressable memory location.

4.3. Serial I/O

In addition to programmed I/O which transfers words or bytes

in parallel there is another I/O method used with microcomputers called

serial I/O. As the name implies, this method is for serial or b i t ­

stream devices. Of course serial I/O can be implemented by a controller

which transfers words to and from the processor and bits to and from

the device. To implement serial I/O directly the microcomputer needs

an input, called sense, whose logic state can be tested under program

control. There must also be an output, called flag, which can be set

and reset under program control. With the sense input and flag output

the microcomputer can read and write bit streams, thus forming a serial

I/O port. Shown in Fig. 4.3.1 is a typical serial I/O connection.

Serial I/O transfers are totally program controlled. Typically,

serial I/O operates with a predetermined data format and data rate which

are implemented within the program. In effect, the microcomputer is

serving as its own interface. The main function of the program is

serial to parallel conversion on the data at the sense input parallel

to serial conversion on the data at the flag output, and accurate

t imi n g .

Microcomputer

Flag

Sense

Serial I / O
Device

Receiver

Transmitter
FP - 5 8 8 6

Fig. 4.3.1 Serial I/O

Serial I/O is the ultimate programmable interface, since it

consists of a program only. This allows for flexibility in data rate,

data format and error checking. For the same reason, serial I/O

requires microcomputer control for the entire duration of the transfer.

Since serial I/O operates with a direct link between the m i c r o ­

computer and the I/O device, there is no hardware interface needed.

Thus there are no hardware costs associated with serial I/O. This

makes it especially useful with microcomputers where low-cost is

essential.

Almost every application of microcomputers requires the use

of a terminal or teletype. The teletype needs a serial interface to

communicate with the microcomputer. This interface can be built into

a hardware controller at some cost or serial I/O can be used to

implement a flexible, low-cost teletype interface.

Teletype communication involves sending ASCII characters as

bit streams. Data bit 1, which is transmitted first, is the least

significant ASCII code bit. The character is framed with one start (low)

and two stop (high) bits. The data format is shown in Fig. 4.3.2.

The start of a character is indicated by a high-to-low

transition. Each character requires 11 bits including one start and

two stop bits. Typically the data rate is 10 char/sec. or 110 baud

(bits/sec). The resulting bit time is 9.09 msec. Higher baud rate

terminals (up to 9600 baud) are available which use the same protocol

except that only 1 stop bit is used.

Data is represented within the teletype by current. This is

known as the Teletype 20 ma. current loop convention. A TTL logical

142

9 . 0 9 msec

Start Data Data Data Data Data Data Data Data Stop Stop
Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit

1 2 3 4 5 6 7 8

ASCII Character
FP - 5885

Fig. 4.3.2 TTY character format

1
4
3

one corresponds to a current of 20 ma. A TTL logical 0 corresponds

to a current of 0 ma. Therefore, a level converter is needed. A

level converter circuit is given in Fig. 1.9.8.

Thus, the serial interface for the teletype consists of the

level converter hardware and the serial I/O program, as shown in

Fig. 4.3.3. Many terminals are available which use the EIA convention

rather than the 20 ma. current loop for interfacing. These accept any

voltage > 3 volts as logical 0 and any < -3 volts as logical 1. A

TTL compatible or "forgiving EIA" will accept and drive TTL voltage

levels directly with a negative logic convention, i.e. logical 1 is

LOW and logical 0 is HIGH. The program must be capable of reading and

writing data in the teletype format. The flowchart for routines which

input and output characters is shown in Fig. 4.3.4. The programs are

generalized for any microcomputer.

The output routine assumes that the 8 bit ASCII character

to be transmitted is right justified in a register, called REG, when

the routine is entered. The input routine assumes that the 8 bit ASCII

character to be received is to be left justified in REG with the other

bits of REG, if any, shifted to the right by 8 bits. Timed delays in

the program are implemented by a loop of an appropriate number of NOP

instructions.

Note that the serial I/O programs tie up the processor for

the entire time that characters are sent or received. If a controller

is used which has a word interface to the processor (and a serial inter­

face to the Teletype), busy-wait I/O can be programmed which allows

144

F P - 3 M 4

Fig. 4.3.3 TTY connection to microprocessor

Send 2 Stop Bits

Fig. 4.3.4 TTY data transfer routines

Sample 8
Data Bits <
In The Middle
Of The Bit
Time

No Sense 0

Yes

Delay 1 / 2

Bit Time

Delay 1
Bit T ime

Shift
Reg Right

Wait For
Start Bit

Verify Start
Bit

Set Bit CNTR
= 8

Yes

|No

Or a 1 Into
MSB Of REG

Decrement
Bit C N T R

Character Stored
In Register

FP-5882

Fig. 4.3.4 continued

simpler software for input-output routines and allows some time between

characters for other processing, provided only that the busy-wait loop

is reentered in time to receive input characters at the maximum rate.

Reentering the busy-wait loop for output routines is not so critical

since the stop bit level may be held for any amount of time greater

than or equal to 2 bit times (1 bit time for faster terminals).

Either controller can be made interrupt driven to free up

the processor further. For the serial I/O controller, a received

start bit edge can interrupt the processor to enter the input routine.

This is particularly useful for input messages arriving at much slower

than the maximum rate, e.g. human keyboard entry. Note that if

interrupt latency is high for this system, then sampling of subsequent

data bits is after the midpoint of the bits. If the latency is excessive,

transmission errors can result. For the parallel I/O controller,

interrupt capability can be applied to both input and output to free

up the processor to a greater extent. Each successive step in

increased controller capability involves added controller hardware

cost, less system software, and higher system performance (if the

processor has other processing which can be done while it waits for

I/O). This is the so-called "hardware-software tradeoff" in design.

4.4. Direct Memory Access

Direct memory access (DMA) is a high speed I/O method in

which data is transferred directly between the I/O device and memory,

completely bypassing the microprocessor. The data rate of DMA is

limited only by the cycle time of the memory rather than the execution

148

149

rate of the microprocessor (as in programmed I/O). DMA is therefore

the fastest means of I/O for a given memory system.

The use of DMA requires extra logic which initiates and

controls DMA cycles. This logic, called a DMA controller, interacts

with elements of the system (microprocessor, I/O device, and memory)

to perform DMA transfers. The DMA controller performs three basic

functions; 1) Accept and execute commands from the microprocessor.

2) Request and be granted the use of system resources such as busses

and memory. 3) Generate the control signals to the I/O device and

memory to perform the transfer. The DMA controller temporarily takes

control of the system for each of its memory access cycles. DMA

controllers allow the processor maximum time for other processing

while I/O operations are in progress.

When DMA is enabled it is operating with a specified I/O

device. Thus, the DMA controller is constantly monitoring the DMA

Service Request line from the I/O device. A DMA cycle is initiated

whenever a DMA Service Request is issued. Thus, although DMA is

continuously enabled, the DMA transfer rate is determined by the I/O

device.

Most applications of the DMA involve block transfers of data

in which a specified number of words are transferred between the 1/0

device and memory. Block transfers require several parameters to be

set up in the DMA controller, namely the word count which specifies

the number of words to be transferred and the memory address which

specifies the starting address for DMA data. During each DMA cycle

the word count is decremented and the memory address is incremented.

150

The DMA operation is complete when the word count equals zero. A DMA

operation consists of a series of DMA cycles. On data word is trans­

ferred during each DMA cycle. Of course the block can be transferred

to memory in reverse order, if required, by decrementing memory

addresses. Sometimes a capability is built in for a processor to

abort a DMA block transfer in progress, either under program or

device control.

DMA as an I/O method thus has several desirable character­

istics, namely high transfer rates and minimal interference to c o n ­

current processing. The trade-off for obtaining these advantages is

the extra hardware costs of the DMA controller.

The high data rates are due to the nature of DMA which allows

transfers into memory every memory cycle and therefore transfer at the

data rate of the memory. Processing interference arises when both DMA

and the microprocessor request a memory cycle at the same time.

Typically, DMA will be granted a memory cycle and the microprocessor

will pause for one cycle. The DMA controller will initiate a cycle

(by requesting a memory cycle) only when the I/O device using DMA has

data ready to transfer. Thus, processing interference is minimal since

the microprocessor is paused only one memory cycle per DMA cycle and

a DMA cycle is initiated only when the I/O device requests it. Note

that even in interrupt driven I/O, typically a 100 M<sec. routine may

be required per word transferred. Assuming a 1 M-sec. memory cycle,

the processor load per word transferred is reduced to about 1 °L of the

load for interrupt driven 1/0 .

151

DMA is essential for servicing high-speed I/O devices where

other I/O methods are insufficient. This has been the traditional

application of DMA. DMA is also useful for servicing low to medium

speed devices because it performs I/O transfers with a minimum amount

of interference to the microprocessor. Thus, DMA is an efficient I/O

method for all devices. Historically, the high cost associated with

DMA restricted its use to high-speed devices. However, in micro­

computer systems, the simple and economical implementation of DMA has

made DMA a realistic alternative to be considered for any device.

Microprocessors can be designed to facilitate the use of DMA.

This is done with a Pause input which when asserted by the DMA

controller can cause the microprocessor to enter a pause state. In

the pause state, processing is suspended and no memory cycle requests

are generated by the microprocessor. This prohibits the microprocessor

from interfering with a DMA cycle. Also, while in the pause state the

microprocessor will let the memory and data busses "float” (high-

impedance three-state output), thus making them available to the DMA

controller.

If both the microprocessor and one or more DMA controllers

are requesting memory cycles, there must be some method of priority

resolution. The simplest method is to allow a DMA controller to pause

the microprocessor when DMA wants a memory cycle. This makes the

microprocessor the lowest priority memory requester. Priority resolution

between multiple DMA controllers can be costly and difficult to design

correctly. One simple solution, if possible, is to activate only one

DMA controller at a time.

DMA can even be used for processors with no pause facility.

For some processors, the clocks can be shut off for one or more cycles,

thereby achieving a forced pause. If the processor does not use

memory intensively, the processor can be given high priority and a

DM A request can wait for the next unused memory cycle (many mic r o ­

processors have at least one idle memory cycle per instruction). Of

course, some mechanism must be used to substitute DMA information for

processor information on the memory busses during DMA cycles and suit­

able control signalling must be designed.

One characteristic of DMA is the DMA latency. This is the

maximum amount of time between a DMA service request from an I/O

device and the completion of the DMA transfer. Note that for minimal

I/O buffering,

t < _______ i_______
latency — I/O data rate

For the DMA memory priority method of pausing the m i c r o ­

processor, the latency is the execution time of the longest instruction,

which could be relatively long. Other implementations of DMA, as

suggested above can provide shorter latencies if needed.

Although DMA data transfers operate independent of the m i c r o ­

processor, the microprocessor manages DMA operations through commands

in the form of 1/0 instructions. The microprocessor treats the DMA

controller as an 1/0 device and utilizes I/O instructions to initialize

DMA registers such as word count, memory address and direction of transfer.

After loading these registers the microprocessor sends a Start DMA

command via an l/O instruction. Following this command, the DMA

152

contoller operates independently until command completion. When a

DMA command is completed, the controller notifies the microprocessor

of a completion, typically through an interrupt, so the processor can

take appropriate action. Listed in Fig. 4.4.1 are the control signals

typically present in a DMA controller.

Shown in Fig. 4.4.2 is example of a DMA controller inter­

connected with all the system elements. A flowchart detailing a DMA

input operation using such a system is shown in Fig. 4.4.3.

4.5. I/O System Design

The i/O-oriented nature of most microcomputer applications

make 1/0 a major factor in microcomputer system design. I/O is the

least structured section of any microcomputer and the most flexible

since it must accommodate a wide variety of devices. Thus, the

definition and design of the I/O section is a large part of microcomputer

system design.

The design of the I/O section begins with a complete definition

of all I/O requirements within the system. The I/O section can then

be defined utilizing the particular mix of I/O methods which accomplish

the system requirements in the most economical way. The design should

also consider the possibility of future expansion.

The I/O requirements of any system can be defined by examining

the task to be done and the I/O devices to be used. The l/O requirements

can be characterized by the data rates and service latency of each I/O

device. Service latency is defined as the maximum time from a device

requesting service to the time that service is complete. An additional

153

154

Signal Name

LOAD WC (Load Word Count)

LOAD ADDR (Load address)

LOAD IN/OUT

START DMA

STOP DMA

DMA ADDR EN (DMA Address Enable)

INC ADDR (Increment Address Register)

DEC WC (Decrement Word Count)

DMA COMPLETE

Funct ion

Command generated by an I/O

instruction which loads Word

Count Register from the Data bus.

Command generated by an I/O

instruction which loads Address

Register from the Data bus.

Command generated by an 1/0

instruction which loads the

transfer direction flip-flop to

indicate input or output (and

possibly other control infor­

mation) .

Command generated by an 1/0

instruction which starts DMA

monitoring the specified I/O

device DMA Service Request.

Command generated by an 1/0

instruction which terminates

any DMA operation in progress.

Signal generated by DMA control

logic which enables the DMA

address register onto the Address

Bus during a DMA cycle.

Signal generated by DMA control

logic which increments the

address register to point to

the next DMA memory location.

Signal generated by DMA control

logic which decrements the

Word Count Register.

Signal generated when DMA Word

Count Register equals zero used to

notify I/O device and/or m i c r o ­

processor that DMA is complete.

Fig. 4.4.1 DMA control signals

155

Fig. 4.4.1 (continued)

I/O DATA IN

I/O DATA OUT

START DEVICE

DMA SER REQ (DMA Service Request)

ME M READ

M E M WRITE

M E M DATA IN

ME M DATA OUT

PAUSE REQ

PAUSE A C K

Signal generated by DMA control

logic which causes I/O device to

place data word on the Data Bus

during a DMA cycle.

Signal generated by DMA control

logic which causes I/O device to

load a data word from the Data

Bus during a DMA cycle.

Signal generated by DMA control

logic which tells the l/O device

to start at the end of a DMA

cycle when the Word Count is not

equal to zero.

Signal generated by the I/O

device to notify the DMA controller

that it is ready for a DMA cycle.

Signal generated by DMA control

logic which tells the memory to

perform one memory read cycle.

Signal generated by DMA control

logic which tells the memory to

perform one memory write cycle.

Signal generated by DMA control

logic which causes the data word

on the Data Bus to be latched into

the memory data register.

Signal generated by DMA control

logic which causes the memory to

place the data word in the memory

data register onto the Data Bus.

Signal generated by DMA control

logic which causes the m i c r o ­

processor to pause and relinquish

control of the memory and busses.

Signal generated by the mic r o ­

processor in response to a PAUSE

REQ which tells the DMA controller

that the microprocessor is paused.

156

Fig. 4.4.1 (continued)

END TRANSFER Signal generated by DMA control

logic during a DMA cycle which

acts as an acknowledge to clear

DMA SER REQ.

Microprocessor
Pause Req
Pause Ack £

Address Bus ^7777^

V V

DMA
ddr

DMA Controller
Start Device
End Transfer

DMA Complete

I/O Device I/0DataIn
I/O Data Out

DMA
Service
Request

<--------

w/M /z/mmm

Memory
Read
Write
Mem data in
Mem data out

FP-5881

Fig. 4.4.2 DMA controller in a system

Fig. 4.4.3 DMA input operation

FP -5880

159

design consideration is the amount of concurrent processing that must

be done during 1/ 0 operations.

There are two types of l/O devices. The first type is the

word-mode devices which perform single word transfers. For each START

DEVICE command, one word is transferred and another transfer does not

begin until the next START DEVICE command. These devices have no

minimum required data rate and allow arbitrarily large service latency.

The second type are the block mode devices which transfer

words in blocks at some minimum data rate. This type requires that block

mode devices demand service from the system or data will be lost. The

service latency of block mode devices specifies the amount of time the

system has to respond to requests before data is lost. These device

controllers typically have an overrun error indication as part of their

status word. An overrun error indicates that data has been lost due to

excessive processor latency.

Programmed I/O is the most simple and economical l/O method

and should be used whenever possible. In simple systems, with a small

number of low-speed I/O devices, programmed I/O can usually meet system

requirements. Programmed I/O does not allow the l/O device to demand

service and therefore the I/O program must poll the 1/0 devices to see

if service is needed. Normally, a single high-speed l/O device can be

serviced using programmed l/O if the program can be dedicated to the

device for the duration of the block transfer*

Interrupt driven I/O can be used to provide a maximum service

latency equal to the interrupt latency. In addition, the use of

160

interrupts allows the microprocessor to do concurrent processing while

servicing relatively slow I/O devices.

The use of DMA provides both the highest maximum data rate

and the shortest service latency. In addition, DMA allows the maximum

amount of concurrent processing for any given data rate. Shown in

Table 4.5.1 is a description of each of the l/O methods.

Thus, by knowing the system I/O requirements, the designer

can supply the 1/0 methods which accomplish the task best. However, the

advantages gained in using I/O methods such as interrupts and DMA are

accompanied by a considerable increase in system complexity and often

cost. Thus, they should only be used when required.

The complexities of interrupts and DMA are inherent in the

hardware and software needed to implement them. In addition, there

are interactions between the methods which create more complexity and

timing problems. For example, the interrupt latency is difficult to

estimate in a DMA environment. Also, if more than one DMA or interrupting

device in present, the specified service latency is only valid for the

highest priority device. Any timing loops that exist in software, such

as in programmed l/O, are not valid if interrupted or paused through

I/O interrupts or DMA. When all these interactions are occurring, the

system design can become very complex. Restrictions regarding the number

of kinds of active l/O devices are normally made in most microprocessor

systems to insure proper l/O operation.

When utilizing programmed l/O, in most applications some minimum

data rate is required. When selecting a microprocessor for a particular

161

Type

Serial I/O

Busy-Wait 1/0

Interrupt-driven I/O

DMA

Typical Data Rates

Low data rates

20K-40K words/sec

20K-40K words/sec

Up to 2M words/sec

Comments

Minimal external hardware

needed. Microprocessor

serves as I/O controller

by executing a program which

receives data by sensing a

data input and transmits

data by controlling a data

output.

Data transfer done through

the microprocessor by

program execution. Makes

use of I/O instructions to

transfer words between

internal registers and I/O

device.

Same as busy-wait 1/0 except

service latency-interrupt

latency. Allows some con­

current processing while

I/O is in progress.

Data transfers done directly

between I/O device and

memory bypassing the mic r o ­

processor. Requires DMA

controller hardware.

Fig. 4.5.1 I/O methods

162

application, often microprocessors are compared by using benchmarks.

Benchmarks are sample programs which perform the same function on

each distinct microprocessor under consideration. To illustrate how

well a given microprocessor will move data, a benchmark which trans­

fers a block of words from memory to an I/O device can be written.

Shown in Fig. 4.5.2 are programmed I/O benchmark programs for a

National IMP-16 and Intel 8080.

4.6. I/O Developments

Future applications of microcomputers will demand more I/O

performance for minimal cost. This will be provided by the use of

general purpose LSI l/O chips. The chips are general purpose in that

their function and mode of operation are programmable by the m i c r o ­

processor. It is natural to extend the cost advantages of LSI

microprocessors and LSI memory to the 1/0 section. Thus, future

microprocessors will have a family of compatible I/O chips.

The use of LSI facilitates the placement of large amounts of

logic on the I/O chip which allows the creation of an intelligent l/O

chip. These chips will be capable of performing many 1/0 functions

independent of the microprocessor. This eliminates the 1/0 bottle­

neck that arises when the microprocessor controls the I/O directly in

detail and therefore must respond to every I/O event in the system.

The use of LSI I/O chips allows intelligent I/O chips to be

implemented economically. The use of intelligent I/O chips creates

a system with distributed processing capability in which the I/O chips

163

L o o p :

L o o p :

National IMP-16

LI Rl, -100

LI R 2 , 20

LD RO, (2)

ROUT 10

AISZ 2,1

AISZ 1,1

JMP Loop

HALT J

Loop Initialization

Loop execution

time = 34.4 M-sec

I/O data rate =

1

34.4
M'sec = 2 . 9 1 X 1 0 words/sec

= 5 . 8 2 X 1 0 bytes/sec.

INTEL 8080

LXI H Loop Initialization

MOV B,M

LXI H

MOV A , M ~ ^ \ Loop execution

OUT 10 time = 21 M*sec

INX H > I/O data rate =

INR B 1 4
— M-sec = 4.76 X 10

JNZ Loop

HLT J
Fig. 4.5,2 Programmed 1/0 benchmarks

164

process l/O concurently with microprocessor execution. Thus the

I/O handling responsibility is removed from the microprocessor and

system I/O performance is enhanced.

Currently, several types of 1/0 chips exist, namely parallel

interface chips and serial interface chips. DMA controllers are also

being implemented as LSI chips in which several channels of DMA are

designed into a single chip. In addition, interface/controller chips

are being developed for common microcomputer peripherals such as

CRT's, floppy disks and magnetic cartridges. These chips will lower

system cost by reducing the chip count and minimizing the design time.

As microcomputer systems become standardized (within a given

family) with respect to instruction set l/O commands, interrupt

system protocols and DMA handling, general purpose I/O interface

chips will be developed which can give each device programmed I/O,

interrupt and DMA capability. In one type of I/O system, each I/O

device has an interface, but all control exists within the micro­

processor which issues commands to each interface.

In a distributed intelligence I/O system, each 1/0 device

is connected to an intelligent l/O chip. In effect, the I/O control

that existed in the microprocessor has been distributed to each I/O

chip. The I/O chip functions as the device controller and is capable

of controlling the l/O device independent of the microprocessor.

The I/O chip has all the interface logic needed to communicate with

the microprocessor through programmed l/O or interrupts. The I/O

chips also has the logic needed to perform DMA operations with the

device. The use of intelligent I/O chips which are capable of

functioning independently requires an additional system element to

resolve requests from all the devices needing resources. This device

arbitrates all request and grants system resources on a priority

basis. This type of system will result in minimal hardware costs

for the capability provided. The design of the I/O system will then

consist mainly of writing the software to manage all the concurrent

processing.

166

REFERENCES

Section 1

1. Altman, L . , "Single-Chip Microprocessors Open Up a New World of

Applications," Electronics, April 12, 1974, pp. 81-87.

2. Bursky, Dave, "Choosing a uP By Its Capabilities is a Growing ’Family

A f f a i r 1," Electronic D e s i g n . July 5, 1977, pp. 26-38.

3. Davidow, W. H. , "General-Purpose Microcontrollers Part I: Economic
Considerations," Computer Design. July 1972, pp. 75-79.

4. Davidow, W. H . , "General-Purpose Microcontrollers Part II: Design

and Applications," Computer D e s i g n . August 1972, pp. 69-75.

5. Faggin, F., and others, "The MCS-4 - A n LSI Micro Computer System,"

IEEE Region 6 Conference Record (1972), pp. 1-6.

6 . Hoff, M. E., Jr., "Considerations For the Use of Micro Computers in

Small Systems," Wescon Technical Papers (1972), Paper 26/3.

7. Hoff, M. E., Jr., "The New LSI Components," 6th IEEE Computer Society
International Conference Digest (1972), pp. 141-143.

8 . Laliotis, T. A., "Microprocessors Present and Future," C o mputer, July

1974, pp. 20-24.

9. Lewis, D. R . , and Siena, W. R., "How to Build a Microcomputer,"
Electronic Design, September 13, 1973, pp. 60-65.

10. National Semiconductor, A Microprogram Development System, Application

Note #AN-123, Santa Clara, Gal, 1974.

11. National Semiconductor, GCP/C Product Description, Pub. #4200005B,

Santa Clara, Cal. 1973.

12. National Semiconductor, IMP-16C Application M a n u a l , Pub. #4200021C,

Santa Clara, Cal. 1974.

13. Rattner, J., and others, "Bipolar LSI Computing Elements Usher in

New Era of Digital Design," Electronics, September 5, 1974, pp. 86-

96.

14. Reyling, G., Jr., and Weissberger, A. J., "Microprocessor Components

and Systems," (unpublished, written at National Semiconductor).

15. Reyling, G., Jr., "Considerations in Chosing a Microprogrammable

Bit-Sliced Architecture," Computer, July 1974, pp. 26-29.

16. Reyling, G., Jr., "Single-Chip Microprocessor Employs Minicomputer

Word Length," Electronics, December 26, 1974, pp. 87-93.

17. Schultz, G. W . , and Holt, R. M . , "MOS LSI Minicomputer Comes of Age,

AFIPS Conference Proceedings, FJCC (1972), pp. 1069-1080.

18. Schultz, G. W . , and others, "A Guide to Using LSI Microprocessors,"

Comp u t e r , June 1973, pp. 13-19.

19. Smith, H . , "Impact of LSI on Micro Computer and Calculator Chips,"

NEREM Record (1972), pp. 143-146.

20. Texas Instruments Staff, Designing With TTL Integrated C i rcuits,

McGraw-Hill, New York, 1971.

Section 2

1. Blood, William, J r . , MECL System Design Hand b o o k , Motorola Semi­

conductor Products, Inc., Mesa, Arizone, 1972.

2. De Falco, John, "Comparison and Uses of TTL Circuits," Computer

De s i g n , Feb. 1972, pp. 63-68.

3. De Falco, John, "Reflection and Crosstalk in Logic Circuit Inter­

connections," IEEE Spectrum, July 1970, pp. 44-50.

4. Fairchild Semiconductor, The ECL H a ndbook, Mountain View, Cal.,

1974.

5. Garrett, Lane S., "Integrated-circuit digital logic families,

Part II-TTL devices," IEEE Spectrum, Nov. 1970, pp. 63-72.

6 . National Semiconductor, Application of Tri-state IC's, Application

Note # AN-45, Santa Clara, Cal., 1972.

7. Peatman, John, The Design of Digital Systems, McGraw-Hill,

New York, 1972.

8 . Priel, Ury, "Take a look inside the TTL IC," Electronic D e s i g n ,

April 15, 1971, pp. 68-81.

9. Signetics Corp., Signetics Data B o o k , 1974.

10. Texas Instruments Staff, Designing with TTL Integrated Circuits,

McGraw-Hill, New York, 1971.

11. Texas Instruments Staff, The TTL Data B o o k , Dallas, Texas, 1973.

12. Texas Instruments, Low Power Schottky Users Guide, 1977.

13. The 3M Company, Scotchflex Cable/Connector System.

168

Section 3

1. Davis, Sydney, ’’Selection and Application of Semiconductor

Memories,” Computer Design, Jan., 1974, pp. 65-77.

2 . Feeney, H . , "Microcomputer Applications of Electrically

Alterable ROM's," 1972 Wescon Technical Papers, Session 4.

3. Frankenberg, Robert J., "Designers Guide to: Semiconductor

Memories - Part 1 through Part 8," EDN, August 5, 1975 -

Nov. 20, 1975.

4. Gorman, Ken., "The programmable logic array: a new approach

to microprogramming," EDN. Nov. 20, 1973, pp. 68-75.

5. Hoff, Marcian, "Designing with Semiconductor RAM's - Parti,"

EDN, August 5, 1973, pp. 30-35.

6 . Intel Corp., The Intel Memory Design Handbook, Santa Clara, Cal.,

August 1973.

7. Strauss, Leonard, Wave Generation and Shaping, McGraw-Hill Book

Co., New York, NY, 1970, pp. 547-612.

8 . Thomas,A. Thampy, "Design Techniques for Microprocessor Memory

Systems," Computer Design, August 1975, pp. 73-78.

Section 4

1. Bass, J. E., "A Peripheral-Oriented Microcomputer System,"

Proc. of the IEEE, June 1976, pp. 860-873.

2 . Bond, J., "Interfacing peripheral devices with minicomputers,"

EDN, Dec. 5, 1973, pp. 48-54.

3. Falk, H . , "Linking Microprocessors to the Real World," IEEE

Spectrum, Sept. 1974, pp. 59-67.

4. Gladstone, B., "Designing with microprocessors instead of wired

logic asks more of designers," Electronics, Oct. 11, 1973,

pp. 91-104.

5. Intel Corp., 8080 Microcomputer System Manual, Santa Clara, Cal.,

1975.

6 . Moffa, R . ,"Interfacing Peripherals in Mixed Systems," Computer

Design, April 1975, pp. 77-84.

169

7. National Semiconductor, IMP-16 interrupts, Application Note
#AN-107, Santa Clara, Cal., 1975.

8 . National Semiconductor, IMP-16C peripheral interfacing simplified,

Application Note #AN-124, Santa Clara, Cal., 1974.

9. National Semiconductor, IMP-16C Application M a n u a l , Pub. #4200021C,

Santa Clara, Cal., 1974.

10. Sawyer, G., ’’Tools and techniques of microprocessor data transfer,"

Proc. National Computer Conference, 1975, pp. 15-20.

11. Van Gelder, M. and others, "A Primer on Priority Interrupt

Systems," Control Engineering, Mar. 1969, pp. 101-105.

